
論文 / 著書情報
Article / Book Information

論題

Title Speech Paralinguistic Approach for Detecting Dementia Using Gated
Convolutional Neural Network

著者 R Makiuchi Mariana, Warnita Tifani, 井上 中順, 篠田 浩一

Authors Mariana RODRIGUES MAKIUCHI, Tifani WARNITA, Nakamasa
INOUE, Koichi SHINODA, Michitaka YOSHIMURA, Momoko
KITAZAWA, Kei FUNAKI, Yoko EGUCHI, Taishiro KISHIMOTO

出典 IEICE TRANSACTIONS on Information and Systems, Vol. E104-D, No.
11, pp. 1930-1940

Citation IEICE TRANSACTIONS on Information and Systems, Vol. E104-D, No.
11, pp. 1930-1940

発行日 / Pub. date 2021, 11

権利情報 / Copyright  本著作物の著作権は電子情報通信学会に帰属します。
 Copyright(c) 2021 IEICE

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/


VOL. E104-D NO. 11
NOVEMBER 2021

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



1930
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.11 NOVEMBER 2021

PAPER

Speech Paralinguistic Approach for Detecting Dementia Using
Gated Convolutional Neural Network

Mariana RODRIGUES MAKIUCHI†, Tifani WARNITA†, Nakamasa INOUE†, Koichi SHINODA†,
Michitaka YOSHIMURA††, Momoko KITAZAWA††, Kei FUNAKI††, Yoko EGUCHI††,

and Taishiro KISHIMOTO††a), Nonmembers

SUMMARY We propose a non-invasive and cost-effective method to
automatically detect dementia by utilizing solely speech audio data. We ex-
tract paralinguistic features for a short speech segment and use Gated Con-
volutional Neural Networks (GCNN) to classify it into dementia or healthy.
We evaluate our method on the Pitt Corpus and on our own dataset, the
PROMPT Database. Our method yields the accuracy of 73.1% on the Pitt
Corpus using an average of 114 seconds of speech data. In the PROMPT
Database, our method yields the accuracy of 74.7% using 4 seconds of
speech data and it improves to 80.8% when we use all the patient’s speech
data. Furthermore, we evaluate our method on a three-class classification
problem in which we included the Mild Cognitive Impairment (MCI) class
and achieved the accuracy of 60.6% with 40 seconds of speech data.
key words: convolutional neural network, dementia detection, gating
mechanism

1. Introduction

Dementia is an umbrella term for a group of medical signs
and symptoms associated with the cognitive-related defi-
ciency due to damage in neurons [1]. Types of dementia
include Alzheimer’s disease (AD), vascular dementia, de-
mentia with lewy body (DLB) and frontotemporal lobar
degeneration (FTLD). Dementia have various characteris-
tics representing cognitive dysfunction such as poor narra-
tive memory when recalling experiences [2] as well as diffi-
culties in making plans, solving problems, and completing
daily tasks [1].

The increasing number of people living with dementia
has gained a lot of attention. AD, which takes the biggest
proportion of dementia, has become the 6th leading cause
of death in the United States of America [3]. Moreover, ac-
cording to the World Health Organization [4], in 2015, de-
mentia affected 47 million people worldwide and it is esti-
mated that, by 2050, this number will be nearly triplicated.

Unfortunately, there is no clear protocol on how to
detect dementia in an accurate and effective manner [3].
The most common approach is to perform various clin-
ical assessments of the patients such as examining their
medical history, conducting cognitive tests (e.g., memory
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tasks, executive function tasks, picture description tasks,
naming tasks), assessing their mood and mental status, as
well as performing brain imaging; i.e., computerized to-
mography (CT), magnetic resonance imaging (MRI), single-
photon emission computed tomography (SPECT), positron
emission tomography (PET), and blood/cerebrospinal fluid
testing.

The careful diagnosing process can be invasive, time-
consuming and costly. However, early cognitive deficiency
treatments can help patients preserve their cognitive func-
tions [5] as some causes of dementia are remediable in early
stages [6]. Thus, faster and more cost-effective dementia de-
tection approaches have been strongly demanded.

