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Chapter 1

Introduction

1.1 Background

In recent years, people are increasingly sending out information on the Internet, for example,

through the social networking services. When we communicate with others through the Inter-

net, we need to make sure that the counter party is the right person and the communication

is authenticated. For realizing this, an authentication protocol is one of the most important

cryptographic primitives in an Internet-based communication. By using an authentication

protocol, a receiver of a message, Bob, can verify that the message received is indeed the one

sent by the sender, Alice.

While it is important to consider the authenticity for users, it is also required to ensure

the opposite properties, that is, anonymity for users in some real-world applications. In

particular, users’ anonymity on the Internet is one of the most important requirements for

protecting the freedom of personal speech. In fact, in order to meet the demand for anonymity,

some technologies providing users with (unlimited) anonymity on the Internet (such as, the

Tor network) have been developed.

In order to solve this dilemma between these two properties (authenticity and anonymity),

various anonymous authentication primitives have been proposed so far (e.g., group signa-

ture [Cv91], attribute-based signature [MPR11], direct anonymous attestation [BCC04], and

so on). Among these primitives, in this thesis, we focus on two anonymous authentication

primitives over ad-hoc groups of users: ring signature and (deniable) ring authentication.

In the following, we look back on these two primitives briefly.
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1.1.1 Ring Signature

Rivest, Shamir, and Tauman-Kalai [RST01] introduced a novel concept of signature with

anonymity, which is called ring signature. Ring signature allows a user to sign messages as a

member of a set of users R, which is called a ring. The required security properties for ring

signature are unforgeability and anonymity. Firstly, unforgeability ensures that an adversary

cannot forge a signature on behalf of an honest ring of signers. Secondly, anonymity ensures

that any signature does not reveal any information of the signer’s identity. Combining these

two properties, we can ensure that all users can verify the signature is made by someone in

the ring but cannot detect that which member in the ring sign the message.

When ring signature has been introduced in [RST01], the primary motivation was whistle-

blowing, where a party can anonymously leak a secret by using a ring including members who

know the secret information. In addition to this motivation, ring signature was recently made

into practice used by one of the largest cryptocurrency: Monero. Monero is a cryptocurrency

launched in April 2014 to provide users appropriate privacy by using ring signature. Due to

the anonymity of ring signature, nobody can know which of the users in the ring spent the

coin.

Compared to the other major anonymous authentication primitives (such as, group signa-

ture and attribute-based signature), ring signature has some attractive features. The first one

is that we do not need trusted key managers and users can generate their keys by themselves.

The second one is that a user can choose its ring in an ad-hoc manner. Thus, it can set the

size of its ring adaptively (that is, the anonymity level of its ring signature). Due to these

features, it is the most desirable for us to construct a ring signature scheme in the plain model.

Here, the plain model is the model that we do not need any trusted setup assumption (e.g.,

the existence of some trusted common reference string (CRS)) and any heuristic technique

(e.g., the random oracle (RO) methodology [BR93]). In general, since it is difficult to con-

struct an efficient ring signature scheme in the plain model, a lot of works have been proposed

various ring signature schemes in the RO model or the CRS model so far. In the following,

we introduce some major ring signature schemes in the RO model, the CRS model, and the

plain model.

The Schemes in the RO Model. The concept of ring signature was introduced by Rivest,

Shamir, and Tauman-Kalai [RST01]. They proposed a construction based on trapdoor per-

mutations. Then, a number of ring signature schemes provided in the RO model based on

the various computational assumptions [AOS02,BGLS03,HS03]. Dodis et al. [DKNS04] firstly
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proposed a constant-size ring signature scheme based on the RSA accumulators [CL02]. Groth

and Kohlweiss [GK15] proposed a logarithmic-size ring signature scheme by combining Σ pro-

tocols and the Fiat-Shamir heuristic [FS87]. They succeeded to prove the security of this

scheme under the standard computational assumptions in the RO model. However, their

security reduction was very loose due to using the Forking Lemma [PS96]. Based on this

result, Libert et al. [LPQ18] gave the first tightly-secure ring signature scheme with loga-

rithmic signature size under the DDH assumption in the RO model. The number of users

and the number of oracle queries do not affect their reduction cost at all. Recently, Derler,

Ramacher, and Slamanig [DRS18] proposed the first cryptographic accumulator based sorely

on the symmetric-key primitives and by using this new primitive, showed how to construct a

logarithmic-size ring signature scheme sorely from symmetric-key primitives.

The Schemes in the CRS Model. Ring signature in the CRS model has been also studied

well so far. Shacham and Waters [SW07] proposed the first scheme based on the composite

order groups with bilinear maps. Then, Schäge and Schwenk [SS10] proposed more efficient

construction based on the computational Diffie-Hellman (CDH) assumption over the pairing-

friendly group, but their scheme achieves only a weaker notion of unforgeability (against the

chosen subring attacks in the terminology of [BKM06]). However, the signature size of these

constructions grows linearly with respect to the size of a ring. Then, Chandran, Groth, and

Sahai [CGS07] proposed the first sub-linear-size ring signature scheme based on the composite

order groups with bilinear maps. Moreover, Gonzalez [Gon19] recently improved the signature

size of their construction.

The Schemes in the Plain Model. Bender et al. [BKM06] introduced rigorous and de-

sirable security notions for ring signature and provide a construction satisfying the security

properties in the plain model. Their construction is based on a PKE scheme, and a sig-

nature scheme, and a ZAP argument with computational privacy [DN00]. Then, Chow et

al. [CWLY06] proposed a ring signature scheme with unconditional anonymity in the plain

model under the tailored assumption over the pairing group. However, their scheme supports

only rings of constant size. Recently, the direction for constructing ring signature schemes

in the plain model has been extensively studied. Malavolta et al. [MS17] proposed a ring

signature scheme in the plain model based on the variant of the Diffie-Hellman knowledge

assumption. Then, Backes, Hanzlik, Kluczniak, and Schneider [BHKS18] provided a ring sig-

nature scheme in the plain model with sub-linear size signatures from a new cryptographic

primitive: signatures with flexible public key. Moreover, Backes et al. [BDH+19] recently show
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the breakthrough result which provided the first ring signature scheme in the plain model with

logarithmic-size signatures from standard assumptions over bilinear groups. Very recently,

Chatterjee, Garg, Hajiabadi, Khurana, Liang, Malavolta, Pandey, and Shiehian [CGH+21]

proposed the first (post-quantum) logarithmic-sized ring signature scheme in the plain model

based (solely) on the learning with errors (LWE) assumption over lattices.

1.1.2 (Deniable) Ring Authentication

One of the natural ways for authentication is to utilize a (digital) signature scheme in a

communication. In this case, the authentication of a message is Alice’s signature generated

by her secret signing key. The unforgeability of the signature scheme ensures the soundness

of the authentication. Additionally, this approach has a non-repudation property since the

signature can be verified by anyone using Alice’s public verification key. In other words, once

Alice signs the message, she is bound to it. Then, everybody can know that she signed it.

For contracts, for example, this property is useful since conditions must be enforced in case of

dispute.

Here, however, we have a natural question: Is there any case in which the non-repudiation

property is not desirable? In some cases, the non-repudiation property could raise serious

privacy issues. For example, consider a situation that Alice wants to tell something privately

to Bob, in a way that Bob believes it comes from her, but also in a way that Bob cannot

convince a third party that Alice told anything. (In other words, Alice wants to communicate

with Bob in an “Off-The-Record” manner.) Clearly, a signature scheme is not a proper

primitive for this situation.

Due to the above problem, deniable authentication [DNS98,Kat03,Pas03,DG05,DGK06]

has always been a central concern in personal and business communications. In general, we

say that an authentication protocol provides deniability if the receiver of a message could have

generated all the transcripts in the communication by itself. On the practical side, for example,

in the internet key exchange (IKE) protocol [IKE] or in the recent Signal protocol [Signal],

(an appropriate form of) deniability is identified as a desirable property.

Deniable Ring Authentication. In deniable authentication, while Alice can deny her

participation in a communication to a third party, she is not anonymous to Bob. In some

cases, we need to consider a situation that Alice wants to hide her identity and Bob just needs

to confirm that Alice is a legitimate person in some group (e.g., a board member of some

company) without knowing which one. To address this problem while preserving deniability
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simultaneously in an authentication, Naor [Nao02] proposed a cryptographic primitive called

deniable ring authentication. Deniable ring authentication enables a prover in some group

(called a ring) to authenticate a message to a verifier using its secret key while at the same

time allowing the prover to deny ever having interacted with the verifier. This primitive

furthermore guarantees the anonymity of the prover in the sense that the verifier will learn

nothing about the identity of the prover except that it is included in the ring. This property

is called source hiding. Note that source hiding is a security notion against a (malicious)

verifier, while deniability is one against any third party. As observed in [ZCTH17], one of

the novel applications of deniable ring authentication is a privacy-preserving protocol for a

location-based service (LBS) in a vehicular ad-hoc network (VANET).

1.2 Our Contribution

In this thesis, we give some new results for ring signature in the plain model and deniable ring

authentication.

1.2.1 Ring Signature with Unconditional Anonymity in the Plain

Model

As the first result, we propose the first generic construction of ring signature with unconditional

anonymity in the plain model based on the standard assumption. Our scheme is constructed

based on a statistical ZAP argument, a lossy encryption scheme, and a standard signature

scheme. It is known that all of our building blocks can be instantiated based on the quasi-

polynomial LWE assumption.

The anonymity for ring signature can be classified into two types: computational anonymity

and unconditional anonymity. Computational anonymity states that the anonymity holds only

against a computationally bounded adversary. In many cases, the computational anonymity is

ensured under some mathematical computational hard problem (e.g., the factorization prob-

lem, the discrete logarithm problem, and the computational Diffie-Hellman problem). Here,

if there exists an adversary who can solve an underlying hard problem efficiently, then the

computational anonymity no longer holds. Conversely, unconditional anonymity states that

the anonymity holds even against a computationally unbounded adversary.

In the applications of ring signature, we can suppose that some systems are used for a

long time. In such cases, if we adopt a ring signature scheme with computational anonymity,

we should predict that its anonymity for users in the systems can be broken in the future
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due to recent developments of algorithms and computer technologies. Thus, from a practical

point of view, we can say that unconditional anonymity is more desirable than computational

anonymity.

So far, a lot of ring signature schemes with unconditional anonymity has been proposed in

the common reference string (CRS) model and in the random oracle model (e.g., [DKNS04,

DRS18,CGS07,Gon19,GK15,LPQ18,MS17,RST01]). On the other hand, in the plain model,

we have only one scheme proposed by Malavolta and Schröder [MS17].1 However, their scheme

is only secure under the variant of the Diffie-Hellman knowledge assumption, which is one of

the non-falsifiable assumptions. That is, we did not have any ring signature scheme with

unconditional anonymity in the plain model based on the standard falsifiable assumption so

far.

1.2.2 Tightly Secure Ring Signature in the Plain Model

Next, as the second result, we propose a generic constructions of tightly secure ring signature

in the plain model. Through our generic construction, we obtain the first tightly secure and

logarithmic-sized ring signature scheme in the plain model under the DLIN assumption over

bilinear groups. In the following, we explain the motivation for this result.

Tight Security. In general, when we prove the security of a cryptographic primitive, we

usually construct a reduction algorithm B who try to solve an underlying problem assumed

to be hard by using an algorithm A who attacks the security of the cryptographic primitive.

We say that the cryptographic primitive is secure if the probability pA that A succeeds to

break the security is as small as the probability pB that B can solve the hard problem. Ideally,

both of the probabilities should be the same, that is, pA = pB should be held. However, it

often occurs that the reductions suffer from a loss in the success probability. That is, we have

pA = L · pB, where L = L(λ), which is called a reduction cost, is some polynomial in the

1 In fact, Malavolta et al. [MS17] proposed a ring signature scheme with unconditional anonymity in

the plain model under the some standard computational assumptions over the pairing group. However, this

scheme only achieves basic and weak anonymity considered in [BKM06], which is not preferable for the real-

world applications. Furthermore, Chow, Wei, Liu, and Yuen [CWLY06] proposed a ring signature scheme

with unconditional anonymity in the plain model under the tailored assumption over the pairing group. How-

ever, their scheme supports only rings of constant size. In this thesis, we focus on ring signature satisfying

the strongest and standard security properties considered in [BKM06] and supporting a-priori unbounded

polynomial-sized rings.
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security parameter λ.1 In the setting of ring signatures, we consider as the crucial reduction

cost L, the number of all users N := N(λ) (in the system) and the numbers of oracle queries

made by an adversary (e.g., random oracle queries QH := QH(λ) and signing oracle queries

Qsig := Qsig(λ)). In some cases, the reduction cost L depends on N , QH , Qsig linearly. (That

is, we have L = N ·QH ·Qsig.) Asymptotically, even if we have the reduction cost L, we can

prove that a cryptographic primitive is secure. However, when we consider its exact security in

a realistic setting, we have the following problem. Here, if we want to obtain 128-bit security

for the resulting ring signature scheme (that is, we require that pA = 2−128 holds), and say

we had pA = 2−128, N = 214, QH = 230, and Qsig = 220 as the realistic setting, we would have

to require at least 192-bit security for the underlying problem (since pB = pA
N ·QH ·Qsig

= 2−192

holds), which incurs a significant blowup of the parameters. Thus, it is essential to care about

the reduction cost L because smaller L ensures a better security level for a fixed security

parameter. We say that a cryptographic primitive is tightly secure if the reduction cost is

constant, i.e., L = O(1).

Tight Security for Ring Signatures. Recently, Libert, Peters, and Qian [LPQ18] pro-

posed the first tightly secure ring signature scheme in the random oracle (RO) model [BR93]

based on the decisional Diffie-Hellman (DDH) assumption. The signature size of their scheme

depends on the size of a ring only logarithmically. Thanks to the random oracle methodology,

Libert et al.’s scheme [LPQ18] is highly efficient and practical. However, since the results from

several papers, such as [CGH98], this methodology has been well known to be open to some

debate.

So far, it is well studied to provide tight security proofs for standard cryptographic primi-

tives in the standard model (e.g., standard signature schemes [Sch11,HJ12,ADK+13,CW13,

BKP14,LJYP14,Hof17,AHN+17,JOR18,GHKP18] and public-key encryption schemes [HJ12,

LJYP14, LPJY15,Hof17]). However, in a context of ring signatures, there exists no scheme

given a tight security proof in the standard model.

1.2.3 Round-Optimal Deniable Ring Authentication

Finally, as the third result, we propose a new generic construction of two-round concurrently

deniable ring authentication in the random oracle model. Our generic construction is based

1 Formally, when estimating a loss of a success probability, we also have to consider a runtime of the

reduction algorithm B. However, in order to simplify an explanation, we omit a security loss by a runtime

here.
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on any IND-CPA secure broadcast encryption (BE) scheme. Instantiating the underlying

IND-CPA secure BE scheme with the schemes proposed by Agrawal and Yamada [AY20] or

Agrawal, Wichs, and Yamada [AWY20], we obtain the first two-round concurrently deniable

ring authentication scheme with optimal efficiency in an asymptotic sense. Here, by optimal

efficiency, we mean that all of the sizes of a public parameter and secret keys, the communica-

tion costs, and the number of pairing operations are independent of n, where n is the number

of users in a ring. In addition to these main instantiations, through our generic construction,

we further obtain various two-round concurrently deniable ring authentication schemes. In

the following, we provide the motivation for this result.

We have the technical challenges for deniable ring authentication from two perspectives:

the security requirement and the efficiency requirement. In terms of the security requirement,

one of the important challenges is to achieve concurrent deniability [DNS98]. Intuitively,

concurrent deniability ensures that a (malicious) verifier of a message cannot convince a third

party that the corresponding prover sends the message even if the verifier can open and

schedule sessions in an arbitrary way. This is a natural desirable requirement for an Internet-

based communication.

Next, in terms of the efficiency requirement, we should estimate the efficiency of deniable

ring authentication with four aspects: round complexity, parameter size, communication com-

plexity, and computational complexity. Regarding round complexity, clearly, it is infeasible to

achieve soundness and deniability simultaneously in the non-interactive (that is, one round)

setting. Therefore, an optimal scheme is one having only two rounds.1 Then, on the aspects

of parameter size, communication complexity, and computational complexity, one important

measure is whether they depend on the number of users in a ring. Here, let n be the number

of users in a ring. All of these complexity measures naturally depend on n linearly (that is,

O(n)) when we consider a naive construction. Regarding the parameter size, we have to take

care of the sizes of a public parameter and a secret key. Finally, regarding the computational

complexity, a pairing operation is one of the heavy computations for schemes based on bilin-

ear maps. (In fact, most of the previous schemes [DHIN11,YAS+12, ZMYH17,ZCTH17] are

constructed over bilinear groups.) Thus, we would like its number to be as small as possible.

From the above observations, it is desirable to construct a two-round concurrently deniable

ring authentication scheme with optimal efficiency. Here, optimal efficiency we target in this

1 We note that some previous works (e.g., [SM04b,SM04a]) proposed non-interactive deniable ring authen-

tication schemes with partial deniability. Partial deniability only ensures that a user in the authentication

protocol can deny the contents of its communications. That is, it cannot deny its involvement in the authen-

tication protocol. In this work, we focus only on deniability in the sense of [DGK06].
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thesis means that the public parameter size, the secret key size, communication complexity,

and the number of pairing operations are all independent of n.2

1.3 Organization

The rest of this thesis is organized as follows. In Chapter 2, we review some notations and the

models and security requirements of cryptographic primitives used in this thesis (signature,

public key encryption, lossy encryption, broadcast encryption, ZAP, non-interactive proof

system in the plain model, collision-resistant hash function, and somewhere perfectly binding

hash function with private local opening).

In Chapter 3, we review the model of ring signature and (deniable) ring authentication.

Firstly, the syntax and security requirements (unforgeability and anonymity) of ring signa-

ture are described in Section 3.1. Secondly, we give the syntax and security requirements

(soundness, source hiding, and deniability) of deniable ring authentication in Section 3.2.

In Chapter 4, we provide our ring signature scheme with unconditional anonymity in the

plain model. Firstly, we give the technical overview of this construction in Section 4.1. Then,

in Section 4.2, we describe the formal description of our scheme. Lastly, in Section 4.3, we

provide the security proofs for unforgeability and anonymity of our scheme.

In Chapter 5, we provide our tightly secure and logarithmic-sized ring signature scheme

in the plain model. Similar to Chapter 4, we give the technical overview of this construction

in Section 5.1, describe the formal description of our scheme in Section 5.2, and provide the

security proofs for unforgeability and anonymity of our scheme in Section 5.3.

In Chapter 6, we present our generic transformation from a BE scheme to a DRA scheme in

the RO model. Similar to Chapter 4 and 5, we give the technical overview of this construction

in Section 6.2. In this chapter, as an intermediate cryptographic primitive for obtaining our

round-optimal DRA scheme, we introduce a new security notion for BE, which is called plain-

text awareness, in Section 6.3. More precisely, we provide the definition of plaintext awareness

for BE in Section 6.3.1 and show that a BE scheme with plaintext awareness and IND-CPA se-

curity satisfies IND-CCA security in Section 6.3.2. Then, in Section 6.3.3, we propose our BE

scheme with plaintext awareness and IND-CPA security in the RO model. Next, we formally

describe our DRA scheme in Section 6.4 and give its security proofs in Section 6.5. Lastly, in

2 The public parameter size, the secret key size, and communication complexity of our schemes actually

have poly(log n) factors. Here, however, we ignore them since poly(log n) factors are asymptotically absorbed

into poly(λ) factors, where λ is a security parameter.
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Section 6.6, to better understand our scheme, we present a simple and efficient instantiation

of our generic construction of round-optimal deniable ring authentication.

Finally, in Chapter 7, we conclude this thesis and leave future works.

13



Chapter 2

Preliminaries

In this section, we define notations and cryptographic primitives used in Section 4, 5, and 6.

2.1 Notations

In this thesis, x← X denotes sampling an element x from a finite set X uniformly at random.

y ← A(x; r) denotes that a probabilistic algorithm A outputs y for an input x using a ran-

domness r, and we simply denote y ← A(x) when we need not write an internal randomness

explicitly. For interactive Turing machines A and B, v ← ⟨A(xa),B(xb)⟩(y) denotes that B
outputs v at the end of an execution of an interactive protocol between A and B, where A and

B take xa and xb as a private input respectively and y denotes the common input for both A
and B. When A (resp., B) does not take private inputs, we simply denote v ← ⟨A,B(xb)⟩(y)
(resp., v ← ⟨A(xa),B⟩(y)). For strings x and y, x∥y denotes the concatenation of x and y.

Also, x := y denotes that x is defined by y. λ denotes a security parameter. A function

f(λ) is a negligible function in λ, if f(λ) tends to 0 faster than 1
λc for every constant c > 0.

negl(λ) denotes an unspecified negligible function. poly denotes an unspecified polynomial.

We use Time(A) to denote the running time of an algorithm A. PPT stands for probabilistic

polynomial time. ∅ denotes an empty set. If n is a natural number, [n] denotes the set of

integers {1, · · · , n}. Also, if a and b are integers such that a ≤ b, [a, b] denotes the set of

integers {a, · · · , b}.

14



2.2 Signature

A signature scheme with a message space M consists of a tuple of the following three PPT

algorithms SIG = (Gen, Sign,Ver).

Gen: The key generation algorithm, given a security parameter 1λ, outputs a verification

key vk and a signing key sk .

Sign: The signing algorithm, given a signing key sk and a message m ∈ M, outputs a

signature σ.

Ver: The (deterministic) verification algorithm, given a verification key vk , a message

m ∈ M, and a signature σ, outputs either 1 (meaning “accept”) or 0 (meaning

“reject”).

As the correctness for SIG, we require that Ver(vk ,m, Sign(sk ,m)) = 1 holds for all λ ∈ N,
m ∈M, and (vk , sk)← Gen(1λ).

Next, we define existential unforgeability under chosen-message attacks in the multi-user

setting with corruptions (MU-EUF-CMACorr security) for a signature scheme.

Definition 1 (MU-EUF-CMACorr Security). Let n := n(λ) be a polynomial in λ. Consider

the following game between a challenger C and an adversary A, which is parametrized by the

number of verification keys n.

1. C generates (vk i, sk i) ← Gen(1λ) for all i ∈ [n]. Then, C gives a set of the verification

keys vk := (vk 1, · · · , vkn) to A and sets Si := ∅ for all i ∈ [n].

2. A is allowed to make a signing query of the form (j,m), where j ∈ [n] and m ∈ M is

a message. When C receives (j,m), C computes σ ← Sign(sk j,m), gives the signature σ

to A, and appends (m,σ) to Sj. Moreover, A is allowed to make a corruption query of

the form j ∈ [n]. When C receives j, C returns sk j to A and appends j to SCorr.

3. A outputs a tuple (i∗,m∗, σ∗).

In this game, we define the advantage of the adversary A as

AdvunfSIG,A(λ) := Pr[(1 = Ver(vk i∗ ,m
∗, σ∗)) ∧ ((m∗, ·) /∈ Si∗) ∧ (i∗ /∈ SCorr)].

We say that SIG satisfies MU-EUF-CMACorr security if for any PPT adversary A, Advmu-unf
SIG,A (λ) =

negl(λ) holds.
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2.3 Public Key Encryption

A public key encryption (PKE) scheme with a plaintext space M consists of a tuple of the

following three PPT algorithms Π = (KG,Enc,Dec).

KG: The key generation algorithm, given a security parameter 1λ, outputs a public key

pk and a decryption key dk .

Enc: The encryption algorithm, given a public key pk and a plaintext m ∈M, outputs

a ciphertext c.

Dec: The (deterministic) decryption algorithm, given a public key pk , a decryption key

dk , and a ciphertext c, outputs a plaintext m ∈ {⊥} ∪M.

For the correctness of Π, we require that Dec(pk , dk ,Enc(pk ,m)) = m holds for all λ ∈ N,
m ∈M, and (pk , dk)← KG(1λ).

Next, we define the security notions for a PKE scheme: pseudorandomness of public keys

and pseudorandomness of ciphertexts.

Definition 2 (Pseudorandomness of public keys). Let n := n(λ) be a polynomial in λ. Con-

sider the following game between a challenger C and an adversary A, which is parametrized

by the number of public keys n. In the following, let PK be a space of public keys of Π.

1. C chooses a challenge bit b← {0, 1} and generates (pk i0, dk i0)← KG(1λ) and pk i1 ← PK
for all i ∈ [n]. Then, C sets pk i := pk ib for all i ∈ [n] and gives a set of the public keys

pk := (pk 1, · · · , pkn) to A.

2. A outputs a bit b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

AdvkeyΠ,A(λ) := 2 ·
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
We say that Π satisfies pseudorandomness of public keys if for any PPT adversary A, AdvkeyΠ,A(λ) =

negl(λ) holds.

Definition 3 (Pseudorandomness of ciphertexts). Let n := n(λ) be a polynomial in λ. Con-

sider the following game between a challenger C and an adversary A, which is parametrized

by the number of public keys n. In the following, let CT the (whole) ciphertext space of Π.
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1. C chooses a challenge bit b ← {0, 1} and samples a public key pk i ← PK under the

randomness rkeyi for all i ∈ [n]. Then, C gives (rkeyi )i∈[n] to A.

2. A can make queries of the form (j,m) ∈ [n] ×M to C. If b = 0 holds, C generates

a challenge ciphertext c ← Enc(pk j,m). Otherwise, C samples a ciphertext c ← CT .
Then, C gives the ciphertext c to A.

3. A outputs a bit b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

AdvctΠ,A(λ) := 2 ·
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
We say that Π satisfies pseudorandomness of ciphertexts if for any PPT adversary A, AdvctΠ,A(λ) =

negl(λ) holds.

Remark 2.1. We note that the ElGamal encryption scheme [ElG84] is a PKE scheme sat-

isfying the both of the above properties. Remarkably, the pseudorandomness of public keys

is ensured information-theoretically and the pseudorandomness of ciphertexts can be tightly

reduced to the DDH assumption by using the self-reducibility.

2.4 Lossy Encryption

A lossy encryption scheme with a plaintext spaceM consists of a tuple of the following four

PPT algorithms LE = (KG, LKG,Enc,Dec).

KG: The ordinary key generation algorithm, given a security parameter 1λ, outputs an

ordinary encryption key ek and a decryption key dk .

LKG: The lossy key generation algorithm, given a security parameter 1λ, outputs a

lossy encryption key ek .

Enc: The encryption algorithm, given an encryption key ek and a plaintext m ∈ M,

outputs a ciphertext c.

Dec: The (deterministic) decryption algorithm, given an encryption key ek , a decryp-

tion key dk , and a ciphertext c, outputs a plaintext m ∈ {⊥} ∪M.
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As the correctness for LE, we require that Dec(ek , dk ,Enc(ek ,m)) = m holds for all λ ∈ N,
m ∈M, and (ek , dk)← KG(1λ).

Next, we define the security notions for a lossy encryption scheme: indistinguishability of

ordinary/lossy keys and statistical lossiness.

Definition 4 (Indistinguishability of ordinary/lossy keys). Let n := n(λ) be a polynomial

in λ. Consider the following game between a challenger C and an adversary A, which is

parametrized by the number of encryption keys n.

1. C chooses a challenge bit b ← {0, 1} and generates (ek i0, dk i0) ← KG(1λ) and ek i1 ←
LKG(1λ) for all i ∈ [n]. Then, C sets ek i := ek ib for all i ∈ [n] and gives a set of the

encryption keys ek := (ek 1, · · · , ekn) to A.

2. A outputs a bit b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as AdvkeyLE,A(λ) := 2 ·
∣∣Pr[b = b′]− 1

2

∣∣ .
We say that LE satisfies indistinguishability of ordinary/lossy keys if for any PPT adversary

A, AdvkeyLE,A(λ) = negl(λ) holds.

Remark 2.2. The above definition of the indistinguishability of ordinary/lossy keys is different

from the original one proposed in [BHY09] in the sense that we consider a multi-user setting.

We note that our definition and the original one proposed in [BHY09] are equivalent except

for a polynomial reduction loss based on the number of users.

Definition 5 (Statistical lossiness). Consider the following game between a challenger C and

an adversary A, which is parametrized by the number of encryption keys n. In the following,

we let RLKG be the randomness space for the lossy key generation algorithm LKG and CT the

(whole) ciphertext space of LE.

1. For all i ∈ [n], C samples randomnesses rLKGi ←RLKG and generates lossy encrytion keys

ek i ← LKG(1λ; rLKGi ). Then, C chooses a challenge bit b← {0, 1} and gives (rLKGi )i∈[n] to

A.

2. A is allowed to make a challenge query of the form (j,m) to C. Next, if b = 0 holds,

C generates a challenge ciphertext c ← Enc(ek j,m). Otherwise, C samples a challenge

ciphertext c← CT . Then, C gives the challenge ciphertext c to A.

3. A outputs a bit b′ ∈ {0, 1}.
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In this game, we define the advantage of the adversary A as AdvlosLE,A(λ) := 2 ·
∣∣Pr[b = b′]− 1

2

∣∣.
We say that LE satisfies statistical lossiness if for any computationally unbounded adversary

A, AdvlosLE,A(λ) = negl(λ) holds.

Remark 2.3. The above definition of the statistical lossiness is slightly different from the

original one proposed by [BHY09] in the following two sense.

1. We consider a multi-user setting rather than a single-user setting.

2. We consider an indistinguishability between c← Enc(ek i,m) and c← CT instead of one

between c ← Enc(ek j,m0) and c ← Enc(ek j,m1), where j ∈ [n] and m0,m1 ∈ M are

chosen by A given a lossy encryption key (ek i ← LKG(1λ))i∈[n].

We note that some constructions based on the learning with errors (LWE) assumption proposed

in the previous works [BHY09,HLL+15] satisfies the above security definition.

2.5 Broadcast Encryption

In this section, we review the basic definitions for BE. A BE scheme consists of the following

three PPT algorithms BE = (Setup,Enc,Dec).

Setup: The setup algorithm, given a security parameter 1λ and the number of users n,

outputs a public parameter pp and a set of secret keys sk := (sk i)i∈[n].

Enc: The encryption algorithm, given a public parameter pp, an index set S, and a

plaintext m, outputs a ciphertext c.

Dec: The (deterministic) decryption algorithm, given a public parameter pp, an index

set S, a secret key sk i, and a ciphertext c, outputs a plaintext m, which could be

the special symbol ⊥.

As the correctness for BE, we require that Dec(pp, S, sk i, c) = m hold for all λ ∈ N, n = poly(λ),

m, S ⊆ [n], i ∈ S, (pp, sk = (sk 1, · · · , skn))← Setup(1λ, n), and c← Enc(pp, S,m).

Decryption Uniqueness. We give the definition of decryption uniqueness. Intuitively,

decryption uniqueness is a property ensuring that it is impossible to generate an invalid ci-

phertext which is decrypted to different plaintexts among users in an authorized set. (In the

previous work [HK08], the same property was called verifiability.)
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Definition 6 (Decryption Uniqueness). We say that a BE scheme BE = (Setup,Enc,Dec)

satisfies decryption uniqueness if for any λ ∈ N, n = poly(λ), (pp, sk = (sk 1, · · · , skn)) ←
Setup(1λ, n), S∗ ⊆ [n], and c∗, there are no distinct indices i, j ∈ S∗ such that Dec(pp, S∗, sk i, c

∗) ̸=
Dec(pp, S∗, sk j, c

∗) holds.

Smoothness. We provide the definition of smoothness for BE, which is a natural BE-

analogue of smoothness defined for PKE by Bellare, Hofheinz, and Kiltz [BHK15]. Informally,

we say that a BE scheme satisfies smoothness if the number of possible ciphertexts is super-

polynomially large for any plaintext. We note that many known BE schemes secure in the

sense of indistinguishability (such as, BE schemes used in the instantiations of our deniable

ring authentication scheme) have smoothness unconditionally. Moreover, it is easy to convert

any BE scheme to one satisfying this property (say, attaching a randomness to a ciphertext).

Its formal definition is as follows.

Definition 7 (Smoothness). Let BE = (Setup,Enc,Dec) be a BE scheme. For any λ ∈ N, we
define Smth as

Smth(λ) := E
(pp,sk)←Setup(1λ,n)

[
max
m,S,c′

Pr
c←Enc(pp,S,m)

[c = c′]
]
.

We say that BE satisfies smoothness if we have Smth(λ) = negl(λ).

IND-CCA Security. We give the definition of IND-CCA security for BE.

Definition 8 (IND-CCA Security). Let n := n(λ) be a polynomial which denotes the number

of users. Consider the following experiment for a (stateful) adversary A.

Expind-ccaBE,A (λ) :

SCorr := ∅
(pp, sk = (sk i)i∈[n])← Setup(1λ, n)

(S∗,m∗0,m
∗
1)← ADO,CO(pp)

b← {0, 1}
c∗ ← Enc(pp, S∗,m∗b)

b′ ← ADO,CO(c∗)
If b = b′ then return 1 else return 0.

In the above experiment, we require that |m∗0| = |m∗1| and S∗ ⊆ [n]\SCorr hold. Moreover, the

decryption oracle DO and the corruption oracle CO are defined as follows:
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Decryption oracle. When A accesses to the decryption oracle DO by making a query

(i, S, c), DO computes m ← Dec(pp, S, sk i, c) and returns m to A. After the

challenge, A is not allowed to make a query (i, S, c) such that c = c∗.

Corruption oracle. When A accesses to the corruption oracle CO by making a query

i, CO returns sk i to A and appends i to SCorr. After the challenge, A is not

allowed to make a query i such that i ∈ S∗.

We say that BE satisfies IND-CCA security if for any PPT adversary A,

Advind-ccaBE,A (λ) := 2 ·
∣∣∣∣Pr[Expind-ccaBE,A (λ) = 1]− 1

2

∣∣∣∣ = negl(λ)

holds. IND-CPA security of BE is defined analogously, except that A is not given access to

the decryption oracle DO. We denote the IND-CPA advantage of A by Advind-cpaBE,A (λ).

Remark 2.4. In the above definition of IND-CCA (IND-CPA) security, if all algorithms of

BE and A are given access to a random oracle, we say that BE satisfies IND-CCA (IND-CPA)

security in the RO model.

2.6 ZAP

Let R be an efficiently computable binary relation and L := {x | ∃w s.t. (x,w) ∈ R}. A ZAP

argument for L consists of a tuple of the following two PPT algorithms ZAP = (Prove,Verify)

associated with a parameter ℓ := ℓ(λ), where ℓ(λ) is some polynomial in λ.

Prove: The proving algorithm, given a string r ∈ {0, 1}ℓ, a statement x ∈ L, and a

witness w for the fact that x ∈ L, outputs a proof π.

Verify: The verification algorithm, given a string r ∈ {0, 1}ℓ, a statement x, and a proof

π, outputs either 1 (meaning “accept”) or 0 (meaning “reject”).

As the correctness for ZAP, we require that Verify(r, x,Prove(r, x, w)) = 1 holds for all λ ∈ N,
all r ← {0, 1}ℓ, all statements x ∈ L, and all witnesses w for the fact that x ∈ L.

Next, we define the security notions for a ZAP argument: computational soundness and

statistical witness indistinguishability.

Definition 9 (Computational Soundness). We say that a ZAP argument ZAP = (Prove,

Verify) satisfies computational soundness if for any PPT adversary A,

AdvsoundZAP,A(λ) := Pr[r ← {0, 1}ℓ; (x∗, π∗)← A(r) : (x∗ /∈ L)∧(Verify(r, x∗, π∗) = 1)] = negl(λ).

21



Definition 10 (Statistical Witness Indistinguishability). We say that a ZAP argument ZAP =

(Prove,Verify) satisfies witness indistinguishability if for any computationally unbounded ad-

versary A,

AdvwiZAP,A(λ) := |Pr[r ← A(1λ) : AO0(·,·,·)(r) = 1]−Pr[r ← A(1λ) : AO1(·,·,·)(r) = 1]| = negl(λ),

where Ob(·, ·, ·) is an oracle that takes (x,w0, w1) as input and answers π ← Prove(r, x, wb) for

b ∈ {0, 1} to A, where (x,w0), (x,w1) ∈ R.

2.7 Non-interactive Proof System in the Plain Model

Let R be an efficiently computable binary relation and L := {x | ∃w s.t. (x,w) ∈ R}. A non-

interactive proof system in the plain model for L consists of a tuple of the following two PPT

algorithms NIWI = (Prove,Verify).

Prove: The proving algorithm, given a statement x ∈ L and a witness w for the fact

that x ∈ L, outputs a proof π.

Verify: The verification algorithm, given a statement x and a proof π, outputs either 1

(meaning “accept”) or 0 (meaning “reject”).

For the correctness of NIWI, we require that Verify(x,Prove(x,w)) = 1 holds for all λ ∈ N, all
statements x ∈ L, and all witnesses w for the fact that x ∈ L.

