T2R2 東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	免震物流倉庫の地震応答に関する検討 その1 高減衰ゴム系積層ゴム支 承のバイリニアモデルへの置換			
Title(English)	Seismic response of base-isolated warehouse Part1. Modeling of high- damping rubber bearing by bilinear restoring force characteristics			
著者(和文)	新井雄大, 佐藤大樹, Alex Shegay, 戸張涼太, 安永隼平, 植木卓也, 金城 陽介			
Authors(English)	Yudai Arai, Daiki Sato, Aleksey Vadimovich Shegay, Ryota Tobari, Jumpei Yasunaga, Takuya Ueki, Yosuke Kaneshiro			
出典 / Citation				
Citation(English)	, , , pp. 341-344			
 発行日 / Pub. date	2022, 3			

免震物流倉庫の地震応答に関する検討

その1 高減衰ゴム系積層ゴム支承のバイリニアモデルへの置換

構造-振動

免震構造	鋼構造建物	高減衰ゴム系積層ゴム支承
物流倉庫	鋼材ダンパー	天然ゴム系積層ゴム支承

1. はじめに

昨今、インターネット通販市場の拡大などの影響によ り物流施設の需要が高まり,事業継続計画 (BCP) を見据 え,物流施設に免震構造が採用される事例が増えている。 ばね機能のほかに減衰機能を有する高減衰ゴム系積層ゴ ム支承(以降「HDR」)はコンパクトでかつ低コストに免 震層の設計が可能であるとして,大規模物流倉庫の免震 構造にも比較的多く採用される。「エネルギーの釣合いに 基づく耐震計算法(以降「エネルギー法」))」は、大臣認 定を必要とせず、申請期間や手間を省ける耐震設計手法 であり,エネルギー法告示 2)として 2005 年に公布された。 しかしながら, エネルギー法による設計が認められてい る免震部材は、天然ゴム系積層ゴム支承(以降「NRB」) や鋼材ダンパーなどの依存性の少ない部材のみであり, 各種依存性が多く、かつ材料非線形性の強い HDR には認 められていない。各種依存性を考慮した HDR の復元力モ デルの提案は精力的に行われており^{例えば3)},有限要素法に 対して時間効率に優れる復元力モデルに HDR を置換す ることでエネルギー法への適用が可能であると予想され るものの, HDR のエネルギー法への適用を試みた研究は これまでになされていない。

また、上部構造に着目すると、大規模物流倉庫は、内部 空間を効率的に利用したいという要求から、高い階高で かつロングスパンで設計されることが多いため、上部構 造の固有周期が長くなり、免震効果が十分に得られない 可能性がある。笠井ら⁴は等価線形化法を用いて、上部構 造の柔性を考慮した免震建物の応答の仕組みを示し、免 震性能曲線を提案している。さらに、付ら⁵, Chen ら⁶に より、エネルギーの釣合に基づいた、免震層の変形と上部 構造の層間変形角を設計クライテリア内に収めるための 適切な上部構造の固有周期や剛性分布の予測手法の提案 がなされてきた。しかしながら、これらの研究は各層の質 点とせん断ばねから構成されるせん断モデルで検討され ており、柱や梁などの部材から構成される部材構成モデ ルでの検討には至っていない。ブレース付鉄骨造建物で 正会員 〇 新井雄大^{*1} 正会員 佐藤大樹^{*2} *"* Alex Shegay^{*3} *"* 戸張涼太^{*4} *"* 安永隼平^{*5} *"* 植木卓也^{*5} *"* 金城陽介^{*5}

は、ブレースの配置や剛性によりブレースの実効変形比 が異なるため、文献 5)、6)での設計手法により上部構造を 設計する際には、部材構成モデルでの検討が別途必要で あり、適切なブレースを決定するにはパラメトリックな 解析が必要となる。

そこで、本報では、HDRのエネルギー法への適用を目 指した基礎研究、および上部構造に異なる配置・剛性のブ レースを有する免震建物の地震応答・構造性能の違いの 検証を行う。具体的には、その1では HDR のみから構成 される免震層の復元力特性をバイリニアモデルに置換し たときの、入力レベルごとの地震応答の再現精度を検証 する。その2では、上部構造に着目し、上部構造に異なる 配置・剛性のブレースを有する免震建物について、時刻歴 応答解析を行い、地震応答の違いを確認する。その3で は、その2の上部構造に対して状態 NR 解析 ^{7),8)}による骨 組特性値を比較することで構造性能の違いを比較する。

