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Abstract—We propose a novel network initialization method
using Perlin noise for training image classification networks with
a limited amount of data. Our main idea is to initialize the
network parameters by solving an artificial noise classification
problem, where the aim is to classify Perlin noise samples
into their noise categories. Specifically, the proposed method
consists of two steps. First, it generates Perlin noise samples
with category labels defined based on noise complexity. Second, it
solves a classification problem, in which network parameters are
optimized to classify the generated noise samples. This method
produces a reasonable set of initial weights (filters) for image
classification. To the best of our knowledge, this is the first work
to initialize networks by solving an artificial optimization problem
without using any real-world images. Our experiments show
that the proposed method outperforms conventional initialization
methods on four image classification datasets.

I. INTRODUCTION

Image classification is one of the most important topics
in the field of pattern recognition and computer vision, with
wide applications such as internet search engines, robotics,
and security. Over the last 10 years, many studies have shown
the effectiveness of deep neural networks for various image
classification tasks, including object recognition and action
recognition. Most neural networks utilize a large-scale dataset
for training because network performance increases with
dataset size. For example, deep convolutional networks trained
on the ImageNet dataset [1], which consists of 1.2 million
images, have been shown to achieve human-level performance
in terms of 1,000-class object classification accuracy.

Training networks with a limited amount of data is a chal-
lenging problem because network optimization methods often
fall into a local solution if the network has many parameters. A
recent trend in attempts to solve this problem is to apply fine-
tuning, i.e., to resume training from a pre-trained network. For
example, for object recognition, networks are often first trained
on the ImageNet dataset, and then fine-tuned on another small
dataset. This approach works well because ImageNet is large
enough to obtain reasonable image representations with some
visual filters in hidden layers. However, its application is
often limited to non-commercial use such as research and
educational purposes. In practice, it is not always easy to
collect such a large number of images.

* indicates equal contribution.

Fig. 1. Network initialization using Perlin noise. The proposed method
consists of two components, namely a noise sample generator Gη for
generating Perlin noise samples and a noise label generator Lη for generating
noise category labels. A network is initialized by solving an artificial noise
classification problem, where the aim is to classify the generated noise samples
into their categories.

This paper proposes a network initialization method that
obtains visual filters without using any real-world images.
The proposed method utilizes Perlin noise for initializing
networks. Perlin noise [2] is a type of noise used in the field
of computer graphics to render natural objects such as clouds,
fire, and stones. Specifically, the proposed method consists
of two steps. First, it generates Perlin noise samples with
category labels defined based on noise complexity. Second,
it solves a classification problem, in which network param-
eters are optimized to classify the generated noise samples.
Compared with conventional initialization methods such as
He initialization [3] based on Gaussian noise, our method
provides more complex texture-like visual filters as initial
values. We experimentally show that the proposed method
outperforms conventional initialization methods utilized in
most state-of-the-art image classification systems. Further, we
demonstrate that the proposed method contributes to data-
efficient pre-training in terms of accuracy improvement using
fewer samples for pre-training.

In summary, this paper makes the following contributions:
(1) A novel method is proposed for initializing networks,

which solves an artificial classification problem without
using real-world images. It consists of two components,
namely a noise sample generator and a noise label



generator, as shown in Figure 1.
(2) Category definitions are given for Perlin noise samples

based on noise complexity. This provides a specific
definition of an artificial classification problem to be
solved in the proposed method.

(3) Extensive experiments are conducted on four datasets.
In addition to a performance comparison with conven-
tional initialization methods, we show that the proposed
method contributes to data-efficient pre-training.

II. RELATED WORK

This section summarizes the network architectures, initial-
ization methods, pre-training methods, and datasets discussed
in related studies.