Next, we define the security notions for a non-interactive proof system in the plain model:

Computational witness indistinguishability and perfect soundness.

Definition 11 (Computational Witness Indistinguishability). We say that a non-interactive

proof system in the plain model NIWI = (Prove,Verify) satisfies computational witness indis-

tinguishability if for any PPT adversary A,

AdvwiNIWI,A(λ) := |Pr[AO0(·,·,·)(1λ) = 1]− Pr[AO1(·,·,·)(1λ) = 1]| = negl(λ),

where Ob(·, ·, ·) is an oracle that takes (x,w0, w1) as input and answers π ← Prove(x,wb) for

b ∈ {0, 1}, where (x,w0), (x,w1) ∈ R.

Definition 12 (Perfect Soundness). We say that a non-interactive proof system in the plain

model NIWI = (Prove,Verify) satisfies perfect soundness if for any computationally unbounded

adversary A,

AdvsoundNIWI,A(λ) := Pr[(x∗, π∗)← A(1λ) : (x∗ /∈ L) ∧ (Verify(x∗, π∗) = 1)] = 0

holds.
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From the previous work [GOS06], we can construct a non-interactive proof system in the

plain model satisfying computational witness indistinguishability and perfect soundness based

on the DLIN assumption over the bilinear group.

Remark 2.5 (Tightness of computational witness indistinguishability in [GOS06]). The orig-

inal definition of computational witness indistinguishability given in [GOS06] captures the

situation that an adversary makes single challenge query. Then, they showed that the com-

putational witness indistinguishability of their non-interactive proof system in the plain model

holds under the DLIN assumption.

Unlike their definition, in Definition 11, we consider the setting that an adversary A can

make multiple challenge queries. We stress that even if we require that their scheme [GOS06]

satisfies Definition 11, the computational witness indistinguishability of their scheme can be

reduced to the DLIN assumption tightly (without depending on the number of challenge queries)

by using the self-reducibility of the DLIN assumption.

2.8 Collision-Resistant Hash Function

Here, we recall the definition of a collision-resistant hash function. A hash function consists

of a pair of PPT algorithms CRHF = (HKG,Hash). HKG is the hash key generation algorithm

that, given a security parameter 1λ, outputs a hash key hk . Hash is the (deterministic) hashing

algorithm that, given a hash key hk and a string x ∈ {0, 1}∗, outputs a hash value h.

Definition 13 (Collision-resistance). We say that CRHF = (HKG,Hash) is a collision-resistant

hash function if for any PPT adversary A,

AdvcrCRHF,A(λ) := Pr[hk ← HKG(1λ); (x, x∗)← A(hk) :

Hash(hk , x) = Hash(hk , x∗) ∧ x ̸= x∗] = negl(λ).

2.9 Somewhere Perfectly Binding Hash Function with

Private Local Opening

A somewhere perfectly binding hash function with private local opening consists of a tuple of

the following four PPT algorithms Γ = (HGen,Hash,Open,HVer).

HGen: The hashing/private key generation algorithm, given a security parameter 1λ, a

database size n, and an index i, outputs a hashing key hk and a private key shk .
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Hash: The hashing algorithm, given a hashing key hk and a database DB, outputs a

digest h.

Open: The opening algorithm, given a hashing key hk , a private key shk , a database

DB, and an index i, outputs a witness τ .

HVer: The (deterministic) verification algorithm, given a hashing key hk , a digest h,

an index i, a value x, and a witness τ , outputs either 1 (meaning “accept”) or 0

(meaning “reject”).

For the correctness of Π, for all λ ∈ N, all n = poly(λ), all databases DB = {xi}i∈[n], and all

indices i ∈ [n], we require that HVer(hk , h, i, xi, τ) = 1 holds, where (hk , shk)← HGen(1λ, n, i),

h← Hash(hk ,DB), and τ ← Open(hk , shk ,DB, i).
Next, we define the security notions for a somewhere perfectly binding hash function with

private local opening: somewhere perfectly binding and index hiding.

Definition 14 (Somewhere perfectly binding). Let n := n(λ) be a polynomial in λ. For

all databases DB = {xi}i∈[n], all indices i ∈ [n], all hashing keys hk, all values x, and all

witnesses τ , we say that Γ satisfies somewhere perfectly binding if h = Hash(hk ,DB) and

1 = HVer(hk , h, i, x, τ), then x = xi holds.

Definition 15 (Index hiding). Consider the following game between a challenger C and an

adversary A.

1. A sends a tuple (n, i0, i1) to C.

2. C chooses a challenge bit b ← {0, 1} and generates a pair of a hashing/private key

(hk , shk)← HGen(1λ, n, ib). Then, C gives the hashing key hk to A.

3. A outputs a bit b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

AdvhideΓ,A(λ) := 2 ·
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
We say that Γ satisfies index hiding if for any PPT adversary A, AdvhideΓ,A(λ) = negl(λ) holds.
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Chapter 3

Formal Definitions of Ring Signature

and Deniable Ring Authentication

In this chapter, we provide the formal definitions of ring signature and (deniable) ring authen-

tication.

Firstly, the syntax and security requirements (unforgeability and anonymity) of ring sig-

nature are described in Section 3.1. More specifically, we introduce the most standard and

strongest security notions: unforgeability w.r.t. insider corruptions and anonymity under full

key exposure, which are proposed by Bender, Katz, and Morselli [BKM06]. Both of our ring

signature schemes satisfy this security requirements.

Secondly, we give the syntax and security requirements (soundness, source hiding, and deni-

ability) of deniable ring authentication in Section 3.2. The definitions of soundness and source

hiding are based on the previous work by Yamada, Attrapadung, Santoso, Schuldt, Hanaoka,

and Kunihiro [YAS+12]. Moreover, the definition of deniability is obtained by extending the

definition of deniability for deniable authentication [DGK06] into the ring setting.

3.1 Ring Signature

In this section, we provide the syntax and security requirements of ring signature. A ring

signature scheme with a message space M consists of a tuple of the following three PPT

algorithms RS = (RGen,RSign,RVer).

RGen: The key generation algorithm, given a security parameter 1λ, outputs a verifica-

tion key rvk and a signing key rsk .
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RSign: The signing algorithm, given a signing key rsk , a message m ∈ M, and a ring

R, outputs a signature σ.

RVer: The (deterministic) verification algorithm, given a ring R, a message m ∈ M,

and a signature σ, outputs either 1 (meaning “accept”) or 0 (meaning “reject”).

As the correctness for RS, we require that RVer(R,m,RSign(rsk ,m,R)) = 1 holds for all λ ∈ N,
m ∈M, (rvk , rsk)← RGen(1λ), and R such that rvk ∈ R.

Next, we define anonymity and unforgeability for a ring signature scheme. We adopt the

strongest security notions of anonymity and unforgeability proposed by Bender et al. [BKM06].

Definition 16 (Anonymity under full key exposure). Let n := n(λ) be a polynomial in λ.

Consider the following game between a challenger C and an adversary A, which is parametrized

by the number of verification keys n.

1. For all i ∈ [n], C generates (rvk i, rsk i) ← RGen(1λ; ri), where ri is a randomness for

generating a pair of keys (rvk i, rsk i). Then, C gives a set of the randomnesses (ri)i∈[n]

to A.

2. A requests a challenge to C by sending a tuple (i0, i1,R
∗,m∗), where i0 and i1 are indices

such that rvk i0 ∈ R∗ and rvk i1 ∈ R∗. Then, C samples a challenge bit b ← {0, 1},
computes σ∗ ← RSign(rsk ib ,m

∗,R∗), and gives σ∗ to A.

3. A outputs a bit b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as AdvanonRS,A(λ) := 2·
∣∣Pr[b = b′]− 1

2

∣∣ .
We say that RS satisfies unconditional anonymity under full key exposure if for any computa-

tionally unbounded adversary A, AdvanonRS,A(λ) = negl(λ) holds.

Definition 17 (Unforgeability w.r.t. insider corruptions). Let n := n(λ) be a polynomial in λ.

Consider the following game between a challenger C and an adversary A, which is parametrized

by the number of verification keys n.

1. C generates (rvk i, rsk i)← RGen(1λ) for all i ∈ [n]. Then, C gives a set of the verification

keys rvk := (rvk 1, · · · , rvkn) to A and sets SSig := ∅ and SCorr := ∅.

2. A is allowed to make a signing query of the form (j,R,m), where m ∈M is a message,

R is a set of verification keys, and j ∈ [n] is an index such that rvk j ∈ R. When C
receives (j,R,m), C computes σ ← RSign(rsk j,m,R), gives the signature σ to A, and
appends (j,R,m) to SSig. Moreover, A is allowed to make a corruption query of the form

j ∈ [n]. When C receives j, C gives rsk j to A and appends rvk j to SCorr.
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3. A outputs a tuple (R∗,m∗, σ∗).

In this game, we define the advantage of the adversary A as

AdvunfRS,A(λ) := Pr[(1 = RVer(R∗,m∗, σ∗)) ∧ (R∗ ⊆ rvk\SCorr) ∧ ((·,R∗,m∗) /∈ SSig)].

We say that RS satisfies unforgeability w.r.t. insider corruptions if for any PPT adversary A,
AdvunfRS,A(λ) = negl(λ) holds.

3.2 Deniable Ring Authentication

In this section, we review the definitions for deniable ring authentication in the RO model.

Here, we assume that all algorithms introduced in the following can access to an RO. A

deniable ring authentication scheme consists of a tuple of the following PPT algorithms DRA =

(DRA.Setup, ⟨DRA.Prove,DRA.Verify⟩).

DRA.Setup(1λ, n): The setup algorithm, given a security parameter 1λ and the number

of users n, outputs a public parameter pp and n secret keys sk := (sk 1, · · · , skn).

⟨DRA.Prove(sk),DRA.Verify⟩(pp,R,m): This is an interactive protocol between the prover

algorithm DRA.Prove and the verifier algorithm DRA.Verify, in which DRA.Prove

takes sk as a secret input and both of the algorithms take a public parameter

pp, a ring R ⊆ [n], and a message m as input. As a result of the interaction,

DRA.Verify locally outputs a bit v ∈ {0, 1}.

As the correctness for DRA, we require that 1 = ⟨DRA.Prove(sk i),DRA.Verify⟩(pp,R,m) hold

for all λ ∈ N, n = poly(λ), i ∈ [n], m, (pp, sk(= (sk 1, · · · , skn))) ← DRA.Setup(1λ, n), and

R ⊆ [n] such that i ∈ R.

Remark 3.1 (On the setup algorithm DRA.Setup). Similar to the previous works [DHIN11,

YAS+12], when generating a public parameter pp and n secret keys sk := (sk 1, · · · , skn) in

the setup algorithm DRA.Setup, we require that the maximum number of users in the system

n is fixed at the setup phase (by a trusted third party). In other words, we do not consider the

setting that new users dynamically join to this system.

As mentioned in Section 6.1, some previous works [ZMYH17,ZCTH17] do not need such

a setup procedure and a public/secret key of each user is generated by itself. Thus, in their

schemes, the maximum number of users is not fixed and a new user can dynamically join the

system.

27



Next, we define security properties for deniable ring authentication in the RO model: con-

current soundness, source hiding, and concurrent deniability. Although we propose a deniable

ring authentication scheme in the RO model in Section 6.4, we omit an RO in the following

definitions of concurrent soundness and source hiding since the RO does not play an essential

role.

Concurrent Soundness. Firstly, we provide the definition of concurrent soundness which is

basically based on the definition proposed in [YAS+12]. Roughly, in the definition of concurrent

soundness, we define an adversary A as a man-in-the-middle attacker such that A interacts

with provers as a verifier in left sessions, and at the same time interacts with an honest verifier

in a right session as a prover, in a concurrent manner. For capturing this situation, in the

security definition, the adversary A is given access to the three oracles: the prover oracle

PO, the execution oracle EO, and the corruption oracle CO. Concretely, PO and EO are

used for capturing the interactions between provers and A, and CO is used for capturing the

corruptions of (non-target) provers. Regarding such an adversary A (as a verifier), concurrent

soundness guarantees that A will not be able to make an honest verifier accept as a valid

prover in the right session (except for some unavoidable trivial attacks). The formal definition

is given as follows.

Definition 18 (Concurrent Soundness). Let DRA = (DRA.Setup, ⟨DRA.Prove,DRA.Verify⟩)
be a deniable ring authentication scheme. Let n := n(λ) be a polynomial which denotes the

number of users. Consider the following experiment for a (stateful) adversary A.

ExpcsDRA,A(λ) :

cnt := 1, ListPO := ∅, SCorr := ∅
(pp, sk = (sk i)i∈[n])← DRA.Setup(1λ, n)

(R∗,m∗)← APO,EO,CO(pp)
If R∗ ⊈ [n]\SCorr ∨ (·, ·,R∗,m∗) ∈ ListPO then return 0

v ← ⟨APO,EO,CO,DRA.Verify⟩(pp,R∗,m∗)
If v = 1 ∧ R∗ ⊆ [n]\SCorr ∧ (·, ·,R∗,m∗) /∈ ListPO

then return 1 else return 0

In the above experiment, the prover oracle PO, the execution oracle EO, and the corruption

oracle CO are defined as follows:

Prover oracle. PO takes (i,R,m) such that i ∈ R as input, then initiates Pcnt as

a stateful instance of DRA.Prove(sk i, pp,R,m) that can be accessed only via the
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execution oracle EO below, appends (cnt, i,R,m) to ListPO, and sets cnt := cnt+1.

Concretely, Pj (where j ∈ [cnt]) takes a message msg as a protocol message from

a verifier as input and computes the next message function of DRA.Prove (which

could accompany an update of the internal state of Pj). We denote this procedure

as msg′ ← Pj(msg).1

Execution oracle. EO takes (j,msg) such that j ∈ [cnt] as input, then computes

msg′ ← Pj(msg) and returns msg′ to A.

Corruption oracle. CO takes i ∈ [n] as input, then returns sk i to A and appends i

to SCorr.

We say that DRA satisfies concurrent soundness if for any PPT adversary A,

AdvcsDRA,A(λ) := Pr[ExpcsDRA,A(λ) = 1] = negl(λ).

Remark 3.2 (On the prover oracle PO). In the prover oracle PO, A can start new sessions

as many times as it wants with any prover i with a ring R and a message m chosen by A for

each session. We note that a session launched by A will not be closed even if another session

is started with (possibly the same) prover i. Moreover, the internal state of each Pj is not

shared with other instances, where j ∈ [cnt].

Remark 3.3 (Selective Variant of Concurrent Soundness). In the above definition of concur-

rent soundness, an adversary A can choose the challenge ring R∗ adaptively after it is given

a public parameter pp and accesses to PO, EO, and CO. We can also consider a selective

variant of the above definition in the sense that A is required to choose the challenge ring R∗

before it is given pp.

Source Hiding. Next, we provide the definition of source hiding [Nao02]. Roughly, source

hiding guarantees that a malicious verifier can be convinced only that a message is authenti-

cated by some member in a ring R, without knowing which one is the actual prover. In line

with previous works [DHIN11,Nao02,YAS+12,ZMYH17,ZCTH17], we require that the above

property be guaranteed even if all of the secret keys in the system are revealed to the malicious

verifier. (This setting is sometimes called the big brother setting.)

1 In a protocol in which the prover first speaks and a prover instance is invoked for the first time, we only

allow msg to be an empty string.
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Definition 19 (Source Hiding). Let DRA = (DRA.Setup, ⟨DRA.Prove,DRA.Verify⟩) be a deni-

able ring authentication scheme. Let n := n(λ) be a polynomial which denotes the number of

users. Consider the following experiment for a (stateful) adversary A.

ExpshDRA,A(λ) :

(pp, sk = (sk i)i∈[n])← DRA.Setup(1λ, n)

(i0, i1,R
∗,m∗)← A(pp, sk)

b← {0, 1}
b′ ← ⟨DRA.Prove(sk ib),A⟩(pp,R∗,m∗)
If b = b′ then return 1 else return 0

In the above experiment, we require that i0, i1 ∈ R∗ ⊆ [n] hold. We say that DRA satisfies

source hiding if for any computationally unbounded adversary A,

AdvshDRA,A(λ) := 2 ·
∣∣∣∣Pr[ExpshDRA,A(λ) = 1]− 1

2

∣∣∣∣ = negl(λ)

holds.

Concurrent Deniability. Finally, we present the definition of concurrent deniability in

the RO model. (In our construction, an RO is needed essentially in the proof of concurrent

deniability.) In a nutshell, we extend the definition of concurrent deniability for deniable

authentication [DGK06] into the deniable ring authentication setting.

Informally, for a deniable ring authentication scheme, concurrent deniability ensures that

a (malicious) verifier of a message m under a ring R cannot convince a third party that m

was authenticated by any of the provers in R even if during the interaction with the prover,

the verifier can open and schedule sessions in an arbitrary way. We require that this property

hold even if the malicious verifier gathers auxiliary information, which especially includes tran-

scripts which are eavesdropped on honestly executed protocols between other honest parties.

For capturing this ability of A, in the definition, we allow A to access to the transcript oracle

T O. Using the transcript oracle T O, A can obtain transcripts on executions of the protocol

between any prover and an (honest) verifier for any message and any ring including the prover.

The formal definition is as follows.

Definition 20 (Concurrent Deniability). Let DRA = (DRA.Setup, ⟨DRA.Prove,DRA.Verify⟩)
be a deniable ring authentication scheme in the RO model, and suppose it uses an RO with

the input length ℓin and the output length ℓout. Let HRO := {RO : {0, 1}ℓin → {0, 1}ℓout} be

the set of all functions with the input length ℓin and the output length ℓout. Let n := n(λ)
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be a polynomial which denotes the number of users. Let A be a (stateful) adversary and S
a PPT simulator. Consider the following real experiment Expcd-realDRA,A(λ) and ideal experiment

Expcd-idealDRA,S (λ).

Expcd-realDRA,A(λ) :

cnt := 1, ListPO := ∅,
ListTO := ∅, SCorr := ∅, ListRO := ∅
RO ← HRO,
(pp, sk = (sk i)i∈[n])← DRA.Setup(1λ, n)

out← APO,EO,T O,CO,RO(pp)
view := (pp, ListTO, SCorr, ListRO, out)

Return (view,RO)

In the above experiment, the prover oracle PO, the execution oracle EO, and the corruption

oracle CO are defined in the same way as in the experiment for the concurrent soundness. The

transcript oracle T O and the random oracle RO are defined as follows:

Transcript oracle. T O takes (i,R,m) (such that i ∈ R) as input, then executes

⟨DRA.Prove(sk i),DRA.Verify⟩(pp,R,m), returns the transcript tr of the execution

to A, and appends ((i,R,m), tr) to ListTO.

Random oracle. RO takes x as input, then checks whether (x, y) ∈ ListRO holds for

some y. If this is the case, then RO returns y to A. Otherwise, RO samples

y ← {0, 1}ℓRO, returns y to A, and appends (x, y) to ListRO.

The ideal experiment Expcd-idealDRA,S (λ) is defined in the same way as in the real experiment in

which A is replaced with S, except that S is not allowed to access to the prover oracle PO and

the execution oracle EO.
We say that DRA satisfies concurrent deniability in the RO model if for any PPT adversary

A, there exists a PPT simulator S such that for any PPT distinguisher D,

AdvcdDRA,A,S,D(λ) := |Pr[DROreal(viewreal) = 1] − Pr[DROideal(viewideal) = 1]| = negl(λ)

holds, where (viewreal,ROreal)← Expcd-realDRA,A(λ) and (viewideal,ROideal)← Expcd-idealDRA,S (λ).

We note that providing the distinguisher D with access to the RO is essential, since oth-

erwise D might not be able to even execute the protocol by itself. This treatment of ROs in

defining deniability is due to the work by Pass [Pas03].
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Remark 3.4 (Comparison with Prior Definitions). If we consider only one user (n = 1) and

remove CO, our definition is the same as the one proposed by Di Raimondo et al. [DGK06].

Actually, although [DGK06, Definition 1] says that the auxiliary information (ListTO) that A
(and S) is given is written as something that is fixed outside the real/ideal executions, their

proof suggests that the authors seem to treat it in the same way as ours.

Moreover, we should compare our definition to the one proposed by Zeng et al. [ZCTH17].

In contrast to ours, their definition does not explicitly allow that an adversary can corrupt

honest users or get auxiliary information (ListTO), and thus we can say that our definition

is stronger than theirs in this sense. (However, for fairness, we note that in their proof for

concurrent deniability, they also seem to consider the situation that an adversary can obtain

transcripts of honest executions of the protocol in the same way as ours.)
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Chapter 4

A Ring Signature Scheme with

Unconditional Anonymity in the Plain

Model

We propose a generic construction of ring signature with unconditional anonymity in the plain

model. Our construction is based on a two-message public coin witness indistinguishable

proof with statistical privacy (which is called a statistical ZAP argument), lossy encryption,

and an existential unforgeable under the chosen-message attacks in the multi-user setting

with corruptions (MU-EUF-CMACorr secure) signature. From the previous works [BFJ+20,

BHJ+15,BHY09,GJJM20], all of these building blocks can be instantiated under the quasi-

polynomial learning with errors (LWE) assumption.

4.1 Technical Overview

In this section, we give the technical overview of our construction of ring signature with uncon-

ditional anonymity in the plain model. Our starting point is the generic construction of ring

signature in the plain model proposed by Bender, Katz, and Morselli [BKM06]. We call this

ring signature scheme the BKM scheme. The BKM scheme consist of a (standard) signature

scheme, a public key encryption (PKE) scheme, and a ZAP argument with computational

privacy. In the BKM scheme, a user’s verification key rvk = (vk , ek , r) consists of a verifi-

cation key vk for a signature scheme, an encryption key ek for a PKE scheme, and a first

message r for a ZAP argument. Conversely, a user’s signing key rsk = sk consists of only

a signing key sk for the underlying signature scheme (does not include a decryption key dk
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corresponding to ek). When a user signs a message m using its signing key rsk = sk and a ring

R = (rvk 1, · · · , rvkn) (which includes a user’s verification key rvk i∗ = (vk i∗ , ek i∗ , ri∗)), it gen-

erates a ring signature σ as follows. Firstly, it computes a signature σm of m using the signing

key sk . Then, it generates a ciphertext ci∗ of σm under his encryption key ek . Next, for all

i ∈ {1, · · · , n}\{i∗}, it generates dummy ciphertexts ci of 0
|σm| under other users’ encryption

key ek i, where rvk i = (vk i, ek i, ri). Finally, by using a ZAP argument under the first message

r1 of the first user in the ring R, it generates a proof π for the statement (m,R, c1, · · · , cn) to
show the following facts:

1. There exists an index i∗ such that ci∗ encrypts a signature σm.

2. The signature σm verifies m under vk i∗ .

The resulting ring signature consists of σ = (c1, · · · , cn, π). When verifying a ring signature

σ = (c1, · · · , cn, π) for a message m and a ring R, a verifier just checks a ZAP proof π for

the statement (m,R, c1, · · · , cn) under the first message r1 of the first user in R. Regard-

ing its anonymity, the BKM scheme only achieves a computational anonymity due to the

computational privacy properties of the underlying PKE scheme and ZAP argument.

In the following, we modify the BKM scheme for upgrading the computational anonymity

into unconditional one. The first step is to replace a ZAP argument used in BKM scheme as a

statistical ZAP argument. By this change, a proof π in a ring signature σ provides statistical

privacy while holding its computational soundness property, which is required to ensure the

unforgeability for the ring signature.

As the second step, we consider how to solve a problem due to the computational privacy of

the underlying PKE scheme. Looking closely the BKM scheme, we see that a decryption key

dk (corresponding to an encryption key ek in a verification key rvk) is not needed when running

the actual scheme. In fact, a decryption key dk is only needed in the proof of unforgeability in

order to reduce the unforgeability of the BKM scheme to the unforgeability of the underlying

signature scheme. Due to this feature, as the second step, we find that the underlying PKE

scheme can be replaced by a lossy encryption scheme. A lossy encryption scheme is a special

PKE scheme having two types of encryption keys: an ordinary encryption key ek and a lossy

encryption key lk . When encrypting a plaintext under an ordinary encryption key ek , we can

generate a standard ciphertext which is decrypted by the corresponding decryption key. On the

other hand, when encrypting a plaintext under a lossy encryption key lk , we can statistically

eliminate the information of the plaintext from the ciphertext (that is, the corresponding

decryption key does not exist). As a basic property for lossy encryption, we require that an
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ordinary encryption key and a lossy encryption key is computationally indistinguishable. In

our ring signature scheme, a user’s verification key rvk contains a lossy encryption key lk

instead of an encryption key ek for a PKE scheme. Now, from the statistical privacy of a

lossy encryption scheme, we can eliminate the information of the index i∗ from the ciphertext

ci∗ in a ring signature σ. In the proof of the unforgeability, based on the property of lossy

encryption, we switch from a lossy encryption key lk to an ordinary encryption key ek in

order to extract a signature σm from the ciphertext ci∗ using the corresponding decryption

key dk . Note that since we only consider a computational unforgeability for ring signature,

this computational key switching process does not make any problem in the security proof.

Applying these two modifications to the BKM scheme, we can obtain the first ring sig-

nature scheme with unconditional anonymity in the plain model. In addition to the above

our modifications, in our actual construction, we adopt the technique for reducing the num-

ber of ciphertexts in BKM scheme proposed by Backes, Döttling, Hanzlik, Kluczniak, and

Schneider [BDH+19]. By utilizing this technique, the number of ciphertexts in a ring signa-

ture reduces from n to 2. Informally, in our actual construction, a user computes a ciphertext

c0 by encrypting the signature σm under the lossy encryption key lk and sampling another

ciphertext c1 from the ciphertext space uniformly at random. Then, by using the underlying

ZAP argument, we generate a proof π for the statement (m,R, c0, c1) to show that either c0

OR c1 is a ciphertext of a signature σm for a message m under the verification key vk .

4.2 Description

In this section, we formally describe our ring signature scheme. Let SIG = (Gen, Sign,Ver) be

a signature scheme with the message spaceMSIG = {0, 1}∗ and the signature space SSIG. Let

LE = (KG, LKG,Enc,Dec) be a lossy encryption scheme with the plaintext spaceMLE = SSIG,

the ciphertext space CT LE, and the randomness space REnc for Enc. Let ZAP = (Prove,Verify)

be a ZAP argument for L, where

L :=
{
x = (m, c0, c1,R = (rvk 1, · · · , rvkn))

∣∣∣ ∃w = (i, rvk = (vk , ek , r), σm, r
Enc) s.t.

rvk = rvk i ∧ 1 = Ver(vk ,m∥R, σm) ∧
(
c0 = Enc(ek , σm; r

Enc) ∨ c1 = Enc(ek , σm; r
Enc)

)}
Then, we construct a ring signature scheme RS = (RGen,RSign,RVer) with the message

space M as described in Figure 4.1. We note that the correctness of RS is straightforward

due to the correctness of SIG, LE, and ZAP.
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RGen(1λ) :

(vk , sk)← Gen(1λ)

ek ← LKG(1λ)

r ← {0, 1}ℓ(λ)

rvk := (vk , ek , r)

rsk := (sk , rvk)

Return (rvk , rsk)

RSign(rsk ,m,R) :

Parse rsk := (sk , rvk)

Parse rvk := (vk , ek , r)

Parse R := (rvk 1, · · · , rvkn)

Parse rvk 1 := (vk 1, ek 1, r1)

If rvk /∈ R then Return ⊥
σm ← Sign(sk ,m∥R)
rEnc ←REnc

c0 ← Enc(ek , σm; r
Enc)

c1 ← CT LE

x := (m, c0, c1,R)

w := (i, rvk , σm, r
Enc)

π ← Prove(r1, x, w)

Return σ := (π, c0, c1)

RVer(R,m, σ) :

Parse R := (rvk 1, · · · , rvkn)

Parse rvk 1 := (vk 1, ek 1, r1)

Parse σ := (π, c0, c1)

x := (m, c0, c1,R)

b← Verify(r1, x, π)

Return b

Figure 4.1: Our construction of ring signature with unconditional anonymity in the plain model RS.

4.3 Security Proof

In this section, we show the following two theorems.

Theorem 4.1. If ZAP satisfies statistical witness indistinguishability and LE satisfies statis-

tical lossiness, then RS satisfies unconditional anonymity under full key exposure.

Proof of Theorem 4.1. Let n = n(λ) be an arbitrary polynomial that denotes the number

of key pairs. Let A be any adversary that attacks the anonymity under full key exposure

of RS. We proceed the proof via a sequence of games by introducing the following games:

Gamei for i ∈ [0, 6].

Game0: This game is the original game of anonymity under full key exposure for RS

conditioned on b = 0. The detailed description is as follows:

1. The challenger C proceeds as follows:

(a) For all i ∈ [n], C samples randomnesses rGeni ← RGen, rLKGi ← RLKG, and

ri ← {0, 1}ℓ.

(b) For all i ∈ [n], C generates (vk i, sk i)← Gen(1λ; rGeni ) and ek i ← LKG(1λ; rLKGi ).

(c) For all i ∈ [n], C sets rvk i := (vk i, ek i, ri) and rsk i := (sk i, rvk i).

(d) C gives the randomnesses (rGeni , rLKGi )i∈[n] to A

2. When A requests a challenge to C by sending a tuple (i0, i1,R
∗,m∗), C proceeds as

follows:
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(a) C parses R∗ := (rvk ∗1, · · · , rvk ∗n∗) and rvk ∗1 := (vk ∗1, ek
∗
1, r
∗
1), and computes σ∗m ←

Sign(sk i0 ,m
∗∥R∗).

(b) C samples a randomness rEnc ← REnc, computes c∗0 ← Enc(ek i0 , σ
∗
m; r

Enc), and

chooses c∗1 ← CT LE.

(c) C sets x∗ := (m∗, c∗0, c
∗
1,R

∗) and w∗ := (i0, rvk i0 , σ
∗
m, r

Enc), and computes π∗ ←
Prove(r∗1, x

∗, w∗).

(d) C sets σ∗ := (π∗, c∗0, c
∗
1), and gives σ∗ to A.

3. A outputs a bit b′ ∈ {0, 1}.

Game1: This game is identical to Game0 except that C samples r′Enc ← REnc and

computes σ′m ← Sign(sk i1 ,m
∗∥R∗; r′Enc) and c∗1 ← Enc(ek i1 , σ

′
m; r

′) instead of c∗1 ←
CT LE.

Game2: This game is identical to Game1 except that C sets w∗ := (i1, rvk i1 , σ
′
m, r

′Enc)

instead of w∗ := (i0, rvk i0 , σ
∗
m, r

Enc).

Game3: This game is identical to Game2 except that C samples c∗0 ← CT LE instead

of computing c∗0 ← Enc(ek i0 , σ
∗
m).

Game4: This game is identical toGame3 except that C computes σ∗m ← Sign(sk i1 ,m
∗∥R∗)

and c∗0 ← Enc(ek i1 , σ
∗
m; r

Enc) instead of c∗0 ← CT LE.

Game5: This game is identical to Game4 except that C sets w∗ := (i1, rvk i1 , σ
∗
m, r

Enc)

instead of w∗ := (i1, rvk i1 , σ
′
m, r

′Enc).

Game6: This game is identical to Game5 except that C samples c∗1 ← CT LE instead

of computing c∗1 ← Enc(ek i1 , σ
′
m; r

′Enc). Note that this game is exactly the same

as the original game of anonymity under full key exposure for RS conditioned on

b = 1.

Let Succi be the event that A outputs b′ = 0 in Gamei for i ∈ [0, 6]. By using triangle

inequality, we have

AdvanonRS,A(λ) = 2 ·
∣∣∣Pr[b = b′]− 1

2

∣∣∣ = |Pr[Succ0]− Pr[Succ6]| ≤
5∑

i=0

|Pr[Succi]− Pr[Succi+1]|

It remains to show how each |Pr[Succi]−Pr[Succi+1]| is upper-bounded. To this end, we

will show the following lemmata.
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• There exist adversaries Blos
1 against the statistical lossiness of LE such that |Pr[Succ0]−

Pr[Succ1]| = AdvlosLE,Blos1
(λ) (Lemma 4.1).

• There exist an adversary Bwi
1 against the statistical witness indistinguishability of ZAP

such that |Pr[Succ1]− Pr[Succ2]| = AdvwiZAP,Bwi1
(λ) (Lemma 4.2).

• There exist adversaries Blos
2 against the statistical lossiness of LE such that |Pr[Succ2]−

Pr[Succ3]| = AdvlosLE,Blos2
(λ) (Lemma 4.3).

• There exist adversaries Blos
3 against the statistical lossiness of LE such that |Pr[Succ3]−

Pr[Succ4]| = AdvlosLE,Blos3
(λ) (Lemma 4.4).

• There exist an adversary Bwi
2 against the statistical witness indistinguishability of ZAP

such that |Pr[Succ4]− Pr[Succ5]| = AdvwiZAP,Bwi2
(λ) (Lemma 4.5).

• There exist adversaries Blos
4 against the statistical lossiness of LE such that |Pr[Succ5]−

Pr[Succ6]| = AdvlosLE,Blos4
(λ) (Lemma 4.6).

Lemma 4.1. There exists an adversary Blos
1 against the statistical lossiness of LE such that

|Pr[Succ0]− Pr[Succ1]| = AdvlosLE,Blos1
(λ).

Proof of Lemma 4.1. We construct an adversary Blos
1 that attacks the statistical lossiness

of LE so that |Pr[Succ0]− Pr[Succ1]| = AdvlosLE,Blos1
(λ), using the adversary A as follows.

1. Upon receiving (rLKGi )i∈[n] from the challenger, Blos
1 proceeds as follows:

(a) Blos
1 generates ek i ← LKG(1λ; rLKGi ) for all i ∈ [n].

(b) For all i ∈ [n], Blos
1 samples randomness rGeni ← RGen and generates (sk i, vk i) ←

Gen(1λ; rGeni ).

(c) For all i ∈ [n], Blos
1 samples ri ← {0, 1}ℓ and sets rvk i := (vk i, ek i, ri) and rsk i :=

(sk i, rvk i).

(d) Blos
1 gives the randomness (rGeni , rLKGi , ri)i∈[n] to A.

2. When A requests a challenge tuple (i0, i1,R
∗,m∗), Blos

1 proceeds as follows:

(a) Blos
1 parses R∗ := (rvk ∗1, · · · , rvk ∗n∗) and rvk ∗1 := (vk ∗1, ek

∗
1, r
∗
1), and computes σ∗m ←

Sign(sk i0 ,m
∗∥R∗) and σ′m ← Sign(sk i1 ,m

∗∥R∗).

(b) Blos
1 samples rEnc ←REnc and generates c∗0 ← Enc(ek i0 , σ

∗
m; r

Enc).
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(c) Blos
1 makes its own challenge query (i1, σ

′
m) to the challenger. Upon receiving c∗1

from the challenger, it sets x∗ := (m∗, c∗0, c
∗
1,R

∗) and w∗ := (i0, rvk i0 , σ
∗
m, r

Enc), and

computes π∗ ← Prove(r∗1, x
∗, w∗).

(d) Blos
1 sets σ∗ := (π∗, c∗0, c

∗
1) and gives σ∗ to A.

3. When A outputs a bit b′ ∈ {0, 1} and terminates, Blos
1 outputs β′ := 1 to the chal-

lenger and terminates if b′ = 0 holds. Otherwise, Blos
1 outputs 0 to the challenger and

terminates.

In the following, we let β be the challenge bit for Blos
1 . We can see that Blos

1 perfectly

simulates Game0 for A if it receives the challenge ciphertext c∗1 ← CT LE from its challenger.

This ensures that the probability that Blos
1 outputs 1 given c∗1 ← CT LE is exactly the same as

the probability that Succ0 happens in Game0. That is, Pr[β
′ = 1|β = 1] = Pr[Succ0] holds.

On the other hand, we can see that Blos
1 perfectly simulates Game1 for A if it receives the

challenge ciphertext c∗1 ← Enc(ek i1 , σ
′
m) from its challenger. This ensures that the probability

that Blos
1 outputs 1 given c∗1 ← Enc(ek i1 , σ

′
m) is exactly the same as the probability that Succ1

happens in Game1. That is, Pr[β
′ = 1|β = 0] = Pr[Succ1] holds. Therefore, we have

AdvlosLE,Blos1
(λ) = |Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]| = |Pr[Succ0]− Pr[Succ1]|.

(Lemma 4.1)

Lemma 4.2. There exists an adversary Bwi
1 against the statistical witness indistinguishability

of ZAP such that |Pr[Succ1]− Pr[Succ2]| = AdvwiLE,Bwi1
(λ).

Proof of Lemma 4.2. We construct an adversary Bwi
1 that attacks the statistical witness in-

distinguishability of ZAP so that |Pr[Succ1]−Pr[Succ2]| = AdvwiZAP,Bwi1
(λ), using the adversary

A as follows.

