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ABSTRACT

This thesis focuses on mixed-integer semidefinite optimization problems, which mini-
mize or maximize a linear objective function subject to constraints wherein a given matrix
formed from the decision variables is positive semidefinite, and some of the variables are
integer-valued. Since this problem includes nonlinearity and discreteness, various prac-
tical optimization problems can be formulated as a mixed-integer optimization problem.
However, studies on algorithms for mixed-integer semidefinite optimization problems are
relatively few, and solving large-sized mixed-integer semidefinite optimization problems
has been difficult in practice. With this background in mind, this thesis reviews some
cutting-plane algorithms for efficiently solving mixed-integer semidefinite optimization
problems. Cutting-plane algorithms are optimization techniques to handle complex con-
straints or an objective function. Because of the extendability and ease of implemen-
tation, the cutting-plane algorithms have the potential to efficiently solve mixed-integer
semidefinite optimization problems by exploiting the structure of the individual prob-
lems.

First, we consider the standard form of the mixed-integer semidefinite optimization
problems and propose a general-purpose cutting-plane algorithm for solving it. We also
devise a branch-and-cut algorithm to improve computational efficiency, which integrates
the cutting-plane algorithm and a branch-and-bound algorithm.

Second, we focus on the best subset selection problem for eliminating multicollinearity
from linear regression models. We give a mixed-integer semidefinite optimization formu-
lation of the problem, in which a subset of explanatory variables is selected under an
upper bound on the condition number of the correlation matrix of the selected variables.
Then, we propose a specialized cutting-plane algorithm that exploits the structure of the
condition number constraint.

Finally, we focus on portfolio selection problems formulated as a mixed-integer semidef-
inite optimization problem. Specifically, we consider a distributionally robust portfolio
optimization problem with limiting the number of invested assets. By exploiting the
problem structure, we develop a scalable cutting-plane algorithm for solving the model
with the technique of positive semidefinite matrix completion. In addition, we extend the
cutting-plane algorithm for the cardinality-constrained distributionally robust portfolio
optimization so as to deal with another portfolio optimization problem that minimizes
the conditional value-at-risk under a cardinality constraint. For this problem, we pro-
pose a cutting-plane method that incorporates into its subroutine another cutting-plane
algorithm that efficiently minimizes the conditional value-at-risk.
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Chapter 1

Introduction

Mixed-integer semidefinite optimization problems involve minimizing or maxi-
mizing a linear objective function subject to the constraints in which a given
matrix formed from the decision variables is positive semidefinite and some of
the variables are integer-valued. Due to the nonlinearity of the positive semidef-
inite constraint and discreteness of the integer constraints, this problem includes
various practical optimization problems. This thesis concerns cutting-plane al-
gorithms for solving mixed-integer semidefinite optimization problems. In this
chapter, we give an introduction to this thesis.

We describe the background and motivation of this thesis in Section 1.1. In
Section 1.2, we present the objective of this thesis and summarize our results. In
Section 1.3, we define the mixed-integer semidefinite optimization problem and
review its applications. In Section 1.4, we introduce the general framework of
the cutting-plane algorithm and give a brief review of its recent development,
including our results. In Section 1.5, we give an overview of this thesis, and in
Section 1.6, we define the notation used in this thesis.

1.1 Background and motivation

In recent years, we have faced the problems of a shrinking workforce and exhaus-
tion of fossil fuels. Therefore, there is a growing need to efficiently use limited
management resources to realize a sustainable society. In addition, with the de-
velopment of high-speed information and communication technologies, we often
have to make decisions quickly in complex and uncertain situations.

A key technology to assist such complex decisions making is mathematical
optimization. Mathematical optimization refers to methods of finding a solution
that minimizes or maximizes a given objective function from a set of feasible
solutions. This is one of the most important fields in applied mathematics and
has been used in various fields of science and engineering, such as operations
research, statistics, finance engineering, control theory, and chemistry.

When we formulate a certain problem as an optimization problem, we often
encounter nonlinear objective functions, constraints, and discrete variables. For
example, in statistics, we estimate the parameters of a model by minimizing a
loss function. The loss function is often nonlinear, and such loss minimization
problem is formulated as a nonlinear optimization problem. Also, if the data
contains a lot of irrelevant features, it is necessary to exclude these features from
the model when we estimate the model parameters. We can achieve such exclusion
by introducing discrete variables that indicate whether we use the features for
the estimation or not.

This thesis focuses on solving mixed-integer semidefinite optimization (MISDO)
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problems. MISDO problems involve minimizing a linear objective function sub-
ject to constraints in which a given matrix formed from the decision variables is
positive semidefinite (PSD) and some of the variables are integer-valued. Var-
ious nonlinear constraints can be expressed as PSD constraints [155, 161], and
some important combinatorial optimization problems can be reformulated as (or
approximated by) semidefinite optimization (SDO) problems [134, 147]. Also,
integrality constraints in the MISDO problem can naturally describe the discrete
nature of practical decision-making (e.g., a yes-or-no decision) [163]. Because of
these advantages, MISDO problems have found uses in diverse fields, such as ar-
chitecture [40, 171], control systems [89, 111, 153, 158], graph theory [10, 11, 135],
signal processing [61, 130], surgery planning [172], machine learning [152], and
statistical data analysis [8, 127, 151]. Therefore, solving MISDO problems ef-
ficiently is of great value in the sense of providing one of the tools for solving
various kinds of problems in these fields.

In recent years, there has been remarkable progress in developing commercial
and non-commercial solvers for mixed-integer optimization (MIO) problems and
semidefinite optimization (SDO) problems. For MIO problems, we can use pow-
erful commercial solvers such as Gurobi and CPLEX. These solvers are based on
a branch-and-bound algorithm, which explores an enumeration tree while solv-
ing a continuous relaxation problem at each node. With these powerful solvers,
large-scale mixed-integer linear optimization (MILO) problems and mixed-integer
convex quadratic optimization (MIQO) problems can be solved efficiently. For
SDO problems, on the other hand, interior-point methods are powerful algo-
rithms to solve in practice. In fact, most of the available SDO solvers, such as
MOSEK [120], SDPA [169], SDPT3 [156], and SeDuMi [148] are based on the
interior-point method, and improving their scalability has been an important and
active area of research.

While algorithms and solvers for MIO and SDO problems have been well
studied, there are relatively few treatments for MISDO problems. The current
MIO solvers (i.e., Gurobi and CPLEX) cannot handle semidefinite constraints
by themselves, and methods of solving MISDO problems are currently in an im-
mature stage. A natural way of solving an MISDO problem is to combine a
branch-and-bound algorithm for MIO problems and an interior-point algorithm
for SDO problems. Recently, Gally et al. [62] developed a general-purpose MISDO
solver named SCIP-SDP; it is regarded as the most promising solver at present.
SCIP-SDP combines the branch-and-bound framework of SCIP [1] with SDO
solvers that use interior-point methods. Also, most of the specialized algorithms
for specific MISDO applications are based on the branch-and-bound algorithm
[8, 10, 11, 40, 130, 135, 139, 171]. However, there is a serious drawback to
this approach, wherein if we just combine a branch-and-bound algorithm and an
interior-point method, we cannot implement a warm-starting strategy for effi-
ciently solving a series of SDO problems because the interior-point methods do
not receive a given initial solution. Indeed, Gleixner et al. [63] implemented sev-
eral warm-starting techniques [39, 68, 81, 143, 146] in SCIP-SDP, but their effects
are marginal or sometimes negative in some problem instances. Therefore, the
size of the MISDO problems that we can solve still has been limited.

Against this background, this thesis focuses on cutting-plane algorithms as
alternatives to the branch-and-cut algorithm and reviews the cutting-plane algo-
rithms for solving MISDO problems. Cutting-plane algorithms are optimization
techniques to handle complex constraints or an objective function. A cutting-
plane algorithm first relaxes the constraints or the objective function and searches
for an optimal solution by solving the resultant relaxed problems while adding
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linear constraints called cutting planes or valid inequalities. The cutting-plane
algorithm was devised by Gomory [67] to solve MILO problems, and it was later
extended by Kelly [86] to handle convex optimization problems. The cutting-
plane algorithm has the advantages of extensibility and ease of implementation.
Because of its tractability, the cutting-plane algorithm has been actively studied
in nonsmooth convex optimization (see, for example, [64, 73, 100, 110]). In addi-
tion, if the relaxation problem is easy to solve, we can improve the performance of
the cutting-plane algorithm by using this property. Thus, if an MISDO problem
can be relaxed into a tractable one, a cutting-plane algorithm will be a promising
way of solving it efficiently.

1.2 Objective and results

From this perspective, we aim to design efficient cutting-plane algorithms to solve
MISDO problems. Specifically, we firstly propose a general-purpose cutting-plane
algorithm for solving the standard form of MISDO problems. This method al-
lows us to handle the general MISDO problem with existing state-of-the-art MIO
solvers. Secondly, we devise specialized cutting-plane algorithms for some im-
portant MISDO problems. In statistics and financial engineering, we sometimes
encounter large-sized MISDO problem instances due to the increasing size of
the data sets in these fields, and such problems are difficult to solve even with
general-purpose algorithms. To handle large-sized problem instances, we de-
sign specialized cutting-plane algorithms that exploit the individual structures of
these problems. In particular, this thesis focuses on a variable selection and port-
folio selection problem formulated as MISDO problems and proposes specialized
cutting-plane algorithms for solving them efficiently.

The results of this thesis are summarized as follows:

Branch-and-cut algorithm for mixed-integer semidefinite optimization
(Chapter 2)

First, we study general-purpose cutting-plane algorithms for solving the stan-
dard form of MISDO problems. We develop a cutting-plane algorithm for solving
MISDO problems by extending the existing algorithm for SDO problems proposed
by Konno et al. [100]. In the proposed algorithm, we relax the PSD constraint
and solve the relaxed MILO problem repeatedly while adding a cutting plane to
the constraints at each iteration so as to satisfy the PSD constraint. We prove the
convergence properties of the algorithm. In addition, to speed up the computa-
tion, we devise a branch-and-cut algorithm, where cutting planes are dynamically
added during a branch-and-bound procedure. Our experimental results demon-
strate that, for many problem instances, our branch-and-cut algorithm delivered
superior performance compared with other general-purpose MISDO solvers in
terms of computational efficiency and stability.

Cutting-plane algorithm for best subset selection for eliminating mul-
ticollinearity (Chapter 3)

Second, we consider a subset selection of explanatory variables for eliminating
multicollinearity from linear regression models. Specifically, we select the best
subset of the variables subject to an upper bound on the condition number of the
correlation matrix of selected variables. We first formulate the best subset se-
lection under the condition number constraint as an MISDO problem. Since the
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current general-purpose MISDO solver only handled very small-sized instances,
which we will show in the corresponding chapter, we also developed a specialized
cutting-plane algorithm. To approximate the condition number constraint, this
cutting-plane algorithm iteratively appends cutting planes to the relaxed MIQO
problem. Here, we also propose to generate strong cutting planes by effectively
using heuristic search to improve the computational efficiency of our algorithm.
Computational results demonstrate that subset selection with our MISDO for-
mulation succeeds when the number of candidate explanatory variables is small.
Additionally, our specialized cutting-plane algorithm frequently provides solu-
tions of better quality than those obtained by local search algorithms for subset
selection.

Cutting-plane algorithm for cardinality-constrained distributionally ro-
bust portfolio optimization (Chapter 4)

Third, we focus on portfolio selection problems. In particular, we study a distribu-
tionally robust portfolio optimization model with a cardinality constraint, which
limits the number of invested assets. This problem is formulated as a MISDO
problem, and thus, solving it exactly is computationally challenging when the
number of investable assets is large. To overcome this issue, we propose a spe-
cialized cutting-plane algorithm to solve the cardinality-constrained distribution-
ally robust optimization problem. We first reformulate the problem as a bilevel
optimization problem and design a cutting-plane algorithm for solving the upper-
level problem. To generate cutting planes efficiently, we apply the technique of
positive semidefinite matrix completion to the lower-level problem and show that
we can calculate subgradients efficiently regardless of the number of investable
assets. The numerical experiments demonstrate that our cutting-plane algorithm
was very effective compared with the existing MISDO solver, especially when the
number of investable assets is large. In addition, the out-of-sample investment
performances given by the cardinality-constrained distributionally robust model
were better than those of the conventional mean-variance model.

Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR
optimization (Chapter 5)

Finally, we focus on cardinality-constrained conditional value-at-risk (CVaR)
minimization problems and extend the cutting-plane algorithm for the distributionally-
robust portfolio optimization problem. While the cardinality-constrained CVaR
minimization problem is formulated as an MILO problem, which is a special case
of MISDO problem and can be handled by state-of-the-art MIO solvers, its prob-
lem size depends not only on the number of investable assets but also on the
number of asset return scenarios. Thus, the computational efficiency decreases
when the number of scenarios is large. To overcome this challenge, we propose
a specialized cutting-plane algorithm named the bilevel cutting-plane algorithm
for exactly solving the cardinality-constrained mean-CVaR portfolio optimiza-
tion problem. In our proposal, we extend the cutting-plane algorithm discussed
in Chapter 4 so that it incorporates another cutting-plane algorithm that ef-
ficiently minimizes CVaR. Numerical experiments demonstrate that, compared
with other MIO approaches, our algorithm can provide optimal solutions to large
problem instances faster.
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1.3 Mixed-integer semidefinite optimization problems

In this section, we define MISDO problems as an extension of SDO problems and
give a brief overview of their applications.

We begin by introducing linear optimization (LO) problems. An LO problem
is the most basic optimization problem. It aims to minimize or maximize a linear
function subject to finite linear constraints. The standard form of LO problems
is formulated as:

(LO-P) minimize
x∈RN

c>x

subject to Ax = b,

x ≥ 0,

(LO-D) maximize
y∈RM

b>y

subject to A>y ≤ c,
(1.1)

where (LO-P) and (LO-D) denote the primal and dual LO problem, respectively;
A ∈ RM×N , b ∈ RM , and c ∈ RN are given constants; (x,y) is a decision variable
and x ≥ 0 represents that all the entries of x are nonnegative.

SDO is an extension of LO problems to an optimization problem over the
space of N ×N real symmetric matrices. Here, we denote the set of N ×N real
symmetric matrices by SN , and define the standard inner product between two
matrices X = (Xnm),Y = (Ynm) ∈ SN as

X • Y = Tr(XY ) =
N∑
n=1

N∑
m=1

XnmYnm.

Let A1,A2, . . . ,AM ∈ SN , b ∈ RM , and C ∈ SN be given constants. Then, the
standard primal and dual forms of SDO problems are given by

(SDO-P) minimize
X∈SN

C •X

subject to A(X) = b,

X � O,

(SDO-D) maximize
y∈RM

b>y

subject to A>(y) � C,
(1.2)

where (SDO-P) and (SDO-D) denote the primal and dual SDO problem, respec-
tively; (X,y) is a decision variable, and X � O denotes that X is positive
semidefinite i.e., v>Xv ≥ 0 for all v ∈ RN ; A : SN → RM is a linear mapping
defined by A(X) := (A1 •X,A2 •X, . . . ,AM •X)> and A> : RM → SN is its
adjoint defined by A>(y) :=

∑M
m=1 ymAm.

It is easy to see that the SDO problem (1.2) includes the LO problem (1.1)
as a special case. For a vector x ∈ RN , let Diag(x) ∈ SN be the diagonal matrix
whose diagonal elements are x. Then, the nonnegativity of x is equivalent to the
positive semidefiniteness of Diag(x) as follows:

x ≥ O ⇐⇒ Diag(x) � O.

In addition, the inner product of two vectors x,y ∈ RN is expressed as that of
Diag(x) and Diag(y):

x>y = Diag(x) •Diag(y).

Thus, we can reformulate the LO problem (1.1) as an SDP problem (1.2).
The MISDO problem is defined as an SDO problem with integer constraints

and its dual form is given by:

(MISDO-D) maximize
y∈RM

b>y

subject to A>(y) � C, (1.3)

y ∈ {0, 1}Mb × RMc .
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where y := (ym) ∈ RM ; Mb and Mc are, respectively, the numbers of binary
and continuous variables satisfying M = Mb + Mc. Alternatively, we may also
consider MISDO problems in the primal form: .

(MISDO-P) minimize
X∈SN

C •X

subject to A(X) = b,

X � O,
Xnm ∈ {0, 1}, (∀(n,m) ∈ B),

where X := (Xnm) ∈ SN , and the index set B ⊆ {1, 2, . . . , N} × {1, 2, . . . , N}
imposes binary-valued entries in X.

Since the MISDO problem involves nonlinearity and discreteness because of
the semidefinite and binary constraints, it includes various practical optimization
problems. One of the main fields where MISDO problems appear is combinato-
rial optimization. For example, graph partitioning problems are formulated as an
MISDO problem [10, 11]. Also, Rendl and Rinaldi [135] proposed an algorithm
for exactly solving max-cut problems with an MISDO formulation. In structural
design, Yonekura and Kannno [171] considered a robust truss topology optimiza-
tion and formulated this problem as an MISDO problem. In control theory,
Joshi and Boyd [89] focused on a sensor selection problem that minimizes the
error in estimated parameters and showed that this problem can be expressed as
an MISDO problem. In data mining, MISDO problems are used to obtain an
optimal clustering in the sense of a given metric [8, 127]. In statistics, Tamura
et al. [151] examined the best subset selection for eliminating multicollinearity
from a linear regression model and proposed a MISDO formulation with a condi-
tion number constraint. Moreover, MISDO problems have recently been used in
robust optimization. In particular, Zhang et al. [172] focused on a robust opti-
mization for allocating surgery blocks and formulated the problem as an MISDO
problem.

1.4 Cutting-plane algorithms

In this section, we explain the general framework of cutting-plane algorithms
for solving convex optimization problems and give a brief overview of recent
developments on cutting-plane algorithms, including our results.

The cutting-plane algorithm was first introduced by Gomory [67] for solving
MILO problems, and it was extended by Kelly [86] to general convex optimization
problems. Here, we explain the general framework proposed by Kelly [86]. Let
us consider the following convex optimization problem:

minimize
x∈RN

f(x) subject to x ∈ F , (1.5)

where F ⊆ RN is a convex set, f : RN → R is a convex function, and we assume
that the above problem has an optimal solution.

The main ingredient of cutting-plane algorithms is the hyperplane separation
theorem [36, 82, 136]. For a convex set F ⊆ RN and a point x̂ /∈ F , the hyperplane
separation theorem ensures the existence of a 6= 0 and b such that a>x̂ > b and
a>x ≤ b for all x ∈ F . We call this inequality separating F and x̂ a cutting
plane. Also, we call the inequality satisfying a>x ≤ b for all x ∈ F valid or a
valid inequality for F .

The cutting-plane algorithm solves Problem (1.5) by refining convex polyhe-
drons that contain F while cutting off infeasible solutions with the hyperplane
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separation theorem. Here, let us define F1 to be the initial feasible region that
contains F . At the tth iteration (t ≥ 1), the cutting-plane algorithm solves the
following optimization problem:

minimize
x∈RN

f(x) subject to x ∈ Ft, (1.6)

where Ft is a relaxed feasible region at the tth iteration satisfying Ft ⊆ F1. Let
xt be an optimal solution to Problem (1.6). Then, we check the feasibility of
xt. If xt ∈ F , xt is optimal for the original problem (1.5), and we terminate the
algorithm and output xt as an optimal solution. If xt /∈ F , we find a cutting
plane a>x ≤ b separating xt from Ft and update the relaxed feasible region by
adding the cutting plane to the constraints as follows:

Ft+1 ← Ft ∩ {x ∈ RN | a>x ≤ b}, (1.7)

After updating the feasible region, we set t ← t + 1 and solve Problem (1.6)
again. We repeat this procedure until xt ∈ F (possibly up to some tolerance).
We summarize the general scheme of the cutting-plane algorithm for Problem
(1.5) by Algorithm 1.1.

Algorithm 1.1 General scheme of cutting-plane algorithms for solving Prob-
lem (1.5)

Step 0 (Initialization) Set t← 1 and the initial feasible region F1 ⊇ F .

Step 1 (Relaxed Problem) Solve Problem (1.6). Let xt be an optimal so-
lution.

Step 2 (Cut Generation) If xt ∈ F , terminate the algorithm. Otherwise,
find a cutting plane a>x ≤ b separating xt from F .

Step 3 (Update Feasible Region) Update the feasible region as in Eq.
(1.7).

Step 4 Set t← t+ 1 and return to Step 1.

Cutting-plane algorithms have the following advantages:

• They do not require the objective and constraint functions to be differen-
tiable. As long as we can determine whether a solution belongs to F and
generate cutting planes for F , we can apply the cutting-plane algorithm to
the problem to be solved.

• If the relaxed problem has a nice solvable structure, we can use it to solve
the relaxed problem and accelerate the entire computation. For example,
if state-of-the-art solvers can handle the relaxed problem, we can use them
in the cutting-plane algorithm.

• Cutting-plane algorithms have good extendability. If we can generate a
cutting plane for F , Algorithm 1.1 can also be applied to the following
mixed-integer optimization problem:

minimize
x∈RN

f(x) subject to x ∈ F ∩ ({0, 1}p × RN−p), (1.8)

where p denotes the number of binary variables, and {0, 1}p is the set of p
dimensional vectors whose all entries are 0 or 1.
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Because of these advantages, cutting-plane algorithms have come to be ap-
plied to various optimization problems. Regrettably, we can not describe all
of the studies on the cutting-plan algorithms, but we will mention the results
that are strongly relevant to this thesis. Konno et al. [100] proposed a cutting-
plane algorithm for solving SDO problems. A similar algorithm was proposed
by Krishnan et al. [102]. Recently, an MISDO solver named CUTSDP, which is
implemented in YALMIP [106], was made available; it employs the outer approx-
imation algorithm, which is an extension of the cutting-plane algorithm. Coey
et al. [45] developed a general-purpose solver named Pajarito for mixed-integer
conic optimization problems. Kobayashi and Takano [94] extended the cutting-
plane algorithm for SDO problems and proposed a branch-and-cut algorithm for
solving MISDO problems.

For specific MIO problems, Bertsimas and King [32] considered subset selec-
tion in linear regression, which is a classical problem in statistics, and employed
a cutting-plane strategy. In financial engineering, Bertsimas and Cory-Wright
proposed a cutting-plane algorithm for cardinality-constrained mean-variance
portfolio optimization [24]. This cutting-plane algorithm was extended to cover
sparse principal component analysis [22] and covariance selection problems [33].
Kobayashi et al. [96] considered a cardinality-constrained distributionally robust
portfolio optimization, which is formulated as an MISDO problem, and devised
an efficient cutting-plane algorithm for solving it with the technique of positive
semidefinite matrix completion [60, 121]. Künzi-Bay and Mayer [103] proposed
a cutting-plane algorithm for minimizing CVaR, which is a risk measure in fi-
nance, and variants of this algorithm were developed [4, 80, 149]. Kobayashi
et al. [95] proposed an algorithm named the bilevel cutting-plane algorithm for
solving cardinality-constrained CVaR minimization problems.

Finally, we mention three points that should be kept in mind when we design
an efficient cutting-plane algorithm. First, the relaxed problem (1.6), which is
solved at each iteration, should be tractable. Second, cutting planes should be
generated with a low computational cost. The last point is the strength of cutting
planes. For two cutting planes a>1 x ≤ b1 and a>2 x ≤ b2 for F , we call the former
is stronger than the latter if the following condition holds:

{x ∈ RN | a>1 x ≤ b1} ⊆ {x ∈ RN | a>2 x ≤ b2}.

In this case, the stronger cutting plane cuts off more infeasible solutions; so it
is preferred when we add a cutting plane to the constraints. Thus, when we
generate a cutting plane, it should be strong.

1.5 Thesis overview

The remainder of this thesis is structured as follows. In Chapter 2, we study
the standard form of MISDO problems and devise general-purpose cutting-plane
algorithms for solving the problem. In Chapter 3, we consider the best subset
selection problem for eliminating multicollinearity from linear regression mod-
els. We formulate this problem as an MISDO problem and propose a special-
ized cutting-plane algorithm that exploits the structure of the condition number
constraint. In Chapters 4 and 5, we focus on cardinality-constrained portfolio
optimization problems. We first focus on distributionally robust portfolio opti-
mization in Chapter 4. We devise a scalable cutting-plane algorithm where we
generate cutting planes efficiently by using the technique of positive semidefinite
matrix completion. In Chapter 5, we deal with the cardinality-constrained CVaR
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minimization problem and extend the cutting-plane algorithm discussed in Chap-
ter 4 so that it can handle a large number of asset return scenarios. Chapter 6 is
devoted to concluding remarks. Note that the details of the existing research on
each problem are given in the corresponding chapter.

1.6 Notation

We define the set of real numbers, integers, and positive integers as R,Z, and
N, respectively. For N ∈ N, [N ] represents the set {1, 2, . . . , N}. We denote by
x := (xn) ∈ RN an N -dimensional column vector of real numbers. The zero and
all-one vectors of appropriate size are written as 0 and 1, respectively. If all the
entries of x ∈ RN are nonnegative, we write x ≥ 0. For x,y ∈ RN , we use x ≥ y
to mean x − y ≥ 0. The transpose of a matrix x ∈ RN is denoted by x>. The
standard inner product on RN is given by x>y =

∑
n∈[N ] xnyn for x,y ∈ RN .

The `p-norm of the vector x is denoted by ‖x‖p :=
(∑

n∈[N ] |xn|p
)1/p

.

We denote by X := (Xnm) ∈ RN×M an N ×M real matrix. The zero and
identity matrices of appropriate sizes are written as O and I, respectively. The
trace Tr(·) is the sum of the diagonal elements of a square matrix. The diag(·)
operator extracts the main diagonal from the matrix as a vector, and the Diag(·)
operator maps the vector to the diagonal matrix. The transpose of a matrix
X ∈ RN×M is denoted by X>.

The set of all symmetric N×N real matrices is denoted by SN . The standard
inner product on SN is given by X • Y =

∑
m∈[N ]

∑
n∈[N ]XmnYmn for X,Y ∈

SN . The minimum and maximum eigenvalues of matrix X ∈ SN are denoted by
λmin(X) and λmax(X), respectively.

A matrix X ∈ SN is positive semidefinite (PSD) if

v>Xv ≥ 0

for all v ∈ RN . We write X � O if the matrix X is PSD. For X,Y ∈ SN , we
use X � Y to mean X − Y � O. A matrix X ∈ SN is positive definite if

v>Xv > 0

for all v 6= 0. We write X � 0 if the matrix X is positive definite. For a
symmetric matrix X ∈ SN , its positive semidefiniteness and nonnegativity of its
eigenvalues are equivalent as follows:

X � O ⇐⇒ λmin(X) ≥ 0.
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Chapter 2

Branch-and-cut Algorithm for Mixed-integer

Semidefinite Optimization

In this chapter, we study the general-purpose cutting-plane algorithms for solv-
ing MISDO problems. In particular, we focus on the standard form of MISDO
problems and develop a cutting-plane algorithm for solving it by extending the
existing algorithm for solving SDO problems proposed by Konno et al. [100]. We
prove the convergence properties of the algorithm. In addition, to speed up the
computation, we devise a branch-and-cut algorithm, in which cutting-planes are
dynamically added during a branch-and-bound procedure. The content of this
chapter is included in Kobayashi et al. [94].

We give an introduction to this study and summarize our contribution in
Section 2.1. In Section 2.2, we show the definition of the MISDO problems again.
In Section 2.3, we present our cutting-plane algorithm and analyze its convergence
properties. In Section 2.4, we describe our branch-and-cut algorithm for solving
MISDO problems. In Section 2.5, we report the computational results of tests of
our algorithms, and in Section 2.6, we conclude with a brief summary.

2.1 Introduction

In this chapter, we focus on the standard form of MISDO problems. As we
mentioned in Chapter 1, the standard MISDO problem includes various kinds of
optimization problems appearing in diverse fields, such as combinatorial optimiza-
tion [134, 147], architecture [40, 171], control systems [89, 111, 153, 158], graph
theory [10, 11, 135], signal processing [61, 130], surgery planning [172], and sta-
tistical data analysis [8, 127, 151]. Thus, developing an efficient general-purpose
algorithm for solving the standard MISDO formulation is of great significance in
terms of providing a framework for handling these various optimization problems
in a unified manner.

A common way to solve MISDO problems is to use a branch-and-bound
(B&B) algorithm. Gally et al. [62] developed a general-purpose MISDO solver,
SCIP-SDP, by combining the B&B framework of SCIP [1] with SDO solvers that
use interior-point methods. Also, the existing specialized algorithms for specific
MISDO applications are mainly based on the B&B algorithm [8, 10, 11, 40, 130,
135, 139, 171]. These B&B algorithms involve solving a continuous relaxation
(i.e., SDO) problem at each node of the enumeration tree. In this case, however,
we cannot implement a warm-starting strategy for efficiently solving a series of
SDO problems because the interior-point methods do not receive a given initial
solution. Moreover, the progress of the B&B algorithm is sometimes disrupted
and returns an incorrect solution due to numerical instability, especially when
Slater’s condition does not hold for some of the SDO problems.
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As an alternative to the B&B framework, we focus on the cutting-plane algo-
rithm [86, 162]. Specifically, we shall extend the cutting-plane algorithms [97, 102]
that were originally developed for solving SDO problems. These algorithms can
readily be extended to solving MISDO problems by removing the PSD constraint
and repeatedly solving the resultant MILO problem in which a cutting plane is
imposed at each iteration to exclude infeasible solutions for the removed PSD
constraint. This approach has the advantage of being able to use state-of-the-art
optimization software (e.g., Gurobi or CPLEX) when solving MILO problems.
However, to solve an MISDO problem with a sufficient degree of accuracy, we
must deal with an exponentially large number of MILO problems [38]. A sim-
ilar cutting-plane algorithm for solving MISDO problems has previously been
described [108] and implemented in YALMIP [106]. To the best of our knowl-
edge, however, the theoretical properties of the algorithm have not been fully
described, and no detailed computational results have been reported.

