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RESEARCH ARTICLE

Stability analysis of multi-serial-link 
mechanism driven by antagonistic 
multiarticular artificial muscles
Yuta Ishikawa*  , Hiroyuki Nabae, Gen Endo and Koichi Suzumori 

Abstract 

Artificial multiarticular musculoskeletal systems consisting of serially connected links driven by monoarticular and 
multiarticular muscles, which are often inspired by vertebrates, enable robots to elicit dynamic, elegant, and flexible 
movements. However, serial links driven by multiarticular muscles can cause unstable motion (e.g., buckling). The 
stability of musculoskeletal mechanisms driven by antagonistic multiarticular muscles depends on the muscle con-
figuration, origin/insertion of muscles, spring constants of muscles, contracting force of muscles, and other factors. 
We analyze the stability of a multi-serial-link mechanism driven by antagonistic multiarticular muscles aiming to avoid 
buckling and other undesired motions. We theoretically derive the potential energy of the system and the stable con-
dition at the target point, and validate the results through dynamic simulations and experiments. This paper presents 
the static stability criteria of serially linked robots, which are redundantly driven by monoarticular and multiarticular 
muscles, resulting in the design and control guidelines for those robots.
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Introduction
Background
Vertebrates, including humans, have multiarticulate 
musculoskeletal systems to voluntarily exert large forces 
and perform flexible movements with adaptability to the 
environment. A musculoskeletal system has two types 
of muscles: (1) multiarticular muscles, which span two 
or more joints and act on the joints simultaneously, and 
(2) monoarticular muscles, which act on a single joint. 
Multiarticular muscles are considered to enable large 
movements involving large parts of the musculoskeletal 
system, while monoarticular muscles are mainly used for 
small movements and joint support.

We have developed an artificial multiarticulate mus-
culoskeletal robot that mimics the structure of necks 
of giraffes and humans [1, 2]. During the development, 

we faced a considerable technical challenge in attain-
ing a stable stability. The serial link mechanisms that are 
redundantly driven by monoarticular and multiarticular 
muscles easily cause unintended postures. For example, 
when the monoarticular muscles are not strong enough, 
the robot often deforms to a bow-shape (as shown in the 
Fig. 1 and the left in Fig. 2) or a zigzag-shape, even if the 
muscles on the right side and the left side of the robot 
contract at an equal rate (as shown in the right in Fig. 2). 
We refer to these instability postures as "buckling" since 
a bow-shape corresponds to the first order buckling and 
zigzag-shape corresponds to a higher order buckling in 
beam structure. The buckling of such serial-link mecha-
nisms is well described in [3]. In this study, we aim to 
clarify the stability criteria.

Related previous work
In [3], although there is no mention about musculoskel-
etal robots, the author analyzed the postural stability of 
serial link mechanism using the potential energy of joint 
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stiffness. The author referred the stable and unstable con-
figurations, as the minimum and maximum points of the 
potential energy, respectively. In this study, we provide a 
similar stability analysis by considering the musculoskel-
etal robot with multi-articular muscles.

Various types of robots driven by multiarticular mus-
cles mimicking upper and lower limbs, vertebrae, and 
other anatomical structures have been proposed. The 
endpoint stiffness control of robots mimicking human 
upper limbs has been studied for a three-bar serial-link 
model driven by monoarticular and biarticular muscles 

[4, 5]. In addition, a stable muscle arrangement has been 
studied using similar models [6]. However, since only two 
joints and biarticular muscles have been considered, no 
zigzag buckling can occur. Moreover, although the stabil-
ity from the viewpoint of potential energy has been dis-
cussed in [6], the tensile force in muscles were assumed 
to be constant relative to its length. Such as assumptions 
fails to describe the pneumatic artificial muscles, as the 
tensile force and stiffness change with the length and the 
driving force, respectively.