1. Upon receiving 1λ from the challenger, Bwi
1 proceeds as follows:

(a) For all i ∈ [n], Bwi
1 samples randomness rGeni ← RGen, rLKGi ← RLKG, and ri ←

{0, 1}ℓ.

(b) For all i ∈ [n], Bwi
1 generates (vk i, sk i)← Gen(1λ; rGeni ) and ek i ← LKG(1λ; rLKGi ).

(c) For all i ∈ [n], Bwi
1 sets rvk i := (vk i, ek i, ri) and rsk i := (sk i, rvk i).

(d) Bwi
1 gives the randomness (rGeni , rLKGi , ri)i∈[n] to A.
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2. When A makes a challenge query (i0, i1,R
∗,m∗), Bwi

1 proceeds as follows:

(a) Bwi
1 parses R∗ := (rvk ∗1, · · · , rvk ∗n∗) and rvk ∗1 := (vk ∗1, ek

∗
1, r
∗
1), computes σ∗m ←

Sign(sk i0 ,m
∗∥R∗) and σ′m ← Sign(sk i1 ,m

∗∥R∗), and sends r∗1 to the challenger.

(b) Bwi
1 samples randomness rEnc, r′Enc ← REnc, computes c∗0 ← Enc(ek i0 , σ

∗
m; r

Enc) and

c∗1 ← Enc(ek i1 , σ
′
m; r

′Enc), and sets x∗ := (m∗, c∗0, c
∗
1,R

∗).

(c) Bwi
1 sets w∗0 := (i0, rvk i0 , σ

∗
m, r

Enc) and w∗1 := (i1, rvk i1 , σ
′
m, r

′Enc).

(d) Bwi
1 makes a query (x∗, w∗0, w

∗
1) to its oracle, gets the corresponding proof π∗, and

sets σ∗ := (π∗, c∗0, c
∗
1).

(e) Bwi
1 gives σ∗ to A.

3. When A outputs a bit b′ ∈ {0, 1} and terminates, Bwi
1 outputs 1 to the challenger and

terminates if b′ = 0 holds. Otherwise, Bwi
1 outputs 0 to the challenger and terminates.

We can see that Bwi
1 perfectly simulates Game1 for A if it receives the proof π from the

oracle O0. This ensures that the probability that Bwi
1 outputs 1 given the proof π from the

oracle O0 is exactly the same as the probability that Succ1 happens in Game1. That is,

Pr[Bwi
1
O0(·,·,·)(r∗1) = 1] = Pr[Succ1] holds.

On the other hand, Bwi
1 perfectly simulates Game2 for A if it receives the proof π from

the oracle O1. This ensures that the probability that Bwi
1 outputs 1 given the proof π from

the oracle O1 is exactly the same as the probability that Succ2 happens in Game2. That is,

Pr[Bwi
1
O1(·,·,·)(r∗1) = 1] = Pr[Succ2] holds. Therefore, we have

AdvwiZAP,Bwi1
(λ) = |Pr[Bwi

1

O0(·,·,·)
(r∗1) = 1]− Pr[Bwi

1

O1(·,·,·)
(r∗1) = 1]| = |Pr[Succ1]− Pr[Succ2]|.

(Lemma 4.2)

Lemma 4.3. There exists an adversary Blos
2 against the statistical lossiness of LE such that

|Pr[Succ2]− Pr[Succ3]| = AdvlosZAP,Blos2
(λ).

Proof of Lemma 4.3. We construct an adversary Blos
2 that attacks the statistical lossiness

of LE so that |Pr[Succ2]− Pr[Succ3]| = AdvlosLE,Blos2
(λ), using the adversary A as follows.

1. Blos
2 runs in the same way as the Step 1 of Blos

1 in the proof of Lemma 4.1.

2. When A requests a challenge tuple (i0, i1,R
∗,m∗), Blos

2 proceeds as follows:
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(a) Blos
2 parses R∗ := (rvk ∗1, · · · , rvk ∗n∗) and rvk ∗1 := (vk ∗1, ek

∗
1, r
∗
1), and computes σ∗m ←

Sign(sk i0 ,m
∗∥R∗) and σ′m ← Sign(sk i1 ,m

∗∥R∗).

(b) Blos
2 samples r′Enc ←REnc and generates c∗1 ← Enc(ek i1 , σ

′
m; r

′Enc).

(c) Blos
2 makes its own challenge query (i0, σ

∗
m) to the challenger. Upon receiving c∗0

from the challenger, it sets x∗ := (m∗, c∗0, c
∗
1,R

∗) and w∗ := (i1, rvk i1 , σ
′
m, r

′Enc), and

computes π∗ ← Prove(r∗1, x
∗, w∗).

(d) Blos
2 sets σ∗ := (π∗, c∗0, c

∗
1) and gives σ∗ to A.

3. Blos
2 runs in the same way as the Step 3 of Blos

1 in the proof of Lemma 4.1.

In the following, we let β be the challenge bit for Blos
2 . We can see that Blos

2 perfectly

simulates Game2 for A if it receives the challenge ciphertext c∗0 ← Enc(ek i0 , σ
∗
m) from its

challenger. This ensures that the probability that Blos
2 outputs 1 given c∗0 ← Enc(ek i0 , σ

∗
m) is

exactly the same as the probability that Succ2 happens in Game2. That is, Pr[β′ = 1|β =

0] = Pr[Succ2] holds.

On the other hand, we can see that Blos
2 perfectly simulates Game3 for A if it receives the

challenge ciphertext c∗0 ← CT LE from its challenger. This ensures that the probability that

Blos
2 outputs 1 given c∗0 ← CT LE is exactly the same as the probability that Succ3 happens in

Game3. That is, Pr[β
′ = 1|β = 1] = Pr[Succ3] holds. Therefore, we have

AdvlosLE,Blos2
(λ) = |Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]| = |Pr[Succ2]− Pr[Succ3]|.

(Lemma 4.3)

Lemma 4.4. There exists an adversary Blos
3 against the statistical lossiness of LE such that

|Pr[Succ3]− Pr[Succ4]| = AdvlosLE,Blos3
(λ).

Proof of Lemma 4.4. We construct an adversary Blos
3 that attacks the statistical lossiness

of LE so that |Pr[Succ3]− Pr[Succ4]| = AdvlosLE,Blos3
(λ), using the adversary A as follows.

1. Blos
3 runs in the same way as the Step 1 of Blos

1 in the proof of Lemma 4.1.

2. When A requests a challenge tuple (i0, i1,R
∗,m∗), Blos

3 proceeds as follows:

(a) Blos
3 parses R∗ := (rvk ∗1, · · · , rvk ∗n∗) and rvk ∗1 := (vk ∗1, ek

∗
1, r
∗
1), and computes σ∗m ←

Sign(sk i1 ,m
∗∥R∗) and σ′m ← Sign(sk i1 ,m

∗∥R∗).

(b) Blos
3 samples r′Enc ←REnc and generates c∗1 ← Enc(ek i1 , σ

′
m; r

′Enc).
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(c) Blos
3 makes its own challenge query (i1, σ

∗
m) to the challenger. Upon receiving c∗0

from the challenger, it sets x∗ := (m∗, c∗0, c
∗
1,R

∗) and w∗ := (i1, rvk i1 , σ
′
m, r

′Enc), and

computes π∗ ← Prove(r∗1, x
∗, w∗).

(d) Blos
3 sets σ∗ := (π∗, c∗0, c

∗
1) and gives σ∗ to A.

3. Blos
3 runs in the same way as the Step 3 of Blos

1 in the proof of Lemma 4.1.

In the following, we let β be the challenge bit for Blos
3 . We can see that Blos

3 perfectly

simulates Game3 for A if it receives the challenge ciphertext c∗0 ← CT LE from its challenger.

This ensures that the probability that Blos
3 outputs 1 given c∗0 ← CT LE is exactly the same as

the probability that Succ3 happens in Game3. That is, Pr[β
′ = 1|β = 1] = Pr[Succ3] holds.

On the other hand, we can see that Blos
3 perfectly simulates Game4 for A if it receives the

challenge ciphertext c∗0 ← Enc(ek i1 , σ
∗
m) from its challenger. This ensures that the probability

that Blos
3 outputs 1 given c∗0 ← Enc(ek i1 , σ

∗
m) is exactly the same as the probability that Succ4

happens in Game4. That is, Pr[β
′ = 1|β = 0] = Pr[Succ4] holds. Therefore, we have

AdvlosLE,Blos3
(λ) = |Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]| = |Pr[Succ3]− Pr[Succ4]|.

(Lemma 4.4)

Lemma 4.5. There exists an adversary Bwi
2 against the statistical witness indistinguishability

of ZAP such that |Pr[Succ4]− Pr[Succ5]| = AdvwiZAP,Bwi2
(λ).

Proof of Lemma 4.5. We construct an adversary Bwi
2 that attacks the statistical witness in-

distinguishability of ZAP so that |Pr[Succ4]−Pr[Succ5]| = AdvwiZAP,Bwi2
(λ), using the adversary

A as follows.

1. Bwi
2 runs in the same way as the Step 1 of Bwi

1 in the proof of Lemma 4.2.

2. When A makes a challenge query (i0, i1,R
∗,m∗), Bwi

2 proceeds as follows:

(a) Bwi
2 parses R∗ := (rvk ∗1, · · · , rvk ∗n∗) and rvk ∗1 := (vk ∗1, ek

∗
1, r
∗
1), computes σ∗m ←

Sign(sk i0 ,m
∗∥R∗) and σ′m ← Sign(sk i1 ,m

∗∥R∗), and sends r∗1 to the challenger.

(b) Bwi
2 samples randomness rEnc, r′Enc ← REnc, computes c∗0 ← Enc(ek i1 , σ

∗
m; r

Enc) and

c∗1 ← Enc(ek i1 , σ
′
m; r

′Enc), and sets x∗ := (m∗, c∗0, c
∗
1,R

∗).

(c) Bwi
2 sets w∗0 := (i1, rvk i1 , σ

′
m, r

′Enc) and w∗1 := (i1, rvk i1 , σ
∗
m, r

Enc).
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(d) Bwi
2 makes a query (x∗, w∗0, w

∗
1) to its oracle, gets the corresponding proof π∗, and

sets σ∗ := (π∗, c∗0, c
∗
1).

(e) Bwi
2 gives σ∗ to A.

3. Bwi
2 runs in the same way as the Step 3 of Bwi

1 in the proof of Lemma 4.2.

We can see that Bwi
2 perfectly simulates Game4 for A if it receives the proof π from the

oracle O0. This ensures that the probability that Bwi
2 outputs 1 given the proof π from the

oracle O0 is exactly the same as the probability that Succ4 happens in Game4. That is,

Pr[Bwi
2
O0(·,·,·)(1λ) = 1] = Pr[Succ4] holds.

On the other hand, Bwi
2 perfectly simulates Game5 for A if it receives the proof π from

the oracle O1. This ensures that the probability that Bwi
2 outputs 1 given the proof π from

the oracle O1 is exactly the same as the probability that Succ5 happens in Game5. That is,

Pr[Bwi
2
O1(·,·,·)(1λ) = 1] = Pr[Succ5] holds. Therefore, we have

AdvwiZAP,Bwi2
(λ) = |Pr[Bwi

2

O0(·,·,·)
(1λ) = 1]− Pr[Bwi

2

O1(·,·,·)
(1λ) = 1]| = |Pr[Succ4]− Pr[Succ5]|.

(Lemma 4.5)

Lemma 4.6. There exists an adversary Blos
4 against the statistical lossiness of LE such that

|Pr[Succ5]− Pr[Succ6]| = AdvlosLE,Blos4
(λ).

Proof of Lemma 4.6. We construct an adversary Blos
4 that attacks the statistical lossiness

of LE so that |Pr[Succ5]− Pr[Succ6]| = AdvlosLE,Blos4
(λ), using the adversary A as follows.

1. Blos
4 runs in the same way as the Step 1 of Blos

1 in the proof of Lemma 4.1.

2. When A requests a challenge tuple (i0, i1,R
∗,m∗), Blos

4 proceeds as follows:

(a) Blos
4 parses R∗ := (rvk ∗1, · · · , rvk ∗n∗) and rvk ∗1 := (vk ∗1, ek

∗
1, r
∗
1), and computes σ∗m ←

Sign(sk i1 ,m
∗∥R∗) and σ′m ← Sign(sk i1 ,m

∗∥R∗).

(b) Blos
4 samples rEnc ←REnc and generates c∗0 ← Enc(ek i1 , σ

∗
m; r

Enc).

(c) Blos
4 makes its own challenge query (i1, σ

′
m) to the challenger. Upon receiving c∗1

from the challenger, Blos
4 sets x∗ := (m∗, c∗0, c

∗
1,R

∗) and w∗ := (i1, rvk i1 , σ
∗
m, r

Enc),

and computes π∗ ← Prove(r∗1, x
∗, w∗).

Finally, Blos
4 sets σ∗ := (π∗, c∗0, c

∗
1) and gives σ∗ to A.
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3. Blos
4 runs in the same way as the Step 3 of Blos

1 in the proof of Lemma 4.1.

In the following, we let β be the challenge bit for Blos
4 . We can see that Blos

4 perfectly

simulates Game5 for A if it receives the challenge ciphertext c∗1 ← Enc(ek i1 , σ
′
m) from its

challenger. This ensures that the probability that Blos
4 outputs 1 given c∗1 ← Enc(ek i1 , σ

′
m) is

exactly the same as the probability that Succ5 happens in Game5. That is, Pr[β′ = 1|β =

0] = Pr[Succ5] holds.

On the other hand, we can see that Blos
4 perfectly simulates Game6 for A if it receives the

challenge ciphertext c∗1 ← CT LE from its challenger. This ensures that the probability that

Blos
4 outputs 1 given c∗1 ← CT LE is exactly the same as the probability that Succ6 happens in

Game6. That is, Pr[β
′ = 1|β = 1] = Pr[Succ6] holds. Therefore, we have

AdvlosLE,Blos4
(λ) = |Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]| = |Pr[Succ5]− Pr[Succ6]|.

(Lemma 4.6)

Putting everything together, we obtain

AdvanonRS,A(λ) ≤ AdvlosLE,Blos1
(λ)+AdvwiZAP,Bwi1

(λ)+AdvlosLE,Blos2
(λ)+AdvlosLE,Blos3

(λ)+AdvwiZAP,Bwi2
(λ)+AdvlosLE,Blos4

(λ).

Since ZAP satisfies statistical witness indistinguishability and LE satisfies statistical lossi-

ness, for any computationally unbounded adversary A, AdvanonRS,A(λ) = negl(λ) holds. Therefore,

RS satisfies unconditional anonymity under full key exposure. (Theorem 4.1)

Theorem 4.2. If SIG is an MU-EUF-CMACorr secure signature scheme, LE satisfies correct-

ness and indistinguishability of ordinary/lossy keys, and ZAP satisfies computational sound-

ness, then RS satisfies unforgeability w.r.t. insider corruptions.

Proof of Theorem 4.2. Let A be a PPT adversary that attacks the unforgeability w.r.t.

insider corruptions of RS. We proceed the proof via a sequence of games. We introduce the

following three games Gamei for i ∈ [0, 2].

Game0: This game is the original game of the unforgeability w.r.t. insider corruptions

for RS. The detailed description is as follows.

1. The challenger C proceeds as follows:

(a) For all i ∈ [n], C samples randomnesses rGeni ← RGen, rLKGi ← RLKG, and

ri ← {0, 1}ℓ.
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(b) For all i ∈ [n], C generates (vk i, sk i)← Gen(1λ; rGeni ) and ek i ← LKG(1λ; rLKGi ).

(c) For all i ∈ [n], C sets rvk i := (vk i, ek i, ri) and rsk i := (sk i, rvk i).

(d) C sets SSig := ∅ and SCorr := ∅, and gives rvk := (rvk 1, · · · , rvkn) to A.

2. When A makes a signing query (j,R,m) and a corruption query j, C proceeds as

follows:

Signing Queries.

(a) C parses R := (rvk ′1, · · · , rvk ′n′) and rvk ′1 := (vk ′1, ek
′
1, r
′
1), samples a ran-

domness rEnc ← REnc, and computes σm ← Sign(sk j,m∥R) and c0 ←
Enc(ek j, σm; r

Enc).

(b) C samples c1 ← CT LE, sets x := (m, c0, c1,R) and w := (j, rvk j, σm, r
Enc),

and computes π ← Prove(r′1, x, w).

(c) C sets σ := (π, c0, c1), gives σ to A, and appends (j,R,m) to SSig.

Corruption Queries.

C gives rsk j to A and appends rvk j to SCorr.

3. A outputs a tuple (R∗,m∗, σ∗).

Game1 : This game is identical to Game0 except that C generates ordinary encryp-

tion keys (ek i, sk i) ← KG(1λ) instead of generating lossy encryption keys ek i ←
LKG(1λ) for all i ∈ [n].

Game2 : This game is identical to Game1 except that C requires an additional condi-

tion for the success condition ofA. More precisely, we require a forgery (R∗,m∗, σ∗ =

(π∗, c∗0, c
∗
1)) output by A to satisfy x∗ ∈ L, where x∗ := (m∗, c∗, c∗1,R

∗).

For i ∈ [0, 2], we let Succi be the event that A succeeds in outputting a tuple (R∗,m∗, σ∗)

satisfying 1 = RVer(R∗,m∗, σ∗) ∧ R∗ ⊆ rvk\SCorr ∧ (·,R∗,m∗) /∈ SSig in Gamei. By using

triangle inequality, we have

AdvunfRS,A(λ) = Pr[Succ0] ≤
1∑

i=0

|Pr[Succi]− Pr[Succi+1]|+ Pr[Succ2].

It remains to show how each |Pr[Succi] − Pr[Succi+1]| for i ∈ [0, 1] and Pr[Succ2] are

upper-bounded. To this end, we show the following lemmata.

• There exists an adversary Bkey against the indistinguishability of ordinary / lossy keys

of LE such that |Pr[Succ0]− Pr[Succ1]| = Advkey
LE,Bkey(λ) (Lemma 4.7).
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• There exists an adversary Bsound against the computational soundness of ZAP such that

|Pr[Succ1]− Pr[Succ2]| = AdvsoundZAP,Bsound(λ) (Lemma 4.8).

• There exists an adversary Bunf against the MU-EUF-CMACorr security of SIG such that

Pr[Succ2] = AdvunfSIG,Bunf (λ) (Lemma 4.9).

Lemma 4.7. There exists an adversary Bkey against the indistinguishability of ordinary /

lossy keys of LE such that |Pr[Succ0]− Pr[Succ1]| = Advkey
LE,Bkey(λ).

Proof of Lemma 4.7. We construct an adversary Bkey that attacks the indistinguishability

of ordinary / lossy keys of LE so that |Pr[Succ0] − Pr[Succ1]| = Advkey
LE,Bkey(λ), using the

adversary A as follows.

1. Upon receiving a set of encryption keys (ek i)i∈[n] from the challenger, Bkey proceeds as

follows:

(a) Bkey generates (sk i, vk i)← Gen(1λ) for all i ∈ [n].

(b) For all i ∈ [n], Bkey samples ri ← {0, 1}ℓ and sets rvk i := (vk i, ek i, ri) and rsk i :=

(sk i, rvk i).

(c) Bkey gives rvk := (rvk 1, · · · , rvkn) to A.

2. Bkey runs in the same way as the Step 2 in Game0.

3. When A outputs a tuple (R∗,m∗, σ∗) and terminates, if (1 = RVer(R∗,m∗, σ∗)) ∧ (R∗ ⊆
rvk\SCorr) ∧ ((·,R∗,m∗) /∈ SSig) holds, Bkey outputs 1 and terminates. Otherwise, Bkey

outputs 0 and terminates.

In the following, we let β be the challenge bit for Bkey. We can see that Bkey perfectly

simulates Game0 for A if it receives the lossy encryption keys (ek i)i∈[n] generated by LKG(1λ)

from its challenger. This ensures that the probability that Bkey outputs 1 given the lossy

encryption keys (ek i)i∈[n] is exactly the same as the probability that Succ0 happens inGame0.

That is, Pr[β′ = 1|β = 1] = Pr[Succ0] holds.

On the other hand, we can see that Bkey perfectly simulates Game1 for A if it receives the

ordinary encryption keys (ek i)i∈[n] generated by KG(1λ) from its challenger. This ensures that

the probability that Bkey outputs 1 given the ordinary encryption keys (ek i)i∈[n] is exactly the
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same as the probability that Succ1 happens in Game1. That is, Pr[β
′ = 1|β = 0] = Pr[Succ1]

holds. Therefore, we have

Advkey
LE,Bkey(λ) = |Pr[β

′ = 1|β = 1]− Pr[β′ = 1|β = 0]| = |Pr[Succ0]− Pr[Succ1]|.

(Lemma 4.7)

Lemma 4.8. There exists an adversary Bsound against the computational soundness of ZAP

such that |Pr[Succ1]− Pr[Succ2]| = AdvsoundZAP,Bsound(λ).

Proof of Lemma 4.8. For i ∈ {1, 2}, we let Badi be the event that A outputs a forgery

(R∗,m∗, σ∗ = (π∗, c∗0, c
∗
1)) satisfying x∗ /∈ L∧ 1 = RVer(R∗,m∗, σ∗)∧R∗ ⊆ rvk\SCorr in Gamei,

where x∗ := (m∗, c∗0, c
∗
1,R

∗). In the following, we call such a forgery a bad forgery. Game1

proceeds identically to Game2 unless Bad1 happens. Therefore, we have the inequality

|Pr[Succ1] − Pr[Succ2]| ≤ Pr[Bad1] = Pr[Bad2]. Then, we construct an adversary Bsound

that attacks the computational soundness of ZAP so that Pr[Bad1] = AdvsoundZAP,Bsound(λ), using

the adversary A as follows.

1. Upon receiving (ri)i∈[n] from the challenger, Bsound proceeds as follows:

(a) For all i ∈ [n], Bsound generates (ek i, dk i)← KG(1λ) and (sk i, vk i)← Gen(1λ).

(b) For all i ∈ [n], Bsound sets rvk i := (vk i, ek i, ri) and rsk i := (sk i, rvk i).

(c) Bsound sets SSig := ∅ and SCorr := ∅, and gives rvk := (rvk 1, · · · , rvkn) to A.

2. Bsound runs in the same way as the Step 2 in Game0.

3. When A outputs a tuple (R∗,m∗, σ∗) and terminates, Bsound proceeds as follows:

(a) Bsound parses R∗ := (rvk ∗it)t∈[n], rvk
∗
i1
:= (vk ∗i1 , ek

∗
i1
, r∗i1), and σ∗ := (π∗, c∗0, c

∗
1).

(b) Bsound sets x∗ := (m∗, c∗0, c
∗
1, σ

∗), outputs (r∗i1 , x
∗, π∗), and terminates.

From the above construction of Bsound, it is easy to see that Bsound perfectly simulates

Game1 for A. Recall that the success condition of Bsound is to output a tuple of a randomness,

a statement, and a proof (r∗, x∗, π∗) satisfying x∗ /∈ L ∧ 1 = Verify(r∗, x∗, π∗) for some r∗ ∈
(ri)i∈[n].

If A outputs a bad forgery (R∗,m∗, σ∗), then x∗ /∈ L∧1 = RVer(R∗,m∗, σ∗)∧R∗ ⊆ rvk\SCorr

holds. Due to the construction of RS, the condition 1 = RVer(R∗,m∗, σ∗) implies the condition
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1 = Verify(r∗i1 , x
∗, π∗). Moreover, due to the condition R∗ ⊆ rvk\SCorr, we can ensure that r∗i1

is included in (ri)i∈[n]. Thus, when A outputs a bad forgery (R∗,m∗, σ∗), Bsound achieves its

success condition by returning (r∗i1 , x
∗, π∗) to its challenger.

From the above arguments, the probability thatA outputs a bad forgery is exactly the same

as the probability that Bsound breaks the computational soundness of ZAP. Hence, we have

Pr[Bad1] = AdvsoundZAP,Bsound(λ), which in turn implies |Pr[Succ1]−Pr[Succ2]| ≤ AdvsoundZAP,Bsound(λ).

(Lemma 4.8)

Lemma 4.9. There exists an adversary Bunf against the MU-EUF-CMACorr security of SIG

such that Pr[Succ2] = AdvunfSIG,Bunf (λ).

Proof of Lemma 4.9. We construct an adversary Bunf that attacks the MU-EUF-CMACorr

security of SIG so that Pr[Succ2] = AdvunfSIG,Bunf (λ), using the adversary A as follows.

1. Upon receiving a set of verification keys (vk i)i∈[n] from the challenger, Bunf proceeds as

follows:

(a) For all i ∈ [n], Bunf generates (ek i, dk i)← KG(1λ) and samples ri ← {0, 1}ℓ.

(b) Bunf sets rvk i := (vk i, ek i, ri) for all i ∈ [n], SSig := ∅, and SCorr := ∅, and gives

rvk := (rvk 1, · · · , rvkn) to A.

2. When A makes a signing query (j,R,m) and a corruption query j, Bunf proceeds as

follows:

Signing Queries.

(a) Bunf parses R := (rvk ′1, · · · , rvk ′n′) and rvk ′1 := (vk ′1, ek
′
1, r
′
1).

(b) Bunf makes a signing query (j,m∥R) to its challenger. Upon receiving a sig-

nature σm from its challenger, Bunf samples a randomness rEnc ← REnc and

computes c0 ← Enc(ek j, σm; r
Enc).

(c) Bunf samples c1 ← CT LE, sets x := (m, c0, c1,R) and w := (j, rvk j, σm, r
Enc),

and computes π ← Prove(r′1, x, w).

(d) Bunf sets σ := (π, c0, c1), gives σ to A, and appends (j,R,m) to SSig.

Corruption Queries.

Bunf makes a corruption query j to its challenger. Upon receiving sk j from

its challenger, Bunf sets rsk j := (sk j, rvk j) and gives rsk j to A.
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3. WhenA outputs a forgery (R∗,m∗, σ∗) and terminates, Bunf parses R∗ := (rvk i1 , · · · , rvk it)

for some t = |R∗| and σ∗ := (π∗, c∗0, c
∗
1), and computes σ∗j,0 ← Dec(dk ij , c

∗
0) and σ∗j,1 ←

Dec(dk ij , c
∗
1) for all j ∈ [t]. Next, Bunf proceeds as follows:

(a) Bunf checks whether 1 = Ver(vk ij ,m
∗∥R∗, σ∗j,0) holds for all j ∈ [t]. If the condition

holds for some j ∈ [n], then Bunf returns (ij,m
∗∥R∗, σ∗j,0) to its challenger and

terminates.

(b) Bunf checks whether 1 = Ver(vk ij ,m
∗∥R∗, σ∗j,1) holds for all j ∈ [t]. If the condition

holds for some j ∈ [n], then Bunf returns (ij,m
∗∥R∗, σ∗j,1) to its challenger and

terminates.

We can see that Bunf perfectly simulates Game2 for A. Then, we show that Bunf can

output a valid forgery (ij,m
∗∥R∗, σ∗j,b) satisfying (1 = Ver(vk ij ,m

∗∥R∗, σ∗j,b)) ∧ ((m∗∥R∗, ·) /∈
Sj) ∧ (ij /∈ C) for some j ∈ [t] and b ∈ {0, 1} if A makes a valid forgery (R∗,m∗, σ∗).

If A makes a valid forgery (R∗,m∗, σ∗) in Game2, then (1 = RVer(R∗,m∗, σ∗)) ∧ (R∗ ⊆
rvk\SCorr) ∧ ((·,R∗,m∗) /∈ SSig) and x∗ ∈ L hold, where x∗ := (m∗, c∗0, c

∗
1,R

∗).

Firstly, we can see that (m∗∥R∗, ·) /∈ Sij holds by the fact (·,R∗,m∗) /∈ SSig.

Secondly, 1 = Verify(r∗i1 , x
∗, π∗) holds due to the condition 1 = RVer(R∗,m∗, σ∗). More-

over, by combining the additional condition x∗ ∈ L in Game2, we can ensure that there

exists a witness (ij, rvk
∗ = (vk ∗, ek ∗), σ∗, r∗) such that (rvk ∗ = rvk ∗ij(= (vk ij , ek ij))) ∧ (1 =

Ver(vk ∗,m∗∥R∗, σ∗m)) ∧ (c∗0 = Enc(ek ∗, σ∗m; r
∗) ∨ c∗1 = Enc(ek ∗, σ∗m; r

Enc)) for some j ∈ [t].

That is, due to the perfect correctness of LE, for some b ∈ {0, 1}, we can ensure that

σ∗m = Dec(dk ij , c
∗
b) = σ∗j,b and 1 = Ver(vk ij ,m

∗∥R∗, σ∗j,b) hold.
Finally, we can see that A does not make a corruption query ij because rvk ∗ = rvk ∗ij and

R∗ ⊆ rvk\SCorr hold. Therefore, we have ij /∈ C.

From the above arguments, we can see that Bunf can output a valid forgery (ij,m
∗∥R∗, σ∗j,b)

for some b ∈ {0, 1} if A outputs a valid forgery (R∗,m∗, σ∗). Therefore, we have Pr[Succ2] =

AdvunfSIG,Bunf (λ). (Lemma 4.9)

Putting everything together, we obtain

AdvunfRS,A(λ) ≤ Advkey
LE,Bkey(λ) + AdvsoundZAP,Bsound(λ) + AdvunfSIG,Bunf (λ).

Since LE satisfies correctness and indistinguishability of ordinary / lossy keys, ZAP satisfies

computational soundness, and SIG is MU-EUF-CMACorr secure, for any PPT adversary A,
AdvunfRS,A(λ) = negl(λ) holds. Therefore, RS satisfies unforgeability w.r.t. insider corruptions.

(Theorem 4.2)
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Chapter 5

A Tightly Secure Ring Signature

Scheme in the Plain Model

Based on the above motivation, we give an affirmative answer to the question. More specif-

ically, we give a new construction of tightly secure ring signature without depending on the

random oracles. For the overview and comparisons with the previous state-of-the-art schemes,

we refer to Table 5.1. There, we highlight the merits of our scheme by using the red color.

Scheme Signature size Anonymity Model Assumption Tightness Remark

Libert et al. [LPQ18] O(log n) Unconditional RO model DDH O(1) Practically Efficient

González [Gon19] O( 3
√
n) Unconditional CRS model DLIN O(n2, Qsig) Practically Efficient

Backes et al. [BDH+19] O(log n) Computational Plain model DLIN O(n)
Ours O(log n) Computational Plain model DLIN O(1)

Table 5.1: Comparison between state-of-the-art ring signature schemes and ours. (n denotes

the size of a ring.)

Noteworthily, the signature size of our second scheme is the same as one of the tightly

secure ring signature scheme in the random oracle model proposed by Libert et al. [LPQ18]

asymptotically. That is, the signature size of our second scheme is O(log n), where n is the

size of a ring.

Our scheme is inspired by the novel ring signature scheme recently proposed by Backes et

al. [BDH+19]. In [BDH+19], they provided the first logarithmic-size ring signature scheme

in the plain model under the DLIN assumption over the pairing group. Their building

blocks consist of a standard signature scheme [HJ12], a public key encryption (PKE) scheme

with pseudorandom public keys and ciphertexts [ElG84], an NIWI proof system in the plain

model [GOS06], and a somewhere perfectly binding (SPB) hash function [OPWW15]. Our
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second scheme also requires the same building blocks. We stress that all of the security

properties of these building blocks can be reduced to the DLIN assumption tightly using the

self-reducibility of the DLIN assumption [HJ12] or ensured information-theoretically.

5.1 Technical Overview

The Difficulty of Giving A Tight Security Proof for Unforgeability. In the context

of ring signatures, the generally accepted security notion for unforgeability is unforgeability

w.r.t. insider corruptions proposed by Bender, Katz, and Morselli [BKM06]. Informally,

the unforgeability w.r.t. insider corruptions is defined using an experiment that proceeds as

follows.

1. An adversary A is given a set of the verification keys rvk = (rvk 1, · · · , rvkn) generated

by the key generation algorithm.

2. A can make two types of queries: signing queries and corruption queries. If A makes

a signing query (j, R,m), a signature σ made by the signing key rsk j corresponding to

rvk j, the ring R, and the message m, is given to A. Also, if A makes a corruption query

j, the corresponding signing key rsk j is given to A.

3. A outputs a tuple (R∗,m∗, σ∗).

We say that A breaks the unforgeability w.r.t. insider corruptions if σ∗ is a valid signature for

a new message m∗ under the ring R∗ containing only uncorrupted verification keys. In other

words, if A cannot make such a forgery, we can say that a ring signature scheme satisfies the

unforgeability w.r.t. insider corruptions.

In the following, we explain the difficulty of giving a tight security proof for the unforge-

ability w.r.t. insider corruptions. For explaining the difficulty clearly, let us consider a simple

construction of ring signatures based on a standard signature scheme and an NIWI-PoK. In

this scheme, a signer generates a signature of his message and ring (including his verification

key) by using the underlying signature scheme. Then, he generates a proof which ensures that

his signature is valid and his verification key is included in the ring by using the

underlying NIWI-PoK. Finally, he sets the proof as his resulting ring signature σ. A verifier

given the ring signature σ checks whether the proof is valid.

Regarding this scheme, thanks to the extractability of the underlying NIWI-PoK, the

unforgeability w.r.t. insider corruptions is reduced to the unforgeability of the underlying
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signature scheme by constructing a reduction algorithm that simply guesses the index i∗ of

an uncorrupted user (signing key). However, this straightforward reduction suffers from a

reduction cost of L = 1
N
, where N is the number of all users, since an adversary of the

unforgeability w.r.t. insider corruptions might make a corruption query for the index i∗.

Thus, we cannot obtain a tight security in terms of the number of all users for this scheme. In

general, when proving the unforgeability w.r.t. insider corruptions, the similar problem occurs

in the other methods for constructing a ring signature scheme.

Our Approach to Overcome the Difficulty. Libert et al. [LPQ18] overcome the above

difficulty in the RO model. Their technique highly depends on the programmability of the

RO to deal with the corruption queries by an adversary. Unfortunately, we cannot use this

technique because we consider the standard model.

To overcome the above difficulty without using the RO methodology, we focus on the work

of Bader, Hofheinz, Jager, Kiltz, and Li [BHJ+15]. In [BHJ+15], they showed that a tightly

secure signature scheme with corruptions can be constructed by a tightly secure signature

scheme without corruptions and a tightly secure NIWI-PoK. Their idea is simple but powerful.

Informally, the description of their scheme is as follows. In their scheme, a verification key is

composed of two verification keys vk 0 and vk 1 of the underlying signature scheme. A signing

key is composed of either signing key skα corresponding to vkα, where α is sampled from {0, 1}
uniformly at random. A signature is constructed from an NIWI OR-proof of knowledge which

proves that the underlying signature can be verified either under vk 0 OR vk 1.

Regarding the security proof, we consider constructing the following reduction algorithm B
for the unforgeability of an underlying signature scheme. At first, B embeds his verification key

vk into the verification key vk 1⊕α and generates an opposite verification/signing key (vkα, skα)

by himself. Here, B knows one side signing key skα, and thus B can deal with any corruption

query made by an adversary A against the unforgeability with corruptions. Then, B hopes

that A makes a proof of knowledge π∗ of a signature σ∗ under B’s verification key vk 1⊕α. If A
makes such a proof, then B can extract the signature σ∗ from the proof of knowledge π∗ and

utilize it to break the unforgeability of the underlying signature scheme.

Our approach is to extend the above technique to a ring signature setting for providing a

tight security proof for unforgeability w.r.t. insider corruptions. In other words, our core idea

is to combine a membership proof for a ring with the above proof of knowledge for achieving a

tightness. Concretely, a signer firstly makes a signature σ for own message and ring using his

signing key skα of the underlying signature scheme. Then, he generates a proof of knowledge

showing that his verification key belongs to the ring AND his signature σ is valid either under
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vk 0 OR vk 1, and sets the proof as his resulting signature.

How to Construct A Tightly Secure Ring Signature Scheme in the Plain Model.

As mentioned above, our tightly secure ring signature scheme in the plain model is based on the

novel ring signature scheme recently proposed by Backes et al. [BDH+19]. Their starting point

is the ring signature scheme of Bender et al. [BKM06], and they improved the performance of

this scheme in two aspects to obtain logarithmic-sized signatures. One is to reduce the number

of ciphertexts of a PKE scheme in a ring signature and the other is to compress the witness

for the proof of an NIWI proof system in a ring signature. They achieve the improvement

regarding ciphertexts (resp., a witness) by utilizing the pseudorandomness of public keys and

ciphertexts of a PKE scheme (resp., the somewhere perfectly binding property of a SPB hash

function). Regarding anonymity, their scheme only achieves a computational anonymity due

to the computational security properties of a PKE scheme and a somewhere perfectly binding

hash function.

