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Abstract

Nowadays, millimetre wave bands (mmWaves) has been used for 5G wireless communication
system. At mmWaves, attenuation caused by human blockage greatly impact cellphone link
performance. An accurate prediction technique of shadowing effect is necessary for under-
standing the characterization of human blockage and designing future mmWave antennas.
Dynamic channel modeling in 5G requires low-computational-cost method for running many
frames. Therefore, this research focuses on an accurate and fast prediction method of shad-
owing effect caused by a 2-dimensional (2D) human-scale object at mmWaves.

Conventionally, full-wave electromagnetic approach, such as method of moment (MoM),
has been used to predict the shadowing effect accurately. However, an unreasonable compu-
tational cost is a significant drawback for large-scale problems such as a human-size scatterer,
especially at mmWave. Therefore, high-frequency asymptotic approximation is expected to
reduce the computational complexity. High-frequency asymptotic approximation can be di-
vided into ray-based and source-based approximations. The former, such as uniform theory
of diffraction (UTD), is widely used for the reflection and diffraction prediction. UTD has the
closed-form analytic solutions resulting in the less computational cost. The latter, such as
Kirchhoff approximation (KA), numerically calculate the scattering field. Since KA has good
balance between accuracy and computational cost, KA is expected for further development.
The drawback of KA is it only considers the single diffraction by modelling the scatterer as
a single plane without thickness, which causes prediction error for a thick object. Therefore,
the extension of KA for a thick object is needed.

This study aims to develop a 2D mirror Kirchhoff approximation (MKA) for accurately
and efficiently predicting the shadowing gain for the thick cylinder. This research proposes
the design of the FFT parameters for low calculation time. The applicable range of MKA is
extended to the arbitrarily shaped cylinder by multiple planes. This research also proposes
the combination of the windowing functions in those multiple planes for better accuracy and
lower computational cost.

The concept of MKA for a rectangular cylinder with normal incidence is explained as
follows. Two planes expanded by object surfaces facing transmitter (Tx) and receiver (Rx)
are used to deal with the double edge diffraction. The fields distributed on the next plane
can be obtained by the secondary Huygens’source generated from the previous plane. The
angular spectrum method (ASM) by applying fast Fourier transformation (FFT) is used for
a fast calculation speed. The region, where the oscillating integral does not contribute to
the final integral, is truncated. For avoiding the discontinuity at truncation boundary, the
windowing function based on the Fresnel zone number is chosen. The proposal introduces
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the reflection effect between two planes into the double edge diffraction. The proposal is
validated for a PEC rectangular cylinder, by comparing with MoM as the reference. The
results imply that the proposed method presents a good accuracy.

The design of FFT parameters is proposed for a lower computational cost. Firstly, the
discretization in space domain considering the Nyquist sampling criterion for the evanescent
wave, which is important for the short distance propagation between two planes, is pro-
posed. Secondly, using Fresnel region approximation in space domain, we find the region
far away the edge has a huge discretization error. Therefore, it is better to truncate rather
than to numerically integrate the region inaccurately. Then, the spatial windowing size is
proposed. Thirdly, using Fresnel region approximation in angular spectrum domain, similar
discretization error is observed. The poles in angular spectrum domain, which make a sig-
nificant contribution for the integral, should be sufficient sampled. That idea proposes the
discretization in angular spectrum domain. Fourthly, the truncation size in angular spectrum
domain is proposed for better accuracy. With the designed parameters, the computational
cost can be extremely lower than before.

The application of MKA is extended for an arbitrarily shaped object. The arbitrarily
shaped cylinder is approximated to the combination of several rectangular cylinders. Those
rectangular cylinders can be seen as the slices of the arbitrarily shaped cylinder by multiple
planes. By applying MKA repeatedly among those planes, the scattered fields can be calcu-
lated for the evaluation of the shadowing gain. The new finding is that only the space domain
of the zeroth plane and the angular spectrum domain of the last plane need their respective
windowing functions, other planes or domains do not. The authors validate the proposed
method for an elliptical conductor cylinder with the size of the human body at mmWave.
Simulations by changing the object’s location, direction, and frequencies are conducted. The
results show that the proposed method presents good accuracy with a low root-mean-square
error of less than 0.5 dB, compared with the MoM as the reference. Furthermore, the calcu-
lation time is improved by 1.4 - 67.2 times compared with the UTD using special functions.
The order of computational cost of MKA was LN log2N , where N is the FFT size and L is
the number of planes.

Finally, the truncation region, interval size, and combination of the windowing functions
proposed in this study can achieve an extremely fast speed for calculation within an ac-
ceptable accuracy. The extension of the applicable range to the 3-dimensional object is the
future topic.
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Chapter 1

Introduction

1.1 Background and Related Works

1.1.1 Necessity of Forward Scattering Prediction

Prediction techniques for the forward scattering problems are widely used such as the forward
scattering from the earth’s surface in radar study, the forward obstacle searching in the
autopilot field, predicting the eclipse in astronomy, and especially the shadowing problem in
the fifth generation mobile communication system (5G).

Nowadays, mobile data traffic growth at an accelerated rate can be attributed to the
increasing popularity of smartphone. Since sub-6 GHz has become overly saturated, mil-
limetre wave bands (mmWaves), which can provide the additional bandwidth to meet these
data traffic demands, has been used for 5G wireless communication system. [1]-[7]

At mmWaves, since free space path loss in the first meter of propagation is increased
and diffraction around the obstacle is reduced, the use of Massive multiple input and multi-
ple output (MIMO) to create narrow beams with beamforming technologies (BF) is needed
for system operating to maintain an acceptable signal-to-noise radio (SNR) [8]. However,
BF with directional antennas will experience the huge shadowing effect caused by humans,
furniture, foliage, and cars [9]. Those shadowing effect greatly impact the performance of
cellphone link [10]. The phased array antennas of the Massive MIMO have to adapt to find
other propagation paths for stable mobile communication [11]. Understanding the character-
ization of shadowing effect and employing appropriate models for mobile system simulation
are important for properly designing future mmWave antennas and beam steering algorithms
[12]-[14]. Thus, an accurate prediction technique of shadowing effect is necessary. 5G ap-
plies dynamic modelling [15], which requires low-computational-cost method for running
many frames. A two-dimension (2D) perfect electric conductor (PEC) cylinder can be ap-
proximated to model human body [16]-[18]. Therefore, this research focuses on an accurate
and fast prediction method of shadowing effect caused by a 2D human-scale PEC object at
mmWaves.

1
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Figure 1.1: Shadowing in 5G

1.1.2 Previous Study

There are mainly two types of prediction techniques, i.e., the empirical model based on
measurement and the deterministic model based on theory.

The empirical models (e.g., log normal shadowing [19], Cheung method [20], and Walfisch-
Bertoni model [21]), are fast and easy to use, while the results of those methods may need
to be calibrated by the experimental data, which is not economical. For an economical
prediction, the deterministic models are preferable.

Conventionally, full-wave electromagnetic approaches (e.g., finite-difference time-domain
(FDTD) method [22], method of moment (MoM) [23], multilevel fast multipole algorithm
(MLFMA) [24], and finite element method (FEM) [25]), have been used to predict the
shadowing effect. Those methods solve Maxwell’s equations directly, and hence they have
good accuracy. However, a high computational cost is a significant drawback for large-scale
problems such as a human-size scatterer, especially at mmWave. Therefore, another branch
of deterministic model, namely high-frequency asymptotic approximation, is expected to
reduce the computational complexity. High-frequency asymptotic approximation can be
divided into ray-based and source-based methods.

Ray-based methods including geometrical optics approximation (GO) [26], geometrical
theory of diffraction (GTD) [27], and uniform theory of diffraction (UTD) [28] consider
electromagnetic fields as rays. The methods based on Fermat’s principle have the closed-form
analytic solutions, resulting in a lower computational cost. GO describes the propagation
phenomena including the incidence, reflection, and refraction, but not the diffraction. GTD
introduces diffraction around edges and smooth objects, while its coefficients are divergent
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Figure 1.2: Autopilot field

at the shadowing boundary. Its extension UTD uses the Fresnel integral to overcome the
discontinuity of GTD near the shadowing boundary [29]-[42]. However, when UTD calculates
a creeping wave diffraction [43] from an elliptical cylinder, not only the Fresnel integral but
also the ellipse integral needs the additional calculation time. Furthermore, for a complex
shaped object, since the reflection point of the curved surface cannot be easily found by the
imaging method, reflection point searching requires plenty of time in ray-based method.

Source-based methods, such as physical optics approximation (PO) [44] and Kirchhoff
approximation (KA) [45]-[50], consider electromagnetic fields as the equivalent sources. The
methods based on Huygens’ principle numerically calculate the scattered field for a complex
shaped region and hence they have a good balance between accuracy and computational
complexity. In PO calculation, the scattered field is calculated from the shadowing object,
and can be split into the reflection radiation to the specular direction and the shadow radi-
ation to the forward direction [51]. For the forward scattering problem, the contribution is
mainly determined by the shadow radiation. However, since the shadow radiation is calcu-
lated by the integration over the cross-section of the geometrical shadow region [44], PO has
the difficulty to evaluate the influence of the thickness for the forward scattering problem.
In KA calculation, the scattered field is calculated from the vacuum region around the shad-
owing object, and hence KA is more suitable for the forward scattering problem. Although
KA is the numerical approach, which may be slower than the analytic approach, it is still
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extremely fast due to the lower computational complexity of the angular spectrum method
(ASM) [52]-[73]. ASM uses fast Fourier transform (FFT) to transfer the field between the
space and angular spectrum domains. The drawback of KA is that KA only considers the
single diffraction by modelling the scatterer as a screen without thickness, which causes pre-
diction error for a thick object [74]-[77]. Therefore, the extension of KA for a thick object is
needed. In addition, a small FFT size is expected to reduce the computational cost.

The hybrid methods by introducing GTD creeping wave into PO such as physical theory
of diffraction (PTD) [78]-[98] can predict the forward scattering problem preferably. Al-
though PTD combines the advantages of PO and GTD to deal with the forward scattering
problem for a thick object, both special functions and numerical integral require substantial
computational costs. Knife-edge diffraction method (KEDM) [99], [100] and its extension
Bullington method [101] analytically calculate KA scattered field in a closed form for re-
ducing the computational cost. However, similar to KA, those methods only consider the
scatterer as a screen. Therefore, the accuracy for a thick object is a significant issue.

This study aims to develop a fast and accurate method based on KA to predict the
shadowing gain for the thick cylinder. The reasons for selecting KA as the foundation are
explained as follows. Firstly, KA is more suitable for the forward scattering problem [47]
comparing with PO and hence it is expected to deal with the prediction of shadowing. Sec-
ondly, since the scattered field is obtained by integration over the lit region of the scattering
surface in the source-based calculation [47], KA can partially consider the geometrical shape
of the shadowing object, unlike KEDM, GO, GTD, and UTD. Thirdly, KA applying FFT
is extremely fast as opposed to FDTD, MoM, FEM, and PTD. These advantages show that
KA is a reasonable choice for further development.

The applicable range of KA is extended to a thick cylinder by multiple planes. Although
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the formulation processes are quite different, the idea of multiple planes is mathematically
the same as the wide-angle split-step parabolic equation (SSPE) [102] and beam propaga-
tion method (BPM) [103]. In SSPE and BPM calculation, they widely discuss Tukey and
Hanning windows for the forward scattering problems [104]-[108], while they need a large
truncation region resulting in high computational cost. On the other hand, in PO calcu-
lation, the windowing function based on the Fresnel zone number (FZN) [109]-[114] can
achieve a small truncation region within an acceptable accuracy, while those works only con-
sider the backward scattering problems. Moreover, none of the above works have designed
the windowing function and interval in the angular spectrum domain. Those factors affect
the computational cost and accuracy, and hence lack of the designed parameters of FFT is a
common issue for all the FFT-based methods. The truncation region, resolution size, and the
combination of the windowing functions proposed in this study are not discussed in those
methods [115]-[141]. Those proposals can achieve an extremely fast speed for calculation
within an acceptable accuracy. Therefore, the proposals can be also applicable for SSPE and
BPM.

1.2 Motivations

Motivation 1: conventional KA is inaccurate for a thick object.

Motivation 2: conventional numerical methods have high computational cost comparing with
the analytical methods.

1.3 Research Objectives

Objective 1: the goal of this study is to develop a 2D mirror Kirchhoff approximation (MKA)
for accurately predicting the shadowing gain caused by a thick cylinder.
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Objective 2: this study extends Objective 1 within a low computational cost, which shall
achieve a faster speed compared with UTD, by proposing the design of FFT parameters and
the combination of the windowing functions.

1.4 Importance of This Research

This research can provide a fast and accurate forward scattering prediction method of a thick
object EM simulation. Not only EM wave, but also other strong-wave forward scattering
problems can apply this method. It also contributes to other academic or industry field.

The applicable range of KA is extended to a thick object by MKA. This study pro-
poses the design of the truncation region and resolution of FFT. In the space domain, the
windowing function based on FZN is extended to the forward scattering problem. In the
angular spectrum domain, a rectangular windowing function is proposed to use for accuracy
and computational cost. The paper also proposes a combination of windowing functions
in multiple planes for better accuracy and lower calculation time. The truncation region,
resolution and combination of the windowing functions proposed in this study can also be
applicable to SSPE and BPM for a fast calculation with an acceptable accuracy.

1.5 Thesis Structure

Thesis structure is explained as follows.

Chapter 2 will introduce current predicting methods including MoM, UTD, and KA. The
detailed formulations will be provided. The calculation approaches for the desired field will
be explained. The issues of the respective methods will be discussed.

Chapter 3 will introduce the concept of MKA. Detailed formulations will be provided and
explained. Simulations for validated the MKA will be conducted for a rectangular cylinder.
The results of accuracy will be compared with MoM.

Chapter 4 will propose the design of the simulation parameters for MKA. Detailed formula-
tions will be provided and explained.

Chapter 5 will extend the applicable range of MKA to an arbitrarily shaped cylinder by
multiple planes. The combination of windowing functions for accuracy and computational
cost will be proposed. Simulations for validated the proposal will be conducted for an
elliptical cylinder. The results will be compared with MoM and UTD in terms of the accuracy
and computational cost. Evaluations and discussions will be done by varying the simulation
parameters. The limitations and the future applicabilities will be discussed.

Chapter 6 will discuss the conclusion, the contributions, and the future work.
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Figure 1.5: Thesis structure





Chapter 2

Current Predicting Methods

2.1 Introduction

In this chapter, three methods used in this study will be introduced. There are full-wave MoM
for the reference of accuracy, analytic-approximation UTD for the reference of calculation
time, and numerical-approximation KA for the further development.

A scenario, where a PEC shadowing object is put between transmitter (Tx) and receiver
(Rx), is considered. In perpendicular polarization, only y-component of electric field works,
and hence the vector equations can be simplified to scalar equations. Assuming the problem
is uniform along y-axis, the 3D problem can be simplified to the 2D problem as shown in
Fig. 2.1.
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Figure 2.1: 2D problem

where, E is the electric field (later call it field). H is the magnetic field. k is the wave
vector.

