T2R2 #RrgAsUs-—FURYA

Tokyo Tech Research Repository

Od/dodn
Article / Book Information

Title Homology length dictates the requirement for Rad51 and Rad52 in
gene targeting in the Basidiomycota yeast Naganishia liquefaciens

Authors Maierdan Palihati, Hideo Tsubouchi, Bilge Argunhan, Rei Kajitani,
Omirgul Bakenova, Yong-Woon Han, Yasuto Murayama, Takehiko Itoh,
Hiroshi lwasaki

Citation Current Genetics, Vol. 67, no. 6, pp. 919-936
Pub. date 2021, 12
Note This version of the article has been accepted for publication, after peer

review (when applicable) and is subject to Springer Nature’ s AM
terms of use, but is not the Version of Record and does not reflect post-
acceptance improvements, or any corrections. The Version of Record is
available online at: http://dx.doi.org/10.1007/s00294-021-01201-3.

Powered by T2R2 (Tokyo Institute Research Repository)


http://t2r2.star.titech.ac.jp/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Homology length dictates the requirement for Rad51 and Rad52 in gene targeting in

the Basidiomycota yeast Naganishia liquefaciens

Maierdan Palihati'-2, Hideo Tsubouchi'2*, Bilge Argunhan?3, Rei Kajitani’, Omirgul

Bakenova', Yong-Woon Han'4, Yasuto Murayama'-%, Takehiko Itoh', and Hiroshi lwasaki'.>*

'School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of
Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.

?Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku,
Yokohama, Kanagawa 226-8503, Japan.

3Present address: Section of Structural Biology, Faculty of Medicine, Imperial College
London, South Kensington, London SW7 2AZ, UK.

“Present address: Laboratory for Integrative Genomics, RIKEN Center for Integrative
Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan.

5Present address: Center for Frontier Research, National Institute of Genetics, 1111, Yata,

Mishima, Shizuoka 411-8540, Japan.

*Correspondence: htsubouchi@bio.titech.ac.jp and hiwasaki@bio.titech.ac.jp

ORCID

Maierdan Palihati: 0000-0002-9859-3873
Hideo Tsubouchi: 0000-0003-0814-8432
Rei Kajitani: 0000-0002-5013-0052

Bilge Argunhan: 0000-0002-6023-7654

Hiroshi lwasaki: 0000-0002-0153-687



10

11

12

13

14

15

16

17

18

19

20

21

22

23

Abstract

Here, we report the development of methodologies that enable genetic modification of a
Basidiomycota yeast, Naganishia liquifaciens. The gene targeting method employs
electroporation with PCR products flanked by an 80 bp sequence homologous to the target.
The method, combined with a newly devised CRISPR-Cas9 system, routinely achieves 80%
gene targeting efficiency. We further explored the genetic requirement for this homologous
recombination (HR)-mediated gene targeting. The absence of Ku70, a major component of
the non-homologous end joining (NHEJ) pathway of DNA double-strand break repair, almost
completely eliminated inaccurate integration of the marker. Gene targeting with short
homology (80 bp) was almost exclusively dependent on Rad52, an essential component of
HR in the Ascomycota yeasts Saccharomyces cerevisiae and Schizosaccharomyces
pombe. By contrast, the RecA homolog Rad51, which performs homology search and strand
exchange in HR, plays a relatively minor role in gene targeting, regardless of the homology
length (80 bp or 1 kb). The absence of both Rad51 and Rad52, however, completely
eliminated gene targeting. Unlike Ascomycota yeasts, the absence of Rad52 in N.
liquefaciens conferred only mild sensitivity to ionizing radiation. These traits associated with

the absence of Rad52 are reminiscent of findings in mice.

Keywords
Basidiomycota, CRISPR-Cas9, DNA repair, gene targeting, homologous recombination,

Naganishia liquefaciens
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Introduction

Ascomycota and Basidiomycota represent two major phyla in the fungal kingdom, which split
from a common ancestor around 1 billion years ago (Hedges et al. 2004; Blackwell 2011). In
general, Ascomycota produce an ascus, which is a sac carrying spores, and include the
Penicillium, Candida, and Aspergillus genera, as well as brewer’s and baker’s yeasts (Stajich
et al. 2009). Several major model organisms, such as Saccharomyces -cerevisiae,
Schizosaccharomyces pombe and Neurospora crassa, belong to the Ascomycota phylum.

Basidiomycota produce basidia, which are club-shaped structures that bear spores
(Stajich et al. 2009). Basidiomycota include mushrooms, bracket fungi, polypores, and other
fungi. Unlike Ascomycota, which are usually monokaryotic for most of their lives,
Basidiomycota have long-lived dikaryotic states, and their hyphae grow and divide as
dikaryon with two genetically distinct nuclei. Overall, Basidiomycota biology has been much
less explored than Ascomycota.

Basidiomycota also include monocellular species that fall under the category of yeasts;
the human pathogen Cryptococcus neoformans (Mochizuki et al. 1987) and the plant
pathogen Ustilago maydis (O’Donnell and McLaughlin 1984) are such examples, and these
organisms are amenable to similar molecular genetics approaches that have proven hugely
successful in S. cerevisiae and S. pombe (Heitman et al. 2010). In particular, C. neoformans
has recently emerged as a representative model organism of the Basidiomycota phylum.
Despite similarities to S. cerevisiae in cell morphology and genome size, C. neoformans
shares some biological features with Metazoan species. For example, the gene organization
is much more complex than that of S. cerevisiae, with frequent introns (~ 5 introns per gene)
and complex gene regulation including alternative splicing and antisense transcription (Loftus
et al. 2005). Unlike S. cerevisiae, centromeres are not clustered in premitotic cells, which

progressively go through ordered assembly of kinetochores towards mitosis. Furthermore, the
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nuclear envelope partially breaks open as chromosomes separate. These traits are also
reminiscent of Metazoan mitosis (Kozubowski et al. 2013).

A non-pathogenic Cryptococcus species, named strain N6, was originally isolated
from the deep-sea sediment at a depth of ~ 6,500 m in the Japan Trench (Abe et al. 2001;
Miura et al. 2001). This strain N6 was identified as Cryptococcus liquefaciens based on a
phylogenetic analysis using the sequence of the divergent D1/D2 domain of 26S rDNA (Abe
et al. 2006). However, recent studies have proposed that C. liquefaciens actually belongs to
the genus Naganishia in the order Filobasidiales, while C. neoformans belongs to the order
Tremellales (Liu et al. 2015). We recently drafted the whole genome sequence and gene
structure of the strain N6 and used the obtained genomic data to construct a maximum-
likelihood phylogenetic tree in the class Tremellomycetes (Han et al. 2020). While the
genome annotation is ongoing, this result further supported the classification of strain N6
within the clade of the genus Naganishia, leading us to propose that this strain be named
Naganishia liquefaciens N6 (Han et al. 2020). We do not currently have information about
the ploidy or sexual cycle of this strain. Some features of N. liquefaciens, such as its non-
pathogenicity, short doubling time, and simple culturing conditions, are similar to those for S.
cerevisiae, which would potentially make this organism a suitable model to study
Basidiomycota biology (Abe et al. 2001, 2006).

Here, we report the development of methodologies that enable genetic modification
of N. liquefaciens. We have established an efficient gene targeting method whereby PCR
amplification of a drug-resistant cassette with primers containing an 80 bp sequence
homologous to the target, combined with CRISPR-Cas9, routinely achieves ~ 80% gene
targeting efficiency. We further explored the genetic requirement for this homologous
recombination (HR)-mediated gene targeting. The absence of Ku70, a major component of
the non-homologous end joining (NHEJ) pathway of DNA double-strand break (DSB) repair,

almost completely eliminated inaccurate integration of the marker. On the other hand, the
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absence of Rad52, an essential component of HR in S. cerevisiae and S. pombe, eliminated
gene targeting mediated by 80 bp homology. However, with a homology length of 1 kb, 10-
40% of gene targeting was seen, suggesting that Rad52 is not absolutely required for gene
targeting. The absence of Rad51, a RecA homolog that performs homology search and
strand exchange in HR, led to a modest reduction (30-50% of the wild type strain) in gene
targeting regardless of homology length (80 bp or 1 kb). The absence of both Rad51 and
Rad52, however, completely eliminated gene targeting. Thus, in N. liquifaciens, gene
targeting with short homology exclusively requires Rad52, but not Rad51, while Rad51 and

Rad52 redundantly support gene targeting when ample homology exists.
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Materials and methods

Strains and growth conditions

N. liquefaciens strain N6 (MP1), which was one of stocks originating from samples
collected in the Japan Trench (Abe et al. 2001), was used as a wild-type strain. Deletion
strains constructed in this study are listed in Table S1. N. liquefaciens stains were cultured
essentially in the same manner as S. cerevisiae (Abe et al. 2001, 2006; Amberg et al. 2015).
Briefly, they were grown in YPD (1% w/v yeast extract, 2% w/v Bacto peptone, and 2% w/v
glucose) or the synthetic drop-out (SD) medium (0.17% yeast nitrogen base without amino
acids and ammonium sulfate, 2% glucose, 0.5% ammonium sulfate and 0.2% drop-out mix)
at 30°C, unless indicated otherwise. Nourseothricin sulfate (GoldBio), G418 (Nacalai
Tesque, Japan) and hygromycin B (InvivoGen) were used for selection at final
concentrations of 100 pg/ml, 100 pg/ml and 25 pg/ml, respectively. Deletion strains were
constructed by replacing the gene of interest with a marker cassette (see below) encoding
nourseothricin N-acetyl transferase (NAT), hygromycin B phosphotransferase (HYG) or

aminoglycoside 3'-phosphotransferase (NEO).

