TERE | ﬁi_ﬁ]ﬁ%ﬁﬁuﬁ-_} TR R U |

Tokyo Tech Research Repository

oo /00000
Article / Book Information
oo@a) OO0000oooood
Title(English) Task-Oriented Word Segmentation
oo@a) oood
Author(English) Tatsuya Hiraoka
oo@a) OO0:000000,
OOooooOo:0oo0ooa,
O000:00118290,
000 00:20220 30 260,
ooooo:0o0o0a,
OO00:00 00,00 00,00 00,00 0,00 00

Citation(English) Degree:Doctor (Engineering),

Conferring organization: Tokyo Institute of Technology,
Report number:[J [0 1182901,

Conferred date:2022/3/26,

Degree Type:Course doctor,

Examiner:,,,,
goog@mao) ooong
Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Doctoral Dissertation

Task-Oriented Word Segmentation

Tatsuya Hiraoka

February 24, 2022

Artificial Intelligence Course
Department of Computer Science
School of Computing
Tokyo Institute of Technology

A Doctoral Dissertation

submitted to School of Computing,

Tokyo Institute of Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Tatsuya Hiraoka

Thesis Committee:
Professor Naoaki Okazaki
Professor Takenobu Tokunaga
Professor Koichi Shinoda
Professor Jun Miyazaki
Associate Professor Nakamasa Inoue

Supervisor)
Co-supervisor

Co-supervisor

(

()
(Co-supercisor)
()
()

Co-supervisor

Task-Oriented Word Segmentation *

Tatsuya Hiraoka

Abstract

Word segmentation or tokenization is a fundamental process in natural lan-
guage processing (NLP). A sentence is split into small units such as words, sub-
words, or other tokens to process natural language on a computer for NLP tasks
such as text classification. Because the downstream model is trained and eval-
uated with a tokenized sentence, the performance of the downstream model de-
pends on the tokenization strategy. Therefore, exploring the proper tokenization
method is a fundamental issue to improve NLP performance.

In general architectures of NLP, word segmentation or tokenization is consid-
ered a preprocessing task. In other words, sentences can be tokenized into tokens
in advance of training the downstream model. This means that the tokeniza-
tion strategy is not changed after preprocessing. However, recent studies have
shown that the appropriate tokenization depends on the downstream task and
model. This implies that a gap exists between tokenization as preprocessing and
the training of the downstream model. In other words, the tokenization strategy
must be determined in isolation from the downstream model, where the appro-
priate tokenization depends on the downstream task and the architecture of the
downstream model. Determining the tokenization strategy without information
about the downstream task and model is not recommended by this author, even
though information can be accessed when choosing the tokenization strategy. To
bridge this gap, a novel method is proposed herein to train both the tokenization
module and downstream model simultaneously. In contrast to the conventional
tokenization method in NLP, the proposed method improves the tokenization
strategy during the training of the downstream model and enables the tokeniza-
tion module to generate a more appropriate tokenization for the downstream
model, thereby improving the performance of the model.

*Doctoral Dissertation, School of Computing
Tokyo Institute of Technology, February 24, 2022.

This study introduces two approaches to optimize tokenization. The first ap-
proach embeds the tokenization module into the architecture of the downstream
model and exploits the sentence representation calculated in the downstream
model to select better tokenization during the training of the model. This first
approach is specialized to the downstream model using sentence vectors to solve
a task such as text classification. The second approach exploits loss values of
the downstream model calculated to optimize the tokenization module. This ap-
proach is applicable to various downstream models, as it uses only loss values
for the update, and this implies that it can be used with various NLP tasks,
including generation tasks such as machine translations. Both approaches em-
ploy neural networks for the tokenization module, known as a neural unigram
language model, and the downstream model and tokenization module are trained
simultaneously as combined neural networks.

This study evaluates the proposed method on two famous NLP tasks, namely,
text classification and machine translation, on multiple languages. For text clas-
sification, sentiment analysis in Chinese, Japanese, and English is employed for a
task using a single sentence for the input. The rating and genre prediction tasks
are also exploited using reviews on E-commerce services in Chinese, Japanese, and
English. In addition, natural language inference in English is employed for a task
using multiple inputs. For machine translation, seven language pairs are used,
where one side of the translation pair is English, and the other side uses German,
Vietnamese, Chinese, Arabic, French, Hungarian, and Romanian. The experi-
mental results demonstrate that the proposed method improves the performance
of the downstream model by optimizing tokenization on both text classification
and machine translation as compared with the conventional tokenization strat-
egy. The experimental results also show that the proposed method improves the
performance of the downstream task even when the already trained downstream
model is used and its trainable parameters are frozen. These results demonstrate
that the proposed method can improve the downstream performance only by
finding more appropriate tokenization for the downstream model. The experi-
mental results on text classification demonstrate that the proposed method can
be applied to various downstream models such as classifiers with the self-attention
mechanism, bi-directional long short-term memory (BiLSTM) encoders, and lo-
gistic regression. Finally, the results show that the proposed method are appli-
cable to the downstream model, including BERT, which is a well-known large

1

pre-trained language model.

Analysis of the acquired tokenization by the proposed method shows that the
optimized tokenization differs depending on the downstream task and model. For
example, the proposed method acquires different tokenizations for different text
classification tasks even when the input text is the same. This study also provides
the observation that the number of tokens in the acquired tokenization differs
depending on the downstream tasks and languages. For example, the number of
tokens in the tokenization for text classification is much greater than that for a
target side corpus of machine translation.

Keywords:

Word Segmentation, Tokenization, Language Model, Neural Network, Text Clas-
sification, Sentiment Analysis, Machine Translation

il

Acknowledgements

WL ERETIIIHZD, ZLDODHDODBNRAZWEZZEE0LE. Z0G%E
DCREGHH L EIFET.

FHREHBE O MIGEBZRIC X, HMEHEEANDZIF AN SH LR X DR
T, MIEDOARSTHEFBIZODVWTHRABMHKEZIETWAZEESE LA, FITY
Y—F T VAR R UTREALTWAEELS Z L TRIFMWIZEE L ETEE21£5 2
EMTE, WHEEFMTHEETLII A VWE LA, MO ARm#ETHEEL
TATA R&ZA MIVIE, AKiwsC & A U “Task-Oriented Word Segmentation” T U 7z.
HRFED S DEFZIZE 1D ST, T U TAZERELS ~HELUTHLU T —<IZH
DO Z N TERLZ L ITRESEET, MKLEIZITE#HLTBLENEEA.

PEAKMBMERRZIZIE, BRUARSHELES O ZTEHME LT, FAOWET —<IZ
BEHOLAEELIA Y M2WDE W& F U2, FFIZ, Soft-Tokenization (%
BETNVHITEBOHEESE 2ZBT S5 X BFIE) T UTAMEZ ED X DI
MEBEDT7Z6 LWL WS HIZOWT, WHERELS T2 D E L. A%
EHEDBIZHTD, TOTHRMIIRESEICRL2HDTLE. £, Kigizsld
%6.5MHil, FHBEE CRHKLEZWEZEWEZTA T4 72Tl - ERTT.

BHE—#RIZIE, AFROISHE WS BER~S, < DARXAVMEHEEL
2. AMHBETAMEDOTA T+ T 2HKR LIz E0o, BESEHIZSHBED LD
WZEAEZTWVWSRENEWVWIBRVEMEZ IETWAEE, MO A 25357
OOMEIZ WS DEWEEZEE L., RBEFEEZRARY -V THEHTES LS
UL7ZIES DRV WS BAIE, YHDOREFEZNE UE) TH5HVWEFR—T 3
e EULL.

B IIE LR OB EICIMAT, 7HTIv o - TRANAHF - LUTH
EDMHFEETE R AETFIZDOWVWTRIZRIT TWEZEE L., EEEEE» S HET
ERFZIIZEBLUTOMP o772, THTFTIv T - T RANAH =2 DD TOHH
TNAISTIZDOWTHBEETE, FHEIZV IV IATEHIENTELZDERATVE
. MR RRTIE, PIEQEZHET LI L TREL S 2mmtE L Dbk e \»
DEELPAMUIDOVWTIAY M2 WEE, RikfEice3fizEmd s Z o
FKEzLUL.

BIFE T HEBIZITIE, FERERE PHEBEECRIEZHY L TW2ZE, Riffst%
REDTBIIHZ> TEERT RNAAZW/ZEE L. £ E TUnsupervised

Word Segmentation® #iffi & U CTARMITZ LA TWE L72D, RIFLAEIZ [Weak
Surpervision® —FfER D TIE7R WA &I A Y MNZ2THE, A2 BZBIZEZ 5 —
B x U7

FEREMRESRICIE, RXHERREEREECRAIEZHY L TWZEEE L.
ACRERERTOI12AMAIZ, FERBIEDKIFEEZ T LI LI TLES/ICHE
LoT, TNEFIEZIITLEIDREND £ L2, KBRS TIXHENE DFEE
T 8N THZ2 W72 E, SBROMEDLHEEZFZZ 5B 27230
X L7

EIEABIAUC X, IR TOITRTOMETHELBELoTWEEE L.
ZHFZET A 2V DRI U /R XCHEDIEE, AT DOE DDA F Y, MR
T AR BRI T WA EE L., S ADWHEAR A I EZREIRT 512
WA NTZAR P BETT D, 5HENEDTITESOEBIALFEL LS BEBWT
MEEFEPITONDLDICHELET. MIRECHRLMRIINESEo TV
DHEEPIATUZ., WIRIZIR S TATE R, FROGGR k2 R MERIZZ < D
Rl 2 E N T W22 0BT, 2R U Tl RAEEEzENE L. 5
#%b, FIZFETRAIZIT > TV EEITIEEWTT.

WE - XEEOEROIDAI A, FILEBTFIA, FIEHTFI A, NNIHAE T
hy BEMHFI A, BB I A, MIREETOHEBUEG TL T B
RV ELZ. BAORADHIRHENOWIREA, HRHEERYE, B TIETE
RWEMER U A E T B o TWEE, TORBEZMBICATEHIENRTEEL
2. FFZD3DE L TIFACT-XDO PR ZMHHT 272D REFHE BTV
LELE. FREULTRVOTOMEETHD, Do\l 2% TKREE2 B
T35 XD TL .

FTUV—ITZ7RT M) OWNEEI A, BEES AIITHAEFETEERT KN 1
2%TEEZ L., BEEETORFIMNEOEBITRTT VY -ITT7RT NI DB
TAEDOEFRMEIZEBZEDT, BALDOHASWARITFTNIRE LR X DOBEICIX
BoBRPo7EUTED £9. BLRMUTNEE A DE 7 ULRBEMNT DX
EHERUTE, WonrbiiTtEnXeBoTwWE LAY, FInHLEPLEE LT
CZETRIZBEETEZALEFESTHEVWERATUZ., 72, BIAIZIEIMERZD
TlEZ L, FIRDORACT-XDHZFFEIZDWTHHFEKIBETVWEEE, L XADH
SrWEEEEL.

FRAEHL U ANDARR I AITIE, 20178 (BLIEEDE) O1 VR —VEBE,
BEITOEYD REBHEFHIZRV XU, HERETEA- NI L) —F v —2
UTZIFTANTWAZE, HEHBECRETOMERBO —HIcEboET W
EELAE. ZORBRZELT, HAOHASHELHIZET Mz TED LS
WZEDP L TWEZWhE, UoK DBEXLZZENTEE L. RHIZBHAKREIAIZ
X, N NED EF - BIREDOERE S\ D2 DDA SRk 2 RAHFRIZ TS TW 72

vi

XL

R R A 252 28 D A7 X A2 X, TEHI DResearch Seminar T D FEFK X°Paper Reading T
DifamP O HELEIETCOMHRICELET, HRALQETEMEEICRDE LA, K
RESAITIE, W—DREL L TREREDHRTRDMMAX 2 ADD #5774
E, K IADBEEZEM\WE U7/, 1 appreciate Mr. Sangwhan Moon for many
conversations about research on NLP basics, such as tokenization. Also, he gave me
many insightful stories of his life, including working and family. FFPIERI AL, &
LEMOENWE U 7V X A LAEEEHEFE L UT, FEFEPHEMREBIZOWTEL
DH#HZSETEOWVWE U, BRA PSS ICRBUZ kA, Rz TS N
SADZIZIZEALLDD, BREWEZEZEE L., DOXOHMEZIZIUD, kAR
ARy MEFICHBREMIICSMLTED, MOBPY ZRF2 I NT A%
AIVZIFETHREEZITE LU, &FEMFERICE, ZEOEWEEL LT,
LR DR PHEZDEDANDDAIZOVWTHEZWEZEE L. #HE
WS A, BRI A, AR -EBIALIE L2 T 22TV
&, HEATHRTIELIPHELIZHATWAEEZEE L, AVX—D—A&L
TELARDBEL Doz EBVETE, MEZBHNIZR>TWVWARWVWTL & 5 0.
MREVOIRRPEZADANEDR L 2D, W% LT &h o7k & 85 BB S%
DUTEDNIEFENTT. BRI AT, SR CeARE LR EEh s
EHFEDA A T4 7F v 72 L TCWEEE, REM»DE L. 72, ==
ROBFI AT, HRENDOFEY Y —ZADORFETRKEBMHEEIZHRD F L.
COVID19DEIE S D H T, MEFREORFLETIRELAENAY T4 ETOPRD
WDIZRoTUENE LD, ARIALOMHEPMARITLETHELL, HRED
MIZ2H 2% <HoVE L. RERECH -KQIZZ>TWAHRL VWA,
TEDAR—ZADIEENRT ELRTL LD, 5D ro& T — L MHaL
», FoWEN o> TEAED, BOAERBENTH S Lh, BEIEVIED HPEE
ELTOEEMENTRVWARD LNERA. £V ODRIBHREIZEREL 2L
ST, TEDAR-ADEADVPROND L 2R LA LTV,

KM EDE X AR, FAUHRSELIE 25T M & L TE < DRz
LOoVELE., FICEMERZRRICEERD D > ZIIHEREMARA & 1E, HLK
PACT-XTHEFEL UTEZLDOBFiZIETCWEEZEE L.

HEDDRDEREHEDFTETHED LB LT, HREICHTIEFR—Va v
PGy — A% % \WEEE L. FMED3TSMUZOTT D, £ o R IS
LTuhwWhiE & oz leEnEd.

AR ZEN R ZRERETOBLRERRICH2 > H 412, EEHET
LBMEHZADE L. HERXDOT —~YTHERAZITN UHEEDE O it
&, ZIIRBETHHEMBE 2P 0 ZRICCESKEEFE LR EEFN/ZT— T
T, KX DOATTAT AT EIZRRD XTI, KFKEORMHADT 174 712D

vii

WTIFHHEE X AIICERE PEoTE LS WERDRSRIEZfToTWE L. Kax
MOYUOFTETIE EFL WHARDR 7D TTN, EORZRTRA L DLAIFSE
TFT=REBIZTDHIENTEEZ L. TODHBENAISTO AR E AN IETEE % I HERIZ
MNEG>TWEEE, MRET -V 2EAAE LR UTHZFET 200 LEEZ 7
FELUTWAEEEE L., FREZERR OB ZRALLSBVWHEEZLUEL &
5. HEKEHPBBQL2E L7ZWTT 4.

FRHRZDOZHMAERRIZHE S > 72 5 2121%, HESEUADI DR 2 FET
W72 E, RlizIL0s—hemo L. 72, AWEMBERDOYE I CHITHEE
MMEFALMETSH B2 /AKREN X AT, EBERRIZBEWTE SEES T O Z
RHFEL TV E, SEFDHOHBI TZEVL T S NARWIADHEZ BT T»
7EEFE L. BARSENM L SEFTOHXTILHNTLUEVELZD, D
PEHEVWORERZH LAY, ETHEDH ST —IZDOVWT IR EEE
FL LS.

INERE, R, B THEsTEANTEZBA, 5THEEbosTH2BWTINT
HOMWESITIVET. HHRE OO DFE TR, BT 21EH %25
ZAT<NFET., I ZboTMHREILTLIEI V.

BRIz EDAR, B, Bk, TUTBHEEFEIZR > TOWABE OB, BRHKYE
FELUTHBYET, BRIZ, TUHELLINBHTEET LW ENE XH—DF
DIRFoTNTHO NS TIVET. FVHOTHENRS, SFEHH - T
TEE2HETHIZEDE L. ZORBREREIZ, SBROEBET L2OTEORF>T
WT LK 7ZZ W,

viil

Contents

List of Figures xiii
List of Tables XV
1 Introduction 1
1.1 NLP and Tokenization 1
1.2 Problems of Conventional Tokenization 2
1.3 Solutions 4
1.4 Contributions 6
1.5 Thesis Outline 6
Chapter 2: Related Work and Preliminary 6

Chapter 3: OpTok: Optimizing Tokenization for Text Clas-
sificationo 7

Chapter 4: OpTok4AT: Optimizing Tokenization for Vari-
ous Tasks 7
Chapter 5: Experiments 7
Chapter 6: Discussion 7
Chapter 7: Conclusion 8

2 Related Work and Preliminary

2.1 Related Work on Tokenization 9
2.1.1 Unsupervised Word Segmentation 9
2.1.2 Studies Identifying Appropriate Tokenization 11
2.2 Preliminary of Unsupervised Word Segmentation 13
2.2.1 Byte Pair Encoding L. 14
2.2.2 Tokenization with Language Model 16
Estimation using Gibbs Sampling 17
Estimation with EM Algorithm 19
2.2.3 Tokenization Differences by Methods 22

iX

2.3 Preliminary of Subword Regularization
2.3.1 BPE-Dropout
2.3.2 Subword Regularization with Language Model

2.4 Preliminary of Downstream Task
2.4.1 Text Classification

Task Overview
Neural Classifier with Attention Mechanism
Neural Classifier with BiLSTM
Neural Classifier with Large Pre-Trained Model
Text Classification for Two Inputs
2.4.2 Machine Translation
Task Overview,

Transformer

3 OpTok: Optimizing Tokenization for Text Classification

3.1 Model Outline
3.2 Neural Unigram Language Model
3.3 Module for Selecting Tokenization
3.4 Restricting Vocabularyo
3.5 Maintaining the Characteristics of the Language Model

OpTok4AT: Optimizing Tokenization for Various Tasks

4.1 Model Outline
4.2 Optimizing Tokenization with Loss
4.3 Tokenizer using Neural Unigram Language Model
4.4 Downstream Model Training
4.5 Training with Multiple Sentences as Inputs

Experiments
5.1 Text Classification
5.1.1 Dataset
Weibo(Zh)o
Twitter(Ja)
Twitter(En) oo

43
43
45
45
47
48

49
49
ol
52
o4

JD.com: Genre&Rating(Zh) 60

Rakuten: Genre&Rating(Ja) 60

5.1.2 Settings 64

Neural Unigram Language Model 64

Encoders. 64

Baselines. o 64

Initialization L 65

Training on Downstream Task 66

5.1.3 Results. 66

Results with the Attention Encoder 66

Results with the BILSTM Encoder 67

5.2 Machine Translation 69

5.2.1 Settings 69

522 Results. 71

Discussion 75

6.1 Performance Improvement by Tokenization 75
6.1.1 Performance Improvement for a Randomly Initialized Clas-

sifier 75

6.1.2 Tokenization as Post-processing 76

Settings 76

Results o 7

6.2 Learning Both Encoder and Decoder 79

6.2.1 Settings 79

Enc—Dec 79

Dec—Enc o 79

Random 79

6.22 Results.o 80

6.3 Comparison with Ideal Tokenization. 80

6.4 Analysis of Tokenization 82

6.4.1 Optimized Tokenization on Text Classification 82

Task Oriented Tokenization 82

Tokenization Granularity 87

6.4.2 Optimized Tokenization on Machine Translation 88

Tokenization Granularity 89

xi

6.5 Cross-domain Evaluation
6.6 Multitask Learning o oL
6.7 Analysis with Simple Downstream Model

6.8 Effects
6.8.1
6.8.2

6.8.3

of Hyperparameters
Number of Words in the Restricted Vocabulary
Number of N-best Tokenization
Text Classification
Machine Translation
Hyperparameter that Maintains the Characteristics of Lan-
guage Model vo

6.9 Application for BERT

7 Conclusion

References

Publication List

xii

115

119

135

List of Figures

1.1

2.1

2.2

3.1

4.1

Overview of (a) conventional tokenization and (b) proposed opti-
mizing tokenization. The tokenizer is directly optimized to improve
the performance of the model for a downstream task using the loss
of the target task.

Two types of encoders using neural networks (attention mechanism
and BiLSTM). Each figure shows a calculation of a sentence rep-
resentation hy using a sequence of word embeddings vy, , Vw,, Vs,
corresponding to a sequence of words wy, w9, w3 in a tokenized sen-
tence 8. ... L

Outline of Transformer for machine translation.

Outline of the proposed method for calculating a sentence vector
h, with the 3-best tokenizations during the training phase. At
the inference, OpTok uses the 1-best tokenization as well as gen-
eral neural architectures. The arrowed continuous lines indicate
the differentiable paths for back-propagation. We can use various
architectures as the Encoder, which converts a sequence of tokens
into a single vector. The downstream model is the architecture

used for downstream tasks (i.e., MLP for text classification).

Overview of OpTok4AT in which losses for a tokenizer L, and for a
downstream model L. £, and L are calculated using N-best to-
kenizations (Section 4.3) and a sampled tokenization (Section 4.4),
respectively. The arrowed continuous lines indicate differentiable
paths for back-propagation.

xiil

44

4.2

6.1

6.2

6.3

6.4

6.5

Overview of the calculation of a tokenization loss £, for the source-
side neural unigram language model in NMT requiring the two
inputs of source and target sentences s and t. The arrowed contin-
uous lines indicate the differentiable paths for back-propagation.

Average improvement (difference from the values at the beginning
of the training) of validation F1 score and training loss on Twit-
ter(Ja) over five trials when only tokenization with OpTok and
OpTok4AT was updated.
Overview of the downstream model for multitask learning using
the BILSTM-based encoder.
Differences in scores using 50% of the entire vocabulary reported
in Table 5.7 against the different |V’| on a sentiment analysis.
The sizes of the vocabularies are 16,000 for Twitter(Ja) and Twit-
ter(En), and 32,000 for Weibo(Zh). The size of N-best is N = 3.
Differences in performance against N on text classification (6.4a)
and machine translation (Vi-En, 6.4b).
Differences in perplexity on the tokenization of the training (6.5a)
split and the performance of the downstream tasks against the
weight for maintaining the characteristics of the language model u
(6.5Db). .

Xiv

List of Tables

2.1

2.2

5.1
5.2
5.3

5.4
9.5
5.6

5.7

0.8

The first two sentences of “Alice’s Adventures in Wonderland” [12]
tokenized by BPE and SentencePiece. I created the tokenization
model whose vocabulary size was 1,000 for both methods. The
bold font highlights the differences in tokenization between the
methods.o
Differences in vocabulary IDs by tokenization of “colorless green

ideas” . ..

Dataset components on sentiment analysis.
Overview of the dataset splitting of SNLI.
Dataset components of Genre&Rating created from Amazon prod-
uct data.o
Dataset components of Genre&Rating created from JD.com.

Dataset components of Genre&Rating created from Rakuten data.

Experimental results on text classification tasks (F1l-score) with
the attention encoder. SP and R denote SentencePiece and sub-
word regularization, respectively. The highest scores are high-
lighted in bold. * indicates that the score was significantly higher
than that of the baseline system (SP+R) with McNemar’s test
(p<0.05). . ..
Experimental results on text classification tasks (Fl-score) with
the BiLSTM encoder. SP and R denote SentencePiece and sub-
word regularization, respectively. The highest scores are high-
lighted in bold. * indicates that the score was significantly higher
than that of the baseline system (SP+R) with McNemar’s test
(p<0.05). . ..
Overviews of datasets on machine translation tasks. The table

shows the number of sentences in each split of a dataset.

XV

5.9

5.10

6.1

6.2

6.3

6.4

6.5

Overviews of datasets on machine translation tasks. The table
shows the number of sentences in each split of a dataset.
Results of experiments on machine translation task using IWSLT
and WMT corpus (BLEU). We show the tokenization methods for
the encoder and decoder. SP and R denote SentencePiece and
subword regularization, respectively. OPT refers to the proposed
method of OpTok4AT. The highest scores are highlighted in bold.
* indicates that the score was significantly higher than that of
the baseline system (SP+R/SP+R) with a statistical significance

estimation using bootstrap resampling [55] (p < 0.05).

Performance improvements when tokenization was optimized as
postprocessing by OpTok and our method. Base Model denotes a
model trained with SentencePiece, Mecab, or BERT without op-
timizing tokenization. The highest scores are highlighted in bold.
Performances of machine translation on the IWSLT15 datasets us-
ing three strategies for the simultaneous training of our method.
The scores for “Both” are taken from the “OPT/OPT” column in
Table 5.10. The highest scores are highlighted in bold. * indicates
that the score was significantly higher than that of Both with a
statistical significance estimation using bootstrap resampling [55]
(p<0.05). . ..
F1 scores on the validation split of Weibo(Zh), Twitter(Ja), and
Twitter(En) with the BiLSTM-based classifier. * indicates that
the score was significantly higher than that of the other methods
with McNemar’s test (p < 0.05).
Token rankings based on the positive differences in probabilities
between the initial and learned language models of the proposed
methods on Genre&Rating(Zh). The downstream model is the
classifier with the BiLSTM encoder.
Token rankings based on the positive differences in probabilities
between the initial and learned language models of the proposed
methods on Genre&Rating(Ja). The downstream model is the
classifier with the BiLSTM encoder.

xXvi

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

Token ranking based on positive differences in probabilities be-
tween the initial and learned language models of the proposed
methods on Genre&Rating(En). The downstream model is the
classifier with the BiLSTM encoder. 85
Differences in tokenization depending on the downstream task (Genre

or Rating prediction) in English. 86
Differences in tokenization depending on the downstream task (genre

or rating prediction) in Chinese. The text translates as “This is
extremely bad! (This is) not anti-slip at alll”, where words in
parenthesis are omitted in the original text. 87
Differences in tokenization depending on the downstream task (genre

or rating prediction) in Japanese. The text translates as “(I) like

the fragrance, but (it does) not do anything for (my) damaged hair

at all.”; where words in parenthesis are omitted in the original text. 88
Ratio of the number of tokens between the initial tokenization
(SentencePiece) and the optimized tokenization (OpTok and Op-
Tok4AT) on the corpora of E-commerce reviews. The downstream
model is the classifier with the BiLSTM encoder. 89
Comparison of English tokenizations on Zh-En pairs using Senten-
cePiece (SP), DPE, and our method. Different results of tokeniza-

tions are highlighted in bold. 91
Ratio of the number of tokens between initial tokenization (Sen-
tencePiece) and optimized tokenization (DPE and our method) on

the IWSLT corpora. SP+R denotes SentencePiece with subword
regularization.o oL 91
Performances of the downstream models with tokenizers trained on
different tasks. The downstream model was trained with Senten-
cePiece and subword regularization, and the tokenizer was trained

with the trained downstream model whose parameters were frozen.

Bold highlights indicate the highest performances among the eval-
uation tasks. findicates that the score was significantly higher
than that of the baseline system (SP+R) with the McNemar’s test

(p < 0.05). falso indicates that the score of the model with the
matched tokenizer significantly overcomes that of the model with

the mismatched tokenizer with the McNemar’s test (p < 0.05). . 94

xvii

6.14

6.15

6.16

6.17
6.18
6.19
6.20

Experimental results of multitask learning on E-commerce datasets.

SP and +R denote SentencePiece and subword regularization, re-
spectively. The highest scores are highlighted in bold. * indicates

that the score was significantly higher than that of the baseline
system (SP+R) with the McNemar’s test (p < 0.05). 97
Differences in tokenization in Chinese (top), Japanese (middle),

and English (bottom), from experiments with multitask settings. 98
Experimental results of text classification with the simple encoder.

SP and +R denote SentencePiece and subword regularization, re-
spectively. The highest scores are highlighted in bold. tand findicate
that the score significantly overcomes that of the baseline systems,

SP and SP+R, respectively, with the McNemar’s test (p < 0.05). 99

Top ten important words in the Rating(Zh) dataset. 101
Top ten important words in the Rating(Ja) dataset. 102
Top ten important words in the Rating(En) dataset. 103

F1 scores on Twitter(En), Genre(En), and Rating(En) with BERT}ae.
The highest scores are highlighted in bold. * indicates that the
score was significantly higher than that of the baseline system
(BERT+R) with the McNemar’s test (p < 0.05). 113

xviii

1 Introduction

1.1 NLP and Tokenization

Natural language processing (NLP) is one of the core research fields that exploit
massively collected text data, sometimes called big data, such as Wikipedia.
Applications of NLP help people effectively use this type of large amounts of
data and access required information efficiently. For example, text classification
is exploited for fake news detection on social media [96, 87, 97]. Another popular
example is machine translation that automatically converts a language into other
languages [56, 95, 117, 27, 112]. Most NLP systems require a sequence of tokens
as their input. For example, a word or subword that is a smaller unit than a word
is used for the input of the systems.

