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Abstract—This paper presents a new design method for an 

active tuned-mass-damper (AMD) system.  A tuned-mass-

damper (TMD) is one of the common passive-control methods. A 

TMD reduces a response for resonance frequency. Recently, an 

AMD, which applies a control engineering for a TMD, is used to 

increase control performance.  Usually, the TMD and the control 

system of an AMD are designed separately and some 

nonstructural member or nonlinear characteristics are ignored. 

This paper presents a simple method that designs both the TMD 

and the control system of the AMD simultaneously and considers 

the uncertainties of a structure. The numerical example uses a 

single-degree-of-freedom model with an AMD and several 

earthquake waves. The numerical example demonstrates that the 

presented method suppresses the displacement without 

increasing absolute acceleration. 

 

Index Terms—Active control, Robust control, Tuned mass 

damper (TMD), Active tuned mass damper (AMD), linear 

matrix inequality (LMI) 

I.  INTRODUCTION  

A tuned mass damper (TMD) has been widely used in 

civil and mechanical engineering to suppress the influence of 

disturbances. In civil engineering, high-rise buildings employ 

a TMD to protect a building from a strong wind or a large 

earthquake. For example, Taipei 101 [1], Tokyo sky tree [2], 

Chiba port tower [3], Shanghai tower [4], etc. Since the 

control performance of a TMD depends on its size of the mass, 

a large TMD is required to improve the control performance 

despite a large TMD is a burden on the structure. To solve this 

problem and to improve the control performance, an active 

structural control method is applied to a TMD, which is called 

an active TMD (AMD). An AMD has been employed in many 

buildings such as the Kyobashi-Seiwa building (Japan), the 

Yokohama landmark tower (Japan), TC Tower (Taiwan), 

Nanjing Communication Tower (China), etc. [5]. A TMD is 

usually designed by the fixed-point theory [6]. This method is 

for an undamped linear structure and designs an optimal TMD 

t o  m i n i m i z e  t h e  r e s p o n s e  o f  a  m a i n  s t r u c t u r e .  

On the other hand, to date, linear control strategies have 

been applied to design a control system of an AMD, for 

example, a linear quadratic regulator (LQR) [7-9], modal 

control [10], robust control [11-13].  

In most cases, the TMD and the control system of an 

AMD are designed separately. Moreover, although a linear 

model is used to describe a building, it includes uncertainties 

because some nonstructural members or nonlinear 

characteristics are ignored.  To present a simple method that 

designs a TMD and the control system of an AMD 

simultaneously and to deal with the uncertainties of the 

models, this paper applies a robust-control strategy via a 

linear matrix inequality (LMI) that considers perturbation of a 

mass, damping, and stiffness of the structure. 

A numerical example demonstrates the validity of our 

method by using a single-degree-of-freedom (SDOF) 

structural model and several earthquake waves. The results 

show that the presented method suppresses the displacement 

of the main structure without increasing the absolute 

acceleration. 

 

II. STRUCTURAL MODEL  

The dynamics of a building with an AMD (Fig. 1) is  
   ).()()()()( tuEtxEMtxKtxCtxM ugdSSSS +−=++ &&&&&  (1) 

where,  
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Fig. 1. Model of AMD with an SDOF structure 
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Fig. 2. AMD model with two feedback inputs 
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and, MS is a mass matrix, CS is a damping matrix, KS is a 
stiffness matrix, E indicates a control input channel, xg(t) is a 
displacement of the ground, and u(t) is a control input.  The 
control law is  

                             [ ]TTT
P txtxKtu )()()( &= . (2) 

To apply a robust-control strategy to design both the 
feedback gain and the damping coefficient and the stiffness of 
the TMD simultaneously, we regroup (1) as follow: 
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 (3) 
where 
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   Equation (3) assumes that the restoring and damping force 
by the TMD has the same function as a state-feedback control 
input. Thus, (3) indicates that the structure has two feedback 
inputs (Fig. 2). 

The state-space representation of (3) is 

)()()()()( txBtuBtButAztz gdTT
&&& +++=

, (4) 

where, z(t) is a state of the control system, 
 A is a system matrix, which determines the dynamic 
characteristics, B is a input matrix for the active control, BT is 
an input matrix for the damping and restoring force of the 
TMD, and Bd is a disturbance input matrix: 
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III. ROBUST CONTROL DESIGN  

Let consider the following model: 
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where ψ  is a variable to be assessed the control performance 

and ΔA is an uncertainty of the system matrix, A, and is given 
by  
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In the above equation, ΔMK and ΔMC are the possible errors 
of MS

-1KS and MS
-1CS. Substituting (6) into (5) yields  
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where w(t) can be represented by using a scalar 
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   For the control system (8), let S is a scaling matrix with 
),...2,1( siRi =∈ε  

                               ).,...,(diag 21 sS εεε=  (7) 

Robust stability of the control system (5) with the scalar, S, 
is guaranteed by the following theorem: 

Theorem 1.  The followings are equivalent 

1) The control system (5) is robustly stable 

2) There exists a positive symmetrical matrix, X, and 

appropriate dimension matrix FT and F such that 
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where  
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   Note that in the above equation (9), fi is a tuning parameter 
for the feedback controller gain and ft1 and ft2 are the 
parameters to adjust kTMD and cTMD, respectively. 
 
