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Soft Tensegrity Robot Driven by Thin Artificial
Muscles for the Exploration of Unknown Spatial

Configurations
Ryota Kobayashi1, Hiroyuki Nabae1, Gen Endo1, and Koichi Suzumori1

Abstract—The primary role of a robot exploring an unknown
space is to investigate the state and the spatial shape of the
environment. We have designed a soft robot that aims to move
forward in an unknown space as it recognizes and adapts to
the spatial shape of the environment. We previously reported
that soft tensegrity and recurrent neural network can be used
to realize tensegrity structure shape recognition. In this study,
a tensegrity robot was designed to actively generate propulsive
force as it presses its body against a wall in its surrounding
environment. This robot design includes a novel artificial muscle
arrangement called ”4/3 muscle winding,” which induces large
deformation in the tensegrity structure. The application of this
new artificial muscle arrangement allows two types of large
deformations to be induced in the tensegrity structure, which
results in displacements of 20% to 40% in the axial and radial
directions. We have demonstrated that the robot, which was
created by connecting the tensegrity structures, is lightweight
and possesses passive shape adaptability in a three-dimensional
environment. This tensegrity robot could enter an unknown
space, such as a cave, and recognize the spatial shape of the
surrounding environment by recognizing the tensegrity structure
shape.

Index Terms—Soft robot applications, soft sensors and actua-
tors, three-dimensional environment recognition, thin McKibben
muscle, tensegrity structure

I. INTRODUCTION

ONE of the roles of robots is to explore unknown spaces
that are inaccessible to humans. Some examples include

the exploration of an environment with obstacles [1][2], and
the exploration of an environment that cannot be directly
observed [3][4]. In such an unknown space, one of the primary
roles of a robot is to investigate the state and the spatial shape
of the unknown environment. If the space is well lit, the robot
can recognize the spatial shape of the environment by applying
parallax triangulation in accordance with the structure-from-
motion approach [5][6]. If the space is dark, the spatial shape
of an object can be recognized by using time-of-flight sensors,
such as light detection and ranging (LIDAR) and laser range
finder (LRF) [7][8]. However, the optical and sonic echoes that
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Fig. 1. Soft tensegrity robot driven by thin artificial muscles.

are generally unavoidable in dark and narrow spaces makes it
difficult to apply these methods to recognize the spatial shape
of the environment.

A soft robot (e.g., [9][10][11][12]) can physically sense its
surroundings in such an environment because of its passive
shape adaptability to the external world. Thus, we purposed
to realize a soft robot that can enter a space with an unknown
spatial shape, and concurrently navigate through the space
by utilizing wall-body contact, and recognize the 3D spatial
shape of the space based on time-series data of its position
and shape. Such a robot can be used, for example, for cave
exploration and spatial shape recognition. In an unknown
environment, the robot needs to be light enough to avoid
disturbing the environment. For this reason, we focused on
the development of a very light soft tensegrity structure driven
by thin McKibben muscles [13], which have a large power
output relative to their own weight and flexible movement
among other lightweight artificial muscles [14]. We have
previously reported on the success of tensegrity structure
shape recognition by incorporating a soft thread sensor and
processing the data using recurrent neural network (RNN)
[15]. This allows the robot to recognize the spatial shape of
the environment based on the knowledge of its own shape
as it moves through a space with its body in contact with
a wall assuming that the robot moves through a space of
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Fig. 2. Proposed 4/3 muscle winding scheme for the large deformation of
tensegrity structures using artificial muscles.

the approximate size of the robot’s motion range. However,
a tensegrity robot that can move through an unknown space
while adapting to the spatial shape of the environment has not
been realized here.

For a body to make contact with a wall in an unknown
space, it is necessary to realize a robot with a tensegrity
structure that can undergo significant shape changes and apply
moderate pressure against walls, which can be achieved via
inchworm mechanisms. This mechanism requires the robot to
generate a large amount of deformation in both the axial and
radial directions. However, most of the tensegrity robots that
have been developed to date deform a part of the structure
to realize rolling motion under their own weight [16][17][18].
Such motion cannot actively generate horizontal or gravita-
tional thrust, or passively adapt to the environment. Alterna-
tively, robots that use artificial muscles to move tensegrity
structures have also been studied [15][19][20][21], but the
amount of deformation that they can achieve is insufficient
for the desired motions. Thus, it is necessary to develop a
new method that allows a large amount of displacement to be
generated in the tensegrity structure using artificial muscles.