2. 建物モデル概要

検討対象建物は物流倉庫を想定したブレース付鉄骨造 免震建物である。長辺方向 10 m スパン, 短辺方向 11.5 m スパン, 平面 120.0 m × 69.0 m の整形な形状を持つ4 階 建てである。Table 1 に建物諸元, Fig.1 に基準階伏図, Fig.2(a)(b)にブレースを配置した構面の軸組図を示す。ブ レースを配置した構面は Fig.1 に赤線で示すように, Y1,4,7 通りである。本モデルに用いたブレースの部材リ ストを Table 2 に示す。なお, 4 階柱の H 型鋼は X 方向に 弱軸を向けている。

Fig.3(a)には本モデルの床面の位置 FL (Floor Level)を示し, Fig.3(b)(c)には上部構造の第1層目で基準化した各層の質量分布,X方向の剛性分布を示す。本モデルは折板屋根であるため,最上層の重量・剛性が他階と比べて小さく,最上層の重量と剛性は一般階の約1/10であった。

本報での解析モデルは, HDR 91 基より免震層が構成される「HDR モデル」と, NRB 91 基と鋼材ダンパー 22 基より免震層が構成される「NRBSD モデル」を作成する。

Seismic response of base-isolated warehouse

Part1. Modeling of high-damping rubber bearing by bilinear restoring force characteristics

ARAI Yudai, SATO Daiki, Alex SHEGAY, TOBARI Ryota, YASUNAGA Jumpei, UEKI Takuya, KANESHIRO Yosuke HDR モデルと NRBSD モデルの免震層配置図をそれぞれ Fig.4(a)(b)に示す。

Table 1 Specifications of Superstructure						
Columns	4F	Н	-300×300×1	0×15		
	1-3F ($\frac{1-500\times500\times}{11.2}$	$16 \times 16 \sim \Box$ -3	00×500×22×22		
Girders		H-369×199	$\times / \times 11 \sim H^{-4}$	400×200×9×16		
Weight	2-41 1	<u>-1-700~300~</u> 4'	71 855 kN	900~330~10~32		
Natural period			0.79 s			
	/ フ 両日	号进品				
			Table 3	2 Brace List		
Y6 0.				300×300×12×12		
Y4 ×				300×300×12×12		
Y3 E			VI 2F □-	300×300×16×16		
			1F 🗆-	300×300×22×22		
10.0 X X X X X X	$m \times 12 = 12$	<u>20.0m</u> 8 2 2 2 2 2	V2 2I	L-100×10×10		
Fig.1	l Plar	1		p		
				या दे ह		
VI	V1	V1 V1	VI V			
Z,	V1	V1 V1				
X1 X2 X	X3 X4 X	$0.0 \text{ m} \times 12 = 120$ X5 X6 X7 X8	0.0 m 3 X9 X10 X11	X12 X13		
		(a) Y1, 7	′構面	_		
VI		V1 V1				
VI		V1 V1		V1 v3 6 0.		
Z		V1 V1				
X1 X2 X	X3 X4 X	$\frac{0.0 \text{ m} \times 12 = 12}{\text{X5} \text{ X6} \text{ X7} \text{ X8}}$	0.0 m 3 X9 X10 X11	X12 X13		
	(b) Y4 構面					
	Fig.:	2 Elevatio	on [unit : m]			
« Folded-Pla	te Roof	_▼ RFL P	FL	_ FL		
»						
	T	4-	P			
		<u>⊽</u> 3 3-	•	- 1		
"		₇ 2				
<u>»</u>	Т		M./M.	K./K		
				0 0.5 1		
	\neg		$I_1 = 10533$ ton	$K_1 = 52051 \text{ kN/cm}$		
(a) Flo	or Lev	el	(b) Mass	(c) Stiffness		
Fig.3	Dist	ribution of N	Mass and S	tiffness		
$\circ \frac{\text{HDR}}{\varphi 800}$	• $\frac{\text{HDF}}{\varphi}$ 900	ξ) ($ \begin{array}{c} \text{NRB} \\ \varphi 850 \end{array} \bullet \begin{array}{c} \text{NRB} \\ \varphi 95 \end{array} $	$_{0}^{B}$ × Steel Damper		
Y70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\mathbf{\hat{\bullet}}$		Y7 0 X 0 0 0 Y6 X 0 0 0			
¥50 + + + +	+ + + 	┥ ┥┥	¥50 + + + + + + + + + + + + + + + + + + +	♦ 		
Y40 • • • • Y30 • • • •			Y40 X + + + + + + + + + + + + + + + + + +			
Y2	+ + 	♦ ♦ ♦		♦ ♦ ₩ 		
0000000	0-0-0-0 % % % %		→ <mark>→ → ⊅ </mark> ⊅ IY ♀ ♀ ♀ ♀ ♀	0 <u>x 0 0 0 0 x</u> 0 E E E & X X &		
(a) H	DR Mo	del	(b) NR	BSD Model		
Fig.4 Isolation Layer Plan						

