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Abstract

In this thesis, we consider a multi-agent resilient consensus problem, where

some of the nodes are adversarial and transmit false data to the normal

agents. As the applications of multi-agent systems widely used in the areas

of wireless sensor networks, Internet of Things and distributed computing,

the resiliency of the multi-agent systems needs to be improved. The goal of

the resilient consensus problem is that normal agents should reach a com-

mon state value regardless the misbehaviors taken by the adversary agents.

Generally, there are two main approaches in this area: (i) mean subsequence

reduced (MSR) algorithms, and (ii) detection-based algorithms. We develop

several algorithms tackling this problem under different threat models. All

of our approaches require the nodes to have the abilities to communicate

with their multi-hop neighbors. Such multi-hop communication techniques

are widely used in the wireless communication field as well as the computer

science field. Yet, only a few works studied the application of the multi-hop

techniques in the resilient consensus problem. One remarkable advantage

of applying such techniques is that the requirement on the network connec-

tivity can be reduced compared to the conventional one-hop algorithms.

In the literature, the adversarial agents are categorized into basically two

types: Malicious agents and Byzantine agents. These agents are capable

to manipulate their data arbitrarily. Malicious agents are limited as they

must broadcast the same messages to all of their neighbors, while Byzantine

agents can send individual messages to different neighbors.

First, we develop an MSR-based algorithm with multi-hop communica-

tion. We analyze the performance of the proposed algorithm under different

threat models (i,e., malicious or Byzantine model). Moreover, we general-

ize the notion of graph robustness to the multi-hop setting, which is the

necessary graph structure for the proposed algorithm to achieve resilient



consensus. Taking account of that the delays are critical in the multi-hop

communication environment, we also provide the analysis of the proposed

algorithm when the agents update asynchronously and the communication

is subject to time delays. This has broadened the scope of our algorithms.

So far, we only consider the real-valued consensus where agents take real

values. Note that the integer-valued consensus is also widely used in the

sensor networks especially when the sensors only have limited registers to

store the integer values. Another advantage of taking integer values is that

the communication resources can be saved compared to the real-valued case.

Such integer-valued consensus is also considered for our algorithms.

Second, we develop an event-triggered algorithm based on the abovemen-

tioned algorithm. The event-triggered scheme is well known in the systems

control area. Notably, it can reduce the communication loads while guar-

anteeing the given network control system to be stable. By introducing the

event-triggered scheme to our algorithm, the transmissions between agents

are heavily reduced compared to the non-event-triggered algorithms. We

also highlight that through multi-hop communication, the necessary net-

work connectivity for achieving resilient consensus can be reduced especially

in comparison with the conventional one-hop communication case.

Lastly, we develop a detection-based resilient consensus algorithm where the

two-hop communication is utilized. It is shown that the detection scheme

becomes effective by requiring certain connectivity properties in the net-

work so that the non-adversarial nodes can share enough information about

their neighbors. In the second detection scheme, majority voting is used

for normal agents to determine the identities of their neighbors (normal

or adversarial). The detection function is realized by the verification of

two consecutive information sets sent by the same neighbor. The proposed

algorithm is more distributed and requires no additional authorized or cen-

tralized verification procedures compared to the existing detection method.

At the end of each chapter, numerical examples are provided to demonstrate

the efficiency of the proposed methods.
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Chapter 1

Introduction

1.1 Motivations

Networked systems have undergone significant change from centralized to distributed

because of the strong flexibility and good computational performance of the distributed

methods [18; 19; 71]. In the traditional centralized network or leader-follower network,

not only heavy computational burden is placed on the central server, but also the ability

of strong resilience against attacks need to be guaranteed on the central server to keep

the entire network functional in the presence of adversaries. The nature of distributed

algorithms where each agent can only interact with its neighbors is also the hard part

for developing proper distributed algorithms. Consensus is one of the fundamental

problems in distributed algorithms, which aims to achieve global agreement for each

agent only using local information [11; 56; 62; 98]. This means that each agent can

know and utilize only the information from its neighbors and be unaware of any infor-

mation beyond its neighbors. One advantage of such consensus achieved by distributed

computing over the centralized approach lies in the scalability of distributed algorithms.

Many results in theories and applications based on consensus have been accomplished

over the last decade such as distributed optimization [49; 75; 76; 77; 103; 104], aver-

age consensus [13; 135], clock synchronization [47; 50; 80; 118], energy management

[29; 132], formation control [28; 81], and so on.

With large scale implementations of consensus based applications, consensus prob-

lems in the presence of adversary agents creating failures and attacks have become

crucial; see, e.g., [22; 43; 56; 86; 87; 122]. Adversarial attacks can lead the systems

1



1.1 Motivations

to hazardous operations and might cause physical faults or even accidents. For in-

stance, the cyber attacks on the power grids can cause unexpected connection cuts and

widespread power outages [32]. Here, we list several types of attacks studied in systems

control area. Attack scenarios in the security studies of multi-agent systems can be

categorized into replay, false data injection, denial-of-service (DoS), and so on [107].

Among these attacks, false data injection attacks and DoS attacks have attracted most

the attention in the literature [16]. In this thesis, we study the false data injection at-

tacks where misbehaving agents can send malicious data to prevent the normal agents

from achieving the global goal. Along this line of works, it is typically assumed that

each normal agent knows the maximum number of misbehaving agents in the entire

network or at least among its neighbors. Let f denote this upper bound.

The misbehaving nodes or attacks considered in existing works can be characterized

as three threat models according to the scope of threat levels: non-colluding/faulty,

malicious, and Byzantine models. Faulty agents are caused by random node failures or

errors, and they are unaware of the presence of faults in other agents and hence do not

cooperate, which are also called non-colluding [86]. In the malicious or Byzantine case,

misbehaving agents are capable to manipulate their own states arbitrarily and may

even collude with each other to prevent regular nodes from achieving the global goal.

Malicious nodes are limited as they must send the same false messages to all of their

neighbors, while Byzantine nodes are capable to send different messages to different

neighbors [62].

Consensus under Byzantine Attacks

In security studies in computer science area [62; 108], the faults can be classified in

two dimensions: time and nature. In the dimension of time, faults can be transient,

permanent, and intermittent. Each type of faults exist for a different period of time.

In the dimension of nature, faults are classified into crashes, omissions, duplications,

desequencing, and Byzantine.

On the other hand, there are two kinds of fault-tolerant algorithm categories in

the literature: (i) robust algorithms and (ii) self-stabilizing algorithms. In robust al-

gorithms, redundancy on several levels of information, of communications, or of the

system’s nodes is used to overlap to the extent that the normal nodes can safely ex-

2



1.1 Motivations

ecute their codes. In self-stabilizing algorithms, starting from an arbitrary state of

the distributed system, each non-faulty node eventually reaches a state from where it

behaves correctly. For instance, [78] considered a successful self-stabilizing algorithm

as long as the only faults that occur henceforth (regardless of their number) are outside

of the locality of this process. Note that the f -local model studied in this thesis can be

related to such attacks.

As we mentioned earlier, among different types of attacks, Byzantine attacks sim-

ply correspond to an arbitrary type of fault. Resilient consensus problems under the

Byzantine model have a rich history in the area of distributed algorithms in computer

science [26; 62; 88]. There, such problems are also called Byzantine agreement where

the faulty agents are capable to send erroneous and inconsistent messages to the normal

neighbors. Many applications do not require exact agreement. It is satisfactory as long

as the normal agents achieve consensus within a small bounded interval. This kind of

convergence problems is called approximate agreement [27; 62]. A correct approximate

Byzantine agreement algorithm must satisfy the following two conditions:

1. Validity: The values of normal agents must be within the range of initial values

of normal agents for k > 0.

2. Agreement: For a given ϵ > 0, |xi[k]− xj [k]| < ϵ for any normal agents i and j.

It has been shown in [26] that there are necessary and sufficient conditions for

achieving Byzantine agreement in synchronous undirected networks expressed in terms

of the node connectivity of the communication graph. Furthermore, in [34], it has

been reported that under deterministic asynchronous updates, even one misbehaving

agent can make it impossible for the system to reach exact consensus. Then, to avoid

this constraint of exact consensus, [27] introduced the approximate Byzantine consen-

sus problem in complete networks (i.e., under all-to-all communication), where the

non-adversarial, normal nodes are required to achieve approximate agreement by con-

verging to a relatively small interval in finite time. [102; 113] studied the synchronous

approximate Byzantine consensus problem in networks with general topologies.

Even in recent years, reaching consensus resiliently in the presence of Byzantine

faults has been studied extensively in distributed computing area [93; 113]. In [110],

the authors explore the correctness of the Certified Propagation Algorithm (CPA) in

solving broadcast with locally bounded Byzantine faults. In their work, there is as-

3



1.2 Context of the Study

sumed to be a fault-free source node s with some value xs, and the target of CPA is for

every normal node in the network to output the same value xs through the propaga-

tion algorithm. They provide a tight necessary and sufficient condition on the network

topology for the correctness of CPA. In [64], the authors develop a fast protocol that

reaches asynchronous Byzantine consensus in two communication steps in the com-

mon case. And they prove that the protocol is optimal in terms of both number of

communication steps and number of processes for two-step consensus.

For the asynchronous approximate Byzantine consensus problem, [4] proposed a

flooding-based algorithm for complete networks only. Recently, [94] studied the same

problem for incomplete networks. We will compare our results with those in [94] in

Chapter 4.

There are different techniques to mitigate the effects of attacks. Here, we introduce

two types of approaches to cope with the problem: (i) the mean subsequence reduced

(MSR) algorithms and (ii) detection-based algorithms. In the MSR algorithms [6; 56],

normal agents simply neglect the information received from suspicious agents or those

with unsafe values (outliers) whether or not they are truly adversarial. Thus, the

normal agents do not have detection capabilities and do not have any memory to store

the neighbors’ past behaviors. Such techniques usually require the graph structure

to be complex in order to achieve resilient consensus. On the other hand, in the

detection-based algorithms [40; 86; 130], each agent has a bank of observers to identify

the misbehaving agents using their past information. Then, normal agents can remove

the values from these agents detected as adversarial. However, in the existing works,

additional authorized detection resources are needed or each agent needs to detect the

adversary agents in the entire network. In the following, we present our advancements

in both directions through the introduction of multi-hop communication techniques to

existing algorithms.

1.2 Context of the Study

In this thesis, we study resilient asymptotic consensus under malicious/Byzantine model

from the viewpoint of the so-called mean subsequence reduced (MSR) algorithms, which

are known for the simplicity and scalability (e.g., [3; 6; 56; 97; 113; 115; 116]). This

line of work has gained much attention in the last decade as the malicious model can

be widely assumed for broadcasting networks [56], wireless sensor networks [54], and
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so on. A basic assumption in MSR algorithms is the knowledge regarding an upper

bound on the maximum number of malicious agents among the neighbors. Such a

bound represents the level of caution assumed by the system operator and can be set

based on past experience, with possibly some safety margin. Then, at each iteration,

each node eliminates extreme values received from neighbors to avoid being influenced

by such potentially faulty values. In particular, it removes the f largest values and

the f smallest values from neighbors. Moreover, the graph property called robustness

is shown to be critical for the network structure, guaranteeing the success of resilient

consensus algorithms in static networks [21; 56] as well as time-varying networks [95].

Nevertheless, such robustness requires the networks to be relatively dense and complex.

Therefore, how to enhance resilience of more sparse networks without changing the

original network topologies has become an urgent problem.

To tackle this problem, we develop several MSR-based algorithms with multi-hop

communication. Such techniques are commonly used in the areas of wireless commu-

nication [37] and computer science [62]. Intuitively, with multi-hop communication,

agents can communicate with their multi-hop neighbors through the relaying process

[37]. It is clear that with multi-hop communication, each node can have more infor-

mation for updating compared to the one-hop case. Yet, it also elaborates more on

how the attackers may exploit the communication method to attack in different ways.

It is not immediately clear if multi-hop can raise the security level. These questions

motivate to study this problem in depth. For non-resilient case, multi-hop communi-

cation can be treated very easily. Typically, the communication delays is critical for

the development of distributed algorithms in the multi-hop environment. It is hence

of significant importance to extend our algorithm to the case of asynchronous updates

with time delays.

More specifically, we prove necessary and sufficient conditions for the proposed

algorithms under f -total/local malicious/Byzantine model. The graph conditions for

related works are summarized in Table 1.1. For resilient consensus under malicious

attacks, the works [56] and [21] considered the one-hop case. In Chapter 3, we extend

the graph condition for the multi-hop case for the first time. Furthermore, in Chapter 4,

we prove a tighter sufficient condition. For resilient consensus under Byzantine attacks,

the work [113] considered the synchronous one-hop case and proposed a necessary and

sufficient condition. The work [102] extended the graph condition for the synchronous
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multi-hop case. Then, the work [94] proposed a flooding-based algorithm solving the

Byzantine consensus under asynchronous unbound-hop case, where agents send their

values throughout the entire network. Compared to these works, we analyze the f -local

case and provide a unified analysis for synchronous and asynchronous cases. Moreover,

our algorithm is of less computational complexity than the one in [94].

In various applications of wireless sensor networks (WSNs), the sensors usually

have only limited computational resources. Calculating the real-valued states requires

more resources which could be out of the capabilities of some low-cost sensors. In such

networks, quantized state values are desirable. Thus, we also provide the analysis of

our algorithm with the quantized state values. Furthermore, we introduce an event-

triggered update scheme into our algorithms for the reduction of the communication

loads between agents.

As an alternative approach to resilient consensus, we are also interested in fault

detection and isolation (FDI) methods requiring only local information by agents. We

propose a distributed detection method which is capable to detect malicious nodes in

the network. In our detection scheme, each node acts as a local detector monitoring the

behaviors of its neighbors. By transmitting its own state and relaying its neighbors’

states to the neighboring nodes, each node is able to verify if the neighbors make

any changes in the information set that they send. One key feature in the malicious

model that we exploit is that the adversarial nodes are restricted to send the same

information to its neighbors. Thus, as long as there are sufficiently many common

neighbors in the network, the nonfaulty nodes are able to detect the malicious nodes,

even if they collaborate with each other, and they can further achieve consensus among

the nonfaulty ones in a resilient manner. We clarify the requirement on the network

structure in terms of the graph connectivity for the proposed detection and consensus

algorithms to properly function.

