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Abstract
Statistical models used in machine learning are called learning machines. It is well-known that
learning machines are widely applied to predict unknown events and discover knowledge by
computers in many fields. Indeed, machine learning has grown over the last several decades.
They are used for statistical learning/inference and usually have hierarchical structures. These
structures are effective for generalizing to the real world. Statistical learning theory is a theory
to clarify the generalization performances of learning machines.

Singular learning theory is a mathematical foundation for statistical inference using singular
models. Typical hierarchical models, such as neural networks, tree and forest model, mixture
model, matrix factorization, and topic model, are statistically singular since a map from
a parameter to a probability density function is not one-to-one. Clarifying generalization
behaviors in singular models is an important problem to estimate sufficient sample sizes,
design models, and tune hyperparameters. However, conventional statistics theory cannot
be applied to these models because their likelihoods cannot be approximated by any normal
distribution. Singular learning theory provides a general view for this problem; birational
invariants of an analytic set (a.k.a. algebraic variety) determine the generalization error.
That is defined by zero of a Kullback-Leibler (KL) divergence between the data-generating
distribution and the model. Algebraic structures of statistical models are essential in singular
learning theory; thus, it can be interpreted as an intersection between algebraic statistics and
statistical learning theory.

One of such invariants is a real log canonical threshold (RLCT). An RLCT is a negative-
maximum pole of a zeta function defined by an integral of a KL divergence. Determining
an RLCT of a concrete model is performed by resolution of singularities. In fact, algebraic
statisticians and machine learning researchers have derived the exact values or upper bounds
of the RLCTs for several singular models. The theoretical value of the RLCT is effective in
statistical model selection such as sBIC proposed by Drton and Plummer. Besides, Nagata
proposed a tuning method using RLCTs for exchange Monte Carlo.

On the other hand, from the practical point of view, the parameter region of the model
is often restricted to improve interpretability. Non-negative matrix factorization (NMF) and
latent Dirichlet allocation (LDA) are well-known examples of parameter-restricted singular
models. In general, such constraints make the generalization error changed. However, for
each singular model and condition, the quantitative effect of those constraints has not yet been
clarified because the singularities in the above analytic set are also changed by the restriction
to the parameter region.

In this dissertation, as a foundation to establish a singular learning theory of parameter-
restricted statistical models, we theoretically study the asymptotic behavior of the Bayesian
generalization error in NMF and LDA. NMF and LDA are two typical singular models whose
parameter regions are constrained. In NMF, we derive an upper bound of the RLCT and a
lower bound of the variational approximation error. In LDA, we prove that its RLCT is equal
to that of matrix factorization with simplex restriction and clarify the exact asymptotic form
of the generalization error, i.e. we determine the exact value of the RLCT of LDA. These
results provide quantitative differences of generalization errors from matrix factorization
whose parameter space is not restricted.
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Chapter 1

Introduction

In this chapter, we introduce the research investigated by this dissertation. First,
in Sec. 1.1, we describe the background of this study. In Sec. 1.2, the aim of this
research is stated. In Sec. 1.3, the structure of this thesis is explained. And lastly,
in Sec. 1.4, we show symbols commonly used in this dissertation.

1.1 Background

1.1.1 Statistical Learning Theory

Machine learning is a ubiquitous technology that tackles real-world problems such as future
prediction and knowledge discovery from data, and it has been developing pattern recognition
[14]. It is significant to make scientific or technical judgments based on the data; hence,
machine learning has been widely applied as same as statistics. For example, non-negative
matrix factorization (NMF) [61, 18] has been used for signal processing [51], text mining
[88], bioinformatics [46], and purchase analysis [47]. Another example is latent Dirichlet
allocation (LDA). LDA has been applied to text analysis [15, 30], image recognition [52],
market research [72], and geology [98]. Statistical learning theory (learning theory) is a
theory that aims to build a foundation for solving these problems faced in the real world and
for evaluating the results obtained by machine learning. When n-data are obtained from the
true distribution (data-generating distribution) q(x) *1 , we cannot know it in reality. The
objectives of learning theory are the following three things. First, to build a theoretical
foundation for estimating the true distribution q(x) with a predictive distribution p∗(x) based
on the data Xn = (X1, . . . , Xn), by learning it with a model p(x|θ), where x is a variable
in the data space X ⊂ RN and θ is a parameter (θ ∈ W ⊂ Rd). Second, to clarify
the behavior of the error of the learning results. Third, to devise an algorithm (learning
algorithm) for estimating the true distribution with high accuracy in practice. Such situations
specifically emerge when we create artificial intelligence that recognizes images and sounds
by learning from examples, or we conduct knowledge discovery such as reducing dimension
and clustering, or future prediction such as anomaly detection or time series prediction.

*1 Actually, q(x) is a probability density/mass function; however, we call it a probability distribution according
to the convention.
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Typical learning algorithms include maximum likelihood estimation and Bayesian inference
[85]. In maximum likelihood estimation, the predictive distribution becomes p(x|θ∗), where
θ∗ is a parameter that maximizes the likelihood (i.e. the probability density when the model
observes the data). On the other hand, in Bayesian inference, the prior distribution φ(θ)
is defined with the probability model p(x|θ), i.e. the statistical model is denoted by the
simultaneous distribution p(x|θ)φ(θ). The posterior distribution ψ(θ|Xn) ∝ p(x|θ)φ(θ) is
calculated and the predictive distribution becomes the expectation of p(x|θ) by ψ(θ|Xn):
p∗(x) =

∫
p(x|θ)ψ(θ|Xn)dθ. This prediction distribution is called the Bayesian prediction

distribution. The predictive distribution is often also written as p(x|Xn), in the sense that it
is the probability distribution of x given the data Xn.

Recently-used statistical models and learning machines often have hierarchical structures
or latent variables. For example, neural networks and matrix factorization have hierarchical
structures, and hidden Markov model and topic model have latent variables. In such models,
a map from the parameter set to the probability distribution set is not one-to-one. Its log-
likelihood function cannot be approximated by any quadratic form; its likelihood and posterior
cannot be approximated by any normal distribution. If the above map is injective, then the
statistical model is called regular (or the regular model). The statistical model which is not
regular is called singular (or the singular model). Hence, the learning machines mentioned
above are singular models. Learning theory for singular models is called singular learning
theory. From singular learning theory, neither maximum likelihood estimator nor maximum
a posteriori estimator has asymptotic normality and consistency. Besides, Bayesian inference
is superior to the maximum likelihood method and maximum a posteriori method in the sense
of generalization, i.e. Bayesian inference can make the error between the true distribution
and the predictive one (the generalization error) smaller than those point-estimation methods
[79, 82, 85]. This fact has been proved not only numerically but also mathematically. Almost
all practical learning machines are singular; thus, the determination of the generalization
error in singular models is one of the most important issues in machine learning and statistics
community.

In Bayesian inference, the asymptotic behavior of the generalization error had been clarified.
When the statistical model can realize the true distribution and is regular, the following theorem
is proved [4, 85].

Theorem 1.1 Let n be the number of the data and d be the dimension of the parameter space.
The expected Bayesian generalization error E[Gn] in realizable and regular statistical model
has the following asymptotic behavior:

E[Gn] =
d

2n
+ o

(
1

n

)
, (1.1)

where the operator E[·] means expectation on overall datasets: E[·] =
∫
[·]
∏n

i=1 q(xi)dxi.

In the general case, with supposing some technical assumption, the following theorem holds
[79, 82, 85]:

Theorem 1.2 Let n be the number of the data. For the expected Bayesian generalization
error E[Gn] in a realizable statistical model, there exists the constant λ and the following
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asymptotic behavior holds:

E[Gn] =
λ

n
+ o

(
1

n

)
. (1.2)

The constant λ is in the leading term of the asymptotic behavior of the generalization error;
thus, it is called the learning coefficient *2 in learning theory. This coefficient is the same
as the real log canonical threshold (RLCT) in algebraic geometry. Conversely, algebraic
geometry is needed to prove Theorem 1.2. In the case that the model is regular, the RLCT is
equal to d/2; thus, Theorem 1.2 includes Theorem 1.1 as a special case. Therefore, singular
learning theory can provide general knowledge for statistical modeling and machine learning,
in particular when we use Bayesian inference. RLCTs are birational invariants in algebraic
geometry and they depend on the algebraic varieties characterized by statistical models. A
detailed review of these theories will be given in later chapters. It is important for model
selection and hyperparameter tuning to clarify the theoretical generalization error. Besides, if
a theoretical relation between the sample size n and the generalization errorGn is known, then
we can estimate the sufficient sample size to realize the needed generalization performance.
We can also evaluate the correctness of numerical experiments. On the contrary, the absence
of such theoretical facts means that there is no method to verify the accuracy of the numerical
experiments, therefore the correctness of the empirical results cannot be guaranteed. As a
more direct application, a precise model-selection method that uses RLCTs had been proposed
[24]. RLCTs are also useful to tune the inverse temperature in exchange Monte Carlo [56].
RLCTs of several models are studied. For example, three-layered neural network [80, 9, 8],
reduced rank regression [77, 10], normal mixture model [94], Poisson mixture model [64],
hidden Markov model [96], Markov model [100], naive Bayes method [62], Bayesian network
[95], Boltzmann machine [97, 6, 7], latent Gaussian tree [23], and etc. RLCTs of them are
analyzed by using Atiyah’s form [11] of resolution of singularity theorem [39].

The above theorems assume that the statistical model can realize the true distribution.
However, since the asymptotic behavior of the generalization error has also been clarified
and they are characterized by RLCTs in the case the model is not realizable [82, 85], the
realizability assumption cannot hurt the value of our research; determine of the RLCTs of
statistical models. Moreover, the realizable case is essential for practical uses because we
face a situation that the model is more redundant than the true distribution at the level known
from a given sample in real-data analysis situations. The given sample is finite in real-world
problems, and the complexity of the appropriate model is finite to the extent that it can be
known from that sample. In this case, some models can be redundant, i.e. they seem to
include the true distribution. If the model is too simple and suffers from underfitting, we use
more complex models. It is the goal of model selection and hypothesis testing to compare
appropriate and redundant models in such cases.

1.1.2 Parameter Restriction

From the practical point of view, the parameter region of the statistical model is often restricted
in order to have consistency on domain knowledge and improve interpretability. As a toy

*2 The learning coefficient characterizes the learning curve when the sample size n increases, not the number of
epochs. The learning coefficient is not the learning rate in gradient descent methods. In this dissertation, we
call it the real log canonical threshold to avoid confusion between learning coefficient and rate.
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example, we consider a problem to predict purchase existence for a product by using a logistic
regression model. An usual logistic regression treats linear classification. Suppose that there
are an objective variable y (purchase existence label) and some covariates like advertisement
placements aTVCM, aDM, . . . and ratings r in EC-sites, and the classifier learns a relation
between the labels (purchased or not) and these covariates from the sample. The logistic
regression model is formalized as the following. That the product is purchased is denoted
by y = 1. If it is not purchased, then let y be 0. The label y ∈ {0, 1} is considered to be
generated by a Bernoulli distribution

Ber(y|u) = uy(1− u)1−y, (1.3)

where

u = σ(s), (1.4)
s = β0 + β1aTVCM + β2aDM + . . .+ βdr, (1.5)

σ(s) = 1/(1 + exp(−s)), (1.6)

β0 is an intercept term, and (βi) are regression coefficients. Intuitively, the contributions
of these covariates are expected to be non-negative *3. However, the coefficients of the
covariates sometimes become negative. If there is a negative coefficient, the contributions of
each covariate cancel each other out, making it difficult to interpret. Non-negative restriction
to the coefficients (βk ≧ 0 for k = 1, . . . , d) is a solution to resolve such an issue (like Fig.
1.1).

Fig. 1.1: Horizontal bar plots of regression coefficients. Left graph is the non-restricted result
and right one is the result with non-negative restriction.

There are several typical restrictions: non-negative and stochastic. Non-negative restriction,
as the name implies, constrains the parameter space to non-negative real numbers. Stochastic
one constrains the parameter vectors into simplexes, i.e. they are non-negative and the sum
of those is equal to one. Practical examples of these restrictions are non-negative matrix
factorization (NMF) and latent Dirichlet allocation (LDA). NMF decomposes an observed

*3 Excessive advertising may discourage purchases; however, this effect is ignored in this toy problem.
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matrix into a product of two matrices whose entries are non-negative. Non-negative restriction
in NMF makes discovered-latent patterns clearer to interpret than that of non-restricted cases.
Kohjima has reviewed that NMF is useful and interpretable for analyzing relations between
users and items in purchase logs [48]. LDA is one of the topic models. It represents a
word-generating process and its parameters state the probability of words appearance and the
topic proportion; thus, the stochastic restriction is imposed on them [15]. LDA is intuitively
explained as stochastic matrix factorization (SMF): NMF with stochastic restriction [2, 98].
In fact, a mathematical equivalence between LDA and SMF can be proved in the sense of
parameter regions; these RLCTs are the same [38] (see Chap. 5). Moreover, in practice, it
seems to be a large demand for parameter restrictions. A probabilistic programming language
called Stan [28, 17, 71] provides types of variables in order to restrict the parameter region
for statistical models which users make. Thus, parameter-restricted models have been widely
applied. However, although theoretical elucidation of the behavior of the generalization error
is an important problem in learning theory as mentioned in the previous subsection, it has not
yet been clarified how the generalization performance changes with the addition of parameter
restrictions.

1.2 Research Goal
In this dissertation, we theoretically clarify the asymptotic behavior of the Bayesian general-
ization errors in NMF and LDA, as two of the most popular parameter-restricted models. We
use a resolution of singularity and mathematically analyze the RLCTs of these models.

Specifically, we theoretically consider the Bayesian inference of NMF and LDA based on
the framework described in later chapters and clarify the RLCTs. For NMF, we derive the
exact value of the RLCT in some cases, and for the general case, we give a theoretical upper
bound by using these exact values. In addition, we clarify the effect of hyperparameters in
the case that the prior is gamma distribution, which is often used in NMF [18, 49]. For LDA,
we prove that the RLCT of LDA is equal to the one of SMF and determine the exact value of
the RLCT in all cases. We also clarify a relationship between LDA and non-restricted matrix
factorization (whose RLCT is equal to one of reduced rank regression).

In this study, we provide theorem proofs based on pure theory. Although it is unknown as
a direct problem that the assumptions of the theorems are satisfied in real problems, the real
problem is solved as an inverse problem; thus, the theoretical results under certain assumptions
are essential for solving real issues. Once the theoretical results of certain assumptions are
clarified, the structure of the real world can be elucidated by comparing them with the
situations we face in reality. NMF and LDA are widely used; however, their mathematical
characteristics have not been clarified. Therefore, this dissertation is fundamental research to
make statistical inferences with NMF and LDA.

1.3 Dissertation Structure
The structure of the rest of this dissertation is as follows. In Chap. 2, we describe a theoretical
framework of Bayesian inference. In Chap. 3, we briefly introduce statistical learning theory
for singular models (singular learning theory). In Chap. 4, the results and discussions of the
theoretical analysis of NMF are presented. Similarly, in Chap. 5, those of LDA are described.
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Lastly, in Chap. 6, we conclude this research. In Appendix A, we summarize the questions
and the answers discussed in the defenses of this dissertation.

1.4 Symbols
In this section, we define the symbols often used in this thesis.

Symbols of sets are denoted as follows. Let N, R and C be the set of positive integers,
real numbers, and complex numbers, respectively. Put D ⊂ R. Let R≧0 := {x ∈ R|x ≧ 0}
and R>0 := {x ∈ R|x > 0}. M(M,N,D) is denoted by the set of M ×N matrices whose
entries are in D. Put M,N ∈ N and E ⊂ [0, 1]. Let Onehot(N) := {w = (wj) ∈ {0, 1}N |∑N

j=1 wj = 1} = {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} be an N -dimensional one-hot vector set
and Sim(N,E) := {c = (cj) ∈ EN |

∑N
j=1 cj = 1} be an N -dimensional simplex. Let

S(M,N,E) = Sim(M,E)N be a set of M × N stochastic matrices whose elements are in
E.

Besides, symbols of logical operation are defined as follows. Let ∧ and ∨ be logical
conjunction and disjunction, respectively. Also let ⇒ and ⇔ be implication and logical
equivalence, respectively. Iverson bracket is defined as

[(proposition)] =

{
1 proposition is true.
0 proposition is false.

Let ∼ be a binomial relation such that the functions K1(w) and K2(w) have same RLCT
if K1(w) ∼ K2(w).
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Chapter 2

Bayesian Inference

In this chapter, we describe the framework of Bayesian inference. First, in Sec.
2.1, we explain basic concepts to define what Bayesian inference is. Second, in
Sec. 2.2, we state the framework of Bayesian inference and its definition.

The selected references in this chapter are [85] for Sec. 2.1 and 2.2.

2.1 Basic Concepts
In this section, we introduce a part of probability theory and Kullback-Leibler (KL) divergence
which we need to define Bayesian inference.

2.1.1 Probability Theory

Let X and Y be random variables in measurable spaces (RM ,BM ) and (RN ,BN ), re-
spectively*1. A pair (X,Y ) is also a measurable function (i.e. a random variable) for a σ
algebra BM⊗BN , where Bk is denoted by k-dimensional Borel algebra. First, we define the
simultaneous probability distribution p(x, y) of X and Y .

Definition 2.1 (Simultaneous Probability Distribution) A simultaneous probability den-
sity function (or distribution) is defined by the probability density function p(x, y) of (X,Y ),
where ∫

p(x, y)dxdy = 1,

and a probability of an event C ∈ BM⊗BN is

Pr[(X,Y ) ∈ C] =
∫
C

p(x, y)dxdy.

Moreover, a simultaneous probability is defined by the above probability Pr[(X,Y ) ∈ C].

*1 Let (Ω,F,P) be a (complete) probability space. Strictly speaking, a random variable X : Ω → RM is
defined as aF/BM -measurable map. However, in this dissertation, we do not need to deal with the elementary
event F ∈ F; thus, we define random variables without explicitly specifying the probability space (Ω,F,P).
In fact, statistics and machine learning mainly aim at the data-generating distribution Q : BM → [0, 1]
(Q(A) := P(X−1(A))), i.e. a probability measure induced by X and its density q(x) rather than P.
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The marginal probability distributions of X and Y are denoted by pX(x) and pY (y),
respectively.

Definition 2.2 (Marginal Probability Distribution) About the above simultaneous proba-
bility distribution, put

pX(x) :=

∫
p(x, y)dy, pY (y) :=

∫
p(x, y)dx.

Then, pX(x) and pY (y) are the marginal probability distribution of X and Y , respectively.

From the above probability distributions, the conditional probability distribution is defined.

Definition 2.3 (Conditional Probability Distribution) The conditional probability distri-
bution (or density function) of Y given X is defined by

p(y|x) := p(x, y)

pX(x)
.

This can be interpreted as a probability density function of y with a parameter x. The
conditional probability distribution (or density function) of X given Y is defined in the same
way:

p(x|y) := p(x, y)

pY (y)
.

Note that the aboves are not defined when the denominator is zero. If the denominator is zero,
the conditional density is defined as zero.

From the definition of the conditional probability distribution, we immediately have the
following “theorem”.

Theorem 2.1 (Bayes’s Theorem)

p(x, y) = p(y|x)pX(x) = p(x|y)pY (y)

and
p(y|x) = p(x|y)pY (y)

pX(x)

hold.

Here, we define independent-identically-distributed (i.i.d.) random variables.

Definition 2.4 (independent Random Variables) Let p1(x) and p2(y) be the probability
density functions of X and Y , respectively. Two random variables X and Y are called
independent if the simultaneous probability density function p(x, y) of X and Y is equal to
p1(x)p2(y).

Definition 2.5 (Identically-distributed Random Variables) Assume that random variables
X and Y have the same images: Im(X) = Im(Y ). Let p1(x) and p2(y) be the probability
density functions of X and Y , respectively. Two random variables X and Y are called
identically-distributed if these probability density functions are equal: p1 = p2.
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Definition 2.6 (I.i.d. Random Variables) Two random variables X and Y are called i.i.d.
if they are independent and identically-distributed.

In this thesis, we mainly assume that the random variables X1, . . . , Xn which mean the
sample (Xn = (X1, . . . , Xn)) are i.i.d. Hence, the simultaneous probability of the sample
is q(xn) =

∏n
i=1 q(xi), where q(x) is the data-generating distribution and xi ∼ q(x) for

i = 1, . . . , n*2.

2.1.2 Kullback-Leibler Divergence

Definition 2.7 (Kullback-Leibler Divergence) Let p(x) and q(x) be probability density
functions on a Euclidean space. Suppose that the supports of p(x) and q(x) are equal
to each other. The Kullback-Leibler (KL) divergence KL is defined by

KL(q∥p) :=
∫
q(x) log

q(x)

p(x)
dx.

If the support of p(x) and q(x) is a discrete set X = {x1, . . . , xn, . . .}, i.e. p(x) and q(x)
are probability mass functions, then the KL divergence is defined by

KL(q∥p) :=
∞∑
i=1

q(xi) log
q(xi)

p(xi)
.

The KL divergence is the same as the relative entropy in statistical mechanics. This is based
on a simulation error from an i.i.d. sample generated by the model to the empirical distribution
obtained by the true distribution (Sanov’s theorem) [63]. Moreover, some “distance-like”
properties hold.

Proposition 2.1 KL divergence satisfies the followings:

• Non-negativity: KL(q∥p) ≧ 0,

• Non-degenerateness: KL(q∥p) = 0 if and only if q(x) = p(x) almost everywhere
(a.e.).

Thus, the KL divergence has been widely used in machine learning and statistics for a metric
of discrepancy from a probability distribution to another one. Note that it is not exchangeable:
KL(q∥p) ̸= KL(p∥q) by the definition.

Example 2.1 (Average Code Length) In information theory, an information loss from an
unknown information source q(x) to a receiver p∗(x) is called an average code length. This
is KL(q∥p∗) and means redundancy of the receiver.

Example 2.2 (Generalization Error) In statistics and machine learning, an error in the
statistical inference of the true distribution q(x) by the predictive distribution p∗(x) is called
the generalization error. This is KL(q∥p∗).

*2 Let Xi be a random variable in (RM ,BM ) for i = 1, . . . , n. X1, . . . , Xn induce the same probability dis-
tributionQ and its density function is q(x). For arbitraryA1, . . . , An ∈ BM ,Q(

∩n
i=1 Ai) =

∏n
i=1 Q(Ai)

holds.
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Here, we prove Proposition 2.1.

Proof of Proposition 2.1. Let f be a function

f : R→ R,
f(t) = t+ e−t − 1.

Because of f ′(t) = 1− e−t and f ′′(t) = e−t > 0, f is a convex function and it becomes the
minimum f(0) = 0 if and only t = 0. Thus, f(t) ≧ 0 and f(t) = 0⇔ t = 0. Here, we have

KL(q∥p) =
∫
q(x) log

q(x)

p(x)
dx

=

∫
q(x) log

q(x)

p(x)
dx+ 1− 1

=

∫
q(x) log

q(x)

p(x)
dx+

∫
p(x)dx−

∫
q(x)dx

=

∫
q(x) log

q(x)

p(x)
dx+

∫
q(x)

p(x)

q(x)
dx−

∫
q(x)dx

=

∫ (
q(x) log

q(x)

p(x)
+ q(x)

p(x)

q(x)
− q(x)

)
dx

=

∫
q(x)

(
log

q(x)

p(x)
+
p(x)

q(x)
− 1

)
dx

=

∫
q(x)f

(
log

q(x)

p(x)

)
dx.

Owing to the above and q(x) ≧ 0, we obtainKL(q∥p) ≧ 0. Besides, since q(x) = p(x), a.e. x

if and only if log q(x)
p(x) = 0, a.e. x, we immediately have the second property.

□

2.2 Framework of Bayesian Inference
With the above preparations, we define Bayesian inference. Let a sampleXn = (X1, . . . , Xn)
be a collection of i.i.d. random variables subject to a fixed probability distribution q(x). The
sample Xn is also a random variable subject to

q(x1, . . . , xn) =
n∏

i=1

q(xi),

and we call q(x) the true probability distribution or the true probability density function.
Simply, it is called the true distribution. We estimate it from the model and the prior
distribution (prior), mentioned below. Let W ⊂ Rd be a parameter set. The conditional
probability distribution of x ∈ RN given θ ∈ W is written as p(x|θ) and it is called the
probability model (or the model, simply). Besides, we define the prior distribution (prior) as
a probability distribution of θ ∈ W .
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The structure of the framework of Bayesian inference is as follows. First, we define the
posterior distribution (posterior) by using the model, the prior, and the sample. Second, the
Bayesian predictive distribution is defined by an expectation of the model by the posterior.
Bayesian inference is to infer that “the true distribution q(x) may be the Bayesian predictive
distribution p∗(x)”; hence, Bayesian inference is a distributional estimation.

We define the posterior as follows.