Most approaches for the automatic dementia detec-
tion relied on linguistic information [7]–[11] since cogni-
tive dysfunctions in patients typically appear as linguistic
impairments. While these methods are effective, their ma-
jor drawback is the requirement of transcriptions of pa-
tient’s speech. Manual transcription is costly, and Auto-
matic Speech Recognition (ASR) is often erroneous.

In order to address this issue, we propose a demen-
tia detection method that relies on speech audio data only.
Moreover, since geriatric clinical assessment presents sev-
eral challenges [12] and patients may feel fatigued by it, this
work focuses on using less patient speech data as possible to
make the diagnosis in real time and physically less demand-
ing for the patients.

We employ Gated Convolutional Neural Networks
(GCNN) in order to capture the temporal pattern in the ex-
tracted features. We chose the GCNN architecture due to
its superior performance in several tasks [13], [14], includ-
ing tasks with limited amount of data [15]. As an extension
of our previous work [16], we evaluate our method on two
datasets, the DementiaBank Pitt Corpus (English) and the
PROMPT Database (Japanese) collected by our own.

We further explore the detection of Mild Cognitive Im-
pairment (MCI) patients. MCI is the stage of cognitive im-
pairment between the expected cognitive decline of normal
ageing and early dementia [17]. MCI is characterized by a
cognitive decline that is greater than the age-related expec-
tation, but that cannot be defined as dementia yet [18].

The experimental results demonstrate the effectiveness
of our method in terms of cost and time required for each
prediction.

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers
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2. Related Works

2.1 Dementia Assessment

Various evaluation methods have been defined to diagnose
dementia in people. In the medical field, commonly used ap-
proaches are the Clinical Dementia Rating (CDR) [19], the
Clock Drawing Test (CDT) [20], the Neuropsychiatric In-
ventory (NPI) [21] and the Mini-Mental State Examination
(MMSE) [22]. CDR uses an interview protocol to assess
dementia severity as mild or severe while, in CDT, the pa-
tients are asked to draw a clock with a specific time to get a
score, which can aid the diagnosis of neurological disorders.
The NPI test assess the disruptions of several behavioural
functioning.

The MMSE is an extensively-used screening test that
quantifies patients’ cognitive function as the total score of
a series of questions and problems [23]. The test itself is
designed to aid the dementia diagnosis. The MMSE is
used in this work and, based on [24]–[27], we define the
score ranges of 0–23, 24–26 and 27–30 to respectively rep-
resent dementia, MCI and healthy categories. While most
of the current medical research works present similar cut-
off points to represent these classes, the definition of those
score ranges has not been standardized [28]–[30]. In addi-
tion, there is not a consensus about the definition and diag-
nosis of MCI, since its symptoms are vast and subtle [27].

2.2 Features

Several types of features can be used to identify dementia.
In this section, image-based features and linguistic-based
features will be presented, as well as acoustic features ob-
tained from the patient’s speech, which are the features used
in this work.

2.2.1 Image

Structural brain images from Magnetic Resonance Imaging
(MRI) can be used to identify AD patients [31]. Brain imag-
ing plays an important role in neurodegenerative disorder
detection because it provides useful information regarding
anatomical changes in patients’ brain [32]. The combination
of MRI and fluorodeoxyglucose-positron emission tomogra-
phy (FDG-PET) images was used to identify MCI patients
who would further progress to dementia [33]. However, de-
spite their effectiveness, medical image acquisition is costly
and not easily accessible.

To address this issue, some works have proposed
non-invasive image-based approaches to detect dementia.
Work [34] proposed to detect dementia with an SVM from
gait information recorded with a Kinect sensor. In their
recordings, the participants walked on place and simulta-
neously performed a cognitive task. Other works consid-
ered computer vision techniques to detect cognitive decline
from facial expressions [35]. Although not as accurate as the

MRI-based approaches, these non-invasive methods show
promising results that could be further improved with a com-
bination of data modalities (e.g., gait, face frames, speech
and text).

2.2.2 Linguistic Data

Language deficiency becomes a prominent and perceivable
symptom of dementia patients. Several syntactic, lexical
and n-gram features were used for detecting AD on the
DementiaBank Pitt Corpus [7], [9]. [10] used n-gram and
MMSE score correlation analysis. More recently, [36] de-
fined a hybrid RNN-CNN architecture with an attention
mechanism to detect AD from Pitt Corpus’ transcriptions’
textual embeddings. Work [37] proposed an LSTM-based
neural network language model whose prediction is calcu-
lated from their model’s perplexity.

