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Abstract—This paper proposes Graph Grouping (GG) loss for
metric learning and its application to face verification. GG loss
predisposes image embeddings of the same identity to be close to
each other, and those of different identities to be far from each
other by constructing and optimizing graphs representing the
relation between images. Further, to reduce the computational
cost, we propose an efficient way to compute GG loss for
cases where embeddings are L2 normalized. In experiments, we
demonstrate the effectiveness of the proposed method for face
verification on the VoxCeleb dataset. The results show that the
proposed GG loss outperforms conventional losses for metric
learning.

I. INTRODUCTION

Face verification is one of the most important research
topics in the field of biometric authentication. In the past
few decades, signal processing and computer vision techniques
have had great success in extracting identity features from face
images. In particular, deep convolutional networks have been
proven to be effective at embedding images into a vector space,
which enables measurement of face similarity by a simple
metric such as cosine similarity between vectors.

To optimize network parameters, metric learning has re-
cently attracted attention. Given a set of labeled face images,
metric learning aims to assign a small distance between images
of the same identity and a relatively large distance between
images of different identities. As such, loss functions for
metric learning are often designed to directly minimize or
maximize distance between images. For example, contrastive
loss [1] minimizes distance d(xa, xp) and maximizes distance
d(xa, xn), where xa is an anchor image, xp is a positive image
of the same identity as the anchor, and xn is a negative image
of a different identity, as shown in Figure 1 (a).

The idea to introduce these three roles of anchor, positive,
and negative is widely utilized in metric learning. Triplet loss
[2] makes triplets of anchor, positive, and negative images,
as shown in Figure 1 (b). Prototypical loss [3] and angle-
prototypical loss [4] make prototypes by aggregating positive
images. In general, training with triplets or prototypes is
more efficient and effective than that with pairs because more
than two image embeddings are simultaneously optimized.
However, some relation between images remains unused. For
example, a connection between the positive image and the
negative image is missing in Figure 1 (b). This suggests
the idea of a general framework to leverage more dense
connections between images by making a graph as shown in
Figure 1 (c).

Fig. 1. Illustrations of the relation between images in metric learning. (a)
Contrastive loss uses two types of pairs: positive and negative. (b) Triplet loss
uses triplets of an anchor, positive, and negative. (c) The proposed GG loss
uses a graph representing the general relation between images.

In this paper, we propose a novel loss function, namely
Graph Grouping (GG) loss, for metric learning which makes
graphs on training images to simultaneously optimize embed-
dings at each graph. Further, to reduce the computational cost,
we propose an efficient way to compute GG loss for cases
where embeddings are L2 normalized. In experiments, we
demonstrate that that the proposed loss function outperforms
conventional loss functions for metric learning, in terms of face
verification performance on the VoxCeleb dataset. In summary,
our contributions are three fold.

1) We propose GG loss for metric learning, which optimizes
image embeddings for face verification.

2) We propose an efficient way to compute GG loss on L2-
normalized embeddings.

3) We conduct comparison experiments on the VoxCeleb
dataset and show that the proposed method outperforms
conventional metric learning methods.

II. RELATED WORK

A. Face Identification and Verification

To extract features from images for face identification
and verification, researchers have proposed various feature
extraction methods in the past few decades. Examples of
traditional methods include statistical modeling of heuristic
features such as Haar-like features [5]. These methods are often
used in lightweight devices. Recent studies have shown that
features extracted from deep convolutional networks outper-
form heuristic features in terms of face identification accuracy.
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Fig. 2. Graphs defined on a mini-batch B. (a) Samples in a mini-batch. Labels for three classes (identities) are illustrated. (b) Positive graphs: the complete
graphs Kc for each class label c are constructed. (c) Negative graphs: the complete bipartite graphs Kc,r between the class c and the r-th random negative sets
(r = 1, 2, · · · , R) are constructed. The proposed GG loss predisposes edge weights for Kc to be small and those for Kc,r to be relatively large.

