
論文 / 著書情報
Article / Book Information

題目(和文)

Title(English) Approximation algorithms for single-machine scheduling problems with
a non-renewable resource

著者(和文) 橋本進

Author(English) Susumu Hashimoto

出典(和文) 学位:博士（工学）,
 学位授与機関:東京工業大学,
 報告番号:甲第12274号,
 授与年月日:2022年6月30日,
 学位の種別:課程博士,
 審査員:塩浦 昭義,松井 知己,梅室 博行,大和 毅彦,中田 和秀,水野 眞治

Citation(English) Degree:Doctor (Engineering),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第12274号,
 Conferred date:2022/6/30,
 Degree Type:Course doctor,
 Examiner:,,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Doctoral Thesis

Approximation algorithms for single-machine

scheduling problems with a non-renewable

resource

Susumu Hashimoto

Supervisor Prof. Akiyoshi Shioura

June, 2022

Department of Industrial Engineering and Economics

School of Engineering

Tokyo Institute of Technology

i

Abstract

This thesis deals with single-machine scheduling problems with a non-renewable re-
source and total weighted completion time criterion. Non-renewable resources refer to the
resources that are consumed when processing a job. The non-renewable resource often
appears in real-world scheduling because it includes typical constraints, such as raw ma-
terials. The total weighted completion time criterion is one of the most studied objective
functions in researches of scheduling problems. Many of these problems are known to be
NP-hard, even if they have some input restrictions. If a problem is NP-hard, there is no
polynomial-time algorithm to solve the problem unless P=NP. Thus, approximation algo-
rithms are studied for them. A polynomial-time algorithm is called an α-approximation
algorithm for a minimization problem if the algorithm always outputs a solution whose ob-
jective value is α times the optimal value at most. Despite several approximation studies
for the problem, no approximation algorithm is known, even with some input restrictions
so far.

In this thesis, we give approximation results for the problems. To obtain the results,
we establish a problem simplification technique that preserves approximation ratios of the
approximation algorithms. This technique plays an important role in the proof of our
results because it can fix several inputs. Based on this technique, we find approximation
algorithms for two problems.
First, we prove a conjecture by Györgyi and Kis [19]. The conjecture states that an

algorithm is 2-approximation for the problem such that the processing times are all equal
and the weights are proportional to the resource consumption. Besides, we show that the
factor 2 is tight for the algorithm.

Second, we establish a 3-approximation algorithm for the problem such that the weights
are proportional to the resource consumption. The algorithm is the first approximation
algorithm for the problem. Moreover, we also show that the factor 3 is tight for the
algorithm.

Keywords Scheduling, List Scheduling Algorithm, Non-renewable Resource, Approxi-
mation Algorithm

ii

Contents

Chapter 1 Introduction 1
1.1 Background . 1
1.2 Objective . 3
1.3 Structure . 4

Chapter 2 Preliminary 5
2.1 Problem formulation . 5
2.2 Notations and Assumptions . 6
2.3 List scheduling algorithms . 6
2.4 Previous research . 8
2.5 Motivation and main contribution . 11

Chapter 3 Problem simplification 12

Chapter 4 A 2-approximation algorithm for a single-machine scheduling problem with
a non-renewable resource and unit processing times 18

4.1 Main results . 18
4.2 Proof of Theorem 6 . 19
4.3 Proof of Theorem 7 . 24

Chapter 5 A 3-approximation algorithm for a single-machine scheduling problem with
a non-renewable resource 25

5.1 Algorithm and main results . 25
5.2 Additional problem simplification . 26
5.3 Proofs . 31

Chapter 6 Conclusion 33

Appendix A Computational remarks 34

1

Chapter 1

Introduction

This chapter gives the background and the motivation of the thesis. Section 1.1 describes
the background of problems and algorithms treated in the thesis. Section 1.2 states the
objective of the thesis. Finally, Section 1.3 gives the structure of the thesis.

1.1 Background
The thesis studies approximation list scheduling algorithms for single-machine scheduling
problems with a non-renewable resource and the total weighted completion time criterion.
This section elucidates the problems, then we explain approximation algorithms and list
scheduling algorithms. At first, we introduce the most fundamental scheduling problem.

Single-machine Scheduling Problem (SSP) has jobs, a machine, and a schedule criterion
or objective function. The machine can process each job, and its processing time is given.
SSP aims to find the best schedule or when the machine completes (starts) each job. SSP
ordinary has three constraints as follows:

• The jobs cannot be preempted.
• The machine can process the jobs after a fixed time.
• The machine cannot process multiple jobs simultaneously.

We study the total weighted completion time criterion for SSPs. This criterion gives a
weight for each job to minimize the total sum of weighted completion times. Based on
SSP, we explain Single-machine Scheduling Problems with a Non-renewable Resource(NR-
SSP).
NR-SSP is one of the simplest SSPs dealing with non-renewable resources. Non-

renewable resources are one of the machine’s resources. The machine consumes non-
renewable resources when it starts processing a job. NR-SSP considers the situation that
has no plenty non-renewable resources and the lack resources are replenished in future.
NR-SSP contains jobs, a machine, single-type non-renewable resources, supply plans of
the resource, and a schedule criterion. Each job has a processing time and a resource con-
sumption amount, and each supply plan consists of a supply date and a supply amount.
Constraints of NR-SSP are as follows:

• The jobs cannot be preempted.

Chapter 1 Introduction 2

• The machine can process the jobs after a fixed time.
• The machine cannot process multiple jobs simultaneously.
• Starting each job requires consuming the resources.
• On each supply date, the fixed amount of resources are replenished.
• There are no resources except to be supplied.

Note that the first three constraints are the same as SSP.
The non-renewable resource often appears in the real-world scheduling problems. We

give two examples below:

Example 1. Paper factory� �
We consider a factory that produces papers. The papers made of pulps, and whole-
salers supply them to the factory. Thus, the pulps are one of the factory’s resources,
and besides, paper-producing jobs consume them. Therefore, pulps can be regarded
as a non-renewable resource for jobs in the factory.� �
Example 2. Startup company� �
This example focuses on a growing startup company. Various projects, such as build-
ing another office and capital expenditure, can be considered ways to expand the
company’s business. However, the company does not have enough cash for them, and
thus, it needs to assign future profits and loans to them. In this case, projects are
regarded as jobs, and money is considered as a non-renewable resource.� �
The first example shows that the non-renewable resources include ingredients and in-

termediate products of the main product. The second example implies that money can
be one of the non-renewable resources in some situations. Since the former situation is
common in real-world factories, NR-SSP is one of the fundamental problems for practical
scheduling problems.
Next, we elucidate approximation algorithms. Most of the scheduling problems can be

formulated as combinatorial optimization problems. Thus, exponential-time algorithms,
such as brute-force algorithms, can solve them. However, these algorithms take an enor-
mous amount of time except for tiny problems. For example, a SSP with 20 jobs has
20! ≈ 2.43 × 1018 possible job processing orders. Thus, primitive brute-force algorithms
must check 2.4×1018 schedules at least. Therefore, polynomial-time algorithms are studied
for scheduling problems. Although some scheduling problems can be solved in polynomial-
time [8, 14, 23], many problems are known to be NP-hard [4, 10, 14, 16, 18, 20]. If a
problem is NP-hard, then there is no polynomial-time algorithm to solve it unless P=NP.
For NP-hard problems, many studies investigate approximation algorithms.
For a minimization problem, a polynomial-time algorithm is said to be a ρ(n)-

approximation algorithm if the algorithm always outputs a solution whose objective
value is less than or equals to ρ(n) ∗ OPT , where n represents the input size and OPT
denotes the optimal value. The factor ρ(n) is called approximation ratio of the algorithm.
Besides, O(1)-approximation algorithm is also called constant-factor approximation
algorithm. For constant-factor approximation algorithms, if its approximation ratio can

Chapter 1 Introduction 3

be less than 1 + ϵ for any constant ϵ > 0, the algorithm is called PTAS(Polynomial-Time
Approximation Scheme). Moreover, if the time complexity of a PTAS is polynomial
of ϵ−1 and the input size, the PTAS is specially called FPTAS(Fully Polynomial-Time
Approximation Scheme).

Finally, we explain list scheduling algorithms. List scheduling algorithm is one of the
greedy algorithms for scheduling problems. The algorithm consists of the following steps:

List scheduling algorithm(for single-machine scheduling problems)� �
Inputs: Jobs and other inputs of the problem
Outputs: Completion times
Step1. Sort the jobs.
Step2. Process the first job as soon as possible.
Step3. Process the next job as soon as possible while the starting time is after the
completion of the previous job.
Step4. Repeat Step3 until all the jobs are completed.� �

Since the algorithm constructs only single schedule, it is known as one of the fast algo-
rithms for scheduling problems. Although the algorithm is simple, there are exact and
constant-factor approximation results for some scheduling problems. These results are
summarized in Section 2.4.

1.2 Objective
The objective of the thesis is to establish constant-factor approximation algorithms for
NR-SSPs with the total weighted completion time criterion. Györgyi and Kis [18] show
that the problem is NP-hard even if it has the following two input limitations:

(A) Unit processing times,
(B) Weights proportional to resource consumption.

Besides, they prove that a list scheduling algorithm with non-increasing processing time or-
der is a 3-approximation algorithm for the NR-SSP with (A) and (B). After that, Györgyi
and Kis [19] conjecture that the algorithm is actually a 2-approximation algorithm for
the problem. However, the conjecture has not been proved until now. Moreover, no
constant-factor approximation algorithm is found for the more general NR-SSPs.

The thesis gives new approximation results for the next two problems:

Problem (I): NR-SSP with the total weighted completion time criterion, (A), and
(B),
Problem (II): NR-SSP with the total weighted completion time criterion and (B).

For Problem (I), we show that the conjecture by Györgyi and Kis [19] is true; namely,
we prove that a list scheduling algorithm with non-increasing processing time order is a
2-approximation algorithm for Problem (I). Besides, we also show that the approximation
ratio is tight for the algorithm, and no instance achieves the approximation ratio exactly.

Chapter 1 Introduction 4

For Problem (II), we develop a 3-approximation list scheduling algorithm. Problem
(II) is a generalized problem of Problem (I), and the algorithm is the first constant-factor
approximation algorithm for the problem. Similar to the above, we also show that the
approximation ratio is tight for the algorithm, and no instance achieves the approximation
ratio exactly.