Definition 2.8 (Posterior Distribution) The posterior distribution (posterior) of the param-
eter θ given the sample Xn is defined by

ψ(θ|Xn) :=
1

Zn
φ(θ)

n∏
i=1

p(Xi|θ),

where Zn is the normalizing constant which makes ψ(θ|Xn) satisfy
∫
ψ(θ|Xn)dθ = 1:

Zn :=

∫
W
φ(θ)

n∏
i=1

p(Xi|θ)dθ.

The normalizing constantZn is also called the marginal likelihood. In statistical mechanics,
it is called the partition function.

The Bayesian predictive distribution is defined by the following.

Definition 2.9 (Bayesian Predictive Distribution) The expectation of the model on the pa-
rameter with regard to the posterior

p∗(x) =

∫
W
p(x|θ)ψ(θ|Xn)dθ

is called the Bayesian predictive distribution (or the predictive, simply). To emphasize that
the predictive is depend on the sample Xn, it is also represented by p(x|Xn).

Bayesian inference is statistical inference, not propositional logic-based reasoning. There-
fore, it is not correct *3. However, we can mathematically evaluate the error of the inferred
result: how different the predictive is from the true distribution. The generalization loss and
the free energy are typical criteria for that.

Definition 2.10 (Generalization Loss and Free Energy) The generalization loss Gn and
the free energy Fn are respectively defined by

Gn := −
∫
q(x) log

(∫
W
p(x|θ)ψ(θ|Xn)dθ

)
dx = −

∫
q(x) log p(x|Xn)dx,

Fn := − logZn = − log

∫
W
φ(θ)

n∏
i=1

p(Xi|θ)dθ.

Obviously, minimizing Fn is equivalent to maximizing Zn. On the other hand, minimizing
Gn is neither a necessary nor sufficient condition for minimizing Fn. Two methods have been

*3 There is no “correct” statistical inference. The philosophical interpretation of probability (subjective v.s.
objective or Bayesian v.s. frequentist) never makes either one “correct”.



12 Chapter 2 Bayesian Inference

devised to select an appropriate model: minimizing generalization losses and minimizing
free energy and they are nowadays used as the accuracy of prediction and the certainty of
knowledge discovery, respectively.

Both of the generalization loss and free energy can be normalized *4 in the sense that they
remove the term that depends only on the true distribution. The normalized generalization
loss is called the generalization error.

Definition 2.11 (Normalized Generalization Loss and Free Energy) The normalized gen-
eralization loss, i.e. the generalization error Gn is defined by

Gn := −
∫
q(x) log

{∫
W
ψ(θ|Xn) exp

(
− log

q(x)

p(x|θ)

)
dθ

}
dx.

The normalized free energy Fn is defined as

Fn := − log

∫
W
φ(θ) exp

(
− log

n∏
i=1

q(Xi)

p(Xi|θ)

)
dθ.

The meaning of the above normalizing is formalized by the following proposition. All we
have to do is analyzing the generalization error Gn and the normalized free energy Fn since
this normalizing decomposes them the model-depend term and the term which only depends
on the true distribution q(x). The behavior of Gn is described in Theorem 1.2.

Proposition 2.2 Let S and Sn be the entropy and the empirical entropy, respectively:

S := −
∫
q(x) log q(x)dx,

Sn := − 1

n

n∑
i=1

log q(Xi).

The following equalities hold:

Gn = S +Gn,

Fn = nSn + Fn.

Proof. Since

log p(x|θ) = log q(x)− log
q(x)

p(x|θ)
,

i.e.
p(x|θ) = q(x) exp

(
− log

q(x)

p(x|θ)

)

*4 Generally, even when dealing with models that are not realizable, the generalization losses and free energies
can be normalized similarly. See also the third chapter in [85].
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holds, we obtain

Gn = −
∫
q(x) log

(∫
W
p(x|θ)ψ(θ|Xn)dθ

)
dx

= −
∫
q(x) log

(∫
W
q(x) exp

(
− log

q(x)

p(x|θ)

)
ψ(θ|Xn)dθ

)
dx

= −
∫
q(x) log

(
q(x)

∫
W

exp

(
− log

q(x)

p(x|θ)

)
ψ(θ|Xn)dθ

)
dx

= −
∫
q(x)

{
log q(x) + log

(∫
W

exp

(
− log

q(x)

p(x|θ)

)
ψ(θ|Xn)dθ

)}
dx

= −
∫
q(x) log q(x)dx−

∫
q(x) log

(∫
W

exp

(
− log

q(x)

p(x|θ)

)
ψ(θ|Xn)dθ

)
dx

= S +Gn.

Besides, we have

Zn =

∫
W
φ(θ)

n∏
i=1

p(Xi|θ)dθ

=

∫
W
φ(θ)

n∏
i=1

q(Xi) exp

(
− log

q(Xi)

p(Xi|θ)

)
dθ

=

∫
W
φ(θ)

(
n∏

i=1

q(Xi)

){
exp

(
−

n∑
i=1

log
q(Xi)

p(Xi|θ)

)}
dθ

=

(
n∏

i=1

q(Xi)

)∫
W
φ(θ)

{
exp

(
−

n∑
i=1

log
q(Xi)

p(Xi|θ)

)}
dθ.

Thus, the following hold:

Fn = − logZn

= − log

[(
n∏

i=1

q(Xi)

)∫
W
φ(θ)

{
exp

(
−

n∑
i=1

log
q(Xi)

p(Xi|θ)

)}
dθ

]

= −
n∑

i=1

log q(Xi)− log

∫
W
φ(θ)

{
exp

(
−

n∑
i=1

log
q(Xi)

p(Xi|θ)

)}
dθ

= nSn + Fn.

□
The generalization error in Definition 2.2 seems to be different from that in Definition 2.11;

however, we can prove that they are equal if the model is realizable.
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Example 2.2. From Definition 2.11, we have

Gn = −
∫
q(x) log

{∫
W
ψ(θ|Xn) exp

(
− log

q(x)

p(x|θ)

)
dθ

}
dx

= −
∫
q(x) log

(∫
W

p(x|θ)
q(x)

ψ(θ|Xn)dθ

)
dx

= −
∫
q(x) log

(∫
W p(x|θ)ψ(θ|Xn)dθ

q(x)

)
dx

= −
∫
q(x) log

p∗(x)

q(x)
dx

=

∫
q(x) log

q(x)

p∗(x)
dx.

Besides, from Definition 2.7, the most-right-hand-side term is KL(q∥p∗). Therefore, we have
Example 2.2.

□
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Chapter 3

Singular Learning Theory

In this chapter, we outline statistical learning theory for singular models: sin-
gular learning theory. This chapter is organized as follows. In Sec. 3.1, we
mention the motivations behind applying algebro-geometric methods to the the-
ory of statistical learning. In Sec. 3.2, as a mathematical preparation, we depict
the framework of analyzing Fn and Gn through the use of algebraic geometry.
Thirdly, in Sec. 3.3, we introduce the key consequences of singular learning the-
ory, which shows the relationship between RLCTs and Fn andGn. Lastly, in Sec.
3.4, as applications of singular learning theory, we describe information criteria:
WAIC, WBIC, sBIC, and WsBIC.

The selected textbooks as the references of this chapter are [81] and [85]. For
introducing sBIC and WsBIC, the author refers the original papers [24, 43]. In
addition, note that much of this chapter is taken from [38], one of the author’s
papers.

3.1 Motivation
First, we explain motivation why we apply algebraic geometry to statistical learning theory.
As described in the above chapter, statistical learning encounters a situation that the true
distribution q(x) is not known although a plurality of data (a.k.a. sample)Xn can be obtained,
where the number of data or the sample size isn. Researchers and practitioners design learning
machines or statistical models p(x|θ) to estimate q(x) by making the predictive distribution
p(x|Xn). There is a problem, “How different are our model and the true distribution?”
This issue can be characterized as the model selection problem, “Which model is suitable?”
This “suitableness” criteria are the normalized free energy Fn and the generalization error
Gn, as mentioned above *1. However, calculating Fn is very high cost for computers and
Gn cannot be computed since q(x) is unknown. These normalized values Fn and Gn also

*1 In actual data analysis situations, the model should be evaluated according to the purpose of analysis and
the domain knowledge of the data. In singular learning theory, we consider Fn and Gn as typical evaluation
criteria used in generic situations [73, 20, 40, 50, 54]. Watanabe (2021) [86], “their proposal is widely accepted
in statistics, data science, and machine learning, on which many statistical systems and learning machines are
being applied to scientific and practical problems” (p. 2).
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depend on q(x). We should estimate them from the data. Assume that the likelihood function
L(θ) =

∏n
l=1 p(Xl|θ) and the posterior distribution ψ(θ|Xn) can be approximated by a

Gaussian function of θ. This case is called regular and the model in regular case is called
a regular model. For a regular model, we can estimate Fn and Gn, by using Bayesian
information criterion (BIC) [66] and Akaike information criterion (AIC) [3], respectively.
AIC and BIC are respectively defined by

AIC = − 1

n

n∑
i=1

log p(Xi|θ̂) +
d

n

and

BIC = −
n∑

i=1

log p(Xi|θ̂) +
d

2
log n,

where θ̂ is the maximum likelihood estimator or the maximum posterior estimator and d is the
parameter dimension. AIC and BIC are derived by not using algebraic geometry; however,
they are asymptotically equal to Gn and Fn if L(θ) and ψ(θ|Xn) can be approximated by a
normal distribution. In order to briefly describe the situation, we define the following error
functions for learning theory.

Definition 3.1 (Error Functions) Suppose p(x|θ) can realize q(x), i.e. there exists θ0 such
that p(x|θ0) = q(x). The function

K(θ) :=

∫
q(x) log

q(x)

p(x|θ)
dx = KL(q∥p)

is called an average error function. In addition, the function

Kn(θ) :=
1

n

n∑
i=1

log
q(Xi)

p(Xi|θ)

is called an empirical error function.

In a regular case, the zero point θ0 of K(θ) *2 is unique and∇2K(θ0) is a strictly positive
definite matrix. Therefore, we can approximate K(θ) as

K(θ) =
1

2
(θ − θ0)T∇2K(θ∗)(θ − θ0) (3.1)

by Taylor’s theorem, where there exists t ∈ R (0 < t < 1) such that θ∗ = tθ+(1−t)θ0 *3. By
using this approximation, Akaike had derived AIC and Schwarz had done BIC, respectively.
However, in general, we cannot estimate Gn and Fn by using AIC and BIC. This is because
the above approximation does not hold since ∇2K(θ0) has eigenvalues which are zeros. θ0
is not uniquely determined. K−1(0) includes singularities in the parameter space. Thus, we
need algebraic geometry to study the singularities.

*2 Because the model can realize the true distribution, argminK(θ) is equal to K−1(0). If p(x|θ) is not
realizable q(x), we can obtain similar results by considering argminK(θ) instead of K−1(0). For example,
Takeuchi information criterion (TIC) [70, 85] and widely applicable information criterion (WAIC) [82] do not
need the realizableness assumption.

*3 From the definition, K(θ0) = 0 and ∇K(θ0) = 0 hold.
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3.2 Singularity Resolution Theorem and Zeta Function
Second, the framework of analyzingGn and Fn, which uses algebraic geometry, is explained.
We consider K(θ) and its zero set K−1(0): this is an algebraic variety which can have
singularities. We use the following form by [11] of the singularities resolution theorem [39].
This form was originally derived by Atiyah for the analysis of distributions (hyperfunctions);
however, Watanabe proved that it is useful for constructing singular learning theory [79, 82,
81, 85].

Theorem 3.1 (Singularity Resolution Theorem) Let F be a non-negative analytic function
on the open set W ′ ⊂ Rd and assume that there exists θ ∈ W ′ such that F (θ) = 0. Then,
there are d-dimensional manifoldM and an analytic map g :M→ W ′ such that for each
local chart ofM,

F (g(u)) = u2k1
1 . . . u2kd

d ,

|g′(u)| = b(u)|uh1
1 . . . uhd

d |,

where |g′(u)| is the Jacobian of g, kj and hj are non-negative integers and b :M → R is
strictly positive analytic: b(u) > 0.

A pair of the above manifold and map (M, g) is called a resolution of singularity.

This theorem does not remove singularities but makes them easier to handle. In general,
a zero set of a non-negative analytic function F has singularities; however, (F ◦ g)−1(0)

has only singularities which are the following form: the zero set of u2k1
1 . . . u2kd

d . Such
singularities are called normal-crossing singularities.

Thanks to Theorem 3.1, the following analytic theorem is proved [11, 12, 65].

Theorem 3.2 Let F : Rd → R be an analytic function of a variable θ ∈ Rd. a : W → R is
denoted by a C∞-function with compact supportW . Then

ζ(z) =

∫
W
|F (θ)|za(θ)dθ

is a holomorphic function on Re(z) > 0. Moreover, ζ(z) can be analytically continued to
a unique meromorphic function on the entire complex plane C. The poles of the extended
function are all negative rational numbers.

The KL divergence is non-negative and analytic; thus, we can apply Theorem 3.1 to K(θ)
on K−1(0) ∩W ′. Then, we obtain

K(g(u)) = u2k1
1 . . . u2kd

d ,

|g′(u)| = b(u)|uh1
1 . . . uhd

d |.

Assuming the domain of priorφ(θ) isW and it satisfiesW ⊂W ′, we can also apply Theorem
3.2 to (K(θ), φ(θ)) and obtain the following zeta function.
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Definition 3.2 (Zeta Function in Statistical Learning Theory) LetK(θ) be the average er-
ror function. Suppose that the support of the prior φ(θ) is compact. The zeta function in
statistical learning theory is defined by the following univariate complex function:

ζ(z) =

∫
W
K(θ)zφ(θ)dθ. (3.2)

If the prior can be zero or infinity on the zero set K−1(0) of the average error function,
then we must consider the zeta function above as defined by Definition 3.2. However, if the
prior is positive and bounded on K−1(0), then the prior has no effect on the maximum pole.
With this in mind, we can consider the following zeta function:

ζ(z) =

∫
W
K(θ)zdθ. (3.3)

Although
∫
K(θ)zφ(θ)dθ is a holomorphic function on Re(z) > 0, we can prove that

the zeta function in statistical learning theory has an analytic continuation on C as a unique
meromorphic function and its poles are negative rational numbers. Applying Theorem 3.1 to
K(θ)φ(θ), there exists a manifoldM and an analytic map g such that

K(g(u)) = u2k1
1 . . . u2kd

d ,

φ(g(u))|g′(u)| = b(u)|uh1
1 . . . uhd

d |

for each chart ofM, where |g′(u)| is a Jacobian of g and b is a positive-analytic function. Let
k = (k1, . . . , kd) and h = (h1, . . . , hd) be non-negative multi-indexes. Put u2k1

1 . . . u2kd

d =:

u2k and uh1
1 . . . uhd

d =: uh. Considering a partition of unity
∑

a ϕa(u) for M, the zeta
function becomes as follows:

ζ(z) =
∑
a

∫
K(g(u))z|g′(u)|ϕa(u)du

=
∑
a

∫
u2kz|uh|b(u)ϕa(u)du

=
∑
a

∫
[0,1]d

u2kzuhb(u)du.

Since b(u) is positive, it does not effect the maximum pole of ζ(z). Hence, we only have to
treat ∫

[0,1]d
u2kzuhdu =

d∏
j=1

∫ 1

0

u
2kjz+hj

j duj .

Calculating the integral, we have∫
[0,1]d

u2kzuhdu =

d∏
j=1

∫ 1

0

u
2kjz+hj

j duj

=
d∏

j=1

1

2kjz + hj + 1
.
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Thus, allowing for duplication, the poles (−λj)dj=1 are as follows:

z = −λ1 := −h1 + 1

2k1
...

z = −λj := −
hj + 1

2kj
...

z = −λd := −hd + 1

2kd
.

The zeta function in statistical learning theory is a meromorphic function which is the result
of analytic continuation. Hence, its poles are negative rational numbers. The definition of a
real log canonical threshold is the negative maximum pole of it.

Definition 3.3 (Real Log Canonical Threshold and its Multiplicity) Let k = (k1, . . . , kd)
and h = (h1, . . . , hd) be non-negative d-dimensional multi-indexes. Assume that k =
(k1, . . . , kd) is at least one of them positive. For a sequence

hj + 1

2kj
(j = 1, . . . , d),

if kj = 0, we define
hj + 1

2kj
=∞.

The minimum of the above sequence

λ :=
d

min
j=1

hj + 1

2kj

is called a real log canonical threshold (RLCT) and the number m of elements which are
equal to λ is called its multiplicity:

m :=
d∑

j=1

[
hj + 1

2kj
= λ

]
,

where [(proposition)] constitutes Iverson bracket.

From the above discussion of the zeta function and the definition of an RLCT, an RLCT
λ is a sign reversal of the maximum pole (−λ) of the zeta function ζ(z), and its multiplicity
m is equal to the order of the maximum pole of the zeta function. Namely, the maximum
pole is corresponding to the deepest singularity in the analytic set K−1(0). Furthermore, an
RLCT is independent of methods of singularity resolution; an RLCT is a birational invariant
in algebraic geometry. The RLCT is determined only for the statistical model p(x|θ), the
prior φ(θ) and the true distribution q(x) although there are infinite pairs (M, g) to resolve the
singularities in the zero set of the given analytic functionK(θ) =

∫
q(x) log(q(x)/p(x|θ))dx.
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An RLCT can be interpreted as a volume dimension of the analytic set K−1(0) in the
parameter spaceW [81]. Let t > 0.

Theorem 3.3 Let V (t) be the volume of the set {θ ∈ W | K(θ) < t} in the sense of the
measure φ(θ)dθ, i.e.

V (t) :=

∫
K(θ)<t

φ(θ)dθ.

Then, the following equality holds:

λ = lim
t→+0

log V (t)

log t
.

This is a base of a method to numerically compute an RLCT by using Monte Carlo
simulation [89]. Besides, the above limit is similar to a Minkowski dimension, one of fractal
dimensions.

Definition 3.4 (Minkowski Dimension) Let S be a subset of Rd. The Minkowski dimension
of S is defined as the following d∗:

d∗ := d− lim
t→+0

log Vnbhd(S, t)

log t
,

where Vnbhd(S, t) is the volume of the t-neighborhood of S:

Vnbhd(S, t) :=

∫
dist(S,θ)<t

dθ, dist(S, θ) = inf{∥s− θ∥ | s ∈ S}.

λ and d∗ are similar but different concepts because λ is a positive rational number whereas
d∗ can be an irrational number. However, both of λ and d∗ can be interpreted as intrinsic
dimensions of subsets included by a Euclidean space. Indeed, they are useful for learning
theory. As described later, the RLCT of K(θ) = KL(q||p) dominates the Bayesian gen-
eralization error and the free energy (see Theorem 3.4). On the other hand, convergence
rates of the approximation and generalization errors by deep neural networks depend on the
Minkowski dimension of the data and the rates are optimal in the minimax sense [58]. Thus,
we can refer an RLCT to an intrinsic dimension of the model.

In order to compute the exact value of an RLCT for a particular statistical model, one needs
to find the manifoldM and the analytic map g in the Singularity Resolution Theorem. By using
the case when it is easy to calculate the exact value of the RLCT, some studies have elucidated
the theoretical upper bound of the RLCT. As mentioned in Sec. 1.1, one of statistical models
whose RLCT is well-known is reduced rank regression [10]. In this case, the upper bound of
the RLCT was derived before its exact value was determined [77]. In almost all of the others,
upper bounds are only clarified, i.e. it is much more difficult to find the exact value of the RLCT
than to derive a non-trivial upper bound of that. Even clarifying a non-conservative upper
bound of the RLCT is challenging since there is no standard method to find a resolution of
singularities (M, g) for a collection of analytic functions like the KL divergence of statistical
models. Instead, researchers have been studying RLCTs by developing novel methods to
analyze RLCTs for each statistical model [80, 9, 8, 94, 64, 96, 100, 62, 95, 97, 6, 7, 23] (see
also Sec. 1.1).
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3.3 Key Results of Singular Learning Theory
We introduce the theorem which shows the relationship between RLCTs and Gn and Fn

[79, 81, 85].

Theorem 3.4 (Watanabe) Let q(x), p(x|θ), and φ(θ) be the true distribution, the learning
machine, and the prior distribution, where x is a point of RN and θ is an element of the
compact subset W of Rd. Let K(θ) be the average error function and λ is denoted by the
RLCT of (K(θ), φ(θ)). If there exists at least one θ0 such that q(x) = p(x|θ0) (i.e. the model
can realize the true distribution), then the asymptotic behavior of the generalization errorGn

and the normalized free energy Fn is as belows:

E[Gn] =
λ

n
− m− 1

n log n
+ o

(
1

n log n

)
,

Fn = λ log n− (m− 1) log log n+Op(1).

Theorem 3.5 (Watanabe) If there exists at least one θ0 such that q(x) = p(x|θ0) and
maximum likelihood or posterior method is applied (i.e. the predictive distribution is p∗(x) =
p(x|θ̂), where θ̂ is the maximum likelihood or posterior estimator), then there is a constant
µ > d/2 such that the asymptotic behavior of the generalization error Gn is as belows:

E[Gn] =
µ

n
+ o

(
1

n

)
.

K(θ) depends on q(x) and p(x|θ); thus, Theorem 3.4 can be understood as we can clarifyGn

and Fn if the RLCT is clarified, which is determined by (q(x), p(x|θ), φ(θ)). As introduced
in Chap. 1, there are several researches to find the RLCT of a statistical model by analyzing
the maximum pole of the zeta function. Their studies are based on Theorem 3.4 and the zeta
function derived by Theorem 3.2. The researchers have found the singularity resolution map
g for the exact value or an upper bound of Φ(θ), and have obtained the one of the RLCT since
the RLCT is order isomorphic: if Φ(θ) ≦ Ψ(θ), then λΦ ≦ λΨ, where (−λΦ) and (−λΨ)
are the maximum pole of ζ1(z) =

∫
Φ(θ)zdθ and ζ2(z) =

∫
Ψ(θ)zdθ, respectively [81].

Recently, RLCTs of statistical models have been used in other ways. Analyzing and
tuning exchange probabilities in exchange Monte Carlo methods [56], deriving the asymptotic
behavior of the Bayesian estimation accuracy for latent variables [90, 91], devising singular
Bayesian information criterion [24] (see Sec. 3.4) and constructing deep learning theory
[55] are such examples. Singular learning theory assumes that the optimal distribution is
essentially unique [85]; however, in some of cases when that assumption is not satisfied,
RLCTs and its multiplicities also determine the behavior of the free energy [57]. Moreover,
singular learning theory in non-i.i.d. cases is also studied such for conditional independent
samples [84, 85], in the exchangeable case [87], and for structured data [93].

From the practical point of view, Theorem 3.5 shows that Bayesian inference makes the free
energy and the generalization error smaller than maximum likelihood or posterior method in
singular case since µ > d/2 ≧ λ [85]. Hence, if the RLCT is clarified, then we can draw the
E[Gn]-n learning curve and estimate the sample size which satisfies the required inference
performance.
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There is no standard method to find an RLCT for a statistical model (family of functions).
Here, we show a fundamental method to find the RLCT for a non-negative analytic function:
this is called blowing-up [39]. We explain blowing-up which is used to study learning
machines, based on a concrete example and [81, 85]. If a reader needs the rigorous definition
of blowing-up, then see [39]. Let

K(θ) = θ21 + . . .+ θ2d (3.4)

and θi, i = 1, . . . , d be independent parameters. Especially, we treat the case d = 2.
Blowing-up of K(θ) is a transformation of the coordinate that is defined{

θ1 = θ
(1)
1 = θ

(2)
1 θ

(2)
2 ,

θ2 = θ
(1)
1 θ

(1)
2 = θ

(2)
2

.

Using this blowing-up,

K(θ) = (θ
(1)
1 )2{1 + (θ

(1)
2 )2} = (θ

(2)
2 )2{(θ(2)1 )2 + 1},

and the absolute of Jacobian |J | of this transformation is

|J | = |θ(1)1 | = |θ
(2)
2 |.

From the applied mathematical point of view, 1 + (θ
(j)
i )2 is strictly positive thus the RLCT

can be calculated. The zeta function ζ(z) is

ζ(z) =

∫
(θ

(1)
1 )2z+1{1 + (θ

(1)
2 )2}zdθ(1) =

∫
(θ

(2)
2 )2z+1{1 + (θ

(2)
1 )2}zdθ(2)

and it is immediately proved that 1 + (θ
(j)
i )2 does not effect the RLCT λ. Then all we have

to consider is the function

ζ(z) =

∫
(θ

(1)
1 )2z+1dθ(1) =

∫
(θ

(2)
2 )2z+1dθ(2),

which are analytically connected to C as a unique meromorphic function, respectively. There-
fore, we get

ζ(z) =
c1

2(z + 1)
=

c2
2(z + 1)

,

and
λ = min{1, 1} = 1,

where c1 and c2 are positive constants. By the same way, in general d, the RLCT λ is equal
to

λ =
d

2
. (3.5)

If the statistical model is regular, then its average error function can be approximated by
a quadratic form as Eq. (3.1). By diagonalizing the positive-definite matrix ∇2K(θ0) and
centralizing that form, we arrive at Eq. (3.4). Because of Eq. (3.5), we can reconstruct the
asymptotic behavior of the Bayesian generalization error in regular case: Theorem 1.1.