For instance, the final pooling layer of ResNet [6] or SE-
ResNet [7] is often utilized to extract features.

To train these networks, a large-scale labeled dataset
is required. Examples of publicly available datasets include
MS-Celeb-1M [8], VGGFace2[9], and VoxCeleb[10]. These
datasets provide face images or videos for more than 5,000
identities, and are usually large enough to optimize parameters.

B. Metric Learning

Metric learning is a framework for finding an optimized
metric space. Previous studies have proposed definitions of
loss functions based on metric learning for training neural
networks. The simplest ones are contrastive loss [1] and
triplet loss [2]. They make pairs or triplets of images to
predispose image embeddings to be close or to be far from each
other. For face identification, losses based on cosine similarity,
such as ArcFace [11] and CosFace [12], often improve the
performance. Their formulation can be viewed as an extension
of softmax loss. For speaker verification, further extensions
including prototypical loss [3] and angle-prototypical loss [4]
are also known to be effective.

III. PROPOSED METHOD

A. Notation and Settings for Face Verification

Given two face images x and x′, the goal of face verifi-
cation is to determine whether two images are of the same
identity. In this paper, we assume that sets of identities for
training and testing are disjoint. This setting is the same as that
of speaker verification for audio signals [10] and is also similar
to zero-shot image recognition [13]. Note that this is more
difficult than standard face recognition, where the identity sets
for training and testing are the same.

More precisely, a training set D consists of pairs of a face
image x ∈ X and its identity label y ∈ Y , where X is
a set of images and Y is a set of identities for training. A
testing set T consists of pairs of a face image x ∈ X and its
identity label z ∈ Z, where Z is another set of identities,
i.e., Y ∩ Z = ∅. Note that, in the testing phase, distance
(or similarity) between embeddings ϕ(x), ϕ(x′) is used to
determine whether two images are of the same identity. These
embeddings are extracted from a hidden layer of a neural
network, e.g., from the final pooling layer of ResNet18 [6].
The rest of this section presents a method for training a neural

network Nθ on D to extract embeddings ϕ(x), where θ is a
set of network parameters.

B. Graph Grouping Loss for Metric Learning

The goal of metric learning for face verification is to learn a
metric d(x, x′) which assigns a small distance between images
of the same identity. Assuming that network parameters are
iteratively updated by using mini-batch sampling, the proposed
GG loss is defined on a mini-batch B = {(xi, yi) : i =
1, 2, · · · , N}.

Our main idea is to define two types of graphs on B:
positive graphs and negative graphs. Here, positive graphs have
edges between images from the same identity and negative
graphs have edges between images from the different identities,
as illustrated in Figure 2. Based on these graphs, GG loss
predisposes the edges of the positive graphs to be short and
those of the negative graphs to be long. Specifically, the loss
is calculated in the following four steps.

1) Constructing Positive Graphs. Let C =
∪

i{yi} be a
unique set of labels on B. For each label c ∈ C, a positive
graph Kc = (Vc, Ec) is constructed by

Vc = {xi : yi = c, (xi, yi) ∈ B}, (1)
Ec = {(u, v) : u, v ∈ Vc, u ̸= v}, (2)

where Vc is a set of nodes and Ec is a set of edges.
Note that Kc is an undirected complete graph as shown
in Figure 2 (b).

2) Constructing Negative Graphs. For each label c ∈ C, a
negative graph Kc,r = (Vc,r, Ec,r) is constructed by

Vc,r = Vc ∪Rr, (3)
Ec,r = {(u, v) : u ∈ Vc, v ∈ Rr}, (4)

where Rr is a random subset of images of identities
excluding c, i.e., Rr ⊂ B\Vc. We repeat sampling T times
to obtain negative graphs for r = 1, 2, · · · , T . Note that
Kc,r is a bipartite complete graph as shown in Figure 2(c).