Identification of N. liquefaciens genes encoding homologs of DSB repair proteins

To identify N. liquefaciens genes encoding DSB repair proteins, the amino acid sequence for
Rad51, Rad52, or Ku70 of S. cerevisiae was used as a query to search for its N.
liquefaciens homolog using BLASTP against the database of N. liquefaciens predicted
proteins (Genbank PRJDB10172). Multiple sequence alignment was then performed using

Clustal Omega with default settings (Sievers et al. 2011) (Fig. S1).

DNA primers used for PCR

DNA primers used in this study are listed in Table S2 (synthesized by Eurofins or Fasmac).
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Genomic DNA purification

N. liquefaciens N6 cells cultured in 5 ml of YPD were collected (3,500 x g, 5 min) and
washed in protoplast buffer which is Mcllvain buffer [pH 6.0] (0.1 M citric acid solution and
0.2 M disodium hydrogenphosphate at the ratio of 36.8 : 63.2 [v/v]) containing 0.3 M sodium
tartrate. The cell pellet was resuspended in 0.5 ml westase solution (0.5% [w/v] of westase
[Takara Bio, Japan] in protoplast buffer) and incubated for 1 h at 30°C. Cells were washed
once in 1 ml of 50 mM Tris-HCI (pH 7.5), resuspended in 500 ul of TE 50:20 (50 mM Tris-
HCI (pH 7.5) 20 mM EDTA), then mixed well with 50 ul of 10% SDS. After 30 min incubation
at 65 °C, 200 ul of 5 M potassium acetate was added to the sample and stored on ice for 15
min. The sample was centrifugated at 15,000 rpm for 10 min to obtain the cell lysate, which
was used for genomic DNA preparation by essentially the same procedure as for S.
cerevisiae (Amberg et al. 2015). Alternatively, genomic DNA was purified using Dr.
GenTLE™ High Recovery kit (Takara Bio, Japan) from approximately 1x108 cells cultured in

YPD. s

Plasmid construction
The NAT gene in pFA6a-natMX6 (Hentges et al. 2005) was amplified by PCR (primers Pr-22
and Pr-25). The TEF1 promoter (Ptef1) of N. liquefaciens was amplified by PCR using the
genomic DNA as a template (primers Pr-36 and Pr-23). The resultant two fragments were
fused via overlap-extension PCR (Higuchi et al. 1988) using primers Pr-36 and Pr-25. The
resultant Ptef1-NAT fragment was replaced with the Xbal-BamHI fragment of pBluescript Il
SK(+), giving pBS-Ptef1-NAT.

The NEO gene in pcDNAS3 (Invitrogen) was amplified by PCR (primers Pr-200 and
Pr-201). The ACT1 promoter of N. liquefaciens was amplified by PCR using the genomic

DNA as a template (primers Pr-198 and 199). The resultant two fragments were fused by
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overlap-extension PCR using primers Pr-198 and Pr-201. The resultant Pact1-NEO
fragment was replaced with the Xbal-BamHI fragment of pBluescript Il SK(+), giving pBS-
Pact1-NEO.

The HYG gene in pFAB6a-hygMX6 (Hentges et al. 2005) was amplified by PCR
(primers Pr-203 and Pr-25). The ACT1 promoter of N. liquefaciens was amplified by PCR
using the genomic DNA as a template (primers Pr-198 and Pr-202). The resultant two
fragments were fused by overlap-extension PCR using primers Pr-198 and Pr-25. The
resultant Pact1-HYG fragment was replaced with the Xbal-BamHI fragment of pBluescript ||
SK(+), giving pBS-Pact1-HYG.

A Cas9 expression construct was created by combining the endogenous ACT1
promoter (primers Pr-198 and Pr-51) and a human codon optimized SV40 NLS- containing
Cas9 fragment (primers Pr-50 and Pr-39) from pX330 (Cong et al. 2013) by overlap PCR
(primers Pr-198 and Pr-39). The fused fragment was cloned at the pBluescript | SK (+) Xbal
site to create pBS Pact1:Cas9. To construct the gRNA expression cassette for the
production of single RNA, an endogenous N. liquefaciens U6 promoter (primers Pr-43 and
Pr-44) was fused to the gRNA scaffold fragment (primers Pr-41 and Pr-42) from pX330 by
PCR using the primers Pr-43 and Pr-42. The resulting gRNA expression cassette was
cloned at the pBS Pact1:Cas9 Hindlll site to create pBS Pact1:Cas9 Pu6:gDNA, giving
pM101.

For designing and cloning DNA for gRNA expression, we followed the protocols
described previously (Wang et al. 2014) to eliminate less favorable gRNA targets. Since the
U6 promoter was employed to drive gRNA expression, a 20 nt sequence that has G at the 5’
end of the target sequence (Mali et al. 2013) followed by a PAM sequence was manually
chosen. Oligos were designed and synthesized with a 20 nt gRNA sequence GN1g (N for any
base) containing 5’ overhang TTTC and 3’ overhang CAAA to facilitate cloning into the Bbsl

site of pM101. To anneal oligos, 1 pl of each oligo (100 uM) was mixed with 8 pl of

10
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annealing buffer (10 mM Tris [pH 7.5], 50 mM NaCl, and 1 mM EDTA), boiled for 5 min at
95°C, and cooled to room temperature. The annealed oligos were ligated at the Bbsl site of
pM101. Targeting was performed with the following plasmid templates and primer pairs, with
the primer pairs shown in brackets. HIS3, ADE2, LEU2, TRP2, RAD51, RAD52 and KU70
loci, NAT, NEO and HYG are: pM101-gHIS3 (Pr-290, Pr-291), pM101-gADE2 (Pr-284, Pr-
285), pM101-gLEU2 (Pr-310, Pr-311), pM101-gTRP2 (Pr-312, Pr-313), pM101-gRAD51 (Pr-
346, Pr-347), pM101-gRAD52 (Pr-361, Pr-362), pM101-gkU70 (Pr-500, Pr-501), pM101-

gNAT (Pr-415, Pr-416), pM101-gNEO (Pr-620, Pr-621) and pM101-gHYG (Pr-622, Pr-623).

Transformation of N. liquefaciens

A fresh colony of N. liquefaciens was cultured in 5 ml of YPD medium at 30°C with shaking
for ~ 15 h. The culture was diluted in 50 ml of YPD to yield an ODeoo of 0.2-0.3. Cells were
then cultured for 4 ~ 6 h until they reached an ODego of 0.6—1.0. Cells were harvested by
centrifugation (3,500 x g, 5 min, 4°C). The pelleted cells were washed with ice-cold water
and then with electroporation buffer (EB: 10 mM Tris-HCI [pH 7.5], 1 mM MgClz, and 270
mM sucrose). The cells were resuspended in 10 ml of EB containing 4 mM DTT. After
incubation on ice for 15—-30 min, cells were collected, washed with EB, and resuspended in
200 ul of EB. The cell suspension (45 ul) was mixed with 5 ul of DNA (3 pg) in a 0.2-cm
electroporation cuvette (BioRad) and used for transformation by electroporation (BioRad
Gene Pulser, 0.75 KV, 25 uF, and « Q). The electroporated cells were then suspended in 1
ml of YPD and incubated at 30°C for 2 h before being plated onto the appropriate selection
medium. The plates were typically incubated for 3 days at 30°C. A chemical transformation
method using lithium acetate (Ito et al. 1983), a typical method for transforming S.

cerevisiae, yielded no transformants.

Preparation of gene targeting fragments

11
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Gene targeting fragments with 80 bp homology arms were prepared as follows. PCR was
carried out using an appropriate primer set (see below) and pBS-Ptef1-NAT or pBS-Pact1-
NEO as a template. The primer set consisted of two primers, forward and reverse, whose
size is 100 nt (20 nt for annealing to the template and 80 nt for gene targeting). The PCR
products were purified using the MonoFas DNA purification kit (GL Sciences, Japan).

Gene targeting fragments with 0.5 kb or 1 kb homologous arms were prepared as
follows. The 5’ and 3’ homologous arms were amplified by PCR with a primer set and the N.
liquefaciens genomic DNA as a template. The sequence of each primer is shown in Table.
S2. For 0.5 kb homologous arms: HIS3 (Pr-160-Pr-157, Pr-161-Pr-158); ADE2 (Pr-52-Pr-54,
Pr-53-Pr-55); LEU2 (Pr-377-Pr-375, Pr-378-Pr-376); TRP2 (Pr-299-Pr-399, Pr-302-Pr-400).
For 1 kb homologous arms: HIS3 (Pr-156-Pr-157, Pr-159-Pr-158); ADE2 (Pr-63-Pr-54, Pr-
394-Pr-55); LEU2 (Pr-373-Pr-375, Pr-374-Pr-376); TRP2 (Pr-397-Pr-399, Pr-398-Pr-400).
The 5’ and 3’ homologous arms were then fused to a drug marker by overlap-extension PCR
(Higuchi et al. 1988). The PCR products were purified using MonoFas DNA purification kit
(GL Sciences, Japan).

Gene targeting fragments with 0.5 kb or 1 kb homology arms for split marker
replacement were prepared as follows. The 5’ and 3’ homologous arms were amplified by
PCR with a primer set and the N. liquefaciens genomic DNA as a template. The sequence of
each primer is shown in Table. S2. For 0.5 kb homologous arms: HIS3 (Pr-160-Pr-157, Pr-
161-Pr-158); ADE2 (Pr-52-Pr-54, Pr-53-Pr-55); LEU2 (Pr-377-Pr-375, Pr-378-Pr-376); TRP2
(Pr-299-Pr-399, Pr-302-Pr-400). For 1 kb homologous arms: HIS3 (Pr-156-Pr-157, Pr-159-
Pr-158); ADE2 (Pr-63-Pr-54, Pr-394-Pr-55); LEUZ2 (Pr-373-Pr-375, Pr-374-Pr-376); TRP2
(Pr-397-Pr-399, Pr-398-Pr-400). The NAT gene on pBS Ptef1-NAT was amplified by PCR
with primers Pr-90 and Pr-91. In the third round of PCR, the 5’ and 3’ homology arms were

then fused to the 5’ and 3’ regions of the NAT gene amplified above, respectively, by overlap

12
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PCR, yielding the 5’ split marker and 3’ split marker fragments. All the PCR products were

purified using MonoFas DNA purification kit (GL Sciences, Japan).