In this paper, we propose a new method for artificial
muscle arrangement called ”4/3 muscle winding;” this method
enables large deformation in a one-unit tensegrity structure.
The artificial muscle is flexible and can be activated in a bent
position. Thus, it is possible to wind artificial muscles around
the tensegrity structure using the proposed 4/3 muscle winding
method; the amount of displacement of the entire structure can
be increased without any additional mechanism. Additionally,
by connecting the soft tensegrity structures that induce this
large displacement, an inchworm robot was created, and its
behavior was verified. Eventually, the robot will be able to
enter into an unknown space and be able to recognize the
spatial shape of its surrounding environment.

The remainder of this letter is organized as follows. In
Section II, the design of a one-unit tensegrity structure that
produces large deformations is described. Experiments on the
environmental adaptability of the inchworm robot consisting
of the tensegrity structures are described in Section III. Lastly,
the conclusions and future plans are presented in Section IV.

a b Artificial muscle

Strut

Rubber thread

End point of strut

Fig. 3. Different states applied in the 4/3 muscle winding scheme: (a) initial
state and (b) pressurized state.

Pressurized state 1 Initial state Pressurized state 2

Fig. 4. Deformation induced by the artificial muscles.

II. MODELING AND DESIGN OF TENSEGRITY UNIT

This section describes 1) the concept of artificial muscle
placement for the large deformation of tensegrity (i.e., Sec-
tion II-A), and 2) the tensegrity model that induces large
deformation (i.e., Section II-B). Then, in Section II-C, the
effects of pre-stretching the rubber thread via simulation are
discussed. For considering the effects of pre-stretching, the
mathematical model is developed based on the potential energy
of the system to deal with the balance of force; Section II-D
discusses the experiments that were conducted using a real
tensegrity structure.

A. Proposed 4/3 muscle winding concept

To begin, we will explain the concept of 4/3 muscle wind-
ing, which is a method that entails the arrangement of artificial
muscles to significantly deform the tensegrity. In this study, a
tensegrity structure called the T6-sphere was used; it consists
of six struts and 24 rubber threads, as shown in Fig. 2. Our
group has previously demonstrated that the shape recognition
of tensegrity can be achieved by applying sensor threads as
the rubber threads of the tensegrity [15].

In this tensegrity model, there are 12 strut endpoints, each
of which has a isosceles triangle with itself as its vertex and
another strut as the base as shown in Fig. 2(A).The triangle
comprises two rubber threads and one strut. As shown in
Fig. 2(a), the artificial muscles, which had a combined length
of two struts and two rubber threads, was set to encompass
the triangle. Thin McKibben muscles have a contraction ratio
of approximately 20%; this means that two points that are
connected by artificial muscles can only move toward each
other by approximately 20%. However, by positioning the
artificial muscles as shown in Figs. 2(a) and 3(a) and applying
pneumatic pressure, it is possible to induce contact between
the point and strut (i.e., a contraction ratio of 100%), as shown
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Fig. 5. Names and set variables for tensegrity vertices. The green triangle is
Pattern 1 and the purple triangle is Pattern 2.

in Figs. 2(b) and 3(b). This is because the change in the length
of the perimeter of the triangle is very small when it deforms
(approximately 7%). Thus, the proposed 4/3 muscle winding
method allows for 100% contraction ratio of distance between
the point and the strut.

By applying 4/3 muscle winding to six of the 12 triangles
in the tensegrity structure, the entire tensegrity structure can
produce the two large deformations shown in Fig. 4.

B. Kinematics and statics

In the past, static [22] and dynamic analyses [23][24] and
structural stability analyses [25][26] have been conducted for
tensegrity structures. However, because the force of artificial
muscles changes with displacement, it is necessary to consider
the displacement in the analysis. Therefore, in this study,
the conventional kinematic analysis of tensegrity is coupled
with the displacement and force characteristics of the artificial
muscles.

The name of each vertex in the tensegrity model was set
as shown in Fig. 5, and the length of the strut was set to be
L. In the event of stretching or shrinking along the z axis,
the coordinates of the 12 vertices in the tensegrity model
can be represented by only four variables, i.e., r, θ, ϕ, and
h, according to the symmetry about the z-axis. The method is
shown below.