Several other works have studied the combination of
linguistic and acoustic features. [38] combined features in-
spired in the conversation analysis of clinical interviews,
lexical information extracted with an ASR and acoustic fea-
tures. They further input these features to a support vec-
tor machine (SVM) to classify the patients of their own
dataset into dementia or functional memory disorder. [39]
and [40] extracted phonetic-based features with an ASR in
order to detect MCI patients from their speech. [8] fused
transcription-based linguistic features with acoustic features
such as Mel-frequency cepstral coefficients (MFCC). [41]
utilized the combination of speech duration, pause-related
features, pitch-related features and other prosodic features,
as well as linguistic features acquired from a customized
ASR adapted for dementia patients.

Even though those approaches have shown good re-
sults, most of them are limited by the availability of tran-
scription data and/or ASR, which often has poor perfor-
mance due to the degraded speech intelligibility of the
patients.

2.3 Speech

Several works proposed the dementia identification from
ASR-independent speech features. Features such as silence
ratio were found to be more meaningful than other linguistic
features when applied to an SVM classifier [42]. Moreover,
the usage of acoustic and context-free linguistic features to
classify patients showed promising results on the Carolina
Conversations Collections dataset [43].

Besides having problems with language deficits, peo-
ple with AD, specially in the early stages of the disease,
might become apathetic and have a tendency to get de-
pressed [1]. People with AD usually suffer from prosodic
impairment due to which they will find difficulties in ex-
pressing their emotions [44]. Those signs suggest the pres-
ence of paralinguistic cues in the speech of people who suf-
fer from this cognitive dysfunction.

OpenSMILE [45] is a commonly used tool for feature
extraction in speech tasks [46], [47]. It describes a series of
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default feature sets, such as the INTERSPEECH 2010 Par-
alinguistic Challenge Feature Set (IS10) [47], which is used
in this work. The IS10 defines 76 Low-Level Descriptors
(LLD) features for each time frame. In this work, we define
a time frame as 25ms, sampled at a rate of 10ms. Those
LLD are a combination of several speech descriptors that
were independently used in previous works, such as pitch,
voicing probability [42] and MFCC [8]. When compared to
other feature sets defined in OpenSMILE, the IS10 yielded
the best result in the AD detection task [16].

2.4 Classifiers

Support Vector Machine (SVM) classifiers [48] were widely
used as the baseline method of several paralinguistic tasks,
such as emotion recognition [46] and age-gender classifi-
cation [47]. While training the SVM, the Sequential Min-
imal Optimization (SMO) [49] algorithm is used. The SMO
solves the Quadratic Programming (QP) optimization in the
SVM by dividing the QP into the smallest possible QP sub-
problems, allowing the SMO to handle large amounts of
data.

Recently, deep learning-based approaches have be-
come extremely popular due to their success in a wide
range of tasks. [50] applied Convolutional Neural Networks
(CNN) [51] to speech emotion recognition. For the same
task, a Recurrent Neural Network (RNN) [52] was added
on top of CNN layers [53] to capture the speech’s dynamic
features.

RNNs can accommodate the temporal pattern change,
but they require a long training time [54] and a large amount
of training data. On the other hand, CNNs need little train-
ing data compared to other existing networks [55] due to
their reduced number of connection weights. Moreover,
even without any explicit sequential mechanism, CNNs are
still able to model the temporal context in the data by means
of their convolution operations [54].

There have been various studies that incorporated gat-
ing mechanisms to convolution layers achieving state-of-
the-art performance on tasks such as conditional image
modelling [56], language modelling [13], speech synthe-
sis [14] and generative image inpainting [57]. When applied
to RNNs, such as Long Short-Term Memories (LSTM) [58],
gating mechanisms were shown to be effective in handling
the long-term dependencies problem. Gating mechanisms in
CNNs can be used to manage the information flow as well as
to mitigate the vanishing gradient problem [13]. Moreover,
it was shown that the combination of gating mechanisms
and CNNs can achieve superior performance in tasks with
limited amount of data, such as speech recognition for low-
resource languages [15] and speech keyword spotting [59].
Therefore, inspired by these advantages and the effective-
ness of the combination of CNNs and gating mechanisms
applied to different tasks, we hypothesize that the automatic
dementia detection can also benefit from this architecture.

