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Abstract

This paper presents new spectra of responses and control force for an active base-isolated building that uses the
equivalent-input-disturbance (EID) approach for active structural control. The EID approach estimates the effect of
disturbances and uses it to suppress building vibrations. This system plugs an EID estimator into a conventional
state-feedback control system. Note that these kinds of disturbance-rejection systems contain both feedforward and
feedback terms from disturbances to a control output. This paper describes spectra that can handle systems with such
structure. The spectra can be used to simplify the design of an active structural control system. This paper illustrates
the use of the spectra for control-system design and presents a design algorithm for the EID-based control system. A
shear building model and 44 kinds of earthquake waves are used to demonstrate the availability of the spectra.

Keywords: equivalent input disturbance (EID), active structural control, response spectrum, control-force spectrum,
feedforward control, feedback control

1. Introduction

Base isolation has been widely used in buildings to protect people and household effects from earthquakes since
the 1995 Kobe earthquake in Japan [1]. Recently, strategies of active structural control, which combine control and
structural engineering, have also been extensively studied and applied to improve control performance. Most of
control systems that used the PID control [2], the linear quadratic regulator (LQR) [3, 4, 5], and the computational-
intelligence-based control for control-system design [6, 7]. Note that there is a trade-off between disturbance-rejection
performance and other control performance in those control systems. This problem can be solved by using a control-
system configuration that contains a disturbance-estimation mechanism. This system enables the independent design
of input-output and disturbance-rejection characteristics.

Many methods have been proposed to estimate disturbances, for example, adaptive disturbance estimation [8], the
active disturbance-rejection control (ADRC) [9, 10], and the equivalent-input-disturbance (EID) approach [11]. The
ADRC and EID methods have faster and more satisfactory disturbance-rejection performance than adaptive control
does. A comparison between the ADRC and EID methods reveals that the EID approach has a much-relaxed re-
quirement on a disturbance than the ADRC method does, that is, the EID approach does not require limt→∞ ḋ(t) = 0.
Moreover, the EID approach can be applied to a non-square plant (the numbers of the inputs and outputs are not the
same). This point is also important in active structural control because the number of the outputs is usually larger than
that of the inputs of a structure.

The application of the EID approach in structural control shows that the method greatly improves disturbance-
rejection (that is, vibration-suppression) performance in a low-frequency band [4, 12]. Since low-frequency signals
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give a large influence on base-isolated buildings due to their long natural periods, this method is particularly suitable
for structural control. The EID approach was extended to suppress both the displacement and the absolute acceleration
of a building [13].

Since an EID-based control system includes four parts: a building, a feedback controller, a low-pass filter, and an
observer; gains of the feedback and observer and parameters of the low-pass filter need to be tuned in control system
design. However, the parameters are usually determined by experience or trial and error. Furthermore, the maximum
control force, displacement, absolute acceleration, and other system responses are not the same for different earth-
quake waves. Thus, how to guarantee required control specifications for all possible earthquake waves is important
for system design.

The response spectrum method is used to design a passive structural-control system [14]. This method is based
on the responses of a single-degree-of-freedom model for an earthquake wave and estimates the peak value of the
displacement, velocity, and absolute acceleration of a structure. The use of the peak value of responses makes the
method easy to use. Note that the base-isolated floor of a passive-base-isolated building is much softer than the
superstructure. Such a building can be described as a single-degree-of-freedom model because the influence of the
first mode is much bigger than that of the other modes [15]. This makes the method possible to design a passive base-
isolated building control system [16, 14]. Sato et al. presented a new spectrum, called the control force spectrum, that
estimates the maximum control force and extended the response spectrum method to design an active base-isolated
building control system [17].

This study extended the control force spectrum to deal with an EID-based structural-control system. Since an EID-
based structural-control system has both feedforward and feedback terms from disturbances to a control output, we
derive a new control-force spectrum for such a system. Making use of the spectra simplifies the design of a structural
control system. We present a new design algorithm based on the spectra for the EID-based structural-control system to
illustrate this feature of the spectra. 44 earthquake waves selected from the Federal Emergency Management Agency
(FEMA) P695 [18] were used to design an active structural control system for a shear building to demonstrate the
availability of the spectra.

Notation: {1} is a vector with all entries being one,X(s) is the Laplace transform ofx(t), avg[x(t)] is the average
of x(t), std[x(t)] is the standard deviation ofx(t).

