T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	
Title(English)	Effect of Viscous Damping of Isolation Layer on Period Ratio Between Superstructure and Seismic Isolation Layer
著者(和文)	李晶, 佐藤大樹
Authors(English)	Jing LI, Daiki Sato
出典(和文)	│ │ 日本建築学会大会学術講演梗概集, , , pp. 585-586
Citation(English)	,,,pp. 585-586
発行日 / Pub. date	2021, 9

EFFECT OF VISCOUS DAMPING OF ISOLATION LAYER ON PERIOD RATIO BETWEEN SUPERSTRUCTURE AND SEISMIC ISOLATION LAYER

正会員	○ 李	昌*
正会員	佐藤	大樹**

MDOF Model	Isolated building	Superstructure Period
Equivalent Deformation	Prediction Curve	Viscous Damping

1. Introduction

Period of the superstructure T_u and period of the isolation layer T_f are commonly considered, and that the equivalent period T_{eq} is also being used. Fu et al. [1] showed the accuracy of period ratio T_u/T_f but their study did not consider viscous damping of the isolation layer.

Therefore, the purpose of this paper is to confirm the effect of the viscous damping of isolation layer on period ratio between the superstructure and seismic isolation layer when the viscous damping of isolation layer is different.

2. Analysis Model and Ground Motions

2.1 Analysis Model

Shown in Fig. 1 is the multi-degree-of-freedom (MDOF) model of the base-isolated building considered in this study, where the superstructure has 4 lump-masses m_i (i = 1 to 4) and the isolation layer has a lump-mass m_0 . k_i is the stiffness of superstructure. The isolation layer is composed of (i) isolator which supports the gravity loads of the building, k_f is the stiffness of isolator, and (ii) hysteretic damper, k_d is the initial stiffness of hysteretic damper, $\alpha_{d, y}$ is the yield shear force coefficient, (iii) viscous damper, c_f is the damping coefficient. The dampers absorb the seismic energy (elastic-plastic behavior).

Fig. 2a, 2b and 2c are the restoring force characteristics of the isolator, hysteretic and viscous dampers, respectively, and Figure 2d is restoring force characteristic of the isolation layer (combined effect). In Fig 2a, Qf, max is the maximum shear force at maximum deformation δ_{max} . In Fig. 2b, $Q_{d,y}$ and $\delta_{d,y}$ are the yield shear force and yield deformation of the hysteretic damper, respectively. In Fig. 2c, Qh,max is the maximum viscous damper force at zero deformation.

For the analysis in this paper, the following values are used: For the 4-DOF superstructure (Fig. 1), $m_1 = m_2 = m_3 = m_4 = 37.80$ kN/s²·cm, the damping ratio h = 2%, and period $T_u = 0.5$ s, 1.0 s and 2.0 s.

For isolation layer, $m_0 = 64.25 \text{ kN/s}^2 \cdot \text{cm}$. For the isolator, damping ratio $h_f = 0\%$, 2%, 4% and 10%, period $T_f = 3.0$ s and 4.0 s. The yield deformation of hysteretic damper, $\delta_{d,y} = 3$ cm and the yield shear force coefficient $\alpha_{d,y} = 0.01$ to 0.04.

2.2 Input Ground Motions

This paper adopted two artificially generated ground motions: (i) ART KOBE (80 cm/s) which is a pulse-like ground motion, and (ii) ART HACHI (80 cm/s) which is a long-period ground motion. The ground motion level considered are 0.5, 1.0 and 1.5 times.

3. Response Prediction Formula

In this chapter, the equivalent period T_{eq} and the equivalent deformation of superstructure $\delta_{u,eq}$ are introduced. As shown in Fig. 3, k_{eq} is the isolation equivalent stiffness when the deformation of isolation layer reaches the maximum δ_{max} , which is calculated by Eq. (1).

The equivalent period T_{eq} is the period based on the equivalent stiffness k_{eq} , which is calculated by Eq. (2).

$$k_{eq} = k_f + k_d \frac{\delta_{d,y}}{\delta_{\max}}, \qquad T_{eq} = 2\pi \sqrt{\frac{\sum m}{k_{eq}}}$$
(1,2)

Where, k_f is stiffness of isolator, k_d is initial stiffness of hysteresis damper, $\delta_{d, y}$ is yield deformation of hysteresis damper, δ_{\max} is maximum deformation of isolation layer, Σm is total mass of isolated building.