3. Gated Convolutional Neural Network

A Gated Convolutional Neural Network (GCNN) consists of
convolution layers and gating mechanisms. In our case, each
convolution layer is expected to extract the salient informa-
tion from the combined LLD features for every short period
of time. Thus, the temporal pattern change will be encapsu-
lated within the combination of several extracted patches of
features.

The convolution operation “slides” a kernel k over the
input features to extract their prominent cues. In our work,
since we want to model the correlation between all the
LLD features, captured at each time frame, we use the one-
dimensional (1D) CNN, hence each kernel slides only in the
time axis, as represented in Fig. 1. This network is also re-
ferred to as Time-Delay Neural Network (TDNN) [60].

The gating mechanism applies this convolution opera-
tion to the input in two different paths, as shown in Fig. 2.
The gate in this network controls the information flow be-
tween succeeding layers, hence preventing the vanishing
gradient problem.

Following the Gated Linear Unit (GLU) architecture
proposed by [13], we feed a speech feature matrix X ∈ RF×T

into our network, in which F and T are the dimension of the

Fig. 1 A convolution layer over LLD features extracted with the
openSMILE toolkit.

Fig. 2 A GCNN with one gated block. A deeper network can be made
by stacking gated blocks.
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LLD features and the number of time frames, respectively.
We further convolve these input features with a kernel of
dimension F × N, in which N is the length of the kernel in
the time axis. At each convolution operation between this
kernel and the input, a scalar output is produced. The result
of the gated convolution operation before the max pooling
for the kernel k at position i is given by

yk,i =

⎛⎜⎜⎜⎜⎜⎜⎝
F∑

f=1

N∑

n=1

v(k) f ,n x f ,i−n + e(k)

⎞⎟⎟⎟⎟⎟⎟⎠ ·

g

⎛⎜⎜⎜⎜⎜⎜⎝
F∑

f=1

N∑

n=1

w(k) f ,n x f ,i−n + b(k)

⎞⎟⎟⎟⎟⎟⎟⎠ , (1)

in which v(k)c,d is the element of kernel k’s matrix V at posi-
tion (c, d) and w(k)c,d is the element of kernel k’s matrix W at
position (c, d). V ∈ RF×N and e ∈ R are the linear gate kernel
weight matrix and bias respectively (i.e., they represent the
convolution operation in the right stream of the gated block
in Fig. 2), W ∈ RF×N and b ∈ R are the respective weight
matrix and the bias of the convolutional operation in the left
stream of Fig. 2 and g is the sigmoid function.

In Eq. (1), both summations enclosed by parenthesis
represent a convolution operation that results in one scalar,
and the term to which the sigmoid function g is applied is
the gate operation that controls the linear gate output.

The resulting Y matrix formed by the elements yk,i will
have the dimensions K × M, in which K is the number of
kernels and M is the output segment length. After the con-
volution operation, the matrix Y has its length halved in the
time-axis by the max-pooling layer [61] to get its most sig-
nificant information and reduce its dimensionality.

Figure 2 shows our GCNN with a single gated block,
which is formed by two convolution layers and one max-
pooling layer. A deeper GCNN would consist of multiple
stacked gated blocks.

The output of the network’s last gated block, Y ′ ∈
R

K′×M′ , with K′ as the number of kernels of the last gated
block and M′ as the final output segment length, is then flat-
tened into one feature vector Z ∈ RO, in which O = K′M′.
This vector is input to a fully-connected (dense) layer with
the ReLU activation function. We also apply batch normal-
ization [62] at the end of each dense and convolution layer.

4. Experiments

4.1 Evaluation Metrics

We use classification accuracy as the main evaluation met-
ric in our experiments. This reflects previous works on
the Pitt Corpus dataset [8], [10] and on the other related
datasets [41], [42]. We compute the accuracy averaged over
the 10-fold cross-validation results. At each fold, we par-
tition the dataset in 10 subsets, from which we select one
for testing and the remaining for training. We design these
subsets so that no subject’s data appears in both training and
testing.

