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Abstract

Dose-finding studies primarily aim to identify a maximum tolerated dose or an optimal
dose that determines a therapeutic dose for subsequent studies. For cancer treatment,
chemotherapies with single cytotoxic agents still remain fundamental depending on cancer
types. On the other hand, drug development for combination and targeted therapies
has become increasingly commonplace than that for chemotherapies because they are
potentially more effective and less toxic. Considering room for improvement on even
statistical designs dealing with chemotherapies and no standard solutions for dose findings
of combination and targeted therapies, we propose a Bayesian optimization design for
identifying target doses in three types of dose-finding studies for oncology: (1) mono-
therapies with cytotoxic agents, (2) combination drug therapies, and (3) targeted therapies
with biological agents. Our simulation-based evaluations compared with some popular
statistical designs suggest that our design works successfully on the selections of target
doses and safe dose allocations.
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Chapter 1

Introduction

1.1 Drug development and statistical methodologies

1.1.1 Drug development process

Drug development is the process of finding a new pharmaceutical drug in order to con-
tribute to unmet medical needs. At the first step, researchers identify a promising com-
pound for development from thousands of potential candidates through various laboratory
testings. Those compounds proceed to preclinical tests such as in vitro and in vivo to ob-
tain safety information. Based on the preclinical results, researchers determine whether
the candidate compounds should be examined in humans. Preclinical research dispels
basic concerns about the safety aspects of the candidate compounds; however, it cannot
answer a question about how they interact with human bodies. Therefore, the compounds
that have passed these various tests finally proceed to clinical trials performed in people
as candidates for a new treatment.

Clinical trials to develop a new treatment are composed of a series of studies so-called
Phase I, II, and III in general. The ultimate goal of Phase I clinical trials is to confirm
if the new drug candidate is safe on human bodies. Researchers aim to learn the effect
of the new treatment on human bodies, look at the ideal way of administrations, identify
the highest dose that does not cause unacceptable toxicity for predicting a therapeutic
dosage, and so on through several Phase I clinical trials. Phase I clinical trials typically
involve a small number of patients or healthy volunteers.

When Phase I clinical trials show expected results, clinical trials move to the next phase;
that is, Phase II clinical trials. Phase II clinical trials shift their focus on the efficacy aspect
in addition to safety. They mainly aim to see if the new treatment works for patients
who are under a specific condition that the new treatment targets while collecting and
reviewing safety information. In Phase II clinical trials, researchers determine whether the
new treatment has some benefit on targeted patients. While Phase II clinical trials involve
more participants than Phase I clinical trials, it is still not large enough to statistically
demonstrate the efficacy of the new drug.

If the new drug candidate shows some benefit to targeted patients and is safe enough
from the view of a balance between safety and benefit, it goes to Phase III clinical trials to
statistically demonstrate the effectiveness of the new treatment. In general, Phase III clin-
ical trials set strict statistical criteria to determine the effectiveness of the new treatment.
They often involve a large number of participants to compare the new treatment with the
current standard treatment based on statistical rationale. The trial designs usually adopt
double-blind for both participants and investigators in terms of the treatment for partic-
ipants to eliminate any bias on assigning treatment and interpreting results. Phase III
clinical trials could last for a long period of more than a year depending on their designs
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according to clinical perspective and statistical rationale. Regulatory authorities in some
countries or regions occasionally require at least two Phase III clinical trials that provide
successful results on efficacy and safety in order to approve the new treatment.

When Phase III clinical trials are successfully done, researchers and a regulatory author-
ity collaborate their works for new drug application and approval processes. Researchers
still need to examine overall safety after the declaration of effectiveness of the new treat-
ment based on a series of clinical trials; therefore, safety information will be continuously
collected, monitored, and reviewed in a certain period as postmarketing surveillance after
the new treatment is released on the market as a pharmacovigilance part. Fig. 1.1 shows
a brief explanation of the main part of the drug development process.

There are a lot of articles summarizing and discussing drug development pro-
cesses such as Robuck and Wurzelmann (2005) and Orloff et al. (2009). Also, the
U.S Food & Drug Administration (FDA) summarizes the drug development pro-
cess with some videos on their official website (https://www.fda.gov/patients/
learn-about-drug-and-device-approvals/drug-development-process).

Laboratory testing Clinical trials

Investigate preliminary 
efficacy, toxicity, 

pharmacokinetics, and 
safety information using 

such as in vitro and in vivo 
experiments

Preclinical trialsBasic research 
and 

Early discovery

Screening to find a promising 
compound from thousands of 

compounds

Phase I trials

Investigate how the new 
treatment affects human 

bodies and identify a safe dose

Phase II trials
Investigate how benefit 
the new treatment has 
on targeted patients 
and obtain more safety 
information

Phase III trials
Demonstrate an expected 
efficacy of the new 
treatment on targeted 
patients

Large sample size, 
double blind studiesSmall sample size (< 100) Small sample size (< 50), 

open label studies 　
Fig. 1.1. Main part of drug development process

1.1.2 Expectation of exploiting Bayesian approaches in clinical trials

The author has been involved in drug development and been in charge of many projects
as a biostatistician for more than 10 years in Pfizer Japan or Pfizer R & D Japan, a
pharmaceutical company. Of the drug development process depicted in Fig. 1.1, the
author works on clinical trials-related tasks through designing development strategies,
planning statistical analyses that fit the objectives of each protocol, sharing interpretations
of study results with team members. The main disease areas the author has been involved
in are oncology and rare disease from early to late phases of clinical trials.

While there are two statistical approaches, which are frequentist and Bayesian statistics,
most clinical trials have relied on frequentist approaches. Although we usually follow
conventional statistical designs based on frequentist strategies unless there are special
circumstances, it is also well-known that clinical trials with small sample sizes owing to
feasibility or ethical reasons have worth adopting Bayesian strategies to make the most
of available information. For example, early-phase clinical trials and clinical trials whose
target population is relatively small sometimes leverage Bayesian approaches to make
their strategies more efficient. Although the history of utilization of Bayesian approaches
in clinical trials is still short, there are enormous needs and expectations of effective
applications and developments of Bayesian strategies for clinical trials. Gupta (2012) and
Berry (2006), for instance, have summarized and discussed the advantages and challenges
of the utilization of Bayesian approaches in drug development. The author has felt those
growing needs and expectations via real projects on the job since the author started to
work in the pharmaceutical industry. In addition, a way of more exploitation of Bayesian
approaches in clinical trials has recently been sought as one of the efforts of research on

https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process
https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process
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regulatory science of pharmaceuticals and medical devices supported by the Japan Agency
for medical research and development (A. Hirakawa, Research representative, 2019-2021).

1.2 Motivation and contribution
The author has some experience of being in charge of dose-finding studies in Phase I
clinical trials as a biostatistician. A primary objective of dose-finding studies is generally
to find a maximum tolerated dose (MTD) of new drug candidates. The MTD is defined
as the highest dose that does not cause an unacceptable level of toxicity according to the
National Cancer Institute (NCI) dictionary (https://www.cancer.gov/publications/
dictionaries). Dose-finding studies are one of the few clinical trials that positively
exploit Bayesian strategies; therefore, those studies brought the author good opportunities
to deal with Bayesian statistics in practical clinical trials. Dose-finding studies determine
a safe dose that plays a key role pertaining to therapeutic dose range in subsequent trials;
therefore, misspecification of the MTD in dose-finding studies leads to a low success rate
of the drug development. Nevertheless, even statistical designs that are well-known and
frequently used in dose-finding studies have some discussion points and standard designs
have yet been established. The more the author learned statistical designs for dose-finding
studies in order to understand the projects, the more the author recognized they have
still open research questions. In particular, Bayesian approaches provide ever-increasing
interest and challenge in the area of dose-finding studies because they can make the most
of limited available data. Besides, waves of machine learning methodologies including
novel topics such as artificial intelligence have been finally reaching the drug development
field. Those waves have brought novel strategies that are worthy of consideration as new
approaches for clinical trials. Given these circumstances, our study has cast light on a
different Bayesian approach that has never been applied in clinical trials while attracting
attention in recent years. We thought it could address the open research questions that
conventional statistical designs have left.

In conventional statistical designs for dose-finding studies, few Bayesian designs adopt
established frameworks incorporating dose–response estimations and targeted dose selec-
tions while having flexible modeling approaches. It often causes model misspecification,
inflexible or suboptimal dose-allocations, and insufficient accuracy of final dose determi-
nations. Bayesian optimization (Mockus et al., 1978; Mockus, 1975) has emerged as an
efficient strategy to find a global optimizer (i.e., minimizer or maximizer) of an unknown
function and been expanded its utilization to various areas. Shahriari et al. (2016) re-
ported that Bayesian optimization has recently applied to a wide range of areas such
as machine learning, sensor networks, and environmental monitoring. Given these back-
grounds, we also paid attention to the advantage of Bayesian optimization. As a result,
we considered Bayesian optimization would have sufficient features to address the current
issues on statistical designs for dose-finding studies.

According to Fig. 1.2 depicting typical frameworks of Bayesian statistical designs in
dose-finding studies and Bayesian optimization, we can see that those approaches have
similar processes in terms of conducting repeated assessment based on Bayesian estima-
tions. In addition, the ultimate goals are not exactly the same but closely similar to each
other in terms of figuring out the best point over an unknown function or curve. The
majority of conventional Bayesian designs in dose-finding studies are parametric model-
based designs, although information about dose–response relationships are rarely avail-
able; therefore, prescribing strong assumptions to unknown dose–response relationships,
which parametric model-based designs do, sometimes causes difficulties. Also, most con-
ventional designs do not effectively utilize uncertainties in their dose selection process

https://www.cancer.gov/publications/dictionaries
https://www.cancer.gov/publications/dictionaries
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even if there are nonnegligible uncertainties that possibly exist in particular at the begin-
ning of the trial. Bayesian optimization estimates an unknown function of interest with
a nonparametric model that realizes flexible modeling through sequential updates based
on Bayes’ rule. In addition, Bayesian optimization constructs a probabilistic model for an
unknown function and then exploits the model via acquisition functions to make decisions
where the most promising point is without ignoring uncertainties of posteriors. Selecting
potential optimal points without relying on only local optimal points avoids concentra-
tion on a particular local region, which results in actively collecting data of other regions.
Consequently, it allows us to identify a global optimal point within as few evaluations as
possible. Optimization strategies based on acquisition functions in Bayesian optimization
have been demonstrated to work effectively and realize as few evaluations as possible by
such as Bull (2011). Because dose-finding studies usually evaluate a limited number of
patients, it is ideal to adopt a design that returns more accurate results with fewer eval-
uations; therefore, it was considered that Bayesian optimization would become an ideal
design for dose-finding studies as it could provide a sophisticated optimization strategy
that had worked successfully in various areas. Although Bayesian optimization seemed to
have the promising capability to be a better design for dose-finding studies, it had never
been used in clinical trials before. It was a great challenge for our study to develop a new
Bayesian design based on Bayesian optimization that can be an acceptable and alterable
approach compared with conventional statistical designs because clinical trials have unique
characteristics that are totally different from other fields such as ethical issues concerning
patient safety. The biggest concern to apply a new design brought from the other fields
to the clinical field would be related to whether it can appropriately incorporate ethical
restrictions while having less impact on its original advantages.

Evaluate patients’
outcome

Update a probabilistic 
belief on a dose--
response relationship

Select the 
next dose

Get a new 
observation at the 

tested point

Calculate an acquisition function 
associated with the updated
model

Select a new point 
based on the 
acquisition function

Argument data and 
update a model for an 
unknown function

Typical Bayesian-based designs for dose-finding studies aim to identify a targeted dose based on data

Bayesian optimization aim to optimize an unknown function based on data

Treat patients in the 
next cohort (a group 

with a small number of  
patients)

　
Fig. 1.2. Typical frameworks of Bayesian designs for dose-finding studies and Bayesian

optimization

The development of Bayesian approaches to expand and accelerate their utilization in
clinical trials is one of the recent challenges as a biostatistician in the pharmaceutical
industry. There is still room for improvement in existing statistical designs for dose-
finding studies where Bayesian approaches are positively utilized. Although we considered
Bayesian optimization had some elements to solve the current issues, it was necessary to
develop a new approach based on Bayesian optimization to fit clinical trials especially in
terms of ethical aspects. Our goal of this thesis is to design and propose a new Bayesian
design for dose-finding studies by utilizing the advantages of Bayesian optimization frame-
works. We will introduce a Bayesian optimization design (BOD) that is a novel Bayesian
design for dose-finding studies throughout this thesis. For the development of new sta-
tistical designs for dose-finding studies, the operation characteristics of proposed designs
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are usually evaluated via simulation studies. Even if there is real clinical trial data, true
dose–response curves are never revealed and all observations are obtained based on a spe-
cific statistical design in the trial. It is possible to use some real clinical trial data as one
of true dose–response curves for simulations; however, simulation scenarios should cover a
wide enough range of variety of scenarios in order to confirm the operating characteristics
under a typical situation where no information about dose–response curves is available
(Mayer et al., 2019). Thus, performance evaluation should include the majority of plausi-
ble dose–response scenarios including ones with various MTD locations and extreme ones
that we may encounter. Accordingly, in the same way as standard steps for statistical
design development for dose-finding studies, our study evaluates the performance of BOD
by conducting simulation studies that compare it with existing representative designs un-
der some plausible scenarios that it is likely we encounter in actuality. We believe that
our study on a new Bayesian approach that could perform better than existing designs
has contributed to expanding the limited choice of Bayesian approaches in clinical trials
and showing the applicability of Bayesian designs from other fields that possibly lead to
developing further effective applications in the future. Also, we believe that our work has
brought further awareness for biostatistician communities of the usefulness of Bayesian
strategies in clinical trials. Furthermore, our work has shown the usefulness of Bayesian
optimization in clinical trial fields where ethical limitations exist. We believe our work
will put some stimulation on applications of Bayesian approaches to clinical trial fields
and finally contribute indirectly to an improvement on success rates of drug development.

1.3 Roadmap
Typical dose-finding studies to identify the MTD mainly assess safety aspects on investi-
gational agents assuming mono-therapies with cytotoxic agents and sequentially evaluate
patients divided into small groups called cohorts in single trials. Cytotoxic agents de-
stroy cancer cells by inhibiting cell division based on the unique characteristics of cancer
cells that often divide markedly faster than normal cells. Cancer therapies with cytotoxic
agents are often called cytotoxic chemotherapy or just chemotherapy. Because cytotoxic
agents do not distinguish tumors and healthy tissue, normal cells are also affected by the
drug transported throughout the body from the bloodstream; therefore, careful safety
management is necessary to ensure patient safety. Although the role of cytotoxic agents
has decreased slightly with the development of therapies with modern mode-of-actions
that are more effective and less toxic such as targeted therapies, cytotoxic chemothera-
pies remain fundamental options depending on cancer types (Twelves et al., 2016). In
dose-finding studies, the information about tested dose levels and the number of patients
who experienced specific toxicity events so-called dose limited toxicity (DLT) is analyzed
for MTD estimation in addition to overall assessment using all available data. Statisti-
cal designs sequentially analyze the specific information of interest for MTD estimation
and select an appropriate dose for the next test during the trial. The MTD becomes a
candidate of the recommended dose determined at the end of the trial.

Chapter 2. Firstly, Chapter 2 explains several conventional statistical designs for
MTD estimation assuming typical dose-finding studies. The underlying premise in typical
dose-finding studies for cytotoxic agents is that toxicity increases monotonically with
increasing dose levels. The statistical designs we introduce in Chapter 2 are well-known to
biostatisticians and have been applied to various actual clinical trials. A major transition
of trends on statistical designs for dose-finding studies can be seen by exhibiting those
designs step by step.
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Chapter 3. In accordance with the same underlying premise taken in the most typi-
cal dose-finding studies for cancer treatment, we have developed a new Bayesian design,
BOD, for identifying the MTD for mono-therapies of cytotoxic agents. Chapter 3 intro-
duces BOD for MTD estimation in detail such as statistical frameworks and its operating
characteristics via simulation studies. Fig. 1.3 shows the relationship between chapters
and targeted dose-finding studies. While we have developed BOD assuming dose-finding
studies under three different situations as shown in Fig. 1.3, Chapter 3 introduces the
basic components of BOD. In Chapters 4 and 5, we extend BOD introduced in Chapter
3 to more complex situations.

Mono-therapies (cytotoxic agents) Targeted therapies (biologic agents)

Phase I trials
for cytotoxic agents

Expand dose 
dimensions

Phase I/II trials 
for biologic agents

Chapter 3

Chapter 4

Chapter 5

[Safety assessment]

[Safety and efficacy assessment]

Combination drug therapies

Expand 
agent types

　
Fig. 1.3. Each chapter and the associated type in dose-finding studies where BOD applies

Chapter 4. It is still a great challenge to address one of the biggest issues, which is
drug resistance, across cancer treatment. Combination therapy decreases the likelihood
of occurrence of resistant cancer cells by combining drugs with different mechanisms.
Also, combination therapy aims to incorporate the benefits from each drug; thereby,
enhance therapeutic response in cancer. For the above background, combination therapy
can be a key treatment option for cancer patients. Chapter 4 introduces BOD for MTD
combination (MTDC) estimation assuming combination therapy of cytotoxic agents. BOD
in Chapter 4 deals with two-dimensional doses as input data instead of one-dimensional
dose that BOD in Chapter 3 assumes.

Chapter 5. Chapter 5 focuses on optimal dose (OD) estimation under dose-finding
studies for targeted therapies instead of MTD estimation. Targeted therapies with such
as biologic agents have been growing interest and increasingly developed in recent years.
These therapies deliver a more focused treatment by directly interfering with a specific
pathway involved in the targeted tumors. Arora et al. (2017) has mentioned that biologic
agents have revolutionized therapy for a number of malignancies. Targeted therapies with
biologic agents differ from conventional chemotherapies with the use of cytotoxic agents
in terms of mode-of-action. For example, once the targeted pathway is inhibited with a
certain amount of biologic agents, further administration no longer provides any benefit
for patients. Dose-efficacy curves may exhibit non-monotone shapes such as unimodal
and plateau in such a case. Cytotoxic agents show monotone relationships between dose
levels and toxicity. Simultaneously, the efficacy of cytotoxic agents is assumed to increase
monotonically with increasing dose levels. The MTD is clinically meaningful only if the
drug shows monotonic increasing patterns with increasing dose levels on both toxicity and
efficacy. Considering the difference of the mode-of-action between cytotoxic chemothera-
pies and targeted therapies, we can not put the monotonic assumption on dose–response
relationships for targeted therapies unlike BOD in Chapters 3 and 4. Thus, instead of
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MTD estimation, dose-finding studies for targeted therapies require identifying an OD
that provides sufficient efficacy under an acceptable toxicity rate.

Organization of the thesis

This thesis is organized as follows:

• Chapter 2 is a brief literature review of statistical designs to introduce a major
transition of statistical designs for typical dose-finding studies.

• Chapter 3 concerns BOD for mono-therapies with cytotoxic agents for finding the
MTD. The related works on Chapter 3 are A curve free method based on Bayesian
optimization for oncology Phase I clinical trials, A. Takahashi and T. Suzuki, Pro-
ceedings of the 2nd International Conference on Statistics: Theory and Applications
(ICSTA’20), 2020 (Takahashi and Suzuki, 2020) and Bayesian optimization for es-
timating the maximum tolerated dose in Phase I clinical trials, A. Takahashi and
T. Suzuki, Contemporary Clinical Trials Communications, 2021 (Takahashi and
Suzuki, 2021a).

• Chapter 4 covers BOD for combination drug therapies in Phase I clinical trials for
identifying a single MTDC and based on Bayesian optimization design for finding a
maximum tolerated dose combination in Phase I clinical trials, A. Takahashi and T.
Suzuki, International Journal of Biostatistics, 2021 (Takahashi and Suzuki, 2021b).

• Chapter 5 deals with BOD focusing on targeted therapies with biologic agents in
Phase I/II clinical trials for finding a single OD. Chapter 5 is based on Bayesian op-
timization design for dose-finding based on toxicity and efficacy outcomes in Phase
I/II clinical trials, A. Takahashi and T. Suzuki, Pharmaceutical Statistics, 2021
(Takahashi and Suzuki, 2021c).

• In Chapter 6, we conclude this thesis and discuss future work for our study along
with some challenging points.
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Term descriptions in this thesis

Glossary of important terms in this thesis is listed below:

Table 1.1. Glossary of important terms

No Term Brief descriptions for this thesis∗

1 Dose-finding studies One of Phase I clinical trials for identifying targeted doses depending on
types of the cancer therapies while taking tolerability into account.
They are typically conducted sequential tests of an investigational agent
by escalating and de-escalating dose levels for successive cohorts.

2 Mono-therapies Therapies using a single drug to treat a disease or condition.
3 Combination therapies Therapies using multiple drugs to treat a disease or condition.
4 Targeted therapies A type of cancer treatment that directly affects specific parts

being involved in the growth, progression, and spread of cancer.
5 Cytotoxic agents Anticancer agents that aim to destroy cancer cells by inhibiting cell

division based on the unique characteristics of cancer cells.
6 Biologic agents A substance that is made from a living organism or its products.

Many targeted therapies for cancer treatment utilize biologic agents.
7 Cohort Group composed of small number of patients (e.g., three patients per

cohort) for treatment at a selected dose level.
8 Dose–response relationships Depending on study objectives, dose–response relationships describe

relationships between dose and the associated toxicity, efficacy, or
both responses.

9 Dose limited toxicity Serious adverse effects that prevent an increase in dose level of the
(DLT) treatment.

10 Maximum tolerated dose The highest dose that does not cause unacceptable toxicity.
(MTD)

11 Maximum tolerated dose A dose combination whose toxicity probability equals to the target
combination (MTDC) toxicity rate.

12 Optimal dose (OD) In this thesis, an optimal dose means a dose that satisfies the following
two conditions: efficacy is greater than or equal to the target efficacy rate,
toxicity does not exceed the target toxicity rate.

13 Target response rates There are two types of target response rates in this thesis.
One is the target toxicity rate that describes the maximum tolerated
toxicity for MTD or MTDC determinations and the other is the target
efficacy rate that describes the minimum acceptable efficacy rate
for OD determinations.

14 Bayesian optimization One of the sequential nonparametric Bayesian-based frameworks
to seek a global optimization over unknown black-box functions
while estimating the functions.

15 Bayesian optimization design Our proposed design that leverages the advantages of Bayesian
(BOD) optimization for dose-finding studies.

16 Parametric model-based designs In this thesis, parametric model-based designs mean statistical designs
that utilize parametric models to describe dose–response relationships.

17 Toxicity probability interval Bayesian nonparametric designs that sequentially select appropriate doses
designs based on posterior probabilities associated with pre-specified toxicity intervals

for dose-finding studies.
18 Curve-free designs Bayesian nonparametric designs that sequentially estimate dose–response

relationships without specifying theoretical models and select and
determine appropriate doses.

19 Gaussian process (GP) A stochastic process that has Gaussian distributed finite dimensional
marginal distributions (Quadrianto et al., 2011). Every finite collection
of the random variables follow a multivariate normal distribution.

20 Acquisition function Heuristics based on the latest model on unknown functions for drawing
how desirable each point is for the next evaluation in order to reach the
global optimal point.

∗ Note that the glossary partially relies on the NCI dictionary.
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Chapter 2

Transition and problems of statistical

designs for dose-finding studies

This chapter introduces the fundamental study procedures for dose-finding studies and
popular statistical designs that provide essential frameworks that have brought various
extended statistical designs. Besides, we briefly explain the transitions of statistical de-
signs for dose-finding studies and the relationships among the designs. In preparation
to apply Bayesian optimization to dose-finding studies, we also roughly describe typical
Bayesian optimization.

2.1 Common procedures in dose-finding studies
The ultimate goal of oncology Phase I clinical trials for mono-therapies with cytotoxic
agents is to identify the MTD defined as the highest dose that does not cause an un-
acceptable level of DLT. Specifically, the primary objective of dose-finding studies is to
identify which dose xj is the maximum dose that has the closest toxicity (i.e., DLT)
probability to the target toxicity rate of θ among available dose levels (j ∈ {1, . . . , J}).

The evaluation period for DLT involved in the MTD determination is usually set as the
first cycle of treatment (e.g., 28 days long ) during a trial. In general, DLT is assessed
according to the National Cancer Institute’s Common Terminology Criteria for Adverse
Events (CTCAE) classification and usually encompasses all grade 3 or higher severe tox-
icity except for grade 3 nonfebrile neutropenia and alopecia. According to Postel-Vinay
(2015), a few recent trials have updated its DLT definition for instance by adding pro-
longed grade 2 toxicity or prolonging the DLT evaluation period in order to fit the agents
with modern mode-of actions or to address late-onset toxicity (Postel-Vinay et al., 2011).

Dose-finding studies examine investigational agents by assigning patients to small
groups called “cohort” from the lowest dose level based on sequential dose-escalation and
de-escalation procedures. Cohort sizes are usually three patients. Once patients in the
tth cohort are treated, all observations up to the tth test are carefully assessed. The next
dose x(t+1) is then selected based on the evaluated observations. The series of treating
patients with a selected dose, observing patient outcomes, and selecting the next dose
are repeated until one of the predetermined stopping rules is met. The following steps
are commonly used in dose-finding studies:

1. Patients in a cohort are treated with a selected dose. In general, patients in the
first cohort are treated with the lowest dose level. Because dose-finding studies are
first-in-human studies that are the first time to test the new treatment on people,
patients in the first cohort are treated with a dose that is considered safe on human
bodies based on extrapolation from preclinical data.
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2. Patient outcomes are observed. The number of patients who experienced or did
not experience DLT plays the most important role in dose selections for the next
cohort.

3. After the tth test, the next dose x(t+1) is selected based on the latest data or
cumulative data depending on statistical designs.

4. Steps 1 to 3 continue until one of the predetermined stopping rules is met. (e.g.,
All patients have been already enrolled in the trial.)

5. MTD determination is performed based on the last data or cumulative data.

Fig. 2.1 roughly draws the graphical depiction regarding common procedures in dose-
finding studies.

Treat patients 
with a selected 

dose

Observe 
patient 

outcomes

Does the trial 
condition meet 

requirements for 
MTD determination?

Select the next 
dose 𝑥(௧ାଵ) based 
on observed data

Yes

No

Determine 
the MTD 　

Fig. 2.1. Schematic of common procedures in dose-finding studies

2.2 The earliest statistical design
A number of statistical designs have been proposed for identifying the MTD under mono-
therapies with cytotoxic agents. Out of them, the earliest statistical designs is the tra-
ditional 3+3 design (Carter, 1973). It is categorized as rule-based designs, which is also
referred to as algorithm-based designs, that require no modeling of dose–toxicity rela-
tionships. While there are some variations of the 3+3 design, the 3+3 design commonly
sequentially treats 3-patient cohorts and dose-escalation (and de-escalation) for the next
cohort is determined based on the number of patients with DLT at the current test dose.
In accordance with the summary provided in Daimon (2012), the traditional 3+3 design
imposes the following rule on dose-escalation:

1. Treat three patients with a selected dose level
• If no patient experienced DLT, the next dose level is escalated by one dose level
and the next step goes to Step 1.

• If one patient experienced DLT in the cohort, the next step goes to Step 2.
• If more than or equal to two patients experienced DLT in the cohort, the next
step goes to Step 3.
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2. Stay the same dose level for the next cohort and three patients in the next cohort
are treated at the same dose level.

• If no patient experienced DLT in the cohort, the next dose level is escalated by
one dose level and the next step goes to Step 1.

• If more than or equal to one patient experienced DLT in the cohort, the next
step goes to Step 3.

3. Dose-escalation is stopped because the last tested dose is regarded as higher than
the MTD.

4. The MTD is determined after Step 3. If MTD determination requires treating at
least six patients with the MTD, the MTD will be the highest dose with 33% or
less toxicity probability. When we reach Step 3, one dose level lower than the last
tested dose will be the MTD; however, if the dose has not been administered to at
least six patients, three patients will be additionally treated with the dose. These
steps are repeated until the final condition for MTD determination meets.

Fig. 2.2 provides a graphical depiction of an example of possible dose allocations in a
dose-finding study based on the traditional 3+3 design following the above rule. In Fig.
2.2, dose-escalation was stopped at the 7th cohort, and the trial selected the 4th dose
level from the bottom as the MTD based on the patient outcomes at the last cohort.

Number of patients

Patient with DLT
Patient without any DLT

D
os

e 
le

ve
l One cohort

　
Fig. 2.2. Schematic of the traditional 3 + 3 design

If Steps 2 and 3 are removed, and the conditions of Steps 2 and 3 are altenated with

• If one patient experienced DLT in the cohort, the next step goes back to Step 1,
• If more than or equal to two patients experienced DLT in the cohort, the next dose
level is de-escalated by one dose level ,

respectively, this variation equals to another 3+3 design proposed by Storer (1989), which
is one of the most popular algorithms as the 3+3 designs.

Concerns to be highlighted

The 3+3 design remains the prevailing design for dose-finding studies because it is simple
to implement and safe (Tourneau et al., 2009); however, it is well-known that the 3+3
design has substantial limitations such as treating a large portion of patients with po-
tentially subtherapeutic doses due to infrequency of dose-escalation (Ratain et al., 1993;
Reiner et al., 1999; Zohar and O’Quigley, 2009). It results in low accuracy of MTD iden-
tifications. Ivanova (2006) has numerically shown that the target toxicity rate of the 3+3
design locates between 0.16 and 0.27 on average, which is lower than the declared target
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toxicity rate of 0.33. This is a significant disadvantage because the target toxicity rate in
this design deviates from what we truly need to identify.

2.3 Parametric model-based designs
As alternative designs to rule-based designs represented by the traditional 3+3 design,
parametric model-based designs have been emerged to improve the precision of MTD es-
timation. The continual reassessment method (CRM) proposed by O’Quigley et al. (1990)
is the first parametric model-based design, which is one of the adaptive designs, for dose-
finding studies. After the emergence of the CRM, a lot of variations of the CRM have been
introduced such as dose escalation with overdose control (Bobb et al., 1998), the Bayesian
logistic regression model (Neuenschwander et al., 2008), the Bayesian model averaging
CRM (Yin and Yuan, 2009a) and others (e.g., Goodman et al., 1995; Faries, 1994; Leung
and Wang, 2002). Many authors have demonstrated the CRM and its variations provide
superior performance to the 3+3 design in terms of accuracy of MTD estimation, proper
dose allocation, and flexibility (e.g., Onar et al., 2009; Iasonos et al., 2008; Onar-Thomas
and Xiong, 2010; Ananthakrishnan et al., 2016; Boonstra et al., 2015; Rosenberger and
Haines, 2002; Jaki et al., 2013; James et al., 2016). Accordingly, leading pharmaceutical
companies have commonly applied parametric model-based designs represented by the
CRM including its variations (Love et al., 2017).

Of the CRM family, Bayesian-based CRMs is often utilized in oncology Phase I clinical
trials to identify the MTD. Compared with the 3+3 design, the CRM has roughly three
advantages: Target toxicity rates are quantitatively clarified so that the CRM can iden-
tify the dose associated with the targeted toxicity rate. Dose–toxicity relationships are
evaluated by exploiting not only the last observations but also all available data. Intu-
itive graphical illustrations on dose–toxicity relationships could be easily provided based
on simple parametric models. The following describes the statistical frameworks of the
CRM.

Dose-toxicity model and a prior distribution for the model parameter

The CRM models dose–toxicity relationships with simple one-parameter monotonically in-
creasing functions. The popular models for the CRM are a power model, a one-parameter
logistic model, or a hyperbolic tangent model. For example, a power model describes a
toxicity probability at a dose level j (j ∈ {1, . . . , J}) as follows:

πj(a) = (π0
j )

exp(a), (2.1)

where a is an unknown model parameter, and π0
1 < · · · < π0

J denote initial toxicity guesses
at each dose level. The initial toxicity guesses are pre-specified constants provided by
investigators and called skeletons for the model; however, it is often challenging to specify
initial toxicity guesses because of a lack of information about dose–toxicity relationships.

Lee and Cheung (2009) has proposed a systematic approach to calibrate initial toxicity
guesses for the CRM based on indifference intervals. The indifference interval for a dose
level corresponding to the true MTD provides an interval of toxicity rates associated with
the neighboring doses that may be selected instead of the true MTD because the difference
of toxicity rates among doses within the interval is regarded as clinically negligible. The
systematic approach provides an indifference interval to maximize the average percentage
of correct MTD selections under the selected model for the CRM across possible scenarios
of true toxicity probabilities.

As another representative model for the CRM, a one-parameter logistic model with a
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fixed intercept is given by

logit{πj(a)} = a0 + xj × exp(a), (2.2)

where a0 is a fixed constant that is usually 3 (O’Quigley and Chevret, 1991). While
skeletons are the same values as re-scaled conceptual doses xj in the power model, a
logistic model needs additional calculations for conceptual doses associated with initial
toxicity guesses. The values of xj are calculated so that toxicity probabilities derived with
a fixed parameter (e.g., a = 1) return π0

j at each j. We note the values of xj do not need
to take actual values of the investigational agents.

A prior distribution for a usually assumes a normal formulation (i.e., P(a) = N(0, σ2
a)),

where a prior variance for σ2
a can be calibrated by another systematic approach proposed

by Lee and Cheung (2011) to obtain a least informative prior variance σLI
a . A least

informative prior variance provides that the probabilities with each dose being MTD
follow a uniform distribution as a prior distribution in order to minimize the effect of the
prior in the estimation process because little is known about dose–toxicity relationships
at the start of a trial.

Model update and dose selection

We obtain binary responses regarding if a patient experienced DLT or not at every se-
quential test for cohorts. Once the dichotomous DLT response is observed in each patient
in the tth cohort, a distribution on a is updated using all available observations up to
the tth cohort D1:t = {(n(1), x(1), y(1)), . . . , (n(t), x(t), y(t))} according to Bayes’ theorem
as follows:

P(a | D1:t) =
L(D1:t | a)P(a)∫∞

0
P(u)L(D1:t;u)du

, (2.3)

L(D1:t | a) =
t∏

z=1

π(z)(a)
y(z){1− π(z)(a)}n(z)−y(z) , (2.4)

where y(z) denotes a number of patients experienced DLT out of n(z) patients treated with
the zth tested dose x(z); π(z) denotes a toxicity probability corresponding to x(z). As a
result, the CRM provides the following two possible point estimates:

• A plug-in mean

π̂j = πj(a) |a=E(a|D1:t), E(a|D1:t) =

∫ ∞

0

aP(a | D1:t)da, (2.5)

• A posterior mean

π̂j = E{πj(a)|D1:t} =

∫ ∞

0

πj(a)P(a | D1:t)da. (2.6)

Based on π̂j , a dose with the closest toxicity rate to a target toxicity rate θ is selected
as the next dose x(t+1). Occasionally, a trial does not allow either to skip doses in dose-
escalation or to escalate doses immediately after toxic outcomes in dose selections to ensure
patient safety. Once the trial conditions meet pre-specified stopping rules, the MTD is
determined as a dose with the closest toxicity to θ based on π̂j .
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Open research questions

The CRM needs to specify a theoretical model describing dose–toxicity relationships be-
fore the beginning of a trial. Shen and O’Quigley (1996) has demonstrated that the CRM
can achieve the primary goal with regards to the selection of the MTD even if the model
is misspecified; however, Cheung and Chappell (2002) has reported that sufficient condi-
tions to converge to the true MTD established by Shen and O’Quigley (1996) might be
too restrictive. It means there are possible scenarios where the CRM cannot guarantee
convergence to the true MTD. Paoletti and Kramar (2009) has reported that the choice of
theoretical models in the CRM would affect the operating characteristics if sample sizes
are small (e.g., 10 to 50 patients). As there is little information about true dose–toxicity
relationships in practice, it may not always appropriate to apply strong restrictions for
dose–toxicity shapes before the initiation of trials. Parametric model-based designs have
usually the potential risk of model misspecification and the CRM is no exception.

Furthermore, most conventional designs including the CRM rely on point estimates
without considering uncertainties of estimates during their dose selections. If there is
non-negligible variability in estimated dose–toxicity relationships, dose selections without
taking account of the uncertainty may lead to skewed dose allocations. For example,
consider two different distributions with the same mean value of a toxicity probability.
Even if these mean values are near to the target toxicity rate and the dose can be selected
as an MTD candidate, the shapes of those distributions may be quite different in particular
at the start of a trial (Neuenschwander et al., 2008; Mozgunov and Jaki, 2020). Thus,
decision-making based on point estimates can be potentially risky since it cannot reflect
such non-negligible variability.