Tokenization (or word segmentation') is a fundamental problem in NLP. In the
tokenization process, a given sequence of natural language is split into a sequence
of tokens such as words. For example, the Japanese sentence “% H &\ W\ K5
T9 427 can be tokenized into a sequence of words such as “4 H /IX/ W\ /K
%/ T3 /42" This process is essential, particularly for languages that do not
contain obvious boundaries (e.g., whitespaces) such as Japanese and Chinese. In
addition, exploring appropriate tokenizations for languages containing obvious
boundaries indicated by whitespaces, such as English [85, 86, 95, 36, 1, 5], also
represents a better approach.

Tokenization is a critical process that affects the performance of NLP tasks
because, in most cases, the raw natural language data must first be tokenized
before being fed into an NLP system. The tokenized sequence of words varies

ITwo similar terminologies describe the process that splits a raw sentence into a sequence of
words or tokens. These are “word segmentation” and “tokenization.” Although they are often
confused, this dissertation uses “word segmentation” for the name of a task that splits a sequence
into small pieces (and evaluates the tokenized sequence with human-annotated tokenization)
and uses “tokenization” for the process itself and the tokenized sequence.

depending on the tokenization tool. For example, the aforementioned Japanese
sentence can be tokenized in various ways, such as “5 H X/ \WWK&/TT
7, “SH/IE/ WD/ K5/ T/ /437, and so on. Different tokenizations lead to
different performances of downstream NLP tasks because the downstream model
is trained with a different tokenization based on the tokenization tool.

Interestingly, the tokenization varies even when a human annotates the word
boundaries. For example, Sproat et al. [99] reported that the agreement of the
tokenization annotation on the Chinese corpus was 76% among human annota-
tors.

Existing studies have proposed various tokenization methods including rule-
based word segmentation [82, 102, 57, 70, 24], dictionary-based word segmenta-
tion [58, 73, 109, 106], supervised word segmentation [84, 121, 75, 76, 68, 128, 129,
15, 122, 11, 123], and unsupervised word segmentation [107, 18, 29, 30, 72, 130,
113,95, 60, 103, 53, 115]. Much of the prior research has reported that appropriate
tokenization depends on each downstream task and model [120, 14, 78, 23, 39, 33].
In other words, the performance of a downstream model can be improved by de-
termining the appropriate (task-oriented) tokenization for the downstream task
and model.

1.2 Problems of Conventional Tokenization

In traditional NLP, a given sentence is tokenized as part of a preprocessing task,
as shown in Figure 1.1(a). Thus, an existing tokenizer is applied to the given
sentence, and then the tokenized sentence is input into a model for a target
downstream task (downstream model).

In the conventional pipelined approach, we obtain the most plausible tokeniza-
tion deterministically based on the tokenizer (e.g., tokenization with the max-
imum scores predefined by a manually annotated dictionary). In other words,
we can use only a single pattern of the tokenization for each sentence, whereas
this would be inappropriate for the downstream task and model. If we want to
find the appropriate tokenization for the downstream task and model, we must
train a given downstream model with each possible tokenization and evaluate
its performance to determine the appropriate tokenization. Performing this type
of brute-force exploration whenever we construct a new downstream model is

impractical.

Downstream

Tokenizer R» Modol

: Irreversible :
Corpus Preprocessing Tokenized corpus

(a) Conventional Irreversible Tokenization

Downstream
Model

Tokenizer >

5]

——————————————————————————

Optimization to improve
Corpus ' the downstream task

N
1

(b) Optimizing Tokenization (proposed)

Figure 1.1: Overview of (a) conventional tokenization and (b) proposed optimiz-
ing tokenization. The tokenizer is directly optimized to improve the
performance of the model for a downstream task using the loss of the
target task.

Some studies have tackled this problem by varying the tokenization using a
sampling strategy during the training phase to enable the downstream model
to adapt to different tokenizations. This technique is called subword regulariza-
tion [59], and previous studies have reported that it improves the performance of
the downstream model on machine translation tasks [59, 90] and text classification
tasks [39]. Although this type of strategy makes the downstream model robust
against the gap between actually used tokenization and appropriate tokenization,
little attention has been given to optimizing the tokenizers for a downstream task.
Thus, if we acquire appropriate tokenization for a downstream task, we might im-
prove the task performance.

By contrast, some studies have used multiple tokenized sentences to prevent
the damage depending on the type of tokenization applied [16, 127, 123, 118, 65].
Their methods compute various tokenizations for a given sentence and then en-
code the tokenizations using an architecture based on long short-term memory [42]
or Transformer [112]. Although their methods prevent error propagation from
the tokenizer, they are intractable when handling all possible tokenizations due

to computational costs.

Several studies have tackled the problem of identifying appropriate tokenization
for downstream tasks, primarily machine translation tasks. Chang et al. [14]
proposed a method to identify better tokenization for the corpus of a machine
translation. Gowda and May [33] proposed a method to estimate the effectiveness
of tokenization granularity on machine translation tasks. He et al. [37] introduced
dynamic programming encoding (DPE) that attempts to identify the appropriate
tokenization for a Transformer-based decoder on machine translation tasks. These
methods identify the appropriate tokenization while considering the corpus of
translation pairs, but they are isolated from a downstream model such as a neural
encoder—decoder for machine translation.

1.3 Solutions

This study explores the problem of identifying an appropriate tokenization for
downstream tasks and proposes a method to optimize a tokenizer based on the
downstream task and model, as shown in Figure 1.1(b). In other words, the
proposed method trains the tokenizer and downstream model simultaneously.
This study introduces two approaches to optimize tokenization for downstream
tasks depending on the loss value used in training the downstream model. Both
approaches are based on the same idea: generate multiple tokenized sentences
as candidates and input them into the downstream model; then, update the
tokenizer to yield the appropriate tokenization for the downstream model. The
two approaches are different in the manner in which multiple tokenized sentences
are used.

The first approach weights the sentence vectors with the probabilities of their
tokenization and inputs them into the downstream model. This approach then
updates the parameters of the tokenizer to decrease the training loss such that
the tokenizer outputs improved tokenization for the downstream task. However,
this approach is limited by the architectures that use sentence vectors, such as in
text classification tasks.

Unlike in the first approach, the second approach inputs multiple tokenizations
into the downstream model separately. This approach weights the loss values
calculated for each tokenization with the probabilities of each tokenization. This
method then straightforwardly updates the tokenizer using the weighted sum of
the loss values. Because this approach requires only loss values of the downstream

model, it is applicable to various tasks and models that use loss values in the
training.

Both approaches can optimize the tokenizer to improve the performance by
refining tokenization even if the given downstream model is already trained and
the trainable parameters are frozen. This study calls this “refinement of tokeniza-
tion” postprocessing. Thus, the proposed method can be easily applied to various
situations, including cases in which the downstream model is sufficiently trained
or it does not have trainable parameters.

This study conducted experiments on the two downstream tasks of text classi-
fication and machine translation. Experiments on text classification tasks exploit
sentiment classification tasks on short-text social networking site (SNS) corpus,
genre, and rating prediction tasks from review texts for products on E-commerce
services and on the Stanford Natural Language Inference (SNLI). This study em-
ploys corpora in the three languages of Japanese, Chinese, and English. Both
approaches of the proposed method can be used for text classification tasks. Ex-
perimental results show that the proposed method improves the performance of
the downstream model by optimizing tokenization as compared to the baseline,
which does not change the tokenization. Experimental results demonstrate that
the proposed method can be applied to an architecture that uses a large pre-
trained language model. This study also shows that the proposed method can be
combined with the state-of-the-art contextualized embeddings (i.e., BERT [22])
and improves the performance on text classification tasks in English.

Experiments on machine translation tasks exploit seven language pairs from the
famous datasets of IWSLT and WMT. One side of the translation pairs is En-
glish and the other side includes German, Vietnamese, Chinese, Arabic, French,
Hungarian, and Romanian. Unlike the first approach, the second approach of
the proposed method is applicable to machine translation tasks. Experimental
results show that the proposed method outperforms the baseline without optimiz-
ing tokenization in all datasets. In addition, the proposed method outperforms
the existing method in terms of identifying appropriate tokenization for machine
translation tasks [37].

This study also shows that the proposed method is applicable to a downstream
model already trained as a postprocessing model. After the downstream models
are trained on the downstream task, the proposed method is applied to refine the

tokenization specialized for the model and task. Experimental results show that

the proposed method improves the performance even in postprocessing on both

text classification and machine translation.

1.4 Contributions

This study provides the following contributions:

» Proposes two novel methods to optimize tokenization for both downstream
tasks and downstream models.

o The first approach of the proposed method can optimize tokenization using
sentence vectors corresponding to multiple tokenization candidates.

o The second approach extends the first approach and is applicable to various
NLP tasks because of its simplicity.

o The proposed method is applicable to various downstream models even if
it does not have any trainable parameters, such as in an already trained

downstream model.

o Experimental results show that the proposed method improves the perfor-
mances on both text classification and machine translation tasks.

o The obtained tokenizations by the proposed method are different depending
on the characteristics of the downstream task and model.

1.5 Thesis Outline

The remaining sections of the thesis can be summarized as follows.

Chapter 2: Related Work and Preliminary

Chapter 2 overviews related studies on tokenization. The differences between the
proposed method and those from relevant studies are described in detail. This
chapter also provides basic knowledge about word segmentation and tokenization
in NLP. Specifically, unsupervised word segmentation, which is most relevant
to this study, is explained at length. In addition, this chapter introduces two

downstream tasks that are common in NLP and that are used in the experiments
conducted in this study, namely, text classification and machine translation. This
chapter also describes recent popular architectures used to solve these downstream
tasks.

Chapter 3: OpTok: Optimizing Tokenization for Text Classification

This chapter introduces the first approach of the proposed method, which we
call “optimizing tokenization” (OpTok). This approach is limited to tasks that
use sentence vectors, such as text classification, but it includes the core idea (i.e.,
weighting elements calculated from tokenization candidates with the probabilities
of each candidate) used in the second approach. This chapter also describes some
techniques for stable training of the proposed method.

Chapter 4: OpTok4AT: Optimizing Tokenization for Various Tasks

This chapter introduces the second approach of the proposed method, which is
based on the first approach and called OpTok for any task (OpTok/AT). The first
approach is extended here to make it applicable to various NLP architectures.
The core idea is the same as that of the first approach, and the extension is
quite simple. This chapter explains the differences between the first and second
approaches and describes the techniques for applying the proposed method to
generation tasks such as machine translation.

Chapter 5: Experiments

Chapter 5 presents experiments conducted to confirm the performance of the
proposed method. This study conducted experiments on text classification and
machine translation tasks. Although both approaches can be used for text clas-
sification tasks, only the second approach is applicable to machine translation
tasks.

Chapter 6: Discussion

Chapter 6 presents an analysis of the proposed method, including the effects of
hyperparameters on the model’s performance. Quantitative and qualitative anal-
yses of actual tokenization obtained by the proposed methods are also discussed.

To confirm the behavior of the proposed method, this study conducted additional
experiments using a simple downstream model that includes logistic regression.
In addition, the chapter describes the technique for using the proposed method
effectively on machine translation tasks. This chapter provides the observation on
the experimetns under specific postprocessing settings on both tasks and under
milti- and cross-task settings.

Chapter 7: Conclusion

This study on optimization of tokenization for downstream tasks is summarized
in the final chapter. In addition, remaining problems and other issues, the study’s
limitations, and future directions of this research are all briefly discussed.

2 Related Work and Preliminary

This chapter reviews studies that have tackled the problem of tokenization.
Specifically, the following Section 2.1 introduces two related studies that tack-
led unsupervised word segmentation and the problem of acquiring appropriate
tokenizations.

The later part of this chapter introduces the basic knowledge to capture the
core idea of the proposed method. This research is strongly related to existing
studies on unsupervised word segmentation, where this study identifies appropri-
ate tokenizations without any supervisory signal of tokenization itself. Inspired
by subword regularization, the proposed method also uses a technique of stochas-
tic tokenization for stable learning. This chapter explains the concepts of unsu-
pervised tokenization and subword regularization and introduces two downstream
tasks. This study is designed to improve downstream tasks by exploring appropri-
ate types of tokenization based on the downstream task and model. Accordingly,
this chapter presents sample text classification and machine translation tasks in
NLP and explains the general architecture for these downstream tasks.

2.1 Related Work on Tokenization

2.1.1 Unsupervised Word Segmentation

This study is highly relevant to unsupervised word segmentation because, un-
like in supervised word segmentation tasks, the proposed method does not use
supervisory signals of tokenization. Instead, the proposed method trains the to-
kenization model with the supervisory signals of the downstream task. Thus,
this setting more closely resembles an unsupervised rather than an supervised
word segmentation task. The most well-known method of unsupervised word

segmentation involves using a language model.

Deligne and Bimbot [21] introduced a language model for segmenting input
sequence using a multigram language model. They trained the language model
with an expectation—maximization (EM) algorithm using a forward-backward
algorithm over the possible tokenization. Creutz and Lagus [18] introduced a
method to find morphemes (subwords) in words using a language model-based
algorithm. This method is known as Morfessor, and Virpioja et al. [113] extended
this approach as Morfessor 2.0. Goldwater et al. [29, 30] proposed a Bayesian
framework for unsupervised word segmentation using unigram and bigram lan-
guage models. They estimated the parameters of the language model using Gibbs
sampling only from the raw corpus without the supervisory signal of tokenization.
Mochihashi et al. [72] followed this study and proposed a method that employs
the nested Pitman—Yor process for the language model, which uses more long
n-gram dependencies. They also exploited Gibbs sampling in estimating param-
eters. Uchiumi et al. [111] modified this architecture for joint unsupervised word
segmentation and part-of-speech tagging. Zhikov et al. [130] proposed another
approach using bidirectional character-level N-gram language models to detect
word boundaries. Unsupervised word segmentation using a language model has
received attention recently as a tokenization tool for neural networks. For exam-
ple, Kudo and Richardson [60] developed SentencePiece composed of the unigram
language model for tokenization to tokenize texts for the inputs of neural net-
works. SentencePiece estimates the language model using the EM algorithm.

Another means of unsupervised word segmentation is to use a data compression
technique. Teahan et al. [107] proposed a method of unsupervised word segmen-
tation for Chinese using prediction by partial matching (PPM). In recent NLP, a
method using byte-pair encoding (BPE) [95] is now the most commonly used in
this area.

WordPiece [32] is another well-known method of tokenization. This method
tokenizes a sentence into words using a greedy longest-match-first strategy known
as maximum matching [83]. Inspired by the Aho—Corasick algorithm [2], Song
et al. [98] introduced a fast algorithm for WordPiece tokenization by organizing
vocabulary using a trie [25] with cache.

Some researchers have recently tackled unsupervised word segmentation using a
language model through neural networks. The most popular approach is a method
using character-based language models [52, 53]. Sun and Deng [103] proposed a
method using a long short-term memory (LSTM)-based character language model

10

known as a segmental language model. Wang et al. [115] extended this idea by
using a bidirectional language model.

The current study is in this category of unsupervised word segmentation using
a language model and includes neural networks in the design of the language
model.

2.1.2 Studies Identifying Appropriate Tokenization

Numerous studies have improved NLP tasks in terms of tokenization. The main
problem of conventional tokenization in NLP tasks is that only a single pattern
of a tokenization is used based on the predefined tokenizer. Two well-known
approaches to handle the tokenization problem on NLP tasks are introduced
herein: 1) feeding the multiple tokenization patterns into the downstream model
simultaneously, and (2) sampling tokenization candidates for each training epoch
such that various tokenization patterns can be used for the training.

The first approach attempts to prevent segmentation errors by encoding mul-
tiple tokenizations jointly. Gong et al. [31] introduced multiple granularities of
word segmentation tasks into Chinese corpora. Recent studies have investigated
Lattice LSTM, which expands LSTM to enable multiple tokenizations to be taken
as a lattice [16, 127, 123]. The calculation flow of LSTM cells was modified to con-
sider directly the different granularities of the tokenization. Xiao et al. [118], Li
et al. [65] followed this study by using a Transformer-based [112] architecture in
which the attention mechanism was modified. Srinivasan et al. [100] modified
the LSTM-based architecture for machine translation tasks to handle multiple
granularities of tokenization.

The second approach makes the downstream model robust against tokenization
errors by using sampled tokenization in each training step. This is a well-known
technique called subword regularization [59]. The original study of subword reg-
ularization sampled tokenizations based on a unigram language model-based to-
kenizer called SentencePiece [60], which was trained on a training corpus using
the EM algorithm. The aforementioned study demonstrated that training models
with various tokenizations using subword regularization contributed to improved
machine translation performance. Provilkov et al. [90] followed this approach by
using subword regularization for BPE [95], which is widely used in NLP. Their
method, known as BPE-Dropout, samples tokenization by randomly dropping

11

the merge operation in the BPE process. BPE-Dropout has a simple concept,
but the experimental results demonstrated that it is competitive with the origi-
nal subword regularization using SentencePiece. Hiraoka et al. [39] reported that
subword regularization is useful for improving the performance of text classifica-
tion tasks. They also proposed an additional technique of subword regularization
that updates the language model for sampling tokenization during training. They
scheduled a variety of sampled tokenizations by updating the language model so
that a greater number of tokenizations could be used at the beginning of training
and fewer at the end.

Optimization of tokenization has attracted attention mainly in the field of
machine translation. For statistical machine translation, NieBen and Ney [80] and
Goldwater and McClosky [28] attempted to obtain effective tokenization using
handcrafted linguistic information. Some studies [120, 17, 78, 71] have attempted
to optimize tokenization using certain criteria for machine translation, such as
using a simple alignment model like the IBM model 1 [9]. Xiao et al. [119] directly
tackled the problem of optimizing word segmentation for machine translation
tasks by incorporating a tokenization module into the machine translation module
using some handcrafted features.

Recent studies have also tackled this issue for generation tasks using neural
networks. Gowda and May [33] analyzed the optimal granularity of tokenization
on neural machine translation. Deguchi et al. [20] reported that using tokeniza-
tions composed of a similar number of tokens in the source and target sentences
contributed to improved performance of machine translation, and Ho and Yvon
[40] produced results supporting these findings.

Salesky et al. [93] developed incremental BPE, which automatically defines the
number of BPE merge operations for neural machine translation. Their method
iteratively trains and evaluates the downstream model for machine translation
tasks with certain steps of the BPE merge operation; it then stops the opera-
tion based on the performance of the downstream model on the validation split.
The aforementioned study inspired the proposed method in terms of using the
loss values for the training of the tokenizer. He et al. [37] proposed a neural
architecture to identify a better subword sequence of the target corpora in ma-
chine translation based on the tokenization of the source corpora by enhancing
the study in Chan et al. [13]. They identified improved tokenization using a
Transformer-based architecture that encodes characters to subwords conditioned

12

by the source tokenization. The current study differs from this research in that
the proposed methods are applicable to various neural networks and optimizes
the tokenization directly using only backpropagation from the training loss of the
downstream tasks without any handcrafted criteria. In addition, the proposed
method can optimize tokenization depending on the downstream model unlike
previous research.

Some studies have shown that the multitask learning of word segmentation
and other tasks help to improve NLP performance. In Japanese NLP, word seg-
mentation is traditionally solved accompanied with part-of-speech tagging as the
morphological analysis task [58, 76, 73, 109]. Recent work has reported that the
joint learning of word segmentation, part-of-speech tagging, and lexical normal-
ization improves normalization performance [38]. Peng and Dredze [86] used the
example of a Chinese dataset to simultaneously train a model for named-entity
recognition and word segmentation tasks. Two other studies demonstrated that
the joint training of word segmentation and part-of-speech tagging tasks helped
improve the performance of both tasks on a Vietnamese dataset [77] and Chinese
dataset [108]. This study is different from studies on multitask learning that
used supervisory signals for word segmentation. Specifically, this study optimizes
tokenization only from information of the downstream task without using any

supervisory signals about tokenization.

2.2 Preliminary of Unsupervised Word

Segmentation

Because tokenization (or word segmentation) is a fundamental problem in NLP,
several studies on tokenization have been conducted. Let s = ¢;...c,,...cy be a
sentence composed of N characters. This study defines the word “tokenization”
or “word segmentation” as the process of converting s into a sequence of tokens
s' = wy...wy,...wy, where M is the total number of tokens in s’. This study
mainly uses “tokenization” to indicate this process and denotes the tokenized
sequence s’ by the word “tokenization.” The term “word segmentation” is used
to indicate the task of tokenization in which we train and evaluate a tokenization
model.

One popular method of tokenization is the dictionary-based approach. Many

13

researchers have tackled the problem of controlling tokenization for the down-
stream task, as appropriate tokenization contributes to improved performance of
the downstream task. In fact, as a feature selection process, the dictionary-based
approach enables easy control of tokenization and is effective for use with NLP on
formal text corpora such as newspapers. However, dictionary-based tokenization
has the critical problems of portability and maintainability. To achieve appro-
priate tokenization for a downstream task, we must prepare a unique dictionary
based on each task and language. Particularly for NLP with informal text such
as short-text SNS, preparing the dictionary to include informal expressions and
for low-resource languages is not easy. In addition, dictionary-based tokenization
produces the problem of data sparseness in the training of the downstream model
because the volume of the dictionary vocabulary becomes large and contains many
low-frequency words.

In supervised word segmentation, a tokenizer with trainable parameters is
trained using a manually annotated supervisory signal. Although this approach
avoids the problem of maintaining the dictionary, creating the annotated data is
still expensive.

To address these problems of dictionary-based and supervised tokenization,
researchers have studied unsupervised tokenization methods that require neither
the dictionary nor supervisory signal for tokenization. Although tokenization is
not always appropriate for the downstream task!, the unsupervised tokenization
method can acquire vocabulary and tokenization automatically from a given raw
corpora. In addition, because the popular methods of unsupervised tokenization
are based on information theory and a language model, they can avoid using low-
frequency words when performing tokenization. This characteristic contributes
to addressing the problem of data sparseness. The following section introduces
two well-known methods of unsupervised tokenization: one that uses BPE and
another that employs a language model such as SentencePiece.

2.2.1 Byte Pair Encoding

Byte Pair Encoding (BPE) [95] is a well-known method used to perform un-
supervised tokenization. BPE was initially developed as an algorithm for data

IExploring the appropriate tokenization under unsupervised tokenization is the main focus of
this research.

14

compression [26], but it can be used to tokenize natural language. Algorithm 1
outlines the process of BPE.

The tokenization process of BPE involves two iterative operations, namely, a
counting operation and a merge operation. First, BPE splits the given corpus
into a sequence of characters (Line 1) and then counts all token pairs (bigram)
in the split corpus as the counting operation (Line 4). Second, BPE merges the
most frequent token pair in the corpus as the merge operation (Line 5). Then,
the counting operation of the next iteration runs for the corpus, including the
merged pair. BPE continues this iteration until the specified maximum number
of iterations or the total number of words in the vocabulary words reaches the
specified value.

For example, given a raw sequence “abcabedabb”, BPE first splits the sequence
into characters such as “a/b/c/a/b/c/d/a/b/b” and counts the number of pairs
as “ab”:3, “bc”:2, and so on. BPE then merges the most frequent pair “ab”
in the sequence as “ab/c/ab/c/d/ab/b” and counts the number of pairs again
(e.g., “abc™:2; “cab”:1, and so on). BPE continues to count and merge the paired
tokens iteratively.

The advantages of BPE are the simplicity of the algorithm, reproducibility,
and controllability of the vocabulary volume. Because the merge operation is
based on the frequency of the tokens, low-frequency tokens are represented as
a sequence of short tokens called subwords, unlike dictionary-based tokenization
that uses long and low-frequency tokens.

Algorithm 1 Algorithm for Byte Pair Encoding

. Sequence of Characters: s’ = ¢;...cy
: K + Maximum Number of Marge Operation
: for k=0 to K do

A <+ Frequency of Bigram in s’

s' <= Merge Bigram w in ¢’

1
2
3
4
5. w < Most Frequent Bigram in A
6
7: end for

8

. return s

15

2.2.2 Tokenization with Language Model

Although BPE is a reasonable algorithm in terms of simplicity and portability,
it has a problem in which the acquired tokenization often contains tokens that
do not resemble a natural language. Because BPE merges the pairs of tokens
deterministically, it cannot remove merged tokens from the vocabulary list even
if it is unnatural for humans. For example, the word “preserve” includes two
morphologies, “pre” and “serve”; and the subword tokenization should be the
same as the morphological boundary. However, once BPE merges the frequent

b

subword “res” in this word, the word is tokenized as “p/res/e/r/v/e,” and we
cannot split “res” after this merge operation. In other words, we cannot use the
tokenization “pre/serve” once merging of “res” has occurred.

One solution for this problem is an unsupervised tokenization method using
a language model. The language model is a system for storing the probabilities
of word occurrences in the corpus. For example, the probability of a word w is
represented in a unigram language model by simply counting the frequency of

the word as

count(w, D)
S wey count(w, D)’

p(w;0p) = (2.1)
where D and V are a corpus and vocabulary, respectively, count(w, D) indicates a
function that returns the number of tokens w in the corpus D, 6 denotes parame-
ters of the unigram language model, and 6p represents the parameters estimated
over the corpus D. Using the unigram language model, we can calculate the
probability of the tokenization s’ by

p(s';0p) = H p(w; 0p). (2.2)
wes’

If we know the ground-truth probabilities of words p(w;€p) in the corpus, we
can tokenize a sentence by finding the most plausible sequence: argmaxp(s’;0p).
Although we can calculate the probabilities of all possible tokenizations s’ to find
the most plausible tokenization, researchers have employed a dynamic program-
ming method called the Viterbi algorithm (see Algorithm 2) for the efficient
calculation. In Algorithm 2, a represents an array that stores the best scores

for each index and b stores the previous index for the backtrace. In addition,

16

a; denotes an ¢-th element in the array a, and s;,; indicates a substring consist-
ing of s that starts from a j + 1-th character and ends with an i-th character,
55 = Cj41.--Ci-

However, in unsupervised tokenization, we cannot know the gold probabilities
of words because the corpus D is not tokenized, and we cannot count the number
of words in this type of untokenized corpus. Therefore, the probability of words
p(w; 0p) can be estimated using techniques such as Gibbs sampling and the EM
algorithm.

Estimation using Gibbs Sampling

In Gibbs sampling, the parameters fp are estimated by iterative sampling with
the tentative tokenization. Let Dj 3 s} be a set of sentences in D > s tokenized
with parameters 0p, of the k-th iteration. In Gibbs sampling, the parameters

9,;);c are defined as

0p; = count(w, Dy), (2.3)
(wiOpy) = D (2.4)
p yVDy) — Zw HD;C’UA}. .

First, we initialize the vocabulary Vj_q with a reasonable number of tokens (e.g.,
a vocabulary list containing all tokens that appear more than a specified number
of times in the corpus). Second, we randomly tokenize the corpus Dj,_, using the
initialized vocabulary and set the initial parameters 6p; by counting the num-

ber of tokens in the randomly tokenized corpus (e.g., Op: ,, = count(w, D;_,)).

k=0’
Following initialization, we iteratively select a sentence from the corpus and re-

tokenize it by sampling the tokenization with a tentative parameters. The ten-

tative language model egf) is thus created in which \s)_; indicates element
k—1

exclusion of s}_; by removing several tokens consisting of previous tokenizations

in the sentence w € sj,_; from the parameter fp, as follows:

(\sh_1)
Op " ' = 0p;_,w — count(w, S 1) (2.5)

We then sample a new tokenization of the sentence), from the tentative parame-

ter 9%;’“;1)

Section 2.3. Finally, we create the next parameter fp,; by adding to the tentative

using the forward-filtering backward-sampling algorithm described in

17

Algorithm 2 Viterbi Algorithm for Unigram Language Model

NN N NN NN N e e e e s e e
NG Wy B 9 0 gk w2 O

Sequence of Characters: s = ¢;...cy
Vocabulary: V'
Maximum Length of Token: L
Parameters of Unigram Language Model: 6p
a < Zeros with Size of N + 1: aq, ...,ay
b < Zeros with Size of N 4 1: by, ..., by (bg is not used.)
forn=1to N do
for [=1 to min(n, L) do
W 4= Sp_in
if w e V then
t @, — logp(w; Op)
if a,, <t then
a, <1t
b, <+~ n-—1
end if
end if
end for

: end for

. 8/ « Empty List
i+ N

- while 0 < i do

J < b
Add S to s’
144

. end while
. s’ + Reversed s

. return s’

18

)

parameter 953\:’“;1 the proper number of tokens that consist of the newly sampled

tokenization of the sentence as follows:

\kl)

01w = O T .+ count(w, s;,) (2.6)

Through the process of sampling tokenization and recreating parameters itera-
tively, the parameters 6, become close to the ground truth, gradually reflecting
the original corpus 0p.