Strain construction

A gene of interest was replaced with a drug resistant marker by the one-step replacement
method or combined with the CRISPR/Cas9 method using the plasmids described above.
MP108 (rad51::NAT ku70::NAT) was constructed by transforming MP87 (rad51::HYG
ku70::NEO) using a mixture of pM101-gHYG targeting the HYG cassette, the rad51::NAT
donor fragment, pM101-gNEOQ targeting the NEO cassette and the ku70::NAT donor
fragment. nourseothricin-resistant clones sensitive to both HYG and G418 were selected
and gene replacement was confirmed by PCR (Pr-144 and Pr-145 for checking rad51::NAT,
Pr-504 and Pr-505 for ku70::NAT). MP113 (rad51::NAT rad52::HYG ku70::NAT) was
constructed by transforming MP108 (rad51::NAT ku70::NAT) with the mixture of pM101-
gRADA52 targeting RAD52 with the rad52::HYG donor fragment. HYG-resistant clones were
selected and gene replacement was confirmed by PCR (Pr-174-Pr175 for checking

rad52::HYG).

Ectopic integration of foreign DNA into the TRP2 locus for complementation analysis
pM175, the plasmid for ectopic integration, consists of the following three components. (i)
the TPR2 gene (2.2 kb); (ii) a gene to be integrated (Gene X); (iii) the 200 bp fragment
downstream of TRP2. The genomic fragment carrying the TRPZ2 gene was amplified by PCR
(primers Pr-394 and Pr-395) using N.liquefaciens genomic DNA as a template, which was
cloned at the Sall site of pBluescript Il SK (+) to construct pBS TRP2. The 200 bp fragment
downstream of TRP2 was amplified (primers Pr-475 and Pr-476) and replaced with the
BamHI-Xbal fragment of pBS TRPZ2 to obtain pM175. GENE X can be cloned at multiple

cloning sites. The fragment carrying TRP2 and GENE X can be released by digesting the

13



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

construct with Notl, which is to be used with the CRSPR/Cas9 construct (pM101-gNAT)

targeting the NAT marker integrated at the TRPZ2 locus.

Cloning and sequence determination of Rad51, Rad52 and Ku70 cDNA

Total RNA was extracted from ~1 x 108 cells at late-log phase using the Nucleospin RNA kit
(Macherey-Nagel). cDNA was synthesized using ReverTra Ace-a- (Toyobo) according to the
manufacturer’s instructions with the following materials and conditions; 0.25 ug of the total
RNA was used with primers listed in Table S2 (RAD51, Pr-459; RAD52, Pr-551; KU70, Pr-
553) or 10 pmol of oligo (dT) 20, followed by 20 min of 1st strand synthesis at 42°C. cDNAs
for Rad51, Rad52 and Ku70 were PCR-amplified using primers listed in Table S2: RAD51,
Pr-458-Pr-459; RAD52, Pr-550-Pr-551; KU70, Pr-552-Pr-553. The amplified cDNA was then
cloned into the Xbal site of pBluescript Il SK(+), giving pBS-RAD51, pBS-RAD52 and pBS-

KU70 respectively. Fidelity of the cloned cDNA was confirmed by sequencing.

Evaluation of gene targeting efficiency
We considered that the drug-resistant transformants had gone through correct gene
targeting if they also showed an auxotrophic phenotype associated with gene disruption
(e.g., a his3::NAT transformant should show both nourseothricin resistance and histidine
auxotrophy). The transformants where the ADE2 gene was replaced by NAT formed pink
colonies like the ade2 mutant of S. cerevisiae. Gene targeting efficiency was expressed as
the ratio of the number of transformants showing auxotrophic phenotypes divided by the
number of all antibiotic resistant transformants. Difference in gene targeting efficiencies was
evaluated using unpaired two-tailed t-test.

Fourteen random transformants that showed the genetic trait for accurate gene
targeting in each strain background were further examined by PCR to amplify the area

containing the integration target site using the following primers. For 1 kb homologous arms:

14
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HIS3 (Pr-195-Pr-196); ADEZ2 (Pr-122-Pr-74). For 80 bp homologous arms: HIS3 (Pr-410-Pr-
411); ADE2 (Pr-257-Pr-258). Among 14 transformants obtained with 80 bp homologous
arms, four transformants were further examined for their 5’ and 3’ integration junctions by
sequencing PCR amplicons with forward (Pr-410) and reverse (Pr-411) primers. DNA
sequencing was performed using BigDye Terminator version 3.1 Cycle Sequencing Kit

(Applied Biosystems).

Genomic DNA sequences of the genes used in this study

Genomic DNA sequence of the genes used in this study are available in the
DDBJ/EMBL/GenBank databases under the following accession numbers: MT185598 for
HIS3, MT185599 for ADE2, MT185600 for LEU2, MT185601 for TRP2, MT185602 for RAD51,
MT185603 for RAD52, MT185604 for KU70, MT210101 for ACT1 and MT210102 for TEF1.
The draft genome sequence of N. liquefaciens is available in the DDBJ/EMBL/GenBank

databases (accession number BLZA00000000.1) (Han et al. 2020).
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Results

Establishing a transformation system for Naganishia yeast

Securing a genetic marker is the first step for genetic manipulation of a given organism. We
employed three pairs of a cytotoxic drug and a cognate gene that confers resistance to the
host (Fig. 1a): nourseothricin and NAT (nourseothricin N-acetyl transferase); hygromycin B
and HYG (hygromycin B phosphotransferase); and G418 and NEO (aminoglycoside 3'-
phosphotransferase). To express these genes in N. liquefaciens, 990 bp directly upstream of
the start codon of the translation elongation factor 1-alpha (Ptef1) gene was fused to the
coding sequence of NAT. Similarly, 1 kb directly upstream of the start codon of the actin
gene, ACT1, was fused to the coding sequences of NEO and HYG. We first sought to
replace the HIS3 gene with NAT using a construct where the NAT marker is flanked by 1 kb
sequences corresponding to the upstream or downstream regions of the HIS3 coding
sequence. Electroporation was used to deliver the gene targeting DNA fragments into the
cell. We examined a range of voltages, from 0.25 to 1.25 kV, and found that 0.75 kV yielded
the most transformants (Fig. 1b). Under this condition, approximately 10-to-50 stable NAT-
resistant colonies were routinely obtained using 3 pg of targeting DNA fragments and 7.5 x
107 cells. About 25% of the transformants obtained as nourseothricin-resistant also
exhibited histidine auxotrophy (Fig. 1c, Fig. S2). This suggests that gene targeting in N.

liquefaciens is not as efficient as in S. cerevisiae (Amberg et al. 2015).

Gene targeting efficiency depends on the length of homologous arms
We further investigated the relationship between the length of homologous arms and gene
targeting. his3::NAT deletion constructs with three different arm lengths (80 bp, 500 bp, and

1 kb) were tested for their gene targeting efficiency. As described above, gene targeting
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efficiency is around 25% with 1 kb of flanking homology (Fig. 1c). The efficiency with 500 bp
homologous arms was equivalent to that with 1 kb homology, while 80 bp homology reduced
the targeting efficiency to approximately half of that observed with 1 kb homology.

To further establish a relationship between gene targeting efficiency and homology
length, several other loci were examined, namely ADE2, LEU2, and TRP2 (Fig. 1d-f).
Overall, a similar trend to the HIS3 locus was seen at these loci. The highest targeting
efficiency (10-20%) was obtained with a homology length of 1 kb, while the efficiency was
slightly less (10-15%) with 0.5 kb homology. The efficiency was the lowest (5-10%) with 80
bp homology. Together, these data reveal a modest correlation between the length of
homology sequence attached to the targeting construct and the actual targeting efficiency.

Gene targeting with 80 bp homology to the HIS3 locus was employed to compare
gene targeting efficiency with the NAT, NEO, and HYG markers. The NEO marker supported
the formation of a similar number of transformants as NAT, while it was lower with the HYG
marker (~20% of NAT; Fig. S3A). The gene targeting efficiency of HYG was also lower than

the other two markers (~50% reduction; Fig. S3B).

Split marker transformation increases gene targeting efficiency

It has been reported that gene targeting is improved by the split marker method (Fairhead et
al. 1996; Fu et al. 2006; Lin et al. 2015), where a marker is split into two fragments, each
carrying only part of the drug selection marker. These two fragments share some overlap,
which allows them to recombine to form a fully functional, drug-resistance gene if a cell
takes up both fragments (Fig. 2a). Although the split marker transformation was originally
developed in S. cerevisiae (Fairhead et al. 1996), it was also found to be effective in C.
neoformans (Fu et al. 2006; Lin et al. 2015). Two gene targeting constructs, each carrying
an 80 bp arm homologous to the upstream or downstream region of the HIS3 coding
sequence and also sharing part of the NAT marker (440 bp), were used together for

transformation. Gene targeting efficiency was ~40%, which is approximately twofold higher
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than that with a normal intact marker (Fig. 2b). However, this method led to a substantial
reduction in transformation efficiency, with only 3-to-10 transformants obtained with 3 ug of

targeting DNA as opposed to 10-to-50 transformants with the intact marker.

