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ABSTRACT

We propose a definition of the asymptotic phase for quantum nonlinear oscillators from the viewpoint of the Koopman operator theory.
The asymptotic phase is a fundamental quantity for the analysis of classical limit-cycle oscillators, but it has not been defined explicitly for
quantum nonlinear oscillators. In this study, we define the asymptotic phase for quantum oscillatory systems by using the eigenoperator of
the backward Liouville operator associated with the fundamental oscillation frequency. By using the quantum van der Pol oscillator with a
Kerr effect as an example, we illustrate that the proposed asymptotic phase appropriately yields isochronous phase values in both semiclassical
and strong quantum regimes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0088559

Spontaneous rhythmic oscillations and synchronization are
observed in a wide variety of classical rhythmic systems, and
recent progress in nanotechnology is facilitating the analysis of
quantum rhythmic systems. The asymptotic phase plays a funda-
mental role in the analysis of classical limit-cycle oscillators, but
a fully quantum-mechanical definition for quantum limit-cycle
oscillators has been lacking. In this study, we propose a definition
of the asymptotic phase for quantum nonlinear oscillators, which
naturally extends the definition of the asymptotic phase for clas-
sical stochastic oscillatory systems1 from the Koopman-operator
viewpoint2 and provides us with appropriate phase values for
characterizing quantum synchronization.

I. INTRODUCTION

Synchronization of spontaneous rhythmic oscillations is widely
observed in nature.3–8 It has been extensively studied in a variety of
classical systems in physics, chemistry, and biology. Recently, much
progress has been made in the experimental realization of synchro-
nization in micro- and nanoscale systems, such as nanoelectrome-
chanical oscillators,9 microlasers,10 spin torque oscillators,11 and

optomechanical oscillators.12 Stimulated by the experimental devel-
opments, quantum synchronization has attracted much attention
recently,13–41 and theoretical investigations of quantum signatures
in synchronization, such as quantum fluctuations,13–16,31 quantum
entanglement,18–20 discrete nature of the energy spectrum,21–23 and
effects of quantum measurement,24–28 have been carried out. Exper-
imental realizations of quantum phase synchronization in spin-1
atoms29 and on the IBM Q system30 have also been reported recently.

In classical deterministic systems, spontaneous rhythmic oscil-
lations are typically modeled as stable limit cycles of nonlinear
dynamical systems. The asymptotic phase,3–7 defined by the oscil-
lator’s vector field and increases with a constant frequency in the
basin of the limit cycle, plays a central role in analyzing syn-
chronization properties of limit-cycle oscillators. It is the basis for
phase reduction,3–7 which gives low-dimensional phase equations
approximately describing the oscillators under weak perturbations.
Recently, it has been clarified that the asymptotic phase, which was
originally introduced from a geometrical viewpoint,3 has a natural
relationship with the Koopman eigenfunction associated with the
fundamental frequency of the oscillator.2,42–45

For classical stochastic oscillatory systems, Thomas and
Lindner1 proposed a definition of the asymptotic phase in terms of

Chaos 32, 063133 (2022); doi: 10.1063/5.0088559 32, 063133-1

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0088559
https://doi.org/10.1063/5.0088559
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0088559
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0088559&domain=pdf&date_stamp=2022-06-24
http://orcid.org/0000-0001-8508-4677
http://orcid.org/0000-0003-3394-0392
mailto:katoyuzu@fun.ac.jp
mailto:nakao@sc.e.titech.ac.jp
https://doi.org/10.1063/5.0088559


Chaos ARTICLE scitation.org/journal/cha

the slowest decaying eigenfunction of the backward Fokker–Planck
(Kolmogorov) operator describing the mean first passage time,
which appropriately yields isochronous phase values that increase
with a constant frequency on average even for strongly stochas-
tic oscillations, in a similar way to the ordinary asymptotic phase
for deterministic oscillators. We recently pointed out that their
definition can be considered a natural extension of the deterministic
definition from the Koopman operator viewpoint2 (see Refs. 46–48
for the details of the stochastic Koopman operator).

The classical definitions of the asymptotic phase are applicable
to quantum nonlinear oscillators in the semiclassical regime, where
the system is described by a stochastic differential equation for the
phase-space state along a deterministic classical trajectory under the
effect of small quantum noise.2,16,31 However, in the stronger quan-
tum regime, we cannot rely on the semiclassical approximation and
how to define the asymptotic phase in a fully quantum-mechanical
manner is an open question. In this study, we propose a definition
of the asymptotic phase for quantum nonlinear oscillatory systems
by using the eigenoperator of the adjoint Liouville operator, which
is a counterpart of the backward Fokker–Planck operator in classi-
cal stochastic systems. We illustrate the validity of our definition by
using a quantum van der Pol oscillator with the quantum Kerr effect
in both semiclassical and strong quantum regimes.

II. ASYMPTOTIC PHASE FOR CLASSICAL OSCILLATORY
SYSTEMS

In this section, we briefly review the definitions of the asymp-
totic phase for deterministic3–7,43–45 and stochastic1,2 classical oscilla-
tory systems.

A. Deterministic oscillatory systems

Consider a deterministic dynamical system

Ẋ(t) = A(X(t)), (1)

where X(t) ∈ RN is the system state at time t, A(X) ∈ RN is a vec-
tor field representing the system dynamics, and (̇) represents time
derivative. We assume that this system has an exponentially stable
limit-cycle solution X0(t) with a natural period T and frequency
!c = 2π/T, satisfying X0(t + T) = X0(t), and denote its basin of
attraction as B ⊆ RN. The asymptotic phase #c(X) : B → [0, 2π)
is defined such that A(X) · ∇#c(X) = !c is satisfied for ∀X ∈ B,
where ∇ = ∂/∂X represents the gradient with respect to X.3–7 The
asymptotic phase φ(t) = #c(X(t)) of the system state X(t) then
obeys

φ̇(t) = #̇c(X(t)) = A(X(t)) · ∇#c(X(t)) = !c, (2)

i.e., φ always increases with a constant frequency !c as X evolves in
B. Thus, the asymptotic phase #c gives a nonlinear transformation
of the system state X to a phase value φ such that the dynamics of φ
takes a simple linear form, φ(t) = !ct + constant. The simplicity of
the phase equation (2) has facilitated detailed studies of synchro-
nization and collective dynamics in coupled-oscillator systems.3–7