Let ∼ be a binomial relation such that the functions K1(w) and K2(w) have same RLCT
if K1(w) ∼ K2(w). There are some propositions to evaluate RLCTs [81].
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Proposition 3.1 Let Φ : Rd → [0,∞) be a non-negative analytic function. Let λ and m be
the RLCT and its multiplicity defined by the following zeta function

ζ(z) =

∫
Φ(θ)zφ(θ)dθ,

respectively. Let a(θ) > 0 and b(θ) > 0 be smooth functions of θ which are strictly positive
on the neighborhood of Φ−1(0). Then, the following zeta function has the same maximum
pole as that of the above: the RLCT and its multiplicity are same

ζa,b(z) =

∫
(a(θ)Φ(θ))zb(θ)φ(θ)dθ.

Proposition 3.2 RLCTs save the orders: if Φ(θ) ≦ Ψ(θ) and φ1(θ) = φ2(θ), then λΦ ≦ λΨ,
where (−λΦ) and (−λΨ) are the maximum pole of ζ1(z) =

∫
Φ(θ)zφ1(θ)dθ and ζ2(z) =∫

Ψ(θ)zφ2(θ)dθ, respectively.

From the aboves, the following is immediately derived.

Proposition 3.3 Let λΦ and λΨ be RLCTs in the above proposition. If φ1(θ) = φ2(θ) and
there are two positive constants c1 > 0 and c2 > 0 such that

c1Φ(θ) ≦ Ψ(θ) ≦ c2Φ(θ),

then λΦ = λΨ holds and their multiplicities are also same.

By using the relationship between ideals and analytic sets, the following property can be
proved.

Proposition 3.4 Suppose s, t ∈ N, and let f1(w), . . . , fs(w), g1(w), . . . , gt(w) be real poly-
nomials. Furthermore, let

I := ⟨f1, . . . , fs⟩, J := ⟨g1, . . . , gt⟩

be the generated ideals of (f1, . . . , fs) and (g1, . . . , gt), respectively. We put

F (w) :=
s∑

i=1

fi(w)
2, G(w) :=

t∑
j=1

gj(w)
2.

Then, F ∼ G if I = J .

Corollary 3.1 Assume that F (w) =
∑s

i=1 fi(w)
2. Then

F (w) +

(
s∑

i=1

fi(w)

)2

∼ F (w).

The prior can affect to the RLCT as the following.

Proposition 3.5 Let λ1 := λΦ and λ2 := λΨ be RLCTs in Proposition 3.2. If Φ(θ) = Ψ(θ)
and φ1(θ) ≦ φ2(θ), then λ1 ≧ λ2 holds.
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3.4 Information Criteria from Singular Learning Theory
From the practical point of view, singular learning theory provides novel information criteria:
WAIC [82] and WBIC [83]. They are useful even if the posterior cannot be approximated by
any normal distribution, i.e. neither AIC nor BIC can be applied.

Definition 3.5 (Widely Applicable Information Criterion (WAIC)) Widely applicable in-
formation criterion (WAIC) is defined by the following random variable Wn:

Wn := Tn + Vn/n,

where Tn is the empirical loss and Vn is the functional variance:

Tn = − 1

n

n∑
i=1

log p∗(Xi) = −
1

n

n∑
i=1

logEθ[p(Xi|θ)],

Vn =

n∑
i=1

[
Eθ[(log p(Xi|θ))2]− {Eθ[log p(Xi|θ)]}2

]
=

n∑
i=1

Vθ[log p(Xi|θ)].

Wn − Sn is called the WAIC error.

WAIC asymptotically approximates the Bayesian generalization loss in the general case *4 in
the sense of the expectation [82].

Theorem 3.6 The expected WAIC is asymptotically equal to the expected generalization loss
and these difference is O(1/n2):

E[Wn] = E[Gn] +O(1/n2).

This means that WAIC is asymptotically equal to leave-one-out cross validation (LOOCV)
loss. LOOCV loss is collapsed in the case when the data has leverage points if LOOCV loss
is calculated by the importance sampling (ISCV) [25]; however, WAIC seems consistent in
that case [54]. Some outliers can become leverage points in practical uses. Thus, WAIC is
considered to be numerically more robust than the ISCV.

The mathematical property of the variance of WAIC is as follows.

Theorem 3.7 The WAIC error has same variance as the Bayesian generalization error:

Wn − Sn +Gn = 2λ/n+ op(1/n).

Note thatWn−Sn andGn are random variables but the summation of them is asymptotically
deterministic 2λ/n. This property means that the WAIC error has an inverse correlation to
the Bayesian generalization error.

Widely applicable Bayesian information criterion (WBIC) is defined as follows. It uses the
expectation by the tempered posterior distribution.

*4 Some technical assumptions (such the relatively finite variance of the model) are needed but they are practically
consistent [85]. As far as we know, widely used statistical models are considered to satisfy the assumptions.
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Definition 3.6 (Tempered Posterior) Let β > 0 be a positive constant. The tempered poste-
rior ψβ(θ|Xn) is defined by

ψβ(θ|Xn) :=
1

Zn(β)
φ(θ)

n∏
i=1

p(Xi|θ)β ,

where the partition function Zn(β) is equal to

Zn(β) =

∫
W
φ(θ)

n∏
i=1

p(Xi|θ)βdθ

and the scale constant β is called the inverse temperature in statistical mechanics.

Definition 3.7 (Widely Applicable Bayesian Information Criterion (WBIC)) Let Eβ
θ be

the expectation operator by the tempered posterior:

Eβ
θ [·] :=

∫
W
[·]ψβ(θ|Xn)dθ.

Widely applicable Bayesian information criterion (WBIC) is defined by the following random
variable W ′

n:
W ′

n := Eβ
θ [nLn(θ)],

where Ln(θ) is the negative log likelihood

Ln(θ) = −
1

n

n∑
i=1

log p(Xi|θ)

and β = 1/ log n.

WBIC asymptotically approximates the free energy.

Theorem 3.8 WBIC W ′
n satisfies the following asymptotic equality:

W ′
n = Fn +Op(

√
log n).

The probability that the true model is selected by minimizing WBIC converges to one when
n → ∞ Moreover, if the model is regular, then the difference between WBIC and BIC
converges to zero in probability.

This is because W ′
n = nSn + λ log n + Op(

√
log n) and Fn = nSn + λ log n − (m −

1) log log n + Op(1) have been proved. In this way, WBIC matches the free energy only up
to the leading term. WBIC tends to underestimate the free energy and the accuracy of the
model selection may be low. The underestimating term has been theoretically analyzed and
an adjustment term has been proposed in order to make WBIC asymptotically unbiased [44].
Also, more precise approximation methods have been proposed: sBIC [24] and WsBIC [43].

Singular Bayesian information criterion (sBIC) have been proposed by Drton and Plummer
[24]. sBIC is derived as a novel expansion of BIC based on Theorem 3.4. Let θ̂ be the (local)
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maximum likelihood estimator. Namely, sBIC is defined as the first and second leading term
of the free energy:

sBIC ≜ nLn(θ̂) + λ log n− (m− 1) log log n

and the sBIC seems to match the free energy higher-order terms than WBIC, where A ≜ B
means that A is namely (intuitively) equal to B but is not mathematically equal to it*5.
However, in fact, sBIC is calculated by solving fixed point simultaneous equation system and
has consistency, i.e. the probability that the true model is selected converges to one when
n → ∞ [24]. sBIC uses the theoretical value of λ and m. In general, they are depend on
the true distribution; however, in computing sBIC, the true distribution is referred to one of
submodels. For example, we theoretically consider a model selection problem: selecting the
number of hidden units i in three-layered neural network model (more general, the considered
model is dominated by a control variable i ∈ N ∪ {0} and all submodels are monotonically
included: model j ⊂ model i if j < i). For the sake of simplicity, the model whose number
of hidden units is i is called the model i (written as pi(x|θ)) or that the model is i. In the
same way, let φi(θ) be the prior when the model is i. When the candidate models are set
to i = 0, . . . , H , for each i, the submodels are considered to j = 0, . . . , i. Let λij and mij

be the RLCT and its multiplicity when the model is i and the true distribution is the model
j, respectively. If the RLCT and its multiplicity are clarified, we can immediately have the
following two matrices:

Λ =


λ00 0 . . . 0
λ10 λ11 . . . 0

...
...

. . .
...

λH0 λH1 . . . λHH

 , (3.6)

M =


m00 0 . . . 0
m10 m11 . . . 0

...
...

. . .
...

mH0 mH1 . . . mHH

 . (3.7)

If an upper bound of the RLCT is only clarified, then the matrix Λ is constructed by the
bounds and the positive entries of M are set to one. Let θ̂i be the (local) maximum likelihood
estimator (MLE) of the model i and L′

ij satisfy

− logL′
ij = nL(i)

n (θ̂i) + λij log n− (mij − 1) log log n, (3.8)

where the likelihood of the model i is denoted by Pi(X
n|θ) =

∏n
l=1 pi(Xl|θ) and L(i)

n (θ) =
− 1

n logPi(X
n|θ). Obviously, we have

L′
ij := Pi(X

n|θ̂i)
(log n)mij−1

nλij
. (3.9)

In this case, sBIC is calculated as Algorithm 1 *6.

*5 In scare quotes sense, A is “equal” to B (but A ̸= B).
*6 The original paper defines sBIC as approximation of the log marginal likelihood −Fn. Thus, in this thesis,

the sign is reversed in some parts compared to the original version.
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Algorithm 1 Calculation Algorithm of sBIC
Require: H:candidate model size, Λ:matrix of RLCTs, M :matrix of multiplicities
Pi:likelihood of the model i, Xn:data, θ̂i: MLE for the model i

Ensure: Calculation of sBIC
Allocate L′

ij := Pi(X
n|θ̂i)(log n)mij−1/nλij

Allocate arrays L, sBIC← initialize
for i = 0 to H do

if i == 0 then
L[i]← L′

ii

sBIC[i]← − logL[i]
else
b← −L′

ii +
∑

j<i L[j]
φj(θj)
φi(θi)

c←
∑

j<i L[j]L
′
ij

φj(θj)
φi(θi)

L[i]← (−b+
√
b2 + 4c)/2

sBIC[i]← − logL[i]
end if

end for
return sBIC

In this algorithm, if i ̸= 0, we solve the quadratic equation system

L[i]2 + bL[i]− 4c = 0, i = 1, . . . , H. (3.10)

It is proved that this simultaneous equation has a unique positive solution [24]. Therefore,
we compute and plug-in L[i] ← (−b +

√
b2 + 4c)/2. The value of sBIC for the model i

is sBIC[i] in the above pseudo-code. Thus, the model argmin{sBIC} is selected. Actually
sBIC requires theoretical RLCTs; however, if they are clarified, it is empirically known that
sBIC is more precise than WBIC in the sense of the accuracy of the model selection [24, 43].

For real computation, the value of the likelihood becomes small not to correctly evaluate the
result of floating-point arithmetics in a computer. However, if the purpose of the computation
is to solve the model selection problem by sBIC, we need the order of the maximal likelihoods
{Pi(X

n|θ̂i)} of the model i as well as the exact maximal value of the maximal likelihood
MLn := maxi{Pi(X

n|θ̂i)}. Hence, we can normalize sBIC by using Pi(X
n|θ̂i)/MLn

instead of Pi(X
n|θ̂i) for i = 0, . . . , H in order to make the computation stable (private

communication with Mathias Drton and Fumito Nakamura).
It is well-known that MLEs of singular models are neither stable nor unique even if the

sample size is large enough to be treated as an asymptotic scale. Thus, there are some heuristics
to make sBIC more precise. One of them is using variational Bayes estimator (VBE) instead
of MLE [35]. For some of singular models like Gaussian mixture model (GMM), we can
derive expectation-maximization (EM) algorithm to calculate its MLE; however, it is proved
that there is no MLE in such mixture models [32]. As far as we know, when EM algorithm
can be derived, deterministic variational Bayes method can also be constructed, for example
GMM; hence, this heuristics does little to reduce the applicability of sBIC. According to the
technical report [35], the model selection with the original (using MLE calculated by EM)
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sBIC failed and that with the proposed (using VBE) method succeeded when the model is
GMM with non-diagonal variance-covariance matrices. Another heuristics is considering
the difference of the RLCTs and sBIC for i = 0, . . . , H [69]. This heuristic method returns
the first point when the slope of the sequence (i, sBIC[i]) becomes negative as the model
selection result.

Lastly, we introduce widely applicable singular Bayesian information criterion (WsBIC).
WsBIC is defined by a variant of sBIC which uses numerically-calculated RLCTs instead
of theoretical ones [43]. In order to obtain numerical RLCTs, Imai proposed a consistent
estimator λ̂sV of an RLCT, where s ∈ N is the number of independent simulations.

Definition 3.8 (Imai’s estimator of an RLCT) Let Vβ
θ be the variance operator along with

the tempered posterior:

Vβ
θ [·] =

[
Eβ
θ [(·)

2]−
{
Eβ
θ [·]
}2
]
.

λ̂1V(X
n) is defined as

λ̂1V(X
n) = β2Vβ

θ [logP (X
n|θ)],

where P (Xn|θ) is the likelihood: logP (Xn|θ) = −nLn(θ).
Assume that there are (simulated) independent datasets (D1, . . . ,Ds) and these size is same

as nsimulated, i.e. |Dk| = nsimulated and Dk is generated by the submodel for k = 1, . . . , s.
Let λ̂sV be defined as

λ̂sV =
1

s

s∑
k=1

λ̂1V(Dk).

Theorem 3.9 (Imai) Let λ be the theoretical RLCT of the considered model. λ̂1V(Xn) is a
consistent estimator, i.e. we have

λ̂1V(X
n) = λ+Op(1/

√
log n).

Besides, λ̂sV is asymptotically normal. In other words, the asymptotic distribution of λ̂sV is
determined as

λ̂sV →d N (λ, σλ),

where
σ2
λ =

vM
4s log nsimulated

,

vM is a positive constant and N (µ, σ) be a normal distribution whose mean and standard
deviation are µ and σ, respectively.

Imai’s estimator contains useful properties as the above. Moreover, it is also proved that
there is a unique inverse temperature β0 = 1/ log n + op(1/ log n) which is depend on
(q(x), p(x|θ), φ(θ)) and makes λ̂1V(Xn) an unbiased estimator of λ. On the other hand, it
requires Markov chain Monte Carlo (MCMC) sampling from the tempered posterior; thus,
it cannot directly apply to Gibbs sampling which is difficult to sample from the tempered
posterior in general.
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WsBIC is obtained by replacing the theoretical RLCT λ to Imai’s estimator λ̂sV. λ̂sV can
be calculated if the tempered posterior is realized; thus, the applicability of WsBIC is nearly
equal to that of WBIC. Moreover, WsBIC is based on sBIC; thus, it is also more precise than
WBIC nevertheless sBIC is less widely applicable than WBIC. Except for the computational
cost, WsBIC outperforms sBIC and WBIC in terms of accuracy and applicability.
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Chapter 4

Bayesian Generalization Error in
Non-negative Matrix Factorization

In this chapter, we report the result of theoretical analysis for Bayesian gener-
alization error in NMF. This chapter consists of five parts. First, in Sec. 4.1, we
describe motivation of this theoretical study. Second, in Sec. 4.2, we state the
main theorem with regard to Bayesian generalization error in NMF. Third, in Sec.
4.3, we prepare lemmas for the proof of the theorem. Fourth, in Sec 4.4, we prove
the main theorem. Lastly, in Sec. 4.5, we discuss the theoretical results.

In the followings, θ = (U, V ) is a parameter and x = X is an observed random
variable. Note that this chapter is based on the author’s papers [37, 36, 33].

4.1 Motivation
Non-negative matrix factorization (NMF) [61, 18] has been applied to text mining [88], signal
processing [51], bioinformatics [46], consumer analysis [47], and recommender systems [16].
NMF experiments discover the knowledge and predict the future unknown structures in the
real world, however, the method suffers from many local minima and seldom reaches the
global minimum. In addition, the results of numerical experiments strongly depend on the
initial values; a rigorous method has not yet been established.

In order to resolve this difficulty, Bayesian inference for NMF has been established [18]. It
uses, for numerical calculation of the Bayesian posterior distribution, Gibbs sampling method
which is a kind of Markov chain Monte Carlo method (MCMC). Bayesian NMF is known as
a more robust method than usual recursive methods of NMF since it numerically realizes the
posterior distribution; the parameters are subject to a probability distribution and that makes
it possible to grasp the degree of fluctuation of the learning/inference result. As is described
later, in general, Bayesian method has higher estimation accuracy than maximum likelihood
estimation and maximum posterior estimation if the model has hierarchical structures or
hidden variables, like NMF.

On the other hand, the variational Bayesian algorithm (VB) for NMF has also been estab-
lished [18], with being inspired the mean field approximation. The variational Bayesian NMF
algorithm (VBNMF) also results more numerically stable than usual recursive algorithms as
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VB approximates the Bayesian posterior distribution. Moreover, VBNMF computes faster
than usual Bayesian inference such an MCMC. However, its free energy (called the variational
free energy) is larger than the Bayesian free energy, since VB ascends the evidence lower
bound but it is not the true model evidence. Note that the marginal likelihood is also called
the model evidence and the negative logarithm value of the evidence lower bound is equal to
the variational free energy. From the above, it is important to clarify the approximation error
of variational inference for not only theoretical reasons but also practical points of view.

As mentioned Chap. 3, researchers have studied RLCTs of many statistical models to
clarify theoretical behaviors of the generalization error and the free energy. Moreover, for
several statistical models, the variational free energy was proved that it asymptotically equals
nSn + λvb log n + Op(1),where λvb is a learning coefficient and it depends on the model.
Normal mixture models [78], hidden Markov models [42], and NMF [49] are such examples.
Kohjima proved the following theorem about the learning coefficient of VBNMF [49].

Theorem 4.1 (Kohjima) Let the elements of the data matrices xij (i = 1, . . . ,M ; j =
1, . . . , N) be independently generated from the Poisson distribution whose mean is equal to
the (i, j) element of U0V0, where the number of columns in U0 (= the number of rows in V0)
is H0; called the non-negative rank of U0V0 [19].

Let the likelihood model and the prior be the following Poisson and gamma distributions,
respectively:

p(X|U, V ) =
M∏
i=1

N∏
j=1

((UV )ij)
xij

xij !
e−(UV )ij ,

φ(U, V ) =
M∏
i=1

H∏
k=1

(
θϕU

U

Γ(θU )
uϕU−1
ik e−θUuik

)
H∏

k=1

N∏
j=1

(
θϕV

V

Γ(θV )
vϕV −1
kj e−θV vkj

)
,

where ϕU , θU , ϕV , θV > 0 are hyperparameters, the size of U and V areM ×H andH×N ,
and (UV )ij is the (i, j) entry of UV , respectively.

Then, the variational free energy F̄ vb
n satisfies the following asymptotic equality:

F̄ vb
n = nSn + λvb log n+Op(1) (n→∞),

where

λvb =

{
(H −H0)(MϕU +NϕV ) +

1
2H0(M +N), if MϕU +NϕV < M+N

2
1
2H(M +N), otherwise.

In general, the learning coefficient of VB may not be equal to but becomes an upper bound
of the RLCT: λvb ≧ λ, since the variational free energy is larger than the free energy even
if the sample size diverges infinity. Unfortunately, the variational generalization error is not
equal to λvb/n, asymptotically. Besides, as described below, the variational inference seeks
the mode of the true posterior and the variational posterior distributions tend to concentrate in
a fraction of true posterior distributions. One might say that a variational posterior distribution
is approximately equivalent to a posterior distribution; however, for these reasons, variational
inference is just an approximation of Bayesian inference and they are not equivalent. As far as
we know, there has been no direct theoretical comparison between them, except for [92]. The
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difference between VB and the local variational approximation, which is an approximation of
VB, has been studied theoretically [76]; however, for Bayesian inference and VB, there exists
few theoretical comparison.

VBNMF has been devised [18], and the exact learning coefficient of VBNMF has been
derived [49]. Nevertheless, the variational approximation error has not been clarified since
the RLCT of NMF has been unknown. If the prior distribution is strictly and entirely positive
and bounded analytic function on the domain, then an upper bound of the RLCT of NMF has
been proved [37, 36]. If the non-negative restriction is not assumed for matrix factorization,
then the exact value of the RLCT has been clarified as those of reduced rank regression
models [10]. However, the RLCT has been unknown in the case of that the prior is a gamma
distribution, which may be zero.

In this chapter, we give an upper bound of the RLCT of NMF λ when the prior is a gamma
distribution, which determines an upper bound of the Bayesian generalization error and the
free energy in that case. Moreover, by comparing λ with λvb, we also derive a lower bound
of the variational approximation error in VBNMF.

4.2 Main Theorem
Let M(M,N,C) be a set of M ×N matrices whose elements are in C, where C is a subset
of R. Let K be a compact subset of R≧0 = {x ∈ R|x ≧ 0} and let K0 be a compact
of subset R>0 = {x ∈ R|x > 0}. We denote that U ∈M(M,H,K), V ∈M(H,N,K)
and U0 ∈ M(M,H0,K0), V0 ∈ M(H0, N,K0) are the NMF result of U0V0 such that H0

is the non-negative rank [19] of U0V0, i.e. they give the minimal H0, where H ≧ H0 and
{(x, y, a, b) ∈ K ×K0|xy = ab} ̸= ∅.

Definition 4.1 (RLCT of NMF) Assume that the largest pole of the function of one complex
variable z,

ζ(z) =

∫
M(M,H,K)

dU

∫
M(H,N,K)

dV
(
∥UV − U0V0∥2

)z
φ(U, V )

is equal to (−λ). Then λ is said to be the RLCT of NMF.

According to one of the first Bayesian NMF paper [18], we set the prior as gamma distri-
butions:

φ(U, V ) = Gam(U |ϕU , θU )Gam(V |ϕV , θU ),

where

Gam(U |ϕU , θU ) =
M∏
i=1

H∏
k=1

θϕU

U

Γ(θU )
uϕU−1
ik e−θUuik ,

Gam(V |ϕV , θV ) =
H∏

k=1

N∏
j=1

θϕV

V

Γ(θV )
vϕV −1
ik e−θV vik ,

and ϕU , θU , ϕV , θV > 0.
In this chapter, we prove the following theorems.
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Theorem 4.2 If the prior is the above gamma distributions, then the RLCT of NMF λ satisfies
the following inequality:

λ ≦ 1

2
[(H −H0)min{MϕU , NϕV }+H0(M +N − 2) + δH0

] ,

where δH0
= [H0 ≡ 1(mod 2)]. The equality holds when H = H0 = 1 or 2.

We prove this theorem in the next section. As two applications of this theorem, we obtain
an upper bounds of the free energy and Bayesian generalization error of NMF in this case.
The following theorem shows a statistical bound of Bayesian estimation of NMF.

Theorem 4.3 Let the probability density functions of X ∈ M(M,N,K) be q(X) and
p(X|U, V ), which represent a true distribution and a learning machine respectively defined
by

q(X) = Poi(X|U0V0),

p(X|U, V ) = Poi(X|UV ),

where

Poi(X|A) =
M∏
i=1

N∏
j=1

(aij)
xij

xij !
e−aij , X = (xij)

M,N
i=1,j=1, A = (aij)

M,N
i=1,j=1.

Also let φ(U, V ) = Gam(U |ϕU , θU )Gam(V |ϕV , θU ). Then, the normalized free energy Fn

and the expected generalization error E[Gn] satisfies the following inequality:

Fn ≦ 1

2
[(H−H0)min{MϕU , NϕV }+H0(M+N−2) + δH0 ] log n+Op(1),

E[Gn] ≦
1

2n
[(H−H0)min{MϕU , NϕV }+H0(M+N−2) + δH0 ] + o

(
1

n

)
.

In Theorem 4.3, we study a case when a set of random matrices Xn = X1, X2, ..., Xn

are observed and the true decomposition U0 and V0 are statistically estimated. Actually
sometimes NMF has studied in the case when only one target matrix is decomposed, however,
in general, decomposition of a set of independent matrices should be studied because target
matrices are often obtained daily, monthly, or different places for purchase study [47]. Other
situation for observing multiple data matrices is traffic data analysis [21]. In such cases,
decomposition of a set of matrices results in statistical inference. We consider this situation
and it is common to [49]. A statistical model p(X|U, V ) which has parameters (U, V ) are
employed for estimation. Then the free energy and generalization error of Bayesian estimation
is given by this theorem.