Our study introduced from the next chapter will address issues on the model misspeci-
fication and on ignoring uncertainties in dose selections.

2.4 Nonparametric designs

2.4.1 Toxicity probability interval designs

As different approaches from parametric model-based designs like represented by the
CRM, nonparametric Bayesian designs have been introduced to relax the effect of model
selections. Toxicity probability interval designs might be major approaches of nonpara-
metric Bayesian designs.

The modified toxicity probability interval (mTPI) proposed by Ji et al. (2010) is one of
the most popular toxicity probability interval designs. Liu and Yuan (2015) has proposed
the Bayesian optimal interval (BOIN) that uses the same type of decision rules as the
mTPI except for escalation and de-escalation boundaries. An extended version of the
mTPI named mTPI-2 (Guo et al., 2017) has been proposed to solve an undesirable issue,
which may happen under specific situations, about dose-escalation and de-escalation rule
based on the mTPI. Because mTPI provides as simple implementation as the 3+3 design
but much better performance than the 3+3 design, the popularity of the mTPI has been
growing in both research and industry entities during the relatively short period since it
was proposed (Ji and Wang, 2013). The following describes the statistical frameworks of
the mTPI.
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Toxicity probability distribution

The mTPI is a Bayesian adaptive design assisted by a beta-binomial model in spite of
its simplicity on implementation without any logistic burden. Specifically, suppose πj is
a toxicity probability at a dose level j (j ∈ {1, . . . , J}). The prior distribution for πj is
given by

πj ∼ Beta(αj , βj), (2.7)

where αj and βj are hyperparameters for a beta distribution. In general, a non-informative
prior is adopted for equation (2.7) (e.g., αj = βj = 1, αj = βj = 0.005). When yj
patients experienced DLT out of nj patients at a dose level j after the tth test, a posterior
distribution on a toxicity probability at j can be denoted by

πj | D1:t ∼ Beta(αj + yj , βj + nj − yj), (2.8)

based on the beta-binomial conjugacy.

Dose selection

The unit probability mass (UPM) under a posterior distribution of πj at the current
tested dose level j is calculated for three intervals corresponding to underdosing, proper
dosing, and overdosing: (0, θ − ε1), (θ − ε1, θ + ε2), (θ + ε2, 1). Ji and Wang (2013)
and Ji et al. (2010) have recommended to assign small fractional values to ε1 and ε2 (e.g.,
0.05) to consider uncertainties around a target toxicity rate θ. The UPM for a dose level
j corresponding to an interval (p1, p2) can be calculated by {F (p2) − F (p1)}/(p2 − p1),
where F is a cumulative distribution function based on a beta distribution for πj .

At each test during a trial, the mTPI takes either decision among ‘Stay at the same dose
(S)’, ‘Escalation (E)’, or ‘De-escalation (D)’, which are associated with the interval (θ−ε1,
θ+ε2), (0, θ−ε1) and (θ+ε2, 1), respectively. Out of the three decisions, the mTPI selects
a dose with the largest UPM as the next dose. This dose selection algorithm concerns
minimizing the probabilities of incorrect decisions. The mTPI assumes an independent
uniform prior for πj and considers the six penalties as depicted in Fig. 2.3.
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Fig. 2.3. Independent uniform prior for πj and incorrect decisions where penalties are

imposed when the true toxicity probability πj falls in the divided range

Under the uniform prior, the mTPI sets the six penalties at 1/(θ − ε1), 1/(ε1 + ε2), and
1/(1− θ− ε2) for each penalty pattern at the three divided range from left to right in Fig.
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2.3, respectively. This possesses the property that the prior expected penalties for S, E ,
and D are the same (=1). For example, the prior expected penalty on D is given by

E{P(πj |D)} =
1

θ − ε1
P(πj < θ − ε1) +

1

ε1 + ε2
P(θ − ε1 ≤ πj ≤ θ + ε2).

Given these penalties, the three posterior expected penalties on S, E , and D equal (1 −
UPMs) for the three intervals; therefore, choosing the largest UPM corresponds to choos-
ing the decision that minimizes the posterior expected penalties.

Suppose the current tested dose level is j. If P(πj+1 > θ | D1:t) > 0.95, it implies that
the upper adjacent dose level from the current tested dose shows excessive toxicity very
likely. In this case, dose-escalation will be prohibited for the next dose selection (Ji et al.,
2007).

Once either predetermined stopping rule is met, a single dose with the smallest difference
between π̃j and the target toxicity rate θ is selected as the MTD from an admissible dose
set At, where π̃j denotes a sensible estimate of πj and is usually derived from an isotonic
regression. Specifically, after the posterior mean π̂j is computed under the posterior
beta distribution, the pooled adjacent violators algorithm (Barlow et al., 1972) on π̂j is
performed so that π̃j increases monotonically with increasing dose levels such as π̃1 ≤
· · · ≤ π̃J . The dose level at the MTD (j∗) is described by

j∗ = arg min
j∈At

| π̃j − θ | . (2.9)

Regarding an admissible dose set At, it is composed of all tested dose levels that eliminate
doses that satisfy a condition P(πj > θ | D1:t) ≤ 0.95; that is, any dose where the final
posterior beta distribution shows high risks of excessive toxicity will not be used for the
MTD determination.

Open research questions

Toxicity interval designs including the mTPI and other variations can be implemented
easily and perform well under various scenarios. On the other hand, it focuses on only the
current tested dose for the next dose selection and available doses for the dose selections
are narrower than other types of designs like the CRM. Also, many toxicity interval designs
perform the isotonic regression at the last stage of trials to provide dose–toxicity curves.
It means dose–toxicity relationships across all possible doses are provided only for the final
MTD determination. In general, dose level review meetings whose committee members
include external clinicians assess all available data to decide the best action for the next
dose selection; therefore, the latest statistical belief on dose–toxicity relationships possibly
helps them understand the characteristics of investigational agents even if the estimate
has a lot of uncertainties. There may still be room for improvement with respect to the
above two points.

2.4.2 Curve-free designs

Curve-free designs are other nonparametric Bayesian designs that differ from toxicity inter-
val designs. Curve-free designs can estimate dose–toxicity curves without any theoretical
models that rely on parameters. Although the number of curve-free designs is much less
than other types of designs, for example, Gasparini and Eisele (2000, 2001), Whitehead
et al. (2010), and Tang et al. (2018) have proposed curve-free designs for dose-finding
studies. Out of them, a nonparametric Bayesian design based on a product-of-beta-prior
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(PBP) proposed by Gasparini and Eisele (2000, 2001) has been cited the most as a curve-
free design from other authors. The following describes the statistical frameworks of the
PBP.

Nonparametric modeling for toxicity probabilities

The PBP models a toxicity probability at each dose level directly without assuming a
specific dose–toxicity curve. It assumes a prior distribution of a toxicity probability as
a product-of-beta prior owing to the reparametrization of a toxicity probability at each
dose level by another parameter with a beta-prior distribution.

Let πj denote a toxicity probability at a dose level j and reparameterize it with bj as
follows:

b1 = 1− π1 and bj =
1− πj

1− πj−1
for j = 2, . . . , J. (2.10)

A beta prior distribution is independently assumed to each bj ; that is, bj ∼ Beta(oj , ζj).
Equation (2.10) can be converted to the following expression:

πj = 1−
j∏

z=1

bz. (2.11)

Thus, the prior distribution for πj induced by equation (2.11) is called a product-of-beta-
prior distribution.

The PBP treats πj as if it has a beta distribution; that is, πj ∼ Beta(Aj , Bj), although
the product-of-betas are not betas themselves. This is because a product of an independent
beta distribution is determined by its moments, and a beta approximation for the first and
second moments is known to provide good fitting results for a product of an independent
beta distribution.

The hyperparameters for πj and bj are determined as follows:

1. The hyperparameters for πj are determined with prior inputs (π0
1 , π

0
2 , . . . , π

0
J) pro-

vided by investigators. One of the two parameters (Aj or Bj) is 1, then another
is calculated by matching the prior median of πj to the prior inputs of π0

j in order
to make the variance largely subject to approximate unimodality. Specifically, if
π0
j ≤ 0.5, then Aj = log(0.5)/ log(π0

j ) and Bj = 1; whereas if π0
j > 0.5, then Aj = 1

and Bj = log(0.5)/ log(1− π0
j ).

2. The parameters oj and ζj are determined by matching the first two moments for
bj calculated by the first two moments of πj based on Aj and Bj via equation
(2.10). Gasparini and Eisele (2000, 2001) have provided detailed equations for the
hyperparameters.

Dose selection

In the same manner in the other dose-finding procedures, binary DLT responses at each
test are mainly contributed to the next dose selection. Once patient outcomes are observed
at the tth test, posterior toxicity distributions for each dose level j are calculated. The
next dose level for the t+ 1th test is then given by

j(t+1) = arg min
j∈At

| π̂j − θ |, (2.12)

where At ⊂ {1, . . . , J} denotes an admissible dose set at the tth test whose conditions are
predetermined before trials; π̂j = E(πj | D1:t) corresponds to the posterior expectations
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of toxicity probabilities at each dose level. At the end of a trial, MTD determination is
performed according to equation (2.12) so that the MTD has the closest toxicity rate to
a target toxicity rate θ based on the final posterior mean of toxicity probabilities.

Open research questions

Gasparini and Eisele (2000, 2001) have shown the exact posterior distribution of bj an-
alytically as a mixture of beta distributions because binary toxicity outcomes follow a
binomial distribution; therefore, they have also presented the exact computation for the
posterior expectations for πj . On the other hand, the matrix involved in the exact equa-
tion grows dynamically as the number of tests increases. Cheung (2011) has discussed the
numerical problems of the exact computations and indicated that Markov Chain Monte
Carlo (MCMC) is one of the options for avoiding the numerical problem. In addition, the
PBP has been pointed that it might cause rigidity in situations where a low toxicity rate
is targeted due to its vague priors. Cheung (2002) has discussed and given some solutions
to the rigidity issue.

Jaki et al. (2013) has indicated that curve-free designs would prefer to the CRM if there
is little evidence of high enough quality about dose–toxicity relationships. Nevertheless,
the number of curve-free designs is overwhelmingly fewer than other types of designs so
far. Furthermore, the existing design has some shortcomings such as numerical issues;
therefore, it would have been yet a great challenge to develop sophisticated curve-free
designs.

2.5 Preparation for leveraging Bayesian optimization
We introduced so far four major statistical designs for dose-finding studies by their types:
the 3+3 design in rule-based designs, the CRM in parametric model-based designs, the
mTPI in toxicity probability interval designs, an the PBP in curve-free designs. Fig. 2.4
briefly illustrates the design types we explained through sections 2.2 to 2.4.
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Fig. 2.4. Schematic of statistical design types for dose-finding studies

Given the open research questions we raised to the conventional statistical designs, we
develop a new nonparametric Bayesian design that can be categorized in curve-free designs
(the red box in Fig. 2.4) by utilizing Bayesian optimization frameworks. To the best of
our knowledge, our study is the first to investigate the capability of Bayesian optimization
under clinical trials. Bayesian optimization possibly offers the following advantages:

• Bayesian optimization can be applied to dose-finding studies in the same procedures
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as existing statistical designs (e.g., sequential evaluations with cohorts),
• Because of little information available about dose–response relationships, flexible
modeling without relying on strong assumptions on the shapes is a reasonable ap-
proach. Bayesian optimization realizes flexible modeling on unknown dose–response
relationships based on a nonparametric model,

• Bayesian optimization can reflect non-negligible variability to dose selections based
on acquisition functions to avoid skewed dose selections,

• In general, sample sizes in dose-finding studies are small. Bayesian optimization
can seek the MTD within as few sample sizes as possible.

We briefly introduce the mathematical background of typical Bayesian optimization
based on Brochu et al. (2010) in the following section.

2.5.1 Typical Bayesian optimization

Bayesian optimization is a sophisticated framework to optimize expensive objective func-
tions that take a lot of resources such as time and cost to evaluate (Shahriari et al., 2016).
As it is called a black-box optimization algorithm, it aims to search for the optimum of an
unknown objective function while estimating a model of the objective function through a
nonparametric Bayesian regression.

Suppose g denotes an unknown objective function. The ultimate goal of Bayesian
optimization is to solve the following problem:

x∗ = arg min
x∈X

g(x), (2.13)

where X is input space of interest for searching. We are considering finding the global op-
timizer (minimizer or maximizer) of the unknown objective function g. Typical Bayesian
optimization deals with continuous input x. We assume g can be evaluated at any arbi-
trary point x in the domain regardless of its shape. Although we do not know the shape
of g, we observe g through point-wise observations y that might be noise-free or noisy
depending on the situation. When treating noisy observations, typical Bayesian optimiza-
tion usually assumes that observations follow a Gaussian distribution, and an arbitrary
observation is described as y ∼ N(g(x), σ2), where σ is the variance of noise injected into
the function observations.

Model update

We follow Bayes’ theorem to estimate the unknown objective function g. A Gaussian
process prior is often put as a prior belief over g. The prior distribution of g is given by
g ∼ GP(m, k), which is specified by a mean function m(x) and a kernel function k(x, x′).
Every time we observe y, g is sequentially refined through a Gaussian process regression
based on the Bayesian posterior updating so that it can reflect observations. A posterior
distribution based on up to tth observations is given by

P(dg | D1:t) ∝ P(D1:t | g)P(dg), (2.14)

where D1:t = {x(1), . . . , x(t), y(1), . . . , y(t)}. This Bayesian updating goes a conjugate
analysis of a Gaussian distribution; therefore, the posterior distribution g at the next



20 Chapter 2 Transition and problems of statistical designs for dose-finding studies

arbitrary point x(t+1) can be analytically calculated and described as follows:

P(dg(x(t+1)) | D1:t, x(t+1)) = N(dg | µ(t)(x(t+1)), σ
2
(t)(x(t+1))), (2.15)

µ(t)(x(t+1)) = k⊤K−1g1:t,

σ2
(t)(x(t+1)) = k(x(t+1), x(t+1))− k⊤K−1k,

where g1:t = g(x(1:t)), k = [k(x(t+1), x(1)), k(x(t+1), x(2)), . . . , k(x(t+1), x(t))], and the ker-
nel matrix K is given by

K =

 k(x(1), x(1)) . . . k(x(1), x(t))
...

. . .
...

k(x(t), x(1)) . . . k(x(t), x(t))

 .
Next point selection based on acquisition functions

Once the model is updated, an acquisition function that guides the next point to evaluate
is calculated to provide a balance of information between exploitation and exploration on
the posterior distribution for g.

There are various acquisition functions for Bayesian optimization. Based on Snoek et al.
(2012), the most popular acquisition functions are roughly explained as follows:

• Probability of Improvement (PI) provides a strategy to maximize the probability of
improving over currently the best value. This strategy tends to weigh on exploita-
tion more than exploration.

• Expected improvement (EI) provides a strategy to maximize the expected improve-
ment over the current best point(Mockus, 1975; Jones et al., 1998).

• Lower (upper, when considering maximization) confidence bound (LCB) directly
balances between exploitation and exploration with the simple sum form and is a
strategy to minimize regret over the course of their optimization (Srinivas et al.,
2010).

The next point is selected so that it maximizes or minimizes an adopted acquisition
function. Snoek et al. (2012) has also provided the form of each acquisition function when
observations follow a Gaussian distribution. Our study will use the EI and the LCB that
have shown to be better-behaved than PI. From the next chapter, we will explain how we
leverage Bayesian optimization for dose-finding studies in detail along with explanations
of concrete equations to calculate each acquisition function.
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Chapter 3

Bayesian optimization design of MTD

estimation for mono-therapies

Chapter 3 introduces Bayesian optimization design, BOD, that applies Bayesian opti-
mization frameworks to MTD estimation problems in dose-finding studies investigating
mono-therapies with cytotoxic agents. Chapter 3 covers typical dose-finding studies based
on common situations frequently assumed such as assumptions for the mode-of-action ow-
ing to agent types, and the number of dose levels. Chapter 3 is constructed based on the
works A curve free method based on Bayesian optimization for oncology Phase I clinical
trials, A. Takahashi and T. Suzuki, Proceeding of 2nd International Conference on Statis-
tics: Theory and Applications, 2020 (Takahashi and Suzuki, 2020); Bayesian optimization
for estimating the maximum tolerated dose in Phase I clinical trials, A. Takahashi and
T. Suzuki, Contemporary Clinical Trials Communications, 2021 (Takahashi and Suzuki,
2021a).

3.1 Basic structure of Bayesian optimization design
Section 3.1 introduces BOD that has the basic structure of BOD introduced throughout
this thesis by the following subsections:

• Section 3.1.1 describes how BOD models dose–toxicity relationships,
• Section 3.1.2 shows a dose selection strategy on how BOD sequentially selects MTD
candidates,

• Section 3.1.3 mentions overdose control imposed in BOD to address safety consider-
ations, The procedures introduced here play an essential role as a statistical design
for clinical trials from the perspective of ensuring patient safety,

• Section 3.1.4 specifically explains the implementation steps of BOD,
• Section 3.1.5 illustrates a brief example with some drawings that we can generate
when implementing BOD.

BOD is expected to provide the following advantages; flexible nonparametric modeling
in BOD relaxes model misspecification issues because dose–response relationships are ex-
pressed without strong assumptions found in parametric model-based designs; the current
probabilistic belief on dose–response relationships across all doses can be sequentially re-
fined via Bayes’ rule, which helps understand potential characteristics of investigational
agents; uncertainties of estimates contribute to dose selections via an acquisition function
that is one of the features of Bayesian optimization frameworks providing a balance of
information between exploration and exploitation of the estimates, which would realize
efficient searches for the targeted dose without disproportionately concentrating on a local
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optimum.
First of all, we introduce BOD in detail from its statistical modeling at the following

section.

3.1.1 Statistical model for dose–toxicity relationships

As described in Section 2.5, Bayesian optimization regards unknown objective functions as
nonparametric models to seek the global optimizer. BOD also models dose–toxicity rela-
tionships based on the nonparametric approach. Let us express dose–toxicity relationships
as follows:

f(x) = logit{π(x)} = log

{
π(x)

1− π(x)

}
, (3.1)

where π(x) denotes toxicity probabilities at a corresponding conceptual dose x at a arbi-
trary dose level j (j ∈ {1, . . . , J}) in the finite dose range X = {x ∈ R | x1 ≤ x ≤ xJ}
and π(x) = [1+exp{−f(x)}]−1. The logit transformation for π guarantees that π bounds
within the range 0 to 1 on a finite dose range. We note that conceptual doses x are not
necessary to be actual dose values because dose–toxicity relationships taken into account
in the estimation process only rely on distances between conceptual dose values but not
actual values; however, conceptual doses should be as equally spaced with regards to
toxicity probabilities as possible so that we could avoid skewed estimation of toxicity.

Since we do not know the exact form of f , we estimate it in the Bayesian manner. As
shown in Section 2.5, Bayesian optimization puts prior distributions on objective functions
to be optimized because the primary goal is to identify optimal points over the objective
functions. BOD does not treat dose–toxicity functions as such objective functions; on the
other hand, preliminary estimation on dose–toxicity relationships could be of interest and
allow investigators to catch the characteristics of investigational agents. Although there is
a limitation to estimate dose–toxicity relationships due to limited sample size in practice.
Nonetheless, preliminary estimation could be useful information for subsequent clinical
trials in addition to the current dose-finding study. Therefore, BDO firstly prescribes a
prior belief over f and estimates it.

According to typical Bayesian optimization that often puts a Gaussian process prior
over unknown functions, BOD describes a prior distribution for f by using a Gaussian
process as follows:

f ∼ GP(m, k), (3.2)

where a mean function m(x) and a covariance function k(x, x′) specify its stochastic pro-
cess. A Gaussian process makes a model easy to treat because it leaves setting a prior
distribution to designing a kernel function (Rasmussen and Williams, 2006). Although it
is possible to apply other than a Gaussian process to prior distributions of f , Mockus et al.
(1994) has already explicitly set the framework for a Gaussian process prior in Bayesian
optimization. Also, a Gaussian process prior has proven successful in Bayesian optimiza-
tion, for example, as mentioned in Shahriari et al. (2016). (On a different note, Russu
et al. (2011) has utilized a Gaussian process for modeling population pharmacokinetics in
dose-finding studies.)

The prior mean function form(x) can derive from pre-specified initial guesses for toxicity
probabilities; however, because little is known about dose–toxicity relationships in general,
one option for setting prior values for m(x) might be utilizing an indifference interval
determined by a systematic approach proposed for the CRM by Lee and Cheung (2009).
Section 2.3 also describes indifference interval for the CRM. We will show specifics about
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how to set prior values for m(x) using the indifference interval approach at Step 1 for the
model phase in Section 3.1.4.

The covariance function k(x, x′), which is a kernel function, determines the smoothness
properties of samples drawn from it. We apply the squared exponential kernel given by

k(x, x′) = σ2
f exp

(
− 1

2ρ2
| x− x′ |2

)
, (3.3)

where σ2
f is a signal variance and generally set as 1, which determines the variation of

function values from their mean; a scale parameter ρ controls the width of the kernel.
The scale parameter expresses the distance between turning points in the explored dose
space defined by a setting on conceptual doses. In general, ρ becomes a value within the
range of conceptual doses. Because dose–toxicity relationships do not have many turning
points, too small a value is inappropriate (e.g., a value of less than 0.1 is too small under
the setting where each dose has a 0.2 increment interval per dose level as in our simulation
study in Section 3.2). The squared exponential kernel is a very popular choice for Bayesian
optimization and Schneider et al. (2017) has reported that the squared exponential kernel
is suitable when the unknown function is sufficiently smooth. Dose–toxicity functions
under mono-therapies are sufficiently smooth in general; therefore, we adopt the squared
exponential kernel in BOD. In order to provide computational stability, a small value ξ,
which is similar to noise in a regression model, is added on the diagonal elements of the
covariance function (Neal, 1997). As a result, each element in the covariance matrix K
for arbitrary conceptual doses x and x′ is expressed as

Kx,x′ = k(x, x′) + ξ1[x = x′], (3.4)

where the indicator function 1[·] returns 1 when the condition in the brackets is satisfied.
Otherwise, it returns 0.

After patients are administered a specific dose x in accordance with the study protocol,
investigators carefully observe and review patient outcomes. Out of all observations,
the number of patients with DLT (y) will be directly involved in dose selections for the
next cohort. The binary outcomes on DLT are described by a binomial distribution
as y ∼ Bin(n, π), where Bin(n, π) abbreviates a discrete probability distribution of the
number of successes in a sequence of n independent experiments with a probability π.
Then, the likelihood function of observed values up to the tth test denoted by D1:t =
{(n(1), x(1), y(1)), . . . , (n(t), x(t), y(t))} is given by

L(D1:t | f) =
t∏

z=1

π(x(z))
y(z){1− π(x(z))}n(z)−y(z) , (3.5)

where y(z) is the number of patients with DLT in a cohort with n(z) patients treated at
x(z) for the zth test.

Based on a Gaussian process prior and the likelihood function in equation 3.5, a pos-
terior distribution for π along with f is updated through the Bayes’ rule. In practice,
posterior samples are generated for the functions π and f by MCMC.

3.1.2 Dose selection strategy

Suppose that we are interested in finding a dose that produces the closest toxicity to
a target toxicity rate θ. So far, we have obtained an updated distribution for a dose–
toxicity relationship according to Section 3.1.1. To transrate MTD estimation problems
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into optimization problems so that we could utilize Bayesian optimization frameworks, we
set an objective function to be optimized in BOD as follows:

g(x) =| π(x)− θ |, (3.6)

where π(x) derives from f(x) according to equation (3.1). Posterior samples for g are then
calculated immediately after we get posterior samples for π based on those of f . The exact
form of the function g is still unavailable; however, we can leverage those probabilistic
beliefs in order to reach the next promising dose x(t+1) through designing an acquisition
function ĝ that is an alternative of the true objective function g.

While we briefly introduced several acquisition functions in Section 2.5, we select the
EI for ĝ in this chapter. Although there are many acquisition functions, the EI strat-
egy is often a default choice in popular Bayesian optimization packages (Nguyen et al.,
2017) as one of the most popular global optimization algorithms. It is because the EI
strategy offers reasonable and consistent performance without the need to choose addi-
tional hyperparameters (Qin et al., 2017; Snoek et al., 2012). In addition, Bull (2011)
has reported that the EI is efficient in the number of function evaluations required to find
the global optimum. The EI strategy automatically balances exploitation and exploration
and sequentially searches the point that offers the greatest expected improvement over the
current best point. Exploitation means sampling where the prediction of the probabilistic
model is high (e.g., posterior means). On the other hand, exploration means sampling at
locations where the prediction uncertainty is high. Specifically, it considers both proba-
bility and magnitude of improvement over the current best point at candidate doses based
on posterior distributions of g. A prior distribution we set gradually shrinks to the true
values as the data is obtained; however, there is a large width of uncertainties when the
distribution has not been sufficiently converged. Because the EI algorithm considers the
width of uncertainties, a dose with a large variance is not selected even if it is an optimum
in the sense of average.

The following are the specifics for the EI algorithm. Firstly, an improvement function
is given by

I(x) = max{0, g+ − g(x)}, (3.7)

where g+ = minx[Eg{g(x)} | D1:t] that means the current best point providing the mini-
mum value on g(x) among all available doses (Gramacy and Lee, 2011). Accordingly, I(x)
provides a positive value if g(x) turns out to be less than g+. Otherwise, I(x) becomes
zero. Secondly, the EI is calculated as the expectation of I(x) as follows:

EI(x) = E{I(x) | D1:t} =

∫ 1

0

I(x)P{g(x) | D1:t}dg, (3.8)

where P{g(x) | D1:t} is a posterior probability density function of g on an arbitrary dose
x after D1:t is obtained. Finally, the next dose is found by maximizing the expected
improvement function:

x(t+1) = arg max
x∈At

{EI(x)}, (3.9)

whereAt is an admissible dose set defined at Section 3.1.3. It imposes some dose-escalation
restrictions for overdose control to ensure patient safety.

3.1.3 Overdose control for patient safety

Patients in the next cohort are treated with the selected dose according to equation (3.9)
from an admissible dose set that limits candidate dose ranges based on such as toxicity
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probabilities to ensure patient safety. Specifically, we impose overdose control on dose
allocations during a trial through an admissible dose set At that is refreshed at each test
and includes doses that satisfy all conditions as follows:

1. All candidate doses in At require to satisfy P{π(x) > θ | D1:t} < c2. In addition, if
the lowest dose does not satisfy P{π(x1) > θ | D1:t} ≤ c1, At includes only x1.

2. No dose skip is allowed; therefore, the highest dose level is up to one dose level
higher than x(t). If x(t) = xJ , the highest candidate dose is up to xJ .

3. If two or more patients experience DLT at x(t), the highest dose level is up to one
dose level lower than x(t). If two or more patients experience DLT at x1, At includes
only x1.

For the first condition, we assume c1 ≤ c2 in order not to miss unsafe situations under the
assumption that toxicity increases monotonically with increasing dose levels. The third
condition on dose de-escalation might be a typical setting when the CRM is implemented
in actual clinical trials.

3.1.4 Implementation steps

We employ a start-up phase before implementing model estimation procedures because
the information available at the beginning of the trial may be too limited to rely entirely
on the model estimation part based on BOD when little is known about dose–toxicity
relationships.

Start-up phase

The start-up phase follows an algorithm-based procedure that is similar to the traditional
3+3 design described as follows:

1. Patients at the first cohort are treated with the lowest dose x1.
2. If no DLT is observed, patients in the next cohort are treated with a dose higher

by one level than the current dose.
3. If one patient experiences DLT for the first time in the trial, patients at the next

cohort are treated at the same dose level.
4. The start-up phase is stopped when the trial meets one of the following conditions:
（a）Two or more patients experience DLT.
（b）The test dose reaches the highest dose xJ .

Model phase

After the start-up phase, the trial proceeds to the model phase described through Sections
3.1.1 to 3.1.3. The following list provides the implementation steps during trials as well
as some preparations related to the model before the initiation of trials.

1. At the preparation stage of the study protocol, design parameters for a Gaussian
process prior are determined as follows:

（a）If there is little information about dose–toxicity relationships, initial toxicity guesses
generated by the indifference interval approach are available for setting a prior mean
function for m(x) as follows:
i. According to the systematic approach proposed by Lee and Cheung (2009), we

calculate an indifference interval named the optimal δ while using the CRM based
on a power model and an initial MTD at the center of the dose range (i.e., J/2),
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which we could maximize the average percentage of correct MTD selections when
implementing the CRM with the selected settings. The main purpose of utilizing
the systematic approach is to obtain one of the good guesses on the slope of initial
toxicity guesses pertaining to a prior mean function for m(x) in BOD. Smaller δ
makes the slope of initial toxicity guesses more gentle. As a result, dose-escalation
becomes more aggressive than larger δ in BOD. In contrast, initial toxicity guesses
based on a large δ tends to offer more conservative dose-escalation. Empirically,
values close to the optimal δ (e.g., a range of δ ± 0.02 ) would provide good
operating characteristics for BOD.

ii. Aside from the above determination on δ, an initial MTD location ν on our initial
toxicity guess for BOD could be determined based on the results of the start-up
phase. Otherwise, we recommend locating an initial MTD on the center of the
dose range (i.e., ν = J/2) to ensure enough space within the range both below
and above the dose.

iii. Once δ and ν are decided, we can generate the initial guesses whose indifference
interval is δ and initial MTD location is the νth dose level. Specifically, they
can be generated with the getprior function in the R package dfcrm by speci-
fying δ, ν, a power model, and the number of planned dose levels. We put logit
transformed values of the generated initial guesses as a prior mean function for
m(x).

If there is an informative belief on dose–toxicity relationships, initial guesses should
reflect it.

（b）For a covariance function, the value of σf is set as 1 because it is a typical setting
in Bayesian optimization and works well in most cases. The value of ρ indicates
a typical distance between turning points; thus, it depends on conceptual dose
ranges. An appropriate ρ provides at most two turning points in a range because
dose–toxicity functions do not have many turning points. In our two stage-design
(i.e., a combined design of the model phase after the start-up phase), a good value
is often comparable to the length of a dose range.

2. Once we are ready for proceeding to the model phase evaluations, firstly posterior
samples for f reflecting observed DLT outcomes are calculated with equations (3.1)
through (3.5) based on the Bayes’ rule via MCMC. Secondly, they are transformed
with the inverse logit function to obtain posterior samples of toxicity probabilities π
for illustrating actual dose–toxicity relationships. A drawing of a posterior distribu-
tion on π can help understand the current belief on π at each dose level. After the
above calculations, posterior samples for the function g are finally calculated with the
posterior samples for π according to equation (3.6).

3. Patients in the next cohort are treated with the selected dose according to the EI
strategy described in equations (3.7) to (3.9).

4. Steps 2 and 3 continue until the trial condition meets pre-specified stopping rules.
5. Once the trial is terminated, the MTD (x∗) is determined based on the final posterior

distribution for toxicity probabilities as follows:

x∗ = arg max
x∈{xj |π̂(xj)<(θ+έ2)}

P(θ − έ1 < π(x) < θ + έ1 | D1:t), (3.10)

where π̂(xj) is a posterior mean estimate of a toxicity probability at a dose level j;
έ1 and έ2 are pre-specified small values (έ1 ≤ έ2). The MTD is selected based on an
acceptable range for θ provided by έ1 from the final MTD candidate set that does not
retain doses with excessive toxicities according to the condition with έ2.
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3.1.5 Example with illustrations

Fig. 3.1 illustrates a specific example of the model phase under θ = 0.3 after the end of
the start-up phase that evaluated five cohorts with a cohort size of three.
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Fig. 3.1. Posterior toxicity distributions and the associated EIs in BOD

The upper section having three figures obtained after each test provides posterior distribu-
tions for toxicity probabilities as its posterior mean (dashed line) and 10 to 90 percentiles
area (filled area) along with sample statistics of toxicity probabilities at each tested dose
level based on observed data (filled circle). They also include initial toxicity guesses (dot-
ted line) assumed in the model and a true dose–toxicity curve (solid line). The acquisition
function EI corresponding to each upper figure is shown in the lower section. The lower
section presents doses included in At after each test as ranges with horizontal lines and
points to the next dose level selected by equation (3.9) by arrow marks as well as the
dotted vertical lines.

In the start-up phase with five tests, tested dose levels were 1, 1, 2, 3, and 4 with the
number of patients who experienced DLT of 1, 0, 0, 0, and 1, respectively. In Fig. 3.1, the
upper-left section illustrates the updated toxicity probability distribution at the end of
the start-up phase, and the lower-left section provides the corresponding EI. The posterior
mean function was still close to the initial toxicity guesses. Based on the EI and A5, the
next dose became x4. There was no patient with DLT at the 6th test. As shown in the
figures in the middle section, the posterior distribution changed slightly after we obtained
the patient outcome and then the EI selected x5. In the 7th test, there was one patient
who experienced DLT. The upper-right section shows that the posterior mean function
based on the updated toxicity probability distribution approached the true dose–toxicity
curve. After the 7th test, the EI selected x5 again as the next dose, which is the true
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MTD in this example.

3.2 Performance evaluation
We conducted a simulation study to examine the performance of BOD for mono-therapies
with cytotoxic agents. Zhou et al. (2018) that compared parametric model-based designs
(CRM, dose-escalation with overdose control, and Bayesian logistic regression model) and
toxicity probability interval designs (mTPI, BOIN, and keyboard design which operates
in the same way as the mTPI-2) has reported that the CRM outperformed the other
parametric model-based designs in terms of accuracy of identifying the MTD, and the
BOIN outperformed the mTPI and provided comparable performance with the CRM.
Similarly, Zhu et al. (2019) that compared the operating characteristics of the 3+3 design,
the CRM, the BOIN, and the keyboard design has suggested that both the BOIN and the
keyboard design provided comparable performance with the CRM. Horton et al. (2017) has
also reported that the CRM tended to outperform the BOIN and mTPI as the number
of dose levels increases. There are other studies that compared performance between
the CRM and toxicity probability interval designs. Conclusions differ slightly among
articles; however, the common point is that the CRM would consistently perform well in
various scenarios and toxicity probability interval designs are attractive in their ease of
use. Considering the literature review, we set the Bayesian-based CRM as a benchmark
for the performance evaluation.

In addition, we included curve free designs that are the same categories of BOD into the
evaluation. We selected the PBP and another curve free design proposed by Whitehead
et al. (2010). The latter considers probabilities falling into pre-specified toxicity risk
categories at each dose level (hereafter, we abbreviate this design WTW based on the
initials of the authors). Appendix A.1 provides a brief explanation about the WTW.

Section 3.2.1 explains the simulation frameworks for each design. By following it, the
simulation results are presented in Section 3.2.2.

3.2.1 Simulation settings

Suppose that we considered to find the MTD that has a toxicity probability closest to
a target toxicity θ among eight dose levels (J = 8) under the maximum sample size of
36 and the cohort size of 3. The sample size of 36 was based on the average number of
patients in model-guided dose-response studies reported by Iasonos and O’Quigley (2014).
Table 3.1 shows fifteen scenarios used for the simulation study, which includes scenarios
1 to 6 that were excerpted from Tang et al. (2018). Fig. 3.2 also depicts those scenarios
separately by θ.
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Table 3.1. True toxicity scenarios for the simulation study

Scenario
Dose level

1 2 3 4 5 6 7 8
1 0.05 0.08 0.12 0.20 0.30 0.45 0.60 0.70
2 0.05 0.08 0.12 0.20 0.30 0.60 0.80 0.90
3 0.01 0.05 0.10 0.14 0.18 0.22 0.25 0.30
4 0.01 0.05 0.08 0.12 0.16 0.20 0.24 0.26
5 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95
6 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80
7 0.01 0.05 0.10 0.14 0.17 0.20 0.30 0.40
8 0.01 0.05 0.30 0.45 0.55 0.70 0.80 0.90
9 0.15 0.30 0.45 0.50 0.55 0.60 0.65 0.70
10 0.05 0.10 0.15 0.30 0.40 0.55 0.65 0.70
11 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
12 0.01 0.02 0.05 0.10 0.15 0.20 0.30 0.40
13 0.01 0.01 0.02 0.03 0.10 0.20 0.35 0.50
14 0.01 0.02 0.03 0.05 0.07 0.10 0.15 0.20
15 0.01 0.01 0.01 0.02 0.04 0.06 0.10 0.15

The MTD is displayed as bold type by scenario and θ.
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Fig. 3.2. The left figure shows toxicity scenarios for dose-finding studies whose target

toxicity rate is 0.3. The right one shows toxicity scenarios for dose-finding
studies whose target toxicity rate is 0.1.