In addition to parameter estimation, we can construct a smaller vocabulary
by truncating tokens during the iteration. Specifically, at each end of the itera-
tion, we discard tokens whose probability is lower than a specified threshold (e.g.,
p(w;0p:) < 7). Reducing the size of the vocabulary using this technique is es-
sential for unsupervised tokenization because the initial vocabulary often contains
numerous tokens. Algorithm 3 describes this process using Gibbs sampling.

Estimation with EM Algorithm

Another means of estimating the parameters 6p is to use the EM algorithm, which
updates parameters with a likelihood over the current parameters [21]. For the
EM algorithm, the parameters at the k-th iteration are denoted as 9}’,“’, and 9%“)
is defined as

0%, = p(w), (2.7)
(2.8)
where Y ,cp 9%‘7’)“} = 1. Note that p(w) itself is estimated as a parameter, unlike

in the Gibbs sampling previously described. We then calculate the conditional
likelihood of tokenization for a sentence in the corpus as

L s; 9 =] ¢9Dw, (2.9)
wes’
z(s;e%“’): S L5, s00), (2.10)
s'eS(s)
Z(s, 5,00

Z(s'|s;0%)) = (2.11)

L(s:0%)

where S(s) denotes a function returning possible tokenization candidates of s.
The auxiliary function Q(k, k + 1) for the updated version of the EM algorithm

19

Algorithm 3 Estimation of Unigram Langauge Model with Gibbs Sampling

1: 7 < Threshold for Truncating Tokens

2: D < Raw Corpus

3 k<+ 0

4: Initialize V,, with Reasonable Size

5. Dj. <— Empty List for Tokenized Sentences
6: QDZ < Zero Parameters for k-th Iteration

7. for s € D do

8: s). < Random Tokenization of s under Vj
9: Add s, to Dy,

10: for w € s, do

11: Op; w < Op1 w + count(w, s},)

12: end for

13: end for

14: K < Maximum Iteration of Update

15: for k=1 to K do

16: s)_q < Select Tokenized Sentence from Dj_,
17: 953\5511) ~Op,

18: forw e s;,_, do
o 05k g0y o
~ p 0", — count(w, s))
20: end for
21: s}, < Sampling Tokenization of s using Qgiil)
. (\sh_)
22 Op; < 0p "
23: for w € s} do
(\s%_1)
24: Op; + GD;:lfw + count(w, s},)
25: end for

26: forw e V,_; do

27 if 7 <p(w;0p;) then
28: Add w to Vj,

29: end if

30: end for

31: end for

20

over the entire corpus from the iteration k to k + 1 is represented as

Qlkk+1) =3 3 L(s]5,0%)log L(s, 505, (2.12)

seD s'eS(s)

The parameter of the word 9%‘:21) can be re-estimated at the iteration k + 1 by

Q(Dk+1)

maximizing Q(k, k + 1) over as follows:

QD) _ >seD Lses(s) count(w, s').L(s']s; Gg))
Dw
Yeen Lwes(s) count(s') L (]s; 0)

where count(s’) returns a total number of tokens in s'.

: (2.13)

Although we can re-estimate the parameters using (2.13), the explicit calcula-
tion of all possible tokenizations s’ € S(s) requires considerable time and compu-
tational resources. Therefore, researchers have employed the forward-backward
algorithm [101] to calculate the likelihood of words over possible tokenizations.
Let a,; be a forward variable corresponding to a [character-length word ending
at the n-th character in the sentence. We can calculate a,; recursively from the
beginning of the sentence by

L

ap =Y Qs (2.14)
=1

Qnl = an—lp(sn—l+1:n; 9D)7 (215)

where L is the maximum length of tokens in the vocabulary and may be specified
as a hyperparameter. Note that ag = 1. Algorithm 4 summarizes the calculation
of the forward variable for s.

The backward variable (3, corresponding to the likelihood of tokenizations on
the last N —n characters in the sentence can also be defined, where N denotes the
number of characters that comprise the entire sentence. Similar to the forward
variable, we can also calculate the backward variable recursively from the end of
the sentence:

6n = g(anrl:T; HD) (216)
L

= Zp(3n+1:n+l; eD)ﬁnJrl; (217)
=1

where Sy = 1. Algorithm 5 illustrates the calculation of the backward variable

for s.

21

Using the forward variable «, we can define the third variable ~,, corresponding
to the average number of tokens in the tokenization of a part of the sentence sy,

as

(2.18)

where 79 = 0. Algorithm 6 outlines this calculation.

Through dynamic programming of the forward-backward calculation, (2.13)
can be rewritten with o®), 3% and 4*) can be calculated with the parameter at
the iteration A, thereby avoiding explicit calculations of all possible tokeniza-
tions.

n 1 Zle agzkl)ﬁfmk)]l(snfl+1:n = ’LU)

k+1
w J , (2.19)
B =5 FONG

1 if spji1m =w
1(Sp_ps1m = W) = s (2.20)
0 otherwise

Algorithm 7 describes this process. To train the parameters with the EM algo-
rithm, we can also truncate tokens whose probability is lower than the threshold
as well as the training using Gibbs sampling (Section 2.2.2).

SentencePiece [60] has recently proven to be a popular system that uses the
unigram language model for tokenization. SentencePiece iteratively estimates the
parameter of the language model using the EM algorithm and reduces the size of
the vocabulary until it reaches the specified value.

2.2.3 Tokenization Differences by Methods

This subsection demonstrates differences in tokenization by the different methods.
A tokenization model of BPE? and SentencePiece® are trained on a raw English
corpus of “Alice’s Adventures in Wonderland”*. The entire content of the novel
were used to produce the tokenization model and tokenized the first two sentences
using the trained models.

’https://github.com/VKCOM/YouTokenToMe
Shttps://github.com/google/sentencepiece
‘https://www.gutenberg.org/ebooks/11

22

https://github.com/VKCOM/YouTokenToMe
https://github.com/google/sentencepiece
https://www.gutenberg.org/ebooks/11

Algorithm 4 Forward Calculation with Unigram Language Model

Require: Sequence of Characters: s = ¢;...cy
Require: Parameters of Unigram Language Model: 6p
L + Maximum Length of Tokens in Vocabulary
a < (N+1)x (L+1) Array Filled with Zeros (ag,1. and ;. are not used.)
g < 1
for n=1to N do
for I =1 to min(L,N —n+1) do
W 4 Sn_in
if 0 < p(w;60p) then
Qi o p(w; Op)
end if
end for

H
<

. end for

—=
N =

: return o

Algorithm 5 Backward Calculation with Unigram Language Model

Require: Sequence of Characters: s = ¢;...cy
Require: Parameters of Unigram Language Model: 6p
1: B« (N +1) Array Filled with Zeros

2: By + 1

3: forn=N—1to0do

4: b+ 0

5. for!=1tomin(L,N —n) do
6 W € Spen+l

7: if 0 < p(w;0p) then

8 b < b+ p(w;0p)Bni
9 end if

10: Bn < b

11: end for

12: end for

13: return [

23

Algorithm 6 Calculation of Gamma with Forward Variable

Require: Forward Variable: «
1: 7 < N + 1-Sized Array with Zeros
2: forn=1to N do

3 g+ 0

4 for [=1to L do
5: g g4 Yt
6 end for

T Y149
8: end for
9: return -y

Table 2.1 lists differences in tokenization used for the corpus. The tokenization
by SentencePiece can correctly split punctuations because it relies on the language
model, whereas BPE cannot split suffixes such as “ing,” in 6 lines. Another
example is the tokenization of “making” in the second sentence. BPE splits this
word into “ma” and “king”, whereas SentencePiece divides the word into “mak”
and “ing”. The tokenization of SentencePiece is morphologically correct because
it includes the suffix “-ing”. By contrast, BPE merges “king” in “making” because
“king” frequently appears in the novel. BPE cannot change the merged tokens
after it merges the two tokens depending on the frequency. These differences
in tokenization affect the performances of the different NLP architectures. For
example, Bostrom and Durrett [6] showed that a system using SentencePiece is
superior to one using BPE for some English NLP tasks.

24

Algorithm 7 Estimation of Unigram Langauge Model with EM Algorithm

1:
2:
3:
4:
5:
6:
T
8

9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:
32:
33:
34:

Training Data: D > s
Token Truncation Threshold: 7
K + Maximum Number of Update Iteration
k<+0
Vi < Initialize Vocabulary with Reasonable Size of Tokens
Qg) < Randomly Initialize Parameters
for £k =1to K do
0 < Zeros
for s € D do

a «+— Forward(s, «9%))

B < Backward(s, 053’“))

v < CalcGamma(«)

for w € V}, do

u<+ 0
forn=1to N do
for [=1 to min(L, N —n) do
if s,,_i41, = w then
U= U+ iy
end if
end for

U
Boyn
end for

O, < O + 1
end for

U <—

end for
6 ﬁ
G(L’f) 40
for w e V,,_; do
if 7 < p(w; 6’%)) then
Add w to V},
end if
end for
end for
return Qg{)

25

BPE

SentencePiece

Alice was beginning to get very ti red of
sit ting by her s is ter on the b an k
, and of ha ving nothing to do : once
or tw ice she had p eep ed into the b
ook her s is ter was read ing, but it
had no pi ct ures or con ver sation s
in it, “and what is the use of a b ook
,”” thought Alice “w it h out pi ct ures

or con ver sation s ?”

So she was con s id er ing in her o w n
m ind (as well as she could , for the h
ot day made her fee 1 very s leep y and
st up id) , w he ther the pleas ure of
ma king a d ais y ¢ ha in would be w
ort h the tr oub le of getting up and pi
ck ing the d a is i es, when sudden ly a
White Rabbit with p ink eyes ran close
by her.

Alice was beginning to get very ti red
of sit ting by her sister on the bank |,
and of hav ing nothing to do : once
or twice she had p e e p ed in to the
book her sister was read ing , but it
had no picture s or conversation s in
it , ¢ and what is the use of a book , ”
thought Alice “ w it ho u t picture s
or conversation s 7”

So she was consider ing in her own
mind (as well as she could , for the hot
day made her feel very sleep y and st
u p id) , whe ther the plea s ur e
of mak ing a d a is y ch a in would be
wor th the trouble of getting up and
pick ing the d a is ies , when suddenly
a Whi te Rabbit with p ink eyes ran

close by her .

Table 2.1: The first two sentences of “Alice’s Adventures in Wonderland” [12]
tokenized by BPE and SentencePiece. I created the tokenization model

whose vocabulary size was 1,000 for both methods.

The bold font

highlights the differences in tokenization between the methods.

26

2.3 Preliminary of Subword Regularization

When inputting natural language into an NLP architecture, we do not use the
original surfaces of words such as those in the phrase “colorless green ideas” but
use a sequence of vocabulary identifications (IDs) corresponding to each word
in the phrase (e.g., “819 3498 1204”). Because vocabulary IDs are assigned sys-
tematically regardless of the surfaces of words, the IDs of words are entirely
different even if some words are apparently similar. For example, although the
word “ideas” and the substring “idea” have a similar surface, they have unrelated
IDs (e.g., “1204” and “596”) in most cases.

Because of these differences in NLP architectures, even a small difference in to-
kenization results in a completely different sequence of vocabulary IDs, as shown
in Table 2.2. The table shows that we can express a sentence using various
sequences of vocabulary IDs, but this is ambiguous for input into the NLP archi-
tectures. This ambiguity produces a gap between the training and inference of
the NLP architecture, and this causes an inefficient inference. For instance, an
architecture trained with the word “ideas” cannot handle an evaluation sequence
that includes the word “idea” even though the system knows the similar word
“ideas.” This is because the two tokens have completely different vocabulary IDs.

Kudo [59] proposed subword regularization to address this problem, where the
ambiguity is exploited for regularization to make the NLP architecture robust
against differences in tokenization. Using subword regularization, we train the
NLP architecture with various tokenizations sampled for each training epoch. In
other words, we aim to maximize the marginal likelihood of the prediction by the

architecture through training with subword regularization:

Lrnarginal(0) = D Eyp(srjs) [log p(t]s’;)], (2.21)
seD
where 6 denotes parameters of the NLP architecture and ¢ is a supervisory signal
corresponding to the input s.

To sample the tokenization from p(s'|s), Kudo [59] originally proposed a method
employing the unigram language model for unsupervised tokenization of Senten-
cePiece. Provilkov et al. [90] followed this research and proposed a method of
subword regularization for BPE tokenization called BPE-Dropout. This section
describes BPE-Dropout and the original method of SentencePiece for subword
regularization.

27

Tokenization Vocabulary ID Sequence

colorless / green / ideas 819 3498 1204

color / less / green / idea / s 934 14851 3498 596 43

col /or /less /gre /en /id /ea /s | 772 124 14851 501 30 4194 3332 43

Table 2.2: Differences in vocabulary IDs by tokenization of “colorless green

ideas”.

2.3.1 BPE-Dropout

When sampling a tokenization from the distribution p(s|s) in the equation (2.21),
we need a probability of tokens consisting of s’ (i.e., p(w; D) over the corpus D).
However, the unsupervised tokenization process of BPE does not use any language
model that has word probabilities because BPE tokenization consists of simple
operations, namely, the counting and merging of tokens, as described in Section
2.2.1. Therefore, Provilkov et al. [90] proposed a method called BPE-Dropout to
sample tokenization by modifying the merging process of BPE tokenization.

BPE-Dropout samples a candidate of tokenization by randomly skipping the
merge operation in BPE tokenization using a dropout rate paropout- Algorithm 8
describes the tokenization process with BPE-Dropout. Compared to the original
process of BPE as shown in Algorithm 1, the only difference is the dropout part of
the merge operation (lines 6 to 11). We can control the granularity of tokenization
by changing the dropout rate payopout- The higher dropout rate pgropout leads to
more fine-grained granularity with tiny tokens because most merging operations
are skipped. In addition, BPE-Dropout with paropous = 1.0 yields a sequence of
characters, and pgropout = 0.0 is exactly the same tokenization as in the original
BPE process.

2.3.2 Subword Regularization with Language Model

Kudo [59] originally proposed subword regularization using a unsupervised to-
kenization method called SentencePiece. In contrast to BPE-Dropout, p(w; D)
can be calculated using the language model 6 for the tokenization process. With
this language model, a single tokenization from the distribution can be sampled:

, p(si; D)*
. ~ 2.22
S e 22

28

Algorithm 8 Algorithm for BPE-Dropout

1: Sequence of Characters: s’ = ¢;...cy

2: Pdropouts <— Dropout Rate

3: K < Maximum Number of Marge Operation
4: for k=0 to K do

5. A <« Frequency of Bigram in ¢’

6: forae Ado

7: p < Sample Value [0, 1] from Uniform Distribution
8 if p < Pdropout then

9: Remove a from A

10: end if

11: end for

12: w < Most Frequent Bigram in A

13: s’ < Merge Bigram w in ¢

14: end for

15: return s’

where s} is the i-th most plausible tokenization of s (1 < ¢ < K), and K is a
hyperparameter to limit the number of tokenized candidates. In other words, we
sample tokenization from K-best candidates of tokenization. a is also a hyper-
parameter that controls the smoothness of the distribution for the sampling. A
smaller a makes the distribution more uniform such that we can sample a greater
variety of tokenizations, whereas a larger a causes the distribution to peak more
often, from which we can sample the most plausible tokenizations more frequently.

We can find the K-best candidates of tokenization using forward filtering-
backward A* algorithm [74]. In this algorithm, we first calculate the forward
variable « for the possible tokenization, as described in (2.15). We then apply
A*-search for a from the end of the sentence. Algorithm 9 overviews the backward
A*-gearch for the K-best tokenization.

We can theoretically specify K = oo for the sampling of tokenization. However,
because the number of possible tokenizations of the sentence increases to O(2V),
calculating all possible paths in the backward A*-search consumes an imprac-
tical amount of time. Therefore, Kudo [59] employs forward filtering-backward
sampling [94] to sample one tokenization from all possible candidates directly.
We sample a token from the end of the sentence using the forward variable «

29

Algorithm 9 Forward Filtering-Backward A* Algorithm

N NN RN N DN e e e e e e e e

26:
27:
28:

Sequence of Characters: s = c¢y...cy
Parameters of Unigram Language Model: 0p
a < Forward(s, 0p)

S + Empty List to Store Tokenization

n<+ N

@ < Empty List to Store Scores

R < Empty List for Backtrace

141

Q1

R; <+ [N]

: while |S| < K do

j + argmax, (Q;)
for [=1to L do
14—1+1
Qi OéHj—z,le
R; < H;
Add H; — 1 to R;
if R, =0 then
s’ < Empty List
for k = |R;| to 1 do
Add sg,.g, , to s
end for
Add s’ to S
Remove @); and R;
end if
end for
end while
return S

30

in forward filtering-backward sampling while we apply A*-search to the K-best
tokenization for a. Specifically, we sample a token s,,_;.,, which starts from the
n — [4+ 1-th character and ends at the n-th character, depending on the forward
probabilities of tokens ending with the n-th index based on a:

w ~ p(snfl:n|$0:n>7 (223)
Oy
p(sn—l:n|80:n) = o ! . (224)

n

We can sample tokens from the end of the sentence recursively using this equation.

Algorithm 10 presents an overview of the sampling process of tokenization for s.

Algorithm 10 Forward Filtering-Backward Sampling

Sequence of Characters: s = c;...cy
Parameters of Unigram Language Model: 6p
a < Forward(s, 0p)
n< N
while 0 < n do

Sample s,_;., from %

W <— Sn—i:n

Add w to ¢

n<n-—1

end while

H
<

. Reverse s

—_
—_

. return s’

[—t
N

31

2.4 Preliminary of Downstream Task

The goal of this research is to acquire appropriate tokenization depending on the
downstream tasks. Accordingly, this study employs two major tasks in NLP: text
classification and machine translation. This section introduces these tasks and

the general architecture of the neural networks used.

2.4.1 Text Classification

Task Overview

Text classification is a popular task in NLP, which requires that the downstream
model predict the correct label ¢ assigned to a sentence s. For example, in senti-
ment analysis, the model must predict a sentiment label (e.g., positive or negative)
corresponding to the input sentence.

Formally, we train the downstream model for text classification fr¢ using train-
ing data D > (s,t) to maximize the probability of determining the correct label:

p(t]s; Orc) = f(t]s'; 0rc), (2.25)

where s’ is a tokenization of s, and f is a classifier that uses the parameter fpc.
We train the parameters fp¢ to minimize the cross-entropy loss £ against the

correct label:

Z(0rc) = Z log p(t|s; Orc). (2.26)
(s,t)eD
Generally, the classifier with neural networks f is composed of three modules:
a sentence encoder that converts the tokenized sentence into a sentence vector, a
multi-layer perceptron (MLP) that converts the sentence vector to a label-sized
vector, and a softmax function for the label-sized vector. Specifically, the classifier
f is extended as follows:

F(t]s': 6rc) = softmax(MLP(g(s', 0557), gMLPITey) (2.27)

where (-); denotes an operation that extracts an element corresponding to the
label t. 9%38(:), HSF%LP) are parameters for the sentence encoder and MLP, respec-
tively, and they compose O1c. This study employs three general architectures

for the sentence encoder ¢g: an attention-based encoder [46], a BiLSTM-based

32

encoder [131, 50], and the large pre-trained language model-based encoder us-

enc) Q(MLP))

ing BERT [22]. For simplification, the parameters (i.e., QTC,HTC , are

omitted from the equations in the following description of sentence encoders.

Neural Classifier with Attention Mechanism

One simple means of obtaining the sentence vector from a tokenized sentence is
the bag-of-words method [35]. Let v, be a word embedding corresponding to a
word w. We calculate a vector of the tokenized sentence hy with bag-of-words
as follows:

hy = 5l ,| Z Vu,, (2.28)
where w; is an i-th word in the tokenized sentence s’°.

Although the sentence vector calculated with bag-of-words is very simple, a
problem exists in that all tokens in the sentence have the same amount of infor-
mation, as bag-of-words simply averages the word embeddings®. To avoid this
problem, instead of simple averaging, Iyyer et al. [46] used a weighted sum of the
word embeddings as follows:

Uy, = softmax(MLP(MH)([wl...w,»...w‘sl‘]))i7 (2.29)
|s'|

hy = tanh(MLP“ (" ay,v.,)), (2.30)
=1

where MLP#(.) outputs scores for the attention. tanh(-) and MLP®")(.) are a
hyperbolic tangent activation function and MLP to encode the weighted sum of
embeddings. Finally, we use the sentence vector as ¢g(s') = hy in (2.27). Figure
2.1a presents an overview of the aforementioned calculation of the sentence vector.

Neural Classifier with BiLSTM

The classifier with the attention-based encoder is simple and effective because it

exploits word embeddings to calculate the sentence vector. However, it cannot use

5Strictly speaking, we must use one-hot vectors as v,, such that the element corresponding to w
is 1 and is O for the others when referring to this architecture as bag-of-words.
SThere is a variation that we simply sum up the vectors without averaging.

33

(Concat] (Concat] (Concat]

BHY

Dy, Dy, Dy,

BILSTM

(a) Attention Encoder (b) BiLSTM Encoder

Figure 2.1: Two types of encoders using neural networks (attention mechanism
and BiLSTM). Each figure shows a calculation of a sentence repre-
sentation hy using a sequence of word embeddings vy, , Vy,, U, COI-
responding to a sequence of words wy, wsy, w3 in a tokenized sentence

s

word-order information because the sentence vector is calculated as a weighted
sum of the word embeddings. In other words, this type of simple architecture
with averaging or weighted sum of word embeddings cannot distinguish between

sentences that share the same words, such as in the following sentences.
(a) Mary hits John
(b) John hits Mary

Here, the sentence representation of (a) and (b) is the same (e.g., anaryUMary +
OhitsVhits + GJohnUJohn = GJohnVJohn + GhitsUhits + AMaryUMary). Lhis causes a prob-
lem in a text classification task that requires the model to capture the semantic
meaning of sentences.

To address this problem, many researchers have used LSTM [42] for the en-
coder. LSTM recursively encodes a sequence of words with an architecture com-

34

posed of three gates, namely, forget, input, and output. The recursive calculation
of LSTM has five hidden vectors corresponding to each time step n: vectors for
the forget gate f,,, an input gate ¢,,, an output gate o,, an output vector h,,, and
a cell vector ¢,,. These hidden vectors are calculated as follows:

frn = sigmoid(Wyv,,, + Ugh,,_1 + by), (2.31)
i, = sigmoid(W;v,,, + U;h,_1 + b;), ()
o,, = sigmoid(W,v,,, + U,h,_1 +b,), (2.33)
¢, = fnocuq + 1, otanh(W,ov,, + Uch,_1 +b,), (2.34)

(2.35)

h, = o, otanh(c,),

where W, U, and b are trainable parameters for each gate, and v, is a word
embedding corresponding to the n-th word in the tokenized sentence s’. o denotes
the Hadamard product. For the explanation, the aforementioned calculation is
denoted with a function named LSTM(-):

h, = LSTM(vy,, ..., 0y,). (2.36)

Many researchers have reported that we can improve NLP performance by
using two LSTM encoders for the forward direction LSTM and backward direction
LSTM [131, 50]:

|

LSTM(vyy s vy Vusy) (2.37)
i;STM(va, ey Uap) (2.38)

Y

S8
I

STl

Y

The architecture using two LSTMs for both directions is known as BiLLSTM.
Finally, we calculate the sentence vector hy by max-pooling over output vectors
at all time steps:

hy = tanh(MLP® (maxpool(f; @ by, ..., by @ hix))), (2.39)

where @ denotes vector concatenation. Figure 2.1b presents an overview of the
calculation of the sentence vector with BiLSTM.

Neural Classifier with Large Pre-Trained Model

The performances of recent NLP approaches is brought by a model pre-trained on

large text corpora. Specifically, we pretrain a sentence encoder on large text data

35

as a language model. We then train the language model in unsupervised learning
without any annotations. In the training of the language model, we train the
encoder to predict the next word from the previous context. More specifically,
we maximize the probability of the word as conditioned by the context p(wy|s\»),
where s\, is a sequence of words excluding the n-th word from s.

For example, using the BiLSTM-based encoder, we pretrain the encoder with

a bi-directional language model:

—
h\, = LSTM(vy,, ..., Vw,_,) ® LSTM(vy,, Upt1), (2.40)
p(wy|s\,) = softmax(Why,, + b).,, (2.41)

where W is a trainable parameter that converts hy, to a vocabulary-size array,
and b is a trainable bias parameter. As described in (2.37) and (2.38), we en-
code the forward context si.,,_; and backward context sy.,.; with the forward
and backward LSTMs, respectively. We then calculate the probability of the
target word using the concatenation of bidirectional information. The encoder is
pretrained to maximize the probabilities of target words over the large corpus.

This pretraining makes the sentence encoder informative on the large text
corpus. Through these pretrained parameters, the sentence encoder can encode
the sentence with rich information of natural language, contributing to improved
performance on downstream tasks. ELMo [88] is a well-known pretrained encoder
with some layers of BiLSTMs.

The primary pretrained model for most recent NLP is the bidirectional encoder
representations from transformers (BERT) [22]. BERT is a sentence encoder that
uses a Transformer-based architecture. Instead of the recursive encoding of words
such as in BiLSTM, the Transformer-based encoder converts a sequence of words

into a sentence vector in a single step:
h, = BERT (v, , ..., Vuy s (2.42)

where BERT() is an encoder part of the Transformer known as a BERT encoder,
which outputs N hidden vectors (hy, ..., h,, ..., hy), corresponding to input word
embeddings (vy, ..., Up...,vx). The following Section 2.4.2 explains the architec-
ture of the Transformer, as it was originally proposed for machine translation
tasks.

For the pretraining of the BERT encoder, we calculated the probability of a

36

word conditioned by the context as follows:
h\n, = BERT (v, , .., Vw15 Vungasics Vwnsrs o Vwny s (2.43)

where v,,,, 15 @ word embedding corresponding to a special token wyagk indi-
cating a masked token. We can then obtain the probability of the word w,, over
the context s\, by inputting hy, to (2.41) and we can pretrain the encoder as the
language model. The pretraining of the language model with the special token
indicating mask is called a masked language model.

In addition to the masked language model, BERT is pre-trained on another
task known as next sentence prediction. In this task, BERT is trained to predict
whether the given two sentences are neighbors in the original corpus. Let s(;) be
an i-th sentence in the original corpus D. Formally, we maximize the probability
that a sentence s(j) follows a sentence s(;) in the original corpus:

hors = BERT (Vugy g, U, 6005 s Uy 05 Duggp s Uy ()5 -5 U,y ())CLS:
1 N 1 M
(2.44)
p(i+1 = j|sq), s(;)) = sigmoid(Whers + b), (2.45)

where v, and v, are word embeddings corresponding to special tokens for
text classification and the indicator of a sentence boundary, respectively. W and
b are trainable parameters to calculate a score for the next sentence prediction.
wgi) and w%j) are the first words in the tokenized sentences 3/(2') and s’(j) whose
lengths are N and M, respectively. Note that Sl(i) and s’(j) are different from the
similar notation of k-th plausible tokenization of a sentence s.

Once we pretrain the BERT encoder, we obtain the sentence vector hy as
vy = maxpool(BERT (v, , ..., Uy,))- (2.46)

Alternative methods for obtaining the sentence vector are to use average pooling
instead of max pooling or simply to employ the hidden vector corresponding to
WCLs and hCLS [92]:

vy = BERT (Ve g, Uy s - Vuy)CLS- (2.47)

Text Classification for Two Inputs

In the previous explanation of text classification, the focus was on a task that

inputs a single sentence to the model. This was done for the sake of simplicity.

37

However, some tasks require the model to use more than two sentences. For
example, natural language inference (NLI) [7] inputs two sentences to the model,
and the model then predicts whether one sentence s(;) semantically entails the
other sentence s() with three labels: entailment, contradiction, and neutral.

Two options can be used to input two sentences for the text classifier. One
option is a method to input concatenation of two sentences into a single-sentence
encoder:

S(1e2) = S(1) ® WsEP @ S(y), (2.48)

where wggp is a special token indicating a boundary of sentences, and 5/(1) and
522) are tokenized sequences of s(;) and sy, respectively. Note that 3/(1) and s’(2)

are different from the similar notation of k-th plausible tokenization of a sen-

tence si. We input the concatenated sequence s{;4,) to the sentence encoder

= 9(S(192)) and use the sentence vector for the text classification. This

She2)
option is simple but consumes more time for the recursive calculation of a long
concatenated sequence. In addition, this type of long input causes unstable learn-
ing, which is known as the vanishing or exploding gradient problem [41].

The other option is to prepare two unique sentence encoders for each sentence.

hy = 90)(s(), (2.49)
hy, = 92(s(), (2.50)
hy, , =hg ©hy (2.51)

where g(1)(-) and g(2)(-) are different sentence encoders corresponding to the two
sentences. If the language used in two inputs, we can also use the same encoder for
gy(-) and g(2)(-). This study used the latter option for the task of NLI following
the literature [7].