Moreover, we also derive a lower bound of the variational approximation error in VBNMF as
Theorem 4.4 in the following. In VB, the posteriorψ(θ|Xn) is approximated by the variational
posterior ψvb(θ|Xn) which is a distribution of independent parameters like ψvb(θ|Xn) :=
ψ1(θ1|Xn)ψ2(θ2|Xn). The variational approximation error is defined by the KL divergence
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from the variational posterior to the true one: KL(ψvb∥ψ). Developing it, we have

KL(ψvb∥ψ) =
∫

dθψvb(θ|Xn) log
ψvb(θ|Xn)

ψ(θ|Xn)
(4.1)

=

∫
dθψvb(θ|Xn)

(
logψvb(θ|Xn)− log

∏n
i=1 p(Xi|θ)φ(θ)

Zn

)
(4.2)

=

∫
dθψvb(θ|Xn)

(
logψvb(θ|Xn)− log

n∏
i=1

p(Xi|θ)φ(θ) + logZn

)
(4.3)

=

∫
dθψvb(θ|Xn) log

ψvb(θ|Xn)∏n
i=1 p(Xi|θ)φ(θ)

− Fn. (4.4)

The first term in Eq. (4.4) is called the variational free energy F̄ vb
n . Because ofKL(ψvb∥ψ) ≧

0, F̄ vb
n ≧ Fn. It is the objective function of VB. If θ1 and θ2 such that θ = (θ1, θ2) were

independent, then the variational posterior would be same as the true posterior and the
variational approximation error would become zero. However, in general, θ1 and θ2 such that
θ = (θ1, θ2) are not independent. Thus, VB minimizes the variational free energy.

Theorem 4.4 Let the variational free energy of VBNMF be F̄ vb
n . Then, the following inequal-

ity is attained:
F̄ vb
n − Fn ≧ λ log n+Op(1),

where

λ=

{
1
2 [(H−H0)(MϕU+NϕV +max{MϕU , NϕV })−δH0 ]+H0, if MϕU+NϕV<

M+N
2

1
2 [(H−H0)(M+N−min{MϕU , NϕV })−δH0

]+H0, otherwise.

The framework of VB and the definition of the variational free energy are described in
Appendix. Theorem 4.4 gives a lower bound of the difference of the free energy between the
variational approximation and the true.

4.3 Preparation
In order to prove Theorem 4.2, we use the following five lemmas.

Lemma 4.1 Let q(X) and p(X|U, V ) be the probability density functions of a non-negative
matrix X , which represent a true distribution and a learning machine respectively defined by

q(X) = Poi(X|U0V0),

p(X|U, V ) = Poi(X|UV ),

where Poi(X|W ) is a probability density function of the Poisson distribution with average
W . Then, the RLCT of the KL divergence

∑
X q(X) log q(X)

p(X|U,V ) is equal to the RLCT of
NMF in Definition 4.1:

∥UV − U0V0∥2 ∼
∑
X

q(X) log
q(X)

p(X|U, V )
.
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Lemma 4.2 Let λ be the absolute value of the maximum pole of

ζ(z) =

∫∫
dUdV

(
∥UV ∥2

)z
Gam(U |ϕU , θU )Gam(V |ϕV , θV ).

Then,

λ =
Hmin{MϕU , NϕV }

2

holds; this is the equality of Theorem 4.2 in the case H0 = 0.

Lemma 4.3 If H0 = H = 1, the equal sign of the Theorem4.2 holds:

λ =
M +N − 1

2
.

Lemma 4.4 If H0 = H = 2, the equal sign of the Theorem4.2 holds:

λ =M +N − 2.

Lemma 4.5 If H = H0, the Theorem4.2 is attained:

λ ≦ H0(M +N − 2) + [H0 ≡ 1(mod 2)]

2
.

Let the entries of the matrices (U, V ) be

U=(u1, . . . , uH), uk=(uik)
M
i=1,

V =(v1, . . . , vH)T , vk=(vkj)
N
j=1,

and the ones of (U0, V0) be

U0=(u01, . . . , u
0
H0

), u0k=(u0ik)
M
i=1,

V0=(v01 , . . . , v
0
H0

)T , v0k=(v0kj)
N
j=1,

respectively.
In the following, these lemmas are proved.

Proof of Lemma 4.1. Let (wij) = W = UV and (w0
ij) = W0 = U0V0. Calculating the KL

divergence
∑

X q(X) log q(X)
p(X|U,V ) , we have∑

X

q(X) log
q(X)

p(X|U, V )
(4.5)

=
∑
X

q(X) log

∏M
i=1

∏N
j=1

(w0
ij)

xij

xij !
e−w0

ij∏M
i=1

∏N
j=1

(wij)
xij

xij !
e−wij

(4.6)

=
∑
X

q(X)
M∑
i=1

N∑
j=1

{xij logw0
ij − log xij !− w0

ij − (xij logwij − log xij !− wij)} (4.7)

=
∑
X

q(X)
M∑
i=1

N∑
j=1

{
xij log

w0
ij

wij
− (w0

ij − wij)

}
. (4.8)
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Because of
∞∑

xij=0

(w0
ij)

xij

xij !
e−w0

ijxi′j′ =

{
w0

ij (i, j) = (i′, j′),

xi′j′ (i, j) ̸= (i′, j′),
(4.9)

we have ∑
X

q(X) log
q(X)

p(X|U, V )
(4.10)

=
∑
X

q(X)
M∑
i=1

N∑
j=1

{
xij log

w0
ij

wij
− (w0

ij − wij)

}
(4.11)

=
∑
X

M∑
i=1

N∑
j=1

 M∏
i=1

N∏
j=1

(w0
ij)

xij

xij !
e−w0

ij

{xij log w0
ij

wij
− (w0

ij − wij)

}
(4.12)

=
∑
X

M∑
i=1

N∑
j=1

(w0
ij)

xij

xij !
e−w0

ij

{
xij log

w0
ij

wij
− (w0

ij − wij)

}
(4.13)

=

M∑
i=1

N∑
j=1

∞∑
xij=0

(w0
ij)

xij

xij !
e−w0

ij

{
xij log

w0
ij

wij
− (w0

ij − wij)

}
(4.14)

=
M∑
i=1

N∑
j=1

{
w0

ij log
w0

ij

wij
− (w0

ij − wij)

}
. (4.15)

All we have to prove is

(w0
ij − wij)

2 ∼ w0
ij log

w0
ij

wij
− (w0

ij − wij) (4.16)

for i = 1, . . . ,M and j = 1, . . . , N , since ∥W −W0∥2 =
∑M

i=1

∑N
j=1(w

0
ij − wij)

2.
Let f(a, b) = (a− b)2 and

g(a, b) = a log
a

b
− (a− b) (4.17)

on (a, b) ∈ (R≧0)
2. Owing to

∂ag(a, b) = loga− logb,

∂bg(a, b) = 1− a/b,

and that a log function is monotone increasing, we obtain

∂ag(a, b) = ∂bg(a, b) = 0⇔ a = b. (4.18)
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Signs of the above partial derivations are

∂ag(a, b) > 0 ∧ ∂bg(a, b) < 0 in case of a > b, (4.19)
∂ag(a, b) < 0 ∧ ∂bg(a, b) > 0 in case of a < b. (4.20)

On account of the above and smoothness, the increase or decrease and convexity of g(a, b)
is the same as those of f(a, b). Hence there exists c1, c2 > 0 such that

c1f(a, b) ≦ g(a, b) ≦ c2f(a, b). (4.21)

i.e. K(a, b) ∼ (b− a)2. Therefore, we have

∥UV − U0V0∥2 ∼
∑
X

q(X) log
q(X)

p(X|U, V )
. (4.22)

□
Put Φ(U, V ) = ∥UV ∥2. The prior φ(U, V ) is gamma distributions, hence,

φ−1(0) =

(
M∪
i=1

H∪
k=1

{(U, V ) | uik = 0}

)
∪

 H∪
k=1

N∪
j=1

{(U, V ) | vkj = 0}

 .

If Φ−1(0) ̸= ∅, φ−1(0) ̸= ∅, and Φ−1(0) ∩ φ−1(0) = ∅, then φ(U.V ) does not correspond
to the maximum pole of the zeta function. However, in the case Lemma 4.2, the set Φ−1(0)
has intersections with φ−1(0). Here, we prove Lemma 4.2.

Proof of Lemma 4.2. We consider simultaneous resolution ∥UV ∥2 = 0 and φ(U, V ) = 0
since {(U, V ) | ∥UV ∥2 = 0} has intersections with φ−1(0).

The zeta function is equal to

ζ(z) =

∫∫
dUdV

(
∥UV ∥2

)z
Gam(U |ϕU , θU )Gam(V |ϕV , θV ). (4.23)

Since elements of matrices is nonnegative, the inequality

H∑
k=1

u2ikv
2
kj ≦

(
H∑

k=1

uikvkj

)2

≦ H

H∑
k=1

u2ikv
2
kj (4.24)

holds. Thus, we have

M∑
i=1

N∑
j=1

H∑
k=1

u2ikv
2
kj ≦ ∥UV ∥2 ≦ H

M∑
i=1

N∑
j=1

H∑
k=1

u2ikv
2
kj . (4.25)

As a log canonical threshold is not changed by any constant coefficient and it is order
isomorphic; ∃(c1, c2) ∈ R2 s.t. c1F ≦ G ≦ c2F ⇒ F ∼ G, all we have to do is calculating
the RLCT of

M∑
i=1

N∑
j=1

H∑
k=1

u2ikv
2
kj =

H∑
k=1

(
M∑
i=1

u2ik

)(
N∑
j=1

v2kj

)
. (4.26)
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The RLCT λ becomes a sum of each ones about k. For each k, we blow-up of
variables (uik), (vkj) each other. Simultaneously, we also consider blowing-ups for∏H

k=1(
∏M

i=1 u
ϕU−1
ik

∏N
j=1 v

ϕV −1
kj ) and the determinant |J | of their Jacobi matrix J . |J | is

called Jacobian.
Let A be either U or V and brc[A] : (U, V ) 7→ (U ′.V ′) be a blowing-up such that the

(i, k)-entry of U ′ and the (k, j)-entry of V ′ are equal to U ′
ik and V ′

kj :
U ′
ik =

{
uik (i = r and k = c) or k ̸= c

urcuik i ̸= r and k = c
, V ′

kj = vkj A = U,

U ′
ik = uik, V ′

kj =

{
vkj k = r and j = c

vrcvkj otherwise
A = V

. (4.27)

For example, let M = N = H = 2 and apply b11[U ] to

∥UV ∥2 ∼
H∑

k=1

(
M∑
i=1

u2ik

)(
N∑
j=1

v2kj

)
. (4.28)

Then, we have

U ′ =

(
u11 u12

u11u21 u22

)
, V ′ =

(
v11 v12
v21 v22

)
(4.29)

and

2∑
k=1

(
2∑

i=1

u2ik

)(
2∑

j=1

v2kj

)
7→ u211(1 + u221)(v

2
11 + v212) + (u212 + u222)(v

2
21 + v222), (4.30)

2∏
k=1

(
2∏

i=1

uϕU−1
ik

2∏
j=1

vϕV −1
kj ) 7→ u

2(ϕU−1)
11 uϕU−1

21 vϕV −1
11 vϕV −1

12 uϕU−1
12 uϕU−1

22 vϕV −1
21 vϕV −1

22 .

(4.31)

The Jacobi matrix is an 8× 8 matrix as the below:

J =
∂(U ′, V ′)

∂(U, V )
=



1 u12 u21 u22 v11 v12 v21 v22
0 1 0 0 0 0 0 0
0 0 u11 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(4.32)

and its determinant is |J | = (u11)
1.
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We arbitrarily take k ∈ {1, . . . , H} and fix it. In the general case, because of the symmetry
of the variables, only the blowing-ups b1k[U ] and bk1[V ] should be treated. Hence, we have(

M∑
i=1

u2ik

)(
N∑
j=1

v2kj

)
7→ u21kv

2
k1

(
1 +

M∑
i=2

u2ik

)1 +
N∑
j=2

v2kj

 , (4.33)

M∏
i=1

uϕU−1
ik

N∏
j=1

vϕV −1
kj 7→ uMϕU−M

1k vNϕV −N
k1

M∏
i=2

uϕU−1
ik

N∏
j=2

vϕV −1
kj . (4.34)

The Jacobian |J |k is equal to |J |k = uM−1
1k vN−1

k1 . The term
(
1 +

∑M
i=2 u

2
ik

)(
1 +

∑N
j=2 v

2
kj

)
is strictly positive; thus, we should consider the maximum pole of the following meromorphic
function:

ζ̃(z) =

∫∫
dUdV (u21kv

2
k1)

z

uMϕU−M
1k vNϕV −N

k1

M∏
i=2

uϕU−1
ik

N∏
j=2

vϕV −1
kj

 |J |k (4.35)

= C

∫∫
du1kdvk1u

2z
1kv

2z
k1u

MϕU−M
1k vNϕV −N

k1 uM−1
1k vN−1

k1 (4.36)

= C

∫∫
du1kdvk1u

2z+MϕU−1
1k v2z+NϕV −1

k1 (4.37)

= D
1

2z +MϕU
× 1

2z +NϕV
, (4.38)

where C and D are positive constants. The poles are z = −MϕU/2,−NϕV /2; therefore,
the RLCT λk is

λk =
min{MϕU , NϕV }

2
.

Let Uk be (uik)
M
i=1, Vk be (vkj)

N
j=1, and Φk(Uk, Vk) be

(∑M
i=1 u

2
ik

)(∑N
j=1 v

2
kj

)
for

each k. The RLCT λ becomes a sum of each ones about k;

λ =
H∑

k=1

λk, (4.39)

since Φ(U, V ) ∼
∑H

k=1 Φk(Uk, Vk) and the RLCT of Φk is λk. Thus, we have

λ =
Hmin{MϕU , NϕV }

2
. (4.40)

□
Remark 4.1 Lemma 4.2 means that the equality in Main Theorem holds if U0V0 = O, i.e.
H0 = 0.

Next, the exact values of the RLCTs in the case H = H0 = 1 and H = H0 = 2 (Lemma
4.3 and 4.4) are derived. To prove Lemma 4.3 and 4.4, we show the following lemma.
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Lemma 4.6 The RLCT of reduced rank regression λMF ,which is equal to the RLCT of matrix
factorization, is a lower bound of the RLCT of NMF λ, i.e.

λMF ≦ λ. (4.41)

Proof of Lemma 4.6. Let A, B, A0 and B0 be M ×H , H ×N , M × r and r ×N matrices,
respectively. The RLCT of matrix factorization is defined by the absolute maximum pole of
the zeta function

ζ(z) =

∫∫
∥AB −A0B0∥2zφMF(A,B)dAdB, (4.42)

whereφMF is a prior distribution of (A,B)whose support includes negative real numbers (see
also Definition 4.2 in the below). On the other hand, φ is a prior distribution of non-negative
matrices (U, V ); thus, there exists c > 0 such that

φ(A,B) ≦ cφMF(A,B). (4.43)

Because of the property of the maximum pole of the zeta function [81], we obtain λMF ≦ λ.

□
Remark 4.2 As compared to the RLCT of reduced rank regression, the domain of the prior
of NMF is considered that includes negative real numbers as 0 density:

φ(A,B) =

{
φ(U, V ) A = U ≧ 0 ∧B = V ≧ 0,

0 A or B has negative entries.
(4.44)

The RLCT of reduced rank regression was clarified in the all case [10] as the follwoing
theorem.

Theorem 4.5 (Aoyagi) The RLCT of reduced rank regression λMF is as follows:
(1) If N + r ≦M +H ∧M + r ≦ N +H ∧H + r ≦M +N ,
　 (1−1) in the case M +H +N + r is even,

λMF=
−(H+r)2−M2−N2 + 2{(H+r)(M+N)+MN}

8
.

　 (1−2) in the case M +H +N + r is odd,

λMF=
1−(H+r)2−M2−N2 + 2{(H+r)(M+N)+MN}

8
.

(2) Else if M +H < N + r,

λMF =
HM −Hr +Nr

2
.

(3) Else if N +H < M + r,

λMF =
HN −Hr +Mr

2
.
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(4) Or else, i.e. in the case M +N < H + r,

λMF =
MN

2
.

Especially, if H = r, then

λMF =
H(M +N −H)

2
.

In the case (1−2), the multiplicity is two: mMF = 2. Otherwise, it equals one: mMF = 1.

By using Theorem 4.5 and Lemma 4.6, the following inequalities hold.

Corollary 4.1 If H0 = H = 1, then

M +N − 1

2
≦ λ.

Besides, if H0 = H = 2, then
M +N − 2 ≦ λ.

In the case H = H0, we can treat the entries of U and V as positive numbers since the
entries of U0 and V0 are positive for any (U0, V0) ∈ Φ−1(0) and there exists a neighborhood
such that its all elements are positive matrices owing to continuity of real numbers. Thus,
in this case, the prior φ(U, V ) is positive and bounded; it does not affect the RLCT. Then,
because of Corollary 4.1, we only have to prove inversed inequalities of the aboves in order
to derive Lemma 4.3 and 4.4.

Put Φ(U, V ) = ∥UV −U0V0∥2. In general, if Φ−1(0) has anR-dimensional sub-manifold,
then the rank of its Hesse matrix ∇2Φ is at most H(M + N) − R. According to [81] (by
using implicit function theorem), we have

λ ≦ H(M +N)−R
2

. (4.45)

Proof of Lemma 4.3. Let H = H0 = 1 and p > 0. Because we consider the situation
Φ(U, V ) = ∥UV −U0V0∥2 = 0 and U and V are vectors, we can treat the elements in U and
V as strictly positive. Hence, the entries of pU and p−1V are also strictly positive. We put
P := {p ∈ R|p > 0} and it is a 1-dimensional sub-manifold of Φ−1(0); thus, by using the
inequality (4.45), we have

λ ≦ M +N − 1

2
. (4.46)

Owing to Corollary 4.1, we obtain

λ =
M +N − 1

2
. (4.47)

□
Remark 4.3 The author initially derived Lemma 4.3 in a different way: by using degenerating
of ideal and mathematical induction about M and N . The initial proof of Lemma 4.3 is
described in Appendix.
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In a way similar to Proof of Lemma 4.3, we prove Lemma 4.4 in the following.

Proof of Lemma 4.4. Let H = H0 = 2 and arbitrarily take a parameter matrix pair (U, V ) in
a sufficient small neighborhoodN of Φ−1(0). A set of 2× 2 real regular matrices is denoted
by GL(2,R). In N , we can treat the entries of U and V as positive numbers. Let

P := {P ∈ GL(2,R)|UP > 0, P−1V > 0}. (4.48)

P is a sub-manifold of Φ−1(0); thus, all we have to do is prove that P is a 4-dimensional
variety. P ∈ P is denoted by

P :=

(
p q
r s

)
(4.49)

and we put ∆ := detP . Then, we immediately get

P−1 =
1

∆

(
s −q
−r p

)
. (4.50)

Hence, we have

UP =

 u11p+ u12r u11q + u12s
...

...
uM1p+ uM2r uM1q + uM2s

 , (4.51)

P−1V =
1

∆

(
−v21q + v11s . . . −v2Nq + v1Ns
v21p− v11r . . . v2Np− v1Nr

)
. (4.52)

Without loss of generality, we can consider the case ∆ > 0 because we can derive the
lemma in the case ∆ < 0 by using inversed inequalities. We can represent the condition
UP > 0 and P−1V > 0 as the following simultaneous inequalities:

u11p+ u12r > 0
...
uM1p+ uM2r > 0,

(4.53)


u11q + u12s > 0
...
uM1q + uM2s > 0,

(4.54)


−v21q + v11s > 0
...
−v2Nq + v1Ns > 0,

(4.55)


v21p− v11r > 0
...
v2Np− v1Nr > 0,

(4.56)
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for uik > 0 and vkj > 0 (i = 1, . . . ,M ; k = 1, 2; j = 1, . . . , N). Therefore, (p, q, r, s) must
be in upper domains of lines in rp-plain and qs-plain. The domains in rp-plain and qs-plain
are 2-dimensional manifold, respectively. The Cartesian product of these is also a manifold
and its dimension is 2 + 2 = 4. Hence, we have

λ ≦ 2(M +N)− 4

2
=M +N − 2. (4.57)

By applying Corollary 4.1, Lemma 4.4 is proved:

λ =
2(M +N)− 4

2
=M +N − 2. (4.58)

□
As the last part of this section, we drive an upper bound of the RLCT of NMF when

H = H0. Put

Uk :=

 u1(2k−1) u1(2k)
...

...
uM(2k−1) uM(2k)

 ,

Vk :=

(
v(2k−1)1 . . . v(2k−1)N

vH(2k−1) . . . vH(2k)

)
,

U0
k :=

 u01(2k−1) u01(2k)
...

...
u0M(2k−1) u0M(2k)

 ,

V 0
k :=

(
v0(2k−1)1 . . . v0(2k−1)N

v0H(2k−1) . . . v0H(2k)

)
.

Proof of Lemma 4.5. We divide this proof into two cases: whether H = H0 is even.
Case (1): H=H0≡0 (mod 2), i.e. there exists H ′∈N such that H=H0=2H ′.
There is a positive constant C > 0 such that

∥UV − U0V0∥2 (4.59)

=
M∑
i=1

N∑
j=1

(ui1v1j + ...+ uiHvHj − u0i1v01j − u0iHv0Hj)
2 (4.60)

=
M∑
i=1

N∑
j=1

(
H∑

k=1

(uikvkj − u0ikv0kj)

)2

(4.61)

≦ C
M∑
i=1

N∑
j=1

H′∑
k=1

(ui(2k−1)v(2k−1)j+ui(2k)v(2k)j−u0i(2k−1)v
0
(2k−1)j−u

0
i(2k)v

0
(2k)j)

2 =: Φ1.

(4.62)
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Thus, we have

Φ1 ∼
M∑
i=1

N∑
j=1

H′∑
k=1

(ui(2k−1)v(2k−1)j + ui(2k)v(2k)j − u0i(2k−1)v
0
(2k−1)j − u

0
i(2k)v

0
(2k)j)

2

(4.63)

=

H′∑
k=1

(
M∑
i=1

N∑
j=1

(ui(2k−1)v(2k−1)j+ui(2k)v(2k)j−u0i(2k−1)v
0
(2k−1)j−u

0
i(2k)v

0
(2k)j)

2

)
(4.64)

=
H′∑
k=1

∥∥UkUk − U0
kV

0
k

∥∥2 =: Φ2. (4.65)

Let λk be the RLCT of
∥∥UkUk − U0

kV
0
k

∥∥2 for k = 1, . . . , H ′. The RLCT of Φ2 is denoted
by λ. As all intersections between {(Uk, Vk)} and {(Uk′ , Vk′)} are empty sets if k ̸= k′,

λ =
H′∑
k=1

λk (4.66)

holds. For each k, because of Lemma 4.4, we have λk =M +N − 2.
Thus, on account of H ′ = H0/2, we obtain

λ =
H′∑
k=1

(M +N − 2) (4.67)

= H ′(M +N − 2) (4.68)

= H0
M +N − 2

2
. (4.69)

Case (2): H=H0≡1 (mod 2), i.e. there exists H ′∈N such that H=H0=2H ′−1.
In the same way as Case (1), there exists a positive constant C ′ > 0 such that

∥UV − U0V0∥2 (4.70)

=

M∑
i=1

N∑
j=1

(
H∑

k=1

(uikvkj − u0ikv0kj)

)2

(4.71)

≦ C ′
M∑
i=1

N∑
j=1

(
H′−1∑
k=1

(ui(2k−1)v(2k−1)j + ui(2k)v(2k)j − u0i(2k−1)v
0
(2k−1)j − u

0
i(2k)v

0
(2k)j)

2

(4.72)

+ (ui(2H′−1)v(2H′−1)j − u0i(2H′−1)v
0
(2H′−1)j)

2

)
(4.73)
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∼
M∑
i=1

N∑
j=1

(
H′−1∑
k=1

(ui(2k−1)v(2k−1)j + ui(2k)v(2k)j − u0i(2k−1)v
0
(2k−1)j − u

0
i(2k)v

0
(2k)j)

2

(4.74)

+ (ui(2H′−1)v(2H′−1)j − u0i(2H′−1)v
0
(2H′−1)j)

2

)
(4.75)

=
H′−1∑
k=1

(
M∑
i=1

N∑
j=1

(ui(2k−1)v(2k−1)j + ui(2k)v(2k)j − u0i(2k−1)v
0
(2k−1)j − u

0
i(2k)v

0
(2k)j)

2

)
(4.76)

+
M∑
i=1

N∑
j=1

(ui(2H′−1)v(2H′−1)j − u0i(2H′−1)v
0
(2H′−1)j)

2 (4.77)

=

H′−1∑
k=1

∥∥UkUk − U0
kV

0
k

∥∥2 + ∥u2H′−1(v2H′−1)
T − u02H′−1(v

0
2H′−1)

T ∥2 =: Φ
′
. (4.78)

Let λ′1 and λ
′
2 be the RLCT of

∑H′−1
k=1

∥∥UkUk − U0
kV

0
k

∥∥2 and ∥u2H′−1(v2H′−1)
T −

u02H′−1(v
0
2H′−1)

T ∥2, respectively. The former is calculated by Lemma 4.4 as same as in Case
(1) and the latter is derived by Lemma 4.3. Hence, we have

λ
′
1 =

H′−1∑
k=1

(M +N − 2) = (H ′ − 1)(M +N − 2), (4.79)

λ
′
2 =

M +N − 1

2
. (4.80)

The RLCT of Φ′ is denoted by λ′. By the definition, H ′ = (H0 + 1)/2 holds. Since all
combinations of intersections in ({(Uk, Vk)}, {(Uk′ , Vk′)}, {(u2H′−1, v2H′−1)}) are empty
sets if k ̸= k′, we have

λ
′
= (H ′ − 1)(M +N − 2) +

M +N − 1

2
(4.81)

=
(H0 − 1)(M +N − 2) + (M +N − 1)

2
(4.82)

=
(H0 − 1)(M +N − 2) + (M +N − 2) + 1

2
(4.83)

=
H0(M +N − 2) + 1

2
. (4.84)

The RLCT is order isomorphic: λ ≦ λ[H0 ≡ 0 (mod 2)]+λ
′
[H0 ≡ 1 (mod 2)]. Therefore,

summarizing Case (1) and (2), we obtain

λ ≦ 1

2
{H0(M +N − 2) + [H0 ≡ 1 (mod 2)]} . (4.85)

□
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4.4 Proof of Main Theorem
Based on the above preparation, Theorem 4.2, 4.3 and 4.4 are proved.