We evaluated the operating characteristics of each design under two different target
toxicity rate settings. For θ = 0.3 that might be a typical setting in dose-finding studies,
we used scenarios 1 to 10. Aside from the typical setting, we might encounter a lower
target toxicity rate when DLT could be assumed to present severe symptoms. Assuming
a lower toxicity rate case, we set θ = 0.1 and evaluated scenarios 3, 10 to 15. Bold toxicity



30 Chapter 3 Bayesian optimization design of MTD estimation for mono-therapies

probabilities in Table 3.1 denote the true MTD under each θ.
The trial started from the lowest dose in all designs. In addition, all designs terminated

the trial when the maximum sample size was reached unless otherwise specified. The
number of trials to evaluate the operating characteristics of each design was 1,000 in the
simulation study.

For performance evaluation, besides descriptive summaries, we calculated mean squared
errors (MSEs) and their 95% confidence intervals. MSEs are given by

MSE =M−1
M∑

m=1

(π∗
[m] − θ)2, (3.11)

where π∗
[m] is a true toxicity probability at the recommended MTD in the mth trial under

each scenario and M denotes the total number of simulations (M = 1000).
In the subsequent paragraphs, we detail simulation settings for each design: BOD, the

CRM, the PBP, and the WTW in order.

Bayesian optimization design

We generated initial toxicity guesses using the indifference interval approach as described
at Step 1 for the model phase in Section 3.1.4. We derived the optimal δ under each
target toxicity rate by evaluating possible indifference intervals from 0.01 to 0.15 by 0.01
running 2,000 simulations, where these settings (i.e., the evaluation range and the number
of iterations) were based on Lee and Cheung (2009) that is the original article for the
systematic approach. In addition, we performed preliminary evaluations on values around
the optimal δ from the view of correct MTD selection probabilities and dose allocations
because the optimal δ for the CRM might not be optimal for BOD. As a result, the equal
value to the optimal δ (i.e., 0.05) and a lower value by 0.01 than the optimal δ (i.e., 0.02)
seemed suitable for scenarios under θ = 0.3 and θ = 0.1, respectively.

For the initial MTD location ν in the initial guesses under θ = 0.3, we relied on the last
observations in the start-up phase as a similar approach to the 3+3 design. Based on the
last observations in the start-up phase, we set ν at either the last tested dose level or one
dose level lower than the last-tested dose level if more than two patients experience DLT
at the last tested dose. Although the 3+3 based approach could be available for θ = 0.3 to
determine an initial thought of the MTD location, it would not apply to different toxicity
rates from 0.3; therefore, we used the center of the dose range (i.e., ν = 4) when θ = 0.1.

A covariance function was calculated with σf = 1, ρ = 1.4 and ξ = 0.08 under concep-
tual doses of (x1, . . . , x8) = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4) regardless of θ. The value of
ρ was the same length as the conceptual dose range. This indicates that the first turning
point of the dose–toxicity function was placed on the end of the dose range. The value of
ξ was decided from the view of computational speed, while the smaller value is generally
better in terms of less impact on the operating characteristics.

For overdose control, c1 = 0.5 and c2 = 0.9 were used under θ = 0.3. The assumption of
c1 = 0.5 means to stay at the lowest dose level and not to escalate to higher doses when the
lowest dose level exceeds θ with a probability of more than a half. For θ = 0.1, overdose
allocations tended to be occurred more easily than the settings for θ = 0.3 because a
relatively small δ was applied for θ = 0.1 in addition to the lower toxicity rate setting;
therefore, smaller values seemed to be appropriate for c1 and c2 when θ = 0.1 than those
for θ = 0.3. As a result, we used c1 = c2 = 0.4 under θ = 0.1 to avoid overdose allocations.
We determined the values of c2 under each θ based on a balance between MTD selections
and overdose allocations.

For MTD determination described in equation (3.10), έ1 = 0.05 and έ2 = 0.1 were
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used under θ = 0.3, where the proper range with έ1 = 0.05 for MTD determination is
often assumed as a typical setting in dose-finding studies for θ = 0.3. The final MTD
candidate set composed of doses with toxicity probabilities that were equal to or less than
0.4 could be acceptable when θ = 0.3 considering the estimation accuracy of the point
estimates hatπj . Additionally, έ1 = έ2 = 0.015 was used for θ = 0.1, where θ = 0.1 and
έ1 = 0.015 provided almost as small a ratio as that of θ = 0.3 and έ1 = 0.05. When the
target toxicity rate is lower than a typical setting, investigators might consider lowering
overdose selections as much as possible from a clinical perspective; therefore, the value of
έ2 = 0.015 conservatively set as the same value of έ1 in addition to reducing the possible
effect on overdose selections due to the small δ.

As exploratory analyses under θ = 0.3, we evaluated BOD that provided only mono-
tonically increasing dose–toxicity functions (hereafter, we call it BOD-mono) by assuming
the following equation instead of equation (3.2):

f ′ ∼ GP(m, k)× 1[f ′ : monotonically increasing function]. (3.12)

In practical implementation, posterior samples of toxicity probabilities were composed of
only monotonically increasing functions (i.e., all posterior samples of toxicity probability
functions met a condition of π1 ≤ · · · ≤ π8) so as to achieve the monotonically increasing
restriction described in equation (3.12). As another exploratory analysis for BOD (without
monotonically increasing restriction) under θ = 0.3, we evaluated the effect of the slope
on initial guesses by applying different values of δ (δ = 0.03 and 0.07).

MCMC was implemented using the R package rstan. Appendix A.3 provides the R code
used to implement BOD in this simulation study.

Continual reassessment method

According to the descriptions in Section 2.3, we calibrated design parameters for the
CRM. In the simulation study, we evaluated a power model and a logistic model with
an intercept of 3 that are commonly employed for the CRM. Based on Lee and Cheung
(2009), the optimal δ was 0.05 for θ = 0.3 and 0.03 for θ = 0.1 when assuming the initial
MTD location ν = J/2 under each model. In addition, assuming the prior distribution
of a model parameter a follows a normal distribution described as a ∼ N(0, σ2

a), σa was
calibrated based on Lee and Cheung (2011) to obtain a least informative prior variance
σLI
a . As a result, the power model set σLI

a = 0.76 and 0.72, and the logistic model set
0.34 and 0.36 under θ = 0.3 and 0.1, respectively.

The MTD was determined as a dose with the closest toxicity to θ based on the final
posterior mean of toxicity probabilities. Dose selections did not allow either to skip doses
in dose-escalation or to escalate doses immediately after a toxic outcome to ensure patient
safety.

The above key calculations for the CRM can be implemented by R package dfcrm.

A product-of-beta prior design

According to Section 2.4.2, hyperparameters for πj were calculated based on Gasparini
and Eisele (2000, 2001). Because the hyperparameter calculations needed initial toxicity
guesses, they were also generated by the indifference interval approach. Assuming the
initial MTD location of the center of the dose range, we generated initial guesses with
δ = 0.05 for θ = 0.3 and with δ = 0.02 and 0.03 for θ = 0.1, which were the same δ values
used in the CRM and BOD.

The MTD was determined as a dose with the closest toxicity to θ based on the final
posterior mean of toxicity probabilities.
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Toxicity risk approach

Following the setting that Whitehead et al. (2010) exemplified, we employed κ = 5 for a
toxicity grid regardless of θ, and then set {h1, . . . , h5} = {0.1, 0.2, 0.3, 0.4, 0.6} for θ = 0.3
and {h1, . . . , h5} = {0.01, 0.05, 0.1, 0.2, 0.3} for θ = 0.1. We used a uniform joint prior for
the joint distribution of rj as shown in Appendix A.1 A dose maximizing the marginal
posterior probability that the toxicity risk was equal to h3 (i.e., the “ideal” risk) was
selected as the next dose during a trial and as the MTD at the end of the trial. As
overdose control, the probability of the “toxic” risk was taken into account in the dose
selection to judge whether the dose was admissible or not. Specifically, only doses that
satisfied a condition of P(rj = h5 | D1:t) < 0.2 were included in an admissible dose set
for the next dose selection in our simulation study, where 0.2 was the same setting in the
original article.

3.2.2 Simulation results

How BOD performed compared with the other designs?

• Typical target toxicity rate

Table 3.2 shows the operating characteristics under θ = 0.3 that might be a typical target
toxicity rate that we frequently encounter in practice. For observed toxicity, BOD shows
the lowest toxicity percentages in all the designs under all scenarios due to lower overdose
allocations. BOD treats fewer patients with overdose levels than the other designs in most
scenarios. In particular, BOD successfully controls overdose allocations in scenarios 5 and
6 where the true MTD is at the lowest dose level compared with the other designs due to
the effect of c1. BOD tends to select safer doses than the other designs owing to overdose
control such as an admissible dose set. On the other hand, even if the MTD locates at the
end of the explored dose range (i.e., scenarios 3 and 4), BOD identifies the MTD correctly
approximately 10% more than the CRMs (CRM-p denoting the CRM based on the power
model, and CRM-l denoting the CRM based on the logistic model).

As shown in Table 3.2, BOD shows higher correct MTD selection probabilities than
the CRM-p in all scenarios. Compared between BOD and the CRM-l, BOD shows higher
correct MTD selection probabilities in most scenarios, while scenarios 2 and 7 are compa-
rable results between the two designs, and a lower correct selection probability is shown
in BOD under scenario 1. Given the difference between the results of the CRMs in sce-
nario 1, a logistic model might fit more to this scenario. Additionally, the initial MTD
location of BOD depends on the last observations in the start-up phase when θ = 0.3.
The fixed MTD location strategy at the center of the dose range is more efficient to ad-
dress scenarios where the MTD locates on near the center of the dose range than the
changeable strategy. In addition, in scenarios 1 and 2 where the advantages of BOD are
minimal, initial guesses for the CRMs at around MTD including adjacent doses overlap
at or approach the true dose–toxicity curves closely when parallel-shifted in the vertical
direction. In such a case, it is highly likely that an estimated curve around the MTD
would be successfully approached to the true dose–toxicity curve by updating the model
parameter. In scenarios 3, 4, and 7 where the MTD is close to the highest dose level, the
CRMs especially the CRM-p seem to be harder to reach the MTD than BOD. The CRMs
did not allow dose-escalation when patients in the current cohort experienced DLT. Due
to this overdose control, the CRMs could not reach the MTD located on higher doses in
the dose range as quickly as BOD.
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A comparison of BOD and the PBP regarding correct MTD selection probabilities shows
that BOD provides lower MTD correct probabilities in scenarios 2, 3, and 4, but better
or comparable results in the other scenarios. While the correct MTD selection under
scenario 7 is comparable between the two designs, the PBP shows a higher probability of
overdose selection and higher observed toxicity than BOD in this scenario.

The WTW performs very well in one scenario but then provides much poorer perfor-
mance than the other designs under scenarios 3, 4, and 5. The WTW seems to be not
good at dealing with situations where the highest dose level is the MTD because of the
admissible dose criterion (i.e., 0.2) in the current settings. This low value limits the dose-
escalation in such scenarios 3 and 4, while it seems not to control overdose allocations in
the opposite scenarios 5 and 6 where the lowest dose is close to the target toxicity rate.
This result implies that the cutoff value on an admissible dose set should be carefully
decided.
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Figure 3.3 provides convergence results of MTD selections from the view of toxicity
probabilities. The results generally support the MTD selection probabilities explained
above. BOD provides comparable performance to CRMs in most scenarios and better
convergence especially in scenarios 5, 6, and 8. The PBP and the WTW do not provide
consistent results across the wide scenarios; that is, the best MSE is shown in one scenario
but the poorest MSE is also shown in the other scenario compared with the other designs.
Compared with the other designs, BOD tends to provide stable performance that is not
inferior to the other designs in the variety of scenarios in terms of MTD selection accuracy
measured by toxicity probabilities.

　
Fig. 3.3. Mean squared errors on toxicity probabilities at the recommended MTD

• Low target toxicity rate

Table 3.3 shows the operating characteristics under a lower target toxicity (θ = 0.1).
It supports what Table 3.2 shows. BOD provides better or comparable results than
the CRMs in all scenarios except for scenario 13. The same would be applied for the
results in scenario 13 as we explained for scenarios 1 and 2. The same trend under
scenarios 3, 4, and 7 assuming θ = 0.3 is shown in scenario 15. The difference of dose
selection strategies between the two designs might be another reason other than the effect
of overdose control regarding why BOD arrives at the true MTD more than the CRMs
when the MTD locates near the highest dose. BOD considers uncertainties of the posterior
toxicity probabilities to seek the MTD without concentrating on the current best point.
In contrast, the CRMs rely on the exploitation of the estimated dose–toxicity curve. As
a result, possible searching space for the next dose candidates might be wider in BOD
than that in the CRMs. This exploration property seems to perform well in particular
under such a scenario in terms of correct MTD selections. Compared with the PBPs
that are displayed as PBP (δ) in Table 3.3, BOD performs better than the PBPs in most
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scenarios. Although concern has been raised that the PBP causes undesirable rigidity in
situations where a low toxicity rate is targeted due to its vague priors (Cheung, 2002,
2011), the PBPs did not get stuck at suboptimal dose level under our simulation settings;
however, BOD and the CRMs provide better results than the PBPs in most scenarios. In
only scenario 11 where the lowest dose level is the true MTD, the PBPs outperform the
other designs. Considering that a toxicity probability for j is composed of the product of
the toxicity probabilities of all dose levels up to j − 1, it would be reasonable to be able
to estimate the lowest dose toxicity more accurately than the other doses. The WTW
provides the best performance in scenarios 12, 13, and 14; however, the correct MTD
selection probability at scenario 11 is half as high as the other designs and the overdose
selections are shown with high percentages during and at the end of trials.
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Figure 3.4 provides a similar relative trend among the designs to Figure 3.3. BOD
provides comparable MSEs compared with CRMs in all scenarios and is more stable than
the PBP and the WTW across the scenarios.

　
Fig. 3.4. Mean squared errors on toxicity probabilities at the recommended MTD under

a lower toxicity target

How different settings affected BOD performance?

It might be natural to assume that a toxicity probability increases monotonically with
increasing dose levels; however, Table 3.4 shows the monotonicity restriction to a Gaussian
process prior (i.e., BOD-mono) does not improve the performance compared with BOD in
terms of correct MTD selections and dose allocations (i.e., Correct selection probabilities
and dose allocations of MTD decrease while overdose selection probabilities and overdose
allocations increase.). The posterior distributions of BOD based on equation (3.2) include
partially non-monotonically increasing functions; however, posterior distributions, as well
as their posterior mean functions, show monotonically increasing shapes owing to follow
the trend that true dose–toxicity curves and initial guesses draw. On the other hand,
toxicity probabilities in the posterior distributions provided by BOD-mono tend to go
down in the lower dose range and go up in the higher dose range than BOD. That is
because the posterior distributions are composed of only functions with positive slopes.
As a result, the effect of the monotonicity restriction skews the posterior distributions but
does not improve the performance of BOD.

Table 3.5 evaluates impact of initial toxicity guesses provided by a different δ on the
operating characteristics for BOD that assumes equation (3.2). When the slope becomes
gentle by using δ = 0.03, initial toxicity guesses at the higher dose range approach θ. The
correct selection probability is higher in scenarios where the true MTD locates at the end
of the dose range (i.e., scenarios 3 and 4). However, the allocation percentage to overdose
levels also increases because of the effect of the gentle slope. In contrast, increasing the
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Table 3.4. Differences of the operating characteristics between BODs with the monotonic-
ity restriction (BOD-mono) and without the restriction (BOD) under θ = 0.3
(For BOD, the results of BOD in Table 3.2 are re-displayed here.)

Scenario design
MTD Determination Dose allocation (%)

Toxicity (%)
Correct Overdose MTD Overdose

1 BOD 0.520 0.189 24.8 8.9 20.2
BOD-mono 0.495 0.190 23.4 9.4 20.2

2 BOD 0.595 0.097 26.4 6.7 20.6
BOD-mono 0.589 0.087 25.9 6.0 20.7

3 BOD 0.237 0.000 5.8 0.0 15.2
BOD-mono 0.208 0.000 4.9 0.0 15.0

4 BOD 0.312 0.000 7.6 0.0 14.2
BOD-mono 0.287 0.000 7.2 0.0 14.0

5 BOD 0.759 0.241 76.2 23.8 33.4
BOD-mono 0.698 0.302 72.6 27.4 33.6

6 BOD 0.940 0.060 89.2 10.8 40.5
BOD-mono 0.920 0.080 87.0 13.0 41.1

7 BOD 0.329 0.147 11.3 4.2 15.8
BOD-mono 0.331 0.104 10.3 3.1 15.7

8 BOD 0.695 0.285 48.0 23.2 26.3
BOD-mono 0.674 0.301 47.4 23.1 26.5

9 BOD 0.658 0.232 46.8 19.1 27.4
BOD-mono 0.681 0.219 48.0 18.2 28.2

10 BOD 0.592 0.279 32.5 16.0 22.4
BOD-mono 0.592 0.277 33.7 15.3 22.6

slope by using δ = 0.07 lowers correct selection probabilities in scenarios 3 and 4. On the
other hand, BOD with δ = 0.07 performs well when the true MTD locates at lower than
the middle of the dose range (e.g., scenarios 8 and 9) because the steeper slope makes
dose-escalation restrict stronger. For scenarios 5 and 6 where the toxicity at the lowest
dose level is equal to or higher than θ, the correct selection probabilities and the average
toxicity percentages are not affected by the value of δ. Sensitivity analyses for δ, for
example around the optimal δ ± 0.02, might be needed considering the effect of δ.
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Table 3.5. Impact of the slope of initial guesses (i.e., δ = 0.3, 0.7) on the operating char-
acteristics of BOD under θ = 0.3 at each scenario

Scenario δ
MTD Determination Dose allocation (%) Toxicity
Correct Overdose MTD Overdose (%)

1 0.03 0.453 0.299 23.6 15.1 22.2
0.07 0.438 0.139 21.1 7.4 19.2

2 0.03 0.610 0.110 27.3 9.8 22.9
0.07 0.505 0.064 23.1 4.9 19.6

3 0.03 0.371 0.000 9.7 0.0 16.1
0.07 0.141 0.000 4.2 0.0 14.9

4 0.03 0.480 0.000 12.3 0.0 15.1
0.07 0.201 0.000 5.7 0.0 13.9

5 0.03 0.768 0.232 75.3 24.8 33.4
0.07 0.762 0.238 76.1 23.9 33.2

6 0.03 0.935 0.065 88.6 11.4 40.7
0.07 0.923 0.077 88.4 11.6 40.5

7 0.03 0.358 0.288 14.4 8.0 17.2
0.07 0.260 0.090 8.6 2.8 15.0

8 0.03 0.637 0.343 45.1 26.4 27.1
0.07 0.700 0.263 49.7 19.9 25.2

9 0.03 0.620 0.263 44.2 21.2 28.0
0.07 0.688 0.158 47.9 14.6 27.2

10 0.03 0.488 0.376 30.6 22.1 24.2
0.07 0.570 0.226 32.8 12.7 21.7

3.3 Summary and consideration
Chapter 3 has introduced BOD for MTD estimation for mono-therapies with cytotoxic
agents assuming typical dose-finding studies. Additionally, performance evaluations of
BOD have been presented through simulation studies compared with the CRM, the PBP,
and the WTW.

If a theoretical model fits a true dose–toxicity relationship around the MTD through
updating a model parameter, the CRM has good performance. Even in that case, BOD
could have almost comparable performance in terms of correct MTD selections to the
CRM while providing lower toxicity percentages than the CRM. On the other hand, if a
theoretical model is far different from a true dose–toxicity curve around the MTD, the
performance of the CRM gets lower than that in the other cases. Section 3.2 shows that
BOD provides better performance than the CRM, especially in the latter cases. In gen-
eral, little is known about dose–toxicity relationships; therefore, BOD has the potential
to provide better results than or at least comparable results to the CRM regardless of
the shapes of true dose–toxicity curves. Compared with the other two curve-free designs,
BOD provides more stable results in terms of correct MTD selections and MSEs of tox-
icity probabilities at the recommended MTD. Additionally, overdose control imposed in
BOD works successfully because BOD provides lower or comparable observed toxicity
percentages than the other designs in most scenarios.

One of the features in BOD is to select doses based on posterior distributions on dose–
toxicity relationships without neglecting their uncertainties. While the benefit of this
feature is limited owing to an admissible dose set for overdose control, such restrictions are
crucial in dose-finding studies from a safety perspective compared to other areas Bayesian
optimization usually applies to. BOD achieves to allocate fewer patients to overdose
levels than the CRMs in most scenarios under the restrictions for overdose control while



3.3 Summary and consideration 41

providing correct MTD selections that are better than or comparable to the CRMs.
BOD has five design parameters in the model (i.e., δ, ν, σf , ρ, ξ). Although it is not

mandatory to generate initial guesses by using the indifference interval approach, it might
be familiar with biostatisticians who belong to pharmaceutical industries. In this case, δ
that determines the slope of initial toxicity guesses can refer to the optimal δ derived by
the systematic approach for the CRM. We recommend evaluating at least the range of
the optimal δ ± 0.02 from the view of correct MTD selection probabilities and safe dose
allocations. As exemplified in Section 3.2, the initial MTD location ν could be calibrated
based on the last observations in the start-up phase or the center of the dose range. For
the kernel parameters, σf is fixed as a value of 1 as mentioned in Section 3.1.4. The scale
parameter ρ should be a value providing less than two turning points in the dose range
considering common premises on dose–toxicity relationships. For general use, the equal
value to the conceptual dose range works well. The value of ξ relies on only computing
speed, while a smaller value has less impact on the operating characteristics. In addition,
an admissible dose set and MTD determination are defined with four design parameters
(i.e., c1, c2, έ1, έ2). These values are adjusted based on a balance between correct MTD
selections and safe dose allocations during the preparation stage for the study. We should
also take into account clinical perspective as well as a typical setting (e.g., έ1 = 0.05 is
often used when θ = 0.3.) for the adjustment. The calibration approaches for the design
parameters are still open discussion, and they need further evaluations in future work.

In typical Bayesian optimization, observed values are generally assumed to follow a
normal distribution as mentioned in Section 2.5. Although the simulation results under
the normal approximation assumption are not provided in this thesis, they generally
suggested higher doses than the true MTD with high probability and did not work well
in various simulation patterns consistently. It implies such a normal approximation for
binary outcomes is inappropriate in dose-finding studies; hence, we applied the exact
distribution for the observed values (i.e., a binomial distribution).

There are other options about acquisition functions instead of EI(x) (e.g., the lower
confidence bound criteria). According to our exploratory simulation results, the effect of
acquisition functions is minimal at least between the expected improvement and the lower
confidence bound criteria. We will introduce the LCB strategy for dose-finding studies in
Chapter 5.

Although we put monotonically increasing constants on a prior mean function for m(x)
and estimate dose–toxicity functions through a nonparametric approach, there might be
another option; for example, m(x) could be modeled by a parametric model that provides
monotonically increasing functions. Unlike BOD, the model misspecification issue leaves
in this case; however, it might be sometimes a reasonable approach when a particular
theoretical model is likely to fit true dose–toxicity relationships. We might extend BOD
by collaborating with such a parametric approach in future work.

While further discussions and evaluations in particular about how to calibrate design
parameters are required, our simulation study suggests that BOD has a capability to
perform well in terms of correct MTD selections and safe dose allocations even if little
information is available about dose–toxicity relationships. In practice, dose selections are
rarely conducted by only model information. All observations are carefully reviewed by
clinical experts for dose selections. Illustrations of posterior distributions of dose–toxicity
relationships in BOD such as Fig. 3.1 will be useful information in the comprehensive
review by clinical experts.

The scenarios we addressed in this chapter were only monotonically increasing dose–
toxicity relationships with one-dimensional dose; thus, the advantages of BOD seem to
be minimal in terms of improvement of the MTD selections probabilities although BOD
has a benefit to provide safer dose selections with comparable and stable MTD selection
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results compared with the other designs. If what we would like to address lies under more
complex situations such as two-dimensional inputs or outputs where it is unlikely that
the monotonicity assumption can be applied on dose–toxicity relationships, it is expected
that the advantages of nonparametric approaches appear more. Chapters 4 and 5 will
address applications of BOD to such complex situations.
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Appendices for Chapter 3

A.1 Toxicity risk approach
Whitehead et al. (2010) has proposed a toxicity risk approach that is one of the curve-free
designs for MTD estimation and we call it WTW in this thesis. The WTW deals with a
toxicity risk rj that is a probability with which a patient experiences DLT at a dose level
j (j ∈ {1, . . . , J}). The rj is modeled directly and the model assumes rj is equal to one
of a grid of h values (h1 < · · · < hκ). For example, {h1, . . . , h5} = {0.1, 0.2, 0.3, 0.4, 0.6}
under a target toxicity rate θ = 0.3 with κ = 5 provide that a dose level j is interpreted
as very safe, safe, ideal, risky, and toxic if rj is equal to h1 to h5, respectively.

The distributions of a risk rj are linked by a monotonicity constraint; that is, higher
doses have a risk of toxicity greater than or equal to that of lower doses. A uniform joint
prior with monotonicity restrictions is given by a joint distribution of rj as follows:

π0(q1, . . . , qJ) = P(r1 = q1, . . . , rJ = qJ) = e0, (A.1)

where q1, . . . , qJ ∈ {h1, . . . , hκ} and q1 ≤ · · · ≤ qJ , with π
0(q1, . . . , qJ) = 0 otherwise. The

value of e0 can be calculated based on the fact that the joint probability π0 must sum to
1 over all combinations of qj .

The posterior joint distribution π corresponding to the uniform joint prior π0 is de-
scribed as follows:

π(q1, . . . , qJ) | D1:t ∝ L(r1, . . . , rJ) =
t∏

z=1

r
y(z)

(z) (1− r(z))
n(z)−y(z) , (A.2)

where n(z) patients in the zth cohort have been treated at a dose level (z) with a risk of r(z)
resulting in y(z) patients with DLT. According to π, the posterior marginal distribution
for each risk at each dose level πj = πj(qκ́) = P(rj = qκ́) is calculated, where κ́ = 1, . . . , κ.

A dose maximizing the marginal posterior probability that the toxicity risk is equal to
the “ideal” risk is selected as the next dose during a trial and as the MTD at the end of
the trial. As overdose control, the probability of the “toxic” risk is taken into account in
the dose selection to judge whether the dose is admissible or not. For example, only doses
that satisfy a condition of P(rj = hκ | D1:t) < 0.2 are included in an admissible dose set
for the next dose selection, where hκ means the highest risk (i.e., “toxic” risk ) in the
toxicity grid.
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A.2 Initial idea for expanding BOD to address continuous

toxicity variables
BOD focuses on a binary variable as toxicity outcomes in its modeling. On the other
hand, it is worth considering altering it to continuous variables in the BOD modeling
for MTD estimation. Continuous variables might include for instance biomarker values,
pharmacokinetic parameters, and toxicity scores that are a single measurement reflecting
various toxicity types or grades.

Appendix A.2 addresses a possible modeling approach for continuous variables. Al-
though all descriptions here are just our initial thought that has not been validated nor
confirmed by specific performance evaluations, we hope this will bring some ideas for
future work.

Modeling for continuous variables following a Gaussian distribution

A continuous variables for toxicity outcomes could more accurately take patient toxicity
burden on cytotoxic agents into account for MTD estimation. One idea to extend BOD
to deal with continuous variables could be the following approach: Suppose f denotes an
unknown function describing a dose–toxicity relationship on a continuous variable Y . An
observation y at a dose level j might be described as follows:

yj = f(xj) + vj , (A.3)

vj ∼ N(0, σ2), (A.4)

where vj is a Gaussian noise (i.e., y ∼ N(f(x), σ2)). According to a similar approach
provided in Wang and Ivanova (2015), the variance σ2, for example, follows a prior distri-

bution specified by an Inverse Gamma distribution like IG(v0, σ
02), or could be updated

sequentially based on a marginal likelihood maximization approach.
In the same manner in BOD for a binary variable, we set a prior distribution over f using

a Gaussian process as f ∼ GP(m, k) and estimate f through Bayes’ rule. A prior mean
function for m(x) reflects an initial guess on the continuous variable at each dose level.
The covariance function, which is specified by a kernel function, could be equation (3.3).
According to Section 2.5, a posterior distribution for f at the next arbitrary point can
be analytically calculated when y follows a Normal distribution as described in equation
(2.15).

The MTD is defined as a dose that returns a pre-specified ideal value y∗ for the MTD
determination on the continuous variable. Accordingly, we seek a dose that minimizes an
absolute value of the difference between f(x) and y∗ as follows:

x∗ = arg min
x∈A

| f(x)− y∗ | . (A.5)

Modeling for continuous variables following a non-Gaussian distribution

As a different possible example, another type of continuous variables could be a normalized
equivalent toxicity score that has been designed to take toxicity grades into account by
Chen et al. (2010). Suppose that Y denotes a normalized equivalent toxicity score for
identifying the MTD, it is dealt as a quasi-continuous variable ranging from 0 to 1 and
modeled as follows:

f(xj) = logit(yj) (A.6)
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The likelihood function given data denoted as L(f | D) (D is composed of all observations)
is described by a quasi-Bernoulli likelihood whose basic formulation has been shown in
Chena et al., 2012. Again, a posterior distribution over f having a Gaussian process prior
is calculated based on Bayes’ rule through MCMC.

In the same manner as the above, we seek a dose that minimizes an absolute value of
the difference between y and a pre-specified ideal value y∗ as follows:

x∗ = arg min
x∈A

| [1 + exp{−f(x)}]−1 − y∗ | . (A.7)

Dose selection

According to objective functions corresponding to equations (A.5) and (A.7), an acquisi-
tion function such as the EI or the LCB guides the next appropriate dose during a trial in
the same manner in Section 3.1.2. An admissible dose set A should impose some appro-
priate conditions to ensure patient safety based on the posterior distribution on f . Once
the trial meets one of pre-specified stopping criteria, the MTD is declared as a dose that
falls within a certain interval centering y∗ on the final posterior distribution for f with a
maximum probability for example.
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A.3 BOD simulation code for MTD estimation
We implemented BOD using R for the simulation study described in Section 3.2. Appendix
A.3 provides R codes for implementing BOD to identify the MTD whose target toxicity
rate is 0.3.

• Listing A.1 is R code that constructs the simulation body.
• Listing A.2 presents a stan model that is compiled from the R package rstan in
Listing A.1 to implement the MCMC for obtaining posterior samples.

Listing A.1. Simulation body of BOD for MTD estimation

1 #BOD_single_simulation_body.R
2 ####################################################
3 # Bayesian optimization design for identifying the MTD #
4 ####################################################
5

6 ##################
7 # Initial Setting #
8 ##################
9

10 ### environment settings ###
11 ## change working directory
12 setwd("XXX") # Set your current directory
13

14 ## Load R packages
15 library(rstan) # for MCMC
16 library(dfcrm) # for generating initial toxicity guesses using the

getprior function
17

18 # We recommend calling the following rstan options
19 rstan_options(auto_write = TRUE) #To avoid recompilation of unchanged Stan

programs
20 options(mc.cores = parallel::detectCores()) # For execution on a local,

multicore CPU with excess RAM
21 Sys.setenv(LOCAL_CPPFLAGS = ’-march=native’) # For improved execution time
22

23

24 ### Function settings ###
25 # Function for calculating absolute values
26 fun2 <- function(fx, p){
27 g1 <- abs(fx - p)
28 return(g1)
29 }
30

31 # Function for calculating logit values
32 fun3 <- function(a){
33 b <- log(a/(1-a))
34 return(b)
35 }
36

37 # Function that modified the rbind function to be able to combine data
frames with different column names

38 rbindCOrder <- function(...) {
39 n <- length(list(...))
40 temp <- list(...)[[1]]
41 names(temp) <- NA
42 for (i in 2:n) {
43 tmp<-list(...)[[i]]
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44 names(tmp) <- NA
45 temp <- rbind(temp, tmp)
46 }
47 names(temp) <- names(list(...)[[1]])
48 return(temp)
49 }
50

51 ####################################
52 # Specific settings for the simulation #
53 ####################################
54

55 ### Scenarios ###
56 ## For example, Scenarios 1~3 are loaded as follows:
57 S1 <- c(0.05, 0.08, 0.12, 0.20, 0.30, 0.45, 0.60, 0.70)
58 S2 <- c(0.05, 0.08, 0.12, 0.20, 0.30, 0.60, 0.80, 0.90)
59 S3 <- c(0.01, 0.05, 0.10, 0.14, 0.18, 0.22, 0.25, 0.30)
60 true.table <- cbind(S1, S2, S3)
61

62 ### Initial settings ###
63 iter <- 1000 # number of simulations
64 cohort <- 3 # number of patients in a cohort
65 N <- length(S1) # number of dose levels
66 dose <- seq(0, 1.4, length = N) # conceptual dose values
67 max_sub <- 36 # maximum number of patients in a trial
68 theta <- 0.3 # a target toxicity rate
69 til <- 0.001 # small values to be used to calculate posterior density

functions P(g(x)|D) for the EI (equation (3.8))
70 x <- seq(0, 1, by = (til)) # dummy data of g(x) for the EI calculations
71

72 # Stan model is compiled for MCMC
73 # Suppose that a stan file ‘‘BOD_model_single.stan’’ provided after this

simulation body is stored in the current directory.
74 model_first <- rstan::stan_model(file = ’BOD_model_single.stan’)
75

76 # Design parameters for BOD
77 delta <- 0.05 # an indifference interval width for generating initial

toxicity guesses
78 sigma_f <- 1 # a signal variance in the squared exponential kernel
79 rho <- 1.4 # a scale parameter in the squared exponential kernel
80 xi <- 0.08 # a small value to be added in a covariance function
81 c1 <- 0.5 # overdose control in Section 3.1.3
82 c2 <- 0.9 # overdose control in Section 3.1.3
83 eps1 <- 0.05 # varepsilon_1 in equation (3.10)
84 eps2 <- 0.1 # varepsilon_2 in equation (3.10)
85

86 # Covariance function in the squared exponential kernel
87 K <- matrix(rep(0,N*N), nrow=N, ncol=N)
88 for (i in 1:(N - 1)) {
89 K[i, i] <- (sigma_f)^2
90 for (j in (i + 1):N) {
91 K[i, j] = (sigma_f)^2*exp(-0.5/(rho)^2 * ((dose[i] - dose[j])^2))
92 K[j, i] = K[i, j]
93 }
94 }
95 K[N, N] <-(sigma_f)^2
96 K2 <- K+diag(xi, N) # Add a small value to diagonal elements in K
97 L <- t(chol(K2)) # Cholesky decomposition
98

99

100 ###########################
101 # Simulation iteration part #
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102 ###########################
103

104 ### Select Scenarios ###
105 for(S in 1:1){
106

107 true <- true.table[, (S)] # true toxicity probabilities
108

109 for(sim in 1:iter){
110

111 # Initial values for output vectors
112 tox_n <- numeric(N) # number of patients with DLT by dose
113 tox_p <- rep(NA, N) # sample statistics of observed toxicity by dose
114 sum_n <- numeric(N) # number of patients already treated in a trial by

dose
115 next_l <- 1 # the next dose (start from the lowest dose level 1)
116 total_n <- 0 # total number of patients treated in a trial
117 p_DLT <- 0 # sample statistics of observed toxicity in a trial
118 num <- 0 # number of tests in a trial
119 first <-0 # If the start-up phase terminated, first=1. Otherwise,

first=0.
120

121

122 ###################
123 # Conduct one trial #
124 ###################
125

126 while(total_n < max_sub){ # repeat tests until a trial reaches the
maximum sample size

127

128 #################
129 # Start-up phase #
130 #################
131

132 while(first==0){
133

134 test_level <- next_l # dose level for the next cohort
135 tox_num <- rbinom(1, cohort, true[test_level]) # number of

patients with DLT in a cohort
136 tox_n[test_level] <- tox_n[test_level] + tox_num
137 sum_n[test_level] <- sum_n[test_level] + cohort
138 tox_p[test_level] <- tox_n[test_level]/sum_n[test_level]
139 total_n <- sum(sum_n)
140 num <- total_n/cohort
141