Fig. 1 Photograph of in-house developed musculoskeletal robot of giraffe neck with buckling

Fig. 2 Buckling of the multi-serial-link mechanism driven by antagonistic multiarticular muscles without sufficient support from the monoarticular 
muscles
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For multiarticulate musculoskeletal lower-limb robots, 
the reaction forces from the ground and the jumping 
force were controlled by considering the muscle elasticity 
[7–9]. Moreover, two joints with biarticular muscles were 
also considered, as in the case of the upper-limb robots. 
The stiffness of the biarticular muscle and the muscle 
model of the lower limb considering it as a passive spring 
were studied in [7]. Subsequently, antagonistic muscles 
spanning different joints were studied in [8], while a 
model with antagonistic biarticular muscles spanning the 
same joints was presented in [9]. However, none of these 
studies have addressed instability in the musculoskeletal 
system.

Studies on multiarticulate musculoskeletal robots 
mimicking the upper and lower limbs have dealt with 
systems driven by multiarticular muscles spanning three 
or more joints. However, the instability conditions that 
we address have been neglected. Multiarticulate muscu-
loskeletal robots consisting of three or more joints and 
multiarticular muscles spanning the joints have been 
inspired by the spine of animals such as humans [10, 11], 
lancelets [12], and snakes [13, 14]. The robots introduced 
in [10, 11] consisted of silicone rubber to support each 
joint, but their instability conditions were neglected. In 
[12], lancelet swimming was studied using a nine-joint 
musculoskeletal system with seven pairs of tri-articular 
muscles, which were arranged antagonistically. How-
ever, each antagonistic pair was driven by one motor, 
preventing the analysis of simultaneous contraction of 
antagonistic muscles and system buckling. In [13], snake 
locomotion was simulated, and the efficiency of multiar-
ticular muscles was studied by changing the number of 
joints spanned by monoarticular up to tri-articular mus-
cles. In [14], the superiority of multiarticular muscles 
over monoarticular muscles was verified with respect 
to force per cross-sectional area and energy efficiency. 
However, instability was not addressed.

In [15], the stability of multiarticular tendon-driven 
robots was studied in general considering the elastic 
energy of the tendons, and the minimum length up to 
which the tendons are required to be stretched was theo-
retically derived. However, in the corresponding wire 
rope–pulley system, the moment arm around each joint 
exerted by tension of each wire was assumed to be con-
stant. Consequently, the analysis of this system cannot be 
applied to musculoskeletal systems, in which the moment 
arm changes nonlinearly with respect to the joint angles.

Purpose
Although various studies discussing the multiarticu-
late musculoskeletal systems are available, the litera-
ture dealing with multiarticular muscles spanning three 
or more joints is very limited. Moreover, most of the 

studies neglect buckling that may occur when activating 
multiarticular muscles. Additionally, the posture stabil-
ity analysis by considering simultaneous contraction of 
antagonistic multiarticular muscles and dependence of 
muscle stiffness on the driving force has not been stud-
ied. Therefore, studies focused on the determination 
of appropriate force and stiffness of monoarticular and 
multiarticular muscles for stable operation of a musculo-
skeletal system provide good research opportunities.

Since thin and flexible artificial muscles were not previ-
ously available for practical use, this type of analysis has 
not been a significant issue in robotics. However, with 
the recent availability of such thin artificial muscles, the 
postural stability of musculoskeletal robots becomes sig-
nificantly challenging.

Therefore, in this study, considering that the stiffness 
and the maximum contraction ratio of artificial mus-
cles physically change with the driving force, we aimed 
to clarify the required parameters of monoarticular and 
multiarticular muscles to avoid buckling during multi-
articular muscle activation. The two important contri-
butions of this paper are as follows: (1) a clarity on the 
important parameters that are required for the static 
stability of the multiarticular musculoskeletal serial-link 
robot without buckling will be provided; (2) the analysis 
would be validated with experiments using thin McK-
ibben artificial muscles. The static stability analysis of a 
multiarticulate musculoskeletal system using the poten-
tial energy approach is carried out for a multi-serial-link 
mechanism. The analysis consists of modeling the arti-
ficial muscles as spring elements. In addition, we con-
sidered static stability as the system convergence to a 
target angle and buckling instability if the system buck-
les in zigzag or bends uniformly like a bow. In addition 
to the model analysis, we verified the stability formula-
tion through dynamic simulations implemented in Math-
Works MATLAB and experiments using the McKibben 
artificial muscles.