The purpose of this chapter is to describe an effective computational frame-
work for solving MISDO problems. First, we formulate a cutting-plane algo-
rithm for solving MISDO problems and prove its convergence properties. We
then devise a high-performance branch-and-cut (B&C) algorithm on the basis
of this cutting-plane algorithm. Specifically, we start by solving an MILO prob-
lem in which the PSD constraint has been relaxed, and then we include cutting
planes for the constraint dynamically during the B&B procedure. We implement
this B&C algorithm through the use of a callback function in the Gurobi Opti-
mizer. We compare the computational performance of our algorithms with that
of SCIP-SDP [62] and CUTSDP for three types of MISDO problems: random in-
stances, computing restricted isometry constants [61], and robust truss topology
design [171].

The main advantages of our B&C algorithm can be summarized as follows:

• Our B&C algorithm solves an MILO problem subject to a series of cutting
planes. In contrast to the existing B&B algorithms that handle a series of
SDO problems, a warm-starting strategy using the dual simplex method
makes the B&C computation much faster.

• Our B&C algorithm can be implemented using sophisticated MILO soft-
ware, such as Gurobi or CPLEX, and it deals with no SDO problems that
may cause numerical instability. Hence, computation using our algorithm
is very stable.

• Our B&C algorithm adds cutting planes dynamically during the MILO
computation. As a result, our algorithm needs to execute the B&B proce-
dure only once, in contrast with the cutting-plane algorithm, which repeats
the B&B procedure.

2.2 Problem formulation

In this chapter, we focus on solving the dual standard form of MISDO problems.
Recall that the dual standard dual form of MISDO problems is expressed as
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follows:

maximize
y

b>y (2.1a)

subject to A>(y) :=
∑
m∈[M ]

Amym � C, (2.1b)

y ∈ {0, 1}Mb × RMc , (2.1c)

where b := (bm) ∈ RM and Am ∈ SN (m ∈ [M ]) are given constants, and y is
a vector of binary and continuous decision variables. Note that M = Mb + Mc

holds, where Mb and Mc are, respectively, the numbers of binary and continuous
decision variables. Note that we may also consider MISDO problems in the primal
form in Eq. (1.4). In the following sections, we shall deal with the problem (2.1),
but our algorithms can readily be applied to the primal standard form.

We assume that the feasible region of the problem (2.1) is bounded even if
the PSD constraint (2.1b) is removed. Since

C −A>(y) � O ⇒ diag(C −A>(y)) ≥ 0,

we define the relaxed feasible region

Y := {y ∈ {0, 1}Mb × RMc | diag(C −A>(y)) ≥ 0}.

Assumption 2.1. The relaxed feasible region Y is bounded.

Let y? be an optimal solution to the problem (2.1). Note that Assumption 2.1
is fulfilled if the following constraint is incorporated into the definition of the
feasible region:

−U ≤ ym ≤ U, Mb + 1 ≤ ∀i ≤M,

where U is a sufficiently large number such that this constraint is satisfied by y?.

2.3 Cutting-plane algorithm

Our cutting-plane algorithm for solving MISDO problems is an extension of the
cutting-plane algorithms [97, 102] for solving SDO problems. It can also be
regarded as an improved version of the extended cutting-plane algorithm [162] in
the sense that our algorithm makes it possible to handle PSD constraints.

Our algorithm starts with defining the initial feasible region as F1 := Y
where the PSD constraint (2.1b) has been removed. At tth iteration (t ≥ 1), our
algorithm solves the following relaxed MILO problem:

maximize
y

b>y subject to y ∈ Ft, (2.2)

where Ft is a relaxed feasible region at the tth iteration such that Ft ⊆ F1. If
Ft = ∅, the problem (2.1) is infeasible because its feasible region is contained in
Y. Otherwise, since the feasible region Ft is bounded from Assumption 2.1 and
Ft ⊆ F1, there exists an optimal solution yt to the problem (2.2).

We next check whether the PSD constraint (2.1b) is satisfied by the relaxed
solution yt. If λmin(C−A>(yt)) ≥ 0, thenC−A>(yt) is PSD and yt is an optimal
solution to the original problem (2.1), so we terminate the algorithm. Otherwise,
let dt ∈ RN be the normalized eigenvector of C − A>(yt) corresponding to the
minimum eigenvalue. It follows that

d>t (C −A>(yt))dt = λmin(C −A>(yt)) < 0.
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Accordingly, we can exclude the solution yt from the feasible region by incorpo-
rating the constraint

d>t (C −A>(y))dt ≥ 0. (2.3)

Note that this constraint is a valid inequality for the PSD constraint (2.1b) be-
cause

C −A>(y) � O ⇐⇒
〈
d>(C −A>(y))d ≥ 0, ∀d ∈ Rn

〉
.

After constraint (2.3) is included, we set t ← t + 1 and solve the MILO
problem (2.2) again. We repeat this process (i.e., solving the MILO problem and
adding a cutting plane) until C −A>(yt) becomes nearly PSD:

λmin(C −A>(yt)) ≥ −ε, (2.4)

where ε is a sufficiently small non-negative number representing a tolerance for
feasibility. In this case, constraints (2.1c) and (2.4) are satisfied by yt, and the
value of the objective function is not less than the maximum (i.e., b>yt ≥ b>y?)
because yt solves the relaxed problem (2.2). Here, we call such a solution optimal
within the feasibility tolerance ε. Our cutting-plane algorithm is summarized
as Algorithm 2.1; if the algorithm terminates, it proves the infeasibility of the
problem (2.1) or yields an optimal solution with the feasibility tolerance ε.

Algorithm 2.1 Cutting-plane algorithm for solving MISDO Problems

Step 0 (Initialization) Let ε ≥ 0 be a tolerance for feasibility. Define the
initial feasible region as F1 := Y. Set t← 1.

Step 1 (Relaxed Problem) Solve Problem (2.2). Let yt be an optimal solu-
tion.

Step 2 (Termination Condition)

(a) If Ft = ∅, then the problem (2.1) is infeasible.

(b) If λmin(C − A>(yt)) ≥ −ε, then yt is an optimal solution within
the feasibility tolerance ε.

Step 3 (Cut Generation) Update the feasible region,

Ft+1 ← Ft ∩
{
y ∈ {0, 1}Mb × RMc | Eq.(2.3)

}
.

Step 4 Set t← t+ 1 and return to Step 1.

Following the approach used in the case of solving SDO problems [97, 98], we
prove convergence of the algorithm.

Theorem 2.2. For any ε > 0, Algorithm 2.1 terminates in a finite number of
iterations.

Proof. Suppose that the algorithm does not terminate. The infinite sequence
{(dt,yt)} generated by the algorithm is bounded because ‖dt‖ = 1 and yt ∈ Y
for all t. Therefore, we can choose a subsequence {(dt,yt) | t ∈ T } that converges
to an accumulation point (d̄, ȳ).

Since the termination condition is never satisfied, we have that for all t ∈ T ,

d>t (C −A>(yt))dt = λmin(C −A>(yt)) < −ε.
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It follows that

lim
t→∞ (t∈T )

(dt)
>(C −A>(yt))dt = d̄>(C −A>(ȳ))d̄ ≤ −ε. (2.5)

For each t < `, y` satisfies the tth cutting plane

d>t (C −A>(y`))dt ≥ 0.

It follows that

lim
t→∞ (t∈T )

lim
`→∞ (`∈T )

d>t (C −A>(y`))dt = d̄>(C −A>(ȳ))d̄ ≥ 0. (2.6)

Eqs. (2.5) and (2.6) imply that ε = 0, which contradicts the hypothesis.

Theorem 2.3. Suppose that ε = 0. Even if Algorithm 2.1 does not terminate,
every accumulation point of the sequence of solutions {yt} is an optimal solution
to the problem (2.1a)–(2.1c).

Proof. Suppose that {(dt,yt) | t ∈ T } is a sequence that converges to an accu-
mulation point (d̄, ȳ). Note that λmin(C−A>(yt)) converges to λmin(C−A>(ȳ))
as t→∞ (t ∈ T ) (see, e.g., Theorem 2.4.9.2 [84]). Due to Eq. (2.6), we have

λmin(C −A>(ȳ)) = lim
t→∞ (t∈T )

λmin(C −A>(yt))

= lim
t→∞ (t∈T )

(dt)
>(C −A>(yt))dt

= d̄>(C −A>(ȳ))d̄ ≥ 0,

which means that the matrix C−A>(ȳ) is PSD. Since b>yt ≥ b>y? for all t, we
have that b>ȳ ≥ b>y?. This implies that the accumulation point ȳ is an optimal
solution to the problem (2.1).

When all of the decision variables are binary, we can prove finite convergence
of the algorithm even in the case ε = 0.

Theorem 2.4. If Mc = 0, Algorithm 2.1 terminates in a finite number of itera-
tions.

Proof. Recall that Step 3 excludes the solution yt from the feasible region Ft in
the tth iteration. Since the number of possible solutions y ∈ {0, 1}M is 2M , the
algorithm terminates with Ft = ∅ after at most 2M iterations.

2.4 Branch-and-cut algorithm

Note that Step 1 of the cutting-plane algorithm solves an MILO problem at
every iteration, and therefore we must execute the B&B algorithm many times
from scratch. To resolve this issue, we develop a B&C algorithm that generates
cutting planes dynamically during the B&B procedure. Such dynamic constraint
generation is known as lazy constraint callback in the optimization literature.
This functionality is offered by modern optimization software (e.g., CPLEX or
Gurobi) as a state-of-the-art computational feature. Lazy constraints have been
employed to speed up the computation for various applications, including harvest
scheduling [159], energy supply systems [170], distribution network design [124],
robust optimization [28], and statistical model selection [31]. To the best of our
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knowledge, however, we are the first to use this approach to dealing with PSD
constraints.

Our method starts with the B&B algorithm for solving the relaxed MILO
problem (2.2). Once a feasible solution ŷ ∈ Y is found, the callback procedure
is initiated; if the PSD constraint (2.1b) is violated by ŷ, a cutting plane is
appended to exclude ŷ from the feasible region. After that, we proceed with the
B&B algorithm from the middle of the MILO computation. We continue this
process until the optimality of the obtained solution is proved through the B&B
procedure. This B&C algorithm is summarized as Algorithm 2.2. Although our
algorithms are designed for solving the problem (2.1) of the dual form, they can
readily be modified to solve the primal standard form.

Algorithm 2.2 B&C algorithm for solving MISDO problem (2.1)

Step 0 (Initialization) Let ε ≥ 0 be a tolerance for feasibility. Set the feasible
region as F := Y.

Step 1 (B&B Procedure) Start (or continue) the B&B algorithm for solving
the MILO problem,

maximize
y

b>y subject to y ∈ F .

Step 2 (Callback Procedure) Once a feasible solution ŷ ∈ F is found, go to
the following steps:

Step 2.1 (Cut Generation) If λmin(C−A>(ŷ)) < −ε, update the fea-
sible region,

F ← F ∩
{
y ∈ {0, 1}Mb × RMc | d̂>(C −A>(y))d̂ ≥ 0

}
,

where d̂ is the normalized eigenvector of C −A>(ŷ) corresponding
to the minimum eigenvalue.

Step 2.2 Return to Step 1.

2.5 Numerical experiments

We performed several computational experiments to evaluate the effectiveness of
our algorithms for solving MISDO problems.

2.5.1 Experimental design

We compare the computational performance of the following methods:

SCIP: MISDO solver SCIP-SDP1 [62],

CUTSDP: MISDO solver CUTSDP implemented in YALMIP2 [106],

CPA: cutting-plane algorithm (Algorithm 2.1),

B&C: B&C algorithm (Algorithm 2.2).

1http://www.opt.tu-darmstadt.de/scipsdp/
2https://yalmip.github.io/solver/cutsdp/
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We also solved some instances by Pajarito [45] to evaluate its performance. Our
preliminary experiments showed that Pajarito was very slow and failed to com-
plete the computations even for small-sized instances. Therefore, we omitted
Pajarito from our target solvers for the comparison in the following numerical
experiments.

We used SCIP-SDP 3.1.0 on the NEOS Server3 [46], where the B&B frame-
work of SCIP4 5.0.0 [63] and the SDO solver DSDP5 5.8 [21] were combined in
the default configuration. When we ran CUTSDP, we used the MATLAB R2015
b and Gurobi Optimizer6 8.0 to solve relaxed linear optimization problems and
MILO problems. CPA and B&C were implemented in the Python language;
MILO problems were solved using the Gurobi Optimizer 8.0, and its callback
function was employed for Step 2 of Algorithm 2.2. The tolerance for feasibility
was set as ε := 10−5 · (1 + ‖b‖1) on the basis of the DIMACS error [117], where
b is the coefficient vector of the objective function. These CUTSDP, CPA, and
B&C computations were performed on a Windows 7 PC with an Intel Core i7-
4790 CPU (3.60 GHz) and 16 GB of memory. The computation of each method
was terminated if it did not finish by itself within 7200 s. In these cases, the
results obtained at 7200 s were taken as the final outcome.

The column labels used in the tables of experimental results are defined as
follows.

Time: computation time in seconds,

#Abort: number of times that the computation was aborted by a numerical
issue,

#Limit: number of times that the computation reached the time limit of 7200 s,

#Cuts: number of cutting planes generated by CUTSDP, CPA, and B&C,

#Nodes: number of nodes in the enumeration tree formed by SCIP and B&C.

Following Gally et al. [62], we use the shifted geometric mean to aggregate results
of random instances. The shifted geometric mean of values x1, x2, . . . , xN is
defined as  ∏

n∈[N ]

(xn + s)

1/N

− s,

where the shift s was set to 10, 1000, and 100 for “Time,” “#Cuts,” and
“#Nodes,” respectively, as in Gally et al. [62].

2.5.2 Random instances

In this subsection, we report experimental results for solving random instances
of the problem (2.1a)–(2.1c).

Instance generation

Following Yamashita et al. [169], we generated random instances of the prob-
lem (2.1). First, we constructed ỹ as a feasible solution: ỹm was randomly chosen

3https://neos-server.org/neos/
4http://scip.zib.de/
5http://www.mcs.anl.gov/hs/software/DSDP/
6http://www.gurobi.com/
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from {0, 1} for m ≤Mb and was drawn from a uniform distribution on the inter-
val [0, 1] for m ≥ Mb + 1. The elements of each of the matrices Am (m ∈ [M ])
were drawn from a uniform distribution on the interval [−1, 1]. We next set
C := αI +

∑
m∈[M ]Amỹm, where α is a positive-valued parameter ensuring that

the matrix C −A>(ỹ) is PSD. We then set bm := Am • I for m ∈ [M ].

Experimental results

Table 2.1 gives the computational results for the case of the random instances.
Five instances of the problem (2.1a)–(2.1c) were generated for each tuple (N,Mb,Mc, α),
and the shifted geometric means of “Time,” “#Cuts,” and “#Nodes” were com-
puted.

We can see from Table 2.1 that our algorithm B&C was always the fastest
among the four methods. The number of generated nodes in an enumeration
tree was much larger for B&C than for SCIP; however, the series of continuous
relaxation problems at such nodes can be solved efficiently in the case of B&C
computation. CPA was often slower than SCIP, but it is noteworthy that the
SCIP computations were aborted in some instances by numerical issues. In con-
trast to SCIP, our algorithms do not handle SDO problems, so they can solve
MISDO problems without encountering numerical instability. A typical exam-
ple is the case of (N,Mb,Mc, α) = (30, 30, 60, 1.0): the computations of CPA
and B&C finished on average in 2069.8 s and 18.8 s, respectively, but the SCIP
computations were aborted in all five instances.

Table 2.1 showed that B&C was always faster than CUTSDP. The main differ-
ence between B&C and CUTSDP is that CUTSDP does not implement the lazy
constraints callback function. Thus, CUTSDP does not employ a warm-starting
strategy unlike B&C, and this is considered to be the reason why CUTSDP
was not efficient compared with our B&C algorithm. In addition, compar-
ing CPA and CUTSDP, CPA was faster than CUTSDP except for the case of
(N,Mb, Nc, α) = (15, 30, 30, 1.0). While CPA solves the relaxed MILOs from the
beginning, CUTSDP first solves a sequence of relaxed continuous linear optimiza-
tion problems iteratively with adding cuts at each iteration. Then, CUTSDP
keeps the added constraints and moves into the next phase, imposing integer
constraints and solving MILOs iteratively as our CPA does. The results that
CUTSDP was less efficient than CPA suggest that CUTSDP would add too many
constraints during the first phase and make solving the relaxed MILOs hard in
the second phase.

2.5.3 Computing restricted isometry constants

Here, we compare the performance of the algorithms for the problem of computing
restricted isometry constants [61].

Problem formulation

Let us consider a system of linear equations Ax = b, where the coefficient ma-
trix A ∈ Rµ×N and the right-hand side vector b ∈ Rµ are given. Compressed
sensing [13] focuses on finding the sparsest solution x̂0 to an undetermined linear
system with µ ≤ N :

x̂0 := arg min{‖x‖0 | Ax = b},

where ‖x‖0 denotes the number of nonzero elements of vector x ∈ RN . This
problem is known to be NP-hard [13].
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Table 2.1: Results for random instances of the problem (2.1a)–(2.1c)

N Mb Mc α Method Time #Abort #Limit #Cuts #Nodes

30 30 30 1.0 SCIP 61.5 0 0 — 25.4
CUTSDP 378.4 0 0 1541.2 —

CPA 131.0 0 0 543.6 —
B&C 4.2 0 0 556.2 1071.7

15 30 30 1.0 SCIP 35.9 1 0 — 63.4
CUTSDP 253.3 0 0 1279.7 —

CPA 315.8 0 0 524.8 —
B&C 4.4 0 0 770.8 5270.1

60 30 30 1.0 SCIP 142.2 1 0 — 23.0
CUTSDP 1086.7 0 0 2235.7 —

CPA 186.3 0 0 633.1 —
B&C 4.7 0 0 628.8 1010.8

30 15 30 1.0 SCIP 34.6 2 0 — 15.7
CUTSDP 158.1 0 0 1478.7 —

CPA 78.0 0 0 540.3 —
B&C 2.1 0 0 546.6 629.2

30 60 30 1.0 SCIP 128.7 0 0 — 51.6
CUTSDP 978.8 0 0 1624.6 —

CPA 439.8 0 0 553.8 —
B&C 5.3 0 0 584.2 5183.2

30 30 15 1.0 SCIP 30.6 0 0 — 24.1
CUTSDP 83.5 0 0 690.7 —

CPA 14.4 0 0 185.7 —
B&C 0.7 0 0 199.1 446.6

30 30 60 1.0 SCIP — 5 — — —
CUTSDP 2637.0 0 0 3858.8 —

CPA 2069.8 0 0 1559.3 —
B&C 18.8 0 0 1617.3 2977.7

30 30 30 0.1 SCIP 22.8 3 0 — 1.0
CUTSDP 282.5 0 0 1273.0 —

CPA 145.1 0 0 445.7 —
B&C 2.0 0 0 431.1 474.2

30 30 30 10.0 SCIP 75.3 2 0 — 47.2
CUTSDP 144.0 0 0 995.1 —

CPA 97.8 0 0 401.8 —
B&C 55.1 0 0 3947.6 13111.2

45 45 45 1 SCIP 164.8 0 0 — 38.8
CUTSDP 3046.6 0 0 3107.7 —

CPA 1123.8 0 0 1066.5 —
B&C 11.8 0 0 1112.2 2403.8

60 60 60 1 SCIP 558.0 0 0 — 50.0
CUTSDP 7169.6 0 4 4468.7 —

CPA 5069.8 0 0 1644.0 —
B&C 31.0 0 0 1663.5 4125.5
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The lower and upper restricted isometry constants (RICs) [55] of order κ are
defined as

ακ := min{‖Ax‖22 | ‖x‖22 = 1, ‖x‖0 ≤ κ}, (2.7)

βκ := max{‖Ax‖22 | ‖x‖22 = 1, ‖x‖0 ≤ κ}. (2.8)

When certain conditions on RICs are fulfilled, the sparsest solution x̂0 coincides
with the following `1-norm minimizer [55]:

x̂1 := arg min{‖x‖1 | Ax = b}.

Gally and Pfetsch [61] proved that exact values of ακ and βκ can be computed
by solving the following MISDO problem:

minimize/maximize
X,z

Tr(A>AX) (2.9a)

subject to Tr(X) = 1, (2.9b)∑
n∈[N ]

zn ≤ κ, (2.9c)

− 1

2
zn ≤ Xnm ≤

1

2
zn, (∀(n,m) ∈ [N ]× [N ]), (2.9d)

X � O, (2.9e)

z ∈ {0, 1}N , (2.9f)

where X := (Xnm) ∈ SN and z := (zn) ∈ {0, 1}N are decision variables.

Experimental results

Tables 2.2 and 2.3 give the results for computing lower and upper RICs, respec-
tively. The size of the problem (2.9) is represented by N ∈ {10, 15, 20, 25}, and
the order of RICs is κ ∈ {3, 5}. Note that the number of linear equations in the
system Ax = b was fixed to µ = 10 because it is independent of the size of the
problem (2.9). As in the case of Gaussian-distributed matrices [61], each element
of matrix A was drawn from the standard normal distribution. Five instances of
matrix A were generated for each pair (N,κ), and the shifted geometric means
of “Time,” “#Cuts,” and “#Nodes” were computed. In Tables 2.2 and 2.3,
each column “Mb” and “Mc” are the number of integer variables and that of
continuous ones, respectively.

We can see from Tables 2.2 and 2.3 that, as was the case for random instances,
B&C was the fastest among the four methods. CPA was also faster than SCIP and
CUTSDP in the case of computing RICs. In addition, we notice that when the
problem size (i.e., N) was large, the SCIP computation was frequently aborted
due to a numerical issue. Indeed, when N ≥ 20, SCIP failed to complete the
computation for 19 out of 20 instances of computing lower RICs (Table 2.2) and
for 11 out of 20 instances of computing upper RICs (Table 2.3). Also, CUTSDP
did not solve all instances of computing lower RICs (Table 2.2) and upper RICs
(Table 2.3) within the time limit of 7200 s for N ≥ 25.

2.5.4 Robust truss topology design

In this subsection, we report the experimental results for our tests of the three
algorithms on the problem of robust truss topology design [171].
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Table 2.2: Results for computing lower RICs (µ = 10)

N κ Mb Mc Method Time #Abort #Limit #Cuts #Nodes

10 3 45 15 SCIP 6.1 0 0 — 27.6
CUTSDP 21.9 0 0 730.5 —

CPA 1.7 0 0 55.4 —
B&C 1.0 0 0 479.2 751.6

10 5 45 15 SCIP 16.6 2 0 — 91.4
CUTSDP 50.7 0 0 945.9 —

CPA 14.0 0 0 183.1 —
B&C 2.3 0 0 1087.0 2827.2

15 3 105 15 SCIP 140.3 0 0 — 187.6
CUTSDP 2468.1 0 1 4369.6 —

CPA 11.5 0 0 107.6 —
B&C 3.8 0 0 943.5 1864.8

15 5 105 15 SCIP 693.4 0 0 — 891.4
CUTSDP 7200.0 0 5 4296.1 —

CPA 237.9 0 0 342.4 —
B&C 14.1 0 0 1718.1 6494.2

20 3 190 20 SCIP 1037.6 4 0 — 373.0
CUTSDP 7200.0 0 5 5478.4 —

CPA 58.7 0 0 191.7 —
B&C 8.9 0 0 1155.7 3031.0

20 5 190 20 SCIP — 5 — — —
CUTSDP 7200.0 0 5 5153.0 —

CPA 1938.7 0 0 669.5 —
B&C 112.5 0 0 533.3 21239.5

25 3 300 25 SCIP — 5 — — —
CUTSDP 7200.0 0 5 5149.2 —

CPA 188.4 0 0 294.4 —
B&C 16.9 0 0 1407.6 5435.7

25 5 300 25 SCIP — 5 — — —
CUTSDP 7200.0 0 5 5332.3 —

CPA 7200.0 0 5 1178.9 —
B&C 373.0 0 0 1008.0 60996.7

30 3 435 30 SCIP — 5 — — —
CUTSDP 7200.0 0 5 5116.3 —

CPA 616.48 0 0 449.1 —
B&C 45.33 0 0 1123.2 9828.7

30 5 435 30 SCIP — 5 — — —
CUTSDP 7200.0 0 5 5619.5 —

CPA 7200.0 0 5 2104.3 —
B&C 1343.6 0 0 2272.5 136486.1

35 3 595 35 SCIP — 5 — — —
CUTSDP 7200.0 0 5 6635.7 —

CPA 2257.4 0 0 652.3 —
B&C 102.1 0 0 609.7 16269.0

35 5 595 35 SCIP — 5 — — —
CUTSDP 7200.0 0 5 6696.3 —

CPA 7200.0 0 5 2776.7 —
B&C 3802.6 0 0 3336.7 225854.9
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Table 2.3: Results for computing upper RICs (µ = 10)

N κ Mb Mc Method Time #Abort #Limit #Cuts #Nodes

10 3 10 45 SCIP 5.4 0 0 — 26.3
CUTSDP 13.5 0 0 416.7 —

CPA 1.5 0 0 30.2 —
B&C 0.6 0 0 308.4 429.1

10 5 10 45 SCIP 9.7 0 0 — 74.3
CUTSDP 53.9 0 0 826.5 —

CPA 4.8 0 0 77.8 —
B&C 2.0 0 0 880.4 2233.6

15 3 15 105 SCIP 41.3 0 0 — 51.7
CUTSDP 231.3 0 0 1091.7 —

CPA 3.8 0 0 34.2 —
B&C 2.7 0 0 683.0 1465.0

15 5 15 105 SCIP 54.5 0 0 — 76.6
CUTSDP 2657.9 0 3 2028.3 —

CPA 22.8 0 0 93.7 —
B&C 6.2 0 0 1084.2 2608.2

20 3 20 190 SCIP 322.0 0 0 — 93.1
CUTSDP 1479.7 0 1 1177.4 —

CPA 8.1 0 0 34.8 —
B&C 3.8 0 0 511.9 1662.8

20 5 20 190 SCIP 605.9 2 0 — 130.8
CUTSDP 3651.5 0 3 922.2 —

CPA 129.2 0 0 121.9 —
B&C 14.6 0 0 997.3 6100.2

25 3 25 300 SCIP 1224.0 4 0 — 137.0
CUTSDP 7200.0 0 5 1072.6 —

CPA 23.9 0 0 46.4 —
B&C 7.9 0 0 681.2 3211.8

25 5 25 300 SCIP — 5 — — —
CUTSDP 7200.0 0 5 1106.3 —

CPA 1285.2 0 0 165.4 —
B&C 68.9 0 0 922.4 13854.4

30 3 30 435 SCIP — 5 — — —
CUTSDP 7200.0 0 5 1185.4 —

CPA 40.8 0 0 44.6 —
B&C 14.7 0 0 654.5 4552.8

30 5 30 435 SCIP — 5 — — —
CUTSDP 7200.0 0 5 1424.9 —

CPA 2380.4 0 0 168.9 —
B&C 177.9 0 0 1199.2 24939.4

35 3 35 595 SCIP — 5 — — —
CUTSDP 7200.0 0 5 1519.3 —

CPA 92.4 0 0 46.8 —
B&C 26.5 0 0 301.3 5424.4

35 5 35 595 SCIP — 5 — — —
CUTSDP 7200.0 0 5 1887.3 —

CPA 6426.1 0 4 158.4 —
B&C 318.0 0 0 938.1 56816.4
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Problem formulation

Let us consider an undirected graph called the ground structure in d-dimensional
space. We suppose that some nodes are fixed, and d-dimensional forces act on the
q unfixed nodes; so the external load vector is defined as f ∈ Rν with ν := d · q.
The index set in the external load vector is denoted by J := {1, 2, . . . , ν}. The
index set of edges in the ground structure is denoted by I := {1, 2, . . . , µ}, which
represents candidate members (or bars) of a truss. Truss topology design involves
choosing a subset of members and determining their cross-sectional areas so that
the truss structure will be lightweight but sufficiently rigid.

We begin by introducing the decision variables. We denote by a := (ai)i∈I ∈
Rµ the vector of member cross-sectional areas. Additionally, the vector p :=
(pj)j∈J ∈ {0, 1}ν corresponds to the existence of each node, and the vector
t := (ti)i∈I ∈ {0, 1}µ represents the selection of members in the truss structure.

Given matrices Ki ∈ Sν (i ∈ I), the stiffness matrix is defined as K(a) :=∑
i∈I aiKi. The following matrix is used to express uncertainty about the exter-

nal loads applied at each node in the truss structure:

Q := (f̃ , rv1, rv2, . . . , rvν−1) ∈ Rν×ν ,

where f̃ ∈ Rν is the nominal external load, r is the level of uncertainty, and
vj ∈ Rν (j = 1, 2, . . . , ν − 1) are orthonormal basis vectors of the orthogonal
complement of f̃ . When an ellipsoidal uncertainty set of external loads [19] is
employed, the worst-case compliance constraint is posed as(

τ̄I (Diag(p)Q)>

Diag(p)Q K(a)

)
� O, (2.10)

where τ̄ is the upper-bound parameter for the compliance; see Yonekura and
Kanno [171] for the details.