1.3 Structure
The structure of the thesis is below.
Chapter 2 explicates the formal background. Chapter 3 shows a simplification technique

that is used for proving our results. This technique can fix all inputs about supply plans
when we prove main results described in Section 1.2. Chapter 4 proves the main results for
Problem (I) or NR-SSP with the total weighted completion time criterion, unit processing
times, and weights proportional to resource consumption. Chapter 5 shows the main
results for Problem (II) or NR-SSP with the total weighted completion time criterion and
weights proportional to resource consumption.

5

Chapter 2

Preliminary

This chapter gives a formal explanation of the background of the thesis. Section 2.1
formulates NR-SSP mathematically. Section 2.2 describes notations and assumptions
(with no loss of generality) used in this thesis. Section 2.3 explains a list scheduling
algorithm for NR-SSP. Section 2.4 summarizes previous researches related to the thesis.
Finally, Section 2.5 shows the motivation and main results of the thesis.

2.1 Problem formulation
This section shows a mathematical formulation of NR-SSP.
NR-SSP contains jobs J = (J1, . . . , Jn), a machine, single-type non-renewable re-

sources, and q supply plans of the resources. Each job Jj has a weight wj > 0, a
consumption amount aj > 0, and a processing time pj > 0, and the ith supply plan
consists of a supply date ui ≥ 0 and a supply amount bi > 0. In this problem, any sched-
ule is represented by an n-dimensional vector C = (C1, C2, . . . , Cn)

T, where Cj means
completion time of Jj and (·)T denotes transpose.
Constraints of NR-SSP are as follows:

• The jobs cannot be preempted.
• The machine can process the jobs after time 0.
• The machine cannot process multiple jobs simultaneously.
• Starting job Jj requires to consume aj resources.
• bi resources are replenished at time ui.
• There are no resources except to be supplied.

The last three constraints can be expressed as the next condition:∑
j:Cj−pj≤T

aj ≤
∑

i:ui≤T

bi for any T ≥ 0 (2.1)

For this problem, various objective functions are studied, for examples, total weighted
completion times(minimizing

∑
j wjCj) and makespan (minimizing maxj Cj). Depending

on the objective function, NR-SSP may have extra inputs. For an instance, NR-SSP
with maximum lateness objective has an n-dimensional vector d = (d1, d2, . . . , dn)

T that

Chapter 2 Preliminary 6

represents due dates, and the problem aims to minimize maxj Cj − dj .

2.2 Notations and Assumptions
This section introduce notations and assumptions (with no loss of generality) for the
simplicity of the thesis.

We introduce vector expressions of the inputs, p = (p1, p2, . . . , pn)
T, w =

(w1, w2, . . . , wn)
T, a = (a1, a2, . . . , an)

T, b = (b1, b2, . . . , bq)
T, and u = (u1, u2, . . . , uq)

T,
where (·)T denotes transpose. In the rest of the thesis, we deal with NR-SSPs with
total weighted completion time criterion and with a constraint w = a. Then, we
represent an instance by a tuple of inputs, ⟨n,J ,p,a, q,u, b⟩. Note that the input w is
abbreviated from the expression because of the additional constraint w = a. Moreover,
we denote the objective function of an instance S = ⟨n,J ,p,a, q,u, b⟩ by fS(C),
namely, fS(C) = wTC = aTC. Let 0n be an n-dimensional zero vector (0, 0, . . . , 0)T,
1n be an n-dimensional 1’s vector (1, 1, . . . , 1)T, and nn be an n-dimensional vector
(1, 2, . . . , n)T. We define σ(v) = (v1, v1 + v2, . . . ,

∑n
j vj)

T, where v = (v1, v2, . . . , vn)
T is

any n-dimensional vector. Moreover, we let N = {1, 2, . . . , n} and O be a set of all the
permutations of (1, 2, . . . , n).

For any instance S = ⟨n,J ,p,a, q,u, b⟩ and any permutation o ∈ O, let
r = (r1, r2, . . . , rn)

T = (w1/p1, w2/p2, . . . , wn/pn)
T be a n-dimensional vector and

C∗(S) = (C∗
1 (S), C

∗
2 (S), . . . , C

∗
n(S))

T be an optimal schedule for S. Then we impose the
following assumptions without loss of generality:

Assumption 1.
∑n

j=1 aj =
∑q

i=1 bi.

Assumption 2. maxj
aj

pj
≤ 1.

Assumption 3. Jobs are sorted such that C∗
1 (S) < C∗

2 (S) < · · · < C∗
n(S).

Assumption 1 does not lose generality because the problem becomes infeasible if∑n
j=1 aj >

∑q
i=1 bi, and if

∑n
j=1 aj <

∑q
i=1 bi, we use only the first

∑n
j=1 aj resources.

Assumption 2 also does not lose generality because minimizing
∑

j ajCj(=
∑

j wjCj) is

equivalent to minimizing
∑

j λajCj for any λ > 0. Moreover, we can suppose Assumption
3 because we do not use any information of the optimal schedule in our algorithms.

2.3 List scheduling algorithms
Mathematically, list scheduling algorithms can be expressed as follows:

Chapter 2 Preliminary 7

List scheduling algorithm(for single-machine scheduling problems)� �
Inputs: Jobs (J1, J2, . . . , Jn) and other inputs of the problem
Outputs: Completion times C = (C1, C2, . . . , Cn)
Step1. Calculate a permutation o = (o(1), o(2), . . . , o(n)) of (1, 2, . . . , n) by the
inputs.
Step2. For i = o(1), o(2), . . . , o(n), process Jo(i) at

Co(i) = min
{
t|t ≥ Co(i−1) + po(i), t satisfies (2.1)

}
,

where Co(0) = 0.� �
Step1 calculates the order of the jobs, and Step2 processes each job at the earliest time
respectively while keeping the order. For simple ordering such as non-increasing pj order,
the running time of Step1 is O(n log n). Besides, the time complexity of Step2 is O(n)
if each repetition runs in O(1) time. For NR-SSP problems, Step2 or the list scheduling
algorithm with a permutation o = (o(1), o(2), . . . , o(n)) can be written as follows:

Algorithm 1 A list-scheduling algorithm for NR-SSP

Input: NR-SSP inputs (n,J ,p,w,a, q,u, b) and a permutation o ∈ O
Output: Completion times C = (C1, C2, . . . , Cn)

T

1: if
∑n

j=1 aj >
∑q

i=1 bi then
2: return INFEASIBLE ▷ The instance is infeasible
3: end if
4: A← ao(1)
5: B ← b1
6: j ← 1
7: i← 1
8: Co(0) ← 0
9: Calculate a permutation (o′1, o

′
2, . . . , o

′
q) of (1, 2, . . . , q) such that uo′1

≤ uo′2
≤ · · · ≤ uo′q

10: while j < n+ 1 do
11: while A ≤ B do
12: Co(j) ← max

{
Co(j−1), uo′i

}
+ po(j).

13: if j = n then
14: return C
15: end if
16: j ← j + 1
17: A← A+ ao(j)
18: end while
19: i← i+ 1
20: B ← B + bo′i
21: end while

Chapter 2 Preliminary 8

Since i or j increases by 1 for each repetition, the algorithm repeats the line 10 to 21
at most n+ q times. Therefore, the time complexity of Algorithm 1 is O(max{n, q log q})
because the line 9 sorts the q-dimensional vector u.

In the rest of the thesis, we let Co(S) = (Co
1 (S), C

o
2 (S), . . . , C

o
n(S))

T be a schedule for
an instance S = ⟨n,J ,p,a, q,u, b⟩ calculated by Algorithm 1 with a permutation o ∈ O.

2.4 Previous research
This section summarizes previous researches. To denote scheduling problems simply, we
introduce Graham’s notation [13] at first.

Graham’s notation is a triplet notation α|β|γ by Graham et al. [13], which describes
scheduling problems. In this notation, α represents the information of the machines, γ
gives the objective function, and β implies the other constraints. Besides, this notation
assume that the problem has n jobs, and has the constraints of SSP defined in Section
1.1 unless it has conflicting constraints. We summarize the notations of α, β, and γ used
in the thesis below:

α notations

• Single-machine(α = 1): The problem has a single machine.

• Identical parallel machines(Pm): The problem has m identical parallel ma-
chines; in other words, the problem deals with m machines that have the same
processing time for each job.

β notations

• No constraints (β = [blank]): The β field is blank if there are only the basic
constraints.

• Non-renewable resource (nr = k): For the case k = 1, this notation gives
new inputs, resource consumption amounts of the jobs a = (a1, a2, . . . , an)

T, the
number of supply plans q, supply dates u = (u1, u2, . . . , uq)

T, and supply amounts
b = (b1, b2, . . . , bq)

T. Besides, the problem has the constraints about non-renewable
resource or (2.1). For the case k ≥ 2, the problem has these inputs and constraints
for each non-renewable resource independently.

• Release dates (rj): This notation gives a new input r = (r1, r2, . . . , rn)
T. Then

each job cannot start processing until time ri, namely, Sj ≥ rj for each j ∈
{1, 2, . . . , n}, where Sj denotes the starting time of Jj .

• Due dates (dj): This notation gives a new input d = (d1, d2, . . . , dn)
T. Then each

job must complete by its due date, that is, Cj ≤ dj for each j ∈ {1, 2, . . . , n}.

Chapter 2 Preliminary 9

• Precedence constraints (prec): This notation gives a new input P ⊂
{1, 2, . . . , n}2 and precedence constraints Sl ≥ Ck for any (k, l) ∈ P , where Sj

denotes the starting time of Jj

• Constraints for inputs: The constraints for the inputs is expressed by represent
elements. For instances, p = (1, 1, . . . , 1)T and w = a can be written as pj = 1 and
wj = aj respectively.

γ notations

• Minimizing makespan (γ = Cmax): This objective aims to minimize the maxi-
mum completion time maxj Cj .

• Minimizing total completion times (
∑

Cj): This objective aims to minimize
the total completion times

∑
j Cj .

• Minimizing total weighted completion times (
∑

wjCj): This notation gives
the problem a new input w = (w1, w2, . . . , wn)

T or weights of the jobs. Then the
objective aims to minimize the total weighted completion times

∑
j wjCj .

• Minimizing maximum lateness (Lmax): This notation gives the problem a new
input d = (d1, d2, . . . , dn)

T or due dates of the jobs. Then the objective aims to
minimize the maximum lateness maxj Lj = maxj(max(Cj − dj , 0)).