4.2 Configuration

We split the patient’s speech of each interview session into
several segments of length L, zero-padding the speech seg-
ments that are shorter than L. In this work, a speech segment
is defined as a short slice of the patient’s speech. In order
to obtain the speech segments, we first concatenate all the
patient’s speech utterances in an interview session. Then,
we segment this combined patient’s speech into consecutive
and non-overlapping speech segments, which are applied as
input to our model. On the Pitt Corpus, the patient’s speech
is extracted by using the speaker turns information. On
the PROMPT Database we separate the patient and doctor
speech by applying the Cross-Channel Spectral Subtraction
method [63] followed by a Voice Activity Detection (VAD)
approach. We classify each speech segment using our Gated
Convolutional Neural Network architecture, and, after ag-
gregating the scores from multiple segments, we conduct
a majority voting to determine the session-level dementia
classification.

In our binary GCNN, we consistently use the window
length N = 2 and the kernel size K = 64 in every convo-
lution operation of each gated block. We have tested our
model with 6, 8 and 10 stacked gated blocks. The dense
layer after the last gated block has 256 hidden neurons. We
apply 0.5 dropout before the output layer for regulariza-
tion. The output layer consists of one neuron with a sig-
moid function. We trained the network using each segment’s
IS10 LLD features and their corresponding binary label (i.e.,
healthy or AD) on a 10-fold cross-validation scheme.

We used binary cross-entropy as the loss function and
the Adam [64] optimizer with learning rate equal to 10−3

and exponential decay rate respectively defined as 0.9 and
0.999 for the first and second moment estimates. A batch
size equal to 32 was consistently used over all the exper-
iments and the input X ∈ RF×T is composed of 76 LLD
features F per time frame and 397 time frames T .

4.3 Datasets

In this work, we use two datasets containing the speech of
people with and without dementia: the Pitt Corpus [65],
in which the subjects speak English, and the PROMPT
Database, in which the subjects speak Japanese.

4.3.1 Pitt Corpus

The Pitt Corpus, a part of the DementiaBank, contains
speech data and the corresponding transcription informa-
tion of healthy people (Control group) and of people with
Alzheimer’s disease (AD group) speaking in English. The
audio files in this dataset contain speech from clinicians and
patients. We apply three constraints to select data from this
dataset.

First, we only consider the data drawn from the picture
description task. This task is considered an approximation
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of real-life spontaneous conversations [66], in which the
subjects are asked to describe the Cookie Theft Picture of
the Boston Diagnostic Aphasia Examination [67].

Second, from the AD group, we select the sessions that
correspond to patients with a diagnosis of either AD or prob-
able AD. There are no specific restrictions to select sessions
from the control group. It should be noted that, even though
we select sessions using the same method as in [8], [10], and
[36], the number of sessions is slightly different from those
works since the dataset was modified over time.

Third, we only select sessions with both the audio and
the transcription information. The transcripts provide the
speaker turns information. We use them to remove the clin-
ician’s speech in the data preparation step.

As a result, the data we use comprises 488 sessions
(255 dementia, 233 healthy), with an average duration of
114 seconds, recorded from 267 participants (169 dementia,
98 healthy).

We perform three preprocessing stages on the data.
First, we normalize each audio signal using the average
value of decibels relative to full scale (dBFS) in the data.
Then, we use the speech turns information available in the
dataset transcriptions to directly extract the participant’s
speech segments. Each segment corresponds to a partic-
ipant’s speech turn during the interview, thus obtaining a
total of 6,267 segments (3,276 dementia, 2,991 healthy). Fi-
nally, we extend the duration of these segments by 10ms at
the beginning and 10ms at the end as an attempt to mitigate
speech discontinuities due to imprecisions in the turns infor-
mation. In these preprocessing stages, we only use the tran-
scripts to extract the speaker turns information, disregarding
the transcript’s content.

The audio files in the Pitt Corpus are single channelled
(mono), sampled at a frequency of 44.1kHz and stored as
PCM encoded wave files.

4.3.2 PROMPT Database

The PROMPT database is part of a larger project
of Keio University School of Medicine: the Project
for Objective Measures Using Computational Psychiatry
(PROMPT)† [68].

All the patients have given their written consent be-
fore participating in the study and, in cases in which pa-
tients were judged to be decisionally impaired, the patients’
guardians provided consent. Participants were able to leave
the study at any time.