The level sets of #c(X) are called isochrons.
The linear operator A = A(X) · ∇ in the definition of the

asymptotic phase #c(X) is the infinitesimal generator of the Koop-
man operator describing the evolution of observables for the system

described in Eq. (1) (see Refs. 42–45 for details). The complex
exponential &c(X) = ei#c(X) of #c(X) is an eigenfunction of A with
the eigenvalue i!c, namely, it satisfies the eigenvalue equation
A&c(X) = i!c&c(X). Therefore, the asymptotic phase #c(X) has
a natural operator-theoretic interpretation as the argument of the
Koopman eigenfunction &c(X) associated with the eigenvalue i!c,
characterized by the fundamental frequency !c of the oscillator.42–45

We can, thus, define the asymptotic phase by using the Koopman
eigenfunction &c(X) of A as

#c(X) = arg &c(X). (3)

B. Stochastic oscillatory systems

For stochastic oscillatory systems, we cannot use the determin-
istic limit-cycle solution in defining the asymptotic phase unless the
noise is sufficiently weak. Thomas and Lindner1 defined the asymp-
totic phase for classical stochastic oscillators without relying on the
deterministic limit cycle by using the eigenfunction with the slowest
decay rate of the backward Fokker–Planck operator.

Consider a stochastic oscillator described by an Ito stochastic
differential equation (SDE)

dX(t) = A(X(t)) dt + B(X(t)) dW(t), (4)

where X(t) ∈ RN is the system state at time t, A(X) ∈ RN is a drift
vector representing the deterministic dynamics, B(X) ∈ RN×N is
a matrix characterizing the effect of the noise, and W(t) ∈ RN is
a N-dimensional Wiener process. This system is assumed to be
oscillatory in the sense explained below. The transition probability
density p(X, t|Y, s) (t ≥ s) of Eq. (4) obeys the forward and backward
Fokker–Planck equations,49

∂

∂t
p(X, t|Y, s) = LXp(X, t|Y, s) (5)

and
∂

∂s
p(X, t|Y, s) = −L∗

Y
p(X, t|Y, s), (6)

respectively, where the (forward) Fokker–Planck operator is given
by

LX = −
∂

∂X
A(X) +

1

2

∂2

∂X
2 D(X) (7)

and the backward Fokker–Planck operator is given by (in terms
of X)

L∗
X

= A(X)
∂

∂X
+

1

2
D(X)

∂2

∂X
2 . (8)

Here, D(X) = B(X)B(X)T ∈ RN×N is a matrix of diffusion coef-
ficients (T indicates the matrix transposition). The forward
and backward operators LX and L∗

X
are mutually adjoint, i.e.,

〈LXG(X), H(X)〉X = 〈G(X), L∗
X
H(X)〉X, where the inner product is

defined as 〈G(X), H(X)〉X =
∫

G(X)H(X) dX for two functions
G(X), H(X) : RN → C (the overline indicates complex conjugate
and the integration is taken over the whole range of X).

As explained in Appendix A, the backward Fokker–Planck
operator L∗

X
in Eq. (8) is the infinitesimal generator of the Koop-

man operator for Eq. (4). We denote the probability density function
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of X at time t as pt(X) ∈ R, which also obeys the Fokker–Planck
equation ∂pt(X)/∂t = LXpt(X), and an observable of the system at
time t as gt : RN → C, which maps the system state X to a com-
plex value. The evolution of the expectation 〈g〉t =

∫

pt(X)gt(X) dX

= 〈pt(X), gt(X)〉X of the observable g at t = t0 can be expressed as

d

dt
〈g〉t

∣

∣

∣

∣

t=t0

=

〈

∂

∂t
pt(X)

∣

∣

∣

∣

t=t0

, gt0(X)

〉

X

= 〈LXpt0(X), gt0(X)〉X = 〈pt0 (X), L∗
X
gt0(X)〉X

=

〈

pt0(X),
∂

∂t
gt(X)

∣

∣

∣

∣

t=t0

〉

X

, (9)

where gt(X) remains constant and pt(X) evolves in the second
expression, while pt(X) remains constant and gt(X) evolves in the
last expression.

The linear differential operators LX and L∗
X

have a biorthogonal
eigensystem {λk, Pk, Qk}k=0,1,2,... of the eigenvalue λk and eigenfunc-
tions Pk(X) and Qk(X) satisfying

LXPk(X) = λkPk(X), L∗
X
Qk(X) = λkQk(X),

〈Pk(X), Ql(X)〉X = δkl,
(10)

where k, l = 0, 1, 2, . . . and δkl represents the Kronecker delta.49 We
assume that, among the eigenvalues, one eigenvalue λ0 is zero, which
is associated with the stationary state pS(X) of the system satisfying
LXpS(X) = 0, and all other eigenvalues have negative real parts. It is
assumed that the eigenvalues with the largest non-negative real part
(or the smallest absolute real part, i.e., the slowest decay rate) are
given by a complex–conjugate pair. We denote these eigenvalues as

λ1 = µs − i!s, λ1 = µs + i!s, (11)

where |µs|(µs < 0) is the decay rate and !s = Im λ1 represents
the fundamental oscillation frequency of the system. The oscilla-
tory property of the system is embodied in this assumption. We also
assume that this pair of principal eigenvalues are well separated from
other branches of eigenvalues and this oscillatory mode is dominant
in the system.

Thomas and Lindner1 proposed a definition of the stochastic
asymptotic phase of the system described by Eq. (4) by using the
argument of the complex conjugate of the eigenfunction Q1(X) of
L∗

X
associated with λ1 as (in the notation used here)

#s(X) = arg Q1(X). (12)

This definition is natural from the Koopman operator viewpoint,2

as L∗
X

is the infinitesimal generator of the Koopman operator for
Eq. (4) that formally goes back to the linear operator A = A(X) · ∇ ,
i.e., to the infinitesimal generator of the Koopman operator for the
deterministic system Eq. (1) in the noiseless limit D(X) → 0. The
exponential average of #s satisfies2

d

dt
arg E

X0 [ei#s(X(t))] =
d

dt
arg E

X0 [Q1(X(t))] = Imλ1 = !s, (13)

where EX0 represents the average over the stochastic trajectories of
Eq. (4) starting from an initial point X0 ∈ RN. Thus, the asymptotic
phase defined by Eq. (12) increases with a constant frequency !s

on average with the stochastic evolution of the system and can be
considered a natural generalization of the deterministic asymptotic
phase in Eq. (3). It is noted that we may also choose the eigenvalue λ1

and eigenfunction Q1(X) to define the stochastic asymptotic phase,
which reverses its direction of increase.