We define Jf ⊆ J to represent the nodes that should remain in the truss
structure. Other nodes can be removed, but we must maintain the nodes that
are connected to at least one member. Such constraints can be expressed as

0 ≤ pj ≤ 1, (∀j ∈ J \ Jf), (2.11)

ti ≤ pj , (∀i ∈ Ik̂(j),∀j ∈ J \ Jf), (2.12)

pj = 1, (∀j ∈ Jf), (2.13)

where Ik̂(j) ⊆ I is the set of members that are connected to the node associated

with the jth element of f̃ .
The following constraints are imposed on the member cross-sectional areas:

aminti ≤ ai ≤ amaxti, (∀i ∈ I), (2.14)

ti ∈ {0, 1}, (∀i ∈ I), (2.15)

where amin and amax are, respectively, lower and upper bounds on cross-sectional
areas.

The robust truss topology design minimizing the structural volume is formu-
lated as the following MISDO problem:

minimize
a, p, t

∑
i∈I

`iai (2.16a)

subject to Eqs. (2.10)–(2.15), (2.16b)

where `i is the length of the ith member. Although p is treated as a vector of
continuous variables, the binary constraint p ∈ {0, 1}ν can be satisfied.

22



Experimental results

We considered a two-dimensional lattice as the ground structure; nodes were
placed on lattice points, and every pair of distinct nodes was connected by a
unique edge. Note that the longer edge was removed if two edges overlapped
along the same straight line, and the remaining edges were treated as candidate
members.

As explained below, the settings of parameters were the same as those used
by Yonekura and Kanno [171]. Specifically, the lengths of horizontal and vertical
members were, respectively, 100 cm and 50 cm, the lower and upper bounds on
cross-sectional areas were, respectively, amin := 10 cm2 and amax := 1000 cm2,
and the elastic modulus was 200 GPa. The leftmost nodes of trusses were fixed,
and the bottom-right node was loaded with a vertical force of 1 kN as a nominal
external load f̃ . The level of uncertainty was r := 0.1, and the upper-bound
parameter for compliance was τ̄ := 10 kN. Note that all lengths were measured
in centimeters, and that the value of each member length, `i, was divided by 1000
to reduce numerical error.

Table 2.4 gives the computational results for the robust truss topology design
problem. In Tables 2.4, each column “N”, “Mb”, and “Mc” are the matrix size
in Eq. (2.10), the number of integer variables, and that of continuous ones,
respectively. For instance, Lat(3,3) is a problem instance corresponding to 3× 3
lattice points. Also, 22mem and 51mem stand for the 22- and 51-member truss
instances defined in Yonekura and Kanno [171]. The column labeled “Obj” shows
the value of the objective function (2.16a). If the computation reached the time
limit of 7200 s, the obtained lower and upper bounds on the objective function
are shown.

We can see from Table 2.4 that there is no clear inferior-to-superior relation-
ship between B&C and SCIP for small-sized instances. For example, B&C was
three times faster than SCIP for the Lat(3,4) instance, whereas B&C was four
times slower than SCIP for the 22mem instances. For large-sized instances, the
computation time of B&C was relatively long. Indeed, B&C took much longer
to solve the Lat(4,4) and 51mem instances than SCIP did. However, it is note-
worthy that B&C successfully found solutions of good quality to such large-sized
instances. For the Lat(4,4) instance, although the B&C computation was termi-
nated due to the time limit, its computed upper-bound value (i.e., the objective
value of the obtained feasible solution) was 71.01, which is very close to the
optimal value (i.e., 69.34) obtained by SCIP. For the Lat(5,3) instance, B&C
computed an upper-bound value of 294.49, which is very close to the optimal
value (i.e., 292.68) provided by CPA and CUTSDP, whereas SCIP failed to solve
this instance due to a numerical issue. On the other hand, CPA showed poorer
computational performance than both SCIP and B&C for robust truss topology
design.

Comparing B&C and CUTSDP, Table 2.4 showed that B&C was faster than
CUSTDP except for the cases of the two instances, 22mem and Lat(5,3). For the
22mem instance, B&C was slower than CUTSDP, but the difference in the com-
putational time between these methods was small. Moreover, as we mentioned
before, B&C obtained a good upper-bound value for the Lat(5,3) instance. In
terms of a comparison between CPA and CUTSDP, Table 2.4 showed that CPA
was faster then CUTSDP except for the cases of the three instances, Lat(3,3),
Lat(4,3) and 22mem. For each of the three instances, while CPA took longer
to solve than CUTSDP did, the computational time of CPA and CUTSDP were
comparable.
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Table 2.4: Results for robust truss topology design

Instance ν µ N Mb Mc Method Time Obj #Cuts #Nodes

Lat(3,3) 12 26 24 26 38 SCIP 18.6 32.40 — 71
CUTSDP 35.2 32.40 497 —

CPA 55.1 32.40 347 —
B&C 24.4 32.40 2612 17115

Lat(3,4) 16 46 32 46 65 SCIP 45.2 21.24 — 101
CUTSDP 1590.3 21.24 764 —

CPA 943.1 21.24 479 —
B&C 12.9 21.24 1111 14594

Lat(4,3) 18 47 36 47 96 SCIP 326.1 114.07 — 755
CUTSDP 629.8 114.07 1384 —

CPA 741.3 114.07 982 —
B&C 324.8 114.07 8855 85147

Lat(3,5) 20 70 40 70 90 SCIP 593.0 17.32 — 354
CUTSDP >7200 [15.92, —] >962 —

CPA >7200 [16.14, —] >433 —
B&C 424.8 17.32 3902 149298

Lat(4,4) 24 83 48 83 107 SCIP 850.8 69.34 — 525
CUTSDP >7200 [64.82, —] >1690 —

CPA >7200 [64.61, —] >996 —
B&C >7200 [69.31, 71.01] >10059 >423279

Lat(5,3) 24 72 48 72 96 SCIP Abort — — —
CUTSDP 6852.7 292.68 2963 —

CPA 6324.3 292.68 2127 —
B&C >7200 [292.67, 294.49] >22398 >336055

22mem 12 22 24 22 34 SCIP 7.7 33.27 — 23
CUTSDP 24.1 33.27 467 —

CPA 39.2 33.27 321 —
B&C 36.3 33.27 7507 15343

51mem 18 51 36 51 69 SCIP 336.5 75.05 — 236
CUTSDP >7200 [74.95, —] >1999 —

CPA >7200 [74.86, —] >1375 —
B&C 4308.7 75.05 17680 267973

2.6 Conclusion

In this chapter, we have described general-purpose algorithms to solve such prob-
lems. Firstly, we formulated a cutting-plane algorithm to solve MISDO problems
and proved its convergence properties. We then developed a B&C algorithm,
where cutting planes are added dynamically to the relaxed MILO problem dur-
ing a B&B procedure. The experimental results show that our B&C algorithm
was effective in solving three different MISDO problems: random instances, com-
puting restricted isometry constants, and robust truss topology design. Our
algorithm is based on the B&B procedure for solving MILO problems, so it can
use a warm-starting strategy to solve a series of continuous relaxation problems
efficiently. Moreover, our algorithms do not solve any MISDO problems, which
makes their computation very stable and practical.
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Chapter 3

Cutting-plane Algorithm for Best Subset

Selection for Eliminating Multicollinearity

In this chapter, we study the best subset selection problem for eliminating multi-
collinearity from linear regression models. Specifically, we focus on the problem
of selecting the best subset of explanatory variables subject to an upper bound on
the condition number of the correlation matrix of the selected variables. First, we
formulate this problem as an MISDO problem. Second, we develop a specialized
cutting-plane algorithm that, to approximate the condition number constraint,
iteratively appends cutting planes to the mixed-integer quadratic optimization
problem. Here, to improve the computational efficiency of our algorithm, we
propose to generate strong cutting planes by effectively using a heuristic search.
The content of this chapter is included in Tamura et al. [151].

We give an introduction to this study and summarize our contribution in
Section 3.1. In Section 3.2, we give a brief review of linear regression and subset
selection for eliminating multicollinearity. In Section 3.3, we formulate the best
subset selection under the condition number constraint as an MISDO problem.
In Section 3.4, we describe our specialized cutting-plane algorithm for solving the
best subset selection problem. In Section 3.5, we show the computational results,
and in Section 3.6, we conclude with a brief summary.

3.1 Introduction

Multicollinearity, which exists when two or more explanatory variables in a regres-
sion model are highly correlated, is a frequently encountered problem in multiple
regression analysis [54, 76, 112]. Such an interrelationship among explanatory
variables obscures their relationship with the explained variable, leading to com-
putational instability in model estimation. Moreover, the reliability of the regres-
sion analysis is decreased in the presence of multicollinearity by the low quality
of the resultant estimates.

Several approaches can be used to avoid the deleterious effects of multi-
collinearity [42]. One approach is orthogonal transformation through procedures
such as principal component regression [88, 115] and partial least squares regres-
sion [164, 165]. In this approach, a set of correlated variables is transformed
into a set of linearly uncorrelated variables (i.e., principal components) for use in
a regression model. Orthogonal transformation can enhance the computational
stability of model estimation but often leads to worse predictive performance and
results that are strongly influenced by the presence of outliers [58, 78].

Another approach is penalized regression, such as ridge regression [83], lasso [154],
and elastic net [174]. This approach introduces a penalty function to shrink re-
gression coefficient estimates toward zero. Penalized regression helps prevent
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regression models from overfitting noisy datasets and, accordingly, is effective for
achieving high predictive performance. However, the penalty functions produce
biased estimates, which are undesirable from the standpoint of model interpreta-
tion [30, 32].

In this chapter, we focus on subset selection, which is a simple but effec-
tive approach for eliminating multicollinearity. Conventionally in this approach,
explanatory variables are deleted iteratively through the use of indicators for
detecting multicollinearity, such as condition number of the correlation matrix
and variance inflation factor [42]. Chong and Jun [44] have compared the perfor-
mance of subset selection methods with that of partial least squares regression
and suggested that a goodness-of-fit measure for evaluating a subset regression
model should be chosen carefully when multicollinearity is present. For subset
selection in the presence of multicollinearity, several researchers [49, 87] have pro-
posed goodness-of-fit measures based on ridge regression. It is notable, however,
that commonly used subset selection methods are heuristic algorithms, such as
stepwise regression [50]; hence, they do not necessarily find the best subset of
variables in terms of a given goodness-of-fit measure.

The mixed-integer optimization (MIO) approach to subset selection has re-
cently received much attention due to advances in algorithms and hardware [30,
32, 92, 99, 101, 118, 119, 140, 141]. In contrast to heuristic algorithms, the MIO
approach has the potential to provide the best subset of variables under a given
goodness-of-fit measure. To deal with multicollinearity, Bertsimas and King [30]
use a cutting-plane strategy, which iteratively adds constraints for deleting sub-
sets of collinear variables. However, this strategy requires solving an enormous
number of mixed-integer quadratic optimization (MIQO) problems when multi-
collinearity exists in many different sets of variables.

The aim of this chapter is to devise a more sophisticated MIO approach to
best subset selection for eliminating multicollinearity. In particular, this chapter
addresses the following problem: Find a subset of variables that minimizes the
residual sum of squares under the constraint that the condition number of the
associated correlation matrix is bounded. We first formulate this subset selec-
tion problem as an MISDO problem. Furthermore, to increase computational
efficiency, we consider incorporating constraints based on the normal equations
into the MISDO problem. Regrettably, as we show later, current general-purpose
MISDO solvers do not deliver high computational performance and the problem
size to be handled is limited. Thus, we secondly propose to develop a specialized
cutting-plane algorithm for subset selection that works well in practice. Theoret-
ically, this cutting-plane algorithm must solve an exponential number of MIQO
problems, which are NP-hard, in a worst-case situation. However, it has a prac-
tical advantage that we can use sophisticated MIO solvers such as Gurobi and
CPLEX to solve MIQO problems. In addition, we propose to use a backward
elimination method that searches a smaller subset of collinear variables to gen-
erate strong cutting planes, which improves the efficiency of the cutting-plane
algorithm.

The effectiveness of our MIO approaches is assessed through computational
experiments using several datasets from the UCI Machine Learning Repository [109].
We succeeded in solving some of our MISDO problems for subset selection when
the number of candidate explanatory variables was less than 26. In addition, the
computational results demonstrate that our specialized cutting-plane algorithm
yielded optimal solutions when the number of variables was 65, and it frequently
gave a better subset of variables than did the conventional local search algorithms
for large-sized datasets.
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3.2 Linear regression and multicollinearity

This section contains a brief review of linear regression and subset selection for
eliminating multicollinearity.

3.2.1 Linear regression

Let us suppose that we are given N samples, (xn, yn) for n ∈ [N ]. Here, xn :=
(xn1, xn2, . . . , xnP )> is a vector composed of P explanatory variables, and yn is
an explained variable for each sample n ∈ [N ].

We focus on the following linear regression model:

yn = a>xn + εn =
∑
p∈[P ]

apxnp + εn (∀n ∈ [N ]),

where a := (a1, a2, . . . , aP )> is a vector of regression coefficients to be estimated
and εi is a prediction residual for each sample n ∈ [N ]. We assume here that all
explanatory and explained variables are standardized so that (

∑
n∈[N ] xnp)/N =

(
∑

n∈[N ] yn)/N = 0 and (
∑

n∈[N ](xnp)
2)/N = (

∑
n∈[N ](yn)2)/N = 1 for all p ∈

[P ]. Therefore, no intercept (constant term) is present in the regression model.
The above linear regression model can be rewritten as

y = Xa+ ε,

where y := (y1, y2, . . . , yN )>, ε := (ε1, ε2, . . . , εN )>, and

X :=


x11 x12 · · · x1P
x21 x22 · · · x2P

...
...

...
...

xN1 xN2 · · · xNP

 .

To estimate the regression coefficients, a, the ordinary least squares method
minimizes the residual sum of squares (RSS):

ε>ε = (y −Xa)>(y −Xa). (3.1)

After partial differentiation, the ordinary least squares method is equivalent to
solving a system of linear equations:

X>Xa = X>y. (3.2)

This is the well-known normal equation.

3.2.2 Subset selection for eliminating multicollinearity

We use the condition number of the correlation matrix R := (rpq) ∈ SP to
detect multicollinearity. Because the explanatory variables are standardized, the
correlation matrix is calculated as

R =
X>X

N
,

and its condition number is defined as

cond(R) :=


λmax(R)

λmin(R)
(λmin(R) > 0),

+∞ (λmin(R) = 0),

(3.3)
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where λmin(R) and λmax(R) are the minimum and maximum eigenvalues of ma-
trix R, respectively. It follows from cond(R) = cond(X>X) that when cond(R)
is very large, the coefficient matrix of equations (3.2) is ill-conditioned, which
implies that the regression coefficient estimates are subject to large numerical
errors.

To compute accurate estimates, we consider selecting a subset S ⊆ [P ] of
candidate explanatory variables. Let us denote by RS the correlation sub-matrix
of a subset of variables, that is, RS := (rpq; p, q ∈ S). To avoid multicollinearity,
the condition number of the sub-matrix should not exceed a user-defined param-
eter κ (> 1). The subset selection problem determines a subset S of explanatory
variables so that the residual sum of squares of a subset regression model is
minimized:

minimize
a, S

∑
n∈[N ]

yn −∑
p∈S

apxnp

2 (3.4a)

subject to cond(RS) ≤ κ, (3.4b)

S ⊆ [P ]. (3.4c)

The subset selection problem (3.4) can be converted into an MIO problem. Let
z = (z1, z2, . . . , zP )> be a vector of 0-1 decision variables for selecting explanatory
variables; that is, zp = 1 if p ∈ S; otherwise, zp = 0. The correlation sub-matrix
is then written as R(z) := (rpq; zp = zq = 1). Consequently, the subset selection
problem is formulated as an MIO problem,

minimize
a,z

(y −Xa)>(y −Xa) (3.5a)

subject to zp = 0 ⇒ ap = 0 (∀p ∈ [P ]), (3.5b)

cond(R(z)) ≤ κ, (3.5c)

z ∈ {0, 1}P . (3.5d)

Here, if zp = 0, then the pth explanatory variable is deleted from the regression
model because its coefficient is set to zero by the logical implications (3.5b). It
is known that these logical implications can be represented by using a big-M
method or a special ordered set type 1 (SOS1) constraint [14, 15].

3.3 Mixed-integer semidefinite optimization Approach

This section presents an MISDO approach to best subset selection for eliminating
multicollinearity.

3.3.1 Formulation

A convex quadratic objective function (3.5a) is expressed as a linear objective
function with a PSD constraint [155, 161]. We begin by computing a decompo-
sition of the form:

X>X = NR = V V >,

where the square matrix V ∈ RP×P can be created, e.g., by the Cholesky/eigenvalue
decomposition. Introducing a scalar decision variable f to be minimized, we
rewrite the associated constraint as a PSD constraint as follows:

(y −Xa)>(y −Xa) ≤ f ⇐⇒
(
IP V >a
a>V 2y>Xa− y>y + f

)
� O,
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where I is the identity matrix of size P , O is a zero matrix of appropriate size,
and A � B means that A−B is a PSD matrix.

We denote by Diag(x) the diagonal matrix whose diagonal entries are com-
ponents of vector x. We also denote by A◦B the Hadamard product of matrices
A and B. The next theorem shows that the condition number constraint (3.5c)
is expressed as PSD constraints based on the following matrices:

Diag(1− z) =


1− z1 0 · · · 0

0 1− z2
. . . 0

...
. . .

. . .
...

0 0 · · · 1− zP

 ,

R ◦ zz> =


r11z1z1 r12z1z2 · · · r1P z1zP
r21z2z1 r22z2z2 · · · r2P z2zP

...
...

. . .
...

rP1zP z1 rp2zP z2 · · · rPP zP zP

 .

Theorem 3.1. Suppose that z ∈ {0, 1}P . Then, cond(R(z)) ≤ κ holds if and
only if there exists λ ∈ [1/κ, 1] such that

λIP −Diag(1− z) � R ◦ zz> � κλIP . (3.6)

Proof. Let Q be the number of nonzero elements of z. Without loss of generality,
we assume that {

zp = 1 for p ∈ [Q],

zp = 0 for p ∈ [P ] \ [Q]
(3.7)

Since R(z) is a PSD matrix whose diagonal entries are all one, 0 ≤ λmin(R(z)) ≤
1 ≤ λmax(R(z)) holds. It then follows from the definition (3.3) that cond(R(z)) ≤
κ is equivalent to

λmax(R(z)) ≤ κλmin(R(z)).

This also implies that 1/κ ≤ λmax(R(z))/κ ≤ λmin(R(z)). Therefore, it is
necessary to consider only λmin(R(z)) ∈ [1/κ, 1].

Using a PSD constraint for minimizing the maximal eigenvalue [155, 161], the
condition number constraint can be converted as follows:

λmax(R(z)) ≤ κλmin(R(z))

⇐⇒ ∃λ ∈ [1/κ, 1], λ ≤ λmin(R(z)) and λmax(R(z)) ≤ κλ
⇐⇒ ∃λ ∈ [1/κ, 1], λIQ � R(z) � κλIQ

⇐⇒ ∃λ ∈ [1/κ, 1],

(
λIQ O
O (λ− 1)IP−Q

)
�
(
R(z) O
O O

)
� κλ

(
IQ O
O IP−Q

)
⇐⇒ ∃λ ∈ [1/κ, 1], λIP −Diag(1− z) � R ◦ zz> � κλIP .
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To linearize the bilinear term zz> in constraint (3.6), we introduce a sym-
metric matrix of decision variables:

W =


w11 w21 · · · wP1

w21 w22 · · · wP2
...

...
. . .

...
wP1 wP2 · · · wPP

 .

It is known that when z ∈ {0, 1}P , wpq = zpzq can be rewritten by means of its
convex and concave envelopes as follows [5, 116]:

wpq ≥ 0, wpq ≥ zp + zq − 1, wpq ≤ zp, wpq ≤ zq.

Consequently, the subset selection problem is cast into an MISDO problem,

minimize
a, f, λ,W ,z

f (3.8a)

subject to

(
IP V >a
a>V 2y>Xa− y>y + f

)
� O, (3.8b)

zp = 0 ⇒ ap = 0 (∀p ∈ [p]), (3.8c)

λIP −Diag(1− z) � R ◦W � κλIP , (3.8d)

wpp = zp (∀p ∈ [P ]), (3.8e)

wpq ≥ 0, wpq ≥ zp + zq − 1, wpq ≤ zp, wpq ≤ zq
(∀(p, q) ∈ [P ]× [P ]), (3.8f)

1/κ ≤ λ ≤ 1, z ∈ {0, 1}P . (3.8g)

3.3.2 Normal-equation-based constraints

MISDO problems can be handled by a branch-and-bound procedure, but it in-
volves solving a large number of relaxed semidefinite optimization problems.
To improve computational efficiency, we consider including the normal equa-
tions (3.2) as the constraints of the MISDO problem. More precisely, when the
pth explanatory variable is selected, the pth normal equation is placed as follows:

X>Xa+ s = X>y, (3.9)

zp = 1 ⇒ sp = 0 (∀p ∈ [P ]), (3.10)

where s = (s1, s2, . . . , sP )> is a vector of auxiliary decision variables.
The next theorem shows that constraints (3.9) and (3.10) are necessary opti-

mality conditions for problem (3.5).

Theorem 3.2. Let (a?, z?) be an optimal solution to problem (3.5). There exists
s? = (s?1, s

?
2, . . . , s

?
P )> such that

X>Xa? + s? = X>y,

z?p = 1 ⇒ s?p = 0 (∀p ∈ [P ]).

Proof. Without loss of generality, we can assume that

z? =

(
1
0

)
, 1 ∈ RQ, 0 ∈ RP−Q.
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According to z?, we partition X and a? as follows:

X =
(
X1 X2

)
, X1 ∈ RN×Q, X2 ∈ RN×(P−Q),

a? =

(
a?1
a?2

)
, a?1 ∈ RQ, a?2 ∈ RP−Q.

Because (a?, z?) is an optimal solution to problem (3.5), we have a?2 = 0. More-
over, a?1 minimizes RSS (3.1); that is, the following holds for a?1 and the associated
normal equation:

X>1 X1a
?
1 = X>1 y.

Now we define s? as follows:

s? =

(
0

X>2 y −X>2 X1a
?
1

)
.

It then follows that

X>Xa? + s? =

(
X>1 X1a

?
1

X>2 X1a
?
1

)
+

(
0

X>2 y −X>2 X1a
?
1

)
=

(
X>1 y
X>2 y

)
= X>y,

z?p = 1 ⇒ s?p = 0 (∀p ∈ [P ]).

3.4 Cutting-plane algorithm

This section presents a cutting-plane algorithm for solving Problem (3.5). The
motivation behind this approach is that, as we see later in numerical experiments,
the current general-purpose MISDO solver could solve only small-sized instances
of Problem (3.8) and suffer from numerical instability. In contrast to the MISDO
approach, where we can obtain an optimal solution by solving a single MIO
problem, the cutting-plane algorithm has a theoretical drawback: it must solve
an exponential number of MIQO problems, which are NP-hard, in a worst-case
situation. However, it has a practical advantage in using sophisticated MIO
solvers such as Gurobi and CPLEX to solve MIQO problems. In addition, we
can improve its efficiency by generating strong cutting planes by exploiting the
structure of the condition number constraint Eq. (3.5c).

The cutting-plane algorithm first removes the condition number constraint (3.5c)
from the problem. Hence its feasible set is expressed as

F1 := {(a, z) ∈ RP × {0, 1}P | Eqs. (3.5b) and (3.5d)}, (3.11)

and the problem reduces to an MIQO problem, which can be handled by so-
phisticated MIO solvers such as Gurobi and CPLEX. The basic strategy of the
algorithm involves repeatedly solving such relaxed MIQO problems and itera-
tively adding valid inequalities, instead of imposing the condition number con-
straint (3.5c), to the MIQO problems.

At the tth iteration (t ≥ 1), our algorithm solves the follwing MIQO problem:

minimize
a,z

(y −Xa)>(y −Xa) (3.12a)

subject to (a, z) ∈ Ft, (3.12b)
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where Ft is a relaxed feasible set at the tth iteration such that Ft ⊆ F1, which
will be updated according to Eq. (3.13) at the tth iteration. Let (at, zt) be
an optimal solution to Problem (3.12). If cond(R(zt)) ≤ κ, then (at, zt) is an
optimal solution to Problem (3.5). In this case, we terminate the algorithm.
Otherwise, we update the feasible region to cut off the solution zt as follows:

Ft+1 ← Ft ∩ {(a, z) ∈ RP × {0, 1}P | z>t z ≤ z>t zt − 1}. (3.13)

After that, we set t ← t + 1 and solve the MIQO problem (3.12) again. We
repeat this process until we obtain a solution that satisfies the condition number
constraint (3.5c).

We next show that the condition number is not increased by deleting explana-
tory variables.

Lemma 3.3. Suppose that z, z̄ ∈ {0, 1}P . If z ≥ z̄, then cond(R(z)) ≥
cond(R(z̄)).

Proof. It follows from the Cauchy’s interlace theorem (see, e.g., Theorem 4.3.17
[84]) that

0 ≤ λmin(R(z)) ≤ λmin(R(z̄)) ≤ λmax(R(z̄)) ≤ λmax(R(z)),

which completes the proof.

The next theorem states that the feasible set of the original problem (3.5) is
contained in Ft for all t.

Theorem 3.4. Suppose that z̄ ∈ {0, 1}P and cond(R(z̄)) > κ. If z ∈ {0, 1}P
satisfies cond(R(z)) ≤ κ, then it also satisfies z̄>z ≤ z̄>z̄ − 1.

Proof. We prove the proposition by contradiction:

z̄>z > z̄>z̄ − 1 ⇒ z̄>(z − z̄) ≥ 0 ∵ z, z̄ ∈ {0, 1}P

⇒ z ≥ z̄
⇒ cond(R(z)) ≥ cond(R(z̄)) ∵ Lemma 3.3

⇒ cond(R(z)) > κ.

This cutting-plane algorithm is developed on the basis of Bertsimas and
King [30] and requires solving a large number of MIQO problems. To reduce
the number of MIQO problems to be solved, we develop stronger valid inequal-
ities for approximating the condition number constraint (3.5c). To this end, we
employ a backward elimination method that searches a smaller subset of collinear
variables. Specifically, it starts with an incumbent solution (e.g., zt) and deletes
explanatory variables one by one on the basis of the RSS (3.1). Finally, we obtain
z̄ (≤ zt) such that cond(R(z̄)) > κ. The feasible set is then updated:

Ft+1 ← Ft ∩ {(a, z) ∈ RP × {0, 1}P | z̄>z ≤ z̄>z̄ − 1}. (3.14)

This cutting plane cuts off all z ∈ {0, 1}P satisfying z ≥ z̄; therefore, it is stronger
than the previous one (3.13) because zt ≥ z̄. Our cutting-plane algorithm is
summarized by Algorithm 3.1

We next prove the finite convergence of the algorithm.
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Algorithm 3.1 Cutting-plane algorithms for solving Problem (3.5)

Step 0 (Initialization) Set t← 1. Let F1 be a feasible set (3.11).

Step 1 (Relaxed Problem) Solve Problem (3.12). Let (a, zt) be an optimal
solution.

Step 2 (Muliticollinearity Detection) If cond(R(zt)) ≤ κ, terminate the
algorithm with the solution zt.

Step 3 (Backward Elimination) Find a solution z̄ ∈ {0, 1}P such that
z̄ ≤ zt and cond(R(z̄)) > κ by using a backward elimination method
starting with zt.

Step 4 (Cut Generation) Add cut (3.14) to update the feasible set Ft.

Step 5 Set t← t+ 1 and return to Step 1.

Theorem 3.5. Algorithm 3.1 provides an optimal solution to problem (3.5) in a
finite number of iterations.

Proof. Step 3 in Algorithm 3.1 removes zt from Ft in each iteration; therefore,
the algorithm terminates with a feasible solution (e.g., z = (1, 0, 0, . . . , 0)>) after
at most 2P iterations.

Let (a?, z?) be an optimal solution to problem (3.5). Theorem 3.4 guarantees
that the feasible set of problem (3.5) is contained in Ft and hence that (y −
Xat)

>(y −Xat) ≤ (y −Xa?)>(y −Xa?) for all t. Therefore, the algorithm
provides an optimal solution to problem (3.5).

3.5 Numerical experiments

In this section, we assess the computational performance of our mixed-integer
optimization approaches to best subset selection for eliminating multicollinearity.

We downloaded six datasets for regression analysis from the UCI Machine
Learning Repository [109]. Tables 3.1 lists the instances used for computational
experiments, where N and P are the number of samples and number of candidate
explanatory variables, respectively. In the SolarFlareC instance, C-class flares
production was employed as an explained variable. In the ForestFires instance,
interaction terms were created from the variables of the x-axis and y-axis spatial
coordinates. Each categorical variable was transformed into one or more dummy
variables. All explanatory and explained variables were standardized to a mean
of zero and standard deviation of one, as mentioned in Section 2.1. Samples
containing missing values and redundant variables having the same value in all
samples were eliminated.