2.4.2 Machine Translation

This study employs machine translation as a downstream task because it is a
famous task of NLP as well as text classification. This section first describes the
task definitions of machine translation tasks and then introduces Transformer,
on which the most recent state-of-the-art models are based.

38

Output Probabilities

t
([Softmax]
I

Linear)
)

N
/-\dd& Norm Je

Decoder
Feed Forvvard] xZ

Add& Norm]-—

(
((
(
(
- N [Multi- Head]

Encoder —-[Add & Norm] Attent|on

I
xZ (Feed Forward | |_T7

([Add & Norm Je

—{ Add & Norm |

I

Multi-Head Multi-Head

Attention Attention

\ Y, \ Y,
E}— Positional Encoding —»EB
(Word Embedding | ([Word Embedding |
I [
Inputs Outputs

Figure 2.2: Outline of Transformer for machine translation.

Task Overview

Machine translation tasks require that the downstream model convert a source
sentence written in one language to a target sentence in another language (i.e.,
English to German). Let s and ¢ be the source and target sentences, respectively.
The tokenized sentences are s = wgsl)...wésl)...wj(\s,/) and t' = wgt/)...wg/)...wg\g).
Machine translation can be formally defined as a task that maximizes a proba-

bility of the translation from s to ¢:

p(tls:0) = |1 pt,]50n, thm_1;0); (2.52)

=k

1

where 6 denotes parameters of the translation model. As (2.52) shows, machine
translation is considered a language model of the target language conditioned by
the source sentence.

39

Transformer

This section introduces a state-of-the-art architecture for machine translation
tasks called Transformer [112]. Figure 2.2 overviews the architecture of Trans-
former. Transformer is a sequence-to-sequence model referred to as encoder—
decoder [104], as it is composed of an encoder f and decoder g. The encoder
converts the input sentence into a vector representation, and the decoder gener-

ates an output sentence from the encoded sentence:

t'=g(f(s)). (2.53)

As Figure 2.2 shows, the encoder part of Transformer consists of two modules:
multi-head attention and feed-forward networks. The decoder part is composed
of three modules: masked multi-head attention, multi-head attention, and feed-
forward networks.

Because Transformer is composed of piles of linear transformations, the ar-
chitecture cannot distinguish the order of the input sequence as well as can the
attention-based encoder referred to in (2.30). Therefore, Transformer introduced
positional encodings corresponding to the position of the n-th word based on pe-
riodic functions. Specifically, when the size of the word embedding v,,, located at
the n-th position in the sentence is d, the positional encoding is a d-sized vector
whose i-th element is calculated as

PE(n, 2i) = sin(-), (2.54)

10000%

n

We then calculate the positional encoded word embedding v, :

PE(n,2i + 1) = cos(

Vo, = Uy, + [PE(n,1),...,PE(n,d)]. (2.56)

Regarding the multi-head attention module, a scaled dot-product attention
that can be considered a single head attention module is described. For a sim-
ple explanation, we consider the attention mechanism of the encoder part for
a sentence s’. This module requires three inputs Q = qi,...,qn,....qn, K =
ki,..k,kx, R=17..,7,, .. 7y corresponding to each word wﬁfl), where

7Q, K, and V are known as a query, key, and value for the input to the attention layer. R and
r are originally denoted as V and v, respectively, in Vaswani et al. [112]. This study uses R
and r to avoid the conflict with the notation of the word embedding v.

40

the sizes of each vector q,, k,, and r, are d dimension vectors, and the sizes of
@, K, and R are N x d. Note also that N = |s'|. Using these inputs, Transformer
calculates the attended vector H = hy, ..., h,, ..., hy using function Attention(-):

H = Attention(Q, R, K), (2.57)
T

Vd

To capture the various aspects of the relation between) and K, Transformer

= softmax()R. (2.58)

employs a multi-head attention mechanism composed of [single head attentions:

H = MultiHead(Q, R, K), (2.59)
= [HYe, .., oHYs, .. .e HO|WO, (2.60)
where H® = Attention(QWS), KW, RW{), (2.61)

where H® is an output of the i-th single head attention whose inputs are con-
verted with trainable parameters W corresponding to each head, and W© is a
trainable parameter to convert the concatenated outputs of each attention mod-
ule. The sizes of trainable parameters Wg), WI(?, and Wg) are d x %, and the size
of W9 is d x d. The inputs for the first layer of the encoder part are the positional
encoded word embeddings @ = K = R = [vy,, ..., Va,] calculated using (2.56),
and those for the second or later layers are Q = K = R = O®*") where O®)
is an output of the previous encoder layer.

The output of the multi-head attention H is converted using a parameterized
feed-forward network accompanied by a layer normalization [3]:

C' = LayerNorm(Q + H), (2.62)
O = LayerNorm(C' + FFN(()), (2.63)

where LayerNorm(-) and FFN(:) are modules for the layer normalization and
feed-forward network, respectively. The FFN(+) is defined using two linear trans-

formations and a ReLLU activation:
FFN(C) = max(0, CW; 4 by)W; + b, (2.64)

where W and b are trainable parameters.
The encoder part of Transformer is composed of layers that include the afore-

mentioned multi-head attention and feed-forward network. Figure 2.2 illustrates

41

the Transformer layers piled Z times for both the encoder and decoder. The final
output of the encoder is vectors O = oﬁem), e 053“0) that are generated by
the last layer of the encoder layer.

The architecture of the decoder part is similar to that of the encoder. We input
the positional encoded word embeddings to the decoder part and calculate the

probability of the next word wﬁf[il from the previous history (e.g., o\ ., o!dec)

corresponding to wgt/), wff;). Unlike the encoder input, we feed only the forward
context to the decoder because the decoder part should be trained as a language
model to generate a sequence of words. Specifically, Transformer realizes the input
mechanism, such as masked multi-head attention, which masks the attention
weight for the elements corresponding to the words after the predicted word. For
instance, the model to predict the m+1-th word masks the attention for elements
at m—+1, ..., M, and then the model is unable to access information from the later
parts of the input sequence.

Another difference of the decoder part is the input of the multi-head attention
module. As Figure 2.2 shows, the multi-head attention module located in the
decoder part receives the output vector O from the encoder as well as the
input inside the decoder. In short, the multi-head attention module takes vectors
Q = 0 K = O R = HEP) for its input. This mechanism is called
the cross-attention (or source-target attention) mechanism [4, 69] between the
encoder and decoder, and it enables the model to generate words in the target
language by considering the encoder information.

42

3 OpTok: Optimizing
Tokenization for Text
Classification

3.1 Model Outline

This chapter describes the proposed architecture for optimizing tokenization
(OpTok). OpTok identifies an appropriate tokenization for a downstream task,
particularly for text classification tasks, using sentence representation. In other
words, OpTok identifies a tokenization that yields a better score for a down-
stream task. OpTok converts a given sentence s into a sequence of tokens in
vocabulary w € V' (i.e., s = wy...w;...wy), where I is the number of tokens in-
cluded in the sentence, and ¢ is an index of the token in the sequence. The
downstream model achieves the best score with s’ among all possible tokenized
sentences. Thus, let ¢(+) be a loss function, z be a ground truth of the downstream
task, and f(-) be the downstream model (i.e., any neural architecture). OpTok
searches the tokenization s’ that minimizes the loss value of the downstream task:
argmin, (g2, /('))).

To search for s’ that satisfies argming (q(z, f(s'))), OpTok is trained based
on the loss value of the downstream task (q(z, f(s'))). Thus, both OpTok and
the downstream model are optimized simultaneously. This is in contrast to a
traditional pipeline approach, which tokenizes a given sentence as part of prepro-
cessing. OpTok generates multiple tokenized sentences as candidates, and OpTok
is trained to assign a high probability to a better tokenization based on the score
of the downstream task. During the inference step, OpTok is configured to output
only the most plausible tokenized sentence, as this reduces computational costs.

Figure 3.1 presents an overview of OpTok with the downstream model during

43

Downstream

Model

?

hs

X
Normalize 0)0)®)
0)(@)[©
p(s1) p(sz) p(s3) hy; hy hy
Encoder

prw)

» A 4
e N-best
Embedding tokenization
A
Neural Unigram Language Model ﬂﬂiﬁﬁéﬁﬁ(%

Figure 3.1: Outline of the proposed method for calculating a sentence vector hg
with the 3-best tokenizations during the training phase. At the in-
ference, OpTok uses the 1-best tokenization as well as general neural
architectures. The arrowed continuous lines indicate the differentiable
paths for back-propagation. We can use various architectures as the
Encoder, which converts a sequence of tokens into a single vector. The
downstream model is the architecture used for downstream tasks (i.e.,
MLP for text classification).

training. OpTok constructs IV tokenized sentences and converts them into vector
representations with a neural encoder. Then, OpTok combines the probabilities
of each tokenization with the vector representations. OpTok computes the sum of
the vector representations weighted by the probabilities and then inputs it into the

44

downstream model. Thus, OpTok assigns a high probability to the tokenization
to improve the performance of the downstream task. We can therefore obtain s’
satisfying argming (q(z, f(s'))) through the training. The details of each module
are described in this section.

3.2 Neural Unigram Language Model

OpTok calculates the probability of a token p(w) with a neural unigram language
model as follows:

d = MLP(v,,), (3.1)
_exp(dy)
p(w) = S exp(dy)’ (3.2)

where MLP denotes a multilayer perceptron containing trainable parameters, and
v,, is an embedding of the word w.

To stabilize the learning, as explained in Section 3.5, OpTok employs a smoothed
distribution of unigram probability [59] using a hyperparameter cv. The smoothed
probability is obtained as

N p(w)*
pw) = Saev (W)™
This smoothing technique resembles the one for subword regularization described

(3.3)

in (2.22). A sentence is converted into a sequence of tokens based on the proba-
bility of a tokenized sentence:
p(s') = I r*(w). (3.4)
wes’

Vocabulary V' is initialized with a reasonable number of tokens. To choose the
initial vocabulary, both supervised and unsupervised word segmentation methods
are available (e.g., publicly available pretrained tokenizers [58, 122] and vocab-
ulary acquired using unsupervised word segmentation [29, 72, 95]). This study

uses SentencePiece [60] for initialization.

3.3 Module for Selecting Tokenization

OpTok generates multiple tokenized sentences as candidates and converts them

into a single vector using their probabilities during the training phase. OpTok

45

first obtains the N-best tokenization of the sentence s, ..., s!, ..., s’y using the

forward-DP backward-A* algorithm [74] for the probabilities generated using the
language model described in Section 3.2. OpTok then converts the tokenized

sequences into the vectors h, severally as follows:

hy = g(s)), (3.5)

where ¢(-) is a neural encoder that encodes the sequence of tokens, such as a
module using a convolutional neural network [125, 63, 47] or BiLSTM [131, 50].
It was determined that the learning is stabilized by sharing word embeddings
between the encoder and neural unigram language model.

Finally, OpTok calculates the final vector of the sentence by weighting the
vectors of the candidates using their probabilities calculated through (3.4) as

follows:
p(s;,)
ap = —————, 3.6
Z%:lp<slm) (3.6)
N
h, = Z anhsél- (37)
n=1

As with the attention mechanism, we normalize the probability to meet a restric-
tion 3N a, = 1.

We can use this vector hg in the same manner as the general encoded vectors.
For example, we can construct a neural text classifier by converting h; into a
label-sized vector with an MLP. When the entire model is updated with a training
loss, such as the cross-entropy loss against the gold label, the language model is
also updated to assign the higher probability to the useful tokenization for the
downstream task.

At the inference, we obtain the optimal tokenization using the Viterbi algo-
rithm [114]. We can also use N-best tokenization for the downstream model in
the evaluation phase. Although this option might improve the performance of the
downstream model, this study did not use this option because it is uncommon in
evaluation of NLP tasks.

During the tokenization process, OpTok does not consider a token that includes
whitespaces as the candidate of words. In other words, we can input a sentence

! An alternative approach for sampling plausible tokenizations using Gumbel softmax [48] was
attempted but was found to cause instability in the learning.

46

that includes whitespaces, such as in English, and treat the whitespace as word
boundaries in the tokenization.

3.4 Restricting Vocabulary

When we identify the appropriate tokenization using the proposed method, the
tokenizer often converges to the local optima, which the tokenizer uses a longer
and more unique tokens for each downstream task. This problem is known as
length bias [62, 61]. In calculating word probability using the unigram language
model, the tokenizer with the proposed method frequently chooses a tokenization
with fewer tokens (i.e., a tokenization containing many longer tokens).

To mitigate these local optima, a restriction is introduced for the size of the
vocabulary during training. OpTok constructs the restricted vocabulary V' sam-
pled from the original vocabulary V' (where |V’| < |V|) at the beginning of each
mini-batch and uses V' as the vocabulary in the mini-batch. The sampling is
processed based on the smoothed probability of tokens p*(w) described in Sec-
tion 3.2. We then calculate the new probability distribution of tokens in V' by
normalizing their probabilities. In addition, OpTok prepares the embeddings for
entire tokens in V. However, this study treats a token outside V' as an unknown
token in each mini-batch. At the inference, OpTok constructs vocabulary by tak-
ing the top-|V’| tokens from V based on the updated token probabilities obtained
by (4.2). There is also an option to use the entire vocabulary for the inference.

Because the lengths of frequent words are shorter than those of infrequent
words, the sampled V' contains many shorter words. Thus, we can use vocabulary
that does not contain longer and unique words for the training of the proposed
method in many cases. In other words, we can frequently use the tokenizations
composed of shorter and general words for the training. This procedure is a type
of vocabulary restriction that uses a continuous cache technique [34, 52].

This type of sampling of the vocabulary results in a diversity of tokenizations
with the N-best candidates during training. When the lower o mentioned in Sec-
tion 3.2 is selected , the distribution of the tokens becomes flatter, and the model
can sample various tokens for V'. In addition, through the sampling process, we
can reduce the importance of words that are not useful in V' for the downstream
task.

47

3.5 Maintaining the Characteristics of the
Language Model

Because the optimization of OpTok depends only on the loss function for the
downstream task, the language model of OpTok may be considerably different
from the unigram language model (i.e., in terms of frequency of words) obtained
from the training corpus. In some cases, we must keep the corpus-based language
model. To address these cases, we can use the following loss for the sentence s to
update the language model using the neural EM algorithm [21, 66, 110]:

N
Lr=->"a, > logp*(w). (3.8)
n=1 wes!,

We then optimize the weighted sum of the downstream task loss and £™. Con-
sider text classification as an example. We use cross-entropy loss for the ground-
truth label of the sentence £&. We can then optimize the following equation:

Lo= LS+ L™, (3.9)

where 4 is a hyperparameter. When p is sufficiently large to ignore £, the
training of the proposed method is nearly the same as the scheduled training
with stochastic tokenization [39].

48

4 OpTok4AT: Optimizing
Tokenization for Various Tasks

4.1 Model Outline

Because OpTok exploits sentence representations to obtain the gradients for the
tokenizer, it cannot be used for NLP tasks that do not require sentence represen-
tations, such as machine translation tasks. To address this problem, this study
extends OpTok to be applicable to various NLP tasks to establish OpTok for any
task (OpTok4AT).

Like OpTok, OpTok4AT consists of a tokenizer and downstream model, and
the two modules are optimized simultaneously. Section 4.2 of this chapter first
presents the training outline of a case in which we use one sentence as input.
Section 4.3 introduces the training of the tokenizer, and Section 4.4 presents the
training of downstream model. Finally, Section 4.5 explains the training strategy
for a task that requires multiple inputs, such as machine translation.

4.2 Optimizing Tokenization with Loss

The concepts of OpTok and OpTok4AT are the same. This section explains the
notation and purpose of the proposed method. OpTok4AT tokenizes a sentence
s into a sequence of words w in vocabulary V', s’ = wq,...,w;, where I is the
sequence length. In this tokenization process, the purpose is to minimize the
following loss value corresponding to the tokenized input s’:

Ly = Q(f(sl)’ Z)» (4.1)

where f(s') is a downstream model that outputs a prediction of the downstream
task from a tokenized sentence s’, and ¢(f(-), z) is a task-specific loss function

between a model prediction and supervisory signal z.

49

Total Loss

Loss for Tokenizer Ls

Normalize ‘éz
E Loss for

) Downstream
Model
Ly o L,
S T
p(s1) 5 : ’
: Downstream Model
p(sy) % % x %
syREF/Mz - spAR/WF/e SRR /v
» A « A
Tokenizer | i N-best | [Sampling |
(NULM) - ' Tokenization i » Tokenization !
Rifrz

Figure 4.1: Overview of OpTok4AT in which losses for a tokenizer £, and for a
downstream model L. £, and L are calculated using N-best tok-
enizations (Section 4.3) and a sampled tokenization (Section 4.4), re-
spectively. The arrowed continuous lines indicate differentiable paths
for back-propagation.

Figure 4.1 presents an outline of OpTok4AT. To determine the tokenization
that satisfies argming (q(f(s’),2)), the tokenizer is updated to assign a higher
probability to a useful tokenization for the downstream model. Specifically, Op-
Tok4AT constructs N tokenizations s),...,s),...sy for a training instance and

then compute loss values for each tokenization. Each loss is weighted with prob-
ability p(s!,) computed by the tokenizer and the weighted sum is used to train

20

the tokenizer:

p(sy)
Uy = ——— 25—, (4.6)
%:1 p(sy,)
N
L= a,Ly. (4.2)
n=1
This study used N-best tokenizations. In these equations, losses Ly, ..., Ly

corresponding to N-best tokenizations are weighted with their sentence proba-
bilities normalized such that the sum is 1. By optimizing the tokenizer based on
the weighted sum L, the tokenizer assigns high probability to the appropriate
tokenization for the downstream model.

We can use any function for f(-) and ¢(f(:),-) in (4.1). Therefore, unlike
OpTok, OpTok4AT has no restrictions on the downstream task and model. For
instance, in a case in which text classification is the downstream task, f(-) is a
neural network that predicts a label of a given tokenized sentence, and q(f(-), -)
is the cross-entropy loss between the model prediction and true label.

Unlike with OpTok, OpTok4AT updates the tokenizer directly using the loss
values corresponding to each tokenized candidates. The differences between the
two versions of the method can be seen by comparing (3.7) and (4.2). Unlike
OpTok, whose architecture includes the weighted sum of sentence vectors with
the tokenization probabilities in the downstream calculation, the tokenizer in
OpTok4AT is connected to the outside of the downstream model. Therefore,
OpTok4AT does not require sentence representation and can be easily managed
with various NLP tasks.

4.3 Tokenizer using Neural Unigram Language
Model

As in OpTok, OpTok4AT employs a neural unigram language model as the to-
kenizer. The architecture of the neural unigram language model has been ex-
plained in Section 3.2. Specifically, the model calculates the unigram probability

51

of a word p(w) with a word embedding v,, as follows:

dy = MLP(v,,), (4.1)
. exp(dw)
plw) = > eV exp(dﬁ,)’ (4.2)

where MLP(+) is a multilayer perceptron. Vocabulary V is initialized with a
reasonable number of words. For example, for the initialization, we can use a to-
kenization through a dictionary-based tokenizer such as MeCab [58] or unsuper-
vised word segmentation such as SentencePiece [60] or BPE [95]. The probability
of a tokenization p(s) is calculated as follows:

p(s') = I p(w). (4.3)
wes’

Unlike OpTok, OpTok4AT does not calculate the probability of the tokeniza-
tion using the smoothed language model described in (3.4). This is because
OpTok4AT employs subword regularization for the training of the downstream
model, as described in Section 4.4, and this indirectly varies the tokenized can-
didates by requiring the tokenizer to use a different type of tokenization in each
training epoch.

For the training with (4.2), we obtain N-best tokenizations by applying the
forward-DP backward-A* algorithm [74] for possible tokens against sentence s.
In the inference phase, we can also obtain the 1-best appropriate tokenization for
the downstream task using the Viterbi algorithm [114] with the trained neural
unigram language model. Like OpTok, OpTok4AT treats whitespaces as word
boundaries. We can also use the forward-DP backward-A* algorithm to input
the N-best tokenization into the downstream model even during the evaluation
phase. For example, OpTok4AT is applicable to the N-best decoding [59] for
machine translation tasks.

4.4 Downstream Model Training

The downstream model can be trained directly using the loss £, in (4.2), but
this study does not choose this option for two reasons. The first reason is limited
computer memory. When using the loss L; for the update of the downstream

92

model in the OpTok4AT architecture, we must calculate the forward and back-
ward calculations of the neural networks as holding N models with the computa-
tional graph. This is because OpTok4AT includes the entire architecture of the
downstream model. This is unlike OpTok, which inputs the weighted sum of N
sentence representations into a single downstream model. Although this is not
a problem when using a small downstream model such as a BiLSTM-based text
classifier, updating the downstream model is not easy when we use larger models
such as a classification architectures with BERT [22] or a machine translation
architectures with Transformer [112]). The second reason is the gap between the
training and evaluation. As in OpTok, when the loss L; is used for the training of
the downstream model, a gap exists between the training phase that uses N-best
tokenizations and the evaluation phase that uses only one tokenization. This gap
might have an undesirable effect on the performance of the downstream task. In
other words, both the downstream model and evaluation phase should be trained
with a single tokenization, if possible.

To address these problems, this study uses subword regularization [59] to train
the downstream model of OpTop4AT. Thus, £ = ¢(f(s'),2) is calculated for a
single sampled tokenization s’ and L is used to train the downstream model.
More specifically, OpTok4AT updates the entire model to minimize the sum of
two losses L: one to train the neural unigram language model; the other to train
the downstream model:

L=L+ L. (4.4)

Because only the single sampled tokenization is used for the training of the down-
stream model, OpTok4AT does not require that N models be stored for the up-
date of the downstream model.

The unigram probabilities of tokens calculated with (4.2) are used to sample
tokenization s’ as follows:

SN/ ~ p<8~/)a ‘
Z?:lp(sgc)a

Here, @ € R" is a hyperparameter that controls the diversity of the sampled

(4.5)

tokenization. If we set « to a lower value, the distribution is similar to the uniform
distribution; otherwise, the distribution strongly depends on each tokenization

probability p(s;). K is a hyperparameter denoting the number of candidates for

23

sampling, and we use forward-filtering backward sampling [94, 72] if K = oo.
Subword regularization was described in Section 2.3.

Subword regularization not only enhances the downstream model but also pro-
vides various tokenizations to the downstream model during training. Therefore,
subword regularization enables exploring the appropriate tokenization, and Op-
Tok4AT does not require using techniques to vary the tokenization candidates
used in OpTok (Section 3.4).

4.5 Training with Multiple Sentences as Inputs

The case in which we use a single sentence as input was previously discussed.
However, we need to input multiple sentences to the downstream model in some
tasks. This section describes a training strategy that can be used for these cases.

To compute the loss value for training the tokenizer, multiple tokenizations are
considered for one sentence, and the sampled tokenization is used for the others.
For example, in machine translation, two inputs (the source and target sentences)
are used to train the downstream model. The source and target sentences are
the input of the downstream model and supervisory signal, respectively. In this
case, the tokenizations of both source and target sentences can be optimized by
OpTok4AT. Let s and ¢ be the source and target sentences, respectively, and s’
and t' be the corresponding tokenizations. The neural unigram language model

of the source side is updated using the loss value:

E S i (0
‘63% = Q<f(8;L)7t~/>7 (46)
Ls = % anﬁshu (52)

where ¢/ is a sampled tokenization for the target sentence. The loss for the neural

o4

unigram language model of the target side is also calculated using

_p(t)
SN () &0
Et’ - Q(f(sl)7 t;’l,)’ (48)
L, = i bn Ly (4.9)

where ' is a sampled tokenization.

To train the downstream model with the multiple sentences, sampled tok-
enizations are used for all input sentences. For example, in machine translation,
OpTok4AT computes the loss value L3 7 = q(f (s'),) for the sampled and target
sentences and use it for the training of the downstream model. When the down-
stream model is trained for a mini-batch B > (s,t), the parameters are updated
for the following loss value:

Yo Li+Li+Ly (4.10)

(s,t)eB

Figure 4.2 outlines this training process for the neural unigram language model of
the source side, where the training for the target side can be similarly described.

95

Loss for Source NULM Ls

Normalize s
(p(si)) Lo L
s S
p(sy) ‘: 5 |
NMT Model
e A
Source - _ - ~, Target
NULM S1 SN t NULM
N A A 4 »

- e - (RN S, RN —— -

+| N-best Tokenization Sampled Tokenization
i of Source Sentence of Target Sentence

Figure 4.2: Overview of the calculation of a tokenization loss L, for the source-
side neural unigram language model in NMT requiring the two inputs
of source and target sentences s and t. The arrowed continuous lines
indicate the differentiable paths for back-propagation.

o6

5 Experiments

To validate the applicability of the proposed methods to various downstream
tasks, experiments on text classification and machine translation tasks were con-
ducted based on previous studies. The two tasks are popular benchmarks in
NLP and are sufficiently different to evaluate the proposed methods, as one is
a classification problem and the other is a generation problem. This study ex-
ploited datasets in three languages for text classification tasks and seven language
pairs for machine translation tasks to evaluate the effectiveness of the proposed
methods over certain languages.

This study employed SentencePiece [60] as a tokenizer of the baseline method
for both tasks. Subword regularization [59] was also used for the SentencePiece
tokenization as a strong baseline. For the machine translation tasks, DPE [37], an
existing method based on neural networks, can be used to find better tokenization
of the target sentences depending on the translation corpora. Therefore, we
employed DPE as another baseline.

This chapter describes experiments on text classification (Section 5.1) and ma-
chine translation (Section 5.2). Each section describes the datasets used in the

experiment, the settings for the training configuration, and results.

5.1 Text Classification

To evaluate the proposed methods, experiments on text classification tasks were
first conducted, in which a model predicted the label from a text as its input.
Both OpTok and OpTok4AT are applicable to text classification tasks. The task
definitions and commonly used architectures were previously described in Section
2.4.1.

o7

Positive Negative Neutral Total

Weibo(Zh) 407,057 263,995 - 671,052
Twitter(Ja) 10,319 16,035 135,830 162,184
Twitter(En) 56,462 43,538 - 100,000

Table 5.1: Dataset components on sentiment analysis.

Entailment Contradiction Neutral Total

Train 183,416 183,187 182,764 549,367
Validation 3,329 3,278 3,235 9,842
Test 3,368 3,237 3,219 9,824
Total 190,113 189,702 189,218 569,033

Table 5.2: Overview of the dataset splitting of SNLI.

5.1.1 Dataset

To confirm the effectiveness of the proposed methods on various languages, this
study used datasets in sentiment analyses of Chinese, Japanese, and English.
The corpora on the SNS domain were used because they have many informal
expressions, and thus the effects of differences in tokenization on the performance
of text classification could be assessed. This study also conducted experiments on
a dataset of E-commerce reviews in which sentences contained two types of labels
(genre of a product and rating of a review) to investigate whether OpTok and
OpTok4AT found different tokenizations for each label'. In addition, this study
used a textual entailment dataset in English to determine whether the proposed
methods could be applied to tasks that used two sentences as input.

Table 5.1 presents overviews of the datasets of sentiment analysis. For senti-
ment analysis, each dataset is randomly split into a ratio of 8:1:1 for training,
validation, and testing. FEach dataset of genre and rating prediction is split into
a ratio of 8:1:1 to achieve well-balanced genres, in which both tasks shared the

same split. Details on these datasets are as follows.

IThe actual tokenization acquired by the proposed methods are discussed in the foolowing Sec-
tion 6.4.

o8

Weibo(Zh)

Weibo(Zh)? includes short Chinese texts on the Weibo SNS using two sentiment
labels: positive and negative. Because the available data are already tokenized
with a preprocesser®, the whitespaces are removed to detokenize them.

Twitter(Ja)

Twitter(Ja) [105]* is a dataset of short Japanese texts from a short-text Twitter
SNS on products such as electric appliances. The samples of this dataset initially
used more than one of five sentiment labels for a target topic: positive, negative,
neutral, both positive and negative, and unrelated. Tweets totaling 352,554 were
available by the summer of 2018, and tweets that used only a single sentiment
label of positive, negative, or neutral, are extracted for the experiment. In other
words, this study removed both positive and negative and unrelated to prevent
confusion.

Twitter(En)

Twitter(En)® is a dataset of short English texts from the Twitter SNS that uses
two sentiment labels: positive and negative. This study exploited this corpus

without any preprocessing such as casing and pre-tokenization.

SNLI

SNLI [7] is a widely used dataset for recognizing textual entailment, which is a
type of text classification that requires two input sentences of a (premise and
hypothesis) in English. This study employed this dataset to validate the perfor-
mance of OpTok and OpTok4AT when using multiple sentences. More specifi-
cally, this study used the default split of this corpus and applied only the labeled
samples following existing studies [7, 88, 22, 91, 43]. In other words, this study
used only samples with labels of entailment, contradiction, or neutral. Table 5.2

presents an overview of data splitting.