As a core technique for proving anonymity, in their construction, they make an OR-proof

using the underlying NIWI proof system for ensuring that either of two ciphertexts (resp., hash

keys) of an underlying PKE scheme (resp., SPB hash function) is valid. The important point

for our second scheme is that the technique for achieving a tightness used in our first scheme

is efficiently compatible with the above techniques of the Backes et al.’s ring signature scheme

since their scheme already depends on the OR-proof technique. Somewhat surprisingly, while

our scheme achieves a tight security, the efficiency is almost same as one of the original Backes

et al.’s ring signature scheme.

In the following sections, we show our ring signature scheme with logarithmic-size signa-

tures in the plain model. First, in Section 5.2, we describe our scheme. Then, in Section 5.3,

we give security proofs for our scheme.

5.2 Description

In this section, we formally describe our ring signature scheme with logarithmic-size signa-

tures in the plain model. Let SIG = (Gen, Sign,Ver) be a signature scheme with the mes-

sage space {0, 1}∗ and the randomness space RGen for the key generation algorithm Gen.

Let PKE = (KG,Enc,Dec) be a PKE scheme with the plaintext space MPKE, the public

key space PKPKE, the randomness space REnc for the encryption algorithm Enc, and the ci-

phertext space CT PKE. We require that MPKE is equal to the signature space of SIG. Let
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RGen(1λ; r) :

Parse r := (rGen0 , rGen1 , α)

(vk 0, sk 0)← Gen(1λ; rGen0 )

(vk 1, sk 1)← Gen(1λ; rGen1 )

pk ← PK
rvk := (vk 0, vk 1, pk)

rsk := (α, skα, rvk)

Return (rvk , rsk)

RSign(rsk ,m,R) :

Parse rsk := (α, skα, rvk)

If rvk (= rvk i) /∈ R then Return ⊥
σm ← Sign(skα,m∥R)
(hk 0, shk 0)← HGen(1λ, |R|, i)
(hk 1, shk 1)← HGen(1λ, |R|, i)
h0 ← Hash(hk 0,R)

h1 ← Hash(hk 1,R)

τ ← Open(hkα, shkα,R, i)

rEnc ←REnc

cα ← Enc(pk , σm; r
Enc)

c1⊕α ← CT PKE

x := (m, c0, c1, hk 0, hk 1, h0, h1,R)

If α = 0 then

w := (i, rvk , (σm,⊥), (rEnc,⊥), (τ,⊥))
else

w := (i, rvk , (⊥, σm), (⊥, rEnc), (⊥, τ))
π ← Prove(x,w)

Return σ := (π, c0, c1, hk 0, hk 1)

RVer(R,m, σ) :

Parse σ := (π, c0, c1, hk 0, hk 1)

h0 := Hash(hk 0,R)

h1 := Hash(hk 1,R)

x := (m, c0, c1, hk 0, hk 1, h0, h1,R)

b← Verify(x, π)

Return b

Figure 5.1: Our construction of tightly secure logarithmic-size ring signature in the plain model RS.

SPBH = (HGen,Hash,Open,HVer) be a somewhere perfectly binding hash function with pri-

vate local opening. Let NIWI = (Prove,Verify) be a non-interactive proof system in the plain

model for L, where

L :=
{
(m, c0, c1, hk 0, hk 1, h0, h1, R = (rvk 1, · · · , rvkn))

∣∣∣
∃(i, rvk = (vk 0, vk 1, pk), (σ0, σ1), (r0, r1), (τ0, τ1)) s.t.(

(1 = Ver(vk 0,m∥R, σ0)) ∧ (c0 = Enc(pk , σ0; r0)) ∧ (1 = HVer(hk 0, h0, i, rvk , τ0))
)

∨
(
(1 = Ver(vk 1,m∥R, σ1)) ∧ (c1 = Enc(pk , σ1; r1)) ∧ (1 = HVer(hk 1, h1, i, rvk , τ1))

)}
.

Then, we construct our ring signature scheme RS = (RGen,RSign,RVer) with the message

space M as described in Figure 5.1. We note that the correctness of RS is straightforward

due to the correctness of SIG, PKE, SPBH, and NIWI.

5.3 Security Proof

In this section, we show that our ring signature scheme RS satisfies (unconditional) anonymity

under full key exposure (Theorem 5.1) and unforgeability w.r.t. insider corruptions (Theo-
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rem 5.2).

Theorem 5.1. If NIWI satisfies computational witness indistinguishability, PKE satisfies pseu-

dorandomness of ciphertexts, and SPBH satisfies index hiding, then RS satisfies computa-

tional anonymity under full key exposure. More precisely, for any PPT adversary A against

the computational anonymity under full key exposure of RS, there exist adversaries Bi with

Time(A) ≤ mini∈[9]{Time(Bi)}, such that

AdvanonRS,A(λ) ≤ AdvctPKE,B1(λ) + AdvwiNIWI,B2(λ) + AdvwiNIWI,B3(λ) + AdvhideSPBH,B4(λ) + AdvctPKE,B5(λ)

+ AdvctPKE,B6(λ) + AdvwiNIWI,B7(λ) + AdvctPKE,B8(λ) + AdvhideSPBH,B9(λ).

Proof of Theorem 5.1 Let n = n(λ) be an arbitrary polynomial that denotes the number

of key pairs. Let A be any PPT adversary that attacks the anonymity under full key exposure

of RS. We introduce the following ten games: Gamei for i ∈ [0, 9].

Game0: Game0 is the original game of anonymity under full key exposure for RS

conditioned on b = 0. The detailed description is as follows.

1. The challenger C firstly proceeds as follows:

(a) For all i ∈ [n], C samples randomnesses (rGeni0 , rGeni1 ) ← (RGen)2, rLKGi ← Rkey
PKE,

and αi ← {0, 1}.

(b) For all i ∈ [n], C generates (vk i0, sk i0) ← Gen(1λ; rGeni0 ) and (vk i1, sk i1) ←
Gen(1λ; rGeni1 ), and samples pk i ← PK under the randomness rLKGi .

(c) For all i ∈ [n], C sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(d) C gives the randomnesses (rGeni0 , rGeni1 , rLKGi , αi)i∈[n] to A.

2. When A requests a challenge to C by sending a tuple (i0, i1,R
∗,m∗), C proceeds as

follows:

(a) C computes σ∗m ← Sign(sk i0,αi0
,m∗∥R∗), (hk ∗0, shk

∗
0) ← HGen(1λ, |R∗|, i0),

(hk ∗1, shk
∗
1) ← HGen(1λ, |R∗|, i0), h∗0 ← Hash(hk ∗0,R

∗), h∗1 ← Hash(hk ∗1,R
∗), and

τ ∗ ← Open(hk ∗αi0
, shk ∗αi0

,R∗, i0).

(b) C samples a randomness rEnc ← REnc, computes c∗αi0
← Enc(pk i0 , σ

∗
m; r

Enc),

samples c∗1⊕αi0
← CT PKE, and sets x∗ := (m∗, c∗0, c

∗
1, hk

∗
0, hk

∗
1, h
∗
0, h
∗
1,R

∗).

(c) If αi0 = 0 holds, C sets w∗ := (i0, rvk i0 , (σ
∗
m,⊥), (rEnc,⊥), (τ ∗,⊥)). Otherwise,

C sets w∗ := (i0, rvk i0 , (⊥, σ∗m), (⊥, rEnc), (⊥, τ ∗)).
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(d) C computes π∗ ← Prove(x∗, w∗), sets σ∗ := (π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1), and gives σ∗ to

A.

3. A outputs a bit b′ ∈ {0, 1} and terminates.

Game1: Game1 is identical to Game0 except for the following change. When gener-

ating the challenge signature σ∗ = (π∗, c∗0, c
∗
1), C computes both σ0 ← Sign(sk i0,0,m

∗∥R∗)
and σ1 ← Sign(sk i0,1,m

∗∥R∗). Moreover, C computes both τ0 ← Open(hk ∗0, shk
∗
0,R

∗, i0)

and τ1 ← Open(hk ∗1, shk
∗
1,R

∗, i0). Then, C computes c∗1⊕αi0
← Enc(pk i0 , σ1⊕αi0

) in-

stead of c∗1⊕αi0
← CT PKE.

Game2: Game2 is identical to Game1 except that C sets w∗ := (i0, rvk i0 , (σ0, σ1),

(rEnc0 , rEnc1 ), (τ0, τ1)). Here, we can see that the witness w∗ does not depend on the

randomness αi0 .

Game3: Game3 is identical to Game2 except that C sets w∗ := (i0, rvk i0 , (⊥, σ1),

(⊥, rEnc1 ), (⊥, τ1)) if αi1 = 0 holds. Otherwise, C sets w∗ := (i0, rvk i0 , (σ0,⊥), (rEnc0 ,⊥),
(τ0,⊥)).

Game4: Game4 is identical to Game3 except that C computes (hkαi1
, shkαi1

) ←
HGen(1λ, |R∗|, i1) instead of (hkαi1

, shkαi1
)← HGen(1λ, |R∗|, i0).

Game5: Game5 is identical to Game4 except that C samples c∗αi1
← CT PKE instead

of computing c∗αi1
← Enc(pk i0 , σαi1

; rEnc).

Game6: Game6 is identical toGame5 except that C computes σαi1
← Sign(sk i1,αi1

,m∗∥R∗)
and c∗αi1

← Enc(pk i1 , σαi1
; rEnc) instead of sampling c∗αi1

← CT PKE.

Game7: Game7 is identical to Game6 except for the following changes. Firstly, C
computes ταi1

← Open(hkαi1
, shkαi1

,R∗, i1) instead of ταi1
← Open(hkαi1

, shkαi1
,R∗, i0).

Moreover, if αi1 = 0 holds, then C sets w∗ := (i1, rvk i1 , (σ0,⊥), (rEnc0 ,⊥), (τ0,⊥)).
Otherwise, C sets w∗ := (i1, rvk i1 , (⊥, σ1), (⊥, rEnc1 ), (⊥, τ1)).

Game8: Game8 is identical toGame7 except that C samples c∗1⊕αi1
← CT PKE instead

of computing c∗1⊕αi1
← Enc(pk i0 , σ1⊕αi1

).

Game9: Game9 is identical to Game8 except that C computes (hk 1⊕αi1
, shk 1⊕αi1

)←
HGen(1λ, |R∗|, i1) instead of (hk 1⊕αi1

, shk 1⊕αi1
) ← HGen(1λ, |R∗|, i0). Note that

this game is equal to the original game of anonymity under full key exposure for

RS conditioned on b = 1.
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Let Succi be the event that A outputs b′ = 0 in Gamei for i ∈ [0, 9]. By using the triangle

inequality, we have

AdvanonRS,A(λ) = 2 ·
∣∣∣Pr[b = b′]− 1

2

∣∣∣ = |Pr[Succ0]− Pr[Succ9]| ≤
8∑

i=0

|Pr[Succi]− Pr[Succi+1]| .

It remains to show how each |Pr[Succi]−Pr[Succi+1]| is upper-bounded. To this end, we

show the following lemmata.

• There exists an adversary B1 against the pseudorandomness of ciphertexts of NIWI such

that |Pr[Succ0]− Pr[Succ1]| = AdvctNIWI,B1(λ) (Lemma 5.1).

• There exists an adversary B2 against the computational witness indistinguishability of

NIWI such that |Pr[Succ1]− Pr[Succ2]| = AdvwiNIWI,B2(λ) (Lemma 5.2).

• There exists an adversary B3 against the computational witness indistinguishability of

NIWI such that |Pr[Succ2]− Pr[Succ3]| = AdvwiNIWI,B3(λ) (Lemma 5.3).

• There exists an adversary B4 against the index hiding of SPBH such that |Pr[Succ3]−
Pr[Succ4]| = AdvhideSPBH,B4(λ) (Lemma 5.4).

• There exists an adversary B5 against the pseudorandomness of ciphertexts of PKE such

that |Pr[Succ4]− Pr[Succ5]| = AdvctPKE,B5(λ) (Lemma 5.5).

• There exists an adversary B6 against the pseudorandomness of ciphertexts of PKE such

that |Pr[Succ5]− Pr[Succ6]| = AdvctPKE,B6(λ) (Lemma 5.6).

• There exists an adversary B7 against the computational witness indistinguishability of

NIWI such that |Pr[Succ6]− Pr[Succ7]| = AdvwiNIWI,B7(λ) (Lemma 5.7).

• There exists an adversary B8 against the pseudorandomness of ciphertexts of PKE such

that |Pr[Succ7]− Pr[Succ8]| = AdvctPKE,B8(λ) (Lemma 5.8).

• There exists an adversary B9 against the index hiding of SPBH such that |Pr[Succ8]−
Pr[Succ9]| = AdvhideSPBH,B9(λ) (Lemma 5.9).

Lemma 5.1. There exists an adversary B1 against the pseudorandomness of ciphertexts of

PKE such that |Pr[Succ0]− Pr[Succ1]| = AdvctPKE,B1(λ).
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Proof of Lemma 5.1 We construct an adversary B1 that attacks the pseudorandomness of

ciphertexts of PKE so that |Pr[Succ0]−Pr[Succ1]| = AdvctPKE,B1(λ), using the adversary A as

follows.

1. Upon receiving (rLKGi )i∈[n] from the challenger, B1 proceeds as follows:

(a) For all i ∈ [n], B1 samples pk i ← PK under the randomness rLKGi .

(b) For all i ∈ [n], B1 samples randomnesses (rGeni0 , rGeni1 )← (RGen)2 and αi ← {0, 1}.

(c) For all i ∈ [n], B1 generates (vk i0, sk i0)← Gen(1λ; rGeni0 ) and (vk i1, sk i1)← Gen(1λ; rGeni1 ).

(d) For all i ∈ [n], B1 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(e) B1 gives the randomnesses (rGeni0 , rGeni1 , rLKGi , αi)i∈[n] to A.

2. When A makes a challenge query (i0, i1,R
∗,m∗), B1 proceeds as follows:

(a) B1 computes σ0 ← Sign(sk i0,0,m
∗∥R∗) and σ1 ← Sign(sk i0,1,m

∗∥R∗).

(b) B1 computes (hk ∗0, shk
∗
0)← HGen(1λ, |R∗|, i0), (hk ∗1, shk ∗1)← HGen(1λ, |R∗|, i0), h∗0 ←

Hash(hk ∗0,R
∗), h∗1 ← Hash(hk ∗1,R

∗), τ0 ← Open(hk ∗0, shk
∗
0,R

∗, i0), and τ1 ← Open(hk ∗1,

shk ∗1,R
∗, i0).

(c) B1 sets m∗ := σ1⊕αi0
and queries (i0,m

∗) to the challenger.

(d) Upon receiving c∗ from the challenger, B1 samples a randomness rEnc ←REnc, com-

putes c∗αi0
← Enc(pk i0 , σαi0

; rEnc), and sets c∗1⊕αi0
:= c∗ and x∗ := (m∗, c∗0, c

∗
1, hk

∗
0, hk

∗
1,

h∗0, h
∗
1,R

∗).

(e) If αi0 = 0 holds, then B1 sets w∗ := (i0, rvk i0 , (σ0,⊥), (rEnc0 ,⊥), (τ0,⊥)). Otherwise,

B1 sets w∗ := (i0, rvk i0 , (⊥, σ1), (⊥, rEnc1 ), (⊥, τ1)).

(f) B1 computes a proof π∗ ← Prove(x∗, w∗), sets σ∗ := (π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1), and gives

σ∗ to A.

3. When A outputs a bit b′ ∈ {0, 1} and terminates, B1 outputs β′ := 1 to the challenger

and terminates if b′ = 0 holds. Otherwise, B1 outputs β′ := 0 to the challenger and

terminates.

In the following, let β be the challenge bit for B1. We can see that B1 perfectly simulates

Game0 for A if it receives the challenge ciphertext c∗ ← CT PKE from its challenger. This

ensures that the probability that B1 outputs 1 given c∗ ← CT PKE is equal to the probability

that Succ0 happens in Game0. That is, Pr[β′ = 1|β = 0] = Pr[Succ0] holds. On the other
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hand, we can see that B1 perfectly simulatesGame1 forA if it receives the challenge ciphertext

c∗ ← Enc(pk i0 , σ1⊕αi0
) from its challenger. This ensures that the probability that B1 outputs

1 given c∗ ← Enc(pk i1 , σ1⊕αi0
) is equal to the probability that Succ1 happens in Game1.

That is, Pr[β′ = 1|β = 1] = Pr[Succ1] holds. Therefore, we have |Pr[Succ0] − Pr[Succ1]| =
|Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]| = AdvctPKE,B1(λ). (Lemma 5.1)

Lemma 5.2. There exists an adversary B2 against the computational witness indistinguisha-

bility of NIWI such that |Pr[Succ1]− Pr[Succ2]| = AdvwiNIWI,B2(λ).

Proof of Lemma 5.2 We construct an adversary B2 that attacks the computational wit-

ness indistinguishability of NIWI so that |Pr[Succ1] − Pr[Succ2]| = AdvwiNIWI,B2(λ), using the

adversary A as follows.

1. Upon receiving 1λ from the challenger, B2 proceeds as follows:

(a) For all i ∈ [n], B2 samples randomnesses (rGeni0 , rGeni1 )← (RGen)2, rLKGi ←Rkey
PKE, and

αi ← {0, 1}.

(b) For all i ∈ [n], B2 generates (vk i0, sk i0)← Gen(1λ; rGeni0 ), (vk i1, sk i1)← Gen(1λ; rGeni1 ),

and pk i ← PK under the randomness rLKGi .

(c) For all i ∈ [n], B2 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(d) B2 gives the randomnesses (rGeni0 , rGeni1 , rLKGi , αi)i∈[n] to A.

2. When A makes a challenge query (i0, i1,R
∗,m∗), B2 proceeds as follows:

(a) B2 computes σ0 ← Sign(sk i0,0,m
∗∥R∗) and σ1 ← Sign(sk i0,1,m

∗∥R∗).

(b) B2 computes (hk ∗0, shk
∗
0)← HGen(1λ, |R∗|, i0), (hk ∗1, shk ∗1)← HGen(1λ, |R∗|, i0), h∗0 ←

Hash(hk ∗0,R
∗), h∗1 ← Hash(hk ∗1,R

∗), τ0 ← Open(hk ∗0, shk
∗
0,R

∗, i0), and τ1 ← Open(hk ∗1,

shk ∗1,R
∗, i0).

(c) B2 samples randomnesses rEnc0 , rEnc1 ← REnc, computes c∗αi0
← Enc(pk i0 , σ

∗
m; r

Enc
αi0

),

samples c∗1⊕αi0
← CT PKE, and sets x∗ := (m∗, c∗0, c

∗
1, hk

∗
0, hk

∗
1, h
∗
0, h
∗
1,R

∗).

(d) If αi0 = 0 holds, then B2 sets w∗0 := (i0, rvk i0 , (σ0,⊥), (rEnc0 ,⊥), (τ0,⊥)). Otherwise,

B2 sets w∗0 := (i0, rvk i0 , (⊥, σ1), (⊥, rEnc1 ), (⊥, τ1)).

(e) B2 sets w∗1 := (i0, rvk i0 , (σ0, σ1), (r
Enc
0 , rEnc1 ), (τ0, τ1)), makes a query (x∗, w∗0, w

∗
1) to

its oracle, and gets the corresponding proof π∗.

(f) B2 sets σ∗ := (π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1) and gives σ∗ to A.
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3. When A outputs a bit b′ ∈ {0, 1} and terminates, B2 outputs 1 to the challenger and

terminates if b′ = 0 holds. Otherwise, B2 outputs 0 to the challenger and terminates.

We can see that B2 perfectly simulates Game1 for A if it receives the proof π∗ from the

oracle O0. This ensures that the probability that B2 outputs 1 given the proof π∗ from the

oracle O0 is equal to the probability that Succ1 happens in Game1. That is, Pr[BO0(·,·,·)
2 (1λ) =

1] = Pr[Succ1] holds. On the other hand, B2 perfectly simulates Game2 for A if it receives

the proof π∗ from the oracle O1. This ensures that the probability that B2 outputs 1 given

the proof π∗ from the oracle O1 is equal to the probability that Succ2 happens in Game2.

That is, Pr[BO1(·,·,·)
2 (1λ) = 1] = Pr[Succ2] holds. Therefore, it holds that AdvwiNIWI,B2(λ) =

|Pr[BO0(·,·,·)
2 (1λ) = 1]− Pr[BO1(·,·,·)

2 (1λ) = 1]| = |Pr[Succ1]− Pr[Succ2]|. (Lemma 5.2)

Lemma 5.3. There exists an adversary B3 against the computational witness indistinguisha-

bility of NIWI such that |Pr[Succ2]− Pr[Succ3]| = AdvwiNIWI,B3(λ).

Proof of Lemma 5.3 We construct an adversary B3 that attacks the computational wit-

ness indistinguishability of NIWI so that |Pr[Succ2] − Pr[Succ3]| = AdvwiNIWI,B3(λ), using the

adversary A as follows.

1. Upon receiving 1λ from the challenger, B3 proceeds as follows:

(a) For all i ∈ [n], B3 samples randomnesses (rGeni0 , rGeni1 )← (RGen)2, rLKGi ←Rkey
PKE, and

αi ← {0, 1}.

(b) For all i ∈ [n], B3 generates (vk i0, sk i0)← Gen(1λ; rGeni0 ), (vk i1, sk i1)← Gen(1λ; rGeni1 ),

and pk i ← PK under the randomness rLKGi .

(c) For all i ∈ [n], B3 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(d) B3 gives the randomnesses (rGeni0 , rGeni1 , rLKGi , αi)i∈[n] to A.

2. When A makes a challenge query (i0, i1,R
∗,m∗), B3 proceeds as follows:

(a) B3 computes σ0 ← Sign(sk i0,0,m
∗∥R∗) and σ1 ← Sign(sk i0,1,m

∗∥R∗).

(b) B3 computes (hk ∗0, shk
∗
0)← HGen(1λ, |R∗|, i0), (hk ∗1, shk ∗1)← HGen(1λ, |R∗|, i0), h∗0 ←

Hash(hk ∗0,R
∗), h∗1 ← Hash(hk ∗1,R

∗), τ0 ← Open(hk ∗0, shk
∗
0,R

∗, i0), and τ1 ← Open(hk ∗1,

shk ∗1,R
∗, i0).

(c) B3 samples randomnesses rEnc0 , rEnc1 ← REnc, computes c∗0 ← Enc(pk i0 , σ0; r
Enc
0 ) and

c∗1 ← Enc(pk i0 , σ1; r
Enc
1 ), and sets x∗ := (m∗, c∗0, c

∗
1, hk

∗
0, hk

∗
1, h
∗
0, h
∗
1,R

∗) and w∗0 :=

(i0, rvk i0 , (σ0, σ1), (r
Enc
0 , rEnc1 ), (τ0, τ1)).
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(d) If αi1 = 0 holds, B3 sets w∗1 := (i0, rvk i0 , (⊥, σ1), (⊥, rEnc1 ), (⊥, τ1)). Otherwise, B3
sets w∗1 := (i0, rvk i0 , (σ0,⊥), (rEnc0 ,⊥), (τ0,⊥)).

(e) B3 makes a query (x∗, w∗0, w
∗
1) to its oracle and gets the corresponding proof π∗.

(f) B3 sets σ∗ := (π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1) and gives σ∗ to A.

3. When A outputs a bit b′ ∈ {0, 1} and terminates, B3 outputs 1 to the challenger and

terminates if b′ = 0 holds. Otherwise, B3 outputs 0 to the challenger and terminates.

We can see that B3 perfectly simulates Game2 for A if it receives the proof π∗ from the

oracle O0. This ensures that the probability that B3 outputs 1 given the proof π∗ from the

oracle O0 is equal to the probability that Succ2 happens in Game2. That is, Pr[BO0(·,·,·)
3 (1λ) =

1] = Pr[Succ2] holds. On the other hand, B3 perfectly simulates Game3 for A if it receives

the proof π∗ from the oracle O1. This ensures that the probability that B3 outputs 1 given

the proof π∗ from the oracle O1 is equal to the probability that Succ3 happens in Game3.

That is, Pr[BO1(·,·,·)
3 (1λ) = 1] = Pr[Succ3] holds. Therefore, it holds that AdvwiNIWI,B3(λ) =

|Pr[BO0(·,·,·)
3 (1λ) = 1]− Pr[BO1(·,·,·)

3 (1λ) = 1]| = |Pr[Succ2]− Pr[Succ3]|. (Lemma 5.3)

Lemma 5.4. There exists an adversary B4 against the index hiding of SPBH such that

|Pr[Succ3]− Pr[Succ4]| = AdvhideSPBH,B4(λ).

Proof of Lemma 5.4 We construct an adversary B4 that attacks the index hiding of SPBH

so that |Pr[Succ3]− Pr[Succ4]| = AdvhideSPBH,B4(λ), using the adversary A as follows.

1. Upon receiving 1λ from the challenger, B4 proceeds as follows:

(a) For all i ∈ [n], B4 samples randomnesses (rGeni0 , rGeni1 )← (RGen)2, rLKGi ←Rkey
PKE, and

αi ← {0, 1}.

(b) For all i ∈ [n], B4 generates (vk i0, sk i0)← Gen(1λ; rGeni0 ), (vk i1, sk i1)← Gen(1λ; rGeni1 ),

and pk i ← PK under the randomnesses rLKGi .

(c) For all i ∈ [n], B4 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(d) B4 gives the randomnesses (rGeni0 , rGeni1 , rLKGi , αi)i∈[n] to A.

2. When A makes a challenge query (i0, i1,R
∗,m∗), B4 proceeds as follows:

(a) B4 computes σ0 ← Sign(sk i0,0,m
∗∥R∗) and σ1 ← Sign(sk i0,1,m

∗∥R∗).
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(b) B4 sends (|R∗|, i0, i1) to its challenger. Upon receiving hk from the challenger, B4 sets
hk ∗αi1

:= hk , computes (hk ∗1⊕αi1
, shk ∗1⊕αi1

)← HGen(1λ, |R∗|, i0), h∗0 ← Hash(hk ∗0,R
∗),

h∗1 ← Hash(hk ∗1,R
∗), τ0 ← Open(hk ∗0, shk

∗
0,R

∗, i0), and τ1 ← Open(hk ∗1, shk
∗
1,R

∗, i0).

(c) B4 samples randomnesses rEnc0 , rEnc1 ← REnc, computes c∗0 ← Enc(pk i0 , σ0; r
Enc
0 ) and

c∗1 ← Enc(pk i0 , σ1; r
Enc
1 ), and sets x∗ := (m∗, c∗0, c

∗
1, hk

∗
0, hk

∗
1, h
∗
0, h
∗
1,R

∗).

(d) If αi1 = 0 holds, then B4 sets w∗ := (i0, rvk i0 , (⊥, σ1), (⊥, rEnc1 ), (⊥, τ1)). Otherwise,

B4 sets w∗ := (i0, rvk i0 , (σ0,⊥), (rEnc0 ,⊥), (τ0,⊥)).

(e) B4 computes a proof π∗ ← Prove(x∗, w∗), sets σ∗ := (π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1), and gives

σ∗ to A.

3. When A outputs a bit b′ ∈ {0, 1} and terminates, B4 outputs 1 to the challenger and

terminates if b′ = 0 holds. Otherwise, B4 outputs 0 to the challenger and terminates.

In the following, let β ∈ {0, 1} be the challenge bit for B4. We can see that B4 perfectly

simulates Game3 for A if it receives the hashing key hk ← HGen(1λ, |R∗|, i0). This ensures

that the probability that B4 outputs 1 given the hashing key hk ← HGen(1λ, |R∗|, i0) is equal
to the probability that Succ3 happens in Game3. That is, Pr[1 = B4(hk)|β = 0] = Pr[Succ3]

holds. On the other hand, B4 perfectly simulates Game4 for A if it receives the hashing key

hk ← HGen(1λ, |R∗|, i1). This ensures that the probability that B4 outputs 1 given the hashing

key hk ← HGen(1λ, |R∗|, i1) is equal to the probability that Succ4 happens in Game4. That

is, Pr[1 = B4(hk)|β = 1] = Pr[Succ4] holds. Therefore, it holds that Adv
hide
SPBH,B4(λ) = |Pr[1 =

B4(hk)|β = 0]− Pr[1 = B4(hk)|β = 1]| = |Pr[Succ3]− Pr[Succ4]|. (Lemma 5.4)

Lemma 5.5. There exists an adversary B5 against the pseudorandomness of ciphertexts of

PKE such that |Pr[Succ4]− Pr[Succ5]| = AdvctPKE,B5(λ).

Proof of Lemma 5.5 We construct an adversary B5 that attacks the pseudorandomness of

ciphertexts of PKE so that |Pr[Succ4]−Pr[Succ5]| = AdvctPKE,B5(λ), using the adversary A as

follows.

1. Upon receiving (rLKGi )i∈[n] from the challenger, B5 proceeds as follows:

(a) For all i ∈ [n], B5 samples pk i ← PK under the randomness rLKGi .

(b) For all i ∈ [n], B5 samples randomnesses (rGeni0 , rGeni1 )← (RGen)2 and αi ← {0, 1}.

(c) For all i ∈ [n], B5 generates (vk i0, sk i0)← Gen(1λ; rGeni0 ) and (vk i1, sk i1)← Gen(1λ; rGeni1 ).
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(d) For all i ∈ [n], B5 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(e) B5 gives the randomnesses (rGeni0 , rGeni1 , rLKGi , αi)i∈[n] to A.

2. When A makes a challenge query (i0, i1,R
∗,m∗), B5 proceeds as follows:

(a) B5 computes σ0 ← Sign(sk i0,0,m
∗∥R∗) and σ1 ← Sign(sk i0,1,m

∗∥R∗).

(b) B5 computes (hk ∗αi1
, shk ∗αi1

)← HGen(1λ, |R∗|, i1), (hk ∗1⊕αi1
, shk ∗1⊕αi1

)← HGen(1λ, |R∗|, i0),
h∗0 ← Hash(hk ∗0,R

∗), h∗1 ← Hash(hk ∗1,R
∗), τ0 ← Open(hk ∗0, shk

∗
0,R

∗, i0), and τ1 ←
Open(hk ∗1, shk

∗
1,R

∗, i0).

(c) B5 sets m∗ := σαi1
and queries (i0,m

∗) to the challenger.

(d) Upon receiving c∗ from the challenger, B5 samples a randomness rEnc ←REnc, com-

putes c∗1⊕αi1
← Enc(pk i0 , σ1⊕αi1

; rEnc), and sets c∗αi1
:= c∗ and x∗ := (m∗, c∗0, c

∗
1, hk

∗
0,

hk ∗1, h
∗
0, h
∗
1,R

∗).

(e) If αi1 = 0 holds, then B5 sets w∗ := (i0, rvk i0 , (⊥, σ1), (⊥, rEnc), (⊥, τ1)). Otherwise,

B5 sets w∗ := (i0, rvk i0 , (σ0,⊥), (rEnc,⊥), (τ0,⊥)).

(f) B5 computes π∗ ← Prove(x∗, w∗), sets σ∗ := (π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1), and gives σ∗ to A.

3. When A outputs a bit b′ ∈ {0, 1} and terminates, B5 outputs β′ := 1 to the challenger

and terminates if b′ = 0 holds. Otherwise, B5 outputs β′ := 0 to the challenger and

terminates.

In the following, let β be the challenge bit for B5. We can see that B5 perfectly simulates

Game4 for A if it receives the challenge ciphertext c∗ ← Enc(pk i0 , σαi1
) from its challenger.

This ensures that the probability that B5 outputs 1 given c∗ ← Enc(pk i0 , σαi1
) is equal to the

probability that Succ4 happens in Game4. That is, Pr[β′ = 1|β = 0] = Pr[Succ4] holds.

On the other hand, we can see that B5 perfectly simulates Game5 for A if it receives the

challenge ciphertext c∗ ← CT PKE from its challenger. This ensures that the probability that

B5 outputs 1 given c∗ ← CT PKE is equal to the probability that Succ5 happens in Game5.

That is, Pr[β′ = 1|β = 1] = Pr[Succ5] holds. Therefore, we have |Pr[Succ4] − Pr[Succ5]| =
|Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]| = AdvctPKE,B5(λ). (Lemma 5.5)

Lemma 5.6. There exists an adversary B6 against the pseudorandomness of ciphertexts of

PKE such that |Pr[Succ5]− Pr[Succ6]| = AdvctPKE,B6(λ).
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Proof of Lemma 5.6 We construct an adversary B6 that attacks the pseudorandomness of

ciphertexts of PKE so that |Pr[Succ5]−Pr[Succ6]| = AdvctPKE,B6(λ), using the adversary A as

follows.

1. Upon receiving (rLKGi )i∈[n] from the challenger, B6 proceeds as follows:

(a) For all i ∈ [n], B6 samples pk i ← PK under the randomness rLKGi .

(b) For all i ∈ [n], B6 samples randomnesses (rGeni0 , rGeni1 )← (RGen)2 and αi ← {0, 1}.

(c) For all i ∈ [n], B6 generates (vk i0, sk i0)← Gen(1λ; rGeni0 ) and (vk i1, sk i1)← Gen(1λ; rGeni1 ).

(d) For all i ∈ [n], B6 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(e) B6 gives the randomnesses (rGeni0 , rGeni1 , rLKGi , αi)i∈[n] to A.

2. When A makes a challenge query (i0, i1,R
∗,m∗), B6 proceeds as follows:

(a) B6 computes σαi1
← Sign(sk i1,αi1

,m∗∥R∗) and σ1⊕αi1
← Sign(sk i0,1⊕αi1

,m∗∥R∗).

(b) B6 computes (hk ∗αi1
, shk ∗αi1

) ← HGen(1λ, |R∗|, i1), (hk ∗1⊕αi1
, shk ∗1⊕αi1

) ← HGen(1λ,

|R∗|, i0), h∗0 ← Hash(hk ∗0,R
∗), h∗1 ← Hash(hk ∗1,R

∗), τ0 ← Open(hk ∗0, shk
∗
0,R

∗, i0), and

τ1 ← Open(hk ∗1, shk
∗
1,R

∗, i0).

(c) B6 sets m∗ := σαi1
and queries (i1,m

∗) to the challenger.

(d) Upon receiving c∗ from the challenger, B6 samples a randomness rEnc ←REnc, com-

putes c∗1⊕αi1
← Enc(pk i0 , σ1⊕αi1

; rEnc), and sets c∗αi1
:= c∗ and x∗ := (m∗, c∗0, c

∗
1, hk

∗
0,

hk ∗1, h
∗
0, h
∗
1,R

∗).

(e) If αi1 = 0 holds, then B6 sets w∗ := (i0, rvk i0 , (⊥, σ1), (⊥, rEnc), (⊥, τ1)). Otherwise,

B6 sets w∗ := (i0, rvk i0 , (σ0,⊥), (rEnc,⊥), (τ0,⊥)).

(f) B6 computes π∗ ← Prove(x∗, w∗), sets σ∗ := (π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1), and gives σ∗ to A.

3. When A outputs a bit b′ ∈ {0, 1} and terminates, B6 outputs β′ := 1 to the challenger

and terminates if b′ = 0 holds. Otherwise, B6 outputs β′ := 0 to the challenger and

terminates.

In the following, let β be the challenge bit for B6. We can see that B6 perfectly simulates

Game5 for A if it receives the challenge ciphertext c∗ ← CT PKE from its challenger. This

ensures that the probability that B6 outputs 1 given c∗ ← CT PKE is equal to the probability

that Succ5 happens in Game5. That is, Pr[β′ = 1|β = 0] = Pr[Succ5] holds. On the other

hand, we can see that B6 perfectly simulatesGame6 forA if it receives the challenge ciphertext
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c∗ ← Enc(pk i1 , σαi1
) from its challenger. This ensures that the probability that B6 outputs 1

given c∗ ← Enc(pk i1 , σαi1
) is equal to the probability that Succ6 happens in Game6. That is,

Pr[β′ = 1|β = 1] = Pr[Succ6] holds. Therefore, we have |Pr[Succ5]− Pr[Succ6]| = |Pr[β′ =
1|β = 0]− Pr[β′ = 1|β = 1]| = AdvctPKE,B6(λ). (Lemma 5.6)

Lemma 5.7. There exists an adversary B7 against the computational witness indistinguisha-

bility of NIWI such that |Pr[Succ6]− Pr[Succ7]| = AdvwiNIWI,B7(λ).

Proof of Lemma 5.7 We construct an adversary B7 that attacks the computational wit-

ness indistinguishability of NIWI so that |Pr[Succ6] − Pr[Succ7]| = AdvwiNIWI,B7(λ), using the

adversary A as follows.

1. Upon receiving 1λ from the challenger, B7 proceeds as follows:

(a) For all i ∈ [n], B7 samples randomnesses (rGeni0 , rGeni1 )← (RGen)2, rLKGi ←Rkey
PKE, and

αi ← {0, 1}.