3.5.1 Computational performance of MISDO approaches

We first evaluate the computational performance of the following MISDO ap-
proaches:

MISDO MISDO formulation (3.8)

MISDONE MISDO formulation (3.8) with the normal-equation-based con-
straints (3.9) and (3.10)
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Table 3.1: List of instances

Abbreviation N P Original dataset [109]

Servo 167 19 Servo
AutoMPG 392 25 Auto MPG
SolarFlareC 1066 26 Solar Flare (C-class flares production)
BreastCancer 194 32 Breast Cancer Wisconsin
ForestFires 517 63 Forest Fires
Automobile 159 65 Automobile

Table 3.2: Values of big-M for constraints (3.16)

M
Instance N P Method (κ = 100) (κ = 225)

Servo 167 19 MISDO 2.25 2.25
MISDONE 2.50 2.50

AutoMPG 392 25 MISDO 2.50 5.00
MISDONE 1.05 1.50

Here the logical implications (3.10) was represented by means of the big-M
method,

−M(1− zp) ≤ sp ≤M(1− zp) (∀p ∈ [P ]), (3.15)

where M was set to 1000 in all instances of our experiments. Similarly, the
implications (3.8c) were represented with the big-M method,

−Mzp ≤ ap ≤Mzp (∀p ∈ [P ]). (3.16)

However, we had difficulty in finding a unified value of M for constraints (3.16)
such that MISDO computation was not aborted due to numerical instability.
Hence, we tuned the values of M through preliminary experiments as shown in
Table 3.2.

These computations were performed on a Linux computer with an Intel Core2
Quad CPU (2.66 GHz) and 4 GB memory. MISDO problems were solved by using
SCIP-SDP1 2.0.0 [61] combined with SCIP2 3.2.0 [1] and SDPA3 7.3.8 [168].
The computation for solving the MISDO problem was terminated if it did not
finish by itself within 10000 s. In this case, the best feasible solution obtained
within 10000 s was taken as the result. Chatterjee and Hadi [42] mention that
when the value of the condition number exceeds 225, the deleterious effects of
multicollinearity in the data become strong. Hence, the upper bound on the
condition number was set as κ = 100 and 225.

Remark 3.1. We can use the cutting-plane and branch-and-cut algorithms in
Chapter 2 for solving MISDO and MISDONE. However, the study in this chapter
was conducted chronologically prior to that in Chapter 2, and thus, we did not
used them in this experiment.

1http://www.opt.tu-darmstadt.de/scipsdp/
2http://scip.zib.de/
3http://sdpa.sourceforge.net/
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Table 3.3: Results of solving MISDO problems (κ = 100)

Instance N P Method R2 Cond |S| Time (s)

Servo 167 19 MISDO 0.75877 78.4 15 60.19
MISDONE 0.75877 78.3 15 17.74

AutoMPG 392 25 MISDO 0.87429 76.9 19 >10000.00
MISDONE 0.87430 92.8 21 5563.34

Table 3.4: Results of solving MISDO problems (κ = 225)

Instance N P Method R2 Cond |S| Time (s)

Servo 167 19 MISDO 0.75877 97.1 15 4.99
MISDONE 0.75877 104.1 15 5.49

AutoMPG 392 25 MISDO 0.87438 142.0 21 >10000.00
MISDONE 0.87438 184.3 22 336.14

Tables 3.3 and 3.4 show the computational results of solving MISDO prob-
lems with κ = 100 and 225, respectively. The results for only the small-sized
instances Servo and AutoMPG are shown in the tables because many of the large-
scale MISDO problems could not be solved because of numerical instability4 (i.e.,
violation of Slater’s condition). The column labeled “R2” shows the value of the
coefficient of determination of a subset regression model built by each method,
i.e.,

R2 = 1−
∑

n∈[N ](yn −
∑

p∈S apxnp)
2∑

n∈[N ](yn − ȳ)2
,

where ȳ := (
∑

n∈[N ] yn)/N . Note here that the largest R2 values for each instance
are indicated in bold. The column labeled “Cond” shows the condition number of
the correlation sub-matrix RS , and the column labeled “|S|” shows the number
of selected explanatory variables. The column labeled “Time (s)” shows the
computation time in seconds. Note that the computation of the cutting-plane
algorithm was terminated if it did not finish by itself within 10000 s. In such
cases, the best feasible solution obtained within 10000 s was used as the result,
and “N/A” means that no feasible solution was found.

Tables 3.3 and 3.4 show that all the MISDO problems for Servo were solved
within 61 s, and they were solved faster when κ = 225 than when κ = 100.
Moreover, the normal-equation-based constraints worked effectively in speeding
up the computations. For instance, in Table ,3.3 the computation time of the
MISDO formulation was reduced from 60.19 s to 17.74 s by incorporating the
normal-equation-based constraints into the problem.

In the case of AutoMPG, only the computations of MISDONE finished within
10000 s for both κ = 100 and 225. Furthermore, MISDONE attained the largest
R2 value for every instance in Tables 3.3 and 3.4. These results demonstrate the
effectiveness of the normal-equation-based constraints in the MISDO formulation

4Using SCIP-SDP 2.1.0 instead of 2.0.0 and softening feasibility tolerances of SCIP and
SCIP-SDP solvers (feastol and sdpsolverfeastol, respectively) from 10−6 (default) to 10−4

could resolve numerical issues, but it missed true optimal solutions to some of the instances.
Hence, we used SCIP-SDP 2.0.0 with its default parameters.
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for best subset selection to eliminate multicollinearity.

3.5.2 Computational performance of cutting-plane algorithms

Next, we compare the computational performance of the cutting-plane algorithms
with that of conventional local search algorithms for subset selection. The algo-
rithms used in the comparison are listed below:

FwS Forward selection method: Starts with S = ∅ and iteratively adds the
variable p (i.e., S ← S∪{p}) that leads to the largest decrease in RSS (3.1);
this operation is repeated while cond(RS) ≤ κ is satisfied.

BwE Backward elimination method: Starts with S = [P ] and iteratively elim-
inates the variable p (i.e., S ← S \ {p}) that leads to the smallest increase
in RSS (3.1); this operation is repeated until cond(RS) ≤ κ holds.

CPA Cutting-plane algorithm that omits Step 2 (Backward elimination) and
appends cut (3.13).

CPABwE Cutting-plane algorithm that appends cut (3.14) strengthened by
means of the backward elimination method.

These computations were performed on a Linux computer with an Intel Xeon
W3520 CPU (2.66 GHz) and 12 GB memory. The algorithms FwS and BwE
were implemented in MATLAB5 R2013a ; the algorithms CPA and CPABwE

were implemented in Python 2.7.3, with Gurobi Optimizer6 5.6.0 used to solve
relaxed MIQO problems (3.12a) and (3.12b). Here the logical implications (3.5b)
were incorporated in the form of SOS1 constraints, which imply that at most one
element in the set can have a nonzero value. Specifically, the SOS1 constraint
is imposed on {1 − zp, ap} (p ∈ [P ]) with the SOS type 1 function implemented
in Gurobi Optimizer. Therefore, if zp = 0, then 1 − zp has a nonzero value and
ap must be zero from the SOS1 constraints. The upper bound on the condition
number was set as κ = 100 or 225.

Tables 3.5 and 3.6 show the computational results obtained using the four
algorithms with κ = 100 and 225, respectively. The column labeled “#Iter”
shows the number of iterations in the cutting-plane algorithms. Note that the
computation of the cutting-plane algorithm was terminated if it did not finish
by itself within 10000 s. In such cases, the best feasible solution obtained within
10000 s was used as the result and “N/A” means that no feasible solution was
found.

We can see from Tables 3.5 and 3.6 that the local search algorithms FwS
and BwE finished their computations within 2 s for all the instances. Their
obtained solutions were, however, frequently inferior to those of the cutting-
plane algorithms, especially when κ = 100 (see Table 3.5); for the BreastCancer

instance, CPABwE gave an R2 value of 0.29040, whereas FwS and BwE gave R2

values of 0.27580 and 0.26572, respectively.
We can also see that the computation finished much faster for CPABwE than

for CPA. The main reason for this is that the number of iterations required for
CPABwE was significantly reduced by the strengthened cut (3.14). Indeed, in the
case of SolarFlareC in Table 3.5, CPA arrived at an optimal solution in 1246.97 s
after 4209 iterations, whereas CPABwE terminated with an optimal solution in
84.59 s after 331 iterations.

5http://www.mathworks.com/products/matlab/
6http://www.gurobi.com
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Table 3.5: Results of local search algorithms and cutting-plane algorithms (κ =
100)

Instance N P Method R2 Cond |S| #Iter Time (s)

Servo 167 19 FwS 0.75862 63.2 14 — 0.09
BwE 0.75877 39.0 15 — 0.04
CPA 0.75877 38.4 15 76 0.93
CPABwE 0.75877 39.9 15 16 0.42

AutoMPG 392 25 FwS 0.87335 87.6 21 — 0.17
BwE 0.87429 86.2 19 — 0.09
CPA 0.87430 93.2 21 1284 325.20
CPABwE 0.87430 92.8 21 84 14.11

SolarFlareC 1066 26 FwS 0.19713 4.3 19 — 0.23
BwE 0.19705 2.0 15 — 0.87
CPA 0.19715 18.7 19 4209 1246.97
CPABwE 0.19715 34.3 19 331 84.59

BreastCancer 194 32 FwS 0.27580 91.8 15 — 0.17
BwE 0.26572 61.8 9 — 0.27
CPA N/A >4364 >10000.00
CPABwE 0.29040 95.8 14 >1044 >10000.00

ForestFires 517 63 FwS 0.16399 99.9 52 — 1.68
BwE 0.16481 53.1 50 — 1.32
CPA N/A >5901 >10000.00
CPABwE 0.16537 96.5 59 53 301.07

Automobile 159 65 FwS 0.96447 99.9 27 — 0.76
BwE 0.96571 67.3 24 — 1.89
CPA N/A >6960 >10000.00
CPABwE 0.96908 72.9 25 >277 >10000.00

Note that when the computation is terminated due to the time limit of 10000 s,
CPA does not provide a feasible solution because it is found only at the end of the
algorithm. In contrast, CPABwE can find a feasible solution of good quality in the
early stage of the algorithm by means of the backward elimination method. For
this reason, CPABwE always provided the best solution among the four methods
for all the instances in Tables 3.5 and 3.6.

Comparing the MISDO approaches and the cutting-plane algorithms, it needs
to be said that the computational performance of the MISDO approaches was
much lower than that of the cutting-plane algorithms. For instance in the case of
AutoMPG with κ = 225, MISDONE took 336.14 s to solve the problem (Table 3.4),
but CPABwE required only 1.76 s to solve the same problem (Table 3.6). These
results imply that our MISDO approach was not effective for the subset selection
problem at the current moment; however, since the computational performance of
MISDO algorithms is being improved, our MISDO formulation will work better
in the future.
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Table 3.6: Results of local search algorithms and cutting-plane algorithms (κ =
225)

Instance N P Method R2 Cond |S| #Iter Time (s)

Servo 167 19 FwS 0.75877 146.3 15 — 0.11
BwE 0.75877 39.0 15 — 0.04
CPA 0.75877 102.5 15 56 0.62
CPABwE 0.75877 39.9 15 15 0.40

AutoMPG 392 25 FwS 0.87438 185.3 22 — 0.18
BwE 0.87438 181.1 22 — 0.05
CPA 0.87438 157.1 22 60 2.04
CPABwE 0.87438 173.2 22 18 1.76

SolarFlareC 1066 26 FwS 0.19713 4.3 19 — 0.22
BwE 0.19705 2.0 15 — 0.48
CPA 0.19715 18.7 19 4209 1244.26
CPABwE 0.19715 169.4 19 750 189.48

BreastCancer 194 32 FwS 0.30010 217.9 19 — 0.21
BwE 0.26572 61.8 9 — 0.27
CPA N/A >4369 >10000.00
CPABwE 0.30513 215.6 20 287 288.59

ForestFires 517 63 FwS 0.16556 214.2 60 — 1.74
BwE 0.16556 212.6 60 — 0.42
CPA 0.16556 209.5 60 59 7.60
CPABwE 0.16556 209.0 60 12 27.37

Automobile 159 65 FwS 0.97124 224.4 39 — 1.14
BwE 0.97153 183.5 29 — 1.85
CPA N/A >6973 >10000.00
CPABwE 0.97391 224.4 36 >960 >10000.00

3.6 Conclusion

This chapter addressed the problem of selecting the best subset of explanatory
variables subject to an upper bound on the condition number for eliminating
multicollinearity from linear regression models. The first contribution of this
study is a novel computational framework for eliminating multicollinearity based
on the MISDO formulation. This framework reformulates the subset selection
problem as a single MISDO problem. The second contribution is the estab-
lishment of a high-performance cutting-plane algorithm. In this algorithm, we
generate strong cutting-planes with backward elimination and reduce the number
of mixed-integer quadratic optimization problems to be solved. While numerical
experiments show that our MISDO formulation could only be applied to small-
sized instances at present, this chapter provides a new statistical application of
mixed-integer semidefinite optimization formulation. Moreover, we found that
our cutting-plane algorithm frequently provided a better subset of variables than
did the common local search algorithms. This finding demonstrates the effective-
ness of the specialized cutting-plane algorithm in eliminating multicollinearity
from a linear regression model.
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Chapter 4

Cutting-plane Algorithm for

Cardinality-constrained Distributionally

Robust Portfolio Optimization

This chapter focuses on portfolio selection problems. In particular, we treat
a distributionally robust portfolio optimization model with a cardinality con-
straint, which limits the number of invested assets. This problem is formulated
as a MISDO problem, and thus, solving it exactly is computationally challenging
when the number of investable assets is large. To overcome this issue, we propose
a specialized cutting-plane algorithm to solve the cardinality-constrained distri-
butionally robust optimization problem. We first reformulate the problem as a
bilevel optimization problem and design a cutting-plane algorithm for solving the
upper-level problem. Then, to generate cutting planes efficiently, we apply the
technique of positive semidefinite matrix completion to the lower-level problem
and reduce its problem size. The content of this chapter is included in Kobayashi
et al. [96].

We give an introduction to this study and summarize our contribution in
Section 4.1 In Section 4.2, we give a formulation of the cardinality-constrained
distributionally robust portfolio optimization problem. In Section 4.3, we explain
our cutting-plane algorithm for solving the problem. In Section 4.4, we describe
the reduction of the lower-level SDO problem. We report computational results
in Section 4.5 and conclude in Section 4.6.

4.1 Introduction

Portfolio optimization models, originating from the mean-variance portfolio se-
lection pioneered by Markowitz [114], have been actively studied by academic
researchers and institutional investors. In real-world portfolio optimization prob-
lems, we must depend on inaccurate estimates of asset returns, which can lead to
lower investment performance. Accordingly, robust optimization [18, 20], which
copes with uncertainty about input data, has played an important role in many
practical situations [48, 53, 72]. This chapter focuses on a distributionally robust
optimization model developed by Delage and Ye [47] for portfolio optimization.

In distributionally robust optimization, optimal solutions are evaluated under
the worst-case expectation with respect to a set of probability distributions of
uncertain parameters. This model was first introduced by Scarf [142] for an inven-
tory problem. Distributionally robust optimization can be viewed as a framework
unifying traditional stochastic programming based on sample average approxima-
tion [93, 144, 145] and conventional robust optimization based on uncertainty sets
of possible realizations of random variables [18, 20]. Moreover, some theoretical
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analyses support the effectiveness of distributionally robust optimization in data-
driven decision-making under uncertainty [69, 126].

Moment-based uncertainty sets, which are sets of probability distributions of
asset returns whose moments satisfy certain conditions, are commonly adopted in
distributionally robust portfolio optimization [51, 66, 107, 131, 160]. El Ghaoui
et al. [51] considered minimizing the worst-case value-at-risk over an uncertainty
set of probability distributions such that the mean and covariance matrix are
elementwise bounded. Tütüncü and Koeing [160] used a similar uncertainty set
for solving robust mean-variance portfolio optimization problems. Goldfarb and
Iyengar [66] studied a distributionally robust portfolio optimization problem in
which asset returns are formed by a linear factor model. Popescu [131] assumed
that the mean and covariance matrix are exactly known and employed an uncer-
tainty set of probability distributions whose first and second moments are equal
to them. Similar assumptions were also made in other distributionally robust
optimization models [122, 175]. Goh and Sim [65] studied an uncertainty set
of probability distributions whose mean belongs to a convex set, and covariance
matrix is given. As an extension of the elementwise uncertainty sets [51, 160],
Lotfi and Zenios [107] considered an ellipsoidal uncertainty set of the tuple of
mean and covariance matrix when minimizing the worst-case value-at-risk and
conditional value-at-risk.

Unlike these models that require prior knowledge of the region including
the mean and/or covariance matrix, Delage and Ye [47] proposed a data-driven
method for defining a moment-based uncertainty set and gave its probabilistic
guarantee. They also formulated the worst-case loss minimization problem over
this uncertainty set as an SDO problem, which can be solved in polynomial time
by interior-point methods [123]. Bertsimas et al. [29] proposed a practical frame-
work based on a bootstrap hypothesis test to determine the uncertainty set of
probability distributions from historical data. See Rahimian and Mehrotra [133]
for a comprehensive survey on distributionally robust optimization models.

This chapter focuses on solving distributionally robust portfolio optimization
problems based on the moment-based uncertainty set [47] with a cardinality con-
straint to limit the number of invested assets. In real-world practice, when the
number of invested assets is large, it is difficult for investors to keep track of each
asset, and substantial transaction costs are required [113, 128]. Thus, there is a
need to control the number of invested assets by introducing the cardinality con-
straint. However, solving such a cardinality-constrained distributionally robust
model is computationally challenging. Due to the cardinality constraint and the
moment-based uncertainty set, the proposed model is formulated as a MISDO
problem.

Recently, Bertsimas et al. [26] proposed a general framework of cutting-plane
algorithms to exactly solve mixed-integer convex optimization problems with logi-
cal constraints. They reformulated this problem as a bilevel optimization problem
composed of lower- and upper-level problems. To solve the upper-level problem,
they devised a cutting-plane algorithm, which iteratively approximates the ob-
jective function by generating cutting planes from the solution to the lower-level
problem with the strong duality theory. Bertsimas and Cory-Wright [24] applied
this algorithm to the cardinality-constrained mean-variance portfolio optimiza-
tion. They demonstrated that their algorithm was much faster than state-of-the-
art MIO methods when solving large-scale problem instances. The cutting-plane
algorithm was also applied to sparse principal component analysis [25] and sparse
inverse covariance estimation [33].

Motivated by these prior studies, we propose a specialized cutting-plane algo-
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rithm to exactly solve the cardinality-constrained distributionally robust portfolio
optimization problem. At each iteration of this cutting-plane algorithm, we must
solve an SDO problem, which is the dual of the lower-level problem for generating
cutting planes. However, the size of this SDO problem depends on the number
of investable assets, so solving this problem at each iteration is computationally
prohibitive when handling a large number of assets. To overcome this difficulty,
we reduce the size of the lower-level SDO problem through the application of
the matrix completion technique [60, 121]. Notably, the size of the reduced SDO
problem depends not on the number of investable assets but on the cardinality
parameter, which is usually set to a small number. To the best of our knowledge,
we are the first to develop an effective algorithm for exactly solving cardinality-
constrained distributionally robust portfolio optimization problems. Numerical
experiments using real-world datasets [16, 41, 59, 90] demonstrate the effective-
ness of our method in terms of both computational and out-of-sample investment
performances.

4.2 Problem formulation

In this section, we formulate the cardinality-constrained distributionally robust
portfolio optimization problem that we consider in this chapter.

4.2.1 Cardinality constraint

Let x := (x1, x2, . . . , xN )> be a portfolio, where xn is the investment weight of
the nth asset. Throughout this paper, we consider the set of feasible portfolios:

X :=

x ∈ RN
∣∣∣∣∣∣
∑
n∈[N ]

xn = 1, x ≥ 0

 .

The nonnegativity constraint on x prohibits short selling.
Let k ∈ [N ] be a user-defined parameter for limiting the cardinality (i.e.,

the number of assets to be held). We then impose the following cardinality
constraint [27, 34, 128] on portfolio x:

‖x‖0 ≤ k, (4.1)

where ‖ · ‖0 is the `0-norm (i.e., the number of nonzero entries). In practice,
this constraint is required by investors to reduce their portfolio monitoring and
transaction costs.

Let z := (z1, z2, . . . , zN )> be a vector composed of binary decision variables
for selecting assets; that is, zn = 1 if the nth asset is selected, and zn = 0
otherwise. We also introduce the feasible set corresponding to the cardinality
constraint (4.1):

ZkN :=

z ∈ {0, 1}N
∣∣∣∣∣∣
∑
n∈[N ]

zn = k

 .

Then, the cardinality constraint (4.1) is represented by the following logical im-
plication: {

zn = 0 ⇒ xn = 0 (∀n ∈ [N ]), (4.2)

z ∈ ZkN . (4.3)
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4.2.2 Moment-based uncertainty set

We consider a measurable space (Ω,F). Let ξ̃ : Ω → RN be an F-measurable
function (N -dimensional random vector) representing the rate of random return
of each asset. Suppose that ξm ∈ RN is an observed historical return for each
period m ∈ [M ]. Then, the sample mean vector and the sample covariance matrix
are calculated as

µ̂ :=
1

M

∑
m∈[M ]

ξm, Σ̂ :=
1

M

∑
m∈[M ]

(ξm − µ̂)(ξm − µ̂)>. (4.4)

Let M be the set of all probability measures in the measurable space (Ω,F),
and EF [ · ] be the expectation under the probability measure F ∈M. Delage and
Ye [47] considered the moment-based uncertainty set of probability distributions
of ξ̃ with the assumption Σ̂ � O. When the support of distributions is RN , this
uncertainty set is given by

D(µ̂, Σ̂, κ1, κ2) :=

F ∈M
∣∣∣∣∣∣
(
EF [ξ̃]− µ̂

)>
Σ̂−1

(
EF [ξ̃]− µ̂

)
≤ κ1

EF [(ξ̃ − µ̂)(ξ̃ − µ̂)>] � κ2Σ̂

 , (4.5)

where κ1 ≥ 0 and κ2 ≥ 1 are user-defined uncertainty parameters about µ̂ and
Σ̂, respectively. The first condition in Eq. (4.5) ensures that the expectation of
ξ̃ lies in an ellipsoid of size κ1 centered at µ̂. The second condition in Eq. (4.5)
implies that the second central-moment matrix of ξ̃ is bounded above by κ2Σ̂ in
the sense of the matrix inequality.

Throughout this chapter, we make the following mild assumption about the
moment-based uncertainty set (4.5).

Assumption 4.1. κ1 > 0 and Σ̂ � O.

4.2.3 Piecewise-linear utility and loss functions

Let ξ ∈ RN be a realization of the random return ξ̃. Following Delage and Ye [47],
we employ the following utility function, which is piecewise-linear and concave in
the portfolio net return ξ>x as

u(x, ξ) := min
`∈[L]

{
a(`)ξ>x+ b(`)

}
, (4.6)

where a(`) ∈ R and b(`) ∈ R are respectively the slope and intercept of the `th
linear function for ` ∈ [L]. The loss function is then defined as the negative of
the utility function (4.6):

L(x, ξ) := −min
`∈[L]

{
a(`)ξ>x+ b(`)

}
= max

`∈[L]

{
−a(`)ξ>x− b(`)

}
. (4.7)

4.2.4 Portfolio optimization model

Our objective is to minimize the following worst-case expected loss with respect
to an underlying probability distribution F ∈ D(µ̂, Σ̂, κ1, κ2):

max
F∈D(µ̂,Σ̂,κ1,κ2)

{
EF
[
L(x, ξ̃)

]}
. (4.8)

The `2-regularization term is also incorporated into the objective from a perspec-
tive of robust optimization [24, 48, 70, 71].
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We are now in a position to formulate our cardinality-constrained distribu-
tionally robust portfolio optimization model as follows:

minimize
x,z

1

2γ
x>x+ max

F∈D(µ̂,Σ̂,κ1,κ2)

{
EF
[
L(x, ξ̃)

]}
(4.9a)

subject to zn = 0 ⇒ xn = 0 (∀n ∈ [N ]), (4.9b)

x ∈ X , z ∈ ZkN , (4.9c)

where γ > 0 is a user-defined regularization parameter. By deriving the dual of
the inner maximization problem (4.8) as in Delage and Ye [47], Problem (4.9)
can equivalently be reformulated as the following MISDO problem:

minimize
x,P ,Q,p,q,r,s,z

1

2γ
x>x+ (κ2Σ̂− µ̂µ̂>) •Q+ r + Σ̂ • P − 2µ̂>p+ κ1s (4.10a)

subject to p = −q/2−Qµ̂, (4.10b)(
Q q/2 + a(`)x/2

(q/2 + a(`)x/2)> r + b(`)

)
� O (∀` ∈ [L]), (4.10c)(

P p
p> s

)
� O, (4.10d)

zn = 0 ⇒ xn = 0 (∀n ∈ [N ]), (4.10e)

x ∈ X , z ∈ ZkN , (4.10f)

where P ,Q ∈ SN , p, q ∈ RN , and r, s ∈ R are dual decision variables of Prob-
lem (4.8).

4.3 Cutting-plane algorithm

In this section, we give our cutting-plane algorithm for solving the cardinality-
constrained distributionally robust portfolio optimization problem (4.10).

4.3.1 Bilevel optimization reformulation

We extend the method of bilevel optimization reformulation [24] to the cardinality-
constrained distributionally robust portfolio optimization problem (4.10). Let us
denote by Z := Diag(z) a diagonal matrix whose diagonal entries are given by z.
The logical implication (4.10e) are then incorporated by replacing x with Zx in
Problem (4.10). Now, we can reformulate Problem (4.10) as a bilevel optimiza-
tion problem. Specifically, the upper-level problem is written as the following
integer optimization problem:

minimize
z

f(z) subject to z ∈ ZkN , (4.11)
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and the lower-level problem for calculating the objective function is expressed as
the following SDO problem:

f(z) = minimize
x,P ,Q,p,q,r,s

1

2γ
x>x+ (κ2Σ̂− µ̂µ̂>) •Q+ r + Σ̂ • P − 2µ̂>p+ κ1s

(4.12a)

subject to p = −q/2−Qµ̂, (4.12b)(
Q q/2 + a(`)Zx/2

(q/2 + a(`)Zx/2)> r + b(`)

)
� O (∀` ∈ [L]),

(4.12c)(
P p
p> s

)
� O, (4.12d)

Zx ∈ X . (4.12e)

Note that (Zx)>Zx has been replaced by x>x in Eq. (4.12a) because x = Zx
holds for x that minimizes Eq. (4.12a) as in Bertsimas and Cory-Wright [24].

We then derive cutting planes that underestimate f(z) in the upper-level
problem (4.11) by exploiting the dual formulation of the lower-level problem
(4.12). The following theorem yields the dual formulation of Problem (4.12),
where ω ◦ ω denotes the Hadamard product of the vector ω.

Theorem 4.2. For all z ∈ ZkN , the strong duality holds for Problem (4.12), and
the dual formulation of Problem (4.12) is represented as follows:

f(z) = maximize
ω,B,β,η,λ,π

− γ

2
z>(ω ◦ ω)−

∑
`∈[L]

η(`)b(`) + π (4.13a)

subject to ω ≥
∑
`∈[L]

a(`)β(`) + π1, (4.13b)

∑
`∈[L]

B(`) = κ2Σ̂− µ̂µ̂> + µ̂

∑
`∈[L]

β(`)

> +

∑
`∈[L]

β(`)

 µ̂>,
(4.13c)∑

`∈[L]

β(`) = λ+ µ̂, (4.13d)

1−
∑
`∈[L]

η(`) = 0, (4.13e)

(
B(`) β(`)(
β(`)

)>
η(`)

)
� O (∀` ∈ [L]), (4.13f)(

Σ̂ λ
λ> κ1

)
� O, (4.13g)

where ω ∈ RN , B := (B(`)) ∈ RN×N×L, β := (β(`)) ∈ RN×L, η := (η(`)) ∈ RL,
λ ∈ RN , and π ∈ R are dual decision variables.

Proof. See Appendix A.1.

According to Theorem 4.2, we can extend the definition of f(z) to the optimal
objective value of Problem (4.13) for real-valued z ∈ [0, 1]N . Then, we obtain two
key properties of f(z) as in Bertsimas and Cory-Wright [24].
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Lemma 4.3 (Convexity). The function f(z) is convex in z ∈ [0, 1]N .

Proof. Since f(z) is a pointwise maximum of linear functions in z ∈ [0, 1]N ,
its epigraph, which is the intersection of epigraphs of the linear functions, is
convex.

Lemma 4.4 (Subgradient). Let ω?(z) be an optimal solution of ω to Prob-
lem (4.13) with z ∈ {0, 1}N . Then, a subgradient of the function f(z) is given
by

g(z) := −γ
2
ω?(z) ◦ ω?(z) ∈ ∂f(z). (4.14)

Proof. See, for example, Proposition 8.1.1 in Bertsekas et al. [23].

