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LETTER

Static and dynamic characteristics of double transverse coupled cavity
VCSELs for high speed modulations
Hameeda R Ibrahim1, 2, a), Ahmed MA Hassan1, 3, Xiaodong Gu1, 4, Moustafa Ahmed2, 5, and Fumio Koyama1

Abstract We present experimental results for extending the 3-dB modu-
lation bandwidth of an 850-nm vertical-cavity surface-emitting laser (VC-
SEL) with passive double transverse-coupled cavities (DTCC). The 3-dB
modulation bandwidth of DTCC-VCSEL is 21GHz while that of a con-
ventional VCSEL (C-VCSEL) fabricated in the same wafer is 12GHz. We
realize eye-opening at large-signal modulations of 36 Gbps (NRZ) and
44Gbps (PAM4). Intensity fluctuations of single-transverse-coupled cav-
ity (STCC)-VCSEL andDTCC-VCSELwere also examined at different bias
currents under CW operations. The result shows a DTCC-VCSEL is more
stable with lower intensity fluctuations.
Keywords: VCSEL, TCC-VCSEL, DTCC-VCSEL, OFB
Classification: Semiconductor lasers

1. Introduction

A VCSEL has played a major role for optical data trans-
missions in datacenters and supercomputers because of
its attractive properties [1, 2], which include low power
consumption, small footprint, wafer-scale testing, low-cost
packaging, ease of fabrication into arrays, and so on.
The modulation bandwidth of VCSELs, however, is typi-
cally restricted to less than ∼20GHz because of the lim-
ited intrinsic carrier-photon resonance (CPR) [3]. There-
fore, intensive efforts have been done to push the mod-
ulation bandwidth of VCSELs further into the mm-wave
band [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
such as injection-locking [18, 19], coupled cavity [20],
modulator-integration [21] and optical feedback (OFB)
[22, 23, 24, 25, 26, 27]. OFB has been used for increas-
ing the modulation bandwidth of VCSELs [22], mode stabi-
lization, and the reduction of modulation-induced frequency
chirp [28]. We also proposed a double transverse-coupled
cavities (DTCC)-VCSEL for further increase in modulation
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bandwidths [29], which predicted ultra-high speed modula-
tion of > 100Gbps [30].
In this paper, we fabricated a DTCC-VCSEL with a taper

shaped aperture. We demonstrate the enhancement of mod-
ulation bandwidth ofDTCC-VCSELs. The 3-dBmodulation
bandwidth could be increase more than 20GHz and we real-
ized eye-opening at the large-signal modulation of 36Gbps
(Non-Return-to-Zero:NRZ) and 44Gbps (Pulse Amplitude
Modulation 4-level:PAM4).

2. Device structure

Figure 1 illustrates the schematic structure of a DTCC-
VCSEL and the top view of fabricated mesas for C-VCSEL,
STCC and DTCC-VCSELs. All devices including C-
VCSELs are fabricated on a same wafer grown by metal
organic chemical vapor deposition (MOCVD) with 22-pair
top DBR and 34-pair bottom DBR. The active region in-
cludes three 850 nm quantum wells (3QWs). In order
to form transverse coupled cavity structures, taper shaped
mesas were formed by dry-etching process and followed by
wet-oxidation process. The active region dimensions of a
DTCC-VCSEL are 6 × 5µm2, the oxidation depth is 5µm.
The size of passive cavities for DTCC-VCSEL is 30×13µm2

and 15 × 13µm2 respectively. The proton ion implantation
is carried out for electric isolations in coupled cavities. The
width and total depth of the multi-step implantation is 2µm
and 2.8µm, respectively. Polyamide is used for planariza-
tion and passivation. For making a surface N-electrode, wet
etching is used, and AuGe/Ni/Au are deposited to form the
N-electrode. For P-electrode Au/Zn/Au are deposited.

Fig. 1 (a) Schematic structure of aDTCC-VCSEL, (b) photos of fabricated
mesas for C-VCSEL, STCC and DTCC-VCSELs.

Copyright © 2021 The Institute of Electronics, Information and Communication Engineers
1

mailto:ibrahim.h.aa@m.titech.ac.jp


IEICE Electronics Express, Vol.18, No.22, 1–4

Fig. 2 L-I characteristics for C-VCSEL, STCC VCSEL and DTCC-
VCSEL.

Fig. 3 Lasing spectra of DTCC-VCSEL.

3. Results and discussions

Figure 2 show I-L characteristics of a conventional VC-
SEL (C-VCSEL), STCC and DTCC-VCSELs fabricated on
the same wafer at room temperature for comparison. The
threshold current of the DTCC-VCSEL is 1.8mA that is
higher than that of the C-VCSEL due to an optical loss in the
implanted region and to the leakage in two external cavities.
The active region area of a C-VCSEL, STCC-VCSEL and
DTCC-VCSEL are 4 × 4µm2, 6 × 8µm2 and 6 × 5µm2,
respectively. The size of passive cavity for STCC-VCSEL is
20×13µm2. The size of passive cavities for DTCC-VCSEL
is 30×13µm2 and 15×13µm2. The L-I curve of C-VCSEL
is smooth and the power increases linearlywith injection cur-
rent. L-I curves for STCC and DTCC-VCSELs show many
kinks due to the effect of OFB. Figure 3 shows the lasing
spectra of the DTCC-VCSEL at different bias currents.
Figure 4(a) shows the small signal response of a C-VCSEL