III. ASYMPTOTIC PHASE FOR QUANTUM OSCILLATORY
SYSTEMS

Our aim in this study is to propose a quantum-mechanical
definition of the asymptotic phase that does not rely on classical
trajectories. In Ref. 16, we developed a semiclassical phase reduc-
tion theory for quantum limit-cycle oscillators, but the definition
of the asymptotic phase was based on the deterministic limit cycle
in the classical limit and could not be applied in stronger quantum
regimes. In Ref. 2, we considered the asymptotic phase of quantum
limit-cycle oscillators using the definition for the classical stochastic
oscillators explained in Sec. II, but it was valid only in the semiclassi-
cal regime. Here, we consider a quantum master equation describing
the evolution of the density operator of the system and define the
asymptotic phase by using the eigenoperator of the adjoint Liou-
ville operator. We use standard notations for open quantum systems
without a detailed explanation; see, e.g., Refs. 51–53 for details.

A. Quantum master equation

We consider quantum oscillatory systems with a single degree
of freedom coupled to reservoirs. The system’s quantum state is rep-
resented by a Hermitian density operator ρ (=ρ†) and the observ-
able is described by an operator F, where † represents Hermitian
conjugate. Introducing an inner product 〈X, Y〉tr = Tr (X†Y) of two
operators X and Y, the expectation of the observable F is expressed
as

〈F〉 = Tr (ρF) = 〈ρ, F〉tr. (14)

In the Schrödinger picture, the quantum state ρ evolves with
time while the observable F remains constant. Assuming that the
interactions of the system with the reservoirs are instantaneous and
Markovian approximation can be employed, the evolution of the
density operator ρt at time t obeys the quantum master equation51–53

ρ̇t = Lρt, (15)

where the Liouville operator L (sometimes called a superoperator
because it acts on an operator) is given by

LX = −i[H, X] +
n
∑

j=1

D[Cj]X. (16)

Here, H(= H†) is a system Hamiltonian, Cj is a coupling opera-
tor between the system and jth reservoir (j = 1, . . . , n), [A, B] = AB
− BA is the commutator, D[C]X = CXC† − (XC†C + C†CX)/2 is
the Lindblad form, and the reduced Planck’s constant is set as ! = 1.

In the Heisenberg picture, the quantum state ρ remains con-
stant while the observable F evolves with time as

Ḟt = L
∗Ft, (17)
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where the time dependence of F is explicitly shown. Here, L∗ is the
adjoint operator of L satisfying

〈LX, Y〉tr = 〈X,L∗Y〉tr (18)

and can be explicitly calculated as

L
∗X = i[H, X] +

n
∑

j=1

D
+[Cj]X, (19)

where D+[C]X = C†XC − (XC†C + C†CX)/2 is the adjoint Lind-
blad form.53 The evolution of the expectation 〈F〉t = 〈ρt, Ft〉tr of F
with respect to ρ at t = t0 can be expressed as

d

dt
〈F〉t

∣

∣

∣

∣

t=t0

= 〈ρ̇t|t=t0 , Ft0 〉tr = 〈Lρt0 , Ft0〉tr

= 〈ρt0 ,L∗Ft0 〉tr = 〈ρt0 , Ḟt|t=t0 〉tr, (20)

where F remains constant and ρ evolves in the second expression
(Schrödinger picture), while ρ remains constant and F evolves in the
last expression (Heisenberg picture). Equation (20) corresponds to
Eq. (9) for the expectation of the observable for classical stochastic
systems. Thus, the adjoint operator L∗ is a counterpart of the back-
ward Fokker–Planck operator L∗

X
in Sec. II, namely, L∗ corresponds

to the infinitesimal generator of the Koopman operator.
We assume that the operators L and L∗ have a biorthogonal

eigensystem {*k, Uk, Vk}k=0,1,2,... consisting of the eigenvalue *k and
right and left eigenoperators Uk and Vk, satisfying

LUk = *kUk, L
∗Vk = *kVk, 〈Uk, Vl〉tr = δkl, (21)

for k, l = 0, 1, 2, . . ..54 Among the eigenvalues, one eigenvalue *0

is always 0, which is associated with the stationary state ρS of the
system satisfying LρS = 0, and all other eigenvalues have negative
real parts; this also indicates that the system has no decoherece
free subspace.50 We assume that, reflecting the system’s oscillatory
dynamics, the eigenvalues with the largest non-vanishing real part
(i.e., with the slowest decay rate) are given by a complex-conjugate
pair. We denote these eigenvalues as

*1 = µq − i!q, *1 = µq + i!q, (22)

where |µq| (µq < 0) is the decay rate and !q = Im *1 gives the fun-
damental frequency of the oscillation. As in the case of the stochastic
oscillatory systems in Sec. II, the oscillatory property of the system
is embodied in this assumption.

B. Phase space representation

The density operator ρ can also be represented by using
quasiprobability distributions in the phase space such as the P, Q,
and Wigner distributions.51,52,55 We use the P representation and
express ρ as

ρ =
∫

p(α)|α〉〈α| dα, (23)

where |α〉 is a coherent state specified by a complex value α ∈ C, or
equivalently by a complex vector α = (α, α)T ∈ C2, p(α) : C2 → R

is a quasiprobability distribution of α, dα = dα d α, and the integral
is taken over C. Defining the P representation of an observable F as

f(α) = 〈α|F|α〉, (24)

where F is expressed in the normal order,51,52,55 the expectation of F
is expressed as

〈F〉 = Tr(ρF) =
∫

p(α)f(α) dα = 〈p(α), f(α)〉α . (25)

Here, we defined the L2 inner product 〈g(α), h(α)〉α =
∫

g(α)h(α)
dα of two functions g(α), h(α) : C2 → C, where the integral is taken
over the complex plane.