3. 解析モデル概要

3.1 解析概要

解析は構造計算プログラム RESP-D を用い、X 方向の みの検討を行う。上部構造は弾性とし、構造減衰は上部構 造のみの1次固有周期に対してh=1%の瞬間剛性比例型 の減衰を上部構造のみに与え、免震層は無減衰とする。 3.2 HDR のバイリニアモデル置換

Fig.5 に HDR モデルの免震層の復元力特性を示す %。 HDR はせん断ひずみに応じて1 次剛性 K1, 2 次剛性 K2, および切片荷重 Qvo が変化する。等価せん断弾性係数 Gea, 降伏荷重特性比 u はそれぞれ式(1)(2)より与えられる ⁹。

$$G_{eq} = 0.620 \times (\ 0.1364 \ \gamma^4 - 1.016 \ \gamma^3 + 2.903 \ \gamma^2 - 3.878 \ \gamma + 2.855 \) \tag{1}$$

 $u = 0.408 \times (0.03421 \gamma^3 - 0.2083 \gamma^2 + 0.2711 \gamma + 0.9028)$ (2)

ここで、y: せん断ひずみである。さらに、Geg, uを用い て, K₁, K₂, Q_{y0}が式(3)~(5)より算出される⁹⁾。

$$K_2 = \frac{G_{eq} A}{H} (1 - u) , \quad K_1 = 10 K_2$$
 (3) (4)

$$Q_{\nu 0} = u \cdot G_{eq} \cdot A \cdot \gamma \tag{5}$$

ここで, A: HDR の有効断面積, H: HDR のゴム総厚であ る。これらの式から、剛性や切片荷重がせん断ひずみによ って変化することがわかる。

Table 3 には, El Centro のレベル 1, 2 を入力地震動とし た時刻歴応答解析を事前に行うことで得られる K₁, K₂, 切片荷重 Q₁₀を示す。以降では、NRBSD モデルの NRB 91 基を併せて「アイソレータ」,鋼材ダンパー22 基を併せて 「ダンパー」と呼び,NRBSD モデルの免震層の復元力特 性の K_2 , O_{v0} が HDR モデルの El Centro の入力レベル 2 時 と同等になるようにアイソレータとダンパーを設定する。

Fig.6 と Fig.7 に線形性状を示すアイソレータと弾塑性 型復元力特性を示すダンパー、およびその両者で構成さ れる免震層のシステムの復元力特性を示す。本報では、降 伏変位 δ_v が 3.0 cm で,完全弾塑性の鋼材ダンパーを用い ることとする。免震層の剛性はFig.6のようにアイソレー タとダンパーの和で表すことができる。NRBSD モデルの K_2 とダンパーの降伏耐力 Q_{sy} が, HDR モデルの地震動レ ベル2時の K_2 と Q_{y0} が同程度になるようにアイソレータ とダンパーを設定した際のアイソレータ,ダンパー,およ び免震層のシステムの各諸元を Table 4 に示す。

Fig.5 Restoring Force Fig.6 Generalized Restoring Characteristics of HDR Force Characteristics of NRB & Steel Damper Isolation Layer

Table 3 Stiffness and Intercept Shear Force of Isolation Laver (HDR Model)

	K_1 [kN/cm]	K_2 [kN/cm]	$Q_{\nu 0}$ [kN]
HDR model (Level 1)	15865	1587	8788
HDR model (Level 2)	10453	1045	13590

(a) Isolator (NRB) (b) Steel Damper (c) System Fig.7 Restoring Force Characteristics of NRB and Steel Damper

Table 4 Stiffness and Intercept Shear Force of Isolation Laver (NRBSD Model)

Isolator	Damper			Damper System			
K_{f}	K_{s1}	K_{s2}	Q_{sy}	K_1	K_2	Q_y	δ_y
[kN/cm]	[kN/cm]	[kN/cm]	[kN]	[kN/cm]	[kN/cm]	[kN]	[cm]
1045	4530	0.0	13590	5575	1045	16725	3.0

4. 固有周期および刺激関数の比較

本章では HDR モデルと NRBSD モデルについて,固有 周期と刺激関数の比較を行う。Table 5 に HDR モデルと NRBSD モデルについて,免震層固定時,免震層の層間変 位 δ_{iso} が 10,200,400 mm の時の 1 次固有周期 T_{HDR} , T_{NRBSD} と,NRBSD モデルの 1 次固有周期に対する HDR モデル の 1 次固有周期の比 T_{HDR}/T_{NRBSD} を示す。