• Minimizing the number of late jobs (
∑

Uj): This notation gives the problem
a new input d = (d1, d2, . . . , dn)

T or due dates of the jobs. Then the objective aims
to minimize the number of late jobs

∑
j Uj = |{j|Cj > dj}|.

• Minimizing total tardiness (
∑

Tj): This notation gives the problem a new input
d = (d1, d2, . . . , dn)

T or due dates of the jobs. Then the objective aims to minimize
the total tardiness

∑
j Tj =

∑
j min((Cj − dj), 0).

Next, we overview previous researches related to the thesis. Although the list schedul-
ing algorithm is simple, it is one of the powerful algorithms for scheduling problems.
Smith [24] show that a list scheduling problem with wj/pj non-increasing order proves
1||
∑

wjCj . Graham [11] shows that a list scheduling algorithm with any order is a
(2− 1

m)-approximation algorithm for Pm||Cmax. After that, Graham [12] proves that the

list scheduling problem with pj non-increasing order is (43 −
1

3m)-approximation algorithm
for the problem.
Several studies deal with scheduling problems with non-renewable resource(s). Carlier

and Rinnooy Kan [8] establish polynomial-time algorithms for precedence constrained

Chapter 2 Preliminary 10

scheduling problems with a non-renewable resource, which can be written as Pn|nr =
1, prec|Cmax, Pn|nr = 1, dj , prec|Cmax, and Pn|nr = 1, prec|Lmax. Note that α = Pn
represents the problem has n machine, and thus, each job has an available machine in
any time. Slowiński [23] proposes a polynomial-time algorithm with parametric linear
programming approach for preemptive unrelated machine scheduling problems with (re-
newable) resources and a non-renewable resource. Grigoriev et al. [14] give polynomial-
time algorithms for 1|nr = 1, pj = 1|Lmax and 1|nr = 1, pj = 1|Cmax. Moreover,
they show that 1|nr = 2, pj = 1|Lmax, 1|nr = 2, pj = 1|Cmax, and 1|nr = 1|Cmax

are NP-hard. Furthermore, they prove that list scheduling algorithms with dj non-
decreasing order for 1|nr = 2, pj = 1|Lmax and a list scheduling algorithm with any
order for 1|nr = 1|Cmax are 2-approximation algorithms. Gafarov et al. [10] verify that
1|nr = 1|Lmax, 1|nr = 1|

∑
Uj , 1|nr = 1|

∑
Tj , and 1|nr = 1|

∑
Cj are NP-hard prob-

lems. Györgyi and Kis [15] give an FPTAS and a PTAS for 1|nr = 1, q = 2|Cmax and
1|nr = 1, q = const.|Cmax respectively. Györgyi and Kis develop PTASs for 1|nr =
const., q = const.|Cmax, 1|nr = 1, pj = aj |Cmax, and 1|nr = 1, pj = aj , rj |Cmax. Györgyi
and Kis [17] establish a PTAS for 1|nr = const., rj |Cmax. Bredereck et al. [3] give many
parameterized computational complexity results for NR-SSPs with makespan objective.

In contrast to NR-SSP with the makespan criterion or 1|nr = 1|Cmax, there is no
known constant-factor approximation algorithm for NR-SSP with the total (weighted)
completion time criterion, that is, 1|nr = 1|

∑
Cj and 1|nr = 1|

∑
wjCj . Thus, some

researches address 1|nr = 1|
∑

wjCj with input limitations. Kis [20] proves that 1|nr =
1, q = 2|

∑
Cj is NP-hard, and proposes an FPTAS for 1|nr = 1, q = 2|

∑
wjCj . Györgyi

and Kis [18] show that 1|nr = 1, pj = 1, wj = aj , q = 2|
∑

wjCj and 1|nr = 1, pj = wj =
aj , q = 2|

∑
wjCj are NP-hard problems. Besides, they establish a 2-approximation list

scheduling algorithm with non-decreasing pj order for 1|nr = 1, pj = wj = aj |
∑

wjCj ,
and a PTAS for 1|nr = 1, pj = wj , q = const.|

∑
wjCj . Györgyi and Kis [19] verify that

a list scheduling algorithm with non-decreasing pj order is a 2-approximation algorithm
for 1|nr = 1, aj = const.|

∑
Cj . Moreover, they prove that a list scheduling algorithm

with aj non-increasing order for 1|nr = 1, pj = 1, wj = aj |
∑

wjCj is a 3-approximation
algorithm, and it becomes 2-approximation algorithm when q = 2. Bérczi et al. [4] prove
that 1|nr = 1, a = 1|

∑
Cj is an NP-hard problem, and a list scheduling problem with

pj non-decreasing order is a 1.5-approximation algorithm for the problem. Besides, they
establish a 6-approximation list scheduling algorithm and a PTAS for 1|nr = 1, pj =
0|
∑

wjCj .
Inventory Constrained Scheduling Problem (ICSP) is related to NR-SSP. ICSP deals

with a non-renewable resource, and it does not have any supply plans by contrast. In
ICSP, some jobs obtain resources instead of consumption. Briskorn et al. [5] prove that
1|inv|Lmax, 1|inv|

∑
Cj , 1|inv|

∑
wjCj , and 1|inv|

∑
Uj with some input limitations are

NP-hard, where inv in β-field represents ICSP. Moreover, they study input limitations
allow us to solve these problems in polynomial time. Kononov and Lin [21] address
the more general situation of 1|inv|

∑
wjCj , whose jobs can both consume and supply

resources. They establish a 2-approximation algorithm for the problem with input limita-
tions. Briskorn et al. [6] study the optimal conditions of 1|inv|

∑
wjCj , and they propose

a branch and bound method and a dynamic programming for the problem. Briskorn and

Chapter 2 Preliminary 11

Leung [7] show some properties of optimal schedules for 1|inv|Lmax, and develop a branch
and bound algorithm for the problem. Morsy and Pesch [22] propose 2-approximation
algorithms for 1|inv|

∑
wjCj with two cases of input limitations, which are proved to

be NP-hard by [5]. Bazgosha et al. [2] design a linear integer programming model of
Pm|rj , inv|Cmax, and they establish metaheuristic algorithms for the problem. Davari et
al. [9] show that 1|rj , inv|Cmax and deciding the feasibility of 1|inv|Cmax are NP-hard.
Moreover, they propose mixed integer programming formulations and heuristic algorithms
for 1|rj , inv|Cmax.

2.5 Motivation and main contribution
As described the previous section, no approximation algorithm has been found for NR-
SSP with the total weighted completion time criterion until now. This thesis aims to
find better approximation results for the problem with input limitations. As a result, we
prove that a list scheduling algorithm with aj non-increasing order is a 2-approximation
algorithm for the problem with unit processing times(p = 1n) and weights proportional
to resource consumption (w = a), which is conjectured by [19]. Besides, we establish a
3-approximation list scheduling algorithm for the above problem without unit processing
time condition, which has been found no approximation algorithm so far.

Formally, we prove the next two theorems in the thesis.

Theorem 1. List scheduling algorithm with non-increasing order of resource consumption
is a 2-approximation algorithm for NR-SSP with p = 1n, a = w, and total weighted
completion time criterion (or 1|nr = 1, pj = 1, wj = aj |

∑
wjCj).

Theorem 2. A list scheduling algorithm is a 3-approximation algorithm for NR-SSP with
a = w and total weighted completion time criterion (or 1|nr = 1, wj = aj |

∑
wjCj).

Moreover, we prove these approximation ratios are tight for each algorithm, and there
are no instance that achieves the approximation ratio precisely. In the rest of the thesis,
Chapter 4 proves Theorem 1, and Chapter 5 solves Theorem 2. Before these, Chapter 3
introduces a simplification technique used for both proofs.

12

Chapter 3

Problem simplification

This chapter introduces a simplification theorem used to prove Theorems 1 and 2. Sup-
pose any instance S of NR-SSP with the total weighted completion time criterion and
weights proportional to resource consumption (w = a), which can be written as S =
⟨n,J ,p,a, q,u, b⟩. Then the theorem allows us to fix all the inputs of supply plans in the
proofs.

At first, we describe notations used in the rest of the thesis. We define

A∗
j =

n∑
k=j

ak and Ao
j =

n∑
k=j

ao(k) for j ∈ N.

For simplicity of discussion, let A∗
j = Ao

j = 0 for any j ≥ n+ 1. Then we define

λj = max{k ∈ N |Ao
k ≥ A∗

j} for any j ∈ {1, 2, . . . , n+ 1}.

From the definition, we see that

Ao
λj+1 < A∗

j ≤ Ao
λj

for any j ∈ N. (3.1)

To apply the simplification theorem, the list scheduling algorithm must satisfy the
following assumption:

Assumption 4. Let o be a permutation of the list scheduling algorithm for any NR-SSP
instance S = ⟨n,J ,p,a, q,u, b⟩. Then Ao

λj
≤ 2A∗

j for any j ∈ {1, 2, . . . , n+ 1}.

Using this assumption, we prove the next theorem:

Theorem 3. Let S = ⟨n,J ,p,a, q,u, b⟩ and define S† = ⟨n,J ,p,a, n, (σ(p) − p),a⟩.
Suppose o ∈ O such that Ao

λj
≤ 2A∗

j for any j ∈ {1, 2, . . . , n + 1}. Then for any α ≥ 2,

fS†(Co(S†)) < αfS†(C∗(S†)) implies fS(C
o(S)) < αfS(C

∗(S)).

This theorem states that to fix q = n, u = σ(p)−p, and b = a preserves approximation
ratio α ≥ 2 of list scheduling algorithms for any instance S = ⟨n,J ,p,a, q,u, b⟩ under
Assumption 4. In this chapter, we divide Theorem 3 into the next two theorems.

Chapter 3 Problem simplification 13

Theorem 4. Let S = ⟨n,J ,p,a, q,u, b⟩ be any instance of NR-SSP. Define
S′ = ⟨n,J ,p,a, n, (C∗(S) − p),a⟩. Suppose o ∈ O such that Ao

λj
≤ 2A∗

j for any

j ∈ {1, 2, . . . , n + 1}. Then for any α ≥ 2, fS′(Co(S′)) < αfS′(C∗(S′)) implies
fS(C

o(S)) < αfS(C
∗(S)).

Theorem 5. Let S = ⟨n,J ,p,a, n, (C ′ − p),a⟩ be any instance of NR-SSP, where C ′ =
(C ′

1, C
′
2, . . . , C

′
n)

T such that C ′
1 ≥ p1 and C ′

j+1 − C ′
j ≥ pj+1 for any j ∈ {1, 2, . . . , n− 1}.