CRISPR-Cas9 expression promotes efficient gene targeting

The overall low efficiency of gene targeting and transformation prompted us to apply the
CRISPR/Cas9 system to N. liquefaciens (Mashiko et al. 2013; Jacobs et al. 2014; Arras et
al. 2016). The CAS9 gene was placed under the control of the promoter sequence of the N.
liquefaciens ACT1 gene, which supports constitutive gene expression. A gRNA sequence
was placed under the control of a U6-like promoter of N. liquefaciens. The U6 promoter, a
strong promoter for RNA polymerase lll, is typically used for gRNA transcription. A 20 nt
target sequence can be cloned at the Bbsl site so that gRNA targeting a locus of interest is
expressed. This CRISPR/Cas9 vector (pM101) was combined with the previously used gene
targeting fragments, now serving as a donor, and gene targeting was directed to the loci
tested above.

We first chose the HIS3 locus for gene targeting with the construct with 1 kb
homologous arms combined with the expression of Cas9-gHIS3 (Cas9 with a gRNA
targeting HIS3). Among the nourseothricin-resistant transformants, ~80% also exhibited
histidine auxotrophy (Fig. 3a). Similarly, by using the CRISPR/Cas9 system, highly efficient
gene targeting (70-80%) was achieved at the ADE2, LEU2, TRPZ2 loci (Fig. 3b-d).
Furthermore, even when the length of the homologous arms was reduced to 500 bp,
similarly efficient gene targeting (70-80%) was seen at the HIS3, ADE2, LEU2 and TRPZ2 loci
(Fig. 3a-d). Next, we reduced the homology length even further to 80 bp, which is small
enough to be synthesized as part of a primer used to PCR-amplify a drug-resistance marker.
Remarkably, the gene targeting efficiency still remained as high as that with 1 kb

homologous arms (70-80%) at all the loci tested (Fig. 3a-d).
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We then examined the accuracy of gene targeting more closely, since the histidine
auxotrophy phenotype could also arise from an event not associated with HR-mediated gene
targeting (e.g., marker insertion into a DSB caused at the HIS3 locus, or coincidental DSB-
induced mutagenesis at HIS3 and an ectopic integration of the marker). From the
experiment where HIS3 was targeted with the 1 kb homology construct, we randomly picked
14 nourseothricin-resistant, histidine auxotrophic transformants and examined their HIS3
locus by diagnostic PCR (Fig. 3e (i)). All 14 transformants showed a 3.5 kb band, consistent
with the expected amplicon size for HR-mediated marker replacement. We also examined
by PCR if the plasmid expressing Cas9-gHIS3 (pM101-gHIS3) is maintained in transformant
cells, possibly via integration into the genome. All 14 transformants tested above failed to
show any amplification for the Cas9 ORF (Fig. 3e (ii)), suggesting that the Cas9 expression
plasmid taken up by cells is eventually lost during colony formation. We also examined
transformants from the experiment where HIS3 was targeted with the construct with 80 bp
homologous arms. Again, from the 14 randomly picked, nourseothricin-resistant, histidine
auxotrophic colonies, all showed a 1.9 kb band, consistent with the expected amplicon size
for HR-mediated marker replacement (Fig. 3f). Taken together, CRISPR-Cas9 drastically
increased the efficiency of gene targeting in N. liquefaciens even when the donor DNA

carried as little as 80 bp homology.

A system that facilitates ectopic integration of foreign DNA at the TRP2 locus enables
complementation analysis

Complementation testing is of critical importance to establish a causal relationship between

a phenotype and a genotype. In N. liquefaciens, however, a plasmid system is not available.
Thus, we decided to develop a system that facilitates the integration of foreign DNA into the

TRP2 locus by taking advantage of our efficient Cas9 system. This system utilizes a base-

strain where the native TRPZ2 is replaced with NAT. A plasmid was constructed to facilitate
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integration of foreign DNA at trp2::NAT (Fig 4a). This plasmid (pM175) contains the
upstream region of the TRP2 locus along with the TRP2 gene itself, a multiple cloning site
where a gene of interest (designated as GENE X) can be inserted, and the sequence
downstream of TRP2. The whole fragment can be released from the plasmid by Notl
digestion and used for transformation along with the Cas9 plasmid that induces a DSB
inside the NAT marker at the TRP2 locus. The Cas9-induced DSB facilitates HR between
the TRPZ2 locus and the donor fragment containing GENE X.

To examine if this system can be used for complementation testing, a gene encoding
the Rad51 homolog in N. liquefaciens was identified (see below, and Materials and
methods) and deleted with the NEO marker. Rad51 is the central player in HR, and cells
become sensitive to DNA damage in its absence due to defects in recombinational DNA
repair (see below). A trp2::NAT rad51::NEO strain was transformed with the plasmid
expressing Cas9 and the donor fragment carrying the RAD51 gene. Transformants showing
both tryptophan prototrophy and nourseothricin sensitivity were further analyzed by PCR
for the correct integration of the TRP2-RAD51 fragment at the TRP2 locus (Fig. 4b,c). The
correct integrant restored ultraviolet light (UV) resistance to a level indistinguishable from the
wild type strain, indicating that the rad51 null mutant was indeed complemented by the

ectopically integrated wild-type RAD51 gene (Fig. 4d).

Identification of RAD51, RAD52 and KU70 homologs in N. liquefaciens

Next, we sought to investigate the mechanistic relationship between DSB repair and gene
targeting, and therefore focused on three proteins: Ku70, Rad51 and Rad52. Ku70 is a
central component of the NHEJ pathway (Critchlow and Jackson 1998) whose absence has
been shown to lead to a substantial increase in gene targeting efficiency in other organisms
(Ninomiya et al. 2004; Péggeler and Kiick 2006; Fennessy et al. 2014). Rad51 is a RecA

homolog that performs homology search and strand exchange in HR, while Rad52 is an

20



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

auxiliary factor of Rad51 (San Filippo et al. 2008). Rad52 also plays a Rad51-independent
role (San Filippo et al. 2008). We identified N. liquefaciens genes encoding homologs of
Rad51, Rad52 and Ku70 (Materials and methods, Fig. S1).

Rad51 from N. liquefaciens displays high conservation throughout its whole
sequence with other Rad51 orthologues, showing 70.8%, 65.3% and 73% amino acid
identity with its S. pombe, S. cerevisiae, and human counterparts, respectively (Fig. S1a). In
the case of Rad52, however, conservation is limited to the N-terminal half, with 30.9%,
28.8% and 31% amino acid sequence identity when compared with the S. pombe, S.
cerevisiae, and human counterparts, respectively (Fig. S1b). Ku70 is the least conserved,
showing 25.2%, 24% and 27.4% identity in amino acid sequence with the S. pombe, S.

cerevisiae and human counterparts, respectively (Fig. S1c).

Gene targeting is drastically improved by the absence of Ku70 in Naganishia yeast
Our results so far suggested that gene targeting is not very efficient in N. liquefaciens, which
is typically seen when NHEJ, as opposed to HR, plays a predominant role in repairing DSBs
(Critchlow and Jackson 1998). Thus, we first turned our attention to the NHEJ pathway. To
examine if suppressing NHEJ improves gene targeting efficiency in N. liquefaciens, the gene
encoding Ku70 was deleted.

The absence of Ku70 dramatically improved gene targeting efficiency, regardless of
the length of homology arms (1 kb or 80 bp) and the locus examined (HIS3 or ADE2) (Fig.
5a, Table S3). Without Cas9 induction (denoted as "conventional"), the efficiencies of gene
targeting in the ku70 mutant reached > 95%, while those for the wild-type strain were around
10-20% (Fig. 5a). A similar trend was observed when gene targeting was assisted by the
Cas9 system (denoted as "Cas9 mediated") except that gene targeting efficiencies were
already high (~ 80%) in the wild-type background, and they became even higher in the

absence of Ku70 (~ 100%; Fig. 5b, Table S3).
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Thus, it is likely that the low efficiency of gene targeting in N. liquefaciens is largely

attributable to the predominant utilization of the NHEJ pathway.

The length of homology specifies the requirement for Rad51 and Rad52 in gene
targeting in Naganishia yeast

The mechanism of HR is highly relevant to gene targeting (Mehta and Haber 2014). Rad51
and Rad52 play central roles in HR. Thus, their possible roles in gene targeting were
examined by deleting them in N. liquefaciens.

In conventional gene targeting experiments where HIS3 is targeted with 1 kb
homologous sequences, the absence of Rad51 or Rad52 caused a mild reduction in gene
targeting efficiency, to approximately 50% of the wild-type strain (Fig. 5¢, Table S3). This
reduction was almost completely suppressed by introducing the ku70 mutation; gene
targeting efficiency was = 90% in wild type, rad51, and rad52 strains in the absence of Ku70.
These results suggest that, although both Rad51 and Rad52 are important for gene
targeting, neither Rad51 nor Rad52 is essential when the homology length is 1 kb. However,
no gene targeting was observed in the rad51 rad52 double mutant with or without Ku70,
arguing that Rad51 and Rad52 redundantly support gene targeting under this condition.