A. Network Architectures

Many previous studies have shown the effectiveness of
convolutional neural networks for image classification, which
results from their ability to learn visual patterns from a large
number of images. The basic idea of convolution and pooling
mechanisms was proposed in the 1990s [4]. Since then, various
types of network architectures have been proposed. AlexNet
[5], which has seven hidden layers, was the first successful ap-
plication of large-scale training using natural images. VGGNet
[6] and InceptionNet [7] stack more layers to explore deeper
architectures. ResNet [8] introduces skip connections to avoid
the gradient vanishing problem. ResNet also has extensions
such as ResNeXt [9], DenseNet [10], and SE-ResNet [11], and
is the most widely used architecture for image classification
tasks such as object recognition [1], action recognition [12],
and scene understanding [13].

To train these networks, a large number of images are
needed because the networks typically have more than a
million parameters to be optimized. Therefore, training with
a limited amount of data is a challenging problem in the field
of pattern recognition and computer vision.

B. Initialization Methods

In most state-of-the-art optimization methods, the parame-
ters of neural networks are initialized independently by utiliz-
ing probabilistic distributions such as the Gaussian distribution
and the uniform distribution.

He initialization [3] is the most popular method, and utilizes
a Gaussian distribution with a mean of zero and a variance
that is scaled depending on the number of hidden units to
initialize the weight parameters at each layer. This method is
effective for recent deep convolutional networks with ReLU
activations [14]. Xavier initialization [15] utilizes a uniform
distribution to initialize weights. This is particularly effective
for networks with a smooth activation function such as the
sigmoid or tangent functions. Sparse initialization [16] limits
the number of non-zero initial weights. It was proposed with a
Hessian-free optimization method. Other classic initialization
methods include normal initialization, which uses a standard
normal distribution, and zero initialization, which assigns zero

to all weights. Zero initialization is a good choice for bias
parameters or parameters that should be sparse.

Most of these methods can be viewed as initialization using
Gaussian noise or uniform noise. In contrast, our idea is to
utilize Perlin noise, a type of noise closer to natural visual
patterns, for image classification.

C. Pre-Training Methods

Pre-training is a framework for initializing neural networks
using a set of collected images. The idea is to first train a
network on a large-scale dataset, and then adopt the resulting
network as the starting point for training on another dataset.

A recent trend for pre-training is to utilize a large-scale
dataset such as ImageNet [1], Places 365 [13], and Kinet-
ics 400-700 [12], [17]. Because these datasets consist of
more than a million images with high-quality human-annotated
labels, networks pre-trained on them have a reasonable set of
visual filters at some hidden layers for recognizing natural
objects from images. This is one of the reasons why training
from pre-trained parameters outperforms training from scratch
in terms of image classification accuracy. However, the use
of these datasets is often limited to research and academic
purposes. Because it is not always easy to collect such a
large number of images, data-efficient pre-training methods
are desirable.

Our method is presented here as an initialization method
because it does not use any natural images or any manually
annotated labels. This also distinguishes our method from
semi-supervised [18] [19] [20] [21] and unsupervised [22]
learning. Additionally, it can also be viewed as a new type
of pre-training method because it has a step that solves a
classification problem. Notably, we show experimentally that
the proposed method contributes to data-efficient pre-training.

D. Datasets

Various datasets have been created for evaluating image
classification methods. Each dataset consists of a set of images
and labels for a specific task, such as hand-written character
recognition and object recognition.

Examples of hand-written character recognition datasets
include MNIST [4] and Omniglot [23]. The MNIST dataset
consists of 70,000 binary images of hand-written digits from 0
to 9. The Omniglot dataset consists of about 40,000 grayscale
images of 1,623 different hand-written characters from 50
different alphabets. It was originally proposed as a dataset for
one-shot learning to explore new learning methods.

Small- and large-scale object recognition datasets have been
created. Small-scale datasets are often used for evaluating
image classification methods. They include Cifar-10/100 [24],
Caltech-101/256 [25], and Pascal VOC [26]. Each of these
datasets consists of 10-100k natural images in 10-100 object
categories. The Describable Textures Dataset (DTD) [27]
focuses on texture categories related to objects. Large-scale
datasets such as ImageNet [1] and COCO [28] are often used
for pre-training. They consist of more than a million natural
images.



Fig. 2. Four steps used to generate Perlin noise. Noise samples are generated
on a 2n × 2m grid.