Methods
Modeling and stability analysis
Our model of the musculoskeletal system is a planar 
multi-serial-link mechanism that is antagonistically 
driven by the artificial muscles, as shown in Fig. 3a. Fig-
ure 3b illustrates the fixed position of the multiarticular 
muscles spanning from the joint p to the joint q. Figure 3 
shows the m-th pair of antagonistic muscles attached to 
the vertical fixtures at a distance am from the axis along 
each link and at distances e0,m and e1,m from each joint 
along each link. Thus, e0,m and e1,m represent the distance 
of a joint with a number and that of a joint with the sub-
sequent number, respectively. In addition, the stiffness 
of the left and right sides of the m-th pair of antagonistic 
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muscles, the link lengths, and the joint angles are 
denoted as KL,m , KR,m , l0 . . . lN , and θ1 . . . θN , respectively. 
It is noted that both sides of each antagonistic muscle are 
driven with the same contraction force, as detailed below.

McKibben artificial muscle
In this study, we used McKibben pneumatic artificial 
muscles. For the experiments, we used McKibben mus-
cles with a diameter of 2 mm. This type of artificial mus-
cle mainly consists of an inner rubber tube to which air 
pressure is applied, and an outer sleeve of a woven fiber 
intersects at a certain angle. The sleeve contracts through 
expansion in the radial direction of the inner tube.

Among the various formulations, the simplest equation 
to describe the McKibben muscle operation has been 
proposed by Schulte [16]:

(1)F =
πD2

4 sin2θ0
P
{

3(1− ε)2cos2θ0 − 1
}

where F ,D,P, θ0, and ε are the contraction force, diam-
eter of the inner tube, air pressure applied to the tube, 
woven angle of the sleeve, and contraction ratio of the 
artificial muscle, respectively. Equation (1) is based on the 
virtual work principle. The work done by the compressed 
air in the rubber tube and that done by the artificial mus-
cle are assumed to be equal. Thus, the corresponding 
geometric calculation neglects the elasticity of the rubber 
tube and sleeve strands. The maximum contraction force, 
which occurs when the contraction rate is 0, appears to 
agree with experimental data, but the maximum contrac-
tion ratio may be inconsistent.

In the next section, the McKibben artificial muscle is 
modelled as a spring with stiffness K  and natural length 
s0 , as expressed in Eq.  (2). The maximum contraction 
force, FMax , is derived from Eq.  (1), and the maximum 
contraction ratio, εMax , is obtained experimentally.

Fig. 3 Model of multi-serial-link mechanism driven by McKibben artificial muscles. a general view of N-serial-link mechanism driven by antagonistic 
mono- and multi-articular muscles and b mathematical model of a pair of antagonistic multiarticular muscles represented as springs. The stiffnesses 
of the left and right sides and the natural length of the m-th pair of the artificial muscles are denoted as KL,m , KR,m , and L0,m , respectively



Page 5 of 12Ishikawa et al. ROBOMECH Journal            (2022) 9:11  

Note that S represents the default length of the muscle, 
and muscle stiffness K  varies with the driving pressure P.

Potential energy of multi‑serial‑link mechanism driven 
by antagonistic artificial muscles
We also consider the stability of the multiarticulate mus-
culoskeletal system driven by antagonistic muscles. We 
focus on a straight posture, which is common for the 
spine. If the total potential energy, U , which is produced 
by the muscles considered as springs, reaches a local 
minimum value at the target angles, the multiarticular 
musculoskeletal system is said to be stable. A similar sta-
bility analysis by considering the potential energy is con-
ducted by Ochi et al. [6], and Ozawa et al. [15]. Note that, 
unlike the analysis of the latter researchers, in this paper, 
it is not necessary to consider the gravitational potential 
energy and kinematic energy terms because we focused 
on the static stability of the planar serial link. Therefore, 
considering an N-joint serial-link mechanism, a suffi-
cient condition for stability is given by the entire poten-
tial energy, U(θ) ( θ ∈ R

N ), which satisfies the following 
conditions:

where H ∈ R
N×N  is the Hessian matrix describing the 

second-order partial derivative of U . Specifically, the ele-
ment at row i and column j of matrix H is given by

Equation (4) is equivalent to the following equation:

The potential energy of the entire system, U , can be 
expressed as the sum of the potential energy produced by 
the antagonistic muscles:

where M is the number of pairs of the antagonistic mus-
cles, sL,m and sR,m are the endpoint vectors of the left and 

(2)K =
FMax

εMaxS
, s0 = S(1− εMax)

∂U
∂θi

= 0 ∀i ∈ [1,N ]

(3)x
THx > 0 ∀x ∈ R

N

(4)Hij =
∂2U
∂θi∂θj

(

1 ≤ i ≤ N , 1 ≤ j ≤ N
)

(5)det(Ak) > 0 ∀k ∈ [1,N ]

Ak ≡







H11 · · · H1k

...
. . .