In the Schrödinger picture, the time evolution of pt(α) (depen-
dence on t is explicitly denoted) corresponding to the master
equation (15) is described by a partial differential equation

∂

∂t
pt(α) = Lαpt(α), (26)

where the differential operator Lα is related to the Liouville operator
L in Eq. (15) via

Lρt =
∫

Lαpt(α)|α〉〈α| dα

and can be explicitly calculated from Eq. (15) by using the standard
calculus for the phase-space representation.51,52,55

The corresponding evolution of the P representation ft(α) of
the observable Ft in the Heisenberg picture is given by

∂

∂t
ft(α) = L∗

α ft(α), (27)

where the differential operator L∗
α is the adjoint of Lα , i.e.,

〈Lαg(α), h(α)〉α = 〈g(α), L∗
αh(α)〉α , (28)

and satisfies

L∗
α ft(α) = 〈α|L∗Ft|α〉. (29)

Thus, L∗
α is the generator of the Koopman operator in the P repre-

sentation describing the evolution of f(α), which corresponds to the
adjoint Liouville operator L∗ in Eq. (19).

Corresponding to the Liouville operators L and L∗, the differ-
ential operators Lα and L∗

α also possess a biorthogonal eigensystem
{*k, uk(α), vk(α)}k=0,1,2,... of eigenvalue *k and eigenfunctions uk

and vk, satisfying

Lαuk = *kuk, L∗
αvk = *kvk, 〈uk, vl〉α = δkl, (30)

which has one-to-one correspondence with Eq. (21). The eigenval-
ues {*k}k=0,1,2,... are the same as those of L, and the eigenfunctions
uk and vk of Lα are related to the eigenoperators Uk and Vk of L via

Uk =
∫

uk(α)|α〉〈α| dα, vk(α) = 〈α|Vk|α〉, (31)

which follow from

LUk =
∫

uk(α) {L|α〉〈α|} dα =
∫

{Lαuk(α)} |α〉〈α| dα

=
∫

*kuk(α)|α〉〈α| dα = *kUk (32)
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and

L∗
αvk = L∗

α〈α|Vk|α〉 = 〈α|L∗Vk|α〉 = *k〈α|Vk|α〉 = *kvk. (33)

C. Quantum asymptotic phase

Generalizing the definition for classical stochastic oscillatory
systems in Sec. II, we here propose a definition of the quantum
asymptotic phase. We note that, in quantum systems, the system
state is given by the density operator ρ and individual trajectories
as in the classical stochastic systems cannot be considered.

First, we define the quantum asymptotic phase #q(α) of the
coherent state α in the P representation. Considering the definition
Eq. (12) of the asymptotic phase in terms of the eigenfunction Q1(X)
of the backward Fokker–Planck operator L∗

X
in the classical stochas-

tic case, we define the quantum asymptotic phase #q(α) as the
argument of the complex conjugate of the eigenfunction v1(α) in
the P representation associated with the principal eigenvalue *1 as

#q(α) = arg v1(α) = arg〈α|V1|α〉. (34)

Next, considering that the general quantum state ρ is represented as
a superposition of coherent states with the weight p(α), Eq. (23), we
define the asymptotic phase of ρ as

#q(ρ) = arg〈p(α), v1(α)〉α = arg〈ρ, V1〉tr. (35)

It can be shown that the asymptotic phase #q(ρ) evolves with a
constant frequency !q as the quantum state ρ evolves according to
the master equation (15). Defining

&q(ρt) = 〈pt(α), v1(α)〉α = 〈ρt, V1〉tr, (36)

where the dependence on time t is explicitly denoted, we have

d

dt
&q(ρt)

∣

∣

∣

∣

t=t0

=

〈

∂pt(α)

∂t

∣

∣

∣

∣

t=t0

, v1(α)

〉

α

= 〈Lαpt0(α), v1(α)〉α

= 〈pt0(α), L∗
αv1(α)〉α

= 〈pt0(α), *1v1(α)〉α

= *1&q(ρt0), (37)

or, equivalently,

d

dt
&q(ρt)

∣

∣

∣

∣

t=t0

= 〈ρ̇t|t=t0 , V1〉tr

= 〈Lρt0 , V1〉tr = 〈ρt0 ,L∗V1〉tr

= 〈ρt0 , *1V1〉tr

= *1〈ρt0 , V1〉tr

= *1&q(ρt0). (38)

Integrating by time, we obtain

&q(ρt) = exp(*1t)&q(ρ0) = exp[(µq + i!q)t]&q(ρ0), (39)

where ρ0 is the initial state at t = 0 and, hence, the asymptotic phase
is given by

#q(ρt) = arg &q(ρt) = !qt + arg &q(ρ0). (40)

Differentiating by t, we obtain

d

dt
#q(ρt) = !q, (41)

namely, the asymptotic phase #q(ρt) increases with a constant
frequency !q with the evolution of the quantum state ρt.

Thus, by using the eigenfunction v1(α) of the adjoint linear
operator L∗

α or equivalently the eigenoperator V1 of the adjoint oper-
ator L∗ associated with the eigenvalue *1, we can define the asymp-
totic phase #q(ρ) of the quantum state ρ. The quantum master
equation (15), adjoint Liouville operator L∗ (or adjoint differen-
tial operator L∗

α in the P representation), and eigenoperator V1 [or
the eigenfunction v1(α) in the P representation] with the eigenvalue
*1 correspond to the forward Fokker–Planck equation (5), back-
ward Fokker–Planck operator L∗

X
, and eigenfunction Q1(X) with the

eigenvalue λ1 in the classical stochastic system discussed in Sec. II,
respectively.

We stress, however, that the system state is generally repre-
sented by the density operator ρ or quasiprobability distribution
p(α) and individual trajectories cannot be considered in the quan-
tum case. As in the classical stochastic case, we may also choose

the eigenvalue *1, eigenfunction v1(α), and eigenoperator V†
1 to

define the quantum asymptotic phase, which reverses its direction
of increase.

IV. EXAMPLE: QUANTUM VAN DER POL OSCILLATOR

In this section, using the quantum van der Pol model with the
quantum Kerr effect as an example, we illustrate the validity of the
quantum asymptotic phase defined in Sec. III. We also analyze a
damped harmonic oscillator in Appendix D.