142 # retain outputs
143 if(num == 1){obs <- cbind(test_level, tox_num)}else{
144 obs <- rbind(obs, cbind(test_level, tox_num))
145 }
146

147 if(next_l == N || sum(tox_n) >= 2){ # end the start-up phase
148 first <- 1
149 t<-1
150

151 # initial MTD location for a target toxicity rate of 0.3
152 if(tox_num > 2){ # considering only the last DLT observations
153 if(next_l == 1){
154 locate <- 1
155 }else{
156 locate <- next_l - 1
157 }
158 }else{
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159 locate <- next_l
160 }
161

162 # generate initial toxicity guesses
163 guess <- getprior(delta, theta, locate, N)
164

165 # The following code was used instead when theta = 0.1.
166 # locate <- N/2
167 # guess <- getprior(delta, theta, N/2, N)
168

169 logit_guess <- fun3(guess)
170

171 # dose-escalation in the start-up phase
172 }else if(tox_num == 0){
173 next_l <- test_level+1
174 }else if(tox_num == 1){
175 next_l <- test_level
176 }
177 }
178

179 ##############
180 # Model phase #
181 ##############
182

183 if(t > 1){
184 test_level <- next_l # dose level for the next cohort
185 tox_num <- rbinom(1, cohort, true[test_level])
186 tox_n[test_level] <- tox_n[test_level] + tox_num
187 sum_n[test_level] <- sum_n[test_level] + cohort
188 tox_p[test_level] <- tox_n[test_level]/sum_n[test_level]
189 total_n <- sum(sum_n)
190 num <- total_n/cohort
191 obs <- rbind(obs,cbind(test_level, tox_num))
192 }
193

194 t<-t+1
195

196 cat("\n
197 *************************************************\n
198 Scinario: ",S,"( model phase )\n
199 Simulation number - Test number: ",sim,"-", num,"\n
200 *************************************************\n")
201

202 ### Update toxicity distributions ###
203 y.obs <- as.array(obs[, 2]) # number of DLT at each test
204 t.dose <- as.array(obs[, 1]) # test levels at each test
205

206 # load data for MCMC
207 data <- list(N = N, L = L, logit_guess = logit_guess, Y = y.obs,

tested = t.dose, Num = num, Cohort = cohort)
208

209 # run mcmc sampling
210 fit <- rstan::sampling(model_first,
211 data=data,
212 pars=c(’Ep’),
213 iter=9000, warmup=3500, chains=1, thin=10
214 )
215

216 ms <- rstan::extract(fit)
217

218 # posterior samples for toxicity probabilities
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219 d_mcmc <- exp_stars <- data.frame(Ep = ms$Ep)
220

221 # posterior mean for toxicity probabilities
222 exp_star <- apply(exp_stars, 2, mean)
223

224 # calculate cumulative distributions
225 ove <- rep(0, N)
226 pro <- rep(0, N)
227

228 for(n in 1: N){
229 exp_stars1 <- sort(exp_stars[, n])
230 Fn <- ecdf(exp_stars1) # empirical cumulative distribution

functions
231 ove[n] <- 1 - Fn(theta) # probabilities that each dose is higher

than the target toxicity rate
232 pro[n] <- Fn(theta + eps1) - Fn(theta - eps1) # probabilities

that each dose falls within the proper interval including the
target toxicity rate

233 }
234

235 ### overdose control at bullet # 3 in Section 3.1.3 ###
236 accep_maxd2<-N
237 if(tox_num > 1 ){
238 accep_maxd2 <- test_level - 1
239 if(accep_maxd2 == 0) accep_maxd2 <- 1
240 }
241

242 ### calculate the expected improvement ###
243 EI <- numeric(N)
244 gx <- fun2(fx = exp_stars, p = theta) # posterior samples for g
245 g_best <- min(apply(gx, 2, mean), na.rm = TRUE) # the current best

value for g(x)
246

247 # improvement function described as equation (3.7)
248 I <- g_best - x
249 Imp0 <- which(I < 0)
250 I[Imp0] <- 0
251

252 for(j in 1:N){
253 # fit a spline regression to obtain a density function for g at

dose level j
254 gh <- splinefun(density(x = as.vector(t(gx[j])), n = 1000,
255 from = 0, to = 1), method = "natural")
256

257 # probability density function (pdf) of g at dose level j
258 start <- -til/2
259 til_n <- 1 # element number when dividing a pdf of g by small

widths
260 p_gx <- numeric(length(x)) # vector for the pdf
261

262 while(start < 1){
263 p_gx[til_n] <- integrate(gh, start, start + til)$value
264 if(p_gx[til_n] < 0){ p_gx[j] <- 0} # In order to correspond

very small values near to 0 (there is no negative value in
practice)

265 start <- start + til
266 til_n <- til_n + 1
267 }
268

269 # calculate expected improvement values by equation (3.8)
270 EI[j] <- I%*%p_gx
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271 }
272

273 next_l <- which(EI == max(EI)) # equation (3.9)
274 if(length(next_l) > 1) next_l <- next_l[1]
275

276

277 ### overdose control at bullet #1 in Section 3.1.3 ###
278 eli_dose<-0
279 for(j in 1:N){
280 if(ove[j] < c2){eli_dose <- c(eli_dose,i)}
281 }
282 eli_dose <- eli_dose[-1]
283

284 if(length(eli_dose) == 0){
285 accep_maxd <- 1
286 }else{
287 accep_maxd <- max(eli_dose)
288 }
289

290 accep_maxd <- min(accep_maxd2, accep_maxd)
291

292 ### overdose control at bullet #2 in Section 3.1.3 ###
293 if(next_l > (test_level + 1 )) {
294 next_l <- test_level+1
295 }
296

297 if(next_l > accep_maxd){
298 next_l <- accep_maxd
299 }
300

301 ### overdose control at bullet #1 in Section 3.1.3 ###
302 if(ove[1] > c1){
303 next_l <- 1
304 }
305 } # end while loop
306

307 ### Select the MTD ###
308 # final MTD candidate set
309 admiss2_<- which(exp_star < (theta + eps2))
310 if(length(admiss2_) == 0){
311 MTD <- 1
312 }else{
313 MTD <- which(pro[admiss2_] == max(pro[admiss2_])) # equation (3.10)
314 }
315

316 ### Output Results ###
317 p_DLT <- sum(tox_n)/sum(sum_n)*100
318

319

320 # make a list of outputs
321 Result_box <- cbind(theta, max_sub, S, sim, MTD, S, total_n, data.frame

(t(sum_n)),total_DLT=sum(tox_n), p_DLT, data.frame(t(tox_n)), t(ove
), t(pro), t(EI), t(exp_star), delta, locate, rho, sigma_f, xi, c1,
c2, eps1, eps2)

322

323 # write results
324 if(sim == 1){Result_box1 <- Result_box}
325 else{Result_box1 <- rbindCOrder(Result_box1, Result_box)}
326

327 write.table(Result_box1, "output.txt", row.names = F, quote = F,append
= F)
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328

329 } # end iterations of one trial
330

331 } # end scenarios’ loop

A stan model file ‘BOD model single.stan’ is composed of the following contents.

Listing A.2. Stan code for BOD of the MTD estimation

1 //BOD_model_single.stan
2 data {
3 int<lower = 1> N; // number of dose levels
4 int<lower =1> Num; // number of tests in a trial
5 int<lower = 1> Cohort; //cohort size
6 vector[N] logit_guess; // initial toxicity guesses (logit scale)
7 int<lower = 1> tested[Num]; // tested dose levels
8 int<lower = 0> Y[Num]; // number of patients with DLT at each

test
9 matrix[N,N] L; // the squared exponential kernel (Cholesky

decomposition)
10 }
11

12 transformed data {
13 vector[N] mu_zero = rep_vector(0,N);
14 }
15

16 parameters {
17 vector[N] zero_m;
18 }
19

20 // Specify a parameter we need to obtain as an output
21 transformed parameters {
22 vector[N] Ep;
23 Ep = inv_logit(logit_guess + zero_m); # posterior toxicity

probabilities
24 }
25

26 model { // Gaussian process prior
27 zero_m ~ multi_normal_cholesky(mu_zero, L);
28

29 // likelihood function
30 for (i in 1:Num){
31 target += binomial_lpmf(Y[i]|Cohort, Ep[tested[i]]);
32 }
33 }
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Chapter 4

Bayesian optimization design of MTDC

estimation for combination drug

therapies

Chapter 4 introduces BOD for estimating a single MTD combination (MTDC) for dose-
finding studies of combination drug therapies. Mono-therapies we treated in Chapter 3
have one-dimensional dose as input data for MTD estimation. BOD for mono-therapies
in Chapter 3 has one-dimensional doses as input data for MTD estimation. On the other
hand, Chapter 4 deals with two different agents assuming combination drug therapies that
result in two-dimensional input data although output data from patients (i.e., toxicity
outcomes) are the same as Chapter 3. We organize this chapter as follows:

• Section 4.1 briefly reviews conventional statistical designs of dose-finding studies for
combination drug therapies to clarify the current issues we should address. Addi-
tionally, we explain two representative existing statistical designs that are evaluated
in our simulation study in Section 4.3.

• Section 4.2 introduces BOD for MTDC estimation in terms of its statistical model-
ing, implementation steps, and some illustrations based on a brief example to make
readers understand easily.

• Section 4.3 explains settings for the simulation study for performance evaluation
and provides the results. We evaluate the operating characteristics of BOD for
MTDC estimation compared with the BOIN’s and CRM’s extension designs.

• Section 4.4 summarizes and discusses performance evaluation results on BOD along
with some topics of interest for further work.

We introduce this chapter based on the work Bayesian optimization design for finding
a maximum tolerated dose combination in Phase I clinical trials, A. Takahashi and T.
Suzuki, The International Journal of Biostatistics, 2021 (Takahashi and Suzuki, 2021b).

4.1 Overview of drug development and statistical designs for

dose-finding studies of combination drug therapies

4.1.1 Dose-finding studies for combination drug therapies

As Mokhtari et al. (2017) has mentioned that combination drug therapies that combine two
or more agents are a cornerstone of cancer therapies, the development of combination drug
therapies for cancer treatment has become more commonplace because combination drug
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therapies can offer synergistic and additive anti-cancer benefits, unlike mono-therapies.
In particular, resistant patients to the treatment of traditional mono-therapies can reap
such additional benefits. Additionally, combination drug therapies potentially reduce drug
resistance.

In the same manner in Phase I clinical trials for mono-therapies, those for combination
therapies primarily aim to identify an MTDC. The underlying premise in conventional
statistical designs for dose-finding studies of mono-therapies with cytotoxic agents is that
toxicity increases monotonically with increasing dose levels. In combination drug thera-
pies, however, we cannot simply apply such monotonicity assumptions because complex
drug–drug interactions make complete toxicity orders unclear in the dose combination ma-
trices. Dose–toxicity relationships in combination drug therapies are much more complex
than those for mono-therapies. The complexity of dose-finding studies for combination
drug therapies is caused not only by the unknown dose–toxicity relationships but also by
the possible existence of multiple MTDCs in the dose combination matrices.

4.1.2 MTDC definition

Before introducing statistical designs, let us clarify the MTDC definition and the difference
between MTD and MTDC. Suppose that we investigate a combination therapy of two
agents (agent 1 and agent 2) with I × J combinations and the primary objective of the
trial is to identify a single MTDC.

For dose-finding studies for mono-therapies with cytotoxic agents, the goal is to identify
the MTD (x∗) that will produce DLT with a target toxicity rate of θ. The relationship
between x∗ and θ is described as

P(Y = 1 | x = x∗) = θ, (4.1)

where x denotes a variable of doses and a random variable of Y returns 1 when a patient
experiences DLT, otherwise it returns 0. The MTD x∗ is usually a particular dose at
a single dose level that is the maximum dose with acceptable toxicity because toxicity
monotonically increases with increasing dose levels.

In the same way, an MTDC x∗ for combination drug therapies can be described as
follows (Jimenez et al., 2019):

P(Y = 1 | x = x∗) = θ, (4.2)

where x ∈ {x1,1, . . . ,xI,J}; xi,j = (x
(1)
i , x

(2)
j ) expresses a dose combination composed of

two discrete conceptual doses of a dose level i for agent 1 and a dose level j for agent
2, which is picked up from two-dimensional dose combination space (i ∈ {1, . . . , I}, j ∈
{1, . . . , J}).

One of the different points between “MTD” and “MTDC” is the latter could be a subset
of the possible dose combinations that have a probability of DLT for a patient equal to
θ in the explored dose combination matrices. A single MTDC in this chapter means a
dose that achieves equation (4.2); therefore, we note that it is not necessary to be the
maximum dose combination in the possible subset.

4.1.3 Bayesian optimal interval design

As a strategy for finding a single MTDC or MTDCs, a simple way is to transform the two-
dimensional dose-finding problem into a one-dimensional dose-finding problem. Zhang and
Yuan (2016) has introduced the waterfall design to find an MTD contour by dividing a trial
into a series of sub-trials and applying a one-dimensional approach to each sub-trial. The
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authors utilized, for example, the BOIN design that is one of toxicity probability interval
designs like the mTPI in Section 2.4.1 and has been introduced by Liu and Yuan (2015)
and Yuan et al. (2016) for MTD estimation as a one-dimensional approach. Decreasing
dimensions is straightforward, but on the other hand, such designs generally need more
patients for a trial.

Lin and Yin (2017a) has extended the BOIN design directly to drug combination sit-
uations without dividing a trial into sub-trials to find a single MTDC. Hereafter, we call
this extended version ‘BOIN’. As mentioned in the previous paragraph, the BOIN is cat-
egorized in toxicity probability interval designs, which is the same category as the mTPI;
accordingly, basic assumptions on toxicity probabilities are similar to the mTPI shown in
Section 2.4.1. The following are specifics on the BOIN for MTDC estimation.

Toxicity probability distribution

Similar to the mTPI, the BOIN also constructs a beta-binomial model on toxicity probabil-
ities at each dose combination. Suppose πi,j is a toxicity probability at a dose combination
(i, j) where i ∈ {1, . . . , I} and j ∈ {1, . . . , J}. In the same way as equation (2.7), the prior
distribution of πi,j is given by

πi,j ∼ Beta(αi,j , βi,j), (4.3)

where αi,j and βi,j are hyperparameters for a beta distribution. A vague beta prior is
usually assumed.

Once patient outcomes are obtained, a posterior toxicity probability for the current
dose combination level (i, j) is updated based on a beta-binomial model such that

πi,j | D1:t ∼ Beta(αi,j + yi,j , βi,j + ni,j − yi,j), (4.4)

where yi,j patients experienced DLT out of ni,j patients at the dose combination (i, j).

Dose selection

Unlike the mTPI, the next dose combination is selected by a sample statistic of the toxicity
probability at the current dose combination based on optimal escalation and de-escalation
boundaries instead of the upper probability mass.

Optimal boundaries are obtained by minimizing the chance of making incorrect de-
cisions. Firstly, investigators specify ϕ1 denoting the highest DLT rate requiring dose
escalation and ϕ2 denoting the lowest DLT rate requiring dose de-escalation. Liu and
Yuan (2015) recommended default values of ϕ1 = 0.6θ and ϕ2 = 1.4θ for general use.
Alternatively, we can adjust those values to set conservative or aggressive dose selections
as needed; however, making a range between [ϕ1, ϕ2] too narrow leads to be difficult
to differentiate θ from the probabilities that are close to it especially under small sam-
ple size trials. The BOIN formulates the following three hypotheses: H0i,j : πi,j = θ;
H1i,j : πi,j = ϕ1; and H2i,j : πi,j = ϕ2. H0 indicates the current dose combination is
the MTD; H1 indicates the current dose combination is subtherapeutic; H2 indicates the
current dose combination is overly toxic.

The correct decisions under the three hypotheses H0,H1, and H2 are ‘Stay at the same
dose combination (S)’, ‘Escalation (E)’, and ‘De-escalation (D)’ respectively. Correspond-
ingly, the incorrect decisions under H0,H1, and H2 are other than the correct decisions,
which are described as S, E , and D respectively. The probability of making incorrect
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decisions at the current dose combination based on the boundary (λ1, λ2) is given by

CT (λ1, λ2) = P(H0i,j)P(S | H0i,j) + P(H1i,j)P(E | H1i,j) + P(H2i,j)P(D | H2i,j) (4.5)

= P(H0i,j)P(π̂i,j ≤ λ1 or π̂i,j ≥ λ2 | H0i,j) +

P(H1i,j)P(π̂i,j > λ1 | H1i,j) + P(H2i,j)P(π̂i,j < λ2 | H2i,j)

= P(H0i,j)P(yi,j ≤ ni,jλ1 or yi,j ≥ ni,jλ2 | H0i,j) +

P(H1i,j)P(yi,j > ni,jλ1 | H1i,j) + P(H2i,j)P(yi,j < ni,jλ2 | H2i,j)

= P(H0i,j){F(ni,jλ1;ni,j , θ) + 1− F(ni,jλ2 − 1;ni,j , θ)}+
P(H1i,j){1− F(ni,jλ1;ni,j , ϕ1)}+ P(H2i,j){F(ni,jλ2 − 1;ni,j , ϕ2)},

where F(y;n, θ) is a cumulative distribution function of a binomial distribution based on
the parameters of size n and a probability θ at an observation y; π̂i,j = yi,j/ni,j is a
sample statistic of a toxicity probability at the current dose combination (i, j). Based on
equation (4.5), optimal boundaries based on λ1 and λ2 can be calculated by minimizing the
probability of incorrectly assigning patients to subtherapeutic or overly toxic doses (i.e.,
CT (λ1, λ2)), thereby optimizing for patient ethics. In the simplest case where we assign
non-informative prior to three hypotheses (i.e., P(H0i,j) = P(H1i,j) = P(H2i,j) = 1/3),
the boundaries always satisfy the property of ϕ1 < λ1 < θ and θ < λ2 < ϕ2. Liu and
Yuan (2015) shows optimal boundaries corresponding to some commonly encountered
target toxicity rates under assuming the non-informative prior on the hypotheses.

Based on the optimal boundary, the next dose combination is decided as follows:

1. When a sample statistic at the current dose combination falls within the optimal
boundaries [λ1, λ2], the next dose combination stays at the current dose combina-
tion.

2. When a sample statistic at the current dose combination is equal to or greater than
the upper boundary λ2, the next candidate is a de-escalated dose combination (i.e,
(i− 1, j) or (i, j − 1)).

3. Otherwise, the decision for the next dose combination is to escalate a dose combi-
nation (i.e, (i+ 1, j) or (i, j + 1)).

4. In the above escalation and de-escalation decisions, either dose combination is se-
lected whichever has the highest posterior probability that the next candidate falls
within the boundaries.

As shown above, the BOIN is transparent and accessible to non-statisticians because
decision-making relies on only sample statistics and simple to implement.

Overdose control is usually performed in the dose selection so that the current dose com-
bination and higher dose combinations with potentially excessive toxicity are eliminated
from the set of the next candidates because of safety concerns. Specifically, if a posterior
toxicity probability greater than θ at the current dose combination is greater than 0.95
when ni,j is at least three patients, the current dose combination and the higher dose
combinations are eliminated from a trial. The cutoff value of 0.95 is the recommended
value for general use.

The cycle of observing patient outcomes, updating toxicity distributions of the current
dose combination, and selecting the next candidate is repeated until the trial meets either
of pre-specified stopping rules. Once the trial condition meets pre-specified stopping rules,
a single MTDC with toxicity closest to θ is selected based on isotonic estimates described
in a matrix form of toxicity probabilities. If there is a tie, the higher dose combination is
selected when the isotonic estimate is lower than the target toxicity rate.
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Open research questions

We have raised open research questions for toxicity interval designs for MTD estimation
in Section 2.4.1. We can also apply the same to the BOIN. One is the limited allowance
window for dose selections in the BOIN. The BOIN offers only the adjacent dose combina-
tions of the current dose combination in its dose selection process. This works successfully
from the view of overdose control; however, the limited range of dose selection might make
it difficult to reach the higher dose combinations quickly depending on true dose-toxicity
scenarios. The other is the BOIN provides the dose–toxicity relationships across tested
dose combinations by isotonic estimates at the last stage of trials; thus, we do not ob-
tain the updating beliefs on dose–toxicity relationships across a dose combination matrix
during a trial. These points can be addressed in our work.

4.1.4 Partial ordering continual reassessment method

Wages et al. (2011) and Wages and Conaway (2013) have developed the partial ordering
continual reassessment method (POCRM) that also addresses the two-dimensional prob-
lem directly without dividing a trial into sub-trials. The POCRM has extended the most
popular parametric model-based approach for mono-therapies called the CRM explained
in Section 2.3 to MTDC estimation for combination drug therapies.

Besides the POCRM, Yin and Yuan (2009b), Riviere et al. (2014), and Diniz et al. (2017)
have proposed other parametric model-based designs using a copula regression model, a
logistic regression model, and a model re-parameterized in terms of the probability of
toxicity under a known link function, respectively. Of parametric model-based designs
that are a major class in statistical designs for dose-finding studies for MTDC estimation,
the POCRM has been frequently evaluated as a competitor in several articles. Riviere
et al. (2015a) evaluated the performance of rule-based designs (up and down design for
combination drug therapy and up and down with T-statistics ) and parametric model-
based designs (the POCRM, the copula model, and the Gumbel model ). They reported
that the parametric model-based designs performed better than the rule-based designs in
terms of correct selections of a single MTDC and there was no major difference among
the compared parametric model-based designs. Additionally, Hirakawa et al. (2015) has
compared five parametric model-based designs, which were the copula regression model,
the hierarchical Bayesian model, the shrinkage logistic model, the POCRM, and the order-
restricted interface method. According to their simulation results, although each of the
designs performed well for various scenarios, on average the hierarchical Bayesian model
and the POCRM yielded the highest percentage of correct selections of a single MTDC.

Start-up phase

Wages et al. (2011) has introduced the POCRM based on a two-stage design composed
of a start-up phase and a model phase. Other proposed designs for dose-finding studies
for combination drug therapies such as Wang and Ivanova (2005); Yin and Yuan (2009b);
Wages and Conaway (2013); Riviere et al. (2014); Zhang and Yuan (2016); Wages (2017)
also include a start-up phase for MTDC estimation, while the strategy varies among
designs. The start-up phase in the POCRM is based on the ”toxicity zone” that guides in
choosing orders that specify a potential dose-toxicity relationship before a model phase is
conducted. Fig. 4.1 describes an example of toxicity zone described as Z. The POCRM
considers that toxicity increases among zones in ascending order as Z1 < · · · < Z6, while
we do not know the toxicity order in the internal of each zone.
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Fig. 4.1. Toxicity zoning for 2 agents with 3 × 4 combinations

In the start-up phase, the initial escalation scheme proceeds according to zones, testing
dose combinations by ascending order of Z until the first DLT is observed. When a
particular zone has more than one dose combination, either dose combination is chosen
randomly from the zone. Each zone is not allowed to be skipped until all dose combinations
in the previous zone have been allocated to a cohort of patients (e.g., Dose combinations
in Z3 can be tested only after all dose combinations in Z1 and Z2 are tested.). Once
the start-up phase is terminated due to the first DLT, the model phase starts. As an
exception, the highest dose combination is declared the MTDC without the model phase
if all patients are treated with no DLT at the start-up phase.

Model phase

After the start-up phase is terminated and trial conditions have not reached either stopping
criteria yet, the design switches to the model phase based on the power model:

π(xi,j) ≈ ψs(xi,j , a) = {π0
i,j(s)}a, (4.6)

where π0
i,j(s) is an initial guess for a toxicity probability at a conceptual dose combination

value xi,j (xi,j ∈ R) under an ordering s; a denotes a model parameter.
For the ordering s, Wages and Conaway (2013) recommended to use six possible order-

ings named across rows, up columns, up diagonals, down diagonals, alternating down-up
diagonals, and alternating up-down diagonals (i.e., s = 1, . . . , 6 in this case). Prior prob-
abilities for the orderings are decided and described as P(s) = {P(1), . . . ,P(S)}, where
P(s) ≥ 0,ΣsP(s) = 1, and s ∈ {1, . . . , S}. The simplest case that works well in practice is
P(s) = 1/S.

Skeleton values for π0
i,j(s) are selected by investigators. Alternatively, they could be

calculated with the indifference interval approach that the CRM often uses as described
in Section 2.3. If the indifference interval approach is used for generating skeleton values,
one set of possible toxicity probabilities can be generated; therefore, initial guesses for
each ordering s are decided by rearranging the skeleton values to correspond s after the
generation.

After patients in the tth cohort are treated, the likelihood function on all observations
D1:t is given by

Ls(D1:t | a) =
t∏

z=1

ψs(x(z), a)
y(z){1− ψs(x(z), a)}n(z)−y(z) , (4.7)
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where y(z) patients out of n(z) patients in the zth cohort who were treated with a dose
combination denoted by x(z) experienced DLT.

For selecting the next dose combination, a single ordering s∗ is chosen based on ordering
weights given by

ϖ(s) =
{Ls(D1:t | a) |a=âs

}P (s)
ΣS

s=1{Ls(D1:t | a) |a=âs}P (s)
, (4.8)

s∗ = arg max
s∈{1,...,S}

ϖ(s), (4.9)

where âs denotes the maximum likelihood estimate for each ordering based on equation
(4.7). Given s∗ that indicates a plausible choice for orderings, the next dose combination
is selected such that

x(t+1) = arg min
x∈{x1,1,...,xI,J}

| ψs∗(x, âs∗)− θ | . (4.10)

Patients in the next cohort are treated with the selected dose combination corresponding
to x(t+1).

According to equation (4.10), an MTDC is determined at the end of a trial from dose
combinations that have already been administered to patients.

Open research questions

The open research questions on parametric model-based designs for MTD estimation in
Section 2.3 are again applicable here. Parametric model-based designs have been reported
to provide better performance than rule-based designs in various scenarios; however, they
always have the potential risk of model misspecification. As it is more challenging to know
true dose–toxicity relationships for combination drug therapies than mono-therapies, it
is highly likely that strong assumptions for dose–toxicity shapes are difficult to apply
before the initiation of trials. Additionally, we can apply the same concerns pointed in
Section 2.3 about the risk of ignoring uncertainties of estimates in dose selections. As
one of the options to avoid suboptimal dose allocations during trials, we would propose
to take non-negligible variability on estimated dose–toxicity relationships into account in
dose selections.

4.2 Modeling frameworks and practical procedures of Bayesian

optimization design for MTDC estimation
Given the raised points in Section 4.1, we have developed BOD for combination drug ther-
apies, which seeks a single MTDC. The modeling approach of BOD for MTDC estimation
is almost similar to that of Chapter 3 except for the dimension of input data.

Firstly, an unknown dose–toxicity function is nonparametrically modeled. A Gaussian
process is then put as a prior belief over it so as to treat the model as a Bayesian non-
parametric regression model. Once patient outcomes are observed, we refine our current
belief on the model via Bayes’ rule. Simultaneously, a probabilistic belief on an objective
function that we will optimize to find an MTDC derives from the estimated dose–toxicity
function. With the probabilistic belief, we sequentially induce an acquisition function that
is an alternative to the true objective function and guides where the most promising point
is while leveraging uncertainties of the objective function. The next candidate of dose
combinations is selected by maximizing the acquisition function. We repeat observing
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patient outcomes, updating the model, and selecting a dose combination until either of
the pre-specified stopping rules is met. Finally, a single MTDC is determined based on
the final updated dose–toxicity function.

In this section, we introduce BOD for MTDC estimation in detail with the following
subsections:

• BOD for MTDC estimation is composed of a two-stage design like the POCRM.
Section 4.2.1 explains the modeling part in BOD. Because most components in
the dose selection strategy are the same as Section 3.1.2, we describe only short
explanations while skipping overlap contents with Section 3.1.2.

• Section 4.2.2 introduces all steps to implement BOD for MTDC estimation including
the start-up phase for BOD.

• Section 4.2.3 illustrates a brief example and depicts some drawings BOD could
provide.

4.2.1 Statistical modeling of dose-toxicity relationships and dose selection strat-

egy

Dose–toxicity relationship

Suppose that each agent we focus on here monotonically increases toxicity with increas-
ing dose levels when we evaluate each one individually. Consider a trial investigating a
combination drug therapy of two agents (agent 1 and agent 2) with I × J combinations.
The nonparametric model for the dose matrix is given by

f(x) = logit{π(x)} = log

{
π(x)

1− π(x)

}
, (4.11)

where π(x) denotes toxicity probabilities at a corresponding re-scaled combination dose

value x in the finite range X = {x ∈ R2 | x1,1, . . . ,xI,J}; xi,j = (x
(1)
i , x

(2)
j ) expresses a

dose combination with two discrete conceptual values combining a dose level i for agent
1 and a dose level j for agent 2, which is picked up from the two-dimensional dose combi-
nation space (i ∈ {1, . . . , I}, j ∈ {1, . . . , J}). The only difference between equations (3.1)
and (4.11) is whether input data is 1-dimensional dose or 2-dimensional doses.

Although there is a limitation to estimate dose–toxicity relationships on whole dose
combination space due to limited sample size in practice, preliminary estimation might
help to interpret the characteristics of investigated agents for subsequent clinical trials.
Thus, in the same manner in Section 3.1, we estimate f in a Bayesian manner by putting
a Gaussian process prior on an unknown function space; that is, f ∼ GP(m, k) specified
by a mean function m(x) and a covariance function k(x,x′). A prior mean function
for m(x) can derive from pre-specified initial guesses of dose–toxicity relationships if
there is historical data or data of previous early studies; however, little information is
available about dose–toxicity relationships particularly in more complex situations such
as combination drug therapies. Bayesian optimization often uses a flat mean prior with
a value of 0 as a prior setting for objective functions. For dose-finding studies, if there is
no information on dose–toxicity relationships, one option is to apply a mean prior with
small values that have a slight monotonically increasing trend in order to have less impact
on dose selections during the trial. For a covariance function, We apply the squared
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exponential kernel that substitutes two-dimensional doses to equation (3.3) as follows:

k(x,x′) = σ2
fexp

{
− 1

2ρ2

2∑
a=1

(x(a) − x(a)′)2

}
. (4.12)

Although there are other options for kernel functions, the squared exponential kernel is also
suitable for MTDC estimation for combination therapy because dose–toxicity relationships
are still typically smooth. In order to improve the matrix computations and the efficiency
of sampling, we apply a modification with a small value ξ that is the same manner in
equation (3.4). As a result, an element in a covariance matrix K between arbitrary dose
combinations x and x′ is given by

Kx,x′ = k(x,x′) + ξ1[x = x′]. (4.13)

We will explain how to set parameters for a Gaussian process prior assuming that there
is no prior information about dose–toxicity relationships in Section 4.2.2 (Step 2 in the
model phase) and provide practical settings in Section 4.3.2.

The likelihood function is the same as equation (3.5) but cumulative data up to tth test
are described as D1:t = {(n(1),x(1), y(1)), . . . , (n(t),x(t), y(t))}. Once patient outcomes
are observed, posterior distributions of toxicity probabilities π along with f are sampled
through the MCMC.

Dose selection strategy

We have addressed how to model and estimate dose–toxicity relationships at the above.
Our goal is to find a single MTDC that provides toxicity closest to the target toxicity
rate θ according to equation (4.2). Accordingly, the MTDC estimation problem can be
transformed into an optimization problem by defining the following objective function:

g(x) = |π(x)− θ| . (4.14)

Equation (4.14) is almost the same as equation (3.6) except for the dimension of input
space. A posterior distribution for g is simultaneously sampled when the corresponding
posterior distributions of π and f are sampled.

In the same manner in Section 3.1, we apply the EI as an acquisition function ĝ to decide
the next dose combination x(t+1). Dose selection follows the steps described in equations
(3.7), (3.8) and (3.9) while substituting x instead of x as input data. The definition of an
admissible dose set At for the dose selection will be given in the model phase Step 4 in
Section 4.2.2.

4.2.2 BOD implementation steps for MTDC estimation

We introduce the entire sequence of implementation steps of BOD for MTDC estimation
in this section. Firstly, we will introduce the start-up phase in detail. After that, specific
steps will be described for the model phase.

Start-up phase

The start-up phase is conducted as a part of BOD before the model phase introduced in
Section 4.2.1 because the information available at the beginning of the trial may be too
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limited to rely entirely on posterior estimates based on the model. The start-up phase is
implemented according to the following rules:

1. Patients in the first cohort are treated at the lowest dose combination (i.e., x(1) = x1,1).
If the first DLT is observed at the first cohort, the next dose combination is again the
lowest dose combination.

2. If no patient has experienced DLT in the trial yet or if patients in the second cohort
following the first cohort with DLT did not experience DLT, the dose combination for
the next cohort increases in one direction by one level; that is, agent 1 remains fixed
at the lowest level and only agent 2 is escalated by one level.

3. If x1,J has been tested, agent 1 is escalated by one dose level and a dose level for agent
2 is set to the lowest level until DLT is observed.

4. If DLT is observed after the first cohort or xI,1 has been tested, then the model phase
begins.

Our start-up phase could be familiar steps based on a simple algorithm-based escala-
tion approach because dose combinations are escalated only in one direction under the
assumption that toxicity increases monotonically with increasing dose levels. In addition,
it could often allow more available dose combinations at the initiation of the model phase
than a zone strategy that escalates dose combinations in diagonal zone order in a dose
combination matrix (e.g., the POCRM utilizes a zone strategy as described in Section
4.1.4). For the sake of shortening time, it might be possible to simultaneously start from
both vertical direction and horizontal direction because dose escalations by each direction
do not affect each other; however, the start-up phase introduced here assumes that each
direction is executed in sequence.

Model phase

After the start-up phase, the model phase described in Section 4.2.1 is implemented as
follows:

1. Conceptual dose values x are specified. Conceptual doses should have equal intervals
between doses because the correlation of toxicity between dose combinations is deter-
mined by the distance between conceptual doses. As long as this condition is satisfied,
x can take any values.

2. Parameters for a Gaussian process prior f ∼ GP(m, k) are decided as follows:
（a）Like the POCRM, initial toxicity guesses associated with a prior mean function

for m(x) could be generated by the indifference interval approach with getprior

function in the R package dfcrm in the same manner in Section 3.1.4. As we stated
in Section 3.1.4, the getprior function requires the indifference interval half-width
(δ), the target toxicity value (θ), the initial MTDC location (ν), and the number of
combinations (I×J). Unlike BOD for MTD estimation that utilizes the systematic
approach (Lee and Cheung, 2009) to calibrate δ, BOD for MTDC estimation uses
relatively small fixed values for δ because dose–toxicity surfaces for two agents are
out of scope in the systematic approach. By specifying a small value of δ, initial
toxicity guesses have a gentle increasing trend with increasing dose levels and the
effect of the initial values could be minimized in the dose selections. The simplest
setting for a toxicity ordering on initial toxicity guesses is ‘across rows’ which is
one of the partial orderings described in Wages and Conaway (2013). For BOD, an
‘across rows’ means toxicity shows monotonicity across rows that can be described
as π(x1,1) ≤ · · · ≤ π(x1,J) ≤ π(x2,1) ≤ · · · ≤ π(x2,J) ≤ · · · ≤ π(xI,J ). According
to our experiences, it is worth evaluating δ within (0.01, 0.05) if the getprior
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function is used for generating initial guesses while the appropriate range for δ
might depend on the number of combinations. A value of ν should be on the center
of the dose matrix to avoid skewed dose selections affected by the initial guesses
as much as possible. With these tunable parameters (δ and ν), initial toxicity
guesses are generated by setting a power model in the getprior function. The
logit-transformed values of the generated initial guesses are placed into the prior
mean function for m(x).

（b）For the kernel parameters, σf is generally set to 1 and ρ is varied to fit the model.
Considering that it might be expected that a dose–toxicity function has potentially
2 or 3 turning points in the dose combination space at most, ρ is specified according
to the relationship between the expected tuning points and conceptual dose values.
A value of ξ is decided according to the calculation speed; however, the smaller ξ
is, the less the operating characteristics are affected.

（c）If something useful data regarding dose–toxicity relationships such as historical data
is available, the above design parameters should reflect them as needed.

3. Based on all observed data so far, posterior samples for f are generated by MCMC.
Simultaneously, posterior samples for π and g are sequentially calculated.