Next, the length of homology was reduced to 80 bp (Fig. 5c, Table S3). The absence
of Rad51 lead to a reduction in gene targeting that was comparable to what we observed
with 1 kb homology (~ 30% of the wild type strain), and again, this reduction was robustly
suppressed by introduction of the ku70 mutation (~ 80% in the rad57 strain and ~ 100% in
the wild-type strain). The absence of Rad52, however, completely eliminated gene targeting,
and this reduction was not suppressed by the absence of Ku70. Thus, with 80 bp homology,
Rad52 is indispensable for gene targeting, while Rad51 is not. A similar trend was seen
when gene targeting was induced by Cas9 except that the overall targeting efficiencies were

much higher (Fig. 5d, Table S3).
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In the strains employed (wild type, rad51, ku70, and rad51 ku70 strains with or
without Cas9), homology-mediated accurate integration of the NAT marker at the HIS3 locus
was confirmed by PCR (14 clones examined per genotype, Fig. S4) and subsequent
sequencing of the integration junctions (four clones examined per genotype, see Materials
and methods for details). Unlike the experiments without Cas9, four transformants showing
nourseothricin resistance and histidine auxotrophy arose in the rad52 mutant when Cas9
was expressed. Three of them are likely the outcome of illegitimate recombination events
since their PCR amplicons, which span the HIS3 locus, were larger than would be expected
if it was via HR (Fig. S4). One showed the amplicon size consistent with an HR-mediated
event, which was further validated by sequencing its integration junctions. The results
obtained at the ADEZ locus essentially mirrored the results at the HIS3 locus, arguing for

locus independency of this trend (Fig. S5a,b, Table S3).

The rad52 mutant is as resistant to DNA damage as the wild type strain in Naganishia
yeast

Historically, genes involved in HR or NHEJ were found to be mutated in mutant strains/cell
lines showing hyper-sensitivity to various DNA damaging sources including IR and UV
(Game and Mortimer 1974; Jeggo 1998). Thus, we next probed the functional relationship
between gene targeting and DNA damage repair. The mutants employed in the gene
targeting experiments above were examined for their sensitivity to UV and ionizing radiation
(IR).

The rad51 mutant exhibited moderate sensitivity to UV, while ku70 or rad52 mutants
were essentially indistinguishable from the wild-type strain (Fig. 6a). However, the ku70 or
rad52 mutation slightly exacerbated the sensitivity of rad51. Furthermore, the rad51 rad52
ku70 triple mutant exhibited substantially higher sensitivity to UV than either the rad51 rad52

or rad51 ku70 double mutants.
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These strains also showed a similar pattern in response to IR treatment (Fig. 6b).
The rad51 mutant displayed much higher sensitivity than the wild-type, rad52, and ku70
strains, but unlike what was observed with UV, the rad52 and ku70 mutants also showed
subtle but discernable sensitivity to IR. The ku70 mutation, and to a lesser extent the rad52
mutation, both further sensitized the rad51 mutant to IR. As was observed with UV
treatment, the rad51 rad52 ku70 triple mutant exhibited the highest sensitivity to IR. Notably,
the wild-type strain barely exhibited IR sensitivity at 600 Gy, suggesting that N. liquefaciens
has high tolerance to IR (Fig. 6b). This is reminiscent of other Basidiomycota species known

to be highly tolerant to IR (Holloman et al. 2007; Jung et al. 2016).
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Discussion:

Here, with the aim of establishing N. liquefaciens as a model organism, we have developed
advanced genetic tools that enable efficient gene targeting and complementation analysis in
this organism. The non-pathogenic nature of N. liquefaciens, as indicated by its inability to
grow at 37°C (Fig. S6a), along with the short doubling time (~120 min, Fig. S6b), and the
ability to thrive under conditions that are practically the same as those for S. cerevisiae, are
highly advantageous traits as a model organism. Furthermore, we recently determined the
draft genome sequence of this organism (Han et al. 2020). Together, this has enabled the
application of molecular genetics approaches to N. liquefaciens, which provide further means

to promote in-depth study of Basidiomycota biology.

Naganishia liquefaciens, a Basidiomycota budding yeast

N. liquefaciens N6 was isolated from deep-sea sediments at a depth of ~6,500 m (Abe et al.
2001). Whole genome sequencing placed this organism under the phylum of Basidiomycota
despite its apparent morphological similarity to the Ascomycota yeast S. cerevisiae (Han et al.
2020). N. liquefaciens and S. cerevisiae are both budding yeasts. Media commonly used for
culturing S. cerevisiae can be used for culturing N. liquefaciens without further modification
(Abe et al. 2001, 2006), which will make this organism accessible to researchers already
working with S. cerevisiae. The doubling time of N. liquefaciens in rich media is ~120 min at
30°C, which is comparable to that for S. cerevisiae.

There are at least two Basidiomycota yeasts being used for studying basic biology: the
human pathogen Cryptococcus neoformans (Mochizuki et al. 1987) and the plant pathogen
Ustilago maydis (O’Donnell and McLaughlin 1984). In particular, C. neoformans has recently
emerged as a representative model organism of the Basidiomycota phylum. Unlike C.
neoformans, N. liquefaciens is incapable of growth at 37°C, implying that if it is ingested into

the human body, it would be unable to proliferate. This is a favorable trait for a model organism.
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Although both Naganishia and Cryptococcus are Basidiomycota yeasts, they are not closely
related, likely having split ~ 250 million years ago (Zhao et al. 2017). Ustilago (Ustilaginales)
is separated from Naganishia (Filobasidiales) and Cryptococcus (Tremellales) even further, ~
450 million years ago (Han et al. 2020). Given that S. cerevisiae and S. pombe, the two most
widely investigated Ascomycota yeasts, diverged from a common ancestor around 300 to 400
million years ago (Sipiczki 2000), studying multiple Basidiomycota yeasts distantly-related
from each other also has the potential to provide unique insights into basic biological

mechanisms.

Gene targeting is inefficient in Naganishia yeast

In this work, we showed that gene targeting is relatively inefficient in N. liquefaciens. The
overall efficiency was loosely correlated with the size of homology arms, with the best
efficiency of around 25% obtained with 1 kb homology arms.

The most commonly used approach for gene targeting is to take advantage of the so
called “ends-out” recombination (Paques and Haber 1999), where the selective marker is
flanked by a different length of the targeted sequence. The length of flanking homologous
DNA necessary for gene targeting varies from species to species. Homology as short as 30-
45 bp is sufficient to achieve successful gene targeting in S. cerevisiae (Manivasakam et al.
1995), whereas much longer homology, varying from 80 bp to several kb, is often necessary
in most Ascomycota yeast species including S. pombe (Klinner and Schéafer 2004). HR-
mediated gene targeting is extremely low in Metazoans including mice and humans (Capecchi
2005).

One factor that contributes to a reduction in gene targeting is usage of the NHEJ
pathway. A DSB can be repaired accurately by using HR, or inaccurately by NHEJ. S.
cerevisiae is exceptional in that DSBs are almost exclusively repaired through HR, and gene

targeting is extremely efficient. If NHEJ is predominantly used for DSB repair,
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gene targeting becomes accordingly inefficient. This is likely to be the case in Naganishia
yeast because the absence of Ku70, a main component of the NHEJ pathway (Critchlow
and Jackson 1998), dramatically improved gene targeting efficiency. A similar improvement
by suppressing NHEJ functions has been seen in many other model organisms, from
Ascomycota to vertebrates (Ninomiya et al. 2004; Péggeler and Kick 2006; liizumi et al.
2008; Fennessy et al. 2014).

Introducing a DSB at the target locus by a newly devised CRISPR/Cas9 system in
Naganishia yeast achieved highly efficient gene targeting. CRISPR/Cas9 is now a well-
established means to improve gene targeting efficiency and has proven to be hugely
successful in organisms where NHEJ is the predominant DSB repair pathway, including
humans. Importantly, with this CRISPR/Cas9 system, gene targeting efficiency reached
~80% with the length of homology as short as 80 bp. In the fungus species Aspergillus
fumigatus, a donor DNA flanked by 35~50 bp homology arms supports efficient HR-
mediated gene targeting when coupled with the CRISPR-Cas9 system (Al Abdallah et al.
2017). On the other hand, in C. neoformans, a donor DNA with 50 bp homology is not
sufficient (Fan and Lin 2018). A further investigation will address if N. liquefaciens and C.
neoformans share a similar mechanism for gene targeting. A homology length as short as 80
bp was enough to achieve efficient gene targeting. This means that gene targeting
fragments (i.e., donor sequences) can be prepared rapidly and economically by PCR using

100 bp primers containing 80 bp of homology flanking the target site.

Genetic requirement for gene targeting in Naganishia yeast

To explore the genetic requirement for gene targeting in N. liquefaciens, two different
experimental systems were employed. First, conventional gene targeting employing just a
targeting DNA fragment with either short (80 bp) or long (500 bp and 1 kb) homologous

sequences at its ends was tested. Second, the CRISPR/Cas9 system was employed along
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with the above targeting fragment, which served as a donor. In either system, the condition
where the NHEJ pathway is suppressed via deletion of KU70 was also examined. Moreover,
because gene targeting is a form of HR, we also examined the requirement for two critical
components of the HR machinery: Rad51, the enzyme responsible for conducting homology
search and strand exchange between homologous DNA molecules; and Rad52, which is
essential for the recruitment of Rad51 to DSBs in Ascomycota yeasts (San Filippo et al. 2008).
Rad52 also plays a Rad51-independent role in DNA repair (San Filippo et al. 2008). For this
reason, HR defects caused by mutating RAD52 are severer than those observed in the rad51
mutant. The absence of each or both proteins was investigated in our gene targeting system.

There are a few general trends seen at the test loci (HIS3 and ADE2). When the length
of the homology arm is 1 kb, in either the conventional or Cas9-mediated system, the absence
of Rad51 or Rad52 reduced gene targeting efficiency to ~50% of the wild-type level. This
reduction was almost completely suppressed by deleting KU70. In the absence of both Rad51
and Rad52, however, gene targeting was completely abolished irrespective of homology
length, employment of Cas9, or the absence of Ku70. These results argue that gene targeting
is redundantly supported by Rad51 and Rad52 when there is significant homology (1 kb). The
absence of Rad51 also caused a mild reduction in gene targeting when the length of the
homology arm is 80 bp, both in the conventional and Cas9-mediated systems, although the
defect was largely rescued by introducing the ku70 mutation. In the absence of Rad52,
however, gene targeting was almost completely eliminated under all tested conditions when
80 bp of homology was employed. These observations suggest that gene targeting relies
almost exclusively on Rad52 when homology is limited (80 bp), with Rad51 relegated to a
minor role.