2. EID-based structural-control system for base-isolated buildings

The equation of motion of ann-degree-of-freedom shear building with active structural control, which is called a
plant hereafter, is described by

MS ẍ(t) + DS ẋ(t) + KSx(t) = −MS{1}ẍg(t) + Euu(t), (1)

whereMS (∈ Rn×n) is a mass matrix,DS (∈ Rn×n) is a damping matrix,KS (∈ Rn×n) is a stiffness matrix,Eu (∈ Rn) is
a matrix that indicates the placement of active structural control devices,u(t) (∈ R) is a control force,x(t) (∈ Rn) is a
relative displacements vector, and ¨xg(t) (∈ R) is ground acceleration.

Note that the absolute acceleration of a building is given by regrouping (1)

ẍ(t) + {1}ẍg(t) = −M−1
S KSx(t) − M−1

S DS ẋ(t) + M−1
S Euu(t). (2)

The state-space representation of the plant is (Fig.1){
ż(t) = Az(t) + Bu(t) + Bd ẍg(t),
y(t) = Cz(t) + Du(t),

(3)

where 
z(t) =

[
x(t)
ẋ(t)

]
, A =

[
0 I

−M−1
S KS −M−1

S DS

]
,

Bd = −
[

0
{1}

]
, B =

[
B1

B2

]
, B1 = 0, B2 = M−1

S Eu,

(4)
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Fig. 2: Plant with EID.

wherez(t) is the state of the plant,A is a system matrix that determines the dynamic characteristics of the system,B is
a control input matrix, andBd is a disturbance input matrix. For the outputy(t), if we take it to be the placement,

C =
[
I 0

]
, D = 0; (5)

the velocity,
C =

[
0 I

]
, D = 0; (6)

and the absolute acceleration,
C =

[
−M−1

S KS −M−1
S DS

]
, D = M−1

S Eu. (7)

The plant is called a strictly proper system ifD = 0, and a proper system ifD , 0.
Without loss of generality, the following assumption is made for the plant:

Assumption 1. Plant (A, B,C) is controllable and observable.

On the other hand, let the plant have a disturbance on the control input channel (Fig. 2):{
˙̄z(t) = Az̄(t) + B[u(t) + de(t)],
ȳ(t) = Cz̄(t) + Du(t).

(8)

An EID is defined as follows [11]:

Definition 1. If ȳ(t) in (8) equals y(t) in (3) for all t ≥ 0, then de(t) is called an EID of the original disturbance,ẍg(t).

It is clear from the definition of an EID that an EID is a signal on the control-input channel that has the same effect
on the output as the original disturbance does.

An EID-based structural-control system (Fig. 3) contains an EID estimator that uses a low-pass filter,F(s), to
process the information of the state observer.B+ in Fig. 3 is the pseudo-inverse matrix ofB:

B+ =
(
BTB

)−1
BT. (9)

The state observer of the plant is {
˙̂z(t) = Aẑ(t) + Bu(t) + LP[y(t) − ŷ(t)],
ŷ(t) = Cẑ(t) + Du(t),

(10)
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Fig. 3: Configuration of EID-based structural-control system.

whereLP is an observer gain, ˆz(t) andŷ(t) are the state and the output of the state observer. Letting

∆z(t) = z(t) − ẑ(t) (11)

and combining (8) and (10) yield {
∆ż(t) = (A− LPC)∆z(t) + Bde(t),
∆y(t) = C∆z(t).

(12)

An estimate of the EID,̂de(t), is [11]
d̂e(t) = B+LPC∆z(t). (13)

F(s) is used to select the angular-frequency band for disturbance rejection and adjust the control force. This study
used the following low-pass filter:

F(s) =
NF

TF s+ 1
, TF ≤

1
5ωm
, (14)

whereTF is the time constant ofF(s), which is used to select the frequency band for disturbance rejection;NF (0 <
NF ≤ 1) is a gain of the filter, which is used to adjust the maximum control force [5]; andωm is the largest angular
frequency for disturbance estimation and rejection. The filtered estimate of the EID is

D̃e(s) = F(s)D̂e(s), (15)

whereD̃e(s) andD̂e(s) are the Laplace transforms ofd̃e(t) andd̂e(t), respectively.
The control force combines the feedback control force,uf (t), and the estimated EID,̃de(t)

u(t) = uf (t) − d̃e(t). (16)

The control law of the feedback control is
uf (t) = KPz(t), (17)

whereKP is the gain of the state-feedback controller, and it is

KP =
[
KP1 KP2

]
. (18)
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3. Description of disturbance response

To induce new spectra, this section first derives the relationship between the disturbance and the output of the
system. Since the disturbance influence on the absolute acceleration is quite different from that on the displacement
or velocity, they are discussed separately.