...

Hk1 · · · Hkk







(6)
U =

∑M
m

{

KL,m

2

(∣

∣sL,m

∣

∣

− s0,m
)2

+

KR,m

2

(∣

∣sR,m

∣

∣

− s0,m
)2
}

right sides of antagonistic muscle m, respectively, and |s| 
is the norm of vector s . We set the natural length of both 
muscle sides to s0,m . As shown in Fig. 3b, the endpoints 
of the multiarticular muscles that span from joint p to 
joint q have distances e0,m and e1,m from each joint. As the 
muscle endpoints are attached to the next links, e0,m and 
e1,m must satisfy the following constraints:

By using the angles of the mechanism, sL,m and sR,m 
can be described as follows:

    where φn =

∑n
k=pθk . The only difference between sL,m 

and sR,m is the change in the positive and negative signs 
of am given the symmetry of the antagonistic muscles.

For an antagonistic muscle m, the first- and second-
order partial derivatives of its potential energy Um are 
given by:

where Um is assumed to be a continuous and second-
order differentiable function in RN , and the order of dif-
ferentiation can be ignored.

As the target angles are set to θ =

−→

0 ∈ R
N , we have

0 ≤ e0,m ≤ lp−1, 0 ≤ e1,m ≤ lq

sL,m =

(

e0,m +

∑q−1
n=plncosφn + e1,mcosφq + amsinφq

am +

∑q−1
n lnsinφn + e1,msinφq − amcosφq

)

sR,m =

(

e0,m +

∑q−1
n=plncosφn + e1,mcosφq − amsinφq

−am +

∑q−1
n lnsinφn + e1,mcosφq + amcosφq

)

(7)
∂Um

∂θi
= KL,m

(∣

∣sL,m

∣

∣

− s0,m

) ∂|sL,m|

∂θi

+KR,m

(∣

∣sR,m

∣

∣

− s0,m

) ∂|sR,m|

∂θi

(8)

∂2Um

∂θi∂θj

(

= Hm,ij

)

=KL,m

∂
∣

∣sL,m

∣

∣

∂θi

∂
∣

∣sL,m

∣

∣

∂θj

+ KL,m

(∣

∣sL,m

∣

∣

− s0,m

)∂2
∣

∣sL,m

∣

∣

∂θi∂θj

+ KR,m

∂
∣

∣sR,m

∣

∣

∂θi

∂
∣

∣sR,m

∣

∣
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+ KR,m

(∣

∣sR,m

∣

∣

− s0,m

)∂2
∣

∣sR,m

∣

∣

∂θi∂θj

(9)
∣

∣sL,m

∣

∣

= e0,m +

∑p
nln + e1,m

(10)∂|sL,m|

∂θi
=

am

(

e0,m+
∑q−1

n=pln+e1,m

)

e0,m+
∑q−1

n=pln+e1,m
= am
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 where

As Um must satisfy Eq. (3) to be a local minimum, from 
Eqs. (7), (9), and (10), we obtain

which indicates that both sides of the antagonistic mus-
cles are driven by the same force simultaneously. From 
Eqs. (8)–(12), the following equations are obtained:

where εMax is the maximum contraction ratio of the 
muscle, and the muscle length, Sm , can be expressed as 
given below:

We consider contraction ratio εMax to be always posi-
tive because the McKibben artificial muscles are assumed 
to be of the contraction type. Therefore, the second term 
related to εMax in Eq.  (14) is always negative. Thus, a 
larger am leads to more positive elements, Hij , in the Hes-
sian matrix, whereas large values of e0,m , e1,m , and link 
lengths lead to more negative elements. From Eq.  (14), 
we can check the stability of the system by determining 
whether Hij satisfies the Eq. (4) or Eq. (5).