Let S̄ = ⟨n,J ,p,a, n, (σ(p) − p),a⟩ and suppose o ∈ O such that Ao
λj
≤ 2A∗

j for any

j ∈ {1, 2, . . . , n+1}. Then for any α ≥ 2, fS̄(C
o(S̄)) < αfS̄(C

∗(S̄)) implies fS(C
o(S)) <

αfS(C
∗(S)).

Theorem 4 can fix q = n, u = C∗(S) − p, and b = a for any instance of NR-SSP
S = ⟨n,J ,p,a, q,u, b⟩ to prove Theorems 1 and 2. In other words, the theorem allows us
to suppose that there is a Just-In-Time optimal schedule C∗(S). Besides, Theorem 5 can
assume C∗(S) = σ(p) in addition to the above because C∗(S) satisfies the assumption of
the theorem. Thus, these two theorems can prove Theorem 3. In the rest of this chapter,
we prove these two theorems.

Proof of Theorem 4

To prove Theorem 4, we verify the following lemmas:

Lemma 1. Let a = (a1, a2, . . . , an)
T, v = (v1, v2, . . . , vn)

T, b = (b1, b2, . . . , bq)
T, and

u = (u1, u2, . . . , uq)
T be non-negative vectors such that

∑n
i=1 ai =

∑q
i=1 bi. If∑

i:vi≤t

ai ≤
∑

i:ui≤t

bi for any t ≥ 0,

then bTu ≤ aTv.

Proof. Define two functions fa and fb of t ≥ 0 by

fa(t) =
∑

i:vi≤t

ai, fb(t) =
∑

i:ui≤t

bi.

Define a permutation o = (o1, . . . , on) of (1, 2, . . . , n) by non-decreasing order of v and
a permutation π = (π1, . . . , πq) of (1, 2, . . . , q) by non-decreasing order of u. Let t̄ =
max{von , uπq

}. Then∫ t̄

0

fa(t)dt = ao1(vo2 − vo1) + (ao1 + ao2)(vo3 − vo2) + · · ·

+ (ao1 + · · ·+ aon−1
)(von − von−1

)

+ (ao1 + · · ·+ aon)(t̄− von)

= t̄
n∑

i=1

ai − aTv,

Chapter 3 Problem simplification 14∫ t̄

0

fb(t)dt = t̄

q∑
i=1

bi − bTu.

From the assumption of the lemma, we see

fa(t) ≤ fb(t) for any 0 ≤ t ≤ t̄.

Thus, we have

t̄

n∑
i=1

ai − aTv =

∫ t̄

0

fa(t)dt ≤
∫ t̄

0

fb(t)dt = t̄

q∑
i=1

bi − bTu.

Since
∑n

i=1 ai =
∑q

i=1 bi, we obtain bTu ≤ aTv.

Lemma 2. Let S′ = ⟨n,J ,p,a, n, (C − p),a⟩ be any instance of NR-SSP, where C =
(C1, C2, . . . , Cn)

T such that C1 ≥ p1 and Cj+1 − Cj ≥ pj+1 for any j ∈ {1, 2, . . . , n− 1},
then C is optimal for S′.

Proof. It is clear that C is a feasible schedule for S′. Let Cv be any feasible schedule
for S′. Then we have that ∑

j:Cv
j −pj≤T

aj ≤
∑

i:ui≤T

bi for any T ≥ 0

from (2.1), where u = C − p and b = a. We obtain

aT(C − p) ≤ aT(Cv − p),

by applying Lemma 1 for a, v = Cv−p, b = a, and u = C−p. Since the object function
value is aTCv, C is optimal for S′.

Lemma 3. Let S = ⟨n,J ,p,a, q,u, b⟩ and S̃ = ⟨n,J ,p,a, q′,u′, b′⟩ be two instances of
NR-SSP.If ∑

i:u′
i≤T

b′i ≤
∑

i:ui≤T

bi for any T ≥ 0, (3.2)

then Co(S) ≤ Co(S̃) and fS(C
o(S)) ≤ fS̃(C

o(S̃)) for any o ∈ O.

Proof. From condition (3.2), Algorithm 1 for any o ∈ O outputs Co(S) for S and Co(S̃)

for S̃ so that
Co(S) ≤ Co(S̃).

Since w > 0n from the assumption, we have

fS(C
o(S)) = wTCo(S)

≤ wTCo(S̃)

= fS(C
o(S̃)).

Finally, we prove Theorem 4.

Chapter 3 Problem simplification 15

Proof of Theorem 4. Recall that S = ⟨n,J ,p,a, q,u, b⟩ and S′ = ⟨n,J ,p,a, n, (C∗(S)−
p),a⟩ in Theorem 4. From Lemma 2, C∗(S) is an optimal schedule for S′. Since C∗(S)
is a feasible schedule for S, (2.1) holds for every T ≥ 0, namely,∑

j:C∗(S)j−pj≤T

aj ≤
∑

i:ui≤T

bi for any T ≥ 0.

Hence fS(C
o(S)) ≤ fS′(Co(S′)) holds for any o ∈ O from Lemma 3. If fS′(Co(S′)) <

αfS′(C∗(S′)), then we see that

fS(C
o(S)) ≤ fS′(Co(S′))

< αfS′(C∗(S′))

= αaTC∗(S)

= αfS(C
∗(S)).

Proof of Theorem 5

We prove Theorem 5 by the next lemma.

Lemma 4. Let S = ⟨n,J ,p,a, n, (C − p),a⟩ be any instance of NR-SSP, where C =
(C1, C2, . . . , Cn)

T such that C1 ≥ p1 and Cj+1 − Cj ≥ pj+1 for any j ∈ {1, 2, . . . , n− 1}.
Let dk = (0T

k 1T
n−k)

T be a vector whose first k elements are 0 and the latter n−k elements

are 1 for an integer k ∈ {0, 1, . . . , n − 1}. Define S△ = ⟨n,J ,p,a, n, (C + Ldk − p),a⟩
for any L ≥ 0. Suppose o ∈ O such that Ao

λj
≤ 2A∗

j for any j ∈ {1, 2, . . . , n + 1}. Then

for any α ≥ 2, fS(C
o(S)) < αfS(C

∗(S)) implies fS△(Co(S△)) < αfS△(C∗(S△)).

Proof. Clearly C is a feasible schedule for S. By Lemma 2, we have C∗(S) = C and
C∗(S△) = C + Ldk. Then we see

fS△(C∗(S△))− fS(C
∗(S)) = aT(Ldk)

= L

n∑
j=k+1

aj

= LA∗
k+1.

Since supply dates Cj − pj , j ∈ {1, 2, . . . , k} in S△ are equal to those in S, we see from
Algorithm 1 that

Co
o(j)(S) = Co

o(j)(S
△) for any j ∈ {1, 2, . . . , βk},

Chapter 3 Problem simplification 16

where

βk = max{j ∈ N |ao(1) + · · ·+ ao(j) ≤ a1 + · · ·+ ak}
= min{j ∈ N |ao(j+1) + · · ·+ ao(n) ≥ ak+1 + · · ·+ an}
= λk+1 − 1.

Then C ′ = (C ′
1, C

′
2, . . . , C

′
n) define by

C ′
o(j) =

{
Co

o(j)(S) for any j ∈ {1, 2, . . . , λk+1 − 1}
Co

o(j)(S) + L for any j ∈ {λk+1, . . . , n}

is a feasible schedule for S△ since Co(S) is feasible for S. We easily see that Co(S△) ≤ C ′

and fS△(Co(S△)) ≤ fS△(C ′) from Algorithm 1. Then we have that

fS△(Co(S△))− fS(C
o(S)) ≤ fS△(C ′)− fS(C

o(S))

= aT(C ′ −Co(S))

= L
n∑

j=λk+1

ao(j)

= LAo
λk+1

≤ 2LA∗
k+1

= 2(fS△(C∗(S△))− fS(C
∗(S))),

where the second inequality follows from the assumption. Therefore if fS(C
o(S)) <

αfS(C
∗(S)), then we have that

fS△(Co(S△)) ≤fS(Co(S)) + 2(fS△(C∗(S△))− fS(C
∗(S)))

<αfS△(C∗(S△)).

Proof of Theorem 5. Recall that S = ⟨n,J ,p,a, n, (C ′ − p),a⟩ and S̄ =
⟨n,J ,p,a, n, (σ(p)− p),a⟩ in Theorem 5. We can express that

C ′ − σ(p) =(C ′
1 − C ′

0 − p1)d0 + (C ′
2 − C ′

1 − p2)d1

+ · · ·+ (C ′
n − C ′

n−1 − pn)dn−1

=

n−1∑
k=0

Lkdk,

where C ′
0 = 0, dk = (0T

k 1T
n−k)

T, and Lk = C ′
k+1−C ′

k−pk+1 for any k ∈ {0, 1, . . . , n−1}.
From the conditions in the theorem, we have that Lk ≥ 0 for any k ∈ {0, 1, . . . , n − 1}.
We define D0 = σ(p) and

Dk = Dk−1 + Lk−1dk−1

Chapter 3 Problem simplification 17

for any k ∈ N . Then we see that
Dn = C ′.

We also define (n + 1)-instances Sk = ⟨n,J ,p,a, n, (Dk − p),a⟩ for k ∈ {0, 1, . . . , n}.
Then we have that S0 = S̄ and Sn = S.

Now we consider two instances S0 = S̄ and S1. If fS0(Co(S0)) < αfS0(C∗(S0)), we
have fS1(Co(S1)) < αfS1(C∗(S1)) from Lemma 4. For k = 2, . . . , n, we repeat this
procedure for two instances Sk−1 and Sk, then we finally obtain that fSn(Co(Sn)) <
αfSn(C∗(Sn)), where Sn = S.

18

Chapter 4

A 2-approximation algorithm for a

single-machine scheduling problem with

a non-renewable resource and unit

processing times

This chapter proves a conjecture by Györgyi and Kis [19], in other words, we show that
a list scheduling algorithm with a non-increasing order of resource consumption is a 2-
approximation algorithm for NR-SSP with the total weighted completion time criterion,
unit processing times (p = 1n), and weights proportional to resource consumption (w =
a). This problem can be written as 1|nr = 1, pj = 1, wj = aj |

∑
wjCj by Graham’s

notation. Furthermore, we show the tightness of the approximation ratio. Section 4.1
introduces the conjecture and our main results. Section 4.2 proves the conjecture, and
Section 4.3 shows the tightness of the ratio.