First, let r be the length of one side of the triangle at the
base, and denote the angles of the struts A1

1A2
1 using θ and ϕ,

as follows:

A1
1 = (0, 0, 0)⊤, (1)

B1
1 = (r, 0, 0)⊤, (2)

C1
1 =

(
1

2
r,

√
3

2
r, 0

)⊤

, (3)

A2
1 = (L sin θ cosϕ, L sin θ sinϕ, L cos θ)⊤. (4)

Additionally, by setting h as the distance between bottom tri-
angle A1

1B1
1C1

1 and top triangle A2
2B2

2C2
2, the center coordinates

of the tensegrity model can be expressed as shown in Eq. (5).

P =

(
1

2
r,

√
3

6
r,

h

2

)⊤

(5)

Fig. 6. Relationship between the rate of change in rubber length and load.

From the symmetry around the z-axis, using the rotation
matrix Rz(θ) to rotate θ around the z-axis, the following
relations are obtained.

B2
1 = Rz

(
2

3
π

)
(A2

1 − P ) + P , (6)

C2
1 = Rz

(
4

3
π

)
(A2

1 − P ) + P (7)

The coordinates of the remaining six vertices are then obtained
from the symmetry about P , as follows:

Xi
2 = 2P −X3−i

1 (X = A,B,C, i = 1, 2). (8)

Then, the 12 vertices in the tensegrity model can be rep-
resented by using the four variables r, θ, ϕ, and h. Using
the above-mentioned symmetry, the lengths of the 24 rubber
threads can be partitioned into four categories. The four
lengths are shown in Eq. (9), where i = 1, 2, and X and
Y differ from each other in A, B, and C.∣∣Xi

iY
i
i

∣∣ , ∣∣X3−i
i Yi

i

∣∣ , ∣∣Xi
iY

i
3−i

∣∣ , ∣∣Xi
3−iY

3−i
i

∣∣ (9)

Let the names of the lengths given by Eq. (9) be, from left to
right, lrubber,1, lrubber,2, lrubber,3, and lrubber,4. For example,
A2

1B1
1 has i = 1, X = A, and Y = B, and is classified as

lrubber,2.
The potential energy is derived from the above-described

variables. The shape of the tensegrity structure is calculated by
solving the equilibrium equation, which is obtained by partial
differentiation of the potential energy in each variable.

Because the tensegrity structure is sufficiently light, the total
potential energy U of the model is expressed as the sum
of the elastic energy of the rubber threads and the elastic
energy of the artificial muscles. All properties of the rubber
threads and artificial muscles used were measured by the
tensile testing machine used at [27]. The measured value was
an average value taken over five samples. The relationship
between the length and load normalized by the natural length
of the measured rubber thread is shown in Fig. 6. To simplify
the analysis, hysteresis is ignored and the average value of
loading and unloading is used. The function f(lrubber) of the
load on the length lrubber of the rubber thread is obtained by
approximating to the 9th order function using the least-squares
method. The highest order of the approximation function was
set to the minimum value such that the norm of the error vector
was less than 1% of the maximum value of the measurement.
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a b

Fig. 7. (a) Artificial muscle contraction ratio and load as a function of pres-
sure. (b) Relationship between the contraction ratio and load at P = 0.4 MPa.

The respective relationships between the pressure, load, and
contraction ratio of an artificial muscle is shown in Fig. 7.
It can be seen that the relationship between the load and
contraction ratio can be linearly approximated when a pressure
P is applied to the artificial muscle. Thus, the load applied to
the artificial muscle when the length of the muscle is lmuscle

can be obtained by using the contraction force gmax(P ),
contraction ratio rmax(P ) when a pressure P is applied, and
the length of the muscle lmuscle,0 when no pressure is applied,
as follows:

g(lmuscle) =

(
1− lmuscle,0 − lmuscle

rmax(P )lmuscle,0

)
gmax(P ). (10)

By integrating the rubber thread load f(lrubber) and the
artificial muscle load g(lmuscle) with their respective lengths,
the elastic energies of the rubber thread and artificial muscle
can be respectively obtained as F (lrubber) and G(lmuscle).