1.3 Main Contributions

In Chapter 2, we first provide a detailed review of the related works on cooperative con-

trol of networked multi-agent systems, as well as some background and preliminaries of

the graph theory and multi-agent systems. Especially, we introduce some fundamental

notions for the consensus problems, time synchronization, multi-hop communication

and event-triggered techniques, which are directly related to the contributions of this
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Table 1.1: Resilient consensus under different adversary models.

Synchronous Asynchronous

Malicious

f -total
(f + 1, f + 1)-robust with l hops

([21]; [56];
This work: Theorem 3.4.1)

(2f + 1)-robust with l hops
([21]; This work: Theorem 3.5.1)

A tighter condition in Corollary 4.4.1

f -local
(2f + 1)-robust with l hops

([21]; [56])
A tighter condition in Corollary 4.3.1

(2f + 1)-robust with l hops
([21]; This work: Theorem 3.5.1)

A tighter condition in Corollary 4.4.1

Byzantine

f -total
(f + 1)-strongly robust with l hops

([102]; [113];
This work: Proposition 4.3.1 )

(f + 1)-strongly robust with l hops
([94];

This work: Theorem 4.4.1 )

f -local
(f + 1)-strongly robust with l hops

(This work: Proposition 4.3.1)
(f + 1)-strongly robust with l hops

(This work: Theorem 4.4.1)

Note that the notion of robustness (or strong robustness) is different under the f -total and f -local models.
See Section 4.2 for details.

thesis.

In Chapters 3-7, we present our results on resilient consensus of networked multi-

agent systems. Overall, the main contributions can be outlined as follows. First,

we prove necessary and sufficient conditions for resilient consensus using the proposed

algorithm under malicious/Byzantine attacks. We prove that with more communication

(i.e., more hops), the proposed algorithm provides more robustness in sparse networks.

We also extend our results to the agent systems with quantized states. Moreover, by

introducing event-triggered updates to our algorithm, the transmissions of multi-hop

relaying can be greatly reduced.

These chapters study different resilient consensus problems in the presence of com-

promised nodes (or adversaries). The adversary nodes attempt to mislead the uncom-

promised nodes by transmitting venomous data to these nodes. The goal of resilient

consensus problems is for the uncompromised nodes (or normal nodes) to still achieve

the global objective in the presence of the adversary nodes. As we discussed, the ad-

versary nodes considered in existing works can be characterized as three threat models

according to the scope of threat levels: non-colluding/faulty, malicious, and Byzantine

models. There are also models which give the upper bound on the number of the ad-

versary nodes in the network: (i) the f -total model, and (ii) the f -local model. The

f -total model means there are at most f adversary nodes in the network. The f -local
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model means there are at most f adversary nodes among the direct neighbors of each

normal node [56]. In this thesis, we extend the two models to the multi-hop settings.

Specifically, in Chapter 3, we first define a discrete-time resilient asymptotic con-

sensus problem under the malicious model. We introduce a mean subsequence reduced

(MSR) algorithm where nodes can exchange state values with their multi-hop neighbors

(Multi-hop Weighted-MSR algorithm). Then, we characterize the minimal require-

ments for network structures to guarantee the success of the abovementioned resilient

consensus. The condition is expressed by the class of graph robustness with multi-hop

communication. Our analysis highlights that through multi-hop communication, the

network connectivity can be reduced especially in comparison with the common one-

hop communication case. Moreover, we analyze the MW-MSR algorithm with delays

in communication since the values from different multi-hop neighbors may arrive at the

agents at different time steps.

In Chapter 4, utilizing the MW-MSR algorithm proposed in Chapter 3, we study an

approximate consensus problem for the class of Byzantine adversaries when agents up-

date asynchronously and there are time delays in the agents’ communication. We find a

tight graph condition for the proposed MW-MSR algorithm to solve the asynchronous

approximate Byzantine consensus problem. The condition is denoted as strong robust-

ness with multi-hop communication, which is a generalized form of the graph robustness

with multi-hop communication introduced in Chapter 3. Since the Byzantine model

is more adversarial than the malicious model, the network connectivity guaranteeing

resilient consensus is more dense compared to the malicious case. We also compare our

results with several related works. Overall, our algorithm is more light weighted than

the conventional flooding-based algorithm.

In Chapter 5, we study the problem of resilient consensus where agents have integer-

valued states. We develop a variation of the MW-MSR algorithm with randomized

quantization. Quantized consensus has been motivated by concerns on limited capa-

bilities in communications and computations of the agents. We analyze the perfor-

mance of the proposed algorithm when agents update asynchronously and there are

time delays in the communication between agents. Moreover, we find necessary and

sufficient conditions for our algorithm to achieve resilient quantized consensus for syn-

chronous/asynchronous updates under malicious/Byzantine attacks. Compared to ex-

isting approaches, our algorithm has a tighter graph condition and we provide a unified
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analysis for different network settings.

In Chapter 6, we study the event-triggered resilient consensus problem where agents

transmit their states only when local events are triggered. As we can see in the previous

chapters, through multi-hop communication, the connectivity requirement becomes less

stringent for guaranteeing the same level of resilience as for the one-hop case. This is

enabled by increasing the amount of data exchanged among agents through multi-hop

message relaying. Hence, the motivation for introducing the event-triggered update

scheme to our algorithms is to reduce the transmissions among agents. Then we can

achieve resilient consensus within a certain error level while keeping the transmissions

among agents minimum. We also highlight that through multi-hop communication,

the network connectivity can be reduced especially in comparison with the common

one-hop event-triggered algorithms.

In Chapter 7, we switch our perspective to the detection-based resilient consensus

algorithms. We develop a detection-based method that can achieve distributed fault

detection under the malicious model by two approaches. Both are based on verification

of two consecutive information sets of each agent. The difference between two ways

is that one has the function that once a normal agent detects some malicious agents

it is able to inform all agents in the network through an encrypted channel while the

other one does not possess this function. More specifically, both approaches utilize the

property of the malicious model where a malicious agent is limited to send the same

information to its neighbors. We highlight that for the second approach, each normal

agent will detect and isolate the malicious agents in its neighbor set independently

through a simple majority voting scheme [62; 84; 101]. In this sense, the detection and

isolation of malicious agents is achieved in a purely distributed fashion. It is shown

that the proposed method may even handle some cases where the number of adversary

nodes exceeds half of the total number of nodes in the network. Such a case cannot be

achieved using the MSR-based algorithms.

The final chapter includes a summary of the work contained in this thesis, and

provides directions for future research.

1.4 Overview of the Thesis

This section outlines the contents of this manuscript, and describes in broad terms the

problems addressed within each chapter.
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Chapter 2

� We provide a detailed review of a subset of the literature on resilient consensus

of networked multi-agent systems, as well as some background in graph theory.

Chapter 3

� We formulate the resilient consensus problem under the malicious model with

multi-hop communication.

� We introduce the multi-hop weighted-MSR algorithm, which utilizes the notion

of message covers to filter the possible faulty values.

� We introduce a definition of network robustness that characterizes the network

structure for resilient consensus with the multi-hop communication. The novel

definition is referred to as (r, s)-robustness with l hops.

� We prove several properties of the networks that meet the conditions for (r, s)-

robustness with l hops.

� We prove a tight necessary and sufficient condition on graph structure for the

synchronous MW-MSR algorithm to achieve resilient consensus under the f -total

malicious model.

� We prove a sufficient condition on graph structure for the asynchronous MW-MSR

algorithm to achieve resilient consensus under the f -total malicious model.

Chapter 4

� We utilize the MW-MSR algorithm to solve the approximate Byzantine consensus

problem.

� We introduce a definition of strong robustness that characterizes the network

structure for Byzantine consensus. The novel definition is referred to as r-strongly

robust graphs with l hops.

� We prove the relations between the notions of (r, s)-robust graphs with l hops

and r-strongly robust graphs with l hops.
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� We prove a tight necessary and sufficient condition on graph structure for the

asynchronous MW-MSR algorithm to achieve resilient consensus under the f -

local Byzantine model.

Chapter 5

� We introduce the quantized MW-MSR algorithm with randomized quantization.

� We prove a necessary and sufficient condition on graph structure for the syn-

chronous QMW-MSR algorithm to achieve resilient consensus under the f -total

malicious model.

� We prove a necessary and sufficient condition on graph structure for the asyn-

chronous QMW-MSR algorithm to achieve resilient consensus under the f -local

Byzantine model.

Chapter 6

� We formulate the event-triggered resilient consensus problem under the Byzantine

model and introduce two relay models for transmission of the event-triggered

values.

� We introduce the event-triggered MW-MSR algorithm as well as an alternative

event-triggered scheme.

� We prove a necessary and sufficient condition on graph structure for the asyn-

chronous EMW-MSR algorithm to achieve resilient consensus with error bound

c under the f -local Byzantine model.

Chapter 7

� We develop two distributed fault detection methods based on voting algorithms,

where the second approach requires only local information for each agent to detect

malicious neighbors.

� We prove necessary and sufficient conditions on graph structure for both pro-

tocols to achieve fault detection in time-invariant directed networks under the

f -total/local malicious model.
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� We demonstrate the effectiveness of the proposed detection method by numerical

examples. We show that the second protocol can guarantee resilient consensus

even if half of the total nodes are adversarial.

Chapter 8

� We summarize the works contained in this thesis and provide possible directions

for future research.
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Chapter 2

Preliminaries and Related Works

This chapter discusses works most closely related to the contributions of this thesis. We

first present material on multi-agent networks, and then some background is provided

on related topics that are important to our contributions, such as graph theory, with

an emphasis on algebraic graph theory, multi-hop communication, graph robustness,

and voting algorithms. Then related research works in the literature are presented.

2.1 Fundamentals on Graph Theory

It is common to model the networked multi-agent system with a directed graph G =

(V,E), where the agents have asymmetric sensing or communication capabilities. Here,

V = {1, ..., n} represents the vertex set or the node2 set of the n agents in the network.

A directed edge set E models the communication between agents. The edge (j, i) ∈ E

indicates that node i can get information from node j. Agent j is said to be an in-

neighbor of agent i and agent i is an out-neighbor of agent j. The set of in-neighbors

of agent i is defined by N−
i = {j ∈ V : (j, i) ∈ E}. The set of out-neighbors of agent i is

defined by N+
i = {j ∈ V : (i, j) ∈ E}. The in-degree of agent i is denoted by d−i =

∣∣N−
i

∣∣.
Here, |S| is the cardinality of a set S. There are, of course, analogous definitions for

out-neighbors, e.g., the out-degree of i is d+i =
∣∣N+

i

∣∣. A complete digraph, Kn = (V,E),

is defined by E = {(i, j) ∈ V×V : i ̸= j}, and is also referred to as the complete network

(all-to-all communication network). A graph G = (V,E) is said to be undirected if all

the communications between agents are bidirectional, i.e., if (j, i) ∈ E then (i, j) ∈ E

2The terms ‘agent’ and ‘node’ are used synonymously throughout this thesis.
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for any i, j ∈ V.

Next, we introduce certain structural properties of digraphs which are related to

our work. A path from node i1 to im is a sequence of distinct nodes (i1, i2, . . . , im),

where (ij , ij+1) ∈ E for j = 1, . . . ,m− 1. Such a path is referred to as an (m− 1)-hop

path (or a path of length m − 1) and also as (i1, im)-path when the number of hops

is not relevant but the source and destination nodes are. We also say that node im is

reachable from node i1. An Xu-path is a path from a node in set X to node u /∈ X. We

also denote the set minus symbol by X \ Y.
For node i, let Nl−

i be the set of nodes that can reach node i via at most l-hop

paths, where l is a positive integer. Also, let Nl+
i be the set of nodes that are reachable

from node i via at most l-hop paths. The l-th power of the graph G, denoted by Gl, is

a multigraph1 with the same vertices as G and a directed edge from node j to node i is

defined by a path of length at most l from j to i in G.

2.1.1 Connectivity

A directed graph has a directed rooted spanning tree if there exists a node r, the

root, such that every i ∈ V is reachable from r. A graph G (or digraph D) is said

to be (strongly) connected if every node is reachable from every other node. A cut,

node cut, or separating set of a connected graph G is a set of nodes whose removal

renders G disconnected. The connectivity or node connectivity κ(G) (where G is not a

complete graph) is the size of a minimal node cut. A graph is called k-connected or

k-node-connected if its node connectivity is k or greater. More precisely, any graph

G (complete or not) is said to be k-connected if it contains at least k + 1 nodes, but

does not contain a set of k − 1 nodes whose removal disconnects the graph; and κ(G)

is defined as the largest k such that G is k-connected. In particular, a complete graph

with n nodes, denoted Kn, has no node cuts at all, but κ(Kn) = n− 1.

2.1.2 Algebraic Graph Theory

In this part, some of the matrices associated to graphs and digraphs are introduced,

such as the adjacency matrix, degree matrix, and Laplacian. The spectra of these

matrices are of special interest. Define these objects with respect to a weighted digraph,

Dω = (V,E, ω), which has, in addition to a vertex set and directed edge set, a weight

1In a multigraph, two nodes can have multiple edges between them.
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function ω : E → R. In this case, a weight ωij ≜ ω(e) ∈ R is associated to each directed

edge e = (i, j) ∈ E. A digraph D is the specific weighted digraph in which ω : E → {1}.
The weighted adjacency matrix, Aω(Dω) = [aij ], associated with weighted digraph

Dω is the |V| × |V| matrix defined by

aij =

{
ωji, (j, i) ∈ E,

0, (j, i) /∈ E.
(2.1)

For digraphs, we define the adjacency matrix, A(D) = [aij ], or just A, as in (2.1), but

with ωji = 1, for all (j, i) ∈ E. Observe that for undirected graphs, A(D) = AT (D),

that is, the adjacency matrix is a symmetric matrix. Note that the weighted adjacency

matrix of an undirected weighted graph is not necessarily symmetric.

The weighted in-degree matrix Din
ω of a weighted digraph Dω is the diagonal |V|×|V|

matrix with entries along the main diagonal given by

[Din
ω ]ii =

∑
j∈Nin

i

ωji, i ∈ {1, 2, ..., n}. (2.2)

Similarly, we can also define the weighted out-degree matrix Dout
ω as

[Dout
ω ]ii =

∑
j∈Nout

i

ωij , i ∈ {1, 2, ..., n}. (2.3)

For an undirected graph, Din
ω = Dout

ω ≜ D is the degree matrix of G.