4.1 Main results
This section introduces our main results, and give an overview of its proof. We prove the
following conjecture:

Conjecture 1 (Györgyi and Kis [19]). List scheduling algorithm with non-increasing
order of aj is a 2-approximation algorithm for NR-SSP with the total weighted completion
time criterion, p = 1n, and w = a (or 1|nr = 1, pj = 1, wj = aj |

∑
wjCj).

Note that the conjecture is equivalent to Theorem 1. In addition to prove the conjecture,
we verify that the approximation ratio is tight, and there are no instance that achieves
the tight ratio.

Recall that any instance of the problem can be written as ⟨n,J ,1n,a, q,u, b⟩.

Theorem 6. For any instance S = ⟨n,J ,1n,a, q,u, b⟩ of NR-SSP, fS(C
oa(S)) <

Chapter 4 2-approximation algorithm for single-machine scheduling problem with non-renewable resource 19

2fS(C
∗(S)) holds.

Theorem 7. For any ϵ > 0, there exists an instance S = ⟨n,J ,1n,a, q,u, b⟩ of NR-SSP
such that fS(C

oa(S̃)) ≥ (2− ϵ)fS(C
∗(S̃)).

Theorem 6 can prove Conjecture 1 or Theorem 1, and show that there are no instance
that achieve the approximation ratio. Theorem 7 guarantees that the ratio is tight for
the algorithm. To solve Theorem 6, we simplify the problem while preserving the upper
bound of the approximation ratio by Theorem 3. Then we prove the theorem for the
simplified problem. In the proof of Theorem 7, we establish a parameterized instance that
proves the theorem.

Before the proofs, we define a notation used in the proof of Theorem 6 (and Chapter 5).
For any instance S of the simplified problem can be written as S = ⟨n,J ,p,a, n, (σ(p)−
p),a⟩. Then for any j ∈ N , we denote an NR-SSP instance obtained by removing ev-
ery jth input from S by Sj , that is, Sj = ⟨n − 1,Jj ,pj ,aj , n − 1, (σ(pj) − pj),aj⟩
where Jj = (J1, J2, . . . , Jj−1, Jj+1, . . . , Jn), pj = (p1, p2, . . . , pj−1, pj+1, . . . , pn)

T, aj =
(a1, a2, . . . , aj−1, aj+1, . . . , an)

T.

4.2 Proof of Theorem 6
This section proves Theorem 6. First, we check that the list scheduling algorithm satisfies
Assumption 4 for any instance of the problem.

Proposition 1. Let S = ⟨n,J ,1n,a, q,u, b⟩ be any instance of NR-SSP. For any aj non-
increasing order oa, Assumption 4 holds, i.e., Aoa

λj
≤ 2A∗

j for any j ∈ {1, 2, . . . , n+ 1}.

Proof. If j = n + 1, the proposition clearly holds. Suppose j ∈ N . Then we have
Aoa

λj+1 < A∗
j from (3.1). This inequality implies that the set {Jj , Jj+1, . . . , Jn} is not

a subset of {Joa(λj+1), Joa(λj+2), . . . , Joa(n)}. Hence there exists j′ ≥ j such that Jj′ ∈
{Joa(1), Joa(2), . . . , Joa(λj)}. Since oa is non-increasing order of aj , we see that

A∗
j ≥ aj′ ≥ min{aoa(1), aoa(2), . . . , aoa(λj)} = aoa(λj).

Thus we have that
Aoa

λj
= aoa(λj) +Aoa

λj+1 ≤ 2A∗
j .

Next, we show the lemma used in the proof of Theorem 6.

Lemma 5. Let k ≥ 2 be any integer. Suppose that Theorem 6 is true for n = k−1. Then
Theorem 6 holds for any instance S = ⟨k,J ,1n,a, k, (nk−1k),a⟩ if there exists an index
j′ ∈ {1, 2, . . . , k − 1} such that

2j′aj′ ≥ fS(C
oa(S))− fSj′ (C

oa(Sj′)). (4.1)

(Recall that Sj′ is obtained by removing every j′th element from S.)

Chapter 4 2-approximation algorithm for single-machine scheduling problem with non-renewable resource 20

Proof. From Lemma 2, the optimal schedule for Sj′ is C
∗(Sj′) = nk−1+(0T

j′−1 1T
k−j′)

T.
By applying Theorem 6 for Sj′ , we have that

fSj′ (C
oa(Sj′)) < 2fSj′ (C

∗(Sj′))

= 2

j′−1∑
j=1

jaj +

k∑
j=j′+1

jaj

 .

Hence, if (4.1) holds, we have that

fS(C
oa(S)) ≤ 2j′aj′ + fSj′ (C

oa(Sj′))

< 2
k∑

j=1

jaj

= 2fS(C
∗(S)),

where C∗(S) = nk is the optimal schedule for S.
Finally, we prove Theorem 6.

Proof of Theorem 6. We prove the result by induction on n. When n = 1, obviously
Coa(S) = C∗(S). Hence the approximation ratio is 1 and the result holds.
Suppose that the result holds when n = k − 1 for k ≥ 2. Consider the case

n = k. By Theorem 3 and Proposition 1, it suffices to prove it for any instance
S = ⟨k,J ,1n,a, k, (nk − 1k),a⟩. From Lemma 2, the optimal schedule for S is
C∗(S) = nk.
If Coa(S) = C∗(S), then the result is obvious, so we assume that Coa(S) ̸= nk. We

also assume that all the elements of Coa(S) are integer without loss of generality. Then
there exists l′ ∈ {1, 2, . . . , k} such that

Coa

oa(l′)
(S) ≥ Coa

oa(l′−1)(S) + 2 (4.2)

and
Coa

oa(j)
(S) = Coa

oa(j−1)(S) + 1 for any j ∈ {l′ + 1, . . . , k}, (4.3)

where Coa

oa(0)
(S) = 0 if l′ = 1. Let l = Coa

oa(l′)
(S).

By the definition of l, the process of the job Joa(l′) starts at time l− 1 by Algorithm 1.
Hence we have that

l−1∑
j=1

aj <
l′∑

j=1

aoa(j) ≤
l∑

j=1

aj . (4.4)

We also see that
al−1 < aoa(l′), (4.5)

otherwise Algorithm 1 starts the job Joa(l′) at time l − 2 by (4.2). However, the latter
case violates the definition of l. From (4.3) we have that

Coa

oa(j)
(S) = l + j − l′ for any j ∈ {l′, l′ + 1, . . . , k}. (4.6)

Chapter 4 2-approximation algorithm for single-machine scheduling problem with non-renewable resource 21

Define 4 subsets
P := {J1, J2, . . . , Jl−1},
P c := {Jl, Jl+1, . . . , Jk},
Q := {Joa(1), Joa(2), . . . , Joa(l′)},
Qc := {Joa(l′+1), Joa(l′+2), . . . , Joa(k)}.

Then we consider three cases: (I) l′ < k− l+ 1, (II) l′ > k− l+ 1, and (III) l′ = k− l+ 1.
Note that l′ = |Q| and k − l + 1 = |P c|.

(I) Assume that l′ < k − l + 1. Then the set P c is not included in Q. Therefore we see
that

P c ∩Qc ̸= ∅.

We define
i = arg min{al, al+1, . . . , ak}. (4.7)

Obviously, i ≥ l and Ji ∈ P c. Since aoa(j) is non-increasing order, P c ∩ Qc ̸= ∅ implies
Ji ∈ P c ∩Qc. Let oa(i

′) = i, then (4.7) implies that

aoa(i′) ≤ aj for any j ∈ {l, l + 1, . . . , k}.

Define Si = ⟨k,J i,1k,a
i, k, (nk−1k),a

i⟩ for J i = (J1, J2, . . . , Ji−1, Ji+1, Ji+2, . . . , Jk, Ji)
and ai = (a1, a2, . . . , ai−1, ai+1, ai+2, . . . , ak, ai)

T. Since ai ≤ aj for every j ∈ {i, i +
1, . . . , k}, we have that

Coa(Si) =Coa(S) (4.8)

from Algorithm 1 and (4.6). We also have from Lemma 1 that

(ai)Tnk ≤aTnk. (4.9)

Note that nk is the optimal schedule for both S and Si. Define Si
k by removing every kth

element from Si. From Algorithm 1 for Si and Si
k, we have that

Coa

oa(j)
(Si

k) =

{
Coa

oa(j)
(Si) (1 ≤ j ≤ i′ − 1)

Coa

oa(j)
(Si)− 1 (i′ + 1 ≤ j ≤ k).

Hence we see that

fSi(Coa(Si))− fSi
k
(Coa(Si

k)) = aoa(i′)C
oa

oa(i′)
(Si) +

k∑
j=i′+1

aoa(j)

≤ (l + i′ − l′)aoa(i′) +
k∑

j=i′+1

aoa(i′) (4.10)

≤ (l − l′ + k)ai

≤ 2kai,

Chapter 4 2-approximation algorithm for single-machine scheduling problem with non-renewable resource 22

where (4.10) follows from (4.6). Since ai is the kth element of ai, we have 2fSi(C∗(Si)) >
fSi(Coa(Si)) from Lemma 5. Using (4.8) and (4.9), we obtain that

2fS(C
∗(S)) = 2aTnk

≥ 2(ai)Tnk

= 2fSi(C∗(Si))

> fSi(Coa(Si))

= fS(C
oa(S)).

(II) Assume that l′ > k − l + 1. From (4.5), al−1 < aoa(l′) holds. Hence there exists

l̄ ∈ {l′ + 1, . . . , k} such that oa(l̄) = l − 1. Define an instance Sl−1 by removing every
(l − 1)th element from S. Then we see from Algorithm 1 that

Coa

oa(j)
(S) ≤ Coa

oa(j)
(Sl−1) for j ∈ {1, 2, . . . , l̄ − 1},

Coa

oa(j)
(S) ≤ Coa

oa(j)
(Sl−1) + 1 for j ∈ {l̄ + 1, . . . , k}.