Two patterns of artificial muscle placement were considered.
Pattern 1 entails the use of 4/3 muscle winding for triangle
A1

1A2
1B1

1 and five other symmetrically positioned triangles.
Pattern 2 entails the use of 4/3 muscle winding for triangle
A1

1A2
1B1

2 and five other symmetrically positioned triangles. In
the cases of Patterns 1 and 2, the artificial muscles are placed
in relation to the z axis, so the tensegrity structure stretches
and contracts along the z axis.

The length of an artificial muscle can be approximated
according to the lengths of the two rubber threads and the
two struts that form the enclosed triangle. For this reason, in
the case of Pattern 1, the length of one artificial muscle can be
approximated as the sum of the lengths of |A1

1B1
1| = lrubber,1

and |A2
1B1

1| = lrubber,2, and the combined length of two struts
2L. Pattern 2 can be considered in the same way, and the
length of one artificial muscle in Pattern k (k = 1, 2) can be
expressed as lmuscle,k = 2L+ lrubber,2k−1 + lrubber,2k. Thus,
the total energy of the model can be expressed as the sum of
the potential energy of the rubber threads, and the potential
energy of the artificial muscles, as follows:

Uk(r, θ, ϕ, h) = 6

4∑
i=1

F (lrubber,i) + 6G(lmuscle,k), (11)

where

F (l) =

∫
f(l)dl, G(l) =

∫
g(l)dl. (12)
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Fig. 8. Tensegrity model of Pattern 1 as the pressure is varied.
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Fig. 9. Tensegrity model of Pattern 2 as the pressure is varied.

Partial differentiation of the potential energy obtained for
each of the four variables yields equilibrium equations for each
variable that can be obtained as shown in Eq. (13).

∂U

∂r
= 0,

∂U

∂θ
= 0,

∂U

∂ϕ
= 0,

∂U

∂h
= 0 (13)

Equation (13) can be solved numerically by using the MAT-
LAB function (vpasolve), and this method is used for all
simulations in this study. When L = 130 mm, the natural length
of the rubber thread is 50 mm, and the artificial muscles follow
Patterns 1 and 2, solving Eq. (13) leads to the deformation
shown in Figs. 8 and 9. Artificial muscles are omitted for a
clear understanding of the deformation of the structure.

In the case of Pattern 1, the deformation occurs as shrinkage
along the z axis and extension in the radial direction; in the
case of Pattern 2, the deformation occurs as extension along
the z axis and shrinkage in the radial direction.

When applying the tensegrity structure to inchworm robots,
it is desirable for one unit to be able to generate pulling and
pushing forces that can be applied to other connected units. For
this reason, artificial muscles were designed to be attached to
Patterns 1 and 2. However, such conditions inhibit deformation
because the length of the artificial muscles restricts movement.
To solve this problem, the artificial muscles to be attached
were made to be long and slack. Specifically, we attached an
artificial muscle that was 1.1 times longer than the length of
that shown in Fig. 2(a); we then confirmed that the deformation
of the structure was not restricted by the length of the artificial
muscle. In the simulation, when the artificial muscle is slack,
the energy G of the artificial muscle should be set to zero.

C. Case studies for tensegrity design

As shown in Fig. 6, the rubber thread represents strong
nonlinearity in the relationship between rate of change in
length and load. So the natural length of the rubber thread is a
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Fig. 10. (a) Component to be attached to the tip of the strut. (b) Fittings to
split one tube into six tubes.

design parameter for tensegrity structure, which can affect per-
formance of the tensegrity actuation. As mentioned above, our
tensegrity robot requires large deformation in both the axial
and radial directions, therefore, this Subsection investigates the
effect of pre-stretching the rubber thread on the deformation
of the tensegrity in each direction.

Figure 11 shows the variation of the structure of the rubber
thread with respect to that at its natural length obtained from
the simulation. The y-axis in Fig. 11 shows the ratio of the
length at the steady state to the initial length in both the axial
and radial direction of the tensegrity. In the actual tensegrity
structure, a physical component shown in Fig. 10(a) at the
vertices in the tensegrity structure come into contact with
the strut, as shown in Fig. 3(b). Thus, the simulation was
designed to terminate at the point where the distance between
the struts equals 15 mm (i.e., 12 mm at the apex and 3 mm
at the radius of the strut). When performing the actual length
measurements for the tensegrity structure, the length of the
component shown in Fig. 10 was also measured; this length
was taken into account in the simulation.