’https://github.com/wansho/senti-weibo
Shttps://github.com/wansho/weibo-preprocess-toolkit
‘http://www.db.info.gifu-u.ac.jp/data/Data_5d832973308d57446583ed9f
Shttps://www.kaggle.com/c/twitter-sentiment-analysis?2

29

https://github.com/wansho/senti-weibo
https://github.com/wansho/weibo-preprocess-toolkit
http://www.db.info.gifu-u.ac.jp/data/Data_5d832973308d57446583ed9f
https://www.kaggle.com/c/twitter-sentiment-analysis2

Amazon: Genre&Rating(En)

Genre(En) and Rating(En) are datasets in English that were created from Ama-
zon product data [79]®. This data has reviews from 24 product genres with
attached ratings from users of 1 to 5. 5,000 reviews were sampled from product
genres containing a sufficient number of reviews. In this process, the number of
tokens in each review was counted based on whitespaces and reviews containing
more than 200 tokens were removed. The sampled reviews were used for rat-
ing and genre prediction tasks from the same review texts. Table 5.3 lists the
contents of the dataset.

JD.com: Genre&Rating(Zh)

Genre(Zh) and Rating(Zh) are datasets in Chinese that were created from a
review corpus of the Chinese E-commerce service, JD.com [126]". Each review
contains a label of the product genre with an attached rating from a user of 1 to
5. Datasets for genre and rating prediction tasks were created as with the English
Amazon datasets. Reviews with 13 product genres that had a sufficient number
of reviews were extracted and 6,000 reviews were sampled from each genre and
type of rating. This study used only reviews that contained more than three and
fewer than 100 characters. Table 5.4 lists the contents of the dataset.

Rakuten: Genre&Rating(Ja)

Genre(Ja) and Rating(Ja) are datasets in Japanese that were created from a re-
view corpus of the Japanese E-commerce service, Rakuten [45]. Datasets for genre
and rating prediction tasks were created as with the English Amazon datasets.
Reviews with 21 product genres that had a sufficient number of reviews were
extracted and 5,000 reviews were sampled from each genre and type of rating.
This study used only reviews that contained fewer than 100 characters. Table 5.5
lists the contents of the dataset.

Shttp://jmcauley.ucsd.edu/data/amazon/
"http://yongfeng.me/dataset/

60

http://jmcauley.ucsd.edu/data/amazon/
http://yongfeng.me/dataset/

Rating
Genre 1 2 3 4 5 Total
Musical Instruments 109 122 352 991 3,426 5,000
Pet Supplies 254 280 502 848 3,116 5,000
Video Games 359 234 526 1,044 2,837 5,000
CDs and Vinyl 241 221 411 1,011 3,116 5,000
Toys and Games 166 156 474 1,063 3,141 5,000
Sports and Outdoors 159 181 347 1,053 3,260 5,000
Health and Personal Care 241 233 479 956 3,091 5,000
Office Products 97 151 456 1,353 2,943 5,000
Books 191 238 519 1,159 2,893 5,000
Beauty 272 289 523 996 2,920 5,000
Baby 238 296 513 995 2,958 5,000
Electronics 333 216 411 943 3,097 5,000
Patio Lawn and Garden 198 234 588 1,190 2,790 5,000
Automotive 124 146 354 943 3,433 5,000
Cell Phones and Accessories 331 286 564 1,000 2,819 5,000
Grocery and Gourmet Food 195 252 567 1,000 2,986 5,000
Clothing Shoes and Jewelry 206 296 483 1,068 2,947 5,000
Tools and Home Improvement 194 151 387 986 3,282 5,000
Kindle Store 133 143 427 1,241 3,056 5,000
Apps for Android 548 277 582 1,033 2,560 5,000
Home and Kitchen 224 218 338 936 3,284 5,000
Digital Music 251 266 498 1,181 2,804 5,000
Amazon Instant Video 239 232 530 1,121 2,878 5,000
Movies and TV 299 280 526 998 2,897 5,000
Total 5,602 5,398 11,357 25,109 72,534 | 120,000

Table 5.3: Dataset components of Genre&Rating created from Amazon product
data.

61

Rating
Genre 1 2 3 4 5 | Total
ESEER=EiA 6K 6K 6K 6K 6K /| 30K
R / 7 2 6K 6K 6K 6K 6K | 30K
FAA 6K 6K 6K 6K 6K | 30K
KA 6K 6K 6K 6K 6K | 30K
KIEETE 6K 6K 6K 6K 6K | 30K
HAb 6K 6K 6K 6K 6K| 30K
(S e 6K 6K 6K 6K 6K | 30K
EERFEE 6K 6K 6K 6K 6K | 30K
FHL /S 6K 6K 6K 6K 6K | 30K
i iFES 6K 6K 6K 6K 6K | 30K
KB)R - 6K 6K 6K 6K 6K | 30K
BB AR 6K 6K 6K 6K 6K | 30K
R/ E0/IRES /AL | 6K 6K 6K 6K 6K | 30K
Total 78K 78K 78K 78K 78K | 390K

Table 5.4: Dataset components of Genre&Rating created from JD.com.

62

Rating
Genre 1 2 3 4 5 | Total
B - N1 7 5K 5K 5K 5K 5K | 25K
XA Ty b - (R 5K 5K 5K 5K 5K | 25K
Ry bRy pFy X 5K 5K 5K 5K 5K | 25K
e 5K 5K 5K 5K 5K | 25K
A= - BET 5K 5K 5K 5K 5K | 25K
Ny 7 - INgy - 75 NEE 5K 5K 5K 5K 5K | 25K
R TAR - FIK 5K 5K 5K 5K 5K | 25K
A7 I)7 - BE - I 5K 5K 5K 5K 5K | 25K
HHAMSME - XER - F= 5K 5K 5K 5K 5K | 25K
Vaxl)— -7 o%¥) — 5K 5K 5K 5K 5K | 25K
A 5K 5K 5K 5K 5K | 25K
RE— 5K 5K 5K 5K 5K | 25K
AR—=NT AV - ZRTL Yk 5K 5K 5K 5K 5K | 25K
fvF—-TF& -FA b T 5K 5K 5K 5K 5K | 25K
KE 5K 5K 5K 5K 5K | 25K
AR=Y - TINKT 5K 5K 5K 5K 5K | 25K
FyX - RE— - IX=FT1 5K 5K 5K 5K 5K | 25K
v F UM - B8 - RS E 5K 5K 5K 5K 5K | 25K
AVATyyvayv 5K 5K 5K 5K 5K | 25K
f& - Hi—F > - DIY 5K 5K 5K 5K 5K | 25K
LFg—AT77vvay 5K 5K 5K 5K 5K | 25K
Total 105K 105K 105K 105K 105K | 525K

Table 5.5: Dataset components of Genre&Rating created from Rakuten data.

63

5.1.2 Settings
Neural Unigram Language Model

For the neural unigram language model in OpTok and OpTok4AT, this study
used a two-layered perceptron as MLP in (4.1). The size of word embeddings was
64, and the language model shared word embeddings with the encoder for text
classification. The hidden size of the MLP was 96.

Encoders

Two types of neural encoders were used to confirm that the proposed methods
were applicable regardless of encoder type: one encoder that uses an attention
mechanism and one that uses BILSTM to compute hy in (3.5). As Figure 2.1
in Section 2.4.1 shows, this study applied the attention encoder or BiLSTM en-
coder to the tokenized sentences based on the unigram language model and then
fed the outputs to the linear layer. In these procedures, the activation function
(hyperbolic tangent) was applied after the linear layer. The output of the BiL-
STM encoder was max-pooled before fed into the linear layer. For the attention
encoder, this study used a linear layer whose hidden size was 256 to calculate
attention weights. For the BiLSTM encoder, the hidden size for each LSTM
layer was 256. The size of the sentence vector calculated by each encoder was
256. A dropout was applied to the sentence representations with a rate of 0.5.
For SNLI, parameters were shared between two encoders corresponding to the
premise and hypothesis and input the concatenation of each encoded represen-
tation into the MLP classifier. The parameters of the tokenizer in the proposed
methods were also shared for both the premise and hypothesis. For the classi-
fier of the downstream model, this study used a three-layered perceptron, which

outputs a label-sized vector with a hidden size of 256.

Baselines

This study compared the proposed methods (OpTok and OpTok4AT) with Sen-
tencePiece [60], which is a widely used tokenizer. A tokenized sentence was
obtained based on SentencePiece and then the tokenized sentence was treated as
input to the encoder. In other words, the unigram language model in the pro-
posed methods was replaced with the SentencePiece tokenizer and one tokenized

64

sentence was used as input to the same architecture. Many studies have reported
that training models with stochastic tokenization or subword regularization leads
to better performance of the downstream tasks than when training a model us-
ing deterministic tokenization [59, 39, 90]. Therefore, this study also trained
the encoder and downstream model using subword regularization provided by
SentencePiece.

Initialization

The tokenization model of SentencePiece was trained on the training split of each
dataset. The sizes of the vocabularies were determined using validation splits
among 8,000, 16,000, 24,000, and 32,000 words, and this study selected 16,000
words each for Twitter(Ja), Twitter(En), and Genre&Rating(Zh), and 32,000
words each for Weibo(Zh), SNLI, and Genre&Rating(Ja, En). The coverage of
vocabulary was 1.0 to include all characters in vocabulary.

This study also used a vocabulary obtained by SentencePiece as the initial
vocabulary of the OpTok and OpTok4AT for each task. The neural unigram
language models of OpTok and OpTok4AT were initialized by training them to
minimize the KL divergence loss between their distributions of token probabilities
and those of token probabilities obtained by SentencePiece. The initialization of
the neural unigram language model of the proposed methods was terminated
when the KL divergence loss became less than le-7 or when the number of the
training steps reached 100,000.

The word embeddings were pretrained with a bidirectional language model task
on the training split of each dataset, and they were fixed during text classifica-
tion training. The bidirectional language model was composed of forward and
backward LSTMs whose hidden size was 128. The language model was trained
on each training corpus of the downstream tasks with cross-entropy loss functions
for both directions in the same manner as the general training of neural language
models. The number of training epochs was 50. Because the optimal tokeniza-
tion was unclear during pretraining, the bidirectional language model was trained
with sampling tokenization (subword regularization) under each training epoch
using SentencePiece. For Genre&Rating tasks, this study used the same word
embeddings pretrained on the training split for both genre and rating prediction
tasks. This study did not use any outside resource for pretraining other than the

65

training split.

Training on Downstream Task

The neural unigram language model in OpTok and OpTok4AT and the down-
stream model were trained using a cross-entropy loss for the gold labels. This
study employed Adam [54] to update the parameters with the default settings of
PyTorch.

The smoothing hyperparameter of subword regularization a was set to 0.2 for
both SentencePiece and OpTok, as recommended in Kudo [59]. For the training
of the proposed methods, the size of the N-best tokenization of the proposed
methods was N = 3, and the size of the restricted vocabulary |V’| was half
the size of the initial vocabulary. At the inference, this study used the 1-best
tokenization and top-|V’| of the vocabulary based on the language model. Both
OpTok and OpTok4AT used the loss function to maintain the characteristics of
the language model described in Section 3.5 and the hyperparameter for the loss
was set as 4 = 0.01. Experiments were conducted five times from a random
initialization (excluding the pretrained parameters) and the average F1 scores
were included in the results. The maximum number of training epochs was 20.
The model exhibiting the highest performance on the validation split was selected
and evaluated on the test split for each trial.

5.1.3 Results
Results with the Attention Encoder

Table 5.6 presents the experimental results with the attention encoder on text
classification tasks. The results demonstrate that OpTok surpassed the baseline
methods using SentencePiece (SP and SP+R), excluding those with the dataset
Genre(En). OpTok4AT outperformed OpTok in eight of 10 datasets. The results
showed that OpTok4AT was superior to OpTok in text classification with neural
networks including the attention encoder.

The table also shows an interesting result. Based on a comparison of the scores
of SP and SP+R, subword regularization did not have a positive effect on the
performance with the attention encoder. We considered that the structure of

the attention encoder was too simple for subword regularization to increase its

66

robustness. The attention encoder may have hampered the performance of the
proposed methods because the methods also included stochastic tokenization in
the training of the tokenizer.

Results with the BiLSTM Encoder

Table 5.7 presents the experimental results using the BiLSTM encoder on text
classification. As compared to Table 5.6, the scores of BiLSTM encoders were
higher than those of the attention encoders. This suggests that the downstream
model with BiLSTM can more effectively perform text classification tasks because
of its richer structure.

Table 5.7 shows that OpTok outperformed the baseline methods with Sentence-
Piece under all datasets, and OpTok4AT surpassed OpTok under eight datasets.
With the other two datasets, the performance of OpTok4AT was comparable to
that of OpTok. The difference in the performances of the proposed methods
was due to the different strategies employed between the training and down-
stream models. OpTok trained the downstream model with a weighted sum of
sentence vectors corresponding to the N-best tokenization based on their tok-
enization probabilities, but it used the 1-best tokenization in the inference. This
gap may have hampered the performance of the downstream model. By contrast,
because OpTok4AT trained the downstream model with only a single sampled
tokenization, the downstream model received one tokenization in both training
and inference consistently. OpTok4AT improved the performance due to this
consistency.

Tables 5.6 and 5.7 show that the proposed methods were capable of improving
the performances of two neural text classifiers. These results suggest that the
proposed methods are applicable to various settings of text classification using
neural networks. This study also confirmed the improved performance of text
classification using the more advanced neural network BERT [22], as described
in the following Section 6.20.

67

SP SP+R OpTok OpTok4AT
Weibo(Zh) 89.44 89.28 89.88* 90.10*
Twitter(Ja) 80.99 81.16 82.60%* 82.96*
Twitter(En) 70.59 69.50 71.98 71.31%
Genre(Zh) 35.43 35.54 37.59% 38.18*
Rating(Zh) 45.60 45.35 45.67* 45.97*
Genre(Ja) 33.35 33.81 36.25% 35.71%*
Rating(Ja) 46.48 46.44 46.89 47.41%
Genre(En) 60.46 60.04 60.23 61.17*
Rating(En) 57.29 58.17 59.69* 59.57*
SNLI 66.71 66.03 68.27* 68.73*

Table 5.6: Experimental results on text classification tasks (F1-score) with the
attention encoder. SP and R denote SentencePiece and subword reg-
ularization, respectively. The highest scores are highlighted in bold. *
indicates that the score was significantly higher than that of the base-

line system (SP+R) with McNemar’s test (p < 0.05).

SP SP+R OpTok OpTok4AT
Weibo(Zh) 92.70 92.79 92.93 93.06*
Twitter(Ja) 85.89 86.51 87.39* 87.27*
Twitter(En) 75.98 77.31 79.04* 78.63*
Genre(Zh) 44.19 47.95 48.22* 48.41*
Rating(Zh) 48.96 49.41 49.63* 49.76*
Genre(Ja) 46.82 47.86 50.21%* 50.79*
Rating(Ja) 51.95 52.30 53.19* 53.37*
Genre(En) 70.17 71.19 71.88 71.83
Rating(En) 66.42 67.53 67.68 67.90
SNLI 75.62 76.75 77.04 77.05

Table 5.7: Experimental results on text classification tasks (Fl-score) with the
BiLSTM encoder. SP and R denote SentencePiece and subword regu-
larization, respectively. The highest scores are highlighted in bold. *
indicates that the score was significantly higher than that of the base-

line system (SP+R) with McNemar’s test (p < 0.05).

68

5.2 Machine Translation

This study also conducted experiments on machine translation tasks, which are
generation problems. OpTok4AT can be used for machine translation tasks. How-
ever, OpTok cannot be used for generation tasks because it requires sentence-level
representation and cannot calculate the cross-attention between source and tar-
get sentences. Task definitions and commonly used architectures were previously
described in Section 2.4.2.

5.2.1 Settings

For machine translation experiments, this study employed IWSLT and WMT
corpora on eight language pairs, where one side was English (En) and the other
sides were German (De), Vietnamese (Vi), Chinese (Zh), Arabic (Ar), French
(Fr), Hungarian (Hu), and Romanian (Ro). Table 5.8 provides overviews of
the datasets on the machine translation tasks. As the table shows, this study
employed two types of English-German pairs from IWSLT14 and WMT14 for
the comparison between the lower resource setting (IWSLT14) and richer resource
setting (WMT14).

Following existing studies [19, 44, 116], all the datasets except for the Chinese
corpus were pre-tokenized with the Moses tokenizer®, and the Chinese corpus was
pre-tokenized with jieba®. The performance of each method was evaluated using
detokenized BLEU with SacreBLEU [89].

Regarding recent tokenizers for machine translation, this study compared the
proposed method both with SentencePiece and DPE [37], which tokenizes a target
sentence while considering the source tokenization. The official implementation
of DPE' was employed and the tokenization model of DPE was trained using
SentencePiece tokenization. As with text classification, subword regularization
was used as a strong baseline.

For the downstream model, this study used Transformer [112] implemented
in Fairseq [81]. For the IWSLT dataset, Transformer (small) was used and the
initial vocabulary was created using SentencePiece with a 16,000 vocabulary size
for each language. For the WMT dataset, Transformer (base) was employed, and

8https://github.com/moses-smt/mosesdecoder
https://github.com/fxsjy/jieba
Ohttps://github.com/x1lhex/dpe

69

https://github.com/moses-smt/mosesdecoder
https://github.com/fxsjy/jieba
https://github.com/xlhex/dpe

Dataset Language Pair Train Validation Test Total
IWSLT14 De-En 160,239 7,283 6,750 174,272
IWSLT15 Vi-En | 130,933 768 1,268 | 132,969

Zh-En 209,941 887 1,261 212,089
IWSLT17 Ar-En | 235527 888 1205 | 237,620

Fr-En 236,653 890 1,210 23,8753

WMT09 Hu-En 1,517,584 2,051 3,027 | 1,525,187
"WMT14 De-En | 4,520,620 3,000 3,003 | 4,526,623
"WMT16 Ro-Em | 612,422 1,999 1,999 | 616,420

Table 5.8: Overviews of datasets on machine translation tasks. The table shows
the number of sentences in each split of a dataset.

the vocabulary size was 32,000. The coverage of vocabulary was 1.0 to include all
characters in vocabulary. Similar to text classification tasks, the proposed neural
unigram language model was initialized with the results of SentencePiece. The
hyperparameters for subword regularization were a = 0.2 for IWSLT, o = 0.5
for WMT, and k = oo for both datasets. The number of tokenizations for the
training of the proposed method was N = 8 for ISWLT and N = 3 for WMT.
The translation model was trained with 100 epochs and the model that scored
the highest on the validation split was selected for the evaluation of the test split.
A beam-search was employed for the decoding with a beam width of 5. The other
hyperparameters were selected based on the existing implementation for machine
translation using Fairseq!!. Table 5.9 summarize the hyperparameters.

In the training of the neural machine translation model with DPE, subword
regularization was applied for the source-side language, similar to He et al. [37].
For the proposed method, this study prepared three configurations with the pro-
posed method: for only a source-side language, for only a target-side language,
and for both side languages. When the proposed method was applied for a single
side of the translation pair, subword regularization was used for the other side as
well as the training of DPE.

Uhttps://github.com/pytorch/fairseq/tree/master/examples/translation

70

https://github.com/pytorch/fairseq/tree/master/examples/translation

Parameter Transformerg,,; Transformery,ge

Encoder Embedding Size 512 512
Encoder FFN Embedding Size 1,024 2,048
Number of Encoder Attention Heads 4 8
Number of Encoder Layers 6 6
Decoder Embedding Size 512 512
Decoder FFN Embedding Size 1,024 2,048
Number of Decoder Attention Heads 4 8
Number of Decoder Layers 6 6
Clipping Norm 0.0

Dropout Rate 0.3

Weight Decay 0.0001

Max Tokens for Mini-Batch 1,000
Optimizer Adam

(1 and By for Adam 0.9, 0.98
Learning Rate 0.0005

Learning Rate Scheduler Inverse Square Root
Warming-Up Updates 4,000

Table 5.9: Overviews of datasets on machine translation tasks. The table shows
the number of sentences in each split of a dataset.

5.2.2 Results

Table 5.10 presents the detailed performances of the three configurations, showing
that the system employing the proposed approach (OPT/SP+R, SP+R/OPT, or
OPT/OPT) achieved the best performances with most datasets. The proposed
method when used only with the decoder side (SP+R/OPT) succeeded on many
datasets. By contrast, when the proposed method with both sides (OPT/OPT)
was used, the performance degraded. These results suggest that optimizing the
tokenization of source and target languages simultaneously is challenging and
can degrade performance. The simultaneous optimization of source and target
languages on machine translation is later described in Section 6.2.

The scores revealed that the proposed method outperformed DPE in most
datasets. Although the performance of the proposed method was poorer than

71

that of DPE in the Hu-En pair, the performances of the two models were mostly
comparable. These results demonstrated that the proposed method improved
the performance on machine translation to a greater extent than did the existing
method. Moreover, unlike DPE, which is limited to the encoder side, the proposed
method was shown to be applicable to both the encoder and decoder sides.

72

Encoder SP SP+R SP+R OPT SP+R OPT
Decoder SP SP+R DPE SP+R OPT OPT
IWSLT14 De-En 33.79 35.03 35.02 34.90 35.78% 35.13*
En-De 28.09 29.13 29.39 29.56 29.57% 29.30
IWSLT15 Vi-En 28.70 28.78 28.85 29.34* 29.69* 29.44*
En-Vi 30.87 31.60 31.63 31.41 31.74* 31.70*
Zh-En 20.44 21.17 21.38 21.63* 21.65* 21.89
En-Zh 14.40 15.25 15.21 15.45 15.59 15.31
IWSLT17 Ar-En 29.23 29.39 29.37 29.48 30.04 29.78
En-Ar 15.45 17.75 17.83 18.49* 18.18 18.21*
Fr-En 37.87 38.43 38.52 38.82 38.68 38.58
En-Fr 37.95 39.83 39.90 40.01* 40.08* 39.68
WMT09 Hu-En 14.84 15.51 15.75 15.73 15.74 15.60
En-Hu 11.02 12.14 12.30 12.30 12.37 12.33
WMT14 De-En 31.46 31.89 31.97 32.19*% 31.98% 31.90
En-De 27.10 27.41 27.49 27.62 27.52 27.44
WMT16 Ro-En 29.10 31.79 31.80 31.80 31.83 31.72
En-Ro 21.78 24.05 24.29 24.36 24.53* 24.03

Table 5.10: Results of experiments on machine translation task using IWSLT and
WMT corpus (BLEU). We show the tokenization methods for the en-
coder and decoder. SP and R denote SentencePiece and subword
regularization, respectively. OPT refers to the proposed method of
OpTok4AT. The highest scores are highlighted in bold. * indicates
that the score was significantly higher than that of the baseline sys-
tem (SP+R/SP+R) with a statistical significance estimation using
bootstrap resampling [55] (p < 0.05).

73

6 Discussion

6.1 Performance Improvement by Tokenization

6.1.1 Performance Improvement for a Randomly

Initialized Classifier

Whether the optimized tokenization led to the improvement described in Chapter
5 remains unclear, as all components were trained simultaneously. Therefore,
this study next investigated whether the optimized tokenization contributed to
improved performance of the downstream task. To validate the effect of only
tokenization, only the neural unigram language model in OpTok and OpTok4 AT
was trained on the text classification task. In other words, the parameters of the
BiLSTM encoder in the downstream model were fixed using random initialization.
This study then checked the improvements in training loss and F'1 score on the
validation split by updating only the parameters of the neural unigram language
model for tokenization.

Experiments on Twitter(Ja) were conducted under the same settings as de-
scribed in Section 5.1, where the results are presented in Figure 6.1. Figure 6.1
shows the differences in training loss and validation F'1 score from the values at
the beginning of the training. This figure shows that the training loss decreased
with the number of epochs, whereas the validation F1 score increased for both
OpTok and OpTok4AT. The results indicate that the proposed methods identi-
fied the appropriate tokenization, which improved task performance, and suggest
that the optimized tokenization contributed to improved performance overall.

5

0 10
————— ———®
5 S2IIITIT
£ -10 6 é
a) S
2 Y
S -15 4 3
@©
>
=20 2
-25 0
1 2 3 4 5 6 7 8 9 10
Epoch
—oe— Loss-Diff (OpTok) —&— Loss-Diff (OpTok4AT)
- e —F1-Diff(OpTok) — ® —F1-Diff(OpTok4AT)

Figure 6.1: Average improvement (difference from the values at the beginning of
the training) of validation F1 score and training loss on Twitter(Ja)
over five trials when only tokenization with OpTok and OpTok4AT
was updated.

6.1.2 Tokenization as Post-processing
Settings

As described in Section 3 and 4 concerning the proposed methods and in Section
6.1.1 on the experiment conducted with the frozen downstream model, we can
use the proposed methods for various architectures even if their parameters are
frozen. Thus, the proposed methods can be applied as postprocessing to an
already trained model. This study next evaluated the effectiveness of optimizing
the proposed tokenizer for the trained model. The neural unigram language model
of OpTok and OpTok4AT was trained with the final loss value without updating
the parameters of the downstream model.

Experiments were conducted on text classification (sentiment analysis) and ma-
chine translation (IWSLT15) tasks. The downstream models described in Chap-
ter 5 were trained with subword regularization [59]. The models were trained

with 30 and 100 epochs for text classification and machine translation, respec-

76

tively. Only the tokenizer were then trained with five epochs using the loss values
computed by the trained models.

In the experiment on Twitter(Ja), this study additionally used the downstream
model trained with tokenization by MeCab [58], which is the well-known Japanese
tokenizer that uses a dictionary. With this model, this study attempted to confirm
that the proposed methods could be applied to a model trained with a tokenizer
other than SentencePiece. The downstream model was trained for 30 epochs using
the tokenization by MeCab, and the proposed method was applied for five epochs
with the settings previously mentioned. Subword regularization was not used
because MeCab does not have a language model for sampling the tokenization.
To initialize the neural unigram language model of the proposed methods, the
unigram language model was built by counting the number of words in the corpus
tokenized by MeCab. To reduce the number of low-frequency words, words that
appeared only once in the corpus were replaced with the special token indicating
the unknown token.

In the experiment on Twitter(En), this study also used BERT for the down-
stream model to confirm that the proposed method was applicable to the large
pretrained language model!. The downstream model for text classification was
replaced with BERT e 2. After fine-tuning the downstream model on each task
for 30 epochs, only the tokenization was optimized for five epochs with the pro-
posed methods. In addition to the experiment using MeCab, this study did not
use subword regularization because the BERT published by HuggingFace employs
the WordPiece tokenizer and does not contain any language model. The neural
unigram language model of the proposed methods was initialized using the un-
igram language model built by counting the words in the corpus tokenized by

WordPiece.

Results

Table 6.1 details the performances of the methods. The table shows that the
proposed methods (OpTok and OpTok4AT) improved the performance from the
base model trained with subword regularization (Base Model). OpTok4AT out-

!The experimental settings in which BERT [22] was used for end-to-end training rather than
postprocessing are described in Section 6.9.
2HuggingFace: https://github.com/huggingface/transformers

7

https://github.com/huggingface/transformers

Base Model OpTok OpTok4AT

Sentiment Analysis (F1)

Weibo(Zh, SentencePiece) 92.69 93.08 92.99
Twitter(Ja, SentencePiece) 85.88 86.23 86.28
Twitter(Ja, MeCab) 85.09 85.68 85.96
Twitter(En, SentencePiece) 77.21 77.41 .7
Twitter(En, BERT) 81.88 81.89 81.99
IWSLT15 (BLEU)

Vi-En 28.82 - 28.91
En-Vi 30.48 - 30.60
Zh-En 21.55 - 21.82
En-Zh 14.57 - 14.83

Table 6.1: Performance improvements when tokenization was optimized as post-
processing by OpTok and our method. Base Model denotes a model
trained with SentencePiece, Mecab, or BERT without optimizing tok-
enization. The highest scores are highlighted in bold.

performed OpTok on two datasets of text classification. In addition, on machine
translation tasks, OpTok4AT consistently improved the BLEU scores. These re-
sults show that the proposed methods are useful in improving the performance
of the downstream model even when a sufficiently trained model is used as the
downstream model.

In the experimental setting with MeCab, the proposed methods improved the
performance, which suggests that the proposed methods can be used in situations
in which the downstream model is trained with a dictionary-based tokenizer. In
addition, the proposed methods slightly improved the performance even under the
setting with BERT. The proposed method can thus be used in various situations
and improves the postprocessing performance regardless of the tokenizer used in
the training of the downstream model.