(b) For all i ∈ [n], B7 generates (vk i0, sk i0)← Gen(1λ; rGeni0 ), (vk i1, sk i1)← Gen(1λ; rGeni1 ),

and pk i ← PK under the randomness rLKGi .

(c) For all i ∈ [n], B7 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(d) B7 gives the randomnesses (rGeni0 , rGeni1 , rLKGi , αi)i∈[n] to A.

2. When A makes a challenge query (i0, i1,R
∗,m∗), B7 proceeds as follows:

(a) B7 computes σαi1
← Sign(sk i1,αi1

,m∗∥R∗) and σ1⊕αi1
← Sign(sk i0,1⊕αi1

,m∗∥R∗).

(b) B7 computes (hk ∗αi1
, shk ∗αi1

)← HGen(1λ, |R∗|, i1), (hk ∗1⊕αi1
, shk ∗1⊕αi1

)← HGen(1λ, |R∗|, i0),
h∗0 ← Hash(hk ∗0,R

∗), h∗1 ← Hash(hk ∗1,R
∗), ταi1

← Open(hk ∗αi1
, shk ∗αi1

,R∗, i1), and

τ1⊕αi1
← Open(hk ∗1⊕αi1

, shk ∗1⊕αi1
,R∗, i0).

(c) B7 samples randomnesses rEnc0 , rEnc1 ← REnc, computes c∗αi1
← Enc(pk i1 , σαi1

; rEncαi1
)

and c∗1⊕αi1
← Enc(pk i0 , σ1⊕αi1

; rEnc1⊕αi1
), and sets x∗ := (m∗, c∗0, c

∗
1, hk

∗
0, hk

∗
1, h
∗
0, h
∗
1,R

∗).

(d) If αi1 = 0 holds, then B7 sets w∗0 := (i0, rvk i0 , (⊥, σ1), (⊥, rEnc1 ), (⊥, τ1)). Otherwise,

B7 sets w∗0 := (i0, rvk i0 , (σ0,⊥), (rEnc0 ,⊥), (τ0,⊥)).

(e) If αi1 = 0 holds, then B7 sets w∗1 := (i1, rvk i1 , (σ0,⊥), (rEnc0 ,⊥), (τ0,⊥)). Otherwise,

B7 sets w∗1 := (i1, rvk i1 , (⊥, σ1), (⊥, rEnc1 ), (⊥, τ1)).

(f) B7 queries (x∗, w∗0, w
∗
1) to its oracle and gets the corresponding proof π∗.

(g) B7 sets σ∗ := (π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1) and gives σ∗ to A.
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3. When A outputs a bit b′ ∈ {0, 1} and terminates, B7 outputs 1 to the challenger and

terminates if b′ = 0 holds. Otherwise, B7 outputs 0 to the challenger and terminates.

We can see that B7 perfectly simulates Game6 for A if it receives the proof π∗ from the

oracle O0. This ensures that the probability that B7 outputs 1 given the proof π∗ from the

oracle O0 is equal to the probability that Succ6 happens in Game6. That is, Pr[BO0(·,·,·)
7 (1λ) =

1] = Pr[Succ6] holds. On the other hand, B7 perfectly simulates Game7 for A if it receives

the proof π∗ from the oracle O1. This ensures that the probability that B7 outputs 1 given

the proof π∗ from the oracle O1 is equal to the probability that Succ7 happens in Game7.

That is, Pr[BO1(·,·,·)
7 (1λ) = 1] = Pr[Succ7] holds. Therefore, it holds that AdvwiNIWI,B7(λ) =

|Pr[BO0(·,·,·)
7 (1λ) = 1]− Pr[BO1(·,·,·)

7 (1λ) = 1]| = |Pr[Succ6]− Pr[Succ7]|. (Lemma 5.7)

Lemma 5.8. There exists an adversary B8 against the pseudorandomness of ciphertexts of

PKE such that |Pr[Succ7]− Pr[Succ8]| = AdvctPKE,B8(λ).

Proof of Lemma 5.8 We construct an adversary B8 that attacks the pseudorandomness of

ciphertexts of PKE so that |Pr[Succ7]−Pr[Succ8]| = AdvctPKE,B8(λ), using the adversary A as

follows.

1. Upon receiving (rLKGi )i∈[n] from the challenger, B8 proceeds as follows:

(a) For all i ∈ [n], B8 samples pk i ← PK under the randomness rLKGi .

(b) For all i ∈ [n], B8 samples randomnesses (rGeni0 , rGeni1 )← (RGen)2 and αi ← {0, 1}.

(c) For all i ∈ [n], B8 generates (vk i0, sk i0)← Gen(1λ; rGeni0 ) and (vk i1, sk i1)← Gen(1λ; rGeni1 ).

(d) For all i ∈ [n], B8 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(e) B8 gives the randomnesses (rGeni0 , rGeni1 , rLKGi , αi)i∈[n] to A.

2. When A makes a challenge query (i0, i1,R
∗,m∗), B8 proceeds as follows:

(a) B8 computes σαi1
← Sign(sk i1,αi1

,m∗∥R∗) and σ1⊕αi1
← Sign(sk i0,1⊕αi1

,m∗∥R∗).

(b) B8 computes (hk ∗αi1
, shk ∗αi1

)← HGen(1λ, |R∗|, i1), (hk ∗1⊕αi1
, shk ∗1⊕αi1

)← HGen(1λ, |R∗|, i0),
h∗0 ← Hash(hk ∗0,R

∗), h∗1 ← Hash(hk ∗1,R
∗), ταi1

← Open(hk ∗αi1
, shk ∗αi1

,R∗, i1), and

τ1⊕αi1
← Open(hk ∗1⊕αi1

, shk ∗1⊕αi1
,R∗, i0).

(c) B8 sets m∗ := σ1⊕αi1
and queries (i0,m

∗) to the challenger.

(d) Upon receiving c∗ from the challenger, B8 samples a randomness rEnc ←REnc, com-

putes c∗αi1
← Enc(pk i1 , σαi1

; rEnc), and sets c∗1⊕αi1
:= c∗ and x∗ := (m∗, c∗0, c

∗
1, hk

∗
0, hk

∗
1,

h∗0, h
∗
1,R

∗).
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(e) If αi1 = 0 holds, then B8 sets w∗ := (i1, rvk i1 , (σ0,⊥), (rEnc,⊥), (τ0,⊥)). Otherwise,

B8 sets w∗ := (i1, rvk i1 , (⊥, σ1), (⊥, rEnc), (⊥, τ1)).

(f) B8 computes π∗ ← Prove(x∗, w∗), sets σ∗ := (π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1), and gives σ∗ to A.

3. When A outputs a bit b′ ∈ {0, 1} and terminates, B8 outputs β′ := 1 to the challenger

and terminates if b′ = 0 holds. Otherwise, B8 outputs β′ := 0 to the challenger and

terminates.

In the following, let β be the challenge bit for B8. We can see that B8 perfectly simulates

Game7 for A if it receives the challenge ciphertext c∗ ← Enc(pk i0 , σ1⊕αi1
) from its challenger.

This ensures that the probability that B8 outputs 1 given c∗ ← Enc(pk i0 , σ1⊕αi1
) is equal to

the probability that Succ7 happens in Game7. That is, Pr[β
′ = 1|β = 0] = Pr[Succ7] holds.

On the other hand, we can see that B8 perfectly simulates Game8 for A if it receives the

challenge ciphertext c∗ ← CT PKE from its challenger. This ensures that the probability that

B8 outputs 1 given c∗ ← CT PKE is equal to the probability that Succ8 happens in Game8.

That is, Pr[β′ = 1|β = 1] = Pr[Succ8] holds. Therefore, we have |Pr[Succ7] − Pr[Succ8]| =
|Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]| = AdvctPKE,B8(λ). (Lemma 5.8)

Lemma 5.9. There exists an adversary B9 against the index hiding of SPBH such that

|Pr[Succ8]− Pr[Succ9]| = AdvhideSPBH,B9(λ).

Proof of Lemma 5.9 We construct an adversary B9 that attacks the index hiding of SPBH

so that |Pr[Succ8]− Pr[Succ9]| = AdvhideSPBH,B9(λ), using the adversary A as follows.

1. Upon receiving 1λ from the challenger, B9 proceeds as follows:

(a) For all i ∈ [n], B9 samples randomnesses (rGeni0 , rGeni1 )← (RGen)2, rLKGi ←Rkey
PKE, and

αi ← {0, 1}.

(b) For all i ∈ [n], B9 generates (vk i0, sk i0)← Gen(1λ; rGeni0 ) and (vk i1, sk i1)← Gen(1λ; rGeni1 )

and samples pk i ← PK under the randomness rkeyi .

(c) For all i ∈ [n], B9 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(d) B9 gives the randomnesses (rGeni0 , rGeni1 , rLKGi , αi)i∈[n] to A.

2. When A makes a challenge query (i0, i1,R
∗,m∗), B9 proceeds as follows:

(a) B9 computes σαi1
← Sign(sk i1,αi1

,m∗∥R∗) and σ1⊕αi1
← Sign(sk i0,1⊕αi1

,m∗∥R∗).
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(b) B9 sends (|R∗|, i0, i1) to its challenger. Upon receiving hk from the challenger, B9 sets
hk ∗1⊕αi1

:= hk , computes (hk ∗αi1
, shk ∗αi1

) ← HGen(1λ, |R∗|, i1), h∗0 ← Hash(hk ∗0,R
∗),

h∗1 ← Hash(hk ∗1,R
∗), ταi1

← Open(hk ∗αi1
, shk ∗αi1

,R∗, i1), and τ1⊕αi1
← Open(hk ∗1⊕αi1

,

shk ∗1⊕αi1
,R∗, i0).

(c) B9 samples a randomness rEnc ← REnc, computes c∗αi1
← Enc(pk i1 , σαi1

; rEnc), sam-

ples c∗1⊕αi1
← CT PKE, and sets x∗ := (m∗, c∗0, c

∗
1, hk

∗
0, hk

∗
1, h
∗
0, h
∗
1,R

∗).

(d) If αi1 = 0 holds, then B9 sets w∗ := (i1, rvk i1 , (σ0,⊥), (rEnc,⊥), (τ0,⊥)). Otherwise,

B9 sets w∗ := (i1, rvk i1 , (⊥, σ1), (⊥, rEnc), (⊥, τ1)).

(e) B9 computes π∗ ← Prove(x∗, w∗), sets σ∗ := (π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1), and gives σ∗ to A.

3. When A outputs a bit b′ ∈ {0, 1} and terminates, B9 outputs 1 to the challenger and

terminates if b′ = 0 holds. Otherwise, B9 outputs 0 to the challenger and terminates.

In the following, let β ∈ {0, 1} be the challenge bit for B9. We can see that B9 perfectly

simulates Game8 for A if it receives the hashing key hk ← HGen(1λ, |R∗|, i0). This ensures

that the probability that B9 outputs 1 given the hashing key hk ← HGen(1λ, |R∗|, i0) is equal
to the probability that Succ8 happens in Game8. That is, Pr[1 = B9(hk)|β = 0] = Pr[Succ8]

holds. On the other hand, B9 perfectly simulates Game9 for A if it receives the hashing key

hk ← HGen(1λ, |R∗|, i1). This ensures that the probability that B9 outputs 1 given the hashing

key hk ← HGen(1λ, |R∗|, i1) is equal to the probability that Succ9 happens in Game9. That

is, Pr[1 = B9(hk)|β = 1] = Pr[Succ9] holds. Therefore, it holds that Adv
hide
SPBH,B9(λ) = |Pr[1 =

B9(hk)|β = 0]− Pr[1 = B9(hk)|β = 1]| = |Pr[Succ8]− Pr[Succ9]|. (Lemma 5.9)

Putting everything together, we obtain AdvanonRS,A(λ) ≤ AdvctPKE,B1(λ) + AdvwiNIWI,B2(λ)

+AdvwiNIWI,B3(λ)+AdvhideSPBH,B4(λ)+AdvctPKE,B5(λ)+AdvctPKE,B6(λ)+AdvwiNIWI,B7(λ)+AdvctPKE,B8(λ)+

AdvhideSPBH,B9(λ).

Since NIWI satisfies the computational witness indistinguishability, PKE satisfies pseu-

dorandomness of ciphertexts, and SPBH satisfies index hiding, for any PPT adversary A,
AdvanonRS,A(λ) = negl(λ) holds. Therefore, RS satisfies computational anonymity under full key

exposure. (Theorem 5.1)

Theorem 5.2. If SIG satisfies MU-EUF-CMA security, PKE satisfies pseudorandomness of

public keys and pseudorandomness of ciphertexts, SPBH satisfies somewhere perfectly binding,

and NIWI satisfies computational witness indistinguishability and perfect soundness, then RS

satisfies unforgeability w.r.t. insider corruptions. More precisely, for any PPT adversary A
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against the unforgeability w.r.t. insider corruptions of RS, there exist adversaries Bi with

Time(A) ≤ mini∈[5]{Time(Bi)} −Qsig · poly(λ), such that

AdvunfRS,A(λ) ≤ AdvctPKE,B1(λ) + AdvwiNIWI,B2(λ) + AdvkeyPKE,B3(λ) + AdvsoundNIWI,B4(λ) + 2 · Advmu-unf
SIG,B5 (λ)

, where Qsig is the total number of A’s signing queries.

Proof of Theorem 5.2 Let A be a PPT adversary that attacks the unforgeability w.r.t.

insider corruptions of RS. We proceed the proof via a sequence of games. We introduce the

following six games Gamei for i ∈ [0, 5].

Game0: Game0 is the original game of the unforgeability w.r.t. insider corruptions

for RS. The detailed description is as follows.

1. The challenger C firstly proceeds as follows:

(a) For all i ∈ [n], C samples randomnesses (rGeni0 , rGeni1 )← (RGen)2 and αi ← {0, 1}.

(b) For all i ∈ [n], C generates (vk i0, sk i0) ← Gen(1λ; rGeni0 ) and (vk i1, sk i1) ←
Gen(1λ; rGeni1 ) and samples pk i ← PK.

(c) For all i ∈ [n], C sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(d) C gives rvk := (rvk 1, · · · , rvkn) to A and sets SSig := ∅ and SCorr := ∅.

2. When A makes a signing query (j,R,m) and a corruption query j, C proceeds as

follows:

Signing queries.

(a) C computes σm ← Sign(sk jαj
,m∥R), (hk 0, shk 0) ← HGen(1λ, |R|, j),

(hk 1, shk 1)← HGen(1λ, |R|, j), h0 ← Hash(hk 0,R), h1 ← Hash(hk 1,R), and

τ ← Open(hkαj
, shkαj

,R, j).

(b) C samples a randomness rEnc ← REnc, computes cαj
← Enc(pk j, σm; r

Enc),

samples c1⊕αj
← CT PKE, and sets x := (m, c0, c1, hk 0, hk 1, h0, h1,R).

(c) If αj = 0 holds, then C sets w := (j, rvk j, (σm,⊥), (rEnc,⊥), (τ,⊥)). Other-

wise, C sets w := (j, rvk j, (⊥, σm), (⊥, rEnc), (⊥, τ)).

(d) C computes π ← Prove(x,w), sets σ := (π, c0, c1, hk 0, hk 1), gives σ to A,
and appends (j,R,m) to SSig.

Corruption queries.

C gives rsk j to A and appends rvk j to SCorr.

69



3. A outputs a tuple (R∗,m∗, σ∗).

Game1 : Game1 is identical to Game0 except for the following change. When re-

sponding to a signing query (j,R,m), C generates both signatures σαj
← Sign(sk j,αj

,

m∥R) and σ1⊕αj
← Sign(sk j,1⊕αj

,m∥R) and computes cαj
← Enc(pk j, σαj

; rEncαj
)

and c1⊕αj
← Enc(pk j, σ1⊕αj

; rEnc1⊕αj
), where rEncαj

, rEnc1⊕αj
← REnc. Note that by this

change, c0 ← Enc(pk j, σ0) and c1 ← Enc(pk j, σ1) holds. That is, c0 and c1 does

not depend on the randomness αj, and thus c0 and c1 has no information about

αj for all j ∈ [n].

Game2 : Game2 is identical to Game1 except for the following change. When re-

sponding to a signing query (j,R,m), C computes both τ0 ← Open(hk 0, shk 0,R, j)

and τ1 ← Open(hk 1, shk 1,R, j), and sets a witness w as w := (j, rvk j, (σ0, σ1),

(rEnc0 , rEnc1 ), (τ0, τ1)).

Game3 : Game3 is identical to Game2 except that we change how to generate public

keys of PKE. Concretely, we generate (pk i, sk i) ← KG(1λ) instead of pk i ← PK
for all i ∈ [n].

Game4 : Game4 is identical to Game3 except that we require an additional condition

for the success condition of A. More precisely, we require a forgery (R∗,m∗, σ∗ =

(π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1)) output byA to satisfy x∗ ∈ L, where x∗ := (m∗, c∗0, c

∗
1, hk

∗
0, hk

∗
1,

h∗0, h
∗
1,R

∗).

Game5 : Game5 is identical to Game4 except that we require an additional condition

for the success condition of A. More precisely, we require a forgery (R∗,m∗, σ∗ =

(π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1)) output by A to satisfy (1 = Ver(vk j0,m

∗∥R∗, σ′0)) ∨ (1 =

Ver(vk j1,m
∗∥R∗, σ′1)), where σ′0 = Dec(pk j, dk j, c

∗
0) and σ′1 = Dec(pk j, dk j, c

∗
1), for

some j ∈ [|R∗|].

Let Succi be the event that A succeeds in outputting a tuple (R∗,m∗, σ∗) satisfying (1 =

RVer(R∗,m∗, σ∗)) ∧ (R∗ ⊆ rvk\SCorr) ∧ ((·,R∗,m∗) /∈ SSig) in Gamei for i ∈ [0, 5]. By using

triangle inequality, we have

AdvunfRS,A(λ) = Pr[Succ0] ≤
4∑

i=0

|Pr[Succi]− Pr[Succi+1]|+ Pr[Succ5].

It remains to show how each |Pr[Succi] − Pr[Succi+1]| for i ∈ [0, 4] and Pr[Succ5] are

upper-bounded. To this end, we show the following lemmata.
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• There exists an adversary B1 against the pseudorandomness of ciphertexts of PKE such

that |Pr[Succ0]− Pr[Succ1]| = AdvctPKE,B1(λ) (Lemma 5.10).

• There exists an adversary B2 against the computational witness indistinguishability of

NIWI such that |Pr[Succ1]− Pr[Succ2]| = AdvwiNIWI,B2(λ) (Lemma 5.11).

• There exists an adversary B3 against the pseudorandomness of public keys of PKE such

that |Pr[Succ2]− Pr[Succ3]| = AdvkeyPKE,B3(λ) (Lemma 5.12).

• There exists an adversary B4 against the perfect soundness of NIWI such that |Pr[Succ3]−
Pr[Succ4]| = AdvsoundNIWI,B4(λ) (Lemma 5.13).

• |Pr[Succ4] − Pr[Succ5]| = 0 holds due to the correctness of PKE and the somewhere

perfectly binding of SPBH (Lemma 5.14).

• There exists an adversary B5 against the MU-EUF-CMA security of SIG such that

Pr[Succ5] = 2 · Advmu-unf
SIG,B5 (λ) (Lemma 5.15).

Lemma 5.10. There exists an adversary B1 against the pseudorandomness of ciphertexts of

PKE such that |Pr[Succ0]− Pr[Succ1]| = AdvctPKE,B1(λ).

Proof of Lemma 5.10 We construct an adversary B1 that attacks the pseudorandomness

of ciphertexts of PKE so that |Pr[Succ0]− Pr[Succ1]| = AdvctPKE,B1(λ), using the adversary A
as follows.

1. Upon receiving (rLKGi )i∈[n] from the challenger, B1 proceeds as follows:

(a) For all i ∈ [n], B1 samples randomnesses (rGeni0 , rGeni1 )← (RGen)2, rLKGi ←Rkey
PKE, and

αi ← {0, 1}.

(b) For all i ∈ [n], B1 generates (vk i0, sk i0)← Gen(1λ; rGeni0 ), (vk i1, sk i1)← Gen(1λ; rGeni1 ),

and pk i ← PK under the randomness rLKGi .

(c) For all i ∈ [n], B1 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(d) B1 gives rvk := (rvk 1, · · · , rvkn) to A and sets SSig := ∅ and SCorr := ∅.

2. WhenAmakes a signing query (j,R,m) and a corruption query j, B1 proceeds as follows:

Signing queries.

(a) B1 computes both σ0 ← Sign(sk j0,m∥R) and σ1 ← Sign(sk j1,m∥R).
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(b) B1 computes (hk 0, shk 0) ← HGen(1λ, |R|, j), (hk 1, shk 1) ← HGen(1λ, |R|, j),
h0 ← Hash(hk 0,R), h1 ← Hash(hk 1,R), and τ ← Open(hkαj

, shkαj
,R, j).

(c) B1 samples a randomness rEnc ←REnc and computes cαj
← Enc(pk j, σm; r

Enc).

(d) B1 sets m∗ := σ1⊕αj
and queries (j,m∗) to the challenger. Upon receiving c∗

from the challenger, B1 sets c1⊕αj
:= c∗ and x := (m, c0, c1, hk 0, hk 1, h0, h1,R).

(e) If αj = 0 holds, then B1 sets w := (j, rvk j, (σ0,⊥), (rEnc,⊥), (τ,⊥)). Otherwise,

B1 sets w := (j, rvk j, (⊥, σ1), (⊥, rEnc), (⊥, τ)).

(f) B1 computes a proof π ← Prove(x,w), sets σ := (π, c0, c1, hk 0, hk 1), gives σ to

A, and appends (j,R,m) to SSig.

Corruption queries.

B1 gives rsk j to A and appends rvk j to SCorr.

3. When A outputs a forgery (R∗,m∗, σ∗) and terminates, B1 outputs β′ := 1 to the chal-

lenger and terminates if (1 = RVer(R∗,m∗, σ∗)) ∧ (R∗ ⊆ rvk\SCorr) ∧ ((·,R∗,m∗) /∈ SSig)

holds. Otherwise, B1 outputs β′ := 0 to the challenger and terminates.

In the following, let β be the challenge bit for B1. We can see that B1 perfectly simulates

Game0 for A if it receives the challenge ciphertext c∗ ← CT PKE. This ensures that the

probability that B1 outputs 1 given the challenge ciphertext c∗ ← CT PKE is equal to the

probability that A outputs 1 in Game0. That is, Pr[β′ = 1|β = 1] = Pr[Succ0] holds. On

the other hand, B1 perfectly simulates Game1 for A if it receives the challenge ciphertext

c∗ ← Enc(pk j,m
∗). This ensures that the probability that B1 outputs 1 given the challenge

ciphertext c∗ ← Enc(pk j,m
∗) is equal to the probability that A outputs 1 in Game1. That is,

Pr[β′ = 1|β = 0] = Pr[Succ1] holds. Therefore, it holds that AdvctPKE,B1(λ) = 2 · |Pr[b = b′]−
1
2
| = |Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]| = |Pr[Succ0]− Pr[Succ1]|. (Lemma 5.10)

Lemma 5.11. There exists an adversary B2 against the computational witness indistinguisha-

bility of NIWI such that |Pr[Succ1]− Pr[Succ2]| = AdvwiNIWI,B2(λ).

Proof of Lemma 5.11 We construct an adversary B2 that attacks the computational wit-

ness indistinguishability of NIWI so that |Pr[Succ1] − Pr[Succ2]| = AdvwiNIWI,B2(λ), using the

adversary A as follows.

1. Upon receiving 1λ from the challenger, B2 proceeds as follows:

(a) For all i ∈ [n], B2 samples randomnesses (rGeni0 , rGeni1 )← (RGen)2, rLKGi ←Rkey
PKE, and

αi ← {0, 1}.
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(b) For all i ∈ [n], B2 generates (vk i0, sk i0)← Gen(1λ; rGeni0 ), (vk i1, sk i1)← Gen(1λ; rGeni1 ),

and pk i ← PK under the randomness rkeyi .

(c) For all i ∈ [n], B2 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(d) B2 gives rvk := (rvk 1, · · · , rvkn) to A and sets SSig := ∅ and SCorr := ∅.

2. WhenAmakes a signing query (j,R,m) and a corruption query j, B2 proceeds as follows:

Signing queries.

(a) B2 computes σ0 ← Sign(sk j0,m∥R) and σ1 ← Sign(sk j1,m∥R).

(b) B2 computes (hk 0, shk 0) ← HGen(1λ, |R|, j), (hk 1, shk 1) ← HGen(1λ, |R|, j),
h0 ← Hash(hk 0,R), h1 ← Hash(hk 1,R), τ0 ← Open(hk 0, shk 0,R, j), and τ1 ←
Open(hk 1, shk 1,R, j).

(c) B2 samples randomnesses rEnc0 , rEnc1 ← REnc, computes c0 ← Enc(pk j, σ0; r
Enc
0 )

and c1 ← Enc(pk j, σ1; r
Enc
1 ), and sets x := (m, c0, c1, hk 0, hk 1, h0, h1,R).

(d) If αj = 0 holds, then B2 sets w0 := (j, rvk j, (σ0,⊥), (rEnc,⊥), (τ,⊥)). Other-

wise, B1 sets w0 := (j, rvk j, (⊥, σ1), (⊥, rEnc), (⊥, τ)).

(e) B2 sets w1 := (j, rvk j, (σ0, σ1), (r
Enc
0 , rEnc1 ), (τ0, τ1)).

(f) B2 makes a query (x,w0, w1) to its oracle and gets the corresponding proof π.

(g) B2 sets σ := (π, c0, c1, hk 0, hk 1), gives σ to A, and appends (j,R,m) to SSig.

Corruption queries

B2 gives rsk j to A and appends rvk j to SCorr.

3. When A outputs a forgery (R∗,m∗, σ∗) and terminates, B2 outputs 1 to the challenger

and terminates if (1 = RVer(R∗,m∗, σ∗)) ∧ (R∗ ⊆ rvk\SCorr) ∧ ((·,R∗,m∗) /∈ SSig) holds.

Otherwise, B2 outputs 0 to the challenger and terminates.

We can see that B2 perfectly simulates Game1 for A if it receives the proof π from the

oracle O0. This ensures that the probability that B2 outputs 1 given the proof π from the

oracle O0 is equal to the probability that Succ1 happens in Game1. That is, Pr[BO0(·,·,·)
2 (1λ) =

1] = Pr[Succ1] holds. On the other hand, B2 perfectly simulates Game3 for A if it receives

the proof π from the oracle O1. This ensures that the probability that B2 outputs 1 given

the proof π from the oracle O1 is equal to the probability that Succ2 happens in Game2.

That is, Pr[BO1(·,·,·)
2 (1λ) = 1] = Pr[Succ2] holds. Therefore, it holds that AdvwiNIWI,B2(λ) =

|Pr[BO0(·,·,·)
2 (1λ) = 1]− Pr[BO1(·,·,·)

2 (1λ) = 1]| = |Pr[Succ1]− Pr[Succ2]|. (Lemma 5.11)
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Lemma 5.12. There exists an adversary B3 against the pseudorandomness of keys of PKE

such that |Pr[Succ2]− Pr[Succ3]| = AdvkeyPKE,B3(λ).

Proof of Lemma 5.12 We construct an adversary B3 that attacks the pseudorandomness

of keys of PKE so that |Pr[Succ2] − Pr[Succ3]| = AdvkeyPKE,B3(λ), using the adversary A as

follows.

1. Upon receiving pk := (pk 1, · · · , pkn) from the challenger, B3 proceeds as follows:

(a) For all i ∈ [n], B3 samples randomnesses (rGeni0 , rGeni1 )← (RGen)2 and αi ← {0, 1}.

(b) For all i ∈ [n], B3 generates (vk i0, sk i0)← Gen(1λ; rGeni0 ) and (vk i1, sk i1)← Gen(1λ; rGeni1 ).

(c) For all i ∈ [n], B3 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(d) B3 gives rvk := (rvk 1, · · · , rvkn) to A and sets SSig := ∅ and SCorr := ∅.

2. WhenAmakes a signing query (j,R,m) and a corruption query j, B3 proceeds as follows:

Signing queries.

(a) B3 computes σ0 ← Sign(sk j0,m∥R) and σ1 ← Sign(sk j1,m∥R).

(b) B3 computes (hk 0, shk 0) ← HGen(1λ, |R|, j), (hk 1, shk 1) ← HGen(1λ, |R|, j),
h0 ← Hash(hk 0,R), h1 ← Hash(hk 1,R), τ0 ← Open(hk 0, shk 0,R, j), and τ1 ←
Open(hk 1, shk 1,R, j).

(c) B3 samples randomnesses rEnc0 , rEnc1 ←REnc and computes c0 ← Enc(pk j, σ0; r
Enc
0 )

and c1 ← Enc(pk j, σ1; r
Enc
1 ).

(d) B3 sets x := (m, c0, c1, hk 0, hk 1, h0, h1,R) and w := (j, rvk j, (σ0, σ1), (r
Enc
0 , rEnc1 ),

(τ0, τ1)), and computes π ← Prove(x,w).

(e) B3 sets σ := (π, c0, c1, hk 0, hk 1), gives σ to A, and appends (j,R,m) to SSig.

Corruption queries.

B3 gives rsk j to A and appends rvk j to SCorr.

3. When A outputs a forgery (R∗,m∗, σ∗) and terminates, B3 outputs 1 to the challenger

and terminates if (1 = RVer(R∗,m∗, σ∗)) ∧ (R∗ ⊆ rvk\SCorr) ∧ ((·,R∗,m∗) /∈ SSig) holds.

Otherwise, B3 outputs 0 to the challenger and terminates.

In the following, let b be the challenge bit for B3. We can see that B3 perfectly simulates

Game2 for A if it receives the public keys pk i ← PK for all i ∈ [n] from the challenger. This

ensures that the probability that B3 outputs 1 given the the public keys pk i ← PK for all
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i ∈ [n] is equal to the probability that A outputs 1 in Game2. That is, Pr[1 = B3(pk)|b =

1] = Pr[Succ2] holds. On the other hand, B3 perfectly simulates Game3 for A if it receives

the public keys (pk i, dk i) ← KG(1λ) for all i ∈ [n]. This ensures that the probability that B3
outputs 1 given the public keys (pk i, dk i) ← KG(1λ) for all i ∈ [n] is equal to the probability

that A outputs 1 in Game3. That is, Pr[1 = B3(pk)|b = 0] = Pr[Succ3] holds. Therefore, it

holds that AdvkeyPKE,B3(λ) = 2 · |Pr[b = b′] − 1
2
| = |Pr[1 = B3(pk)|b = 1] − Pr[1 = B3(pk)|b =

0]| = |Pr[Succ2]− Pr[Succ3]|. (Lemma 5.12)

Lemma 5.13. There exists an adversary B4 against the perfect soundness of NIWI such that

|Pr[Succ3]− Pr[Succ4]| ≤ AdvsoundNIWI,B4(λ).

Proof of Lemma 5.13 For i ∈ {3, 4}, let Badi be the event that A outputs a forgery

(R∗,m∗, σ∗) satisfying (x∗ /∈ L) ∧ (1 = RVer(R∗,m∗, σ∗)) in Gamei. (We call such a forgery

a bad forgery.) Game3 proceeds identically to Game4 unless Bad3 happens. Therefore, the

inequality |Pr[Succ3]− Pr[Succ4]| ≤ Pr[Bad3] = Pr[Bad4].

In the following, we show that one can construct a PPT adversary B4 that attacks the

perfect soundness of NIWI so that Pr[Bad3] = AdvsoundNIWI,B4(λ), using the adversary A.

1. Upon receiving 1λ from the challenger, B4 proceeds as follows:

(a) For all i ∈ [n], B4 samples randomnesses (rGeni0 , rGeni1 )← (RGen)2, rLKGi ←Rkey
PKE, and

αi ← {0, 1}.

(b) For all i ∈ [n], B4 generates (vk i0, sk i0)← Gen(1λ; rGeni0 ), (vk i1, sk i1)← Gen(1λ; rGeni1 ),

and (pk i, sk i)← KG(1λ; rLKGi ).

(c) For all i ∈ [n], B4 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (αi, sk iαi
, rvk i).

(d) B4 gives rvk := (rvk 1, · · · , rvkn) to A and sets SSig := ∅ and SCorr := ∅.

2. When A makes a signing query (j,R,m), B4 proceeds as follows:

Signing queries.

(a) B4 computes σ0 ← Sign(sk j0,m∥R) and σ1 ← Sign(sk j1,m∥R).

(b) B4 computes (hk 0, shk 0) ← HGen(1λ, |R|, j), (hk 1, shk 1) ← HGen(1λ, |R|, j),
h0 ← Hash(hk 0,R), h1 ← Hash(hk 1,R), τ0 ← Open(hk 0, shk 0,R, j), and τ1 ←
Open(hk 1, shk 1,R, j).

(c) B4 samples randomnesses rEnc0 , rEnc1 ← REnc, computes c0 ← Enc(pk j, σ0; r
Enc
0 )

and c1 ← Enc(pk j, σ1; r
Enc
1 ), and sets x := (m, c0, c1, hk 0, hk 1, h0, h1,R) and

w := (j, rvk j, (σ0, σ1), (r
Enc
0 , rEnc1 ), (τ0, τ1)).
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(d) B4 computes π ← Prove(x,w), sets σ := (π, c0, c1, hk 0, hk 1), gives σ to A, and
appends (j,R,m) to SSig.

Corruption queries.

B4 gives rsk j to A and appends rvk j to SCorr.

3. WhenA outputs a forgery (R∗,m∗, σ∗) and terminates, B4 parses σ∗ := (π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1)

and computes h∗0 ← Hash(hk ∗0,R
∗) and h∗1 ← Hash(hk ∗1,R

∗). Then, B4 sets x∗ :=

(m∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1, h
∗
0, h
∗
1,R

∗) and outputs (x∗, π∗) to the challenger and terminates.

From the above construction of B4, it is easy to see that B4 perfectly simulates Game3

for A. Recall that the success condition of B4 is to output a statement and a proof (x∗, π∗)

satisfying (x∗ /∈ L)∧(1 = Verify(x∗, π∗)). IfAmakes a bad forgery (R∗,m∗, σ∗), then (x∗ /∈ L)∧
(1 = RVer(R∗,m∗, σ∗)) hold. Due to the construction of RS, the condition 1 = RVer(R∗,m∗, σ∗)

implies that the condition 1 = Verify(x∗, π∗) holds. Thus, when A makes such a bad forgery

(R∗,m∗, σ∗), B4 achieves its success condition by returning (x∗, π∗) to its challenger. From the

above arguments, the probability that A makes such a bad forgery is equal to the probability

that B4 breaks the perfect soundness of NIWI. Hence, we have Pr[Bad3] = AdvsoundNIWI,B4(λ),

which in turn implies |Pr[Succ3]− Pr[Succ4]| ≤ AdvsoundNIWI,B4(λ). (Lemma 5.13)

Lemma 5.14. |Pr[Succ4]− Pr[Succ5]| = 0 holds.

Proof of Lemma 5.14 Firstly, by the definition, the valid forgery (R∗,m∗, σ∗(= (π∗, c∗0, c
∗
1,

hk ∗0, hk
∗
1))) output by A must satisfy the condition 1 = RVer(R∗,m∗, σ∗). That is, the

condition 1 = Verify(x∗, π∗) holds, where h∗0 = Hash(hk ∗0,R
∗), h∗1 = Hash(hk ∗1,R

∗), and

x∗ := (m∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1, h
∗
0, h
∗
1,R

∗).

Moreover, by the change onGame4, x
∗ ∈ L holds for the forgery output byA. Thus, by the

definition of the language L, we can see that there exists w∗ := (j, rvk ∗ = (vk ∗0, vk
∗
1, pk

∗), (σ0, σ1),

(r0, r1), (τ0, τ1)) such that the condition(
(1 = Ver(vk ∗0,m

∗∥R∗, σ0)) ∧ (c∗0 = Enc(pk ∗, σ0; r0)) ∧ (1 = HVer(hk ∗0, h
∗
0, j, rvk

∗, τ0))
)

∨
(
(1 = Ver(vk ∗1,m

∗∥R∗, σ1)) ∧ (c∗1 = Enc(pk ∗, σ1; r1)) ∧ (1 = HVer(hk ∗1, h
∗
1, j, rvk

∗, τ1))
)

holds.