In the simulation wherein 0.4 MPa was applied to the
artificial muscle, the deformation of Pattern 1 did not signif-
icantly change when the natural length was at least 40 mm;
alternatively, Pattern 2 most easily deformed when the natural
length was approximately 50 mm.

D. Experimental evaluations

Each strut was made up of a 6-mm-diameter plastic rod
with L = 130 mm; three bamboo sticks that were 110 mm in
length and 2.5 mm in diameter were placed inside to prevent
buckling due to compressive force. Rubber thread with the
load displacements shown in Section II-B was also used. The
rubber thread was fixed by attaching the component shown in
Fig. 10(a) to the end of the strut. Regarding the role of this
component, the artificial muscles were attached to three of the
four holes, and a tube to be attached to the artificial muscles
was passed through the remaining hole and then fixed. By
using the pneumatic fitting shown in Fig. 10(b), we were able
to ensure that the pneumatic pressure supplied from a single
tube could be simultaneously applied to six artificial muscles.
We used 1.8-mm-diameter tubes which have enough flexibility
not to interfere with the deformation of tensegrity structure.
The components shown in Fig. 10 were made using a 3D
printer.

The effect of pre-stretching in II-C on the actual tensegrity
structure is shown in Fig. 11. The amount of displacement
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Artificial muscle

Rubber thread

Fig. 13. (a) Tensegrity when artificial muscles are applied in Pattern 1. (b)
Tensegrity in the initial state. (c) Tensegrity when artificial muscles are applied
in Pattern 2.

was measured by placing two parallel plates on both sides of
the deformed tensegrity structure and measuring the distance
between them. The effects of pre-stretching on deformation, as
described in Section II-C, are shown in Fig. 11 as a comparison
between the simulation and experiment. When the deformation
of the models was experimentally measured, there was no
significant difference in the deformation mechanism when the
natural length exceeded 50 mm.

According to [15], the shape of the tensegrity cannot be
estimated if the rubber threads are slack. So the natural length
of the rubber thread should be minimized. For this reason,
a natural length of 50 mm is optimal, because it allows the
tensegrity structure to be sufficiently deformed, while also
discouraging rubber thread sagging.

Figure 12 shows the axial and radial length results for the
tensegrity with a natural length of 50 mm. The tensegrity
in this case is shown in Fig. 13. Pattern 1 resulted in a
shrinkage of approximately 40% in the axial direction, and
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Fig. 15. Driving principle of the tensegrity robot and the control signal.

an elongation of approximately 25% in the radial direction.
Pattern 2 resulted in approximately 25% elongation in the
axial direction, and approximately 20% shrinkage in the radial
direction. Consequently, a change from Pattern 1 to Pattern 2
resulted in 65% and 45% changes in the axial and radial
directions. Application of the 4/3 muscle winding method can
cause a large deformation to be generated in response to a
very small change in the length of the artificial muscle; thus,
it works well even when there is slack, and two patterns can
be simultaneously implemented. A source of the discrepancies
between the simulation and experiment is the large frictional
force at the point where the artificial muscle bends. Because
the large deformations in the two types of tensegrity structures
that can be generated via 4/3 muscle winding significantly vary
in the axial and radial directions, it should be possible to create
an inchworm robot that propels by pushing its body against
walls.

III. DESIGN AND EXPERIMENTAL EVALUATION OF
PERIODIC SOFT TENSEGRITY ROBOT

A. Robot design and control

By connecting the five tensegrity structures, an inchworm
robot was created. The robot and its control system are shown

in Fig. 14. For each unit, there are two sets of artificial muscles
for Patterns 1 and 2 of the artificial muscle arrangement; thus,
there are a total of 10 sets of artificial muscles in the five units.
The control of these 10 pairs of artificial muscles occurs as
follows. First, the pneumatic pressure from the compressor is
adjusted to 0.4 MPa by the regulator. Then, five tensegrity
deformations are controlled by using a microcontroller to
control the on/off functionality of 10 3-port solenoid valves.
By using this control system, the robot can move as shown
in Fig. 15. The weight of the robot, excluding the pneumatic
tubes, is 397 g. Additionally, to ensure that the robot grips the
wall, we attached two anti-slip Tango Black rubber bumpers
for each tensegrity that grips the wall, as shown in Fig. 14.