78

6.2 Learning Both Encoder and Decoder

6.2.1 Settings

The results of the machine translation task (Section 5.2) revealed that the per-
formance decreased when the proposed method was incorporated into both the
encoder and decoder sides. The cause of this decrease was considered as the gap
in the tokenization strategy between the source and target languages. As de-
scribed in the following Section 6.4.2, the proposed method tokenizes the source-
and target-side sentences into fine- and coarse-grained granularities, respectively.
This study next attempted to train the proposed method on both the encoder
and decoder sides simultaneously and in a stable manner using three possible
strategies. In each strategy, the neural unigram language and downstream mod-
els were trained on machine translation simultaneously, and the total number of
training epochs was 100.

Enc—Dec

Only the encoder-side neural unigram language model was trained for the first
50 epochs, with the decoder-side neural unigram language model being frozen;
the decoder-side neural unigram language model was then trained for the last 50
epochs, with the encoder neural unigram language model being frozen.

Dec—Enc

The proposed method was trained using the reversed version of the Enc—Dec
strategy. The decoder and encoder sides of the neural unigram language model

were trained for the first and last 50 epochs, respectively.

Random

In each mini-batch training, the neural unigram language model was randomly
trained on either the encoder or decoder side at a 0.5 ratio.

79

Both Enc—Dec Dec—Enc Random

Vi-En 29.44 30.22* 29.47 29.37
En-Vi 31.70 31.78 31.33 31.70
Zh-En 21.89 21.99 21.82 21.66
En-Zh 15.31 15.54 14.88 15.14

Table 6.2: Performances of machine translation on the IWSLT15 datasets using
three strategies for the simultaneous training of our method. The
scores for “Both” are taken from the “OPT/OPT” column in Table
5.10. The highest scores are highlighted in bold. * indicates that
the score was significantly higher than that of Both with a statistical
significance estimation using bootstrap resampling [55] (p < 0.05).

6.2.2 Results

Table 6.2 presents the results of the experiments. These results indicate that the
Enc—Dec strategy contributed to an improved performance of the simultaneous
learning of tokenization on both sides. In particular, the scores of Vi-En, En-
Vi, and Zh-En surpassed the best scores reported in Table 5.10, indicating that
the Enc—Dec strategy was effective in the training of the proposed method. By
contrast, the Dec—Enc strategy decreased the performance on many language
pairs. The performance obtained using the random strategy was slightly poorer
than that when using the original method (Both in the table). These results
suggest that instead of optimizing both sides simultaneously, learning the tok-
enization from each side step-by-step and, more specifically, from the encoder to

the decoder side, was more effective for machine translation tasks.

6.3 Comparison with Ideal Tokenization

This study focuses on the method to optimize tokenization for downstream tasks
and models. Chapter 5 and Section 6.1.2 demonstrate that the performance of the
downstream model improved by optimizing tokenization from scratch and already
trained models, respectively. This raises a question: what is the upper bound of
the performance improvement that can be obtained by optimizing tokenization?

This section analyzes the gap between the performance obtained by the pro-

80

posed methods and the one obtained by the ideal tokenization that is completely
adapted to the evaluation data. This analysis used the validation split of senti-
ment analysis datasets: Weibo(Zh), Twitter(Ja), and Twitter(En).

The ideal tokenization was obtained by the brute-force search for the trained
downstream model. In concrete, the downstream model was trained on the train-
ing split with subword regularization, and a tokenization that predicts the higher
probability for the correct label was selected based on the trained model and the
validation split. The N-best tokenization mode of SentencePiece was used to
identify the ideal tokenization. The size of N-best tokenization was N = 1,024.
Note that the N herein is different from the hyperparameter of the proposed
methods. Because the ideal tokenization was selected based on the correct label,
the performance with this tokenization is the upper bound that can be achieved
by optimizing tokenization. This section compares the performance of OpTok
and OpTok4AT with this upper bound.

Table 6.3 shows the maximum performance?

on the validation split by each
tokenization method. SP+R is the baseline model trained with subword reg-
ularization. Post-Processing in the table indicates that the tokenizations were
optimized with the proposed method as post-processing (Section 6.1.2) based on
the trained model (SP+R). Scratch in the table indicates that the tokenizations
were obtained with the default learning with the proposed method used in Chap-
ter 5. Brute-force shows the performance with the ideal tokenizations obtained
with the aforementioned strategy.

Table 6.3 indicates that the proposed methods improve the validation perfor-
mance in the post-processing settings, and more improvement was obtained with
the scratch settings. However, there is a large gap between the performances of
the proposed methods and the ideal tokenization. Although we cannot achieve
exactly the same score as the brute-force because it uses the correct label, this
result implies that there is still room for further performance improvement by
optimizing tokenization. The possible improvement can be to use the more com-
plex architecture for the tokenizer, such as bi- or tri-gram language models or

sequential labeling architectures with neural networks.

3The other experiments show the test performance of models selected based on the validation
split.

81

; Post-Processing \ Scratch \
SP+R | OpTok OpTok4AT |, OpTok OpTok4AT |, Brute-force

Weibo(Zh) 92.89 | 92.97 92.97 | 93.10 93.22 | 98.46*
Twitter(Ja) ~ 86.25 ' 86.57 86.29 ' 87.31 87.22 ! 95.47*
Twitter(En) 75.82 1 75.88 77.97 1 79.60 79.52 | 95.22%

Table 6.3: F1 scores on the validation split of Weibo(Zh), Twitter(Ja), and Twit-
ter(En) with the BiLSTM-based classifier. * indicates that the score
was significantly higher than that of the other methods with McNe-
mar’s test (p < 0.05).

6.4 Analysis of Tokenization

6.4.1 Optimized Tokenization on Text Classification
Task Oriented Tokenization

This study was also interested in whether the optimized tokenization was different
when different downstream tasks were considered. Accordingly, this section an-
alyzed the results of the Genre&Rating prediction in three languages (Japanese,
English, and Chinese; see Section 5.1). The dataset contained two tasks linked
to the same review corpus.

Tables 6.4 and 6.5 and 6.6 show the rankings of tokens whose probability signif-
icantly increased from the initial values on the genre and rating prediction tasks
with OpTok and OpTok4AT. The optimized neural unigram language model as-
signed higher scores to tokens, which seemed useful for all tasks in all of the
languages. For example, in English (Table 6.6), the OpTok trained on the genre
prediction task assigned higher probabilities for words such as gun and zombie
that may be useful in predicting the genre label. By contrast, when OpTok was
trained on the rating prediction task, the trained language model yielded higher
probabilities for words such as bad and awesome, which seemed important for rat-
ing prediction. A similar tendency was observed with the Japanese and Chinese
datasets. In Chinese (Table 6.4), words such as /& (foot) and % (car) yielded
a higher probability for the genre prediction task, whereas the language model
trained on rating prediction assigned a higher probability to words such as &
(clean) and Z] (poor). OpTok also yielded a higher probability in Japanese

82

OpTok OpTok4AT

Genre | Rating Genre | Rating
Token Diff% | Token Diff% | Token Diff% | Token Diff%
) 7.58 B 4.99 1 962, K 8.88
T 3.96 Bf o 2.44 o 322, B 6.45
B 3.32, BH 2.0l £ 205, H 447
SE 232, SEfE 181 197, BE 274
5 218, o 1.73 145, FEH 257
214, K 1.79 B 155, B 1.63
K 1.98, HIERY 177 K127, BE S 149
AE 1841 EH 156 ko 130, T 057
£ 138 5 1.53 Hoo120, #0133
A 141 B 151 A 117 RE 125
M 139 | B 148 Ak 117 & 112
Wi 1.32 | % 139 w115 | F 097
T 125 E 138 KAR 1.06 | WAL 1.10
o117 i N 116 | FHL 0 1.02 i fE 1.02
o 1.09 B 1.16 7 000 HZE 091

Table 6.4: Token rankings based on the positive differences in probabilities be-
tween the initial and learned language models of the proposed methods
on Genre&Rating(Zh). The downstream model is the classifier with
the BiLSTM encoder.

(Table 6.5) for useful words according to task (e.g., H& (sleep) and f& (foot) for
the genre prediction and & T% (very) and £ (rating) for the rating prediction).
The language model of OpTok increased the probability of functional words such
as B (of) and | (done) in Chinese and @ (of) in Japanese. Chinese and Japanese
texts do not have word boundaries (as typically indicated by whitespaces) and
do not have many subwords composed of a noun and functional word such as
ZEHY (of car) and &£ D (of foot). The results suggest that the proposed meth-
ods assigned the higher probabilities to these functional words to cut them from
the noun that is useful in predicting the correct label. Similarly, even on the
tasks in English that indicated word boundaries with whitespaces, we observed
the language model of the proposed methods increased the word probabilities

of the functional suffixes such as “s” for the plural form and “ly” for adverbs.

83

OpTok OpTok4AT
Genre | Rating Genre | Rating
| |

Token Diff% | Token Diff% | Token Diff% 1 Token Diff%
2 6.80 | *TH 257 % 1009 LT 716
D 599 2219 K803, AL 289
T 327, MHBLD 145 D 533, DT 270
~AD 2922 L 1.42 A 396, 2 TH 2.36
w211, 2R 1.39 Iz 4.02 | H 1.88
R 1.94 5% 1.38 > 204, F/ 164
& 1.84 | MHT 1.32 149) TL7 121
#1776 b 122 T 1206, 7#< 134
LD 175 JK< 1.20 ko 1.32 L 110
BE 153 RUTHBR 119 | WA 103! BEEA 1.29
i 1.49 FRE 113 M 0.96 ! 083
A 1.47 | BMED 1.07 B 091 | w3 1.19
T3 1.28 | Fo7-< 1.02 & 0.82 | W7z 1.20
Wl 1.37 i DA 0.98 T 072 AN S
72035 1.27 < 0.95 k0681 OT 0.89

Table 6.5: Token rankings based on the positive differences in probabilities be-
tween the initial and learned language models of the proposed methods
on Genre&Rating(Ja). The downstream model is the classifier with the
BiLSTM encoder.

This increase in the probability of functional words may have contributed to a
performance improvement by dividing the useful nouns and stem words for the
downstream tasks.

The rankings of OpTok4AT were similar to those of OpTok, where the lan-
guage model assigned higher probabilities to words that were useful for solving
the downstream model. These results demonstrate that OpTok and OpTok4AT
optimized the tokenization to enable helpful tokens to be used frequently. Section
6.7 further discusses the relationship between the word rankings of the language
model and word importance to solve the downstream task when using the simple
classifier.

An example of optimized tokenization was extracted from the training split in

the Chinese datasets, which included the difference in tokenization derived from

84

OpTok OpTok4 AT

Genre | Rating Genre | Rating
Token Diff% 1 Token Diff% Token Diff% | Token Diff%
gun 3.47 « However 14.10 s 10.95 | 1 17.75
grip 2611 BUT 11.69 scent 4.24 | well 7.41
zombie 2.26 | bad 5.32 movie 2.74 | best 6.05
professional 1.90 | paced 3.66 | relationship 1.45 | bad 5.29
treat 1.69 Funk 2.99 | soundtrack 0.99 great 3.36
gray 1.48 | awesome 2.84 chair 0.98 | consecutive 3.42
soap 1.48 Ok 2.60 cord 0.93 | ly 2.86
dry 133, watch 2.08 mouth 0.93 | remorse 2.13
collection ~ 0.97 | game 2.05 product 0.80 | good 1.54
sleeper 0.94 : Build 1.89 threaded 0.67 : guess 1.25
instant 0.77 | daughter 1.85 knife 0.66 | worthwhile 1.18
phone 0.73 | great 1.67 book 0.56 | often 0.95
tea 0.68 | There 1.59 quality 0.59 | smart 0.95
scary 0.65 | brand 1.38 jacket 0.65 | Geffen 0.94
riddled 0.63 1 what 1.22 game 0.51 1 beautifully 0.78

Table 6.6: Token ranking based on positive differences in probabilities between
the initial and learned language models of the proposed methods on
Genre&Rating(En). The downstream model is the classifier with the
BiLSTM encoder.

tasks listed in Table 6.8. In the tokenization optimized for the genre prediction
task, both proposed methods extracted Fi{F (anti-slip) by cutting off the word A~
(not) from the initial tokenization (SentencePiece). The word Pji# is often used
in reviews of carpets, which is one of ZXJ&4{E (household), and the example
suggests that the model selected the tokenization that included this word to
predict the correct label. By contrast, the tokenization optimized for rating
prediction included sentiment words in both proposed methods, such as A4F
(bad) and 564 (extremely), which correspond to lower ratings.

The Japanese examples listed in Table 6.9 showed similar tendencies as those
the Chinese examples. The tokenization for the genre prediction extracted task-
specific words such as & D (fragrance) and %2 (hair), which correspond to the
correct label “FE% + I A A + FIK” (Beauty, Cosmetic, Perfume). The tok-

85

Method Tokenization

I like to listen to CDs when traveling and

SentencePiece o .
this is a one of my favorites .

Genre (Gold: CDs and Vinyl)
I like to listen to CD s when travel ing and

this is a one of my favorites .

7 ;);)&‘gk;LA'i‘ o 7171.171(; to listen to CD s ;\fileinit};\;eii;lé and
this is a one of my favorites .

Rating (Gold: 5)

I like to listen to CDs when traveling and
this is a one of my favorite s .

OpTok4AT I l.ike' to listen to CDs W}.len traveling and
this is a one of my favorites .

Table 6.7: Differences in tokenization depending on the downstream task (Genre
or Rating prediction) in English.

enization for the rating prediction extracted 424X (at all), which is a negative
polarity expression that co-occurs with a negative expression (e.g., 72 U (not) in
this case).

The English examples listed in Table 6.7 also exhibited similar behaviors as
those of the others. In the tokenization optimized for the genre prediction task,
the model cut off an inflection of C'D-s to generalize the token CD for predicting
the proper genre. Furthermore, the tokenization of OpTok for the rating task
cut off the inflection of favorite-s to generalize favorite to predict the higher
ratings. The tokenization of OpTok for the genre prediction also extracted travel
by cutting off ing, which corresponds to the improper label Sports and Outdoors.
The proposed methods cannot change the tokenization depending on the context
of the sentence because the unigram language model is used for the tokenization.
Although this is not a major problem when using a rich downstream model, which
can consider the context, these characteristics of the proposed methods may cause
failed predictions such as when wrongly predicting the Sports and Outdoors label
instead of C'Ds and Vinyl using the extracted word travel for a sentence.

These examples in the three languages demonstrate that both versions of the
proposed method can tokenize sentences in different ways depending on the down-
stream tasks. The tokenizations of OpTok and OpTok4AT were shown to be

86

Method Tokenization

SentencePiece I JEHAE | 5242 N !

Genre (Gold: XKIEHE)

OpTok R EEALE | SELA BE !
OpTokdAT K7 EHAREF | B4R Bilg!

Rating (Gold: 1)

OpTok A HEE AN B AP

OpTok4AT I IEE AN Be AP

Table 6.8: Differences in tokenization depending on the downstream task (genre
or rating prediction) in Chinese. The text translates as “This is ex-
tremely bad! (This is) not anti-slip at alll”, where words in parenthesis
are omitted in the original text.

different in some cases because of the differences in architectures and the random

initialization of the downstream models.

Tokenization Granularity

This study next confirmed the tokenization tendencies by the proposed method in
terms of granularity. Specifically, this subsection compared the number of tokens
in the tokenized sentences between the initial tokenization by SentencePiece and
that by the proposed methods OpTok and OpTok4AT.

Table 6.10 shows the ratio of the number of tokens between the initial and
optimized tokenizations on the E-commerce review datasets. In the table, a value
greater than 1.0 indicates that the number of tokens in the optimized tokenization
increased over that of the initial tokenization. For example, the tokenization
optimized to Genre(Zh) with OpTok was 1.5405 times longer than the initial
tokenization by SentencePiece.

The values listed in Table 6.10 demonstrate that tokenizations optimized by the
proposed methods became longer than the initial tokenizations with all datasets
and languages. The results also demonstrate that both OpTok and OpTok4AT
had the same tendency of tokenization in terms of granularity. This means that
the proposed methods split words into tiny units to capture a greater amount of
small information from sentences for text classification tasks. Interestingly, for

all datasets, the tokenizations optimized to genre prediction tasks were longer

87

Method Tokenization
SentencePiece FHDIX & 7. ¥ AL Z2IZ 32R ELL,
Genre (Gold: 2E + AARX - HK)

OpTok FEO XT38, MALZE Z Z2R IR 2L,
OpTokdAT FY B T& KL . WAL I Z2R BHHE LL .,

Rating (Gold: 2)

OpTok FEOF TS ZTE. WAL EZ2IZ R 2R BRRL,
OpTokdAT FHR T&E 2L . AKX BC k2R HExL.

Table 6.9: Differences in tokenization depending on the downstream task (genre
or rating prediction) in Japanese. The text translates as “(I) like the
fragrance, but (it does) not do anything for (my) damaged hair at all.”,
where words in parenthesis are omitted in the original text.

than those for rating prediction tasks in all languages. These results suggest that
information of small pieces such as small subwords was important in solving genre
prediction tasks effectively for the downstream model, and the proposed methods
caused the granularity of tokenization to become much smaller for the effective
training. More specifically, the proposed methods split suffixes such as “-s” in the
aforementioned extracted nouns that strongly corresponded to each genre label,

and the length of tokenization increased.

6.4.2 Optimized Tokenization on Machine Translation

This study next analyzed the tokenization obtained using the proposed method
on a machine translation task. Table 6.11 presents a comparison of tokenizations
with SentencePiece, DPE, and the proposed method. The IWSLT15 Zh-En cor-
pus was utilized for this comparison and English-side sentences were tokenized
using each method. In this comparison, only the English-side tokenization was
optimized with the proposed method.

Table 6.11a presents a comparison of the tokenization on the source side be-
tween SentencePiece and the proposed method. The proposed method splits
words into smaller segments as compared to SentencePiece (where the latter per-
forms the initial tokenization in the proposed method). Specifically, the proposed
method cuts off the suffix from a stem word. For example, it splits “don” into

“do-n”, “have” into “hav-e”, and “hours” into “hour-s”.

38

OpTok OpTok4AT

Genre(Zh) 1.5405 1.5137
Rating(Zh) 1.4249 1.3807
Genre(Ja) 1.5250 1.5834
Rating(Ja) 1.3224 1.2742
Genre(En) 1.0620 1.0845
Rating(En) 1.0415 1.0305

Table 6.10: Ratio of the number of tokens between the initial tokenization (Sen-
tencePiece) and the optimized tokenization (OpTok and OpTok4AT)
on the corpora of E-commerce reviews. The downstream model is the
classifier with the BiLSTM encoder.

Table 6.11b presents a comparison of the tokenization on the target side be-
tween SentencePiece, DPE, and the proposed method. Compared to the tok-
enization on the source side, the proposed method does not split words into tiny
units on the target side. The proposed method exhibits the same tendency of
tokenization as DPE, such as splitting the past-verb suffix “-ed”. However, DPE
tokenization contains smaller units than the tokenization of the proposed method.

An example of this is the difference in the tokenization for the word “away”.

Tokenization Granularity

To compare the granularities of each tokenizer, this subsection presents the num-
ber of tokens in the corpus tokenized by each method. Table 6.12 lists the ratio
of the number of tokens in the training corpus between the initial tokenization
(SentencePiece) and the optimized tokenization (DPE and the proposed method).
In the table, a value greater than 1.0 indicate an increase in the number of tokens
as compared to SentencePiece.

The results revealed that the number of tokens in the proposed method in-
creased for the source-side tokenization, which means that the proposed method
tokenizes a source corpus into small units by splitting morphemes, as shown in Ta-
ble 6.11a. This suggests that tokenizations containing small units do not hurt the
performance of NMT because the neural encoder can handle fine-grained inputs.
This tendency supports the existing studies that showed that using character-level

tokenization for the encoder contributes to an improvement in machine transla-

89

tion performance [51, 64].

For the tokenization of the target side, the ratio of the number of tokens for
the proposed method was slightly smaller than the initial tokenization, except
for the En-Zh pair. This result suggests that the proposed method seeks an
appropriate tokenization to assist in the decoding process while maintaining the
granularity of the initial tokenization (e.g., separate-d and separat-ed in Table
6.11b). Regarding the translation of the En-Zh pair, the proposed method split a
Chinese sentence in the target side into smaller tokens. Chinese characters contain
much more information than English characters, and fewer Chinese tokens are
used in a sentence as compared to English. This difference possibly caused the
increased number of tokens on the target side to use the same granularity as the
source English corpus.

Compared with the tokenization by the proposed method, the number of to-
kens for the DPE varied for each language pair. DPE tokenization proved to be
more flexible than the proposed method because DPE employs Transformer and
a special decoding algorithm for tokenization, whereas OpTok4 AT simply uses a
unigram language model and the Viterbi algorithm. In addition, DPE tokenizes
the target sentence by directly considering the source tokenization in which a
source sentence is input into Transformer. By contrast, OpTok4AT uses the
target-side neural unigram language model trained with information from both
sides to identify the target-side tokenization. Although the flexibility of tokeniza-
tion with OpTok4AT is limited, the proposed method improves the performance
on NMT tasks, as the experimental results showed. The proposed method can-
not change the tokenization depending on the context because of the unigram
language model, which does not consider the context to calculate the probabil-
ities of tokenizations. However, this characteristic of the proposed method also
represents an advantage that we can use for consistent tokenization in the entire
corpus. The performance improvement in machine translation tasks (see Table
5.10) suggests that this characteristic of the proposed method using a unigram-

based language model contributes to improved performance.

90

SentencePiece Student s don ’ t have long hours of learning .
OpTok4AT Student s do n > t hav e long hour s of learning .
Target AR R) AR K.

(a) Tokenization difference for the source language (En-Zh)

Source 510 5 HE 7 4 B R

SentencePiece Gra vity separate d away from the other force s .
DPE Gra vity separat ed a way from the other force s .
OpTok4AT Gra vity separat ed away from the other force s .

(b) Tokenization difference for the target language (Zh-En)

Table 6.11: Comparison of English tokenizations on Zh-En pairs using Sentence-

Piece (SP),

DPE, and our method. Different results of tokenizations

are highlighted in bold.

Encoder opT SP+R SP+R
Decoder SP+R opT DPE
IWSLT1/4
De-En 2.5353 0.9992 1.0439
En-De 1.3809 0.9996 0.9923
IWSLT15
Vi-En 1.5320 0.9993 1.0428
En-Vi 1.4650 0.9999 0.9923
Zh-En 1.5175 0.9994 0.9907
En-Zh 1.3516 1.4713 1.0346
IWSLT17
Ar-En 2.5350 0.9997 0.9952
En-Ar 1.4765 0.9994 0.9945
Fr-En 1.7194 0.9996 1.0001
En-Fr 1.5996 0.9997 0.9935

Table 6.12: Ratio of the number of tokens between initial tokenization (Senten-

cePiece) and optimized tokenization (DPE and our method) on the

IWSLT corpora. SP+R denotes SentencePiece with subword regular-

ization.

91

6.5 Cross-domain Evaluation

The experimental results described in Section 6.1.2 demonstrated that the pro-
posed methods can improve the performance of the downstream model simply
by optimizing the tokenization. This fact indicates that the proposed methods
are types of domain adaptation, as OpTok and OpTok4AT refine the tokeniza-
tion based on the domain of the downstream model and task. This section next
conducted a thorough analysis on whether tokenizations optimized by OpTok
and OpTok4AT are specialized to the given downstream model and task. This
subsection compares the performances of the downstream model when 1) the to-
kenization is optimized to the same task used to train the downstream model,
and 2) the tokenization is optimized to a different task.

This comparison exploits the dataset of genre and rating predictions used in
the experiment on text classification tasks. As mentioned in Section 5.1, the
genre and rating prediction tasks are created from the same single review corpus.
Therefore, this analysis can compare the effects of tokenization on the downstream
task.

The downstream model with the BILSTM encoder was trained for each down-
stream task using subword regularization of SentencePiece as well as experiments
in 6.1.2. After the 30-epoch training, the parameters of the downstream model
were frozen, and the tokenization was optimized to the same downstream task
using the proposed method with the trained downstream model. This study then
compared the performances of the downstream model with tokenizations for the
same downstream task and for a different task. For example, the downstream
model was trained and the tokenization was optimized for the genre prediction
task.

Similarly, the downstream model and tokenization were trained for the rating
prediction task. This study then compared the performance of the downstream
model for the genre prediction task with the tokenization derived from genre
and rating predictions. This analysis hypothesized that if the tokenization by
the proposed method is specialized to the genre prediction, the genre prediction
model with tokenization for the genre prediction should perform better than with
tokenization for rating prediction. OpTok4AT was used for the analysis because
OpTok4AT proved to be superior to OpTok in most of the previous experiments
(Section 5.1).

92

Table 6.13 presents the experimental results on the review datasets in Chinese,
Japanese, and English. The first row of the table shows the performances of
the downstream model trained on the genre prediction task of JD.com with 30
epochs (SP+R), the model optimized with an additional five epochs with only
tokenization on genre prediction (SP+R — Genre), and the model optimized with
an additional five epochs with only tokenization on rating prediction (SP+R —
Rating).

The experimental results demonstrated that the performance of the down-
stream model with tokenization optimized to the same task was higher than that
with tokenization for the different task in all datasets and in all languages. These
results verified that the proposed method can identify tokenization specialized to
the downstream model and task through its optimization process.

Interestingly, the results also showed that tokenization for the different task
could contribute to improving the performance of the other downstream task.
For example, tokenization for Rating(Zh) improved the performance of the down-
stream model for Genre(Zh) as compared to the original performance. This result
suggests that the tokenization for rating prediction includes the useful tokeniza-
tion for genre prediction. Specifically, the performance of the downstream model
for the genre prediction was improved with tokenization for rating prediction tasks
in all languages as compared to the original performance. This indicates that the
tokenization specialized to the rating prediction task was partially effective in the
genre prediction task.

By contrast, the results also demonstrated that tokenization for genre predic-
tion did not have a good effect on the downstream model for the rating prediction
task. This result suggests that the optimized vocabulary for genre preiction does
not include the useful vocabulary for rating prediction because the tokenization
for genre prediction was split into tiny granularities by the proposed method
(Section 6.4.1).

Note that the experiment in which the same task was used for the down-
stream model and the tokenizer was identical to the experiment described in
Section 6.1.2. Thus, these experimental results indicated that OpTok4AT also
contributed to improved performance of postprocessing not only for sentiment
classification (Section 6.1.2), but also for text classification on the review corpus

in terms of rating and genre predictions.

93

Task for Tokenization

Dataset Task for SPAR SP+R SP+F{

Downstream Model — Genre — Rating
JD.com Genre 48.85 49.291 49.14
(Chinese) Rating 53.39 53.37 53.661
Rakuten Genre 45.48 46.121* 45.647
(Japanese) Rating 48.94 49.07 49.18'
Amazon Genre 71.64 71.78 71.66
(English) Rating 67.56 67.56 67.721

Table 6.13: Performances of the downstream models with tokenizers trained on
different tasks. The downstream model was trained with Sentence-
Piece and subword regularization, and the tokenizer was trained with
the trained downstream model whose parameters were frozen. Bold
highlights indicate the highest performances among the evaluation
tasks. findicates that the score was significantly higher than that
of the baseline system (SP+R) with the McNemar’s test (p < 0.05).
Talso indicates that the score of the model with the matched tokenizer
significantly overcomes that of the model with the mismatched tok-
enizer with the McNemar’s test (p < 0.05).

6.6 Multitask Learning

The previous sections 6.4 and 6.5 and the following section 6.7 demonstrate that
the proposed methods acquire task-specific tokenization through training. For
example, the proposed methods trained on the genre prediction task use more
tokens that seem helpful in solving genre prediction tasks rather than rating
prediction tasks. Based on these results, this study is interested that the proposed
method was trained on multiple tasks such as genre and rating prediction tasks.
This section reports the experimental results of the proposed method on multitask
learning.

The experiment exploited the E-commerce datasets Genre(Zh, Ja, En) and
Rating(Zh, Ja, En). For multitask learning, the downstream model for text

94

classification described in 2.27 was modified as follows:

f(tGenre|S/; QTC(Genre)) - SOftmaX<MLP(g(S/7 9’?[?8(:))7 G(MLP)TC(GQHTG)))tGenre7 (6]')
f(tRating|3/3 QTC(Rating)) = SoftmaX(MLP(g(sl, 9&?8@)7 e(MLP)TC(Raﬂng)))tRating7 (6-2)

where §MEP)Tc(@enre) and §MIP)TC(Rating are parameters of MLP for the genre and
rating prediction tasks, respectively. In this experiment, the BiLSTM-based en-
coder was used as g. Note that the single BILSTM-based encoder was used for
both genre and rating prediction tasks for multitask learning. For each mini-batch
B, the parameters were updated to minimize the sum of cross-entropy losses for

each task:
EGenre(S; tGenre) = - log f(tGenre|5/; 8TC(Genre)>7 (63)
ERating(& tRating) = - IOg f(tRating’S/; 9TC(R&ting)>7
EMultitask(B) = Z ‘CGenre<S; tGenre) + ﬁRating(sa tRating) . (65)

(Sthenre 7tRating)€B

Figure 6.2 presents an overview of the architecture for multitask learning.