Hence we obtain that

fS(C
oa(S))− fSl−1

(Coa(Sl−1)) ≤ aoa(l̄)C
oa

oa(l̄)
(S) +

k∑
j=l̄+1

aoa(j)

≤ (l + l̄ − l′)aoa(l̄) +
k∑

j=l̄+1

aoa(l̄) (4.11)

= (l − l′ + k)aoa(l̄)

≤ 2(l − 1)al−1, (4.12)

where (4.11) follows from (4.6) and (4.12) follows from l′ ≥ k − l + 2. Therefore we can
apply Lemma 5, and consequently, the theorem holds for this case.

(III) Assume that l′ = k − l + 1. If P c ∩ Qc ̸= ∅, we can prove the result as in the case
of (I). So we assume that P c ∩ Qc = ∅, which implies Q ⊆ P c. Since l′ = k − l + 1 is
equivalent to |Q| = |P c|, we have that Q = P c. So we see that

k∑
j=l

ak =

l′∑
j=1

aoa(j) (4.13)

Chapter 4 2-approximation algorithm for single-machine scheduling problem with non-renewable resource 23

and

fS(C
oa(S)) =

k∑
j=1

aoa(j)C
oa

oa(j)
(S)

=
l′∑

j=1

aoa(j)C
oa

oa(j)
(S) +

k∑
j=l′+1

aoa(j)C
oa

oa(j)
(S)

=
l′∑

j=1

aoa(j)C
oa

oa(j)
(S) + l

k∑
j=l′+1

aoa(j) +
k∑

j=l′+1

aoa(j)(j − l′), (4.14)

where (4.14) follows from (4.6). On the other hand, we have that

2fS(C
∗(S)) = 2aTnk

≥ 2

 l−1∑
j=1

ajj + l
k∑

j=l

aj

≥

l−1∑
j=1

ajj + l
k∑

j=l

aj + l
k∑

j=l

aj . (4.15)

Comparing the first term in (4.15) and the third term in (4.14), we have

l−1∑
j=1

ajj ≥
k∑

j=l′+1

aoa(j)(j − l′),

since aoa(j) are non-increasing order and k − l′ = l − 1. Comparing the second term in
(4.15) and the second term in (4.14), we have

l
k∑

j=l

aj > l
k∑

j=l′+1

aoa(j)

from (4.4). Comparing the third term in (4.15) and the first term in (4.14), we have

l

k∑
j=l

aj = l

l′∑
j=1

aoa(j) ≥
l′∑

j=1

aoa(j)C
oa

oa(j)
(S)

from (4.13), since we have l ≥ Coa

oa(j)
(S) for every j ∈ {1, 2, . . . , l′} from the definition of

l. Hence we obtain that

2fS(C
∗(S)) ≥fS(Coa(S)).

Chapter 4 2-approximation algorithm for single-machine scheduling problem with non-renewable resource 24

4.3 Proof of Theorem 7
This section gives an instance that can solve Theorem 7.
Proof of Theorem 7. Let S = ⟨n,J ,1n,a, n, (nn−1n),a⟩ for a = (2n, 1, 1, . . . , 1, 2n+
n)T. We easily see that

C∗(S) = (1, 2, . . . , n)T,
oa = (n, 1, 2, . . . , n− 1),
Coa(S) = (n+ 1, n+ 2, . . . , 2n− 1, n)T.

Then
fS(C

oa(S))

fS(C∗(S))
=

(n+ 1)2n +
∑2n−1

j=n+2 j + n(2n + n)

2n +
∑n−1

j=2 j + n(2n + n)
→ 2

as n→∞.
Hence we obtain the result.
Note that Györgyi and Kis [19] show that the instance S = ⟨2, (J1, J2), (w −

e, w), 2, (0, w), (w − e, w)⟩ also achieves approximation ratio 2 as e→ +0.

25

Chapter 5

A 3-approximation algorithm for a

single-machine scheduling problem with

a non-renewable resource

This chapter establishes a 3-approximation list scheduling algorithm for NR-SSP with the
total weighted completion time criterion and weights proportional to resource consumption
(w = a). This problem can be written as 1|nr = 1, wj = aj |

∑
wjCj by Graham’s

notation. Furthermore, we show the tightness of the approximation ratio, and prove that
no instance achieves the approximation ratio 3 exactly. Section 5.1 explains our algorithm
and results. Section 5.2 provides an additional simplification for the problem other than
Theorem 3. Section 5.3 shows proofs of the results.

5.1 Algorithm and main results
This section deals with some permutations defined as follows:

Definition 1. For a and p in any instance S = ⟨n,J ,p,a, q,u, b⟩, we define a set
O(a,p) ⊂ O of permutations o satisfying the following conditions:

(i) ao(n) = mink∈N ak,
(ii) for any j ∈ {1, 2, . . . , n− 1}, if ao(j) > Ao

j+1, then

ao(i) ≥ ao(j) for any i ∈ {1, 2, . . . , j},

(iii) for any j ∈ {1, 2, . . . , n− 1}, if ao(j) ≤ Ao
j+1, then

ro(i) ≥ ro(j) for any i ∈ {1, 2, . . . , j} such that ao(i) ≤ Ao
j+1.

Recall that Ao
j+1 =

∑n
h=j ao(h). The next algorithm calculates a permutation that

satisfies Definition 1.

Chapter 5 3-approximation algorithm for single-machine scheduling problem with non-renewable resource 26

Algorithm 2 A job-ordering algorithm for NR-SSP

Input: a,p in any instance S = ⟨n,J ,p,a, q,u, b⟩ of NR-SSP
Output: o = (o(1), o(2), . . . , o(n)) ∈ O

1: Initialize:

SUMW ← 0
NREST ← N

2: for i = n to 1 do ▷ Inverse order
3: N ′ ←

{
j ∈ NREST |aj ≤ SUMW

}
4: if N ′ = ∅ then
5: o(i)← arg min

j∈NREST

aj(ties are broken arbitrarily)

6: else
7: o(i)← arg min

j∈N ′
rj(ties are broken arbitrarily)

8: end if
9: SUMW ← SUMW + ao(i)

10: NREST ← NREST \ {o(i)}
11: end for

The time complexity of this algorithm is O(n log n) by using Red-black tree [1] as two
containers of jobs sorted by aj and rj . Thus, the whole time complexity of the list schedul-
ing algorithm is O(max{n log n, q log q}). Algorithm 2 is motivated by the 6-approximation
list scheduling algorithm for NR-SSP with the total weighted completion time crite-
rion and zero processing times, or 1|nr = 1, pj = 0|

∑
wjCj [4]. Their algorithm uses

”arg minwj/aj” in the line 7 of Algorithm 2 instead of ”arg min rj”(= arg minwj/pj).
The main results in this section are the following two theorems:

Theorem 8. For any instance S = ⟨n,J ,p,a, q,u, b⟩ of NR-SSP and any permutation
o ∈ O(a,p), fS(C

o(S)) < 3fS(C
∗(S)) holds.

Theorem 9. For any ϵ > 0, there exists an instance S̃ = ⟨n,J ,p,a, q,u, b⟩ of NR-SSP
and an o ∈ O(a,p) such that fS(C

o(S̃)) ≥ (3− ϵ)fS(C
∗(S̃)).

Theorem 8 states that a list scheduling algorithm with any order calculated by Algo-
rithm 2 is a 3-approximation algorithm for NR-SSP with the total weighted completion
time criterion and weights proportional to resource consumption, which implies Theorem
2. Moreover, the theorem proves that no instance can achieve approximation ratio 3
exactly. Besides, Theorem 9 shows that the approximation ratio is tight.

5.2 Additional problem simplification
This section shows the following theorem, which provides an additional simplification for
the NR-SSP other than Theorem 3.

Theorem 10. Let S = ⟨n,J ,p,a, n, (σ(p) − p),a⟩. Define S† = ⟨n,J ,a,a, n, (σ(a) −

Chapter 5 3-approximation algorithm for single-machine scheduling problem with non-renewable resource 27

a),a⟩. Then O(a,p) ⊂ O(a,a) holds, and for any o ∈ O(a,p), fS†(Co(S†)) <
3fS†(C∗(S†)) implies fS(C

o(S)) < 3fS(C
∗(S)).

Recall that Theorem 3 can fix q = n, u = σ(p) − p, and b = a for any instance
S = ⟨n,J ,p,a, q,u, b⟩ when we prove Theorem 8. Theorem 10 provides an additional
input restriction p = a in the proof.

First, we verify that the list scheduling algorithm with any order calculated by Algo-
rithm 2 satisfies Assumption 4, which allows us to apply Theorem 3 for the proof.

Proposition 2. Let S = ⟨n,J ,p,a, q,u, b⟩ be any instance of NR-SSP and o ∈ O(a,p),
then Ao

λj
≤ 2A∗

j for any j ∈ {1, 2, . . . , n+ 1}.

Proof. If j = n + 1, then Ao
λn+1

= 2A∗
n+1 = 0. Thus we assume that j ∈ N . From the

definition of λj ,

Ao
λj+1 < A∗

j =

n∑
k=j

ak. (5.1)

If ao(λj) ≤ Ao
λj+1, then Ao

λj
= ao(λj) +Ao

λj+1 < 2A∗
j ; therefore we assume ao(λj) > Ao

λj+1.

From Definition 1, we see ao(λj) ≤ ao(l) for any l ∈ {1, 2, . . . , λj}. The inequality (5.1)

implies that there is a term ao(i′) that is not in Ao
λj+1 =

∑n
i=λj+1 ao(i) but in A∗

j =∑n
k=j ak. Hence we see ao(λj) ≤ ao(i′) ≤ A∗

j . From this inequality and (5.1), we obtain
Ao

λj
< 2A∗

j .

Then we prove Theorem 10 using the next proposition.

Proposition 3. Let S = ⟨n,J ,p,a, q,u, b⟩ be any instance of NR-SSP and o ∈ O(a,p).
For any k, l ∈ N ,

(i) if ro(k) ≥ ro(l), then ao(l)(po(k) − ao(k)) ≤ ao(k)(po(l) − ao(l)),
(ii) if k < l and ro(k) < ro(l), then ao(k) ≥ ao(l) and ao(k) ≥ Ao

l+1.

Proof.

(i) For any k, l ∈ N , if ro(k) ≥ ro(l), then we have that

ao(l)(po(k) − ao(k))

po(l)po(k)
= ro(l)(1− ro(k))

≤ ro(k)(1− ro(l))

=
ao(k)(po(l) − ao(l))

po(l)po(k)
.

(ii) Suppose that k < l and ro(k) < ro(l) for k, l ∈ N . If ao(l) > Ao
l+1, then we have

from Definition 1-(ii) that
ao(k) ≥ ao(l) > Ao

l+1.