4. An admissible dose combination set At is refreshed at each test and defined as follows:
（a）Among the dose combinations already administered to patients, let īj denote the

highest tested dose level of agent 1 for each dose level of agent 2 (j ∈ {1, . . . , J}). In
the same manner, let j̄i denote the highest tested dose level of agent 2 for each dose
level of agent 1 (i ∈ {1, . . . , I}). At includes all dose combinations (i, j) that meet
(i ≤ īj + 1, j) or (i, j ≤ j̄i + 1). Accordingly, we prohibit the diagonal escalations
from the highest dose combinations already administered to patients on each row
and column in the dose combination matrix.

（b）In addition, we impose that all dose combinations in At satisfy π̂(x) < (θ + ὲ1) for
overdose control, where π̂(x) is a posterior mean at a dose combination x; ὲ1 is a
small value providing an acceptable width that is preliminarily determined in terms
of safety perspective and uncertainties of estimates. A value of ὲ1 could take such
as 0.05 and 0.1 for general use.

（c）If we need to avoid early termination due to an empty admissible dose set, leaving
the lowest dose combination (i.e., x1,1) in At might be a possible option when
At = ∅.

5. After the acquisition function EI is calculated according to equations (3.7) and (3.8),
the next dose combination is selected by maximizing the EI based on equation (3.9).

6. Patients in the next cohort are treated with the selected dose combination.
7. Steps 3 through 6 are repeated until a pre-specified stopping rule is met, e.g., the

maximum sample size is reached or the admissible dose set is empty.
8. After Step 7 is completed, the dose combination falling within the range θ± ὲ1 with the

highest probability among a subset of the tested dose combinations is determined as an
MTDC x∗. The subset for the final MTDC determination satisfies π̂(xi,j) < (θ + ὲ1)
within the tested dose combinations (ni,j > 0) for overdose control. On the basis of
the final posterior distribution of π, an MTDC x∗ is given by

x∗ = arg max
x∈{xi,j |π̂(xi,j)<(θ+ὲ1),ni,j>0,i∈{1,...,I},j∈{1,...,J}}

P(θ− ὲ1 ≤ π(x) ≤ θ+ ὲ1 | D1:t).

(4.15)
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4.2.3 Illustration and example

In this section, we show some illustrations of BOD for MTDC estimation about updates
of dose–toxicity relationships and dose selections. Table 4.1 shows outputs observed up to
the 8th test in a trial assuming scenario 7 in Table 4.2 that was prepared for the simulation
study.

Table 4.1. A trial example

Phase Test cumulative number (i, j) DLT True
number of patients response toxicity

Start-up 1 1 (1,1) 0 0.07
2 2 (1,2) 0 0.10
3 3 (1,3) 1 0.12

Model 4 4 (1,3) 0 0.12
5 5 (2,2) 0 0.30
6 6 (2,2) 1 0.30
7 7 (1,3) 0 0.12
8 8 (2,2) 0 0.30

According to procedures of the start-up phase in Section 4.2.2, 3 tests were conducted
until the first DLT was observed in this example. In Fig. 4.2, the upper figures on upper
and lower sections display the posterior means and 10 and 90 percentiles of the posterior
distributions on toxicity probabilities. Additionally, the corresponding EI after each test
is shown in lower figures. In practice, we obtain posterior distributions among all dose
combinations through posterior samples rather than just posterior means and 10 and 90
percentiles. The upper left section in Fig. 4.2 displays posterior estimates after the 3rd test
and the corresponding EI at all dose combinations (i, j)(i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4, 5}).
According to equation (3.9), the dose combination of (1,3) pointed by an arrow symbol
in the figure of the EI was selected for the 4th test. In the same manner, next dose
combinations are selected after each test as shown in Fig. 4.2. We note that admissible
dose sets temporally exclude some dose combinations from the next dose selection from
the view of patient safety as described in the model phase Step 4 in Section 4.2.2.

Fig. 4.3 depicts posterior density probability functions that were used to calculate the EI
after the 8th test. As shown in equation (3.7), I(x) takes either 0 or g+−g(x), whichever
is greater. Filled area in Fig. 4.3 shows one where values of g(x) are lower than g+ defined
with data up to the 8th test; thus, the corresponding I(x) returns positive values. On
the other hand, the other areas provide greater values of g(x) than g+; therefore, I(x)
becomes 0. The EI is calculated based on equation (3.8) using the probability density
functions and I(x) derived from g(x). As a result, for example, the EI after the 8th test
draws the line chart displayed in the lower right section in Fig. 4.2.



4.3 Performance evaluation 65

t=3 t=4 t=5
:10 and 90 percentiles×: true toxicity : prior input : posterior mean

t=6 t=7 t=8

Fig. 4.2. An example of BOD for MTDC estimation shows updates of dose–toxicity rela-
tionships and the corresponding EI during a trial.
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Fig. 4.3. Probability density functions after the 8th test at each dose combination (i, j)

These steps are repeated until the end of the trial. After the trial meets one of the
pre-specified stopping rules, a single MTDC is determined based on equation (4.15).

4.3 Performance evaluation
We conducted a simulation study to examine the performance of BOD for MTDC esti-
mation by comparing it with the BOIN based on Lin and Yin (2017a) and the POCRM
based on Wages and Conaway (2013). In the following sections, we present our simulation
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framework and results.

4.3.1 General settings for the simulation study

We considered dose-finding studies for two agents having 3 × 5 dose combinations and the
target toxicity rate θ was 0.3. In this simulation study, we used the same toxicity scenarios
as the simulation settings in Riviere et al. (2015a). Those ten scenarios, which seem to
cover a wide variety of underlying realities, are shown in Table 4.2. We conducted our
simulation study under the trial with cohorts including a single patient (i.e., the cohort
of size 1) and a small sample size of 30. Regarding the sample size of 30, we referred
to Hirakawa et al. (2015) whose simulation study was based on four actual examples of
dose-finding studies for combination drug therapies that had been reviewed by the FDA,
approved by the Institutional Review Board, or involved initial planning discussions with
clinicians for a study; therefore, this small sample size might be the trial designs that we
might encounter in practice. In most cases, feasibility has a great impact on designing
Phase I clinical trials.

As a stopping rule, all designs except for the BOIN with elimination rule terminated
the trials when the number of patients reaches the maximum sample size so that we could
compare the different designs under as consistent conditions as possible. ‘The BOIN with
elimination rule’ that aligned with the original proposal of the BOIN possibly caused early
termination before reaching the maximum sample size as an exception; therefore, we also
evaluated the BOIN that did not cause early termination. The specifics for the BOIN in
the simulation study will be explained in Section 4.3.3.

We supposed that the lowest dose combination was the initial test dose combination
in all the designs. All simulations were computed for 2,000 trials. As performance eval-
uations, we provided descriptive summaries, MSEs calculated by equation (3.11) that
substituted M = 2000, and 95% confidence intervals for the MSEs.
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Table 4.2. Toxicity scenarios for 3 × 5 dose combinations

Dose level of agent 2
1 2 3 4 5 1 2 3 4 5

D
os
e
le
ve
l
of

ag
en
t
1

Scenario 1 Scenario 2
3 0.15 0.30 0.45 0.50 0.60 3 0.45 0.55 0.60 0.70 0.80
2 0.10 0.15 0.30 0.45 0.55 2 0.30 0.45 0.50 0.60 0.75
1 0.05 0.10 0.15 0.30 0.45 1 0.15 0.30 0.45 0.50 0.60

Scenario 3 Scenario 4
3 0.10 0.15 0.30 0.45 0.55 3 0.50 0.60 0.70 0.80 0.90
2 0.07 0.10 0.15 0.30 0.45 2 0.45 0.55 0.65 0.75 0.85
1 0.02 0.07 0.10 0.15 0.30 1 0.30 0.45 0.60 0.70 0.80

Scenario 5 Scenario 6
3 0.07 0.09 0.12 0.15 0.30 3 0.15 0.30 0.45 0.50 0.60
2 0.03 0.05 0.10 0.13 0.15 2 0.09 0.12 0.15 0.30 0.45
1 0.01 0.02 0.08 0.10 0.11 1 0.05 0.08 0.10 0.13 0.15

Scenario 7 Scenario 8
3 0.30 0.50 0.60 0.65 0.75 3 0.08 0.15 0.45 0.60 0.80
2 0.15 0.30 0.45 0.52 0.60 2 0.05 0.12 0.30 0.55 0.70
1 0.07 0.10 0.12 0.15 0.30 1 0.02 0.10 0.15 0.50 0.60

Scenario 9 Scenario 10
3 0.15 0.30 0.45 0.55 0.65 3 0.70 0.75 0.80 0.85 0.90
2 0.02 0.05 0.08 0.12 0.15 2 0.45 0.50 0.60 0.65 0.70
1 0.005 0.01 0.02 0.04 0.07 1 0.05 0.10 0.15 0.30 0.45

4.3.2 Simulation settings of BOD for MTDC estimation

We followed all the steps described in Section 4.2.2; however, At = {x1,1} when At =
∅ in the model phase Step 4 to avoid early termination in the simulation study. The
conceptual doses for agent 1 and agent 2 were {0.2, 0.4, 0.6} and {0.2, 0.4, 0.6, 0.8, 1.0},
respectively; therefore, the available dose combinations of the 3 × 5 matrix consisted of
all the combinations of these conceptual doses in increasing order of dose level for each
agent.

We generated initial toxicity guesses with the getprior function using δ = 0.015 and
ν = 8. Based on preliminary evaluations, δ = 0.015 seemed to work well for 15 dose
combinations from the view of safety dose allocations and correct MTDC selection prob-
abilities. The setting of ν = 8 indicates that an initial MTDC was the center of the dose
matrix (i.e., x2,3). The parameters related to the squared exponential kernel were σ2

f = 1,
ρ = 0.4, and ξ = 0.08. The value of ρ indicates that the turning point was every 0.4
lengths of conceptual doses. It was in a multiple of 0.2 used for the conceptual doses
and was a slightly smaller value than a half-length of conceptual doses for agent 2. We
determined the value of ξ only based on computational speed. Step 4 in the model phase
and equation (4.15) used ὲ1 = 0.10.

As evaluation for the impact of δ and ρ, we also simulated with different settings for
them under specific scenarios. Although posterior distributions for f as well as π provide
a unique partial-ordering trend, individual functions of them do not always follow the
feature; therefore, we also evaluated BOD treating only toxicity probability functions
that did not reverse toxicity at least over 0.15 when the dose level of one agent increased
while the dose level of the other was fixed.

Appendix B.1 provides the codes for BOD that were used in the simulation study.
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4.3.3 Simulation settings for the competitors

Bayesian optimal interval design

We followed the procedures in Section 4.1.3 regarding the mathematical background of the
BOIN. Suppose that the current dose combination is composed of dose levels (i, j). Dose
selections are conducted based on the sample statistic given by yi,j/ni,j during a trial.
For the optimal boundaries for the dose selections, we used (0.236, 0.358) based on the
recommended values for θ = 0.3 in Liu and Yuan (2015). Posterior toxicity probabilities
at each dose combination were calculated by a beta-binomial model assuming a vague
beta prior Beta(1, 1).

We evaluated two types of the BOIN. One was the BOIN with dose elimination rule that
imposed the following rule to avoid assigning patients to overly toxic dose combinations:
If a posterior toxicity probability greater than θ at the current dose combination was
greater than 0.95 when ni,j was at least three patients, the current dose combination
and the higher dose combinations {(i′, j′) | (i′ ≥ i) ∧ (j′ ≥ j)} were eliminated from the
trial. If the lowest dose combination was eliminated, the trial was terminated because
of safety concerns; that is, it possibly decreased the number of patients in a trial due to
early termination depending on scenarios. The cutoff value of 0.95 is the recommended
value for general use in the BOIN (Yan et al., 2020). The other BOIN evaluated in this
simulation was the BOIN without the elimination rule that did not apply the elimination
rule; therefore, the latter BOIN never terminated trials early.

At the end of the trial, a single MTDC with toxicity closest to θ was selected based on
isotonic estimates described in a matrix form of the toxicity probabilities. If there was a
tie, the higher dose level was selected when the isotonic estimate was lower than θ.

We implemented the BOIN with the R package BOIN. As a side note, the BOIN can
be implemented via a user-friendly could software and desktop software provided from
https://biostatistics.mdanderson.org/SoftwareDownload/ as alternatives of the R
package.

Partial ordering continual reassessment method

As shown in Section 4.1.4, the two-stage POCRM was evaluated in this simulation study.
As a start-up phase of the two stage POCRM, the initial escalation scheme proceeded ac-
cording to zones, testing (i, j), in order, (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3),
(3, 2), (1, 5), (2, 4), (3, 3), (2, 5), (3, 4), and (3, 5) until the first DLT was observed. After
the start-up phase finished, the design switched to the model-based procedure based on the
power model. As recommended in Wages and Conaway (2013), six possible orderings—
named across rows, up columns, up diagonals, down diagonals, alternating down-up diag-
onals, and alternating up-down diagonals—were used in the simulation (i.e., s = 1, . . . , 6).

Riviere et al. (2015a) put an initial MTDC on (3, 3) for the POCRM, which was near
the highest dose combination in the explored dose combination space. On the other hand,
Wages and Conaway (2013) recommended that an initial MTDC location should be placed
in the center of the working model to ensure enough space within the range both below
and above the dose. This suggestion was also discussed in Riviere et al. (2015a). In
this simulation, therefore, we adopted the center of the dose combination ranges, (2, 3),
as an initial MTDC location, rather than (3, 3). Skeleton values π0

i,j(s) to configure the
orderings were generated by using the getprior function in R package dcrm with δ = 0.03
and ν = 8, where the value of δ was the same setting as in Riviere et al. (2015a). The six
possible orderings were provided through the rearrangement of the generated values using

https://biostatistics.mdanderson.org/SoftwareDownload/
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the getwm function in R package pocrm that can help rearrange the skeleton values. We
also examined the POCRM using a different initial guess with δ = 0.05 in the getprior

function as a sensitivity analysis. We implemented the POCRM using the pocrm package
in R.

4.3.4 Simulation results

In this section, BOD for MTDC estimation is displayed as ‘BOD (all)’. As mentioned
in Section 4.3.2, we evaluated BOD with a partial monotonicity restriction on toxicity
in addition to BOD (all). BOD with the monotonicity restriction is described as ‘BOD
(mono)’. The BOIN and the POCRM have also two patterns in the simulation study as
explained in Section 4.3.3. They are displayed as ‘BOIN with elimination’, ‘BOIN w/o
elimination’ (i.e., the BOIN without the elimination rule), and ‘POCRM (a specified value
for δ)’.

• MTDC selection

Table 4.3 shows selection probabilities under the ten scenarios. Good performance is
suggested by the correct selection probabilities of MTDC shown by BOD (all). Simulta-
neously, BOD (all) shows lower selection probabilities of dose combinations with higher
toxicity than θ (Overdoses) compared with the other designs in most scenarios.

In only scenario 5, BOD (all) provides a lower correct selection probability than that
of the BOINs (with and w/o elimination) and POCRM (0.03). This could be due to the
unique properties that are effective especially in this scenario. For the POCRM, the correct
selection probability under scenario 5 drops dramatically as increasing δ, whereas those
in the other scenarios are not so affected by δ. If only the highest dose combination is an
MTDC, the POCRM with a small δ that makes an initial toxicity guess at the highest dose
combination be close to θ could allow reaching the true MTDC more rapidly than BOD
(all). The BOIN allows only ±1 dose level changes from the current dose combination
in its dose selection. In contrast, BOD selects a candidate from an admissible dose set
that typically provides a wider selection range than the candidates of the BOIN. BOD
tries to seek plausible dose combinations from the wider space without concentrating on
a local optimum by the acquisition function. It allows BOD to realize more flexible dose
selections than the BOIN and worked well in most scenarios; however, the BOIN’s simple
dose selection procedure could provide a more efficient approach to reach the highest dose
combination rapidly than BOD in the case of scenario 5.

The relatively poor results shown by the POCRMs indicate that pre-specified assump-
tions about the dose–toxicity relationships might hinder the efficient search for the true
MTDC in two-dimensional complex space because, in most scenarios, nonparametric ap-
proaches provide better performance than the POCRMs in the simulation study. On the
other hand, the POCRMs work better than the BOINs in scenarios 9 and 10 in terms
of the correct selection probability of MTDC. For one thing, one of their pre-specified
orderings could fit the true dose-toxicity relationships because the “across rows” ordering
seems to be suitable for these scenarios. With regard to scenario 9, the zone strategy
the POCRM applied could have worked well. Scenario 9 has very low toxicities at dose
combinations below the zone containing an MTDC locating on (i, j) = (3, 2). Therefore,
it is highly likely that the first DLT is observed at an MTDC in the start-up phase. A
synergistic effect among these multiple factors— scenarios, zone strategies, prior settings,
and orderings—would enable the POCRM to reach an MTDC more rapidly than in other
situations. On the other hand, even if an initial MTDC is located on the true MTDC,
the POCRMs do not always provide excellent results, as exemplified by scenario 8. Ad-



70 Chapter 4 Bayesian optimization design of MTDC estimation for combination drug therapies

Table 4.3. Operating characteristics of selection probabilities (true MTDC or overdoses)
by each design and scenario

Selected Scenario BOD BOD BOIN with BOIN w/o POCRM POCRM
dose (all) (mono) elimination elimination (0.03) (0.05)

MTDC 1 0.62 0.63 0.50 0.51 0.23 0.23
2 0.59 0.57 0.52 0.55 0.39 0.43
3 0.57 0.60 0.53 0.52 0.34 0.39
4 0.66 0.51 0.48 0.65 0.73 0.70
5 0.49 0.48 0.61 0.64 0.62 0.45
6 0.52 0.53 0.42 0.42 0.30 0.31
7 0.60 0.67 0.56 0.55 0.44 0.52
8 0.30 0.24 0.26 0.29 0.03 0.03
9 0.44 0.49 0.24 0.24 0.32 0.35
10 0.40 0.36 0.29 0.26 0.28 0.35

Average 0.52 0.51 0.44 0.46 0.37 0.37
Overdose 1 0.19 0.18 0.28 0.29 0.40 0.39

2 0.32 0.38 0.36 0.36 0.46 0.44
3 0.39 0.34 0.42 0.43 0.53 0.52
4 0.34 0.50 0.34 0.35 0.27 0.30
5 0.00 0.00 0.00 0.00 0.00 0.00
6 0.18 0.19 0.25 0.27 0.29 0.27
7 0.29 0.25 0.29 0.31 0.42 0.35
8 0.29 0.34 0.30 0.34 0.46 0.51
9 0.23 0.23 0.19 0.24 0.27 0.25
10 0.34 0.46 0.44 0.49 0.45 0.44

Average 0.26 0.29 0.29 0.31 0.36 0.35

ditionally, a correct MTDC can be selected if the estimated toxicity probability at a true
MTDC is close to θ on the estimated plausible ordering even if the ordering is wrong. As
the POCRMs do not provide excellent performances under many scenarios in this simu-
lation, however, it would be difficult to reach a single correct MTDC at the end of the
trial when toxicity orderings are misspecified. Regarding prior settings for the POCRM,
Riviere et al. (2015a) have reported that definitions for reasonable and unreasonable prior
settings for the POCRM have remained unclear so far.

The BOIN with elimination shows early termination in some trials under scenarios
2 and 4 with the average numbers of patients of 29.5 and 26.2, respectively. Because
of the elimination rule, the correct selection probability drops by 17% under scenario 4
(Table 4.3). It indicates the dose elimination rule has a high impact on the performance
of the BOIN when the dose combination matrix has an MTDC at only the lowest dose
combination. The BOIN is free from rigid assumptions, unlike the POCRM, while there
is a limitation on the search space compared with BOD. It could be why the performance
of the BOINs was intermediate between BOD (all) and the POCRMs.

MSEs with precision information support Table 4.3. In Fig. 4.4, we interpret the
performance as more favorable when MSEs are smaller. We can see consistent trends to
the above descriptions as BOD (all) has the smallest MSEs in most scenarios.
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Fig. 4.4. Mean squared errors on toxicity probabilities at the recommended MTDC

• Dose allocations and observed toxicity

BOD (all) shows the lowest observed toxicity percentage among all the designs (Table 4.4)
and allocates more patients to the true MTDC and fewer patients to overdoses compared
with the other designs in most scenarios (Table 4.5). Low MTDC allocation under scenario
5 shown in BOD (all) may be explained by the same reason mentioned in the second
paragraph in the descriptions for MTDC selection results. In scenario 4, BOD (all) selects
more overdoses during the trial than the other designs (Table 4.5), although the observed
toxicity percentage of BOD (all) is similar to that of the other designs (Table 4.4). This
can be explained by Table 4.6 that provides the average actual number of patients treated
with each dose combination under scenario 4. Although BOD (all) treats fewer patients
on the dose combination of (1,1) than the other designs, BOD (all) selected doses near the
dose combination of (1,1). The higher selections on the horizontal area of dose level 1 of
agent 1 seem to be the effect of the start-up phase. The other designs reached farther areas
of dose combinations in the matrix; for example, the other designs select the combinations
of i = 3, while BOD (all) never selects them. For scenario 8, BOD (all) allocates as many
patients to the true MTDC as the BOINs, while the POCRMs (δ = 0.03 and 0.05) show
the lowest allocation to the true MTDC.



72 Chapter 4 Bayesian optimization design of MTDC estimation for combination drug therapies

Table 4.4. Average percentage of the total number of patients experienced with DLT for
each design under 10 scenarios

Scenario BOD (all) BOD (mono) BOIN with BOIN w/o POCRM POCRM
elimination elimination (0.03) (0.05)

1 26.3 27.2 31.7 32.0 27.5 27.1
2 35.5 37.5 37.0 36.3 37.8 37.7
3 21.5 22.2 29.0 29.3 22.2 20.9
4 40.9 42.8 44.7 39.3 40.3 41.1
5 13.7 14.1 20.3 20.7 15.6 13.7
6 22.3 23.0 30.0 30.7 23.7 22.5
7 27.4 28.2 33.0 34.0 30.4 29.6
8 28.4 28.7 30.7 32.3 28.8 27.8
9 20.9 22.5 27.7 30.7 22.1 20.3
10 32.4 34.7 35.3 36.0 36.2 35.7

Average 26.9 28.1 31.9 32.1 28.4 27.6

Table 4.5. Dose allocation probabilities to MTDCs and overdoses under 10 scenarios

Allocated Scenario BOD BOD BOIN with BOIN w/o POCRM POCRM
dose (all) (mono) elimination elimination (0.03) (0.05)

MTDC 1 0.44 0.45 0.33 0.32 0.22 0.23
2 0.45 0.43 0.32 0.32 0.28 0.30
3 0.35 0.38 0.34 0.32 0.25 0.27
4 0.48 0.33 0.56 0.55 0.61 0.56
5 0.19 0.19 0.47 0.50 0.30 0.20
6 0.30 0.31 0.26 0.25 0.20 0.21
7 0.43 0.50 0.32 0.29 0.33 0.37
8 0.16 0.12 0.15 0.16 0.05 0.04
9 0.25 0.29 0.15 0.14 0.17 0.18
10 0.28 0.26 0.13 0.12 0.15 0.20

Average 0.33 0.33 0.30 0.30 0.26 0.26
Overdose 1 0.19 0.19 0.37 0.39 0.31 0.30

2 0.43 0.49 0.46 0.47 0.53 0.51
3 0.45 0.42 0.56 0.56 0.54 0.51
4 0.52 0.67 0.44 0.45 0.39 0.44
5 0.00 0.00 0.00 0.00 0.00 0.00
6 0.13 0.14 0.37 0.39 0.23 0.20
7 0.31 0.27 0.45 0.49 0.40 0.37
8 0.34 0.37 0.41 0.43 0.40 0.40
9 0.16 0.18 0.33 0.41 0.23 0.18
10 0.40 0.49 0.50 0.52 0.51 0.51

Average 0.29 0.32 0.39 0.41 0.35 0.34
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Table 4.6. Average number of patients treated with each dose combination in scenario 4

Dose level of agent 2
1 2 3 4 5 1 2 3 4 5

D
os
e
le
ve
l
of

ag
en
t
1

BOD (all) BOD (mono)
3 0.0 0.0 0.0 0.0 0.0 3 0.6 0.1 0.0 0.0 0.0
2 1.3 0.7 0.1 0.0 0.0 2 5.3 1.6 0.1 0.0 0.0
1 14.3 9.8 2.9 0.7 0.2 1 9.9 8.8 2.7 0.8 0.1

BOIN with elimination BOIN w/o elimination
3 1.1 0.7 0.3 0.1 0.0 3 1.1 0.9 0.4 0.1 0.0
2 3.7 1.6 0.5 0.1 0.0 2 3.8 1.8 0.5 0.1 0.0
1 13.2 3.9 0.8 0.2 0.0 1 16.6 3.9 0.8 0.1 0.0

POCRM (0.03) POCRM (0.05)
3 0.3 0.6 0.3 0.0 0.0 3 0.3 0.3 0.0 0.0 0.0
2 1.8 0.9 0.3 0.3 0.3 2 2.4 1.2 0.3 0.3 0.3
1 18.3 3.3 2.1 1.2 0.3 1 16.8 3.9 2.4 1.5 0.3

• BOD with different settings

As shown in Table 4.3, BOD (mono) provides comparable correct selection probability
to BOD (all); however, the selection probability of overdoses is higher than the other
designs in several scenarios. In addition, observed toxicity percentages in BOD (mono)
slightly increase compared with BOD (all) in most scenarios (Table 4.4). In particular, the
difference is exhibited in scenario 4. BOD (mono) offers posterior distributions of dose–
toxicity relationships with almost a partial ordering feature while the estimated toxicity
probabilities tend to be lower at the low dose combinations and higher at the high dose
combinations than those of BOD (all). As a result, BOD (mono) shows higher overdose
selections and higher observed toxicity percentages than BOD (all). For BOD (all), pos-
terior distributions of π follow a partial ordering feature even without the monotonicity
restriction because of the following reasons; a prior mean function belongs to one of the
partial orderings; an admissible dose combination set takes the feature into considerations
by increasing dose selection range in order from the tested dose combinations; posterior
distributions necessarily reflect the partial ordering that the true dose–toxicity relation-
ship has. Given these facts and simulation results, the monotonicity restriction would not
be necessary for the BOD.

As an evaluation of tunable parameters (δ, ρ), we simulated with scenarios 1, 4, 5, and
6. When ρ is a very small value (i.e., 0.1), the performance decreases significantly (Table
4.7). It is unlikely that dose–toxicity relationships have many turning points as mentioned
in Section 4.2.2. This result demonstrates that too small ρ compared with the length of the
conceptual dose is inappropriate for BOD. On the other hand, if ρ = 1.0 that is the same
as the length of the conceptual dose for agent 2, the results are comparable to BOD (all)
with the original settings under these scenarios. It implies that it is sufficient to evaluate ρ
from the value that provides 2 or 3 turning points up to a longer length of conceptual dose
in two agents. The larger value of δ (e.g., δ = 0.030) affects the performance in scenarios
4 and 5 that have an MTDC on the lowest or highest dose combinations, while the results
in the other scenarios retain. The larger δ is, the steeper the slope of initial guesses is.
It means that an initial toxicity probability at the lowest or highest dose combinations
becomes far from θ when δ increases. As a result, δ of 0.030 lower the performance in
scenarios 4 and 5. The results under δ = 0.010 show comparable performance to BOD
(all) with the original settings in terms of correct selection probabilities of MTDC and
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observed toxicity percentages. On the other hand, the selection probability of overdoses is
6% increased in scenario 6 compared to BOD (all) with the original settings. The flatter
prior mean function might increase overdose selections depending on scenarios; therefore,
δ needs to be carefully decided based on simulations or an alternative approach. We also
discuss the design parameters in Section 4.4.

Table 4.7. Selection and allocation probabilities and percentage of the total number of
toxicities when different parameters (δ, ρ) were used in BOD (all)

Scenario (δ,ρ) Selection probabilities Toxicity (%)
MTDC Overdose

1 (0.015, 0.1) 0.40 0.29 25.4
(0.015, 1.0) 0.57 0.17 26.3
(0.010, 0.4) 0.58 0.20 26.3
(0.030, 0.4) 0.60 0.16 24.9

4 (0.015, 0.1) 0.13 0.87 51.5
(0.015, 1.0) 0.72 0.28 35.7
(0.010, 0.4) 0.72 0.28 37.9
(0.030, 0.4) 0.21 0.79 48.2

5 (0.015, 0.1) 0.00 0.00 8.9
(0.015, 1.0) 0.66 0.00 16.2
(0.010, 0.4) 0.54 0.00 15.3
(0.030, 0.4) 0.18 0.00 10.2

6 (0.015, 0.1) 0.32 0.11 16.7
(0.015, 1.0) 0.50 0.22 24.3
(0.010, 0.4) 0.46 0.24 23.1
(0.030, 0.4) 0.53 0.13 19.9

4.4 Summary and discussion
BOD for identifying a single MTDC in a two-dimensional dose combination space has been
presented in this chapter. Although the basic strategy of BOD in Chapters 3 and 4 has a
lot in common on settings related to Bayesian optimization frameworks, detail conditions
pertaining to cancer therapies are unique in each chapter (e.g., the start-up phase design,
initial toxicity guesses, dose selection conditions, and overdose control). For MTDC esti-
mation, BOD (all) performs better than the competitors. It is more challenging to know
about dose-toxicity relationships on dose combination matrices than mono-therapies. The
simulation results indicate nonparametric designs could have more advantage than para-
metric model-based designs for MTDC estimation. The good performance shown by BOD
(all) indicates that modeling flexibility of BOD works effectively in the MTDC estimation
problem. The simulation results also show that BOD (all) offering more flexible dose
selection works better than the BOIN that has the rule to limit its dose selection range
depending on the dose combination currently being tested. Considering the favorable
results shown by BOD (all), BOD features—flexible modeling on dose–toxicity relation-
ships and flexible dose selections without ignoring uncertainties of posterior dose–toxicity
distributions—could bring some benefits to MTDC estimation.

Our simulation study aimed to evaluate the operating characteristics among BOD and
the competitors under the same conditions as much as possible. Of two common cohort
sizes, one and three, our simulation study employed cohorts including a single patient to
align with Wages et al. (2011) and Wages and Conaway (2013). Designs with a cohort size
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of three can collect more toxicity data for a given dose combination on a shorter study
duration while Zhou (2004) has reported that designs with a cohort size of one achieve
more accurate estimates and fewer toxicities. Hirakawa et al. (2016) has reported that
a cohort size of one may be favorable to have the best chance to identify a true MTDC
and lowering selection rates for unacceptable toxic dose combinations. Tighiouart and
Rogatko (2010) has reported the difference in cohort sizes did not affect the safety of a
trial and therapeutic doses based on a Bayesian adaptive design due to small clinical trials;
however, they have recommended using a cohort size of one to avoid seeing simultaneous
serious toxic events when a group of patients is treated at the same dose level. For actual
clinical trials, it is crucial to evaluate the effect of cohort sizes on estimation accuracy
and safety under assumed trial conditions, and carefully determine a cohort size while
considering the balance with feasibility (e.g., study duration).

For dose-finding studies for combination drug therapies, it is challenging to fully know
which dose combinations are non-toxic due to drug-drug interactions even after MTDC
determination; however, we can assume toxicity increases monotonically with increasing
dose levels when we escalate the dose levels of one agent while fixing the other agent’s
dose level. Once we determine an MTDC, lower dose combinations on the same diagonal
line than the MTDC are regarded as non-toxic; dose combinations in which dose levels
of one agent are the same as the MTDC while setting the other agent sets lower levels
than the MTDC are also regarded as non-toxic; otherwise, there are still limitations to
conclude the other specific dose combinations to be non-toxic. On the other hand, BOD
gives some insight into general dose–toxicity relationships for explored dose combinations
even though toxicity estimation across all dose combinations is not the specific aim in
dose-finding studies. This would help interpret which dose combinations can be used
safely in future studies.

While we focused on finding a single MTDC, BOD estimates toxicity probabilities of
all dose combinations at each test; therefore, it is feasible in theory to extend BOD to
the selection of multiple MTDCs. We leave this extension as our future work. The com-
putational aspect may be needed improvement in future work. The POCRM is based on
a likelihood estimation. Additionally, the BOIN calculates posterior distributions of the
current dose combinations analytically through the beta-binomial model. On the other
hand, BOD needs MCMC to estimate posterior distributions. While the time difference
is not relevant for the use in conducting one trial, BOD takes more time than the other
designs due to MCMC when simulation evaluation is needed. GPGPU-based parallel
computing might allow us to make the calculation much faster. Additionally, calibration
approaches for design parameters are still an open discussion. As almost similar to BOD
for MTD estimation in Chapter 3, BOD for MTDC estimation has the following param-
eters: δ and ν for mean prior functions, ρ, σf and ξ for kernel parameters, and ὲ1 for
the model phase Step 4. Of these, ν, σf and ξ are automatically decided; the value of ν
should be the center of the dose combination matrix; σf is usually 1 as described in the
model phase Step 2 in Section 4.2.2; and the value of ξ can be determined only based
on computational speed. Therefore, the number of parameters to be considered is three
(i.e., δ, ρ and ὲ1). The value of δ provides the slope of dose–toxicity relationships when
one of the partial orderings of across rows is applied. On the basis of our experiences, we
provided the recommendation range for evaluating δ in the model phase Step 2 in Section
4.2.2. The parameter of ρ expresses the number of turning points in the dose combination
matrix and there could be up to 2 or 3 turning points in the dose combination space.
It might be good to try values from the minimum of one-fourth to the maximum length
of the conceptual dose. For the value of ὲ1, 0.05 or 0.10 could be generally accepted in
terms of clinical perspective. Additionally, it would be possible to obtain typically valid
hyperparameters using various available data based on empirical Bayes methods instead
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of searching the values for the design parameters. It is very challenging to assess the risk
when the design parameters are misspecified; however, we think at least we can mitigate
and minimize the risk by evaluating the impact of design parameters according to the
above approaches.

One of our motivations to apply Bayesian optimization frameworks was brought from
that most conventional statistical designs utilize the best guess in their dose selections
although relying on the best guess might lead to suboptimal dose allocations during the
trial. In this chapter, we employed the EI as an optimization strategy in BOD for MTDC
estimation. Acquisition functions like the EI are one of the key components of the Bayesian
optimization frameworks and return trade-offs between exploitation and exploration so
that we can avoid concentrate on local optimum points and search for global optimum
as few evaluations as possible. Chapter 9.2 in Fedorov and Leonov (2013) has discussed
largely the problems of the best intention designs that rely on only the best point of a
stochastic model for the next dose selection in dose-finding studies. It has indicated that
the best intensive designs may converge to wrong doses and can result in a false prediction
that differs from what we need to identify. Given the concerns about the best intention
designs, BOD is one of the reasonable approaches that select dose combinations based on
the balance of exploitation and exploration that does not only rely on the current best
point.

Unlike statistical designs for MTD estimation, no standard solution has yet been de-
veloped for the MTDC estimation problem. Considering the current situation and the
comprehensively good performance exhibited by BOD (all) under most scenarios in terms
of correct MTDC selection probabilities and safer dose allocations, BOD for MTDC esti-
mation that is displayed as BOD (all) in Section 4.3 has a high potential to be a powerful
tool for use in dose-finding studies of combination drug therapies.
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Appendices for Chapter 4

B.1 BOD simulation code for MTDC estimation
We implemented BOD for MTDC estimation using R for the simulation study described
in Section 4.3. Appendix B.1 provides R codes for implementing BOD (all) to identify a
single MTDC for a combination drug therapy.

• Listing B.1 is R codes that construct the simulation body.
• Listing B.2 presents a stan model that is compiled from the R package rstan in
Listing B.1 to implement the MCMC for obtaining posterior samples.

Listing B.1. Simulation body of BOD for MTDC estimation

1 #BOD_combination_simulation_body.R
2 ################################################
3 # Bayesian optimization Design for MTDC estimation #
4 ################################################
5

6 ### Initial setting ###
7 setwd("XXX") # set your working directly
8 library(dfcrm) # for the getprior function
9 library(rstan) # for MCMC estimation

10

11 ### Compile stan model for MCMC ###
12 rstan_options(auto_write = TRUE) # rstan option that allows you to

automatically save a bare version of a compiled Stan program to the
hard disk so that it does not need to be recompiled.