Table 6.14 summarizes the experimental results on multitask learning. The
results showed that the proposed methods outperformed the baseline method
(SP+R). The scores for each method were lower than those of the single task
settings reported in Table 5.7. This implies that multitask learning of the genre
and rating prediction tasks did not help to improve the performance of each task.

The main focus of this experiment was on the acquired tokenization by the
proposed methods. Table 6.15 shows the tokenization examples optimized to
the multiple tasks. This comparison used the same sentences as those in the
tokenization examples for the single tasks listed in Tables 6.8, 6.9, and 6.7.

Compared to the Chinese examples listed in Table 6.8, the tokenization for
the multiple tasks listed at the top of Table 6.15 had the same tendencies of
tokenization optimized for the rating and genre predictions. The tokenization by
OpTok included 584 (extremely) and A~ (not) corresponding to the proper rating
label and Bfi{& (anti-slip) corresponding to the proper genre label as analyzed in
Section 6.4.1. The tokenization by OpTok4AT also contained A4 (bad) and Pj
& corresponding to the rating and genre labels, respectively.

The tokenizations in Japanese (middle of 6.15) showed the same tendencies as
the Chinese examples. Both tokenizations of OpTok and OpTok4AT contained &F

95

f (tenrels’, QTC(Genre)) f(tRatinglslv 9TC(Rating))

BiLSTM

Figure 6.2: Overview of the downstream model for multitask learning using the
BiLSTM-based encoder.

D (perfume) and £ (hair) for the appropriate genre label and 424X (at all) for the
appropriate rating label. The English tokenizations showed similar tendencies.
Both tokenizations of OpTok and OpTok4AT (bottom of 6.15) included CD and
favorite corresponding to the appropriate genre and rating labels, respectively. In
addition to the word corresponding to the proper label, both tokenizations had
a word travel that corresponded to the improper genre label. As mentioned in
Section 6.4.1, the proposed methods cannot change the tokenization depending
on context because of the characteristic of the unigram language model. The
examples show that this problem occurs with both multiple- and single-task set-
tings.

The tokenization examples demonstrate that the proposed methods trained
on multiple-task settings include the characteristics of tokenization optimized for
both the rating and genre prediction tasks. The results suggest that the proposed
method can be applied to multi- and single-task learning and can improve their

96

SP SP+R OpTok OpTok4AT

Genre(Zh) 44.95 46.32 46.64* 47.60*
Rating(Zh) 46.60 46.77 47.19% 48.15*
Genre(Ja) 43.95 47.11 48.00* 49.87*
Rating(JA) 49.41 51.23 51.08 52.21*
Genre(En) 67.23 70.81 70.61 71.46*
Rating(En) 63.22 65.67 65.79* 65.67

Table 6.14: Experimental results of multitask learning on E-commerce datasets.
SP and +R denote SentencePiece and subword regularization, respec-

* indicates that

tively. The highest scores are highlighted in bold.
the score was significantly higher than that of the baseline system

(SP+R) with the McNemar’s test (p < 0.05).

performances by acquiring the appropriate tokenizations.

6.7 Analysis with Simple Downstream Model

The previous experiments used the downstream model with a complicated archi-
tecture such as the BiLSTM-based encoder. This type of architecture achieves
higher performance due to the rich representation of word embeddings. How-
ever, determining the token that is effective in solving the downstream task is
somewhat difficult. By contrast, the proposed methods focus on the task-specific
token for the appropriate tokenization.

To confirm the relationship between the acquired tokenization by the proposed
methods and the effective tokens for the downstream task, this analysis exploited
a simple classifier using multinomial logistic regression for multi-class classifica-
tion. This simple method calculates the probability of label ¢ for the tokenized

sentence s’ as follows:

hy = Y p{Onetet) (6.6)
wes’
p(t]s’) = softmax(Why + b);, (6.7)

where v{O"H°t) is a one-hot vector whose element corresponding to the word w

is 1 and is 0 for the others. The calculated sentence vector hy is known as a

97

Method Tokenization
Chinese (Genre: ZKJ&4 1, Rating: 1)
SentencePiece F 74 JEEALF | T AHE !

OpTok4AT I AEE AN EES B!
Japanese (Genre: ZE% + I A A - &K, Rating: 2)
SentencePiece FHFDIX T 7217 . T AL Z2IZ X2 SRR L .

OpTok4 AT FEY X TEZIE., WAL Z2 1T 2R $E L.,
English (Genre: CDs and Vinyl, Rating: 5)

I like to listen to CDs when traveling and

SentencePiece o .

this is a one of my favorites .

I like to listen to CD s when travel ing and
OpTok o .

this is a one of my favorite s .
OpTokdAT I like to listen to CD s when travel ing and

this is a one of my favorite s .

Table 6.15: Differences in tokenization in Chinese (top), Japanese (middle), and
English (bottom), from experiments with multitask settings.

bag-of-words vector. W and b are the trainable parameters and they are updated
using the cross-entropy loss function as well as the other experiments with neural
networks as described in Section 5.1. Inspecting the trained weight of W helps to
analyze the importance of the token for each downstream task. For example, the
weight W, in the a-th row and b-th column of W indicates how the a-th token
in the vocabulary contributes to classifying the sentence into the b-th label.

Table 6.16 shows the performance of the downstream tasks by each method.
The results demonstrate that the proposed method contributes to improved per-
formance in most settings even with the simple text classifier.

Analyzing the trained weight of the simple downstream model helps to under-
stand the behaviors of the proposed methods. This subsection presents an anal-
ysis of the differences among SentencePiece, OpTok, and OpTok4AT in terms
of the top ten important words with the highest weight in each label. The top
ten important words are listed in Tables 6.17, 6.18, and 6.19, corresponding to
Chinese, Japanese, and English E-commerce datasets of rating prediction tasks,
respectively. For OpTok and OpTok4AT, the tables also list the top ten words

98

SP SP+R OpTok OpTok4AT

Weibo(Zh) 93.18 92.86 93.36' 93.20%
Twitter(Ja) 85.42 85.24 85.56 85.66¢
Twitter(En) 75.77 75.54 75.68 75.91
Genre(Zh) 47.77 47.62 47.43 47.83
Rating(Zh) 47.97 47.52 47.40 48.10
Genre(Ja) 50.02 50.03 50.87T 51.001%
Rating(Ja) 49.62 49.16 49.96* 50.07*
Genre(En) 73.01 73.33 72.85 73.617
Rating(En) 61.44 60.67 61.74* 61.62}

Table 6.16: Experimental results of text classification with the simple encoder.
SP and +R denote SentencePiece and subword regularization, re-
spectively. The highest scores are highlighted in bold. tand Iindicate
that the score significantly overcomes that of the baseline systems,
SP and SP+R, respectively, with the McNemar’s test (p < 0.05).

whose unigram probabilities increased from the initial probabilities in the same
manner as shown in Tables 6.4, 6.5, and 6.6. This analysis chose three of five
ratings (Ratings 1, 3, and 5) for the table analyses.

The important word rankings of the initial tokenization (SentencePiece) listed
in Tables 6.17a, 6.18a, and 6.19a demonstrate that words that include positive or
negative sentiments are regarded as the most important features with the highest
weights. This is in addition to the direct expression indicating the rating itself,
such as “¥%17, “%3”, and “¥%5”. in the Japanese examples.

In the Chinese examples shown in Table 6.17a, the downstream model trained
with SentencePiece assigns greater weight to long and redundant words in each
label. For example, some words in the rankings of Ratings 1, 3, and 5 contain
the same substring “373 (rubbish)”, “—#% (ordinary)”, and “JEH (extremely)”,
respectively. Assigning greater importance to these long and redundant words
may cause overfitting of the training corpus and lead to poorer performance on
the evaluation data because the samples in the evaluation data may not contain
these long words. It is helpful to assign greater weights to short and general
words to avoid overfitting in terms of generalization.

The rankings of OpTok and OpTok4AT (Tables 6.17b and 6.17¢) demonstrate

99

that the proposed methods alleviate the problem of long and redundant words.
The proposed methods split these long words by assigning higher probabilities to
shorter tokens, as shown in the “Rank” column in the tables. For instance, the
ranking of OpTok4AT (Table 6.17c) contains “373%”, and the ranking for Rat-
ing 1 includes fewer redundant tokens, including “£73%”. This tendency relaxes
the overfitting problem on the evaluation dataset and contributes to improved
performance.

The Japanese examples (6.18) show similar tendencies as the Chinese examples.
The rankings of OpTok and OpTok4AT are composed of shorter words compared
to those of SentencePiece and the Chinese examples. OpTok and OpTok4AT also
relax the problem of redundancy of words in the ranking such as “ & & (never)”.
in the ranking of Rating 1. For the results of OpTok4AT, although the number
of words including “Jifi /& (satisfied)”. in the column of Rating 5 is the same as
that of SentencePiece, the unigram language model of OpTok4AT increases the
probability of the word “Jii f/£”, as shown in the left column. This implies that
the proposed method tries to split the substring from the long and redundant
words, but it does not occur, possibly because of the number of training epochs.

The tendencies of English examples (Table 6.19) are different from those of the
Asian languages. The contents of the rankings are similar to each other with the
three tokenization methods. This result suggests that the variety of tokenization
in English is less than that of Japanese and Chinese because English sentences are
already split using whitespaces. Therefore, the tokenization hardly changes from
the initial tokenization by the proposed methods. As shown in the example of
the acquired tokenization in English by the proposed methods with the BiLSTM
classifier (Table 6.7), the proposed methods mainly change the tokenization of
the suffixes or prefixes of words, such as “s” for the plural form. Accordingly, the
changes like ones in Chinese and Japanese could not be identified in the analysis
of the weight of words in English.

100

Rating: 1 Rating: 3 Rating: 5

_ [tz B hE

RNk T i _ARFETHE

itk A — _IEFEHBAREHE
_FmEARFE BBk BRI
_AREE e |

B _ B _RIFRIEA
iK% BRI _ARE I

I8 COToe G C Qe % E e
WAL —RBIE _REE
_ARE ARFAE

(a) SentencePiece (Rating)

Rank \ Rating: 1 Rating: 3 Rating: 5
IRRCT A E HE
xR — I i &1
T RA FRAR i
e E ANEFFA —NRETER)
! R AR IE
ATEL D BrIR R S EER N
B A — - YIEMNHE
AR5 AKX KT
EU | KWT AL RS
—f R SR #

(b) OpTok (Rating)
Rank \ Rating: 1 Rating: 3 Rating: 5
! | A EAT SRRal h2
K EF AR JERIT
TEE | BRI — FEHHE
ESIGPN H IiiN=—2/53
—f% | THAK o —i RIE
£ #f e R FLH G
SRR HiktE REF
(S — — BRI
R B SO R IRE
ME BT AR REIRE

(¢) OpTok4AT (Rating)

Table 6.17: Top ten important words in the Rating(Zh) dataset.
101

Rating: 1 Rating: 3 Rating: 5
R 73 K g T
pAgl B=D 5
CTErEVEYA K3 Inhne
EKZREH WYt L -2 ETHENVAR
T EEEDZW =9 AEMELTED ET
TEEHWERA EIZEKRLU» oL TYT KREWMETY
_BETY AfH R SAA SR Kiif &
EBrEWERFA RL&ELET HEVWEML RO XL
TEEFHLUEEA HEBEMEZEEWET TKREETY
RETY DB koL KifgETc U7
(a) SentencePiece (Rating)
Rank Rating: 1 Rating: 3 Rating: 5
FtA o BETY %3 K 2
¥ RE *3 BETYT
HL HE=o KR Td
LE5L mTELE -2 FEES L
A ENF L AHRAAH %L Iane
< gy BLELET 5
&TH L RMLEW T TERAMN e TY
& | TEE =D Ho L HL
AL T R FEROTOVERTAN VE—-FTT
HoT (fiuwPicisiwy R<OPELATYT JETT
(b) OpTok (Rating)
Rank \ Rating: 1 Rating: 3 Rating: 5
rTh R Y3 Kiti e TF
B el *3 K
i 2 RETT =2 %5
FHA CTECEVWERA E=D TKIETT
%< BETULE WH A R4 EES LW
T¥ s ErEVERA O ETET BETY
F¥ATLRE ! FEEK FEoTERAN REWMELTWVWET
Tbib\ibf::i’iﬁ:bf:b\ RL&EULET B
LTET g -2 FHEEEA
LML HBTELE 5051 ETY

(c) OpTok4AT (Rating)

Table 6.18: Top ten important words in the Rating(Ja) dataset.
102

Rating: 1 Rating: 3 Rating: 5

__worst, _ okay __Excellent
_terrible _ OK _ Highly
__waste _ok Highly
_garbage However _ Perfect
__useless _ However wonderful
__horrible _ alright _ masterpiece
_crap BUT _ Great

_ refund __however _ perfect
__threw _average _ amaging

~ NOT ~ Ok __awesome

(a) SentencePiece (Rating)

Rank \ Rating: 1 Rating: 3 Rating: 5
; __worst _ okay _stocked
. : __terrible ok _ _Highly
_It : _garbage _ OK Love
_love : __waste However ~ GLAD
This : __useless _ However __awesome
I ' _horrible BUT Excellent
__this : _refund _ alright __masterpiece
’ : __worthless _ average Great
it : _crap _ Unfortunately Perfect
_of ' _junk __jarring _ cardinals

(b) OpTok (Rating)

Rank \ Rating: 1 Rating: 3 Rating: 5
o \ __worst _ okay _ Highly
, : _terrible ok Excellent
_ this : _ waste ~ OK Highly
t : _horrible okay _ perfectly
1 : _garbage However __awesome
_to | _useless _alright _ amazing
_ great : ~refund However _ fantastic
at : _crap OK Love
it : _ trash _ average Perfect
and ! _ threw _ Unfortunately Great

(¢) OpTok4AT (Rating)

103

Table 6.19: Top ten important words in the Rating(En) dataset.

0.4
0.2 - A==

-0.2 y
-0.4 ¢
-0.6 -’

-0.8

F1 Diff (%)
N

25% 50% 75% 100%
[V'1/IV]
- ® - Weibo(Zh) Twitter(Ja) Twitter(En)

Figure 6.3: Differences in scores using 50% of the entire vocabulary reported in
Table 5.7 against the different |V’| on a sentiment analysis. The sizes
of the vocabularies are 16,000 for Twitter(Ja) and Twitter(En), and
32,000 for Weibo(Zh). The size of N-best is N = 3.

6.8 Effects of Hyperparameters

This study introduces two hyperparameters to control OpTok and OpTok4AT:
the size of the N-best tokenization used for the training of the neural unigram
language model, and the weight of the loss to maintain the characteristics of the
language model pu, as described in Section 3.5. Another hyperparameter is intro-
duced for the training of OpTok, namely, the number of words in the restricted
vocabulary |V’|. This section analyzes the effects of each hyperparameter on the

performance of downstream tasks.

6.8.1 Number of Words in the Restricted Vocabulary

The training of OpTok exploits the restricted vocabularies to vary the candidates
in N-best tokenization (Section 3.4). Using larger restricted vocabularies for the
training enables the downstream model to exploit more word embeddings as the
variation in N-best tokenization decreases. By contrast, a smaller vocabulary re-
stricts the downstream model to use more limited word embeddings while using
a large variety of tokenization. This subsection reports the effects of hyperpa-
rameters on the performance of sentiment analysis.

Figure 6.3 reports the effects derived from the sizes of the restricted vocabu-

104

laries in the different languages. The figure shows the performances achieved by
the proposed method, where the sizes of the vocabularies were reduced to 25%,
50% (the default settings used in Table 5.7), 75%, and 100% from their initial
sizes. The figure shows differences in the average F'1 scores over five trials from
scores reported in Table 5.7. As the figure shows, restricting the vocabulary size
to 50% contributed to improved performances with the Japanese and English
datasets. These results verify that the vocabulary restrictions work well for the
proposed method. In addition, decreasing the vocabulary size negatively affected
the performance proportionately to the Chinese dataset. In fact, the average best
performance achieved by the full size of the vocabulary (i.e., 100% for 32,000) was
93.14, which was higher by 0.21 over the score of OpTok (Table 5.7). This result
suggests that decreasing the size of the vocabulary is unnecessary for languages
holding vast types of characters because this type of restriction causes a leaking
of useful tokens and the production of many unknown tokens in both the training
and evaluation, as reported by Hiraoka et al. [39].

6.8.2 Number of N-best Tokenization

The proposed methods update the neural unigram language model using N-best
tokenized candidates. More specifically, OpTok inputs the weighted sum of sen-
tence representations of N-best tokenizations into the downstream model, as
indicated in (3.7), whereas OpTok4AT minimizes the weighted sum of loss values
calculated from the downstream model whose inputs are N-best tokenizations, as
indicated in (4.2). For both proposed methods, a larger N enables the model to
update the neural unigram language model with more candidates of tokenization.
In other words, OpTok and OpTok4AT can explore the appropriate tokenization
from a larger search space with a large N. Ideally, the proposed methods can
find more appropriate tokenization with the larger N, and the performance im-
proves together with N. This section provides an analysis of the effects of the
hyperparameter N on the performances of the downstream tasks.

Experiments were conducted on text classification and machine translation with
different N, as described in Section 5. Figures 6.4a and 6.4b show the results of
text classification and machine translation, respectively. These figures illustrate
the differences from the model performance with the settings described in Section

5 (i.e., N = 3 for text classification and N = 8 for machine translation).

105

Text Classification

For the text classification task, this section analysed the effects of N on the
sentiment analysis datasets for Chinese, Japanese, and English. Figure 6.4a shows
that N = 3 achieved the best performance for OpTok in all languages, whereas
an increase in N decreased the performance. The decline may have been due to
the differences in the encoding strategies between the training and evaluation, as
described in Section 4.4. With a larger N, a task-specific module such as MLP
for text classification could be trained using the weighted sum of the various
tokenizations, whereas the module requires a sentence representation encoded
with the best tokenization in the inference.

Figure 6.4a shows that the number of N did not have a strong effect on the
performance of OpTok4AT. In addition, unlike the result with OpTok, the larger
N led to slightly better performance for the Japanese and English datasets. By
contrast, the performance for the Chinese dataset decreased with a large N. This
occurred possibly because a Chinese sentence has more tokenization candidates
than in the other languages, and the optimization of tokenization becomes un-
stable with a larger N.

These results demonstrate that OpTok4AT is more robust to large N as com-
pared to OpTok with text classification tasks. As described in Sections 4.4 and
5.1, OpTok4AT avoids the gap between training and inference in terms of the
weighting strategy. Because OpTok4AT uses only a single sampled tokenization
to train the downstream model, the number of N does not damage the text
classification performance. In other words, OpTok4AT uses the N tokenizations
only to update the neural unigram language model isolated from the downstream

model.

Machine Translation

For the machine translation task, experiments were conducted to confirm the ef-
fect of N on the performance of OpTok4AT using the Vi-En pair of IWSLT15.
Figure 6.4b illustrates that the number of N did not have a strong effect on the
performance when using OpTok4AT solely for the target side (SP/OPT). When
incorporating the proposed method to the source side (OPT/SP), the perfor-
mance increased with a large N. The result suggests that the proposed method
could find an appropriate tokenization from the large search space when a large

106

N was used because the neural encoder of NMT allows various tokenizations for
its input. When using the proposed method for both the encoder and decoder
(OPT/OPT), the performance decreased slightly with a larger N. This result
suggests that optimization of the tokenization of both sides with a large N be-
came unstable because tokenization on the source side varied considerably during
training, as mentioned Section 6.2 and 6.4.2.

107

0.1
+ 0
=
T -0.1
-0.2
-0.3
2 3 5 10
N
- © - OpTok: Weibo(zh) —e— OpTok4AT: Weibo(zZh)
- & —OpTok: Twitter(Ja) —a— OpTok4AT: Twitter(Ja)
— 8 —OpTok: Twitter(En) —=— OpTok4AT: Twitter(En)
(a) Text classification
0.6
.
0.4 ,
. . ’
o = ~o s A
5 0.2 -~ RO
) 0 > - o - _ . - ~ - ,’ L d
w —— - — - et
@ .- Tt
> _ _ _-
-0.2 -
-0.4
3 5 8 10
N

- ® -OPT/SP - & -SP/OPT - ¢ -OPT/OPT
(b) Machine Translation

Figure 6.4: Differences in performance against N on text classification (6.4a) and
machine translation (Vi-En, 6.4b).

108

6.8.3 Hyperparameter that Maintains the Characteristics
of Language Model u

This study introduced the additional loss value (£™) to maintain the character-
istics of the neural unigram language model, as explained in Section 3.5, and the
effect of this loss value could be controlled using the weight © as a hyperparame-
ter. The larger p has a significant effect on the training of the proposed methods
in maintaining the characteristics of the language model, as described in (3.9).
The word probabilities of the neural unigram language model trained with the
large p reflects the word frequency in the training corpus. In the experiments
described in Chapter 5, this hyperparameter was set to u = 0.01. This subsection
discusses the effect of various ps on the performance of the downstream models
and nature of language models using Chinese, Japanese, and English datasets of
sentiment analysis.

Figure 6.5a shows the perplexity [49, 8] calculated with the trained neural uni-
gram language model of OpTok and OpTok4AT with different us. The sentences
in the training data were tokenized with the trained neural unigram language
model into 1-best tokenizations and the perplexity PPL was calculated as fol-

lows:

H = > D —logyp(w (6.8)

ZseD |S/| seD wes'

PPL = 27, (6.9)

where D is the training data, s’ is the 1-best tokenization of s with the neural
unigram language model, and p(w) is derived from the trained neural unigram
language model.

Figure 6.5a demonstrates that the perplexity tended to decrease with a small
i in all settings. This result indicates that the neural unigram language model of
OpTok and OpTok4AT trained with the large u properly reflects the frequency
of words in the training data. On the Weibo(Zh) dataset, the perplexities of
OpTok with the smaller u were higher than those of OpTok4AT. This result
suggests that the training of OpTok hardly changes the parameters of the neural
unigram language model, and the tokenization becomes considerably different
from the initial one. This difference derived from the differences in architectures
in handling N-best tokenization. Unlike OpTok4AT, OpTok inputs the weighted

109

sum of the sentence representations of N-best tokenization, and the gradient
for the neural unigram language model is calculated through the downstream
model. Therefore, the gradient for the neural unigram language model of OpTok
includes considerably more information than does OpTok4AT, and the parameters
of the neural unigram language model hardly change from the initial parameters,
particularly with the Chinese dataset (which, in our experiments, included a
greater variety of tokenization).

Figure 6.5b shows the downstream task performances of downstream models
trained with different us. The values shown indicate the differences in perfor-
mances of the model trained with 1 = 0. The results of OpTok showed that
the performances tended to increase in a stable manner with the larger pu. By
contrast, this stable tendency was not observed in the performance of OpTok4AT
with p, and the peak of the performance by OpTok4AT differed depending on
languages. These differences in the proposed methods were due to the different
architectures for handling the N-best tokenizations, and OpTok4AT was more
sensitive against p in terms of performance. This indicates that the hyperparam-
eter p should be carefully selected for OpTok4AT.

110

10000000

1000000

Z 100000
x
9
a

g 10000

1000

100

0 0.0001 0.001 0.01 0.1 1
W
- © = OpTok: Weibo(zh) - # = OpTok: Twitter(Ja) - 8 - OpTok: Twitter(En)

—e— OpTok4AT: Weibo(Zzh) —=— OpTok4AT: Twitter(Ja) —s— OpTo4AT: Twitter(En)

(a) Perplexity against u

1.2

0.8
0.6
0.4
0.2

F1 Diff.

-0.2
-0.4
-0.6

0 0.0001 0.001 0.01 0.1 1
n

- & —=OpTok: Weibo(zh) — # —OpTok: Twitter(Ja) - 8 -0pTok: Twitter(En)
—e— OpTok4AT: Weibo(Zh) —=+— OpTok4AT: Twitter(Ja) —=— OpTo4AT: Twitter(En)

(b) Performance against u

Figure 6.5: Differences in perplexity on the tokenization of the training (6.5a)
split and the performance of the downstream tasks against the weight
for maintaining the characteristics of the language model p (6.5b).

111

6.9 Application for BERT

Numerous studies have recently focused on exploiting pretrained language models
to enhance NLP tasks. These include ELMo [88], XLNet [124], GPT-3 [10], and
BERT [22]. This section describes how OpTok and OpTok4AT are applicable
to recent NLP modules based on BERT through an experiment on the English
datasets of Twitter(En), Genre(En), and Rating(En).

In this experiment, the BiLSTM-based encoder in the downstream model was
replaced with BERT, and this analysis conducted the same experiments as those
described in Section 5.1. This experiment employed BERT},s from Hugging-
Face! and fine-tuned its parameters, except for those of the word embeddings
as well as the aforementioned experiments. Because the published tokenizer for
BERT},.s is based on WordPiece, which does not include the probabilities for
each piece, the probabilities were estimated on the training split using the EM
algorithm [21, 66, 60] and initialized the language model of the proposed methods
with these probabilities. The restricted vocabulary was not used in this exper-
iment because the vocabulary of BERT contains many tokens not applicable to
this experiment. Compared to the vocabulary initialized using SentencePiece on
only the training split, restricting the vocabulary results in too little diversity
of the N-best tokenization to cause overfitting of tokenization. Therefore, re-
stricting the vocabulary was not necessary, as with the Chinese dataset described
in Section 6.8.1. The trainable parameters of BERT},s. were fine-tuned using
AdamW [67], and the neural unigram language model was updated in OpTok
and OpTok4AT with Adam.

Table 6.20 shows the results of this experiment. For the experiment using the
original BERT, sentences in the training split were tokenized using the longest-
match-first algorithm of WordPiece implemented by HuggingFace. The model of
BERT+R was trained with a stochastic tokenization such as SentencePiece based
on the language model initialized using the EM algorithm.

The results show that the pretrained BERT improved the performance, as
compared with the scores presented in Table 5.7. In addition, the model trained
with subword regularization (BERT+R) surpassed the performance of the orig-
inal BERT. These results revealed that subword regularization was effective in

the experiment using the large pretrained language model. The model incor-

‘https://github.com/huggingface/transformers

112

https://github.com/huggingface/transformers

Best in Table 5.7 BERT BERT+R OpTok OpTok4AT

Twitter(En) 79.04 80.98 81.22 81.98* 81.67
Genre(En) 71.83 76.22 7721 76.71 77.61%
Rating(En) 67.90 70.36 70.88 70.84 71.05%

Table 6.20: F1 scores on Twitter(En), Genre(En), and Rating(En) with
BERT}ase. The highest scores are highlighted in bold. * indicates
that the score was significantly higher than that of the baseline sys-
tem (BERT+R) with the McNemar’s test (p < 0.05).

porating OpTok achieved the highest score on the Twitter(En) dataset. The
performances of OpTok in Genre(En) and Rating(En) were only comparable to
that of BERT+R. By contrast, the model with OpTok4AT scored higher than
BERT and BERT+R with all datasets.

OpTok scored higher than OpTok4AT for Twitter(En) in the previous exper-
iments when using a complicated neural architecture (Tables 5.6 and 5.7). The
results are shown in Tables 5.6 and 5.7, where the same tendency was observed
even in the experiments with BERT, which has a much more complicated neural
architecture. These results indicate that OpTok4AT contributed to an improve-
ment in the popular NLP architecture using BERT in terms of optimizing the
tokenization. By contrast, OpTok could only be expected to improve performance

with informal text such as in the Twitter corpora.

113

7 Conclusion

This study introduced new methods to address the NLP problem of identifying
appropriate tokenization that otherwise cannot be found in preprocessing isolated
from the downstream task. Two approaches based on the same idea were pro-
posed. The proposed methods jointly train the tokenizer and downstream model
to obtain the appropriate tokenization for the downstream model. The proposed
methods exploit some tokenized candidates for the input sentence to update the
tokenizer composed of a neural unigram language model.

The first approach, OpTok, updates the tokenizer by weighting the sentence
vectors of each tokenization candidate with their probabilities as calculated by
the language model. OpTok inputs the weighted sum of the sentence vectors into
the downstream model like the general architecture using the neural networks.
Thus, the parameters of the tokenizer are updated by applying back-propagation
for the final loss value calculated with the weighted sum against the task-specific
supervisory signal.

The second approach, OpTok4AT, calculates the loss values corresponding to
each tokenization candidate by inputting it into the downstream model separately.
OpTok4AT then updates the parameters of the tokenizer to minimize the final loss
value calculated by weighting the loss values with the corresponding probabilities
of tokenization candidates.