Proof of Theorem 4.2. Put δH0
:= [H0 ≡ 1(mod 2)]. There exists a positive constantD > 0

such that

∥UV − U0V0∥2 (4.86)

=
M∑
i=1

N∑
j=1

(ui1v1j + . . .+ uiHvHj − u0i1v01j − . . .− u0iH0
v0H0j)

2 (4.87)

=
M∑
i=1

N∑
j=1

(
H∑

k=1

uikvkj −
H0∑
k=1

u0ikv
0
kj

)2

(4.88)

=

M∑
i=1

N∑
j=1

(
H0∑
k=1

(uikvkj − u0ikv0kj) +
H∑

k=H0+1

uikvkj

)2

(4.89)

≦ D

(H0−δH0
)/2∑

k=1

∥∥UkVk−U0
kV

0
k

∥∥2+δH0
D∥uH0

(vH0
)T−u0H0

(v0H0
)T ∥2 (4.90)

+D

∥∥∥∥∥∥∥
u1(H0+1) . . . u1H

...
. . .

...
uM(H0+1) . . . uMH


v(H0+1)1 . . . v(H0+1)N

...
. . .

...
vH1 . . . vHN


∥∥∥∥∥∥∥
2

. (4.91)

Let K1, K2 and K3 be

K1 =

(H0−δH0
)/2∑

k=1

∥∥UkVk−U0
kV

0
k

∥∥2 , (4.92)

K2 = ∥uH0
(vH0

)T−u0H0
(v0H0

)T ∥2, (4.93)

K3 =

∥∥∥∥∥∥∥
u1(H0+1) . . . u1H

...
. . .

...
uM(H0+1) . . . uMH


v(H0+1)1 . . . v(H0+1)N

...
. . .

...
vH1 . . . vHN


∥∥∥∥∥∥∥
2

, (4.94)

respectively. The RLCT of K1, K2 and K3 are respectively denoted by λ1, λ2 and λ3. The
constant D does not affect the RLCTs; thus, we only have to consider λ1, λ2 and λ3.

According to Lemma 4.5, we have

λ1 + λ2 =
1

2
{H0(M +N − 2) + δH0

}. (4.95)

Moreover, as K3 is equivalent to ∥UV ∥2 replaced from H to H − H0 in Lemma 4.2, we
obtain

λ3 =
1

2
(H −H0)min{MϕU , NϕV }. (4.96)
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Summarizing the aboves, the RLCT of NMF λ satisfies

λ ≦ λ1 + λ2 + λ3 (4.97)

=
1

2
{H0(M +N − 2) + δH0}+

1

2
(H −H0)min{MϕU , NϕV } (4.98)

=
1

2
{(H −H0)min{MϕU , NϕV }+H0(M +N − 2) + δH0} . (4.99)

Therefore, Theorem 4.2 is proved:

λ ≦ 1

2
{(H −H0)min{MϕU , NϕV }+H0(M +N − 2) + δH0

} . (4.100)

□
Proof of Theorem 4.3. Let λ be the upper bound in Theorem 4.2:

λ =
1

2
{(H −H0)min{MϕU , NϕV }+H0(M +N − 2) + δH0} . (4.101)

By using Theorem 3.4 and Theorem 4.2 λ ≦ λ, we obtain

E[Gn] =
λ

n
− m− 1

n log n
+ o

(
1

n log n

)
, (4.102)

≦ λ

n
+ o

(
1

n

)
(4.103)

and

Fn = λ log n− (m− 1) log log n+Op(1) (4.104)

≦ λ log n+Op(1). (4.105)

Thus, Theorem 4.3 is derived.

□
Proof of Theorem 4.4. Let Sn be the empirical entropy. By using Proposition 2.2 and Theo-
rem 4.3, we have

Fn = nSn + Fn (4.106)

≦ nSn + λ log n+Op(1). (4.107)

Also, because of Theorem 4.1,

F̄ vb
n = nSn + λvb log n+Op(1) (4.108)

holds, where

λvb =

{
(H −H0)(MϕU +NϕV ) +

1
2H0(M +N), MϕU +NϕV < M+N

2
1
2H(M +N), MϕU +NϕV ≧ M+N

2 .
(4.109)



4.5 Discussion 49

Thus, we compute their difference

F̄ vb
n − Fn = (λvb − λ) log n+Op(1) (4.110)

≧ (λvb − λ) log n+Op(1). (4.111)

Case(1): MϕU +NϕV < M+N
2 holds. We have

λvb − λ = (H −H0)(MϕU +NϕV ) +
1

2
H0(M +N) (4.112)

− 1

2
[(H −H0)min{MϕU , NϕV }+H0(M +N − 2) + δH0

] (4.113)

= (H −H0)

[
MϕU +NϕV −

1

2
min{MϕU , NϕV }

]
(4.114)

+
1

2
H0(M +N −M −N + 2)− δH0

2
(4.115)

=
1

2
[(H−H0)(MϕU+NϕV +MϕU+NϕV−min{MϕU , NϕV })+δH0

]+H0

(4.116)

=
1

2
[(H −H0)(MϕU +NϕV +max{MϕU , NϕV }) + δH0

] +H0. (4.117)

Case(2): MϕU +NϕV ≧ M+N
2 holds. We have

λvb−λ =
1

2
H(M+N)−1

2
[(H−H0)min{MϕU , NϕV }+H0(M+N−2)+δH0

] (4.118)

=
1

2
H(M+N)−1

2
(H−H0)min{MϕU , NϕV }−

1

2
H0(M+N)−δH0

2
+H0

(4.119)

=
1

2
(H −H0)(M +N)− 1

2
(H −H0)min{MϕU , NϕV } −

δH0

2
+H0 (4.120)

=
1

2
[(H −H0)(M +N −min{MϕU , NϕV }) + δH0

] +H0. (4.121)

Therefore, we obtain Theorem 4.4.

□

4.5 Discussion
Here, we will discuss the results of this chapter from four points of view. After that, we will
describe the numerical behavior of the theoretical result by conducting numerical experiments.

4.5.1 Application to Model Selection

First, we will explain an application of the Main Theorems. In this paper, we theoretically
clarify the difference between the variational free energy and the usual free energy in NMF.
From a practical point of view, the free energy Fn can be calculated from the data; however,
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the entailed numerical integration is very hard and the sampling approximation, such an
exchange Monte Carlo method, spends a long time for finding Fn. On the other hand, we can
compute the variational one F̄ vb

n more easily than Fn. If the estimator of VBNMF is found,
all we have to do is to substitute it for the functional whose minimum value is equal to F̄ vb

n .
It has not been clarified how much the variational free energy differs from the free energy;

however, the Main Theorems give the lower bound. We can use the lower bound to approx-
imate the free energy from the variational one. Namely, when F̄ vb

n is known, we have the
approximation

Fn ≈ F̄ vb
n − λ log n.

The usual VBNMF gives Fn ≈ F̄ vb
n ; here though, we can obtain a more accurate value*1.

In this way we should be able to more accurately select the model in VBNMF by using
F̄ vb
n − λ log n.

4.5.2 Generalization Error

Second, we describe the generalization error in NMF. Theorem 4.3 also gives an upper bound
of the generalization errorGn as well as the free energy Fn. Generally speaking, the learning
coefficients that control the asymptotic behavior of the Fn and Gn are the same RLCTs [85];
hence, we can clarify both behaviors at once. Since the situation in which the probability
model p(X|U, V ) is a Poisson distribution and the prior φ(U, V ) is a gamma distribution is
a case where the Gibbs sampling [18] of NMF is performed, it can be regarded that not only
Fn but also Gn are theoretically clarified when Gibbs sampling is applied.

By contrast, in Theorem 4.1, only the learning coefficient of the variational free energy F̄ vb
n

is determined. This is because the learning coefficient of the variational generalization error
is not equal to the one of F̄ vb

n . Generally, in the case of VB, no zeta function is capable of
uniformly handling Fn and Gn, and the RLCT cannot obtain the learning coefficient*2. For
example, in VB of three-layered linear neural networks, the asymptotic behaviors are clarified
not only with the variational free energy but also the variational generalization error [60], and
their learning coefficients are different. A linear neural network is also known as a reduced
rank regression, a dimension reduction model, and the parameters are equivalent to a matrix
factorization model without a non-negative value constraint. In contrast in Bayesian inference
in matrix factorization and NMF, the RLCT of matrix factorization is a lower bound for the
RLCT of NMF, and it is known that the non-negative rank is dominant rather than the rank of
the matrix in NMF, as described in [37, 36]. Therefore, we cannot directly apply the results
of linear neural networks to VBNMF.

In this way, theoretical generalization error in VB is rarely clarified, although that in
Bayesian inference has been clarified with the free energy. The Main Theorems show that
Gibbs sampling is more reliable than VB, in the sense that it gives a theoretical guarantee not
only about the free energy but also the generalization error. We can estimate the sample size
to achieve the needed inference performance and tune the hyperparameters. Although various
factors determine whether Gibbs sampling or VB is appropriate, our research can answer the
question of whether or not the theoretical generalization error is clarified.

*1 Actually λ has the true non-negative rank H0; however, in the same way as sBIC [24], we can avoid using
the true knowledge by considering H0 = 0, . . . , H .

*2 The learning coefficient of VB is not equal to the RLCT.
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4.5.3 Effect of Non-negative Restriction

Third, the effect of non-negative restriction to the parameter region is considered. In NMF,
the entries of the parameter matrices (U, V ) are non-negative. On the other hand, we can
consider non-restricted matrix factorization: the entries of the parameter matrices can be
negative. Usually, this is just called matrix factorization (MF) and its RLCT is defined as
follows.

Definition 4.2 (RLCT of MF) Let C be a compact set of R and let UMF ∈ M(M,H,C),
V MF ∈ M(H,N,C), UMF

0 ∈ M(M, r,C) and V MF
0 ∈ M(r,N,C). The largest pole of the

following univariate complex function

ζ(z)=

∫
M(M,H,C)

dUMF

∫
M(H,N,C)

dV MF
(
∥UMFV MF−UMF

0 V MF
0 ∥2

)z
φMF(U

MF, V MF)

is denoted by (−λMF) and its order is denoted by mMF, where φMF is a prior distribution of
(UMF, V MF). Then λMF is called the RLCT of MF and mMF is called its multiplicity.

The RLCT of MF was clarified in [10] as that of reduced rank regression (see Theorem
4.5). As proved above, it is a lower bound of the RLCT of NMF (see Theorem 4.6). We
discuss what the case λ = λMF holds or what the case λ > λMF holds. The control variable
of MF is H = rankUV and it is compared with r = rankU0V0.

To discuss relationship between NMF and MF, there is an important concept; the smallest
inner matrix dimension of NMF is called a non-negative rank [19]. A useful property of a
non-negative rank is as follows.

Theorem 4.6 (Cohen) Suppose W ∈ M(M,N,K). Let rank+W be the nonnegative rank
of W . The following inequality holds:

rankW ≦ rank+W ≦ min{M,N}.

A sufficient condition of rankW = rank+W is rankW ≦ 2 ∨M ≦ 3 ∨N ≦ 3.

From the above theorem, if r ≦ H0 ≦ 2, then r = H0. An example of non-negative
matrices whose non-negative rank is strictly larger than its rank is as follows:

W =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 .

The above 4× 4 non-negative matrix W satisfies rankW = 3 and rank+W = 4 [19].
In the case H = H0 = 1 or H = H0 = 2, H0 = r = 1 or H0 = r = 2 hold, respectively;

thus, the RLCT of NMF is equal to that of MF in these case. On the other hand, the case that
λ > λMF holds is also included in Theorem 4.2. If H0 = 0, then λ can be strictly greater
than λMF. We prove this property below.
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Proof. According to Theorem 4.6, r = 0 holds from H0 = 0. Hence, we consider Theorem
4.5 in the case r = 0 and Theorem 4.2 in the case H0 = 0. Then, we have

λ =
Hmin{MϕU , NϕV }

2
. (4.122)

To keep the condition consistent with Theorem 4.5, let ϕU = ϕV = 1. Here, we calculate
λMF subject to Theorem 4.5 in the followings.

Case (1): N ≦M +H ∧M ≦ N +H ∧H ≦M +N ∧M +H +N ≡ 0 (mod 2).
We assume N ≦M , i.e. λ = HM/2. Owing to Theorem 4.5,

λMF =
{
2H(M +N)− (M −N)2 −H2

}
/8 (4.123)

=
{
2(MH +HN +NM)−M2 −N2 −H2

}
/8 (4.124)

holds; thus we have

λMF − λ = −
{
M2 +H2 +N2 − 2(MH +HN +NM)− 4HM

}
/8 (4.125)

= −
{
M2 +H2 +N2 − 2(−MH +HN +NM)

}
/8 (4.126)

= −
[
(−M)2 + (−H)2 +N2 + 2{(−M)(−H) + (−H)N +N(−M)}

]
/8

(4.127)

= −(N −M −H)2/8. (4.128)

Because of N ≦ M and H ≧ 1, N < M +H holds. Therefore, λMF < λ. If N > M , that
can be derived in the same way as above.

Case (2): N ≦M +H ∧M ≦ N +H ∧H ≦M +N ∧M +H +N ≡ 1 (mod 2).
We assume N ≦M , i.e. λ = HM/2. In the same way as Case (1), we have

λMF − λ = 1/8− (N −M −H)2/8 (4.129)

= 12/8− (M +H −N)2/8 (4.130)
= −(M +H −N + 1)(M +H −N − 1)/8. (4.131)

We derive N + 1 ≦ M + H by reductio ad absurdum. We suppose M + H < N + 1.
Using the assumption of Case (2), N < M + H < N + 1 holds. M + H and N are
positive integers; thus the above inequality is inconsistent. That is whyN +1 ≦M +H and
−(M +H −N + 1)(M +H −N − 1) ≦ 0. Therefore, λMF ≦ λ. If N > M , that can be
derived in the same way as above.

Case (3): N +H < M i.e. N < N +H < M .
On account of N < M ,λ = HM/2 = λMF.
Case (4): M +H < N i.e. M < M +H < N .
In the same way as Case (4), λ = HN/2 = λMF.
Case (5): M +N < H i.e. N < M +N < H ∧M < M +N < H .
On account ofM < H∧N < H ,MN < HN∧MN < HM i.e. MN < Hmin{M,N}

holds. Thus, we have λ = Hmin{M,N}/2 > MN/2 = λMF.

□



4.5 Discussion 53

4.5.4 Robustness on Probability Distributions

Third, let us discuss the true distribution and the model of the data. In this study, we
consider the case in which the probability model p(X|U, V ) is a Poisson distribution and
the prior φ(U, V ) is a gamma distribution in the same way as in the derivation of the Gibbs
sampling algorithm of NMF by Cemgil [18]. These assumptions are necessary for Gibbs
sampling and the derivation of VB; however, other models can be considered when using
other MCMC methods. For example, we may want to set that the entries of the data matrix
X are non-negative real numbers. Is the main result applicable to these cases?

To tell the truth, several distributions satisfy the condition that the RLCT of NMF is equal
to the absolute value of the maximum pole of the following zeta function

ζ(z) =

∫
M(M,H,K)

dU

∫
M(H,N,K)

dV
(
∥UV − U0V0∥2

)z
φ(U, V ).

Specifically, when the elements of the data matrix follow a normal distribution, a Poisson
distribution, an exponential distribution, or a Bernoulli distribution, the asymptotic behavior
of the free energy and the generalization error can be described using the same RLCT defined
by the above zeta function: Theorem 4.2. Therefore, if the prior distribution is a gamma
distribution, Theorem 4.2 and Theorem 4.3 hold not only when the probability model and
the true distribution are Poisson distributions but also when they are normal distributions,
exponential distributions, or Bernoulli distributions.

We also consider the case in which X is generated by an exponential distribution. Then,
the KL divergence has the same RLCT as the square error if elements of UV are positive.

Proposition 4.1 Let the probability density functions of X ∈ M(M,N,K) be q(X) and
p(X|U, V ), which represent the true distribution and the model respectively defined by

q(X) ∝ Exp(X|U0V0),

p(X|U, V ) ∝ Exp(X|UV ),

whereExp(X|W ) is a probability density function of an exponential distribution with average
W :

Exp(X|W ) :=

M∏
i=1

N∏
j=1

e−xij/wij

wij
, X = (xij), W = (wij).

Also let φ(X,Y ) be a probability density function such that it is positive on a compact subset
of M(M,H,K0)×M(H,N,K0). Then, the Kullback-Leibler divergence has same RLCT as
the square error.

Proof. Let x > 0, a > 0 and b > 0. We put

p(x|a) := e−x/a

a
, (4.132)

g(a, b) :=

∫
p(x|a)logp(x|a)

p(x|b)
dx. (4.133)
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By the similar way to the proof of Lemma 4.1, all we have to do is prove g(a, b) ∼ (a− b)2.
By using

log
p(x|a)
p(x|b)

= log
b

a
e−x/a+x/b (4.134)

= log b− log a− x

a
+
x

b
, (4.135)

we have ∫
p(x|a)dx = 1, (4.136)∫

xp(x|a)dx = E[x] = a. (4.137)

Developing the terms, we obtain

g(a, b) =

∫
p(x|a)

(
log b− log a− x

a
+
x

b

)
dx

= log b− log a− 1 +
a

b
. (4.138)

Hence, we immediately get

∂ag(a, b) =
1

b
− 1

a
,

∂bg(a, b) =
1

b
− a

b2

=
b− a
b2

and increase or decrease of g(a, b). Thus, this proposition can be proved in the same way as
Lemma 4.1.

□
Remark 4.4 The right sides of Eqs. (4.17) and (4.138) are respectively equal to ”I-
divergence”[74] and ”Itakura-Saito-divergence”[45] which are used as criteria of difference
between observed matrix and reproduced matrix in NMF[51, 26, 27]. Moreover, in the same
way as the proof of Theorem 4.5 [10], we can prove that the square error ∥UV −U0V0∥2 has
the same RLCT as that of the KL divergence when the entries of the data matrix are subject
to a normal distribution.

As a result, we can apply Theorem 4.2 to Bayesian inference if we use a Kullback-Leibler
divergence or a square error as a criterion of difference between UV and U0V0 in cases where
elements of matrices are generated by normal, Poisson or exponential distributions. Thus,
the upper bound of the expected generalization error E[Gn] and the free energy Fn can be
clarified if the size and inner dimension of the observed matrix and reproduced matrix are
given.
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4.5.5 Experiment

Here, we run numerical experiments to check the numeric behavior of the theoretical results.
Theorem 4.1 gives the exact value of the learning coefficient λvb of VBNMF and its validity
was confirmed in Kohjima’s previous research [49]. The core result of this chapter is Theo-
rem 4.2. Therefore, we only have to run experiments for it; i.e., the RLCT λ of Bayesian NMF
is calculated by using Gibbs sampling.

Let Eθ be an expectation operator of the posterior: Eθ[·] =
∫
dθψ(θ|D)[·]. Let λ̂ be the

numerically calculated RLCT. The widely applicable information criterion (WAIC) [82] is
defined by the following random variable Wn:

Wn = Tn + Vn/n,

where Tn is the empirical loss and Vn is the functional variance:

Tn = − 1

n

n∑
i=1

log p∗(Xi) = −
1

n

n∑
i=1

logEθ[p(Xi|θ)], (4.139)

Vn =

n∑
i=1

[
Eθ[(log p(Xi|θ))2]− {Eθ[log p(Xi|θ)]}2

]
=

n∑
i=1

Vθ[log p(Xi|θ)]. (4.140)

Even if the posterior distribution cannot be approximated by any normal distribution (i.e.,
the model is singular), the expected WAIC E[Wn] is asymptotically equal to the expected
generalization loss E[Gn + S] [82];

E[Gn + S] = E[Wn] + o(1/n2).

Moreover, the generalization error and the WAIC errorWn−Sn have the same variance [85]:

Gn +Wn − Sn = 2λ/n+ op(1/n). (4.141)

Eq. (4.141) is useful for computing λ̂ because the leading term 2λ/n is deterministic. Never-
theless, the left hand side is probabilistic. This means that the needed number of simulation
D is smaller than that in the case using this approximation: Gn ≈ 1

n

∑nT

t=1 log
q(Xt)
p∗(Xt)

, where
nT is the number of the test data and (X∗)nT = (X∗

1 , . . . , X
∗
nT

) is the test data generated by
q(X).

The method was as follows. First, the training data Xn was generated from the true
distribution q(X). Second, the posterior distribution was calculated by using Gibbs sampling
[18] (see also Algorithm 3). Third, Gn and Wn − Sn were computed by using the training
data Xn and the artificial test data (X∗)nT generated from q(X). These three steps were
repeated and each value of n(Gn +Wn − Sn)/2 was saved. After all repetitions have been
completed, n(Gn +Wn − Sn)/2 was averaged over the simulations. This average was λ̂.

The pseudo-code is listed in Algorithm 2, where nK is the sample size of the parameter
subject to the posterior. We used the programing language named Julia 1.3.0 [13] for this
experiment. The implementation is available at the following github page: https://github.
com/chijan-nh/LearningCoefficient-RLCT-ofNMF-usingGS.

https://github.com/chijan-nh/LearningCoefficient-RLCT-ofNMF-usingGS
https://github.com/chijan-nh/LearningCoefficient-RLCT-ofNMF-usingGS
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Algorithm 2 How to Compute λ̂
Require: ϕ = (ϕU , θU , ϕV , θV ) > 0: the hyperparameters,
U0: the true parameter matrix whose size is (M,H0),
V0: the true parameter matrix whose size is (H0, N),
GS: the Gibbs sampling function whose return value consists of the samples from the
posterior. See also Algorithm 3.

Ensure: The numerical computed RLCT λ̂.
Allocate an array Λ[D].
for d = 1 to D do

Generate Xn ∼ q(X) = p(X|w0), where w0 = (U0, V0).
Allocate arrays U [M,H, nK ] and V[H,N, nK ].
Get U ,V ← GS(Xn, ϕ).
Generate (X∗)nT ∼ q(X).
Calculate Gn ≈ 1

nT

∑nT

t=1 log
q(X∗

t )
Eθ[p(X∗

t |θ)]
, Sn = − 1

n

∑n
i=1 log q(Xi),

and Wn ≈ − 1
n

∑n
i=1 Eθ[p(Xi|θ)] + 1

n

∑n
i=1 Vθ[log p(Xi|θ)],

where Eθ[f(θ)] ≈ 1
nK

∑nK

k=1 f(θk) and θk = (U [:, :, k],V[:, :, k]).
Save Λ[d]← n(Gn +Wn − Sn)/2.

end for
Calculate λ̂ = 1

D

∑D
d=1 Λ[d].

We set M = N = 4, H = 2, H0 = 1, and nT = 100n. To examine the behavior given
different sample sizes, we set n = 500, 1000 and nK = 1000, 2000, respectively. To decrease
the probabilistic effect of Eq. (4.141), we conducted the simulations twenty times: D = 20.

The hyperparameters were set to θU = θV = 1 and

(ϕU , ϕV ) = (0.25, 0.25), (0.5, 0.5), (1, 1), (2, 2).

We chose four pairs of (ϕU , ϕV ) in view of a theoretical point: the critical lines of the
RLCT of NMF and the learning coefficient in VBNMF. The RLCT or the learning coefficient
drastically changes on these lines. Figure 4.1 shows this phenomenon called phase transition.

Under the condition M = N , ϕU + ϕV = 1 is the phase transition line (see Theorem 4.1).
Each point on the straight line ϕU = ϕV is characterized as follows. (0.25, 0.25) is before
the phase transition line, and (0.5, 0.5) is a phase transition point. (1, 1) is a case where the
prior distribution φ(U, V ) is strictly positive and bounded. (2, 2) is one of points beyond the
critical line.