9
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2.2 Method of Moment (MoM)

Method of moment (MoM) uses integration equation to calculate electromagnetic fields in
the frequency domain. The Green’s theory derives the 2D electrical field integral equation
(EFIE) for exterior region in perpendicular polarization as

1

2
E = Einc − j

4

∫

C

(

E
∂H

(2)
0 (k0ρ)

∂n
− ∂E

∂n
H

(2)
0 (k0ρ)

)

dl (2.1)

where E is the unknown total field at the observation point. Einc is the incident field. n is
outward normal vector of object. k0 is the wave number in free space. H

(2)
0 (·) represents the

second kind of Hankel function for 0 order. ρ is the distance from the source point to the
observation point.

By applying EFIE for a PEC object, which has the boundary condition of E = 0, we
have

Einc = − j

4

∫

C

H
(2)
0 (k0ρ)Jdl (2.2)

J =
∂E

∂n
(2.3)

where J is the unknown inductive current.

� � �

�
�

��
�

�
�	��




��
� ������

���������

�

�

�

Figure 2.2: Method of moment

Suppose that the surface of object is sampled by M meshes as shown in Fig. 2.2. By
applying the piecewise constant as basis functions and using point matching method, we can
have the matrix form as















a11 · · · a1q · · · a1M
...

. . .
...

ap1 apq apM
...

. . .
...

aM1 · · · aMq · · · aMM





























J1
...
Jp

...
JM















=















Einc
1
...

Einc
p
...

Einc
M















(2.4)
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apq =− j

4

∫

∆Cq

H
(2)
0 (k0ρpq)dl (2.5)

where, Jp and Einc
p are the inductive current and incident field at mesh p, respectively. ρpq

is the distance between meshes p and q.

Note that, if ρpq is zero (p = q), H
(2)
0 (k0ρpq) will become a singularity, which cannot be

solved by the numerical approach. An analytic approach is used as

app ≈ − dl

2π

(

ln
k0dl

4
+ j

π

2
+ γ0 − 1

)

(2.6)

where γ0 is the Euler constant.

By solving the matrix, we can obtain the unknown inductive current. Then, the scattered
field can be calculated by radiation integration as

Escat =
j

4

∫

C

H
(2)
0 (k0ρ

scat)Jdl (2.7)

where Escat is the scattered field. ρscat is the distance between each mesh at object to Rx.

Finally, the desired field is calculated by the summation of incident field and scattered
field. The issue of MoM is the high computational cost. At mmWaves, the M becomes larger
causing the increase of size of matrix. Since the order to solve this matrix is M3, the high
computational cost is needed.

2.3 Geometrical Optics (GO), Geometrical Theory of

Diffraction (GTD), and Uniform Theory of Diffrac-

tion (UTD)
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Figure 2.3: Propagation phenomena
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Geometrical optics (GO), geometrical theory of diffraction (GTD), and uniform theory
of diffraction (UTD) approximate electromagnetic fields as rays. GO can deal with the
propagation phenomena include incidence and reflection. GTD introduces the diffraction
into GO, which is important for the forward scattering problem. The types of diffraction
phenomena are introduced, i.e., edge diffraction which is diffraction from edge, and creeping
wave diffraction which is diffraction from the curved surface. However, GTD coefficient is
divergent at SB causing error issue. Its extension, UTD, solves the accuracy issue of GTD
by introducing Fresnel integral. Since those methods analytically calculate desired fields in
a closed form, it has a low computational cost.

A 2D PEC elliptical cylinder is considered as the cross section of human body. Then,
the creeping diffraction and specular reflection waves dominate the desired fields. Due to
accuracy issue of GO and GTD, UTD is chosen for the further comparison. The UTD
coefficients can be calculated as follows.

Tx Rx

Diffraction points

(a) Model of creeping wave diffraction.

Tx Rx

Reflection point

Normal vector

(b) Model of specular reflection.

Figure 2.4: Rotation conversion to a standard ellipse in ζ-η domain.

For the convenience, the rotation matrix translates the arbitrary rotated ellipse to a
standard ellipse in ζ-η domain with the origin at the center of the ellipse as shown in Fig. 2.4.
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Considering one creeping diffraction ray in Fig. 2.4(a), the authors find the incident and
scattered diffraction points (r1 cos θ1,2, r2 sin θ1,2) by (2.8).

θ1,2 = arcsin
1

√

ζ21,2
r21

+
η21,2
r22

− arctan
ζ1,2r2
η1,2r1

(2.8)

where r1 and r2 are the semi-major and semi-minor axes of the ellipse. (ζ1, η1) and (ζ2, η2)
are the coordinates of Tx and Rx, respectively. θ1 and θ2 are the parameters of the incident
and scattered diffraction points, respectively.

The curve length between the incident and scattered diffraction points is calculated by
(2.9).

⌢
rm = r2

(

E(θ2|1−
r21
r22
)− E(θ1|1−

r21
r22
)

)

(2.9)

where
⌢
rm is the curve length. E(·) is the incomplete elliptic integral of the second kind.

The curvature radius ρ1,2 at two diffraction points is calculated by (2.10).

ρ1,2 =

√

(r41r
2
2 sin

2 θ1,2 + r21r
4
2 cos

2 θ1,2)3

r41r
4
2

(2.10)

The parameters of the creeping diffraction wave are calculated by (2.11)–(2.14).

M1,2 =

(

k0ρ1,2
2

)
1
3

(2.11)

Lm =
rincm rdiffm

rincm + rdiffm

(2.12)

ξd =

(

k0
2

)
1
3 (r1r2)

2
3

r2

(

K(θ2|1−
r21
r22
)−K(θ1|1−

r21
r22
)

)

(2.13)

Xd =
k0Lm(ξ

d)2

2M1M2
(2.14)

where rincm is the distance between Tx and the incident diffraction point. rdiffm is the distance
between Rx and the scattered diffraction point. K(·) is the incomplete elliptic integral of the
first kind. M1,2, Lm, ξ

d, Xd are the UTD parameters mentioned in [43].

Finally, (2.15) gives the formula for the diffraction coefficient, which calculates the diffrac-
tion field.

D = −
√

M1M2e
−jk0

⌢
rm

√

2

k0
{ e−jπ

4

2
√
πξd

[1− F (Xd)] + P̂ (ξd)} (2.15)
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where F (·) is the modified Fresnel integral. P̂ (·) is the Pekeris’ caret function, which is
approximated by (2.16).

P̂ (ξ) ≈



























−e−jπ4√
π

∞
∑

p=1

ej
π
6 eξαpe

−j 56π

2(Ai′(αp))2
(ξ > 2)

(

p∗(ξ)− 1
2
√
πξ

)

e−jπ
4 (−3 ≤ ξ ≤ 2)

√

−ξ3

4
ej

ξ3

12 (ξ < −3)

(2.16)

where Ai(·) is the Airy function and its pth root is αp. The complex conjugate of p∗(·) is
given in [147].

For the specular reflection ray in Fig. 2.4(b), the reflection point cannot be found analyt-
ically. The authors find it numerically as follows. Since the normal vector at the reflection
point (r1 cos θ3, r2 sin θ3) is (r2 cos θ3, r1 sin θ3), in the complex domain, the law of reflection
θinc = θref is equivalent to (2.17).

z1 = (ζ1 − r1 cos θ3) + j(η1 − r2 sin θ3) (2.17a)

z2 = r2 cos θ3 + jr1 sin θ3 (2.17b)

z3 = (ζ2 − r1 cos θ3) + j(η2 − r2 sin θ3) (2.17c)

arg(
z3
z2
) = arg(

z2
z1
) (2.17d)

where z1 is the complex number corresponding to the vector pointing from the reflection
point to Tx. z2 is the complex number corresponding to the normal vector at the reflection
point. z3 is the complex number corresponding to the vector pointing from the reflection
point to Rx. θ3 is the parameter of the reflection point. The authors numerically solve the
equation (2.17) to search θ3 by MATLAB vpasolve.

The parameters of the reflection wave are calculated by (2.18)–(2.21).

ρ3 =

√

(r41r
2
2 sin

2 θ3 + r21r
4
2 cos

2 θ3)3

r41r
4
2

(2.18)

M3 =

(

k0ρ3
2

)
1
3

(2.19)

ξr = −2M3 cos θ
inc (2.20)

Xr =
2k0r

incrref cos2 θinc

rinc + rref
(2.21)

where rinc is the distance between Tx and the reflection point. rref is the distance between
Rx and the reflection point. ρ3 is the curvature radio at the reflection point. M3, ξ

r, Xr are
the UTD parameters mentioned in [43]. θinc is the incident angle.
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Finally, (2.22) gives the formula for the reflection coefficient, which calculates the reflec-
tion field.

R = −
√

−4

ξr
e−j

(ξr)3

12 { e−jπ
4

2
√
πξr

[1− F (Xr)] + P̂ (ξr)} (2.22)

Finally, the desired field is calculated by the summation of incident field, reflection field,
and diffraction field. The calculation of UTD is also in a closed form like GTD. However,
UTD uses Fresnel and ellipse integrals. Those special functions need additional computa-
tional cost.

2.4 Physical Optics (PO) and Kirchhoff Approxima-

tion (KA)
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Figure 2.5: Physical Optics

Physical optics (PO) and Kirchhoff approximation (KA) approximate electromagnetic
fields as waves generated on PEC and vacuum planes, respectively, based on the Huygens窶
擢 resnel principle. PO approximates scatter as infinite tangential PEC plane. In PO, the
inductive current are only generated on the illuminated side of object as shown in Fig. 2.5.
The inductive current is approximated as

J ≈







2
∂Einc

∂n
(for lit region)

0 (for shadowed region)
(2.23)
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Same as MoM, the desired field can be calculated by radiation integration. PO is suitable
for the backward scattering problem as shown in Fig. 2.6. However, shadowing problem is a
forward scattering problem.
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Figure 2.6: Forward and backward scattering problems

KA is more suitable for the forward scattering problem. Total field at vacuum plane is
approximated as incident field only.

E ≈
{

Einc (for vacuum plane)

0 (for shadowing object)
(2.24)

The desired field can be calculated by radiation integration or angular spectrum method
(ASM) [52, 142]. However, KA can only deal with the single diffraction problem as shown
in Fig. 2.7.
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Figure 2.7: Kirchhoff Approximation

The extension of KA for the multiple diffraction problem is needed. The computational
cost of KA is higher than analytical approach like UTD, while it is lower than full-wave
MoM. Therefore, KA has good balance between the accuracy and computational cost.
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2.5 Connection of Each Method

The connection of Section 2.4 and Section 2.2 is described as follows. Both Section 2.4 and
Section 2.2 are the numerical methods based on boundary element. However, Section 2.4
uses approximation for the unknown variables at boundary while Section 2.2 solves those
variables by using implicit method. Therefore, Section 2.2 has the better accuracy while
Section 2.2 has the lower computational cost comparing with each other.

The connection of Section 2.3 and Section 2.4 is described as follows. Section 2.4 calcu-
lates the desired field by radiation integration, where the regions far away from the station-
ary phase points and edges do not contribute to the final integral due to the cancellation of
rapidly oscillating function. The stationary phase point caused by peak of field or disconti-
nuity at edge are corresponding to the reflection or diffraction point in Section 2.3. Thus, we
can simply say that Section 2.4 numerically calculates integration over the boundary while
Section 2.3 analytically calculates the field at the stationary phase point and edge.

Aperture

Rx

Tx

waves

Aperture

Rx

Tx

rays12334567289 :8297

DiffractionDiffraction

12334567289 :8297Incidence

Figure 2.8: Source-based and ray-based methods

2.6 Conclusion

In this Chapter, the methodologies used in the this research were introduced. The detailed
formulations of each method were provided. The calculation approaches for the desired field
were explained. The issues of the respective methods were discussed. The connections of
each method were described.





Chapter 3

Concept of Mirror Kirchhoff
Approximation (MKA)

3.1 Introduction

This chapter will propose an accurate scattered field prediction method based on Kirchhoff
Approximation called ‘Mirror Kirchhoff Approximation’ (MKA) for evaluating the shadowing
effect. The idea and detailed formulations of the proposal will be presented. The proposed
method will be validated for a PEC rectangular cylinder, by comparing with MoM as a
reference.

3.2 Idea of MKA

The model of the proposal shown in Fig. 3.1 explains the idea in an easily understood manner.
A rectangular cylinder is considered as the shadowing object. Tx and Rx face the front and
back surfaces of the rectangular, respectively. The infinite large planes expanded from the
front and back surface of the rectangular cylinder are defined as the zeroth and first planes,
respectively. Additionally, the infinite plane through Rx and paralleling to the first plane is
defined as the second plane.

MKA uses those multiple planes to calculate the multiple diffraction. The total electric
fields distributed on the zeroth plane can be approximated by KA. Then, the fields distributed
on the first plane can be obtained by the secondary Huygens’ sources generated from the
zeroth plane. Repeating the approach in the same manner, the fields distributed on the
second plane including Rx can be calculated as well. Finally, the shadowing effect can be
evaluated by comparing receiving electric field at Rx and in free space.

In MKA calculation, the propagation wave between the two planes is not only out-
stretched, and but also includes reflection effect from the shadowing object. Since the intro-
duction of reflection uses mirror image theory as shown in Fig. 3.2, this method is named
‘Mirror Kirchhoff Approximation’.

19
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Figure 3.1: Model of MKA

3.3 Formulations of MKA for A Rectangular Cylinder

The fields distributed on the region of interest can be determined by using the surface current.
However, the complexity of the surface current determined by both the points of source plane
and the points of the observation plane is too large when the region of interest is large. It is
more efficient to use the angular spectrum method (ASM) [52, 142] by applying FFT since
the complexity of computation can be reduced from O(N2) to O(N log2N), where N is FFT
size.

2D problem is considered by assuming the problem is uniform along y-axis in a Cartesian
coordinates system. The LoS path is defined as z-axis. Figure 3.3 shows that ASM calculates
the propagation between two parallel planes z = ld and z = (l + 1)d as
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Figure 3.2: 2D Model of proposal

Tx Rx
?@ABCD

Figure 3.3: Model of angular spectrum method.