Figure 15 shows the driving principle of the robot. Each
unit is named as shown in Fig. 15, the tensegrity robot moves
in the direction opposite to the direction of the wave when it
is moved for one cycle by changing the extending unit from
Unit I→Unit II→Unit III while gripping the others.

B. Experimental evaluation

1) Spatial adaptability to path width: The influence of wall
spacing on the driving characteristics of the robot was deter-
mined. Experiments were conducted to evaluate the movement
of the robot when the distance between the walls was changed
from 150 mm to 240 mm in 10-mm steps. Figure 16 shows
how the robot moves when the wall-to-wall distances are
150, 200, and 240 mm. In each case, only the middle unit
extends in the direction of motion, while the other units
deform their tensegrity to grip the wall. Owing to its softness,
the tensegrity robot is able to contact its body with a wall,
even if the width between the walls changes. The speed at
which the robot moves is shown in Fig. 17. To measure the
speed, we performed the sequence shown in Fig. 15 ten times,
and calculated the speed based on the distance traveled. The
interval between each sequence was set to 2.0 s to allow
sufficient deformation of the tensegrity structure.

When the wall spacing was 210 mm, the tensegrity structure
was able to consistently establish contact with both sides of
the wall; however, under the condition of wider spacing, the
tensegrity robot was unable to consistently establish contact
with the walls, as was observed in the case of the 240 mm
spacing (Fig. 16). When the spacing between the walls was
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240 mm

200 mm

150 mm

Fig. 16. Adaptation of the robot to the width of the wall.

Fig. 17. Relationship between wall-to-wall spacing and speed.

narrow, the tensegrity structure deformed less in the radial
direction; the extent of axial deformation also decreased
accordingly; nevertheless, it was still able to move forward.
In this case, the tensegrity structure was rotating with a slight
twist in the axial direction.

2) Spatial adaptability to curved path: The adaptability of
the curved environment is shown in Fig. 18, where Fig. 18(a)
shows the robot moving along a straight path with a wall
spacing of 210 mm; Fig. 18(b) shows the robot moving along
a curved path with a radius of curvature of 550 mm and wall
spacing of 210 mm. In both cases, the driving principle of the
robot is the same, and the ∆T and ∆t discussed in Section
III-B4 were ∆T = 0.6 s, and ∆t = 0.2 s. Under the condition
of the same driving principle, the robot was able to passively
adapt to even unknown environment.

3) Propelling forward in vertical pipe: The ability of the
robot to overcome the force of gravity was also evaluated.
When six anti-slip rubbers were attached to each unit, the
robot was able to climb vertically through a pipe with an
inner diameter of 210 mm, as shown in Fig. 18(c). However,
under the condition of a relatively short time interval between
sequences, the robot was occasionally unable to grip the pipe,
which caused it to fall; this did not occur under the condition of
horizontal movement. For this reason, the time interval of the
sequence should be sufficiently long; thus, in the case of the
movements shown in Fig. 18(c), ∆T = 1.0 s and ∆t = 0.2 s
were used. This experiment confirmed that, not only is the

a c

0 s

70 s

0 s 160 s

20 s

0 s

b

Fig. 18. (a) Moving along a straight path. (b) Moving along a curved path.
(c) Vertical tube climbing demonstration.

Fig. 19. Relationship between the sequence time interval ∆T and speed when
the wall spacing is 210 mm.

robot able to move along the horizontal plane, but it is also able
to overcome the force of gravity. Thus, the robot is believed
to be capable of such movements in an unknown environment,
meaning that it should be able to adapt to and explore a 3D
environment.