In the Gibbs sampling, we had to conduct a burn-in to decrease the effect of the initial
values and thin the samples in order to break the correlations. The sample size for the burn-in
was 20000, while the sample size for the thinning was 20; thus, the sample sizes of the
parameter was 20000 + 20K = 40000 and 60000 (K = 1000 and 2000) and we used the
(20000 + 20k)-th sample as the entry of U [:, :, k] and V[:, :, k] for k = 1 to K.

The experimental results are shown in Table 4.1. The symbol λ denotes the theoretical
upper bound of the RLCT λ in Theorem 4.2. There are columns for each sample size, and
each row contains the hyperparameter (Hyperparam.) and the learning coefficient (Coeff.).
The experimental values have three significant digits.
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Algorithm 3 Gibbs Sampling for NMF
GS(Xn, ϕ,K = K, burnin = 20000, thin = 20)

Require: Xn = (Xl)
n
l=1: the data where Xlis an M ×N non-negative integer matrix,

ϕ = (ϕU , θU , ϕV , θV ) ∈ R4
>0: the hyperparameter of the Gamma priors for the non-

negative matrices U and V ,
Gam(W |Φ,Θ): a Gamma distribution of a matrix whose (i, j)-entry is generated by
Gam(w|Φ[i, j],Θ[i, j]),
Multi(s|x, π): a Multinomial distribution whose trials and event probabilities are x ∈ N
and π ∈ Sim(H, [0, 1]), respectively.

Ensure: Sampling non-negative matrices from the numerical posterior.
Let iter = butnin + thin ∗K.
Allocate arrays U [M,H,K], U [M,H, iter], V[H,N,K] and V[H,N, iter].
# Inital sampling for U and V from the prior:
Generate U, V ∼ Gam(U |ϕU , θU )Gam(V |ϕV , θV ).
# Sampling from the posterior:
for k = 1 to iter do

## Sampling the hidden variable s.
Allocate an array s[M,H,N, n].
for i = 1, j = 1, and l = 1 to M , N , and n do

for h = 1 to H do
Let π[i, h, j] = U [i, h]V [h, j]/

∑H
h=1 U [i, h]V [h, j].

end for
Generate s[i, :, j, l] ∼ Multi(s|Xl[i, j], π[i, :, j]).

end for
## Sampling the non-negative matrix U .
for i = 1 and h = 1 to M and H do

Let ϕ̂U [i, h] =
∑n

l=1

∑N
j=1 s[i, h, j, l] + ϕU .

Let θ̂U [i, h] = n
∑N

j=1 V [h, j] + θU .
end for
Generate U ∼ Gam(U |ϕ̂U , θ̂U ).
Put U [M,H, k]← U .
## Sampling the non-negative matrix V .
for h = 1 and j = 1 to H and N do

Let ϕ̂V [h, j] =
∑n

l=1

∑M
i=1 s[i, h, j, l] + ϕV .

Let θ̂V [h, j] = n
∑M

i=1 U [i, h] + θV .
end for
Generate V ∼ Gam(V |ϕ̂V , θ̂V ).
Put V[H,N, k]← V .

end for
# Burn-in and thinning.
for k = 1 to K do
U [M,H, k]← U [M,H, burnin + thin ∗ k].
V[H,N, k]← V[H,N, burnin + thin ∗ k].

end for
Return U ,V .
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Table 4.1: Numerically Calculated and Theoretical Values of the Learning Coefficients

Hyperparam. / Coeff. n = 500 n = 1000
λvb 6 6

ϕU=ϕV =0.25 λ 4 4
θU=θV =1 λ̂ 3.74± 0.0412 3.73± 0.0508

λ− λ̂ 0.260± 0.0412 0.268± 0.0508
λvb 8 8

ϕU=ϕV =0.5 λ 9/2 9/2
θU=θV =1 λ̂ 4.05± 0.0706 4.15± 0.0842

λ− λ̂ 0.450± 0.0706 0.346± 0.0842
λvb 8 8

ϕU=ϕV =1 λ 11/2 11/2
θU=θV =1 λ̂ 4.52± 0.0492 4.54± 0.0628

λ− λ̂ 0.976± 0.0492 0.965± 0.0628
λvb 8 8

ϕU=ϕV =2 λ 15/2 15/2
θU=θV =1 λ̂ 4.76± 0.0454 4.79± 0.0477

λ− λ̂ 2.74± 0.0454 2.71± 0.0477

As shown in Table 4.1, all numerically calculated values are smaller than the theoretical
upper bound, thus, the Theorem 4.2 is consistent with the experimental result. Since λ̂ is
larger in the case ϕU = ϕV = 2 than that in the case ϕU = ϕV = 1, it is conjectured that the
larger ϕU and ϕV are, the larger λ will be, while λvb saturates to H(M +N)/2 = 8 (owing
to Theorem 4.1) and the upper bound of λ looks less tight than that in the other case. In the
case ϕU = ϕV = 0.5, when the hyperparameter is on the phase transition line, λ̂ fluctuates
more than in the other case. We can see that learning is unstable on the critical line. Hence,
the hyperparameters should be set to avoid the neighborhood of the phase transition line.

4.6 Conclusion
We give an upper bound of the RLCT for NMF whose priors are gamma distributions (Theorem
4.2) and describe theoretical applications to Bayesian and variational inference. According
to Theorem 4.3, a theoretical upper bounds of the generalization error and the free energy
are derived and hyperparameters make them change: there are a phase transition structure.
Moreover, owing to Theorem 4.4, the variational approximation error, i.e., the difference
between the variational free energy and the free energy, are quantitatively evaluated. These
difference depends on the true non-negative rank and the hyperparameters from the gamma
prior distributions. The numerical results are consistent with the theoretical results and they
suggest the exact values of the RLCT and the stability of learning. Future tasks include
conducting large-scale experiments and clarifying the exact value of the RLCT.
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Fig. 4.1: This image represents the critical lines of the RLCT of NMF and the learn-
ing coefficient in VBNMF when M = N . The horizontal and the vertical axises are
corresponding to the hyperparameter ϕU and ϕV , respectively. The used four points
{(0.25, 0.25), (0.5, 0.5), (1, 1), (2, 2)} are plotted as black disks. The red-dashed-line is
the critical line of the RLCT of NMF by Theorem 4.2. On the other hand, the blue-line is
that of the learning coefficient in VBNMF by Theorem 4.1. Obviously, they are thoroughly
different: VB is not equivalent to Bayesian inference.





61

Chapter 5

Bayesian Generalization Error in
Latent Dirichlet Allocation

In this chapter, we report the result of theoretical analysis for Bayesian gener-
alization error in LDA. This chapter consists of five parts. First, in Sec. 5.1, we
describe motivation of this theoretical research. Second, in Sec. 5.2, we state the
main theorem with regard to Bayesian generalization error in LDA. Third, in Sec.
5.3, we prepare for the proof of the theorem. Fourth, in Sec 5.4, we prove the
main theorem. Lastly, in Sec. 5.5, we discuss the theoretical results.

In the followings, θ = (A,B) is a parameter and x is an observed random
variable. Note that this chapter is based on the author’s papers [38, 34].

5.1 Motivation
Topic model [29] is a ubiquitous learning machine used in many research areas, including
text mining [15, 30], computer vision [52], marketing research [72], and geology [98]. La-
tent Dirichlet allocation (LDA) [15] is one of the most popular Bayesian topic models. It
has been devised for text analysis, and it can extract essential information in documents by
defining the topics of the words. The topics are formulated as one-hot vectors subject to
categorical distributions which are different for each document (Fig. 5.1). This formulation
refers documents to bags of words: a text is simply referred to a multiset of words [31]. For
example, a text “I think that that that that that boy wrote is wrong” is referred to a multiset
{I, think, that, that, that, that, that, boy wrote, is, wrong}m. To consider the frequency of ap-
pearance of each word, a muliset allows duplication. By using one-hot-encoding, this multiset
is transformed to the vectors


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0
0
0
0
0
0
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If the text is the given document, LDA models that the above vectors are generated from the
mixture of categorical mixture distribution in Fig. 5.1 in the caseN = 1. Practically, a single
document has more words and the number of documents is also larger *1. In fact, topic model
(including LDA) can treat bags of anythings by formulating the raw data to the bags; thus,
it has many application described above. The standard inference algorithms, such as Gibbs
sampling [30] and the variational Bayesian method [15], require the appropriate number of the
topics to be set in advance. If the chosen number of topics is too small, then LDA suffers from
underfitting. On the other hand, if the chosen number of topics is too large, it suffers from
overfitting on the training data. In practical applications, neither the optimal number of topics
of the ground truth nor the true distribution is known; thus, researchers and practitioners face
a situation in which the number of topics they set may be larger than the optimal one. Thus,
clarifying the behavior of the generalization error is necessary as a theoretical foundation to
resolve model selection problems. However, the mathematical property of LDA has not yet
been clarified, because it has a hierarchical structure; the regular statistical theory can not be
applied. To rephrase, LDA is a singular model.

Fig. 5.1: This figure gives an overview of LDA. The categorical distributions Cat that depend
on the documents. Words in the uppercase such as NAME, FOOD, and CODING are topics.
There are categorical distributions that are different for each topic; the words (Ciel, curry,
lambda, ...) are generated from them. Hence, we can explain LDA as a mixture of categorical
mixture models. This model has a hierarchical structure. This figure is quoted and modified
from the author’s works [38, 34]

Matrix factorization (MF) is also used in machine learning frequently. MF decomposes
the data matrix into a product of two matrices and discovers hidden structures or patterns,

*1 Besides, for practical uses, one may remove articles (e.g. “a” and “the”) and demonstratives (e.g. “this” and
“that”) to make a language model [68]. Also, one may refer a text to a bag of n-grams and vectorize it.
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hence it has been experimentally used for knowledge discovery in many fields. However,
MF has no guarantee of reaching the unique factorization, and it is sensitive to the initial
value of the numerical calculation. This non-uniqueness interferes with data-driven inference
and interpretations of the results. Besides, the sensitivity to the initial value causes the
factorization result to have low reliability. From the viewpoint of data-based prediction, this
instability may lead to incorrect predictions. To improve interpretability, non-negative matrix
factorization (NMF) [61, 51] has been devised; it is a restricted MF wherein the elements of
the matrix are non-negative. Thanks to the non-negativity constraint, the extracted factors
are readily interpretable, therefore NMF is frequently used for extracting latent structures and
patterns in many fields (see also Sec. 4.1).

Stochastic matrix factorization (SMF) was devised by Adams [2]; it can be understood as
a restriction of NMF in which at least one matrix factor is “stochastic”: the elements of the
matrix factors are non-negative and the sum of the elements in a column is equal to one. In
other words, the columns of the matrix are in a simplex. By making two further assumptions,
Adams proved the uniqueness of the results of SMF [1, 2]. For a statement of these two
conditions, let us consider a data matrixX whose size isM ×N and factor matricesA andB
which are “stochastic” and whose sizes areM ×H andH ×N , respectively. H might be the
rank ofX but the “stochastic” condition makes this determination non-trivial. In other words,
SMF can be viewed as a method that finds a factor matrices pair (A,B) such that X = AB
for a given X and H . The non-uniqueness property has been paraphrased as the existence of
H ×H regular matrix P ̸= IH such that

X = APP−1B, (5.2)

where IH is an H ×H identity matrix. Thus, uniqueness means that Eq. (5.2) is attained if
and only if P = IH . Adams assumed that

AP ≧ 0 and P−1B ≧ 0, (5.3)

i.e., the elements of AP and P−1B are non-negative, and P−1B =: (b′kj) satisfies

H∑
k=1

b′kj = 1 or
N∑
j=1

b′kj = 1. (5.4)

Adams claimed that these assumptions are “natural” and applied SMF to image recognition
(the same problem analyzed in [51]) and text mining[2]. It is emphasized that, in this thesis,
we consider that it is not clear whether Adam’s assumptions (5.3) and (5.4) are mathematically
“natural”. In the following, we do not assume Eqs. (5.3) and (5.4).

The MF methods described so far, including SMF, are understood as a deterministic
procedure. As will be shown later, for hierarchical learning machines such as MF, we study
probabilistic procedures, because Bayesian inference has higher predictive accuracy than
deterministic methods or maximum likelihood estimation. The same is also true regarding the
accuracy of the discovered knowledge. Moreover, the probabilistic or statistical view gives
a wider application. Indeed, Bayesian NMF [75, 18] has been applied to image recognition
[18], audio signal processing [75], and recommender systems [16]. From a statistical point of
view, the data matrices are random variables subject to the true distribution. As mentioned in
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Chap. 4, the factorization of a set of independent matrices should be studied because the target
matrices are often obtained daily, monthly, or in different places. More importantly, as proved
later, the SMF has the same learning curve as LDA; if the Bayesian generalization error in
SMF has been clarified, then that of LDA is also determined. That is why the decomposition
of a set of matrices with stochastic restriction is considered to be a statistical inference in
order to clarify the Bayesian generalization error in LDA.

In this chapter, we derive the exact asymptotic form of the Bayesian generalization error
by determination of the exact real log canonical threshold λ (RLCT; see also Chap. 3 for the
general definition and property) in LDA. For finding λ, we prove that the RLCT of LDA is
equal to that of SMF, i.e. LDA is equivalent to SMF in the sense of generalization.

5.2 Main Theorem
Now let us introduce the main result of this chapter.

Let K be a compact subset of [0, 1] = {x ∈ R|0 ≦ x ≦ 1} and let K0 be a compact
subset of (0, 1) = {x ∈ R|0 < x < 1}. Let Onehot(N) := {w = (wj) ∈ {0, 1}N |∑N

j=1 wj = 1} = {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} be an N -dimensional one-hot vector set
and Sim(N,K) := {c = (cj) ∈ KN |

∑N
j=1 cj = 1} be an N -dimensional simplex. Let

S(M,N,E) = Sim(M,E)N be a set of M × N stochastic matrices whose elements are in
E, whereE is a subset of [0, 1], andM,N ∈ N. In addition, we setH,H0 ∈ N andH ≧ H0.

In LDA terminology, the number of documents and the vocabulary size are denoted by N
and M , respectively. Let H0 be the true or optimal number of topics and H be the chosen
one. In this situation, the sample size n is the number of words in all of the given documents.
See also Table 5.1. This table is quoted and modified from the author’s works [38, 34].

Table 5.1: Description of Variables in LDA Terminology

Variable Description Index
bj=(bkj) ∈ Sim(H,K) probability that topic is k when document is j k=1, ..., H
ak=(aik) ∈ Sim(M,K) probability that word is i when topic is k i=1, ...,M
x=(xi) ∈ Onehot(M) word i is defined by xi = 1 i=1, ...,M
y=(yk) ∈ Onehot(H) topic k is defined by yk = 1 k=1, ..., H
z=(zj) ∈ Onehot(N) document j is defined by zj = 1 j=1, ..., N

∗0 and ∗0 true or optimal variable corresponding to ∗ -

Assume that M ≧ 2, N ≧ 2, and H ≧ H0 ≧ 1. We define A = (aik)∈S(M,H,K) and
B = (bkj)∈S(H,N,K), and assume that A0 = (a0ik) ∈ S(M,H0,K0) and B0 = (b0kj) ∈
S(H0, N,K0) are SMFs such that they give the minimal factorization of A0B0.

Let q(x|z) and p(x|z,A,B) be conditional probability density functions ofx ∈ Onehot(N)
given z ∈ Onehot(M), which represent the true distribution and the model of LDA, respec-
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tively,

q(x|z) =
N∏
j=1

(
H0∑
k=1

b0kj

M∏
i=1

(a0ik)
xi

)zj

, (5.5)

p(x|z,A,B) =
N∏
j=1

(
H∑

k=1

bkj

M∏
i=1

(aik)
xi

)zj

. (5.6)

These distributions are the marginalized ones of the following simultaneous ones with respect
to the topics y0 ∈ Onehot(H0) and y ∈ Onehot(H):

q(x, y0|z) =
N∏
j=1

 H0∏
k=1

(
b0kj

M∏
i=1

(a0ik)
xi

)y0
k

zj

, (5.7)

p(x, y|z,A,B) =
N∏
j=1

[
H∏

k=1

(
bkj

M∏
i=1

(aik)
xi

)yk]zj
. (5.8)

In practical cases, the topics are not observed; thus, we use Eqs. (5.5) and (5.6). Besides, let
φ(A,B) > 0 be a probability density function such that it is positive on a compact subset of
S(M,H,K)× S(H,N,K) including Φ−1(0) i.e. (A0, B0).

Definition 5.1 (RLCT of LDA) Let KL(A,B) be the KL divergence from q(x|z) to
p(x|z,A,B) in the aboves:

KL(A,B) :=
∑

z∈Onehot(M)

∑
x∈Onehot(N)

q(x|z)q′(z) log q(x|z)
p(x|z,A,B)

,

where q′(z) is the true distribution of the document. In LDA, q′(z) is not observed and
assumed that it is positive and bounded.

Then, the holomorphic function of one complex variable z (Re(z) > 0)

ζ(z) =

∫
S(M,H,K)

dA

∫
S(H,N,K)

dB KL(A,B)z

can be analytically continued to a unique meromorphic function on the entire complex plane
C and all of its poles are rational and negative (see also Theorem 3.2). If the largest pole is
(−λ), then λ is said to be the RLCT of LDA.

Definition 5.2 (RLCT of SMF) Set Φ(A,B) = ∥AB − A0B0∥2. Then the holomorphic
function of one complex variable z (Re(z) > 0)

ζ(z) =

∫
S(M,H,K)

dA

∫
S(H,N,K)

dB Φ(A,B)z

can also be analytically continued to a unique meromorphic function on C and its all poles
are rational and negative. If the largest pole is z = −λ, then λ is the RLCT of SMF.
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In this paper, we prove the following two theorems.

Theorem 5.1 (Equivalence of the LDA and SMF) LetλSMF be the RLCT of SMF andλLDA

be the RLCT of LDA. Then, the following equality holds:

λSMF = λLDA.

In the same way,
mSMF = mLDA

holds where mSMF and mLDA are the multiplicities of SMF and LDA, respectively.

In order to prepare to state Main Theorem of this chapter, we define an intrinsic value r of
the true distribution defined by stochastic matrices A0 and B0. Let Ã\(M,H0)

0 and B̃\(H0,1)
0

be matrices defined as
Ã

\(M,H0)
0 = (a0ik)

M−1,H0−1
i=1,k=1 (5.9)

and
B̃

\(H0,1)
0 = (b0kj)

H0−1,N
k=1,j=2, (5.10)

respectively. Also, Ã(\M),H0

0 and B̃(\H0),1
0 are denoted by matrices whose column vectors

are same such that

Ã
(\M),H0

0 = (a0(1:M−1)H0
, . . . a0(1:M−1)H0

) = (a0iH0
)M−1,H0−1
i=1,k=1 (5.11)

and
B̃

(\H0),1
0 = (b0(1:H0−1)N , . . . b

0
(1:H0−1)1) = (b0k1)

H0−1,N−1
k=1,l=1 , (5.12)

where a0(1:M−1)H0
= (a0iH0

)M−1
i=1 and b0(1:H0−1)1 = (b0k1)

H0−1
k=1 are an (M − 1)-dimensional

vector and an (H0 − 1)-dimensional vector, respectively. Then, let

U0 = Ã
\(M,H0)
0 − Ã(\M),H0

0 , (5.13)

V0 = B̃
\(H0,1)
0 − B̃(\H0),1

0 , (5.14)

and r = rank(U0V0). Obviously, r depends on H0.
The main result of this paper is the following theorem.

Theorem 5.2 (Main Theorem) Suppose M ≧ 2, N ≧ 2, and H ≧ H0 ≧ 1. Let r be the
rank of U0V0 which is a product of two matrices (U0, V0) defined in Eqs. (5.13) and (5.14).
The RLCT of LDA λ = λLDA and its multiplicity m = mLDA are as follows.

1. If N + r + 1 ≦M +H and M + r + 1 ≦ N +H and H + r + 1 ≦M +N ,
（a）and if M +N +H + r is odd, then

λ =
1

8
{2(H + r + 1)(M +N)− (M −N)2 − (H + r + 1)2} − 1

2
N, m = 1.

（b）and if M +N +H + r is even, then

λ =
1

8
{2(H+ r+1)(M +N)− (M −N)2− (H+ r+1)2+1}− 1

2
N, m = 2.
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2. Else if M +H < N + r + 1, then

λ =
1

2
{MH +N(r + 1)−H(r + 1)−N}, m = 1.

3. Else if N +H < M + r + 1, then

λ =
1

2
{NH +M(r + 1)−H(r + 1)−N}, m = 1.

4. Else (i.e. M +N < H + r + 1), then

λ =
1

2
(MN −N), m = 1.

We prove Main Theorem in the next section. As two applications of this theorem, we
obtain the exact form of the free energy and Bayesian generalization error of LDA by applying
Theorem 3.4.

Theorem 5.3 Let Fn be the normalized free energy and E[Gn] be the expected generalization
error in LDA, respectively. Then, these asymptotic forms are as the followings:

Fn = λ log n− (m− 1) log log n+Op(1),

E[Gn] =
λ

n
− m− 1

n log n
+ o

(
1

n log n

)
,

where λ and m are the RLCT of LDA and its multiplicity which are determined in Theorem
5.2.

Theorem 5.3 can be immediately derived if Theorem 5.2 is proved. Thus, we prove Theorem
5.2 in the following Secs. 5.3 and 5.4. To prove Theorem 5.2, we derive Theorem 5.1 in the
next section.

5.3 Preparation
In order to prove Theorem 5.1, we show the following facts.

Proposition 5.1 Let w = (wi)
M
i=1 ∈ Sim(M,K) and w0 = (w0

i )
M
i=1 ∈ Sim(M,K0). Then,

there exist positive constants c1 > 0 and c2 > 0 such that

c1

M∑
i=1

(wi − w0
i )

2 ≦
M∑
i=1

wi log
w0

i

wi
≦ c2

M∑
i=1

(wi − w0
i )

2.

I.e.
∑M

i=1 wi log
w0

i

wi
has the same RLCT as

∑M
i=1(wi − w0

i )
2.

This proposition was derived in [53] in order to clarify the RLCT of categorical mixture
model. By using Proposition 5.1, we prove Theorem 5.1.
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Proof of Theorem 5.1. Without loss of generality, we can rewrite the notation of q(x|d) and
p(x|d,A,B) as follows:

q(x|zi = 1) =

H0∑
k=1

b0kj

M∏
i=1

(a0ik)
xi , p(x|zi = 1, A,B) =

H∑
k=1

bkj

M∏
i=1

(aik)
xi . (5.15)

The word x is a one-hot vector; hence, we obtain

q(xj = 1|zi = 1) =

H0∑
k=1

a0ikb
0
kj , p(xj = 1|zi = 1, A,B) =

H∑
k=1

aikbkj . (5.16)

Then, the conditional Kullback-Leibler divergence between q(x|d) and p(x|d,A,B) is
equal to

KL(A,B) =
∑

z∈Onehot(M)

∑
x∈Onehot(N)

q(x|z)q′(z) log q(x|z)
p(x|z,A,B)

(5.17)

=
M∑
i=1

N∑
j=1

q(xj = 1|zi = 1)q′(zi = 1) log
q(xj = 1|zi = 1)

p(xj = 1|zi = 1, A,B)
(5.18)

=
N∑
j=1

q′(zi = 1)
M∑
i=1

(
H0∑
k=1

a0ikb
0
kj

)
log

∑H0

k=1 a
0
ikb

0
kj∑H

k=1 aikbkj
. (5.19)

Owing to A = (aik) ∈ S(M,H,K), B = (bkj) ∈ S(H,N,K), A0 = (a0ik) ∈
S(M,H0,K0), and B0 = (b0kj) ∈ S(H0, N,K0), the (i, j) entries of AB and A0B0 are
(AB)ij :=

∑H
k=1 aikbkj and (A0B0)ij :=

∑H0

k=1 a
0
ikb

0
kj . We have

KL(A,B) =

N∑
j=1

q′(zi = 1)

M∑
i=1

(A0B0)ij log
(A0B0)ij
(AB)ij

. (5.20)

According to Proposition 5.1,
∑M

i=1(A0B0)ij log
(A0B0)ij
(AB)ij

in Eq. (5.20) has the same
RLCT of

∑M
i=1((AB)ij − (A0B0)ij)

2. In addition, q′(zi = 1) is positive and bounded.
Accordingly, we have

KL(A,B) =

N∑
j=1

q′(zi = 1)

M∑
i=1

(A0B0)ij log
(A0B0)ij
(AB)ij

(5.21)

∼
N∑
j=1

q′(zi = 1)

M∑
i=1

((AB)ij − (A0B0)ij)
2 (5.22)

∼
N∑
j=1

M∑
i=1

((AB)ij − (A0B0)ij)
2 = ∥AB −A0B0∥2. (5.23)

Therefore, KL(A,B) ∼ ∥AB−A0B0∥2; i.e., the RLCT of LDA equals the RLCT of SMF.
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□
The RLCT of MF was clarified in the all case [10] as the follwoing theorem. Note that this

theorem is same as Theorem 4.5 in Chap. 4; however, for self-containedness of this chapter,
we repeat it.