The overall trend described above is essentially in line with previous work implicating
Rad52, but not Rad51, in playing a predominant role in gene targeting in S. cerevisiae

(Schiestl et al. 1994). Rad52 not only promotes Rad51 activity, but often functions
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independently of Rad51, for example, in single-strand annealing (SSA) and break-induced
replication (BIR) (Symington 2002). Rad52 has an activity to facilitate annealing of
complementary strands (Mortensen et al. 1996; Sugiyama et al. 2006; Bugreev et al. 2007),
which is likely to play an essential role in gene targeting when homology length is short.

It is intriguing that gene targeting does not exclusively require either Rad51 or Rad52
when homology length is long enough (1 kb). Given that no gene targeting happens in the
absence of both Rad51 and Rad52, this argues that Rad51 can function independently of
Rad52. The rad52 mutant is almost completely epistatic to rad57 in S. cerevisiae, but there
are certain genetic conditions where Rad51 can function in the absence of Rad52 in S. pombe.
If the rad52 mutation is combined with a mutation in the FBH1 gene, which encodes a helicase
that negatively regulates Rad51 assembly, Rad51 can function semi-independently of Rad52
(Morishita et al. 2005; Osman et al. 2005). Substantial gene targeting still occurred in the
absence of Rad52 in N. liquefaciens. Consistently, little-to-no sensitivity to UV or IR was
observed in the rad52 mutant. These observations suggest that homologous recombination
takes place without Rad52 in N. liquefaciens (discussed below).

We did observe a very small number of illegitimate integration events in the rad51
rad52 ku70 triple mutant. This indicates that other DSB repair pathway(s), such as the
microhomology-mediated end joining (MMEJ) pathway, may also be operating in N.
liquafaciens. Consistent with this possibility, previous studies have shown that MMEJ is

dependent on neither Rad52 nor Ku proteins (Ma et al. 2003; Decottignies 2007).

Basidiomycota yeasts and Metazoan biology

Rad51, Rad52 and Ku70 are highly conserved proteins in eukaryotic species including
Basidiomycota and Ascomycota yeasts (Fig. S1). Rad51 in C. neoformans and U. maydis is
important for HR and repairing damaged DNA similarly to that in N. liquefaciens and other
Ascomycota yeasts such as S. cerevisiae and S. pombe (Ferguson et al. 1997; Jung et al.
2016). Interestingly, the ku70 null mutant is not viable in U. maydis (de Sena-Tomas et al.
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2015), while in C. neoformans, cells without Ku70/80 are viable but exhibit slightly higher
sensitivity to phleomycin, a radio-mimetic agent (Goins et al. 2006). This observation is
consistent with the involvement of C. neoformans Ku70 in DSB repair and also in line with
our result showing that the ku70 mutant displays mild sensitivity to IR. The ku70 null mutant
in S. cerevisiae and S. pombe shows little, if any, sensitivity to IR or radio-mimetic agents
(Boulton and Jackson 1996; Manolis et al. 2001).

Interestingly, the absence of Rad52 in N. liquefaciens does not cause severe
sensitivity to IR, which is in stark contrast to the phenotypes of the rad52 mutant in the
Ascomycota yeasts S. cerevisiae and S. pombe. This result is in agreement with
observations obtained in another Basidiomycota yeast, U. maydis, where the rad52 mutation
causes no major defects in DNA repair (Kojic et al. 2008). Despite a level of UV and IR
resistance that is comparable to the wild type strain, gene targeting in the N. liquefaciens
rad52 mutant was severely defective when the homology length is short (80 bp). Given that
gene targeting involves some mechanisms related to those employed in BIR, it is possible
that Rad52 plays an essential role in BIR in this organism, just like in Ascomycota yeasts
(Anand et al. 2013). This would also suggest that the role of Rad52 in gene targeting is
largely dispensable for repairing UV or IR-damaged DNA. If Rad52 is indeed exclusively
required for BIR and SSA in this organism, BIR and SSA might play only a minor role in DNA
damage repair. Overall, these traits associated with the absence of Rad52 are reminiscent
of those found in mice. It has been shown that the absence of Rad52 does not cause major
HR defects (Rijkers et al. 1998; Yamaguchi-lwai et al. 1998), while BIR-associated
phenomena, especially those related to telomere maintenance (Verma et al. 2019; Zhang et
al. 2019) and mitotic DNA synthesis (Murfuni et al. 2013; Bhowmick et al. 2016) are
specifically impaired. It would be interesting to examine if Rad52 is also important for
supporting efficient gene targeting in vertebrates, especially when homology length attached

to a gene targeting construct is rather short (~ 80 bp).
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Basidiomycota and Ascomycota represent two major phyla of the fungal kingdom.
Ascomycota yeasts, especially S. cerevisiae and S. pombe, are widely accepted as the
simplest eukaryotic models (Forsburg 2005). Their common use is mainly attributable to
technical advantages such as a short doubling time, simple cultivation conditions, and the
common availability of various molecular genetic tools. However, some biological processes
characteristic of higher eukaryotes, such as nuclear envelope dynamics during open mitosis,
cannot be studied using Ascomycota models. By contrast, Basidiomycota yeasts, such as the
human pathogen C. neoformans (Kozubowski et al. 2013) and the plant pathogen U. maydis,
undergo semi-open mitosis, which is reminiscent of Metazoan mitosis (Straube et al. 2005).
In addition, C. neoformans is the most intron-rich fungal species (Csuros et al. 2011).
Moreover, a genome-wide comparison of the predicted proteome of U. maydis, S. cerevisiae
and humans revealed that human proteins share more similarity to those of U. maydis than
those of S. cerevisiae (Mlnsterkétter and Steinberg 2007; Steinberg and Perez-Martin 2008).
Thus, in addition to the Ascomycota model yeasts, Basidiomycota yeasts could provide unique

insights into Metazoan biology.
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Figure Legends

Figure 1. The establishment of gene targeting systems in N. liquefaciens. a Constructs for
gene targeting developed in this study. GOI, gene of interest. b Optimization of
electroporation conditions (see Materials and methods for details). c-f Gene targeting
efficiency was examined by transformation at the indicated loci. Error bars, standard
deviation. n = 3 for all measurements. Statistical significance was determined by unpaired

two-tailed t-test (n.s., not significant; * p <0.05; **p < 0.01).

Figure 2. Split marker transformation improves gene targeting efficiency. a Schematics of
gene targeting using an intact marker (i) or split marker fragments (ii). b Gene targeting
efficiencies using the intact marker and split marker approaches. Error bars, standard
deviation. n = 9 for all measurements. Statistical significance was determined by unpaired

two-tailed t-test (*, p < 0.05).

Figure 3. Cas9 expression promotes gene targeting. a-d Gene targeting fragments were
employed with a newly developed Cas9-expressing plasmid and gene targeting efficiency
was measured at the indicated loci. Error bars, standard deviation. n = 3 for all
measurements. e 14 transformants showing nourseothricin resistance and histidine
auxotrophy obtained with targeting DNA carrying 1 kb homologous arms and the Cas9
system, were randomly selected and both correct gene targeting (i) and possible random
integration of the CAS9 gene (ii) were examined. f Same as (e (i)) but targeting DNA with 80
bp homologous arms was employed. Primers used for PCR are much closer to the HIS3
coding sequence, thus PCR amplicons are smaller than those in (e (i)) (see Materials and

methods).
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Figure 4. Development of a system that facilitates ectopic integration of foreign DNA. a
Schematic of the strategy for integrating foreign DNA at the TRPZ2 locus. A strain whose
TRP2 gene is replaced by the NAT marker is used as the base strain. Notl digestion of
pM175 releases the DNA fragment carrying the TRPZ2 gene, a multicloning site (MCS) where
a foreign DNA (GENE X) can be cloned, and flanking sequences homologous to the regions
upstream and downstream of the TRP2 coding sequence. The released DNA and the
plasmid expressing Cas9-gNAT (pM101-gNAT) facilitates targeted integration of the DNA
fragment at the TRPZ2 locus using HR. Arrowheads indicate the sites of DNA digestion. b An
example of using the foreign DNA integration system to introduce the wild-type RAD51 gene
into the TRPZ2 locus of the rad51 null mutant. The relationship between genotypes and the
annealing sites of PCR primers used for diagnostic PCR are shown. Primers used are: #1,
Pr-144; #2, Pr-145; #3, Pr-292; #4, Pr-293; #5, Pr-313; #6, Pr-422. ¢ Correct integration of
the wild-type RAD51 gene at the TRPZ2 locus was verified by PCR using primers shown in
(b). d The three strains used in (b) were examined for their sensitivity to UV. Serial 10-fold
dilutions of the indicated three strains were spotted onto two YPD plates, one irradiated with
UV while the other left unirradiated (control). Strain A, wild type (MP17); strain B, the rad51
null mutant before RAD51 integration (MP21); strain C, a transformant showing tryptophan

prototrophy and nourseothricin sensitivity (MP56). A denotes deletion of a gene.