4) Driving frequency: Lastly, the influence of the time
interval of the sequence on the driving characteristics of the
robot was evaluated. The driving mechanism of this tensegrity
robot differs from the conventional inchworm mechanism, in
that its axial and radial motions are interlocked, which results
in interference between them. For example, in Fig. 15-1→2,
Unit I grips before Unit II is fully extended and the amount of
extension of Unit II is reduced. For this reason, the gripping
motion is delayed by ∆t as shown in the control signal in
Fig. 15. The change in the speed at which the robot moves in
response to the change in the time interval of the sequence ∆T
is shown in Fig. 19 for ∆t = 0.0, 0.2, 0.4 s. The wall-to-wall
distance was set to be 210 mm, and the sequence intervals
were 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, and 2.0 s. When the time
interval was relatively long, the artificial muscles were able
to sufficiently contract to deform the tensegrity; however, the
speed of movement was slow because the time of one cycle
was excessively long. Alternatively, when the time interval was
relatively short, the speed was reduced because the artificial
muscles did not sufficiently contract to deform the tensegrity.
Under the conditions of ∆t = 0.2 and 0.4 s, robot movement
was faster than that which occurred under the condition of
∆t = 0.0 s. Thus, unlike the conventional inchworm mecha-
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nism, because the proposed inchworm mechanism mandates
interlocking in the axial and radial directions, it is possible
to ensure efficient movement by changing the timing of the
application of pneumatic pressure.

IV. CONCLUSIONS

We have developed the 4/3 muscle winding method, which
generates 100% collapsing motion under the conditions of
a 20% artificial muscle contraction ratio; we also realized
large deformation of the tensegrity structure. This method
allows one tensegrity structure to perform the following two
types of movements: 1) approximately 40% contraction in
the axial direction and approximately 25% elongation in the
radial direction under the conditions of an artificial muscle
contraction ratio of approximately 20%, and 2) approximately
25% elongation in the axial direction and approximately 20%
elongation in the radial direction.

By connecting the five units of the tensegrity structures,
we were able to create a lightweight (approximately 400 g)
tensegrity robot with passive environmental adaptability. The
robot was demonstrated to be able to move between walls with
widths ranging from 150 mm to 240 mm by adapting to its
environment; it was also able to apply same driving method to
move forward while adapting its body to a curved path with
a radius of curvature of 550 mm. Furthermore, because the
robot was able to climb a vertical pipe, it is expected that
the robot will be able to adapt to and navigate complex 3D
environments.

In the future, we plan to employ RNN to endow this
tensegrity robot with the ability to recognize the spatial shape
of an unknown environment.
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S. Yavuz, “Autonomous mobile robot exploration in negative obstacle
environment,” in 2017 25th Signal Processing and Communications
Applications Conference (SIU), 2017, pp. 1–4.

[2] Y. Ozawa, M. Watanabe, K. Tadakuma, E. Takane, G. Marafioti, and
S. Tadokoro, “Mono-wheeled flexible track capable of climbing high
steps and adapting to rough terrains,” in 2020 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), 2020, pp.
148–153.

[3] Y. Bando, T. Mizumoto, K. Itoyama, K. Nakadai, and H. G. Okuno,
“Posture estimation of hose-shaped robot using microphone array lo-
calization,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013, pp. 3446–3451.

[4] Y. Bando, K. Itoyama, M. Konyo, S. Tadokoro, K. Nakadai, K. Yoshii,
and H. G. Okuno, “Microphone-accelerometer based 3d posture estima-
tion for a hose-shaped rescue robot,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 5580–
5586.

[5] S. Ullman and S. Brenner, “The interpretation of structure from motion,”
Proceedings of the Royal Society of London. Series B. Biological
Sciences, vol. 203, no. 1153, pp. 405–426, 1979. [Online]. Available:
https://royalsocietypublishing.org/doi/abs/10.1098/rspb.1979.0006

[6] L. Torresani, A. Hertzmann, and C. Bregler, “Nonrigid structure-from-
motion: Estimating shape and motion with hierarchical priors,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30,
no. 5, pp. 878–892, 2008.

[7] Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3d shape
scanning with a time-of-flight camera,” in 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2010, pp.
1173–1180.

[8] J. Jimenez, M. Mazo, J. Urena, A. Hernandez, F. Alvarez, J. Garcia, and
E. Santiso, “Using pca in time-of-flight vectors for reflector recognition
and 3-d localization,” IEEE Transactions on Robotics, vol. 21, no. 5,
pp. 909–924, 2005.

[9] M. Takeichi, K. Suzumori, G. Endo, and H. Nabae, “Development of
giacometti arm with balloon body,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 951–957, 2017.

[10] S. Wakimoto, K. Ogura, K. Suzumori, and Y. Nishioka, “Miniature
soft hand with curling rubber pneumatic actuators,” in 2009 IEEE
International Conference on Robotics and Automation, 2009, pp. 556–
561.