3) Defining Edge Weights. On each graph G = (V,E)
constructed in steps 1 and 2, edge weight w(e) is defined
by

w(e) = d(u, v) (5)

where e = (u, v) ∈ E and d(u, v) is a metric to be learned,
such as squared Euclidian distance d(u, v) = ∥u− v∥22.



Fig. 3. Illustration of how GG loss works. (1) Samples in Kc for class c. Our two assumptions are illustrated: all samples (embeddings) are in the Euclidian
space and they are L2 normalized. (2) Before training: the sum ς = Σv∈Vcϕ(v) is computed. ∥ς∥22 is small because samples are far from each other. (3)
During training: GG loss predisposes ∥ς∥22 to be large. (4) After training: ∥ς∥22 becomes large. This means that the samples are close to each other.

4) Computing Loss Finally, GG loss is computed by

L =

C∑
c=1

exp(−γ∥Kc∥w + β)∑R
r=0 exp(−γ∥Kc,r∥w + β)

, (6)

where ∥G∥w is the average of edge weights given by

∥G∥w =
1

|E|
∑
e∈E

w(e), (7)

and β, γ are learnable parameters. Intuitively, GG loss can
be understood as an extension of softmax loss to the graph
space. Note that we define Kc,0 = Kc to simplify the
expression (summation) in the denominator in Eq. (6).

C. Efficient Computation of GG Loss

To naively compute GG loss, all edge weights need to
be evaluated. However, this is computationally costly because
graphs Kc and Kc,r are dense. Here, we present an effi-
cient way to directly compute GG loss by introducing two
assumptions: 1) all embeddings ϕ(x) are L2 normalized, i.e.,
∥ϕ(x)∥2 = 1; and 2) the distance d(x, x′) is squared Euclidean
distance between embeddings, i.e., d(x, x′) = ∥ϕ(x)−ϕ(x′)∥22.
The first assumption is satisfied by introducing an L2 normal-
ization layer at the top of the network. Adding the second
assumption is reasonable in practice because it is equivalent
to cosine similarity, which often performs well for both face
identification [11], [12] and speaker verification [16], [15].

C-1. Efficient computation for complete graphs

Under the two assumptions, ∥Kc∥w for complete graphs is
computed as follows:

∥Kc∥w =
1

|Ec|
∑

(u,v)∈Ec

∥ϕ(u)− ϕ(v)∥22 (8)

= 2− 2

|Ec|
∑

(u,v)∈Ec

ϕ(u)Tϕ(v) (9)

= 2− 1

|Ec|
(ςT ς− |Vc|), (10)

where ς is the sum of embeddings

ς =
∑
v∈Vc

ϕ(v). (11)

Note that Eq. (10) is derived from

ςT ς =

(∑
u∈Vc

ϕ(u)T

)(∑
v∈Vc

ϕ(v)

)
(12)

=
∑

u,v:u̸=v

ϕ(u)Tϕ(v) +
∑

u,v:u=v

ϕ(u)Tϕ(v) (13)

= 2
∑

(u,v)∈Ec

ϕ(u)Tϕ(v) + |Vc|. (14)

Eq. (10) shows that we no longer need to compute weights
for each node. This reduces the computational cost from
O(|V |2) to O(|V |). Figure 3 is provided to illustrate how the
training works.

C-2. Efficient computation for complete bipartite graphs

To efficiently compute ∥Kc,r∥w, we reuse the values of
∥Kc∥w obtained above. Specifically, ∥Kc,r∥w is computed by

∥Kc,r∥w =
|Ec∪r|∥Kc∪r∥w − |Ec|∥Kc∥w − |Er|∥Kr∥w

|Ec,r|
,

(15)

where Kr and Kc∪r are complete graphs on Rr and Vc∪r =
Vc ∪Rr, respectively. By computing ∥Kr∥w and ∥Kc∪r∥w in
the same way as 1), the computational cost is again reduced
from O(|V |2) to O(|V |).