Ẽl,i(kx) =

∫ ∞

−∞
El,i(x)e

jkxxdx (3.1)

El+1,i(x) =
1

2π

∫ ∞

−∞
Ẽl,i(kx)e

−jkxxe−jkzddkx (3.2)

kz =

{

+
√

k2
0 − k2

x (|kx| ≤ k0)

−j
√

k2
x − k2

0 (|kx| > k0)
(3.3)

where x is the parameter of the x-space domain. kx and kz are the parameters of the angular
spectrum domain corresponding to the x-space and z-space domain, respectively. El,i(·) is
the total fields in the lth plane z = ld (l = 0, 1, ..., L) for region i (i = 1, 2). Regions 1 and
2 are the vacuum regions above and below the shadowing object, respectively. Ẽl,i(·) is the
IFT of El,i. d is the distance between two planes. The cases of |kx| ≤ k0 and |kx| > k0 in
(3.3) represent the propagation and evanescent waves, respectively. Usually, the calculation
ignores the evanescent wave (|kx| > k0) when d is large. That is because the complex

exponential factor e−jkzd becomes the decay exponential factor e−
√

k2x−k20d and vanishes when
d is large. It is known as the evanescent wave where the energy is not transferred but decays
exponentially.
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Figure 3.4: Integral of surface current by cylindrical-wave propagation

TUVWXYZ[ \]^_V `Y]]YaX_b \]^_V

Figure 3.5: ASM by plane-wave propagation

To apply FFT, discretization for the numerical calculation and truncation for the integral
over the finite interval are needed in the space and angular spectrum domains. Suppose the
range of FFT in x-space domain is X and the spatial sampling interval is ∆x, the intervals
of the space and angular spectrum domains are ∆x and 2π/X , respectively. FFT size N is
determined by X/∆x.

Figure 3.6 shows the model of environment. An object shadows the line-of-sight (LoS)
path between a Tx and a Rx. The distances from the zeroth plane to Tx and Rx are b and
c, respectively. The equations of the zeroth, first, and second planes are z = 0, z = d, and
z = c, respectively. The coordinate of the ith edge in the lth plane is wl,i. The spatial and
angular spectrum parameters x and kx can be discretized by (3.4) and (3.5), where u, p are
the discrete indexes of x and kx, respectively.

x = u∆x (u = 1− N

2
,−N

2
, ...,−1, 0, 1, ...,

N

2
) (3.4)
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Figure 3.6: Image of discretization

kx = p
2π

X
(p = 1− N

2
,−N

2
, ...,−1, 0, 1, ...,

N

2
) (3.5)

Truncation for the integral over the finite interval is needed. The region, where the
integral of the rapidly oscillating field distributed on planes does not contribute to the
final integral due to the cancellation, can be truncated. For avoiding the discontinuity at
boundary, which causes addtional diffraction error, the windowing function [109]-[114] based
on the Fresnel zone number is chosen as

W Sp
l,i (x) =







1
2
(cos (

n(x)− n(wl,i)

n(al,i)− n(wl,i)
π) + 1) (|x− wl,i| ≤ al,i)

0 (|x− wl,i| > al,i)
(3.6)

n(x) =

√
x2 + b2 +

√
x2 + c2 − (b+ c)
λ
2

(3.7)

where W Sp
l,i (·) is the spatial windowing function for the edge of wl,i. al,i is the windowing

size for the edge of wl,i. n(·) is the Fresnel zone number. Fresnel zone can be considered as
a ellipse region with the foci in Tx and Rx as shown in Fig. 3.8. Since the propagation path
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Figure 3.7: Discretization in the two domains

within the first Fresnel zone always has less than half wavelength phase rotation comparing
with the LoS path, the energy is concentrated in primary Fresnel zone. That is the reason
for the windowing function using Fresnel zone number.
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Figure 3.8: Fresnel zone

As shown in Fig. 3.9, the truncation error become smaller after the truncation via the
above windowing function.

An electric line source with the cylindrical wave is considered as Tx. The field distributed
on the zeroth plane can be calculated by KA as

E0,i(u) = − k2
0I0

4ω0ǫ0
H

(2)
0 (k0ρ(u)) (3.8)

where, I0 is the magnitude of field of source and it can be arbitrary value since the calculation
of shadowing cancels it. ω0 is the angular frequency. ǫ0 is the permittivity of vacuum. ρ(u)
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Figure 3.9: Aperture fields before and after the windowing truncation

is the distance vector pointing from Tx to point (u) on the zeroth plane.

The field distributed on the first plane can be calculated by the implementation of ASM
as

Ẽ0,i(p) =
1

2π

N
2
∑

u=1−N
2

E0,i(u)W
Sp
0,i (u)e

j2π(up
N

)X

N
(3.9)

E1,i(u) =

N
2
∑

p=1−N
2

Ẽ0,i(p)e
−jkzde−j2π(up

N
)2π

X
(3.10)

The reflection from the shadowing object is introduced into the calculation of the double
edge diffraction as

EMKA
1,i (u) = E1,i(u)−E1,i(2

[w1,i

∆x

]

− u) (3.11)

where, [·] is the round function. The second term of right hand side corresponds to image
field by mirror theory.

The field received at Rx on the second plane can be calculated by ASM again as

Ẽ1,i(p) =
1

2π

N
2
∑

u=1−N
2

EMKA
1,i (u)W Sp

1,i (u)e
j2π(up

N
)X

N
(3.12)

EDes =

2
∑

i=1

N
2
∑

p=1−N
2

Ẽ1,i(p)e
−jkz(c−d)e−j2π(

[

xRx

∆x

]

p

N
)2π

X
(3.13)
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where, xRx is the x-coordinate of Rx. The fields EMKA
1,i for the region i = 1, 2 are calculated

separately, until they reaches to the last plane where two fields are merged as shown in
Fig. 3.10.
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Figure 3.10: Image of formulations

For the final step, the total field in free space EFree and the shadowing gain SG are
determined by (3.14) and (3.15), respectively.

EFree = − k2
0I0

4ω0ǫ0
H

(2)
0 (k0(b+ c)) (3.14)

.

SG = 20 log10
|EDes|
|EFree| [dB] (3.15)

3.4 Simulations for A Rectangular Cylinder

This section introduces simulation for a rectangular cylinder by applying MKA. Simulation
scenarios are explained in Subsection 3.4.1. Simulation results are shown in Subsection 3.4.2.
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3.4.1 Simulation Scenarios
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Figure 3.11: The environment of simulation (y-z vertical view)

As shown in Fig. 3.11, the environment of the simulation is explained as follows. w is the
width of the rectangular cylinder. d is the thickness of the rectangular cylinder. d1 is the
distance between the center of the rectangular cylinder and Tx. d2 is the distance between
the center of the rectangular cylinder and Rx. f is frequency of simulation. ∆d is the
distance between the center of the rectangular cylinder and Tx-Rx line. The ∆d is changed
from −90λ m to 0 m with an interval of 0.1λ m. ∆d < 0 means rectangular cylinder was
located at the lower side of the Tx-Rx line. ∆d > 0 means rectangular cylinder was located
at the upper side of the Tx-Rx line. The d is changed from 0.001 m to 0.3 m with an interval
of 0.001 m. The f is changed from 17 GHz to 66.5 GHz with an interval of 0.5 GHz. Each
parameter of the environment and MKA are shown in Table 3.1 and Table 3.2, respectively.

Table 3.1: Environment Parameter

Parameter Value

f (GHz) 17 : 0.5 : 66.5

d1 (m) 2

d2 (m) 8

w (m) 0.5

d (m) 0.001 : 0.001 : 0.3

∆d (λ) −90 : 0.1 : 0

The windowing size is set for the convergence of results. The plane should be enough
large for including the whole surface of the shadowing object and ensuring a good resolution
of frequency spectral parameters [52].
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Table 3.2: Parameters of MKA

Parameter Value

FFT size N 217

Grid interval ∆x (m) 0.1λ

Window size n(a)− n(wl,i) 19

For validating the accuracy of the proposed MKA, MoM as a reference is simulated. The
piecewise constant function is selected as the basis function. MoM with point matching
method for electric field integral equation is implemented by using MATLAB. To obtain the
convergence result, the mesh size is set to λ

10
.

3.4.2 Simulation Results

Firstly, when the thickness was fixed, the frequency was fixed at 66.5 GHz, and the distance
was changed, the shadowing gain results of MKA and MoM were shown in Fig. 3.12 - Fig. 3.15
for d = 0.01 m, d = 0.03 m, d = 0.1 m and d = 0.3 m, respectively. The horizontal axis was
∆d (m) introduced in Fig. 5.4. The vertical axis was shadowing gain result in decibel (dB)
scale.
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Figure 3.12: The plot of distance and shadowing gain for d = 0.01 m and f = 66.5 GHz

From the results, for each case, the proposed MKA was in good agreement with MoM.
The proposal was validated by comparing with MoM for the shadowing characterization of
the object’s locations.
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Figure 3.13: The plot of distance and shadowing gain for d = 0.03 m and f = 66.5 GHz

Secondly, when the distance was fixed at 0 m, the frequency was fixed at 66.5 GHz,
and the thickness was changed, the relationship between thickness and shadowing gain was
shown in Fig. 3.16. The horizontal axis was d (m) introduced in Fig. 5.4.

From the results, the proposed method provided good prediction results for the object
with any thickness. The proposal was validated by comparing with MoM for the shadowing
characterization of the object’s thickness.

Thirdly, when the distance was fixed at 0 m, the thickness was fixed at 0.3 m, and the
frequency was changed from 17 GHz to 66.5 GHz, the relationship between frequency and
shadowing gain was shown in Fig. 3.17.

From the results, the proposed method provided good prediction results for the object
with any frequencies. The proposal was validated by comparing with MoM for the shadowing
characterization of the object’s frequencies.

Furthermore, the calculation time was compared between MKA and MoM. The platform
of calculating computer was Windows 10 Home. The processor of the calculating computer
is an Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz. The usable installed memory of the
calculating computer is 15.8 GB. The system type of the calculating computer is 64-bit
operating system with a x64-based processor. The usable installed memory of the calculating
computer was 15.8 GB. The simulation software was MATLAB. The result of the relation
between thickness and calculation time was shown in Fig. 3.18 for ∆d = 0 m and f =
66.5 GHz. The result of the relation between frequency and calculation time was shown in
Fig. 3.19 for ∆d = 0 m and d = 0.3 m. The vertical axis was calculation time (s) on a
logarithmic scale.

The calculation time of the proposed MKA was about 0.21 s for any thickness or fre-
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Figure 3.14: The plot of distance and shadowing gain for d = 0.1 m and f = 66.5 GHz

quency. The calculation time of MoM was about from 82.45 s to 192.12 s for increasing
thickness at f = 66.5 GHz and from 14.07 s to 192.12 s for increasing frequency at d = 0.3 m.
Comparing with full-wave MoM, the MKA could provide a fast calculation speed.

3.5 Conclusion

In this Chapter, the concept of MKA was introduced. Detailed formulations were provided
and explained. Simulations for validated the proposal were conducted for a rectangular
cylinder. The results were compared with MoM in terms of accuracy and computational
cost. Objective 1 has been achieved.

However, two issues were remaining. Firstly, the MKA’s parameters in Table 3.2 is not
designed. The calculation time with FFT size of N = 217 was overly high. If we formulated
those parameters reasonably, the computational cost might be less than UTD. Chapter four
designed those parameters. Secondly, current MKA was only suitable for the rectangular
cylinder. The extension for the arbitrarily shaped cylinder was needed. Chapter five extended
MKA.
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Figure 3.15: The plot of distance and shadowing gain for d = 0.3 m and f = 66.5 GHz
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Figure 3.16: The relation between thickness and shadowing gain for ∆d = 0 m and f =
66.5 GHz
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Figure 3.17: The relation between frequency and shadowing gain for ∆d = 0 m and d = 0.3 m
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Figure 3.18: The relation between thickness and calculation time for ∆d = 0 m and f =
66.5 GHz
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Figure 3.19: The relation between frequencies and calculation time for ∆d = 0 m and
d = 0.3 m





Chapter 4

Design of Simualtion Parameters for
MKA

4.1 Introduction

This chapter will introduce the design of simulation parameters for MKA. Since FFT size is
determined by X/∆x, there are two ways to reduce the calculation complexity, i.e., increasing
∆x and decreasing X .

Normally, [−X/2, X/2] and [−k0, k0] are considered as the ranges of truncated regions in
the space and angular spectrum domains, respectively. However, by using the Nyquist [143]
and λ/10 sampling criteria, the author proposes [−a, a] (2a < X) and [−kw, kw] (kw < k0)
as the ranges of truncated regions in the space and angular spectrum domains, respectively,
for better accuracy and lower calculation cost.

Section 4.2 proposes ∆x, which considers the Nyquist sampling criterion for including
the evanescent wave. Section 4.3 proposes a and updates ∆x to ∆x′, which considers the
λ/10 sampling criterion. Section 4.4 and Section 4.5 propose X and kw, respectively.

4.2 Discretization in Space Domain

This section discusses the spatial resolution. Usually, the calculation ignores the evanescent
wave (|kx| > k0). However, when the value of d is small, the evanescent wave with the value

of e−
√

k2x−k20d still contributes to the calculation. The author defines the negligible value of

factor e−
√

k2x−k20d as ǫ. Then, the condition of e−
√

k2x−k20d = ǫ gives the maximum value of kx
as (4.1) and the Nyquist sampling criterion ∆x ≤ π/max(kx) calculates the proposed ∆x
by (4.2).

35
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max(kx) =

√

k2
0 +

(

ln ǫ

d

)2

(4.1)

∆x =
π

√

k2
0 + ( ln ǫ

d
)2

(4.2)
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4.3 Truncation in Space Domain

window

Object

window

Tx

wxyz{

Rx

Figure 4.1: Model of spatial window for the zeroth plane.

The proposed ∆x may not satisfy λ/10 sampling criterion, which is widely used for
accuracy [144]. The meaning of λ/10 sampling criterion is that there are at least ten sampling
points in one phase period (one cycle of phase rotation), which is sufficient. This section
formulates the size of the spatial truncation region and updates the spatial interval when
considering λ/10 sampling criterion.

Figure 4.1 shows the model of truncation by the spatial window. An object shadows the
line-of-sight (LoS) path, which is defined as z-axis, between a transmitter (Tx) and a receiver
(Rx). The point of the surface of the object closest to Tx is defined as zeroth plane z = 0,
which is perpendicular to z-axis. The distances from the zeroth plane to Tx and Rx are b and
c, respectively. w0,i (i = 1, 2) is the x-coordinate of two object edges in the zeroth plane. a is
the window size. The cylindrical wave incident to the zeroth plane can be calculated using
the Hankel function of the second kind H

(2)
0 (k0

√
x2 + b2). Assuming k0b ≫ 1 and x ≪ b, the

Fresnel region approximation [145] is applied as (4.3).

H
(2)
0

(

k0
√
x2 + b2

)

≈ H
(2)
0 (k0b)e

−j
k0
2b

x2

(4.3)
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Figure 4.4 shows an example of the plots of left and right hand sides of (4.3) with the
values of b = 2.15 m and k0 = 1394 rad/m (λ = 4.5 mm) [144] to validate Fresnel region
approximation. We can find that Fresnel region approximation provides good accuracy near
the edge.
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Figure 4.2: Comparison between Fresnel region approximation and original function.