III. PROPOSED METHOD

In this section, we present the proposed network initializa-
tion method that uses Perlin noise. Let Nθ be a neural network
for image classification with a set of parameters θ. The goal
is to find reasonable initial values for θ.

Our main idea is to initialize the parameters by solving
an artificial noise classification problem. Specifically, the pro-
posed method consists of two steps. First, it generates noise
data D = {(ϵi, yi)}Ti=1, where ϵi is a Perlin noise sample
and yi is a category label. Second, it solves a classification
problem on D, in which network parameters are optimized
to maximize the noise classification accuracy. Note that even
though this step can also be viewed as pre-training, the entire
process is proposed as an initialization method because it does
not use any natural images or any human-annotated labels. To
the best of our knowledge, this is the first work to initialize
networks by solving an artificial classification problem using
noise. The rest of this section describes the details of each
step.

A. Generation of Noise Data

This subsection describes the generation of noise data
D = {(ϵi, yi)}Ti=1 in the first step of the proposed method.
As shown in Figure 1, the proposed method has two compo-
nents, namely a noise sample generator Gη and a noise label
generator Lη with shared parameter η. Noise samples and their
labels are generated as ϵi ∼ Gη and yi ∼ Lη , respectively.

In this work, we utilize Perlin noise [2] to define these
two generators. Perlin noise was selected for the following
reasons: 1) It can render the textures of some natural objects.
For example, in the field of computer graphics, it is used to
render clouds, fire, and stones. 2) It has moderate complexity
for defining categories (see the visualization of some noise

Fig. 3. Examples of noise categories. Labels attached to noise samples
correspond to the complexity of Perlin noise.

categories in Figure 3). The definitions of the two generators
using Perlin noise are given below.
A-1. Noise Sample Generator

Let W,H , and C be the width, height, and number of
channels of inputs of the network Nθ for image classifica-
tion, respectively. The noise sample generator Gη generates
ϵi ∈ RW×H×C by following the Perlin noise generation
algorithm in [2], summarized below. Note that it has parameter
η = (n,m) in Step 1 and random values in Step 2.
Step 1: Definition of a grid. This step defines a two-
dimensional grid on a blank image whose size is W ×H . We
define a 2n × 2m grid (n,m ≥ 1) as shown in Figure 2 (a).
Step 2: Placement of random gradient vectors. This step
places random gradient vectors vp,q at each grid point, i.e.,
for p = 0, 1, 2, · · · , 2n and q = 0, 1, 2, · · · , 2m, as shown
in Figure 2 (b). The magnitude and angle of each vp,q are
uniformly sampled from [0, R) and [0, 2π), respectively. Here,
we set R = 0.01 ·max(W,H).
Step 3: Generation of gradients. At each pixel, this step
computes the dot product of the gradient vectors at the four
corners of the cell the pixel belongs to and the distance vectors
between the pixel and the corresponding corners. The four dot
product values corresponding to the four corners are assigned
to each pixel. This step is illustrated in Figure 2 (c). Note that
the figure shows only one of the four values at each pixel.
Step 4: Interpolation. Finally, through linear interpolation
between the four values computed in the previous step, the
final value of each pixel on ϵi is determined. An example is
shown in Figure 2 (d).
A-2. Noise Label Generator

In the above algorithm, the way that the interval gradient
vectors are defined affects the complexity of the generated Per-



Fig. 4. Intra-category variation of noise samples. Image representations of
noise samples for three categories (y = 1, 13, 43, 67) are shown.

lin noise. For example, compared to noise samples computed
from a dense grid, those computed from a sparser grid will
also be sparser in terms of noise complexity.

We use this difference in complexity to define categories of
noise samples.

Specifically, to samples ϵi ∼ Gη generated with parameter
η = (n,m), the noise label generator Lη attaches labels

yi = (n− 1)M +m. (1)

Here, we assume that the range of η is {(n,m) : 1 ≤ n ≤
N, 1 ≤ m ≤ M}. This means that the range of yi is
{1, 2, · · · , NM} and the number of noise categories is NM .