IV. EXPERIMENTS

A. Evaluation Settings

We use the VoxCeleb dataset [10] to conduct face verifi-
cation experiments. This dataset is often used for speaker ver-
ification and is also suitable for face verification experiments
because disjoint sets of identities for training and testing are
provided. Note that this setting is more difficult than that of
standard face identification, where the identity sets for training
and testing are the same.

For training, the VoxCeleb 2 development set is used; this
set consists of 1,092,009 video files for 5,994 identities. To
make mini-batches for training at each iteration, video files
are randomly selected and then one image frame is randomly
extracted from each video file. For testing, the VoxCeleb 1 test
set is used; this set consists of 37,611 verification pairs. We
define two testing types, Image and Video, where the number



TABLE I. PERFORMANCE COMPARISON WITH OTHER METHODS.
EQUAL ERROR RATE (%) ON THE VOXCELEB 1 TEST SET IS REPORTED.

ONLY FACE IMAGES OR VIDEOS ARE USED IN THE EXPERIMENTS.

Method Testing Type
Image Video

Softmax Loss 13.25 12.04
CosFace Loss [12] 9.84 7.97
ArcFace Loss [11] 8.70 7.18
Prototypical Loss [3] 9.42 7.28
Angle-Prototypical Loss [4] 6.78 5.09
GG Loss (Proposed) 6.10 4.27
Audio only 1.90
Multimodal (Audio+GGLoss-Video) 0.89

of image frames used for testing is one and ten per video
clip, respectively. Testing videos (image frames) used in our
experiments are provided in [14]. The evaluation measure is
equal error rate (EER). This is the standard evaluation measure
for this dataset.

Implementation details are as follows. ResNet18 [6] is used
to extract embeddings ϕ(x) from images, where ϕ(x) is a
256-dimensional activation vector at the final pooling layer.
Network parameters are optimized by using the momentum
SGD optimizer with a batch size of 256 for 30 epochs. The
learning rate is initialized by 0.001, and decayed by 2 at every
2 epoch. Training took about 1.5 days with four NVIDIA P100
GPUs. The other hyperparameters are set to be the default
values of the PyTorch implementation.

B. Experimental Results

Table I shows performance in terms of EER on the Vox-
Celeb 1 test set. For comparison, we report results using soft-
max loss, CosFace loss [12], ArcFace loss [11], prototypical
loss [3], angle-prototypical loss [4], and the proposed GG loss.
We see that the proposed method outperforms the conventional
methods. This demonstrates the effectiveness of the proposed
GG loss. We also see that using multiple frames from video
for testing improves the performance for all types of loss.

For more detailed analysis, the detection error tradeoff
(DET) curves are reported in Figure 4. As can be seen, the
tendency is the same as that in Table I and the proposed method
uniformly improves the performance. Through experiments,
we observed that the proposed GG loss converges faster than
the other methods. This is because the graphs used to define
GG loss are dense. With dense graphs, many samples are
simultaneously optimized, and this helps to make convergence
first.

Finally, we report results using both audio and visual
streams. For the audio stream, we use ResNet18 with 32-dim
filterbank features without data augmentation and vanilla soft-
max loss [17]. As shown in Table I, combining the two streams
further improves the verification performance, and achieves a
0.89 % EER. This result confirms that face verification and
speaker verification benefit from each other.

V. CONCLUSION

This paper proposed graph grouping (GG) loss for metric
learning and an efficient way to compute GG loss on L2-
normalized embeddings. Our face verification experiments on

Fig. 4. Detection-error-tradeoff (DET) curves. Our method is compared with
five conventional methods.

the VoxCeleb dataset showed that the proposed loss outper-
forms conventional metric learning methods. For future work,
multi-modal metric learning to simultaneously optimize audio
and visual embeddings would be interesting.
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