Finally, the (in-degree) weighted Laplacian is the |V| × |V| matrix defined by

L(Dω) = Din
ω −Aω(Dω). (2.4)

Whenever we consider undirected graphs, the graph Laplacian, or just Laplacian,

L(G) is of interest (and is defined as in (2.4) by L(G) = D − A). In this case, L(G) is

a real symmetric matrix, so the eigenvalues are real. In fact, L(G) is symmetric and

positive semidefinite, and thus all eigenvalues are nonnegative. It is advantageous to

label the eigenvalues of L(G) in nondecreasing order by

λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G). (2.5)
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It holds that λ1(G) = 0. In fact, the multiplicity of the zero eigenvalue is equal to the

number of components of G. For connected graphs, λ2(G) > 0, and is called the Fiedler

eigenvalue or the algebraic connectivity of the graph. This is because the magnitude of

λ2(G) is directly related to the sparsity of the graph. That is, λ2(G) is small for sparse

graphs and large for dense graphs [36].

The adjacency matrix A = [aij ] of Gl is given by α ≤ aij < 1 if j ∈ Nl−
i and

otherwise aij = 0, where α > 0 is a fixed lower bound. We assume that
∑n

j=1,j ̸=i aij ≤ 1

for all i. Let L = [bij ] be the Laplacian matrix of Gl, whose entries are defined as

bii =
∑n

j=1,j ̸=i aij and bij = −aij , i ̸= j; we can see that the sum of the elements of

each row of L is zero.

2.2 Resilient Asymptotic Consensus

In the systems control literature, resilient consensus in the case of the so-called malicious

model has been widely studied. This model is suitable for multi-agent applications such

as wireless sensor networks and autonomous robotic networks, where the information

exchange among the nodes is via broadcasting and sensing. Fault tolerant techniques

using the so-called mean subsequence reduced (MSR) type algorithms can be found in,

e.g., [21; 22; 47; 56]. A basic assumption in MSR algorithms is the knowledge regarding

an upper bound on the maximum number of malicious agents among the neighbors;

this bound is denoted by f throughout this thesis. Such a bound represents the level of

caution assumed by the system operator and can be set based on past experience, with

possibly some safety margin. Then, at each iteration, each node eliminates extreme

values received from neighbors to avoid being influenced by such potentially faulty

values. In particular, it removes the f largest values and the f smallest values from

neighbors. Moreover, the graph property called robustness is shown to be critical for the

network structure, guaranteeing the success of resilient consensus algorithms in static

networks [21; 56] as well as time-varying networks [95]. A recent work [112] attempts to

check robustness of given graphs using mixed integer linear programming. Nevertheless,

such robustness requires the networks to be relatively dense and complex. Moreover,

in general, MSR algorithms do not have the functionality to detect the adversaries.

In [21], the authors extend the MSR-type algorithms to the second order systems

with asynchrony scheme and delays. Similar topological conditions in terms of robust

graphs have been developed there. In [22], resilient consensus over the network consists
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Figure 2.1: The graph is (2, 2)-robust.

of agents taking integer-valued (i.e., quantized) states under directed communication

links is studied. They solve the resilient quantized consensus problems in the pres-

ence of totally/locally bounded adversarial agents and provide necessary and sufficient

conditions in terms of the connectivity notion of graph robustness which is similar to

the conditions in [56]. Furthermore, they show that randomization is essential both in

quantization and in the updating times when normal agents interact in an asynchronous

manner.

A common approach for increasing network robustness is redundancy: deploying

additional nodes and establishing new links between nodes, which could be prohibitively

expensive. The authors in [1] address the problem of improving structural robustness

of networks without adding extra links. Instead, by introducing the notion of network

connectivity with respect to trusted nodes, they prove that existence of such nodes has

an effect of having a higher network connectivity or an improved r-robustness property.

2.2.1 Graph Robustness

For the theorem stated in [56; 57], the authors characterize the topology of the network

by graph robustness. It measures the connectivity in a graph by showing how well the

subgraphs are connected.

Definition 2.2.1 A digraph D = (V,E) is said to be (r, s)-robust if for every pair of

nonempty disjoint subsets V1,V2 ⊂ V, at least one of the following conditions holds:

1.
∣∣Xr

V1

∣∣ = |V1|;

2.
∣∣Xr

V2

∣∣ = |V2|;

3.
∣∣Xr

V1

∣∣+ ∣∣Xr
V2

∣∣ ≥ s;

where Xr
Va

is the set of nodes in Va having at least r incoming edges from outside Va.

As the special case with s = 1, graphs which are (r, 1)-robust are called r-robust.
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For example, the graph in Fig. 2.1 is (2, 2)-robust. Note that the checking of

robustness requires the combinations of all agent sets [112].

The following lemma in [56] provides a better understanding of graph robustness.

Here, let ⌈·⌉ denote the ceiling function.

Lemma 2.2.1 For an (r, s)-robust digraph D, the following properties hold:

1. D is (r′, s′)-robust, where 0 ≤ r′ ≤ r and 1 ≤ s′ ≤ s, and it is r-robust.

2. D has a directed spanning tree. Moreover a graph is 1-robust if and only if it has

a directed spanning tree.

3. r ≤ ⌈n/2⌉. Further, D is a complete graph if r = ⌈n/2⌉.

4. The minimum in-degree of D, δin(D), is at least

δin(D) =

{
r + s− 1, s < r;

2r − 2, s ≥ r.

Moreover, a graph D is (r, s)-robust if it is (r + s− 1)-robust.

Apparently, the definition of (r, s)-robustness is stronger than r-robustness. More-

over, (r, s)-robustness plays a key role to obtain a tight necessary and sufficient con-

dition for the MSR-type algorithms to achieve consensus. More specifically, for the

normal nodes in the network which has at most f malicious nodes to achieve resilient

consensus, the underlying graph needs to be (f +1, f +1)-robust. In general, to verify

the robustness property of a given graph is computationally difficult since it involves

combinatorial procedures.

2.2.2 Resiliency Notions and Threat Models

Here, we define the attacks and threat models studied in this thesis. The attacks

are launched by adversary agents, and they might send venomous data to deceive the

normal agents and prevent them from reaching consensus. Specifically, agents are said

to be normal if they follow the pre-specified protocols or update rules. Otherwise, they

are said to be adversarial. As we mentioned earlier, in the literature [22; 43; 56; 86; 87;

122], adversary agents are characterized as three threat models according to the scope

of threat levels: non-colluding/faulty, malicious, and Byzantine models. Faulty agents
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simply stops working. In the malicious or Byzantine case, adversary agents are capable

to manipulate their own states arbitrarily and may even collude with each other to

prevent normal nodes from achieving the global goal.

In the network, the node set V is partitioned into the set of normal nodes N and

the set of adversary nodes A. The latter set A is unknown to the normal nodes at

all times. We generate the conventional adversary models to the multi-hop setting

since adversary nodes do not only send their state values but also relay the values from

neighbors [102]. Their formal definitions are given as follows.

Definition 2.2.2 (Malicious nodes) An adversary node i ∈ A is said to be malicious

if it can arbitrarily modify its own value and relayed values, but sends the same state

and relayed values to its neighbors at each iteration. It can also decide not to send any

value.2

Definition 2.2.3 (Byzantine nodes) An adversary node i ∈ A is said to be Byzantine

if it can arbitrarily modify its own value and relayed values and sends different state

values and relayed values to its neighbors at each iteration. It can also decide not to

send any value.

Byzantine models are well studied in the area of computer science [26; 62; 113].

Usually, such a model is assumed for point-to-point networks, where agents communi-

cate with their neighbors one by one. Note that the malicious model studied in [56],

[21] is a weaker threat model compared to Byzantine model. Moreover, the malicious

model is reasonable in applications such as wireless sensor networks, where neighbors’

information is obtained by broadcast communication.

Despite anonymity of the adversary agents, at least a scope of them must be known

by normal agents. An upper-bound for attackers is usually a minimum knowledge for

normal agents in security studies [62]. This upper bound can be defined for the whole

network or just for the neighborhood of each normal agent. We provide the multi-hop

generalization of the models proposed in [56].

Definition 2.2.4 (f -total set) The set of adversary nodes A is said to be f -total if it

contains at most f nodes, i.e., |A| ≤ f .

2This behavior corresponds to the omissive/crash model [62].
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Definition 2.2.5 (f -local set) The set of adversary nodes A is said to be f -local (in

l-hop neighbors) if any normal node i ∈ N has at most f adversary nodes as its l-hop

neighbors, i.e.,
∣∣∣Nl−

i ∩A
∣∣∣ ≤ f .

As commonly done in the resilient consensus literature [21; 56; 102], we assume that

each normal node knows the value of f and the topology information of the graph up

to l hops. Up to Chapter 6, we adopt the l-hop version of the threat models.

2.2.3 Resilient Consensus

In the well-studied discrete-time multi-agent consensus problem [82] (without any at-

tacks), each node i has a state value xi[k] at each time k and updates it as

xi[k + 1] = xi[k] + ui[k],

ui[k] = −
∑
j∈N−

i

aij [k](xi[k]− xj [k]).
(2.6)

where aij [k] is the (j, i)th entry of the adjacency matrix corresponding to the graph

G[k].

The objective of the networked agents is consensus in the sense that the agents

come to agreement and stop asymptotically:

∃x∗ ∈ R, lim
k→∞

xi[k] = x∗, ∀i ∈ V. (2.7)

A well-known condition guaranteeing consensus of the networks without adversary

agents is that the graph G has a directed rooted spanning tree [66; 83; 90].

In this thesis, we aim to find resilient algorithms and conditions on the topology

of the network to ensure consensus among normal agents. The following definition

describes mathematically what we seek as resilient consensus in discrete-time networks

[21; 56; 102].

Definition 2.2.6 If for any possible sets and behaviors of the adversary agents and

any state values of the normal agents, the following two conditions are satisfied, then

we say that the normal agents reach resilient asymptotic consensus:

1. Safety: There exists a bounded safety interval S determined by the initial values

of the normal agents such that xi[k] ∈ S,∀i ∈ N, k ∈ Z+.
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2.2 Resilient Asymptotic Consensus

2. Agreement: There exists a state x∗ ∈ S such that limk→∞ xi[k] = x∗, ∀i ∈ N.

2.2.4 Weighted MSR Algorithm

The weighted mean subsequence reduced (W-MSR) algorithm was proposed in [56; 57]

for solving the resilient consensus problem under the one-hop communication environ-

ment. It can be outlined as follows.

1. Each normal node i receives the state values of its neighbors and sorts them in

an increasing order.

2. If there are less than f values strictly larger than xi[k], then node i removes all

the values that are strictly larger than xi[k]. Otherwise, it removes the f largest

state values in the sorted list. Similarly, if there are less than f values strictly

smaller than xi[k], then node i removes all the values that are strictly smaller

than xi[k]. Otherwise, it removes the f smallest state values.

3. Node i takes the average of the remaining values in the list as the next state

value.

The following propositions from [56] state the topological conditions required for

resilient consensus of such networks using the W-MSR algorithm.

Proposition 2.2.1 Under the f -total malicious model, the multi-agent system using

the W-MSR algorithm achieves resilient consensus if and only if the underlying graph

is (f + 1, f + 1)-robust.

Proposition 2.2.2 Under the f -local malicious model, the multi-agent system using

the W-MSR algorithm achieves resilient consensus if the underlying graph is (2f + 1)-

robust. Moreover, resilient consensus is achieved only if the underlying graph is (f +

1, f + 1)-robust.

In the rest of this chapter, we introduce the background on different problem settings

studied in this thesis.
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2.3 Consensus with Multi-hop Communication

In this section, we discuss the multi-hop communication, which is the main topic of

this thesis in the context of resilient consensus.

Multi-hop communication techniques are commonly used in the areas of wireless

communication [37] and computer science [62]. Such techniques are also used for con-

sensus problems. In [48], a multi-hop relay technique is introduced in the consensus

problem to increase the speed of consensus forming. In [134], a similar method based

on multi-hop relay is developed to solve the global leader-following consensus problem.

Moreover, application of multi-hop communication in wireless sensor networks from

the viewpoint of control is investigated in [63]. In the systems and control area, there

are security-related works which analyze the stability of the networked control systems

with control inputs and observer information sent over multi-hop networks ([15; 25]). It

is clear that with multi-hop communication, each node can have more information for

updating compared to the one-hop case. Thus, the network may have more resilience

against adversary nodes.

A multi-hop communication network can be characterized by two parameters: k-

hop topology knowledge and the relay depth k′. More specifically, for different values

of integers k, k′, we consider that each node knows all its neighbors of at most k-hop

distance (k-hop topology knowledge), and the relay depth k′ to represent the maximum

number of hops any message can be relayed.

For resilient consensus problems, the work [113] for Byzantine adversaries has been

extended to multi-hop communication network by introducing multi-hop communica-

tion (referred as k-hop) techniques in [102]. There, by assuming k = k′, the authors

solved the approximate Byzantine consensus problem with a weaker condition on net-

work structures compared to that derived under the one-hop communication model

[113]. Moreover, they also proved that when k = 1, the necessary condition for itera-

tive approximate Byzantine consensus algorithm to exist is the same as the result from

[62].

Further, in [93], the authors develop algorithms for the asynchronous crash-tolerant

consensus problem under such multi-hop communication networks. And they develop

multi-hop fault-tolerant consensus algorithms for k ̸= k′ cases. In [94], the authors tack-

led the same problem under asynchronous updates based on rounds, which is different

from the asynchrony setting used in this thesis (see the discussions in Chapter 4). The
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work [53] studied Byzantine binary consensus under the local broadcast model (mali-

cious model) using a flooding algorithm, where nodes relay their values over the entire

network.

We adopt the same communication model as the one in [102], i.e., we assume k = k′

throughout the thesis.

2.3.1 Multi-hop Communication Model

In this part, we introduce the model of multi-hop communication used in this thesis.

Our model is similar to that in [102] under the Byzantine attacks. For the communica-

tion model under malicious attacks, we use a relay model based on broadcast commu-

nication. In the multi-hop communication setting, the agents not only communicate

with their direct neighbors as in conventional schemes, but also with their multi-hop

neighbors by having their messages relayed. Let l be the maximum number of hops

allowed in the network. Specifically, node i1 can send messages of its own to an l-hop

neighbor il+1 via different paths. We represent a message as a tuple m = (w,P ), where

w = value(m) ∈ R is the message content and P = path(m) indicates the path via

which message m is transmitted. Moreover, nodes i1 and il+1 are, respectively, the

message source and the message destination. When source node i1 sends out a mes-

sage, P is a path vector of length l+1 with the source node being i1 and other entries

being empty. Then the one-hop neighbor i2 receives this message from i1, and it stores

the value of node i1 for consensus and relays the value of node i1 to all the one-hop

neighbors of i2 with the second entry of P being i2 and other entries being unchanged.