Equation (4.3) gives two key intuitions (P1–P2):

• P1: Constant Amplitude in Space Domain
The complex amplitude term H

(2)
0 (k0b) is constant at approximately x ≃ 0. Truncation

by a rectangular windowing function will cause the boundary discontinuity, which takes
the extra truncation error in the edge. Thus, there is a need for a decay windowing
function to reduce the truncation error.

• P2: Decreasing Phase Period in Space Domain

The phase term e−j
k0
2b

x2
is x2-dependent around x = 0. Thus, the phase period around

x = 0 is much larger than λ and decreases when x is larger. However, the phase period
converges to λ, as shown in Fig. 4.3.
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Figure 4.3: Decreasing phase period of aperture fields
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Figure 4.4(a) shows an example of the plot of Hankel function with the same parameters
as Fig. 4.2 to visualize the behaviour of the above key intuitions P1–P2. The black line is the
plot with the interval of λ/10 as a reference. The red points are the plot with the interval of
proposed ∆x in (4.2), which is larger than λ/10. We can observe that there are more than
ten red sampling points in the phase period near z-axis. Thus, for the shadowing problem
where a region of interest is near the edge, the interval of ∆x near the edge can satisfy ten
sampling points within one phase period there.

The region far away from the edge, where the integral of the rapidly oscillating function
E0,i(x)e

jkxx does not contribute to the final integral due to the cancellation, can be truncated.
The vanishing region can be numerically integrated in vain if the number of samples per phase
period is sufficiently large, e.g., 10. However, the interval of ∆x in phase period far away
from the edge may not provide sufficient sampling points according to key intuition P2. The
numerical integration of vanishing region is erroneous when the number of samples per phase
period is insufficiently small. Therefore, it is better to truncate rather than to inaccurately
numerically integrate the region. The radiation integral can be cancelled if the phase change
number np ≥ 7 (at least 7π phase change) [109]. Figure 4.4(b) is the windowed truncation
of Fig. 4.4(a) with the values of w0,1 = −w0,2 = 0.25 m and np = 7. The author updates
∆x of (4.2) to ∆x′ as (4.4), which can satisfy each phase period within the window that
should be sampled by at least ns sampling points (ns = 10 for λ/10 sampling criterion). The
derivation of (4.4) is shown in Appendix A.

∆x′ = min
i=1,2






∆x,

√

w2
0,i +

2bnpπ

k0
−
√

w2
0,i +

2b(np−2)π

k0

ns






(4.4)

For the LoS case, w0,i is replaced by 0 in (3.6)–(4.4). Appendix A also derives the spatial
windowing size a as (4.5).

a =
n2
sk0∆x′2 + 4πb

2nsk0∆x′ (4.5)
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Figure 4.4: The field distributed on the zeroth plane.
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4.4 Discretization in Angular Spectrum Domain

Although in real MKA calculation, numerical approach is used, this section provides an
analytical approach, not to calculate the shadowing results, but for to formulates the angular
spectrum resolution. The windowed field distributed on the region |x−w0,i| ≤ a of the zeroth
plane is approximated as

n(x)− n(w0,i)

n(a)− n(w0,i)
≈

x2 − w2
0,i

a2 − w2
0,i

(for w0,i, a, x ≪ b, c) (4.6)

E0,i(x) ≈
1

2
H

(2)
0 (k0b)e

−j
k0
2b

x2

(cos (
x2 − w2

0,i

a2 − w2
0,i

π) + 1) (4.7)

substituting (4.7) into (3.1), Ẽ0,i(kx) can be analytically approximated as

Ẽ0,i(kx) ≈ H
(2)
0 (k0b)





1

2

√

bπ

k0
e
j
bk2x
2k0







C





a
b
k0 − kx
√

k0π
b



− jS





a
b
k0 − kx
√

k0π
b



− C





w0,i

b
k0 − kx
√

k0π
b





+ jS





w0,i

b
k0 − kx
√

k0π
b











+
1

4

√

√

√

√

π

2
(

k0
2b

− π
a2−w2

0,i

)e

j











k2x

4





k0
2b

−

π

a2−w2
0,i





−
w2
0,iπ

a2−w2
0,i











×







C





2
(

k0
2b

− π
a2−w2

0,i

)

a− kx

2π
(

k0
2b

− π
a2−w2

0,i

)



− jS





2
(

k0
2b

− π
a2−w2

0,i
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a− kx

2π
(

k0
2b

− π
a2−w2

0,i

)





−C





2
(

k0
2b

− π
a2−w2

0,i

)

w0,i − kx

2π
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where S(·), C(·) are the Fresnel integrals and the integral formula is applied as
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∫
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Using the asymptotic forms of S(·), C(·) as

S(x) ∼ 1

2
− 1

πx
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(π

2
x2
)

(4.10a)
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x2
)

(4.10b)

an asymptotic form of Ẽ0,i(kx) can be analytically calculated as

Ẽ0,i(kx) ∼ H
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(4.11)

There are three reasons that the above analytical results cannot be used to directly
evaluate the shadowing gain. Firstly, the above analytical results use many approximations
causing the additional errors to the final results. Secondly, to evaluate the final results,
we need to integral the above results again and again. However, unfortunately, there is no
analytic solution for the further integration. Thirdly, even for (4.8), which has no asymptotic
approximation compared with (4.11), the calculation time of (4.8) may slower than numerical
approach since it uses a lot of special functions. Although (4.11) can only provide the rough
approximation compared with numerical integration, it still gives three key intuitions (P3–
P5):

• P3: Amplitude Poles in Angular Spectrum Domain
From (4.11), we can find that kx = k0a/b and kx = k0w0,i/b are the highest poles of
the asymptotic form of Ẽ0,i(kx). Those values correspond to the directions of incident
rays to the edges of window and object in ray tracing. The peaks of oscillating Ẽ0,i(kx)
around those poles make the significant contribution to the integral.

• P4: Constant Phase Period of Ẽ0,i(kx)
The phase of Ẽ0,i(kx) is kx-dependent. Thus, the phase period with the size of 2π/|w0,i|
and 2π/a are constant everywhere of kx.

• P5: Decay Amplitude in Angular Spectrum Domain
The envelope of Ẽ0,i(kx) is k−1

x -dependent. Ẽ0,i(kx) decays fast when kx is far away
from peaks. This characteristic influences the selection of the windowing function.
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The above gives the characteristics of Ẽ0,i(kx). However, for conducting the next FT by
(3.2), the complex factor Ẽ0,i(kx)e

−jkzd should be analyzed. The author approximates the
complex factor e−jkzd near kx = 0 as (4.12).

e−jkzd = e−j
√

k20−kx
2d ≈ e

−j(k0− kx
2

2k0
)d

(4.12)

Equation (4.12) is identical for the Fresnel region approximation (4.3) but in the angular
spectrum domain. This approximation gives key intuition P6:

• P6: Decreasing Phase Period of e−jkzd

The phase of e−jkzd is kx
2-dependent near the line of sight. Thus, e−jkzd has a deceasing

phase period with an increase in |kx|.

The phase of Ẽ0,i(kx)e
−jkzd can be classified into two cases C1 and C2, by using (4.11)

and (4.12).

• C1: Constant Phase Period in Angular Spectrum Domain for Small d
In case of small d (d < 2a), from the inequality relation (4.13), Ẽ0,i(kx) dominates the
phase of Ẽ0,i(kx)e

−jkzd. Thus, by key intuition P4, the phase period is constant in the
angular spectrum domain.

d

2k0
kx

2 ≤ d

2
kx < akx (4.13)

• C2: Decreasing Phase Period in Angular Spectrum Domain for Large d
In case of large d, factor e−jkzd dominates the phase of Ẽ0,i(kx)e

−jkzd. Thus, by key
intuition P6, the phase period is decreasing in the angular spectrum domain.

Using the above phase informations, the author proposes X corresponding to the angular
spectrum interval as follows. From key intuition P3, the phase period at poles should be
sampled by ns points for accuracy in the angular spectrum domain. For the LoS condition,
kx = 0 corresponding to the directions of the direct ray is the main peak. For the NLoS
condition, the poles of Ẽ0,i(kx)e

−jkzd are kx = k0a/b and kx = k0w0,i/b, which is the same as
the poles of Ẽ0,i(kx) due to |Ẽ0,i(kx)e

−jkzd| = |Ẽ0,i(kx)|. Additionally, for case without the
spatial windowing truncation, since the terms including a in (4.11) vanish for a → ∞, pole
of kx = k0a/b and phase term of akx disappear. Using the phase informations of cases C1
and C2, the author proposes X as (4.14).

X1 = nsa (4.14a)

X2 =
nsda

b
(4.14b)

X3 = max
i=1,2

ns|w0,i| (4.14c)

X4 = max
i=1,2

nsd|w0,i|
b

(4.14d)
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where X1 is the proposed X in case C1 or case C2 for the LoS condition with the spatial
windowing truncation. X2 is the proposed X in case C2 for the NLoS condition with the
spatial windowing truncation. X3 is the proposed X in case C1 or case C2 for the LoS
condition without the spatial windowing truncation. X4 is the proposed X in case C2 for
the NLoS condition without the spatial windowing truncation. The derivation of (4.14) is
shown in Appendix B.
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4.5 Truncation in Angular Spectrum Domain

This section formulates the size of the angular spectrum truncation region. In case C1, there
is no need to consider the extra discretization error by equally sampled points since the phase
period is almost constant. However, there is a vast discretization error for equally-sampling
points in case C2 since the phase period decreases with the increase of |kx|.

The region far away from the poles in the angular spectrum domain, where the integral
of the oscillating function does not contribute to the final integral, should be truncated
rather than inaccurately numerically integrate the insufficiently sampled region. The angular
spectrum domain is truncated by using the rectangular windowing function for case C2. The
rectangular windowing function is chosen because the amplitude of Ẽ0,i(kx)e

−jkzd is |Ẽ0,i(kx)|,
which decays fast according to key intuition P5. Thus, a rectangular windowing function
results in a negligibly small truncation error. Figures 4.5(a) and (b) show the examples before
and after the truncation with the value of d = 7.85 m in the same condition as Fig. 4.4(b)
[144]. The windowing function for the angular spectrum domain is (4.15).

WAn(kx) =

{

1 (|kx| ≤ kw)

0 (|kx| > kw)
(4.15)

where WAn(·) is the angular spectrum windowing function. kw is the window size in the
angular spectrum domain and is proposed as (4.16).

kw =
k0Xα

ncd
(α = 1, 2, 3, 4) (4.16)

where, nc is the Nyquist sampling number per phase period, i.e., 2. The derivation of (4.16)
is shown in Appendix B. Appendix B also explains the reason for using the Nyquist sampling
criterion in the angular spectrum domain, which is different from λ/10 sampling criterion in
the space domain.

4.6 Conclusion

In this Chapter, the design of the simulation parameters for MKA was proposed. We eval-
uated FFT size for the double diffraction mentioned in [144]. Comparing FFT size with
value of 217 set in Chapter 3 for one test, the MKA with the designed parameters only need
210 ∼ 211 points for one test.
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Figure 4.5: The plot of the real part of
∑2

i=1 Ẽ0,i(kx)e
−jkzd.



Chapter 5

Application of MKA for An
Arbitrarily Shaped Object

5.1 Introduction

This chapter will extend MKA for an arbitrarily shaped object. The finding of the combina-
tion of windowing functions for the accuracy and computational cost will be introduced and
explained. The proposed method will be simulated for a PEC elliptical cylinder in terms of
the accuracy and computational cost. The accuracy of proposal will be validated by com-
paring with MoM as the reference. The computational cost of proposal will be compared
with UTD. Evaluations and discussions will be done by varying the simulation parameters.
The limitations and the future applicabilities will be discussed.

5.2 Extension of MKA for An Arbitrarily Shaped Ob-

ject

This section introduce the application of MKA for an arbitrarily shaped object. The arbi-
trarily shaped cylinder is approximated to the combination of several rectangular cylinders
as shown in Fig. 5.1. Those rectangular cylinders can be seen as the slices of the arbitrarily
shaped cylinder by multiple planes as shown in Fig. 5.2. The accuracy of the above step
approximation for an arbitrarily shaped object is validated by MoM, as shown in Appendix
E. In Fig. 5.2, distances b and c − Ld are large while d is small. There are (L + 1) planes,
and all the planes need to be perpendicular to Tx - Rx line [146]. The interval between two
planes is determined by the maximum propagation angle θm [102] as (5.1).

d =
λ

θ2m
(5.1)

By applying MKA repeatedly among those planes as (5.2), the scattered fields can be
calculated for evaluating the shadowing gain.

EMKA
l+1,i (x) = El+1,i(x)−El+1,i(2wl+1,i − x) (5.2)

47
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Figure 5.1: The modeling of the extended MKA.
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Figure 5.2: The extended MKA for the arbitrarily shaped object.

where EMKA
l+1,i (·) is the field calculated by MKA [144] in the (l + 1)th plane. wl+1,i is the

coordinate of two edges in the (l+1)th plane. The second term on the right-hand side is the
mirror image. The fields EMKA

l+1,i (·) for the region i = 1, 2 are calculated separately, until they
reach the last plane where two fields are merged.

The new finding is that, only the space domain of the zeroth plane and the angular
spectrum domain of the last plane need their respective windowing functions, while other
planes or domains do not. To prove the finding, there is a need to clarify what condition
needs or does not need the windowing function. According to Chapter 4, the meaning
of the windowing function is to truncate the region, where they cannot contribute to the
integral. However, those regions have discretization errors caused by the equal sampling
interval in a decreasing phase period. Thus, the constant phase period does not need a
windowing function, and vice versa for the decreasing phase period. The author explains the
characteristic of phase period for each plane in both domains as follows.

For the zeroth plane, the Hankel function in the space domain has a decreasing phase
period according to key intuition P2. Thus, there is a need to take the spatial windowing
function. However, since the change of the phase period in the small truncation region is
insignificant, the phase period of the windowed Hankel function E0,i(x) is constant in the
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truncation region. On the other hand, in the angular spectrum domain, Ẽ0,i(kx)e
−jkzd has a

constant phase period according to key intuition P4. Since d is small, Ẽ0,i(kx) has a constant
phase period according to case C1. Thus, there is no need to take the angular spectrum
windowing function.

For the first plane, since Ẽ0,i(kx) dominates Ẽ0,i(kx)e
−jkzd according to case C1, E1,i(x)

has almost the same constant phase period with E0,i(x) as (5.3). Thus, there is no need to
take the spatial windowing function.

arg (E1,i(x))

= arg
(

F(Ẽ0,i(kx)e
−jkzd)

)

(5.3a)

∼ arg
(

F(Ẽ0,i(kx))
)

(5.3b)

=arg
(

W Sp
0,i (x)E0,i(x)

)

(5.3c)

where F(·) and F−1(·) are FFT and IFFT, respectively. arg (·) is the phase function.