Lemmas 4.3 and 4.4 verify that for each ẑ ∈ ZkN , Problem (4.13) with z = ẑ
yields a linear underestimator of f(z) for z ∈ [0, 1]N as follows:

f(z) ≥ f(ẑ) + g(ẑ)>(z − ẑ). (4.15)

4.3.2 Algorithm description

We revise the cutting-plane algorithm [24] with the aim of solving the upper-
level problem (4.10). Let θLB be a lower bound of the optimal objective value
of Problem (4.11); this bound can easily be calculated by solving a continuous
relaxation version of Problem (4.11). Our cutting-plane algorithm starts with
the following initial feasible region:

F1 := {(z, θ) ∈ ZkN × R | θ ≥ θLB}, (4.16)

where θ is an auxiliary decision variable that corresponds to a lower estimate of
f(z).

At the tth iteration (t ≥ 1), our algorithm solves the surrogate upper-level
problem:

minimize
z,θ

θ subject to (z, θ) ∈ Ft, (4.17)

where Ft is a feasible region at the tth iteration such that Ft+1 ⊆ Ft. Eq. (4.16)
ensures that the objective value of Problem (4.17) is bounded below, and thus,
there exists an optimal solution (zt, θt) to Problem (4.17).

We next solve the dual lower-level problem (4.13) with z = zt. We thus
obtain the function value f(zt) and its subgradient g(zt) through Eq. (4.14). If
f(zt) − θt ≤ ε with sufficiently small ε ≥ 0, then zt is an ε-optimal solution to
Problem (4.11), which means that

f? ≤ f(zt) ≤ f? + ε, (4.18)

where f? is the optimal objective value of Problem (4.11). In this case, we
terminate the algorithm with the ε-optimal solution zt. Otherwise, we add the
constraint (4.15) with ẑ = zt to the feasible region as follows:

Ft+1 ← Ft ∩ {(z, θ) ∈ ZkN × R | θ ≥ f(zt) + g(zt)
>(z − zt)}. (4.19)

Note that this update cuts off the solution (zt, θt) because θt < f(zt).
We then set t← t+1 and solve the surrogate upper-level problem (4.17) again

with the updated feasible region (4.19). We repeat this procedure until we find
an ε-optimal solution ẑ. After termination of the algorithm, we can compute the
corresponding portfolio by solving the lower-level problem (4.12) with z = ẑ.

Our cutting-plane algorithm is summarized by Algorithm 4.1. we can prove
the finite convergence of Algorithm 4.1 as follows.
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Algorithm 4.1 Cutting-plane algorithm for solving Problem (4.11)

Step 0 (Initialization) Let ε ≥ 0 be a tolerance for optimality. Define the
feasible region F1 as in Eq. (4.16). Set t← 1 and UB0 ←∞.

Step 1 (Surrogate Upper-level Problem) Solve Problem (4.17). Let (zt, θt)
be an optimal solution, and set LBt ← θt.

Step 2 (Dual Lower-level Problem) Solve Problem (4.13) with z = zt to
calculate f(zt) and ω?(zt). If f(zt) < UBt−1, set UBt ← f(zt) and
ẑ ← zt; otherwise, set UBt ← UBt−1.

Step 3 (Termination Condition) If UBt−LBt ≤ ε, terminate the algorithm
with the ε-optimal solution ẑ.

Step 4 (Cut Generation) Calculate g(zt) as in Eq. (4.14) and update the
feasible region as in Eq. (4.19). Set t← t+ 1 and return to Step 1.

Theorem 4.5. Algorithm 4.1 terminates in a finite number of iterations and
outputs an ε-optimal solution to Problem (4.11).

Proof. Let {(zt, θt) | t ∈ [T ]} be a sequence of solutions generated by Al-
gorithm 4.1. Suppose that there exists u < T such that zu = zT . Since
(zT , θT ) ∈ Fu+1, it follows from Eq. (4.19) that

LBT = θT ≥ f(zu) + g(zu)>(zT − zu) = f(zT ),

which verifies that zT is an optimal solution to Problem (4.11). Since there are
at most a finite number of possible solutions z ∈ ZkN , the algorithm terminates
with an ε-optimal solution after a finite number of iterations.

4.4 Problem reduction of the dual lower-level problem

Recall that Step 2 of Algorithm 4.1 solves Problem (4.13), which is an SDO
problem including positive semidefinite constraints (4.13f) and (4.13g) on (N +
1)× (N + 1) symmetric matrices. It is clearly difficult to directly solve Problem
(4.13) when N is very large. To remedy this situation, we reduce its problem size
by applying the technique of positive semidefinite matrix completion [60, 121] to
the lower-level SDO problem (4.13).

4.4.1 Reduced problem formulation

For any vector v := (vn) ∈ RN and matrix M := (mnn′) ∈ RN×N , we write the
subvector and submatrix corresponding to z, z′ ∈ {0, 1}N as

vz := (vn)n∈N (z) = (vn | zn = 1) ∈ R|N (z)|,

Mz,z′ := (Mnn′)(n,n′)∈N (z)×N (z′) = (Mnn′ | zn = zn′ = 1) ∈ R|N (z)|×|N (z′)|,

where N (z) := {n ∈ [N ] | zn = 1}.
When z ∈ ZkN , we have |N (z)| = k. Then ω ∈ RN can be replaced with its

subvector ωz ∈ Rk in the objective (4.13a) as follows:

γ

2
z>(ω ◦ ω) =

γ

2
ω>z ωz. (4.20)
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The cardinality parameter k is usually much smaller than N . We exploit this
problem structure to reduce the size of Problem (4.13).

A reduced version of Problem (4.13) for z ∈ ZkN is formulated as

f ′(z) = maximize
ωz ,Bz,z ,βz ,η,λz ,π

− γ

2
ω>z ωz −

∑
`∈[L]

η(`)b(`) + π (4.21a)

subject to ωz ≥
∑
`∈[L]

a(`)β
(`)
z + π1, (4.21b)

∑
`∈[L]

B
(`)
z,z = κ2Σ̂z,z − µ̂zµ̂>z + µ̂z

∑
`∈[L]

β
(`)
z

> +

∑
`∈[L]

β
(`)
z

 µ̂>z ,
(4.21c)∑

`∈[L]

β
(`)
z = λz + µ̂z, (4.21d)

1−
∑
`∈[L]

η(`) = 0, (4.21e)

 B
(`)
z,z β

(`)
z(

β
(`)
z

)>
η(`)

 � O (` ∈ [L]), (4.21f)

(
Σ̂z,z λz
λ>z κ1

)
� O, (4.21g)

where ωz ∈ Rk, Bz,z := (B
(`)
z,z) ∈ Rk×k×L, βz := (β

(`)
z ) ∈ Rk×L, and λz ∈ Rk

are reduced versions of decision variables.
In the next subsection, we verify that the reduced problem (4.21) is equiva-

lent to the original problem (4.13) in the sense that an optimal solution to the
original problem (4.13) can be recovered from an optimal solution to the reduced
problem (4.21). We also prove that f ′(z) defined by the reduced problem (4.21)
is equal to f(z) defined by the original problem (4.13).

4.4.2 Equivalence of the original and reduced problems

We first prove the following lemma.

Lemma 4.6. Let (ωz,Bz,z,βz,η,λz, π) be a feasible solution to Problem (4.21)
for z ∈ ZkN . We also define β̄ := (β̄(`)) ∈ RN×L as{

β̄
(`)
z := β

(`)
z ,

β̄
(`)
1−z := Σ̂1−z,z(Σ̂z,z)−1(β

(`)
z − η(`)µ̂z) + η(`)µ̂1−z

(∀` ∈ [L]). (4.22)

It then follows that

κ2Σ̂ �
∑
`∈[L]
η(`)>0

1

η(`)
(β̄(`) − η(`)µ̂)(β̄(`) − η(`)µ̂)>. (4.23)

Proof. See Appendix A.2.

We next prove that feasible B and β for the original problem (4.13) can be
completed from a feasible solution to the reduced problem (4.21).
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Lemma 4.7. Let (ωz,Bz,z,βz,η,λz, π) be a feasible solution to Problem (4.21)
for z ∈ ZkN , and β̄ is defined by Eq. (4.22). Then, there exists B̄ := (B̄(`)) ∈
RN×N×L such that (B,β) = (B̄, β̄) satisfies Eqs. (4.13c) and (4.13f).

Proof. For ` ∈ [L] such that η(`) = 0, we have β
(`)
z = 0 from the constraint

(4.21f), thus β̄(`) = 0 from the definition (4.22). In this case, the solution
(B̄(`), β̄(`), η(`)) = (O,0, 0) satisfies the constraint (4.13f) and can be left out
of Eq. (4.13c). Therefore, we can assume without loss of generality that η(`) > 0
for all ` ∈ [L] in Eqs. (4.13c) and (4.13f).

From Eqs. (4.21e) and (4.23), we can see that

κ2Σ̂− µ̂µ̂> + µ̂

∑
`∈[L]

β̄(`)

> +

∑
`∈[L]

β̄(`)

 µ̂> � ∑
`∈[L]

B̃(`), (4.24)

where

B̃(`) :=
1

η(`)
β̄(`)(β̄(`))> (∀` ∈ [L]).

Then we have(
B̃(`) β̄(`)

(β̄(`))> η(`)

)
=

1

η(`)

(
β̄(`)

η(`)

)(
β̄(`)

η(`)

)>
� O (∀` ∈ [L]). (4.25)

From Eqs. (4.24) and (4.25), we can see that B̄ satisfying Eqs. (4.13c) and (4.13f)
is obtained by adding appropriate positive semidefinite matrices to B̃(`) for ` ∈
[L].

Now, we can prove our main theorem.

Theorem 4.8. Let (ωz,Bz,z,βz,η,λz, π) be an optimal solution to Problem
(4.21) for z ∈ ZkN , and (ω̄, β̄, λ̄) be defined by Eq. (4.22) andω̄z := ωz,

ω̄1−z :=
[∑

`∈[L] a
(`)β̄

(`)
1−z + π1

]
+
,

(4.26)

{
λ̄z := λz,

λ̄1−z := Σ̂1−z,z(Σ̂z,z)−1λz,
(4.27)

where [v]+ := (max{0, vn}) ∈ RN for v := (vn) ∈ RN . Then, there exists B̄ such
that (ω̄, B̄, β̄,η, λ̄, π) is an optimal solution to Problem (4.13). In addition, we
have f(z) = f ′(z) for all z ∈ ZkN .

Proof. We assume without loss of generality that

z =

(
1
0

)
, 1 ∈ Rk, 0 ∈ RN−k. (4.28)

Accordingly, we partition vector v ∈ RN and symmetric matrix M ∈ SN for
notational simplicity as follows:

v =

(
v1
v2

)
, v1 = vz, v2 = v1−z, (4.29)

M =

(
M11 M12

M21 M22

)
, M11 = Mz,z, M12 = M>

21 = Mz,1−z, M22 = M1−z,1−z.

(4.30)
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Suppose that (ω,B,β,η,λ, π) is an optimal solution to Problem (4.13). Then,
(ω1,B11,β1,η,λ1, π) is a feasible solution to Problem (4.21), and its objective
value is equal to f(z) due to Eq. (4.20). This proves that f(z) ≤ f ′(z).

Next, we show that f(z) ≥ f ′(z). Let (ω1,B11,β1,η,λ1, π) be an optimal
solution to Problem (4.21). From the definition (4.26), the constraint (4.13b) is
satisfied by (ω̄, β̄, π). Since the constraints (4.21d) and (4.21e) are satisfied, the
constraint (4.13d) is satisfied by (β̄, λ̄) as

∑
`∈[L]

β̄(`) =

 ∑
`∈[L] β

(`)
1

Σ̂21(Σ̂11)
−1
(∑

`∈[L] β
(`)
1 − µ̂1

)
+ µ̂2

 ∵ Eqs. (4.21e), (4.22)

=

(
λ1 + µ̂1

Σ̂21(Σ̂11)
−1λ1 + µ̂2

)
∵ Eq. (4.21d)

= λ̄+ µ̂. ∵ Eq. (4.27)

Since the constraint (4.21g) is satisfied, we can use the following Schur comple-
ment property (see, e.g., Section A.5.5 [36]):(

Σ̂11 λ1

λ>1 κ1

)
� O ⇒ κ1 − λ>1 Σ̂−111 λ1 � O. (4.31)

From Eq. (4.27), we have

(
Σ̂ λ̄
λ̄> κ1

)
=

Σ̂11 Σ̂12 λ̄1

Σ̂21 Σ̂22 λ̄2

λ̄>1 λ̄>2 κ1

 =

Σ̂11 Σ̂12 λ1

Σ̂21 Σ̂22 Σ̂21Σ̂
−1
11 λ1

λ>1 (Σ̂21Σ̂
−1
11 λ1)

> κ1

 ,

which is positive semidefinite because I O 0
O I 0

−λ>1 Σ̂−111 0> 1

Σ̂11 Σ̂12 λ1

Σ̂21 Σ̂22 Σ̂21Σ̂
−1
11 λ1

λ>1 (Σ̂21Σ̂
−1
11 λ1)

> κ1

 I O −Σ̂−111 λ1

O I 0
0> 0> 1


=

Σ̂11 Σ̂12 0

Σ̂21 Σ̂22 0

0> 0> κ1 − λ>1 Σ̂−111 λ1

 � O. ∵ Eq. (4.31)

Therefore, the constraint (4.13g) is satisfied by λ̄.
From Lemma 4.7, the constraints (4.13c) and (4.13f) are satisfied by (B̄, β̄).

Therefore, (ω̄, B̄, β̄,η, λ̄, π) is a feasible solution to Problem (4.13), and its objec-
tive value is equal to f ′(z) due to Eq. (4.20). This implies that f(z) ≥ f ′(z). As
a result, we have f(z) = f ′(z), and thus, (ω̄, B̄, β̄,η, λ̄, π) is an optimal solution
to Problem (4.13).

Remark 4.1. Note that Eq. (4.26) defines a minimum-norm solution to Problem
(4.13). This solution is known to generate strong cutting planes [24].

Remark 4.2. When κ1 = 0, unlike in Assumption 4.1, we can set EF [ξ̃] = µ̂ and
delete the first condition in Eq. (4.5). In this case, we can also prove the theorem
corresponding to Theorem 4.8.

From Theorem 4.8, we can revise Step 2 of Algorithm 4.1 as follows:

Step 2 (Reduced Dual Lower-level Problem) Solve Problem (4.21) with z =
zt. Let (ωz,Bz,z,βz,η,λz, π) be an optimal solution. Calculate f(zt) =
f ′(zt) and ω?(zt) = ω̄ from Eqs. (4.22) and (4.26). If f(zt) < UBt−1, set
UBt ← f(zt) and ẑ ← zt; otherwise, set UBt ← UBt−1.
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Remark 4.3. Our cutting-plane algorithm can be extended to a feasible set of
portfolios with additional linear constraints:

X ′ :=

x ∈ RN
∣∣∣∣∣∣
∑
n∈[N ]

xn = 1, x ≥ 0, Cx ≤ d

 ,

where C ∈ RJ×N and d ∈ RJ are given constants (see, e.g., Bertsimas and
Cory-Wright [24] and Kobayashi et al. [95] for details).

4.5 Numerical experiments

In this section, we report numerical results to evaluate the efficacy of our method
for distributionally robust portfolio optimization with the cardinality constraint.
We first examine the computational performance of our cutting-plane algorithm
and then demonstrate the out-of-sample investment performance of our portfolio
optimization model. All experiments were performed on a Windows 10 PC with
an Intel Xeon E-2274G CPU (4.00 GHz) and 32 GB of memory.

4.5.1 Computational performance

In this subsection, we evaluate the computational performance of our cutting-
plane algorithm by comparison with other MISDO algorithms.

Experimental design

Table 4.1 lists the datasets used in our experiments, where N is the number
of assets. From the data library on the website of Kenneth R. French [59], we
downloaded two historical datasets (i.e., ind49 and sbm100) of US stock returns.
We used monthly data from January 2010 to December 2019 to calculate the
sample estimates (4.4), µ̂ and Σ̂ of asset returns. From the OR-Library [16, 41],
we downloaded two datasets (i.e., port2 and port5) of the sample estimates µ̂
and Σ̂, which were multiplied by 100 to be consistent with the other datasets.
From Kaggle datasets [90], we downloaded a historical dataset (i.e., s&p500) of
US stock returns. To compute the sample estimates µ̂ and Σ̂, we used daily data
from February 8th, 2013 to February 7th, 2018, where 32 companies including
missing values were omitted from the S&P500 index.

Table 4.1: Dataset description

Abbr. N Original dataset

ind49 49 49 Industry Portfolios [59]
port2 89 port2 (Portfolio optimization: Single period) [16, 41]
sbm100 100 100 Portfolios Formed on Size and Book-to-Market [59]
port5 225 port5 (Portfolio optimization: Single period) [16, 41]
s&p500 468 468 companies in the S&P 500 index [90]

As the utility function (4.6), we used a piecewise-linear approximation of the
following normalized exponential utility function:

ũ(y) :=
µmax(1− exp(−αy/µmax))

α
, (4.32)

where µmax is the maximum entry of the sample mean vector µ̂, and α > 0 is a
risk-aversion parameter. As Figure 4.1 illustrates, we set α = 10 and employed
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three tangent lines (i.e., L = 3) at y ∈ {0, µmax/2, µmax} for piecewise-linear
approximation.

y

u

O

ũ(y)

a(1)y + b(1) a(2)y + b(2)

a(3)y + b(3)

µmax(1−exp(−10))
10

µmax(1−exp(−5))
10

µmax

2
µmax

Figure 4.1: Piecewise-linear approximation of the utility function (4.32) with
L = 3

We compare the computational performance of the following methods for
solving the MISDO problem (4.10):

SCIP: MISDO solver SCIP-SDP1 [62],

CPA: cutting-plane algorithm (Algorithm 4.1),

CPA+: cutting-plane algorithm (Algorithm 4.1) using the matrix-completion-
based problem reduction (i.e., Step 2 in Section 4.4.2).

These methods used Mosek2 9.2.40 to solve SDO problems. CPA and CPA+ were
implemented in Python 3.7 with Gurobi Optimizer3 8.1.11 to solve the surrogate
upper-level problem (4.17). We also used the lazy constraint callback to add
cutting planes during the branch-and-bound procedure. We set ε = 10−5 as the
tolerance for optimality. The computation of each method was terminated if it
did not finish by itself within 3,600 s. In these cases, the results obtained within
3,600 s were taken as the final outcome.

We also applied the branch-and-cut algorithm in Chapter 2 for solving some
instances. The preliminary experiments showed that it was very slow and failed to
complete the computations even for small-sized instances. Therefore, we did not
employ the branch-and-cut algorithm as a baseline in the numerical experiments.

The following column labels are used in Tables 4.2–4.4:

Obj: objective value of the obtained best feasible solution,

GAP(%): absolute difference between lower and upper bounds on the optimal
objective value divided by the upper bound,

Time: computation time in seconds,

#Cuts: number of cutting planes generated by the cutting-plane algorithms,

#Nodes: number of nodes explored in the branch-and-bound procedure.

1http://www.opt.tu-darmstadt.de/scipsdp/
2https://www.mosek.com/
3https://www.gurobi.com/
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Note that the best values of “Time” are indicated in bold for each problem
instance, and those of “Obj” are also indicated in bold for the port2 and s&p500

datasets. Also, “OM” in the Obj column indicates that the computation did not
start due to the out-of-memory condition.

Results for different values of the cardinality parameter k

Table 4.2 gives the numerical results of each method for the cardinality parameter
k ∈ {5, 10, 15}. Here, we set the parameters γ = 10/

√
N for the `2-regularization

term and (κ1, κ2) = (1, 4) for the uncertainty set.
First, we focus on our cutting-plane algorithms (i.e., CPA and CPA+). Both

CPA and CPA+ failed to finish solving problem instances for the port2 and
s&p500 datasets; however, CPA+ solved other problem instances much faster
than did CPA, especially for large N . In the case of the sbm100 dataset with
k = 5, although CPA was terminated due to the time limit, CPA+ solved the
problem instance completely in 1.9 s. These results verify the effectiveness of our
matrix-completion-based problem reduction of the dual lower-level problem.

Next, we compare our cutting-plane algorithms with the MISDO solver SCIP.
CPA+ was the fastest when it finished computations within the time limit. SCIP
returned an incorrect optimal objective value for the dataset ind49 with k ∈
{10, 15} due to the numerical instability. For the port2 dataset, all three methods
failed to complete the computations within the time limit, but CPA+ found
solutions of better quality than did SCIP and CPA for k ∈ {10, 15}.

For the port5 dataset, SCIP did not finish solving even a first continuous
relaxation problem within the time limit, and thus, failed to provide a feasible
solution for all k ∈ {5, 10, 15}. CPA did not start computations due to the out-
of-memory condition. In contrast, CPA+ succeeded in computing solutions with
guaranteed optimality for all k ∈ {5, 10, 15}.

For the s&p500 dataset involving 468 investable assets, only CPA+ worked
normally to find feasible solutions. Optimality gaps attained by CPA+ for k ∈
{5, 10, 15} are 21.0%, 19.1%, and 9.9%, respectively, and this gap is expected to
be smaller if longer time can be spent on the computation. These results support
the potential of CPA+ to give good-quality solutions to large problem instances
with a limited memory capacity.

The computation time of CPA+ tended to be shorter for larger k. For the
port5 dataset, CPA+ finished the computations in 316.2 s, 84.6 s, and 16.16 s for
k ∈ {5, 10, 15}, respectively. Here, both #Cuts and #Nodes were much smaller
for k = 15 than for k = 5, which is part of the reason why CPA+ got to be faster
with larger k.

Results for different values of the uncertainty parameters (κ1, κ2)

Table 4.3 gives the numerical results of each method for the pair of uncertainty
parameters (κ1, κ2) ∈ {(0.5, 2), (1, 4), (2, 8)}. Here, we set the parameters k = 10
for the cardinality constraint and γ = 10/

√
N for the `2-reguralization term.

Table 4.3 shows that CPA+ consistently outperformed other methods regard-
less of values of the uncertainty parameters (κ1, κ2). For the port2 dataset,
all methods failed to complete the computations within the time limit for all
(κ1, κ2), but CPA+ found solutions of better quality than did other methods for
(κ1, κ2) ∈ {(1, 4), (2, 8)}. Moreover, the computation time of CPA+ was stable
against the change in (κ1, κ2). Indeed, for the port5 dataset, CPA+ finished
computations in 60.9 s, 84.6 s, and 62.6 s for (κ1, κ2) ∈ {(0.5, 2), (1, 4), (2, 8)},
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respectively. In addition, for the s&p500 dataset, optimality gaps given by CPA+

were 17.9%, 19.1%, and 20.1% for (κ1, κ2) ∈ {(0.5, 2), (1, 4), (2, 8)}, respectively.
These results suggest that the computational performance of the CPA+ is not
greatly affected by the uncertainty parameters (κ1, κ2).

Results for different values of the `2-regularization parameter γ

Table 4.4 gives the numerical results of each method for the `2-regularization
parameter γ ∈ {1/

√
N, 10/

√
N, 100/

√
N}. Here, we set the parameters k =

10 for the cardinality constraint and (κ1, κ2) = (1, 4) for the uncertainty set.
Table 4.4 shows that CPA+ performed very well compared to other methods.
CPA+ was always faster than other methods for the ind49, sbm100, and port5

datasets. For the port2 dataset, all methods failed to solve problem instances to
optimality, but CPA+ found solutions of better quality than did other methods
except for γ = 100/

√
N . For the s&p500 dataset, only CPA+ provided feasible

solutions without causing an out-of-memory condition. The computation time of
CPA+ tended to be shorter for smaller γ. For the port5 dataset, CPA+ finished
the computations in 66.0 s, 84.6 s, and 417.1 s for γ ∈ {1/

√
N, 10/

√
N, 100/

√
N},

respectively. A similar tendency was also shown by the results for the s&p500

dataset, where optimality gaps obtained by CPA+ were 4.2%, 19.1%, and 79.4%
for γ ∈ {1/

√
N, 10/

√
N, 100/

√
N}, respectively.

4.5.2 Out-of-sample investment performance

Finally, we investigate the investment performance of our cardinality-constrained
distributionally robust portfolio optimization model in a practical situation.

Experimental design

For the purpose of comparison, we consider the following cardinality-constrained
mean-variance portfolio optimization model:

minimize
x

x>Σ̂x (4.33a)

subject to µ̂>x ≥ r̄, (4.33b)

zn = 0 ⇒ xn = 0 (∀n ∈ [N ]), (4.33c)

x ∈ X , z ∈ ZkN , (4.33d)

where r̄ is a user-defined parameter of the required return level.
We compare the out-of-sample investment performance of portfolios deter-

mined by the following optimization models:

MV: cardinality-constrained mean-variance optimization model (4.33), which
was solved using Gurobi Optimizer 8.1.11;

DR: cardinality-constrained distributionally robust optimization model (4.10),
which was solved by our cutting-plane algorithm CPA+.

For the MV model, we set the required return level r̄ to the first quartile of entries
of the sample mean µ̂. For the DR model, we tuned the uncertainty parameters
(κ1, κ2) based on the 80% confidence region estimated by the tailored bootstrap
method [29] with the bootstrap sample size of 100,000. We set γ = 10/

√
N for

the `2-regularization term, and the utility function (4.6) in the same way as in
Section 4.5.1.
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Figure 4.2: Evolution of cumulative total returns over the years 2000–2020

We evaluated the out-of-sample investment performance based on a rolling
horizon strategy. From Yahoo! Finance [167], we downloaded weekly data of
Japanese stock returns from January 2000 to December 2020, where top 30 com-
panies were selected from the Nikkei 225 index according to market capitalization
as of December 2020. We solved portfolio optimization models by calculating
sample estimates µ̂ and Σ̂ in the first training period (156 weeks). We next
calculated weekly returns by applying the obtained portfolios to the subsequent
testing period (52 weeks). We repeated this process at intervals of 52 weeks until
the end of the entire data period.

We evaluate the out-of-sample investment performance based on the following
cumulative total return: ∏

m∈[M ]

(1 +Rm),

where Rm is the rate of portfolio return in the mth week during the testing period
M .

Results of the investment performance

Figure 4.2 shows the evolution of (out-of-sample) cumulative total returns pro-
duced by each optimization model with the cardinality parameter k ∈ {5, 30}.
The highest investment performance was achieved by the DR model with k = 5,
which suggests that the out-of-sample investment performance can be improved
by the interplay between the distributionally robust optimization and the cardi-
nality constraint. In contrast, the investment performance of the MV model was
lower with k = 5 than with k = 30 probably because portfolio diversification is
prevented by the cardinality constraint.

A notable result is the investment performance in 2020, when the stock mar-
ket was significantly affected by the spread of COVID-19. In this year, while
the cumulative return was not increased by the MV model with k ∈ {5, 30},
that was improved by the DR model with k ∈ {5, 30}. This implies that distri-
butionally robust optimization models are helpful in coping with an unexpected
situation. These results demonstrate the practical effectiveness of our cardinality-
constrained distributionally robust portfolio optimization model in terms of the
out-of-sample investment performance.

54



4.6 Conclusion

In this chapter, we consider moment-based distributionally robust portfolio op-
timization problems [47] with the cardinality constraint. Due to the discrete-
ness, this problem is formulated mixed-integer semidefinite optimization prob-
lem, which is very hard to exactly solve when the number of investable assets is
large. We reformulated the problem as a bilevel optimization problem and de-
vised a specialized cutting-plane algorithm for solving the upper-level problem.
In addition, we apply the matrix completion [60, 121] to the lower-level problem
to efficiently generate cutting planes.