From the above conditions, (h∗0 = Hash(hk ∗0,R
∗)) ∧ (1 = HVer(hk 0, h0, j, rvk , τ0)) or (h

∗
1 =

Hash(hk ∗1,R
∗)) ∧ (1 = HVer(hk 1, h1, j, rvk , τ1)) always holds here. Hence, by the somewhere
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perfectly binding of SPBH, rvk ∗ = rvk j holds, where rvk j ∈ R∗. The condition rvk ∗ = rvk j

implies vk ∗0 = vk j0, vk
∗
1 = vk j1, and pk ∗ = pk j. Thus, (1 = Ver(vk j0,m

∗∥R∗, σ0)) ∨ (1 =

Ver(vk j1,m
∗∥R∗, σ1)) holds now.

Furthermore, by using the correctness of PKE, c∗0 = Enc(pk j, σ0; r0) and c∗1 = Enc(pk j, σ1; r1)

implies σ0 = Dec(pk j, dk j, c
∗
0) and σ1 = Dec(pk j, dk j, c

∗
1), respectively. Thus, (1 = Ver(vk j0,

m∗∥R∗, σ0))∨(1 = Ver(vk j1,m
∗∥R∗, σ1)), where σ0 = Dec(pk j, dk j, c

∗
0) and σ1 = Dec(pk j, dk j, c

∗
1),

holds in Game4. Hence, the change between Game4 and Game5 does not affect the view of

A. Therefore, |Pr[Succ4]− Pr[Succ5]| = 0 holds. (Lemma 5.14)

Lemma 5.15. There exists an adversary B5 against the MU-EUF-CMA security of SIG such

that Pr[Succ5] ≤ 2 · Advmu-unf
SIG,B5 (λ).

Proof of Lemma 5.15 We construct an adversary B5 that attacks the MU-EUF-CMA

security of SIG so that Pr[Succ5] ≤ 2 · Advmu-unf
SIG,B5 (λ), using the adversary A as follows.

1. Upon receiving n verification keys (vk i)i∈[n] from the challenger, B5 proceeds as follows:

(a) For all i ∈ [n], B5 samples αi ← {0, 1} and sets vk iαi
:= vk i.

(b) For all i ∈ [n], B5 samples randomnesses rGeni,(1⊕αi)
←RGen and rLKGi ←Rkey

PKE and gen-

erates one side of verification/signing keys (vk i(1⊕αi), sk i(1⊕αi)) ← Gen(1λ; rGeni,(1⊕αi)
)

for SIG and public/decryption keys (pk i, dk i)← KG(1λ; rLKGi ) for PKE.

(c) For all i ∈ [n], B5 sets rvk i := (vk i0, vk i1, pk i) and rsk i := (1⊕ αi, sk i(1⊕αi), rvk i).

(d) B5 gives rvk := (rvk 1, · · · , rvkn) to A and sets SSig := ∅ and SCorr := ∅.

2. WhenAmakes a signing query (j,R,m) and a corruption query j, B5 proceeds as follows:

Signing queries.

(a) B5 computes σ1⊕αj
← Sign(sk j(1⊕αj),m∥R).

(b) B5 makes a signing query (j,m∥R) for its challenger, gets a corresponding

signature σ, and sets σαj
:= σ.

(c) B5 computes (hk 0, shk 0) ← HGen(1λ, |R|, j), (hk 1, shk 1) ← HGen(1λ, |R|, j),
h0 ← Hash(hk 0,R), h1 ← Hash(hk 1,R), τ0 ← Open(hk 0, shk 0,R, j), and τ1 ←
Open(hk 1, shk 1,R, j).

(d) B5 samples randomnesses rEnc0 , rEnc1 ←REnc, and computes c0 ← Enc(pk j, σ0; r
Enc
0 )

and c1 ← Enc(pk j, σ1; r
Enc
1 ).
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(e) B5 sets x := (m, c0, c1, hk 0, hk 1, h0, h1,R) and w := (j, rvk j, (σ0, σ1), (r
Enc
0 , rEnc1 ),

(τ0, τ1)).

(f) B5 computes π ← Prove(x,w), sets σ := (π, c0, c1, hk 0, hk 1), gives σ to A, and
appends (j,R,m) to SSig.

Corruption queries.

When A makes a corruption query j, B5 gives rsk j to A and appends rvk j

to SCorr.

3. WhenA outputs a forgery (R∗,m∗, σ∗) and terminates, B5 parses σ∗ := (π∗, c∗0, c
∗
1, hk

∗
0, hk

∗
1),

computes σj0 ← Dec(pk j, dk j, c
∗
0) and σj1 ← Dec(pk j, dk j, c

∗
1), and checks whether

(1 = Ver(vk j0,m
∗∥R∗, σj0)) ∨ (1 = Ver(vk j1,m

∗∥R∗, σj1)) holds for all j ∈ [|R∗|]. If

this holds for some j ∈ [|R∗|], then B5 returns (j,m∗∥R∗, σjαj
) to its challenger and

terminates. Otherwise, B5 gives up and terminates.

We can see that B5 perfectly simulates Game5 for A. In the following, we show that

B5 can make a valid forgery (j,m∗∥R∗, σjαj
) satisfying (1 = Ver(vk j(= vk jαj

),m∗∥R∗, σjαj
)) ∧

((m∗∥R∗, ·) /∈ Sj) with the probability 1
2
if A makes a valid forgery (R∗,m∗, σ∗). Here, by the

definition, if A outputs a valid forgery (R∗,m∗, σ∗), then (·,R∗,m∗) /∈ SSig holds. Thus, we can

see that (m∗∥R∗, ·) /∈ Sj holds by the fact (·,R∗,m∗) /∈ SSig.

Next, we can say that rvk ∗ = rvk j holds now from the same argument in the proof

of Lemma 5.14. Hence, A does not make a corruption query j because rvk ∗ = rvk j and

R∗ ⊆ rvk\SCorr hold. Therefore, A does not get the corresponding signing key rsk j := ((1 ⊕
αj), sk j(1⊕αj), rvk j) which is the only element containing the information about αj in Game5.

Thus, the information of αj is information-theoretically hidden for A. Furthermore, by the

change from Game4 to Game5, (1 = Ver(vk j0,m
∗∥R∗, σj0)) ∨ (1 = Ver(vk j1,m

∗∥R∗, σj1))

hold for all j ∈ [|R∗|], where σj0 = Dec(pk j, dk j, c
∗
0) and σj1 = Dec(pk j, dk j, c

∗
1). Hence,

Pr[1 = Ver(vk j0,m
∗∥R∗, σj0)] = Pr[1 = Ver(vk j1,m

∗∥R∗, σj1)] =
1
2
holds.

From the above arguments, we can show that B5 can makes a valid forgery with the

probability 1
2
if A makes a valid forgery. That is, Pr[(1 = Ver(vk j(= vk jαj

),m∗∥R∗, σjαj
)) ∧

((m∗∥R∗, ·) /∈ Sj)|Succ5] = 1
2
holds.

In the following, let Win be the event that (1 = Ver(vk j,m
∗∥R∗, σjαj

))∧ ((m∗∥R∗, ·) /∈ Sj)

holds in Game5. We have the following inequality.

Advmu-unf
SIG,B5 (λ) = Pr[Win] ≥ Pr[Win∧Succ5] = Pr[Win|Succ5] ·Pr[Succ5] =

1

2
·Pr[Succ5]

That is, Pr[Succ5] ≤ 2 · Advmu-unf
SIG,B5 (λ) holds. (Lemma 5.15)
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Putting everything together, we obtain AdvunfRS,A(λ) ≤ AdvctPKE,B1(λ) + AdvwiNIWI,B2(λ)

+ AdvkeyPKE,B3(λ) + AdvsoundNIWI,B4(λ) + 2 · Advmu-unf
SIG,B5 (λ).

Since PKE satisfies pseudorandomness of public keys and pseudorandomness of ciphertexts,

NIWI satisfies computational witness indistinguishability and perfect soundness, and SIG is

MU-EUF-CMA secure, for any PPT adversary A, AdvunfRS,A(λ) = negl(λ) holds. Therefore, RS

satisfies unforgeability w.r.t. insider corruptions. (Theorem 5.2)
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Chapter 6

Round-Optimal Deniable Ring

Authentication in the RO model

In this section, we provide the first two-round concurrently deniable ring authentication

schemes with an optimal efficiency in the random oracle (RO) model [BR93]. Towards our

goal, as our main technical result, we propose a new generic construction of two-round con-

currently deniable ring authentication in the RO model based on any IND-CPA secure BE

scheme.1 This is achieved by the following two steps.

• As the first step, in Section 6.3, we formally define plaintext awareness for BE, then

provide a generic transformation from an IND-CPA secure BE scheme into a BE scheme

satisfying IND-CCA security and plaintext awareness in the RO model, and decryption

uniqueness2.

• As the second step, in Section 6.4, we give a generic construction of deniable ring au-

thentication in the RO model based on a BE scheme satisfying IND-CCA security and

plaintext awareness in the RO model, and decryption uniqueness. (In Section 6.6, to

better understand our scheme, we present a simple and efficient instantiation of our

generic construction of two-round concurrently deniable ring authentication.)

We give a technical overview for these contributions in Section 6.2.

1 Actually, in our generic construction, we require that the underlying IND-CPA secure BE scheme satisfy

a subtle additional property called smoothness. As mentioned in Section 2.5, many known IND-CPA secure

BE schemes have smoothness unconditionally and any BE scheme can be easily converted to one satisfying

this property (with essentially no overhead).
2 This property is called verifiability in the previous work [HK08].
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Notably, unlike the previous deniable ring authentication schemes based on BE schemes [DHIN11,

YAS+12], our generic construction does not require that the underlying BE scheme satisfy

decryption uniqueness. Therefore, if more efficient BE schemes satisfying only (standard)

IND-CPA security are proposed in the future, we will be able to immediately obtain a more

efficient two-round concurrently deniable ring authentication scheme by using our generic

construction.

Through our generic construction, we obtain the first two-round concurrently deniable

ring authentication scheme with optimal efficiency in the RO model instantiating the un-

derlying IND-CPA secure BE scheme with the scheme recently proposed by Agrawal and

Yamada [AY20] based on the learning with errors (LWE) assumption [Reg05] and bilinear

maps in the generic bilinear group model (GBGM) [BCFG17]. Additionally, instantiating the

underlying IND-CPA secure BE scheme with the more recent scheme proposed by Agrawal,

Wichs, and Yamada [AWY20], we can also obtain the first two-round concurrently deniable

ring authentication scheme with optimal efficiency in the RO model based on the LWE as-

sumption and the Knowledge of OrthogonALity Assumption (KOALA) [BW19], which is a

variant of the knowledge of exponent assumptions over the groups.

In addition to the above main instantiations, we further obtain the following various two-

round concurrently deniable ring authentication schemes by instantiating the underlying BE

scheme with schemes proposed in various previous works.

• Instantiating the underlying IND-CPA secure BE scheme with the schemes proposed by

Chen, Gay, and Wee [CGW15] or Gay, Kowalczyk, and Wee [GKW18], we obtain the

first two-round concurrently deniable ring authentication schemes based on the k-linear

assumption (over bilinear groups) in the RO model. (Especially, the 1-linear assumption

is equivalent to the symmetric external Diffie-Hellman (SXDH) assumption.) Notably, by

using Chen et al.’s scheme [CGW15], we obtain a scheme in the RO model such that the

communication cost (or the size of the secret key) and the number of pairing operations

do not depend on the number of users, based on the k-linear assumption. Moreover, by

using Gay et al.’s scheme [GKW18], we obtain a scheme in the RO model such that all of

the size of the secret key, the communication cost, and the number of pairing operations

do not depend on the number of users based on the k-linear assumption. (Note that

Gay et al.’s scheme [GKW18] is suffered from the huge public parameter size O(n2) in

exchange for the efficiency for another aspects.)

• Instantiating the underlying IND-CPA secure BE scheme by using an IND-CPA secure

public key encryption (PKE) scheme in a parallel way, we obtain the first two-round
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concurrently deniable ring authentication scheme in the RO model under the decisional

Diffie-Hellman (DDH) assumption (over a pairing-free group) (that is, the first pairing-

free scheme in the RO model). Moreover, we obtain the first two-round concurrently

deniable ring authentication scheme in the RO model under the LWE assumption and

the learning parity with noise (LPN) assumption (that is, the first post-quantum secure

schemes in the RO model).

6.1 Comparison with Previous Works

In this section, we give comparisons between our construction (and its instantiations) and

previous works from two perspectives: their security properties (Figure 6.1) and their effi-

ciencies (Figure 6.2). In these comparisons, while we cite the previous work by Yamada,

Attrapadung, Santoso, Schuldt, Hanaoka, and Kunihiro [YAS+12] as one of the existing deni-

able ring authentication schemes, they actually proposed a deniable predicate authentication

scheme, which supports more general relations than a set membership (supported by a deniable

ring authentication scheme).

In Figure 6.1 and 6.2, in the column “Round”, we consider the setting where an (authen-

ticated) message is shared before an authentication process starts. In other words, we ignore

the round for sharing a message when counting the number of rounds.

In Figure 6.2, in the column “Public Parameter”, we suppose that the maximum number

of users is fixed to n and a public parameter for n users is generated by a trusted third party in

every construction. For fairness, we note that some previous constructions [ZMYH17,ZCTH17]

do not need such a setup procedure. In these constructions, a public/secret key of each user

is generated by itself. Moreover, for all of the sizes of a public parameter and a secret key,

the communication complexity, and the number of pairing operations, we ignore the poly(λ)

factors. In particular, poly(log n) factor is ignored.

As can be seen in Figure 6.1, before our work, there was only one two-round concurrently

deniable ring authentication scheme proposed by Zeng, Chen, Tan, and He [ZCTH17]. Their

scheme achieves concurrent deniability based on the Diffie-Hellman knowledge of exponent

(DHK) assumption [Dam92,BP04]. Compared to their scheme, our schemes are secure in the

RO model under standard (and falsifiable) assumptions.

Next, as can be seen in Figure 6.2, regarding the size of a public parameter, it is linear

in n in all of the previous schemes. Regarding the communication complexity, some of the

previously proposed schemes [DHIN11,YAS+12] achieved constant-size communication (that
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is, it is independent of n) thanks to the compression property on a ciphertext of the underlying

BE schemes, which is based on bilinear groups. Regarding the number of pairing operations,

some of the previous constructions [DHIN11, YAS+12] require only a constant number of

pairing operations, while the other constructions [ZMYH17, ZCTH17] require O(n) pairing

operations.

Scheme Round Deniability Soundness Source Hiding Assumption

Naor [Nao02] 6 Seq Corr w/o Corr Comp IND-CCA PKE

Dowsley et al. [DHIN11] 4 Seq w/o Corr Corr ($) Uncond IND-CCA VBE ( [BGW05])

Yamada et al. [YAS+12] 6 Seq Corr Corr Uncond IND-CCA VPE

Zeng et al. [ZMYH17] (†) 4 Seq Corr Corr Uncond PHF and NIWI ( [GS08])

Zeng et al. [ZCTH17] (†) 2 Con w/o Corr w/o Corr Uncond DBDH and DHK

Ours + [ElG84,Reg05,Ale03] 2 Con Corr Corr Uncond IND-CPA BE (ROM) [DDH, LWE, LPN]

Figure 6.1: Security comparison with previous works. In the column “Deniability”, Seq and Con denote

sequential deniability and concurrent deniability, respectively. Moreover, Corr (or w/o Corr) denote that an

adversary can (or cannot) corrupt any prover. In the column “Soundness”, Corr (or w/o Corr) denote that an

adversary can (or cannot) corrupt provers except for target ones. In the column “Source Hiding”, Comp and

Uncond denote computational security and unconditional security, respectively. In the column “Assumption”,

VBE stands for verifiable broadcast encryption, VPE stands for verifiable predicate encryption, PHF stands

for projective hash function (which is also known as hash proof system) [CS02], DBDH stands for the decisional

bilinear Diffie-Hellman assumption, and DHK stands for the Diffie-Hellman knowledge assumption. ($) Their

construction satisfies a weaker variant of soundness, which is only selectively secure. (See Section 3.2 for the

formal definitions.) (†) Their two-round constructions do not need a setup procedure.

6.2 Technical Overview

In this section, we give a technical overview for our generic construction of deniable ring

authentication. Since our starting point is the two-round authentication scheme proposed by

Dolev, Dwork, and Naor [DDN91], we first review their scheme briefly. We then provide an

overview of how to extend their scheme into the deniable ring authentication setting.

Recap on the (Deniable) Authentication Scheme by Dolev et al. At a high level,

Dolev et al. showed that the following simple two-round protocol between a prover (Alice) and

a verifier (Bob) becomes a two-round authentication scheme if the underlying PKE scheme

satisfies IND-CCA security. Here, let pk be Alice’s public key and sk its corresponding secret

key of the underlying PKE scheme and assume that Alice and Bob are authenticating a

common message m, known to both parties.
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Scheme Round Public Parameter Secret Key Communication Pairing Operation

Dowsley et al. [DHIN11] 4 O(n) O(1) O(1) O(1)
Yamada et al. [YAS+12] 6 O(n) O(1) O(1) O(1)
Zeng et al. [ZMYH17] 4 O(n) O(1) O(n) O(n)
Zeng et al. [ZCTH17] 2 O(n) O(1) O(n) O(n)

Ours + [AY20] (LWE and GBGM) 2 O(1) O(1) O(1) O(1)
Ours + [AWY20] (LWE and KOALA) 2 O(1) O(1) O(1) O(1)

Ours + [GW09] (q-type) 2 O(n) O(1) O(1) O(1)
Ours + [CGW15] (k-lin) 2 O(n) O(t) O(n/t) O(1)
Ours + [GKW18] (k-lin) 2 O(n2) O(1) O(1) O(1)

Figure 6.2: Efficiency comparison with existing (pairing-based) schemes. n denotes the number of users.

In the row “Ours + [CGW15] (k-lin)”, t denotes a tradeoff parameter between the size of a secret key and the

size of a communication. (Especially, for t = 1, the size of a secret key is O(1) and the size of a communication

is O(n). On the other hand, for t = n, the size of a secret key is O(n) and the size of a communication is

O(1).)

1. Alice ⇐ Bob. This protocol starts from Bob by picking a random value t called a

token, encrypting it with m under pk as c ← PEnc(pk ,m∥t), where PEnc is the

encryption algorithm of the underlying PKE scheme, and sending the ciphertext

c to Alice as the first message.

2. Alice ⇒ Bob. Upon receiving the first message c, Alice decrypts the ciphertext c

under her secret key sk as m′∥t′ ← PDec(sk , c), where PDec is the decryption

algorithm of the underlying PKE scheme. If the decryption result is of the right

form (that is, the first component m′ of the decrypted pair corresponds to the

message m that is being authenticated), then Alice sends the (decrypted) token t′

to Bob as the second message. Upon receiving the second message t′, Bob locally

verifies that in the communication on the message m, the communicating user is

Alice by checking whether t = t′ holds.

Regarding its soundness, since Alice is the only one who can decrypt c and c is non-

malleable (due to the IND-CCA security of the underlying PKE scheme), Bob can believe

that Alice is really authenticating m. Regarding its (concurrent) deniability, for an honest

verifier, we can easily ensure that perfect deniability holds since everyone could generate the

whole transcript by itself. However, for a malicious verifier, it is more difficult to guarantee

deniability. In order to prove deniability formally, we need to construct a simulator S (without

sk) which can produce valid transcripts interacting with the malicious verifier. Because of the

lack of sk , it is not clear how S simulates the encrypted token t when S receives a ciphertext

c = PEnc(pk ,m∥t).
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At first glance, one might think that we can achieve deniability on an authentication

scheme by using a non-interactive zero-knowledge (NIZK) proof of knowledge [BFM88] (for

proving the validity of the ciphertext c). More precisely, it seems that instead of a ciphertext

c = PEnc(pk ,m∥t), we can set an NIZK proof π as the first message. Then, by using the

trapdoor of an NIZK proof of knowledge, we construct a simulator S who can extract the

(encrypted) message m and token t (corresponding to the witness) from the proof π and set

the extracted t as the second message. However, this naive approach does not make sense. An

important point is that for deniability, we must ensure that any party (without having any

trapdoor information) can simulate the valid transcripts for capturing the realistic deniability.

Therefore, we cannot allow a simulator S to have some (secret) trapdoor information for

simulating the transcripts.

As observed in [DGK06], taking into account the above technical problem, it was shown

that we can achieve concurrent deniability for a malicious verifier by additionally requiring

plaintext awareness against the underlying PKE scheme (without modifying the protocol) for

the above two-round protocol. In a nutshell, plaintext awareness is a property capturing the

intuition that no one can generate a (valid) ciphertext c without knowing the plaintext to

which it will be decrypted. This property is formalized by using a special algorithm called

the plaintext extractor X against an adversary A. Given the information that A has as input,

the plaintext extractor X is in the position to retrace the computations that A executed for

generating c, and we expect X to output the plaintext encrypted in c. By utilizing the plaintext

awareness of the underlying PKE scheme, we can overcome the above potential problem in

the deniability. The main observation is that if S can use the plaintext extractor X , it can

know the token t encrypted in c without sk , when receiving a ciphertext c.

How to Extend the Scheme by Dolev et al. into the Ring Setting. From the pre-

vious works on deniable ring authentication [DHIN11,YAS+12], at first glance, utilizing a BE

scheme [FN94,BGW05] easily provides a solution for how to extend the deniable authentica-

tion scheme by Dolev et al. into a deniable ring authentication scheme. However, as we will

see in the following, it is not so straightforward to realize this idea.

BE is a cryptographic primitive that allows a sender to encrypt plaintexts to a set S ⊆
{1, · · · , n} of authorized users so that any user in the set S can decrypt, and any (possibly

colluding) set of unauthorized users can learn nothing about the plaintext, where n ∈ N
denotes the number of all users. By using a BE scheme, our deniable ring authentication

scheme works as follows. Here, we assume that Alice has a secret key sk i of BE (corresponding

to her index i in a set S ⊆ {1, · · · , n}) and wants to authenticate m as a member in S.
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Firstly, Bob computes a BE ciphertext c ← Enc(pp, S, h∥t) as the first message, where pp

is a (valid) public parameter of BE and h is a hash value of the concatenation of m and

S. Then, upon receiving the first message c from Bob, Alice gets a key t′ by computing

h′∥t′ ← Dec(pp, S, sk i, c) and checks whether h′ is a valid hash value of m∥S. If h′ is valid,

then Alice sends the (decrypted) token t′ to Bob as the second message. Finally, Bob locally

verifies t = t′ holds.

Here, similarly to Dolev et al.’s (ordinary) deniable authentication scheme, we can see

that soundness holds if the underlying BE scheme satisfies IND-CCA security. However,

regarding its deniability and source hiding, we have additional technical barriers explained in

the following.

Firstly, on the deniability, we have to require the underlying BE scheme satisfy plaintext

awareness. However, to the best of our knowledge, we do not have any plaintext aware BE

scheme (and even its formal definition) so far, and thus we need to construct a plaintext aware

BE scheme from scratch. We provide the first plaintext aware BE scheme as explained in

Section 6.2.

Secondly, on the source hiding, one of the natural approaches is to require an additional

property called decryption uniqueness for the underlying BE scheme, in line with the previous

works on deniable ring authentication [DHIN11,YAS+12]. Intuitively, decryption uniqueness

is a property ensuring that it is impossible to generate a ciphertext which is decrypted to

different plaintexts among users in an authorized set. If we have decryption uniqueness, the

reason why source hiding holds in our deniable ring authentication scheme is simple. The

main observation is the fact that the difference for an adversary against source hiding between

an interaction with a prover using sk i and an interaction with a prover using sk j will only

possibly occur when the prover decrypts a BE ciphertext c (which is given by the verifier as

the first message), where sk i and sk j are secret keys corresponding to the distinct users i and

j, respectively. Here, due to the decryption uniqueness, the decryption result is identical no

matter whether we use sk i or sk j. Therefore, the above difference does not affect the view of

an adversary, and thus our deniable ring authentication scheme satisfies source hiding.

From these two points, we can see that the technical challenge is reduced to constructing an

efficient BE scheme satisfying plaintext awareness and decryption uniqueness simultaneously.

In Section 6.2, we present our solution in the RO model for this technical challenge based

solely on any IND-CPA secure BE scheme. Then, as our main technical result, we can obtain

a new generic construction of two-round concurrently deniable ring authentication in the RO

model based solely on an IND-CPA secure BE scheme. See Section 6.4 for the details.
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Achieving Plaintext Awareness and Decryption Uniqueness. In this thesis, we present

an efficient transformation from any (standard) BE scheme into a BE scheme satisfying plain-

text awareness and decryption uniqueness simultaneously in the RO model. In a nutshell, our

BE construction is analogous to the Fujisaki-Okamoto transformation [FO99], which converts

any IND-CPA secure PKE scheme into a plaintext aware and IND-CCA secure PKE scheme in

the RO model. Concretely, based on an IND-CPA secure BE scheme BE = (Setup,Enc,Dec),

our BE construction BEFO = (SetupFO,EncFO,DecFO) is as follows.

The setup algorithm SetupFO outputs a public parameter and a set of n secret keys (pp, sk =

(sk 1, · · · , skn)) output by the underlying setup algorithm Setup.

When encrypting a plaintext m under a user set S ⊆ {1, · · · , n}, the encryption algorithm

EncFO computes a random oracle value R (used as a randomness in Enc) of a concatenation of

a randomness r (for EncFO) and m (that is, R ← HRO(r∥m)), where HRO is a hash function

(modeled as a random oracle), and then generates a ciphertext c of r∥m under the public

parameter pp and the set S by using the underlying encryption algorithm Enc of BE.

When decrypting the ciphertext c under S and sk i (i ∈ S), the decryption algorithm DecFO

firstly decrypts c under S and sk i by using Dec and gets the result r∥m. Then, it re-computes

the random oracle value R of r∥m and re-encrypts r∥m under S by using the (re-computed)

randomness R. If this re-encryption result agrees with c, DecFO outputs m.

Similarly to the Fujisaki-Okamoto transformation, BEFO satisfies plaintext awareness with

the help of a random oracle and that the validity check of c by re-encryption executed in DecFO.

Furthermore, due to this re-encryption check and the correctness of BE, we can see that our BE

construction BEFO satisfies decryption uniqueness, too. In addition to these properties, this

transformation preserves the IND-CPA security of the underlying BE scheme. Moreover, we

can show that plaintext awareness and IND-CPA security in the RO model imply IND-CCA

security in the RO model as in the case of PKE. See Section 6.3.2 for the details.

Finally, let us mention the efficiency of our BE construction BEFO. The sizes of a public

parameter and a secret key are exactly the same, and a ciphertext size is almost the same,

as those of the underlying BE. Regarding its computational complexity, an additional cost

for achieving plaintext awareness and decryption uniqueness in BEFO is only one execution of

the encryption algorithm Enc of the underlying BE in the decryption algorithm DecFO. Thus,

we can see that our approach for achieving plaintext awareness and decryption uniqueness

simultaneously is very efficient.
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6.3 Plaintext Awareness for Broadcast Encryption

In this section, we present a construction of BE satisfying plaintext awareness. Our BE

construction is analogous to the Fujisaki-Okamoto transformation [FO99], which converts an

IND-CPA secure PKE scheme (with smoothness) to a plaintext aware and IND-CCA secure

PKE scheme in the RO model. Firstly, in Section 6.3.1, we introduce plaintext awareness in

the RO model for BE. Secondly, in Section 6.3.2, we show that a plaintext aware and IND-CPA

secure BE scheme satisfies IND-CCA security in the RO model. Finally, in Section 6.3.3, we

present the description of our BE scheme and theorems regarding its security in the RO model

and its decryption uniqueness.

6.3.1 Definition

In this section, we introduce plaintext awareness in the RO model for BE. Our definition is

inspired by the formalization of plaintext awareness for PKE by Bellare, Desai, Pointcheval,

and Rogaway [BDPR98].

Intuitively, plaintext awareness captures a property that no one can generate a (valid)

ciphertext without knowing the plaintext to which it will decrypt. This is a very strong

notion of security that generally implies IND-CCA security of PKE schemes (by combining

with IND-CPA security) [BDPR98].

In line with the PKE setting, we define plaintext awareness in the RO model for BE by

using a special algorithm called the plaintext extractor X against an adversary A. Here, the

task of A is to output a target user set S∗ ⊆ [n] and a ciphertext c∗, where n is the number

of users. We can say that the candidate scheme is plaintext aware if any such adversary A
could additionally output the plaintext encrypted in c∗. This is formalized via the plaintext

extractor X , given as input the public parameter, the list of random oracle queries made by A
together with corresponding answers, and the values output by A. That is, X is in the position

to retrace the computations that A executed for generating c∗ under S∗, and we expect X to

use this knowledge to output the plaintext encrypted in c∗ under S∗.

Similarly to [BDPR98], although usually unnecessary outside the secret key setting, we

provide an encryption oracle EO that enables creation of encrypted plaintexts under chosen

sets, but without allowing A to see random oracle queries asked within corresponding Enc

executions. Note that, by storing the queried sets and given ciphertexts into the list ListEO,

we allow X to access to the information except for the encrypted plaintexts. The availability

of this oracle for A is needed for proving the IND-CCA security of BE by combining with

88



IND-CPA security. See Section 6.3.2 for the details. Furthermore, this encryption oracle will

play an important role for proving concurrent deniability of deniable ring authentication in

Section 6.5. The formal definition of plaintext awareness in the RO model for BE is provided

as follows.

Definition 21 (Plaintext Awareness). Let BE = (Setup,Enc,Dec) be a BE scheme in the

RO model. Let ℓRO := ℓRO(λ) be a polynomial which denotes the output length of the random

oracle. Let n := n(λ) be a polynomial which denotes the number of users. Let X be a PPT

plaintext extractor. Consider the following experiment for an adversary A.

ExppaBE,X ,A(λ) :

ListEO := ∅, ListRO := ∅
(pp, sk = (sk i)i∈[n])← Setup(1λ, n)

(S∗, c∗)← AEO,CO,RO(pp)
If (S∗, c∗) ∈ ListEO then return 0

For all i ∈ S∗ : m∗i ← Dec(pp, S∗, sk i, c
∗)

m′ ← X (ListEO, ListRO, pp, S∗, c∗)
If m∗i = m′ for all i ∈ [n] then return 0

Return 1

In the experiment, the encryption oracle EO, the corruption oracle CO, and the random oracle

RO are defined as follows:

Encryption oracle. EO takes (S,m) as input, then computes c ← Enc(pp, S,m), re-

turns c to A, and appends (S, c) to ListEO.

Corruption oracle. CO takes i as input, and then returns sk i to A.

Random oracle. RO takes x as input, and then checks whether (x, y) ∈ ListRO holds

for some y. If this is the case, then RO returns y to A. Otherwise, RO samples

y ← {0, 1}ℓRO, returns y to A, and appends (x, y) to ListRO.

We say that BE satisfies plaintext awareness in the RO model if there exists a PPT plaintext

extractor X such that for any PPT adversary A,

AdvpaBE,X ,A(λ) := Pr[ExppaBE,X ,A(λ) = 1] = negl(λ)

holds.3

3 Note that as in plaintext awareness in the RO model for PKE [BDPR98], plaintext awareness in the RO

model for BE is defined using a universal extractor that works for any PPT adversary A.
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6.3.2 Plaintext Awareness and IND-CPA Security Imply IND-CCA

Security

In this section, we show that plaintext awareness and IND-CPA security in the RO model

imply IND-CCA security in the RO model. More specifically, we show the following theorem.

Theorem 6.1. Let BE be a BE scheme in the RO model. If BE satisfies plaintext awareness

and IND-CPA security in the RO model, then BE satisfies IND-CCA security in the RO model.

Proof of Theorem 6.1. Let ℓRO := ℓRO(λ) be a polynomial which denotes the output length

of the RO used in BE. Let X be a plaintext extractor for the plaintext awareness in the RO

model of BE. Let A be any PPT adversary that attacks the IND-CCA security in the RO

model for BE. Without loss of generality, we assume that A always makes exactly Qdec > 0

decryption queries for some polynomial Qdec := Qdec(λ). We proceed the proof via a sequence

of games. We introduce the two games: Game0 and Game1.

Game0: Game0 is the original experiment of IND-CCA security in the RO model for

BE. In Game0, let ListEO be a list, which is set as ListEO := ∅ before the challenge
and as ListEO := {(S∗, c∗)} after the challenge, where S∗ is the challenge set and

c∗ is the challenge ciphertext. Moreover, let ListRO be a list for the random oracle

RO including the queries x made by A and the corresponding values output by

RO. (Naturally, ListRO is updated every time when A makes a new random oracle

query x.)

Game1: Game1 is identical to Game0 except for the following change. When A
makes a decryption query (i, S, c), the decryption oracle computes m← X (ListEO,
ListRO, pp, S, c) instead of computing m ← Dec(pp, S, sk i, c), where ListEO and

ListRO are the lists (defined as in Game0) at the point A makes the decryption

query.

For i ∈ {0, 1}, let Succi be the event that A succeeds in guessing the challenge bit b in

Gamei. By using the triangle inequality, we have

Advind-ccaBE,A (λ) = 2 ·
∣∣∣∣Pr[Succ0]− 1

2

∣∣∣∣
≤ 2 · |Pr[Succ0]− Pr[Succ1]|+ 2 ·

∣∣∣∣Pr[Succ1]− 1

2

∣∣∣∣ .
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It remains to show how |Pr[Succ0]−Pr[Succ1]| and 2 · |Pr[Succ1]− 1
2
| are upper-bounded.

In the following, we show that there exists a PPT adversary Bpa against the plaintext aware-

ness in the RO model of BE such that |Pr[Succ0] − Pr[Succ1]| ≤ Qdec · AdvpaBE,X ,Bpa(λ) holds

(Lemma 6.1). Then, we show that there exists a PPT adversary Bcpa against the IND-CPA

security in the RO model of BE such that 2·|Pr[Succ1]− 1
2
| = Advind-cpaBE,Bcpa(λ) holds (Lemma 6.2).

Lemma 6.1. There exists a PPT adversary Bpa against the plaintext awareness in the RO

model of BE such that |Pr[Succ0]− Pr[Succ1]| ≤ Qdec · AdvpaBE,X ,Bpa(λ).

Proof of Lemma 6.1. For α ∈ {0, 1}, let Badα be the event that A makes at least one

decryption query (i, S, c) satisfying X (ListEO, ListRO, pp, S, c) ̸= Dec(pp, S, sk i, c) in Gameα.

Moreover, for j ∈ [Qdec], let Badj
α be the event that the j-th decryption query (i, S, c) sat-

isfies X (ListEO, ListRO, pp, S, c) ̸= Dec(pp, S, sk i, c) in Gameα. Game1 proceeds identically to

Game0 unless Bad1 happens. Therefore, we have the inequality

|Pr[Succ0]− Pr[Succ1]| ≤ Pr[Bad0] = Pr[Bad1] ≤
Qdec∑
j=1

Pr[Badj
1].

Then, we construct an adversary Bpa that attacks the plaintext awareness of BE so that∑Qdec

j=1 Pr[Badj
1] = Qdec · AdvpaBE,X ,Bpa(λ), using the adversary A as follows.

1. Upon receiving a public parameter pp, Bpa samples j∗ ← [Qdec], initializes ListEO := ∅
and ListRO := ∅, and gives pp to A.

2. WhenA accesses to the decryption oracle DO, the corruption oracle CO, and the random

oracle RO, Bpa responds as follows:

Decryption oracle. When A makes a decryption query (i, S, c), Bpa responds

as follows:

• If (i, S, c) is the j∗-th decryption query, then Bpa outputs (S, c) to the experi-

ment and terminates.

• Otherwise, Bpa computes m← X (ListEO, ListRO, pp, S, c) and gives m to A.

Corruption oracle. When A makes a corruption query i, Bpa also makes a

corruption query i to its own oracle. Upon receiving a secret key sk i, Bpa

gives sk i to A.

Random oracle. When A makes a random oracle query x, Bpa also makes a

random oracle query x to its own oracle. Upon receiving a hash value y, Bpa

gives y to A and appends (x, y) to ListRO.
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3. When A outputs (S∗,m∗0,m
∗
1) as its challenge set and plaintexts, Bpa picks a random bit

b← {0, 1} and makes an encryption query (S∗,m∗b) to its own encryption oracle. Upon

receiving a ciphertext c∗ from the oracle, Bpa returns c∗ to A and appends (S∗, c∗) to

ListEO.

4. WhenA accesses to the decryption oracle DO, the corruption oracle CO, and the random

oracle RO, Bpa responds in the same way as before.