[11] M. M. Coad, R. P. Thomasson, L. H. Blumenschein, N. S. Usevitch,
E. W. Hawkes, and A. M. Okamura, “Retraction of soft growing robots
without buckling,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 2115–2122, 2020.

[12] R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes,
A. D. Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, “Multigait
soft robot,” Proceedings of the National Academy of Sciences,
vol. 108, no. 51, pp. 20 400–20 403, 2011. [Online]. Available:
https://www.pnas.org/content/108/51/20400

[13] S. Wakimoto, K. Suzumori, and J. Takeda, “Flexible artificial muscle by
bundle of mckibben fiber actuators,” in 2011 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM), 2011, pp. 457–
462.

[14] W. Liang, H. Liu, K. Wang, Z. Qian, L. Ren, and L. Ren, “Comparative
study of robotic artificial actuators and biological muscle,” Advances in
Mechanical Engineering, vol. 12, no. 6, p. 1687814020933409, 2020.
[Online]. Available: https://doi.org/10.1177/1687814020933409

[15] W.-Y. Li, A. Takata, H. Nabae, G. Endo, and K. Suzumori, “Shape
recognition of a tensegrity with soft sensor threads and artificial muscles
using a recurrent neural network,” IEEE Robotics and Automation
Letters, vol. 6, no. 4, pp. 6228–6234, 2021.

[16] R. L. Baines, J. W. Booth, and R. Kramer-Bottiglio, “Rolling soft
membrane-driven tensegrity robots,” IEEE Robotics and Automation
Letters, vol. 5, no. 4, pp. 6567–6574, 2020.

[17] K. Kim, A. K. Agogino, D. Moon, L. Taneja, A. Toghyan, B. Dehghani,
V. SunSpiral, and A. M. Agogino, “Rapid prototyping design and control
of tensegrity soft robot for locomotion,” in 2014 IEEE International
Conference on Robotics and Biomimetics (ROBIO 2014), 2014, pp. 7–
14.

[18] K. Doney, A. Petridou, J. Karaul, A. Khan, G. Liu, and J. Rieffel, “Be-
havioral repertoires for soft tensegrity robots,” in 2020 IEEE Symposium
Series on Computational Intelligence (SSCI), 2020, pp. 2265–2271.

[19] Y. Koizumi, M. Shibata, and S. Hirai, “Rolling tensegrity driven by
pneumatic soft actuators,” in 2012 IEEE International Conference on
Robotics and Automation, 2012, pp. 1988–1993.

[20] S. Hirai and R. Imuta, “Dynamic simulation of six-strut tensegrity
robot rolling,” in 2012 IEEE International Conference on Robotics and
Biomimetics (ROBIO), 2012, pp. 198–204.

[21] W.-Y. Li, H. Nabae, G. Endo, and K. Suzumori, “New soft robot hand
configuration with combined biotensegrity and thin artificial muscle,”
IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4345–4351,
2020.

[22] S. H. Juan and J. M. Mirats Tur, “Tensegrity frameworks:
Static analysis review,” Mechanism and Machine Theory,
vol. 43, no. 7, pp. 859–881, 2008. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0094114X07001218

[23] H. Murakami, “Static and dynamic analyses of tensegrity structures. part
1. nonlinear equations of motion,” International Journal of Solids and
Structures, vol. 38, no. 20, pp. 3599–3613, 2001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020768300002328

[24] H. Murakami, “Static and dynamic analyses of tensegrity structures.
part ii. quasi-static analysis,” International Journal of Solids and
Structures, vol. 38, no. 20, pp. 3615–3629, 2001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S002076830000233X

[25] G. Tibert and S. Pellegrino, “Review of form-finding methods for
tensegrity structures,” International Journal of Space Structures, vol. 18,
pp. 209–223, 12 2003.

[26] C. Sultan and R. Skelton, “The prestressability problem of tensegrity
structures: Some analytical solutions,” International Journal of Solids
and Structures - INT J SOLIDS STRUCT, vol. 38, 07 2001.

[27] S. Koizumi, S. Kurumaya, H. Nabae, G. Endo, and K. Suzumori,
“Braiding thin mckibben muscles to enhance their contracting abilities,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3240–3246,
2018.