Considering (5.3) as the initial condition, and repeating (5.4) and (5.5) inductively, the
author proves that El+1,i(x) and Ẽl+1,i(kx)e

−jkzd have a constant phase period like E0,i(x)
and Ẽ0,i(kx)e

−jkzd, respectively. Thus, there is no need for the windowing function in both
the space and angular spectrum domain until the last plane.

arg (El+1,i(x))

= arg
(

F(Ẽl,i(kx)e
−jkzd)

)

(5.4a)

∼ arg
(

F(Ẽl,i(kx))
)

(5.4b)

=arg
(

EMKA
l,i (x)

)

(5.4c)

= arg (El,i(x)− El,i(2wl,i − x)) (5.4d)

arg
(

Ẽl+1,i(kx)e
−jkzd

)

∼ arg
(

Ẽl+1,i(kx)
)

(5.5a)

= arg
(

F−1(EMKA
l+1,i (x))

)

(5.5b)

=arg
(

F−1(El+1,i(x)− El+1,i(2wl+1,i − x))
)

(5.5c)

= arg
(

(Ẽl,i(kx) + Ẽl,i(−kx)e
j2kxwl+1,i)e−jkzd

)

(5.5d)

Finally, for the last plane in the angular spectrum domain, since e−jkz(c−Ld) dominates
Ẽl,i(kx)e

−jkz(c−Ld) for the large c − Ld, Ẽl,i(kx)e
−jkz(c−Ld) has a decreasing phase period ac-

cording to case C2. Thus, there is a need to take the angular spectrum windowing function.
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Above all, we can conclude that only the space domain of the zeroth plane and the
angular spectrum domain of the last plane need their separate windowing functions in case
C2.

Since there is no windowing function in the space domain of the last plane, and the
propagating distance from the last plane to Rx is a large value, X4 in (4.14) should be
considered to calculate the range of FFT. However, in the last plane, two terms ofX4 in (4.14)
should be replaced. One is d should be replaced by c− Ld since c − Ld is the propagating
distance in the last plane. Another is w0,i should be replaced by wL,i since kx = kwL,i/b
corresponding to the direction of incident ray to the edge of object in the last plane becomes
the pole in the angular spectrum domain. In addition, since there is a windowing function in
the space domain of the zeroth plane, and the propagating distance from the zeroth plane to
the first plane is a small value, X1 in (4.14) should also be considered to calculate the range
of FFT. For the planes between the zeroth and last, since there is no windowing function in
the space domain, and the propagating distance between two planes is a small value, X3 in
(4.14) should also be considered to calculate the range of FFT. Therefore, for satisfying the
above all, X and kw are updated to X ′ and k′

w by (5.6) and (5.7), respectively.

X ′ = max
l 6=0,L

max
i=1,2

(

ns(c− Ld)|wL,i|
b+ Ld

, nsa, ns|wl,i|
)

(5.6)

k′
w =

k0X
′

nc(c− Ld)
(5.7)

Figure 5.3 shows the flow chart of MKA calculation. The green block corresponds to the
proposal of the designed parameters. The red remarks are the findings of the windowing
functions. The order of the calculation time for MKA with the proposed parameters is (5.8).

tMKA ∼ O (LN log2N) (5.8)

where N = Xα/∆x′. tMKA is the computational cost of MKA. The detailed computational
complexity is shown in Appendix D.



5.2. EXTENSION OF MKA FOR AN ARBITRARILY SHAPED OBJECT 51

Input 

Designed parameters 
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IFFT and FFT in the Lth plane
(angular spectrum windowing function)

Shadowing gain

Figure 5.3: Flow chart of MKA calculation.
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5.3 Simulations for An Arbitrarily Shaped Cylinder

This section introduces simulation for an arbitrarily shaped cylinder by applying MKA with
the designed FFT parameters mentioned in Chapter 4 and the combination of the windowing
functions mentioned in this Chapter. Simulation scenarios are explained in Subsection 5.3.1.
Simulation results are shown in Subsection 5.3.2. Evaluations and discussions are shown in
Subsection 5.3.3.

5.3.1 Simulation Scenarios

Tx Rx 

Object

Center

Figure 5.4: Simulation environment in x-z domain.

The author validates the proposed method for an elliptical conductor cylinder, which
models the cross section of human body. As shown in Fig. 5.4, an elliptical conductor
cylinder is placed between Tx and Rx. An electric line source with the cylindrical wave in
the perpendicular polarization is considered at mmWave. r1 and r2 denote the semi-major
and semi-minor axes of the ellipse, respectively. f denotes the frequency. d1 denotes the
horizontal distance between the center of the ellipse and Tx. d2 denotes the horizontal
distance between the center of the ellipse and Rx. ∆d denotes the offset between the center
of the ellipse and Tx-Rx line. θ denotes the rotation angle of the ellipse.

There are two simulation scenarios. Scenario 1 varies ∆d from −100λ to 100λ with an
interval of 0.5λ. Scenario 2 varies f from 17 GHz to 66.5 GHz with an interval of 0.5 GHz at
∆d = 0 m. Considering the human-size shadowing problem, the author sets the parameters
of each scenario as shown in Table 5.1 and Table 5.2, respectively. For each scenario, three
rotation angles are considered, i.e., θ = 0◦, θ = 45◦, and θ = 90◦.

The processor of the calculating computer is an Intel(R) Core(TM) i7-8750H CPU @
2.20 GHz. The usable installed memory of the calculating computer is 15.8 GB. The system
type of the calculating computer is 64-bit operating system with a x64-based processor. The
simulation software is MATLAB.
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Table 5.1: Parameters of Scenario 1

Parameters Values
θ (◦) 0, 45, 90
θm (◦) 30, 45, 45
r1 (λ) 50
r2 (λ) 20
d1 (λ) 444.4
d2 (λ) 1777.8
∆d (λ) −100 : 0.5 : 100
np 7
ns 10
nc 2
ǫ 10−6

Table 5.2: Parameters of Scenario 2

Parameters Values
f (GHz) 17 : 0.5 : 66.5
θ (◦) 0, 45, 90
θm (◦) 30, 45, 45
r1 (m) 0.25
r2 (m) 0.1
d1 (m) 2
d2 (m) 8
∆d (m) 0

np 7
ns 10
nc 2
ǫ 10−6
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Computation time of MKA is compared with that of UTD. To discuss the calculation
time later, the author gives the detailed UTD simulation approaches in Chapter 2.

MoM using EFIE as the reference of accuracy is simulated. The piecewise constant
function is selected as the basis function of MoM and point matching method is implemented.
The mesh size of MoM is set to λ/10 for accuracy. The author gives the detailed MoM
simulation approaches in Chapter 2.
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5.3.2 Simulation Results

For scenario 1, the shadowing gain results of UTD, MKA and MoM were shown in Fig. 5.5.
The horizontal axis was ∆d (λ). The vertical axis was the shadowing gain results in decibel
(dB) scale. The results show that the accuracy of the proposal is validated by comparing
with MoM for varying the location of the object.
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Figure 5.5: The plots of the shadowing gain for scenario 1.

The relative calculation time of MKA was shown in Fig. 5.6. The horizontal axis was
∆d (λ). The vertical axis was the relative calculation time referenced by UTD. The improve-
ment of calculation time was compared with UTD for varying the location of the object.

For scenario 2, the shadowing gain results of UTD, MKA and MoM were shown in Fig. 5.7.
The horizontal axis was f (GHz). The vertical axis was the shadowing gain results in dB
scale. The results show that the accuracy of the proposal is validated by comparing with
MoM for varying the frequencies.

The relative calculation time of MKA was shown in Fig. 5.8. The horizontal axis was
f (GHz). The vertical axis was the relative calculation time. The improvement of calculation
time was compared with UTD for varying the frequencies.

Considering the MoM as the reference, the author calculated the root-mean-square error
(RMSE) by (5.9).

RMSE =

√

√

√

√

m
∑

j=1

(

SGMethod
j − SGMoM

j

)2

m
(5.9)
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Figure 5.6: The plots of the relative calculation time for scenario 1.

Table 5.3: Comparison of UTD and MKA for scenario 1

Methods RMSE (dB) Computational time (ms)

UTD (θ = 0◦) 0.25 94.9 – 3179.5
MKA (θ = 0◦) 0.22 12.9 – 63.1
UTD (θ = 45◦) 0.46 94.7 – 912.9
MKA (θ = 45◦) 0.25 42.5 – 76.4
UTD (θ = 90◦) 1.65 93.6 – 915.9
MKA (θ = 90◦) 0.32 21.6 – 70.6

where SGMoM
j is the shadowing gain calculated by MoM in dB scale for the jth test, SGMethod

j

is the shadowing gain calculated by UTD or MKA in dB scale for the jth test. m is the total
number of tests.

The comparisons of the RMSE and the computational time between UTD and MKA for
each scenario were shown in Table 5.3 and Table 5.4, respectively.

The results showed that the proposed low computational cost MKA presented good
accuracy with a low RMSE of less than 0.5 dB by comparing with the MoM as the reference.

The author evaluated the dominant parts of the calculation time for UTD and MKA as
follows. For the LoS case of f = 66.5 GHz, θ = 0◦,∆d = 50λ, there were one reflection
ray and one incident ray for UTD calculation. UTD took 446.6 ms in (2.17) for reflection
point searching and 17.9 ms in (2.22) for one modified Fresnel integral, while MKA took
16.8 ms for the entire calculation. For the NLoS case of f = 66.5 GHz, θ = 0◦,∆d = 0 m,
there were two creeping diffraction rays for UTD calculation. UTD took 34.7 ms in (2.9)
for two incomplete elliptic integrals of the second kind, 38.4 ms in (2.13) for two incomplete
elliptic integrals of the first kind, and 32.7 ms in (2.15) for two modified Fresnel integrals,
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Figure 5.7: The plots of the shadowing gain for scenario 2.

Table 5.4: Comparison of UTD and MKA for scenario 2

Methods RMSE (dB) Computational time (ms)

UTD (θ = 0◦) 0.59 104.5 – 199.3
MKA (θ = 0◦) 0.25 2.2 – 47.9
UTD (θ = 45◦) 0.46 103.5 – 116.1
MKA (θ = 45◦) 0.44 6.0 – 74.7
UTD (θ = 90◦) 0.18 104.5 – 120.1
MKA (θ = 90◦) 0.31 3.4 – 45.9

while MKA took 19.6 ms for the entire calculation. The calculation time of the proposal
was improved by 1.4 – 67.2 times compared with the UTD using the special functions and
reflection point searching.

The memories for MKA and UTD were also compared. UTD took 138 – 197 MB for one
test, while MKA took 30 – 47 MB for one test. The MATLAB code of MKA was shown in
Appendix F.

5.3.3 Evaluations and Discussions

This subsection varied the parameters of ǫ, θm, ns, nc, and np to evaluate the accuracy and
computational cost by using RMSE and the mean values of the relative computational time,
respectively.

Firstly, the values of ǫ were varied from 10−1 to 10−10. The other parameters were fixed
as θm = 30◦, 45◦, 45◦ for θ = 0◦, 45◦, 90◦, ns = 10, nc = 2, and np = 7, respectively. The
results were shown in Fig. 5.9 - Fig. 5.12 for RMSE and the mean values of the relative
computational time in scenarios 1 and 2, respectively. From results, we found that ǫ with
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Figure 5.8: The plots of the relative calculation time for scenario 2.

the values smaller than 10−5 could provide low and converge RMSE with the values less than
0.5 dB. In addition, the computational time became higher with the decrease of ǫ since FFT
size became larger. Thus, the author chose ǫ = 10−6 for considering the balance between the
computational cost and accuracy.

Secondly, the values of θm were varied from 15◦ to 45◦. The other parameters were fixed
as ǫ = 10−6, ns = 10, nc = 2, and np = 7, respectively. The reasons for selecting only
θm = 15◦, θm = 30◦, and θm = 45◦ were discussed in Appendix C. The results were shown
in Fig. 5.13 - Fig. 5.16 for RMSE and the mean values of the relative computational time
in scenarios 1 and 2, respectively. From results, we found that, for θ = 0◦, θm = 30◦, 45◦

could provide RMSE less than 0.5 dB, and for θ = 45◦, 90◦, θm = 45◦ could provide RMSE
less than 0.5 dB. In addition, the computational time became higher with the increase of
θm since the planes number became more. Thus, the author chose θm = 30◦, 45◦, 45◦ for
θ = 0◦, 45◦, 90◦, respectively. The reason for using different θm was considered that ellipses
with respective θ had the different mean value of the slope. The detailed calculations of the
mean value of the slope were also shown in Appendix C.

Thirdly, the values of ns were varied from 5 to 20. The other parameters were fixed as
ǫ = 10−6, θm = 30◦, 45◦, 45◦ for θ = 0◦, 45◦, 90◦, nc = 2, and np = 7, respectively. The
results were shown in Fig. 5.17 - Fig. 5.20 for RMSE and the mean values of the relative
computational time in scenarios 1 and 2, respectively. From results, we found that ns = 10
could provide the lowest RMSE. The reason why RMSE with ns = 20 was higher than it
with ns = 10 was considered as follows. According to the proof in Appendix B, the transition
regions B and D in Fig. B.1 with ns = 20 were larger than the transition regions but with
ns = 10 for a fixed nc. The discretization error became larger due to inaccurately integrate
those larger transition regions, where insufficiently sampled regions with less than ten points
per phase period existed. The increase of the discretization error resulted a higher RMSE
for ns = 20, compared with ns = 10. In addition, the computational time became higher
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with the increase of ns since the range of FFT became larger.

Fourthly, the values of nc were varied from 2 to 10. The other parameters were fixed
as ǫ = 10−6, θm = 30◦, 45◦, 45◦ for θ = 0◦, 45◦, 90◦, ns = 10, and np = 7, respectively. The
results were shown in Fig. 5.21 - Fig. 5.24 for RMSE and the mean values of the relative
computational time in scenarios 1 and 2, respectively. From results, we found that nc = 2
could provide the lowest RMSE. The reason was also related to Appendix B. According to
the proof in Appendix B, the peaks with the heights less than nc/ns of the highest peak
were truncated. For a fixed ns, the increase of nc would cause more peaks vanished. Those
vanished peaks with the higher heights would influence the accuracy of the next FT. The
increase of the truncation error resulted a higher RMSE for a larger nc. In addition, the
computational time almost did not change with the increase of nc since their ranges of FFT
were the same for a fixed ns.

Fifthly, the pairs of (ns, nc) were varied from (1, 5) to (4, 20), which always satisfied
ns = 5nc. The other parameters were fixed as ǫ = 10−6, θm = 30◦, 45◦, 45◦ for θ = 0◦, 45◦, 90◦,
and np = 7, respectively. The results were shown in Fig. 5.25 - Fig. 5.28 for RMSE and the
mean values of the relative computational time in scenarios 1 and 2, respectively. From
results, we found that ns = 5nc presented a better accuracy by comparing with only fixing
either ns or nc. The reason was considered that ns = 5nc could provide a good balance
between the discretization and truncation error. However, the computational time became
larger with the increase of ns since the range of FFT became larger. Therefore, the pair of
(ns, nc) was proposed as (2, 10) for accuracy and computational cost.