The computational results indicate that our cutting-plane algorithm was very
effective, especially when the number of investable assets is large. Our algorithm
succeeded in obtaining an optimal solution within 3,600 seconds, to a problem
including 225 assets. For a large-sized problem instance with 468 assets, while the
existing method did not start its computation due to lack of memory, our algo-
rithm attained a solution of good quality. In addition, the out-of-sample invest-
ment performances given by the cardinality-constrained distributionally robust
model outperformed the cardinality-constrained mean-variance model.
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Table 4.2: Numerical results with γ = 10/
√
N and (κ1, κ2) = (1, 4) for k ∈

{5, 10, 15}
Data N k Method Obj Gap(%) Time #Cuts #Nodes

ind49 49 5 SCIP 3.108 0.0 627.9 — 61
CPA 3.108 2.2 >3600 >195 >940
CPA+ 3.108 0.0 26.5 182 1047

10 SCIP 3.036 0.0 303.2 — 17
CPA 3.034 0.0 400.6 22 20
CPA+ 3.034 0.0 9.3 22 20

15 SCIP 3.037 0.0 408.6 — 43
CPA 3.033 0.0 107.8 6 0
CPA+ 3.033 0.0 5.2 6 0

port2 86 5 SCIP 1.951 15.1 >3600 — >27
CPA 2.181 374.1 >3600 >23 >71
CPA+ 2.071 68.9 >3600 >20640 >196390

10 SCIP 1.761 8.7 >3600 — >20
CPA 1.924 188.6 >3600 >20 >39
CPA+ 1.727 51.6 >3600 >7937 >147890

15 SCIP 1.749 8.0 >3600 — >20
CPA 2.009 98.1 >3600 >23 >87
CPA+ 1.635 17.5 >3600 >4014 >76327

sbm100 100 5 SCIP 4.494 12.1 >3600 — >5
CPA 3.940 0.3 >3600 >12 >1
CPA+ 3.940 0.0 1.9 13 8

10 SCIP 3.955 0.4 >3600 — >10
CPA 3.935 0.0 1753.4 5 0
CPA+ 3.935 0.0 2.0 5 0

15 SCIP 3.952 0.3 >3600 — >9
CPA 3.935 0.0 1910.1 5 0
CPA+ 3.935 0.0 4.4 5 0

port5 225 5 SCIP ∞ 100.0 >3600 — >1
CPA OM — — — —
CPA+ 2.812 0.0 316.2 770 9402

10 SCIP ∞ 100.0 >3600 — >1
CPA OM — — — —
CPA+ 2.687 0.0 84.6 191 2077

15 SCIP ∞ 100.0 >3600 — >1
CPA OM — — — —
CPA+ 2.677 0.0 16.6 18 37

s&p500 468 5 SCIP OM — — — —
CPA OM — — — —
CPA+ 1.051 21.0 >3600 >9794 >477699

10 SCIP OM — — — —
CPA OM — — — —
CPA+ 0.910 19.1 >3600 >1996 >118070

15 SCIP OM — — — —
CPA OM — — — —
CPA+ 0.830 9.9 >3600 >3435 >270889

56



Table 4.3: Numerical results with k = 10 and γ = 10/
√
N for

(κ1, κ2) ∈ {(0.5, 2), (1, 4), (2, 8)}.
Data N (κ1, κ2) Method Obj Gap(%) Time #Cuts #Nodes

ind49 49 (0.5,2) SCIP 1.948 0.0 476.6 — 29
CPA 1.946 0.0 409.2 22 20
CPA+ 1.946 0.0 9.3 22 20

(1,4) SCIP 3.036 0.0 303.2 — 17
CPA 3.034 0.0 400.6 22 20
CPA+ 3.034 0.0 9.3 22 20

(2,8) SCIP 4.599 0.0 289.6 — 19
CPA 4.588 0.0 323.3 18 8
CPA+ 4.588 0.0 7.5 18 8

port2 86 (0.5,2) SCIP 1.156 5.9 >3600 — >22
CPA 1.336 135.1 >3600 >22 >11
CPA+ 1.177 34.7 >3600 >8448 >158415

(1,4) SCIP 1.761 8.7 >3600 — >20
CPA 1.924 188.6 >3600 >20 >39
CPA+ 1.727 51.6 >3600 >7937 >147890

(2,8) SCIP 2.549 7.8 >3600 — >21
CPA 2.766 255.2 >3600 >20 >59
CPA+ 2.484 61.7 >3600 >8415 >139514

sbm100 100 (0.5,2) SCIP 2.612 1.3 >3600 — >8
CPA 2.575 0.0 1929.4 5 0
CPA+ 2.575 0.0 2.0 5 0

(1,4) SCIP 3.955 0.4 >3600 — >10
CPA 3.935 0.0 1753.4 5 0
CPA+ 3.935 0.0 2.0 5 0

(2,8) SCIP 5.910 0.3 >3600 — >10
CPA 5.874 0.0 2169.4 6 0
CPA+ 5.874 0.0 2.0 5 0

port5 225 (0.5,2) SCIP ∞ 100.0 >3600 — >1
CPA OM — — — —
CPA+ 1.915 0.0 60.9 144 2177

(1,4) SCIP ∞ 100.0 >3600 — >1
CPA OM — — — —
CPA+ 2.687 0.0 84.6 191 2077

(2,8) SCIP ∞ 100.0 >3600 — >1
CPA OM — — — —
CPA+ 3.776 0.0 62.6 142 1486

s&p500 468 (0.5,2) SCIP OM — — — —
CPA OM — — — —
CPA+ 0.659 17.9 >3600 >648 >2558

(1,4) SCIP OM — — — —
CPA OM — — — —
CPA+ 0.910 19.1 >3600 >1996 >118070

(2,8) SCIP OM — — — —
CPA OM — — — —
CPA+ 1.238 20.1 >3600 >5944 >364115
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Table 4.4: Numerical results with k = 10 and (κ1, κ2) = (1, 4) for
γ ∈ {1/

√
N, 10/

√
N, 100/

√
N}.

Data N γ Method Obj Gap(%) Time #Cuts #Nodes

ind49 49 1/
√
N SCIP 3.415 0.0 433.2 — 30

CPA 3.415 0.0 339.8 19 18
CPA+ 3.415 0.0 8.2 19 18

10/
√
N SCIP 3.036 0.0 303.2 — 17

CPA 3.034 0.0 400.6 22 20
CPA+ 3.034 0.0 9.3 22 20

100/
√
N SCIP 2.984 0.0 323.9 — 20

CPA 2.984 0.0 398.4 22 37
CPA+ 2.984 0.0 10.0 22 42

port2 86 1/
√
N SCIP 2.154 15.3 >3600 — >22

CPA 2.251 43.2 >3600 >23 >159
CPA+ 2.154 6.2 >3600 >7591 >208109

10/
√
N SCIP 1.761 8.7 >3600 — >20

CPA 1.924 188.6 >3600 >20 >39
CPA+ 1.727 51.6 >3600 >7937 >147890

100/
√
N SCIP 1.699 6.8 >3600 — >18

CPA 2.143 2805.9 >3600 >21 >131
CPA+ 1.711 459.1 >3600 >7487 >82148

sbm100 100 1/
√
N SCIP 5.029 9.2 >3600 — >7

CPA 4.594 0.0 2599.2 7 0
CPA+ 4.594 0.0 2.9 7 0

10/
√
N SCIP 3.955 0.4 >3600 — >10

CPA 3.935 0.0 1753.4 5 0
CPA+ 3.935 0.0 2.0 5 0

100/
√
N SCIP 3.806 0.0 2094.4 — 3

CPA 3.801 0.0 2183.0 6 0
CPA+ 3.801 0.0 2.1 5 0

port5 225 1/
√
N SCIP ∞ 100.0 >3600 — >1

CPA OM — — — —
CPA+ 3.380 0.0 66.0 144 2007

10/
√
N SCIP ∞ 100.0 >3600 — >1

CPA OM — — — —
CPA+ 2.687 0.0 84.6 191 2077

100/
√
N SCIP ∞ 100.0 >3600 — >1

CPA OM — — — —
CPA+ 2.611 0.0 417.1 968 8718

s&p500 468 1/
√
N SCIP OM — — — —

CPA OM — — — —
CPA+ 1.861 4.2 >3600 >5452 >456468

10/
√
N SCIP OM — — — —

CPA OM — — — —
CPA+ 0.910 19.1 >3600 >1996 >118070

100/
√
N SCIP OM — — — —

CPA OM — — — —
CPA+ 0.789 79.4 >3600 >6580 >239418
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Chapter 5

Bilevel Cutting-plane Algorithm for

Cardinality-constrained Mean-CVaR

Portfolio Optimization

In this chapter, we examine cardinality-constrained conditional value-at-risk (CVaR)
minimization problems and extend the cutting-plane algorithm for the distributionally-
robust portfolio optimization problem discussed in Chapter 4. While the cardinality-
constrained CVaR minimization problem is formulated as an MILO problem,
which can be handled by state-of-the-art MIO solvers, the problem size of CVaR
minimization problems depends not only on the number of investable assets but
also on the number of asset return scenarios. Thus, the computational efficiency
decreases when the number of scenarios is large. To overcome this challenge,
we propose a specialized cutting-plane algorithm named the bilevel cutting-plane
algorithm for exactly solving the cardinality-constrained mean-CVaR portfolio
optimization problem. Our proposal extends the cutting-plane algorithm dis-
cussed in Chapter 4 so that it incorporates another cutting-plane algorithm that
efficiently minimizes CVaR. The content of this chapter is included in Kobayashi
et al. [94].

We give an introduction to this study and summarize our contribution in
Section 5.1. In Section 5.2, we show the definition of CVaR and formulate the
cardinality-constrained mean-CVaR portfolio optimization problem as an MIO
problem. In Section 5.3, we describe our bilevel cutting-plane algorithm for solv-
ing the problem. We report computational results in Section 5.4 and conclude in
Section 5.5.

5.1 Introduction

This chapter focuses on mean-risk portfolio optimization models using the con-
ditional value-at-risk (CVaR) [137, 138] as a risk measure. CVaR is a downside
risk measure for evaluating a potential heavy loss. It is known as a coherent risk
measure that has the desirable properties of monotonicity, translation invariance,
positive homogeneity, and subadditivity [12, 129]. Additionally, CVaR is mono-
tonic with respect to second-order stochastic dominance [129], which means that
CVaR minimization is consistent with the preference of any rational risk-averse
decision-maker. In the standard formulation based on sample average approxi-
mation [137, 138, 145], many scenarios are required to approximate CVaR accu-
rately [91, 150]. To resolve this computational difficulty, various efficient algo-
rithms have been proposed, including the dual solution method [125], nonsmooth
optimization algorithms [17, 85, 104, 137], the factor model [100], cutting-plane
algorithms [4, 80, 103, 149], the level method [52], smoothing methods [6, 157],
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and successive regression approximations [3].
We consider solving mean-CVaR portfolio optimization problems with a car-

dinality constraint for limiting the number of invested assets. Because of the
cardinality constraint, this model is formulated as an MILO problem, which is
a special case of MISDO problems. While state-of-the-art MIO solvers such
as Gurobi and CPLEX can be applied to the problem, the problem size of the
cardinality-constrained mean-CVaR model depends not only on the number of in-
vestable assets but also on the number of asset return scenarios. When we aim to
approximate CVaR accurately [91, 150], sufficiently many scenarios are required,
which decreases computational efficiency even if we use the state-of-the-art MIO
solvers. For this problem, some heuristic optimization algorithms have been de-
veloped, including continuous-relaxation-based heuristics [9], the `1-norm-based
approximation of the cardinality constraint [43], and a Scholtes-type regulariza-
tion method for complementarity constraints [37]. However, these algorithms
cannot guarantee global optimality of obtained solutions.

In this chapter, we extend the cutting-plane algorithm for distributionally
robust portfolio optimization in Chapter 4 and propose a high-performance algo-
rithm named the bilevel cutting-plane algorithm for exactly solving the cardinality-
constrained mean-CVaR portfolio optimization problem. Unlike the distributionally-
robust portfolio optimization problems discussed in Chapter 4, the size of the
lower-level problem of the mean-CVaR model depends on not only the number
of investable assets but also that of scenarios, which degrades the computational
performance of the algorithm. To speed up the computations of the lower-level
problem, we apply the cutting-plane algorithm [4, 80, 103, 149] that was de-
veloped for efficiently minimizing CVaR. As a result, these two types of cutting-
plane algorithms are integrated into our bilevel cutting-plane algorithm to achieve
faster computations. To our knowledge, we are the first to develop an effective
algorithm for exactly solving cardinality-constrained mean-CVaR portfolio opti-
mization problems.

We conducted numerical experiments using some benchmark datasets [16, 41,
59, 90] to evaluate the efficiency of our bilevel cutting-plane algorithm. Numerical
results demonstrate that our algorithm is faster than other MIO approaches,
especially for large problem instances. Remarkably, our algorithm attained an
optimal solution within 3600 s to a problem involving 225 assets and 100,000
scenarios.

5.2 Problem formulation

In this section, we formulate the cardinality-constrained mean-CVaR portfolio
optimization problem that we consider in this chapter.

5.2.1 Conditional value-at-risk

As we did in Chapter 4, we define x := (x1, x2, . . . , xN )> to be a portfolio satis-
fying ∑

n∈[N ]

xn = 1, x ≥ 0,

where xn is the investment weight of the nth asset. We consider a probability
space (Ω,F ,P). Let ξ̃ : Ω → RN be an F-measurable function (N -dimensional
random vector) representing the rate of random return of each asset, and G(r) :=
P({ω ∈ Ω | ξ̃(ω) ≤ r}) be the corresponding cumulative distribution function of
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the asset return vector r ∈ RN . In this chapter, we define the loss function as
the negative of the portfolio net return:

L(x, r) := −r>x.

Let β ∈ (0, 1) be a probability level parameter, which is frequently set close to
one. Then, β-CVaR can be regarded as the approximate conditional expectation
of a random loss exceeding the β-value-at-risk (β-VaR). To calculate CVaR, we
use the following function:

Fβ(a,x) := a+
1

1− β

∫
RN

[L(x, r)− a]+ dG(r), (5.1)

where a is an auxiliary decision variable, and [v]+ is a positive part of v (i.e.,
[v]+ := max{0, v}). Then, β-CVaR minimization is posed as follows [137, 138]:

minimize
a,x

Fβ(a,x) subject to x ∈ X ,

where X is a set of feasible portfolios. Note that an optimal solution of a cor-
responds to β-VaR, which is a β-quantile of the probability distribution of the
portfolio loss L(x, ξ̃).

Because multiple integration in Eq. (5.1) is computationally expensive, the
sample average approximation [137, 138, 145] is commonly used. Note also that
even when the number of scenarios is small, the cardinality constraint helps a
solution based on the sample average approximation to nearly converge to the
exact solution with high probability [2, 105].

Accordingly, we consider a finite sample space Ω := {ωs | s ∈ [S]}, where
S is the number of scenarios. Here, r(s) := ξ̃(ωs) is the sth scenario of asset
returns for s ∈ [S], and p := (p1, p2, . . . , pS)> is a vector composed of occurrence
probabilities ps := P({ωs}). We then have

Fβ(a,x) ≈ a+
1

1− β
∑
s∈[S]

ps

[
−(r(s))>x− a

]
+
.

5.2.2 Portfolio optimization model

Throughout this chapter, we consider the following set of feasible portfolios:

X := {x ∈ RN | Cx ≤ d, 1>x = 1, x ≥ 0},

where C ∈ RM×N and d ∈ RM are given. It is supposed that the linear constraint
Cx ≤ d contains the expected return constraint:

µ̂>x ≥ µ̄, (5.2)

where µ̂ := (µ̂1, µ̂2, . . . , µ̂N )> is a vector composed of expected returns of assets,
and µ̄ is a parameter of the required return level.

As we did in Chapter 4, we also impose a cardinality constraint on the portfolio
x:

‖x‖0 ≤ k, (5.3)

where k ≥ 1 be a user-defined parameter for limiting the cardinality and ‖ · ‖0
is the `0-norm (i.e., the number of nonzero entries) [27, 34, 128]. Let z :=
(z1, z2, . . . , zN )> be a vector of binary decision variables for selecting assets; that
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is, zn = 1 if the nth asset is selected, and zn = 0 otherwise. We also introduce
the feasible set corresponding to the cardinality constraint (5.3):

ZkN :=

z ∈ {0, 1}N
∣∣∣∣∣∣
∑
n∈[N ]

zn = k

 .

In line with previous studies [24, 48, 70, 71], we incorporate the `2-regularization
term into the objective from a perspective of robust optimization. The cardinality-
constrained mean-CVaR portfolio optimization model is formulated as follows:

minimize
a,v,x,z

1

2γ
x>x+ a+ v (5.4a)

subject to v ≥ 1

1− β
∑
s∈[S]

ps

[
−(r(s))>x− a

]
+
, (5.4b)

zn = 0 ⇒ xn = 0 (∀n ∈ [N ]), (5.4c)

x ∈ X , z ∈ ZkN , (5.4d)

where v is an auxiliary decision variable, and γ > 0 is a regularization parameter.
Throughout this chapter, we assume that Problem (5.4) is feasible.

5.3 Cutting-plane algorithms

In this section, we present our bilevel cutting-plane algorithm for solving the
cardinality-constrained mean-CVaR portfolio optimization problem (5.4).

5.3.1 Bilevel optimization reformulation

Here, we extend the method of bilevel optimization reformulation in Chapter 4 to
the mean-CVaR portfolio optimization problem (5.4). Let us define Z := Diag(z)
as a diagonal matrix whose diagonal entries are given by z. We first eliminate
the logical implication (5.4c) by replacing x with Zx in Problem (5.4). We next
reformulate Problem (5.4) as a bilevel optimization problem. Specifically, the
upper-level problem is posed as the following integer optimization problem:

minimize
z

f(z) subject to z ∈ ZkN , (5.5)

and its objective function is defined by the following lower-level problem:

f(z) = minimize
a,v,x

1

2γ
x>x+ a+ v (5.6a)

subject to v ≥ 1

1− β
∑
s∈[S]

ps

[
−(r(s))>Zx− a

]
+
, (5.6b)

Zx ∈ X . (5.6c)

Note that (Zx)>Zx has been replaced with x>x in the objective (5.6a); this
is because x = Zx holds after minimization (5.6a) as in Bertsimas and Cory-
Wright [24].

We then derive cutting planes for approximating f(z) in the upper-level prob-
lem (5.5) by exploiting the dual formulation of the lower-level problem (5.6). For
this purpose, Constraint (5.6b), which is nonlinear and nondifferentiable, needs
to be transformed into tractable constraints. A commonly used method is the
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lifting representation [52, 137], which converts Problem (5.6) into the following
optimization problem with linear constraints:

f(z) = minimize
a,q,v,x

1

2γ
x>x+ a+ v (5.7a)

subject to v ≥ 1

1− β
∑
s∈[S]

psqs, (5.7b)

qs ≥ −(r(s))>Zx− a (∀s ∈ [S]), (5.7c)

qs ≥ 0 (∀s ∈ [S]), (5.7d)

Zx ∈ X , (5.7e)

where q := (q1, q2, . . . , qS)> is a vector of auxiliary decision variables. The fol-
lowing theorem gives the dual formulation of Problem (5.7).

Theorem 5.1. Suppose that Problem (5.7) is feasible with z ∈ {0, 1}N . Then,
the strong duality holds, and the dual formulation of Problem (5.7) is represented
as follows:

f(z) = maximize
α,ζ,λ,ω

− γ

2
z>(ω ◦ ω)− d>ζ + λ (5.8a)

subject to ω ≥
∑
s∈[S]

αsr
(s) −C>ζ + λ1, (5.8b)

∑
s∈[S]

αs = 1, (5.8c)

αs ≤
ps

1− β
(∀s ∈ [S]), (5.8d)

α ≥ 0, ζ ≥ 0, (5.8e)

where α := (α1, α2, . . . , αS)>, ζ ∈ RM , λ ∈ R, and ω ∈ RN are dual decision
variables, and ω ◦ ω denotes the Hadamard product of the vector ω.

Proof. See Appendix A.3.

Remark 5.1. Note that the dual problem (5.8) is always feasible with α = p,
ζ = 0, λ = 0, and ω =

∑
s∈[S] psr

(s). From the strong duality, the dual prob-
lem (5.8) is unbounded (i.e., f(z) = ∞) if and only if the corresponding primal
problem (5.7) is infeasible. Our objective is to minimize f(z), so we can assume
without loss of generality that the primal problem (5.7) is feasible.

Remark 5.2. When zn = 0, we can eliminate ωn from the dual problem (5.8).
Suppose that after the elimination, (α?, ζ?, λ?) is an optimal solution of (α, ζ, λ)
to Problem (5.8). We then recover ωn as

ω?n =

∑
s∈[S]

α?sr
(s)
n − c>n ζ? + λ?


+

(n ∈ [N ] with zn = 0),

where cn is the nth column vector of C. This solution satisfies Constraint (5.8b)
and thus optimal because its coefficient is zero in the objective (5.8a).

Theorem 5.1 allows us to redefine f(z) as the optimal objective value of
Problem (5.8) for z ∈ [0, 1]N . Then, as we showed Lemmas 4.3 and 4.4 in
Chapter 4, we obtain two properties of f(z).

Lemma 5.2 (Convexity). The function f(z) is convex in z ∈ [0, 1]N .
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Lemma 5.3 (Subgradient). Suppose that Problem (5.7) is feasible with z ∈
{0, 1}N , and that ω?(z) is an optimal solution of ω to Problem (5.8). Then, a
subgradient of the function f(z) is given by

g(z) := −γ
2
ω?(z) ◦ ω?(z) ∈ ∂f(z). (5.9)

From Lemmas 5.2 and 5.3, we see that for each ẑ ∈ ZkN , Problem (5.8) with
z = ẑ yields a linear underestimator of f(z) for z ∈ [0, 1]N as follows:

f(z) ≥ f(ẑ) + g(ẑ)>(z − ẑ). (5.10)

5.3.2 Upper-level cutting-plane algorithm

Here, we extend the cutting-plane algorithm in Chapter 4 to the upper-level
problem (5.5) for mean-CVaR portfolio optimization. We refer to this algorithm
as the upper-level cutting-plane algorithm, which finds a sequence of solutions to
relaxed versions of Problem (5.5).

We first define the initial feasible region as

F1 := {(z, θ) ∈ ZkN × R | θ ≥ θLB}, (5.11)

where θ is an auxiliary decision variable that serves as a lower bound on f(z),
and θLB is a lower bound of the optimal objective value of Problem (5.5). At the
tth iteration (t ≥ 1), our algorithm solves the following optimization problem:

minimize
z,θ

θ subject to (z, θ) ∈ Ft, (5.12)

where Ft is a relaxed feasible region at the tth iteration such that Ft+1 ⊆ Ft.
According to Eq. (5.11), the objective value of Problem (5.12) is bounded be-
low. Therefore, unless Ft = ∅, Problem (5.12) has an optimal solution, which is
denoted by (zt, θt).

After obtaining (zt, θt), we solve the dual lower-level problem (5.8) with z =
zt. If Problem (5.8) is unbounded, Problem (5.7) is infeasible because of the
strong duality. In this case, we update the feasible region to cut off the solution
zt as follows:

Ft+1 ← Ft ∩ {(z, θ) ∈ ZkN × R | z>t (1− z) + (1− zt)>z ≥ 1}. (5.13)

If Problem (5.8) is bounded, we obtain the function value f(zt) and its subgra-
dient g(zt) as in Lemma 5.3.

If f(zt)− θt ≤ ε with sufficiently small ε ≥ 0, then zt is an ε-optimal solution
to Problem (5.5), which means that

f? ≤ f(zt) ≤ f? + ε, (5.14)

where f? is the optimal objective value of Problem (5.5). In this case, we ter-
minate the algorithm with the ε-optimal solution zt. Otherwise, we add the
constraint (5.10) to the feasible region:

Ft+1 ← Ft ∩ {(z, θ) ∈ ZkN × R | θ ≥ f(zt) + g(zt)
>(z − zt)}. (5.15)

Note that this update cuts off the solution (zt, θt) because θt < f(zt).
After updating the feasible region, we set t← t+ 1 and solve Problem (5.12)

again. This procedure is repeated until an ε-optimal solution ẑ is found. After
termination of the algorithm, we can compute the corresponding portfolio by
solving Problem (5.7) with z = ẑ. Our upper-level cutting-plane algorithm is
summarized by Algorithm 5.1.

64



Algorithm 5.1 Upper-level cutting-plane algorithm for solving Problem (5.5)

Step 0 (Initialization) Let ε ≥ 0 be a tolerance for optimality. Define the
feasible region F1 as in Eq. (5.11). Set t← 1 and UB0 ←∞.

Step 1 (Relaxed Problem) Solve Problem (5.12). Let (zt, θt) be an optimal
solution, and set LBt ← θt.

Step 2 (Cut Generation) Solve Problem (5.8) with z = zt to calculate f(zt)
and ω?(zt).

(a) If Problem (5.8) is unbounded, set UBt ← UBt−1 and update the
feasible region as in Eq. (5.13).

(b) Otherwise, perform the following procedures:

i. Calculate g(zt) as in Eq. (5.9).

ii. Update the feasible region as in Eq. (5.15).

iii. If f(zt) < UBt−1, set UBt ← f(zt) and (ẑ, θ̂) ← (zt, θt);
otherwise, set UBt ← UBt−1.

Step 3 (Termination Condition) If UBt−LBt ≤ ε, terminate the algorithm
with the ε-optimal solution ẑ.

Step 4 Set t← t+ 1 and return to Step 1.

5.3.3 Lower-level cutting-plane algorithm

Note that Step 2 of Algorithm 5.1 solves Problem (5.8), which contains O(S)
decision variables and O(S) constraints; so, solving it directly is computation-
ally expensive especially when the number of scenarios is very large. To avoid
this difficulty, we propose solving the primal lower-level problem (5.6) by instead
using the other cutting-plane algorithm [4, 80, 103, 149]. Hereinafter, we re-
fer to this algorithm as the lower-level cutting-plane algorithm to distinguish it
from the upper-level cutting-plane algorithm (Algorithm 5.1). We will explain in
Section 5.3.4 how to derive dual solutions for cut generation from Problem (5.6).

We first use the cutting-plane representation [52, 103] to reformulate Prob-
lem (5.6) as follows:

f(z) = minimize
a,v,x

1

2γ
x>x+ a+ v (5.16a)

subject to v ≥ 1

1− β
∑
s∈J

ps(−(r(s))>Zx− a) (∀J ⊆ [S]), (5.16b)

Zx ∈ X , (5.16c)

where J denotes a subset of the scenario set [S]. We pick out the constraint (5.16b)
with J = [S] to define the initial relaxed feasible region:

G1(z) :=

(a, v,x) ∈ R× R× RN

∣∣∣∣∣∣∣
v ≥ 1

1− β
∑
s∈[S]

ps(−(r(s))>Zx− a),

v ≥ 0, Zx ∈ X

 .

(5.17)
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It is clear from Eq. (5.4b) that v ≥ 0 is a valid constraint. At the tth iteration (t ≥
1), our algorithm solves the following optimization problem:

minimize
a,v,x

1

2γ
x>x+ a+ v (5.18a)

subject to (a, v,x) ∈ Gt(z), (5.18b)

where Gt(z) is a relaxed feasible region at the tth iteration such that Gt(z) ⊆
G1(z). The objective value of Problem (5.18) is bounded below by the initial
feasible region (5.17). Therefore, unless Gt(z) = ∅, Problem (5.18) has an optimal
solution, which is denoted by (at, vt,xt). Note that Problem (5.18) contains only
N + 2 decision variables, which are independent of the number of scenarios.

After obtaining (at, vt,xt), we define a subset of scenarios

Jt ← {s ∈ [S] | −(r(s))>Zxt − at > 0} (5.19)

and calculate

v′t ←
1

1− β
∑
s∈Jt

ps(−(r(s))>Zxt − at). (5.20)

Because the revised solution (at, v
′
t,xt) satisfies all the constraints of Problem (5.16),

this solution gives an upper bound of f(z).
If v′t − vt ≤ δ with sufficiently small δ ≥ 0, we terminate the algorithm with

the δ-optimal solution (at, v
′
t,xt) to Problem (5.16). Otherwise, we update the

feasible region as follows:

Gt+1(z)← Gt(z)∩

{
(a, v,x) ∈ R× R× RN

∣∣∣∣∣ v ≥ 1

1− β
∑
s∈Jt

ps(−(r(s))>Zx− a)

}
.

(5.21)
Because vt < v′t, this update cuts off the solution (at, vt,xt).

Next, we set t ← t + 1 and solve Problem (5.18) again. The lower-level
cutting-plane algorithm is summarized by Algorithm 5.2. As shown in previous
studies [4, 80, 103, 149], Algorithm 5.2 terminates in a finite number of iterations
and outputs a δ-optimal solution (â, v̂, x̂) to the lower-level problem (5.6). This
algorithm is empirically much faster than solving Problem (5.7) based on the
lifting representation when the number of scenarios is very large.

Suppose that Algorithm 5.2 terminates at the T th iteration and outputs a
δ-optimal solution (â, v̂, x̂), where (aT , vT ,xT ) is an optimal solution to Prob-
lem (5.18) with t = T . The resultant family of scenario subsets Kδ(z) =
{[S],J1,J2, . . . ,JT } is also provided by Algorithm 5.2. We then obtain lower
and upper bounds on f(z) as follows:

f(z)− δ ≤ fδ(z) ≤ f(z) ≤ f̂δ(z) ≤ f(z) + δ, (5.22)

where

fδ(z) :=
1

2γ
x>TxT + aT + vT , f̂δ(z) :=

1

2γ
x̂>x̂+ â+ v̂.

5.3.4 Efficient cut generation for the upper-level problem

Now, we turn to the computation of dual solutions from primal solutions provided
by the lower-level cutting-plane algorithm (Algorithm 5.2). Such dual solutions
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Algorithm 5.2 Lower-level cutting-plane algorithm for solving Problem (5.16)

Step 0 (Initialization) Let δ ≥ 0 be a tolerance for optimality. Define the
feasible region G1(z) as in Eq. (5.17). Set t← 1.

Step 1 (Relaxed Problem) Solve Problem (5.18). Let (at, vt,xt) be an op-
timal solution.

Step 2 (Upper Bound) Calculate Jt and v′t as in Eqs. (5.19) and (5.20).

Step 3 (Termination Condition) If v′t−vt ≤ δ, terminate the algorithm with
the δ-optimal solution (â, v̂, x̂) := (at, v

′
t,xt) and the resultant family of

scenario subsets Kδ(z) := {[S],J1,J2, . . . ,Jt}.

Step 4 (Cut Generation) Update the feasible region as in Eq. (5.21).

Step 5 Set t← t+ 1 and return to Step 1.

are required for cut generation in the upper-level cutting-plane algorithm (Algo-
rithm 5.1).

Suppose that Algorithm 5.2 results in the following relaxed problem with
K = Kδ(z):

fK(z) := minimize
a,v,x

1

2γ
x>x+ a+ v (5.23a)

subject to v ≥ 1

1− β
∑
s∈J

ps(−(r(s))>Zx− a) (∀J ∈ K), (5.23b)

v ≥ 0, Zx ∈ X . (5.23c)

The following theorem derives the dual formulation of Problem (5.23).