A. Quantum van der Pol model with the quantum
Kerr effect

As an example of quantum oscillatory systems, we consider
the quantum van der Pol model with the quantum Kerr effect. The
system’s density operator ρ obeys the master equation

ρ̇ = Lρ = −i [H, ρ] + γ1D[a†]ρ + γ2D[a2]ρ, (42)

where a and a† are annihilation and creation operators,
H = ω0a†a + Ka†2a2 is the Hamiltonian, ω0 is the frequency param-
eter of the oscillator, K is the Kerr parameter, and γ1 and γ2

are the decay rates for negative damping and nonlinear damping,
respectively.21,31 By using the standard rule of calculus,51,52,55 we
can derive the differential operator Lα in Eq. (26) describing the
evolution of the P representation p(α) of ρ from the Liouville oper-
ator L, which consists of third- and higher-order derivative with
respect to α.21

To evaluate the fundamental frequency !q and the asymptotic
phase #q(ρ) of the system, we numerically calculate the eigenvalues
and eigenfunctions of the Liouville and adjoint Liouville operators
L and L∗. To this end, we approximately truncate the number rep-
resentation of the density operator as a large N × N matrix and
map it to a N2-dimensional vector of the double-ket notation.56 We
can then approximately represent the Liouville operators L and L∗
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by N2 × N2 matrices and calculate their eigensystem to obtain the
asymptotic phase in Eq. (34).

B. Semiclassical regime

We first consider the semiclassical regime where γ2 and K are
sufficiently small. In this case, as explained in Appendix B, we can
approximate Eq. (26) by a Fokker–Planck equation for p(α), namely,
the system state is approximately equivalent to a classical stochastic
system. Furthermore, in the classical limit where the quantum noise
vanishes, the system is described by a single complex variable α ∈ C

obeying a deterministic ordinary differential equation

α̇ =
(γ1

2
− iω0

)

α − (γ2 + 2Ki)αα2. (43)

This equation represents the Stuart–Landau oscillator (normal form
of the supercritical Hopf bifurcation)4 and possesses a stable limit-
cycle solution α0(φ) = R eiφ , which is represented as a function
of the phase φ = !ct + const. with a natural frequency !c = −ω0

− Kγ1/γ2 and radius R =
√

γ1/2γ2. The basin B of this limit cycle is
the whole complex plane except the origin. The classical asymptotic
phase #c of this system is given by16

#c(α) = arg α −
2K

γ2

ln
|α|
R

+ const. (44)

and satisfies #̇c(α) = !c as α evolves in B under Eq. (43).6 As stated
in Sec. II, this #c(α) is the argument of the Koopman eigenfunction
&c(α) of the system associated with the eigenvalue i!c. In Ref. 16, we

FIG. 1. Quantum asymptotic phase in the semiclassical regime. The parameters are γ1 = 1 and (ω0, γ2, K)/γ1 = (0.1, 0.05, 0.025). (a) Eigenvalues of L0 near the
imaginary axis. The red dot represents the principal eigenvalue *1 with the slowest decay rate. (b) Quantum asymptotic phase #q with !q = −0.605. (c) Classical
asymptotic phase #c with !c = −0.6. (d)–(g) Evolution of the expectation values of V1 and a and their arguments from a pure coherent state: (d) &(ρt) = 〈V1〉t , (e)
#(ρt) = arg〈V1〉t , (f) 〈a〉t , and (g) arg〈a〉t . In (a), individual branches of eigenvalues are shown with different colors. In (b) and (c), (x, p) = (2.5, 0) is chosen as the phase
origin. In (c), the red-thin line represents the limit cycle in the classical limit.
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used this #c for the phase-reduction analysis of quantum synchro-
nization in the semiclassical regime with weak quantum noise. It is
expected that the quantum asymptotic phase #q(α) of the coher-
ent state α is close to the classical asymptotic phase #c(α) when the
quantum noise is sufficiently small.

Figure 1(a) shows the eigenvalues of L near the imaginary
axis obtained numerically, where the principal eigenvalue *1 = µq

+ i!q is shown by a red dot (µq < 0), and Figs. 1(b) and 1(c) com-
pare the quantum-mechanical phase #q(α) with the corresponding
classical phase #c(α). Here, we adopt a negative value for !q so that
the resulting phase #q increases in the counterclockwise direction
from 0 to 2π on the complex plane, i.e., #q satisfies

∮

c ∇#q(x) · dx

= 2π where x = (x, p) = (Re α, Im α) and C is a circle around 0.
As the quantum noise is small, the quantum frequency !q and

the asymptotic phase #q(α) obtained numerically from L are close
to the classical frequency !c and asymptotic phase #c(α), respec-
tively. The difference between !q and !c arises from the small
quantum noise; in the limit of vanishing quantum noise, the eigen-
function v1(α) of Lα in the P representation coincides with the
Koopman eigenfunction of the deterministic system Eq. (43) with
the eigenvalue i!c and, therefore, #q reproduces the classical phase
#c (see Appendix C). Here, we note that the principal eigenvalues
i!q and i!c are well separated from other branches of eigenval-
ues with faster decay rates and the corresponding oscillatory modes
become quickly dominant.

To demonstrate that the present definition of the quantum
asymptotic phase yields appropriate values, we consider free oscil-
latory relaxation of ρt from a coherent initial state ρα0 = |α0〉〈α0|
with α0 = 1 at t = 0 and measure #q(ρt). For comparison, we also
measure the argument arg 〈a〉t of the expectation 〈a〉t = 〈ρt, a〉tr of
the annihilation operator a, which simply gives the polar angle of
〈a〉t on the complex plane. We note that, although the system state
ρ starts from a pure coherent state, it soon becomes a mixed state
due to the coupling with the reservoirs and eventually relaxes to the
stationary state ρS.

Figures 1(d) and 1(e) plot the evolution of the expectation
&q(ρt) = 〈ρt, V1〉tr of the eigenoperator V1 and the quantum asymp-
totic phase #q(ρt) = arg &q(ρt), respectively, and Figs. 1(f) and 1(g)
show the evolution of the expectation 〈a〉 and its polar angle arg〈a〉,
respectively. The asymptotic phase #q(ρt) increases with a constant
frequency !q and appropriately yields isochronous phase values. In
contrast, the polar angle arg〈a〉 does not increase constantly with
time, in particular, in the transient process before t = 10, as shown
in Fig. 1(g); as the limit cycle in the classical limit is rotationally
symmetric in this model, the polar angle also yields almost con-
stantly increasing phase values after relaxation. Thus, the quantum
asymptotic phase #q increases with a constant frequency !q in
the semiclassical regime of a quantum van der Pol model with the
quantum Kerr effect.