3.1. Disturbance influence on displacement and velocity

Redrawing Fig. 3 using (12), (13), (15), (16), and (17) yields Fig. 4 that shows the block diagram from the input
of an earthquake wave to the displacement or velocity. The control system has two controllers: feedforward [CFF(s)]
and feedback [CFB(s)] {

CFF(s) = Bd − BGd̃eẍg
(s),

CFB(s) = KPB,
(19)

where

Gd̃eẍg
(s) = F(s)B+LPG∆yẍg(s) (20)

G∆yẍg(s) = C [sI − (A− LPC)]−1 Bd. (21)

The derivation ofCFF(s) is given in Appendix A.
The transfer function from an earthquake wave, ¨xg(t), to the output (displacement or velocity),y(t) (Fig. 4) is

Gyẍg(s) = CGFB(s)CFF(s), (22)

where
GFB(s) = [sI − (A+ BKP)]−1 . (23)

Note thatC in (22) is given by (5) for the displacement and (6) for the velocity.

3.2. Disturbance influence on absolute acceleration

Combining (1), (16), (17) and (18) gives

ẍ(t) + {1}ẍg(t) := yFB(t) − ẍEID(t), (24)

where

yFB(t) = CAz(t), (25)

ẍEID(t) = B2d̃e(t), (26)

CA =
[
−M−1

S KS eq −M−1
S DS eq

]
, (27)

KS eq= KS − EuKP1, DS eq= DS − EuKP2, (28)
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whereB2 is given in (4); andKS eq and DS eq are the stiffness and damping matrices with active structural control,
respectively,CA is the output matrix for the absolute acceleration with a feedback controller, and ¨xEID(t) is the accel-
eration caused by using the feedforward controller.

yFB(t) = CAz(t)

= L−1
[
CAGFB(s)CFF(s) · Ẍg(s)

]
, (29)

whereL−1 is an inverse Laplace transform. And combining (20) and (26) gives

ẍEID(t) = B2d̃e(t) (30)

= L−1
[
B2Gd̃eẍg

(s) · Ẍg(s)
]
. (31)

Substituting (31) and (29) into (24) yields

ẍ(t) + {1} ẍg(t) = L−1
[
CAGFB(s)GFF(s) · Ẍg(s)

]
− L−1

[
B2Gd̃eẍg

(s) · Ẍg(s)
]

= L−1
{[

CAGFB(s)GFF(s) − B2Gd̃eẍg
(s)

]
· Ẍg(s)

}
. (32)

Therefore, the transfer function from the disturbance to the absolute acceleration is (Fig. 5)

G(ẍ+{1}ẍg)ẍg(s) =
[
Ẍ(s) + {1} Ẍg(s)

]
Ẍ−1

g (s)

= CAGFB(s)GFF − B2Gd̃eẍg
(s). (33)

Note thatBGd̃eẍg
(s) =

[
0

B2Gd̃eẍg
(s)

]
.

Since the EID-based structural-control system contains both the feedback and feedforward controller, we need to
consider the influence of the feedforward part on the absolute acceleration.

4. Spectra of responses and control force and control-system design

This section explains new spectra for the EID-based structural-control system. Since the influence of the first
mode is much bigger than that of the others for a base-isolated building, such a building can be modeled as a single-
degree-of-freedom system (Fig. 6), that is,n = 1 andEu = 1. On the other hand, The dynamics of the building
without active structural control is

Msẍna(t) + DS ẋna(t) + KSxna(t) = −MS ẍg(t), (34)

wherexna(t) is the displacement of the plant.
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4.1. Spectra of responses and control force for velocity feedback control

The response-spectrum method estimates the maximum displacement, velocity, and absolute acceleration of the
plant (34). These spectra are called displacement-response spectrum [SD(ωS, hS, ẍg)], velocity-response spectrum
[SV(ωS,hS, ẍg)] and the absolute-acceleration-response spectrum [SA(ωS,hS, ẍg)]

|xna(t)|max = SD

(
ωS,hS, ẍg

)
, (35)

|ẋna(t)|max = SV

(
ωS,hS, ẍg

)
, (36)

|ẍna(t) + ẍg(t)|max = SA

(
ωS,hS, ẍg

)
, (37)

whereωS is the natural angular frequency, andhS is the damping ratio of the plant and ωS ≈
(
M−1