Figure 3 and Figure 4 show examples of noise categories
and intra-category variation of noise samples, respectively.
As can be seen, from category to category, noise complexity
varies from coarse to fine with changes in gradient direction.
This artificial category definition facilitates the acquisition of
a reasonable set of visual filters in a portion of the hidden
layers of the neural network. For example, with a convolutional
neural network, we obtain some texture-like filters at the
bottom layer of the network (results are shown in Figure 5
in Sec. 4).

Note that the proposed method has three hyperparameters,
namely N , M , and K. N and M are for determining the
number of noise categories and K is the number of instances
per category. Finally, the generated noise data D consist of
T = NMK noise samples with labels.

B. Optimization

The network parameters are optimized by solving a classifi-
cation problem on the generated noise data D = {(ϵi, yi)}Ti=1.
In this step, any type of objective function and optimizer can
be introduced. Examples include cross-entropy loss with the

SGD or ADAM optimizer, which starts from He initialization.
In contrast to standard pre-training, which solves an optimiza-
tion problem on real-world data, this step solves an artificial
optimization problem, and as such this is a kind of closed-
form problem. Introducing other types of optimizers to this
step to solve this closed-form problem more efficiently, based
on the characteristics of Perlin noise, will be considered in
future work.

IV. EXPERIMENTS

In this section, we show the effectiveness of the proposed
initialization method on four image classification datasets.

A. Datasets and Evaluation Measures

Cifar-10. This dataset consists of 60,000 color images, each
of which has a label from 10 object classes. We follow the
standard evaluation procedure, in which 50,000 images are
used for training and 10,000 images are used for testing.
Classification accuracy over 10 classes is reported.
Cifar-100. This dataset consists of 60,000 color images, each
of which has a label from 100 object classes. We follow
the standard evaluation procedure, in which 500 and 100
images per class are used for training and testing, respectively.
Classification accuracy over 100 classes is reported.
Omniglot. This dataset consists of 38,300 grayscale images
of 1,623 different hand-written characters. It was originally
proposed as a one-shot learning dataset. We use the data
split proposed in [23]. 1,623 and 30,837 images are used for
training and testing, respectively. Classification accuracy over
1,623 classes is reported.
Describable Textures Dataset (DTD). This dataset consists
of 5640 images of 47 texture categories, such as checkered,
striped, meshed, and marbled. We follow the standard evalu-
ation procedure with three equal parts for training, validation,
and testing.
ImageNet. This dataset consists of 1.2 million color images
of 1,000 object classes. We use this dataset to show that
the proposed initialization method helps improve the data
efficiency of pre-training.

B. Implementation Details

Our implementation uses ResNet [8] as a backbone network.
The results obtained using ResNet50 and ResNet152 are
reported. For optimization, we use cross-entropy loss and the
SGD optimizer in all experiments. For comparison, we report
results obtained using He initialization [3], Xavier initializa-
tion [15], sparse initialization [16], and normal initialization.
Notably, He initialization is utilized in most state-of-the-art
methods for image classification tasks.

C. Results

C-1. Main Results
Table I shows a performance comparison of initialization

methods on the four datasets. As shown, the proposed method
always outperforms the conventional methods. This shows the
effectiveness of initialization using Perlin noise.



TABLE I
PERFORMANCE COMPARISON ON FOUR DATASETS. CLASSIFICATION ACCURACIES (%) FOR EACH DATASET WITH TWO TYPES OF NETWORK ARE SHOWN.

Method Cifar-10 Cifar-100 Omniglot DTD
ResNet50 ResNet152 ResNet50 ResNet152 ResNet50 ResNet152 ResNet50 ResNet152

Normal initialization 92.62 93.47 75.16 75.59 2.66 2.37 13.68 5.24
Xavier initialization [15] 92.30 93.58 73.85 75.14 5.88 5.57 27.51 24.75
He initialization [3] 93.50 93.43 74.17 75.73 4.61 3.06 24.31 20.14
Proposed method 93.76 94.27 77.42 78.21 17.54 18.71 55.03 54.18

Fig. 5. Visualization of filters of the first convolutional (conv1) layer. Filters before and after training on Cifar-10 are shown. (a) He initialization and (b)
proposed method.