Figure 5. Impact of DSB repair mutations on gene targeting efficiency. a Gene targeting
efficiency was examined using strains with or without Ku70. Different lengths of homologous
arms and targeted loci were employed as indicated. b As in (a) except gene targeting was
promoted by the Cas9 system. ¢ As in (a) except that various combinations of DSB repair
mutations were examined as indicated. d Same as (c) except gene targeting was promoted
by the Cas9 system. The data used for wild type and the ku70 single mutant strains in (c)

and (d) are the same as those in (a) and (b). Strains used are (A denotes deletion of a
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gene): wild type, MP1; ku70A, MP72; rad51A, MP35; rad52A, MP33; rad51A rad52A,
MP112; ku70A, MP72; rad51A ku70A, MP87; rad52A ku70A, MP75; rad51A rad52A ku70A,
MP113. Error bars, standard deviation. n = 9 in "conventional" experiments. n = 3 in "Cas9
mediated" experiments except that n = 9 for strains carrying the rad52 mutation. Statistical
significance was determined by unpaired two-tailed t-test (n.s., not significant; * p < 0.05; **p

<0.01; **p < 0.001; ****p < 0.0001).

Figure 6. The absence of Rad52 confers little-to-no sensitivity to DNA damage. a The
indicated mutants were examined for their sensitivity to UV. b Same as (a) except that
sensitivity to IR was examined. Error bars, standard deviation. n = 3 for all measurements.
Strains used are (A denotes deletion of a gene): wild type, MP1; rad51A, MP35; rad52A,
MP33; rad51A rad52A, MP39; ku70A, MP72; rad51A ku70A, MP87; rad52A ku70A, MP75;

rad51A rad52 ku70A, MP89.
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Figure S1. Protein sequence alignment of Rad51, Rad52 and Ku70. (A) Rad51 protein

sequence alignment. Genbank accession numbers are as follows: Naganishia liquefaciens
MT185602; Cryptococcus neoformans AFR92850; Ustilago maydis AAC61878; Saccharomyces
cerevisiae AAA34948; Schizosaccharomyces pombe CAA80399; Homo sapiens AAF69145;
Gallus gallus AAB26354; Xenopus laevis AAH88930; Danio rerio NP_998371; Caenorhabditis
elegans CAB61038; Drosophila melanogaster AAF57005; Arabidopsis thaliana AAB37762. (B)
Rad52 protein sequence alignment. Accession numbers are as follows: Naganishia liquefaciens
MT185603; Cryptococcus neoformans AFR93075; Ustilago maydis KIS67122; Saccharomyces
cerevisiae DAA09866; Schizosaccharomyces pombe CAA91896; Homo sapiens AAS00097;
Gallus gallus NP_00116123; Xenopus laevis AAH99014; Danio rerio AAY43162. (C) Ku70
protein sequence alignment. Accession numbers are as follows: Naganishia liquefaciens
MT185604; Cryptococcus neoformans AFR96952; Ustilago maydis KIS70074; Saccharomyces
cerevisiae DAA10185; Schizosaccharomyces pombe CAA22471; Homo sapiens AAW34364;
Gallus gallus BAA32018; Xenopus laevis BAA76953; Danio rerio NP_956198; Caenorhabditis
elegans CAB55094; Drosophila melanogaster AAF54631; Arabidopsis thaliana OAP15286.
Black shading denotes identity, grey shading denotes conservative change. Multiple sequence

alignments were performed using Clustal Omega.



Figure S2. An example of gene targeting assay, wherein the HIS3 gene was targeted with the
NAT marker with 1 kb homologous arms. nourseothricin-resistant colonies were initially selected
on YPD medium containing nourseothricin. The transformants were then replica-plated onto a
synthetic complete medium lacking histidine (SC-HIS) to examine if the NAT marker replaced

the HIS3 gene.
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Figure S3. Comparison of transformation efficiency between the NAT, NEO and HYG markers.
In each experiment, 3 ng of PCR-generated targeting DNA with 80 bp homology to the HIS3
locus was used. (A) The total number of drug-resistant colonies. (B) Gene targeting efficiency
obtained from each transformation. Error bars, standard deviation. n = 3 for all measurements.

Statistical significance was determined by unpaired two-tailed t-test (n.s., not significant; * p <
0.05; **p < 0.01).
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Figure S4. Gene targeting accuracy was examined by diagnostic PCR. a PCR amplicons
carrying the wild-type HIS3 gene and his3::NAT were separated by agarose gel electrophoresis.
Primers used are: Pr-410 and Pr-411. b Gene targeting accuracy using the targeting DNA with
80 bp homology to the HIS3 locus was examined by diagnostic PCR as in (a). 14 random
transformants that showed nourseothricin resistance and histidine auxotrophy in the indicated
strains, without Cas9 expression (conventional) or with Cas 9 expression (Cas9), were
analyzed, except for rad52A, where only four transformants were obtained with Cas9 expression

and none without Cas9. M, marker.
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Figure S5. Impact of the absence of DSB repair genes on gene targeting efficiency. (A) Either 1
kb or 80 bp homology arms were employed in targeting DNA to the ADEZ2 locus. (B) Same as
(A) except gene targeting was promoted by the Cas9 system. Error bars, standard deviation.
The data for wild type and the ku70 single mutant strains presented in this figure are the same
as those used in Figure 5A,B. Strains used are (A denotes deletion of a gene): wild type, MP1;
rad51A, MP35; rad52A, MP33; rad51A rad52A, MP112; ku70A, MP72; rad51A ku70A, MP87;
rad52A ku70A, MP75; rad51A rad52A ku70A, MP113. n =9 in "conventional" experiments. n = 3
in "Cas9 mediated" experiments except that n = 9 for strains carrying the rad52 mutation.
Statistical significance was determined by unpaired two-tailed t-test (n.s., not significant; * p <
0.05; **p < 0.01; **p < 0.001; ****p < 0.0001).
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Figure S6. Cell growth of N. liquefaciens. (A) Analysis of temperature sensitivity of N.
liquefaciens. 10-fold serial dilutions were made from a mid-log phase culture, and 5 ul was
spotted onto YPD. Plates were then incubated for three days at 30°C, 33°C, and 37°C, as
indicated. (B) Growth curve of N. liquefaciens. An overnight liquid culture of the wild type strain
(MP1) was diluted to 0.5 x 107 cells/ml in YPD and cell density was measured at indicated time

points. n=3. Error bars, standard deviation.
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Table S1. N. liquefaciens N6 strains used in this study

Strain Genotype Source
MP1 wild type (Abe et al. 2006)
MP17 trp2::NAT This study
MP21 trp2::NAT, rad51::NEO This study
MP56 rad51::NEO TRP2:RAD51 This study
MP35 rad51::NAT This study
MP36 rad51::NEO This study
MP33 rad52::NAT This study
MP34 rad52::NEO This study
MP72 ku70::NEO This study
MP39 rad51::NAT rad52::NEO This study
MP87 rad51::HYG ku70::NEO This study
MP75 rad52::HYG ku70::NEO This study
MP89 rad51::HYG rad52::NAT ku70::NEO This study
MP108 rad51::NAT ku70::NAT This study
MP112 rad51::NAT rad52::HYG This study
MP113 rad51::NAT rad52::HYG ku70::NAT This study
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Table S2. Primers used in this study

Primer ID  Sequence (5'->3")