Otherwise, ao(l) ≤ Ao
l+1. If ao(k) ≤ Ao

l+1, we see that ro(k) ≥ ro(l) from Definition
1-(iii), which contradicts to the assumption ro(k) < ro(l). Hence we have that

ao(k) > Ao
l+1 ≥ ao(l).

Chapter 5 3-approximation algorithm for single-machine scheduling problem with non-renewable resource 28

Proof of Theorem 10. Recall that S = ⟨n,J ,p,a, n, (σ(p) − p),a⟩ and S† =
⟨n,J ,a,a, n, (σ(a)− a),a⟩. We define δ = (δ1, δ2, . . . , δn)

T by

δj = pj − aj for each j ∈ N.

From Assumption 2, δj ≥ 0 for any j ∈ N . Then we easily see that O(a,p) ⊂ O(a,a).
For any o ∈ O(a,p), we need to prove

fS†(Co(S†)) < 3fS†(C∗(S†))⇒ fS(C
o(S)) < 3fS(C

∗(S)). (5.2)

Define D∗(S) = fS(C
∗(S)) − fS†(C∗(S†)) and Do(S) = fS(C

o(S)) − fS†(Co(S†)). To
prove (5.2), it suffices to show that

Do(S) ≤ 3D∗(S). (5.3)

Since the weight vector w = a is common both in S and S†, we have that

D∗(S) = aT(C∗(S)−C∗(S†)),

Do(S) = aT(Co(S)−Co(S†)).

From Lemma 2, C∗(S) = σ(p) and C∗(S†) = σ(a). Then we see that

D∗(S) = aT(σ(p)− σ(a))

=
n∑

j=1

aj

j∑
k=1

δk

=
n∑

k=1

δk

n∑
j=k

aj

=

n∑
k=1

δo(k)

n∑
j=o(k)

aj

=
n∑

k=1

A∗
o(k)δo(k). (5.4)

Next we evaluate Do(S). Comparing S† with S, the processing time vector and the
supply date vector are different. Let k ∈ N . When ak increases by δk, j-th element of
the supply date vector u = σ(a) − a increases by δk for each j ∈ {k + 1, . . . , n}. Then
Co

o(1), . . . , C
o
o(αk)

do not change and Co
o(αk+1), . . . , C

o
o(n) may increase at most δk, where

αk = max{j ∈ N |ao(1) + · · ·+ ao(j) ≤ a1 + · · ·+ ak}
= λk+1 − 1.

Chapter 5 3-approximation algorithm for single-machine scheduling problem with non-renewable resource 29

Besides, when o(k)-th element of processing time vector increases by δo(k), not only
Co

o(k) but also Co
o(k+1), . . . , C

o
o(n) may increase at most δo(k). From these facts, we have

that

Do(S) ≤
n∑

k=1

δk

n∑
l=αk+1

ao(l) +
n∑

k=1

δo(k)

n∑
l=k

ao(l)

=
n∑

k=1

Ao
αk+1δk +

n∑
k=1

Ao
kδo(k)

=
n∑

k=1

Ao
λk+1

δk +
n∑

k=1

Ao
kδo(k)

=
n∑

k=1

Ao
λo(k)+1

δo(k) +

n∑
k=1

Ao
kδo(k)

≤
n∑

k=1

(
2A∗

o(k)+1 +Ao
k

)
δo(k), (5.5)

where the last inequality follows from Theorem 2. Comparing (5.5) with (5.4), the in-
equality

n∑
k=1

Ao
kδo(k) ≤

n∑
k=1

(
2ao(k) +A∗

o(k)

)
δo(k),

implies (5.3). The inequality above is proved in Lemma 6 below.

Lemma 6. For any instance S = ⟨n,J ,p,a, n, (σ(p)−p),a⟩ and o ∈ O(p,a), we define

M∗(S) =
n∑

k=1

(
2ao(k) +A∗

o(k)

)
δo(k)

and

Mo(S) =
n∑

k=1

Ao
kδo(k),

where δj = pj − aj for each j ∈ N . Then we have that

Mo(S) ≤M∗(S). (5.6)

Proof. We show (5.6) by induction on n. In the case n = 1, the result is trivial. Then
we prove (5.6) for S, o, and n ≥ 2 under the assumption that (5.6) holds for n− 1.

We define S− = So(1). Recall that So(1) is an NR-SSP obtained by removing every

o(1)th input from S, namely, So(1) = ⟨n−1,J−,p−,a−, n−1, (σ(p−)−p−),a−⟩ such that

J− = (J1, J2, . . . , Jo(1)−1, Jo(1)+1, . . . , Jn), p− = (p1, p2, . . . , po(1)−1, po(1)+1, . . . , pn)
T,

and a− = (a1, a2, . . . , ao(1)−1, ao(1)+1, . . . , an)
T. We also define o− = (o(2), o(3), . . . , o(n)),

Chapter 5 3-approximation algorithm for single-machine scheduling problem with non-renewable resource 30

∆∗ = M∗(S) −M∗(S−), and ∆o = Mo(S) −Mo−
(S−). It is obvious that o− satisfies

the conditions in Definition 1. Under the assumption Mo−
(S−) ≤ M∗(S−), we need to

show
∆o ≤ ∆∗ (5.7)

to prove (5.6) for n.
Next we show that (5.7) holds. We have that

M∗(S−) =
n∑

k=2

2ao(k) +
∑

o(k)≤j≤n,j ̸=o(1)

aj

 δo(k)

and

∆∗ = M∗(S)−M∗(S−)

= 2ao(1)δo(1) +A∗
o(1)δo(1) +

∑
o(k)<o(1)

ao(1)δo(k).

We also have that

Mo−
(S−) =

n∑
k=2

δo(k)

n∑
j=k

ao(j)

and

∆o = Mo(S)−Mo−
(S−)

=

n∑
j=1

ao(j)δo(1)

=

j∗−1∑
j=1

ao(j)δo(1) + ao(j∗)δo(1) +Ao
j∗+1δo(1),

where
j∗ = min{j ∈ N |ro(j) > ro(1)}.

(In the case of ro(j) ≤ ro(1) for any j ∈ N , we define j∗ = n + 1 and ao(j∗) = 0.) Since
ro(j) ≤ ro(1) for any j < j∗, we have from Theorem 3-(i) that

j∗−1∑
j=1

ao(j)δo(1) =
∑

1≤j≤j∗−1,o(j)≥o(1)

ao(j)δo(1) +
∑

1≤j≤j∗−1,o(j)<o(1)

ao(j)δo(1)

≤
∑

1≤j≤j∗−1,o(j)≥o(1)

ao(j)δo(1) +
∑

1≤j≤j∗−1,o(j)<o(1)

ao(1)δo(j)

≤ A∗
o(1)δo(1) +

∑
o(k)<o(1)

ao(1)δo(k).

Chapter 5 3-approximation algorithm for single-machine scheduling problem with non-renewable resource 31

Since j∗ > 1 and ro(j∗) > ro(1), we have from Theorem 3-(ii) that

ao(j∗)δo(1) +Ao
j∗+1δo(1) ≤ 2ao(1)δo(1).

Hence ∆o ≤ ∆∗ holds.

5.3 Proofs
This section shows that Theorems 8 and 9.
Proof of Theorem 8. By Theorems 3 and 10, it suffices to prove it for any instance
S = ⟨n,J ,a,a, n, (σ(a)− a),a⟩ and o ∈ O(a,p). From Lemma 2, the optimal schedule
for S is C∗(S) = σ(a). Define Q =

∑n
j=1 aj . Then we see that

fS(C
∗(S)) = aTσ(a)

=
n∑

j=1

aj

j∑
i=1

ai

=
1

2
Q2 +

1

2

n∑
j=1

a2j .

Since all the resources are available after the time t = Q− ao(n), we have that

Co
o(j)(S) ≤ Q− ao(n) +

j∑
i=1

ao(i) < Q+

j∑
i=1

ao(i)

for each j ∈ N . Thus we see that

fS(C
o(S)) =

n∑
j=1

ao(j)C
o
o(j)(S)

<
n∑

j=1

ao(j)

(
Q+

j∑
i=1

ao(i)

)

= Q2 +
n∑

j=1

ao(j)

j∑
i=1

ao(i)

= Q2 +
1

2
Q2 +

1

2

n∑
j=1

a2j

< 3fS(C
∗(S)).

Chapter 5 3-approximation algorithm for single-machine scheduling problem with non-renewable resource 32

Proof of Theorem 9. Let 0 < e < 0.1 and S̃ = ⟨n,J ,p,a, n, (σ(p)− p),a⟩ for n = 3,
p = (e, e, 1)T, and a = (1− e, 1, 1 + e)T. We easily see that

C∗(S̃) = σ(p) = (e, 2e, 1 + 2e)T,
o = (3, 2, 1),

Co(S̃) = (1 + 3e, 1 + 2e, 1 + e)T.

Then

lim
e→0+

fS̃(C
o(S̃))

fS̃(C
∗(S̃))

= lim
e→0+

(1− e)(1 + 3e) + (1 + 2e) + (1 + e)(1 + e)

(1− e)e+ 2e+ (1 + e)(1 + 2e)

= 3.

Hence we obtain the result.

33

Chapter 6

Conclusion

This thesis addresses Single-machine Scheduling Problem with a Non-renewable
Resource(NR-SSP) with the total weighted completion time criterion. This problem
is known to be NP-hard [10], and no constant-factor approximation algorithm has
been found so far. This thesis develops (i) a simplification technique that preserves
approximation ratios of some list scheduling algorithms for the NR-SSP with an input
limitation, weights proportional to resource consumption (w = a). Then we show
approximation results for

(ii) The NR-SSP with unit processing times(p = 1n) and w = a,
(iii) The NR-SSP with w = a,

by applying the technique. These problems are also known to be NP-hard [4, 18].
(i) We develop a simplification technique for NR-SSP with the total weighted completion

time criterion and the input limitation w = a. This simplification allows us to fix all the
inputs of supply plans, the number of supplies q, supply dates u, and supply amounts b,
when we prove some approximabilities of list scheduling algorithms.
(ii) We show that a list scheduling algorithm with non-increasing order of resource

consumption is a 2-approximation algorithm for the problem, which Györgyi and Kis [19]
conjecture. Besides, we verify that the approximation ratio is tight for the algorithm, and
no instance can achieve the approximation ratio precisely.
(iii) We establish a 3-approximation list scheduling algorithm for the problem. This is

the first (constant-factor) approximation algorithm for the problem. Similar to (ii), we
also prove that the approximation ratio is tight for the algorithm, and no instance can
achieve the ratio.