This relay procedure will continue until every entry of P of this message is occupied,

i.e., this message reaches node il+1. We denote by V(P ) the set of nodes in P .

We now outline the message exchanges among the agents. This notion of messages

is used until Chapter 7, where information sets are exchanged among agents. At each

time k, normal node i conducts the following steps:

1. Transmit step: Transmit message mij [k] = (xi[k], Pij [k]) over each l-hop path to

node j ∈ Nl+
i .

2. Receive step: Receive messages mji[k] = (xj [k], Pji[k]) from j ∈ Nl−
i , whose

destination is i. Let Mi[k] be the set of messages that node i received in this

step.
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3. Update step: Update the state xi[k] as

xi[k + 1] = gi(Mi[k]), (2.8)

where gi(·) can be a real-valued or quantized function of the states received in

this time step, to be defined later in each chapter.

In the Transmit step and Receive step, nodes exchange messages with others that are

up to l hops away. Then in the Update step, node i updates its state using the received

values in Mi[k]. Note that the adversary nodes may deviate from this specification.

In the multi-hop setting studied in this thesis (up to Chapter 6), it is important to

impose the following assumption.

Assumption 2.3.1 Each adversary node i cannot manipulate the path values in the

messages containing its own state xi[k] and those that it relays.

This is introduced for ease of analysis, but is not a strong constraint. In fact,

manipulating message paths can be easily detected and hence does not create problems.

We show how this can be done in the following section.

2.3.2 Discussion on Manipulation in Message Path Information

It is notable that multi-hop communication is vulnerable to false data injection in the

information relayed by nodes, which can make the problem of resilient consensus more

complicated than the one-hop case. Earlier, Assumption 2.3.1 was introduced stating

that the malicious nodes however cannot manipulate the path information in messages

that they relay. We briefly explain here how such attacks can be detected, inspired by

the discussion in [102].

Such detection requires that each node can identify the neighbor from which it

receives each message, which is commonly assumed (e.g., [26; 102]). Moreover, there

are many methods to realize this function in real-world applications. For instance, by

using the encryption technique of the RSA algorithm [92], each node can send out its

value associated with a digital signature using its own private key. Then, using the

sender’s public key, the receiver can confirm that this message is indeed sent by the

particular sender.
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In each iteration of the synchronous algorithm, there are three potential cases where

a message sent to normal node i is manipulated in its path information: (i) Node i

receives multiple messages along the same path P ; (ii) it receives messages along an

unknown path P ′; or (iii) it does not receive any message along a known path P . Note

that a normal node receives only one message along each path in each iteration when

no adversarial node is present.

For case (i), this faulty behavior is caused either by duplicating messages or by

manipulating path information in messages. We show that in both situations, the

receiving node i can find that there is at least one faulty node in path P . It is obvious

for the first situation. For the path manipulating situation, consider the case where

a normal node h receives a message m = (w,P ) directly from node j but the path P

does not contain node j. Then node h knows that node j is faulty, and will not forward

the message. This indicates that in general, if there is a sequence of faulty nodes along

a path, then the last one in the sequence must keep its own index within the path

information in the messages that it transmits. Moreover, this argument also holds for

case (ii), i.e., node i knows that at least one node in path P ′ is faulty. Therefore,

in cases (i) and (ii), from the perspective of node i, manipulating the message path

data is equivalent to having a faulty node in P or P ′ sending additional messages with

manipulated values, and thus it will remove any values in this path by the MW-MSR

algorithm.

For case (iii), either a faulty node does not send/forward the message m, or it

manipulates the message path P . In the latter case, for node i, manipulating the

message path is equivalent to having a faulty node in P not sending/forwarding the

message.

Actually, this analysis can be extended to the algorithms with asynchronous up-

dates. In each update of such algorithms, consider the following three path manipu-

lating cases for node i: (i) Node i receives multiple messages along one path P at the

same time step; (ii) it receives messages along an unknown path P ′; or (iii) it does

not receive any message along path P in a period of time τ , where τ is the maximum

time delay of normal agents. Note that in case (i) for the asynchronous algorithm,

faulty nodes can send multiple messages along P as long as these faulty messages do

not arrive at node i at the same time step and this behavior will not affect normal

agents, since only the most recent values of multi-hop neighbors will be used in the

25



2.4 Quantized Consensus

asynchronous MW-MSR algorithm. The analysis of cases (ii) and (iii) is similar to that

of the synchronous algorithm.

The above analysis is based on the assumption that there is no packet loss in the

fault-free networks. In real-world applications, packet losses can happen even in fault-

free networks. We note that there are methods to deal with this issue. Packet losses

in the communication between two normal nodes can also cause the situation of case

(iii) mentioned above. Like the one-hop W-MSR algorithm, if a packet loss happens in

the communication from neighbor j to node i, then node i may receive only |Ni| − 1

values at this particular time step and still remove f largest and f smallest received

values; hence, node i uses less information from normal nodes to update. This behavior

will not violate the safety interval, but it may slow down the speed of consensus. If

the packet loss behavior happens frequently in this transmission path, then node i can

consider this path containing faulty nodes.

2.4 Quantized Consensus

In this section, we introduce the related works and background that are relevant to the

resilient quantized consensus problem studied in Chapter 5.

In many applications of wireless sensor networks, the sensor nodes may have access

to only limited memories and transmission bandwidth [37]. In such cases, the agents

can only compute the integer-valued states. Quantized consensus has been motivated

by such concerns on limited capabilities in communications and computations of the

agents. There are various studies that have looked into the case without any adversary

agents [5; 12; 14; 30; 38; 55; 58].

There are also several works that have dealt with the resilient quantized consensus

problem, where some agents are under attacks [22; 115]. The authors of [22] studied the

resilient quantized consensus using randomized quantizer with one-hop communication.

There, a necessary and sufficient condition for synchronous resilient consensus under

malicious attacks was provided. The graph condition is same as the one in the real-

valued case [56].

Exact Byzantine consensus is a popular and historical topic in the area of computer

science [62]. The work [26] first proposed two conditions which are necessary and

sufficient for exact Byzantine consensus in undirected networks: (i) n > 3f ; (ii) node-

connectivity is no less than 2f +1. Then, the authors of [109] provided a necessary and
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sufficient condition for exact Byzantine consensus (integer-valued) in directed networks.

Both works are studied for synchronous updates. However, in a real-world environment,

delays are almost natural in the communication among nodes. Thus, it is important

to analyze whether the proposed algorithm can successfully achieve resilient quantized

consensus in asynchronous updates with delays. Until recently, the work [117] studied

binary Byzantine consensus in asynchronous updates with delays and they derived the

same necessary and sufficient conditions as the two in [26]. The resilient quantized

consensus (including binary consensus) works [26; 52; 109; 117] from computer science

commonly assume that each normal node sends its values to the entire network through

different paths, which corresponds to one of our cases called unbounded path length

case (l ≥ l∗). Moreover, the authors of [52; 53] provide a necessary and sufficient

condition for synchronous binary Byzantine consensus under local broadcast model

in undirected/directed networks, respectively. Note that the local broadcast model is

equivalent to the malicious model.

2.5 Event-based Communication

In this section, we discuss the background related to the event-triggered resilient con-

sensus problem studied in Chapter 6.

Through multi-hop communication, the connectivity requirement may become less

stringent for guaranteeing the same level of resilience as for the one-hop case. This is

enabled by increasing the amount of data exchanged among agents through multi-hop

message relaying as well as the algorithm with more complexity. Hence, the motivation

for introducing the event-triggered update scheme to our algorithms is to reduce the

transmissions among agents. We aim to reduce the transmissions for the agents using

the multi-hop weighted MSR algorithm [125] through event-triggered protocols [45].

In traditional periodic control systems, control signals are sent periodically. This

may consume a large amount of energy and communication resources. Event-triggered

and self-triggered control systems have become popular in the systems control area

because they are energy-efficient. In event-triggered control, a triggering condition

based on current measurements is continuously monitored and an event is triggered only

when this condition is satisfied. In self-triggered control, the controller will compute the

next update time based on predictions using previously received data and the knowledge

on the plant dynamics [45].
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Event-based protocols have been developed for conventional consensus without ad-

versary agents in, e.g., [23; 50; 68]. Moreover, the resilient consensus work [114] pro-

posed two event-based MSR algorithms using one-hop communication to reduce the

transmissions. Among these works, event-triggered schemes have shown their effec-

tiveness in reducing the transmissions for the agents using distributed algorithms even

under adversarial environments. Moreover, time delays can be a critical factor affecting

the performance of agents in the multi-hop communication. Hence, we introduce event-

triggered protocols to the multi-hop weighted MSR algorithm, and we are interested to

analyze the performance of the proposed algorithm with delays in the communication

between agents. More discussions are given in Chapter 6.

2.6 Fault Detection and Identification

In this section, we introduce related works and the majority voting algorithm that are

used in the distributed detection approach proposed in Chapter 7.

From the security viewpoints, it is desirable to equip the nodes with distributed

algorithms for fault detection and identification (FDI). For consensus-type problems,

FDI techniques based on unknown input observers were proposed in, e.g., [86; 106].

These schemes however impose strong assumptions that each agent should have the

global knowledge of the entire network and also have sufficient computation resources

to run a number of observers.

In [86], by using unknown input observers (UIO), the authors proposed a fault

detection method for detecting and isolating the malicious attacks. The distributed

FDI scheme has been extended to the second-order systems in [99]. Nevertheless, the

FDI schemes proposed in these works often require each node to have the global network

knowledge.

Furthermore, in [7], the authors proposed a method for detection and isolation of

faulty nodes based on clustering techniques. In [100], the authors proposed a fault

detection technique in randomized gossip algorithms which is addressed using Set-

valued Observers (SOVs). However, this SOV based method requires information on

the global network structure.

28



2.6 Fault Detection and Identification

2.6.1 Distributed Fault Detection

In this thesis, we are interested in FDI methods requiring only local information by

agents. In our fault detection framework, every agent, namely agent i, will also act

as a local monitor that watches the behavior of its neighboring agent, namely agent

j, during the iterations of consensus algorithm. It becomes crucial for agent i to have

the information about the control input for its neighbor j, which consists of the values

of agent j’s neighbors in the consensus algorithm. However, agent i may not have full

access to the control elements of agent j in the traditional one-hop communication net-

work, i.e., agents in such a network can only communicate with their direct neighbors.

It becomes possible for agent i to get all the neighbors’ information of agent j if we

introduce the information set on each agent, which can be seen as the so-called two-hop

communication in [62; 102], where the Byzantine model is studied.

Such an approach can be found in [31; 40], where each agent acts as a detector.

Specifically, it monitors its neighbors by iteratively exchanging more information than

in conventional consensus algorithms. There, the nonfaulty, normal agents not only

send their own states but also relay their neighbors’ state values. Then, they can verify

if the states sent by a particular neighbor are consistent with those of other neighbors.

In [40], the authors consider the adversary nodes to be faulty nodes. In their work,

agent i can get the neighbors’ information of agent j through two means. One is that

agent j will send its neighbors’ values to agent i at each time step. This requires that

agent j to be honest about the sending information, which is true for the faulty agent

case while this no longer stands for the malicious and Byzantine agent case. The other is

that agent i gets the neighbors’ information of agent j through on-board sensing based

method, and this requires a bank of sensors loaded on each agent and it is difficult to

apply this method in large scale network.

Similar ideas are explored in [44; 130]. However, these methods often impose strong

assumptions. For example, the adversarial nodes cannot be neighbors so that they

cannot share information nor collaborate. Another one is the introduction of mobile

agents which randomly visit the agents and communicate with each other; they carry

out a certain portion of the workload for detection. Thus a fault detection method

which only uses local information and is able to detect general malicious or Byzantine

agents is highly desirable.
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2.6.2 Voting Algorithms

Voting is important for reliable distributed systems that are based on the multi-agent

computation paradigm. A voting algorithm specifies how the voting result is obtained

from the input data and can be the basis for implementing a hardware voting network

or a software voting routine [84]. Voting algorithms have many categories based on

the type of voting (exact, inexact, or approval), rule for output selection (plurality or

threshold) and properties of the input object space (size and structure).

For our concern, exact voting is the most common voting method and is the easiest

to implement. Inexact voting algorithms are more complicated due to intransitivity of

approximate equality. As an example, when approximate equality a ∼= b for numerical

inputs a and b is defined as |a− b| ≤ ϵ, then a ∼= b and b ∼= c do not imply a ∼= c. In

approval voting, each input to the voting process consists of a finite or infinite set of

values that have been “approved” by the corresponding computation channel and the

value, or the set of values, with the highest approval voting must emerge as output.

In [42], the authors present a voting protocol that reduces the vulnerability of the

voting process to both attacks and faults. This algorithm is applicable to exact and

inexact voting in networks where atomic broadcast and predetermined message delays

are present, such as local area networks.

In wireless sensor networks where accurate location of sensors is vital, one common

method for location discovery uses a set of specialty nodes known as beacon nodes

(BNs) that assist other sensor nodes to determine their location. In [101], the authors

propose a novel reputation based scheme called Distributed Reputation-based Beacon

Trust System for excluding malicious BNs that provide false location information.
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Chapter 3

Resilient Consensus under

Malicious Attacks with

Multi-hop Communication

In this chapter, we study the resilient consensus problem under malicious attacks. Our

approach is based on that of the weighted MSR algorithm with multi-hop communi-

cation. The MSR algorithm is a powerful tool for achieving resilient consensus un-

der minimal requirements for network structures, characterized by the class of robust

graphs. Our analysis highlights that through multi-hop communication, the network

connectivity can be reduced especially in comparison with the common one-hop case.