The advantage of OpTok is that the parameters of both the tokenizer and
downstream model can be updated using the single loss value calculated by the
weighted sum of the sentence vector. However, this is limited to architectures
using sentence vectors during the calculation, such as text classification tasks.
OpTok4AT relaxes this problem by extending OpTok and can be applied to var-
ious architectures if the loss value when using it can be calculated. Because Op-
Tok4 AT exploits the loss values corresponding to each tokenization candidates,
the downstream runs multiple times depending on the number of candidates,
and this results in time and memory inefficiencies. To avoid this problem, this

115

study proposed a training strategy using subword regularization and updated the
tokenizer and downstream model with corresponding unique loss values.

Experimental results showed that both proposed methods contributed to per-
formance improvements in text classification tasks with Chinese, Japanese, and
English. The proposed methods are applicable to various neural architectures,
such as models that use attention mechanisms, BiLSTM, multinomial logistic re-
gression, and large pretrained language models such as BERT. OpTok4AT can
also be applied to machine translation tasks with Transformer and contributes
to performance improvements as compared with exiting works that attempt to
optimize tokenization.

Analysis on the acquired tokenization by the proposed methods illustrated that
tokenizations were different depending on the downstream tasks and languages.
Tokenizations for text classification and encoder side of machine translation in-
cluded many tokens by splitting sentences into tiny units, whereas tokenization
for the decoder side of machine translation contained long tokens and includes
the original tokenization by SentencePiece. Quantitative analysis on tokenization
revealed that the proposed methods extracted stem words by cutting off suffixes
to use short and general tokens for the training.

The technical problem with the proposed methods is their processing speeds
when used in real-world applications. The proposed methods can yield an ap-
propriate 1-best tokenization efficiently using the Viterbi algorithm once the to-
kenizer is trained. However, training the tokenizer with the proposed strategy
is time-consuming because the parameters of the tokenizer are updated using N
tokenized candidates. As demonstrated in Section 6.8.2, N should be at least
3 to achieve stable performance. The training speed depends on the number of
N and considerable time is required to train the proposed method when using
a larger N. For example, the average numbers of sentence per second processed
during the training of the Twitter(En) dataset were 181 and 225 for OpTok and
OpTok4AT, respectively. By contrast, the numbers were 1,181 for SentencePiece
and 995 for SentencePiece with subword regularization. The proposed method
requires a more effective training strategy to shorten the training time for an
application.

Tokenization or word segmentation is a fundamental problem that affects the
performance of NLP. Although many researchers have reported that an appro-

priate tokenization improves the performance of NLP, identifying the proper to-

116

kenization was not easy in the conventional NLP This study showed that we can
achieve improved performance by refining the tokenization and that appropriate
tokenization could be determined based on the downstream task and model. This
study is expected to stimulate further research on task-oriented word segmenta-

tion.

117

References

1]

Pranav A and Isabelle Augenstein. 2kenize: Tying subword sequences for
chinese script conversion. arXiv preprint arXiv:2005.03375, 2020.

Alfred V Aho and Margaret J Corasick. Efficient string matching: an aid
to bibliographic search. Communications of the ACM, 18(6):333-340, 1975.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normal-
ization. arXiv preprint arXiw:1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

Danushka Bollegala, Ryuichi Kiryo, Kosuke Tsujino, and Haruki Yukawa.
Language-independent tokenisation rivals language-specific tokenisation for
word similarity prediction. arXiv preprint arXiv:2002.11004, 2020.

Kaj Bostrom and Greg Durrett. Byte pair encoding is suboptimal for lan-
guage model pretraining. In Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing: Findings, pages 4617-4624,
2020.

Samuel Bowman, Gabor Angeli, Christopher Potts, and Christopher D
Manning. A large annotated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 632-642, 2015.

Peter F Brown, Stephen A Della Pietra, Vincent J Della Pietra, Jennifer C
Lai, and Robert L Mercer. An estimate of an upper bound for the entropy
of english. Computational Linguistics, 18(1):31-40, 1992.

119

[9]

[10]

[12]

[13]

[14]

[16]

[17]

Peter F Brown, Stephen A Della Pietra, Vincent J Della Pietra, and
Robert L Mercer. The mathematics of statistical machine translation: Pa-

rameter estimation. Computational linguistics, 19(2):263-311, 1993.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sas-

try, Amanda Askell, et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Deng Cai, Hai Zhao, Zhisong Zhang, Yuan Xin, Yongjian Wu, and Feiyue
Huang. Fast and accurate neural word segmentation for chinese. In Pro-
ceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), volume 2, pages 608-615, 2017.

Lewis Carroll. Alice’s Adventures in Wonderland. 1865.

William Chan, Yu Zhang, Quoc Le, and Navdeep Jaitly. Latent sequence
decompositions. arXiv preprint arXiv:1610.03035, 2016.

Pi-Chuan Chang, Michel Galley, and Christopher D Manning. Optimiz-
ing chinese word segmentation for machine translation performance. In

Proceedings of the third workshop on statistical machine translation, pages
224-232, 2008.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, and Xuan-Jing Huang. Gated re-
cursive neural network for chinese word segmentation. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1744-1753, 2015.

Xinchi Chen, Zhan Shi, Xipeng Qiu, and Xuanjing Huang. Dag-based
long short-term memory for neural word segmentation. arXiv preprint
arXiv:1707.00248, 2017.

Tagyoung Chung and Daniel Gildea. Unsupervised tokenization for machine
translation. In Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing: Volume 2-Volume 2, pages T18-726. As-
sociation for Computational Linguistics, 2009.

120

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Mathias Creutz and Krista Lagus. Unsupervised discovery of morphemes.
In Proceedings of the ACL-02 Workshop on Morphological and Phonological
Learning. Association for Computational Linguistics, July 2002.

Hongyi Cui, Yizhen Wei, Shohei lida, Takehito Utsuro, and Masaaki Na-
gata. University of tsukuba’s machine translation system for iwslt20 open
domain translation task. In Proceedings of the 17th International Confer-
ence on Spoken Language Translation, pages 145-148, 2020.

Hiroyuki Deguchi, Masao Utiyama, Akihiro Tamura, Takashi Ninomiya,
and FEiichiro Sumita. Bilingual subword segmentation for neural machine
translation. In Proceedings of the 28th International Conference on Com-
putational Linguistics, pages 4287-4297, 2020.

Sabine Deligne and Frederic Bimbot. Language modeling by variable length
sequences: Theoretical formulation and evaluation of multigrams. In 71995
International Conference on Acoustics, Speech, and Signal Processing, vol-
ume 1, pages 169-172. IEEE, 1995.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Miguel Domingo, Mercedes Garcia-Martinez, Alexandre Helle, Francisco
Casacuberta, and Manuel Herranz. How much does tokenization affect
neural machine translation? arXiv preprint arXiv:1812.08621, 2018.

Nadir Durrani and Sarmad Hussain. Urdu word segmentation. In Hu-
man Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pages
528-536, 2010.

Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490-499,
1960.

Philip Gage. A new algorithm for data compression. C Users J., 12(2):
23-38, feb 1994. ISSN 0898-978S.

121

[27]

[29]

[30]

[31]

[32]

[33]

[34]

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N
Dauphin. Convolutional sequence to sequence learning. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages
1243-1252, 2017.

Sharon Goldwater and David McClosky. Improving statistical mt through
morphological analysis. In Proceedings of Human Language Technology
Conference and Conference on Empirical Methods in Natural Language Pro-
cessing, pages 676683, 2005.

Sharon Goldwater, Thomas L Griffiths, and Mark Johnson. Contextual
dependencies in unsupervised word segmentation. In Proceedings of the 21st
International Conference on Computational Linguistics and the 44th annual
meeting of the Association for Computational Linguistics, pages 673-680.
Association for Computational Linguistics, 2006.

Sharon Goldwater, Thomas L Griffiths, and Mark Johnson. A bayesian
framework for word segmentation: Exploring the effects of context. Cogni-
tion, 112(1):21-54, 20009.

Chen Gong, Zhenghua Li, Min Zhang, and Xinzhou Jiang. Multi-grained
chinese word segmentation. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, pages 692-703, 2017.

Google. The wordpiece algorithm in open source bert,
2018. URL https://github.com/google-research/bert/blob/
eedf5716ce1268e56f0a50264a88cafad334ac6l/tokenization. py#
L300-L399.

Thamme Gowda and Jonathan May. Finding the optimal vocabulary size
for neural machine translation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, Online, November 2020. Association
for Computational Linguistics.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural
language models with a continuous cache. arXiv preprint arXiv:1612.04426,
2016.

122

https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L300-L399
https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L300-L399
https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L300-L399

[35] Zellig S Harris. Distributional structure. Word, 10(2-3):146-162, 1954.

[36] Hangfeng He and Xu Sun. F-score driven max margin neural network for
named entity recognition in chinese social media. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 713-718, 2017.

[37] Xuanli He, Gholamreza Haffari, and Mohammad Norouzi. Dynamic pro-
gramming encoding for subword segmentation in neural machine transla-
tion. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Online, July 2020. Association for Computa-
tional Linguistics.

[38] Shohei Higashiyama, Masao Utiyama, Taro Watanabe, and Eiichiro Sumita.
A text editing approach to joint Japanese word segmentation, POS tagging,
and lexical normalization. In Proceedings of the Seventh Workshop on Noisy
User-generated Text (W-NUT 2021), Online, November 2021. Association
for Computational Linguistics.

[39] Tatsuya Hiraoka, Hiroyuki Shindo, and Yuji Matsumoto. Stochastic tok-
enization with a language model for neural text classification. In Proceedings

of the 57th Annual Meeting of the Association for Computational Linguis-
tics, pages 1620-1629, 2019.

[40] Anh Khoa Ngo Ho and Frangois Yvon. Optimizing word alignments with
better subword tokenization. In Proceedings of the 18th Biennial Machine
Translation Summit (Volume 1: Research Track), pages 256-269, 2021.

[41] Sepp Hochreiter. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6(02):107-116, 1998.

[42] Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

[43] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning
for text classification. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages
328-339, 2018.

123

[44]

[50]

[51]

[52]

Jingjing Huo, Christian Herold, Yingbo Gao, Leonard Dahlmann, Shahram
Khadivi, and Hermann Ney. Diving deep into context-aware neural machine
translation. arXiv preprint arXiv:2010.09482, 2020.

Rakuten Inc. Rakuten dataset. Informatics Research Data Repository,
National Institute of informatics. (dataset)., 2014.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III.
Deep unordered composition rivals syntactic methods for text classification.
In Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), volume 1, pages 16811691,
2015.

Alon Jacovi, Oren Sar Shalom, and Yoav Goldberg. Understanding convo-
lutional neural networks for text classification. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 5665, 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplex-
ity—a measure of the difficulty of speech recognition tasks. The Journal of
the Acoustical Society of America, 62(S1):563-563, 1977.

Mikael Kageback and Hans Salomonsson. Word sense disambiguation us-
ing a bidirectional Istm. In Proceedings of the 5th Workshop on Cognitive
Aspects of the Lexicon (CogALex-V), pages 51-56, 2016.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord,
Alex Graves, and Koray Kavukcuoglu. Neural machine translation in linear
time. arXiv preprint arXiv:1610.10099, 2016.

Kazuya Kawakami, Chris Dyer, and Phil Blunsom. Learning to create and
reuse words in open-vocabulary neural language modeling. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1492-1502, 2017.

124

[53]

[60]

[61]

Kazuya Kawakami, Chris Dyer, and Phil Blunsom. Learning to discover,
ground and use words with segmental neural language models. In Pro-
ceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 6429-6441, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiw:1412.6980, 2014.

Philipp Koehn. Statistical significance tests for machine translation evalua-
tion. In Proceedings of the 2004 conference on empirical methods in natural

language processing, pages 388-395, 2004.

Philipp Koehn. Statistical machine translation. Cambridge University
Press, 2009.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Mar-
cello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, et al. Moses: Open source toolkit for statistical ma-
chine translation. In Proceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions, pages 177-180. Association
for Computational Linguistics, 2007.

Taku Kudo. Mecab: Yet another part-of-speech and morphological ana-
lyzer, 2006. URL http://taku910.github.io/mecab/.

Taku Kudo. Subword regularization: Improving neural network translation
models with multiple subword candidates. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 66-75, 2018.

Taku Kudo and John Richardson. Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing.
In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 66-71, 2018.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto. Applying conditional
random fields to Japanese morphological analysis. In Proceedings of the
2004 Conference on Empirical Methods in Natural Language Processing,
Barcelona, Spain, July 2004. Association for Computational Linguistics.

125

http://taku910.github.io/mecab/

[62]

[63]

[64]

John D Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence
data. In ICML, 2001.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional
neural networks for text classification. In Twenty-ninth AAAI conference
on artificial intelligence, 2015.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann. Fully character-level
neural machine translation without explicit segmentation. Transactions of
the Association for Computational Linguistics, 5:365-378, 2017.

Xiaonan Li, Hang Yan, Xipeng Qiu, and Xuanjing Huang. Flat: Chinese
ner using flat-lattice transformer. arXiv preprint arXiv:2004.11795, 2020.

Percy Liang and Dan Klein. Online em for unsupervised models. In Pro-
ceedings of human language technologies: The 2009 annual conference of
the North American chapter of the association for computational linguis-
tics, pages 611-619, 2009.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization.
arXw preprint arXiw:1711.05101, 2017.

Jin Kiat Low, Hwee Tou Ng, and Wenyuan Guo. A maximum entropy ap-
proach to chinese word segmentation. In Proceedings of the Fourth SIGHAN
Workshop on Chinese Language Processing, 2005.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective
approaches to attention-based neural machine translation. In Proceedings of

the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 1412-1421, 2015.

Zin Maung Maung and Yoshiki Mikami. A rule-based syllable segmentation
of myanmar text. In proceedings of the IJCNLP-08 workshop on NLP for
less privileged languages, 2008.

Coskun Mermer, Murat Saraclar, and Ruhi Sarikaya. Improving statistical
machine translation using bayesian word alignment and gibbs sampling.

126

[72]

[73]

[75]

[76]

[77]

Daichi Mochihashi, Takeshi Yamada, and Naonori Ueda. Bayesian unsu-
pervised word segmentation with nested pitman-yor language modeling. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Process-
ing of the AFNLP: Volume 1-Volume 1, pages 100-108. Association for
Computational Linguistics, 2009.

Hajime Morita, Daisuke Kawahara, and Sadao Kurohashi. Morphological
analysis for unsegmented languages using recurrent neural network language
model. In Proceedings of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, Lisbon, Portugal, September 2015. Association
for Computational Linguistics.

Masaaki Nagata. A stochastic japanese morphological analyzer using a
forward-dp backward-a* n-best search algorithm. In Proceedings of the 15th
conference on Computational linguistics-Volume 1, pages 201-207. Associ-
ation for Computational Linguistics, 1994.

Tetsuji Nakagawa. Chinese and japanese word segmentation using word-
level and character-level information. In COLING 200/4: Proceedings of the
20th International Conference on Computational Linguistics, pages 466
472, 2004.

Tetsuji Nakagawa and Kiyotaka Uchimoto. A hybrid approach to word seg-
mentation and pos tagging. In Proceedings of the 45th annual meeting of the
Association for Computational Linguistics Companion Volume Proceedings
of the Demo and Poster Sessions, pages 217-220, 2007.

Dat Quoc Nguyen. A neural joint model for vietnamese word segmentation,
pos tagging and dependency parsing. In Proceedings of the The 17th Annual
Workshop of the Australasian Language Technology Association, pages 28—
34, 2019.

ThuyLinh Nguyen, Stephan Vogel, and Noah A Smith. Nonparametric
word segmentation for machine translation. In Proceedings of the 23rd In-
ternational Conference on Computational Linguistics, pages 815-823. As-
sociation for Computational Linguistics, 2010.

127

[79]

[30]

[81]

[32]

[83]

[84]

[85]

[36]

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations
using distantly-labeled reviews and fine-grained aspects. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 188-197, 2019.

Sonja Nieflen and Hermann Ney. Statistical machine translation with scarce

resources using morpho-syntactic information. Computational linguistics,
30(2):181-204, 2004.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan
Ng, David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT 2019: Demonstrations,
2019.

David D Palmer. A trainable rule-based algorithm for word segmentation.
In 35th Annual Meeting of the Association for Computational Linguistics
and 8th Conference of the European Chapter of the Association for Com-
putational Linguistics, pages 321-328, 1997.

David D Palmer. Tokenisation and sentence segmentation. Handbook of
natural language processing, pages 11-35, 2000.

Constantine Papageorgiou. Japanese word segmentation by hidden markov
model. In Human Language Technology: Proceedings of a Workshop held
at Plainsboro, New Jersey, March 8-11, 1994, 1994.

Nanyun Peng and Mark Dredze. Named entity recognition for chinese social
media with jointly trained embeddings. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing, pages 548-554,
2015.

Nanyun Peng and Mark Dredze. Improving named entity recognition for
chinese social media with word segmentation representation learning. In
Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages 149-155, 2016.

Veroénica Pérez-Rosas, Bennett Kleinberg, Alexandra Lefevre, and Rada

Mihalcea. Automatic detection of fake news. In Proceedings of the 27th

128

[38]

[91]

[92]

[93]

[94]

International Conference on Computational Linguistics, pages 3391-3401,
2018.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages 22272237, 2018.

Matt Post. A call for clarity in reporting BLEU scores. In Proceedings
of the Third Conference on Machine Translation (WMT), pages 186-191,
2018.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita. BPE-dropout: Sim-
ple and effective subword regularization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, Online, July

2020. Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Im-
proving language understanding by generative pre-training.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings us-
ing siamese bert-networks. In Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages
3982-3992, 2019.

Elizabeth Salesky, Andrew Runge, Alex Coda, Jan Niehues, and Graham
Neubig. Optimizing segmentation granularity for neural machine transla-
tion. Machine Translation, pages 1-19, 2020.

Steven L Scott. Bayesian methods for hidden markov models: Recursive
computing in the 21st century. Journal of the American Statistical Associ-
ation, 97(457):337-351, 2002.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine trans-
lation of rare words with subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages P1715-1725, 2016.

129

[96]

[97]

[100]

[101]

102]

103]

104]

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. Fake
news detection on social media: A data mining perspective. ACM SIGKDD
explorations newsletter, 19(1):22-36, 2017.

Kai Shu, Suhang Wang, and Huan Liu. Beyond news contents: The role of
social context for fake news detection. In Proceedings of the twelfth ACM
international conference on web search and data mining, pages 312-320,
2019.

Xinying Song, Alex Salcianu, Yang Song, Dave Dopson, and Denny Zhou.
Fast wordpiece tokenization. arXiv preprint arXiv:2012.15524, 2020.

Richard Sproat, Chilin Shih, William A Gale, and Nancy Chang. A stochas-
tic finite-state word-segmentation algorithm for chinese. In 32nd Annual

Meeting of the Association for Computational Linguistics, pages 66-73,
1994.

Tejas Srinivasan, Ramon Sanabria, and Florian Metze. Multitask learning
for different subword segmentations in neural machine translation. arXiv
preprint arXiv:1910.12368, 2019.

Ruslan Leont’evich Stratonovich. Conditional markov processes. In Non-

linear transformations of stochastic processes, pages 427-453. Elsevier,
1965.

Maosong Sun, Dayang Shen, and Benjamin K Tsou. Chinese word seg-
mentation without using lexicon and hand-crafted training data. In 36th
Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics, Volume 2, pages
1265-1271, 1998.

Zhiqging Sun and Zhi-Hong Deng. Unsupervised neural word segmentation
for chinese via segmental language modeling. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages
4915-4920, 2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learn-
ing with neural networks. In Advances in neural information processing
systems, pages 3104-3112, 2014.

130

[105]

106]

[107]

[108]

109]

[110]

[111]

[112]

Yu Suzuki. Filtering method for twitter streaming data using human-in-

the-loop machine learning. Journal of Information Processing, 27:404-410,
2019.

Kazuma Takaoka, Sorami Hisamoto, Noriko Kawahara, Miho Sakamoto,
Yoshitaka Uchida, and Yuji Matsumoto. Sudachi: a japanese tokenizer
for business. In Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018), may 2018.

W. J. Teahan, Yingying Wen, Rodger McNab, and Ian H. Witten. A com-
pression based algorithm for Chinese word segmentation. Computational
Linguistics, 26(3), 2000.

Yuanhe Tian, Yan Song, Xiang Ao, Fei Xia, Xiaojun Quan, Tong Zhang,
and Yonggang Wang. Joint chinese word segmentation and part-of-speech
tagging via two-way attentions of auto-analyzed knowledge. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguis-
tics, pages 82868296, 2020.

Arseny Tolmachev, Daisuke Kawahara, and Sadao Kurohashi. Juman++:
A morphological analysis toolkit for scriptio continua. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, Brussels, Belgium, November 2018. Association

for Computational Linguistics.

Ke M Tran, Yonatan Bisk, Ashish Vaswani, Daniel Marcu, and Kevin
Knight. Unsupervised neural hidden markov models. In Proceedings of
the Workshop on Structured Prediction for NLP, pages 63-71, 2016.

Kei Uchiumi, Hiroshi Tsukahara, and Daichi Mochihashi. Inducing word
and part-of-speech with pitman-yor hidden semi-markov models. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1774-1782, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you

131

113]

[114]

[115]

[116]

[117)

[118]

[119]

[120]

need. Advances in neural information processing systems, 30:5998-6008,
2017.

Sami Virpioja, Peter Smit, Stig-Arne Gronroos, and Mikko Kurimo. Mor-
fessor 2.0: Python implementation and extensions for morfessor baseline.
2013.

Andrew Viterbi. Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm. IFEF transactions on Information The-
ory, 13(2):260-269, 1967.

Lihao Wang, Zongyi Li, and Xiaoqing Zheng. Unsupervised word seg-
mentation with bi-directional neural language model. arXiv preprint
arXiw:2103.01421, 2021.

Shuangzhi Wu, Xing Wang, Longyue Wang, Fangxu Liu, Jun Xie, Zhaopeng
Tu, Shuming Shi, and Mu Li. Tencent neural machine translation systems
for the wmt20 news translation task. In Proceedings of the Fifth Conference
on Machine Translation, pages 313-319, 2020.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. Google’s neural machine translation system: Bridg-

ing the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Fengshun Xiao, Jiangtong Li, Hai Zhao, Rui Wang, and Kehai Chen.
Lattice-based transformer encoder for neural machine translation. arXww
preprint arXiv:1906.01282, 2019.

Xinyan Xiao, Yang Liu, Young-Sook Hwang, Qun Liu, and Shouxun Lin.
Joint tokenization and translation. In Proceedings of the 23rd International
Conference on Computational Linguistics (Coling 2010), pages 1200-1208,
2010.

Jia Xu, Jianfeng Gao, Kristina Toutanova, and Hermann Ney. Bayesian
semi-supervised chinese word segmentation for statistical machine transla-
tion. In Proceedings of the 22nd International Conference on Computational

132

[121]

[122]

[123]

[124]

[125]

[126]

[127)

[128]

Linguistics-Volume 1, pages 1017-1024. Association for Computational Lin-
guistics, 2008.

Nianwen Xue. Chinese word segmentation as character tagging. In Interna-
tional Journal of Computational Linguistics €& Chinese Language Process-
ing, Volume 8, Number 1, February 2003: Special Issue on Word Formation
and Chinese Language Processing, pages 29-48, 2003.

Jie Yang, Yue Zhang, and Fei Dong. Neural word segmentation with rich
pretraining. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 839-849,
2017.

Jie Yang, Yue Zhang, and Shuailong Liang. Subword encoding in lattice
Istm for chinese word segmentation. arXiv preprint arXiv:1810.12594, 2018.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhut-
dinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for

language understanding. Advances in neural information processing sys-
tems, 32, 2019.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional
networks for text classification. In Advances in neural information process-

ing systems, pages 649-657, 2015.

Yongfeng Zhang, Min Zhang, Yi Zhang, Guokun Lai, Yiqun Liu, Honghui
Zhang, and Shaoping Ma. Daily-aware personalized recommendation based
on feature-level time series analysis. In Proceedings of the 24th international
conference on world wide web, pages 1373-1383, 2015.

Yue Zhang and Jie Yang. Chinese ner using lattice Istm. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1554-1564, 2018.

Hai Zhao, Changning Huang, and Mu Li. An improved chinese word seg-
mentation system with conditional random field. In Proceedings of the Fifth
SIGHAN Workshop on Chinese Language Processing, pages 162—165, 2006.

133

[129]

[130]

[131]

Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu. Deep learning for chinese
word segmentation and pos tagging. In Proceedings of the 2013 conference

on empirical methods in natural language processing, pages 647-657, 2013.

Valentin Zhikov, Hiroya Takamura, and Manabu Okumura. An efficient
algorithm for unsupervised word segmentation with branching entropy and
mdl. In Proceedings of the 2010 Conference on Empirical Methods in Nat-
ural Language Processing, pages 832-842, 2010.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao, and
Bo Xu. Text classification improved by integrating bidirectional lstm with
two-dimensional max pooling. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers,
pages 3485-3495, 2016.

134

Publication List

Refereed Journals

1. SR st S A, e B BRI MR B RS E EBREE TV
DI Z W7z FER @ . HARS EALEL 29(1): 33 pages, 20224F3H.
(BRIRFEA)

2. Tatsuya Hiraoka, Sho Takase, Kei Uchiumi, Atsushi Keyaki, and Naoaki
Okazaki. Recurrent Neural Hidden Markov Model for High-Order Transi-
tion. ACM Transactions on Asian and Low-Resource Language Information
Processing (TALLIP). Volume 21, Issue 2, Article No.: 36, pp: 1-15. March
2022.

3. i W, S A, e B, B IR Mg BB TFRA AR PO
BEADTZHAWEZXRAZIZHT 5 HE ﬁ%IJ(DHi #AL. HARSFEAEE,
28(2):479-507, 202146 4 .

Refereed International Conference Papers

4. Tatsuya Hiraoka, Sho Takase, Kei Uchiumi, Atsushi Keyaki, and Naoaki
Okazaki. Joint Optimization of Tokenization and Downstream Model. In
Findings of the Association for Computational Linguistics: ACL-IJCNLP
2021, pages 244-255, Online, August 2021.

5. Tatsuya Hiraoka, Sho Takase, Kei Uchiumi, Atsushi Keyaki, Naoaki Okazaki.
Optimizing Word Segmentation for Downstream Task. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Process-
ing: Findings, pages 1341-1351, Association for Computational Linguistics,
November 2020.

6. Tatsuya Hiraoka, Hiroyuki Shindo, Yuji Matsumoto. Stochastic Tokeniza-
tion with a Language Model for Neural Text Classification. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguis-
tics, pages 1620-1629, July 2019.

135

Unrefereed Papers

7.

10.

SR At M, e B R R Mg B8l REEORT L HEEEER
2E B UTZBEE L NV DEH). SR 228 IR S (NLP2022),
6 pages, 20224E3 4.

e R, i OAM, NVE B, B ISR, MR EEL RBCET IV OHEEE
ZHWEHGEDE DX A7 ~DEHEA. SRR EEIRKE
(NLP2021), pp. 486-491, 20214E3H. (# FHEFHIE)

SERE E SUE A, e R, B IS, MR B8 RNNIZ X D SR OKLE
2ERBLUEZ-a—I)VENT LI TETIV. SENEEAEE6HEEIR K
£ (NLP2020), pp. A4-2 (4 pages), I KRZF (FKIKEL) | 20204E3H.

SERE G, EEE RN, e B R R ME B8l RNNIZ X 2 BB HERET

BreHWizEh~La7 €T)b, $242[0 HAR S FELBLANSE 2, 2019-NL-

242(2), pp. 1-6, RELIEI A EM KRR (RREIE) | 20194E10H.
(HFRHE)

Co-authored Publications

11.

12.

13.

14.

Youmi Ma, Tatsuya Hiraoka, and Naoaki Okazaki. Named Entity Recog-
nition and Relation Extraction Using Enhanced Table Filling by Contextu-
alized Representations. Journal of Natural Language Processing, vol. 29,
No. 1, 38 pages , March 2022. (Accepted)

REA 52— BB, SR 2, MR EEl SLE I BE TR VIR A
U7z R UAERRE 7V O RSO WETE. 5557 25280 FF IR R 2
(NLP2022), 6 pages, 2022434 .

Youmi Ma, V-] 2 th, iR B EARrA=—a—TF)bxy NT—2%H
WK T RY T & B EARBGRH L BRI, SRR 228
FEIRK 22 (NLP2022), 6 pages, 20224E3H .

O ER EW, PR B, 0 G, M E8l SREREBR L
TeF vy Fav—0HEER. AP 27RFEIRRS (NLP2021),
pp. 450-454, 20214E3H.

136

15. Youmi Ma, V[2, W E#8. BERT% FH\ 7z Table-FillingiZ X % [#
AREH & BRI, SEELET 227 IR K42 (NLP2021), pp.
1274-1279, 20214E3H..

137