Proof.  Using a Positive-real Lemma [14] for the control 
system (5) with 0)( =txg

&&  yields the LMI (8), and it 

guarantees robust stability.  
This completes the proof. 

The controller gain KP and KPT are given by 
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IV. NUMERICAL VERIFICATION 

The nominal parameters of the building was mS =5800 kg  
kS= 25442 N/m, cS = 728 Ns/m, and mT = 290 kg. This paper 
assumed that the model includes 30% uncertainties for the 
stiffness and the damping coefficient, and kS= 17809 N/m, cS 
= 510 Ns/m were used in the numerical simulation. The 
natural period of the structure, ω, is given by 

S

S

m

k
=ω , (9) 

In this paper, the natural period of the model is about 3.6 s 
(0.28 Hz). 

For the LMI (8), the parameters are selected to be 
 ΔMK = 0.3, ΔMC = 0.3, 
 εi = 10-10.8, 
 X = diag(X1, X1, X2, X2), 

 -8

21

21 10    ,13   ,
00

00
==








= βα

βα

βα

TT

TT

T
FF

FF
F , 

and 

 [ ] -8
4321 10   , == φφφφφ FFFFF . 

For the above equations, α and β adjust the stiffness and the 
damping coefficient of the TMD, kT, and cT; and φ adjusts the 
controller gain. 
   This paper solves the LMI (8) with the following LMI that 
optimizes the H∞ norm of the nominal model: 
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If there exists a positive symmetrical matrix, X (>0), the H∞ 
norm of the transfer function that is from Bd to CΨ is less than 

1.0 and it guarantees that robust stability by small gain 
theorem. 
   To demonstrate our method two earthquakes were used: 
・Kobe wave (Great Hanshin earthquake, 1995) 
・El Centro wave (El Centro earthquake, 1940). 
The accelerogram and the Fourier amplitude of them are 
shown as follows. 
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(b) Fourier amplitude 

Fig. 3. Kobe wave 
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(b) Fourier amplitude 
Fig. 4. El Centro wave  



   Simulation results for the waves are shown in Figs. 5 and 6.  

 
(a) Displacement 

 
(b) Absolute acceleration 

Fig. 5. Simulation results for Kobe wave. 

 
(a) Displacement 

 
(b) Absolute acceleration 

Fig. 6. Simulation results for El Centro wave. 
 

The simulation results show that the presented method 
suppresses the displacement and the absolute acceleration 
with structural uncertainties, ΔMK = 0.3 and ΔMC = 0.3. 

There is a tradeoff between the displacement and the 
absolute acceleration of a structure. However, the presented 
method suppressed both the displacement and the absolute 
acceleration.   

Figures 7 show that the results of fast Fourier transform 
(FFT) of Figs. 5 and 6. 

 

 
(a) FFT of displacement for Kobe wave 

 
(a) FFT of displacement for El Centro wave 

Fig. 7 Results of FFT for (a) Kobe wave and (b) El Centro 
wave 

 
   As we mentioned before that the natural period of the 

structure is 0.28 Hz and the dominant frequencies of the 
results of FFT (Fig. 7) for the earthquakes are 0.28 Hz.  The 
FFT results of AMD for them show that the AMD suppresses 
the amplitude of the natural frequency component 
appropriately.  

 

V. CONCLUSION 

This paper presented a new design method for an active 
tuned mass damper (AMD) based on a robust control strategy 
in the form of a linear matrix inequality (LMI). An AMD 
consists of a tuned mass damper (TMD) and a control system, 
and they are designed separately. To simplify the design 
proces this paper presented a new method that designs a TMD 
and a control system simultaneously for an AMD. Moreover, 
this paper considers the uncertainties of a model because 



usually, a linear model includes uncertainties.  This paper 
clarified the following points: 
1)  Since the restoring and damping force of a TMD is the 

same function as feedback control, a feedback control 
theory can be applied to design the stiffness and the 
damping coefficient of a TMD.  

2)  A TMD and a control system for an AMD can be designed 
simultaneously using our method and it simplifies the 
design process of an AMD system. 

3)  The numerical example shows that an AMD system 
designed by our method suppresses the displacement 
without increasing the absolute acceleration of the model. 

4)  Moreover, the presented method decreases the response 
while the structural model includes errors.  

5) The results of FFT for the simulation showed that the 
presented method suppresses the component for the 
resonance frequency.  
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