Pr-36 ACCTCTAGATTCAAGAATCTCGTGAAATGC

Pr-23 CGTCAAGAGTGGTACCCATTTTGTTAGGTTTTTGT

Pr-22 AAAAACCTAACAAAATGGGTACCACTCTTGACGAC

Pr-25 AACGGATCCCAGTATAGCGACCAGCATTC

Pr-198 AACTCTAGAAGACCGTGACGAGCATAACG

Pr-199 GTTCAATCATTGTGATTGATTTAGATGTCTATGGC

Pr-200 ATCAATCACAATGATTGAACAAGATGGATTGCACG

Pr-201 ACCGGATCCCAGTATAGCGACCAGCATTCTGGGCGAAGAACTCCAGCAT

Pr-202 TTTTACCCATTGTGATTGATTTAGATGTCTATGGC

Pr-203 ATCAATCACAATGGGTAAAAAGCCTGAACTCACC

Pr-84 ACCACTCTTGACGACACGG

Pr-85 TGACGTTGGTGACCTCCAGC

Pr-90 AACAACCTCGGCGAATTC

Pr-91 GTATAGCGACCAGCATTC

Pr-359 CGCATTTGTTAATTCCCATTCGCCTCGTCCTCCCTCCTCATACATCGATTCCG
TCCGCCAAACGAAATCAGCCATTGAAATCAACAACCTCGGCGAATTC

Pr205 CAGGAGTAGATGACGCCTATGGTTTGCGCGCGGCCTGAATATTTACCGCCC
TGGAAAGCCTGTTGTAATGACAACGGAACCAGTATAGCGACCAGCATTC

Pr-356 TGCATCCGCCCCGAGAGCGAGCAGCGGGGGGGCATGCAAGAAGATGATTT
CTCGACGGAATCAGGGAATCGCATGCCCCCTCAACAACCTCGGCGAATTC

Pr277 ACACGCGTGCGACGCAGCGTACCGACCGGTCTGAAATCGTTTTATAATCTT
GCTATAACCGAAATACATTGGACGCGGCGCAGTATAGCGACCAGCATTC

Pr-357 AGAGTCCTCATCGGCTGGTCTGGGGTGTCTGGGGTGTCTGGGGTGTCTGCG
CTGCATATTCCAAACATCGTATCAACATCTCAACAACCTCGGCGAATTC

Pr-360 TTTTTCCTCTCTGGCGCAGCTCGAAAGCGTCATTGTACAAGAACCACTTGTA
TTTTTCTTACTTCACACAATGAAGACCTCAGTATAGCGACCAGCATTC

Pr-315 CCTCAGCCGGCCTCTCCCTGCTTCGGCTCGATCGCTCGCAAAAGGTTGAGG
CACTTTGACTCACCTGAAGTTTCAGGAATTCAACAACCTCGGCGAATTC

Pr272 GGGCCTGAACGAGCTTCCGCTGGCTTTCACTGGATGTAGTATCGTACCTATG
CAGATGATACAACGGCGTAGTCTTAGACCAGTATAGCGACCAGCATTC

Pr-410 ACAAGCAGTCTGATGGCGAA

Pr-411 ATGGTAGGCGCGCAATATCT

Pr-257 TGACTGCTGCGATGAGAGAC

Pr-258 ACCGACTGGTCTGAAATGGA

Pr-156 ATGGCGTATGCAGTGCAGTG

Pr-157 GAATTCGCCGAGGTTGTTTTTCAATGGCTGATTTCGTT

Pr-158 GAATGCTGGTCGCTATACGTTCCGTTGTCATTACAACA

Pr-159 TAACGGAGAGATCTCCTCCG

Pr-195 ATTGCTTGGGCCATCTGATC

Pr-196 AGGAAGATGCAGCTGCTGAT

Pr-160 ACTCGCTTCGCAAGATAGAG

Pr-161 AGCAAGCCAAAGCAGAATTC

Pr-397 GGTGTGGACACAAAGATTCCTGATTGAGAA

Pr-399 GAATTCGCCGAGGTTGTTATTCCTGAAACTTCAGGTGA

Pr-398 GTTGTCTCCTGACGACCCTATCTCTTTTCT

Pr-400 GAATGCTGGTCGCTATACGTCTAAGACTACGCCGTTGT

Pr-299 ATCCTTGATGTCTTTGCTGG

Pr-302 GAACTAGCGGCTGAAATCGA

Pr-63 ACGATTGAGCAGTCCGAGGA

Pr-54 GAATTCGCCGAGGTTGTTGGGGGCATGCGATTCCCTGA

Pr-55 GAATGCTGGTCGCTATACCGCCGCGTCCAATGTATTTC

Pr-394 CTCCCTGACCCTGAGCTTGTTTTCGAGAAT

Pr-52 AAGCTGATGCAATCTGGTATGC

Pr-53 ATCAACCGGCAAGTCGAATG

Pr-122 AGAAACACGTCCAACACGAG

Pr-74 AGAAGTCTTTGGCGGGAGCT

Pr-373 ATCTTGGATGTCACATCGCT

Pr-375 GAATTCGCCGAGGTTGTTGATGTTGATACGATGTTTGG

Pr-376 GAATGCTGGTCGCTATACAGGTCTTCATTGTGTGAAGT

Pr-374 TCAAACAACGGACATCTCGC

Pr-377 ACCTCTACATCGATGTCCTG

Pr-378 CGTCTCCGACTCTCCTCACT

Pr-51 TATAGTCCATTGTGATTGATTTAGATGTCTATGGC

Pr-50 TAAATCAATCACAATGGACTATAAGGACCACGACG

Pr-39 ACCTCTAGATCCCCAGCATGCCTGCTATTC
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Pr-347

Pr-332

Pr-333

Pr-399

Pr-400

Pr-144
Pr-145
Pr-475
Pr-476
Pr-292
Pr-293
Pr-422
Pr-458
Pr-459
Pr-550
Pr-551
Pr-552
Pr-553
Pr-361
Pr-362

Pr-322

Pr-323

Pr-403

Pr-404

Pr-174
Pr-175
Pr-500
Pr-501

Pr-506

Pr-507

Pr-583

Pr-584

Pr-504
Pr-505
Pr-415
Pr-416
Pr-620
Pr-621
Pr-622

AACAAGCTTGAACAGCTGGATGACACTGA
AGGTCTTCTCGAAGACCCGAAAACTACTTGAGAAACAC
GGGTCTTCGAGAAGACCTGTTTTAGAGCTAGAAATAGC
AACAAGCTTAAAAAAGCACCGACTC
AAGAAATTCAAGGTGCTGGGCAACA
TGGTCAGGGTAAACAGGTGGATGAT

TTTCGAAGACTGTGCTATCGCTCT

AAACAGAGCGATAGCACAGTCTTC

TTTCGCATGCTCGATGTCAATCAG

AAACCTGATTGACATCGAGCATGC

TTTCGAAGAAGACGGACCTCAACC

AAACGGTTGAGGTCCGTCTTCTTC

TTTCGTCTGTTCCGTTCAATATCC

AAACGGATATTGAACGGAACAGAC
ACCGTCGACACTCATGCTGCGCTTACCTC
ACCGTCGACCCATGGGTTAACTACAGGGAAGCCAAAGAAAGG
ACCGTTAACAGTGTCTTGCGTTGATGCGG
AACGTTAACACTGCTCCGTAATGCACGAG
TTTCGGCGCAATCACCGAACTCTA

AAACTAGAGTTCGGTGATTGCGCC
CGAGAGGTGGAAGCCACACTTCCTTTTCCACGCATAGTTCTGCCACACGCA
AGAATCTCCGACAACAACTCATCGCGGCGAGACCGTGACGAGCATAACG
TTGTTTGAGGTGCTGAGACGAGCGATTCGAAATCAAATGGATACAACAACG
ACGTTTGACTGTCCGTTCAGCTTAGGGTTCAGTATAGCGACCAGCATTC
CGAGAGGTGGAAGCCACACTTCCTTTTCCACGCATAGTTCTGCCACACGCA
AGAATCTCCGACAACAACTCATCGCGGCGTCAACAACCTCGGCGAATTC
TTGTTTGAGGTGCTGAGACGAGCGATTCGAAATCAAATGGATACAACAACG
ACGTTTGACTGTCCGTTCAGCTTAGGGTTCAGTATAGCGACCAGCATTC
ACCGGGACCCATTACACTAC

TGCATGCTGATAGTCCTCCG

ACCGGATCCTCGACTACATCGGCCGGAAG
AACTCTAGAGGTACCAGTTTGAATTCGGCCTGCTC
ACCGTGCTCCTAATGTAGCG

TCAGTCTTCCGGCCGATGTA

TCAGACCTGTCCGTATGCTG

ACCTCTAGAATGGCGACCCAAGAATACGC
ACCTCTAGATTACTTGTCACCTTCGTCTT
ACCTCTAGACATATGATGTCGACGCTGTCGGGACA
ACCTCTAGACATATGTCATGCTTTGCTGCGTTTGG
ACCTCTAGAATGTCCCAAGCTAAAACCCA
ACCTCTAGATCAATTCCCTTTGCGCCTGT
TTTCGTACGGCGGTCATCACGGCA

AAACTGCCGTGATGACCGCCGTAC
GCATCTCGAAGCACATCACCACACCACCAGCCAGACAAACCTCCAAGAGA
AAGCTCGGATCCACGTCTTCCAGTGTTTCCAGACCGTGACGAGCATAACG
GTATCATCCTACTCTACATTCACATTCATACGCGCGTCCCGTATCGTGTCTG
TATGCACAAAGACCCGTGGCAGGACAGTCAGTATAGCGACCAGCATTC
GCATCTCGAAGCACATCACCACACCACCAGCCAGACAAACCTCCAAGAGA
AAGCTCGGATCCACGTCTTCCAGTGTTTCCTCAACAACCTCGGCGAATTC
GTATCATCCTACTCTACATTCACATTCATACGCGCGTCCCGTATCGTGTCTG
TATGCACAAAGACCCGTGGCAGGACAGTCAGTATAGCGACCAGCATTC
ATTCCACTCTCGGTCTCGGT

TCCGAAGATACGAGTCGCTG

TTTCGATATCGCATCGACCGTCAT

AAACATGACGGTCGATGCGATATC
CCATCTATCAAGCACCCACCCTTCCTCGCACAATCGACAGGAAGCGATCAA
GAATACTTGCTAATAAATGCGAGATCATCAGACCGTGACGAGCATAACG
CCCGTTCACACGGCGTTGGCGGATAAGAAAAAGCAATGCGGTGGAAGGGC
ATCAGCACTTTTTGAGAGCCATCAACCCCTCAGTATAGCGACCAGCATTC
CCATCTATCAAGCACCCACCCTTCCTCGCACAATCGACAGGAAGCGATCAA
GAATACTTGCTAATAAATGCGAGATCATCTCAACAACCTCGGCGAATTC
CCCGTTCACACGGCGTTGGCGGATAAGAAAAAGCAATGCGGTGGAAGGGC
ATCAGCACTTTTTGAGAGCCATCAACCCCTCAGTATAGCGACCAGCATTC
ACCTGAGAGCTGATCGATGG

AGACACGCTTATCGGAATCG

TTTCGAGGCCATCGAGGCACTGGA

AAACTCCAGTGCCTCGATGGCCTC

TTTCGACTGGGCACAACAGACAAT

AAACATTGTCTGTTGTGCCCAGTC

TTTCGAGGGCGTGGATATGTCCTG
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Pr-623

AAACCAGGACATATCCACGCCCTC
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Table S3. Number of transformants analyzed in Figures 5 and S5
A denotes deletion of a gene.

(1) HIS3
ku70A
. rad51A ku70A | ku70A
wild type | rad51A | rad52A rad52A ku70A rad51A | rads2n rad51A
rad52/A
1 kb
(conventional) 124 111 69 28 96 107 23 14
80 bp
(conventional) 104 116 27 45 88 86 15 15
1 kb
(Cas9) 387 453 107 39 216 361 65 11
80 bp 524 388 | 164 | 41 517 | 309 15 13
(Cas9)
(2) ADE2
ku70A
. rad51A ku70A | ku70A
wild type | rad51A | rad52A rad52A ku70A rad51A | rads2n rad51A
rad52/A
1 kb
(conventional) 132 108 74 46 93 95 24 14
80bp 115 124 |39 59 92 88 14 15
(conventional)
1 kb
(Cas9) 380 401 148 35 341 339 74 15
80 bp
(Cas9)) 391 367 101 59 435 443 17 15
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