S KS

)1/2
,

hS = DS(2MSωS)−1.
(38)

Sato et al. extended these spectra for the design of active base-isolated buildings for velocity-feedback control
[17]:

u(t) = KPẋ(t). (39)

Substituting (39) into (1) yields
MS ẍ(t) + DS eqẋ(t) + KSx(t) = −MS ẍg(t), (40)

whereDS eqis an equivalent damping coefficient given by

DS eq= DS + KP. (41)

The damping ratio of the building with the velocity-feedback controller is hS eq= hS + hKP,

hKP = KP(2MSωS)−1,
(42)

wherehS is the initial damping ratio andhKP is an added damping ratio by velocity-feedback control. This equation
shows that the velocity-feedback controller improves the damping ratio of the system. Thus, the natural frequency of
the control system can be estimated using (38). As a result, the maximum displacement, velocity, and the absolute
acceleration are estimated by following spectra:

|x(t)|max =SD

(
ωS,hS eq, ẍg

)
, (43)

|ẋ(t)|max =SV

(
ωS,hS eq, ẍg

)
, (44)

|ẍ(t) + ẍg(t)|max =SA

(
ωS,hS eq, ẍg

)
. (45)
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Since the control force is given by (39), the maximum control force,|u(t)|max, is estimated by the maximum
velocity response:

|u(t)|max = KP|ẋ(t)|max

= KPSV

(
ωS,hS eq, ẍg

)
. (46)

A control-force spectrum,U
(
ωS, hS eq, ẍg

)
, that estimates the maximum control force is defined to be

U
(
ωS,hS eq, ẍg

)
= KPSV

(
ωS,hS eq, ẍg

)
. (47)

Sato et al. presented a normalized control force spectrum [17]

CU

(
ωS,hS eq, ẍg

)
=

KPSV

(
ωS,hS eq, ẍg

)
MSg

=
U

(
ωS,hS eq, ẍg

)
MSg

, (48)

whereg is the gravitational acceleration. This spectrum means the shear-force coefficient of the control force, which
is the ratio of the maximum control force to the weight of the building. Since the first natural period of a base-isolated
building is usually much longer than a time delay caused by information transmission, control-law calculation, etc. in
a system, the effect of a time delay is small.

4.2. Spectra for EID-based structural-control system

The Laplace transform of the residual disturbance (Fig. 4) is

∆D(s) = CFF(s)Ẍg(s), (49)

which is the input toGFB(s), EID-based structural-control system. Therefore, the maximum displacement and the
velocity of EID-based structural-control system can be estimated using the response spectra for∆d(t). This gives the
displacement and velocity response spectra for the EID-based structural-control system

SD,EID

(
ωS,hS eq, ẍg

)
= SD

(
ωS,hS eq,∆d

)
, (50)

SV,EID

(
ωS, hS eq, ẍg

)
= SV

(
ωS,hS eq,∆d

)
. (51)

Note that the relationship betweenSA

(
ωS,hS eq, ẍg

)
andSV

(
ωS,hS eq, ẍg

)
is

SA

(
ωS,hS eq, ẍg

)
≈ ωSSV

(
ωS,hS eq, ẍg

)
. (52)

That is, the absolute acceleration of the feedback control system is

|yFB(t)|max ≈ ωSSV,EID

(
ωS,hS eq,∆d

)
. (53)

It is clear from (24) and Fig. 5 that the absolute acceleration is the sum of the feedback control part,yFB(t) and
the feedforward control part, ¨xEID(t). yFB(t) given in (53) is not enough to estimate the absolute acceleration of the
EID-based structural-control system.

In this study, we estimated the maximum absolute acceleration of the EID-based structural-control system by using
the combination of the absolute sum (ABS) and the root sum of squares (RSS) of the maximumyFB(t) and ẍEID(t).