(b) Hysteretic damper (c) Viscous damper Fig. 2 Restoring force characteristic of model

(d) Isolation layer

EFFECT OF VISCOUS DAMPING OF ISOLATION LAYER TO PERIOD RATIO BETWEEN SUPERSTRUCTURE AND SEISMIC ISOLATION LAYER

Jing LI, Daiki SATO

Furthermore, Fig. 4 shows the definition of superstructure and the deformation of isolation layer based on mass system are shown in Fig. 4. The equivalent deformation of superstructure δ_{ueq} is defined as the difference between the maximum displacement of the first floor and the middle floor of superstructure, which is calculated by Eq. (3). The middle floor is defined as the floor that is the closest to the half-height of superstructure.

According to the reference [1], the relationship between the equivalent period T_{eq} and the natural period of superstructure T_u can be calculated as the root of the ratio of the maximum deformation of isolation layer δ_{max} and the equivalent deformation of superstructure δ_{ueq} , which is shown as Eq. (4).

$$\delta_{ueq} = x_M - x_1, \qquad \frac{\delta_{ueq}}{\delta_{max}} = \left(\frac{T_{eq}}{T_u}\right)^{-2}$$
(3,4)

Where, x_M is maximum displacement of middle floor of superstructure, x_1 is maximum displacement of the first floor of superstructure in the base-isolated structure, δ_{ueq} is equivalent deformation at half height of superstructure (Fig. 4).

4. Accuracy of Prediction Formula

In this study, we use time history analysis (THA) method to calculate the response of various viscous damping of isolation layer cases. And then we use the response of THA to check the accuracy of prediction curve shows in Eq. (4).

Fig. 5 shows the relationship between T_{eq}/T_u and $\delta_{ueq}/\delta_{max}$ of THA results. (Eq. (4)) Horizontal coordinate shows the ratio of equivalent period T_{eq} and the natural period of superstructure T_u , vertical coordinate shows the ratio the equivalent deformation of superstructure δ_{ueq} and the maximum deformation of isolation layer δ_{max} . Black dotted curve shows the prediction curve. (Eq. (4)) \bigcirc , \triangle show ART HACHI and ART KOBE. Black, bule, red and green symbols show viscous damping ratio of isolator h_f = 0.00 - 0.10.

According to Fig. 5 we know that the accuracy of prediction values is satisfactory not only no damping cases but also viscous damping of isolation layer cases. In other words, viscous damping of the isolation layer has little effect on the period ratio

 T_{eq}/T_u between the superstructure and seismic isolation layer.

In addition, we extend the number of mass point of superstructue 4-DOF to 8-DOF, the total mass of building is same, and the prediction curve also has high accuracy for 8-DOF and with viscous damping of isolation layer cases.

Fig. 5 The relationship between T_{eq} / T_u and $\delta_{ueq} / \delta_{max}$

5. Conclusion

This paper confirms the effect of viscous damping on period ratio T_{eq}/T_u between superstructure and seismic isolation layer for various viscous damping of isolation layer. Accordingly, viscous damping of the isolation layer has little effect on the period ratio T_{eq}/T_u between the superstructure and seismic isolation layer.

In addition, we also confirm the effect of the number of mass point on period ratio T_{eq}/T_u . And the number of mass point of superstructue has little effect on the period ratio T_{eq}/T_u .

Acknowledgment

This work was supported by JST Program on Open Innovation Platform with Enterprises, Research Institute and Academia (JPMJOP1723).

Reference

- [1] Fu HX., Sato D., Kitamura H., Matsuda Y., Miyagawa K., Ueki T., Murakami Y.: Response Prediction Formula for Base-Isolated Building by Using Period Ratio Between Superstructure and Seismic Isolation Layer, AIJ Journal of Technology and Design, No.17(5), pp.951-956, 2018, 02. (In Japanese)
- [2] Akiyama H : Earthquake Resistant Design for Buildings based on Energy Balance, 1999.10 (In Japanese)
- [3] Kitamura H : Seismic Response Analysis Methods for Performance Based Design, 2nd, 2009.4 (In Japanese)

* Graduate Student, Tokyo Institute of Technology

** Associate Prof., FIRST, Tokyo Institute of Technology, Dr. Eng.

^{*} 東京工業大学 環境 社会理工学院 修士1年

^{**}東京工業大学 准教授·博士(工学)