at room temperature. The 3-dB bandwidth without optical
feedback is around 9GHz at 3.5mA increases to 12GHz at
6mA. But the 3-dB bandwidth drops by increasing the bias
current due to a heating effect.
The small-signal modulation response of a STCC-VCSEL

with 6 × 8µm2 active region and the size of a passive cav-
ity are 25 × 23µm2 at different bias currents are shown in
Fig. 4(b) The modulation bandwidth of VCSEL is 16.7GHz
at 4mA, by increasing the bias current to 4.5mA, the
modulation bandwidth increased to 27GHz thanks to PPR
which appears clearly at 25GHz because of optical feed-
back. When the bias current increases to 4.7 and 5.0mA the
modulation response decreases to 12.3GHz and 11.3GHz
respectively. The rapid drop of the modulation bandwidth

Fig. 4 Small signal responses of (a) C-VCSEL, (b) STCC-VCSEL and (c)
DTCC-VCSEL with different injection currents.

would be due to the heating effect, which deteriorates the
coupling between the active main cavity and passive cavity.
The small-signal modulation response of DTCC-VCSEL

is shown in Fig. 4(c) at different bias currents. The modula-
tion bandwidth of DTCC-VCSEL is 13GHz at 6mA. With
increasing the bias current to 8mA and 10mA the modu-
lation bandwidth increased to 16GHz and 21GHz due to
OFB without drop in modulation response because the large
area of DTCC-VCSEL and thermal spread which decrease
the heat effect comparing with the STCC-VCSEL.
Low intensity fluctuations are important for large signal

modulations. The TCC-VCSEL dynamics strongly depend
on the bias current and optical feedback parameters. We
found the intensity fluctuations of a STCC-VCSEL are de-
pendent on the bias current, which could result from the in-
stability of a VCSEL under OFB. We discussed the intensity
fluctuation of coupled cavity VCSELs in ref. [31], which is
dependent on the bias current and coupling strength. These
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Fig. 5 Intensity fluctuations of a STCC-VCSEL.

Fig. 6 Intensity fluctuations of a DTCC-VCSEL.

Fig. 7 Coupling strength of DTCC-VCSEL.

also could affect the appearance of PPR shown in Fig. 4(b).
We could see the large intensity fluctuation at a certain bias
current, which makes it difficult to get clear eye opening
of large signal modulations. In contrast, the intensity fluc-
tuations of DTCC-VCSEL are shown in Fig. 6(a)–(b), the
intensity fluctuations are suppressed in the entire current
range due to different coupling strengths of around 25% as
shown as Fig. 7, which is supported by the calculation [31].
We carried out the large signal modulations with NRZ

and PAM4. The large signal modulation characteristics
are shown in Figs. 8 show the eye patterns (NRZ) for C-
VCSEL, STCC-VCSEL and DTCC-VCSEL at room temper-
ature. The bias current is 9mA and an extinction ratio is
3.5 dB. The word length is 231 − 1. The clear eye-opening
was observed for a DTCC-VCSEL at 36Gbps. The band-
width of the C-VCSEL is limited for 20Gbps. While the
small signal modulation bandwidth is higher, it is hard to get
clear eye-opening, which is due to the increased intensity
fluctuations in STCC-VCSELs. Figures 9 shows large signal
modulations (PAM-4) of C-VCSEL and DTCC-VCSEL at
B=20 and 22Gbaud with Ib=10mA. The modulation band-
width enhancement comes from OFB. Wider bias current

Fig. 8 Large signal modulations (NRZ) of (a) C-VCSEL at 20Gbps, (b)
STCC-VCSEL at 40Gbps and (c) DTCC-VCSEL at 36Gbps.

Fig. 9 Large signal modulations (PAM4) of (a) C-VCSEL at 10Gbaud
DTCC-VCSEL at (b) 20Gbaud and (c) 22Gbaud.

ranges could be possible for lower intensity fluctuations and
high modulation bandwidths of DTCC-VCSELs in contrast
to STCC-VCSELs. While higher modulation bandwidths
of coupled cavity VCSELs have been reported by other re-
search groups [27, 32], there have been no report of large
signal modulations. Intensity fluctuations should be an im-
portant issue for practical applications.

4. Conclusion

The transfer function of IM response in VCSELs can be tai-
lored by double transverse coupled cavities, which exhibit a
large enhancement in the modulation bandwidth. While
a STCC-VCSEL shows a high modulation bandwidth of
27GHz, it is noted that the bias current window is rather lim-
ited for low intensity fluctuations and high modulation band-
widths. The 3-dBmodulation bandwidth of DTCC-VCSELs
reaches at 21GHz and a clear eye-pattern of 36Gbps (NRZ)
and 44Gbps (PAM-4) operation was also obtained. Wider
bias current ranges could be possible for lower intensity
fluctuations and high modulation bandwidths in contrast to
STCC-VCSELs.
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