13 stanmodel <- stan_model(file = ’BOD_model_combination.stan’) # a stan file
in the working directly

14

15 ### Define functions ###
16 # logit function
17 logit_f <- function(a){
18 b<- log(a/(1-a))
19 return(b)
20 }
21

22 # For making a listing of outputs to avoid errors regarding variable names
23 rbindCOrder <- function(...) {
24 n <- length(list(...))
25 temp <- list(...)[[1]]
26 names(temp) <- NA
27 for (i in 2:n) {
28 tmp <- list(...)[[i]]
29 names(tmp) <- NA
30 temp <- rbind(temp, tmp)
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31 }
32 names(temp) <- names(list(...)[[1]])
33 return(temp)
34 }
35

36 ### Trial and simulation settings ###
37 sim_min <- 1 # the minimum number of the simulation number
38 iter <- XXX # set number of iterations
39 cohort <- 1 # cohort size
40 max_sub <- 30 # sample size
41 Pt <- 0.3 # target toxicity rate
42 A <- c(0.2,0.4,0.6) # conceptual doses for agent 1
43 B <- c(0.2,0.4,0.6,0.8,1) # conceptual doses for agent 2
44 N <- length(A)*length(B) # number of the dose combinations
45 X <- expand.grid(B,A) # all conceptual doses of agents 1 and 2
46 X <- X[,c(2,1)] # swap the first and second columns
47 X$grid <- row(X)[,1] # add the grid column to X
48 names(X)[1] <- paste("A") # change the column name
49 names(X)[2] <- paste("B") # change the column name
50 X2 <- X[,-3] # X without the grid column
51 slope <- 0.015 # a design parameter delta used in the getprior function
52 eps1 <- 0.1 # a design parameter for overdose control in the model phase

Step 4 and equation (4.15) for MTDC determination
53

54 #For expected improvement
55 til <- 0.001 # increment width of the following dummy values
56 g_t1 <- seq(from=0, to=1,by=(til)) # dummy values of g(x)
57

58

59 ### a Gaussian process prior ###
60 # a prior mean function
61 g0 <- logit_f(getprior(slope, Pt, 8 N)) # 8 indicates the center of the

dose matrix of 3x5.
62

63 # a covariance function based on the squared exponential kernel
64 rho <- 0.4 # a scale parameter
65 sigma_f <- 1 # a signal variance that is generally fixed as 1.
66 K <- matrix(rep(0,N*N), nrow=N, ncol=N) # dummy matrix for a covariance

matrix K
67

68 # calculate K
69 for (i in 1:(N - 1)) {
70 K[i, i] <- (sigma_f)^2
71 for (j in (i + 1):N) {
72 K[i, j] = (sigma_f)^2*exp(-0.5/(rho)^2 * ((X2[i,1] - X2[j,1])^2+(X2

[i,2] - X2[j,2])^2))
73 K[j, i] = K[i, j]
74 }
75 }
76 K[N, N] <-(sigma_f)^2
77 xi <- 0.08 # a small value to be added to diagonal elements in K
78 K2 <- K + diag(xi,N) # for improving computational stability
79 L <- t(chol(K2)) # Cholesky decomposition
80

81 ### True toxicity scenarios ###
82 # These scenarios are introduced in (Riviere et al., 2015a)
83 S1 <- c(0.05, 0.10, 0.15, 0.30, 0.45, 0.10, 0.15, 0.30, 0.45, 0.55,

0.15, 0.30, 0.45, 0.50, 0.60)
84 S2 <- c(0.15, 0.30, 0.45, 0.50, 0.60, 0.30, 0.45, 0.50, 0.60, 0.75,

0.45, 0.55, 0.60, 0.70, 0.80)
85 S3 <- c(0.02, 0.07, 0.10, 0.15, 0.30, 0.07, 0.10, 0.15, 0.30, 0.45,
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0.10, 0.15, 0.30, 0.45, 0.55)
86 S4 <- c(0.30, 0.45, 0.60, 0.70, 0.80, 0.45, 0.55, 0.65, 0.75, 0.85,

0.50, 0.60, 0.70, 0.80, 0.90)
87 S5 <- c(0.01, 0.02, 0.08, 0.10, 0.11, 0.03, 0.05, 0.10, 0.13, 0.15,

0.07, 0.09, 0.12, 0.15, 0.30)
88 S6 <- c(0.05, 0.08, 0.10, 0.13, 0.15, 0.09, 0.12, 0.15, 0.30, 0.45,

0.15, 0.30, 0.45, 0.50, 0.60)
89 S7 <- c(0.07, 0.10, 0.12, 0.15, 0.30, 0.15, 0.30, 0.45, 0.52, 0.60,

0.30, 0.50, 0.60, 0.65, 0.75)
90 S8 <- c(0.02, 0.10, 0.15, 0.50, 0.60, 0.05, 0.12, 0.30, 0.55, 0.70,

0.08, 0.15, 0.45, 0.60, 0.80)
91 S9 <- c(0.005, 0.01, 0.02, 0.04, 0.07, 0.02, 0.05, 0.08, 0.12, 0.15,

0.15, 0.30, 0.45, 0.55, 0.65)
92 S10 <- c(0.05, 0.10, 0.15, 0.30, 0.45, 0.45, 0.50, 0.60, 0.65, 0.70,

0.70, 0.75, 0.80, 0.85, 0.90)
93 Sc <- cbind(S1, S2, S3, S4, S5, S6, S7, S8, S9, S10)
94

95 ##################
96 # Simulation part #
97 ##################
98 for(S in 1:1){ # Select scenarios
99

100 # true toxicity probabilities
101 X$True <- Sc[,S] # true toxicity at the selected scenario
102 near_mtd <- which((X$True <= (Pt + 0.05)) & (X$True >= (Pt - 0.05)))
103

104 for(sim in sim_min:iter){
105 # Initial values for a trial
106 next_l <- 1 # the first dose combination in the trial is the lowest

dose combination
107 t <-0 # number of tests
108 p_DLT <- 0 # percentage of the number of patients who experienced

DLT
109 num <- rep(0,N) # number of patients treated in a trial
110 num_t <- rep(0,N) # number of patients who experienced DLT
111 DLT <- 0 # DLT flag for the start-up phase
112

113 #################
114 # Start-up phase #
115 #################
116 while(DLT==0){
117 t <- t + 1 # update the test number
118

119 if(t == 1){ # for the initial test
120 Test <- cbind(X[X$grid == next_l,], c = cohort) # a listing of

(test doses, cohort size, the number of patients with DLT)
121 y <- rbinom(1, cohort, X$True[next_l]) # number of patients with

DLT in a cohort
122 Test$y <- y
123 DLT <- y
124 }else{
125 y <- rbinom(1, cohort, X$True[next_l])
126 DLT <- y
127 obs <- cbind(X[X$grid == next_l,], c = cohort, y)
128 Test <- rbind(Test, obs)
129 }
130

131 # update the number of patients and patients with DLT at each grid
132 num[next_l] <- num[next_l] + cohort
133 num_t[next_l] <- num_t[next_l] + y
134
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135 if(next_l == 11){ # The last possible dose combination for the
start-up phase when 3 x 5 dose combinations

136 DLT <- 1 # end the start-up phase
137 }
138

139 if(DLT == 0){
140 if(next_l < 5){ # fix the lowest dose of agent 1 and only

escalate agent 2
141 next_l <- (next_l + 1)
142 }else if(next_l == 5){ # fix the lowest dose of agent 2 and

only escalate agent 1
143 next_l <- 6
144 }else if(next_l == 6){ # fix the lowest dose of agent 2 and

only escalate agent 1
145 next_l <- 11
146 }
147 }
148

149 # if patients in the first cohort experienced DLT, the lowest dose
combination is re-tested.

150 if(DLT > 0 && sum(num) == cohort){
151 DLT <- 0
152 next_l <- 1
153 }
154 }
155

156 ##############
157 # Model phase #
158 ##############
159 start_t <- t
160 t <- start_t -1
161

162 while(sum(num) + cohort <= max_sub){
163 t <- t+1
164 # cat("Scinario / Sim - Test : " ,S ," /sim= ", sim , " - t=" ,

t, "\n")
165

166 if(t > start_t){
167 y <- rbinom(1, cohort, X$True[next_l])
168 obs <- cbind(X[X$grid == next_l,], c = cohort, y)
169 Test <- rbind(Test, obs)
170 num[next_l] <- num[next_l] + cohort
171 num_t[next_l] <- num_t[next_l] + y
172 }
173

174 ### Sampling from the posterior distribution (MCMC part) ###
175 y <- as.array(Test$y) # toxicity outcome
176 c <- as.array(Test$c) # cohort size at each test
177 t.grid <- as.array(Test$grid) # tested grid
178

179 # input output data
180 data <- list(t = t, c = c, N = N, y = y, test_x = t.grid, logitg

= g0, L = L)
181

182 # generate posterior samples by rstan
183 fit <- sampling(stanmodel,
184 data = data,
185 pars = c(’Ep’),
186 iter = 7000, warmup = 3000, thin = 4, chains = 1
187 )
188
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189 # Check the MCMC results graphically
190 # ggmcmc(ggs(fit,inc_warmup=TRUE), file = ’MCMC.pdf’)
191

192 ms <- rstan::extract(fit) # outputs of the sampling
193 post <- data.frame(Ep = ms$Ep) # posterior samples of toxicity

probabilities
194

195 # calculate probabilities from a cumulative distribution
196 ove <- rep(0,N) # probabilities over the target toxicity rate
197 pro2 <- rep(0,N) # probabilities falling within the proper

interval including the target toxicity rate
198

199 for(n in 1: N){
200 exp_stars1 <- sort(post[,n])
201 Fn <- ecdf(exp_stars1) # empirical cumulative distribution

function
202 ove[n] <- 1 - Fn(Pt)
203 pro2[n] <- Fn(Pt + 0.1) - Fn(Pt - 0.1)
204 }
205

206 #### Calculate the acquisition function (Expected improvement) ###
207 EI <- numeric(N)
208 gg <- abs(post - Pt) # posterior samples of the objective function
209 g_best <- min(apply(gg, 2, mean), na.rm = TRUE) # the current

best point
210

211 # improvement function: I(x) = max(g_best - g(x),0)
212 I <- g_best-g_t1 # calculate I(x) using all possible values of g(x

) ranging [0,1].
213 Imp0 <- which(I < 0)
214 I[Imp0] <- 0
215

216 for(i in 1:N){
217 # estimate a probability density function at the grid i
218 f <- splinefun(density(x = as.vector(t(gg[i])), n = 1000,

from = 0, to = 1), method = "natural")
219

220 # probability density between "start and start+til"
221 start <- -til/2
222 til_n <- 1
223 p_gx <- numeric(length(g_t1)) # vector for the probability

density function
224

225 while(til_n < (length(g_t1) + 1)){
226 p_gx[til_n] <- integrate(f, start, start + til)$value
227 if(p_gx[til_n] < 0){p_gx[til_n] <- 0}
228 start <- start + til
229 til_n <- til_n + 1
230 }
231

232 #expected improvement
233 EI[i] <- I %*% p_gx # the expected improvement function
234 }
235

236 r <- -(rank(EI)-N) + 1 # rank grid numbers in descending order
with the EI

237 pos_tox <- apply(post, 2, mean) # posterior means of toxicity
probabilities

238 At <- cbind(X, EI, r, pos_tox)
239 At$C <- rep(0, nrow(At))
240
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241 # Admissible dose combination set (At) for the next dose
combination selections

242 # the model phase Step 4 requirement (a) in Section 4.2.2
243 if(length(which(Test$grid == 1)) > 0) At$C[1] <- At$C[2] <-

At$C[6]<-1
244 if(length(which(Test$grid == 2)) > 0) At$C[1] <- At$C[2] <-

At$C[3] <- At$C[7] <- 1
245 if(length(which(Test$grid == 3)) > 0) At$C[2] <- At$C[3] <-

At$C[4] <- At$C[8] <- 1
246 if(length(which(Test$grid == 4)) > 0) At$C[3] <- At$C[4] <-

At$C[5] <- At$C[9] <- 1
247 if(length(which(Test$grid == 5)) > 0) At$C[10] <- At$C[5] <-

At$C[4] <- 1
248 if(length(which(Test$grid == 6)) > 0) At$C[1] <- At$C[6] <-

At$C[11] <- At$C[7] <- 1
249 if(length(which(Test$grid == 7)) > 0) At$C[1] <- At$C[6] <-

At$C[7] <- At$C[8] <- At$C[12] <- At$C[2] <- 1
250 if(length(which(Test$grid == 8)) > 0) At$C[2] <- At$C[7] <-

At$C[8] <- At$C[9] <- At$C[13] <- At$C[3] <- 1
251 if(length(which(Test$grid == 9)) > 0) At$C[3] <- At$C[8] <-

At$C[9] <- At$C[10] <- At$C[14] <- At$C[4] <- 1
252 if(length(which(Test$grid == 10)) > 0) At$C[4] <- At$C[9] <-

At$C[10] <- At$C[15] <- At$C[5] <- 1
253 if(length(which(Test$grid == 11)) > 0) At$C[1] <- At$C[12] <-

At$C[11] <- At$C[6] <- 1
254 if(length(which(Test$grid == 12)) > 0) At$C[6] <- At$C[2] <-

At$C[11] <- At$C[7] <- At$C[13] <- At$C[12] <- 1
255 if(length(which(Test$grid == 13)) > 0) At$C[1] <- At$C[7] <-

At$C[3] <- At$C[12] <- At$C[13] <- At$C[8] <- At$C[14] <-
1

256 if(length(which(Test$grid == 14)) > 0) At$C[2] <- At$C[8] <-
At$C[4] <- At$C[13] <- At$C[14] <- At$C[9] <- At$C[15] <-
1

257 if(length(which(Test$grid == 15)) > 0) At$C[3] <- At$C[9] <-
At$C[5] <- At$C[14] <- At$C[15] <- At$C[10] <- 1

258

259 # the model phase Step 4 requirement (b) in Section 4.2.2
260 for(i in 1:nrow(At)){
261 if(At$pos_tox[i] >= (Pt + eps1)){
262 At$C[i] <- 0 # if the grid is possibly too toxic, At$C is

0.
263 }
264 }
265

266 At <- At[order(At$r),]
267 At <- At[(At$C == 1),] # retain only dose combinations in At
268

269 # select the next dose combination
270 if(nrow(At)>0){
271 # select a grid that maximizes the EI within dose combinations

in At (r is the minimum number)
272 At <- At[At$r == min(At$r), ]
273 next_l <- At$grid
274 }else{
275 # if all dose combination is excluded from At, the next

candidate is the lowest dose level.
276 next_l <- 1
277 }
278

279 } ### end one trial
280
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281 ### Output Results ###
282 # final candidates for MTDC determination
283 select.dose1 <- c(which(pos_tox < (Pt + eps1)), which(num > 0))
284 select.dose <- select.dose1[duplicated(select.dose1)]
285

286 # determine a single MTDC
287 if(length(select.dose) > 0){
288 MTD <- which(pro2 == max(pro2[select.dose])) # equation (4.15)
289 }else{
290 MTD <- 1
291 }
292

293 p_DLT <- sum(num_t)/sum(num) # percentage of patients with DLT in a
trial

294 C <- is.element(MTD, near_mtd) # correct selection of MTDC (as
reference)

295

296 # Output the results
297 Result_box<- cbind(S, sim, MTD, total = sum(num), p_DLT, data.frame

(t(num)), tox = sum(num_t), data.frame(t(num_t)), data.frame(t(
pos_tox)), t(EI), t(pro2),t(ove), C, slope, rho, sigma_f)

298

299 if(sim == sim_min){
300 Result_box1 <- Result_box
301 }else{
302 Result_box1 <- rbindCOrder(Result_box1, Result_box)
303 }
304

305 write.table(Result_box1, "XXX/output.txt", row.names = F, quote = F,
append = F)

306 }### end iteration of the simulation
307 }### end one scenario



84 B Appendices for Chapter 4

A stan model file ‘BOD model combination.stan’ is composed of the following contents.

Listing B.2. Stan model for BOD of MTDC estimation

1 // BOD_model_combination.stan
2 // data inputs
3 data {
4 int<lower = 1> t; // cumulative number of tests at the trial (t =

1,2,3,...)
5 int<lower = 1> c[t]; // number of patients in a cohort
6 int<lower = 1> N; // total number of dose combinations (total grids) (N

= 3x5 = 15)
7 int<lower = 0, upper = 3> y[t]; // number of patients with DLT at each

test
8 int<lower = 1, upper = N> test_x[t]; // grid number where patients are

tested at each test
9 vector[N] logitg; // logit transformed initial guesses

10 matrix[N, N] L; //a covariance function based on the squared exponential
kernel

11 }
12

13 transformed data{
14 vector[N] mu_zero = rep_vector(0, N); // make a vector with dummy

values of 0
15 }
16

17 // parameter section (a parameter declared here means what we need to
output)

18 parameters {
19 vector[N] zero_m;
20 }
21

22 transformed parameters{
23 // Estimate toxicity probability based on the Gaussian process prior

with pre-specified initial guesses
24 vector[N] Ep;
25 Ep = inv_logit(zero_m + logitg); // toxicity probabilities (Ep)
26 }
27

28 // model section
29 model {
30 //------- declare a Gaussian process prior -------//
31 zero_m ~ multi_normal_cholesky(mu_zero, L);
32

33 //------- likelihood function--------//
34 for (j in 1:t){
35 y[j] ~ binomial(c[j], Ep[test_x[j]]);
36 }
37 }
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Chapter 5

Bayesian optimization design of OD

estimation for targeted therapies

Chapter 5 introduces BOD for OD estimation in Phase I/II clinical trials. BOD for the
MTD or a single MTDC in Chapters 3 and 4 deals with toxicity outcomes. On the other
hand, BOD for OD estimation incorporates not only toxicity outcomes but also efficacy
outcomes, as introduced in Chapter 1. We organize Chapter 5 by the following sections:

• Section 5.1 covers a literature review about statistical designs for OD estimation
along with brief explanations about some conventional statistical designs.

• Section 5.2 introduces the mathematical framework on BOD for OD estimation.
• Section 5.3 shows performance evaluation of BOD for OD estimation compared
with some existing statistical designs by a simulation study.

• Section 5.4 summaries the simulation results and introduces some possible future
work.

We introduce this chapter based on the work Bayesian optimization design for dose‐
finding based on toxicity and efficacy outcomes in Phase I/II clinical trials, A. Takahashi
and T. Suzuki, Pharmaceutical Statistics, 2021 (Takahashi and Suzuki, 2021c).

5.1 Overview of drug development and statistical designs for

dose-finding studies of targeted therapies

5.1.1 Difference between mono-therapies with cytotoxic agents and targeted

therapies with biologic agents in dose-finding studies

In cancer treatment, the primary goal of Phase I clinical trials is to identify the MTD based
on toxicity outcomes. Although Phase I clinical trials typically collect preliminary efficacy
information about investigational agents, the MTD is usually determined independently
from these efficacy data. After Phase I clinical trials, Phase II clinical trials are conducted
to investigate efficacy at or around the MTD. Traditional dose-finding studies assume
treatment with cytotoxic agents that directly inhibit the growth of tumors. The MTD is
expected to provide the greatest therapeutic benefit under the monotonicity assumption
that toxicity increases with increasing dose levels; therefore, it is reasonable to conduct
Phase II clinical trials to evaluate efficacy of a specific dose after the MTD determination
in Phase I clinical trials when both toxicity and efficacy have monotonicity assumptions
on dose–response relationships. On the other hand, targeted therapies cannot apply the
monotonicity assumption to their dose–response relationships, unlike mono-therapies with
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cytotoxic agents.
According to the NCI dictionary, targeted therapies are defined as a type of treatment

that uses drugs or other substances to identify and attack specific types of cancer cells
with less harm to normal cells. It also describes that targeted therapies block the action of
certain enzymes, proteins, or other molecules involved in the growth and spread of cancer
cells, or help the immune system kill cancer cells or deliver toxic substances directly
to cancer cells and kill them. Biologic agents created from living organisms by biological
processes greatly contribute to cancer treatment as major targeted therapies. Accordingly,
biologic therapies have increasingly drawn attention in drug development (Andrews et al.,
2015). Biologic agents are designed to directly target specific pathways related to specific
tumors. Targeted therapies with biological agents are expected to repair, stimulate, or
enhance the immune response that pertains to the cause of cancer such as malfunction
of the immune system. In terms of the relationship between the amount of dose and
response to tumors, once a targeted pathway is inhibited with a certain amount of biologic
agents, further administration will no longer provide any benefit for patients. Additionally,
targeted therapy may have fewer side effects because not attacking healthy cells, unlike
chemotherapy based on cytotoxic agents.

Considering the mode of action, it is inappropriate to assume that, for biologic agents,
both toxicity and efficacy will increase monotonically with increasing dose levels. For
example, non-monotone patterns on dose-efficacy relationships may be drawn as Fig. 5.1.
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Fig. 5.1. Dose–response relationships with non-monotone patterns

Thus, instead of an MTD, biologic agents require the estimation of an optimal dose, OD,
that provides sufficient efficacy under an acceptable toxicity rate as exemplified in Fig. 5.2.
Suppose the target response rates for toxicity and efficacy denote θT and θE , respectively.
The OD is defined as a dose providing the efficacy of greater than or equal to θE and
the toxicity of not over θT . Given the commonality of trial designs that incorporate both
toxicity and efficacy data, and the fact that new drugs with a variety of mode of actions
(e.g., biologic agents) are being increasingly developed, statistical strategies to find ODs
have been getting more and more of interest and importance; thus, it is worthwhile to
improve statistical designs for dose-finding studies of OD estimation.
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Fig. 5.2. Optimal dose estimation for a targeted therapy with biologic agents (All curves

except for a red dot line are dose-efficacy curves)

There are several approaches for patient outcomes that statistical designs for OD es-
timation deal with. Mandrekar et al. (2010) and Zhong et al. (2012) handle trivariate
outcomes that are composed of acceptable toxicity without efficacy, acceptable toxicity
with efficacy, and severe toxicity. There are a few statistical designs that treat continuous
variables instead of binary variables especially on efficacy outcomes for OD estimation.
However, overall, most statistical designs for OD estimation utilize bivariate outcomes
composed of binary responses for both toxicity and efficacy.

In the following, we will introduce some popular statistical designs dealing with bi-
nary outcomes of toxicity and efficacy for OD estimation while considering non-monotone
patterns on dose–efficacy relationships.

5.1.2 Parametric model-based designs

For parametric model-based designs, the CRM described in Section 2.3 has been ex-
tended for MTDC estimation as mentioned in Section 4.1.4, and OD estimation is no
exception. Braun (2002) has introduced the bivariate CRM to handle bivariate outcomes
as an extended version of the CRM; however, the bivariate CRM does not account for
non-monotone patterns in dose–efficacy relationships. As other parametric model-based
designs, there are a conditional auto-regressive model (Muenz et al., 2019), a toxicity-
efficacy odds ratio trade-off (Yin et al., 2006), a Gumbel bivariate logistic regression
(Dragalin and Fedorov, 2006), and a logistic design (Zang et al., 2014). A Clayton model
(Yuan and Yin, 2009) would be a more advanced approach that incorporates toxicity
outcomes with a Cox proportional hazards model and efficacy outcomes with a cure rate
model in order to consider the correlation between onset times and outcomes. Of para-
metric model-based designs, the efficacy-toxicity trade-off (EffTox) design introduced by
Thall and Cook (2004) is one of the most popular one because it has been utilized in com-
parative analyses in several articles such as Takeda et al. (2018); Li et al. (2017); Liu and
Johnson (2016); Bekel and Shen (2005). Thall et al. (2006) and Brock et al. (2017) have
also introduced how to implement the EffTox with practical considerations. The EffTox
incorporates trade-off contours between probabilities of toxicity and efficacy in its dose
selection algorithm, after providing a joint probability function based on a Gumbel distri-
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bution (Murtaugh and Fisher, 1990) composed of marginal probabilities for dose–toxicity
and dose–efficacy relationships derived from logit models. The EffTox covers dose–efficacy
relationships having non-monotonic patterns through a quadratic term in its logit model.
We introduce the EffTox more detail from the following.

Dose-response model for the EffTox

The EffTox models marginal probabilities of efficacy and toxicity as follows:

logit{πE(x)} = µE + γE1
x+ γE2

x2, (5.1)

and

logit{πT (x)} = µT + γTx, (5.2)

where x is a conceptual dose at an arbitrary dose level. A conceptual dose correspond-
ing to an actual dose (d) at a dose level j (j ∈ {1, . . . , J}) is given by xj = log dj −
J−1

∑J
j=1 log dj . In equation (5.1), non-monotonic patterns are considered through γE2

with a quadratic term.
In the same manner as Murtaugh and Fisher (1990), a joint probability function of

toxicity and efficacy is given by a Gumbel distribution as follows:

P(Y = {yT , yE}) =(πT )y
T

(1− πT )1−yT

(πE)y
E

(1− πE)1−yE

(5.3)

+(−1)y
T+yE

πT (1− πT )πE(1− πE)

(
eη − 1

eη + 1

)
,

where Y is composed of random variables Y T on a toxicity outcome and Y E on an efficacy
outcome in a patient treated with a dose x and takes {0, 1}; πT = πT (x); πE = πE(x);
η denotes an association parameter between toxicity and efficacy outcomes. Thus, the
EffTox has six parameters in its models: µE , γE1

, γE2
, µT , γT and η. These parameters

with often normal priors are estimated through Bayes’ rule.

Utility contour and dose selection

Once patient outcomes are observed, posterior sampling for πT and πE is performed by
MCMC. After posterior samples on πT and πE are generated, the EffTox incorporates
them through the following utility contour:

UEffTox(x) = 1−
[{

1− πE(x)

1− πE1

}ι

+

{
πT (x)

πT2

}ι] 1
ι

, (5.4)

where ι is determined to have the utility contour go through pre-specified three points
(πE1 , 0), (1, πT2) and (πE3 , πT3). The value of πE1 returns the smallest desirable effi-
cacy probability that is expected when a toxicity probability is 0. The maximum value
of toxicity probability when an efficacy probability is 1 denotes πT2 that provides the
same desirability as (πE1 , 0). The third point (πE3 , πT3) is equally desirable having the
intermediate position between the other two pre-specified points.

The next dose is selected from an admissible dose set At by maximizing either a plug-in
mean or a posterior mean on equation 5.4 as follows:

x(t+1) = arg max
x∈At

ÛEffTox(x). (5.5)
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Note that Thall and Cook (2004) introduced plug-in means on posterior probabilities

of efficacy and toxicity into equation (5.4) to obtain ÛEffTox(x); however, the R package
trialr, which is an open-source to implement the EffTox, adopts posterior means of
the utility contour for the dose selection. The admissible dose set At at the tth test is
composed of all doses that satisfy following criteria:

P{πE(x) > λE | D1:t} > cE , (5.6)

and

P{πT (x) < λ
T | D1:t} > cT , (5.7)

where λE and λ
T
are acceptable response rates on a lower bound of efficacy and an upper

bound of toxicity, respectively. The tunable design parameters of λE , λ
T
, cE and cT are

provided by investigators before the trial.
If At = ∅, then the trial is terminated and the EffTox declares that there is no OD

in the explored doses. When the trial is terminated according to pre-specified stopping
criteria and At ̸= ∅, an OD is determined as a dose maximizing utility score based on
equation (5.5).

Open research questions

The EffTox can be implemented with both desktop software and the R package; however,
it requires numerous parameters to be specified before trials. Dose–response models need
at least six parameters, and at least three additional parameters are needed for trade-off
utility functions. In the practical implementation, the EffTox requires twelve hyperpa-
rameters related to the six model parameters; these hyperparameters are calculated by
eliciting means from both dose–response curves, and by referencing the target mean effec-
tive sample size. Although the desktop software automatically generates those numerous
hyperparameters when the elicited means and target mean effective sample sizes are des-
ignated, complex parameter settings might make implementation difficult.

While numerous authors have introduced parametric model-based designs, those strate-
gies requiring strict assumptions for dose–response relationships do not always offer the
best solution because there is little or no information about toxicity or efficacy on investi-
gational agents in practice, which is a common concern for dose-finding studies including
MTD and MTDC estimation. Thus, parametric model-based designs are faced with a po-
tential risk of model misspecification, particularly in small sample size trials. In addition,
for at least OD estimations based on bivariate binary outcomes, several nonparametric
designs have been shown to outperform certain parametric model-based designs (Zang
et al., 2014; Li et al., 2017). These facts imply that parametric model-based designs may
not be always the best choice for addressing OD estimation problems.

5.1.3 Optimal interval designs

Although a majority of statistical designs for OD estimations are parametric model-based
designs, optimal interval designs that are similar to toxicity probability interval designs
in Sections 2.4.1 and 4.1.3 may be currently the most prominent of nonparametric ap-
proaches. They utilize divided probability intervals related to certain levels of response
probabilities for both toxicity and efficacy. For example, Lin and Yin (2017b) has intro-
duced a simple toxicity and efficacy interval design (STEIN) that is an optimal interval
design and has extended the BOIN for MTD estimation (Liu and Yuan, 2015) to address
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the OD estimation problem. In the STEIN, the dose selection algorithm is based on opti-
mal intervals for toxicity and efficacy minimizing probabilities of misclassifying observed
values against its pre-specified hypotheses to guide whether the next dose should remain
at the same dose level or move from the current dose level by one dose level. Similar to
the STEIN, Takeda et al. (2018, 2020) have also introduced the extended version of the
BOIN. Additionally, Li et al. (2017) has introduced an optimal interval design incorporat-
ing a joint unit probability mass for toxicity and efficacy probability intervals. Of optimal
interval designs, we focus on the STEIN that would offer the simple strategy in terms of
its implementation as we can see from the design name. The specifics of the STEIN are
introduced in the following.

Optimal intervals on toxicity and efficacy probabilities in the STEIN

The STEIN’s optimal intervals are determined as follows. Suppose that the current dose
level is j (j ∈ {1, . . . , J}). For a toxicity probability, the STEIN applies three simple
hypotheses at each dose level j; HT

1j : πT
j = ϕT1 versus HT

0j : πT
j = ϕT0 versus HT

2j : πT
j =

ϕT2 . In addition, threshold values of ϕT1 and ϕT2 that express overly safe and excessively
toxic construct a local indifference interval for an acceptable toxicity ϕT0 (0 < ϕT1 < ϕT0 <
ϕT2 < 1). Let π̂T

j denote a sample statistic of toxicity proportions that divide the number
of response outcomes at j by the number of patients treated at j. The probability that
π̂T
j is incorrectly classified under three hypotheses is given by

CT (ϕTL, ϕ
T
U ) =P(HT

0j)P(π̂
T
j ≤ ϕTL or π̂T

j ≥ ϕTU | HT
0j) (5.8)

+P(HT
1j)P(π̂

T
j > ϕTL | HT

1j) + P(HT
2j)P(π̂

T
j < ϕTU | HT

2j),

where prior probabilities to take each hypothesis are usually set a uniform prior as
P(HT

0j) = P(HT
1j) = P(HT

2j) = 1/3. The lower and upper critical threshold values of

toxicity probability expressed as ϕTL and ϕTU are determined to minimize misclassification
probability CT and treated as an indifferent tolerance interval of the target toxicity rate.

For efficacy, the optimal interval is determined by the similar framework to that for tox-
icity. Firstly, two hypotheses are given for efficacy; HE

1j : π
E
j = ϕE1 versus HE

2j : π
E
j = ϕE2 ,

where pre-specified threshold values of ϕE1 and ϕE2 are a clinically uninteresting response
rate and a clinically desired response rate, respectively (ϕE1 < ϕE2 ). The misclassifica-
tion probability of the efficacy outcome π̂E

j denoting a sample statistic of proportion of
observed response at j is given by

CE(ϕE) = P(HE
1j)P(π̂

E
j ≤ ϕE | HE

1j) + P(HE
2j)P(π̂

T
j < ϕE | HT

2j), (5.9)

where prior probabilities for each hypothesis are usually P(HE
1j) = P(HE

2j) = 1/2. The

sample critical value ϕE is determined by minimizing CE .

The STEIN’s dose allocation procedures

The STEIN starts from the lowest dose level to treat patients in the first cohort. After the
tth test, dose selection is based on the optimal intervals for toxicity and efficacy outcomes
as follows:

1. If π̂T
j ≥ ϕTU , the next dose level is j − 1.

2. If π̂T
j < ϕTU and π̂E

j ≥ ϕE , the next dose level remains j.

3. If π̂T
j < ϕTU and π̂E

j < ϕE , the next dose is selected to maximize the posterior
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efficacy probability greater than ϕE given by

j(t+1) = arg max
j∈At

P(πE
j > ϕE |D1:t). (5.10)

In the calculation of posterior efficacy probabilities, a uniform vague prior is as-
signed to each πE

j . The admissible dose set At is {j − 1, j, j + 1} when π̂T
j ≤ ϕTL;

{j − 1, j} when ϕTL < π̂T
j < ϕTU ; and otherwise, {j − 1}.

Fig. 5.3 depicts partitions for the dose selections.
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Fig. 5.3. Dose selection partitions in the STEIN

The trial keeps treating patients with a selected dose based on the above rules until
the maximum sample size is reached unless other stopping criteria are specified. When
all patients are treated, an OD is selected by a utility function given by

USTEIN(π̃
T
j , π̃

E
j ) = π̃E

j − w1π̃
T
j − w2π̃

T
j 1[π̃

T
j > ϕT0 ], (5.11)

where w1 and w2 are nonnegative pre-specified values. The isotonically transformed values
π̃T
j construct a dose–toxicity curve after performing an isotonic regression on observed

toxicity probabilities π̂T
j . For a dose–efficacy curve, unimodal isotonic regressions (Turner

and Wollan, 1997), which incorporate all possible models in dose–efficacy curves, are
performed J times using observed efficacy probabilities π̂E

j to estimate the unimodal

isotonically transformed values π̃E
j . An OD is determined as a dose that maximizes the

utility function.

Open research questions

Optimal interval designs including the STEIN are generally simple to implement because
they do not rely on complex models. The same improvement points raised in Sections 2.4.1
and 4.1.3 can be applied again because they are a common concern among nonparametric
interval designs even if we change our ultimate goal. Optimal interval designs for OD
estimation also focus on the current dose and judge whether the next dose should be
escalated or de-escalated ± 1 dose levels from the current dose; therefore, they offer limited
dose candidates in dose selections. In addition, they do not focus on the relationships of
toxicity and efficacy across dose levels until the end of a trial. If the current probabilities
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pertaining to toxicity and efficacy relationships among all dose levels are provided step
by step, it may help capture and anticipate the dose–response relationships.

5.1.4 Isotonic design

As another nonparametric approach that is different from optimal interval designs, we
introduce the isotonic design proposed by Zang et al. (2014). The isotonic design uti-
lizes double-sided isotonic regressions for estimating dose–efficacy relationships. In the
double-sided isotonic regression, two separate isotonic regressions are conducted by di-
viding them at each branch does level sequentially to make dose–efficacy curves rep-
resenting non-monotone patterns. A user-friendly cloud software we can access from
https://biostatistics.mdanderson.org/shinyapps/MTADF/ helps implement the iso-
tonic design.

In the isotonic design, toxicity at each dose level are independently modeled by a beta-
binomial model, that is, Yj ∼ Bin(nj , π

T
j ) and πT

j ∼ Beta(αj , βj), where αj and βj are
the hyperparameters. The isotonic design starts evaluations from the lowest dose. Once
patient outcomes are observed, an admissible dose set At after the tth cohort is decided
as follows:

At = {j : P̃(πT
j > θT |D1:t) < ćT , j = 1, . . . , J}, (5.12)

where P̃(πT
j > θT |D1:t) is isotonically transformed values of posterior probabilities P(πT

j >
θT |D1:t). A toxicity threshold of ćT pre-specified for overdose control has been recom-
mended 0.8 for general use.

Dose selection

The next dose is selected to provide the highest isotonic estimate on efficacy probabilities
in At. The isotonic estimates of efficacy probabilities are briefly calculated as follows:

• The double-sided isotonic regression that fits two separate standard isotonic re-
gressions using the pooled adjacent violators algorithm (Barlow et al., 1972) is

performed J times to generate all J possible isotonic estimate curves {π̃Eϱ

j ; j =

1, . . . , J}, ϱ = 1, . . . , J .

• Dose selection utilizes the isotonic estimate curve {π̃Eϱ∗

j } based on the following ϱ∗

that provides the smallest sum of the squared errors:

ϱ∗ = arg min
ϱ∈{1,...,J}

J∑
j=1

(π̃
Eϱ

j − π̂E
j )

2. (5.13)

Once the maximum sample size is reached, the dose with the highest efficacy is selected
as an OD from an admissible dose set. In the above dose selection, the isotonic regression
is conducted using only already tried doses; therefore, if the highest tested dose level has
the maximum efficacy and the next higher dose is included in At, the next dose becomes
automatically an escalated dose to further explore the dose-efficacy relationship and search
the maximum point.