To analyze the reason for the superior performance of the
proposed method, Figure 5 shows the filters at the bottom layer
(conv1 layer) before and after training. As can be seen, the
proposed method gives a set of various filters, including some
texture-like and edge-like filters. Therefore, after training, it
obtains a useful set of colored filters for image classification
even if the number of training samples is not very large.

Figure 6 shows validation accuracy curves for the Cifar-
100 dataset. Our method not only achieves higher accuracy at
the end of training, but its training starts at higher accuracy.
This shows that, as an initial value for training, texture and
edge filters are a better choice than randomized filters. In
this experiment, we used the fixed learning rate schedule in
the official PyTorch implementation tuned for training from
scratch for a fair comparison. Optimizing the learning rate
schedule for our method may lead to faster convergence.

In the present paper, we did not use color Perlin noise
because some applications, including hand-written character
recognition, use grayscale images. In future work, a noise
sample generator that uses the RGB color space can be applied
for cases where the dataset consists of color images.

C-2. Hyperparameters
To explore the effect of changes in hyperparameters, Table II

shows the results obtained using various values for N , M ,
and K for noise data generation. Note that, as described
in Sec. 3, (N,M) determines the number of Perlin noise
categories based on noise complexity, and K controls the
number of instances per category for generating T = NMK

Fig. 6. Validation accuracy curves for the Cifar-100 dataset. He initialization
and our method are compared.

noise samples.
A comparison of two strategies, namely increasing the

number of categories and increasing the number of instances,
shows that the former is more effective than the latter for
improving image classification accuracy. This supports our
assumption that noise complexity is an important factor for
determining categories.

Performance improvements were observed across both
network structures, with ResNet152 always outperforming
ResNet50. In general, it is difficult to train a large network with
a limited amount of data. However, our method is adaptable



TABLE II
EXPERIMENTAL RESULTS OBTAINED USING VARIOUS VALUES FOR

HYPERPARAMETERS IN NOISE DATA GENERATION. ACCURACIES FOR THE
CIFAR-100 DATASET ARE SHOWN. NETWORK: BACKBONE NETWORK

(RESNET50 OR RESNET152). # CATEGORIES: NUMBER OF PERLIN NOISE
CATEGOREIS; N ×M CATEGOREIS ARE GENERATED. # INSTANCES:

NUMBER OF INSTANCES PER CATEGORY.

Network #categories #instances
100 500 1, 000

10× 10 76.28 75.99 76.44
ResNet50 18× 18 76.95 76.92 75.53

36× 36 75.77 77.42 78.03
10× 10 77.09 77.09 77.77

ResNet152 18× 18 77.92 77.69 77.23
36× 36 78.30 78.21 77.51

to networks of different sizes because noise complexity can be
adjusted based on the network size. This advantage improves
the performance of training large networks with a limited
amount of data. To further improve performance, future noise
sample generators can be designed using other types of noise.

C-3. Data-Efficient Pre-Training
Finally, we combine our method with pre-training to explore

how this combination improves image classification perfor-
mance. Figure 7 shows the results obtained using various
numbers of images from the ImageNet (ILSVRC 2012) dataset
for pre-training. According to the results, our method is
particularly effective when the number of pre-training images
is small. Although this paper focuses on network initialization
without using any real-world images, the results imply that
combining our method with pre-training methods would lead
to more data-efficient pre-training.

V. CONCLUSION

This paper proposed a novel network initialization method
that uses Perlin noise. Experiments on four image classification
datasets demonstrated that the proposed initialization is effec-
tive for training networks for image classification. In particular,
our method is effective for training with a limited amount of
data because it provides texture-like initial filters that improve
image classification accuracy. Our future work will focus on
extending this initialization method to other types of noise,
including colored noise, and data such as audio and video
data, as well as introducing new noise category definitions.
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