Specifically, we develop a multi-hop version of MSR algorithms to solve the resilient

consensus problem. Unlike in the case with one-hop communication, the MSR algorithm

in the multi-hop case may not exclude all the possible effects from malicious nodes if

each normal node just eliminates the f largest and the f smallest received values. Since

a malicious node can manipulate not only its own value but also the values it relays,

such nodes can produce more than f false values even if there are at most f malicious

nodes. To completely exclude the effects from malicious nodes, we propose the multi-

hop weighted mean subsequence reduced (MW-MSR) algorithm. Normal nodes using

the MW-MSR algorithm will exclude the extreme values which are produced precisely

by f multi-hop neighbors. To realize this trimming capability in the multi-hop setting

requires the notion of message cover, which represents the set of nodes intersecting with

a given set of different message paths.
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Then we derive necessary and sufficient graph conditions based on the new notion

of robustness with l hops for the proposed MW-MSR algorithms to achieve resilient

consensus under synchronous updates and asynchronous updates with time delays in

the communication. Moreover, we present examples to illustrate how multi-hop com-

munication helps to improve graph robustness without changing the network topology.

As a side result, we prove that for the case of unbounded path length in message relay-

ing, our graph condition is equivalent to the necessary and sufficient graph condition

for binary consensus under malicious attacks studied in [53].

The rest of this chapter is organized as follows. In Section 3.1, we outline the system

model. In Sections 3.2 and 3.3, we present the MW-MSR algorithm and define graph ro-

bustness with multi-hop communication, respectively. Then in Sections 3.4 and 3.5, we

derive tight graph conditions under which the MW-MSR algorithms guarantee resilient

asymptotic consensus under synchronous and asynchronous updates, respectively. In

Section 3.6, we provide some properties of the new robustness and in Section 3.7, we

present examples to demonstrate that multi-hop communication can improve robust-

ness of graphs in general. Lastly, in Section 3.8, we conclude this chapter.

3.1 Problem Formulation

In this section, we provide preliminaries on the network models and introduce the basic

settings for the resilient consensus problems studied in this chapter. Note that some

basic notions of graph theory are introduced in Section 2.1 of Chapter 2.

3.1.1 Multi-hop Communication for Multi-agent Consensus

First, we introduce the multi-agent system with multi-hop communication and the

update rule used by the agents under no attacks. Consider a time-invariant network

modeled by the directed graph G = (V,E). Each node i has a real-valued state xi[k].

The goal of the agents is to arrive at consensus in their state values asymptotically,

that is, |xi[k]−xj [k]| → 0 as k → ∞ for all i, j ∈ V. This is to be achieved by updating

the states at each time step k based on the information exchanged among the nodes.

Their initial values xi[0] are given. Until we reach Section 3.6, we assume that no delay

is present in the communication among nodes.

Recall that agents communicate with each other according to the communication
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model indicated in Section 2.3.1. In an agent network equipped with multi-hop com-

munication, as the consensus update rule (2.8), we can extend the common one (e.g.,

[82]). Let ui[k] denote the control input for node i at time k. Each node updates as

xi[k + 1] = xi[k] + ui[k],

ui[k] = −
∑

j∈Nl−
i

aij [k](xi[k]− xj [k]).
(3.1)

This system can be given in the compact form as

x[k + 1] = x[k] + u[k],

u[k] = −L[k]x[k],
(3.2)

where x[k] ∈ Rn and u[k] ∈ Rn are the state vector and control input vector, re-

spectively, and L[k] is the Laplacian matrix of the l-th power of G determined by the

messages mij [k], i ∈ V and j ∈ Nl−
i . As a generalization of the one-hop result (e.g.,

[11; 66]), it is obvious that with l-hop communication, consensus is possible if Gl has a

rooted spanning tree.

3.1.2 Threat Model

In this chapter, we study resilient consensus under the f -total malicious attacks. Note

that all the results for asynchronous updates in this chapter also hold for the f -local ma-

licious model. We will review the gaps between different graph conditions in Chapter 4.

As commonly done in the literature [56; 102], we assume that each normal node knows

the value of f and the topology information of the graph up to l hops. Moreover, the

malicious model is reasonable in applications such as wireless sensor networks, where

neighbors’ information is obtained by broadcast communication. We assume that each

adversary node i cannot manipulate the path values in the messages containing its own

state xi[k] and those that it relays as stated in Assumption 2.3.1.

3.1.3 Resilient Asymptotic Consensus

We now introduce the type of consensus among the normal agents to be sought in this

chapter [21; 56; 102].

Definition 3.1.1 If for any possible sets and behaviors of the malicious agents and
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any state values of the normal nodes, the following two conditions are satisfied, then

we say that the normal agents reach resilient asymptotic consensus:

1. Safety: There exists a bounded safety interval S determined by the initial values

of the normal agents such that xi[k] ∈ S,∀i ∈ N, k ∈ Z+.

2. Agreement: There exists a state x∗ ∈ S such that limk→∞ xi[k] = x∗, ∀i ∈ N.

The problem studied in this chapter is to develop an MSR-based algorithm for

agents that can make l-hop communication to reach resilient consensus under the f -

total malicious model and to characterize conditions on the network topology for the

algorithm to properly perform. Note that in general, for MSR-based algorithms with

one-hop communication, resilient consensus can be achieved under the f -total model

with the necessary and sufficient condition expressed in terms of the so-called graph

robustness; see, e.g., [22; 56], and the following sections for the definition of robust

graphs and related discussions.

3.2 Multi-hop Weighted MSR Algorithm

In this section, we introduce the multi-hop weighted MSR (MW-MSR) algorithm, which

is designed to solve the resilient consensus problem under the multi-hop setting. We first

introduce the notion of message cover which plays a key role in the trimming function

of our MSR algorithm. Then we outline the structure of the MW-MSR algorithm and

provide examples to illustrate the idea behind the algorithm.

The notion of message cover [102] is crucial in the update rule of our algorithm to be

proposed in this section. It evaluates the effects of adversary nodes that can possibly

manipulate the updates of normal nodes in a multi-hop communication setting. Its

formal definition is given as follows.

Definition 3.2.1 For a graph G = (V,E), let M be a set of messages transmitted over

G, and let P(M) be the set of message paths of all the messages in M, i.e., P(M) =

{path(m) : m ∈ M}. A message cover of M is a set of nodes T(M) ⊂ V whose removal

disconnects all message paths, i.e., for each path P ∈ P(M), we have V(P )∩T(M) ̸= ∅.
In particular, a minimum message cover of M is defined by

T∗(M) ∈ arg min
T(M): Cover of M

|T(M)| .
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Algorithm 1: MW-MSR Algorithm

1) At each time k, normal node i sends its own message to nodes in Nl+
i .

Then, it obtains messages of the nodes in Nl−
i and itself, whose set is denoted

by Mi[k], and sorts the values in Mi[k] in an increasing order.

2) (a) Define two subsets of Mi[k] based on the message values:

Mi[k] = {m ∈ Mi[k] : value(m) > xi[k]},

Mi[k] = {m ∈ Mi[k] : value(m) < xi[k]}.

(b) Then, let Ri[k] = Mi[k] if the cardinality of a minimum cover of Mi[k] is

less than f , i.e.,
∣∣T∗(Mi[k])

∣∣ < f . Otherwise, let Ri[k] be the largest sized

subset of Mi[k] such that (i) for all m ∈ Mi[k] \ Ri[k] and m′ ∈ Ri[k] we have

value(m) ≤ value(m′), and (ii) the cardinality of a minimum cover of Ri[k] is

exactly f , i.e.,
∣∣T∗(Ri[k])

∣∣ = f .

(c) Similarly, let Ri[k] = Mi[k] if the cardinality of a minimum cover of Mi[k]

is less than f , i.e., |T∗(Mi[k])| < f . Otherwise, let Ri[k] be the largest sized

subset of Mi[k] such that (i) for all m ∈ Mi[k] \ Ri[k] and m′ ∈ Ri[k] we have

value(m) ≥ value(m′), and (ii) the cardinality of a minimum cover of Ri[k] is

exactly f , i.e., |T∗(Ri[k])| = f .

(d) Finally, let Ri[k] = Ri[k] ∪ Ri[k].

3) Node i updates its value as follows:

xi[k + 1] =
∑

m∈Mi[k]\Ri[k]

ai[k]value(m), (3.3)

where ai[k] = 1/(|Mi[k] \ Ri[k]|).

As a simple example, consider the set M of paths connecting node i to node j

which do not overlap. Then, its message cover must contain at least one node per path.

Clearly, there may be multiple minimum message covers if the paths are of length

greater than three.

Now, we are ready to introduce the structure of the synchronous MW-MSR algo-

rithm in Algorithm 1. Note that the one-hop version of the MW-MSR algorithm (i.e.,

with l = 1) is equivalent to the W-MSR algorithm in [56]. However, we can see that

the difference between the MW-MSR algorithm and the W-MSR algorithm mainly lies

in the trimming function in step 2 when l ≥ 2. For general MSR algorithms of one-
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(a) (b)

Figure 3.1: (a) A 5-node graph. (b) Values removed by node 1 in one-hop and two-hop
algorithms.

hop communication, the essential idea for the normal nodes to avoid being affected by

adversary nodes is that each normal node i will exclude the effects from f neighbors

with extreme values (possibly sent by faulty nodes). This can guarantee that values

outside the safety interval will not be used by any normal node at any time step. In

the one-hop case, for each normal node i, the number of values received from such f

neighbors is exactly f , i.e., node i will trim away f largest and f smallest values at

each step. This is because each neighbor sends only one value of its own to node i at

each step under the typical assumptions made in MSR-related works [56; 113].

Under the multi-hop setting, the situation changes significantly even if we assume

that each node can only send out one value of its own to its neighbors at each step. Since

each node relays the values from different neighbors, normal node i can receive more

than one value from one direct neighbor. Thus, in the MW-MSR algorithm, normal

node i cannot just trim away f largest and f smallest values at each step. Instead, it

needs to trim away the largest and smallest values from exactly f nodes within l hops

away, which is the generalization of the essential idea in the one-hop W-MSR algorithm.

To characterize the number of the extreme values from exactly f nodes for node

i, the notion of minimum message cover (MMC) is designed. Intuitively speaking, for

normal node i, Ri[k] and Ri[k] are the largest sized sets of received messages containing

very large and small values that may have been generated or tampered by f adversary

nodes, respectively. Here, we focus on how Ri[k] is determined, as Ri[k] can be obtained

in a similar way. When the cardinality of the MMC of set Mi[k] is no more than f ,

node i simply takes Ri[k] = Mi[k]. Otherwise, node i will check the first f + 1 values

of Mi[k], and if the MMC of these values is of cardinality f , then it will check the first

f + 2 values of Mi[k]. This procedure will continue until for the first f + h (h ≥ 1)
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values of Mi[k], the MMC of these values is of cardinality f + 1. Then Ri[k] is taken

as the first f + h− 1 values of Mi[k]. After sets Ri[k] and Ri[k] are determined, in the

control input ui(k) computed by (3.3) in step 3, values in these sets are excluded. Note

that this control is consistent with the one in (3.2) when f = 0.

We also illustrate the determination of such subsets through a simple example.

Consider the network in Fig. 3.1 with initial states x[0] = [2 4 100 8 10]T , where node

3 is set to be malicious (f = 1) and constantly broadcasts the value 100 as its own

value as well as those in the relayed messages. We look at node 1 at time k = 0 and

drop the time index k. In the one-hop version of the MW-MSR algorithm, the input

for node 1 is {x1, x2, x5, x3}, and it chooses R1[0] = {x3 = 100} and R1[0] = ∅ in step

2 of the algorithm (since the value x1 is the smallest in the input).

In the two-hop version of the MW-MSR algorithm, node 1 receives the state values

x2, x3, and x5 directly from nodes 2, 3, and 5, respectively. Moreover, it receives the

relayed values of node 4 through nodes 2, 3, and 5, denoted by x24, x
3
4, and x54. Then the

sorted input for node 1 is {x1, x2, x24, x54, x5, x34, x3}, and node 1 checks the MMC of the

subset of the largest values starting from the (f+1)th value (since the values before the

fth one are definitely removed by node 1). First, it evaluates {x34, x3}, and the MMC of

this message set is the node set {3} with cardinality 1. Then, it evaluates {x5, x34, x3}
and the MMC of this message set can be found to be the node set {3, 5} with cardinality

2, which is bigger than f = 1. As a result, node 1 confirms that {x34, x3} is the largest

sized set of the large values that may have been generated or tampered by f adversary

nodes. Therefore, node 1 chooses R1[0] = {x34 = 100, x3 = 100} and R1[0] = ∅ in step

2 of the algorithm.

In this chapter, the key question to be addressed is, under what conditions on

the network can the above algorithm achieve resilient asymptotic consensus? Our

approach is to develop a generalization of the results and analysis of the one-hop case.

In particular, this necessitates us to extend the notion of graph robustness by taking

account of multi-hop communication. This is carried out in the next section.

3.3 Robustness with Multi-hop Communication

In this section, we discuss the notion of graph robustness. This notion was first in-

troduced in [56], which corresponds to the one-hop case. We provide its multi-hop

generalization, which plays a crucial role in our resilient consensus problem.
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(a) (b)

Figure 3.2: (a) Node i has two independent paths originating from the outside of V1

with respect to set F = {j}. (b) Node i only has one independent path sharing the
same property.

As in the definition of robustness for the one-hop case [56], we start with the defi-

nition of r-reachability. Specifically, when the communication is only one-hop, a node

set is said to be r-reachable if it contains at least one node that has at least r incoming

neighbors outside this set. This notion basically captures the capability of a set to be

influenced by the outside of the set when the nodes apply the MSR algorithms with

parameter r − 1.

In generalizing this notion to the case of multi-hop communication, it is crucial to

extend the above-mentioned capability. In particular, the influence from the outside of

the set may come from remote nodes and are not restricted to direct neighbors. With

a slight change, in the multi-hop setting, we define the r-reachability as follows.

Definition 3.3.1 Consider a graph G = (V,E) with l-hop communication. For r ∈ Z+,

set F ⊂ V, and nonempty set V1 ⊂ V, a node i ∈ V1 is said to be r-reachable with l-hop

communication with respect to F if it has at least r independent paths (i.e., only node

i is the common node in these paths) of at most l hops originating from nodes outside

V1 and all these paths do not have any node in set F as an intermediate node (i.e., the

nodes in F can be source or destination nodes in these paths).

Intuitively speaking, for any set F ⊂ V and for node i ∈ V1 to have the above-

mentioned property, there should be at least r source nodes outside V1 and at least

one independent path of length at most l hops from each of the r source nodes to node

i, where such a path does not contain any internal node from the set F. It is clear

that for the one-hop case, to count the independent paths simply becomes to count the

in-neighbors.