C. Strong quantum regime

Next, we consider a strong quantum regime with relatively
large γ2 and K, where only a small number of energy states partic-
ipates in the system dynamics and the semiclassical description is
not valid. The eigenvalues of L obtained numerically are shown in
Fig. 2(a). Figures 2(b) and 2(c) show the quantum-mechanical phase

#q and the corresponding classical phase #c. Because the system is
in the strong quantum regime, #c is distinctly different from #q and
the classical frequency !c also differs largely from the true quan-
tum frequency !q. Here, we again note that the principal eigenvalues
have a much smaller (less than half of the second largest) decay rate
than the eigenvalues in the other branches.

We consider free oscillatory relaxation of ρ from a coherent
initial state ρ = |α0〉〈α0| with α0 = 1 at t = 0 and measure the evo-
lution of the asymptotic phase #q(ρt) = 〈V1〉t of the system state ρt.
For comparison, we also measure the polar angle arg〈a〉t of 〈a〉t.

Figures 2(d) and 2(e) plot the evolution of the expectation
&q(ρt) = 〈ρt, V1〉tr of the eigenoperator V1 and the quantum asymp-
totic phase #q(ρt) = arg &q(ρt), respectively, and Figs. 2(f) and 2(g)
show the evolution of the expectation 〈a〉 and its polar angle arg〈a〉,
respectively. As expected, the asymptotic phase #q(ρt) appropriately
gives constantly varying phase values with the frequency !q. In con-
trast, the polar angle arg〈a〉t does not vary constantly with time and
is not isochronous. This is because the transition between relatively
a small number of energy levels takes part in the system dynamics
and the discreteness of the energy spectra can play important roles
in this strong quantum regime.

Thus, the quantum asymptotic phase #q gives appropriate
phase values that increase with a constant frequency !q even in
the strong quantum regime of a quantum van der Pol model with
the quantum Kerr effect, even though the strong quantum effect
strongly alters the dynamics of the system from the classical limit.

D. Fundamental difference between the classical and
quantum systems

Although we introduced the definition of the quantum asymp-
totic phase #q by analogy with the classical deterministic phase #c

and classical stochastic asymptotic phase #s, a fundamental differ-
ence exists between the quantum and classical cases. Specifically,
in the quantum case, the system state is described by the den-
sity operator ρ and the asymptotic phase #q assigns a phase value
on each ρ, while in the classical case, the phase function #c or
#s assigns a phase value on each individual state X, although the
probability density function p(X) is used in defining the stochastic
asymptotic phase #s. This difference arises because the system state
can be described by a SDE representing a single stochastic trajec-
tory of the noisy oscillator in the classical stochastic case, whereas
the system state can only be characterized by the density opera-
tor ρ representing the statistical state of the system in the quantum
case.

Though we have taken the viewpoint that the asymptotic phase
is defined for a single stochastic trajectory in the classical stochastic
case in this study, we may also consider that the asymptotic phase
is defined for the probability density p(X) rather than for the state
X in the classical stochastic case. Then, the quantum asymptotic
phase #q as a function of the density matrix ρ corresponds to the
stochastic asymptotic phase #s(p(X)) = arg

∫

p(X)Q1(X) dX as a
function of the probability density p(X) in the classical stochas-
tic case in Sec. II. We regarded this quantity as the exponential
average of the asymptotic phase values defined for individual states
in Eq. (13).
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FIG. 2. Quantum asymptotic phase in the strong quantum regime. The parameters are γ1 = 0.1 and (ω0, γ2, K)/γ1 = (300, 4, 100). (a) Eigenvalues ofL near the imaginary
axis. The red dot represents the principal eigenvalue *1 with the slowest decay rate. (b) Quantum asymptotic phase #q with !q = −30. (c) Classical asymptotic phase
#c with !c = −32.5. (d)–(g) Evolution of the expectation values of V1 and a and their arguments from a pure coherent state: (d) &(ρt) = 〈V1〉t , (e) #(ρt) = arg〈V1〉t ,
(f) 〈a〉t , and (g) arg〈a〉t . In (a), individual branches of eigenvalues are shown with different colors. In (b) and (c), (x, p) = (2.5, 0) is chosen as the phase origin. In (c), the
red-thin line represents the limit cycle in the classical limit.

In the present approach, it is always possible to for-
mally introduce a “phase function” for any oscillatory system
as long as it has the decaying mode with a non-zero imagi-
nary part by using the associated eigenoperator. However, this
phase function does not necessarily play the role of a quantum
asymptotic phase unless the system exhibits limit-cycle oscilla-
tions and synchronization. As an example, in Appendix D, we
introduce a phase function of a damped quantum harmonic
oscillator, which cannot be considered the quantum asymptotic
phase since the system does not exhibit synchronization. Only
when the system is nonlinear and exhibits synchronization, the
asymptotic phase captures the synchronization dynamics of the
system.

The asymptotic phase is the basis for developing phase reduc-
tion theory for classical nonlinear oscillators. For quantum oscil-
latory systems, however, even if we can introduce the asymptotic
phase as described in this study, it does not necessarily mean that
we can develop the phase reduction theory. This is because the
quantum state ρ may not be appropriately localized in the phase-
space representation and, hence, it may not be reconstructed from
the phase value even approximately. Still, as we showed for the
case of the quantum vdP oscillator in the semiclassical regime,16

we may approximately describe the dynamics of the quantum state
by using the reduced phase equation and perform a detailed syn-
chronization analysis in appropriate physical situations. It should be
noted that we also encounter a similar problem in developing phase
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reduction theory for classical oscillators under strong noise. We also
note that, even if we cannot derive a reduced phase description for
quantum nonlinear oscillators, the asymptotic phase can be used to
characterize the peculiar properties of quantum synchronization.57

V. SUMMARY

In this study, we proposed a definition of the asymptotic
phase for quantum oscillatory systems by generalizing the asymp-
totic phase for the classical stochastic oscillatory system pro-
posed by Thomas and Lindner1 from the Koopman operator
viewpoint.2 The proposed asymptotic phase is defined by using the
eigenoperator of the adjoint Liouville operator describing the evo-
lution of the quantum-mechanical observable, in close analogy to
the asymptotic phase for classical limit-cycle oscillators that can be
interpreted as the argument of the Koopman eigenfunction associ-
ated with the fundamental frequency. By using the quantum van der
Pol model with the quantum Kerr effect as an example, we demon-
strated that the proposed asymptotic phase appropriately yields
isochronous phase values even in the strong quantum regime where
the semiclassical approximation is not valid.