First, we calculate the maximum ¨xEID(t). The dynamics of the building with (39) for the EID,de(t), is

MS ¨̄x(t) + DS eq˙̄x(t) + KS x̄(t) = −de(t), (54)

8



where x̄(t) is the displacement of a building. Since the response caused by the EID is the same as the original
disturbance does, the following relationship holds for (40) and (54):

x(t) = x̄(t). (55)

Comparing (40) and (54) yields
MS ẍg(t) = de(t). (56)

d̃e(t) is a filtered estimate of the EID forω ∈ [0, ωm]. Thus, the following is true from (14) and (56):

d̃e(t) ≈ NFde(t) = NF MS ẍg(t). (57)

Substituting (57) andB2 in (4) into (26) yields

ẍEID(t) = B2d̃e ≈ NF ẍg(t). (58)

It is clear from the above equation, (58), that the system estimates the EID appropriately in the prescribed frequency
range for disturbance estimation and the transfer functionB2Gd̃eẍg

(s) is approximated byNF .
We define the absolute acceleration spectrum for the EID-based structural-control system to be

SA,EID

(
ωS,hS eq, ẍg

)
=

ABSACC + RSSACC

2
, (59)

where

ABSACC = NF |ẍg(t)|max+ ωSSV,EID

(
ωS,hS eq,∆d

)
, (60)

RSSACC =

√[
NF |ẍg(t)|max

]2
+

[
ωSSV,EID

(
ωS, hS eq,∆d

)]2
. (61)

The control force is the combination of the feedback control force,uf (t), and the estimated EID,̃de(t):

u(t) = uf (t) − d̃e(t). (62)

The control force spectrum is defined to be

UEID

(
ωS,hS eq, ẍg

)
=

ABSU + RSSU

2
, (63)

where

ABSU = |uf |max+ |d̃e(t)|max

= KPSV

(
ωS,hS eq, ẍg

)
+ NF |MS ẍg(t)|max (64)

RSSU =

√
|uf |2max+ |d̃e(t)|2max

=

√[
KPSV

(
ωS,hS eq, ẍg

)]2
+

[
NF |MS ẍg(t)|max

]2
. (65)

The normalized control-force spectrum for an EID-based structural-control system is

CU,EID

(
ωS,hS eq, ẍg

)
=

UEID

(
ωS,hS eq, ẍg

)
MSg

. (66)

The characteristics of the active structural control system are clearly described by the spectra (50), (51), (59),
and (63). Thus, a system designed based on those spectra has satisfactory control performance. The next subsection
explains how those spectra are used in the system design.

9



4.3. Design of EID-based structural-control system

The EID-based structural-control system consists of the feedback and feedforward control systems. Velocity-
feedback control adjusts the damping ratio of the system.

The feedback controller,KP, is designed based on prescribed control specifications and the observer gain,LP, is
designed using the pole placement method.

For a selectedhS eq, the gain of the state-feedback controller is given by

KP =
[
0 −DS eq+ DS

]
=

[
0 −2MSωS(hS eq− hS)

]
. (67)

Remark 1. Note that the controller gain (67) is equivalent to the gain that is designed by minimizing the following
performance index [17]

J =
∫ ∞

0

{
zT(t)Qz(t) + uT(t)Ru(t)

}
dt, (68)

where

Q =

[
0 0
0 DS eq− DS

]
, R= 1 (69)

are the weighting matrices for the state and the control force, respectively. The gain of the state-feedback controller is

KP = −R−1BTP, (70)

where P is the solution of the following Riccati equation:

ATP+ PA− PBR−1BTP+ Q = 0. (71)

Ackerman’s formula is used in the pole placement method to design the observer gain,LP. More specifically, for
selected eigenvalues ofA− LPCo, ao ± jbo, and the output matrixCo =

[
Co1 Co2

]
, the observer gain is given by

LP =
[[

0 1
]
U−1

C Φ
]T
, (72)

where

U−1
C =

[
CT

o ATCT
o

]
(73)

Φ =
[
A2 − 2aoA+ (a2

o + b2
o)I

]T
. (74)

ForCo1 = −KS/MS andCo2 = −DS/MS, LP is

LP =

[
LP1

LP2

]
=


fo
π f 2

u

(
fohS

fu
− ho

)
1− π f 2

o

fu

 , (75)

where fu (= 1/Tu) is the natural frequency of the building model; andfo andho are the natural frequency and the
damping ratio of the observer, respectively.

4.4. Design algorithm of EID control system

We condense the above discussion into a system design algorithm.
Algorithm of designing EID-based structural-control system

Step 1: set the limitation of the maximum displacement (xlim) and the limitation of the maximum shear force of the
control force (ulim/mg) for a model with the natural period (Tu) and the damping ratio of the structure (hS).

Step 2: Choose a set of earthquake waves,{ẍg}; and a candidate set of equivalent damping ratios,{hS eq}.
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Step 3: Calculate the velocity-feedback controller using (67).