34

Appendix A

Computational remarks

In this chapter, we compare the performance of the algorithms with other simple list
scheduling algorithms by numerical experiments with random NR-SSP instances. We
show that (i) a list scheduling algorithm with aj non-increasing order is a 2-approximation
algorithm for NR-SSP with w = a and p = 1n and (ii) a list scheduling algorithm with
any order calculated by Algorithm 2 is a 3-approximation algorithm for NR-SSP with
w = a. However, these results only guarantee the worst performances. Thus, we verify
the performances of the algorithms by numerical experiments. We only investigate random
instances with q = n, u = σ(p)− p, and b = a because we can find an optimal schedule
by Theorem 4.

We consider six scenarios of the random instances. For the job number n, we ex-
periment with three patterns n ∈ {10, 30, 100}. For the processing times, we take into
account two cases (a) unit processing times (p = 1n) and (b) uniformly distributed from
{1, 2, . . . , 1000}n. For each instance, a is uniformly distributed from {1, 2, . . . , 1000}n.
We generate 1,000,000 instances for each scenario. Then we compare the approximation
ratio of the instances (=[objective value]/[optimal value]) with list scheduling algorithms.

For the case (a), we experiment with the following list scheduling algorithms:

• wj non-increasing order (2-approximation algorithm),
• wj non-decreasing order,
• random order.

Note that Algorithm 2 always outputs a wj non-increasing order for this case. For the
case (b), we employ list scheduling algorithms with the following orders:

• Algorithm 2,
• wj

pj
(= rj) non-increasing order,

• wj

pj
(= rj) non-decreasing order,

• wj non-increasing order,
• wj non-decreasing order,
• pj non-increasing order,
• pj non-decreasing order,
• random order.

Appendix A Computational remarks 35

Table A.1. Computational results of list scheduling algorithms for random instances with
unit processing times. The values denoted by bold letter indicate the best one
among the three algorithms.

Order average min max stdev
(n=10, unit processing times)
wj non-increasing order (2-approximation algorithm) 1.1773 1.0062 1.6260 0.0486
wj non-decreasing order 1.2957 1.0004 3.0023 0.1573
random 1.2345 1.0045 2.4442 0.0937
(n=30, unit processing times)
wj non-increasing order (2-approximation algorithm) 1.0848 1.0302 1.1879 0.0159
wj non-decreasing order 1.3197 1.0542 2.0985 0.0919
random 1.1414 1.0321 1.7198 0.0485
(n=100, unit processing times)
wj non-increasing order (2-approximation algorithm) 1.0440 1.0212 1.0899 0.0072
wj non-decreasing order 1.3289 1.1481 1.6489 0.0505
random 1.0775 1.0225 1.2859 0.0249

In Tables A.1 and A.2, the second column (”min”) shows the best approximation ratios,
the third column (”max”) the worst approximation ratios, the fourth column (”average”)
the average of the approximation ratios, and the fifth column (”stdev”) the standard
deviation of the approximation ratios.
From Table A.1, wj non-increasing order is the best except ”min” in n = 10, and

wj non-decreasing order is the worst except ”min” in n = 10. This shows that list
scheduling algorithm with wj non-increasing order is effective for this situation. From
Table A.2, wj/pj non-increasing order or wj non-increasing order is the best except ”max”
in n = 10. Besides, Algorithm 2 always better than the other list scheduling algorithms
except ”min” in n = 100. Recall that Algorithm 2 is a combination of wj/pj non-
increasing order or wj non-increasing order. The result shows that Algorithm 2 obtains
the performance guarantee by slightly reducing the performance on average compared to
the two list scheduling algorithms.

Appendix A Computational remarks 36

Table A.2. Computational results of list scheduling algorithms for random instances. The
values denoted by bold letter indicate the best one among the eight algorithms.

Order average min max stdev
(n=10)
Algorithm 2 (3-approximation algorithm) 1.2222 1.0005 1.6266 0.0596
wj/pj non-increasing order 1.2102 1.0000 1.7085 0.0555
wj/pj non-decreasing order 1.4619 1.0083 6.0158 0.2456
wj non-increasing order 1.2310 1.0021 2.0348 0.0698
wj non-decreasing order 1.3746 1.0020 5.9468 0.2200
pj non-increasing order 1.4443 1.0071 5.9929 0.2232
pj non-decreasing order 1.2402 1.0115 2.0071 0.0740
random 1.3057 1.0054 4.8395 0.1352
(n=30)
Algorithm 2 (3-approximation algorithm) 1.1246 1.0442 1.3919 0.0314
wj/pj non-increasing order 1.1193 1.0453 1.2701 0.0238
wj/pj non-decreasing order 1.4669 1.0851 2.7828 0.1430
wj non-increasing order 1.1174 1.0419 1.4054 0.0266
wj non-decreasing order 1.3351 1.0527 2.5792 0.1338
pj non-increasing order 1.3812 1.0578 2.6710 0.1318
pj non-decreasing order 1.1672 1.0492 1.5518 0.0425
random 1.1898 1.0494 1.9552 0.0692
(n=100)
Algorithm 2 (3-approximation algorithm) 1.1005 1.0330 1.2642 0.0233
wj/pj non-increasing order 1.0711 1.0322 1.1561 0.0134
wj/pj non-decreasing order 1.4761 1.1874 2.0203 0.0779
wj non-increasing order 1.0590 1.0264 1.1655 0.0121
wj non-decreasing order 1.3313 1.0672 1.8093 0.0756
pj non-increasing order 1.3487 1.0544 1.8798 0.0745
pj non-decreasing order 1.1226 1.0441 1.2929 0.0259
random 1.1065 1.0311 1.3938 0.0357

37

Bibliography

[1] Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms.
Acta informatica, 1(4):290–306, 1972.

[2] Atiyeh Bazgosha, Mohammad Ranjbar, and Negin Jamili. Scheduling of loading and
unloading operations in a multi stations transshipment terminal with release date
and inventory constraints. Computers & Industrial Engineering, 106:20–31, 2017.

[3] Matthias Bentert, Robert Bredereck, Péter Györgyi, Andrzej Kaczmarczyk, and Rolf
Niedermeier. A multivariate complexity analysis of the material consumption schedul-
ing problem. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 11755–11763. AAAI Press, 2021.

[4] Kristóf Bérczi, Tamás Király, and Simon Omlor. Scheduling with non-renewable
resources: Minimizing the sum of completion times. In Proceedings of the 6th Inter-
national Symposium on Combinatorial Optimization, volume 12176 of Lecture Notes
in Computer Science, pages 167–178. Springer, 2020.

[5] Dirk Briskorn, Byung-Cheon Choi, Kangbok Lee, Joseph Leung, and Michael Pinedo.
Complexity of single machine scheduling subject to nonnegative inventory constraints.
European Journal of Operational Research, 207(2):605–619, 2010.

[6] Dirk Briskorn, Florian Jaehn, and Erwin Pesch. Exact algorithms for inventory
constrained scheduling on a single machine. Journal of scheduling, 16(1):105–115,
2013.

[7] Dirk Briskorn and Joseph YT Leung. Minimizing maximum lateness of jobs in
inventory constrained scheduling. Journal of the Operational Research Society,
64(12):1851–1864, 2013.

[8] Jacques Carlier and AHG Rinnooy Kan. Scheduling subject to nonrenewable-resource
constraints. Operations Research Letters, 1(2):52–55, 1982.

[9] Morteza Davari, Mohammad Ranjbar, Patrick De Causmaecker, and Roel Leus. Min-
imizing makespan on a single machine with release dates and inventory constraints.
European Journal of Operational Research, 286(1):115–128, 2020.

[10] Evgeny R Gafarov, Alexander A Lazarev, and Frank Werner. Single machine schedul-
ing problems with financial resource constraints: Some complexity results and prop-
erties. Mathematical Social Sciences, 62(1):7–13, 2011.

[11] Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell system tech-
nical journal, 45(9):1563–1581, 1966.

[12] Ronald L Graham. Bounds on multiprocessing timing anomalies. SIAM journal on
Applied Mathematics, 17(2):416–429, 1969.

[13] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Op-

Bibliography 38

timization and approximation in deterministic sequencing and scheduling: a survey.
Annals of discrete mathematics, 5:287–326, 1979.

[14] Alexander Grigoriev, Martijn Holthuijsen, and Joris van de Klundert. Basic schedul-
ing problems with raw material constraints. Naval Research Logistics, 52(6):527–535,
2005.

[15] Péter Györgyi and Tamás Kis. Approximation schemes for single machine scheduling
with non-renewable resource constraints. Journal of Scheduling, 17(2):135–144, 2014.

[16] Péter Györgyi and Tamás Kis. Approximability of scheduling problems with resource
consuming jobs. Annals of Operations Research, 235(1):319–336, 2015.

[17] Péter Györgyi and Tamás Kis. Approximation schemes for parallel machine schedul-
ing with non-renewable resources. European Journal of Operational Research,
258(1):113–123, 2017.

[18] Péter Györgyi and Tamás Kis. Minimizing total weighted completion time on a
single machine subject to non-renewable resource constraints. Journal of Scheduling,
22(6):623–634, 2019.

[19] Péter Györgyi and Tamás Kis. New complexity and approximability results for
minimizing the total weighted completion time on a single machine subject to non-
renewable resource constraints. Discrete Applied Mathematics, 311:97–109, 2022.

[20] Tamás Kis. Approximability of total weighted completion time with resource con-
suming jobs. Operations Research Letters, 43(6):595–598, 2015.

[21] Alexander V Kononov and Bertrand MT Lin. Minimizing the total weighted com-
pletion time in the relocation problem. Journal of Scheduling, 13(2):123–129, 2010.

[22] Ehab Morsy and Erwin Pesch. Approximation algorithms for inventory constrained
scheduling on a single machine. Journal of Scheduling, 18(6):645–653, 2015.

[23] Roman Slowiński. Preemptive scheduling of independent jobs on parallel machines
subject to financial constraints. European Journal of Operational Research, 15(3):366–
373, 1984.

[24] Wayne E Smith. Various optimizers for single-stage production. Naval Research
Logistics Quarterly, 3(1-2):59–66, 1956.