Sixthly, the values of np were varied from 1 to 10. The other parameters were fixed as
ǫ = 10−6, θm = 30◦, 45◦, 45◦ for θ = 0◦, 45◦, 90◦, ns = 10, and nc = 2, respectively. The
results were shown in Fig. 5.29 - Fig. 5.32 for RMSE and the mean values of the relative
computational time in scenarios 1 and 2, respectively. From results, we found that RMSE
did not change for varying np with the small values. The reason was related to Appendix A.
According to (A.6) in Appendix A, for np with a small value, ∆x dominated the ∆x′ and
was np-independent. Therefore, RMSE did not change for varying np with the small values.

Finally, the values of np were varied from 17 to 107. The other parameters were fixed
as ǫ = 10−6, θm = 30◦, 45◦, 45◦ for θ = 0◦, 45◦, 90◦, ns = 10, and nc = 2, respectively. The
results were shown in Fig. 5.33 - Fig. 5.36 for RMSE and the mean values of the relative
computational time in scenarios 1 and 2, respectively. From results, we found that RMSE
changed for varying np with the large values. The reason was also related to Appendix A.
According to (A.6) in Appendix A, for np with a large value, ∆xi dominated the ∆x′ and
was np-dependent. We found that the values of np from 7 to 57 provided a low RMSE less
than 0.5 dB. That was because for large np, windowing size in space domain would become
larger, and hence more discretization error would be inaccurately integrated. Moreover,
the computational time became larger with the increase of np since ∆x′ became smaller.
Therefore, we chose np = 7 for considering the accuracy and computational cost.



60 CHAPTER 5. APPLICATION OF MKA FOR AN ARBITRARILY SHAPED OBJECT

10-10 10-5 100
0.1

0.2

0.3

0.4

0.5
R

M
S

E
 (

dB
)

=0°
=45°
=90°

Figure 5.9: The relations between RMSE and ǫ for scenario 1.
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Figure 5.10: The relations between the mean values of the relative computational time and
ǫ for scenario 1.
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Figure 5.11: The relations between RMSE and ǫ for scenario 2.
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Figure 5.12: The relations between the mean values of the relative computational time and
ǫ for scenario 2.
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Figure 5.13: The relations between RMSE and θm for scenario 1.
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Figure 5.14: The relations between the mean values of the relative computational time and
θm for scenario 1.
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Figure 5.15: The relations between RMSE and θm for scenario 2.
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Figure 5.16: The relations between the mean values of the relative computational time and
θm for scenario 2.
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Figure 5.17: The relations between RMSE and ns for scenario 1.
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Figure 5.18: The relations between the mean values of the relative computational time and
ns for scenario 1.
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Figure 5.19: The relations between RMSE and ns for scenario 2.
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Figure 5.20: The relations between the mean values of the relative computational time and
ns for scenario 2.
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Figure 5.21: The relations between RMSE and nc for scenario 1.
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Figure 5.22: The relations between the mean values of the relative computational time and
nc for scenario 1.
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Figure 5.23: The relations between RMSE and nc for scenario 2.
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Figure 5.24: The relations between the mean values of the relative computational time and
nc for scenario 2.



68 CHAPTER 5. APPLICATION OF MKA FOR AN ARBITRARILY SHAPED OBJECT

0 5 10 15 20 25
n

s
 (=5n

c
)

0

1

2

3

4

5

R
M

S
E

 (
dB

)
=0°
=45°
=90°

Figure 5.25: The relations between RMSE and ns = 5nc for scenario 1.
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Figure 5.26: The relations between the mean values of the relative computational time and
ns = 5nc for scenario 1.
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Figure 5.27: The relations between RMSE and ns = 5nc for scenario 2.
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Figure 5.28: The relations between the mean values of the relative computational time and
ns = 5nc for scenario 2.
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Figure 5.29: The relations between RMSE and small np for scenario 1.
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Figure 5.30: The relations between the mean values of the relative computational time and
small np for scenario 1.
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Figure 5.31: The relations between RMSE and small np for scenario 2.
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Figure 5.32: The relations between the mean values of the relative computational time and
small np for scenario 2.
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Figure 5.33: The relations between RMSE and large np for scenario 1.
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Figure 5.34: The relations between the mean values of the relative computational time and
large np for scenario 1.
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Figure 5.35: The relations between RMSE and large np for scenario 2.
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Figure 5.36: The relations between the mean values of the relative computational time and
large np for scenario 2.
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5.4 Limitations and Future Applicabilities

This section discusses the limitations and future applicabilities of MKA.

As a limitation of this study, MKA can only deal with a convex PEC object, which should
be put between Tx and Rx. Current MKA can not account for the internal reflections of a
concave object and the external reflections between two or more objects. In addition, this
work is only applied to forward scattering problems, and hence object should be put between
Tx and Rx. Although some opaque objects, which can be approximated as PEC, may apply
this technique, transparent objects with the transmission such as trees cannot use it.

For applicability in the future, the proposal can be utilized to predict a large number of
shielding patterns under various conditions at a high speed in 5G communication system.
Conventionally, when the measured value of shadowing gain expires, MIMO is used to search
for other beams and the propagation path is switched [150]. However, we want to switch
at an earlier time to ensure stable communication. By using the results of this research, a
large number of the shadowing patterns varying the size, angle, and location of an object
can be simulated at a high speed. Through training these patterns as big data by machine
learning, when the measured value of shadowing gain starts to drop, the following shadowing
pattern can be predicted. The other beam can be switched before the measured value of
shadowing gain expires, which can make stable communication possible [151]. Considering
a scenario in which an obstacle is moving between user and base station and blocking the
signal, MKA can predict a large number of the shadowing patterns to contribute to a faster
beam switching of MIMO for stable mobile communication.

Appendix D shows the comparison between current methods and the proposal. From
Appendix D, we can find that MKA can achieve a lower computational memory compared
with other numerical methods. In addition, MKA can provide a better predicting accuracy
compared with the analytic methods for an arbitrarily shaped object. Moreover, for a rect-
angular shaped object, MKA can achieve a faster computational time compared with other
numerical methods.

5.5 Conclusion

The applicable range of proposal was extended to an arbitrarily shaped cylinder by multiple
planes. This work found that, only the space domain of the zeroth plane and the angular
spectrum domain of the last plane needed their separate windowing functions for accuracy
and computational cost. The details of those windowing functions were introduced, and
their necessities were explained. The author validated the proposed method for an PEC
elliptical cylinder. Simulations by changing the object’s location, direction, and frequencies
were conducted. The results showed that the proposed method presents good accuracy with
a low RMSE of less than 0.5 dB, compared with the MoM as the reference. Furthermore,
the calculation time was improved by 1.4 – 67.2 times compared with the UTD. Objective 2
has been achieved.



Chapter 6

Conclusion

6.1 Summary

This study proposed a 2D MKA for accurately predicting the forward scattering problem
within a low computational cost. The proposal was validated for the shadowing gain caused
by an rectangular conductor cylinder, by comparing with MoM. This study also proposed the
design of the MKA parameters and the combination of the windowing functions to reduce
the size of FFT. The applicable range of MKA was extended to the arbitrary shaped cylinder
by multiple planes. This study found that, only the space domain of the zeroth plane and
the angular spectrum domain of the last plane needed their separate windowing functions
for accuracy and computational cost. The author validated the proposal for an elliptical
conductor cylinder with the size of the human body at mmWave (17 GHz – 66.5 GHz). The
results showed that the proposed method presented good accuracy with a low RMSE of less
than 0.5 dB, compared with the MoM as the reference. Furthermore, the calculation time
was improved by 1.4 – 67.2 times compared with the UTD for the human-scale problem.
The order of computational cost of MKA was LN log2N .

6.2 Contribution

This research can provide a fast and accurate forward scattering prediction method of a thick
object EM simulation. Not only EM wave, but also other strong-wave forward scattering
problems can apply this method. It also contributes to other academic or industry field.

The applicable range of KA is extended to a thick object by MKA. This study pro-
poses the design of the truncation region and resolution of FFT. In the space domain, the
windowing function based on FZN is extended to the forward scattering problem. In the
angular spectrum domain, a rectangular windowing function is proposed to use for accuracy
and computational cost. The paper also proposes a combination of windowing functions in
multiple planes for better accuracy and lower calculation time.
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6.3 Applicability for 3-dimensional Object

The extension of the applicable range to the 3-dimensional (3D) object can be considered as
the future prospect. The 3D arbitrary shaped object will be modelled as the combination
of several cuboid. The issues of MKA for 3D problems are the image mirror theory for the
curved object and the computational cost. Firstly, the current MKA has the difficulty to
deal with the curved mirror. Finding the way for satisfying boundary condition of the curved
mirror is considered as a future topic. Secondly, MKA for 3D problem uses 2D FFT, a higher
computational cost is needed. The use of GPU for reducing the computational time is also
considered as a future study.



Appendix A

Derivations of Resolution and
Windowing Size in Space Domain

According to key intuition P2, the phase function φ1(·) of Hankel function around x ≃ 0 is

φ1(x) =
k0
2b

x2 (A.1)

The spatial windowing boundary with the coordinate of ai should be np phase rotations away
from the edge with the coordinate of w0,i.

φ1(ai)− φ1(w0,i) = np
π

2
(A.2a)

⇒ai =

√

w2
0,i +

2bπ

k0
np (A.2b)

The coordinate a′i, which is 2π phase smaller than ai, is

φ1(ai)− φ1(a
′
i) = 2π (A.3a)

⇒a′i =

√

w2
0,i +

2bπ

k0
(np − 2) (A.3b)

Thus, the size ∆ai of the last phase period within the window is

∆ai = ai − a′i (A.4a)

=

√

w2
0,i +

2bπ

k0
np −

√

w2
0,i +

2bπ

k0
(np − 2) (A.4b)

Since ∆ai should be sampled by ns points, the sampling interval ∆xi should be

∆ai = ns∆xi (A.5a)

⇒∆xi =

√

w2
0,i +

2bπ
k0

np −
√

w2
0,i +

2bπ
k0
(np − 2)

ns
(A.5b)

The proposed interval ∆x′ should satisfy both ∆x of (4.2) and ∆xi as

∆x′ = min
i=1,2

(∆x,∆xi) (A.6)
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Since the updated ∆x′ may be smaller than ∆xi, for better accuracy, the window size
with sufficient sampling points can be larger than ai, which just satisfies the minimum
requirements of truncation with the phase change number of np. Suppose a is the updated
coordinate of the windowing boundary. The coordinate a′, which is 2π phase smaller than
a, is

φ1(a)− φ1(a
′) = 2π (A.7a)

⇒a′ =

√

a2 − 4bπ

k0
(A.7b)

Thus, the size ∆a of the last phase period within the window is

∆a = a− a′ (A.8a)

= a−
√

a2 − 4bπ

k0
(A.8b)

Since ∆a should be sampled by ns points, a can be derived as

∆x′ =
∆a

ns
=

a−
√

a2 − 4bπ
k0

ns
(A.9a)

⇒a =
n2
sk0∆x′2 + 4πb

2nsk0∆x′ (A.9b)



Appendix B

Derivations of Resolution and
Windowing Size in Angular Spectrum
Domain

In case C1, according to key intuition P4, the size of the phase period everywhere for kx is
2π/|w0,i| and 2π/a (a > w0,i). Each phase period should be sampled by at least ns points as

min
i=1,2

(
2π

a
,

2π

|w0,i|
) = ns

2π

X1
(B.1a)

⇒X1 = ns (B.1b)

If there is no spatial windowing function, since the term a vanishes, the size of the phase
period is 2π/|w0,i|.

min
i=1,2

(
2π

|w0,i|
) = ns

2π

X3
(B.2a)

⇒X3 = max
i=1,2

ns|w0,i| (B.2b)

In case C2, according to key intuition P6, the phase function φ2(·) of e−jkzd around kx ≃ 0 is

φ2(kx) =
d

2k0
k2
x (B.3)

For the NLoS condition in case C2, the phase period at poles kx = k0a/b and kx = k0|w0,i|/b
should be sampled by ns points.

φ2(kx)− φ2(kx − ns
2π

X2

) = 2π (B.4a)

kx = max
i=1,2

(
k0a

b
,
k0|w0,i|

b
) (B.4b)

⇒X2 =
nsda

b
(B.4c)
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DOMAIN

If there is no spatial windowing function, then the pole of kx = k0a/b vanishes.

φ2(kx)− φ2(kx − ns
2π

X4
) = 2π (B.5a)

kx = max
i=1,2

(
k0|w0,i|

b
) (B.5b)

⇒X4 = max
i=1,2

nsd|w0,i|
b

(B.5c)

For the LoS condition in case C2, the phase period of Ẽ0,i(kx)e
−jkzd at peak kx = 0 is the

same as Ẽ0,i(kx) due to Ẽ0,i(kx)e
−jkzd|kx=0 = Ẽ0,i(kx)|kx=0. Thus, the LoS condition in case

C2 has the same conclusion as case C1.

Truncation size kw is calculated by using the Nyquist sampling number nc as

φ2(kw)− φ2(kw − nc
2π

Xα

) = 2π (B.6a)

⇒kw =
k0Xα

ncd
(B.6b)
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Figure B.1: Five regions of
∑2

i=1 Ẽ0,i(kx)e
−jkzd.

The authors explain the reason for using the Nyquist sampling criterion in the angular
spectrum domain. Figure B.1 uses poles kx = ±k0a/b and boundaries kx = ±kw to separate
Fig. 4.5(b) into five regions, i.e., A, B, C, D, and E. Regions A and E cannot be sampled by
at least nc points. Regions B and D are sampled from nc to ns points. Region C is sampled
by at least ns points. The insufficiently sampled regions A and E can be truncated due
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to the cancellation of the radiation integration. The sufficiently sampled regions C should
remain due to the contribution of the integral. However, the transition regions B and D,
where many peaks of the oscillating

∑2
i=1 Ẽ0,i(kx)e

−jkzd are around the poles, also play an
important role in the integration. If we suddenly truncate by using ns sampling criterion,
then transition regions B and D will vanish causing the accuracy issue due to the lack of
peaks in |kx| ≥ k0a/b. The reason for using nc sampling criterion for truncation is because it
can retain many peaks with heights over nc/ns of the highest peak. The proof is as follows.