5. When A outputs a bit b′ ∈ {0, 1} and terminates, Bpa gives up and terminates.4

Recall that the success condition of Bpa is to output (S, c) satisfying X (ListEO, ListRO, pp, S, c) ̸=
Dec(pp, S, sk i, c) for some i ∈ S and (S, c) /∈ ListEO. Firstly, due to the condition of the decryp-

tion query by A, (S, c) /∈ ListEO holds. For all j ∈ [Qdec], let Badj
B be the event that A makes

a decryption query (i, S, c) satisfying X (ListEO, ListRO, pp, S, c) ̸= Dec(pp, S, sk i, c) as the j-th

query in the experiment simulated by Bpa. Therefore, Bpa can break the plaintext awareness

of BE if and only if Badj∗

B occurs, namely, AdvpaBE,X ,Bpa(λ) = Pr[Badj∗

B ]. Moreover, from the

above construction of Bpa, it is easy to see that Bpa perfectly simulates Game1 for A until

it terminates. That is, Pr[Badj
B] = Pr[Badj

1] holds for all j ∈ [Qdec]. Finally, the choice of

j∗ is uniformly at random and independent of A, and thus does not affect the behavior of A.
Hence, we have

AdvpaBE,X ,Bpa(λ) = Pr[Badj∗

B ] =

Qdec∑
j=1

Pr[Badj
B ∧ j = j∗] =

1

Qdec

·
Qdec∑
j=1

Pr[Badj
1],

which in turn implies that |Pr[Succ0]− Pr[Succ1]| ≤
∑Qdec

j=1 Pr[Badj
1] = Qdec · AdvpaBE,X ,Bpa(λ)

holds. (Lemma 6.1)

Lemma 6.2. There exists a PPT adversary Bcpa against the IND-CPA security in the RO

model of BE such that 2 · |Pr[Succ1]− 1
2
| = Advind-cpaBE,Bcpa(λ).

Proof of Lemma 6.2. Using the adversary A, we construct an adversary Bcpa as follows.

1. Upon receiving a public parameter pp, Bcpa initializes ListEO := ∅ and ListRO := ∅, and
gives pp to A.

2. WhenA accesses to the decryption oracle DO, the corruption oracle CO, and the random

oracle RO, Bcpa responds as follows:

4 Actually, this step is never reached since we are assuming that A always makes exactly Qdec decryption

queries, and thus Bpa will terminate when A makes the j∗-th decryption query with j∗ ∈ [Qdec].
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Decryption oracle. When A makes a decryption query (i, S, c), Bcpa computes

m← X (ListEO, ListRO, pp, S, c) and gives m to A

Corruption oracle. When A makes a corruption query i, Bcpa also makes a

corruption query i to its own oracle. Upon receiving a secret key sk i, Bcpa

gives sk i to A.

Random oracle. When A makes a random oracle query x, Bcpa also makes a

random oracle query x to its own oracle. Upon receiving a hash value y, Bcpa

gives y to A and appends (x, y) to ListRO.

3. When A outputs (S∗,m∗0,m
∗
1) as its challenge set and plaintexts, Bcpa also outputs

(S∗,m∗0,m
∗
1) to its experiment. Upon receiving the challenge ciphertext c∗ from the

experiment, Bcpa gives c∗ to A and appends (S∗, c∗) to ListEO.

4. WhenA accesses to the decryption oracle DO, the corruption oracle CO, and the random

oracle RO, Bcpa responds in the same way as before.

5. When A outputs a bit b′ ∈ {0, 1} and terminates, Bcpa outputs b′ to its experiment and

terminates.

In the following, let b be the challenge bit for Bcpa. We can see that Bcpa perfectly simulates

Game1 for A so that the challenge bit for A is the same as the challenge bit b for Bcpa.

Therefore, if A breaks the IND-CCA security in the RO model of BE, Bcpa can break the

IND-CPA security in the RO model of BE since it just outputs b′ which is the output by A.
Hence, 2 · |Pr[Succ1]− 1

2
| = Advind-cpaBE,Bcpa(λ) holds. (Lemma 6.2)

Putting everything together, we obtain

Advind-ccaBE,A (λ) ≤ 2Qdec · AdvpaBE,X ,Bpa(λ) + Advind-cpaBE,Bcpa(λ).

Since BE satisfies plaintext awareness and IND-CPA security in the RO model and Qdec is

some polynomial in λ, for any PPT adversary A, Advind-ccaBE,A (λ) = negl(λ) holds. Therefore, BE

satisfies IND-CCA security in the RO model. (Theorem 6.1)

6.3.3 Constructing Plaintext Aware Broadcast Encryption

In this section, we present the description of our BE scheme and theorems regarding its

plaintext awareness and IND-CPA security in the RO model, and its decryption uniqueness.
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SetupFO(1
λ, n) :

(pp, sk)← Setup(1λ, n)

Return (pp, sk)

EncFO(pp, S,m; r)

R← HRO(r∥m)

c← Enc(pp, S, r∥m;R)

Return c

DecFO(pp, S, sk i, c) :

x← Dec(pp, S, sk i, c)

If x = ⊥ then return ⊥
Parse x := r∥m
R← HRO(r∥m)

If Enc(pp, S, r∥m;R) ̸= c

then return ⊥
Return m

Figure 6.3: Our construction of broadcast encryption BEFO.

Let BE = (Setup,Enc,Dec) be a BE scheme with the plaintext space {0, 1}∗ and the

randomness space R for Enc. Let HRO : {0, 1}∗ → R be a hash function, which is modeled

as a random oracle in the security proofs. Using BE and HRO, we construct the BE scheme

BEFO = (SetupFO,EncFO,DecFO) with the plaintext space {0, 1}∗ and the randomness space

{0, 1}λ as described in Figure 6.3.

The correctness of BEFO is straightforward due to the correctness of BE. The IND-CPA se-

curity, plaintext awareness, and decryption uniqueness of BEFO are guaranteed by the following

three theorems.

Theorem 6.2. If BE satisfies IND-CPA security, then BEFO satisfies IND-CPA security in

the RO model.

Proof of Theorem 6.2. Let n := n(λ) be an arbitrary polynomial that denotes the number

of users. Let A be any PPT adversary that attacks the IND-CPA security in the RO model

of BEFO. Let QRO be the number of random oracle queries made by A. We proceed the proof

via a sequence of games. We introduce the following games: Game0 and Game1.

Game0: Game0 is the original experiment of IND-CPA security in the RO model for

BEFO. The detailed description is as follows:

1. The setup phase proceeds as follows:

(a) Generate (pp, sk)← Setup(1λ, n).

(b) Prepare lists SCorr := ∅ and ListRO := ∅.

(c) The public parameter pp is given to A.

2. A may start making queries to the corruption oracle CO and the random oracle

RO, which are responded as follows:
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Corruption oracle. When A makes a corruption query i, CO gives sk i to

A and appends i to SCorr.

Random oracle. When A makes a random oracle query r∥m, RO checks

whether (r∥m,R) ∈ ListRO holds for some R. If this is the case, then

RO gives R to A. Otherwise, RO samples R ← R, gives R to A, and
appends (r∥m,R) to ListRO.

3. When A outputs a challenge tuple (S∗,m∗0,m
∗
1) such that |m∗0| = |m∗1| and S∗ ⊆

[n]\SCorr, the experiment proceeds as follows:

(a) Sample the challenge bit b← {0, 1}.

(b) Sample a randomness r∗ ← {0, 1}λ.

(c) Compute R∗ ← HRO(r
∗∥m∗b).

(d) Compute c∗ ← Enc(pp, S∗, r∗∥m∗b ;R∗).

(e) The challenge ciphertext c∗ is given to A.

4. When A accesses to CO and RO, the oracles respond in the same way as before.

5. A outputs a bit b′ ∈ {0, 1}.

Game1: Game1 is identical to Game0 except for the following two changes.

1. The experiment samples the randomness r∗ (that is used to generate the challenge

ciphertext) in the setup phase.

2. When A makes a random oracle query r∥m such that r = r∗ before the challenge,

RO gives ⊥ to A.

Here, for i ∈ {0, 1}, let Succi be the event thatA succeeds in guessing its challenge

bit b in Gamei. We have |Pr[Succ0]−Pr[Succ1]| ≤ QRO
2λ

because of the following

reasons.

• The change 1 is conceptual.

• Regarding the change 2, Game0 is identical to Game1 until A makes a random

oracle query including r∗ before the challenge. Moreover, r∗ is chosen uniformly at

random and information-theoretically hidden from A before the challenge. Since

A makes random oracle queries at most QRO times, the probability that A makes

such a query is bounded by QRO
2λ

.
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For i ∈ {0, 1}, let Badi be the event that A makes a random oracle query containing r∗

after the challenge in Gamei. We call such a random oracle query a bad query. By using the

triangle inequality, we have

Advind-cpaBEFO,A(λ) = 2 ·
∣∣∣∣Pr[Succ0]− 1

2

∣∣∣∣
≤ 2 · |Pr[Succ0]− Pr[Succ1]|+ 2 ·

∣∣∣∣Pr[Succ1]− 1

2

∣∣∣∣
and

2 ·
∣∣∣∣Pr[Succ1]− 1

2

∣∣∣∣ = 2 ·
∣∣∣∣Pr[Succ1 ∧Bad1] + Pr[Succ1|Bad1] · Pr[Bad1]−

1

2

∣∣∣∣
= 2 ·

∣∣∣∣Pr[Succ1 ∧Bad1] +
1

2
· Pr[Bad1]−

1

2
· Pr[Bad1]

+Pr[Succ1|Bad1] · Pr[Bad1]−
1

2

∣∣∣∣
≤ 2 ·

∣∣∣∣Pr[Succ1 ∧Bad1] +
1

2
· Pr[Bad1]−

1

2

∣∣∣∣
+ 2 ·

∣∣∣∣Pr[Succ1|Bad1]−
1

2

∣∣∣∣ · Pr[Bad1]

≤ 2 ·
∣∣∣∣Pr[Succ1 ∧Bad1] +

1

2
· Pr[Bad1]−

1

2

∣∣∣∣+ Pr[Bad1].

It remains to show how 2 · |Pr[Succ1 ∧Bad1] +
1
2
Pr[Bad1]− 1

2
| and Pr[Bad1] are upper-

bounded. In the following, we show that there exists a PPT adversary B1 against the IND-CPA
security of BE such that 2 · |Pr[Succ1 ∧Bad1] +

1
2
Pr[Bad1]− 1

2
| = Advind-cpaBE,B1 (λ) (Lemma 6.3).

Then, we show that there exists a PPT adversary B2 against the IND-CPA security of BE

such that Pr[Bad1] ≤ Advind-cpaBE,B2 (λ) +
QRO
2λ

(Lemma 6.4).

Lemma 6.3. There exists a PPT adversary B1 against the IND-CPA security of BE such that

2 · |Pr[Succ1 ∧Bad1] +
1
2
Pr[Bad1]− 1

2
| = Advind-cpaBE,B1 (λ).

Proof of Lemma 6.3. Using the adversary A, we construct an adversary B1 as follows.

1. Upon receiving a public parameter pp, B1 samples a randomness r∗ ← {0, 1}λ and gives

pp to A.

2. When A accesses to the corruption oracle and the random oracle, B1 responds as follows:
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Corruption oracle. When A makes a corruption query i, B1 also makes a cor-

ruption query i to its own oracle. Upon receiving the corresponding secret

key sk i, B1 gives sk i to A.

Random oracle. When A makes a random oracle query r∥m, B1 responds as

follows:

(a) If r = r∗ holds, then B1 gives ⊥ to A.

(b) If (r∥m,R) ∈ ListRO holds for some R, then B1 gives R to A.

(c) B1 samples R←R, gives R to A, and appends (r∥m,R) to ListRO.

3. When A outputs a challenge tuple (S∗,m∗0,m
∗
1), B1 outputs (S∗, r∗∥m∗0, r∗∥m∗1) as the

challenge tuple. Upon receiving the challenge ciphertext c∗, B1 gives c∗ to A.

4. When A accesses to the corruption oracle, B1 responds in the same way as before. When

A accesses to the random oracle, B1 responds as follows:

(a) If r = r∗ holds, then B1 picks a random bit b′ ← {0, 1}, outputs b′ to the experiment,

and terminates.

(b) Otherwise, B1 responds in the same way as before.

5. When A outputs a bit β′ ∈ {0, 1} and terminates, B1 sets b′ := β′, outputs b′ to the

experiment, and terminates.

In the following, let b be the challenge bit of B1. Moreover, let SuccB be the event that

b = b′ occurs and BadB the event that the adversary A (simulated by B1) makes a random

oracle query including r∗ after the challenge. Note that until BadB occurs, B simulates

Game1 perfectly for A as if A’s challenge bit is that of B and the randomness R∗ used to

generate c∗ is HRO(r
∗∥m∗b). Therefore, we have Pr[SuccB ∧ BadB] = Pr[Succ1 ∧ Bad1] and

Pr[BadB] = Pr[Bad1]. Moreover, if the event BadB occurs, then B1 outputs a random bit.

Hence, Pr[SuccB|BadB] =
1
2
holds. Therefore, we have

Advind-cpaBE,B1 (λ) = 2 ·
∣∣∣∣Pr[SuccB]− 1

2

∣∣∣∣
= 2 ·

∣∣∣∣Pr[SuccB ∧BadB] + Pr[SuccB|BadB] · Pr[BadB]−
1

2

∣∣∣∣
= 2 ·

∣∣∣∣Pr[Succ1 ∧Bad1] +
1

2
Pr[Bad1]−

1

2

∣∣∣∣ .
(Lemma 6.3)
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Lemma 6.4. There exists a PPT adversary B2 against the IND-CPA security of BE such that

Pr[Bad1] ≤ Advind-cpaBE,B2 (λ) +
QRO
2λ

.

Proof of Lemma 6.4. Using the adversary A, we construct an adversary B2 as follows.

1. Upon receiving a public parameter pp, B2 samples a randomness r∗ ← {0, 1}λ and gives

pp to A.

2. When A accesses to the corruption oracle and the random oracle, B2 responds in the

same way as B1 in the proof of Lemma 6.3 does.

3. When A outputs a challenge tuple (S∗,m∗0,m
∗
1), B2 samples a bit β ← {0, 1}, sets

M∗
0 := r∗∥m∗β and M∗

1 := 0|r
∗∥m∗

β |, and outputs (S∗,M∗
0 ,M

∗
1 ) to its experiment. Upon

receiving the challenge ciphertext c∗, B2 gives c∗ to A.

4. When A accesses to the corruption oracle, B2 responds in the same way as before. When

A accesses to the random oracle, B2 responds as follows:

(a) If r = r∗ holds, then B2 outputs b′ := 0 to the experiment and terminates.

(b) Otherwise, B2 proceeds in the same way as before.

5. When A outputs a bit β′ ∈ {0, 1} and terminates, B2 outputs b′ := 1 to the experiment,

and terminates.

In the following, let b be the challenge bit of B2. Moreover, let BadB be the event that

A makes a random oracle query r∥m such that r = r∗ after the challenge in the experiment

simulated by B. We can see that B2 outputs 0 to the experiment (that is, b′ = 0 holds) if

and only if BadB occurs. That is, we have Pr[b′ = 0] = Pr[BadB], which in turn implies

|Pr[b′ = 0|b = 0] − Pr[b′ = 0|b = 1]| = |Pr[BadB|b = 0] − Pr[BadB|b = 1]|. Moreover, in

the case that b = 0 holds, B2 perfectly simulates Game1 for A until BadB occurs. That

is, we have Pr[BadB|b = 0] = Pr[Bad1]. Furthermore, in the case that b = 1 holds, r∗ is

information-theoretically hidden in the view of A, and thus the probability that A makes a

bad query (after the challenge) is bounded by QRO
2λ

. That is, we have Pr[BadB|b = 1] ≤ QRO
2λ

.
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From the above arguments, we have

Advind-cpaBE,B2 (λ) = |Pr[b
′ = 0|b = 0]− Pr[b′ = 0|b = 1]|

= |Pr[BadB|b = 0]− Pr[BadB|b = 1]|

= |Pr[Bad1]− Pr[BadB|b = 1]|

≥ Pr[Bad1]− Pr[BadB|b = 1]

≥ Pr[Bad1]−
QRO
2λ

.

That is, Pr[Bad1] ≤ Advind-cpaBE,B2 (λ) +
QRO
2λ

holds. (Lemma 6.4)

Putting everything together, we obtain

Advind-cpaBEFO,A(λ) ≤ Advind-cpaBE,B1 (λ) + Advind-cpaBE,B2 (λ) +
3QRO
2λ

.

Since BE satisfies IND-CPA security and QRO is some polynomial in λ, for any PPT adversary

A, Advind-cpaBEFO,A(λ) = negl(λ) holds. Therefore, BEFO satisfies IND-CPA security in the RO model.

(Theorem 6.2)

Theorem 6.3. If BE satisfies smoothness, then BEFO satisfies plaintext awareness in the RO

model.

We note that in the proof of Theorem 6.3, we only need a non-programmable random

oracle. We also note that as mentioned in Section 6.3.1, these two theorems imply that BEFO

satisfies IND-CCA security in the RO model under the same assumptions.

Proof of Theorem 6.3. Firstly, we construct a plaintext extractor X for plaintext awareness

in the RO model as follows.

X (ListEO, ListRO, pp, S∗, c∗):

1. If (S∗, c∗) ∈ ListEO holds, then return ⊥.

2. For each (r∥m,R) ∈ ListRO:

• Compute c← Enc(pp, S∗, r∥m;R).

• If c∗ = c then return m.

3. Return ⊥.
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Now, suppose ExppaBEFO,X ,A(λ) is executed, and A finally outputs (S∗, c∗). Fix any i ∈ S∗.

Let r∗ be the randomness included in the result of Dec(pp, S∗, sk i, c
∗). Let R∗ be the hash

value which is computed in DecFO(pp, S
∗, sk i, c

∗). Here, due to the construction of DecFO, we

can see that DecFO outputs m∗ ̸= ⊥ if and only if

c∗ = Enc(pp, S∗, r∗∥m∗;R∗) (6.1)

holds.

We should consider the following three cases regarding the consistency between the output

by X and the output by DecFO for the pair (S∗, c∗) output by A.

1. Firstly, we consider the case that r∗∥m∗ has been (directly) queried to the random oracle

by A (that is, (r∗∥m∗, R∗) ∈ ListRO). In this case, since X has access to ListRO and checks

whether DecFO outputs a plaintext m∗ or ⊥ by the equation (6.1), we can see that X
outputs the same m∗ which is output by DecFO(pp, S

∗, sk i, c
∗).

2. Secondly, we consider the case that r∗∥m∗ has been queried to the random oracle by

the encryption oracle. In this case, we can see that (S∗, c∗) ∈ ListEO holds, where

c∗ = EncFO(pp, S
∗,m∗; r∗). In this case, the experiment ExppaBEFO,X ,A(λ) outputs 0.

3. Thirdly, we consider the case that r∗∥m∗ has not been queried to the random oracle. In

this case, R∗ is sampled fromR uniformly at random when computing DecFO(pp, S
∗, sk i, c

∗).

Here, due to the smoothness of BE, we can ensure that c∗ = Enc(pp, S∗, r∗∥m∗;R∗) holds
with a negligible probability. Therefore, by the construction of DecFO, DecFO(pp, S

∗, sk i, c
∗) =

⊥ holds with an overwhelming probability. Since X always outputs ⊥ when r∗∥m∗ has
not been queried to the random oracle, we can say that the output by DecFO(pp, S

∗, sk i, c
∗)

agrees with the output by X (ListEO, ListRO, pp, S∗, c∗) with an overwhelming probability.

From the above arguments, for a pair of a set and a ciphertext (S∗, c∗) output by A, we
can see that either of the following conditions holds in any case.

• (S∗, c∗) ∈ ListEO

• The output by DecFO(pp, S
∗, sk i, c

∗) agrees with the output by X (ListEO, ListRO, pp, S∗, c∗)
except for a negligible probability.

Therefore, the experiment ExppaBEFO,X ,A(λ) returns 0 with an overwhelming probability,

which in turn implies that BEFO satisfies plaintext awareness in the RO model.

(Theorem 6.3)
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Theorem 6.4. BEFO satisfies decryption uniqueness.

Proof of Theorem 6.4. Let (pp, sk = (sk 1, · · · , skn)) ← SetupFO(1
λ, n). Fix S ⊆ [n],

i ∈ S, and c. In DecFO(pp, S, sk i, c), we check whether c is a valid ciphertext by executing the

re-encryption procedure. Thus, BEFO satisfies decryption uniqueness based on the correctness

of the underlying BE scheme BE. (Theorem 6.4)

6.4 Our Deniable Ring Authentication Scheme

In this section, we formally describe our deniable ring authentication scheme in the RO model

based on a BE scheme in the RO model and a collision-resistant hash function.5 Let BE =

(Setup,Enc,Dec) be a BE scheme in the RO model, and suppose it uses an RO with the

output length ℓout.
6 Let CRHF = (HKG,Hash) be a collision-resistant hash function. Using BE

and CRHF, we construct the deniable ring authentication scheme in the RO model DRA =

(DRA.Setup, ⟨DRA.Prove,DRA.Verify⟩) as described in Figure 6.4, where DRA uses an RO with

the output length ℓout. The correctness of DRA is straightforward due to the correctness of

BE.

6.5 Security Proof

Here, in Theorems 6.5, 6.6, and 6.7, we show that DRA satisfies concurrent soundness, source

hiding, and concurrent deniability, respectively.

Theorem 6.5. If BE satisfies IND-CCA security and CRHF satisfies collision-resistance, then

DRA satisfies concurrent soundness.

In the following proof for Theorem 6.5, since we need not use an RO explicitly, the RO is

not considered in the security game for better readability. Note that if we include the RO in the

arguments, the proof works without any problem. Moreover, if the underlying BE scheme BE

is secure in the standard model (without a random oracle), DRA satisfies concurrent soundness

in the standard model.

5 Although we present the deniable ring authentication scheme in the RO model, we explicitly introduce a

collision-resistant hash function for simplifying our arguments.
6 Looking ahead, since we would like to rely on the plaintext awareness of BE in the RO model for proving

concurrent deniability, we consider BE in the RO model here. If we only consider concurrent soundness and

source hiding for our construction, an RO is not needed.
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DRA.Setup(1λ, n) :

(pp, sk)← Setup(1λ, n)

hk ← HKG(1λ)

pp ′ := (pp, hk)

Return (pp ′, sk)

⟨DRA.Prove(sk i),DRA.Verify⟩(pp ′,R,m) :

Step1(DRA.Prove⇐ DRA.Verify) :

Parse pp ′ := (pp, hk)

t← {0, 1}λ

h← Hash(hk ,m∥R)
c← Enc(pp,R, h∥t)
Send msg1 := c to DRA.Prove

Store t as a state

Step2(DRA.Prove⇒ DRA.Verify) :

Receive msg1 and parse msg1 := c

h′∥t′ ← Dec(pp,R, sk i, c)

If h′ ̸= Hash(hk ,m∥R) then t′ := ⊥
Send msg2 := t′ to DRA.Verify

Step3(DRA.Verify) :

Receive msg2 and parse msg2 := t′

If t = t′ then v := 1 else v := 0

Return v

Figure 6.4: Our construction of deniable ring authentication DRA.

Proof of Theorem 6.5. Let n = n(λ) be an arbitrary polynomial that denotes the number

of users. Let A be any PPT adversary that attacks the concurrent soundness of DRA. We

proceed the proof via a sequence of games. We introduce the games: Gamei for i ∈ {0, 1, 2}.
For simplicity and without loss of generality, in the following games, A does not corrupt the

users in the challenge ring R∗ and also does not make a prover query (·,R∗,m∗) to the prover

oracle PO (since such queries make A lose).

Game0: Game0 is the original experiment of the concurrent soundness for DRA. The

detailed description is as follows:

1. The experiment proceeds as follows:

(a) Generate (pp, sk)← Setup(1λ, n) and hk ← HKG(1λ), and set pp ′ := (pp, hk).

(b) Prepare a counter cnt := 1 and a list ListPO := ∅.

(c) Give the public parameter pp ′ to A.

2. A may start making queries to the prover oracle PO, the execution oracle EO, and
the corruption oracle CO, which are responded as follows:
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Prover oracle. When A makes a prover query of the form (i,R,m), PO
initiates Pcnt as a stateful instance of DRA.Prove(sk i, pp

′,R,m), appends

(cnt, i,R,m) to ListPO, and sets cnt := cnt+ 1.

Execution oracle. When Amakes an execution query of the form (j,msg1)

such that j ∈ [cnt], EO responds as follows:

(a) EO parses msg1 := c and computes h∥t← Dec(pp,R, sk i, c).

(b) EO checks h ̸= Hash(hk ,m∥R). If this is the case, EO gives msg2 := ⊥ to

A.

(c) EO sets msg2 := t and gives msg2 to A.

Corruption oracle. When A makes a corruption query i, CO returns sk i

to A.

3. When A outputs a challenge tuple (R∗,m∗), the experiment executes

⟨APO,EO,CO,DRA.Verify⟩(pp ′,R∗,m∗) as follows:

(a) The experiment samples t∗ ← {0, 1}λ, computes h∗ ← Hash(hk ,m∗∥R∗) and

c∗ ← Enc(pp,R∗, h∗∥t∗), and gives msg∗1 := c∗ to A.

(b) When A outputs msg∗2 := t′ to the experiment and terminates, the experiment

checks whether t∗ = t′ holds.

Game1: Game1 is identical toGame0 except for the following change. Let msg∗1 = c∗

be the first message in the challenge execution. After the challenge execution,

when A makes an execution query (·,msg∗1), EO gives ⊥ to A.

Game2: Game2 is identical to Game1 except for the following change. In the

challenge execution ⟨APO,EO,CO,DRA.Verify⟩(pp ′,R∗,m∗), the experiment com-

putes c∗ ← Enc(pp,R∗, 0|h
∗∥t∗|) as the first message msg∗1, instead of computing

h∗ ← Hash(hk ,m∗∥R∗) and c∗ ← Enc(pp,R∗, h∗∥t∗).

For i ∈ {0, 1, 2}, let Succi be the event that t∗ = t′ holds in Gamei. By using the triangle

inequality, we have

AdvcsDRA,A(λ) = Pr[Succ0] ≤
1∑

i=0

∣∣∣Pr[Succi]− Pr[Succi+1]
∣∣∣+ Pr[Succ2].

It remains to show how |Pr[Succ0]−Pr[Succ1]|, |Pr[Succ1]−Pr[Succ2]|, and Pr[Succ2]

are upper-bounded. We show that there exists a PPT adversary Bcr against the collision-

resistance of CRHF such that |Pr[Succ0] − Pr[Succ1]| ≤ AdvcrCRHF,Bcr(λ) (Lemma 6.5). Then,

103



we show that there exists a PPT adversary Bcca against the IND-CCA security of BE such that

|Pr[Succ1]− Pr[Succ2]| = Advind-ccaBE,Bcca(λ) (Lemma 6.6). Finally, we show that Pr[Succ2] ≤ 1
2λ

holds (Lemma 6.7).

Lemma 6.5. There exists a PPT adversary Bcr against the collision-resistance of CRHF such

that |Pr[Succ0]− Pr[Succ1]| ≤ AdvcrCRHF,Bcr(λ).

Proof of Lemma 6.5. For α ∈ {0, 1}, let Collα be the event that A makes at least

one prover query (i,R,m) satisfying Hash(hk ,m∗∥R∗) = Hash(hk ,m∥R) and m∗∥R∗ ̸= m∥R
in Gameα. Here, due to the condition of the prover oracle PO for A, we have m∗∥R∗ ̸=
m∥R. Moreover, in the case that Hash(hk ,m∗∥R∗) ̸= Hash(hk ,m∥R) holds, when A makes

an execution query (·,msg∗1), A is always given ⊥ due to the construction of DRA. Thus,

Game0 proceeds identically toGame1 unlessColl0 occurs, which in turn implies |Pr[Succ0]−
Pr[Succ1]| ≤ Pr[Coll0] = Pr[Coll1]. Then, we can construct a PPT adversary Bcr that attacks

the collision-resistance of CRHF so that Pr[Coll0] = AdvcrCRHF,Bcr(λ), using the adversary A.
Since the construction of Bcr is straightforward, we omit the details here. Consequently, we

have |Pr[Succ0]− Pr[Succ1]| ≤ AdvcrCRHF,Bcr(λ). (Lemma 6.5)

Lemma 6.6. There exists a PPT adversary Bcca against the IND-CCA security of BE such

that |Pr[Succ1]− Pr[Succ2]| = Advind-ccaBE,Bcca(λ).

Proof of Lemma 6.6. Using the adversary A, we construct an adversary Bcca as follows.

1. Upon receiving a public parameter pp from the experiment, Bcca proceeds as follows:

(a) Bcca generates hk ← HKG(1λ).

(b) Bcca initializes a counter cnt := 1 and lists ListPO := ∅ and SCorr := ∅.

(c) Bcca sets pp ′ := (pp, hk) and gives pp ′ to A.

2. When A accesses to the prover oracle PO, the execution oracle EO, and the corruption

oracle CO, Bcca responds as follows:

Prover oracle. When Amakes a prover query of the form (i,R,m), Bcca initiates

a prover Pcnt without sk i, appends (cnt, i,R,m) to ListPO, and sets cnt :=

cnt+ 1.

Execution oracle. When A makes an execution query of the form (j,msg1) such

that j ∈ [cnt], Bcca responds as follows:
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(a) Bcca parses msg1 := c and makes a decryption query (i,R, c) to its own decryp-

tion oracle.

(b) Upon receiving the decryption result h∥t, Bcca checks h ̸= Hash(hk ,m∥R). If

this is the case, then Bcca sends msg2 := ⊥ to A.

(c) Bcca sets msg2 := t and gives msg2 to A.

Corruption oracle. When A makes a corruption query i, Bcca also makes a

corruption query i to its own oracle. Upon receiving sk i, Bcca gives sk i to A
and appends i to SCorr.

3. WhenA outputs a challenge tuple (R∗,m∗), Bcca executes ⟨APO,EO,CO,DRA.Verify⟩(pp ′,R∗,m∗)
as follows:

(a) Bcca samples t∗ ← {0, 1}λ.

(b) Bcca computes h∗ ← Hash(hk ,m∗∥R∗).

(c) Bcca sets M∗
0 := h∗∥t∗ and M∗

1 := 0|h
∗∥t∗|, and outputs (R∗,M∗

0 ,M
∗
1 ) as its challenge

to the experiment.

(d) Upon receiving the challenge ciphertext c∗, Bcca sets msg∗1 := c∗ and gives msg∗1 to

A.

(e) When A makes prover queries, execution queries, and corruption queries, Bcca re-

sponds in the same way as before, except that when A makes an execution query

(j,msg1) to EO, Bcca additionally checks whether msg1 = msg∗1 holds. If this is the

case, then Bcca returns msg2 := ⊥ to A.

(f) When A outputs msg∗2 and terminates, Bcca proceeds as follows:

i. Bcca parses msg∗2 := t′ and checks whether t∗ = t′ holds.

ii. If this is (resp., is not) the case, then Bcca outputs 1 (resp., 0) to the experiment

and terminates.

In the following, let b be the challenge bit for Bcca. Note that Bcca does not make a

decryption query (·,R∗, c∗) to its own oracle since it can answer ⊥ to A and we assume that

A does not make a prover query (·,R∗,m∗). We can see that Bcca perfectly simulates Game1

for A if it receives the challenge ciphertext c∗ ← Enc(pp,R∗, h∗∥t∗) from the experiment.

This ensures that the probability that Bcca outputs 1 given the challenge ciphertext c∗ ←
Enc(pp,R∗, h∗∥t∗) is exactly the same as the probability that Succ1 happens in Game1. That

105



is, Pr[b′ = 1|b = 0] = Pr[Succ1] holds. On the other hand, Bcca perfectly simulates Game2

for A if it receives the challenge ciphertext c∗ ← Enc(pp,R∗, 0|h
∗∥t∗|) from the experiment.

This ensures that the probability that Bcca outputs 1 given the challenge ciphertext c∗ ←
Enc(pp,R∗, 0|h

∗∥t∗|) is exactly the same as the probability that Succ2 happens in Game2.

That is, Pr[b′ = 1|b = 1] = Pr[Succ2] holds. Therefore, we have

Advind-ccaBE,Bcca(λ) = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|

= |Pr[Succ1]− Pr[Succ2]|.

(Lemma 6.6)

Lemma 6.7. Pr[Succ2] ≤ 1
2λ

holds.

Proof of Lemma 6.7. In Game2, since the experiment computes c∗ ← Enc(pp,R∗, 0|h
∗∥t∗|)

as the first message msg∗1 instead of computing h∗ ← Hash(hk ,m∗∥R∗) and c∗ ← Enc(pp,

R∗, h∗∥t∗), t∗ is information-theoretically hidden in the view of A. Hence, we can see that the

probability that A outputs the second message msg∗2 := t′ in the challenge execution satisfying

t′ = t∗ is at most 1
2λ
. That is, we have Pr[Succ2] ≤ 1

2λ
. (Lemma 6.7)

Putting everything together, we obtain

AdvcsDRA,A(λ) ≤ AdvcrCRHF,Bcr(λ) + Advind-ccaBE,Bcca(λ) +
1

2λ
.

Since BE satisfies IND-CCA security and CRHF satisfies collision-resistance, for any PPT

adversary A, AdvcsDRA,A(λ) = negl(λ) holds. Thus, DRA satisfies concurrent soundness.

(Theorem 6.5)

Theorem 6.6. If BE satisfies decryption uniqueness, then DRA satisfies source hiding.

We note that if we assume that the underlying BE scheme satisfies decryption uniqueness

in the RO model, then DRA satisfies source hiding in the RO model.

Proof of Theorem 6.6. Let A be any adversary against the source hiding for DRA. Let

n = n(λ) be an arbitrary polynomial that denotes the number of users and (pp ′ = (pp, hk), sk)

a pair of an (honestly generated) public parameter and secret keys. In the security ex-

periment of the source hiding for DRA, notice that the difference for A between an inter-

action with a prover using sk i0 and that using sk i1 will only possibly occur at Step2 in

⟨DRA.Prove(sk ib),A⟩(pp ′,R∗,m∗), where b is the challenge bit for A, and R∗ and m∗ are the

challenge ring and message chosen by A. Concretely, in Step2, we decrypt the ciphertext
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c∗ (which is given by A as the first message) by using the secret key sk ib . In this situation,

thanks to the decryption uniqueness of BE, we can ensure that the result of the decryption is

always the same, both in the case of sk i0 and sk i1 , as long as i0, i1 ∈ R∗ ⊆ [n] holds (even if c∗

is maliciously generated). Therefore, DRA satisfies source hiding. (Theorem 6.6)

Theorem 6.7. If BE satisfies plaintext awareness in the RO model and CRHF satisfies collision-

resistance, then DRA satisfies concurrent deniability in the RO model.

We note that in the following proof of Theorem 6.7, we need only a non-programmable

random oracle.

Proof of Theorem 6.7. Let n = n(λ) be an arbitrary polynomial that denotes the number

of users. Let A be any PPT adversary that attacks the concurrent deniability in the RO model

for DRA. Let HRO be the set of all functions with the output length ℓout. Let QT O and QEO

be the number of transcript queries made by A and the number of execution queries made by

A, respectively.

First, we construct the following PPT simulator S that runs in Expcd-idealDRA,S (λ).

1. Upon receiving a public parameter pp ′ := (pp, hk) from the experiment, S runs A(pp)
and prepares a counter cnt := 1 and lists ListTO := ∅ and ListRO := ∅.

2. When A accesses to the prover oracle PO, the execution oracle EO, the transcript oracle
T O, the corruption oracle CO, and the random oracle RO, S responds as follows:

Prover oracle. WhenAmakes a prover query of the form (i∗,R∗,m∗), S initiates

a prover Pcnt without sk i∗ , appends (cnt, i
∗,R∗,m∗) to ListPO, and sets cnt :=

cnt+ 1.

Execution oracle. When A makes an execution query of the form (j,msg∗1) such

that j ∈ [cnt], S checks whether ((i,R,m), (msg∗1, t)) ∈ ListTO holds for some

i, R, m, and t.

• If this is the case, then S checks whether (m∗,R∗) = (m,R) holds.

– If this is the case, then S gives msg∗2 := t to A.

– Otherwise, S gives msg∗2 := ⊥ to A.

• Otherwise, S responds as follows:

(a) S retrieves all tuples {(i,R,m), (msg1,msg2)} from ListTO and sets ListEO :=

{(R,msg1)}.
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(b) S parses msg∗1 := c∗ and runs h∗∥t∗ ← X (ListEO, ListRO, pp,R∗, c∗), where
X is the plaintext extractor due to the plaintext awareness of BE.

(c) S checks whether h∗ ̸= Hash(hk ,m∗∥R∗) holds. If this is the case, then S
gives msg∗2 := ⊥ to A.

(d) S gives msg∗2 := t∗ to A.

Transcript oracle. When A makes a transcript query of the form (i,R,m), S
also makes a transcript query (i,R,m) to its own transcript oracle. Upon re-

ceiving a transcript tr = (c, t), S gives (c, t) toA, and appends ((i,R,m), (c, t))

to ListTO.