As an example, consider the graph in Fig. 3.2(a), where the two node sets V1 and

V2 are taken as indicated and the set F = {j}. Here, node i ∈ V1 has two independent
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(a) (b)

Figure 3.3: (a) The graph is not (2, 2)-robust with one hop, but it is (2, 2)-robust with
2 hops. (b) The graph is (2, 2)-robust with one hop and (3, 3)-robust with 2 hops.

paths of at most two hops originating from the nodes outside V1 with respect to the

set F. In contrast, in a similar graph shown in Fig. 3.2(b), such a property is lost and

node i has only one path from the outside of V1 w.r.t. the set F.

Now, we are ready to generalize this notion to the entire graph and define r-

robustness and (r, s)-robustness with l hops as follows.

Definition 3.3.2 A directed graph G = (V,E) is said to be (r, s)-robust with l hops with

respect to a given set F ⊂ V, if for every pair of nonempty disjoint subsets V1,V2 ⊂ V,

at least one of the following conditions holds:

1. Zr
V1

= V1,

2. Zr
V2

= V2,

3.
∣∣Zr

V1

∣∣+ ∣∣Zr
V2

∣∣ ≥ s,

where Zr
Va

is the set of nodes in Va (a = 1, 2) that are r-reachable with l-hop commu-

nication with respect to F. Moreover, if the graph G satisfies this property with respect

to any set F following the f -total model, then we say that G is (r, s)-robust with l hops

under the f -total model. When it is clear from the context, we will just say G is (r, s)-

robust with l hops. Furthermore, when the graph is (r, 1)-robust with l hops, we also

say it is r-robust with l hops.

Generally, robustness of a graph increases as the relay range l increases. We will

illustrate this point using the graphs in Fig. 3.3. Note that graph robustness with

multi-hop communication needs to be checked for every possible set F satisfying the
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f -total model. In the context of this paper, we are interested to check (r, s)-robustness

under (r − 1)-total model.

First, the graph in Fig. 3.3(a) is not (2, 2)-robust with one hop since for the sets

{1, 2} and {3, 4}, none of the nodes has two in-neighbors outside the corresponding set.

However, under the 1-total model, this graph is (2, 2)-robust with 2 hops. For instance,

we first check the condition for the set F = {1}. For sets {1, 2} and {3, 4}, all of the
nodes 1, 3 and 4 have two independent paths of at most two hops originating from

the outside of the set with node 1 not being the internal node. After checking all the

possible subsets of V, one can confirm that this graph is (2, 2)-robust with 2 hops with

respect to set F = {1}. Since this graph is actually symmetric for each node, we can

conclude that for the set F = {v} (v = 2, 3, 4), this graph is (2, 2)-robust with 2 hops

with respect to this set. Hence, this graph is (2, 2)-robust with 2 hops.

Next, we look at the graph in Fig. 3.3(b). When l = 1, this graph is (2, 2)-robust

with 1 hop but not (3, 3)-robust with 1 hop. When l = 2, it becomes (3, 3)-robust with

2 hops. It is further noted that the level of robustness is constrained by the in-degrees

of the nodes. In the graph of Fig. 3.3(b), each node has four incoming edges. As a

result, for r ≥ 4, this graph cannot be (r, s)-robust with any number of hops. We

elaborate more on this aspect in Section 3.6.

3.4 Synchronous Network

In this section, we analyze the MW-MSR algorithm under synchronous updates, i.e.,

each normal node will update its value using those received from all of its l-hop neigh-

bors in a synchronous manner with other nodes at each time k.

3.4.1 Matrix Representation

First, we write the system in a matrix form. For ease of notation in our analysis, reorder

the node indices so that the normal nodes take indices 1, . . . , nN and the malicious nodes

are nN + 1, . . . , n. Then the state vector and control input vector can be written as

x[k] =

[
xN [k]
xF [k]

]
, u[k] =

[
uN [k]
uF [k]

]
, (3.4)

where the superscript N stands for normal and F for faulty. Regarding the control

inputs uN [k] and uF [k], the normal nodes follow (3.3) while the malicious nodes may
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not. Hence, they can be expressed as

uN [k] = −LN [k]x[k],
uF [k] : arbitrary,

(3.5)

where LN [k] ∈ RnN×n is the matrix formed by the first nN rows of L[k] associated with

normal nodes. The row sums of this matrix LN [k] are zero as in L[k]. Thus, we can

rewrite the system as

x[k + 1] =

(
In −

[
LN [k]

0

])
x[k] +

[
0

InF

]
uF [k]. (3.6)

3.4.2 Consensus Analysis with Multi-hop Communication

Now we are ready to provide a necessary and sufficient condition for resilient consensus

applying the synchronous MW-MSR algorithm. The following theorem is the first main

contribution of this chapter.

Theorem 3.4.1 Consider a directed graph G = (V,E) with l-hop communication,

where each normal node updates its value according to the synchronous MW-MSR al-

gorithm with parameter f . Under the f -total malicious model, resilient asymptotic

consensus is achieved if and only if the network topology is (f + 1, f + 1)-robust with l

hops. Moreover, the safety interval is given by

S =
[
minxN [0],maxxN [0]

]
.

Proof: (Necessity) If G is not (f + 1, f + 1)-robust with l hops, then there are

nonempty, disjoint subsets V1,V2 ⊂ V such that none of the conditions in Definition

3.3.2 holds. Suppose that the initial value of each node in V1 is a and each node in V2

takes b, with a < b. Let all other nodes have initial values taken from the interval (a, b).

Since |Zf+1
V1

|+ |Zf+1
V2

| ≤ f , suppose that all nodes in Z
f+1
V1

and Z
f+1
V2

are malicious and

take constant values. Then there is still at least one normal node in both V1 and V2

since |Zf+1
V1

| < |V1| and |Zf+1
V2

| < |V2|, respectively. Then these normal nodes remove

all the values of incoming neighbors outside of their respective sets since the message

cover of these values has cardinality equal to f or less. According to the synchronous

MW-MSR algorithm, such normal nodes will keep their values and consensus cannot
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be achieved.

(Sufficiency) First, we show that the safety condition of resilient consensus is sat-

isfied. Let xN [k] and xN [k] to be the maximum and minimum values of the normal

nodes at time k, respectively. We can show that xN [k] is monotonically nonincreasing

and xN [k] is monotonically nondecreasing, and thus each of them has some limit. This

can be directly shown from the definitions and the facts that the values used in the

MW-MSR update rule always lie within the interval
[
xN [k], xN [k]

]
⊆ S for k ≥ 0. Since

at each time k, in step 2 of Algorithm 1, node i wipes out the possibly manipulated

values from at most f nodes within l hops. Moreover, the update rule (3.6) uses a

convex combination of the values in
[
xN [k], xN [k]

]
. Therefore, the safety condition is

satisfied.

Then, we denote the limits of xN [k] and xN [k] by ω and ω, respectively. We will

prove by contradiction to show that ω = ω, and thus the normal nodes will reach

consensus. Suppose that ω > ω. We can then take ϵ0 > 0 such that ω − ϵ0 > ω + ϵ0.

Fix ϵ < ϵ0α
nN /(1− αnN ), where 0 < ϵ < ϵ0 and α is the minimum of all ai[k] in step 3

of the MW-MSR algorithm. For 1 ≤ γ ≤ nN , define ϵγ recursively as

ϵγ = αϵγ−1 − (1− α)ϵ.

So we have 0 < ϵγ < ϵγ−1 ≤ ϵ0 for all γ, since it holds that

ϵγ = αϵγ−1 − (1− α)ϵ = αγϵ0 − (1− αγ)ϵ

≥ αnN ϵ0 − (1− αnN )ϵ > 0.
(3.7)

At any time step k and for any ϵt > 0, define two sets:

Z1(k, ϵt) = {i ∈ V : xi[k] > ω − ϵt},

Z2(k, ϵt) = {i ∈ V : xi[k] < ω + ϵt}.

By the definition of ϵ0, Z1(k, ϵ0) and Z2(k, ϵ0) are disjoint.

Let kϵ be the time such that xN [k] < ω + ϵ and xN [k] > ω − ϵ, ∀k ≥ kϵ. Such a kϵ

exists since xN [k] and xN [k] converge to ω and ω, respectively, in monotonic manners

as discussed above. Consider the nonempty and disjoint sets Z1(kϵ, ϵ0) and Z2(kϵ, ϵ0).

Notice that the network is (f + 1, f + 1)-robust with l hops w.r.t. any set F following

the f -total model and the set of malicious nodes A also satisfies the f -total model.
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Hence, the network is (f +1, f +1)-robust with l hops w.r.t. the set A and at least one

of the three conditions in Definition 3.3.2 holds. Also notice that the normal node with

value xN [kϵ] will definitely be in set Z1(kϵ, ϵ0), and it is similar for the case of Z2(kϵ, ϵ0).

Hence, all nodes in either Z1(kϵ, ϵ0) or Z2(kϵ, ϵ0) have the (f + 1)-reachable property,

or the union of the two sets contains at least f + 1 nodes having the (f + 1)-reachable

property. Since there are at most f malicious nodes, for all cases, there must exist a

normal node in the union of Z1(kϵ, ϵ0) and Z2(kϵ, ϵ0) such that it has at least f + 1

independent paths originating from different nodes outside of its set and these paths

do not have any internal node in A.

Suppose that normal node i ∈ Z1(kϵ, ϵ0) ∩ N has the (f + 1)-reachable property.

Thus, node i has at least f + 1 neighbors within l hops outside set Z1(kϵ, ϵ0), i.e.,

the values of these neighbors are smaller than xi[kϵ] and are at most equal to ω − ϵ0.

Moreover, the original values of these multi-hop neighbors of node i will definitely reach

node i even if the source nodes are malicious (since the internal nodes of these paths

are all normal and they relay the values as received, without making any changes).

Hence, node i will use at least one of these values to update its own. This is because in

step 2(c) of Algorithm 1, node i will remove values lower than its own value of which

the cardinality of the minimum message cover is at most f . As a result, among the

neighbors within l hops outside set Z1(kϵ, ϵ0), the values from up to f of them will be

disregarded by node i.

Now, in Algorithm 1, the update rule (3.3) of step 3 is applied. Here, each coefficient

of the neighbors is lower bounded by α. Since the largest value that node i will use at

time kϵ is x
N [kϵ], placing the largest possible weight on xN [kϵ] produces

xi[kϵ + 1] ≤ (1− α)xN [kϵ] + α(ω − ϵ0)

≤ (1− α)(ω + ϵ) + α(ω − ϵ0) ≤ ω − αϵ0 + (1− α)ϵ.

Note that this upper bound also applies to the updated value of any normal node not

in Z1(kϵ, ϵ0), because such a node will use its own value in its update. Similarly, if node

i ∈ Z2(kϵ, ϵ0)∩N has the (f+1)-reachable property, then xi[kϵ+1] ≥ ω+αϵ0−(1−α)ϵ.

Again, any normal node not in Z2(kϵ, ϵ0) will have the same lower bound.

Next, consider the sets Z1(kϵ + 1, ϵ1) and Z2(kϵ + 1, ϵ1). By ϵ1 < ϵ0, these two sets

are still disjoint. Since at least one of the normal nodes in Z1(kϵ, ϵ0) decreases at least to

ω−ϵ1 (or below), or one of the nodes in Z2(kϵ, ϵ0) increases at least to ω+ϵ1 (or above), it
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must hold |Z1(kϵ + 1, ϵ1) ∩N| < |Z1(kϵ, ϵ0) ∩N|, |Z2(kϵ + 1, ϵ1) ∩N| < |Z2(kϵ, ϵ0) ∩N|,
or both. Recall that 0 < ϵγ < ϵγ−1 ≤ ϵ0. As long as there are still normal nodes

in Z1(kϵ + γ, ϵγ) and/or Z2(kϵ + γ, ϵγ), we can repeat the above analysis for time

step kϵ + γ, which will result in either |Z1(kϵ + γ, ϵγ) ∩N| < |Z1(kϵ + γ − 1, ϵγ−1) ∩N|,
|Z2(kϵ + γ, ϵγ) ∩N| < |Z2(kϵ + γ − 1, ϵγ−1) ∩N|, or both.

Since |Z1(kϵ, ϵ0) ∩N|+ |Z2(kϵ, ϵ0) ∩N| ≤ nN , there must be some time step kϵ + T

(with T ≤ nN ) such that either Z1(kϵ+T, ϵT )∩N or Z2(kϵ+T, ϵT )∩N is empty. In the

former case, all normal nodes in the network at time step kϵ + T have values at most

ω− ϵT , while in the latter case all normal nodes at time step kϵ+T have values no less

than ω+ ϵT . By (3.7) and T ≤ nN , it holds that ϵT > 0. Hence, we have contradiction

to the fact that the largest value monotonically converges to ω (in the former case)

or that the smallest value monotonically converges to ω (in the latter case). Hence, it

must be the case that ϵ0 = 0, proving that ω = ω. ■

We emphasize that the graph condition based on the notion of robustness with l

hops is tight for our MW-MSR algorithm. Our notion captures the capability of agents

to be influenced by the outside of the set in the multi-hop settings. We note that

in [102], an idea similar to robustness is proposed, and based on it, a tight necessary

and sufficient condition for Byzantine consensus using an MSR-type algorithm with

multi-hop communication is provided. However, the focus there is on the Byzantine

model and the condition is expressed in terms of the subgraph consisting of only the

normal nodes. Part of the reason to focus on only the subgraph of normal nodes is

that Byzantine nodes are more adversarial compared to malicious nodes as they can

send different values to different neighbors. Hence, the subgraph of normal nodes has

to be sufficiently robust to fight against the possible attacks. The condition there is

an extension of the one for the one-hop case shown in [113]. Moreover, to meet the

condition there, each node in G must have at least 2f + 1 incoming edges. This is

different from the case for the malicious model studied in this paper, where at least 2f

incoming edges are required. Further discussions on the minimum requirement for our

algorithm to guarantee resilient consensus are given in Section 3.6.