(11)∂2|sL,m|

∂θi∂θj
=

−

(

e0,m+
∑i−1

n=pln

)(

∑q−1

n=j ln+e1,m

)

e0,m+
∑p

nln+e1,m

p ≤ i ≤ j ≤ q

∑i−1

n=p
ln = 0 for i = p

∑q−1

n=j
ln = 0 for j = q

(12)KL,m = KR,m(= Km)

(13)
Hm,ij = 2Km

{

a2m −

(

Sm − s0,m
)

(

e0,m+
∑i−1

n=pln

)(

∑q−1

n=j ln+e1,m

)

Sm

}

= 2Km

{

a2m −

(

1−
s0,m
Sm

)(

e0,m +

∑i−1
n=pln

)(

∑q−1

n=j ln + e1,m

)}

= 2Km

{

a2m − εMax

(

e0,m +

∑i−1
n=pln

)(

∑q−1

n=j ln + e1,m

)}

(14)Hij =
∑M

m 2Km

{

a2m − εMax

(

e0,m +

∑i−1
n=pln

)(

∑q−1

n=j ln + e1,m

)}

Sm = e0,m +

∑q−1

n=p
ln + e1,m

Stability of monoarticular and multiarticular muscles
For a negative diagonal element of the Hessian matrix 
of the potential energy, Eq.  (4) is not satisfied. This 
is because any negative Hii results in the follow-
ing left-hand side of Eq.  (4) obtained by setting x as 
x = (0..xi..0)

T , xi ∈ R:

The abovementioned condition is related to the stabil-
ity of joint i but not to that of the entire system. There-
fore, for system stability, all the diagonal elements of the 
Hessian matrix should be positive.

When joints q and p are the same, that is, when consid-
ering the antagonistic monoarticular muscles that span 
joint p, the corresponding Hessian matrix of potential 
energy is given by

Equation  (15) shows that the monoarticular muscles 
affect only the p-th diagonal element of the Hessian 
matrix, Hpp . Since the diagonal elements must be positive 
for stability, the antagonistic pairs of the monoarticular 
muscles stabilize the joint p when Hm,pp is positive. This 
can be expressed as follows:

Equation  (16) indicates that e0,m and/or e1,m must be 
sufficiently smaller than am for the monoarticular mus-
cles to stabilize the joint.

When the joints p and q are different, the diagonal ele-
ments of the Hessian matrix of potential energy produced 
by antagonistic multiarticular muscles can expressed as

x
T
Hx = Hiix

2
i < 0

(15)

Hm,ij =

{

2Km

{

a2m − εMaxe0,me1,m
}(

if i = j = p
)

0 (otherwise)

(16)a
2
m − εMaxe0,me1,m > 0
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In the Eq.  (17), the p-th and q-th diagonal elements 
become positive when e0,m and e1,m are sufficiently close 
to 0. In contrast to this, the diagonal elements for the 
joints between p and q are usually negative because am 

(17)Hm,ii =



























2Km

�

a2m − εMax

�

e0,m +

�i−1
n=pln

��

�q−1

n=i ln + e1,m

��

(if p < i < q)

2Km

�

a2m − εMaxe0,m

�

�q−1

n=i ln + e1,m

��

(if i = p)

2Km

�

a2m − εMax

�

e0,m +

�i−1
n=pln

�

e1,m

�

�

if j = q
�

0 (otherwise)

is not much larger than the sum of the link lengths. Thus, 
multiarticulate antagonistic muscles cause instability, 
especially in the joints between them.

Results
Simulations
We first validated our formulation through calculations 
and simulations implemented in MathWorks MATLAB 
Simulink.

Table 1 Parameters of multi-serial-link mechanism

l0[mm] l1[mm] l2[mm] l3[mm] a[mm] h[mm]

50 50 50 50 19.5 9

Fig. 4 Diagram of multi-serial-link mechanism

Table 2 Parameters of the McKibben artificial muscles

Rubber tube outer diameter D = 2 mm

Rubber tube inner diameter d = 1.16 mm

Sleeve default angle θ0 = 19°

Parameter Monoarticular muscle Tri‑articular muscle

P(MPa) 0.3 0.4 0.5 0.3 0.4 0.5

Km(kN/m) 2.26 2.45 2.58 0.57 0.62 0.66

εMax(%) 13 16 19 13 16 19

e0(mm) 0 50

e1(mm) 50 50
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For the simulations and the experiments reported 
below, we considered a three-joint multi-serial-link 
mechanism with four pairs of antagonistic muscles com-
prising three pairs of monoarticular muscles and one pair 
of tri-articular muscles. The parameters of the McKib-
ben artificial muscles used for the simulations and the 

experiments are as listed in Table 1. A mechanism con-
sidering the parameters listed In Table 1 are illustrated in 
the Fig. 4.