Theorem 5.4. Suppose that Problem (5.23) is feasible with z ∈ {0, 1}N . Then,
the strong duality holds, and the dual formulation of Problem (5.23) can be written
as

fK(z) = maximize
α,ζ,λ,ω

− γ

2
z>(ω ◦ ω)− d>ζ + λ (5.24a)

subject to ω ≥
∑
J∈K

αJ
∑
s∈J

psr
(s) −C>ζ + λ1, (5.24b)∑

J∈K
αJ ≤ 1, (5.24c)∑

J∈K
αJ
∑
s∈J

ps = 1− β, (5.24d)

α ≥ 0, ζ ≥ 0, (5.24e)

where α := (αJ )J∈K, ζ ∈ RM , λ ∈ R, and ω ∈ RN are dual decision variables.

Proof. See Appendix A.4.

Note that |Kδ(z)| is usually very small even when there are many scenarios.
Therefore, Problem (5.24) can be solved efficiently regardless of the number of
scenarios.

From Theorem 5.4, we can redefine fK(z) to be the optimal objective value
of Problem (5.24) for z ∈ [0, 1]N as we did for f(z). Let ω?δ (z) be the optimal
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solution of ω to Problem (5.24) with K = Kδ(z). We then define

gδ(z) := −γ
2
ω?δ (z) ◦ ω?δ (z). (5.25)

Note that when δ > 0, fδ(z) and gδ(z) are not exactly the same as f(z) and
g(z), respectively. However, the following theorem verifies that fδ(z) and gδ(z)
still provide a linear underestimator of f(z).

Theorem 5.5. Suppose that ẑ ∈ {0, 1}N and Problem (5.23) is feasible with
(z,K) = (ẑ,Kδ(ẑ)). Then, it holds that for all z ∈ [0, 1]N ,

f(z) ≥ fδ(ẑ) + gδ(ẑ)>(z − ẑ). (5.26)

Proof. Because K = Kδ(ẑ), it follows from Lemma 5.3 that gδ(ẑ) is a subgradi-
ent of fK(z) at z = ẑ. It then holds that for all z ∈ [0, 1]N ,

f(z) ≥ fK(z) ≥ fK(ẑ) + gδ(ẑ)>(z − ẑ). (5.27)

This proof is completed because fδ(ẑ) = fK(ẑ) with K = Kδ(ẑ).

5.3.5 Bilevel cutting-plane algorithm

We are now ready to describe our bilevel cutting-plane algorithm for solving
the upper-level problem (5.5). We use the lower-level cutting-plane algorithm
(Algorithm 5.2) to accelerate the cut generation at Step 2 of Algorithm 5.1.

Suppose that (zt, θt) is an optimal solution to the relaxed problem (5.12) at
the tth iteration (t ≥ 1). We then solve the primal lower-level problem (5.16) with
z = zt by means of the lower-level cutting-plane algorithm (Algorithm 5.2), which
provides fδ(zt), f̂δ(zt), and Kδ(zt). We next solve the reduced version (5.24) of
the dual lower-level problem with (z,K) = (zt,Kδ(zt)), thereby yielding the
optimal solution ω?δ (zt). After that, we calculate gδ(zt) as in Eq. (5.25) and
update the feasible region as follows:

Ft+1 ← Ft ∩ {(z, θ) ∈ ZkN × R | θ ≥ fδ(zt) + gδ(zt)
>(z − zt)}. (5.28)

Our bilevel cutting-plane algorithm is summarized by Algorithm 5.3. Note
that at Step 2 (Algorithm 5.3), the portfolio x̂ is generated by Algorithm 5.2 at
each iteration.

Remark 5.3. Several algorithms (e.g., primal-dual interior-point methods [166]
and alternating direction methods of multipliers [35]) solve primal and dual prob-
lems simultaneously. By applying such algorithms in Step 1 of Algorithm 5.2, we
can skip solving the dual lower-level problem (5.24) at Step 2 of Algorithm 5.3.

Remark 5.4. Note that Step 1 of Algorithm 5.3 solves the MIO problem (5.12) at
each iteration; this amounts to a “multi-tree” implementation, where a branch-
and-bound algorithm is repeatedly executed from scratch. To improve computa-
tional efficiency, we can use the function of lazy constraint callback, which
is offered by modern optimization software (e.g., CPLEX or Gurobi). This func-
tion enables a “single-tree” implementation [132]; that is, cutting planes (5.28)
are dynamically generated during the process of the branch-and-bound algorithm.

To prove the convergence properties of Algorithm 5.3, we show the following
lemma.
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Algorithm 5.3 Bilevel cutting-plane algorithm for solving Problem (5.5)

Step 0 (Initialization) Let ε ≥ 0 and δ ≥ 0 be tolerances for optimality.
Define the feasible region F1 as in Eq. (5.11). Set t← 1 and UB0 ←∞.

Step 1 (Relaxed Problem) Solve Problem (5.12). Let (zt, θt) be an optimal
solution, and set LBt ← θt.

Step 2 (Cut Generation) Solve Problem (5.16) with z = zt by means of
Algorithm 5.2 to calculate fδ(zt), f̂δ(zt), and Kδ(zt).

(a) If Problem (5.16) is infeasible, set UBt ← UBt−1 and update the
feasible region as in Eq. (5.13).

(b) If Problem (5.16) is feasible, perform the following procedures:

i. Solve Problem (5.24) with (z,K) = (zt,Kδ(zt)) to calculate
ω?δ (zt).

ii. Calculate gδ(zt) as in Eq. (5.25).

iii. Update the feasible region as in Eq. (5.28).

iv. If f̂δ(zt) < UBt−1, set UBt ← f̂δ(zt) and (ẑ, θ̂) ← (zt, θt);
otherwise, set UBt ← UBt−1.

Step 3 (Termination Condition) If zu = zt for some u < t or UBt−LBt ≤ ε,
then terminate the algorithm with the max{δ, ε}-optimal solution ẑ.

Step 4 Set t← t+ 1 and return to Step 1.

Lemma 5.6. Suppose that {(zt, θt) | t = 1, 2, . . . , T} is a sequence of solutions
generated by Algorithm 5.3. If there exists u < T such that zu = zT , then zT is
a δ-optimal solution to Problem (5.5), meaning that

f? ≤ f(zT ) ≤ f? + δ.

Proof. Note that (zT , θT ) is contained in the feasible region (5.28) at t = u.
Because zu = zT , it follows that

θT ≥ fδ(zu) + gδ(zu)>(zT − zu) = fδ(zT ).

From Eqs. (5.14) and (5.22), we have

f? ≤ f(zT ), f(zT )− δ ≤ fδ(zT ).

Because θT ≤ f?, it follows that

f? ≤ f(zT ) ≤ fδ(zT ) + δ ≤ θT + δ ≤ f? + δ,

which completes the proof.

From Lemma 5.6, we can establish the convergence properties of Algorithm
5.3.

Theorem 5.7. Algorithm 5.3 terminates in a finite number of iterations and
outputs a max{δ, ε}-optimal solution.
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Proof. Because there are at most a finite number of solutions z ∈ ZkN , Algorithm
5.3 terminates in a finite number of iterations with zu = zt for some u < t. In
this case, a δ-optimal solution is found according to Lemma 5.6. If UBt−LBt ≤ ε
is fulfilled first, Algorithm 5.3 terminates with an ε-optimal solution.

5.4 Numerical experiments

In this section, we report numerical results to evaluate the efficiency of our al-
gorithms for solving cardinality-constrained mean-CVaR portfolio optimization
problems.

5.4.1 Problem instances

Table 5.1 lists the datasets used in our experiments, where N is the number of
assets. From the data library on the website of Kenneth R. French [59], we down-
loaded two historical datasets (i.e., ind49 and sbm100) of US stock returns. We
used monthly data from January 2010 to December 2019 to compute the mean
vector µ̂ and covariance matrix Σ̂ of asset returns. From Kaggle datasets [90], we
downloaded a dataset (i.e., sp200) of historical stock returns, where top 200 com-
panies were selected from the S&P 500 index according to market capitalization
as of December 2020. To compute µ̂ and Σ̂, we used daily data from February
8th, 2013 to February 7th, 2018. From the OR-Library [16, 41], we downloaded
three datasets (i.e., port1, port2, and port5) of µ̂ and Σ̂, which were multiplied
by 100 to be consistent with the other datasets.

Table 5.1: Dataset description

Abbr. N Original dataset

ind49 49 49 Industry Portfolios [59]
sbm100 100 100 Portfolios Formed on Size and Book-to-Market [59]
sp200 200 Top 200 companies in the S&P 500 index [90]
port1 31 port1 (Portfolio optimization: Single period) [16, 41]
port2 89 port2 (Portfolio Foptimization: Single period) [16, 41]
port5 225 port5 (Portfolio optimization: Single period) [16, 41]

For each dataset, we randomly generated S scenarios of asset returns {r(s) |
s ∈ [S]} from N(µ̂, Σ̂), a normal distribution with the parameters (µ̂, Σ̂). We set
the occurrence probability as ps = 1/S for all s ∈ [S]. The required return level
in Eq. (5.2) was set as µ̄ = 0.3µmin + 0.7µmax, where µmin and µmax were the
average returns of the bottom- and top-k assets, respectively; this setting ensures
feasibility of Problem (5.4). The probability level of CVaR was set as β = 0.9.

5.4.2 Methods for comparison

A standard MIO formulation of Problem (5.4) uses the big-M method, which
replaces the logical implication (5.4c) with

0 ≤ xn ≤ zn (∀n ∈ [N ]), (5.29)

which is valid because of the constraint x ∈ X in Problem (5.4).
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Another state-of-the-art MIO formulation uses the perspective reformula-
tion [74, 75]:

minimize
a,v,x,y,z

1

2γ

∑
n∈[N ]

yn + a+ v (5.30a)

subject to v ≥ 1

1− β
∑
s∈[S]

ps

[
−(r(s))>x− a

]
+
, (5.30b)

x2n ≤ ynzn, yn ≥ 0 (∀n ∈ [N ]), (5.30c)

x ∈ X , z ∈ ZkN , (5.30d)

where y := (y1, y2, . . . , yN )> is a vector of auxiliary decision variables. In recent
years, the perspective reformulation has been actively studied [56, 57, 79, 173].

We compare the computational performances of the following methods:

BigM solves Problem (5.4) after replacing Eq. (5.4c) with Eq. (5.29);

Persp solves Problem (5.30) as a mixed-integer second-order cone optimization
problem;

Lift replaces Eqs. (5.4b) and (5.30b) with the lifting representation (5.7b)–
(5.7d);

Cut applies the cutting-plane algorithm [4, 80, 103, 149] to Problems (5.4)
and (5.30);

CP solves Problem (5.5) by means of the upper-level cutting-plane algorithm
(Algorithm 5.1);

BCP solves Problem (5.5) by means of the bilevel cutting-plane algorithm (Al-
gorithm 5.3);

BCPc solves Problem (5.5) by means of the bilevel cutting-plane algorithm
(Algorithm 5.3), where the callback function is employed in implementation.

All experiments were performed on a Windows 10 PC with an Intel Core i7-
4790 CPU (3.6.0GHz) and 16 GB of memory. All methods were implemented in
Python 3.7 with Gurobi Optimizer 8.1.11. We employed the primal-dual interior-
point method offered by Gurobi at Step 1 of Algorithm 5.2. We also tested
the performance of an alternating direction method of multipliers, but it made
Algorithm 5.2 slower because of numerical inaccuracies.

We set ε = δ = 10−5 for tolerances for optimality. Except for BCP, we used
lazy constraint callback for adding cutting planes during the branch-and-
bound procedure.

The computation of each method was terminated if it did not finish by itself
within 3600 s. In these cases, the results obtained within 3600 s were taken as
the final outcome.

5.4.3 Evaluation metrics

The row labels used in the tables of experimental results are defined as follows:

Solved number of problem instances solved to optimality within 3600 s;

1The source code is available at
https://github.com/KenKoba2119/cardinality-constrained_cvar_optimization.
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Time computation time in seconds;

Obj objective value of the obtained best feasible solution;

Gap(%) absolute difference between lower and upper bounds on the optimal
objective value divided by the upper bound;

#Nodes number of nodes explored in the branch-and-bound algorithm;

#Cuts number of upper-level cutting planes generated.

Note that the best values of Time are indicated in bold for each instance, and
those of Obj and Gap(%) are also indicated in bold for only the sp200, port2,
and port5 datasets.

To aggregate results of “Time,” “#Nodes,” and “#Cuts” in Tables 5.2 and 5.5
and Figure 5.1, we use the shifted geometric mean, which is used in Chapter 2.
Recall the shifted geometric mean of values x1, x2, . . . , xN is defined as ∏

n∈[N ]

(xn + s)

1/N

− s,

where s is the shift parameter. Following Achterberg [1] and Mittlemann [77],
we set s = 10 for “Time.” We respectively set s to 100 and 10 for “#Nodes” and
“#Cuts” in proportion to their scale. We use the arithmetic mean for “Gap(%).”

5.4.4 Results for various numbers of scenarios

We evaluate the computational performance of each method with the number
of scenarios S ∈ {103, 104, 105}. Here, we set the parameters k = 10 for the
cardinality constraint and γ = 10/

√
N for the `2-regularization term. Table 5.2

summarizes numerical results for the six datasets (Table 5.1), and Tables 5.3 and
5.4 give the numerical results for each dataset.

First, we focus on the results of our cutting-plane algorithms (i.e., CP, BCP,
and BCPc). BCP and BCPc were faster than CP for S ≥ 104 (Table 5.2). In
the case of the ind49 dataset (Table 5.3), for example, although CP was the
fastest among the three methods for S = 103, BCP and BCPc were much faster
than CP for S ≥ 104. These results suggest the effectiveness of the lower-level
cutting-plane algorithm, which is used by BCP and BCPc to solve the lower-level
problem efficiently regardless of the number of scenarios.

The differences in computation time between BCP and BCPs were relatively
small (Table 5.2). For the port2 dataset (Table 5.4), BCP and BCPc failed to
complete the computations within 3600 s even when S = 103; however, BCPc
found solutions of better quality than did BCP. BCP provides at most one feasi-
ble solution at every iteration t, whereas BCPc explores feasible solutions more
frequently through the callback procedure. For this reason, BCPc is capable of
yielding solutions of good quality even if the computation is terminated due to
the time limit.

Next, we compare our bilevel cutting-plane algorithms (i.e., BCP and BCPc)
with the MIO formulations (i.e., BigM and Persp). Persp+Lift was the fastest
among the six methods for S ≤ 104, whereas BCP and BCPc were faster than
the other methods for S = 105 (Table 5.2). Indeed, for the sbm100 dataset with
S = 105 (Table 5.3), BCP was much faster than the four methods related to
BigM and Persp. Moreover, for the port5 dataset with S = 105 (Table 5.4), only
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BCP and BCPc finished solving the problem within 3600 s, which is a remarkable
result.

When S = 105, Persp+Lift finished solving only one problem instance, and
its computation time was much longer than those of BCP and BCPc (Table 5.2).
A main reason for this is that Persp+Lift solves at each node a second-order
cone optimization problem whose problem size depends on S. In the case of
the port5 dataset with S = 103 (Table 5.4), Persp+Cut returned an incorrect
optimal objective value because of numerical instability.

According to the convergence properties of the sample average approximation,
a huge number of scenarios are required for calculating CVaR accurately [150].
Even with only 15 investable assets, it was necessary to have at least 5000 sce-
narios to ensure the stability of the CVaR optimization model [91]. These facts
support the practicality of our bilevel cutting-plane algorithm, which has the
potential to deal with many scenarios as shown in Tables 5.2–5.4.

5.4.5 Sensitivity to hyperparameter values

We examine the sensitivity of the computational performance to the hyperpa-
rameters k for the cardinality constraint and γ for the `2-regularization term.
Here, we focus on the four datasets, namely, ind49, sbm100, port1, and port5.

Sensitivity to the cardinality parameter k

Table 5.5 summarizes numerical results for the four datasets with the cardinality
parameter k ∈ {5, 10, 15}. Here, we set γ = 10/

√
N for the `2-regularization term

and S = 105 as the number of scenarios. The numerical results for each dataset
are given in Appendix B (Table B.1).

Table 5.5 shows that when k = 5, although only Persp+Cut finished solving
all the problem instances, the relative gaps of BCP and BCPc were very small
(i.e., 0.36 and 1.68), which means that these methods found solutions of good
quality. When k ∈ {10, 15}, both BCP and BCPc were faster than the other
methods and solved all the problem instances to optimality within 3600 s.

BCP and BCPc tended to be faster with larger k. Here, #Cuts was also much
smaller for k = 15 than for k = 5, which is part of the reason why BCP and BCPc
performed better with larger k.

Sensitivity to the regularization parameter γ

Figure 5.1 summarizes results of Time, GAP(%), #Nodes, and #Cuts for the four
datasets with the regularization parameter γ ∈ {100.2i/

√
N | i = 0, 1, . . . , 20}.

Here, we set k = 10 for the cardinality constraint and S = 105 as the number
of scenarios. The numerical results for each dataset are shown in Appendix B
(Figures B.1–B.4).

We can see from Figure 5.1 that the performances of BCP and BCPc were
not greatly affected by γ, and their computation times were consistently shorter
than the other methods for every γ. Additionally, BCP and BCPc tended to be
faster with smaller γ.

We next analyze the impact of the `2-regularization term on the objective
value. Suppose that (a?(γ), v?(γ),x?(γ), z?(γ)) is an optimal solution computed
by the bilelevel cutting-plane algorithm to Problem (5.4). Figure 5.2 shows
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Figure 5.1: Summary of numerical results for the three datasets (port1, ind49,
and sbm100) with (S, k) = (105, 10) for γ ∈ {100.2i/

√
N | i = 0, 1, . . . , 20}

“Reg + CVaR” and “CVaR” defined as

1

2γ
x?(γ)>x?(γ)︸ ︷︷ ︸

Reg

+ a?(γ) + v?(γ)︸ ︷︷ ︸
CVaR

(5.31)

with the regularization parameter γ ∈ {100.2i/
√
N | i = 0, 1, . . . , 20}. These

values were averaged over the three datasets (port1, ind49, sbm100), where
port5 was omitted because most of the methods failed to find an optimal solution
due to the time limit. The numerical results for each dataset are shown in B
(Figure B.5).

We find from Figure 5.2 that the objective value (i.e., Reg + CVaR) was close
to CVaR when γ ≥ 102/

√
N . In addition, CVaR almost converged to its minimal

value when γ ≥ 10/
√
N . This result suggests that we can obtain a sufficiently

good solution minimizing CVaR with γ ≥ 10/
√
N .

5.5 Conclusion

In this chapter, we dealt with mean-CVaR portfolio optimization problems based
on the sample average approximation with the cardinality constraint. It is very
hard to exactly solve the problem when it involves a large number of investable
assets. In addition, accurate approximation of CVaR based on the sample av-
erage approximation requires sufficiently many scenarios, which decreases com-
putational efficiency. To overcome these challenges, we proposed a specialized
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Figure 5.2: Summary of the objective value (5.31) for the three datasets (port1,
ind49, and sbm100) with (S, k) = (105, 10) for γ ∈ {100.2i/

√
N | i = 0, 1, . . . , 20}

cutting-plane algorithm named the bilevel cutting-plane algorithm for solving
the cardinality-constrained mean-CVaR portfolio optimization problem. We ex-
tended the cutting-plane algorithm discussed in Chapter 4 so that it incorporates
another cutting-plane algorithm that efficiently minimizes CVaR. We also proved
that our algorithms give a solution with guaranteed global optimality in a finite
number of iterations.

The computational results indicate that our cutting-plane algorithms were
very effective especially when the number of scenarios was large. Remarkably,
our bilevel cutting-plane algorithm attained an optimal solution within 3600 s to a
problem involving 225 assets and 100,000 scenarios. Furthermore, our algorithms
performed well for most of the hyperparameter values.
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Table 5.2: Summary of numerical results for the six datasets (Table 5.1) with
(k, γ) = (10, 10/

√
N) for S ∈ {103, 104, 105}

S
BigM Persp

CP BCP BCPc
Lift Cut Lift Cut

103 Solved 6 5 6 4 5 5 5
Time 6.8 107.6 5.5 109.6 79.2 116.7 71.0

Gap(%) 0.00 3.19 0.00 3.58 0.73 1.80 1.15
#Nodes 334.1 16351.5 106.1 12296.4 2234.6 — 1305.6

#Cuts — — — — 322.3 147.4 166.1

104 Solved 6 4 6 4 4 4 4
Time 106.6 207.7 89.1 185.4 338.1 154.6 172.0

Gap(%) 0.00 2.61 0.00 2.02 2.49 1.97 1.34
#Nodes 546.3 20097.8 228.3 13973.2 1507.4 — 1378.5

#Cuts — — — — 216.8 96.8 165.2

105 Solved 3 3 1 3 3 4 4
Time 1610.4 650.0 3245.9 535.7 1265.0 370.8 497.3

Gap(%) 21.09 5.30 2.95 5.09 4.77 1.88 3.05
#Nodes 53.4 9265.2 9.2 6763.1 493.9 — 476.9

#Cuts — — — — 91.4 57.5 76.3
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Table 5.3: Numerical results for the datasets [59, 90] with (k, γ) = (10, 10/
√
N)

for S ∈ {103, 104, 105}

Data N S
BigM Persp

CP BCP BCPc

Lift Cut Lift Cut

ind49 49 103 Time 1.8 4.8 2.3 11.8 6.1 7.3 8.6
Obj 3.095 3.095 3.095 3.095 3.095 3.095 3.095

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 16 3792 23 4506 211 — 33
#Cuts — — — — 76 40 45

104 Time 18.0 21.2 26.0 26.2 47.1 5.2 8.3
Obj 3.343 3.343 3.343 3.343 3.343 3.343 3.343

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 1 3357 1 3815 89 — 0
#Cuts — — — — 47 1 7

105 Time 709.8 125.0 >3600 220.0 662.2 43.1 103.6
Obj 3.379 3.379 3.380 3.379 3.379 3.379 3.379

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 31 4101 >1 3489 250 — 0
#Cuts — — — — 68 1 12

sbm100 100 103 Time 3.3 1.1 3.7 4.2 4.9 0.6 0.8
Obj 4.337 4.337 4.337 4.337 4.337 4.337 4.337

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 1 396 1 4626 14 — 0
#Cuts — — — — 21 1 7

104 Time 39.1 8.1 45.0 9.3 51.1 3.3 4.0
Obj 4.397 4.397 4.397 4.397 4.397 4.397 4.397

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 1 1820 1 3274 58 — 0
#Cuts — — — — 20 1 7

105 Time 1107.1 65.1 >3600 84.6 482.7 27.6 36.6
Obj 4.364 4.364 4.364 4.364 4.364 4.364 4.364

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 1 412 >1 4676 10 — 0
#Cuts — — — — 17 1 7

sp200 200 103 Time 30.9 1379.0 12.5 >3600 277.1 3441.1 226.6
Obj 1.190 1.190 1.190 1.274 1.190 1.190 1.190

Gap(%) 0.00 0.00 0.00 6.88 0.00 0.00 0.00
#Nodes 7790 323767 645 >87982 20663 — 20670
#Cuts — — — — 899 757 953

104 Time 1010.7 >3600 250.8 >3600 >3600 >3600 >3600
Obj 1.267 1.275 1.267 1.321 1.285 1.273 1.267

Gap(%) 0.00 2.51 0.00 5.20 5.10 1.20 1.53
#Nodes 22932 >968714 1052 >100939 >21183 >— >77070
#Cuts — — — — >1122 >771 >2941

105 Time >3600 >3600 >3600 >3600 >3600 >3600 >3600
Obj 1.499 1.322 1.326 1.302 1.331 1.282 1.282

Gap(%) 17.48 9.20 8.12 8.47 18.21 1.97 4.73
#Nodes >68 >59214 >1 >24933 >1873 — >6095
#Cuts — — — — >145 >533 >406
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Table 5.4: Numerical results for the datasets [16, 41] with (k, γ) = (10, 10/
√
N)

for S ∈ {103, 104, 105}

Data N S
BigM Persp

CP BCP BCPc

Lift Cut Lift Cut

port1 31 103 Time 1.1 2.3 1.5 4.3 3.0 0.8 1.7
Obj 4.404 4.404 4.404 4.404 4.404 4.404 4.404

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 1 2301 1 2494 58 — 0
#Cuts — — — — 36 1 7

104 Time 11.7 11.4 24.0 17.7 18.0 4.8 8.2
Obj 4.374 4.374 4.374 4.374 4.374 4.374 4.374

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 1 850 1 3005 46 — 0
#Cuts — — — — 17 1 8

105 Time 468.6 163.3 1933.2 15.8 265.8 39.5 64.6
Obj 4.264 4.264 4.264 4.264 4.264 4.264 4.264

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 1 2433 1 253 39 — 0
#Cuts — — — — 25 1 7

port2 89 103 Time 7.4 >3600 7.5 >3600 >3600 >3600 >3600
Obj 1.773 2.119 1.773 2.002 1.833 2.022 1.773

Gap(%) 0.00 19.13 0.00 14.61 8.52 10.80 6.90
#Nodes 1432 >287,645 577 >152,730 >216,174 — >36,644
#Cuts — — — — >15,007 >7190 >3899

104 Time 311.2 >3600 429.0 >3600 >3600 >3600 >3600
Obj 1.938 2.054 1.938 1.981 2.009 2.181 1.943

Gap(%) 0.00 13.17 0.00 6.90 9.83 10.61 6.53
#Nodes 5715 >261,628 2429 >204,649 >22,111 — >18,077
#Cuts — — — — >3654 >2695 >2548

105 Time >3600 >3600 >3600 >3600 >3600 >3600 >3600
Obj 2.030 2.140 2.039 2.074 1.988 2.136 1.950

Gap(%) 9.03 18.61 9.17 17.76 8.35 9.30 13.55
#Nodes >481 >99,640 >1 >40,749 >1756 — >927
#Cuts — — — — >406 >350 >285

port5 225 103 Time 8.3 250.0 7.9 40.6 144.8 157.8 130.3
Obj 2.933 2.933 2.933 2.650† 2.933 2.933 2.933

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 368 45,800 21 4674 7982 — 7499
#Cuts — — — — 775 446 489

104 Time 246.1 668.1 113.0 211.4 1387.1 500.1 587.5
Obj 3.147 3.147 3.147 3.147 3.147 3.147 3.147

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 428 42,363 317 9056 8269 — 7347
#Cuts — — — — 701 517 727

105 Time >3600 >3600 >3600 >3600 >3600 2351.6 3300.8
Obj ∞ 3.246 3.143 3.276 3.173 3.138 3.138

Gap(%) 100.00 3.98 0.44 4.29 2.05 0.00 0.00
#Nodes >0 >20,833 >61 >16,790 >2140 — 5697
#Cuts — — — — >219 352 519

† Gurobi returned an incorrect optimal objective value because of numerical instability.
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Table 5.5: Summary of numerical results for the four datasets (ind49, sbm100,
port1, and port5) with (S, γ) = (105, 10/

√
N) for k ∈ {5, 10, 15}

k
BigM Persp

CP BCP BCPc
Lift Cut Lift Cut

5 Solved 2 2 1 4 2 2 2
Time 1863.3 795.3 3422.7 766.0 1902.8 789.4 905.2

Gap(%) 50.00 4.36 7.12 0.00 4.26 0.36 1.68
#Nodes 36.9 8430.2 35.2 7914.4 968.1 — 1817.6

#Cuts — — — — 167.7 166.8 224.8

10 Solved 2 2 0 2 2 4 4
Time 1789.2 592.9 3600.0 719.7 1431.3 315.0 480.8

Gap(%) 50.00 1.99 0.22 2.14 1.02 0.00 0.00
#Nodes 7.3 5440.8 27.5 8262.3 563.0 — 661.4

#Cuts — — — — 92.5 53.1 91.1

15 Solved 2 4 1 4 2 4 4
Time 1662.2 305.9 3558.8 268.0 1268.8 53.5 88.1

Gap(%) 50.00 0.00 0.00 0.00 0.98 0.00 0.00
#Nodes 0.5 2539.6 1.0 3769.4 494.1 — 0.0

#Cuts — — — — 76.5 1.0 8.9
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Chapter 6

Conclusion and Prospects

Now let us conclude this thesis. Specifically, we will summarize the contributions
described herein and offer some possible future directions for research.

6.1 Summary

This thesis focused on solving mixed-integer semidefinite optimization problems.
The mixed-integer semidefinite optimization problem involves minimizing or max-
imizing a linear objective function subject to constraints whereby a given ma-
trix formed from the decision variables is positive semidefinite, and some of the
variables are integer-valued. Since this problem includes nonlinearity and dis-
creteness, various practical optimization problems can be formulated as a mixed-
integer semidefinite optimization problem.

In this thesis, we devised efficient cutting-plane algorithms for solving mixed-
integer semidefinite optimization problems. First, we proposed a general-purpose
cutting-plane algorithm for solving the standard form of mixed-integer semidefi-
nite optimization problems. This method allows us to handle the general mixed-
integer semidefinite optimization problem with existing state-of-the-art mixed-
integer optimization solvers such as Gurobi and CPLEX. Second, we devised
specialized cutting-plane algorithms for some important applications of mixed-
integer semidefinite optimization. In statistics and financial engineering, we
sometimes encounter large-sized mixed-integer semidefinite problem instances,
and such problems are difficult to solve even with general-purpose algorithms.
We focused on a variable selection and portfolio selection problem formulated
as mixed-integer semidefinite problems and proposed efficient cutting-plane algo-
rithms that exploit the structures of these problems.