3.5 Asynchronous Network

In this section, we analyze the MW-MSR algorithm under asynchronous updates with

time delays in the communication among nodes.
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We employ the control input taking account of possible delays in the values from

the neighbors as

ui[k] =
∑

j∈Nl−
i

aij [k]x
P
j [k − τPij [k]], (3.8)

where xPj [k] denotes the value of node j at time k sent along path P and τPij [k] ∈ Z+

is the delay in this (j, i)-path P at time k. The delays are time varying and may be

different in each path, but we assume the common upper bound τ on any normal path

P , over which all internal nodes are normal, as

0 ≤ τPij [k] ≤ τ, j ∈ Nl−
i , k ∈ Z+. (3.9)

Hence, each normal node i becomes aware of the value of each of its normal l-hop neigh-

bor j on each normal (j, i)-path P at least once in τ time steps, but possibly at different

time instants [21]. Although we impose this bound on the delays for transmission of

messages, the normal nodes need neither the value of this bound nor the information

that whether a path P is a normal one or not.

The structure of the asynchronous MW-MSR algorithm can be outlined as follows.

At each time k, each normal node i chooses to update or not. If it chooses not to

update, then it keeps its value as xi[k+1] = xi[k]. Otherwise, it uses the most recently

received values of all its l-hop neighbors on each l-hop path to update its value using

the MW-MSR algorithm in Algorithm 1. Like the one-hop MSR algorithm, if node i

does not receive any value along some path P originating from its l-hop neighbor j

(i.e., the crash model), then node i will take this value on path P as an empty value

and will discard this value when it applies the WM-MSR algorithm. As we discussed

earlier in Section II-E, in the asynchronous case also, manipulating message paths is

equivalent to manipulating message values only and hence can be disregarded in our

analysis.

Let D[k] be a diagonal matrix whose ith entry is given by di[k] =
∑n

j=1 aij [k]. Then,

let the matrices Aγ [k] ∈ Rn×n for 0 ≤ γ ≤ τ and Lτ [k] ∈ Rn×(τ+1)n be given by

Aγ [k] =

{
aij [k] if i ̸= j and τij [k] = γ,
0 otherwise,

(3.10)

and Lτ [k] =
[
D[k]−A0[k] −A1[k] · · · −Aτ [k]

]
, respectively. Note that the summation

of each row of Lτ [k] is zero. The delay τij [k] will be set to be one of the delays τPij [k]
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corresponding to the normal paths as we discuss further later.

Now, the control input can be expressed as

uN [k] = −LN
τ [k]z[k],

uF [k] : arbitrary,
(3.11)

where z[k] = [x[k]Tx[k − 1]T · · ·x[k − τ ]T ]T is a (τ + 1)n-dimensional vector for k ≥ 0

and LN
τ [k] is a matrix formed by the first nN rows of Lτ [k]. Here, to simplify the

discussion, we assume that z[0] consists of the given initial values of the agents. Then,

the agent dynamics can be written as

x[k + 1] = Γ[k]z[k] +

[
0

InF

]
uF [k], (3.12)

where Γ[k] is an n× (τ + 1)n matrix given by Γ[k] =
[
In 0

]
−
[
LN
τ [k]T 0

]T
.

The main result of this section now follows. Here, the safety interval differs from

the synchronous case and is given by

Sτ =
[
min zN [0],max zN [0]

]
. (3.13)

Theorem 3.5.1 Consider a directed graph G = (V,E) with l-hop communication,

where each normal node updates its value according to the asynchronous MW-MSR

algorithm with parameter f . Under the f -total malicious model, resilient asymptotic

consensus is achieved only if the underlying graph is (f + 1, f + 1)-robust with l hops.

Moreover, if the underlying graph is (2f+1)-robust with l hops, then resilient consensus

is attained with the safety interval given by (3.13).

Proof: (Necessity) Since the synchronous algorithm is a special case of the asyn-

chronous algorithm, the necessary condition in Theorem 3.4.1 also holds here.

(Sufficiency) First, we show the safety condition. For k = 0, by the assumption on

z[0], it holds zN [0] ∈ Sτ , and thus xi[0] ∈ Sτ , ∀i ∈ N. Next, for k ≥ 0, let xNτ [k] and

xNτ [k] be the largest value and the smallest value, respectively, of the normal agents

from time k, k − 1, . . . , k − τ . That is,

xNτ [k] = max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
,

xNτ [k] = min
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
.

(3.14)
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Then we prove that xNτ [k] is a nonincreasing function of k ≥ 0. By (3.12), at time k ≥ 0,

each normal agent updates its value based on a convex combination of the neighbors’

values from k to k − τ . Moreover, the values outside of the interval determined by

the normal agents’ values [xNτ [k], xNτ [k]] will be ignored by step 2 of the MW-MSR

algorithm. This is because in this step, node i will remove the largest sized subsets

of large and small values that can be manipulated by at most f nodes within l hops.

Hence, we obtain xi[k + 1] ≤ max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
for any i ∈ N. We

also have
xi[k] ≤ max

(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
,

xi[k − 1] ≤ max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
,

...

xi[k + 1− τ ] ≤ max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
for any i ∈ N. Therefore, xNτ [k] is nonincreasing in time as

xNτ [k + 1] = max
(
xN [k + 1], xN [k], . . . , xN [k + 1− τ ]

)
≤ max

(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
= xNτ [k].

We can similarly prove that xNτ [k] is nondecreasing in time. This indicates that for

k ≥ 0, we have xi[k] ∈ Sτ , ∀i ∈ N. Thus, we have shown the safety condition.

Next, we show the convergence. As shown above, xNτ [k] and xNτ [k] are monotonically

decreasing and increasing, respectively, and moreover bounded. Thus, both of their

limits exist and are denoted by ωτ and ωτ , respectively. We claim that the limits

satisfy ωτ = ωτ , i.e., consensus is achieved. We prove by contradiction and assume

that ωτ > ωτ .

Recall that α lower bounds the nonzero entries of Γ[k]. Choose ϵ0 > 0 small enough

that ωτ − ϵ0 > ωτ + ϵ0. Fix

ϵ <
ϵ0α

(τ+1)nN

(1− α(τ+1)nN )
, 0 < ϵ < ϵ0. (3.15)

Define the sequence {ϵγ} by

ϵγ+1 = αϵγ − (1− α)ϵ, γ = 0, 1, . . . , (τ + 1)nN − 1.
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So we have 0 < ϵγ+1 < ϵγ for all γ. In particular, they are positive because by (3.15),

it holds that

ϵ(τ+1)nN
= α(τ+1)nN ϵ0 −

(τ+1)nN−1∑
m=0

αm(1− α)ϵ

= α(τ+1)nN ϵ0 − (1− α(τ+1)nN )ϵ > 0.

Take kϵ ∈ Z+ such that xNτ [k] < ωτ + ϵ and xNτ [k] > ωτ − ϵ for k ≥ kϵ. Such kϵ

exists due to the convergence of xNτ [k] and xNτ [k]. Then we can define the two disjoint

sets as

Z1τ (kϵ + γ, ϵγ) = {j ∈ N : xj [kϵ + γ] > ωτ − ϵγ},

Z2τ (kϵ + γ, ϵγ) = {j ∈ N : xj [kϵ + γ] < ωτ + ϵγ}.

Next, we show that one of the two sets becomes empty in a finite number of steps,

which contradicts the assumption on ωτ and ωτ being the limits. Consider the set

Z1τ (kϵ, ϵ0). Due to the definition of xNτ [k] and its limit ωτ , one or more normal nodes

are contained in the union of the sets Z1τ (kϵ + γ, ϵγ) for 0 ≤ γ ≤ τ + 1. We claim that

Z1τ (kϵ, ϵ0) is in fact nonempty. To prove this, it is sufficient to show that if a normal

node j is not in Z1τ (kϵ + γ, ϵγ), then it is not in Z1τ (kϵ + γ + 1, ϵγ+1) for γ = 0, . . . , τ .

Suppose that node j satisfies xj [kϵ + γ] ≤ ωτ − ϵγ . Every normal node updates

its value to a convex combination of the multi-hop neighbors’ values at the current or

previous times. Moreover, the values greater than xNτ [kϵ + γ] are ignored in step 2 of

the MW-MSR algorithm. Hence, the value of node j at the next time step is upper

bounded as
xj [kϵ + γ + 1] ≤ (1− α)xNτ [kϵ + γ] + α(ωτ − ϵγ)

≤ (1− α)(ωτ + ϵ) + α(ωτ − ϵγ)

≤ ωτ − αϵγ + (1− α)ϵ = ωτ − ϵγ+1.

(3.16)

It thus follows that node j is not in Z1τ (kϵ+γ+1, ϵγ+1). This means that the cardinality

of the set Z1τ (kϵ + γ, ϵγ) is nonincreasing for γ = 0, . . . , τ + 1. The same holds for

Z2τ (kϵ + γ, ϵγ), and hence Z2τ (kϵ, ϵ0) is nonempty too.

We next show that one of these two sets in fact becomes empty in finite time. Since

the graph is (2f + 1)-robust with l hops w.r.t. any set F satisfying the f -total model,

the graph is also (2f + 1)-robust with l hops w.r.t. set A (i.e., the set of adversarial

nodes). Therefore, between the two nonempty disjoint sets Z1τ (kϵ, ϵ0) and Z2τ (kϵ, ϵ0),

one of them has a normal agent with at least 2f+1 independent paths originating from
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the nodes outside and these paths do not have any internal node in the set A.

Suppose that normal node i ∈ Z1τ (kϵ, ϵ0) has this property. Since there are at most

f malicious nodes and node i can only remove the values of which the cardinality of

the minimum message cover is f . Moreover, node i is supposed to update once in at

most τ time steps. Therefore, when node i makes an update at time kϵ + τ , it will

use at least one delayed value from the normal nodes outside the set Z1τ (kϵ, ϵ0), upper

bounded by ωτ − ϵτ . It thus follows that, at time kϵ+ τ , when node i makes an update,

its value can be bounded as

xi[kϵ + τ + 1] ≤ (1− α)xNτ [kϵ + τ ] + α(ωτ − ϵτ ).

By (3.16), we have xi[kϵ+τ+1] ≤ ωτ−ϵτ+1. We can conclude that if node i in Z1τ (kϵ, ϵ0)

has 2f + 1 independent paths originating from the nodes outside the set, then it goes

outside of Z1τ (kϵ+τ+1, ϵτ+1) after τ+1 steps. Consequently, |Z1τ (kϵ + τ + 1, ϵτ+1)| <
|Z1τ (kϵ, ϵ0)|. Likewise, it follows that if Z2τ (kϵ, ϵ0) has a node having at least 2f + 1

independent paths originating from the nodes outside, then |Z2τ (kϵ + τ + 1, ϵτ+1)| <
|Z2τ (kϵ, ϵ0)|.

Since there are only nN normal nodes, we can repeat the steps above until one of

the sets Z1τ (kϵ + τ + 1, ϵτ+1) and Z2τ (kϵ + τ + 1, ϵτ+1) becomes empty, and it takes

no more than (τ +1)nN steps. Once the set becomes empty, it remains so indefinitely.

This contradicts the assumption that ωτ and ωτ are the limits. Therefore, we obtain

ωτ = ωτ . ■

Remark 3.5.1 In comparison to the synchronous update case studied in the previ-

ous section, the graph condition to achieve resilient consensus under the asynchronous

updates with delays is more restrictive. This is because when the nodes updates asyn-

chronously, the normal nodes may not receive the same values from the malicious nodes,

which creates a more adversarial situation for resilient consensus. Moreover, in the

next section, in Lemma 3.6.1, we prove that under the f -total model, a graph which is

(2f + 1)-robust with l hops is also (f + 1, f + 1)-robust with l hops. For instance, the

graph in Fig. 3.4 is 3-robust with 2 hops and hence (2, 2)-robust with 2 hops. Thus, as

expected, the sufficient condition for the asynchronous algorithm guaranteeing resilient

consensus is also sufficient for the synchronous algorithm.

Remark 3.5.2 The difference in the network requirements discussed above for the syn-
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Figure 3.4: The graph is not 2-robust with one hop, but it is 3-robust with 2 hops and
(2, 2)-robust with 2 hops.

chronous and asynchronous algorithms is a consequence partly due to the deterministic

nature in transmission times. In [22], it is shown that for an asynchronous algorithm

with one-hop communication without delays, we can recover the tight necessary and

sufficient network condition of the synchronous case, i.e., the graph to be (f +1, f +1)-

robust under the f -total malicious model. It is interesting that this result requires ran-

domization in agents’ communication instants whereas in the deterministic case, the

sufficient graph condition remains to be (2f + 1)-robustness, which coincides with the

implication of Theorem 3.5.1. In the multi-hop setting, however, delays are critical and

hence we do not pursue such results in this paper.

3.6 Discussions on Graph Robustness with Multi-hop Com-

munication

In this section, we demonstrate some properties of graph robustness with l hops, which

generalize the properties of robustness with one hop in [56] when l = 1 for this new

notion. Moreover, we provide the analysis of graph robustness with l hops for the case

where l is sufficiently large. This corresponds to the case of unbounded path length.

3.6.1 Properties of Robustness with l Hops

As discussed earlier, our definition of robustness with l hops is a generalization of the

definition of robustness with one-hop communication from [56]. Here, we are interested

in investigating how properties of robustness with the one-hop case can be extended

to the multi-hop case. In what follows, we present a series of lemmas that analyze the

generalized notion of robustness. Recall that robustness with l hops is defined w.r.t. the

given set F satisfying the f -total model, but we omit saying this when it is clear from
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the context in this section. Typically, we are interested in f = r − 1 for r-robustness.

The first result is simple, stating that (r, s)-robustness with l hops of a graph holds

with smaller r and s.

Lemma 3.6.1 If a directed graph G = (V,E) is (r, s)-robust with l hops, then it is also

(r′, s′)-robust with l hops when 0 ≤ r′ ≤ r and 1 ≤ s′ ≤ s.

In the second result, we show that the level of robustness of a given graph with l

hops does not decrease by adding edges to the graph nor by increasing the relay range

l.

Lemma 3.6.2 Suppose that a directed subgraph G = (V,E) of G′ = (V,E′) is (r, s)-

robust with l hops, where E ⊆ E′. Then G′ is (r, s)-robust with l hops. Moreover, G is

(r, s)-robust with l′ hops, where l′ ≥ l.

The maximum robustness with l hops for a graph consisting of n nodes is the same

as that with the one-hop case. The following lemma suggests that the bound n ≥ 2f+1

cannot be breached by introducing multi-hop communication to the MSR algorithms.

This bound is dependent on the nature of the MSR algorithms, which cannot tolerate

half or more of the agents to be adversarial.

Lemma 3.6.3 No directed graph G = (V,E) on n nodes is (⌈n/2⌉ + 1)-robust with l

hops. Moreover, the complete graph Kn is (⌈n/2⌉, s)-robust with l hops for 1 ≤ s ≤ n.