In this work, we use the PROMPT Database collected
from May 2, 2016 to March 31, 2019 at seven hospitals and
three outpatient clinics in five different Japanese prefectures.

Speech data were recorded when the participant had

†On the 9th of March 2016, the PROMPT project and its med-
ical data collection were approved by the ethics committee and the
Institutional Review Board of Keio University School of Medicine
and by all of the other participating facilities. PROMPT protocols
have been registered with the University Hospital Medical Infor-
mation Network (UMIN) (UMIN ID: UMIN000023764).

free-discussion and performed several clinical tasks with
trained research psychiatrists and/or psychologists. The ses-
sion interviews were recorded from two synchronized mi-
crophones: one positioned close to the participant and the
other placed near the clinician. The session recordings were
acquired under various unconstrained acoustic conditions
(i.e., with different microphones and in rooms with differ-
ent reverberation characteristics).

In this work, as discussed in Sect. 2.1, we categorize
cognitive impairment based on the MMSE score, and de-
mentia, MCI and healthy classes are defined as a MMSE
score in the respective ranges of 0-23, 24-26 and 27-30.
The inter-rater reliability for the MMSE score was exam-
ined and evaluated in terms of interclass correlation coeffi-
cient (ICC). The ICC assesses the consistency in the score
annotations made by different raters. For the MMSE an-
notation in the PROMPT Database, the ICC is 0.996 (95%
CI=0.990-0.999, p < 0.01).

The PROMPT data used in this work comprises
496 session recordings (153 dementia, 111 MCI and 232
healthy) with an average duration of 1,487 seconds, from
163 participants (49 dementia, 42 MCI and 72 healthy).

Since the PROMPT Database collects the audio record-
ings from two synchronized microphones, we adopted the
Cross-Channel Spectral Subtraction (CCSS) method [63]
followed by a Voice Activity Detection (VAD) approach to
extract the patient-only speech. The CCSS is a source sep-
aration method able to, in a meeting setting in which one
microphone is prepared to each speaker, estimate the speech
of a given speaker by suppressing other speakers’ speech.
We utilize the CCSS to suppress the doctor’s speech. The
resulting speech signal is then applied to a VAD, which can
detect and segment the patient’s speech.

After extracting the patient’s speech, we apply the three
preprocessing stages described in Sect. 4.3.1 with the excep-
tion that we do not use speaker turns information to segment
the patient speech.

Following the results obtained in Sect. 4.4, we divide
the patient’s speech into segments of 4 seconds in a fixed-
length fashion, hence resulting in 184,337 speech segments
(39,593 dementia, 27,234 MCI and 117,510 healthy). In
addition, we adopt a GCNN with 8 gated blocks since it
resulted in the best accuracy during the experiments with
the Pitt Corpus.

All the resulting audio files are single channelled
(mono), sampled at the frequency of 16kHz stored as PCM
encoded wave files.

4.4 Pitt Corpus

We present the average accuracy result over the 488 selected
sessions of the Pitt Corpus in Table 1. This accuracy is com-
puted over the session-level classification, which is obtained
by applying majority voting over the speech segments’ pre-
dictions. We employ SMO on the IS10 features for com-
parison. Our method yields the accuracy of 73.1%, which
outperforms the SMO result of 67.5%. In Table 1 we also
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Table 1 Comparison of dementia detection methods on the Pitt Corpus
interview sessions.

Method Accuracy (%)

SMO baseline (Speech) 67.5
Wankerl (Linguistic) [10] 77.1
Fritsch (Linguistic) [37] 85.6
Chen (Linguistic) [36] 97.4
Fraser (Speech + Linguistic) [8] 81.9

Ours 73.1

Table 2 The confusion matrix depicting the classification results from
all folds using the IS10 feature set as input and a GCNN with eight gated
blocks on the Pitt Corpus.

Predicted
Dementia Healthy Total

Actual
Dementia 2,340 936 3,276
Healthy 1,213 1,778 2,991

Total 3,553 2,714
Accuracy

65.7%

(a) Segment-Level Classification
Predicted

Dementia Healthy Total

Actual
Dementia 189 66 255
Healthy 65 168 233

Total 254 234
Accuracy

73.1%

(b) Session-Level Classification

report the accuracy of methods that rely on linguistic fea-
tures and on the combination of linguistic and speech fea-
tures, which respectively result in the best accuracies of
97.4% and 81.9%. Although our method has a worse per-
formance than the linguistic features-based works presented
in Table 1, it does not require ASR or transcription informa-
tion, hence being more cost-effective and more appropriate
to fast diagnosis.