Theorem 5.4 (Aoyagi) Let M , N , H be positive integers. Matrices U and V are denoted
by an M × H and an H × N matrix whose entries are real numbers. Let U0 and V0 be
an M × ∗ matrix and an ∗ ×N matrix, respectively. Suppose U0 and V0 are constants and
put r = rank(U0V0) and Φ(U, V ) = ∥UV − U0V0∥2. Let λMF and mMF be the RLCT of
MF and its multiplicity, respectively. I.e. (−λMF) is the maximum pole of the following zeta
function and mMF is its order:

ζMF(z) =

∫∫
dUdV Φ(U, V )z.

Then, λMF and mMF are as follows:
(1) If N + r ≦M +H ∧M + r ≦ N +H ∧H + r ≦M +N ,
　 (1−1) in the case M +H +N + r is even,

λMF=
−(H+r)2−M2−N2 + 2{(H+r)(M+N)+MN}

8
.

　 (1−2) in the case M +H +N + r is odd,

λMF=
1−(H+r)2−M2−N2 + 2{(H+r)(M+N)+MN}

8
.

(2) Else if M +H < N + r,

λMF =
HM −Hr +Nr

2
.

(3) Else if N +H < M + r,

λMF =
HN −Hr +Mr

2
.

(4) Or else, i.e. in the case M +N < H + r,

λMF =
MN

2
.

In the case (1−2), the multiplicity is two: mMF = 2. Otherwise, it equals one: mMF = 1.

The RLCT of MF and its multiplicity depend on (M,N,H, r); thus, we write them
λMF = λMF(M,N,H, r) and mMF = mMF(M,N,H, r), respectively.

In the next section, by using changes of variables, we come down Theorem 5.2 (Main
Theorem) to Theorem 5.4. This is why we consider the rank of U0V0, where U0 and V0 are
defined in Eqs. (5.13) and (5.14).
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5.4 Proof of Main Theorem
Based on the above preparation, Theorem 5.2 and 5.3 are proved.

The structure of the proof of Main Theorem is as follows. First, we summarize terms in
∥AB − A0B0∥2 and consider degeneration of a polynomial ideal. Second, we resolve the
non-negative restriction by variable transformations which are isomorphic maps. Third, we
verify that the problem can come down to finding the RLCT of reduced rank regression.
Lastly, we calculate the concrete value of the RLCT in each case.

Proof of Main Theorem. Because of Theorem 5.1 we only have to consider the analytic set
defined by

{(A,B) | ∥AB −A0B0∥2 = 0, A and B are stochastic matrices.}

to determine the RLCT of LDA λ and its multiplicity m.
The first part is same as the first half of the proof of Appendix A in our previous research

[38]. For the sake of self-containedness, we write down the process of developing the terms
in the above paper. Let ∼ be a binomial relation such that the functions K1(w) and K2(w)
have same RLCT if K1(w) ∼ K2(w). Summarizing the terms, we have

∥AB −A0B0∥2 =
N∑
j=1

M−1∑
i=1

H∑
k=1

aikbkj −
H0∑
k=1

a0ikb
0
kj +

N∑
j=1

H∑
k=1

aMkbkj −
H0∑
k=1

a0Mkb
0
kj .

(5.24)

Put

Kij :=
H∑

k=1

aikbkj −
H0∑
k=1

a0ikb
0
kj , (5.25)

Lj :=
H∑

k=1

aMkbkj −
H0∑
k=1

a0Mkb
0
kj , (5.26)

then we get

∥AB −A0B0∥2 =

N∑
j=1

M−1∑
i=1

K2
ij +

N∑
j=1

L2
j .

Using aMk = 1 −
∑M−1

i=1 aik, bHj = 1 −
∑H−1

k=1 bkj , a
0
Mk = 1 −

∑M−1
i=1 a0ik, and b0H0j

=

1−
∑H0−1

k=1 b0kj , we have

Kij =

H−1∑
k=1

(aik − aiH)bkj −
H0−1∑
k=1

(a0ik − a0iH0
)b0kj + (aiH − a0iH0

), (5.27)

Lj = −
M−1∑
i=1

H−1∑
k=1

(aik − aiH)bkj +

M−1∑
i=1

H0−1∑
k=1

(a0ik − a0iH0
)b0kj −

M−1∑
i=1

(aiH − a0iH0
),

(5.28)
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thus

L2
j =

(
M−1∑
i=1

Kij

)2

.

Therefore

∥AB −A0B0∥2 =
N∑
j=1

M−1∑
i=1

K2
ij +

N∑
j=1

L2
j (5.29)

=
N∑
j=1

M−1∑
i=1

K2
ij +

N∑
j=1

(
M−1∑
i=1

Kij

)2

. (5.30)

Since the polynomial
∑M−1

i=1 Kij is contained in the ideal generated from (Kij)
M−1,N
i=1,j=1 , we

have

∥AB −A0B0∥2 ∼
N∑
j=1

M−1∑
i=1

K2
ij ,

i.e.

∥AB −A0B0∥2 (5.31)

∼
N∑
j=1

M−1∑
i=1

{
H−1∑
k=1

(aik − aiH)bkj −
H0−1∑
k=1

(a0ik − a0iH0
)b0kj + (aiH − a0iH0

)

}2

(5.32)

=
N∑
j=1

M−1∑
i=1

[
H0−1∑
k=1

{(aik−aiH)bkj−(a0ik−a0iH0
)b0kj}+

H−1∑
k=H0

(aik−aiH)bkj+(aiH−a0iH0
)

]2
.

(5.33)

Let


aik = aik − aiH , k < H

ci = aiH − a0iH0
,

bkj = bkj

(5.34)

and put a0ik = a0ik − a0iH0
. Then we have

∥AB −A0B0∥2 ∼
N∑
j=1

M−1∑
i=1

{
H0−1∑
k=1

(aikbkj − a0ikb0kj) +
H−1∑
k=H0

aikbkj + ci

}2

. (5.35)

We had derived an upper bound of λ by using some inequalities of Frobenius norm and the
exact value of λ in special cases [38]. However, in this paper, we use changes of variables
which resolve non-negative restrictions and find the RLCT in the all cases.

The transformation (5.34) resolves the non-negative restrictions of aik(k < H) and ci for
i = 1, . . . ,M − 1. The changed variables aik(k < H) and ci can be negative. We call the
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determinant of the Jacobian matrix Jacobian for the sake of simplicity. The Jacobian of the
transformation (5.34) equals one.

Let


aik = aik, k < H

xi = ci +
∑H0−1

k=1 (aikbk1 − a0ikb0k1) +
∑H−1

k=H0
aikbk1,

bkj = bkj .

(5.36)

It is immediately derived that the Jacobian of this map is equal to one. About the transform
(5.36), for j = 2, . . . , N , we have

H0−1∑
k=1

(aikbkj − a0ikb0kj) +
H−1∑
k=H0

aikbkj + ci

= xi −
H0−1∑
k=1

(aikbk1 − a0ikb0k1)−
H−1∑
k=H0

aikbk1 +

H0−1∑
k=1

(aikbkj − a0ikb0kj) +
H−1∑
k=H0

aikbkj .

(5.37)

Substituting this for
∑H0−1

k=1 (aikbkj − a0ikb0kj) +
∑H−1

k=H0
aikbkj + ci in Eq. (5.35), we have

∥AB −A0B0∥2

∼
M−1∑
i=1

{
H0−1∑
k=1

(aikbk1 − a0ikb0k1) +
H−1∑
k=H0

aikbk1 + ci

}2

+
N∑
j=2

M−1∑
i=1

{
H0−1∑
k=1

(aikbkj − a0ikb0kj) +
H−1∑
k=H0

aikbkj + ci

}2

=

M−1∑
i=1

x2i +

N∑
j=2

M−1∑
i=1

{
xi −

H0−1∑
k=1

(aikbk1 − a0ikb0k1)−
H−1∑
k=H0

aikbk1

+

H0−1∑
k=1

(aikbkj − a0ikb0kj) +
H−1∑
k=H0

aikbkj

}2

=
M−1∑
i=1

x2i+
N∑
j=2

M−1∑
i=1

[
xi+

H0−1∑
k=1

{aik(bkj−bk1)−a0ik(b0kj−b0k1)}+
H−1∑
k=H0

aik(bkj−bk1)

]2
.

(5.38)

Put

gij =

H0−1∑
k=1

{aik(bkj − bk1)− a0ik(b0kj − b0k1)}+
H−1∑
k=H0

aik(bkj − bk1).

From Eq. (5.38), we have

∥AB −A0B0∥2 ∼
M−1∑
i=1

x2i +
N∑
j=2

M−1∑
i=1

(xi + gij)
2. (5.39)
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Let J be a polynomial ideal ⟨(xi)M−1
i=1 , (gij)

M−1,N
i=1,j=2⟩. On account of xi + gij ∈ J , we have

M−1∑
i=1

x2i +

N∑
j=2

M−1∑
i=1

(xi + gij)
2 ∼

M−1∑
i=1

x2i +

N∑
j=2

M−1∑
i=1

(x2i + g2ij),

i.e.

∥AB −A0B0∥2

∼
N∑
j=2

M−1∑
i=1

(x2i + g2ij)

∼
M−1∑
i=1

x2i +
N∑
j=2

M−1∑
i=1

g2ij

=
M−1∑
i=1

x2i +
N∑
j=2

M−1∑
i=1

[
H0−1∑
k=1

{aik(bkj − bk1)− a0ik(b0kj − b0k1)}+
H−1∑
k=H0

aik(bkj − bk1)

]2
.

(5.40)

Let


aik = aik, k < H

xi = xi,

bk1 = bk1,

bkj = bkj − bk1 j > 1.

(5.41)

For k = 1, . . . , H − 1 and j = 2, . . . , N , non-negative restrictions of bkj can be resolved.
The Jacobian of the transformation (5.41) is one. Apply this map to Eq. (5.40) and put
b0kj = b0kj − b0k1. Then, we have

∥AB −A0B0∥2 ∼
M−1∑
i=1

x2i +
N∑
j=2

M−1∑
i=1

{
H0−1∑
k=1

(aikbkj − a0ikb0kj) +
H−1∑
k=H0

aikbkj

}2

=
M−1∑
i=1

x2i +
N∑
j=2

M−1∑
i=1

(
H−1∑
k=1

aikbkj −
H0−1∑
k=1

a0ikb
0
kj

)2

. (5.42)

There are not bk1 (k = 1, . . . , H − 1) in the right hand side; thus, we can regard the
non-negative restrictions of the all variables are resolved after applying the transformation
(5.41).

Real matrices U , V , U0, and V0 are denoted by U := (uik)
M−1,H−1
i=1,k=1 , V := (vkl)

H−1,N−1
k=1,l=1 ,

U0 := (u0ik)
M−1,H0−1
i=1,k=1 , and V0 := (v0kl)

H0−1,N−1
k=1,l=1 , respectively. Here, we have uik = aik,

vkl = vk(j−1) = bkj , u0ik = a0ik, and v0kl = v0k(j−1) = b0kj for i = 1, . . . ,M − 1, k =

1, . . . , H − 1 and j = 2, . . . , N . Note that these U0 and V0 are same as in Eqs. (5.13)
and (5.14) because of the above transformations for the entries of A0 and B0. Therefore,
r := rank(U0V0) is also equal to that of Main Theorem.
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Now, let us start coming down the problem from LDA to reduced rank regression.

∥UV − U0V0∥2 =

N−1∑
l=1

M−1∑
i=1

(
H−1∑
k=1

uikvkl −
H0−1∑
k=1

u0ikv
0
kl

)2

=
N∑
j=2

M−1∑
i=1

(
H−1∑
k=1

aikbkj −
H0−1∑
k=1

a0ikb
0
kj

)2

(5.43)

holds; thus, from Eq. (5.42) and (5.43), we have

∥AB −A0B0∥2 ∼
M−1∑
i=1

x2i + ∥UV − U0V0∥2. (5.44)

Let (λ1,m1) and (λ2,m2) be pairs of the RLCT and its multiplicity of the first and the second
term, respectively. There is no common variable between {(xi)Mi=1} and {(U, V )}; hence, we
have

λ = λ1 + λ2, (5.45)
m = m1 +m2 − 1. (5.46)

By simple calculation, λ1 = (M−1)/2 andm1 = 1 hold. Besides, the entries of the matrices
U and V can be real as well as non-negative. Thus, λ2 is the RLCT of non-restricted MF, i.e.
that of reduced rank regression [10]. The same is true for the multiplicity m2. Therefore, we
obtain

λ =
M − 1

2
+ λMF(M − 1, N − 1,H − 1, r), (5.47)

m = mMF(M − 1, N − 1,H − 1, r), (5.48)

where r = rank(U0V0).
Finally, we concretely calculate λ andm. According to [10], the RLCT and its multiplicity

of MF are as follows.
(1) If N + r + 1 ≦ M + H and M + r + 1 ≦ N + H and H + r + 1 ≦ M + N and
M +N +H + r + 1 is even (M +N +H + r is odd), then

λMF(M−1, N−1,H−1, r) =
1

8
{2(H+r−1)(M+N−2)− (M−N)2 − (H+r−1)2},

(5.49)
mMF(M − 1, N − 1,H − 1, r) = 1. (5.50)

(2) Else if N + r + 1 ≦ M +H and M + r + 1 ≦ N +H and H + r + 1 ≦ M +N and
M +N +H + r + 1 is odd (M +N +H + r is even), then

λMF(M−1, N−1,H−1, r) =
1

8
{2(H+r−1)(M+N−2)− (M−N)2 − (H+r−1)2 + 1},

(5.51)
mMF(M − 1, N − 1,H − 1, r) = 2. (5.52)
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(3) Else if M +H < N + r + 1, then

λMF(M − 1, N − 1,H − 1, r) =
1

2
{(M − 1)(H − 1) + (N − 1)r − (H − 1)r}, (5.53)

mMF(M − 1, N − 1,H − 1, r) = 1. (5.54)

(4) Else if N +H < M + r + 1, then

λMF(M − 1, N − 1,H − 1, r) =
1

2
{(N − 1)(H − 1) + (M − 1)r − (H − 1)r}, (5.55)

mMF(M − 1, N − 1,H − 1, r) = 1. (5.56)

(5) Else (i.e. M +N < H + r + 1), then

λMF(M − 1, N − 1,H − 1, r) =
1

2
(M − 1)(N − 1), (5.57)

mMF(M − 1, N − 1,H − 1, r) = 1. (5.58)

Since the multiplicity is clear, we find the RLCT. We develop the terms in each case by using
Eq. (5.47).
In the case (1), we have

λ =
M − 1

2
+

1

8
{2(H + r − 1)(M +N − 2)− (M −N)2 − (H + r − 1)2} (5.59)

=
M − 1

2
+

1

8
{2(H + r)(M +N)− 2(M +N)− 4(H + r) + 4

− (M −N)2 − (H + r)2 + 2(H + r)− 1} (5.60)

=
1

8
{4M − 4 + 2(H+r)(M+N)− (M−N)2 − (H+r)2 − 2(M+N)− 2(H+r)+3}

(5.61)

=
1

8
{2(H + r)(M +N)− (M −N)2 − (H + r)2 + 2(M +N)− 2(H + r)− 1− 4N}

(5.62)

=
1

8
{2(H + r + 1)(M +N)− (M −N)2 − (H + r + 1)2} − N

2
. (5.63)

In the case (2), by the same way as the case (1), we have

λ =
1

8
{2(H + r + 1)(M +N)− (M −N)2 − (H + r + 1)2 + 1} − N

2
. (5.64)
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In the case (3), we have

λ =
M − 1

2
+

1

2
{(M − 1)(H − 1) + (N − 1)r − (H − 1)r} (5.65)

=
M − 1

2
+

1

2
{MH − (M +H) + 1 +Nr − r −Hr + r} (5.66)

=
1

2
(MH −M −H + 1 +Nr −Hr +M − 1 +N −N) (5.67)

=
1

2
{MH + 1 +N(r + 1)−H(r + 1)−N} (5.68)

=
1

2
{MH + 1 +N(r + 1)−H(r + 1)} − N

2
. (5.69)

In the case (4), by the same way as the case (3), we have

λ =
1

2
{NH + 1 +M(r + 1)−H(r + 1)} − N

2
. (5.70)

In the case (5), we have

λ =
M − 1

2
+

1

2
(M − 1)(N − 1) (5.71)

=
1

2
(M − 1)N (5.72)

=
1

2
MN − N

2
. (5.73)

From the above, Main Theorem is proved. Comparing the RLCT of MF [10], we also obtain

λ = λMF(M,N,H, r + 1)− N

2
.

Therefore, we obtain Theorem 5.2.

□

5.5 Discussion
Here, we will discuss the results of this chapter from three points of view. After that, we will
describe the numerical behavior of the theoretical result by conducting numerical experiments.

5.5.1 Parameter Restriction

The RLCT of LDA can be represented by using that of MF. Namely, Main Theorem can be
interpreted as that the learning coefficient of LDA is that of the unconstrained MF minus the
penalty due to the simplex constraint. In fact, it can be proved that

λ = λMF(M,N,H, r + 1)− N

2
(5.74)
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holds (see also the rigorous proof of Main Theorem in Appendix). The dimension of the
stochastic matrixAB with the degrees of freedom is (M −1)N =MN −N . The subtracted
N is the dimension of the parameter that can be uniquely determined from the parameters
of the other (M − 1)N dimensions in the matrix AB. This part can be regarded as an
N-dimensional regular statistical model, whose RLCT is N/2. This is the reason of the
above statement. Note that Main Theorem and its proof are not trivial. A hermeneutic
explanation cannot be a mathematical proof. In addition, the actual parameter dimension is
(M − 1)H + (H − 1)N = (M +N − 1)H −N because we have to consider the matrices
A and B rather than AB. We cannot reach the result of this paper simply by maintaining
consistency of the degrees of freedom. Algebraic geometrical methods are used to solve this
problem in learning theory: what the learning coefficient of LDA is.

5.5.2 Theoretical Application

Since LDA is a knowledge discovery method, marginal-likelihood-based model selection often
tends to be preferred. However, BIC [66] cannot be used for LDA because it is a singular
statistical model. Although Gibbs sampling is usually used for full Bayesian inference of
LDA, it is difficult to achieve a tempered posterior distribution; thus, we need other Markov
chain Monte Carlo method (MCMC) to calculate WBIC [83] and WsBIC [43]. The result
of this study allows us to perform a rigorous model selection of LDA with sBIC [24], which
is MCMC-free. Even when the marginal likelihoods are computed directly by the exchange
Monte Carlo method, our result is useful for the design of the exchange probability [56].
Furthermore, it may be possible to evaluate how precise MCMC approximates the posterior
with the exact values of that [85, 43].

One may use BIC for model selection of LDA; however, using it causes that too small
models are chosen. This is because there exists a large difference in values and behaviors
between d/2 and λ. In a regular statistical model, the learning coefficient is half of the
parameter dimension d/2. In LDA, d/2 = (M +N − 1)H/2−N/2 holds; hence, it linearly
increases as the number of topics H does. On the other hand, the RLCT of LDA λ does not.
In addition, λ is much smaller than d/2. Fig. 5.2a shows how the RLCT of LDA λ behaves
when the number of topics H increases, with λ-value in the vertical axis and H-value in the
horizontal axis. If λ was equal to d/2, then it would linearly increase (the square markers
dotted plot in Fig. 5.2a). However, in fact, λ is given by Main Theorem and its curve is
obviously non-linear (the circles dotted plot in Fig. 5.2a). Hence, their values and behaviors
are very different. BIC is based on d/2 from the asymptotics of regular statistical models.
In contrast, the foundation of sBIC is singular learning theory; thus, it uses λ instead of d/2.
That is why sBIC is theoretically recommended for LDA.

5.5.3 Behavior of Learning Curve

We can draw the theoretical learning curve like the solid line in Fig. 5.2b, with E[Gn]-value
in the vertical axis and n-value in the horizontal axis. We also namely draw a curve like
the dashed line in Fig. 5.2b. This dashed curve is not only an upper bound of the learning
curve of LDA in Bayesian inference but also a lower bound of that in maximum likelihood or
posterior estimation methods. Let GMAP

n and µ be the generalization error and the learning
coefficient of LDA in maximum posterior (MAP) methods, respectively. This is well-defined,



78 Chapter 5 Bayesian Generalization Error in Latent Dirichlet Allocation

(a) (b)

Fig. 5.2: (a) In this chapter, we give the exact value of the learning coefficient of LDA λ.
The learning coefficient is smaller than half of the parameter dimension d/2, since LDA is a
singular statistical model. The dotted blue line drawn by the circles in this figure represents
the learning coefficients of LDA when the number of topics H is increased. If LDA was a
regular statistical model, its learning coefficient would be the dotted yellow line drawn by the
squares. The behavior of them are so different.
(b) This figure shows the theoretical learning curve of LDA and that of a regular statistical
model whose parameter dimension d is same as LDA. The former is the solid blue line and
the latter is the dashed yellow line. The vertical axis means the expected generalization error
E[Gn] and the horizontal one is the sample size n. This is based on Theorem 3.4 and the
exact value of λ which is clarified by our result.

i.e. E[GMAP
n ] = µ/n+ o(1/n) holds (see also Theorem 3.5). On the basis of the same prior

distribution, Watanabe proved the following inequality [85]:

λ < d/2 < µ. (5.75)

This means E[GMAP
n ] > E[Gn] + o(1/n) and the leading term of these difference is (µ −

λ)/n > (d − 2λ)/2n. Owing to Main Theorem, we immediately have the exact value of
d − 2λ. Therefore, our result shows at least how much Bayesian inference improves the
generalization performance of LDA compared to MAP method. If the prior distribution is a
uniform one, then µ equals the learning coefficient of LDA in maximum likelihood estimation.
Hence, the above consideration can be applied to maximum likelihood estimation.

5.5.4 Experiment

Now, we run numerical experiments to check the behavior of Main Theorem when the sample
size is finite. Theorem 5.2 gives the exact asymptotic form of Bayesian generalization error in
LDA by using Theorem 3.4. We calculate the Bayesian generalization error in LDA by using
Gibbs sampling and compare the numerically-calculated RLCT with the theoretical one. Our
experimental approach and its description in this section is based on [33] since it also treats the
numerical experiment to compute the RLCT by using Gibbs sampling to verify the numerical
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behavior of its theoretical result.
Let Eθ be an expectation operator of the posterior: Eθ[·] =

∫
dθψ(θ|D)[·]. Let λ̂ be the

numerically calculated RLCT. The widely applicable information criterion (WAIC) [82] is
defined by the following random variable Wn:

Wn = Tn + Vn/n, (5.76)

where Tn is the empirical loss and Vn is the functional variance:

Tn = − 1

n

n∑
i=1

log p∗(Xi) = −
1

n

n∑
i=1

logEθ[p(Xi|θ)], (5.77)

Vn =

n∑
i=1

[
Eθ[(log p(Xi|θ))2]− {Eθ[log p(Xi|θ)]}2

]
=

n∑
i=1

Vθ[log p(Xi|θ)]. (5.78)

Even if the posterior distribution cannot be approximated by any normal distribution (i.e.,
the model is singular), the expected WAIC E[Wn] is asymptotically equal to the expected
generalization loss E[Gn + S] [82];

E[Gn + S] = E[Wn] +O(1/n2). (5.79)

Moreover, the generalization error and the WAIC error Wn − Sn have the same variance
[82, 85]:

Gn +Wn − Sn = 2λ/n+Op(1/n). (5.80)

We need to repeat the simulations to compute λ̂ to decrease the random effect caused by Gn,
Wn and Sn. Thus, Eq. (5.80) is useful for computing λ̂ because the leading term 2λ/n is
deterministic, nevertheless the left hand side is probabilistic. This means that the needed
number of simulations D can be less than that in the case using λ ≈ nE[Gn] from Theorem
(3.4).

The method was as follows. First, the training data D was generated from the true distri-
bution q(X|Z). Second, the posterior distribution was calculated by using Gibbs sampling
[30] (see also Algorithm 5). Third, Gn and Wn − Sn were computed by using the training
dataD and the artificial test dataD∗ = (X∗

t ) generated from q(X|Z). These three steps were
repeated and each value of n(Gn +Wn − Sn)/2 was saved. After all repetitions have been
completed, n(Gn +Wn − Sn)/2 was averaged over the simulations. This average was λ̂.

The pseudo-code is listed in Algorithm 4, where K is the sample size of the parameter
subject to the posterior and nT is the sample size of the synthesized test data. We used the
programing language named Julia [13] for this experiment.

We set M = 10, N = 5, H0 = 2, r = 1, n = 1000, and nT = 200n = 200000. To
examine the numerical behavior when the number of topics H ≧ H0 in the model increases,
we set H = 2, 3, 4, 5 and carried out experiments in each case. To decrease the probabilistic
effect of Eq. (5.80), we conducted the simulations one hundred times, i.e. D = 100.