Step 4: Choose the parameters of the low-pass filter,TF based onωm that is usually determined taking into consider-
ation of the natural frequency of the building and the dominant components of{ẍg}. And choose anNF .

Step 5: Calculate the observer gain,LP, using (75), and choosefo andho such that|B2Gd̃eẍg
( jω)| ≈ NF holds around

the dominant frequencies of the earthquake waves given in Step 2. Check the frequency response ofB2Gd̃eẍg
(s)

for all the pairs offo andho.

Step 6: Check the responses and the shear force of the EID-based structural-control system using the spectra,SD,EID

(
ωS,hS eq, ẍg

)
,

SV,EID

(
ωS,hS eq, ẍg

)
, SA,EID

(
ωS,hS eq, ẍg

)
, andCU,EID

(
ωS,hS eq, ẍg

)
. Adjust the equivalent damping ratio,hS eq,

and the low-pass filter gain,NF , to ensure that the maximum displacement and the maximum shear force of the
control force are smaller than the given limitations.

Step 7: Check if the maximum response and shear force satisfy the limitations, if all the spectra are satisfactory, and
if d̃e(t) is adequate. If not, go to Step 3; otherwise, finish.

5. Numerical verification

This section first verifies the effectiveness of the new spectra. Then, it uses an example to show the design
procedure based on the spectra.

5.1. Validity of new spectra

Consider a single-degree-of-freedom model:

• Mass of the model:MS = 100
• Damping ratio of the structure:hS = 0.02
• The natural period of the structure:Tu = 0.5 ∼ 10.0 s.

Note that the natural period of a base-isolated building is usually very long. However, this example uses a natural
period that covers a wide range to analyze the characteristics of the spectra.

For an EID-based structural-control system with the following parameters

• Equivalent damping ratio of the feedback control system:hS eq= 0.4
• Time constant of the low-pass filter:TF = 0.01 s
• Gain of the low-pass filter:NF = 0.5
• Natural frequency of the observer:fo = 10 Hz
• Damping ratio of the observer:ho = 0.8,

we carried out the time-history analyses and showedSA,EID

(
ωS,hS eq, ẍg

)
[Fig. 8 (a)], CU,EID

(
ωS,hS eq, ẍg

)
[Fig.

8 (b)], SD,EID

(
ωS, hS eq, ẍg

)
[Fig. 8 (c)], andSV,EID

(
ωS,hS eq, ẍg

)
[Fig. 8 (d)] for 44 earthquake. (Tabs 1 and 2).

These waves were recommended for the evaluation of vibration-suppression performance by the Federal Emergency
Management Agency (FEMA) P695 [18]. The velocity response spectra for 5% damping ratio and the average of the
44 waves are shown in Fig. 7. Moreover, velocity-response spectra for a structure with a 5% damping ratio are shown
in Appendix B (Figs. B.19-B.40).

Figure 8 (a) and (b) show that the presented method satisfactorily estimated the maximum absolute acceleration
and the maximum shear force of the control force forTu = 0.5 ∼ 5.0 s, but the errors between the estimates and
analysis results are large forTu = 5.5 ∼ 10.0 s. The reason is explained as follows. The frequency response of
B2Gd̃eẍg

(s) (Fig. 9) shows that the gain forTu = 10.0 s is more than two times larger than 0.5 (the peak value is
1.1) during the frequency range [1,10] Hz. The gain estrangement from the designed value 0.5 in the frequency band
caused such errors.
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Table 3: Effect of parameter tuning of natural frequency of observer.

avg
[
ẍ(t) + ẍg(t)

]
avg [|u(t)|max] std

[
ẍ(t) + ẍg(t)

]
std [|u(t)|max]

fo = 10 Hz 113.07 113.07 22.42 22.41
fo = 3 Hz 87.73 89.48 16.25 16.00

Figure 10 shows the frequency response ofB2Gd̃eẍg
(s) for Tu = 10.0 s and the results of the Fourier transforms

of PEL180 and CHY101-N waves (Nos. and 12 in Table 1, respectively). Since the gain ofB2Gd̃eẍg
(s) has a large

peak around the frequency 8 Hz and is about 0.5 at a frequency lower than 1 Hz, the EID estimator can satisfactorily
estimate vibrations caused by CHY101-N that has the dominant component of 0.2 Hz. However is not able to estimate
those caused by PEL180 that has a main component at around 10 Hz (Fig. 10). This result is reflected in Fig. 11 (a)
and (b). The EID for the CHY101-N was estimated with high accuracy. However, it is hard to estimate the EID for
the PEL180, and the amplitude of the estimated EID,d̃e(t)/m, is much higher than that of the actual EID,NF ẍg(t). It
is clear from the above observation that the estimation accuracy for the spectra can be improved by suitably designing
the EID estimator. More specifically, the key is to design the EID estimator that ensures|BGd̃eẍg

( jω)| ≈ NF in the
frequency range for disturbance estimation and rejection and if the peak is not much bigger thanNF .