In Chapter 2, we described a general-purpose framework for solving the stan-
dard form of mixed-integer semidefinite optimization problems. First, we for-
mulated a cutting-plane algorithm to solve mixed-integer semidefinite optimiza-
tion problems and proved its convergence properties. Then, we developed a
branch-and-cut algorithm where cutting planes are added dynamically to the
relaxed mixed-integer linear optimization problem during a branch-and-bound
procedure. The experimental results confirmed that our branch-and-cut algo-
rithm could solve three different mixed-integer semidefinite optimization prob-
lems: random instances, computing restricted isometry constants, and robust
truss topology design. Our algorithm is based on the branch-and-bound proce-
dure for solving mixed-integer semidefinite optimization problems, so it can use
a warm-starting strategy to solve a series of continuous relaxation problems ef-
ficiently. Moreover, our algorithm does not solve any semidefinite optimization
problems, which makes the mixed-integer semidefinite optimization computation
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very stable and practical.
In Chapter 3, we addressed the problem of selecting the best subset of ex-

planatory variables subject to an upper bound on the condition number for elim-
inating multicollinearity from linear regression models. The first contribution of
this study is a novel computational framework for eliminating multicollinearity
based on the mixed-integer semidefinite optimization formulation. This frame-
work reformulates the subset selection problem as a single mixed-integer semidef-
inite optimization problem. The second contribution is the establishment of a
high-performance cutting-plane algorithm. In this algorithm, we generate strong
cutting planes with a heuristic search and reduce the number of relaxation prob-
lems to be solved. While numerical experiments show that our mixed-integer
semidefinite optimization formulation can only be applied to small-sized instances
at present, this chapter provides a new statistical application of mixed-integer
semidefinite optimization formulation. Moreover, we found that our cutting-
plane algorithm frequently provided a better subset of variables than did the
common local search algorithms.

In Chapter 4, we studied moment-based distributionally robust portfolio op-
timization problems with a cardinality constraint. Because of the discreteness of
the cardinality constraint, this problem is formulated as a mixed-integer semidef-
inite optimization problem, which is hard to solve exactly when the number of
investable assets is large. We reformulated the problem as a bilevel optimization
problem and devised a cutting-plane algorithm for solving the upper-level prob-
lem. In addition, we applied the technique of positive semidefinite matrix com-
pletion to the lower-level problem in order to efficiently generate cutting planes.
The computational results indicate that our cutting-plane algorithm is more ef-
fective than the existing general-purpose mixed-integer semidefinite optimization
solver, especially when the number of investable assets is large. In addition, the
out-of-sample investment performances given by the cardinality-constrained dis-
tributionally robust model were better than those of the cardinality-constrained
mean-variance model.

Chapter 5 dealt with cardinality-constrained mean-CVaR portfolio optimiza-
tion problems, and we extended the cutting-plane algorithm for the distributionally-
robust portfolio optimization problem discussed in Chapter 4. This model is
formulated as a mixed-integer linear optimization problem, which is a special
case of mixed-integer semidefinite optimization problems. Since its problem size
depends not only on the number of investable assets but also on the number
of asset return scenarios, the computational efficiency decreases when the num-
ber of scenarios is large. To overcome this challenge, we propose a specialized
cutting-plane algorithm named the bilevel cutting-plane algorithm for solving
the cardinality-constrained mean-CVaR portfolio optimization problem. We ex-
tended the cutting-plane algorithm discussed in Chapter 4 so that it incorporates
another cutting-plane algorithm that efficiently minimizes CVaR. The computa-
tional results indicate that our cutting-plane algorithms are very effective, espe-
cially when the number of scenarios is large.

6.2 Future directions

The results in this thesis suggest that the cutting-plane algorithms could be a
powerful tool for solving mixed-integer semidefinite optimization problems. How-
ever, there is still much room for research on mixed-integer semidefinite optimiza-
tion.
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While our general-purpose algorithms delivered better computational perfor-
mances than the existing methods for several problem instances in Chapter 2, our
algorithms are not always faster for general problem instances. Thus, we have
to continue improving the efficiency of our algorithms to make mixed-integer
semidefinite optimization more practical. In Chapters 3 to 5, we devised spe-
cialized cutting-plane algorithms that exploit the individual problems’ structure
to improve the computational efficiency. In particular, we proposed to gener-
ate strong cutting planes with a heuristic search for subset selection problems in
Chapter 3. Also, we used the technique of positive semidefinite matrix completion
to calculate cutting planes efficiently in Chapter 4. To develop more efficient and
practical general-purpose algorithms, these techniques should be incorporated
into our general-purpose algorithms for mixed-integer semidefinite optimization.
Thus, we would be interested in characterizing whether these specialized tech-
niques can be applied to a given mixed-integer semidefinite optimization problem.

Of course, it also makes sense to extend the specialized cutting-plane algo-
rithms not only to mixed-integer semidefinite optimization problems but also to
other problems appearing in the corresponding fields. In the case of subset se-
lection, it is interesting to extend the cutting-plane algorithm so that it can deal
with other variable selection problems for statistics and machine learning fields.
For portfolio optimization, various practical and distributionally robust risk mea-
sures have been proposed. We expect that our cutting-plane algorithm can be
extended to handle such risk measures.

While mixed-integer semidefinite optimization has the potential to be applied
to a wide range of practical decision-making problems, vigorous research has just
started. We will continue refining both general-purpose and specialized algo-
rithms for mixed-integer semidefinite optimization, and expand the horizons of
its applications. As our modern society is becoming more and more complex, we
hope that this work will be a new avenue for solving some of its fundamental
problems.
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C. Puchert, D. Rehfeldt, F. Schlösser, F. Serrano, Y. Shinano, J. M. Vier-
nickel, S. Vigerske, D. Weninger, J. T. Witt, and J. Witzig. The SCIP
optimization suite 5.0. Technical Report 17–61, Zuse Institute Berlin, 2017.

[64] J.-L. Goffin and J.-P. Vial. Convex nondifferentiable optimization: A survey
focused on the analytic center cutting plane method. Optimization Methods
and Software, 17(5):805–867, 2002.

[65] J. Goh and M. Sim. Distributionally robust optimization and its tractable
approximations. Operations Research, 58(4-part-1):902–917, 2010.

[66] D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Mathe-
matics of Operations Research, 28(1):1–38, 2003.

[67] R. E. Gomory. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Mathematical Society, 64(5):275–279,
1958.

[68] J. Gondzio. Warm start of the primal-dual method applied in the cutting-
plane scheme. Mathematical Programming, 83(1-3):125–143, 1998.

[69] J. Gotoh, M. J. Kim, and A. E. B. Lim. Calibration of distributionally
robust empirical optimization models. Operations Research, 69(5):1630–
1650, 2021.

[70] J. Gotoh, K. Shinozaki, and A. Takeda. Robust portfolio techniques for
mitigating the fragility of CVaR minimization and generalization to coher-
ent risk measures. Quantitative Finance, 13(10):1621–1635, 2013.

[71] J. Gotoh and A. Takeda. On the role of norm constraints in portfolio
selection. Computational Management Science, 8(4):323–353, 2011.

[72] C. Gregory, K. Darby-Dowman, and G. Mitra. Robust optimization and
portfolio selection: The cost of robustness. European Journal of Operational
Research, 212(2):417–428, 2011.

[73] I. E. Grossmann. Review of nonlinear mixed-integer and disjunctive pro-
gramming techniques. Optimization and Engineering, 3(3):227–252, 2002.
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[75] O. Günlük and J. Linderoth. Perspective reformulation and applications.
In Mixed Integer Nonlinear Programming, pages 61–89. Springer, 2011.

87



[76] R. Gunst and J. Webster. Regression analysis and problems of multi-
collinearity. Communications in Statistics, 4(3):277–292, 1975.

[77] H. Mittelmann. Benchmarks for optimization software. http://plato.

asu.edu/bench.html, Accessed 6 Junuary 2021.

[78] A. S. Hadi and R. F. Ling. Some cautionary notes on the use of principal
components regression. The American Statistician, 52(1):15, 1998.
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Appendix A

Proofs

In this chapter, we give the complete proofs of Theorem 4.2, Lemma 4.6, Theo-
rem 5.1, and Theorem 5.4.

A.1 Proof of Theorem 4.2

The Lagrange function of Problem (4.12) is expressed as

L(x,P ,Q,p, q, r, s;α,B,β,η,Λ,λ, ν, π,ρ)

:=
1

2γ
x>x+ (κ2Σ̂− µ̂µ̂>) •Q+ r + Σ̂ • P − 2µ̂>p+ κ1s

−α>(p+ q/2 +Qµ̂)

−
∑
`∈[L]

(
B(`) β(`)(
β(`)

)>
η(`)

)
•
(

Q q/2 + a(`)Zx/2

(q/2 + a(`)Zx/2)> r + b(`)

)

−
(

Λ λ
λ> ν

)
•
(
P p
p> s

)
− π(1>Zx− 1)− ρ>Zx,

where α ∈ RN ,

(
B(`) β(`)(
β(`)

)>
η(`)

)
� O (` ∈ [L]),

(
Λ λ
λ> ν

)
� O, π ∈ R, and

ρ ≥ 0 are Lagrange multipliers. The Lagrange dual of Problem (4.12) is then
posed as

max
α,B,β,η,Λ,λ,ν,π,ρ

min
x,P ,Q,p,q,r,s

L(x,P ,Q,p, q, r, s;α,B,β,η,Λ,λ, ν, π,ρ). (A.1)

Now, let us focus on the inner minimization problem:

min
x,P ,Q,p,q,r,s

L(x,P ,Q,p, q, r, s;α,B,β,η,Λ,λ, ν, π,ρ). (A.2)

Note that Problem (A.2) is an unconstrained convex quadratic optimization prob-
lem and its objective function is linear in (P ,Q,p, q, r, s). Since Problem (A.2)
must be bounded, the Lagrange multipliers are required to satisfy the following
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conditions:

∇PL = Σ̂−Λ = O, (A.3)

∇QL = κ2Σ̂− µ̂µ̂> −
1

2
(µ̂α> +αµ̂>)−

∑
`∈[L]

B(`) = O, (A.4)

∇pL = −2µ̂−α− 2λ = 0, (A.5)

∇qL = −1

2
α−

∑
`∈[L]

β(`) = 0, (A.6)

∇rL = 1−
∑
`∈[L]

η(`) = 0, (A.7)

∇sL = κ1 − ν = 0. (A.8)

Also, the following optimality condition should be satisfied:

∇xL =
1

γ
x−Z

∑
`∈[L]

a(`)β(`) + π1 + ρ

 = 0. (A.9)

According to the conditions (A.3)–(A.9), the optimal objective value of Problem
(A.2) is calculated as

− γ

2
ω>Z2ω −

∑
`∈[L]

η(`)b(`) + π, (A.10)

where
ω =

∑
`∈[L]

a(`)β(`) + π1 + ρ.

Since z ∈ {0, 1}N , it holds that ω>Z2ω = z>(ω ◦ ω). Thus, the Lagrange
dual (A.1) of Problem (4.12) is formulated as follows:

maximize
ω,α,B,β,η,Λ,λ,ν,π,ρ

− γ

2
z>(ω ◦ ω)−

∑
`∈[L]

η(`)b(`) + π (A.11a)

subject to ω =
∑
`∈[L]

a(`)β(`) + π1 + ρ, (A.11b)

Σ̂−Λ = O, (A.11c)

κ2Σ̂− µ̂µ̂> −
1

2
(µ̂α> +αµ̂>)−

∑
`∈[L]

B(`) = O, (A.11d)

− 2µ̂−α− 2λ = 0, (A.11e)

− 1

2
α−

∑
`∈[L]

β(`) = 0, (A.11f)

1−
∑
`∈[L]

η(`) = 0, (A.11g)

κ1 − ν = 0, (A.11h)(
B(`) β(`)(
β(`)

)>
η(`)

)
� O (` ∈ [L]), (A.11i)(

Λ λ
λ> ν

)
� O, (A.11j)

ρ ≥ 0. (A.11k)
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We then delete ρ, Λ α, and ν from Problem (A.11) by substituting Eqs. (A.11b),
(A.11c), (A.11f), and (A.11h) into other constraints. We now obtain the desired
formulation (4.13).

To prove the strong duality, we next show that both the primal problem (4.12)
and the dual problem (4.13) are strictly feasible [7]. Let us set x = z/(1>z),
q = 0, r > −min`∈[L]{b(`)}, and s > 0 in the primal problem (4.12). Then, there
exists Q satisfying(

Q q/2 + a(`)Zx/2

(q/2 + a(`)Zx/2)> r + b(`)

)
� O (∀` ∈ [L]).

We next set p = −Qµ̂, and then there exists P satisfying(
P p
p> s

)
� O,

which implies that the primal problem (4.12) is strictly feasible.
For the dual problem (4.13), we set λ = 0 and (B,β,η) as

B(`) =
1

L
(κ2Σ̂ + µ̂µ̂>), β(`) =

1

L
µ̂, η(`) =

1

L
(∀` ∈ [L])

such that the constraints (4.13c)–(4.13e) are satisfied. We next set ω =
∑

`∈[L] a
(`)β(`)+

π1. As for the constraint (4.13f), we have(
B(`) β(`)(
β(`)

)>
η(`)

)
=

1

L

(
κ2Σ̂ + µ̂µ̂> µ̂

µ̂> 1

)
� O (∀` ∈ [L]), (A.12)

because the Schur complement is given from Assumption 4.1 by

1

L

(
κ2Σ̂ + µ̂µ̂> − µ̂µ̂>

)
=
κ2
L

Σ̂ � O. (A.13)

Also for the constraint (4.13g), Assumption 4.1 ensures that(
Σ̂ λ
λ> κ1

)
=

(
Σ̂ 0
0 κ1

)
� O, (A.14)

which shows that the dual problem (4.13) is strictly feasible.

A.2 Proof of Lemma 4.6

For notational simplicity, we assume η(`) > 0 for all ` ∈ [L] without loss of
generality. As in the proof of Theorem 4.8, we use the notations (4.29) and
(4.30) under the assumption (4.28). We define φ(`) := β̄(`) − η(`)µ̂ for ` ∈ [L],
and due to the definition (4.22), we have

φ
(`)
1 = β

(`)
1 − η

(`)µ̂1, (A.15)

φ
(`)
2 =

(
Σ̂21(Σ̂11)

−1(β
(`)
1 − η

(`)µ̂1) + η(`)µ̂2

)
− η(`)µ̂2 = Ψφ

(`)
1 , (A.16)

where
Ψ := Σ̂21(Σ̂11)

−1. (A.17)
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Substituting them into the right-hand side of Eq. (4.23), we obtain∑
`∈[L]

1

η(`)
(β̄(`) − η(`)µ̂)(β̄(`) − η(`)µ̂)>

=
∑
`∈[L]

1

η(`)

(
φ
(`)
1 (φ

(`)
1 )> φ

(`)
1 (φ

(`)
2 )>

φ
(`)
2 (φ

(`)
1 )> φ

(`)
2 (φ

(`)
2 )>

)
=

(
Φ ΦΨ>

ΨΦ ΨΦΨ>

)
, (A.18)

where

Φ :=
∑
`∈[L]

1

η(`)
φ
(`)
1 (φ

(`)
1 )>. (A.19)

From the constraint (4.21f), we can use the following Schur complement prop-
erty (see, e.g., Section A.5.5 [36]): B

(`)
11 β

(`)
1(

β
(`)
1

)>
η(`)

 � O ⇒ B
(`)
11 �

1

η(`)
β
(`)
1

(
β
(`)
1

)>
(∀` ∈ [L]). (A.20)

It then follows that

Φ =
∑
`∈[L]

1

η(`)
β
(`)
1 (β

(`)
1 )> −

∑
`∈[L]

β
(`)
1

 µ̂>1 − µ̂1

∑
`∈[L]

β
(`)
1

> + µ̂1µ̂
>
1

∵ Eqs. (4.21e), (A.15), (A.19)

�
∑
`∈[L]

B
(`)
11 + µ̂1µ̂

>
1 − µ̂1

∑
`∈[L]

β
(`)
1

> −
∑
`∈[L]

β
(`)
1

 µ̂>1 ∵ Eq. (A.20)

= κ2Σ̂11. ∵ Eq. (4.21c) (A.21)

From Assumption 4.1, we can also use the following Schur complement prop-
erty (see, e.g., Section A.5.5 [36]):(

Σ̂11 Σ̂>21
Σ̂21 Σ̂22

)
� O ⇒ Σ̂22 − Σ̂21(Σ̂11)

−1Σ̂>21 � O. (A.22)

We now obtain the desired result:∑
`∈[L]

1

η(`)
(β̄(`) − η(`)µ̂)(β̄(`) − η(`)µ̂)> =

(
Φ ΦΨ>

ΨΦ ΨΦΨ>

)
∵ Eq. (A.18)

� κ2
(

Σ̂11 Σ̂>21
Σ̂21 Σ̂21(Σ̂11)

−1Σ̂>21

)
∵ Eqs. (A.17), (A.21)

� κ2
(

Σ̂11 Σ̂>21
Σ̂21 Σ̂22

)
. ∵ Eq. (A.22)
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A.3 Proof of Theorem 5.1

Problem (5.7) is formulated as follows:

f(z) = minimize
a,q,v,x

1

2γ
x>x+ a+ v (A.23a)

subject to v ≥ 1

1− β
∑
s∈S

psqs, (A.23b)

qs ≥ −(r(s))>Zx− a (∀s ∈ S), (A.23c)

CZx ≤ d, (A.23d)

1>Zx = 1, (A.23e)

Zx ≥ 0, (A.23f)

q ≥ 0. (A.23g)

The Lagrange function of Problem (A.23) is expressed as

L(a, q, v,x; η,α, ζ, λ,π,θ) :=
1

2γ
x>x+ a+ v − η

(
v − 1

1− β
∑
s∈S

psqs

)
−
∑
s∈S

αs

(
qs + (r(s))>Zx+ a

)
− ζ> (d−CZx)− λ

(
1>Zx− 1

)
− π>Zx− θ>q,

where η ≥ 0, α := (αs)s∈S ≥ 0, ζ ≥ 0, λ ∈ R, π ≥ 0 and θ ≥ 0 are Lagrange
multipliers. Then, the Lagrange dual problem of Problem (A.23) is posed as:

max
η≥0, α≥0, ζ≥0,
λ∈R, π≥0, θ≥0

min
a∈R, q∈RS ,
v∈R, x∈RN

L(a, q, v,x; η,α, ζ, λ,π,θ). (A.24)

Recall that Problem (A.23) is feasible. Also, the objective function is proper
convex, and all the constraints are linear in Problem (A.23). Then, the strong
duality holds; see, for example, Section 5.2.3 in Boyd and Vandenberghe [36]. As
a result, f(z) is equal to the optimal objective value of Problem (A.24). Now,
let us focus on the inner minimization problem:

min
a∈R, q∈RS ,
v∈R, x∈RN

L(a, q, v,x; η,α, ζ, λ,π,θ). (A.25)

Note that Problem (A.25) is an unconstrained convex quadratic optimization
problem and its objective function is linear in (a, q, v). Because Problem (A.25)
must be bounded, the Lagrange multipliers are required to satisfy the following
conditions:

∇aL = 1−
∑
s∈S

αs = 0, (A.26)

∇qL =
η

1− β
p−α− θ = 0, (A.27)

∇vL = 1− η = 0. (A.28)

Also, the following optimality condition should be satisfied:

∇xL =
1

γ
x−Z

(∑
s∈S

αsr
(s) −C>ζ + λ1 + π

)
= 0. (A.29)
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According to Eqs. (A.26), (A.27), (A.28), and (A.29), the optimal objective
value of Problem (A.25) is calculated as

−γ
2
ω>Z2ω − d>ζ + λ,

where ω ∈ RN is a vector of auxiliary decision variables satisfying

ω =
∑
s∈S

αsr
(s) −C>ζ + λ1 + π.

Because z ∈ {0, 1}N , it holds that ω>Z2ω = z>(ω ◦ ω). Therefore, the
Lagrange dual problem (A.24) is formulated as follows:

f(z) = maximize
α,ζ,λ,ω

− γ

2
z>(ω ◦ ω)− d>ζ + λ

subject to ω ≥
∑
s∈S

αsr
(s) −C>ζ + λ1,∑

s∈S
αs = 1,

αs ≤
ps

1− β
(∀s ∈ S),

α ≥ 0, ζ ≥ 0,

where we substitute η = 1, and eliminate the nonnegative variables π and θ.

A.4 Proof of Theorem 5.4

Problem (5.23) is formulated as follows:

fK(z) = minimize
a,v,x

1

2γ
x>x+ a+ v (A.30a)

subject to v ≥ 1

1− β
∑
s∈J

ps(−(r(s))>Zx− a) (∀J ∈ K), (A.30b)

v ≥ 0, (A.30c)

CZx ≤ d, (A.30d)

1>Zx = 1, (A.30e)

Zx ≥ 0. (A.30f)

The Lagrange function of Problem (A.30) is expressed as

L(a, v,x;α, ξ, ζ, λ,π) :=
1

2γ
x>x+ a+ v −

∑
J∈K

αJ

(
v +

1

1− β
∑
s∈J

ps

(
(r(s))>Zx+ a

))
− ξv − ζ> (d−CZx)− λ

(
1>Zx− 1

)
− π>Zx,

where α := (αJ )J∈K ≥ 0, ξ ≥ 0, ζ ≥ 0, λ ∈ R and π ≥ 0 are Lagrange
multipliers. Recall that Problem (A.30) is feasible. Then, the strong duality
holds as well as the proof of Theorem 5.1, and fK(z) is equal to the optimal
objective value of the following Lagrange dual problem:

max
α≥0, ξ≥0, ζ≥0,

λ∈R, π≥0

min
a∈R, v∈R, x∈RN

L(a, v,x;α, ξ, ζ, λ,π). (A.31)
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Now, let us consider the inner minimization problem:

min
a∈R, v∈R, x∈RN

L(a, v,x;α, ξ, ζ, λ,π). (A.32)

Similarly to the proof of Theorem 5.1, the following conditions must be satisfied:

∇aL = 1− 1

1− β
∑
J∈K

αJ
∑
s∈J

ps = 0, (A.33)

∇vL = 1−
∑
J∈K

αJ − ξ = 0, (A.34)

∇xL =
1

γ
x−Z

(
1

1− β
∑
J∈K

αJ
∑
s∈J

psr
(s) −C>ζ + λ1 + π

)
= 0. (A.35)

According to Eqs. (A.33), (A.34), and (A.35), the optimal objective value of
Problem (A.32) is calculated as

−γ
2
ω>Z2ω − d>ζ + λ,

where ω ∈ RN is a vector of auxiliary decision variables satisfying

ω =
1

1− β
∑
J∈K

αJ
∑
s∈J

psr
(s) −C>ζ + λ1 + π.

Because z ∈ {0, 1}N , it holds that ω>Z2ω = z>(ω ◦ ω). Therefore, the
Lagrange dual problem (A.31) is formulated as follows:

fK(z) = maximize
α,ζ,λ,ω

− γ

2
z>(ω ◦ ω)− d>ζ + λ

subject to ω ≥ 1

1− β
∑
J∈K

αJ
∑
s∈J

psr
(s) −C>ζ + λ1,∑

J∈K
αJ ≤ 1,∑

J∈K
αJ
∑
s∈J

ps = 1− β,

α ≥ 0, ζ ≥ 0,

where we eliminate the nonnegative variables ξ and π.
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Appendix B

Detailed Experimental Results

In this chapter, we show detailed experimental results for sensitivity analysis
reported in Section 5.4.5. Table B.1 gives the numerical results for the four
datasets (ind49, sbm100, port1, and port5) with the cardinality parameter k ∈
{5, 10, 15}. Here, we set γ = 10/

√
N for the `2-regularization term and S = 105

as the number of scenarios. Table B.1 shows that BCP and BCPc were almost
always faster than the other methods when k ∈ {10, 15}. Also, BCP and BCPc
tended to be faster with larger k. In the case of the port5 dataset, for example,
BCP solved the problem with k = 15 in 73.7 s, whereas it failed to complete the
computation within 3600 s with k = 5.

Figures B.1–B.4 show the numerical results for the four datasets (ind49,
sbm100, port1, and port5) with the regularization parameter γ ∈ {100.2i/

√
N |

i = 0, 1, . . . , 20}. Here, we set k = 10 for the cardinality constraint and S = 105 as
the number of scenarios. We can see from Figures B.1–B.4 that the performances
of BCP and BCPc were not greatly affected by γ, and they were generally faster
than the other methods when they completed the computations within 3600 s.
In addition, BCP and BCPc tended to be faster with smaller γ for each dataset.

Figure B.5 shows “Reg+CVaR” and “CVaR” defined in Eq. (5.31) for the
three datasets (ind49, sbm100, and port1) with the regularization parameter
γ ∈ {100.2i/

√
N | i = 0, 1, . . . , 20}. For each dataset, the objective value (i.e.,

“Reg+CVaR”) was close to CVaR when γ ≥ 102/
√
N , and CVaR almost con-

verged to its minimum value when γ ≥ 10/
√
N .
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Table B.1: Numerical results for the four datasets (port1, ind49, sbm100, and
port5) with (S, γ) = (105, 10/

√
N) for k ∈ {5, 10, 15}

Data N k
BigM Persp

CP BCP BCPc

Lift Cut Lift Cut

port1 30 5 Time 643.6 221.0 1496.1 200.0 644.0 279.6 319.8
Obj 4.436 4.436 4.436 4.436 4.436 4.436 4.436

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 32 2636 13 3542 445 — 76
#Cuts — — — — 105 59 62

10 Time 468.6 163.3 1933.2 15.8 265.8 39.5 64.6
Obj 4.264 4.264 4.264 4.264 4.264 4.264 4.264

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 1 2433 1 253 39 — 0
#Cuts — — — — 25 1 7

15 Time 469.4 120.1 3220.8 217.1 157.6 39.1 89.8
Obj 4.222 4.222 4.222 4.222 4.222 4.222 4.222

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 1 879 1 4290 3 — 0
#Cuts — — — — 8 1 7

ind49 49 5 Time 733.7 160.0 >3600 434.3 1455.9 638.5 907.5
Obj 3.443 3.443 3.443 3.443 3.443 3.443 3.443

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 83 2475 >61 5172 2614 — 970
#Cuts — — — — 226 132 172

10 Time 709.8 125.0 >3600 220.0 662.2 43.1 103.6
Obj 3.379 3.379 3.380 3.379 3.379 3.379 3.379

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 31 4101 >1 3489 250 — 0
#Cuts — — — — 68 1 12

15 Time 555.2 128.2 >3600 76.7 448.6 48.7 82.3
Obj 3.366 3.366 3.366 3.366 3.366 3.366 3.366

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 1 3392 >1 1043 67 — 0
#Cuts — — — — 39 1 7

sbm100 100 5 Time 1260.7 179.8 2941.5 147.8 690.8 38.3 48.7
Obj 4.367 4.367 4.367 4.367 4.367 4.367 4.367

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 92 1092 3 1866 116 — 7
#Cuts — — — — 53 5 12

10 Time 1107.1 65.1 >3600 84.6 482.7 27.6 36.6
Obj 4.364 4.364 4.364 4.364 4.364 4.364 4.364

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 1 412 >1 4676 10 — 0
#Cuts — — — — 17 1 7

15 Time 1051.6 43.2 3438.1 44.4 437.5 29.5 48.0
Obj 4.364 4.364 4.364 4.364 4.364 4.364 4.364

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Nodes 1 90 1 5738 9 — 0
#Cuts — — — — 12 1 7

port5 225 5 Time >3600 >3600 >3600 2263.9 >3600 >3600 >3600
Obj ∞ 3.491 3.755 3.295 3.397 3.295 3.295

Gap(%) 100.00 8.72 14.25 0.00 8.52 0.72 3.37
#Nodes >0 >41,433 >42 19,851 >1390 — >10,767
#Cuts — — — — >249 >667 >861

10 Time >3600 >3600 >3600 >3600 >3600 2351.6 3300.8
Obj ∞ 3.246 3.143 3.276 3.173 3.138 3.138

Gap(%) 100.00 3.98 0.44 4.29 2.05 0.00 0.00
#Nodes >0 >20,833 >61 >16,790 >2140 — 5697
#Cuts — — — — >219 352 519

15 Time >3600 1154.4 >3600 1116.1 >3600 73.7 121.4
Obj ∞ 3.109 3.109 3.109 3.170 3.109 3.109

Gap(%) 100.00 0.00 0.01 0.00 1.97 0.00 0.00
#Nodes >0 8454 >1 5696 >2516 — 0
#Cuts — — — — >218 1 11
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Figure B.1: Results for port1 with (S, k) = (105, 10) for γ ∈ {100.2i/
√
N | i =

0, 1, . . . , 20}
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Figure B.2: Results for ind49 with (S, k) = (105, 10) for γ ∈ {100.2i/
√
N | i =

0, 1, . . . , 20}
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Figure B.3: Results for sbm100 with (S, k) = (105, 10) for γ ∈ {100.2i/
√
N | i =

0, 1, . . . , 20}
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Figure B.4: Results for port5 with (S, k) = (105, 10) for γ ∈ {100.2i/
√
N | i =

0, 1, . . . , 20}
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Figure B.5: Objective value (5.31) for the three datasets (port1, ind49, and
sbm100) with (S, k) = (105, 10) for γ ∈ {100.2i/

√
N | i = 0, 1, . . . , 20}
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