 δ_{iso} の値に関わらず、1次固有周期は HDR モデルの方が わずかに長かったものの、概ね等しい値となった。NRBSD モデルのダンパー降伏変位よりも変形量の小さい δ_{iso} =10 mm 時には HDR モデルの固有周期が約 14%長い結果と なったが、それ以降の変形ではほとんど同じ値となった。

HDR モデルと NRBSD モデルの 1~3 次の刺激関数を 免震層の変形ごとに Fig.8 に示す。刺激関数は刺激係数 β と固有モード $\{\phi\}$ を乗じることで算出した。いずれのモデ ルも刺激関数はほとんど一致しており、 $\delta_{iso} = 10 \text{ mm}$ の変 形時から1次モードの影響が支配的であることがわかる。

5. HDR モデルと NRBSD モデルの地震応答の比較 5.1 入力地震動

本解析に用いる入力地震動は位相特性が El Centro (1940) NS 成分, HACHINOHE (1968) NS 成分¹⁰, Taft (1952) EW 成分の標準 3 波とし,稀に発生する地震動 (レベル 1),および極めて稀に発生する地震動 (レベル 2) を採用 する。レベル 1 の地震動の最大速度を 25 cm/s,レベル 2 の地震動の最大速度を 50 cm/s に規準化する。Fig.9 に減 衰定数 h=5%の時の擬似速度応答スペクトル $_{PSv}$,および h=10%の時のエネルギースペクトル V_{E} を示す。

5.2 免震層の履歴の比較

Fig.10 に El Centro のレベル 1,2 の地震動を入力した時 の HDR モデルと NRBSD モデルの免震層の層せん断力 Q- 層間変形 δ_{iso} 関係を示す。レベル 1 での履歴ループは, NRBSD モデルでは HDR モデルと比較して 1,2 次剛性 K_1, K_2 は小さく、切片荷重 Q_{j0} は大きかった。一方、レベ ル 2 では、NRBSD モデルと HDR モデルは、 K_1 には差が あるものの、 $K_2 \ge Q_{j0}$ は等しいことから、正しくモデル化 できていることが確認できる。

Fig.11 には, El Centro を入力した時の免震層のエネル ギー吸収量 $_DW_p$ の時刻歴を示す。レベル1では、HDRモ デルの DWpが NRBSD モデルよりも2 割程度大きかった のに対して、レベル2では0.6割程度であり、レベル2で はエネルギー吸収量も概ね等しいことがわかった。

5.3 応答性状の比較

Fig.12(a-1)~(c-2)に、地震動と入力レベルごとに、HDR モデルと NRBSD モデルの層間変形角 R, 相対変位 Dis., 絶対加速度 Acc., 層せん断力 O の最大応答を示す。入力 レベル1の場合は、いずれの地震動でも、HDR モデルと NRBSD モデルで応答に差が生じた。NRBSD モデルは HDR モデルに比べて,層間変形角,絶対加速度および層 せん断力で全層にわたり小さい値となった。特に,最上層 の絶対加速度は, HDR モデルが NRBSD モデルの 1.5~2.0 倍程度と差が顕著であった。なお,NRBSD モデルは、レ ベル2時の免震層の履歴が等しくなるようにアイソレー

タとダンパーを設定しため、レベル1時に応答に違いが 生じたことはここでは問題としない。入力レベル2時は, いずれの地震動でも NRBSD モデルの最上層の最大応答 加速度が HDR モデルよりも 1.3 倍程度大きな値となった ものの、両モデルは概ね同等の応答となった。

6. まとめ

せん断ひずみ依存性を有する高減衰ゴム系積層ゴム支 承のみから構成される免震層を,時刻歴応答解析からわ かる免震層の最大変形をもとに, 天然ゴム系積層ゴム支 承と鋼材ダンパーから構成されるバイリニアモデルの免 震層へと置換し、両モデルの固有周期や地震応答の比較 を行い,再現精度を確認した。レベル2時の最大変形よ り高減衰ゴム系積層ゴム支承をバイリニアモデルへ置換 したため、レベル1時には応答に差が生じたものの、レ ベル2時には比較的高い精度で応答が一致した。

*3 東京工業大学 未来産業技術研究所

*4 JFE シビル株式会社

*5 JFE スチール株式会社

Assistant Professor, FIRST, Tokyo Institute of Technology, Ph.D.*3 JFE Civil Engineering & Construction Corporation*4

JFE Steel Corporation*5