Though quantum synchronization has attracted much atten-
tion recently, compared with classical synchronization, systematic
analysis of the quantum synchronization has been restricted, partly
due to the lack of the clear definition of the phase. The pro-
posed definition of the asymptotic phase valid in strong quantum
regimes may be used for systematic and quantitative analysis of
synchronization phenomena in quantum nonlinear oscillators.57

Moreover, we may be able to develop a phase reduction theory
for strongly quantum nonlinear oscillators by using the proposed
definition, which would allow us to reduce the system dynamics
to a simple phase equation and facilitate detailed analysis, con-
trol, and optimization of quantum nonlinear oscillators. It will also
be interesting to extend the definition of the amplitude functions
for classical stochastic oscillators2,58 to strongly quantum oscillatory
systems on the basis of the Koopman operator theory.
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APPENDIX A: KOOPMAN OPERATOR FOR CLASSICAL
STOCHASTIC PROCESSES

In this section, we briefly summarize the definition of the
Koopman operator for classical stochastic processes described by the
Ito SDE (4). The evolution of an observable g : RN → C for this Ito
diffusion process from time t0 to t + t0 is expressed as47,61,62

gt+t0 (X) = (Utgt0 )(X), (A1)

where Ut (t ≥ 0) is the stochastic Koopman operator defined as

(Utg)(Y) = E
Y[g(X(t + t0))]

=
∫

g(X)p(X, t + t0|Y, t0)dX = 〈p(X, t + t0|Y, t0), g(X)〉X.

(A2)

Here, EY[·] represents the expectation over the stochastic realiza-
tions of X(t) started from X(t0) = Y at t = t0, p(X, t|Y, s) (t ≥ s) is
the transition probability density, and 〈·, ·〉X represents the inner
product defined in Sec. II. Defining a time evolution operator St

= etLX (t ≥ 0), the evolution of the probability density p(X) is
expressed as

pt+t0 (X) = (Stpt0)(X), (A3)

where the operation of St on a function f : R → C is given by

(Stf )(X) =
∫

p(X, t + t0|Y, t0)f(Y) dY. (A4)

The Koopman operator Ut is the adjoint of St, i.e.,

〈f(X), (Utg)(X)〉X =
∫

f(Y)

[
∫

g(X)p(X, t + t0|Y, t0) dX

]

dY

=
∫
[
∫

p(X, t + t0|Y, t0)f(Y) dY

]

g(X) dX

=
∫

(Stf )(X)g(X) dX = 〈(Stf )(X), g(X)〉X (A5)

for two functions f, g : RN → C. It is noted that the expectation of
the observable g at time t + t0 can be expressed as

∫

pt0(X)(Utgt0)(X) dX = 〈pt0(X), (Utgt0)(X)〉X

= 〈(Stpt0)(X), gt0(X)〉X

=
∫

(Stpt0)(X)gt0(X) dX. (A6)

It can be shown that the infinitesimal generator of Ut is given
by the backward operator L∗

X
in Eq. (8) (see, e.g., Ref. 62 for a rig-

orous treatment). From the Ito formula,49,62 the SDE for a function
g : RN → R is given by

dg(X) =
[

A(X) ·
∂

∂X
g(X) +

1

2
D(X)

∂2

∂X
2 g(X)

]

dt

+ B(X)
∂

∂X
g(X) dW, (A7)
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which gives

E
Y[g(X(t + t0))] =

∫ t+t0

t0

[

A(X) ·
∂

∂X
g(X) +

1

2
D(X)

∂2

∂X
2 g(X)

]

dt

=
∫ t+t0

t0

L∗
X
g(X) dt (A8)

by integration. Assuming the function g to be the observable gt0 at
t = t0, the infinitesimal evolution of gt at t = t0 can be represented
as

d

dt
gt(Y)

∣

∣

∣

∣

t=t0

= lim
t→+0

(Utgt0)(Y) − gt0(Y)

t

= lim
t→+0

EY[gt0(X(t + t0))] − gt0(Y)

t
= L∗

X
gt0(Y).

(A9)

Thus, we can express the Koopman operator as Ut = etL∗
X .

From the adjoint relation for St and Ut, LX and L∗
X

are also
adjoint to each other, i.e., 〈LXf(X), g(X)〉X = 〈f(X), L∗

X
g(X)〉X, and the

evolution of the expectation of the observable g at time t = t0 can be
expressed as in Eq. (9).

APPENDIX B: QUANTUM VAN DER POL OSCILLATOR
WITH KERR EFFECT IN THE SEMICLASSICAL REGIME

In this section, we briefly explain the classical limit of the quan-
tum van der Pol oscillator. As shown in Ref. 16, in the semiclassical
regime, the linear operator Lα in Eq. (26) describing the evolution
of the quasiprobability distribution p(α) in the P representation
of the quantum van der Pol oscillator can be approximated by a
Fokker–Planck operator,

L̃α =



−
2
∑

j=1

∂j{Aj(α)} +
1

2

2
∑

j=1

2
∑

k=1

∂j∂k{Djk(α)}



 , (B1)

by neglecting the third- and higher-order derivatives, where ∂1

= ∂/∂α and ∂2 = ∂/∂ᾱ. The drift vector A(α) = (A1(α), A2(α))
∈ C2 and the matrix D(α) =

(

Djk(α)
)

∈ C2×2 are given by

A(α) =

(

(

γ1
2

− iω0

)

α − (γ2 + 2Ki)αα2

(

γ1
2

+ iω0

)

α − (γ2 − 2Ki)αα2

)

, (B2)

D(α) =
(

−(γ2 + 2Ki)α2 γ1

γ1 −(γ2 − 2Ki)ᾱ2

)

. (B3)

The corresponding stochastic differential equation is, thus, given by

d

(

α
α

)

=

(

(

γ1
2

− iω0

)

α − (γ2 + 2Ki)αα2

(

γ1
2

+ iω0

)

α − (γ2 − 2Ki)αα2

)

dt + β(α)

(

dW1

dW2

)

,

(B4)
where W1 and W2 are independent Wiener processes and the matrix
β(α) is given by

β(α) =





√

(γ1+R11(α))

2
eiχ(α)/2 −i

√

(γ1−R11(α))

2
eiχ(α)/2

√

(γ1+R11(α))

2
e−iχ(α)/2 i

√

(γ1−R11(α))

2
e−iχ(α)/2



 , (B5)

where R11(α) eiχ(α) = −(γ2 + 2Ki)α2. It is noted that the two equa-
tions for α and α in Eq. (B4) are mutually complex conjugate and
represent the same dynamics.