Table 2 shows the confusion matrix of our best model
on the Pitt Corpus for the aggregated values from the ten
folds both from the speech segment-level and the session-
level predictions. The model is composed of eight gated
blocks and it uses the speech segments obtained from the
turns information in the Pitt Corpus. The confusion matri-
ces show that predicting from a single speech segment in a
session is a difficult task since the amount of information in
one segment might be too limited. Thus, combining several
segments for one session improves the prediction result.

Although our method does not depend on linguistic
features, we still require the speaker turns information to
segment the patient speech. In order to investigate our
model’s performance when the speech is partitioned into
fixed-length segments and to further determine the shortest
speech segment length that allows accurate data classifica-
tion, we concatenate each patient’s speech turns segments
and we divide this concatenated speech into fixed-length
segments of duration L. Each segment is input to the model
and we apply majority voting over the segments’ predictions
to obtain the session-level classification. The experiment is
carried out using GCNNs with a number of gated blocks

Fig. 3 Accuracy of GCNNs with different speech segment length on the
Pitt Corpus

equal to 6, 8 and 10 and durations L of 0.5 s, 1 s, 2 s and 4 s.
The results are summarized in Fig. 3.

Figure 3 shows that using only 4 seconds speech seg-
ments yields results almost as good as applying the segmen-
tation based on the speaker turns information, which sug-
gests that there exist discriminative dementia cues in a short
duration of speech data. In addition, the results in Fig. 3 in-
dicate that segmenting the subject’s voice in the middle of
their speech does not significantly degrade the performance.

4.5 PROMPT Database

We evaluate our approach on the binary classification (i.e.,
dementia vs healthy) obtaining the average session-level ac-
curacy of 80.8%. The session-level prediction is computed
as the majority voting result over all 4-seconds speech seg-
ments’ predictions within a session. It should be noted that
the sessions in the PROMPT Database have a longer du-
ration compared to the Pitt Corpus, hence the accuracy is
higher on the PROMPT Database.

We further evaluate our model’s performance over
speech intervals of different durations. Taking the 4-second
fixed segment length as our duration unit, we experiment
with different duration configuration for each session data,
which are 4 seconds, 8 seconds, 20 seconds, 40 seconds, 1
minute, 5 minutes and all of the session speech data (i.e., the
session-level prediction). In all cases, our model performs
the classification over each 4-seconds speech segment. For
duration configurations longer than 4 seconds, we apply ma-
jority voting to determine the prediction for each speech
interval.

We report our results in accuracy in Fig. 4. The fig-
ure shows that performance degrades if we apply shorter
speech durations. However, we obtain the average accuracy
of 77.1% by using only 20 seconds of data for each session
and the average accuracy of 74.7% when we use only 4 sec-
onds of data. Although there is still room for improvement
and our model alone cannot be used in practical dementia
detection applications yet, this result represents an impor-
tant step towards using automatic dementia detection tools
in real-world diagnosis, in which, every so often, there is
little available speech data. We have additionally reported
the segment-level classification confusion matrix for the 4-
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second segmentation of one of our folds in Table 3.
We further perform a more comprehensive experiment

on the binary classification with various configurations.
Apart from distinguishing dementia and healthy sessions,
we perform the classification on the dementia versus non-
dementia case and the healthy versus non-healthy case by
respectively adding the participants with a MMSE score in
the MCI range to the healthy and to the dementia groups.
Table 4 depicts these configurations in the column “Condi-
tions” and it reports the results in terms of accuracy for these
configurations and different speech durations.

In terms of session classification accuracy, adding the
MCI class yields worse performance on both Condition D
vs M + H (78.6%) and Condition D + M vs H (75.9%)
compared to Condition D vs H (80.8%) as it can be seen
in Table 4. Moreover, it is possible to observe that, for the

Fig. 4 Accuracy of GCNN with different duration of data used for each
session on the PROMPT Database. The horizontal axis is presented in
logarithmic scale.