In the Gibbs sampling, we had to conduct a burn-in to decrease the effect of the initial values
and thin the samples in order to break the correlations. The length of the burn-in was 10000,
while the length of the thinning was 20; thus, the sample sizes of the parameter was 10000 +
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Algorithm 4 How to Compute λ̂
Require: D: the number of simulations,
A0: the true parameter matrix whose size is (M,H0),
B0: the true parameter matrix whose size is (H0, N),
GS: the Gibbs sampling function whose return value consists of the samples from the
posterior. See also Algorithm 5.

Ensure: The numerical computed RLCT λ̂.
Allocate an array Λ[D].
for d = 1 to D do

Generate D from the true distribution.
Allocate arrays A[M,H,K] and B[H,N,K].
Get A,B ← GS(D).
Generate D∗ from the true distribution.
Calculate Gn ≈ 1

nT

∑nT

t=1 log
q(X∗

t )
Eθ[p(X∗

t |θ)]
, Sn = − 1

n

∑n
i=1 log q(Xi),

and Wn ≈ − 1
n

∑n
i=1 Eθ[p(Xi|θ)] + 1

n

∑n
i=1 Vθ[log p(Xi|θ)],

where Eθ[f(θ)] ≈ 1
K

∑K
k=1 f(θk) and θk = (A[:, :, k],B[:, :, k]).

Save Λ[d]← n(Gn +Wn − Sn)/2.
end for
Calculate λ̂ = 1

D

∑D
d=1 Λ[d].

20K = 50000 (K = 2000) and we used the (10000+20k)-th sample as the entry ofA[:, :, k]
and B[:, :, k] for k = 1 to K. The implementation is available at the following github page:
https://github.com/chijan-nh/LearningCoefficient-RLCT-ofLDA-usingGS.

The experimental results are shown in Table 5.2 and visualized in Fig. 5.3. The symbol
λ denotes the exact value of the RLCT λ in Theorem 5.2. There are three columns for
each H , and each row contains the model settings (Settings), symbols of calculated values
(RLCTs), and the theoretical or numerical values (Values). The experimental values have four
significant digits. The numerically-calculated RLCT λ̂ is an average of n(Gn +Wn−Sn)/2
obtained from each simulations; hence, we also show the standard deviation of it as the right
next to the plus-minus sign ± in each setting.

As shown in Table 5.2 and Fig. 5.3, all numerically calculated values are nearly equal to the
theoretical RLCTs, i.e. these differences are sufficiently smaller than the standard deviation
overall simulations. Note that the parameter dimensions (M − 1)H + (H − 1)N are 23, 37,
51 and 65 for H = 2, 3, 4 and 5; thus, we consider that the sample size n = 1000 is not an
asymptotic scale. Moreover, we also consider that it is natural to fix the sample size while the
number of topics increases because we compare some models for a dataset (the sample size
is fixed) in practical situations. Although the sample size is finite (not an asymptotic scale)
and fixed, the theoretical values are included in the 1-standard deviation ranges for each case.
Besides, because of Fig. 5.3, the standard deviations are sufficiently small for the scale of the
RLCTs. Therefore, Theorem 5.2 is consistent with the experimental result.

https://github.com/chijan-nh/LearningCoefficient-RLCT-ofLDA-usingGS
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Algorithm 5 Gibbs Sampling for LDA
GS(D, α = 1H , β = 1N ,K = K, burnin = 10000, thin = 20)

Require: D = {(zl, xl)}L(=n/N)
l=1 : the data where zl∈Onehot(N) and xl∈Onehot(M) are

a document and a word, respectively. When zlj=1, xl is the l-th word in the document j.
α ∈ RH

>0: the hyperparameter of the Dirichlet prior for the stochastic matrix A,
β ∈ RN

>0: the hyperparameter of the Dirichlet prior for the stochastic matrix B,
Dir(C|Γ): a Dirichlet distribution of a stochastic matrix whose h-th column is generated
by Dir(c|Γ[:, h]).

Ensure: Sampling stochastic matrices from the numerical posterior.
Let iter = butnin + thin ∗K.
Allocate arrays A[M,H,K], A[M,H, iter], B[H,N,K] and B[H,N, iter].
# Inital sampling for A and B from the prior:
Generate A,B ∼ Dir(A|α)Dir(B|β).
# Sampling from the posterior:
for k = 1 to iter do

## Sampling the topic y.
Allocate an array y[L,H].
for l = 1 to L do

for h = 1 to H do
Let η[l, h] = exp(

∑N
j=1 zlj(log bhj +

∑M
i=1 xli log aih)).

Put η[l, h]← η[l, h]/
∑H

h=1 η[l, h].
end for
Generate y[l, :] ∼ Cat(y|η[l, :]).

end for
## Sampling the stochastic matrix A.
for h = 1 and i = 1 to H and M do

Let α̂[i, h] =
∑L

l=1 y[l, h]x[l, i] + αh.
end for
Generate A ∼ Dir(A|α̂).
Put A[M,H, k]← A.
## Sampling the stochastic matrix B.
for j = 1 and h = 1 to N and H do

Let β̂[h, j] =
∑L

l=1 z[l, j]y[l, h] + βj .
end for
Generate B ∼ Dir(B|β̂).
Put B[H,N, k]← B.

end for
# Burn-in and thinning.
for k = 1 to K do
A[M,H, k]← A[M,H, burnin + thin ∗ k].
B[H,N, k]← B[H,N, burnin + thin ∗ k].

end for
Return A,B.
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Table 5.2: Numerically-Calculated and Theoretical Values of RLCTs

Settings RLCTs Values
H = 2 Theoretical: λ 21/2

(M = 10, N = 5 Numerical: λ̂ 10.79± 0.8591

H0 = 2, r = 1) Difference: |λ− λ̂| 0.2901± 0.8591
H = 3 Theoretical: λ 12

(M = 10, N = 5 Numerical: λ̂ 12.25± 0.9510

H0 = 2, r = 1) Difference: |λ− λ̂| 0.2534± 0.9510
H = 4 Theoretical: λ 27/2

(M = 10, N = 5 Numerical: λ̂ 13.57± 1.036

H0 = 2, r = 1) Difference: |λ− λ̂| 0.07114± 1.036
H = 5 Theoretical: λ 15

(M = 10, N = 5 Numerical: λ̂ 14.80± 1.143

H0 = 2, r = 1) Difference: |λ− λ̂| 0.2049± 1.143

Fig. 5.3: This figure is drawn based on Table 5.2 and Theorem 5.2. It compares numerically-
calculated RLCTs λ̂ (Numericalλˆ, as the dashed yellow line with the error bars) and theoretical
ones λ (Theoretical λ, as the solid blue line) for H = 2, 3.4.5. The horizontal line means
the number of topics H and the vertical one is the numerically-calculated or theoretical value
of the RLCT. Each error bar of experimental results is the 1-standard deviation range. The
line of Numerical λˆand that of Theoretical λ are very close and the standard deviations are
sufficiently smaller than the scale of the RLCTs.
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5.6 Conclusion
We determine the RLCT of LDA in general cases (Theorem 5.2) and describe theoretical
applications to Bayesian inference. According to Theorem 5.3, Theorem 5.2 means that the
exact asymptotic form of the generalization error and the free energy are theoretically derived
for LDA.

The RLCT of LDA monotonically increases when the number of topic increases (Fig 5.2a),
although its representation has complex branches as Theorem 5.2. Besides, the RLCT saturates
to a constant which is not depend on the number of the model’s topics and the rank determined
by the true distribution. Hence, its behavior is non-linear and bounded. On the other hand, the
parameter dimension d monotonically and linearly increases and it is not bounded. If LDA
was regular, its RLCT would be d/2. However, LDA is singular and its RLCT is less than
d/2. The theoretical result shows how they are different. Moreover, these difference d/2− λ
gives a lower bound of the difference between MAP and Bayesian generalization error. We
numerically compute the RLCT when the sample size is finite (not asymptotic scale) and the
experimental result is consistent to the main result.

One of future works is clarifying the effect of the hyperparameter to the generalization error
and the free energy. This is formulated to finding simultaneous resolution of singularities
when the prior distribution is a Dirichlet distribution. A density function of a non-uniform
Dirichlet distribution has zero or diverged points; thus, the hyperparameter (i.e. the parameter
of the Dirichlet distribution) may affect the RLCT of LDA.
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Chapter 6

Conclusion

6.1 Conclusion
In this dissertation, the author aims to establish statistical learning theory when the parameter
of the model region is restricted. As a foundation of that, we studied the asymptotic behaviors
of the Bayesian generalization errors in non-negative matrix factorization (NMF) and latent
Dirichlet allocation (LDA). NMF and LDA are two typical singular models whose parameter
regions are restricted.

Singular learning theory is a mathematical foundation for statistical inference using singular
models. It describes the asymptotic behaviors of the Bayesian generalization error and the
free energy by using algebraic geometry; a real log canonical threshold (RLCT) rules them.
Thus, we analyzed those of NMF and LDA in the framework of singular learning theory. The
contributions of the author’s works are as follows:

• An upper bound of the RLCT of NMF is theoretically derived. The numerical ex-
periment was consistent with the theoretical result and provided knowledge about the
stability of learning.

– The upper bound provides theoretical upper bounds of the Bayesian generalization
error and the free energy in NMF.

– The bound includes the exact value in some cases and depends on the hyperpa-
rameter.

– The Bayesian generalization error and the free energy in NMF become strictly
larger than that of non-restricted matrix factorization when the entries of the true
parameter matrices are zero.

– The difference between the learning coefficient of VBNMF and the RLCT of NMF
gives the variational approximation error. Thus, using the upper bound, we also
derived a lower bound of the variational approximation error in NMF.

– This theoretical analysis for NMF shows a phase transition structure; there is
a critical line of hyperparameters. The Bayesian generalization error and the
variational approximation error drastically changes beyond that line.

– The phase transition line we found is different from that of variational Bayesian
NMF. That is because the variational posterior of NMF is different from the
Bayesian posterior distribution of NMF.

• The exact value of the RLCT is mathematically determined in general cases for LDA.
The numerical experiment was consistent with the theoretical result.
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– The RLCT provides the exact asymptotic form of the Bayesian generalization error
and the free energy in LDA.

– We clarify that the RLCT of LDA is equal to that of stochastic matrix factorization
(SMF). SMF is one of the matrix factorization models whose parameter region is
restricted. By using this fact, we obtain the exact value of the RLCT.

– SMF is NMF whose matrices have columns in simplexes. Thus, the main result
shows the effect of the simplex restriction in matrix factorization.

– When the number of topics increases, the RLCT monotonically and non-linearly
grows but is bounded, whereas the parameter dimension linearly does and is not
bounded.

– This mathematical study for LDA shows the RLCT of LDA is much smaller than
that of a regular model whose parameter dimension is the same as LDA. This fact
provides at least how much the generalization performance improves when we use
Bayesian inference.

6.2 Future Work
The future research topics for establishing singular learning theory of parameter-restricted
models include the followings. There are two layers of topics: general theory and problems
with concrete models such as NMF and LDA.

First, we briefly mention the research topics for creating a general theory when there exists
a constraint for the parameter region. Even if the sample is i.i.d. from the data-generating
distribution, the effect to the generalization error caused by parameter restriction has not yet
been clarified. In general, like Lemma 4.6, when the model is the same, the support of the
prior distribution is larger, the RLCT is smaller. This fact causes that parameter restriction
which does not decrease the dimension, such as non-negative restriction in NMF, increases
the Bayesian generalization error. However, this is only a qualitative evaluation. Thus, there
has not been a quantitative evaluation method. Besides, the restriction that decreases the
dimension, such as simplex restriction in LDA and SMF, does not generally increase the
RLCT. In fact, in SMF, there are simplex restrictions to the parameter region and the RLCT
of SMF is smaller than that of non-restricted matrix factorization.

Because of the difficulty in the general case, a possible policy is to construct a theory
for each class of algebraic varieties that characterize RLCTs. Vandermonde matrix type
singularities, which give RLCTs of mixture distribution models and neural networks, are
known and these RLCTs have been studied [5, 9, 8]. However, the quantitative effect of the
constraints to these parameter regions is still unknown except for the RLCT of the Poisson
mixture model [64]; the average parameter of each component is non-negative. In this thesis,
the strategy was to deal with singularities formed by the squared error of matrix factorization.
For these singularities, we considered two typical constraints (NMF and LDA). Future topics
include other restrictions such as semi non-negative [22] and convolutive non-negative [67].

Second, we describe future works for singular learning theory of NMF and LDA.
For NMF, clarifying the exact value of the RLCT is considered one of the most significant

but demanding open problems. The non-negative rank of a non-negative matrix is generally
different from the usual rank of that; thus, we cannot apply the proof of Aoyagi’s result [10]
to the RLCT of NMF. Moreover, analysis and comparison of non-parametric Bayesian NMF



6.2 Future Work 87

[41] is also included in future tasks.
For LDA, determining the RLCT when the prior is a Dirichlet distribution is considered as

one of the most important future research directions. This situation is formulated to finding
simultaneous resolution of singularities. A density function of a non-uniform Dirichlet dis-
tribution has zero or diverged points; thus, the hyperparameter (the parameter of the Dirichlet
distribution) may affect the RLCT of LDA. If we conducted the simultaneous resolution,
the effect of the hyperparameter on the RLCT would be clarified. Moreover, variational ap-
proximation error could be quantitatively evaluated in the same way as Theorem 4.4 since the
variational free energy and its learning coefficient in LDA has been determined [59]. Analysis
and comparison of non-parametric LDA [99] is also considered as one of the future research
topics.

Note that the extracted clusters strongly depend on the hyperparameter in both non-
parametric NMF and LDA. Hence, we have to reveal the free energy and the generalization
error as functions of the hyperparameter. For singular models, the effect of the hyperpa-
rameter is complex since they have phase transition structures. Besides, in the framework
of non-parametric Bayesian inference, the model size such as the non-negative rank and the
number of topics is referred to as infinity; thus, we may not be able to directly apply singular
learning theory to the analysis of non-parametric NMF and LDA. Hence, we consider that the
analysis of non-parametric cases is challenging.
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Appendix A

Questions and Answers in Defense

In this chapter, the author writes the questions and the answers at the defense of this dis-
sertation. The defenses were held on 2021/02/22 (pre-examination) and 2021/03/29 (public
presentation).

A.1 Singular Learning Theory
Q. 1 What is the benefit of determining RLCTs of statistical models in the situation of

real data analysis?
（a）One of the most important benefits is that we can use sBIC [24] (see also Sec. 3.4)

to select the appropriate model in knowledge discovery sense. The criterion sBIC
uses the theoretical value of the RLCT and its multiplicity. If they are unknown,
WsBIC [43] is one of the choices because it estimates the RLCT. However, the
calculation cost of estimating the RLCT is very high and this is just estimation:
we cannot obtain the exact value. Thus, clarifying the RLCT and its multiplicity
is useful for model selection.
Furthermore, a tuning method for the inversed temperature parameter in exchange
Monte Carlo has been proposed, which uses the theoretical RLCT [56]. It has
been also considered that the correctness of MCMC is verified by comparing the
estimated RLCT and the theoretical one [85, 43]. We can estimate the sufficient
sample size n∗ such that E[Gn] < ε by using λ/n∗ < ε ⇔ n∗ > λ/ε if the
theoretical value of the RLCT λ is clarified. This fact means that there is a
potential application to propose how much data should be collected.

Q. 2 Let n be the sample size. Can singular learning theory treat the limit of the model
size D such that D,n → ∞ and D/n = γ > 0? For example, D is the size of the
data matrix in NMF or the number of topics in LDA.
（a）At present, no it cannot. In singular learning theory, the model and the prior are

fixed to the sample. However, we can consider the limit of D →∞ in the RLCT.
For example, in LDA, when the number of topicsH tends to the infinity, the RLCT
of LDA λ converges to a constant:

lim
H→∞

λ = (MN −N)/2,

whereM andN are the number of vocabulary and that of documents, respectively
(see Chap. 5).
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Q. 3 Does singular learning theory treat only the case that the parameter region is not
restricted?
（a）Singular learning theory can treat not only the case that the parameter region is

not restricted but also that is constrained, even if the model is singular, a map from
a parameter to a probability distribution is not injective and its likelihood and
posterior cannot be approximated by any normal distribution. However, the effect
of the parameter restriction on the generalization error has yet been unknown.
Thus, this dissertation aims to construct statistical learning theory for parameter-
restricted singular models. As a foundation of it, the author studies two typical
models: NMF and LDA.

Q. 4 Is it really that the parameter restriction increases the generalization error? The
questioner guesses that the constraint seems to make the estimation result fit a
good area.
（a）In Chap. 4, it is mathematically proved that the non-negative restriction strictly

increases the RLCT in some cases. Intuitively, this is because the constraint makes
the parameter space narrow without decreasing in dimension, which eliminates
regions that are more amenable to generalization.

Q. 5 Some models are often trained with a penalty term to its loss function to relax
their non-identifiability. Can we consider a singular model as a regular model by
applying norm constraints with a penalty?
（a）No, we cannot. When the loss function corresponds to the likelihood of the model,

the penalty is referred to as the prior distribution. For example, the L2 penalty
to the negative log-likelihood function is equivalent to the standard normal prior:
logN (θ|0, 1) ∝ ∥θ∥2. Although the model p(x∥θ) and the priorφ(θ) characterize
the singularity of the model, their contributions are significantly different. The
scale of the effect from the model is larger than that from the prior. Typically, the
average error function is determined by the model and its RLCT rules the behavior
of the free energy and the generalization error (see Chap. 3).

Q. 6 How do we derive a non-trivial upper bound of the RLCT?
（a）We find an upper bound U(θ) of the average error function K(θ). It is desired

that the RLCT of the bounding function U(θ) can be easily calculated. If we can
determine the RLCT λ of U(θ), we obtain an upper bound of the RLCT λ of
K(θ) by using Proposition 3.2. This proposition means that the RLCT is order
isomorphic; thus, K(θ) ≦ U(θ) ⇒ λ ≦ λ is derived. The tighter U(θ) is, the
tighter λ is. Let d be the parameter dimension. If the prior is strictly positive and
bounded, a trivial bounding function is U(θ) ∝ ∥θ∥2 =

∑d
i=1 θ

2
i : λ = d/2. If

the model is regular, λ = d/2. Thus, if the found bound satisfies λ > d/2, the
upper bound is vacuous.

A.2 Main Results
Q. 1 In the work of NMF, where does the non-negative restriction essentially affect the

main result?
（a）The non-negative restriction is used to prove Lemmas 4.2, 4.3 and 4.4. In partic-
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ular, when the true non-negative rank is zero (H0 = 0, Lemma 4.2), the RLCT of
NMF is strictly larger than that of non-restricted matrix factorization. By using
these lemmas, the upper bound is derived for the general case (Theorem 4.2), and
the bound immediately provides the upper bound of the Bayesian generalization
error and the free energy in NMF (Theorem 4.3).

Q. 2 In the work of NMF, what is the novel point of this research comparing with the
prior study by Kohjima [49]?
（a）This work is a theoretical analysis for inference methods different from [49]. Ko-

hjima’s previous work [49] has determined the exact learning coefficient of the
variational free energy in NMF (see also Theorem 4.1). In this dissertation, the
author treats Bayesian NMF and evaluates the Bayesian generalization error and
the free energy in NMF by analyzing the RLCT. The RLCT rules the asymp-
totic behavior of the Bayesian generalization error and the free energy. On the
other hand, the RLCT is not equal to (is smaller than) the learning coefficient of
the variational free energy and the coefficient does not dominate the variational
generalization error. Besides, with merging this study and Kohjima’s result, the
variational approximation error is also theoretically evaluated: a lower bound of
it is derived (Theorem 4.4).

Q. 3 In the work of NMF, how do we understand the fact that the variational posterior
is essentially different from the true one, in particular when we carry out real
data analysis (like making a predictive model)?
（a）Let θ = (θ1, θ2) be a parameter of the model. One might think that the variational

posterior ψ1(θ1)ψ2(θ2) is equivalent to the true one ψ(θ1, θ2), i.e. variational
inference is faster and equally accurate with comparing to MCMC (full-Bayesian
inference). However, this is false if the parameters θ1 and θ2 are not independent.
Thus, if we want to realize the posterior, then the variational inference can be
inappropriate (MCMC is recommended). If we want a fast algorithm rather than
an accurate one, then the variational inference can be helpful but it cannot realize
the true posterior.

Q. 4 In the work of NMF, when M = N , can it be immediately proved that the
phase transition lines of Bayesian inference and variational Bayes method are
orthogonal?
（a）Yes. Let l1 and l2 be the phase transition lines of Bayesian NMF and VBNMF in

Theorem 4.4 (see also Fig. 4.1), respectively. In the (ϕU , ϕV )-plane, l1 and l2 are
parameterized as MϕU = NϕV and MϕU +NϕV = (M +N)/2, respectively.
Because of M = N , we have l1 : ϕV = ϕU and l2 : ϕV = −ϕU + 1. The slope
of l1 is 1 and that of l2 is−1; thus, they are orthogonal. Note that they are neither
orthogonal nor parallel if M and N (M ̸= N ) are finite but they are formally
parallel when either M →∞ ∧ N <∞ or N →∞ ∧ M <∞.

Q. 5 In the work of NMF, what order is the term “phase transition”?
（a）The asymptotic (variational) free energy is dominated by the learning coefficient

who has a phase transition line of the hyperparameters (ϕU , ϕV ). On the phase
transition lines l1 and l2 described above, the learning coefficient is continuous
but not differentiable. Hence, this is a second-order phase transition.

Q. 6 In the work of LDA, why does not the author analyze the variational approxima-
tion error by the same way of NMF?
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（a）Actually, the variational free energy in LDA is theoretically analyzed and its
learning coefficient is determined [59]. However, the effect of the hyperparameters
of the Dirichlet prior distribution has not been clarified. Therefore, at this point,
it is difficult to compare the variational free energy and the true one in LDA and
to evaluate the variational approximation error. The author considers that this is
an important future task (see Sec. 6.2).

Q. 7 In the work of LDA, the main result immediately derives at least how much
Bayesian inference improves the generalization performance compared to maxi-
mum a posteriori (MAP) method and maximum likelihood (ML) method. On the
other hand, what about the computational cost?
（a）In general, MAP and ML methods suffer from non-identifiability and hardly reach

the global minima for singular models. They are numerically unstable and hard to
converge. In this sense, their computational cost is not low although they carry out
point estimations. Moreover, like Fig. 5.2a, the gap between half of the parameter
dimension d/2 and the RLCT λ is large, and d/2− λ gives a lower bound of the
difference of the generalization errors of MAP (or ML) and Bayesian inference.
Thus, even if the computational cost is reduced by avoiding MCMC and using
MAP method, the generalization error will be so large that it is not worth the
advantage of reducing the cost.

Q. 8 Both the work of NMF and LDA, to prove the main results, do the prior distribu-
tions have to be set to specific distributions (gamma and Dirichlet)?
（a）For the main theorem of NMF, the distribution form is important; however, it is

not limited to the gamma distribution. The gamma distribution Gam(w|ϕ, θ) =
θϕ

Γ(θ)w
ϕ−1e−θw can become zero or unbounded because of the power term wϕ−1

and this term affects the upper bound (see Theorem 4.2). Therefore, if the prior
has the same power term and the other terms are positive and bounded, the main
theorem holds.

（b）For the main result of LDA, the prior must not affect the RLCT; thus, it must be
positive and bounded. In other words, if the prior is positive and bounded, the
distribution form of it is not limited to the uniform Dirichlet distribution (like the
Gaussian distribution on the simplex).

Q. 9 What is the correspondence between the author’s publications and the theorems
in this dissertation?
（a）The author’s peer-reviewed publications which construct this dissertation are as

follows: [37], [36], [33], [38] and [34] (see also Bibliography and List of Publi-
cations).

（b）The two journal papers [37, 33] and one international conference paper [36]
correspond to the study of NMF (Chap. 4). The paper [37] is the first study for the
RLCT of NMF. In [37], Lemmas 4.2 and 4.3 was proved in the case ϕU = ϕV = 1.
Besides, by using these lemmas, an upper bound of the RLCT was also derived.
In the paper [36], Lemma 4.4 and a tighter upper bound was obtained and the
bound is equal to the upper bound in Theorem 4.2 in the case ϕU = ϕV = 1.
In [33], the effect of the hyperparameter was clarified, i.e. the case ϕU > 0 and
ϕV > 0 was treated. Moreover, a lower bound of the variational approximation
error in NMF was also derived (Theorem 4.4. Rigorously speaking, [33] shows a
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looser upper bound of the RLCT than that in this dissertation because it could not
be proved that Lemma 4.4 for general hyperparameter ϕU > 0 and ϕV > 0 at that
time. In fact, Lemma 4.4 is true in that case; thus, Theorem 4.2 is proved in this
dissertation.

（c）The two journal papers [38, 34] are corresponding to the work of LDA (Chap. 5).
The paper [38] is the first paper for the RLCT of LDA. In [38], it was proved that
the RLCT of stochastic matrix factorization is equal to that of LDA (Theorem 5.1.
By using this relation, an upper bound of the RLCT of LDA was also derived. In
the paper [34], the exact value of the RLCT of LDA was determined (Theorem
5.2).
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