In the classical limit, the deterministic part of Eq. (B4) gives the
Stuart–Landau equation for the complex variable α given in Eq. (43),
which is analytically solvable and the asymptotic phase #c(α) can be
explicitly obtained as given in Eq. (44).4,6

APPENDIX C: CLASSICAL LIMIT OF THE QUANTUM
ASYMPTOTIC PHASE

In this section, we explain that the quantum asymptotic phase
formally reproduces the deterministic asymptotic phase in the clas-
sical limit. In the semiclassical regime, the linear operator Lα of
Eq. (26) for the quasiprobability distribution p(α) in the P represen-
tation can be approximated by a Fokker–Planck operator L̃α of the
form Eq. (B1). By introducing a real vector X = (Re α, Im α) and the
corresponding probability density function p(X), the Fokker–Planck
operator L̃α for p(α) can be cast into a real Fokker–Planck operator
LX for p(X) in Eq. (7).

In the classical limit, the quantum noise vanishes and the diffu-
sion term in LX disappears. Thus, LX formally becomes a classical
Liouville operator, i.e., LX → −(∂/∂X)A(X), and the correspond-
ing backward Liouville operator formally becomes the infinitesimal
generator of the deterministic Koopman operator, i.e., L∗

X
→ A

= A(X) · (∂/∂X) = A(X) · ∇ . Also, the decay rate µq approaches
0 and the eigenvalue *q approaches i!c, where !c is the fre-
quency of the limiting classical deterministic system. As discussed in
Sec. II A, the classical asymptotic phase #c is obtained as the argu-
ment of the eigenfunction &c of A associated with the eigenvalue
*1 = i!q. Thus, the quantum asymptotic phase #q formally repro-
duces the deterministic asymptotic phase #c in the classical limit
with vanishing quantum noise.

Figure 3 schematically shows the behavior of the eigenvalues
of L∗

X
approaching those of the deterministic system in the classical

limit with a stable limit-cycle solution. The eigenvalues in the clas-
sical limit are given in the form λc = mκ1 + inω1 (m = 0, 1, 2, . . .
and n = 0, ±1, ±2), where κ1 is the real part of the largest non-zero
eigenvalue and ω1 is the imaginary part of the pure-imaginary eigen-
value with the smallest absolute imaginary part. In the example of
a quantum van der Pol oscillator with the quantum Kerr effect in

FIG. 3. A schematic diagram for eigenvalues of L∗
X
, which converges to the

classical limit. (a) Semiclassical regime. (b) Classical limit.
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Sec. IV, κ1 = −γ1 and ω1 = !c. As the system approaches the clas-
sical limit, each curved branch of eigenvalues *q of LX in Fig. 3(a)
approaches the corresponding straight branch of eigenvalues λc in
Fig. 3(b) in the classical limit.

The above formal correspondence with the conventional
definition of the asymptotic phase in the classical limit supports the
validity of our definition of the quantum asymptotic phase.

APPENDIX D: PHASE FUNCTION OF A QUANTUM
DAMPED HARMONIC OSCILLATOR

In Ref. 63, Thomas and Lindner considered the stochastic
phase function for a classical damped harmonic oscillator described
by a multi-dimensional Ornstein-Uhlenbeck process. In this section,
generalizing their result, we consider a simple quantum harmonic
oscillator with damping and formally calculate the phase function.
This system is linear and does not possess a limit cycle in the clas-
sical limit, but the isochronous phase function as defined in Sec. III
can still be introduced (as the system lacks an asymptotic periodic
orbit in this case, we do not use the term “asymptotic”).

The eigenoperator V1 of the adjoint Liouville operator L∗ can
be analytically obtained in this case. The evolution of a damped
harmonic oscillator is described by a quantum master equation

ρ̇ = Lρ = −i[ωa†a, ρ] + γD[a]ρ, (D1)

where ω is the natural frequency of the system, γ denotes the decay
rate for the linear damping, andD is the Lindblad form.51 The eigen-
operator associated with the slowest non-vanishing decay rate of
the adjoint Liouville operator L∗ of L is simply given by V1 = a,
i.e., L∗a = *1a, where *1 = −γ /2 − iω.64,65 Therefore, the phase
function #q(α) of the coherent state α is given by

#q(α) = arg〈ρt, a〉tr = arg〈α|a|α〉 = arg α = arg
(

reiθ
)

= θ , (D2)

where α = reiθ , and the phase function #q(ρt) of the density opera-
tor ρt at time t is given by

#q(ρt) = arg〈a〉t = arg〈ρt, a〉tr. (D3)

For the initial condition ρ0 = |α0〉〈α0| with α0 = r0 eiθ0 , the expecta-
tion of a evolves as

d

dt
〈a〉t

∣

∣

∣

∣

t=t0

= 〈ρ̇t|t=t0 , a〉tr = 〈Lρt0 , a〉tr = 〈ρt0 ,L∗a〉tr

= *1〈ρt0 , a〉tr = *1〈a〉t,
(D4)

which gives 〈a〉t = e*1t〈a〉0 = e*1t〈α0|a|α0〉 = e*1tα0. Thus, the
phase of the state ρt is given by

#q(ρt) = arg(e(−γ /2−iω)tα0) = −ωt + θ0, (D5)

which decreases with a constant frequency ω.
As shown in this example of a quantum damped harmonic

oscillator, we can formally introduce the phase function for a wide
class of oscillators, even if the system does not exhibit limit-cycle
dynamics. In a special case where the system exhibits limit-cycle
dynamics, our definition of the phase function plays the role of the
quantum asymptotic phase.
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