Figure 12 shows the frequency response ofB2GFF(s) for Tu = 10.0 s for the observer with different natural
frequencyfo. It shows that the largerfo is, the bigger the peak is. Since the selection offo = 3.0 Hz for the observer
does not have a peak in 10∼ 100 Hz. Thus, we select it forTu = 5.5 ∼ 10.0 s. A comparison before and after the
tuning of the natural frequency of the observer for Figs. 8 and 13 (Table 3) shows that suitable tuning offo ensures
that the estimates agree with the time-history analyses roughly in the range±20%. Thus, the spectra can be used to
estimate the maximum responses and shear force for suitably designed EID-based structural-control system. On the
other hand, the spectra can be used to design a suitable EID-based structural-control system. From this viewpoint, we
presented the algorithm of designing an EID-based structural-control system in Subsection 4.4.

5.2. Design example

An example for the control algorithm is shown to illustrate how the spectra are employed to select the parameters
of an EID-based structural control system. First, for a structure

Tu = 3.0 s, hS = 0.02, (76)

set
xlim = 30 cm, ulim/mg= 0.25. (77)
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Fig. 10: Frequency response ofB2Gd̃eẍg
(s) for Tu = 10.0 s and Fourier transform of PEL180 and CHY101-N.

Considering that the natural period of the building model is 3.0 s, we chose the maximum frequency for earthquake
suppression to be

ωm = 20 rad/s, (78)

and set
TF = 100 s, NF = 0.5. (79)

Next, we select CHY101-N for the design of the EID-based structural-control system, and the candidates for target
control performance for the velocity-feedback controller to be

hS eq= 0.4, 0.6, 0.8. (80)

Calculating the velocity feedback controller using (67) yields
KP =

[
0 −159.2

]
for hS eq= 0.4,

KP =
[
0 −242.9

]
for hS eq= 0.6,

KP =
[
0 −326.7

]
for hS eq= 0.8.

(81)

Then, we used
fo = 10,30,100 Hz, ho = 0.8 (82)

to construct an EID-based structural-control system.
The control performance of the control system is checked using the spectra [Fig. 14 (a)-(d)]. These spectra show

that the maximum displacement is 31.0 cm and theCU is 0.145 for the selection ofhS eq= 0.8, that is, the displacement
is not satisfied the limitations given in (77).

The frequency responses ofB2Gd̃eẍg
(s) for

fo = 10 Hz (83)

shows that the gain does not have a peak and is almost 1 for the frequency up to 10 Hz (Fig. 15).
Finally, the spectra of the designed EID-based structural-control system [Fig. 16 (a)-(d)] show that the system

satisfies all the limitations, has adequate control performance for the displacement, velocity, and absolute acceleration,
and has a small control force.

Table 4 compares the spectra and the time-history analysis. It shows that the errors between the spectra and
the time-history analyses are small and the presented spectra are able to be used to design an EID-based structural-
control system. The control result for CHY101-N earthquake wave is shown in Fig. 17. The results for the feedback
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Fig. 11: Earthquake waves and EID estimates: (a) CHY101-N and EID and (b) PEL180 and EID.

control(without EID estimator) and no control (NC) are also shown in the same figure for comparison. The control
results show that the control performance of the EID-based structural-control system, which was designed based on
the presented spectra, for the displacement, the velocity, and the absolute acceleration are all better than that of the
conventional LQR method.

Table 4: Comparison between spectra and time-history analyses (THA).