It is to be noted that, the heights of both the mus-
cle endpoints are different in the experimental setup. 

Fig. 5 Results of dynamic simulations. One spring representing a tri-articular muscle (TM) is attached to both ends of the system, and three springs 
representing monoarticular muscles (MMs) are attached around each joint. Note that all the MMs are driven by the same pressure at each condition

Table 3 Determinants of A1 , A2 , and A3 indicating stability in different cases

Air pressure of monoarticular 
muscles (MPa)

Air pressure of tri‑articular muscles (MPa)

0.0 0.3 0.4 0.5

 0.0 |A1| = 0 − 0.68 − 1.02 − 1.37

|A2| = 0 0.63 1.28 2.17

|A3| = 0 − 0.35 − 1.04 − 2.32

 0.3 1.68 0.99 0.65 0.31

2.81 0.52 − 0.17 − 0.66

4.70 0.42 −0.31 − 0.51

 0.4 1.82 1.13 0.80 0.45

3.30 0.76 − 0.04 − 0.64

5.99 0.76 − 0.26 − 0.67

 0.5 1.91 1.23 0.89 0.54

3.66 0.96 0.08 − 0.60

7.01 1.07 − 0.19 − 0.77
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Therefore, a height gap of h = 9 mm is considered in the 
simulation. Moreover, the vertical distance of all muscles 
from links a1, . . . , a4 was set to 19.5 mm. Assuming that 
the antagonistic artificial muscles are tilted by angle ψ in 
the height direction from the horizontal line, the default 
muscle length, Sm , and the vectors of the antagonistic 
muscles vary from those mentioned above. As a result, 
the Hessian matrix of the potential energy produced by 
the muscles that is derived using Eq. (13) can be rewrit-
ten as follows:

with angle ψ expressed as follows:

Table  2 lists the experimental parameters associated 
to the monoarticular and the tri-articular muscles of the 
McKibben artificial muscles. The stiffness of the artificial 
muscles, Km , was derived from the Eq.  (2), considering 

(18)Hm,ij = 2Km

{

(

cos2ψ + εsin2ψ
)

a2m − εMax

(

e0,m +

∑i−1
n=pln

)(

∑q−1

n=j ln + e1,m

)}

ψ = tan−1 h

Sm

FMax that is obtained using the Eq. (1). In addition, εMax 
was determined from measurements on a tri-articular 
muscle at varying applied pressure P . In this case, the 
εMax is measured as the contraction ratio of the muscle 
when no tension was applied to it. Specifically, the mono-
articular and the tri-articular muscles were driven by air 
pressures of 0.0, 0.3, 0.4, and 0.5 MPa. We measured 15 
trials per air pressure except for the pressure of 0.0 MPa, 
which is equivalent to the muscles being not attached to 
the joint because no interference occurs to the muscles 

and links in the simulation. The simulation results are 
shown in the Fig. 5.

Using the values in Tables  1 and 2, the determinants 
of A1 , A2 , and A3 as defined in Eq. (5) are obtained and 
are listed in the Table 3. When no pressure (0.0 MPa) is 
applied to the monoarticular muscles and a pressure of 
0.4 or 0.5  MPa is applied to the tri-articular muscles, 
at least one of the determinants from A1 , A2 , and A3 

Fig. 6  a Diagram and photograph of experimental equipment, b diagram of multi-serial-link mechanism showing dimensions and attachment 
points of monoarticular and multiarticular muscles (unit: millimeters), and c experimental setup of the multi-serial-link mechanism driven by the 
McKibben artificial muscles.
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becomes negative. Thus, instability occurs as confirmed 
by the simulation results shown in Fig.  5. When the 
determinant of A1 is negative, instability appears as zig-
zag buckling.