Open research questions

The isotonic design decides the next dose on the basis of 1) an admissible dose set deter-
mined by isotonically transformed posterior probabilities for toxicity and 2) the highest

https://biostatistics.mdanderson.org/shinyapps/MTADF/
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isotonic estimate from the double-sided isotonic regression for efficacy. Most existing de-
signs rely their dose selections on the current best point without considering uncertainties,
and the isotonic design is no exception. Such decision-making might cause suboptimal
dose allocations because estimates might have high uncertainties owing to a lack of infor-
mation about investigational agents, particularly at the beginning of a trial.

5.2 Modeling frameworks and practical procedures of Bayesian

optimization design for OD estimation
Given the open research questions raised in Section 5.1, Section 5.2 introduces BOD for
identifying single ODs based on bivariate binary outcomes assuming Phase I/II clinical
trials for targeted therapies with biologic agents. BOD for OD estimation is also a similar
approach to BOD in Chapters 3 and 4 except for bivariate outcomes on efficacy and
toxicity. Firstly, we separately model dose–toxicity and dose–efficacy relationships as
unknown nonlinear functions. Additionally, we place prior distributions on both function
spaces to estimate the unknown functions through observation data. In order to solve
OD estimation problems through Bayesian optimization frameworks, we design a utility
function that becomes an objective function to be optimized and incorporates both dose–
response relationships on toxicity and efficacy so that ODs represent the minimizer of the
utility function among available dose levels. Once we observe patient outcomes, posterior
distributions for both responses are updated according to the Bayes’ rule. Simultaneously,
posterior distributions for the utility function are computed by the posterior distributions
for each response probabilities. An acquisition function based on posterior distributions
of the utility function guides dose selections and designates the next candidate for an OD.
We repeat the cycle of obtaining data, updating unknown functions for each response,
and selecting the next candidate dose until pre-specified stopping rules are met. Finally,
we determine a single OD based on the final posterior distribution for the utility function.

In this section, we introduce modeling frameworks on BOD for OD estimation. This
section is composed of the following:

• Section 5.2.1 presents BOD’s nonparametric modeling on dose-response relation-
ships.

• Section 5.2.2 explains how to incorporate toxicity and efficacy estimations for OD
selections.

• Section 5.2.3 introduces all steps to implement BOD for OD estimation with addi-
tional restrictions for overdose control. In this section, we explain another acquisi-
tion function that is also one of the most popular ones aside from the EI that BODs
in Chapters 3 and 4 utilize.

5.2.1 Statistical modeling on dose-response relationships

BOD for OD estimation expresses unknown dose–response relationships for both toxicity
and efficacy as follows:

fR(x) = logit{πR(x)} = log

{
πR(x)

1− πR(x)

}
, (5.14)

where πR(x) denotes response probabilities at a corresponding rescaled dose x in the finite
dose range X = {x ∈ R | x1 ≤ x ≤ xJ}. The structure of equation (5.14) is the same
as BODs for MTD and MTDC estimation in Capters 3 and 4. Regarding the description



94 Chapter 5 Bayesian optimization design of OD estimation for targeted therapies

R, we assign T to R when the focus is on toxicity responses. Likewise, we assign E
to R when focusing on efficacy responses. Because both toxicity and efficacy responses
can be expressed in the same statistical framework, we henceforth use R as a common
variable denoting either toxicity or efficacy. In addition, our nonparametric approach with
flexible modeling enables us to apply the same concept to each dose–response relationship
via nonlinear functions. Regarding patient outcomes, the number of patients with a
response (Y R

j ) at an arbitrary dose level j (j ∈ {1, . . . , J}) follows a binomial distribution

Y R
j ∼ Bin(n, πR

j ), where π
R
j = logit−1{fR(xj)} = [1 + exp{−fR(xj)}]−1. On the basis of

the binomial distribution, the likelihood function up to the tth test is given by

L(D1:t | fT , fE) =
∏

R∈{T,E}

t∏
z=1

πR(x(z))
yR
(z){1− πR(x(z))}(n(z)−yR

(z)), (5.15)

where D1:t = {(n(1), x(1), yT(1), y
E
(1)), . . . , (n(t), x(t), y

T
(t), y

E
(t))}; y

R
(z) denotes the number of

patients who experienced the response R out of n(z) patients treated with a dose x(z) at
the zth test.

We note that responses for toxicity and efficacy are treated independently in the model.
If we consider the correlation, for example, by using a joint distribution of toxicity and
efficacy responses, it could improve the efficiency of the estimates of πR in theory. The
ignorability of the dependence between toxicity and efficacy responses in OD estimation
problems has been discussed and evaluated in Liu and Johnson (2016); Muenz et al. (2019).
They reported that including an association between toxicity and efficacy responses does
not improve operating characteristics, particularly when the sample size is small. Thus,
assumptions of dependence between toxicity and efficacy responses within a subject are
not applied in BOD for OD estimation regardless of associations between them to retain
the simplicity of the estimation process in early phase trials with small sample sizes.

A Gaussian process is adopted as a prior distribution for fR to estimate it in a Bayesian
manner in the same way as BODs for MTD and MTDC estimation, that is, fR ∼
GP(mR, k), where mR(x) is a mean function corresponding to either of responses R and
k(x, x′) is a covariance function. Prior inputs on response probabilities for πR associated
with mR(x) can be derived from pre-specified initial guesses by investigators; however,
there is little information regarding investigational agents in many cases in practice. A
concrete example for setting prior inputs under those cases will be introduced in Section
5.3.2. For a covariance function, we use the squared exponential kernel given by equation
(3.3). As mentioned in Section 3.1.1, it is still expected that the squared exponential
kernel can provide sufficient solutions for OD estimation because both dose-response re-
lationships are assumed to be sufficiently smooth functions in general. Additionally, we
apply the same covariance function expressed by equation (3.4) having a small value (ξ)
to improve computational stability.

Under the statistical models and assumptions described in this section, posterior distri-
butions for fR and πR are computed based on the Bayes’ rule by the MCMC after patient
outcomes are observed.

5.2.2 Integrating toxicity and efficacy information

Utility functions integrate estimated information about toxicity and efficacy probabilities
to identify ODs that satisfy pre-specified toxicity and efficacy target rates. For example,
Li et al. (2017); Liu and Johnson (2016); Asakawa and Hamada (2013); Tao et al. (2013);
Zhong et al. (2012); Bekel and Shen (2005); Thall and Cook (2004); Braun (2002) utilize
a variety of utility functions in their proposed designs. We employ the following utility
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function for BOD:

UBOD(x) = wT 1[π
T (x) > θT ]{πT (x)− θT }2 + wE1[π

E(x) < θE ]{πE(x)− θE}2,(5.16)

where wR is any nonnegative real number used to weight a penalty when estimated pos-
terior response probabilities πR deviate from the pre-specified target rate θR toward un-
favorable conditions. The balance between the weight values for safety and efficacy is
important; that is, the ratio between wT and wE affects operating characteristics, while
the absolute value itself is negligible. As previously mentioned, the utility function of
BOD is regarded as objective functions to be optimized in Bayesian optimization frame-
works. On the basis of Bayesian optimization frameworks, we seek a dose that minimizes
the utility function.

The target rate θR denotes the maximum tolerated toxicity rate as θT and the minimum
acceptable efficacy rate as θE . In general, the values for θR are provided by clinicians based
on their knowledge and expectation, although useful information from such as historical
data may be involved in the consideration as needed. In any case, the values need to
be set considering the following background. In equation (5.16), we assume doses offer
clinically meaningful effect as ODs when they satisfy both conditions that toxicity is less
than or equal to θT and efficacy is greater than or equal to θE . Doses with less toxic and
higher efficacy than each θR are more ideal; however, in practice, it might be the most
realistic situation to seek one dose that meets the above-required conditions as quickly as
possible within the limited evaluations and sample size.

As a side note, the utility function focuses on worsen effects of both responses by adding
the distances from each target response rate θR in the form of a sum. If both beneficial
and worsen effects were considered in such a simple sum function, the utility score would
be affected by the beneficial or worsen effect that has greater magnitude when one of the
toxicity or efficacy responses shows a benefit while the other shows some worsen the effect.
Thus, no discrimination is made in equation (5.16) among the dose levels that are within
the safe and efficacious region where the dose levels with toxicity rates less than or equal
to θT and efficacy rates greater than or equal to θE . If discrimination is required within
those dose levels, different approaches including different types of utility functions will be
needed.

The posterior distribution of UBOD(x) is calculated with the updated distributions of
πR. A single candidate OD is selected as a next dose based on posterior samples of
UBOD(x), as described in the following section.

5.2.3 BOD implementation steps for OD estimation

In this section, we introduce BOD implementation steps along with some restrictions for
overdose control.

Overdose control

In BOD for OD estimation, we define an admissible dose set At ⊂ X for overdose control
so that overly toxic doses are eliminated temporally from the dose selection. At is deter-
mined before the next dose selection and refreshed at each test. At satisfies following all
conditions:

• Dose skipping for dose escalation is restricted; candidate doses are up to one dose
level higher than the already-tested maximum dose level.

• If two or more patients experience toxicity at x(t) (assuming a cohort size of 3), the
maximum candidate dose in At is one dose level lower than x(t).
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• All dose levels in At should meet the following condition:

π̂T (x) < (θT + ε̌1), (5.17)

where π̂T (x) is a posterior mean based on posterior distributions of πT (x) and ε̌1 is
a pre-specified value for overdose control. Since π̂T (x) is estimated based on very
limited data, ε̌1 is determined from the viewpoint of a balance of the additional
allowance from θT and patient safety. The appropriate value for ε̌1 can remove
potentially toxic doses and does not control dose selections overly. Although the
value of ε̌1 is dependent on the target toxicity rate θT , it would be worth evaluating
values in the range of [0.05, 0.20] for ε̌1.
We note that efficacy is not considered in At while BOD can be generalized to
incorporate it. For example, π̂E(x) > (θE − ε̌1) might be an additional condition
to reflect efficacy results in At, where π̂

E(x) is a posterior mean based on posterior
distributions of πE(x).

Dose selection strategy

Recall that we aim to achieve our ultimate goal (i.e., identifying a dose providing the
minimum value of UBOD(x)) through an acquisition function which is an alternative of
the true objective function UBOD(x) because the exact form of UBOD(x) is still unavailable.

After the tth cohort is tested, the next candidate is selected from At using the lower
confidence bound criteria, LCB (Srinivas et al., 2010). Although BODs for MTD and
MTDC estimation in Chapters 3 and 4 utilize the EI, we employ the LCB in this chapter,
currently, one of the most popular acquisition functions aside from the EI and empirically
known to have sound operating characteristics. Additionally, the strategy based on the
LCB has been shown to provably converge (Srinivas et al., 2010). Although we do not
show the evaluation results using the EI in BOD for OD estimation, it is expected that
the performance is almost similar between those two acquisition functions based on our
preliminary simulation evaluations.

The LCB returns exploitation and exploration trade-off without additional complex
calculations. It might work well even we only rely on the current best point on average
without any exploration, depending on the situation. On the other hand, there is a possi-
bility of another better point than the current best point. A trade-off between exploitation
and exploration plays an important role in searching such a better point faster especially
when the number of evaluations is limited.

The LCB is typically defined as LCB(x) = µu(x) + uσu(x), where µu(x) and σu(x) is a
mean function and a square root variance at a dose x on the posterior distribution of an
objective function, respectively; the tunable arbitrary constant u > 0 balances between
exploitation and exploration directly. Instead, we alternate the LCB derived by σu(x) to
the one defined as the qth percentile (0 < q < 50) of the posterior distribution of UBOD(x)
because it is more straightforward to use available posterior samples directly without
additional calculations. Hereafter, we denote the LCB based on the qth percentile as
LCB(x). LCB(x) directly balances exploitation and exploration of UBOD(x) to determine
where next to test from the objective function. The next candidate dose is given by

x(t+1) = arg min
x∈At

[LCB(x)]. (5.18)

The closer q is 50, the stronger exploitation of the estimated UBOD(x) becomes. In
contrast, LCB(x) with a smaller value of q returns values with larger uncertainties on the
estimated UBOD(x); therefore, it includes more explorations. We utilize 10th percentile
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for q in this thesis. The value of q is tunable; however, 10th percentile would work
successfully according to our experiences applying BOD to various simulation scenarios
for dose-finding studies. If stronger exploitation or exploration are needed, the value of q
is changed to larger or smaller, respectively (e.g., a value in the range within [5, 20] may
be the candidate.).

Implementation steps

Dose selection algorithm in BOD for OD estimation is as follows:

1. Patients in the first cohort are treated with the lowest dose level.
2. Once patient outcomes are observed, posterior distributions for fR(x) as well as πR(x)

are computed. Simultaneously, a posterior distribution for UBOD(x) is updated.
3. Based on the cumulative data so far, At is determined for the next dose selection.
4. The next dose is selected in accordance with equation (5.18).
5. Steps 2 through 4 are repeated until the total number of patients reaches a maximum

sample size, or other trial conditions trigger any pre-specified stopping rules.
6. At the end of a trial, a single OD x∗ is determined based on the final posterior distri-

bution of UBOD(x) as follows:

x∗ = minx[EUBOD
{UBOD(x) | D1:t, x ∈ {x | π̂T (x) < (θT +ε̌2), π̂

E(x) > (θE−ε̌2)}}],
(5.19)

where ε̌2 is equal to ε̌1 or is obtained by adding around 0.05 to ε̌1.

6’ Here is an optional condition. If we wish to add a criterion to the OD estimation
in order to assess the appropriateness of the final estimate, one option is to consider
whether posterior probabilities for UBOD(x) are greater than a threshold cu1:

P(UBOD(x) > cu1 | D1:t) < cu2. (5.20)

A positive value cu1 represents a threshold value to define undesirable regions based on
the setting of equation (5.16). The value cu2 ranges from 0 to 1. If an arbitrary dose
x meets desirable conditions more convincingly as ODs, UBOD(x) | D1:t draws a distri-
bution concentrated near 0. In contrast, UBOD(x) | D1:t returns greater values than 0
when an arbitrary dose x deviates further from the desirable conditions. Therefore, if
P(UBOD(x) > cu1 | D1:t) is larger, there is a higher probability that the dose x provides
undesirable utility scores. If the final OD estimation meets the condition in equation
(5.19) along with equation (5.20), the dose is declared as the final estimation in the
trial. Otherwise, the final estimation becomes NA as no appropriate OD is found in
the trial. A smaller cu2 value generates a more conservative decision.

5.3 Performance evaluation
As a performance evaluation for BOD, the operating characteristics of BOD were evaluated
and compared with three different designs via a simulation study. Section 5.3 covers
simulation frameworks for the simulation study and the results, which is composed of the
following subsections:

• Section 5.3.1 explains common settings across a simulation study,
• Sections 5.3.2 and 5.3.3 introduce specific settings for each design compared in the
simulation study,

• Sections 5.3.4 shows simulation results.



98 Chapter 5 Bayesian optimization design of OD estimation for targeted therapies

While there is currently no standard design for OD estimation, we compared BOD
against the EffTox (Thall and Cook, 2004), the STEIN (Lin and Yin, 2017b), and the
isotonic design (Zang et al., 2014); the EffTox explained in Section 5.1.2 is one of the
popular parametric model-based designs; the STEIN explained in Section 5.1.3 offers one
of the major nonparametric designs for OD estimation on the basis of the BOIN; the
isotonic design explained in Section 5.1.4, which is another nonparametric design other
than optimal interval designs, has been reported to outperform one of the parametric
model-based designs.

5.3.1 General settings for the simulation study

Suppose that we desired to identify a single OD defined as a dose providing the efficacy of
greater than or equal to 0.5, and toxicity that did not exceed 0.3. Thus, target response
rates for toxicity and efficacy in the simulation study were θT = 0.3 and θE = 0.5,
respectively.

We selected twelve true dose–response relationships associated with six doses
(x1, . . . , x6), as shown in Fig. 5.4. Table 5.1 provides the true probability combinations
of toxicity and efficacy responses by scenario and displays true OD in bold font. In
scenario 1, toxicity and efficacy both monotonically increase with increasing dose levels,
and higher doses have unacceptable toxicity. In scenario 2, the dose–efficacy curve
exhibits a unimodal shape. In scenario 3, efficacy remains near the target rate and
varies only slightly between doses; on the other hand, toxicity increases linearly and
is unacceptable from the middle of the dose range. In scenario 4, efficacy decreases
monotonically with negligible toxicity in all dose levels. In scenario 5, efficacy increases
substantially with increasing dose levels under acceptable toxicity, and there are two OD
candidates. Scenario 6 produces monotonic increases for both toxicity and efficacy with
increasing dose levels, similar to scenario 1; however, it exhibits more gradual shapes
than scenario 1. In scenario 7, intermediate dose levels 3 and 4 are the most desirable.
The OD in scenario 8 is at the highest dose level because both toxicity and efficacy show
very moderate slopes with increasing dose levels. In scenario 9, all dose levels exhibit
excessive toxicity compared with the target rate, and there is no OD. In scenario 10, the
lowest dose is the only one that does not exceed the target toxicity rate, but its efficacy
is lower than the target; therefore, there is no OD in the explored dose range. In scenario
11, toxicity monotonically increases but the highest toxicity is lower than θT , and efficacy
shows a bell shape. Scenario 12 has also monotonically increasing toxicity and the highest
toxicity is lower than θT while the dose–efficacy relationship shows a plateau shape.
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Fig. 5.4. Dose-response curves by scenario
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Table 5.1. Scenarios on true toxicity and efficacy probability combinations

Scenario
True probability at each dose level (Toxicity, Efficacy)

1 2 3 4 5 6
1 (0.05,0.01) (0.10,0.15) (0.15,0.30) (0.30,0.55) (0.70,0.65) (0.80,0.70)
2 (0.05,0.25) (0.10,0.45) (0.15,0.60) (0.45,0.50) (0.60,0.20) (0.65,0.05)
3 (0.05,0.40) (0.25,0.50) (0.45,0.50) (0.60,0.55) (0.70,0.55) (0.85,0.60)
4 (0.05,0.70) (0.10,0.50) (0.15,0.40) (0.15,0.30) (0.20,0.15) (0.25,0.01)
5 (0.01,0.05) (0.05,0.20) (0.10,0.35) (0.17,0.45) (0.20,0.60) (0.30,0.80)
6 (0.01,0.30) (0.05,0.40) (0.10,0.45) (0.30,0.60) (0.50,0.65) (0.65,0.70)
7 (0.10,0.20) (0.15,0.30) (0.25,0.50) (0.30,0.70) (0.40,0.73) (0.45,0.75)
8 (0.05,0.05) (0.10,0.07) (0.20,0.10) (0.20,0.12) (0.25,0.40) (0.30,0.50)
9 (0.40,0.05) (0.40,0.15) (0.42,0.25) (0.45,0.40) (0.47,0.50) (0.50,0.60)
10 (0.25,0.15) (0.40,0.35) (0.45,0.50) (0.50,0.55) (0.60,0.60) (0.65,0.65)
11 (0.00,0.05) (0.05,0.20) (0.10,0.40) (0.15,0.55) (0.20,0.50) (0.25,0.25)
12 (0.05,0.05) (0.07,0.20) (0.10,0.40) (0.15,0.55) (0.20,0.60) (0.25,0.60)

In the simulation study, the maximum sample size was 36 with a cohort size of 3. For
all designs, trials were started from the lowest dose level. The simulations were executed
1,000 times for each design.

Besides descriptive summaries such as OD selection probabilities, dose allocations, and
observed response percentages, we present MSEs along with their 95% confidence intervals
as a precision index to evaluate simulation outcomes. The MSE for OD estimation is given
by

MSE =M−1
M∑

m=1

{1[π∗T
[m] > θT ](π

∗T
[m] − θT )

2 + 1[π∗E
[m] < θE ](π

∗E
[m] − θE)

2}, (5.21)

where π∗R
[m] (R ∈ {T,E}) denotes the true response probabilities at recommended ODs

in the mth trial under the scenarios. M is the total number of simulations (M = 1000).

5.3.2 Simulation settings of BOD for OD estimation

We set the following parameters for BOD. In the same manner of BODs for MTD and
MTDC estimation in Sections 3.2 and 4.3, we generated prior mean functions for Gaus-
sian process priors by the getprior function in R package dfcrm assuming that we do
not have any informative prior. As another reason to use the getprior function, many
biostatisticians are likely familiar with using this function to generate initial guesses for
the CRM. The required parameters in the getprior function are δ, θR, initial OD lo-
cation ν, and J . For ν, we recommend using the center of J unless there is a specific
informative prior. It ensures not to concentrate unnecessarily on extreme dose levels in
the dose selection process. Bayesian optimization often puts flat mean functions with 0
on its prior mean functions for objective functions; however, in dose-finding studies, it is
reasonable to use prior mean functions with a slightly monotonically increasing trend. For
dose–efficacy relationships, a relatively flat curve is appropriate to minimize the effect of
the prior because it may follow a non-monotone pattern. In order to create such priors,
we generated initial guesses of πE using getprior(δ = 0.01, θR = θE , ν = 3, J = 6). The
smaller the value of δ is, the flatter the slope of initial guesses becomes; therefore, the gen-
erated initial guesses of πE were the flattest when δ was changed in 0.01 increments and
had a slightly monotonically increasing trend. In contrast, it is unlikely that dose–toxicity
curves follow a non-monotone pattern; therefore, in the same manner as BOD for MTD
estimation in Section 3.2, we calibrated δ by the systematic approach (Lee and Cheung,
2009) based on the indifference interval. According to the systematic approach with 2,000
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simulations, the optimal δ was 0.06 when θR = θT , ν = 3, J = 6, and the maximum
number of patients of 36. By utilizing this result, we generated the initial guesses on πT

using getprior(δ = 0.06, θR = θT , ν = 3, J = 6). Although we used the optimal δ for
dose–toxicity relationships, we recommend conducting sensitivity analyses using several
values of δ (e.g., values around the range of an optimal δ ± 0.02) from the view of safe
dose allocations and correct OD selections.

The conceptual doses used in the covariance functions were (x1, . . . , x6) =
(0.0, 0.2, 0.4, 0.6, 0.8, 1.0). Regarding kernel parameters in the covariance function
in equation (3.3), σf was 1 following one of the common settings in Bayesian optimization
frameworks because there is no specific reason to increase the maximum value of the
covariance; a scale parameter was examined by two patterns, namely ρ = 0.4 and ρ = 0.6.
For a scale parameter, the two patterns with turning points of every 0.4 or 0.6 provide
2 or 1 turning points in the dose range of [0, 1]. Since the dose–response curves are
generally smooth and do not have many turning points, we consider that the appropriate
number for turning points would be less than 3. Additionally, ξ = 0.05 was used for
equation (3.4). While the value of ξ was simply determined by the appropriateness of the
calculation speed, a smaller value of ξ is generally better in terms of less impact on the
operating characteristics.

For the utility function described in equation (5.16), safety and efficacy were weighted
equally during the dose selection process; that is, the ratio between wT and wE was 1
using the actual values of 1 as the simplest setting. Fig. 5.5 shows the example of utility
scores calculated by equation (5.16) when substituted for wT = wE = 1 and the discrete
probabilities of responses. As shown in Fig. 5.5, the utility scores become 0 when both
toxicity and efficacy satisfy ideal conditions. Otherwise, the utility scores become greater
than 0. The parameters for the admissible dose set in equation (5.17) were ε̌1 = 0.1. It
would be generally acceptable in terms of safety perspective that doses with lower toxicity
than 0.4 were included in the admissible dose set when θT = 0.3.

1.0 0 0 0 0 0.01 0.04 0.09 0.16 0.25 0.36 0.49
0.9 0 0 0 0 0.01 0.04 0.09 0.16 0.25 0.36 0.49
0.8 0 0 0 0 0.01 0.04 0.09 0.16 0.25 0.36 0.49
0.7 0 0 0 0 0.01 0.04 0.09 0.16 0.25 0.36 0.49
0.6 0 0 0 0 0.01 0.04 0.09 0.16 0.25 0.36 0.49
0.5 0 0 0 0 0.01 0.04 0.09 0.16 0.25 0.36 0.49
0.4 0.01 0.01 0.01 0.01 0.02 0.05 0.10 0.17 0.26 0.37 0.50
0.3 0.04 0.04 0.04 0.04 0.05 0.08 0.13 0.20 0.29 0.40 0.53
0.2 0.09 0.09 0.09 0.09 0.10 0.13 0.18 0.25 0.34 0.45 0.58
0.1 0.16 0.16 0.16 0.16 0.17 0.20 0.25 0.32 0.41 0.52 0.65
0.0 0.25 0.25 0.25 0.25 0.26 0.29 0.34 0.41 0.50 0.61 0.74

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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fic
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y 
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ty

Toxicity Probability 　
Fig. 5.5. Utility scores under the specified weight parameters
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For the final OD selection based on equation (5.19), ε̌2 was set to ε̌1 + 0.05 that was
slightly looser than ε̌1 so as to limit unnecessary NA decisions. If there was no candidate
dose for the final OD selection, the final decision was NA in the trial. The threshold value
of cu1 in equation (5.20) was 0.02, which was provided when both efficacy and toxicity
simultaneously deviated to an undesirable direction by 0.1 as shown in Fig. 5.5. We
investigated two patterns pertaining to the final determination of the OD using cu2 = 1.0
and 0.7. We note that cu2 = 1.0 indicates an OD is determined only by equation (5.19),
and no additional conditions are provided for OD determination; that is, equation (5.20)
is ignored.

Posterior sampling was done using Stan. In the simulation results, BOD is displayed
with the scale parameter ρ for the squared exponential kernel and the value of cu2:
BOD(ρ, cu2). We present simulation results of BOD(0.4, cu2) in Section 5.3.4 and those
of BOD(0.6, cu2) are presented in Appendix C.1. Simulation codes for BOD are presented
in Appendix C.2.

5.3.3 Simulation settings for the competitors

In order to ensure comparability among all designs, similar settings were established for
each design as much as possible.

EffTox

The simulations for the EffTox were conducted by the R package trialr. For
the parameter settings, we referred to desktop software that was available via
https://biostatistics.mdanderson.org/. All hyperparameters were determined
by the hyperparameter calculator in the desktop software using prior mean probabilities
ranging from 0.2 to 0.45 for toxicity and from 0.4 to 0.65 for efficacy, and a target mean
effective sample size of 1.0. The prior mean probabilities for both toxicity and efficacy
exhibited target response rates in the center of the dose range (x3).

The EffTox need to specify three points from the efficacy-toxicity plain to set util-
ity contours described as equation (5.4); we used (0.1,0), (1,0.9), and (0.5,0.3) for
(πE1 , 0), (1, πT2), and (πE3 , πT3), respectively, such that the contours pass the target
toxicity rates (πE3 , πT3) = (θE , θT ) and would become sufficiently steep as recommended
in this design.

Admissible dose sets included all doses that satisfied the conditions P{πE(x) | D1:t >
θE} > 0.1 and P{πT (x) | D1:t < θT } > 0.1 . The cutoff value of 0.1 was obtained from
Thall et al. (2014) and was the default setting in the desktop software. At the end of a
trial, an OD that had the maximum utility was selected from the final admissible dose
set. If no dose met the admissible dose set criteria during a trial, the trial terminated
early and the final declaration was NA.

STEIN

We implemented the STEIN on the basis of the original article (Lin and Yin, 2017b).
We used ϕE1 = 0.3 and ϕE2 = 0.7 being within the recommended ranges in the original
article and made the optimal value of ϕE equal to θE . Additionally, the parameters
for the toxicity probability interval were derived from the recommended calculations by
using ϕT0 = θT , ϕ

T
1 = 0.75ϕT0 and ϕT2 = 1.25ϕT0 . The lower and upper critical threshold

values of toxicity probability, which constructed an optimal interval, were (0.261, 0.337).
Admissible dose sets for the next dose selection were determined by comparing a sample
statistic yTj /nj with the toxicity interval (0.261, 0.337) at each test.

https://biostatistics.mdanderson.org/
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In accordance with equation (5.11) with pre-specified weight parameters, the final OD
was a dose maximizing the following STEIN’s utility function:

USTEIN(π̃
T
j , π̃

E
j ) = π̃E

j − 0.33π̃T
j − 1.09π̃T

j 1[π̃
T
j > θT ].

The weight parameter values of 0.33 and 1.09 were the same as the setting in the simulation
study of the original article. On the basis of the practical implementation proposed in
the original article, an additional overdose control was imposed by eliminating overly
toxic doses that met P(πT

j > θT | D1:t) > 0.95 from an admissible dose set, where the

prior distribution was πT
j ∼ Unif(0, 1). Trials were terminated if no admissible dose was

identified.

Isotonic

The isotonic design was implemented using cloud software located at https:

//biostatistics.mdanderson.org/shinyapps/MTADF/. For safety monitoring, we
used ćT = 0.8 in equation (5.12); that is, unacceptable toxic dose levels that met

P̃(πT
j | D1:t > θT ) < 0.8 were eliminated from a trial. The threshold value of 0.8 has

been recommended to achieve overdose control in the cloud software. We note that the
isotonic design does not require the value of θE because it selects dose levels with the
highest efficacy probability within an admissible dose set.

5.3.4 Simulation results

• OD selection probabilities and MSE results

Fig. 5.6 shows the precision results generated by equation (5.21). MSEs shown in BOD
tend to be consistently small compared with the other designs. In contrast, the other
designs perform very well in one scenario but then provide OD estimations that deviate
from the true OD in other scenarios. The impact of scale parameters in the kernel function
was minimal between BOD(0.4, ·) and BOD(0.6, ·); however, appropriate values must be
carefully determined through such as a grid search before a trial. For the criterion in
equation (5.20), the amount of the impact on MSEs is small.

The correct OD selection probabilities shown in Table 5.2 closely align to the MSE
results shown in Fig. 5.6. In most scenarios, BOD provides the highest correct OD
selection probabilities than the other designs. In scenarios 9, the lowest dose level (with
40% toxicity) already exceeds the target toxicity rate, and toxicity increases 10% from
the lowest to the highest dose level. The final determination of BOD is correctly NA
with high probabilities in this scenario. Additionally, BOD allocates most patients to
the lowest dose and shows the lowest observed toxicity percentage in all the designs as
shown in Table 5.3. BOD narrows down the final OD candidates based on the posterior
mean of the toxicity and efficacy probabilities to remain appropriate candidates and to
exclude inappropriate candidates as well as the overdose control through admissible dose
sets. The results at scenario 9 indicate that BOD can successfully exclude overly toxic
doses from both the final OD declaration and admissible dose sets. Compared between
BOD(0.4, 1.0) and BOD(0.4, 0.7), the latter selects NA more correctly in scenario 10 with
no true OD. The criterion in equation (5.20) improves OD selection probabilities when
the scenario does not have a true OD; however, OD selection without using the criterion
works well in all scenarios regardless of the existence of a true OD compared with the
other designs.

The STEIN tends to select one dose level lower than the true OD more than BOD
in most scenarios. This would be because of its limited dose-escalation algorithm. The

https://biostatistics.mdanderson.org/shinyapps/MTADF/
https://biostatistics.mdanderson.org/shinyapps/MTADF/
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STEIN selects dose escalation decision only when a sample statistic at the current dose
level is lower than the lower boundary and the escalated dose has the highest posterior
efficacy in an admissible dose set. The lower boundary in the simulation appears to be
a strict limitation because it only allows toxicity probabilities lower than 26.1% when
determining whether to include an escalated dose in the admissible dose set; therefore,
dose escalation is limited more strictly when toxicity occurs.

In scenario 4, the EffTox shows a slightly higher correct OD selection probability than
BOD, while the MSEs are comparable between the two designs. In scenarios 9 and 10
where there are no true OD, the EffTox provides a high probability of NA as well as a
large stopping percentage. However, it allocates patients to a wider range of doses than
the other designs (Table 5.3). As a result, the EffTox has higher toxicity percentage in
those scenarios than the other designs. In the other scenarios, the EffTox does not perform
well compared with the other designs in terms of the correct OD selection. In addition,
probabilities of NA selection and early termination are frequently occurred due to the
criteria for admissible dose sets with the cutoff value of 0.1 even if the scenario has a true
OD, as shown in scenarios 1, 8, and 11.

The isotonic design applies doubly isotonic regressions to estimate dose–efficacy rela-
tionships; therefore, it was expected that the doubly isotonic approach provides more
efficient estimation results if the true dose–efficacy curve does not exhibit a monotonically
increasing shape. In our simulation study, however, the isotonic design does not show
the highest correct OD selection probability even if the dose–efficacy curve exhibits a
unimodal shape such as scenarios 2 and 11.

In scenario 12 where x4 and x5 are ODs, all the designs except for BOD select x4 more
than x5. In contrast, BOD tends to select x5 whose efficacy is higher than that of x4
while the selection probability of x4 is higher than the EffTox and the isotonic designs.
It would reflect the property of the utility function in BOD that x4 more likely returns a
positive utility score (i.e., penalty) than x5 given the differences between the true response
probabilities on these doses and the target response rates.

　
Fig. 5.6. Mean squared errors and the 95% confidence intervals for OD estimation by

designs and scenarios
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• Dose allocation

Regarding the average percentages of patients with toxicity responses (%tox) in Table 5.3,
BOD shows less than or around 20% in most scenarios. BOD shows slightly higher %tox
than the other designs depending on scenarios, but the actual values of %tox are less than
20% for all scenarios where BOD shows the highest %tox. Under scenarios 9 and 10 where
most doses have excessive toxicity, BOD shows the lowest %tox. These results indicate
that overdose control in BOD works successfully.

In contrast, BOD provides the highest efficacy response percentages (%eff) than the
other designs in most scenarios while the EffTox shows the highest %eff in scenario 4.
It indicates the utility function works to seek and allocates efficacious doses during a
trial. The EffTox seems to fit scenario 4 because the true OD provides a much higher
score in all doses based on the utility function of the EffTox. In scenarios 9 and 10,
BOD does not show the highest %eff; however, it is due to overdose control. In scenario
11, the STEIN allocates patients to the true OD the most in all the designs while it
does not show the highest %eff due to higher allocation percentages to lower dose levels
than the OD. In scenario 12, BOD allocates patients to both of two ODs at comparable
percentages. In contrast, the other designs allocate more patients to x4 than x5. These
allocation percentages at x5 are around half amount of BOD. BOD considers a trade-off of
exploitation and exploration; therefore, this result would also reflect such an exploration
effect.

Overall, BOD with the current settings selects efficacious dose with controlling over-
dose allocations, and the employed dose selection criteria (e.g., admissible dose set) work
successfully.
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• Operating characteristics of the existing designs

In the STEIN algorithm, dose escalations occur only when 1) a sample statistic is less
than or equal to the lower boundary (0.261) and 2) one dose level higher than the current
dose exhibits the highest posterior efficacy probability in the admissible dose set. For
example, if one out of three patients experienced toxicity, the dose-escalation decision is
not selected. The results in the STEIN in Tables 5.2 and 5.3 reflect this strict limitation
for dose-escalation decisions. An OD is estimated by isotonic estimates and unimodal
isotonic estimates among only tested doses. If a true OD is located at the highest dose
level, such as scenario 8, the STEIN shows a lower correct OD selection probability than
the other scenarios owing to the limited dose-escalation decisions. In addition, the STEIN
tends to select lower doses than the true OD with relatively high frequencies compared
with BOD in most scenarios.

The EffTox provides ideal determinations with high probabilities of NAs and early
terminations under scenarios 9 and 10. NA determinations are provided when there is
no dose that meets conditions P{πE(x) | D1:t > θE} > 0.1 and P{πT (x) | D1:t < θT } >
0.1. The EffTox also provides more NA determinations than the other designs under the
other scenarios with true ODs (Table 5.2). This indicates that the cutoff value of 0.1
should be refined for each scenario although it may be difficult to determine an ideal
cutoff value when little information is known about dose–response relationships. Brock
et al. (2017) has discussed the cutoff value settings in the EffTox. A parameter value
for determining the extent of the curvature of the utility contours in the EffTox (i.e.,
ι in equation (5.4)) was approximately 0.85 based on the three parameters in Section
5.3.3. Compared between the simulation results and the true utility scores based on
0.85, the EffTox shows good results under the scenarios where the utility score at ODs is
the maximum value or markedly different from that of the other doses. Otherwise, the
performance of the EffTox tends to be low. For example, the true utility scores of the
EffTox in scenario 6 are (0.20, 0.24, 0.22, 0.12, -0.07, and -0.18), where a true OD of x4
returns a lower score than x1, x2, and x3. As a result, the performance in scenario 6 is
lower than that of the other designs. There might be more suitable values for the three
parameters in scenario 6.