Corruption oracle. When A makes a corruption query i, S also makes a cor-

ruption query i to its own oracle. Upon receiving sk i, S gives sk i to A.

Random oracle. When A makes a random oracle query x, S also makes a ran-

dom oracle query x to its own oracle. Upon receiving a hash value y, S gives

y to A and appends (x, y) to ListRO.

3. When A outputs out and terminates, S also outputs out to the experiment and termi-

nates.

Then, we proceed the proof via a sequence of games. We introduce the following three

games: {Gamei}i∈{0,1,2}.

Game0: Game0 is the original real experiment Expcd-realDRA,A(λ) of the concurrent denia-

bility for DRA. The detailed description is as follows:

1. The setup phase proceeds as follows:

(a) Generate (pp, sk = (sk 1, · · · , skn)) ← Setup(1λ) and hk ← HKG(1λ), and set

pp ′ := (pp, hk).

(b) Set a counter cnt := 1 and lists ListPO := ∅, ListTO := ∅, SCorr := ∅, and

ListRO := ∅.

(c) Choose a random oracle RO ← HRO.

(d) The public parameter pp ′ is given to A.

2. A may start making queries to the prover oracle PO, the execution oracle EO, the
transcript oracle T O, the corruption oracle CO, and the random oracle RO, which
are responded as follows:
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Prover oracle. When A makes a prover query of the form (i∗,R∗,m∗), PO
initiates Pcnt as a stateful instance of DRA.Prove(sk i∗ , pp

′,R∗,m∗), ap-

pends (cnt, i∗,R∗,m∗) to ListPO, and sets cnt := cnt+ 1.

Execution oracle. When Amakes an execution query of the form (j,msg∗1)

such that j ∈ [cnt], EO responds as follows:

(a) EO parses msg∗1 := c∗ and computes h∗∥t∗ ← Dec(pp,R∗, sk ∗i∗ , c
∗).

(b) EO checks h∗ ̸= Hash(hk ,m∗∥R∗). If this is the case, EO gives msg∗2 := ⊥
to A.

(c) EO sets msg∗2 := t∗ and gives msg∗2 to A.

Transcript oracle. When A makes a transcript query of the form (i,R,m),

T O responds as follows:

(a) T O samples t← {0, 1}λ.

(b) T O computes h← Hash(hk ,m∥R) and c← Enc(pp,R, h∥t).

(c) T O gives a transcript (c, t) to A and appends ((i,R,m), (c, t)) to ListTO.
7

Corruption oracle. When A makes a corruption query i, CO gives sk i to

A and appends sk i to SCorr.

Random oracle. When A makes a random oracle query x, RO responds

as follows:

(a) If (x, y) ∈ ListRO for some y, then RO gives y to A.

(b) RO samples y ← {0, 1}ℓout , gives y to A, and appends (x, y) to ListRO.

3. When A outputs out and terminates, view is set as (pp, ListTO, SCorr, ListRO, out) and

(view,RO) is output.

Game1: Game1 is identical to Game0 except for the following change. When A
makes an execution query (j,msg∗1) such that j ∈ [cnt] and msg∗1 = msg1, where

((i,R,m), (msg1,msg2)) ∈ ListTO for some i, R, m, and msg2, the execution oracle

EO responds as follows. If (m∗,R∗) ̸= (m,R) holds, then EO gives ⊥ to A.
Otherwise, EO gives msg2 to A.

Game2: Game2 is identical to Game1 except for the following change. When A
makes an execution query (j,msg∗1(= c∗)) such that j ∈ [cnt] and ((·, ·), (msg∗1, ·)) /∈

7 Note that while T O just gives msg2 := t to A (without decrypting c) here, this does not affect the view

of A due to the correctness of BE.
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ListTO, the execution oracle EO computes X (ListEO, ListRO, pp,R∗, c∗) instead of

computing Dec(pp,R∗, sk i∗ , c
∗), where ListEO is a list of all pairs of rings and the

first messages stored in ListTO (that is, ListEO = {(R,msg1)}, where ListTO =

{((·,R, ·), (msg1, ·))}) at the point that the execution query (j,msg∗1) is queried.

Here, due to the following reasons, the distribution of the output in Game2 is exactly the

same as one in Expcd-idealDRA,S (λ) where S runs.

From Game0 to Game2, we change only how to respond to the execution queries made

by A, and thus we have to consider only this change. When A makes an execution query

(j,msg∗1) in Game2, we have the following three cases regarding how to respond to it.

• If ((·,R,m), (msg∗1, t)) ∈ ListTO and (m∗,R∗) = (m,R) hold for some t, then EO gives

t′ := t to A (due to the change in Game1).

• If ((·,R,m), (msg∗1, t)) ∈ ListTO and (m∗,R∗) ̸= (m,R) hold for some t, then EO gives

t′ := ⊥ to A (due to the change in Game1).

• If ((·, ·, ·), (msg∗1, ·)) /∈ ListTO holds, then EO gives t′ ← X (ListEO, ListRO, pp,R∗, c∗) to A
(due to the change in Game2).

We can see that the above procedures are exactly the same as what S does in Expcd-idealDRA,S (λ).

Let D be any PPT distinguisher for the above adversary A and simulator S. Let preal be

the probability that D outputs 1 given viewreal, where (viewreal, ·) ← Expcd-realDRA,A(λ). Also, let

pideal be the probability that D outputs 1 given viewideal, where (viewideal, ·) ← Expcd-idealDRA,S (λ).

For all i ∈ {0, 1, 2}, let (view′i, ·) be the output in Gamei, and Truei the event that D outputs

1 given view′i in Gamei. Here, by definition, preal = Pr[True0] and pideal = Pr[True2] hold.

Therefore, we can estimate AdvcdDRA,A,S,D(λ) as

AdvcdDRA,A,S,D(λ) = |Pr[True0]− Pr[True2]| ≤
1∑

i=0

|Pr[Truei]− Pr[Truei+1]|.

It remains to show how each |Pr[Truei] − Pr[Truei+1]| is upper-bounded. We show

that there exists a PPT adversary Bcr against the collision-resistance of CRHF such that

|Pr[True0] − Pr[True1]| ≤ AdvcrCRHF,Bcr(λ) (Lemma 6.8). Then, we show that there exists

a PPT adversary Bpa against the plaintext awareness in the RO model of BE such that

|Pr[True1]− Pr[True2]| ≤ QEO · AdvpaBE,X ,Bpa(λ) (Lemma 6.9).

Lemma 6.8. There exists a PPT adversary Bcr against the collision-resistance of CRHF such

that |Pr[True0]− Pr[True1]| ≤ AdvcrCRHF,Bcr(λ).
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Proof of Lemma 6.8. For α ∈ {0, 1}, let Collα be the event that when A makes an

execution query (j,msg∗1) such that j ∈ [cnt] and msg∗1 = msg1, where ((R,m), (msg1,msg2)) ∈
ListTO for some R, m, and msg2, Hash(hk ,m∥R) = Hash(hk ,m∗∥R∗) and m∥R ̸= m∗∥R∗ hold
in Gameα. Here, in the case that Hash(hk ,m∗∥R∗) ̸= Hash(hk ,m∥R) holds, A is always

given ⊥ due to the construction of DRA. Moreover, we can see that the change, in the case

that (m∗,R∗) = (m,R) holds in Game1, does not affect the view of A since msg2 = msg∗2

holds and BE satisfies correctness. Thus, Game0 proceeds identically to Game1 unless Coll0

happens. Therefore, we have the inequality |Pr[True0]−Pr[True1]| ≤ Pr[Coll0] = Pr[Coll1].

Then, we can construct a PPT adversary Bcr that attacks the collision-resistance of CRHF

so that Pr[Coll0] = AdvcrCRHF,Bcr(λ), using the adversary A. Since the construction of Bcr is

straightforward, we omit the details here. Consequently, we have |Pr[True0]− Pr[True1]| ≤
AdvcrCRHF,Bcr(λ). (Lemma 6.8)

Lemma 6.9. There exists a PPT adversary Bpa against the plaintext awareness in the RO

model of BE such that |Pr[True1]− Pr[True2]| ≤ QEO · AdvpaBE,X ,Bpa(λ).

Proof of Lemma 6.9. For α ∈ {1, 2}, let Badα be the event that A makes at least one

execution query (j,msg∗1(= c∗)) satisfying X (ListEO, ListRO, pp,R∗, c∗) ̸= Dec(pp,R∗, sk i∗ , c
∗) for

some i∗ ∈ R∗ inGameα, where ((·, ·), (c∗, ·)) /∈ ListTO. Moreover, for all ℓ ∈ [QEO], let Badℓ
α be

the event that the ℓ-th execution query (j,msg∗1(= c∗)) satisfies X (ListEO, ListRO, pp,R∗, c∗) ̸=
Dec(pp,R∗, sk i∗ , c

∗) for some i∗ ∈ R∗ inGameα, where ((·, ·), (c∗, ·)) /∈ ListTO. Game2 proceeds

identically to Game1 unless Bad2 happens. Therefore, we have the inequality |Pr[True1]−
Pr[True2]| ≤ Pr[Bad2] ≤

∑QEO
ℓ=1 Pr[Badℓ

2]. Then, we construct a PPT adversary Bpa that

attacks the plaintext awareness in the RO model of BE so that
∑QEO

ℓ=1 Pr[Badℓ
2] = QEO ·

AdvpaBE,X ,Bpa(λ), using the adversary A as follows.

1. Upon receiving a public parameter pp, Bpa proceeds as follows:

(a) Bpa samples ℓ∗ ← [QEO].

(b) Bpa generates hk ← HKG(1λ).

(c) Bpa initializes a counter cnt := 1 and lists ListTO := ∅ and ListRO := ∅.

(d) Bpa sets pp ′ := (pp, hk) and gives pp ′ to A.

2. When A accesses to the prover oracle PO, the execution oracle EO, the transcript oracle
T O, the corruption oracle CO, and the random oracle RO, Bpa responds as follows:
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Prover oracle. When A makes a prover query of the form (i∗,R∗,m∗), Bpa ini-

tiates a prover Pcnt without sk i∗ , appends (cnt, i
∗,R∗,m∗) to ListPO, and sets

cnt := cnt+ 1.

Execution oracle. When A makes an execution query of the form (j,msg∗1) such

that j ∈ [cnt], Bpa parses msg∗1 := c∗ and responds as follows:

• If (j,msg∗1) is the ℓ∗-th execution query, then Bpa outputs (R∗, c∗) to its exper-

iment and terminates, where (j, ·,m∗,R∗) ∈ ListPO for some m∗ and R∗.

• Otherwise, Bpa checks whether ((R,m), (c∗, t)) ∈ ListTO holds for some R, m,

and t.

– If this is the case, then Bpa checks whether m∗∥R∗ = m∥R holds.

∗ If this is the case, then Bpa gives msg∗2 := t to A.

∗ Otherwise, Bpa gives msg∗2 := ⊥ to A.

– Otherwise, Bpa responds as follows:

(a) Bpa retrieves all tuples {((R,m), (msg1,msg2))} from ListTO and sets

ListEO := {(R,msg1)}.

(b) Bpa runs h∗∥t∗ ← X (ListEO, ListRO, pp,R∗, c∗).

(c) Bpa checks whether h∗ ̸= Hash(hk ,m∗∥R∗) holds. If this is the case, then
Bpa gives msg∗2 := ⊥ to A.

(d) Bpa gives msg∗2 := t∗ to A.

Transcript oracle. When A makes a transcript query of the form (i,R,m), Bpa

responds as follows:

(a) Bpa samples t← {0, 1}λ, computes h← Hash(hk ,m∥R), and makes an encryp-

tion query (R, h∥t) to its own oracle.

(b) Upon receiving a ciphertext c, Bpa sets msg1 := c.

(c) Bpa sets msg2 := t.

(d) Bpa gives (msg1,msg2) to A and appends ((i,R,m), (msg1,msg2)) to ListTO.

Corruption oracle. When A makes a corruption query i, Bpa also makes a

corruption query i to its own oracle. Upon receiving sk i, Bpa gives sk i to A.

Random oracle. When A makes a random oracle query x, Bpa also makes a

random oracle query x to its own oracle. Upon receiving y, Bpa gives y to A
and appends (x, y) to ListRO.
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3. When A outputs out and terminates, Bpa gives up and terminates.

Recall that the success condition of Bpa is to output (R∗, c∗) satisfying X (ListEO, ListRO, pp,R∗,
c∗) ̸= Dec(pp,R∗, sk i∗ , c

∗) for some i∗ ∈ R∗ and (R∗, c∗) /∈ ListEO. Here, let Badℓ
B be the

event that A makes an execution query (j,msg∗1) satisfying X (ListEO, ListRO, pp,R∗, c∗) ̸=
Dec(pp,R∗, sk i∗ , c

∗) for some i∗ ∈ R∗, where ((·, ·), (c∗, ·)) /∈ ListTO, as the ℓ-th execution

query in the experiment simulated by B. Therefore, Bpa can break the plaintext awareness of

BE if and only if Badj∗

B occurs, namely, AdvpaBE,X ,Bpa(λ) = Pr[Badj∗

B ]. Moreover, from the above

construction of Bpa, we can see that Bpa perfectly simulates Game2 for A until it terminates.

Thus, Pr[Badℓ
B] = Pr[Badℓ

2] holds for all ℓ ∈ [QEO]. Furthermore, if we assume that Badℓ
2

happens, we can ensure that (R∗, c∗) /∈ ListEO holds since ((·, ·), (c∗, ·)) /∈ ListTO holds now.

Finally, the choice of ℓ∗ is uniformly at random and independent of A, and thus does not affect

the behavior of A. Hence, we have

AdvpaBE,X ,Bpa(λ) = Pr[Badℓ∗

B ] =

QEO∑
ℓ=1

Pr[Badℓ
B ∧ ℓ = ℓ∗] =

1

QEO
·
QEO∑
ℓ=1

Pr[Badℓ
2],

which in turn implies that |Pr[True1]− Pr[True2]| ≤
∑QEO

ℓ=1 Pr[Badℓ
2] = QEO · AdvpaBE,X ,Bpa(λ)

holds. (Lemma 6.9)

Putting everything together, we obtain

AdvcdDRA,A,S,D(λ) ≤ AdvcrCRHF,Bcr(λ) +QEO · AdvpaBE,X ,Bpa(λ).

Since BE satisfies plaintext awareness in the RO model, CRHF satisfies collision-resistance,

and QEO is some polynomial in λ, for any PPT adversary A, there exists a PPT simulator

S such that for any PPT distinguisher D, AdvcdDRA,A,S,D(λ) = negl(λ) holds. Therefore, DRA

satisfies concurrent deniability in the RO model. (Theorem 6.7)

6.6 An Instantiation of Our Deniable Ring Authentica-

tion Scheme

In this section, we give a simple and efficient instantiation of our deniable ring authentica-

tion scheme based on an existing BE scheme. Concretely, we present an instantiation based

on Gay et al.’s BE scheme [GKW18] under the k-linear assumption. Before describing our

instantiation, we introduce some notations for a bilinear group and the k-linear assumption.
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Preliminaries for Bilinear Groups. Let G be a PPT algorithm that, given a security pa-

rameter 1λ as input, outputs an asymmetric bilinear group description (p,G1,G2,GT , P1, P2, e),

where G1, G2, and GT are cyclic groups of prime order p = Ω(2λ), Pi are generators of Gi for

i ∈ {1, 2}, and e is a non-degenerate bilinear map. Here, we require that the group operations

in G1, G2, and GT as well as the bilinear map e be computable in deterministic polynomial

time, and define a generator in GT as PT := e(P1, P2). We use the implicit representation

of group elements as in [EHK+13]. Specifically, for i ∈ {1, 2, T} and a ∈ Zp, we define

[a]i := aPi ∈ Gi as the implicit representation of a in Gi. Given [a]1 and [b]2, we can efficiently

compute [ab]T using the bilinear map e. Similarly, for a matrix

A =


a1,1 . . . a1,m
...

. . .
...

an,1 . . . an,m

 ∈ Zn×m
p ,

we define

[A]i :=


a1,1Pi . . . a1,mPi

...
. . .

...

an,1Pi . . . an,mPi

 ∈ Gn×m
i

as the implicit representation of A in Gi. For two matrices A ∈ Zℓ×m
p and B ∈ Zm×n

p , define

e([A]1, [B]2) := [AB]T ∈ Gℓ×m
T .

The k-Linear Assumption. Let Dk := {A} be a matrix distribution defined as

A =



a1 0 . . . 0 0

0 a2 . . . 0 0

0 0
. . . 0

...
. . .

...

0 0 . . . 0 ak

1 1 . . . 1 1


∈ Z(k+1)×k

p ,

where aj ← Z∗p for all j ∈ [k].

Definition 22 (The k-Linear Assumption). We say that the k-linear assumption holds relative

to G in Gi for i ∈ {1, 2, T} if for any PPT adversary A,

|Pr[A(G, [A]i, [Aw]i) = 1]− Pr[A(G, [A]i, [u]i) = 1]| = negl(λ),

where the probability is taken over G := (p,G1,G2,GT , P1, P2, e)← G(1λ), A← Dk, w← Zk
p,

and u← Zk+1
p .

We note that the 1-linear assumption corresponds to the SXDH assumption.
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An Instantiation of Our Broadcast Encryption Scheme. Before providing an instanti-

ation our deniable ring authentication scheme, we give an instantiation of our plaintext aware

and IND-CCA secure BE scheme with Gay et al’s IND-CPA secure BE scheme.

Let HRO : {0, 1}∗ → Zk
p be a hash function which is modeled as a random oracle. Let

KDF : GT → {0, 1}λ+ℓm be a key derivation function, where ℓm is some polynomial in λ.

Then, an instantiation of our BE scheme BEGKW
FO = (SetupGKWFO ,EncGKWFO ,DecGKWFO ) with the

plaintext spaceM = {0, 1}ℓm and the randomness space R = {0, 1}λ for EncGKWFO is described

in Figure 6.5.

An Instantiation of Our Deniable Ring Authentication Scheme. Now, we present the

description of an instantiation of our deniable ring authentication scheme by using the above

instantiation of our BE scheme based on Gay et al.’s BE scheme. Let CRHF = (HKG,Hash) be

a collision-resistant hash function, where Hash has an input space {0, 1}∗ and the output space

{0, 1}ℓh , and ℓh is some polynomial in λ. Let HRO : {0, 1}∗ → Zk
p be a hash function which

is modeled as a random oracle. Let KDF : GT → {0, 1}ℓh+2λ be a key derivation function.

Then, the description of an instantiation with the message space {0, 1}ℓm using our BE scheme

(based on Gay et al.’s scheme) is given in Figure 6.6, where ℓm is some polynomial in λ.

As shown in Figure 6.6, we can see that this instantiation is efficient due to the underlying

Gay et al.’s BE scheme [GKW18] and our transformation. More precisely, a user secret key

consists of k + 1 elements of G2 and the communication cost consists of 2k + 1 elements of

G1 and a bit string of length ℓh + 2λ, where k is the parameter of the underlying k-linear

assumption.
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SetupGKWFO (1λ, n) :

(p,G1,G2,GT , P1, P2, e)← G(1λ)
A← Dk

k← Zk+1
p

W0, · · · ,Wn ← Z(k+1)×k
p

u1, · · · ,un ← Zk
p

pp := ([A]1, [A
⊤W0]1, ([A

⊤Wi]1, [ui]1)i∈[n],

[A⊤k]T , ([Wjui]2)i,j∈[n],i ̸=j)

∀i ∈ [n] : sk i := [k+W0ui]2 ∈ Gk+1
2

sk := (sk i)i∈[n]

Return (pp, sk)

EncGKWFO (pp, S,m; r)

s← HRO(r∥m)

M := r∥m
C0 := [s⊤A⊤]1

C1 := [s⊤A⊤(W0 +
∑

j /∈R Wj)]1

R← KDF([s⊤A⊤k]T )

C2 := R⊕M

Return C := (C0, C1, C2)

DecGKWFO (pp, S, sk i, C) :

Parse C := (C0, C1, C2)

D1 :=
e(C0,sk i)
e(C1,[ri]1)

D2 := D1 · e([s⊤A⊤]1, [
∑

j /∈RWjri]2)

M ′ := C2 ⊕D2

Parse M ′ := r′∥m′

s′ ← HRO(r
′∥m′)

C ′0 := [s′⊤A⊤]1

C ′1 := [s′⊤A⊤(W0 +
∑

j /∈R Wj)]1

R′ ← KDF([s′⊤A⊤k]T )

C ′2 := R′ ⊕M ′

If (C0, C1, C2) ̸= (C ′0, C
′
1, C

′
2)

then return ⊥
Return m′

Figure 6.5: An instantiation of plaintext aware and IND-CCA secure broadcast encryption BEGKW
FO

based on Gay et al.’s scheme [GKW18].
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DRA.Setup(1λ, n) :

(p,G1,G2,GT , P1, P2, e)← G(1λ)
A← Dk

k← Zk+1
p

W0, · · · ,Wn ← Z(k+1)×k
p

u1, · · · ,un ← Zk
p

pp := ([A]1, [A
⊤W0]1, ([A

⊤Wi]1, [ui]1)i∈[n],

[A⊤k]T , ([Wjui]2)i,j∈[n],i ̸=j)

∀i ∈ [n] : sk i := [k+W0ui]2 ∈ Gk+1
2

sk := (sk i)i∈[n]

hk ← HKG(1λ)

pp ′ := (pp, hk)

Return (pp ′, sk)

⟨DRA.Prove(sk i),DRA.Verify()⟩(pp ′,R,m) :

Step1(DRA.Prove⇐ DRA.Verify) :

t, r ← {0, 1}λ

h← Hash(hk ,m∥R)
s← HRO(h∥t∥r)
M := h∥t∥r
C0 := [s⊤A⊤]1

C1 := [s⊤A⊤(W0 +
∑

j /∈RWj)]1

R← KDF([s⊤A⊤k]T )

C2 := R⊕M

C := (C0, C1, C2)

Send msg1 := C to DRA.Prove

Store t as a state

Step2(DRA.Prove⇒ DRA.Verify) :

Parse C := (C0, C1, C2)

D1 :=
e(C0,sk i)
e(C1,[ri]1)

D2 := D1 · e([s⊤A⊤]1, [
∑

j /∈RWjri]2)

M ′ := C2 ⊕D2

Parse M ′ := h′∥t′∥r′

s′ ← HRO(h
′∥t′∥r′)

C ′0 := [s′⊤A⊤]1

C ′1 := [s′⊤A⊤(W0 +
∑

j /∈R Wj)]1

R′ ← KDF([s′⊤A⊤k]T )

C ′2 := R′ ⊕M ′

If (C0, C1, C2) ̸= (C ′0, C
′
1, C

′
2) then t′ := ⊥

If h′ ̸= Hash(hk ,m∥R) then t′ := ⊥
Send msg2 := t′ to DRA.Verify

Step3(DRA.Verify) :

Receive msg2 and parse msg2 := t′

If t = t′ then v := 1 else v := 0

Return v

Figure 6.6: A simple and efficient instantiation of our deniable ring authentication scheme.
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Chapter 7

Conclusion and Future Work

This thesis have focused on two major cryptographic authentication primitives over ad-hoc

groups, ring signature and (deniable) ring authentication.

In Chapter 4, we propose the first generic construction of ring signature with unconditional

anonymity in the plain model based on the standard assumption. Our construction is based

on a statistical ZAP argument, a lossy encryption scheme, and a MU-EUF-CMACorr secure

signature scheme. From the previous works [BFJ+20,BHJ+15,BHY09,GJJM20], all of these

building blocks can be instantiated under the quasi-polynomial LWE assumption, and thus our

ring signature scheme with unconditional anonymity in the plain model can be instantiated

under the quasi-polynomial LWE assumption. As one of the drawback of this ring signature

scheme, it has O(n) signature size, where n is the number of users in a ring. Thus, we leave

to explore more efficient ring signature schemes with unconditional anonymity in the plain

model based on standard assumptions as an interesting open problem.

In Chapter 5, we propose a new generic construction of tightly secure ring signature in

the plain model. The merit of our construction is that its signature size is O(log n), which is

the same as one of the tightly secure ring signature scheme proposed by Libert et al. [LPQ18]

asymptotically. We leave to explore tightly secure ring signature schemes with practical effi-

ciency in the plain model as an interesting open problem.

In Chapter 6, we propose a new generic construction of two-round concurrently deniable

ring authentication in the random oracle model. Our generic construction is based on any

IND-CPA secure broadcast encryption (BE) scheme. Instantiating the underlying IND-CPA

secure BE scheme with the schemes proposed by Agrawal et al. [AY20,AWY20], we obtain

the first two-round concurrently deniable ring authentication scheme with optimal efficiency

in an asymptotic sense. Here, by optimal efficiency, we mean that all of the sizes of a public
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parameter and secret keys, the communication costs, and the number of pairing operations are

independent of n, where n is the number of users in a ring. In addition to these main instan-

tiations, through our generic construction, we further obtain various two-round concurrently

deniable ring authentication schemes. As an interesting open problem, we leave to explore

how to extend our deniable ring authentication scheme into deniable predicate authentication

scheme.
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[BDH+19] Michael Backes, Nico Döttling, Lucjan Hanzlik, Kamil Kluczniak, and Jonas

Schneider. Ring signatures: Logarithmic-size, no setup - from standard as-

sumptions. In Vincent Rijmen and Yuval Ishai, editors, EUROCRYPT 2019,

Part III, LNCS, pages 281–311. Springer, Heidelberg, May 2019. doi:10.1007/

978-3-030-17659-4_10.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations

among notions of security for public-key encryption schemes. In Hugo Krawczyk,

editor, CRYPTO’98, volume 1462 of LNCS, pages 26–45. Springer, Heidelberg,

August 1998. doi:10.1007/BFb0055718.

[BFJ+20] Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khurana, and

Amit Sahai. Statistical ZAP arguments. In Vincent Rijmen and Yuval Ishai, ed-

itors, EUROCRYPT 2020, Part III, LNCS, pages 642–667. Springer, Heidelberg,

May 2020. doi:10.1007/978-3-030-45727-3_22.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge

and its applications (extended abstract). In 20th ACM STOC, pages 103–112.

ACM Press, May 1988. doi:10.1145/62212.62222.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and ver-

ifiably encrypted signatures from bilinear maps. In Eli Biham, editor, EURO-

121

http://dx.doi.org/10.1109/SFCS.2003.1238204
http://dx.doi.org/10.1109/SFCS.2003.1238204
http://dx.doi.org/10.1145/1030083.1030103
http://dx.doi.org/10.1145/1030083.1030103
http://dx.doi.org/10.1007/978-3-319-63688-7_3
http://dx.doi.org/10.1007/978-3-030-17659-4_10
http://dx.doi.org/10.1007/978-3-030-17659-4_10
http://dx.doi.org/10.1007/BFb0055718
http://dx.doi.org/10.1007/978-3-030-45727-3_22
http://dx.doi.org/10.1145/62212.62222


CRYPT 2003, volume 2656 of LNCS, pages 416–432. Springer, Heidelberg, May

2003. doi:10.1007/3-540-39200-9_26.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast

encryption with short ciphertexts and private keys. In Victor Shoup, editor,

CRYPTO 2005, volume 3621 of LNCS, pages 258–275. Springer, Heidelberg, Au-

gust 2005. doi:10.1007/11535218_16.

[BHJ+15] Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and Yong Li. Tightly-

secure authenticated key exchange. In Yevgeniy Dodis and Jesper Buus Nielsen,

editors, TCC 2015, Part I, volume 9014 of LNCS, pages 629–658. Springer, Hei-

delberg, March 2015. doi:10.1007/978-3-662-46494-6_26.

[BHK15] Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. Subtleties in the definition of

IND-CCA: When and how should challenge decryption be disallowed? Journal

of Cryptology, 28(1):29–48, January 2015. doi:10.1007/s00145-013-9167-4.

[BHKS18] Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider. Signa-

tures with flexible public key: Introducing equivalence classes for public keys.

In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II,

volume 11273 of LNCS, pages 405–434. Springer, Heidelberg, December 2018.

doi:10.1007/978-3-030-03329-3_14.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility

results for encryption and commitment secure under selective opening. In Antoine

Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35. Springer,

Heidelberg, April 2009. doi:10.1007/978-3-642-01001-9_1.

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger

definitions, and constructions without random oracles. In Shai Halevi and Tal

Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 60–79. Springer, Heidel-

berg, March 2006. doi:10.1007/11681878_4.

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (Hierarchical) identity-based encryption

from affine message authentication. In Juan A. Garay and Rosario Gennaro,

editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 408–425. Springer,

Heidelberg, August 2014. doi:10.1007/978-3-662-44371-2_23.

122

http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/11535218_16
http://dx.doi.org/10.1007/978-3-662-46494-6_26
http://dx.doi.org/10.1007/s00145-013-9167-4
http://dx.doi.org/10.1007/978-3-030-03329-3_14
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/11681878_4
http://dx.doi.org/10.1007/978-3-662-44371-2_23


[BP04] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryp-

tion without random oracles. In Pil Joong Lee, editor, ASIACRYPT 2004,

volume 3329 of LNCS, pages 48–62. Springer, Heidelberg, December 2004.

doi:10.1007/978-3-540-30539-2_4.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm

for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi

Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93, pages

62–73. ACM Press, November 1993. doi:10.1145/168588.168596.

[BW19] Ward Beullens and Hoeteck Wee. Obfuscating simple functionalities from knowl-

edge assumptions. In PKC 2019, Part II, LNCS, pages 254–283. Springer, Hei-

delberg, 2019. doi:10.1007/978-3-030-17259-6_9.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,

revisited (preliminary version). In 30th ACM STOC, pages 209–218. ACM Press,

May 1998. doi:10.1145/276698.276741.

[CGH+21] Rohit Chatterjee, Sanjam Garg, Mohammad Hajiabadi, Dakshita Khurana, Xiao

Liang, Giulio Malavolta, Omkant Pandey, and Sina Shiehian. Compact ring

signatures from learning with errors. LNCS, pages 282–312. Springer, Heidelberg,

2021. doi:10.1007/978-3-030-84242-0_11.

[CGS07] Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of sub-linear

size without random oracles. In Lars Arge, Christian Cachin, Tomasz Jurdzinski,

and Andrzej Tarlecki, editors, ICALP 2007, volume 4596 of LNCS, pages 423–

434. Springer, Heidelberg, July 2007. doi:10.1007/978-3-540-73420-8_38.

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-

order groups via predicate encodings. In Elisabeth Oswald and Marc Fischlin,

editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 595–624.

Springer, Heidelberg, April 2015. doi:10.1007/978-3-662-46803-6_20.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and applica-

tion to efficient revocation of anonymous credentials. In Moti Yung, editor,

CRYPTO 2002, volume 2442 of LNCS, pages 61–76. Springer, Heidelberg, August

2002. doi:10.1007/3-540-45708-9_5.

123

http://dx.doi.org/10.1007/978-3-540-30539-2_4
http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1007/978-3-030-17259-6_9
http://dx.doi.org/10.1145/276698.276741
http://dx.doi.org/10.1007/978-3-030-84242-0_11
http://dx.doi.org/10.1007/978-3-540-73420-8_38
http://dx.doi.org/10.1007/978-3-662-46803-6_20
http://dx.doi.org/10.1007/3-540-45708-9_5


[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for

adaptive chosen ciphertext secure public-key encryption. In Lars R. Knudsen,

editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer, Hei-

delberg, April / May 2002. doi:10.1007/3-540-46035-7_4.

[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies,

editor, EUROCRYPT’91, volume 547 of LNCS, pages 257–265. Springer, Heidel-

berg, April 1991. doi:10.1007/3-540-46416-6_22.

[CW13] Jie Chen and Hoeteck Wee. Fully, (almost) tightly secure IBE and dual system

groups. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,

volume 8043 of LNCS, pages 435–460. Springer, Heidelberg, August 2013. doi:

10.1007/978-3-642-40084-1_25.

[CWLY06] Sherman S. M. Chow, Victor K.-W. Wei, Joseph K. Liu, and Tsz Hon Yuen. Ring

signatures without random oracles. In Ferng-Ching Lin, Der-Tsai Lee, Bao-Shuh

Lin, Shiuhpyng Shieh, and Sushil Jajodia, editors, ASIACCS 06, pages 297–302.

ACM Press, March 2006.

[Dam92] Ivan Damg̊ard. Towards practical public key systems secure against chosen

ciphertext attacks. In Joan Feigenbaum, editor, CRYPTO’91, volume 576

of LNCS, pages 445–456. Springer, Heidelberg, August 1992. doi:10.1007/

3-540-46766-1_36.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography

(extended abstract). In 23rd ACM STOC, pages 542–552. ACM Press, May

1991. doi:10.1145/103418.103474.

[DG05] Mario Di Raimondo and Rosario Gennaro. New approaches for deniable au-

thentication. In Vijayalakshmi Atluri, Catherine Meadows, and Ari Juels, ed-

itors, ACM CCS 2005, pages 112–121. ACM Press, November 2005. doi:

10.1145/1102120.1102137.

[DGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable authen-

tication and key exchange. In Ari Juels, Rebecca N. Wright, and Sabrina De

Capitani di Vimercati, editors, ACM CCS 2006, pages 400–409. ACM Press,

October / November 2006. doi:10.1145/1180405.1180454.

124

http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/978-3-642-40084-1_25
http://dx.doi.org/10.1007/978-3-642-40084-1_25
http://dx.doi.org/10.1007/3-540-46766-1_36
http://dx.doi.org/10.1007/3-540-46766-1_36
http://dx.doi.org/10.1145/103418.103474
http://dx.doi.org/10.1145/1102120.1102137
http://dx.doi.org/10.1145/1102120.1102137
http://dx.doi.org/10.1145/1180405.1180454


[DHIN11] Rafael Dowsley, Goichiro Hanaoka, Hideki Imai, and Anderson C. A. Nascimento.

Round-optimal deniable ring authentication in the presence of big brother. In

Yongwha Chung and Moti Yung, editors, WISA 10, volume 6513 of LNCS, pages

307–321. Springer, Heidelberg, August 2011.

[DKNS04] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anony-

mous identification in ad hoc groups. In Christian Cachin and Jan Camenisch,

editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 609–626. Springer,

Heidelberg, May 2004. doi:10.1007/978-3-540-24676-3_36.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st FOCS,

pages 283–293. IEEE Computer Society Press, November 2000. doi:10.1109/

SFCS.2000.892117.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In

30th ACM STOC, pages 409–418. ACM Press, May 1998. doi:10.1145/276698.

276853.

[DRS18] David Derler, Sebastian Ramacher, and Daniel Slamanig. Post-quantum zero-

knowledge proofs for accumulators with applications to ring signatures from

symmetric-key primitives. In Tanja Lange and Rainer Steinwandt, editors, Post-

Quantum Cryptography - 9th International Conference, PQCrypto 2018, pages

419–440. Springer, Heidelberg, 2018. doi:10.1007/978-3-319-79063-3_20.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An
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[MS17] Giulio Malavolta and Dominique Schröder. Efficient ring signatures in the stan-

dard model. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,

Part II, volume 10625 of LNCS, pages 128–157. Springer, Heidelberg, December

2017. doi:10.1007/978-3-319-70697-9_5.

128

http://dx.doi.org/10.1007/978-3-319-76581-5_5
http://dx.doi.org/10.1007/3-540-39200-9_13
http://dx.doi.org/10.1007/3-540-39200-9_13
http://dx.doi.org/10.1007/978-3-662-45608-8_1
http://dx.doi.org/10.1007/978-3-662-45608-8_1
http://dx.doi.org/10.1007/978-3-662-48797-6_28
http://dx.doi.org/10.1007/978-3-319-98989-1_15
http://dx.doi.org/10.1007/978-3-319-98989-1_15
http://dx.doi.org/10.1007/978-3-642-19074-2_24
http://dx.doi.org/10.1007/978-3-642-19074-2_24
http://dx.doi.org/10.1007/978-3-319-70697-9_5


[Nao02] Moni Naor. Deniable ring authentication. In Moti Yung, editor, CRYPTO 2002,

volume 2442 of LNCS, pages 481–498. Springer, Heidelberg, August 2002. doi:

10.1007/3-540-45708-9_31.

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New re-

alizations of somewhere statistically binding hashing and positional accumulators.

In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume

9452 of LNCS, pages 121–145. Springer, Heidelberg, November / December 2015.

doi:10.1007/978-3-662-48797-6_6.

[Pas03] Rafael Pass. On deniability in the common reference string and random oracle

model. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 316–

337. Springer, Heidelberg, August 2003. doi:10.1007/978-3-540-45146-4_19.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In

Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 387–398.

Springer, Heidelberg, May 1996. doi:10.1007/3-540-68339-9_33.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-

raphy. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages

84–93. ACM Press, May 2005. doi:10.1145/1060590.1060603.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin

Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer,

Heidelberg, December 2001. doi:10.1007/3-540-45682-1_32.
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