Proof Suppose the peak at pole kx = k0a/b is the highest peak with the height of h1, and
the height of the peak at boundary kx = kw is h2. According to key intuition P5, since the
envelope of Ẽ0,i(kx)e

−jkzd is k−1
x -dependent, we have

h1
k0a

b
= h2kw (B.7)

In addition, the sampling numbers of phase periods at kx = k0a/b and kx = kw are ns and
nc, respectively. Thus, we have

φ2(
k0a

b
)− φ2(

k0a

b
− ns

2π

Xα

) = 2π (B.8a)

φ2(kw)− φ2(kw − nc
2π

Xα

) = 2π (B.8b)

⇒ns
k0a

b
= nckw (B.8c)

From (B.7) and (B.8c), we can prove that

h2 =
nc

ns
h1 (B.9)

✷

For the values of nc = 2 and ns = 10, only the peaks with heights less than 20% of
h1, which do not significantly influence the next FT, are truncated. Thus, the accuracy of
the truncation is not an issue. For the discretization, it is better not to unify the sampling
criteria in the space and angular spectrum domains. If we unify nc = 10 in the angular
spectrum domain and want to retain the same peaks with heights over 20% of h1, then ns

will reach 50 points. According to (4.14), Xα will be 5 times larger than before causing a
significant increase in the calculation time. If we unify ns = 2 in the space domain, according
to (4.5), where the dominant part is

a =
n2
sk0∆x′2 + 4πb

2nsk0∆x′ ∼ 2πb

nsk0∆x′ (B.10)

a will be 5 times larger than before. According to (4.14b), X2 will also be 5 times larger
than before causing a significant increase in the calculation time. This paper has already
shown that the combination of nc = 2 and ns = 10 can present a good accuracy with a low
RMSE of less than 0.5 dB. Therefore, there is no need to unify the sampling criteria in the
two domains for a lower computational cost.





Appendix C

Determination of Maximum
Propagation Angle

The maximum propagation angle θm is related to the slope of the object. For the object
with the varying slopes, the mean value of those slopes can be considered as the represented
slope. However, even for the object with a fixed slope, tan θm can not be directly equal to
that slope since the wave propagates to the space, not only along the surface of object. Thus,
tan θm should be larger than the represented slope to make a room for propagating to the
space. Therefore, we need find some reference values of θm to compare with the represented
slope. In this study, three assumptions are considered as follows.

• Assumption 1
The minimum and step of reference values of θm are considered as 15◦.

• Assumption 2
Since the larger θm results the smaller planes interval causing a increase of compu-
tational cost, the maximum of reference values of θm needs to be designed for a low
computational cost. According to (5.1), interval with θm = 45◦ is calculated as 1.6λ,
which is small enough for accuracy [146]. Thus, the maximum of reference values of
θm is considered as 45◦. It means that only three θm are considered as the reference
values, i.e., 15◦, 30◦, and 45◦.

• Assumption 3
To find a room for propagating to the space, if the represented slope is smaller than
15◦, θm is proposed as 15◦. If the represented slope is smaller than 30◦ but larger than
15◦, θm is proposed as 30◦. If the represented slope is larger than 30◦, θm is proposed
as 45◦.

By using the above assumptions, the value of θm for an ellipse with the rotation angle
of θ = 0◦ is calculated as follows. Figure C.1 shows the model of the targeted ellipse with
the semi-major and semi-minor of r1 and r2, respectively, in ζ-η domain with the origin at
the center of the ellipse. The slope s(θ0) of the arbitrary points (r1 cos θ0, r2 sin θ0) can be
calculated as

s(θ0) = −r2
r1

1

tan θ0
(C.1)
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point of tangency

tangent line

ellipse

Figure C.1: Model of an ellipse with θ = 0◦

considering the symmetry of the ellipse, the mean value of the slopes s̄ can be calculated
from only the left-upper part (ζ < 0, η > 0) as

s̄ =
1

r1

∫ ζ=0

ζ=−r1

s(θ0)dζ (C.2a)

=
1

r1

∫ θ0=
π
2

θ0=π

−r2
r1

1

tan θ0
dr1 cos θ0 (C.2b)

=
r2
r1

∫ θ0=
π
2

θ0=π

cos θ0dθ0 (C.2c)

=
r2
r1

[

sin θ0

]θ0=
π
2

θ0=π

(C.2d)

=
r2
r1

(C.2e)

since for each scenario r2/r1 is 0.4, which is between tan 15◦ and tan 30◦, θm is defined as 30◦

according to assumption 3.

Similarly, for ellipses with the rotation angle of θ = 45◦ and θ = 90◦, we can calculate
and define θm for them are 45◦ and 45◦, respectively.



Appendix D

Comparison of Computional
Complexity of UTD, MKA, MoM,
and MLFMA

The computational complexities of all the methods are derived by an order calculation of
frequency.

Since UTD is frequency-independent for an analytically shaped object such as the circle
and ellipse, but needs a linear integral for an arbitrarily shaped object, the computational
complexity of UTD tUTD is

tUTD ∼
{

O (f 0) (for analytically shaped object)

O (f) (otherwise)
(D.1)

For MKA, according to (5.6), the unit of X ′ is the meter. Thus, if the frequency become
higher with the same distance parameter, X ′ will increase with the O (f). On the other
hand, according to (B.10) in Appendix A, ∆x′ is equivalent to

∆x′ =
2πb

nsk0a
=

2πb

nsk0

√

w2
0,i +

2πk0
b
np

(D.2)

Since the dominate part of (D.2) is

∆x′ ∼ 2πb

nsk0w0,i
(D.3)

there is no unit for ∆x′. Therefore, N = X ′/∆x′ increases with the O (f).

For the parameter L, it is determined by the ratio of the thickness and the interval
of planes. According to (5.1), the interval of planes is proportional to the wavelength for
case of θm 6= 0. Thus, the computational complexity of L with a fixed thickness increases
with the O (f). However, for the object with a rectangular cross section such as the car
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or building, θm is zero. Then, the interval of planes can be infinite large, which makes L
frequency-independent. Therefore, the computational complexity of MKA tMKA is

tMKA ∼
{

O (f log2 f) (for rectangular cross-section object)

O (f 2 log2 f) (otherwise)
(D.4)

On the other hand, the computational cost of 2D MoM is O (M3), where M is the number
of meshes. As state of the art, its fast variant MLFMA reduces the computational cost from
O (M3) to O (M log2M). Since M increases with the O (f). Therefore, the computational
complexities of MoM tMoM and MLFMA tMLFMA are

tMoM ∼ O
(

f 3
)

(D.5)

tMLFMA ∼ O (f log2 f) (D.6)

Although above all imply that UTD may be faster than MKA at a higher frequency
in case of θm 6= 0, they have not discussed the time for finding diffraction and refection
points. For an arbitrarily shaped object, it is not possible to estimate the search time for the
diffraction and reflection points. Even if UTD is faster than MKA at a higher frequency, the
accuracy is still an issue for ray-based UTD such as the tunnel environment, where multiple
reflections are the main propagation phenomenon and are difficult to predict by ray-based
approaches. Moreover, there is a problem for UTD that the curvature, diffraction points,
reflection points, and integral path may not be found precisely for the arbitrarily shaped
object, which cause error of calculation accuracy. Furthermore, the formulation of UTD
may be more difficult for some analytically shaped object (e.g., ellipse).

Similarly, above all imply that MLFMA may be faster than MKA at a higher frequency
in case of θm 6= 0. However, for the computational memory, they have the same frequency
dependency, and MKA may have the lower memory compared with MLFMA. The author
derives it as follows. Considering (D.3) for ∆x′, since the dominate part of X ′ is

X ′ =
ns(c− Ld)|wL,i|

b+ Ld
∼ nsc|wL,i|

b
(D.7)

MKA’s memory N will be

N ∼ n2
sc|w0,iwL,i|

λb2
(D.8)

For the sake of simplicity, a circular cylinder with a radius r is considered as the shadowing
object. Then, the MLFMA’s memory M is considered as the meshes number of the circular
boundary as

M =
2πrns

λ
(D.9)
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The radio of M and N is

M

N
=

2πrb2

nsc|w0,iwL,i|
>

2πb2

nscr
(D.10)

If we consider the often-used ns = 10, then M/N becomes

M

N
∼ 0.6

b2

cr
(D.11)

Since the shadowing scenario in 5G usually has the condition of b ≤ c, r, the MLFMA’s
memory is a least 0.6b2/(cr) times larger than MKA. Therefore, we can conclude that MKA
has a lower memory compared with MLFMA.





Appendix E

Step Approximation for An
Arbitrarily Shaped Object

An ellipse is modelled as a polygon by the step approximation, as shown in Fig. E.1. MoM
is applied to compare the shadowing gains between the original ellipse and the polygon
approximation. The simulation condition is the same as scenario 1 in Chapter 5, where
three rotation angles are considered, i.e., θ = 0◦, θ = 45◦, and θ = 90◦. The accuracy of
the polygon approximation is validated by comparing with the original ellipse as shown in
Fig. E.2 - Fig. E.4. From the results, we can find that the step approximation has a good
accuracy for forward scattering problem.

Polygon

Ellipse

Figure E.1: Model of step approximation

89



90 APPENDIX E. STEP APPROXIMATION FOR AN ARBITRARILY SHAPED OBJECT

-0.5 0 0.5
(m)

-60

-40

-20

0

S
ha

do
w

in
g

ga
in

(d
B

)

MoM (Poly Ell)
MoM (Ell)

Figure E.2: Comparison the shadowing gains between polygon and ellipse for θ = 0◦
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Figure E.3: Comparison the shadowing gains between polygon and ellipse for θ = 45◦
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Figure E.4: Comparison the shadowing gains between polygon and ellipse for θ = 90◦



Appendix F

MATLAB Code

The MATLAB code for MKA is shown in F.1.

Listing F.1: MKA code

t i c

% I n i t i a l parameters

c = 299792458;
f = 66 .5E9 ;
lambda = c / f ;
angu la r f r equency = 2 ∗ pi ∗ f ;
p e rmeab i l i t y = 4∗ pi ∗10ˆ−7;
p e rm i t t i v i t y = 1/( pe rmeab i l i t y ∗c ˆ 2 ) ;
impedance = ( permeab i l i t y / pe rm i t t i v i t y ) ˆ 0 . 5 ;
k 0 = 2 ∗ pi / lambda ;
I 0 =1;
r 1 =0.25 ;
r 2 =0.1 ;
d 1=2;
d 2=8;
n s =10;
n c=2;
n p=7;
e p s i l o n =10ˆ(−6);
theta m=30;
theta=0;
d e l t a d =0;
i n t e r v a l=lambda . / ( deg2rad ( theta m ) ) . ˆ 2 ;
E f r e e=−k 0 ˆ2∗ I 0 /(4∗ angu la r f r equency ∗ pe rm i t t i v i t y ) . . .

.∗ be s s e l h (0 , 2 , k 0 ∗( d 1+d 2 ) ) ;
L=c e i l (2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)/ i n t e r v a l ) ;
w1p=(1/ r 1 / r 2 ∗ s q r t (2 )∗ s q r t ( r 1 ˆ2∗ cosd (2∗ theta)+ r 1 ˆ2 − . . .

r 2 ˆ2∗ cosd (2∗ theta)+r 2 ˆ2−2∗(− s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)+2∗ s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
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r 2 ˆ2∗ s ind ( theta )ˆ2)/L)ˆ2)+ s ind (2∗ theta )∗(− s q r t ( r 1 ˆ 2 ∗ . . .
cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)+2∗ s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)/L)∗ (1/ r 1 ˆ2−1/ r 2 ˆ 2 ) ) / 2 / . . .
( s ind ( theta )ˆ2/ r 1 ˆ2+cosd ( theta )ˆ2/ r 2 ˆ2 ) ;

w1m=(−1/ r 1 / r 2 ∗ s q r t (2 )∗ s q r t ( r 1 ˆ2∗ cosd (2∗ theta)+r 1 ˆ2 − . . .
r 2 ˆ2∗ cosd (2∗ theta)+r 2 ˆ2−2∗(− s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)+2∗ s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)/L)ˆ2)+ s ind (2∗ theta )∗(− s q r t ( r 1 ˆ 2 ∗ . . .
cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)+2∗ s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)/L)∗ (1/ r 1 ˆ2−1/ r 2 ˆ2) )/2/( s ind ( theta ) ˆ 2 / . . .
r 1 ˆ2+cosd ( theta )ˆ2/ r 2 ˆ2 ) ;

d=2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)/L ;

% Designed parameters

f o r n p candidate=n p :10000
i f s q r t (w1pˆ2+2∗pi / k 0∗n p candidate ∗( d 1−s q r t ( r 1 ˆ 2 ∗ . . .

cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)))− s q r t (w1pˆ2+ . . .
2∗ pi / k 0 ∗( n p candidate −2)∗( d 1−s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)))<=10∗ pi / sq r t ( k 0ˆ2+(− l o g ( e p s i l o n )/d )ˆ2)

break ;
end

end
n p=n p candidate ;
rd1=w1p−de l t a d ;
rd2=w1m−de l t a d ;
rb11 = sq r t ( ( rd1 )ˆ2+2∗(d 1−s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .

s ind ( theta )ˆ2 ) )/ k 0∗n p∗pi ) ;
rb12 = sq r t ( ( rd2 )ˆ2+2∗(d 1−s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .

s ind ( theta )ˆ2 ) )/ k 0∗n p∗pi ) ;
rb13 = sq r t (2∗ ( d 1−s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta ) ˆ 2 ) ) / . . .

k 0∗n p∗pi ) ;
RD1=(1/ r 1 / r 2 ∗ s q r t (2 )∗ s q r t ( r 1 ˆ2∗ cosd (2∗ theta)+ r 1ˆ2− r 2 ˆ 2 ∗ . . .

cosd (2∗ theta)+ r 2 ˆ2−2∗(− s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)+(L−1)∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)/L)ˆ2)+ s ind (2∗ theta )∗(− s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)+(L−1)∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)/L)∗ (1/ r 1 ˆ2−1/ r 2 ˆ2) )/2/( s ind ( theta ) ˆ 2 / . . .
r 1 ˆ2+cosd ( theta )ˆ2/ r 2 ˆ2 ) ;

RD2=(−1/ r 1 / r 2 ∗ s q r t (2 )∗ s q r t ( r 1 ˆ2∗ cosd (2∗ theta)+r 1ˆ2− r 2 ˆ 2 ∗ . . .
cosd (2∗ theta)+ r 2 ˆ2−2∗(− s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)+(L−1)∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)/L)ˆ2)+ s ind (2∗ theta )∗(− s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)+(L−1)∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)/L)∗ (1/ r 1 ˆ2−1/ r 2 ˆ2) )/2/( s ind ( theta )ˆ2/ r 1 ˆ2+ . . .
cosd ( theta )ˆ2/ r 2 ˆ2 ) ;
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i f de l ta d<w1p && del ta d>w1m
de l t a x=min ( ( rb11−s q r t ( ( rb11 )ˆ2−4∗pi ∗( d 1−s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .

r 2 ˆ2∗ s ind ( theta )ˆ2 ) )/ k 0 ) )/ n s , ( rb12−s q r t ( ( rb12 )ˆ2−4∗pi ∗ . . .
( d 1−s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2 ) )/ k 0 ) )/ n s ) ;

T=n s ∗max ( [ abs ( rb11 ) , abs ( rb12 ) , ( d 2+sq r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)−(L−1)∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)/L)/ ( d 1−s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)+(L−1)∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)/L)∗ abs (RD1) , ( d 2+sq r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)−(L−1)∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)/L)/ ( d 1−s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)+(L−1)∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)/L)∗ abs (RD2 ) ] ) ;

N=c e i l (T/ de l t a x ) ;
i f mod(N,2)==1

N=N+1;
end
T=N∗ de l t a x ;

e l s e
d e l t a x=(rb13−s q r t ( ( rb13 )ˆ2−4∗pi ∗( d 1−s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .

r 2 ˆ2∗ s ind ( theta )ˆ2 ) )/ k 0 ) )/ n s ;
T=n s ∗abs ( rb13 ) ;
N=c e i l (T/ de l t a x ) ;
i f mod(N,2)==1

N=N+1;
end
T=N∗ de l t a x ;

end
Tx=[−d 1 ;T/ 2 ] ;
Rx=[d 2 ;T/ 2 ] ;
x=(de l t a x ∗(−N/2+1): d e l t a x : d e l t a x ∗(N/2))+T/2 ;
g r i d s =[repmat(− s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2 ) , 1 ,N) ; x ] ;
r ho i n c=sq r t ( ( g r i d s (1 , : )−Tx( 1 , : ) ) . ˆ 2+ ( g r i d s (2 , : )−Tx ( 2 , : ) ) . ˆ 2 ) ;
E 0=−k 0 ˆ2∗ I 0 /(4∗ angu la r f r equency ∗ pe rm i t t i v i t y ) . ∗ be s s e l h (0 , 2 , k 0 ∗ . . .

r h o i n c ) ;
r ho s ca t=sq r t ( ( g r i d s (1 , : )−Rx( 1 , : ) ) . ˆ 2+ ( g r i d s (2 , : )−Rx ( 2 , : ) ) . ˆ 2 ) ;
k x=2∗pi∗(−N/2+1:N/2)/T;
k z=sq r t ( k 0ˆ2−k x . ˆ 2 ) ;
k z1=k z ;
id=f i nd ( r e a l ( k z )==0);
k z1 ( id)=−k z ( id ) ;
Window an=zero s (1 ,N) ;
i f (T/n c )/ ( d 2+sq r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)−(L−1 )∗ . . .