For isotonic design, the threshold value for overdose control would have a considerable
impact on the operating characteristics. We used a threshold value of 0.8 in the simulation
as recommended in the cloud software. Fig. 5.7 shows additional simulation results to
examine the impact of the threshold values under scenario 1. If the threshold value is 0.7,
OD recommendations in all trials are only x1. This indicates that dose elimination based
on a threshold value of 0.7 is too conservative. On the other hand, if no dose elimination
is applied with a threshold value of 1, x5 and x6 that have higher efficacy probabilities
are selected more often than the other doses. The results with values of 0.8 and 0.9
show higher selection probabilities for x4 although they are lower than the correct OD
selection probability shown in BOD. A threshold value of 0.8 is recommended for general
use; however, a slightly larger value than 0.8 would be suitable as a threshold value in
scenario 1.
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Fig. 5.7. Optimal dose selections in the isotonic design with different threshold values

5.4 Summary and discussion
Chapter 5 introduced BOD for OD estimation. In our simulation study with twelve
scenarios, BOD consistently produced smaller MSEs and more accurate OD selections in
most scenarios compared with the other designs.

For acquisition functions, LCB(x) is very simple without any complex calculations. We
selected 10 percentile for LCB(x), however, what percentile is the most suitable as LCB(x)
and how to calibrate the balance are still an open discussion. Considering the difficulty of
parameter calibrations, it might be worth evaluating the operating characteristics of the
EI strategy because it does not need any parameter tuning as shown in Section 3.1.2.

We assumed that toxicity and efficacy outcomes were independent of each other in the
model. On the other hand, some investigators might be interested in incorporating the
impact of the association between them. One option could be including an association
parameter η with a vague prior distribution (e.g., a beta distribution with parameters
(2,2)). The likelihood function takes the association parameter into account such as

L(D1:t | fT , fE , η) ∝
t∏

z=1

πT (x(z))
yT
(z){1− πT (x(z))}(n(z)−yT

(z))

πE(x(z))
yE
(z){1− πE(x(z))}(n(z)−yE

(z))ηy
T
(z)y

E
(z)(1− η)1−yT

(z)y
E
(z) ,

instead of equation (5.15) according to Asakawa and Hamada (2013). We note that it
might be challenging to estimate such the association parameter because the sample size
is small in general. Another option could be addressing the association through a utility
function by adding an association term to equation (5.16). For example, an additional
term related to the association between responses might be expressed as

ωET 1[(π
T > θT ) ∧ (πE < θE)](π

T − θT )(θE − πE).

The association term provides an additional penalty that corresponds to the strength of
the association if both response probabilities on toxicity and efficacy do not satisfy the



110 Chapter 5 Bayesian optimization design of OD estimation for targeted therapies

target response rates. Because we have not evaluated the feasibility of these extensions
related to the association in this thesis, further evaluations will be needed as future work.

We focused on binary variables for toxicity and efficacy outcomes. On the other hand,
BOD could be extended to situations where toxicity is binary and efficacy is continu-
ous. Mandrekar et al. (2010) reported a case where the dichotomous efficacy outcomes
were inaccurate and suboptimal. Several authors have applied their proposed designs for
continuous outcomes; Bekel and Shen (2005) has treated continuous variables such as
biomarker evaluations in place of binary efficacy outcomes in OD estimations; Tao et al.
(2013) has applied Archimedean copula regression to bivariate continuous outcomes. If
we treat a continuous efficacy variable instead of a binary efficacy variable, at least the
following will be changed:

• Observed actual values of a continuous efficacy variable Y Ec are modeled with an
unknown function fEc;

• A prior distribution for fEc is determined based on initial information or knowledge
about the efficacy endpoint;

• Posterior distributions of fEc can be analytically calculated if Y Ec is assumed
to follow a normal distribution (i.e., Y Ec

j ∼ N(fEc(xj), σ
2)), otherwise posterior

samples for fEc are computed by MCMC;
• A utility function could be expressed by, for example,

UBODc
(x) = wT 1[π

T (x) > θT ]

{
πT (x)− θT

θT

}2

+ wEc1[f
Ec(x) < yE∗]

{
yE∗ − fEc(x)

yE∗

}2

,

where yE∗ is a target value for the efficacy endpoint.

We have left such extensions regarding the continuous efficacy variable in future work.
As a further extended approach, it might be possible to incorporate both parametric

and nonparametric approaches in BOD as hybrid designs. Although hybrid designs leave
model misspecification issues, it is reasonable to assume that dose–toxicity relationships
follow monotonically increasing curves; therefore, parametric model-based designs might
provide effective dose findings especially for dose–toxicity relationships. Some authors
have introduced hybrid designs for Phase I or Phase II clinical trials. For example, a hybrid
design introduced by Yuan and Yin (2011a) relies on nonparametric approaches in the
dose selection when toxicity outcomes at the current dose show strong enough information
in terms of decision-making, otherwise relies on parametric model-based designs such as
the CRM. Additionally,Yuan and Yin (2011b) has introduced another hybrid design that
makes a weighted average estimate to contribute both parametric and nonparametric
estimates to the estimation of a single dose–response curve. While these hybrid designs
apply parametric and nonparametric approaches to a single dose–response curve, hybrid
designs we assume here incorporate two dose–response curves estimated separately by
parametric and nonparametric approaches. As such a design, Yeung et al. (2017) models
relationships between doses and binary toxicity responses with a logistic regression model
and mean efficacy responses with a random walk model. A gain function that explicitly
trades-off efficacy and harm by incorporating the estimated values based on the two models
then guides its dose-escalation procedure. As our initial thought, one of the simplest
approaches for toxicity estimation as a hybrid design for BOD might be to utilize the
CRM to estimate a dose providing the closest toxicity to the target toxicity rate because
the CRM is one of the most popular parametric model-based designs and is well known
to provide good operating characteristics in dose-finding studies. Simultaneously, we
could apply the approach that BOD for OD estimation offers to estimate dose–efficacy
relationships. In this case, one option of dose selection is selecting the most efficacious
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dose among an admissible dose set based on the CRM through an acquisition function
for dose–efficacy relationships. Another option is constructing a new utility function to
incorporate toxicity and efficacy information. The simplest approach to do this might be
keeping the second term in equation (5.16) as it is and including a penalty term based on
toxicity probability estimated by the CRM instead of the first term.

For the utility function, the ratio between the weight parameters for toxicity and effi-
cacy was set to 1 in our simulation study. On the other hand, various situations could
be assumed with regard to a balance between safety and efficacy in practice. The util-
ity function consists of squared differences between estimated posterior probabilities and
target response rates; however, using absolute values instead of squared values might be
an alternative. Utilizing a utility function similar to that of the STEIN might be an-
other alternative. Additionally, a dose selection process based on separate evaluations for
each dose–response relationship without utility functions may be a different alternative
approach. Because there are a variety of candidates for dose selection processes including
utility functions, they should be further evaluated.

BOD requires parameters for a Gaussian process prior and the utility function. A
flat mean prior function for dose–efficacy relationship can be generated by the getprior

function with a relatively small value of δ. Initial toxicity guesses are generated with δ
derived by the systematic approach proposed for the CRM. A covariance function based
on the squared exponential kernel has three parameters; σf , ρ, ξ. As the same setting
as BODs in Chapters 3 and 4, σf is 1 and ξ is determined according to the desired
computation speed (a smaller value is recommended). For the parameter ρ, a value
providing 1 or 2 turning points would usually provide good operating characteristics. The
weight parameters (wt, we) for the utility function should be determined based on their
balances (i.e., ratios) while the ratio of 1 worked successfully in our simulation study. If
the weight for toxicity must be increased owing to safety concerns, wt should be greater
than we. The optional criterion for OD determinations in equation (5.20) would be better
to use just as a reference because it does not always improve OD determinations. If prior
knowledge based on historical data or real-world evidence on investigational agents is
available, Gaussian process priors (i.e, prior mean functions and scale parameters for each
covariance function) for toxicity and efficacy could be derived from such informative data.
Additionally, BOD assumes that the discrete test doses are equally spaced concerning the
probabilities of responses in the explored dose range; therefore, it is desirable that the
investigated doses are determined so that they are equally spaced with respect to initial
response probabilities using those data.

There is still no standard design for OD estimation even when most analyzed situations
have binary outcomes for both toxicity and efficacy. The STEIN can be implemented
easily and provided satisfactory performance in our simulation although there is concern
about the possibility of significant deviation in the final OD determination depending
on scenarios. The EffTox shows high rates of NA determinations and early terminations
regardless of the existence of true ODs in scenarios because of the overdose control criteria.
The isotonic design did not show outstanding results in our simulation study. We need
further evaluations for BOD including possible extensions along with an evaluation on
robustness; however, given the above situation and our simulation results, we conclude
that BOD has a high potential to provide outstanding performance in terms of correct
OD selections while providing proper overdose control.
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C

Appendices for Chapter 5

C.1 Supplemental simulation results
Section C.1 provides simulation results of BOD (0.6, cu2) that contributed to the perfor-
mance evaluation but was omitted in Section 5.3.4.

Table C.1. Mean squared errors in BOD (0.6)

Scenario BOD(0.6, 1.0) BOD(0.6, 0.7)
MSE 95% CI* MSE 95% CI*

Lower Upper Lower Upper
1 0.0049 0.0040 0.0059 0.0049 0.0040 0.0058
2 0.0033 0.0023 0.0043 0.0031 0.0022 0.0040
3 0.0064 0.0056 0.0072 0.0061 0.0054 0.0069
4 0.0006 0.0003 0.0009 0.0006 0.0003 0.0009
5 0.0014 0.0011 0.0018 0.0014 0.0011 0.0018
6 0.0027 0.0023 0.0032 0.0027 0.0023 0.0032
7 0.0045 0.0036 0.0053 0.0045 0.0036 0.0053
8 0.0048 0.0040 0.0056 0.0043 0.0039 0.0048
9 0.0363 0.0271 0.0454 0.0289 - -
10 0.0317 0.0298 0.0336 0.0316 0.0290 0.0342
11 0.0030 0.0022 0.0039 0.0030 0.0021 0.0038
12 0.0006 0.0003 0.0009 0.0006 0.0003 0.0009

* CI: Confidence interval
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Table C.3. Average number of patients treated with each dose level and average percent-
ages of observed responses in BOD (0.6)

Scenario Dose level Total %tox %eff
1 2 3 4 5 6

1 3.8 4.0 9.3 16.3 2.6 0.0 36.0 24.4 39.3
2 5.4 6.0 16.2 7.6 0.9 0.1 36.0 20.2 48.8
3 10.2 16.3 8.1 1.4 0.1 0.0 36.0 25.2 47.3
4 24.9 5.8 3.2 1.6 0.5 0.1 36.0 7.4 61.3
5 3.4 3.3 4.5 7.9 9.1 7.8 36.0 17.2 49.2
6 5.4 4.6 7.7 13.3 4.7 0.2 36.0 21.1 50.6
7 4.9 6.7 10.4 9.3 3.8 0.9 36.0 24.5 50.4
8 5.2 4.1 6.4 8.2 7.5 4.7 36.0 19.1 21.1
9 25.2 6.5 3.0 1.1 0.2 0.0 36.0 40.3 9.7
10 17.6 12.5 4.6 1.1 0.1 0.0 36.0 33.7 27.8
11 3.6 3.5 4.7 9.5 10.0 4.7 36.0 14.7 39.6
12 3.6 3.6 4.7 7.5 8.7 7.9 36.0 16.1 46.9
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C.2 BOD simulation code for OD estimation
We implemented BOD for OD estimation using R for the simulation study described in
Section 5.3. Appendix C.2 provides R codes for implementing BOD to identify an OD for
a targeted therapy.

• Listing C.1 is R code that constructs the simulation body.
• Listing C.2 presents a stan model that is compiled from the R package rstan in
Listing C.1 to implement the MCMC for obtaining posterior samples.

• Listing C.3 shows a part of toxicity and efficacy scenarios used in the simulation
study.

Listing C.1. Simulation body of BOD for OD estimation

1 #BOD_od_simulation_body.R
2 ############################################
3 ### Initial settings before running simulations ###
4 ############################################
5

6 ### Set a working directly ###
7 setwd("XXX") # set a location of directly for the simulation
8

9 #### packages ###
10 library(rstan) # for MCMC
11 rstan_options(auto_write = TRUE) # rstan option
12 options(mc.cores = parallel::detectCores()) # rstan option
13 #Sys.setenv(LOCAL_CPPFLAGS = ’-march=native’) # rstan option
14 library(dfcrm) #for using getprior function
15 #library(ggmcmc) # for checking convergence of MCMC graphically
16

17 ### Create functions ###
18 # logit function
19 logit_f <- function(a){
20 b <- log(a/(1-a))
21 return(b)
22 }
23

24 # modified rbind() that incorporates dataframes with different row names
25 rbindCOrder <- function(...) {
26 n <- length(list(...))
27 temp <- list(...)[[1]]
28 names(temp) <- NA
29 for (i in 2:n) {
30 tmp <- list(...)[[i]]
31 names(tmp) <- NA
32 temp <- rbind(temp, tmp)
33 }
34 names(temp) <- names(list(...)[[1]])
35 return(temp)
36 }
37

38 ### Compile a Stan file ###
39 stanmodel <- stan_model(file=’BOD_model_od.stan’) # BOD_model_od.stan.stan

is located at the working directly.
40

41 ### Trial Settings ###
42 N <- 6 # number of dose levels
43 Pt <- 0.3 # maximum acceptable toxicity rate
44 Pe <- 0.5 # target response rate
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45 max_sub <- 36 # maximum number of patients in a trial
46 cohort <- 3 # cohort size
47 X <- c(seq(0, 1, length = N)) #conceptual doses
48

49 ### Scenarios for the simulation study ###
50 sc <- as.data.frame((read.table("Scenario_OD.txt", header = T))) #

Scenario.txt is located at the working directly.
51 S_N <- length(sc[,-1])/2 # number of scenarios
52

53

54 ### For Gaussian process priors ###
55 # Prior mean functions for toxicity and efficacy
56 Guess_T <- logit_f(getprior(0.06, Pt, 3, N)) # for toxicity
57 Guess_E <- logit_f(getprior(0.01, Pe, 3, N)) # for efficacy
58

59 # Calculate covariance functions for toxicity and efficacy
60 # The simulation study applies the same covariance functions for both

toxicity and efficacy; however, a Stan file can treat different
covariance functions by using L and L2, as needed.

61

62 # calculate a fixed covariance function K for toxicity
63 sigma_f <- 1 # signal variance
64 rho <- 0.4 # scale parameter
65 xi <- 0.05 # a small value added to diagonal elements in K
66

67 K <- matrix(rep(0,N*N), nrow = N, ncol = N)
68 for (i in 1:(N - 1)) {
69 K[i, i] <- (sigma_f)^2
70 for (j in (i + 1):N) {
71 K[i, j] = (sigma_f)^2*exp(-0.5/(rho)^2 * ((X[i] - X[j])^2))
72 K[j, i] = K[i, j]
73 }
74 }
75 K[N, N] <- (sigma_f)^2
76 K2 <- K + diag(xi, N) # add small values for diagonal elements in K
77 L <- t(chol(K2)) # Cholesky decomposition for K2
78

79 # calculate a fixed covariance function K for efficacy
80 sigma_f <- 1 # signal variance
81 rho2 <- 0.4 # scale parameter
82

83 K <- matrix(rep(0,N*N), nrow = N, ncol = N)
84 for (i in 1:(N - 1)) {
85 K[i, i] <- (sigma_f)^2
86 for (j in (i + 1):N) {
87 K[i, j] = (sigma_f)^2*exp(-0.5/( rho2)^2 * ((X[i] - X[j])^2))
88 K[j, i] = K[i, j]
89 }
90 }
91 K[N, N] <- (sigma_f)^2
92 K2 <- K + diag(xi, N) # add small values for diagonal elements in K
93 L2 <- t(chol(K2)) # Cholesky decomposition
94

95

96 ### parameters for the utility function ###
97 e_p1 <- 1 # weight parameter for efficacy in equation (5.16)
98 s_p1 <- 1 # weight parameter for toxicity in equation (5.16)
99 # For the weight parameters, a Stan file with the current setting below (

Listing C.2) can load only integer values.
100

101 ### a parameter for an admissible dose set ###
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102 vareps1 <- 0.1 # a parameter in equation (5.17)
103

104 ### parameters for OD determination ###
105 vareps2 <- 0.15 # a parameter in equation (5.19)
106

107 # Here are optional parameters in equation (5.20)
108 c_u1 <- e_p1*(0.1)^2 + s_p1*(0.1)^2 # an example of c_u1
109 c_u2 <- 0.5 # an example of c_u2
110

111 ### Iterations and random seeds ###
112 sim_min <- 1 # minimum number in iterations
113 sim_max <- 1000 # maximum number of iterations
114 rand0 <- matrix(1:(100*1000*S_N), nrow = (100*S_N), ncol = 1000) #

random seeds matrix
115

116 ##########################
117 # Start a simulation study #
118 ##########################
119 for(S in 1:2){ # loop selected scenarios
120 Sn <- 2+2*(S-1) # identify a location of the scenario in the loaded

data
121 True_e <- sc[,Sn] # true efficacy probability in the scenario
122 True_t <- sc[,Sn+1] # true toxicity probability in the scenario
123 Table <- cbind(X, True_e, True_t)
124 tox_over <- which( True_t > Pt ) # doses with over toxicity
125

126 ################
127 # Iterate trials #
128 ################
129 for(sim in sim_min: sim_max){
130

131 ### Reset outcome values at every trial###
132 next_l <- 1 # start from the lowest dose level
133 t <- 0 # test number
134 over_a <- 0 # overdose allocation
135 p_DLT <- 0 #percentage of patients with toxicity
136 p_Res <- 0 #percentage of patients with response
137 num <- rep(0,N) # number of patients in each dose level
138 num_t <- rep(0,N) # number of patients with toxicity by dose
139 num_e <- rep(0,N) # number of patients with response by dose
140

141 #####################
142 # Simulate one trial #
143 #####################
144 # Test until total number of patients reaches a maximum number of

patients
145 while(sum(num) + cohort <= max_sub){
146 t <- t + 1 # update a test number
147 seeda <- rand0[sim, (max_sub/cohort*(S-1) + t)] # random seed
148

149 cat("Scinario / Sim - Test : " ,S ," / ", sim , " - " , t,"\n")
150

151 # observed toxicity response
152 set.seed(seeda)
153 y_t <- rbinom(1,cohort , True_t[next_l])
154

155 # observed efficacy response
156 set.seed(seeda)
157 y_e <- rbinom(1, cohort , True_e[next_l])
158

159 # observed data
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160 obs <- as.data.frame(cbind(t_level = next_l, y_e, y_t))
161

162 if(t == 1){
163 Test <- obs
164 }else{
165 Test <- rbind(Test, obs)
166 }
167

168 #update number of patients and responses at each dose level
169 num[next_l] <- num[next_l] + cohort
170 num_t[next_l] <- num_t[next_l] + y_t
171 num_e[next_l] <- num_e[next_l] + y_e
172

173 ### Sampling from the posterior distribution ###
174 # data loaded in the Stan file
175 y_t.out <- as.array(Test$y_t) # toxicity outcomes
176 y_e.out <- as.array(Test$y_e) # efficacy outcomes
177 t.x <- as.array(Test$t_level) # tested dose levels
178 data <- list(cohort = cohort, N = N, pt = Pt, pe = Pe, e_p1 = e_p1,

s_p1 = s_p1, t = t, y_t = y_t.out, y_e = y_e.out, test_x = t.x,
E_logg = Guess_E, T_logg = Guess_T, L = L, L2 = L2)

179

180 # Sampling from the posterior distributions
181 # [toxicity (Ep_t), efficacy (Ep_e) and utility (Utility)]
182 fit <- sampling(stanmodel,
183 data = data,
184 pars = c(’Ep_t’,’Ep_e’,’Utility’),
185 iter = 9000, warmup = 3000, thin = 4, chains = 1,

seed = (seeda + t)
186 #,control = list(adapt_delta = 0.99999999999999,
187 # max_treedepth = 20)
188 )
189

190 ### MCMC parameters ###
191 # Check MCMC results graphically by using following code
192 # ggmcmc(ggs(fit,inc_warmup=TRUE),file=’output2.pdf’)
193 # Values of iter, warmup, thin and chains in the Stan sampling

should be determined based on the outputs of ‘fit’
194 #(e.g., Conditions that Rhat is less than 1.1 and n_eff is greater

than 100) in addition to graphs (e.g., trace plots and auto
correlation).

195 #The recommended number of chains by Stan development team is 4;
however, we set 1 in the simulation study due to low computing
speed. Given the above settings, 1500 posterior functions are
sampled from each posterior distribution.

196 ########################
197

198 ms <- rstan::extract(fit) # Get Stan outputs
199

200 # Posterior samples
201 post_tox <- ms$Ep_t # toxicity
202 post_eff <- ms$Ep_e # efficacy
203 post_u <- ms$Utility # utility
204

205

206 ### Calculate probabilities based on posterior distributions ###
207 # initial vectors for toxicity and utility functions
208 prob_t <- rep(0, N)
209 prob_u <- rep(0, N)
210

211 for(n in 1: N){
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212 # posterior toxicity functions
213 exp_stars1 <- sort(post_tox[, n])
214

215 # posterior utility functions
216 exp_stars2 <- sort(post_u[, n])
217

218 # empirical cumulative distribution function
219 Fn1 <- ecdf(exp_stars1)
220 Fn2 <- ecdf(exp_stars2)
221

222 prob_t[n] <- 1 - Fn1(Pt) # probability that toxicity at each dose
level is greater than the target toxicity rate

223 prob_u[n] <- 1 - Fn2(c_u1) # probability that utility value at
each dose level is greater than the pre-specified cutoff value
(c_u1)

224 }
225

226

227 ### Determine an admissible dose set for overdose control ###
228 max_d1 <- N
229 max_d2 <- N
230 max_d3 <- N
231 mean_tox <- apply(post_tox, 2, mean) # posterior toxicity mean
232

233 # Skipping dose is restricted (1st bullet required for overdose
control in Section 5.2.3)

234 if(max(Test$t_level) < N){
235 max_d1 <- max(Test$t_level) + 1
236 }else{
237 max_d1 <- N
238 }
239

240 # One dose level lower than the current test dose when 2 or more
patients experienced DLT at the current tested dose (2nd bullet
required for overdose control in Section 5.2.3)

241 if(y_t > 1){
242 if(next_l == 1){
243 max_d2 <- 1
244 }else{
245 max_d2 <- next_l - 1
246 }
247 }
248

249 # Doses with potentially overly toxic are eliminated (3rd bullet
required for overdose control in Section 5.2.3)

250 if(length( which(mean_tox > (Pt + vareps1)) ) > 0 ){
251 max_d3 <- min( which(mean_tox > (Pt + vareps1)) ) -1
252 if(max_d3 < 1) max_d3 <- 1
253 }else{
254 max_d3 <- N
255 }
256

257 #### Acquisition function (LCB) for the utility function ###
258 # 10-percentile on the posterior distribution of the utility

function is calculated
259 q10 <- apply(post_u, 2, quantile, probs = c(0.1))
260

261 # LCB in the admissible dose set
262 q10a <- q10[1:(min(max_d1, max_d2, max_d3))]
263

264 # Which dose does provide the minimum value of LCB?
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265 cand <- which(q10a == min(q10a))
266

267 mean_eff <- apply(post_eff, 2, mean) # posterior efficacy mean
268 # If the number of doses selected by LCB is more than 1, a dose with

the highest efficacy among the admissible dose set is selected.
269 if(length(cand) > 1){
270 cand <- cand[which(mean_eff[cand] == max(mean_eff[cand]))]
271 }
272

273 # The next dose
274 next_l <- cand
275

276 } ### end a trial loop
277

278 ###########################
279 # Optimal dose is determined #
280 ###########################
281 utility_mean <- apply(post_u, 2, mean) # posterior utility mean
282

283 # Candidate doses for optimal dose selection
284 admis_f_t <- which(mean_tox < (Pt + vareps2))
285 admis_f_e <- which(mean_eff > (Pe - vareps2))
286 admis_f <- intersect(admis_f_e, admis_f_t)
287

288 # Optimal dose is selected from the candidate dose set
289 if(length(admis_f) == 0){
290 OD <- 0 #OD does not exist
291 }else{
292 OD <- admis_f[which(utility_mean[admis_f] == min(utility_mean[

admis_f]))]
293 }
294

295 ##########################
296 # Save output of the trial #
297 ##########################
298 #number of patients treated with overdoses
299 if(length(tox_over) == 0){
300 over_a <- 0
301 }else{
302 over_a <- sum(num[tox_over])
303 }
304 # percentage of patients with toxicity
305 p_DLT <- sum(num_t)/sum(num)
306 # percentage of patients with response
307 p_Res <- sum(num_e)/sum(num)
308

309 Result_box <- cbind(S, sim, rho, rho2, vareps1, vareps1, OD, total=sum
(num), data.frame(t(num)), tox = sum(num_t), data.frame(t(num_t))
, res = sum(num_e), data.frame(t(num_e)), p_Res, p_DLT, over_a, t
(prob_t), t(prob_u), c_u1, c_u2, t(mean_tox), t(mean_eff), t(
utility_mean), t(q10))

310

311 # Combine all outputs
312 if(sim == sim_min){
313 Result_box1 <- Result_box
314 }else{
315 Result_box1 <- rbindCOrder(Result_box1, Result_box)
316 }
317 write.table(Result_box1, "output.txt", row.names = F, quote = F,append

= F)
318 }
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319 }

A stan model file ‘BOD model od.stan’ is composed of the following contents.

Listing C.2. Stan model for BOD of OD estimation

1 // BOD_model_od.stan
2 // data input
3 data {
4

5 int<lower = 1> cohort; //number of patients in a cohort
6 int<lower = 1> N; //total number of dose level
7 real pt; //target toxicity rate
8 real pe; //target efficacy rate
9 int<lower = 1> s_p1; //weight parameter for safety

10 int<lower = 1> e_p1; //weight parameter for efficacy
11 int<lower = 1> t; //test number in the trial (t = 1,2,3,...)
12 int<lower = 0, upper = cohort> y_t[t]; //number of patients with

toxicity at each test
13 int<lower = 0, upper = cohort> y_e[t]; //number of patients with

efficacy at each test
14 int<lower = 0, upper = N> test_x[t]; //tested doses
15 vector[N] T_logg; //logit transformed initial guess curves for toxicity
16 vector[N] E_logg; //logit transformed initial guess curves for efficacy
17 matrix[N, N] L; //covariance function for toxicity (Cholesky)
18 matrix[N, N] L2; //covariance function for efficacy (Cholesky)
19

20 }
21

22 transformed data{
23 vector[N] mu_zero = rep_vector(0, N);
24 }
25

26 parameters {
27 vector[N] zero_m1;
28 vector[N] zero_m2;
29 }
30

31 transformed parameters{
32

33 vector[N] Ep_t; //dose-toxicity function
34 vector[N] Ep_e; //dose-efficacy function
35 vector[N] Utility; //Utility function
36

37 //--- Define parameters to be output---//
38 Ep_t = inv_logit(zero_m1 + T_logg);
39 Ep_e = inv_logit(zero_m2 + E_logg);
40

41 for(i in 1:N){
42 Utility[i] = e_p1*(Ep_e[i] < pe)*square(Ep_e[i] - pe)+
43 s_p1*(Ep_t[i] > pt)*square(Ep_t[i] - pt);
44 }
45

46 }
47

48 model {
49 //-------declare GPs for the priors-------//
50 zero_m1 ~ multi_normal_cholesky(mu_zero, L);
51 zero_m2 ~ multi_normal_cholesky(mu_zero, L2);
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52

53 //--- likelihood based on a binomial distribution ---//
54 for (j in 1:t){
55 target += binomial_lpmf(y_t[j]|cohort,Ep_t[test_x[j]])+
56 binomial_lpmf(y_e[j]|cohort,Ep_e[test_x[j]]);
57 }
58

59 }

The following are toxicity and efficacy probabilities in scenarios 1 and 2.

Listing C.3. Scenarios used in the simulation study for OD estimation (Only scenarios 1
and 2 are listed below.)

1 Level E1 T1 E2 T2
2 1 0.01 0.05 0.25 0.05
3 2 0.15 0.10 0.45 0.10
4 3 0.30 0.15 0.60 0.15
5 4 0.55 0.30 0.50 0.45
6 5 0.65 0.70 0.20 0.60
7 6 0.70 0.80 0.05 0.65
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Chapter 6

Conclusion and future work

In this thesis, we have introduced a new dose-finding statistical design, BOD, that lever-
ages advantages brought from Bayesian optimization while avoiding dose allocations on
both overdoses and subtherapeutic doses as much as possible and simultaneously aiming
to identify a targeted dose more accurately than existing statistical designs. BOD provides
safe and accurate dose-findings under dose-finding studies for investigating mono-therapies
or combination therapies in Phase I clinical trials, and targeted therapies of biologic agents
in Phase I/II clinical trials.

Although we have examined the operating characteristics of BOD with various scenar-
ios as experimental comparisons throughout this thesis and confirmed that BOD works
well compared with the conventional designs, further numerical investigations could re-
veal more detailed properties for BOD. Additionally, although we have provided some
examples for practical settings of design parameters for BOD, we have not developed
systematic approaches for them; thus, they are still an open discussion. Statisticians in
pharmaceutical industries usually conduct some assessment on the operating character-
istics for a statistical design under some scenarios where we may encounter in the real
world. Considering the application of BOD in clinical trials, the computational aspect
related to MCMC is one of the challenging points because BOD requires more time to
evaluate its operating characteristics in simulation studies.

BOD introduced in Chapter 3 covers the simplest and the most typical dose-finding
studies that aim to find the MTD for mono-therapies. The operating characteristics are
almost comparable with the compared designs and the advantages shown in BOD seem
minimal compared with BOD for MTDC and OD estimation. Although the simulation
results suggest BOD for MTD estimation provides safer dose allocations than the existing
designs, parametric model-based designs that strictly follow the monotonicity may be a
reasonable choice rather than nonparametric model-based designs even though little is
available about dose-toxicity relationships because it is highly likely that dose-toxicity re-
lationships have monotonicity trends against dose levels. In terms of the benefit to assume
the monotonicity on dose-toxicity relationships, a similar discussion is provided in Section
5.4 for BOD for OD estimation. Because some investigators may think it is reasonable to
assume toxicity increases monotonically with increasing dose levels even if investigational
agents are biologic ones, they may be interested in a hybrid approach that combines a
parametric model-based design for dose-toxicity relationships and a nonparametric model-
based design based on BOD for dose-efficacy relationships. Therefore, it may be expected
to attempt such a hybrid approach and investigate how much its operating characteristics
show improvement in future work.

BOD for OD estimation and MTDC estimation in Chapters 4 and 5 provides appropriate
dose allocations and more accurate dose selections compared with the other designs. It
implies that BOD with flexible modeling and dose selections considering uncertainties
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can successfully address more complex situations showing non-monotonic relationships
between dose levels and response probabilities due to such as nonconventional mode-
of-actions or drug interactions. Biologic agents have been increasingly investigated in
recent Phase I clinical trials and the development of targeted therapies has progressed
significantly to date (Braun, 2014; Seebacher et al., 2019). Many Phase I clinical trials
are designed to investigate combinations of two or more agents (Tourneau et al., 2009).
Additionally, as Yuan et al. (2019) has described the treatment landscape for non-small-
cell lung cancer, development strategies especially in oncology areas for new treatment
including combination therapies have been getting wider options and more complex than
before. Considering such increasing diversity of drug development, it is worth being
involved in the development of new statistical approaches like BOD providing a more
efficient strategy that is different from conventional statistical designs assuming only the
simplest MTD estimation problems.

Nevertheless, attractive dose-finding designs that have recently emerged for drug com-
bination therapies are hardly used in practice so far. Instead, conventional statistical
designs developed for mono-therapies have been applied (Riviere et al., 2015b). Even
worse, traditional rule-based designs such as the 3+3 design whose inferiority has already
been demonstrated compared with other conventional statistical designs are still the most
used ones among clinicians and oncologists. As Rogatko et al. (2007) has reported that
there are notable time lags between the application in practical clinical trials and the
publication of novel statistical designs in terms of Phase I cancer clinical trials. They
have shown that even if novel statistical designs that outperform conventional statistical
designs are recognized in public, it takes a long time to bring statistical improvements
into clinical practice. Such a skewed situation between actual applications and scientific
evidence comes from barriers to the implementation of adaptive designs. For example,
Love et al. (2017) has reported the most prominent barriers to implement model-based
designs are lack of suitable training, investigators’ preference for traditional rule-based de-
signs due to their simplicity and rich experiences, and limited resources for study designs
before funding.

Statistical designs for dose-finding studies had been broadly fallen into two classes for
decades: the rule-based designs, the model-based designs. On the other hand, toxicity
interval designs categorized in nonparametric designs have joined recently as a new class
owing to the simplicity of implementation while having a Bayesian structure. Although
Jaki et al. (2013) has reported the advantage of nonparametric model-based designs com-
pared with other design types, the number of researches on nonparametric model-based
designs for dose-finding studies is still very limited, which might attribute to the im-
plementation complexity (Braun, 2014). Nonparametric model-based designs are still a
minority in this field, however, something triggers (e.g., resolutions of implementation
barriers and a change in the environment of regulatory agencies who are the gatekeeper
of statistical designs for clinical trials) may accelerate researches of nonparametric model-
based designs in the future. Developing a user-friendly interface is one of the mandatory
approaches for relaxing the implementation barriers on BOD, which should be addressed
in future work. In fact, most statistical designs utilized frequently in clinical trials have
provided user-friendly interfaces such as R packages, Shiny applications, and cloud soft-
ware. Although we have provided R codes to implement BOD, those who are not familiar
with R or non-statisticians require user-friendly interfaces to understand what BOD does
in its modeling and dose selections in practice. These improvements might result in the
sophistication of nonparametric designs including BOD in terms of its implementation
and numerical aspects. Still, improving the current skewed situation where better designs
have not been actively employed in dose-finding studies will remain a challenging issue.
For a statistician in the pharmaceutical industry, it is important to take the proper time
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to actively consider and incorporate more efficient and safer designs and negotiate care-
fully with regulatory authorities. Additionally, as Rogatko et al. (2007) has discussed, it
is essential for biostatisticians to collaborate with clinical colleagues efficiently as two-way
communication so that more appropriate designs could be widely adopted in clinical trials.

Drug development has recently been actively attempting to incorporate modeling and
simulation called model-informed drug development (MIDD), which is a wide range of
applications of leveraging models on exposure and biological data to provide quantitative
evaluations for improving efficiency in drug development (Wang et al., 2019). So far, this
movement has strongly affected the pharmacometrics area. However, it is likely that it
will also associate with statistical designs in dose-finding studies. Biological data such
as Pharmacokinetics (PK) and Pharmacodynamics (PD) data are usually collected in
dose-finding studies for exploratory assessments to understand investigated agents. Nev-
ertheless, most dose-finding studies primarily utilize dichotomous outcomes on toxicity
and/or efficacy in terms of MTD, MTDC, or OD determinations. It is theoretically pos-
sible to extend BOD so that it can deal with continuous variables on such as not only
alternative toxicity/efficacy data but also PK/PD data and biomarker data instead of bi-
nary variables; therefore, those extensions adding other values without losing information
could increase success rates of drug development as one of the MIDD approaches. We
leave those possible extensions in future work.

We also left an expectation on the application of Bayesian optimization in areas that are
not only clinical trials but also other fields. Typical Bayesian optimization rarely applies
to optimization problems where locations of optimal points have strong limitations. On
the other hand, dose-finding studies require to identify doses that are located right next
to the area where we should refrain from aggressively searching to ensure patient safety.
This thesis indicates that Bayesian optimization can apply to optimization problems with
unique limitations on point selections over input space. There might be similar problem
settings in other fields such as where optimization problems should take safety concerns
into account. Therefore, we have high expectations for the Bayesian optimization com-
munity not only to cover typical cases but also to consider such as the above special ones
in the future.
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