Table 3 Segment-level confusion matrix of one of the folds on the
PROMPT database for the classification based on 4 seconds long speech
segments.

Predicted
Dementia Healthy Total

Actual
Dementia 3,882 380 4,262
Healthy 3,227 7,418 10,645

Total 7,109 7,798
Accuracy

75.80%

Table 4 Experimental results on the PROMPT Database for different experiment conditions for the
binary classification. The dementia, MCI and healthy classes are respectively represented by the char-
acters ‘D’, ‘M’ and ‘H’.

Conditions
Accuracy (%)

4 sec 8 sec 20 sec 40 sec 1 min 5 min all data

D vs M + H 73.8 74.3 77.9 78.6 78.3 77.0 77.6
D +M vs H 71.3 70.9 73.6 74.0 74.1 75.9 74.3
D vs H 74.7 74.0 77.1 78.4 78.1 79.0 80.8

Table 5 Experimental results on the PROMPT Database for the three-class classification of D vs M
vs H. The results are reported in accuracy (%).

4 sec 8 sec 20 sec 40 sec 1 min 5 min all data

65.0 61.1 58.4 60.6 59.2 57.7 58.3

experiments that include the MCI class data, the accuracy
does not increase monotonously with the amount of speech
data. This result suggests that we should not combine the
MCI participants either with healthy or dementia partici-
pants. This might be explained from the fact that MCI par-
ticipants cannot be considered healthy due to their cognitive
ability decline, but MCI cannot be framed as dementia ei-
ther, since this decline is less severe compared to dementia.
It is also interesting to see that combining MCI with demen-
tia patients yields worse performance than combining MCI
with healthy subjects. Further investigation on the closer re-
lation between MCI patients and healthy subjects might be
needed based on this result.

Finally, we also conduct the three-class classification
to distinguish between sessions with dementia, MCI and
healthy subjects. The results are reported in Table 5. We ob-
tain the average accuracy of 65.0% using 4 seconds of ses-
sion data. While MCI patients might present subtle different
visible characteristic from healthy or dementia patients, they
are very different in actual. Detecting MCI patients is im-
portant for the early prediction of dementia but it is difficult
due to the nearly ambiguous nature of the data and the lack
of a medical standard to classify MCI patients, as discussed
in Sect. 2.1.

5. Discussion

Our experiments suggest that our model’s accuracy has a
tendency to improve as we obtain more training data. More-
over, when compared to conventional diagnosis methods
based on biomarkers, our method has the advantage of be-
ing simpler and less costly. However, as shown in Table 4
and as mentioned in Sect. 4, our model cannot be used alone
to diagnose dementia in practical applications because its
accuracy is still not high enough [69], [70].

We believe that the best solution to this problem would
be to combine our speech-based approach with methods
that use other data modalities, in a multimodal manner. In
fact, works in similar fields, such as depression detection,
showed the advantages of multimodal approaches [71]. By
combining facial expression and body movement informa-
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tion from the interview recordings, for example, with our
speech-based approach, we believe that the accuracy could
be improved, while keeping the method non-invasive.

Another way of improving our model’s accuracy is to
collect more speech data. In both ways (i.e., multimodal and
using more data), the cost in terms of time, patient extenua-
tion and health care professionals’ effort, is much less than
the invasive methods. For example, it is possible to collect
data by monitoring patients’ voices with mobile phones or
wearable devices, and this data collection has a cost that is
much smaller than that of the clinical assessment.

As the number of dementia patients rapidly increase,
a two-step diagnosis, first with an automatic low-cost diag-
nosis method and second with health care professionals and
medical treatment, is a promising future direction.

6. Conclusion

We present a method for dementia detection solely based
on speech data. Using a GCNN architecture on top of the
IS10 paralinguistic feature set yields the best accuracy of
73.1% in an English dataset, the Pitt Corpus, and 80.8%
in a Japanese dataset, the PROMPT Database. We achieve
the accuracy of 77.1% by using only 20 seconds of data on
the PROMPT Database and 74.7% when we consider only 4
seconds of data. These results show our model’s capability
of making predictions with a reduced amount of data, which
is important for real-world dementia diagnosis. We further
perform the three-class classification of dementia, MCI and
healthy subjects on the PROMPT Database, which yields
the accuracy of 60.6%.
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