Spectrum Time history analysis (THA)
THA − Spectrum

THA
× 100%

x(t) [cm] 18.6 18.6 0%
ẋ(t) [cm/s] 34.9 34.9 0%

ẍ(t) + {1}ẍg(t) [cm/s2] 226.7 204.5 10.9%
u(t)/mg 0.22 0.23 5%

6. Conclusion

This paper presented new spectra of response and control force for an equivalent-input-disturbance (EID)-based
structural-control system that contains both feedforward and feedback terms from disturbances to a control output.
While the EID approach yielded better control performance than conventional control methods, sophisticated tuning
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Fig. 12: Frequency response ofB2Gd̃eẍg
(s) for Tu = 10.0 s.

of control parameters in the system is a hard task. The spectra were used to simplify the design of the system. This
paper clarified the following points:

• We derived the configuration of the system from disturbances to a control output for the EID-based structural-
control system. Then, we devised new spectra of the displacement, the velocity, the absolute acceleration, and
the control force to precisely describe such relationships.

• We illustrated how to use the spectra to simplify the design of an EID-based structural-control system, and
presented a designing algorithm based on the spectra. Design rules explained in the algorithm make use of
frequency responses. This makes the design process visible and easy to understand.

• The validity of the use of the spectra was demonstrated through the structural control of a shear building model
for 44 kinds of earthquake waves.

Note that the spectra were used in the design of an EID-based structural-control system in this study. It can be
applied directly to other disturbance-rejection methods that contain disturbance-estimation mechanisms, such as the
disturbance observer and the active disturbance-rejection control.

In addition, although the response spectrum method easily estimates the peak value of the response of a linear
system, most structures contain nonlinearities. Investigation of the influence of nonlinearities is of great importance
and can provide a theoretical guarantee of the control performance of a designed system, and will be carried out in the
future.

This study dealt with an SDOF model. In the next stage of our research, we planned to apply our method to an
MDOF model.

Appendix A. Derivation of transfer function CFF in (19)

(3) and (10) yield {
∆ż(t) = (A− LPC)∆z(t) + Bd ẍg(t)
∆y(t) = C∆z(t).

(A.1)

The transfer function from ¨xg(t) to ∆z(t) is

G∆yẍg =
∆Z(s)

Ẍg(s)
= C(sI − A+ LPC)−1Bd, (A.2)
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whereẌg(s) and∆Z(s) are Laplace transform of ¨xg and∆z(t) respectively. Combining the (A.2), (15), and the Laplace
transform of (13) yields the estimated EID̃De(s):

D̃e(s) = F(s)B+LPG∆yẍg(s)Ẍg(s). (A.3)

On the other hand, combining the equations (3), (16), and (17) gives

ż(t) = (A+ BKP)z(t) + Bd ẍg(t) − Bd̃e(t). (A.4)

The Laplace transform of (A.4) yields

sZ(s) = (A+ BKP)Z(s) + BdẌg(s) − BD̃e(s). (A.5)

Substituting (A.3) into (A.5), we have

sZ(s) = (A+ BKP)Z(s) + (Bd − F(s)B+LPG∆yẍg)Ẍg(s). (A.6)

The transfer function from̈Xg(s) to Z(s), Gz(s) is

Gzẍg(s) =
Z(s)

Ẍg(s)

= (sI − A− BKP)−1(Bd − F(s)B+LPG∆yẍg(s)). (A.7)

Then,Bd − BF(s)B+LPG∆yẍg(s) is the transfer function of the feedforward term,GFF(s).

Appendix B. Velocity response spectra of FENA waves

The velocity response spectra for 5% damping ratio of the earthquake waves in Tabs. 5.1 and 5.1 are shown (Figs.
B.19-B.40). These figures show that these waves cover a wide range of frequency band.
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Fig. B.26: Velocity response of KOBE/SHI000 and SHI090
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Fig. B.27: Velocity response of KOCAELI/DZC180 and DZC270
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Fig. B.28: Velocity response of KOCAELI/ARC000 and ARC090
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Fig. B.29: Velocity response of LANDERS/YER270 and YER360
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Fig. B.31: Velocity response of LOMAP/CAP000 and CAP090
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Fig. B.32: Velocity response of LANDERS/G03000 and G03090
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Fig. B.33: Velocity response of MANJIL/ABBAR-L and ABBAR
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Fig. B.34: Velocity response of SUPERST/B-ICC000 and B-ICC090
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Fig. B.36: Velocity response of CAPEMEND/RIO270 and RIO360
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Fig. B.37: Velocity response of CHICHI/CHY101-E and CHY101-N
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Fig. B.38: Velocity response of CHICHI/TCU045-E and TCU045-N
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Fig. B.39: Velocity response of SFERN/PEL090 and PEL180
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Fig. B.40: Velocity response of FRIULI/A-TMZ000 and A-TMZ270
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