Experiments
We also verified our formulation experimentally using a 
three-joint multi-serial-link mechanism and the McKib-
ben artificial muscles. A diagram and a photograph of the 
experimental setup are shown in Fig. 6. An air compres-
sor was used to provide the compressed air. The air pres-
sure was controlled using a pressure valve and applied to 
the monoarticular and the tri-articular muscles. Bearings 
were used at all joints to reduce friction. Whereas the 
friction between the link and the ground was reduced by 
using light weight links which are fabricated using a 3D 
printer. The parameter of the McKibben muscles used in 
the experiment are as listed in the Table 2.

Experiments are performed for the cases with the same 
conditions that are considered during the simulation. 
The obtained experimental results are as shown in Fig. 7. 
When the pressure applied to the monoarticular muscles 
is 0.0 MPa, each joint angle changes substantially, clearly 

destabilizing the system at the target posture. When 
monoarticular muscles are driven at any pressure except 
for 0.5 MPa and tri-articular muscles are driven at 0.4 or 
0.5 MPa, the joint angles change in a smaller proportion 
than without using the monoarticular muscles. When the 
monoarticular muscles are driven at 0.5 MPa, it is diffi-
cult to recognize the changes. When the monoarticular 
muscles are driven at 0.3  MPa, no remarkable changes 
occur regardless of the pressure applied to the tri-articu-
lar muscles. Overall, the experimental results are consist-
ent with those obtained from our formulation.

Discussion
The results presented in the Table  3 show that the sys-
tem becomes theoretically unstable at the target posture 
θ = 0 for the monoarticular muscles driven at 0.0 MPa or 
the tri-articular muscles driven at 0.4 or 0.5 MPa. In par-
ticular, when the monoarticular muscles are inactive (at 
0.0 MPa pressure), the determinant of A1 becomes nega-
tive, and the serial-link mechanism buckles to a zigzag 
shape. This phenomenon was successfully predicted by 
the simulations and was obtained using the experiments 
also (refer to the Figs.  5 and 7). For other theoretically 

Fig. 7 Experimental results. MM and TM are actuated at air pressures of 0.0, 0.3, 0.4, and 0.5 MPa. Note that all the MMs are actuated by the same 
pressure at each condition
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unstable conditions, the simulation predicted the sys-
tem to bend like a bow as shown in the Fig.  5. On the 
other hand, the experimental results shown in the Fig. 7 
show apparent instability of the serial-link mechanism 
because changes in each joint angle can be observed, but 
the mechanism does not bend with the extent shown in 
the simulations. In the theoretically stable conditions, 
wherein the tri-articular muscles are driven at 0.0 or 
0.3 MPa, the mechanism does not bend and remains sta-
ble. This observation is verified using the simulation and 
the experimental results.

When the tri-articular muscles are driven at 0.5 MPa, 
the mechanism tends to stabilize as the monoarticu-
lar muscles are driven at higher pressures in the experi-
ments, contradicting the simulation results. This 
inconsistent result is attributable to the effect of joint 
friction, which increases with the muscle contraction 
forces.

In addition to the effect of joint friction, the friction 
caused by the interference between the artificial muscles 
and the links tends to stabilize the posture of the mecha-
nism. Therefore, the serial-link mechanism can remain 
stable at a posture around the target, at least when the 
theoretically stable conditions are satisfied.

Conclusion
Considering monoarticular and multiarticular muscles 
in a multiarticulate musculoskeletal system, we ana-
lyze the conditions for system stability while driving the 
multiarticular muscles. Theoretically, we determine sta-
bility assuming that it can be reached when the potential 
energy produced by each articular muscle is locally mini-
mal at the target point. In addition, to stabilize each joint, 
the distances from the fixed point of the monoarticular 
muscles to the joint must be sufficiently small. We ana-
lyzed the stability of a three-joint multiarticulate muscu-
loskeletal system and validated our formulation through 
dynamic simulations and experiments on a mechanism 
driven by McKibben artificial muscles. We confirmed 
that sufficiently high stiffness of monoarticular muscles 
and locally minimal potential energy of the system at 
the target posture lead to stability in the musculoskeletal 
mechanism consisting of serial links and the multiarticu-
late McKibben muscles.
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