2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)/L)<1
k w=k 0 ∗(T/ n c )/ ( d 2+sq r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta ) ˆ 2 ) − . . .

(L−1)∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)/L ) ;
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i f N/2+ c e i l (−T/2/ pi ∗k w)>0
id k w=(N/2+ c e i l (−T/2/ pi ∗k w ) :N/2+ c e i l (T/2/ p i ∗k w ) ) ;
Window an ( id k w )=1;

e l s e
Window an ( : )=1 ;

end
e l s e

Window an ( : )=1 ;
end
i f de l ta d>w1p

Window sp 1=(cos ( p i ∗( r ho i n c+rho scat−d 1−d 2 ) . / ( sq r t ( ( d 1 . . .
−s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)) .ˆ2+ rb11 . ˆ 2 ) . . .
+sq r t ( ( d 2+sq r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta ) ˆ 2 ) ) . ˆ 2+ . . .
rb11 .ˆ2)−d 1−d 2 ))+1)/2 ;

id1=f i nd ( abs ( g r i d s (2 , : )−T/2)>rb13 | g r i d s (2 , : )<T/2+w1p−de l t a d ) ;
e l s e

Window sp 1=(cos ( p i ∗( r ho i n c+rho scat−s q r t ( ( d 1−s q r t ( r 1 ˆ 2 ∗ . . .
cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)) .ˆ2+ rd1 .ˆ2)− s q r t ( ( d 2 + . . .
s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)) .ˆ2+ rd1 . ˆ 2 ) ) . / . . .
( s q r t ( ( d 1−s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta ) ˆ 2 ) ) . ˆ 2+ . . .
rb11 .ˆ2)+ sq r t ( ( d 2+sq r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)) .ˆ2+ rb11 .ˆ2)− s q r t ( ( d 1−s q r t ( r 1 ˆ 2 ∗ . . .
cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)) .ˆ2+ rd1 .ˆ2)− s q r t ( ( d 2 + . . .
s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)) .ˆ2+ rd1 . ˆ 2 ) ) )+1 ) /2 ;

id1=f i nd ( abs ( g r i d s (2 , : )−T/2)>rb11 | g r i d s (2 , : )<T/2+w1p−de l t a d ) ;
end
i f de l ta d<w1m

Window sp 2=(cos ( p i ∗( r ho i n c+rho scat−d 1−d 2 ) . / ( sq r t ( ( d 1 − . . .
s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)) .ˆ2+ rb12 . ˆ 2 )+ . . .
s q r t ( ( d 2+sq r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta ) ˆ 2 ) ) . ˆ 2+ . . .
rb12 .ˆ2)−d 1−d 2 ))+1)/2 ;

id2=f i nd ( abs ( g r i d s (2 , : )−T/2)>rb13 | g r i d s (2 , : )>T/2+w1m−de l t a d ) ;
e l s e

Window sp 2=(cos ( p i ∗( r ho i n c+rho scat−s q r t ( ( d 1−s q r t ( r 1 ˆ 2 ∗ . . .
cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)) .ˆ2+ rd2 .ˆ2)− s q r t ( ( d 2 + . . .
s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)) .ˆ2+ rd2 . ˆ 2 ) ) . / . . .
( s q r t ( ( d 1−s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta ) ˆ 2 ) ) . ˆ 2+ . . .
rb12 .ˆ2)+ sq r t ( ( d 2+sq r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)) .ˆ2+ rb12 .ˆ2)− s q r t ( ( d 1−s q r t ( r 1 ˆ 2 ∗ . . .
cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)) .ˆ2+ rd2 .ˆ2)− s q r t ( ( d 2 + . . .
s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)) .ˆ2+ rd2 . ˆ 2 ) ) )+1 ) /2 ;

id2=f i nd ( abs ( g r i d s (2 , : )−T/2)>rb12 | g r i d s (2 , : )>T/2+w1m−de l t a d ) ;
end

% Implementation o f MKA
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Er=E 0 .∗Window sp 1 ;
Er ( id1 )=0;
El=E 0 .∗Window sp 2 ;
El ( id2 )=0;
f o r l =1:L−1

t i l d e E r=i f f t (Er .∗ exp(−2∗pi ∗1 j ∗(N/2−1)/N∗ ( 0 :N−1)) ) .∗ exp(−2∗pi ∗ . . .
1 j ∗(N/2−1)/N∗ ( 0 :N−1)) .∗ exp (2∗ pi ∗1 j ∗(N/2−1)ˆ2/N) ;

Er KA=f f t ( t i l d e E r .∗ exp (2∗ pi ∗1 j ∗(N/2−1)/N∗ ( 0 :N−1)) .∗ exp(−1 j ∗k z1 ∗ . . .
d ) ) . ∗ exp (2∗ pi ∗1 j ∗(N/2−1)/N∗ ( 0 :N−1)) .∗ exp(−2∗pi ∗1 j ∗(N/2−1)ˆ2/N) ;

t i l d e E l= i f f t ( El .∗ exp(−2∗pi ∗1 j ∗(N/2−1)/N∗ ( 0 :N−1)) ) .∗ exp(−2∗pi ∗ . . .
1 j ∗(N/2−1)/N∗ ( 0 :N−1)) .∗ exp (2∗ pi ∗1 j ∗(N/2−1)ˆ2/N) ;

El KA=f f t ( t i l d e E l .∗ exp (2∗ pi ∗1 j ∗(N/2−1)/N∗ ( 0 :N−1)) .∗ exp(−1 j ∗k z1 ∗ . . .
d ) ) . ∗ exp (2∗ pi ∗1 j ∗(N/2−1)/N∗ ( 0 :N−1)) .∗ exp(−2∗pi ∗1 j ∗(N/2−1)ˆ2/N) ;

w2p=max((1/ r 1 / r 2 ∗ s q r t (2 )∗ s q r t ( abs ( r 1 ˆ2∗ cosd (2∗ theta)+r 1 ˆ2 − . . .
r 2 ˆ2∗ cosd (2∗ theta)+r 2 ˆ2−2∗(− s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)+ l ∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)/L)ˆ2))+ s ind (2∗ theta )∗(− s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)+ l ∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)/L)∗ (1/ r 1 ˆ2−1/ r 2 ˆ2) )/2/( s ind ( theta )ˆ2/ r 1 ˆ2+ . . .
cosd ( theta )ˆ2/ r 2 ˆ2) , (1/ r 1 / r 2 ∗ s q r t (2 )∗ s q r t ( abs ( r 1 ˆ 2 ∗ . . .
cosd (2∗ theta)+r 1ˆ2− r 2 ˆ2∗ cosd (2∗ theta)+ r 2 ˆ2−2∗(− s q r t ( r 1 ˆ 2 ∗ . . .
cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)+( l +1)∗2∗ s q r t ( r 1 ˆ 2 ∗ . . .
cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)/L)ˆ2))+ s ind (2∗ theta ) ∗ . . .
(− s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)+( l +1)∗2∗ . . .
s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)/L)∗ (1/ r 1 ˆ2 − . . .
1/ r 2 ˆ2) )/2/( s ind ( theta )ˆ2/ r 1 ˆ2+cosd ( theta )ˆ2/ r 2 ˆ 2 ) ) ;

w2m=min((−1/ r 1 / r 2 ∗ s q r t (2 )∗ s q r t ( abs ( r 1 ˆ2∗ cosd (2∗ theta)+ r 1 ˆ2 − . . .
r 2 ˆ2∗ cosd (2∗ theta)+r 2 ˆ2−2∗(− s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)+ l ∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)/L)ˆ2))+ s ind (2∗ theta )∗(− s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)+ l ∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)/L)∗ (1/ r 1 ˆ2−1/ r 2 ˆ2) )/2/( s ind ( theta )ˆ2/ r 1 ˆ2+ . . .
cosd ( theta )ˆ2/ r 2 ˆ2) ,(−1/ r 1 / r 2 ∗ s q r t (2 )∗ s q r t ( abs ( r 1 ˆ2∗ cosd ( 2 ∗ . . .
theta)+r 1ˆ2− r 2 ˆ2∗ cosd (2∗ theta)+r 2 ˆ2−2∗(− s q r t ( r 1 ˆ 2 ∗ . . .
cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)+( l +1)∗2∗ s q r t ( r 1 ˆ 2 ∗ . . .
cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)/L)ˆ2))+ s ind (2∗ theta ) ∗ . . .
(− s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)+( l +1)∗2∗ . . .
s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)/L)∗ (1/ r 1 ˆ2 − . . .
1/ r 2 ˆ2) )/2/( s ind ( theta )ˆ2/ r 1 ˆ2+cosd ( theta )ˆ2/ r 2 ˆ 2 ) ) ;

w3p=(1/ r 1 / r 2 ∗ s q r t (2 )∗ s q r t ( abs ( r 1 ˆ2∗ cosd (2∗ theta)+r 1ˆ2− r 2 ˆ 2 ∗ . . .
cosd (2∗ theta)+r 2 ˆ2−2∗(− s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)+ l ∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)/L)ˆ2))+ s ind (2∗ theta )∗(− s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)+ l ∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)/L)∗ (1/ r 1 ˆ2−1/ r 2 ˆ2) )/2/( s ind ( theta )ˆ2/ r 1 ˆ2+ . . .
cosd ( theta )ˆ2/ r 2 ˆ2 ) ;
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w3m=(−1/ r 1 / r 2 ∗ s q r t (2 )∗ s q r t ( abs ( r 1 ˆ2∗ cosd (2∗ theta)+ r 1ˆ2− r 2 ˆ 2 ∗ . . .
cosd (2∗ theta)+r 2 ˆ2−2∗(− s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)+ l ∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)/L)ˆ2))+ s ind (2∗ theta )∗(− s q r t ( r 1 ˆ2∗ cosd ( theta ) ˆ 2+ . . .
r 2 ˆ2∗ s ind ( theta )ˆ2)+ l ∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ 2 ∗ . . .
s ind ( theta )ˆ2)/L)∗ (1/ r 1 ˆ2−1/ r 2 ˆ2) )/2/( s ind ( theta )ˆ2/ r 1 ˆ2+ . . .
cosd ( theta )ˆ2/ r 2 ˆ2 ) ;

Er MKA=zero s (1 ,N) ;
El MKA=zero s (1 ,N) ;
id3=c e i l (−(−N/2+1)+1+(w2p−de l t a d )/ de l t a x ) ;
id5=round(−(−N/2+1)+1+(w3p−de l t a d )/ de l t a x ) ;
i f 2∗ id5−N<=0

Er MKA( id3 : 1 : ( 2 ∗ id5−1))=Er KA( id3 : 1 : ( 2 ∗ id5 −1))− . . .
Er KA((2∗ id5−id3 ) : −1 : 1 ) ;

e l s e
Er MKA( id3 : 1 :N)=Er KA( id3 : 1 :N)−Er KA((2∗ id5−id3 ) :−1:(2∗ id5−N) ) ;

end
id4=f l o o r (−(−N/2+1)+1+(w2m−de l t a d )/ de l t a x ) ;
id6=round(−(−N/2+1)+1+(w3m−de l t a d )/ de l t a x ) ;
i f 2∗ id6−1>N

El MKA((2∗ id6−N) : 1 : id4 )=El KA((2∗ id6−N) : 1 : id4 ) − . . .
El KA(N:−1:(2∗ id6−id4 ) ) ;

e l s e
El MKA( 1 : 1 : id4 )=El KA ( 1 : 1 : id4 )−El KA((2∗ id6 −1):−1:(2∗ id6−id4 ) ) ;

end
Er=Er MKA;
El=El MKA;

end
E L=Er+El ;
t i l d e E=i f f t (E L .∗ exp(−2∗pi ∗1 j ∗(N/2−1)/N∗ ( 0 :N−1)) ) .∗ exp(−2∗pi ∗1 j ∗ . . .

(N/2−1)/N∗ ( 0 :N−1)) .∗ exp (2∗ pi ∗1 j ∗(N/2−1)ˆ2/N) ;
E des i r ed=f f t ( t i l d e E .∗Window an .∗ exp (2∗ pi ∗1 j ∗(N/2−1)/N∗ ( 0 :N− 1 ) ) . ∗ . . .

exp(−1 j ∗k z1 ∗( d 2+( sq r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta ) ˆ 2 ) − . . .
(L−1)∗2∗ s q r t ( r 1 ˆ2∗ cosd ( theta )ˆ2+ r 2 ˆ2∗ s ind ( theta )ˆ2)/L ) ) ) ) . ∗ . . .
exp (2∗ pi ∗1 j ∗(N/2−1)/N∗ ( 0 :N−1)) .∗ exp(−2∗pi ∗1 j ∗(N/2−1)ˆ2/N) ;

% Post−p ro c e s s i n g

SGMKA=mag2db( abs ( E des i r ed (N/2)))−mag2db( abs ( E f r e e ) ) ;
Time MKA=toc ;
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