Proof: We consider the nontrivial case with n ≥ 3. Then pick V1 and V2 by taking

any bipartition of V (i.e., V1 ∩ V2 = ∅ and V1 ∪ V2 = V) such that |V1| = ⌈n/2⌉ and

|V2| = ⌊n/2⌋. Neither V1 nor V2 has ⌈n/2⌉+1 nodes; thus, neither one has a node being

(⌈n/2⌉ + 1)-reachable with l-hop communication. Hence, G is not (⌈n/2⌉ + 1)-robust

with l hops.

The proof for the complete graph case follows an analysis similar to the one for the

one-hop case [56]. ■

The following lemma exposes that the notion of (r, s)-robust graphs has a more

complicated structure in the relation between the two parameters r and s.

Lemma 3.6.4 If a directed graph G = (V,E) is (r, s)-robust with l hops under the

f -total model, then it is also (r − 1, s+ 1)-robust with l hops under the f -total model.
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Proof: Consider any nonempty disjoint subsets V1,V2 ⊂ V. If |Zr
Va
| = |Va| or

|Zr−1
Va

| = |Va| for a = 1, 2, then this pair of subsets satisfies conditions 1) or 2) of

(r − 1, s + 1)-robustness with l hops. Thus, assume |Zr
Va
| < |Va| and |Zr−1

Va
| < |Va|

for a = 1, 2. Then condition 3) for (r, s)-robustness with l hops must be satisfied, i.e.,

|Zr
V1
|+ |Zr

V2
| ≥ s.

Since s ≥ 1, at least one of Zr
V1
, Zr

V2
is nonempty. Suppose that Zr

V1
is nonempty.

Then, we choose i ∈ Zr
V1
. Pick the new pair of nonempty disjoint subsets as V′

1 = V1\{i}
and V′

2 = V2. Observe that if j ∈ Zr
V′
1
then j ∈ Zr−1

V1
. Because node i is the only

difference between V′
1 and V1, and node i can only be part of one independent path

whose destination is node j. Consequently, even if node i is on one independent path

whose destination is node j, node j still has the (r − 1)-reachable property, i.e., it

has at least r − 1 other independent paths of at most l hops originating from nodes

outside V1 and these paths do not have any internal nodes from set F. Then, by adding

i ∈ Zr
V1

⊆ Zr−1
V1

back into the set V1, we have

|Zr−1
V1

| ≥ |Zr
V′
1
|+ 1. (3.17)

Moreover, |Zr
V′
1
| < |V′

1| and |Zr
V′
2
| < |V′

2| (since V′
2 = V2). The first inequality holds

because if |Zr
V′
1
| = |V′

1| and from the observation we just proved (if j ∈ Zr
V′
1
then

j ∈ Zr−1
V1

), we have |Zr−1
V1

| = |V1|, leading us to a contradiction.

Therefore, for nonempty disjoint subsets V′
1,V

′
2, it must hold that |Zr

V′
1
|+ |Zr

V′
2
| ≥ s.

Together with (3.17), we have

|Zr−1
V1

|+ |Zr−1
V2

| ≥ |Zr
V′
1
|+ |Zr

V′
2
|+ 1 ≥ s+ 1,

suggesting that G is (r − 1, s+ 1)-robust with l hops under the f -total model. ■

From this result, we can directly derive the following corollary, which indicates that

if a graph is (2f+1)-robust with l hops, then it is also (f+1, f+1)-robust with l hops.

Corollary 3.6.1 If a directed graph G = (V,E) is (r+ s− 1)-robust with l hops, where

1 ≤ r + s− 1 ≤ ⌈n/2⌉, then G is (r, s)-robust with l hops.

Similar to the one-hop case, robustness with l hops can guarantee a certain level of

graph connectivity and a minimum in-degree of the graph. The proof for the connec-

tivity result is trivial and hence omitted.
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Lemma 3.6.5 If a directed graph G = (V,E) is r-robust with l hops, then G is at least

r-connected.

Lemma 3.6.6 If a directed graph G = (V,E) is (r, s)-robust with l hops under the

(r − 1)-total model, where 0 ≤ r ≤ ⌈n/2⌉ and 1 ≤ s ≤ n, then G has the minimum

in-degree δ(G) as

δ(G) ≥
{

r + s− 1 if s < r,
2r − 2 if s ≥ r.

Proof: The case for n ≤ 2 and r ≤ 1 is trivial. Consider the case for n ≥ 3 and

2 ≤ r ≤ ⌈n/2⌉. Fix node i ∈ V. Choose V1 = {i} and V2 = V\V1. Then, |Zr
V2
| = 0 and

|Zr
V1
| = |V1|. Hence, node i must have at least r independent paths from outside and

the number of the in-neighbors of node i should be |N−
i | ≥ r. (Note that the malicious

nodes can be the source nodes of these independent paths.)

When s < r, form V1 by choosing s−1 in-neighbors of node i along with node i itself.

Then, choose V2 = V \ V1. Since |V1| = s < r, then, |Zr
V2
| = 0 and |Zr

V1
| = |V1|. The

worst case is that the s− 1 in-neighbors of node i are all malicious, node i should have

at least r independent paths from outside, and these paths do not contain any malicious

nodes as internal nodes. This implies that node i has additional r in-neighbors outside

of V1, thereby guaranteeing |N−
i | ≥ r + s− 1.

When s ≥ r, form V1 by choosing r − 2 in-neighbors of node i along with node i

itself. Then, choose V2 = V \ V1. Since |V1| < r and s ≥ r, we have |Zr
V2
| = 0 and

|Zr
V1
| = |V1|. Consider the worst case that the r − 2 in-neighbors of node i are all

malicious. It must be that node i has additional r in-neighbors outside of V1, thereby

guaranteeing |N−
i | ≥ 2r − 2. Since we choose i ∈ V arbitrarily, we have proved the

bound for δ(G). ■

Here, we have extended the proof in [56] to the multi-hop case. From Lemma 3.6.6,

we conclude that G should have the minimum in-degree no less than 2f to guarantee

resilient consensus using the MW-MSR algorithm under the f -total malicious model.

This holds since the underlying graph G is at least (f +1, f +1)-robust with l hops for

achieving resilient consensus. For MSR algorithms, nodes with 2f in-neighbors may

not use any values from neighbors, which may appear problematic especially if there

are multiple such nodes. However, there are examples such as cycle graphs3 satisfying

3A cycle graph is an undirected graph consisting of only a single cycle.
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(f +1, f +1)-robust with l hops, while every node in cycle graphs has in-degree as 2f .

Detailed analysis is given in the next subsection.

3.6.2 The Case of Unbounded Path Length

In this subsection, we discuss the relation of the graph conditions used in this paper

and in the recent work [53]. The authors there studied the Byzantine binary consensus

under the local broadcast model, which is essentially equivalent to the f -total malicious

mode studied in the current paper. The proposed algorithm in [53] is based on a non-

iterative flooding algorithm, where nodes must relay their values over the entire network

along with the path information. This model corresponds to the case of unbounded

path length in our work, i.e. l ≥ l∗, where l∗ is the longest cycle-free path length of the

network. Moreover, they propose a tight necessary and sufficient graph condition for

their algorithm to achieve binary consensus under synchronous updates. Our aim in

this part of the paper is to establish that our graph condition is equivalent to theirs for

the case of unbounded path length (l ≥ l∗). Further, we will highlight that to achieve

the same tolerance as the algorithm in [53], our algorithm does not in general require

l∗-hop communication necessarily for general graphs.

To show the equivalence between the two graph conditions, we introduce some graph

notions from [53]. There, normal nodes update the states based on a modified certified

propagation algorithm [110], i.e., when a normal node receives f+1 same binary values

from different paths excluding a suspicious set F, it commits its value to this value.

Hence, their graph notion is closely related to the partitions of sets V and F.

Definition 3.6.1 For disjoint node sets X,Y, we say X → Y if and only if set X

contains at least f + 1 distinct incoming neighbors of Y, i.e., |{i : (i, j) ∈ E, i ∈ X, j ∈
Y}| > f . Denote X ̸→ Y when X → Y is not true.

Definition 3.6.2 For disjoint node sets X,Y and for set F, we say X
F
⇝ Y if and only

if for every node u ∈ Y, there exist at least f + 1 disjoint Xu-paths that have only u in

common and none of them contains any internal node from the set F. Denote X
F

̸⇝ Y

when X
F
⇝ Y is not true.

Two graph notions are introduced next, called conditions NC and SC. They are

known to be equivalent [53].
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Definition 3.6.3 (Condition NC) Given a graph G = (V,E), condition NC is said to

hold if for every partition L,C,R of V, and for every set F with |F| ≤ f , where both

L \ F and R \ F are non-empty, we have that either R ∪ C → L \ F or L ∪ C → R \ F.
(Condition SC) Given a graph G = (V,E), condition SC is said to hold if for every

partition L,R of V, and for every set F with |F| ≤ f , where both L \ F and R \ F are

non-empty, we have that either L
F
⇝ R \ F or R

F
⇝ L \ F.

We are now ready to show that condition NC (and hence condition SC) is equivalent

to our robust graph notion with multi-hop communication used in Theorem 3.4.1.

Proposition 3.6.1 Consider a directed graph G = (V,E) with l-hop communication

where l ≥ l∗. The graph G is (f + 1, f + 1)-robust with l hops if and only if condition

NC holds.

Proof: We first show the only if part. Since the graph is (f + 1, f + 1)-robust with

l hops under the f -total model, at least one of the three conditions in Definition 3.3.2

holds. For every partition L,R of V, and for every set |F| ≤ f , where both L \ F and

R\F are non-empty, we conclude that there is at least one normal node i in the union of

L and R that has f +1 independent paths from outside and these paths do not contain

any internal nodes in F. This can be seen in the proof of Theorem 3.4.1. Suppose that

node i ∈ L has this property. For each independent path, there exists at least one edge

that goes from the outside of L to a node in L, and thus, R ∪ C → L \ F. The case for

i ∈ R can be proved similarly.

Next, we show the if part by contradiction. Suppose that G is not (f + 1, f + 1)-

robust with l hops. Then, none of the three conditions in Definition 3.3.2 holds. For

every partition L,R of V, and for every set |F| ≤ f , where both L \ F and R \ F are

non-empty, we conclude that all the normal nodes in the union of L and R have at

most f independent paths from outside where these paths do not contain any internal

nodes in F. Hence, L
F

̸⇝ R \ F and R
F

̸⇝ L \ F (i.e., condition SC does not hold), and

thus we have contradiction.

Finally, since condition SC and condition NC are equivalent, we have proved that

condition NC implies the (f + 1, f + 1)-robustness with l hops. ■

Although our condition coincides with those in [53] when l ≥ l∗, we note that

the maximum robustness of a given graph does not require l ≥ l∗ necessarily. That

is, for a given graph under the f -total model, our algorithm may not require l∗-hop
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Figure 3.5: Illustration for cycle graphs.

communication to get the same tolerance as the algorithm using l∗-hop communication

in [53]. We illustrate this fact by presenting the examples of cycle graphs.

From the example graph in Fig. 3.3(a), we can see that for any cycle graph, the

following lemma holds. This indicates that resilient consensus is guaranteed using the

MW-MSR algorithm in such graphs when one node behaves maliciously. In [53], it is

reported that a cycle graph can tolerate one malicious node, but their algorithm uses the

l∗-hop communication. In this respect, as the following lemma suggests, our algorithm

is efficient by exploiting the ability of the MW-MSR algorithm and the graph condition

is tighter than the one in [53]. Moreover, note that a cycle graph is 2-connected, which

is the minimum connectivity requirement for any MSR-based algorithm to guarantee

resilient consensus for f = 1.

Lemma 3.6.7 The cycle graph Cn with n > 2 nodes is (2, 2)-robust with ⌈l∗/2⌉ hops

under the 1-total model.

Proof: We need to show that for any node partition V1, V2 of V, at least one of

the conditions for (2, 2)-robustness with l hops holds. Let F be a set of a single node,

i.e., F = {m1} (satisfying the 1-total model). We first select a single node as set V1.

Then, for any set F and for any set V2, condition 1) for (2, 2)-robustness with l hops

holds. (The case is similar when we select non-neighboring nodes as set V1.) Second,

we select two neighboring nodes as set V1. If node m1 /∈ V1, then condition 1) for

(2, 2)-robustness with 2 hops holds. If node m1 ∈ V1, then node m1 has 2 independent

2-hop paths originating from outside. To meet the conditions for (2, 2)-robustness with

l hops, we need to find another node having this property in V2 (see the illustration in

Fig. 3.5). The worst case is when all the remaining nodes are in V2. Then the middle

node in V2 has 2 shortest paths originating from outside, which are of length ⌈l∗/2⌉
hops.

We can continue this process and select three neighboring nodes as set V1. We can

follow an analysis as above: If node m1 ∈ V1 and all the remaining nodes are in V2,
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Figure 3.6: Time responses of the synchronous one-hop W-MSR algorithm.

Figure 3.7: Time responses of the synchronous two-hop MW-MSR algorithm.

then the middle node in V2 has 2 shortest paths originating from outside, which are

shorter than the length ⌈l∗/2⌉ hops. This process can be continued until we switch sets

V1 and V2. Hence, we conclude that the cycle graph Cn is (2, 2)-robust with ⌈l∗/2⌉
hops. ■

3.7 Numerical Examples

In this section, we conduct numerical simulations over networks using both synchronous

and asynchronous versions of the proposed MW-MSR algorithm to verify their effec-

tiveness.

3.7.1 Synchronous MW-MSR Algorithm

In this part, we conduct simulations for the synchronous MW-MSR algorithm. Consider

the undirected network in Fig. 3.3(a) with f = 1. Let the initial states be x[0] =

[1 2 4 6]T . This graph is not (2, 2)-robust with one hop, and hence, is not robust

enough to tolerate f = 1 using the conventional one-hop W-MSR algorithm. Here

we set node 1 to be malicious and let the value of node 1 evolve based on the sine

function w.r.t. time. Then, normal nodes update their values using the one-hop W-

MSR algorithm. The results are given in Fig. 3.6, and resilient consensus among normal

nodes is not achieved.
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Figure 3.8: Time responses of the synchronous one-hop W-MSR algorithm.

(a) The states of all nodes.

(b) Consensus error.

Figure 3.9: Time responses of the synchronous two-hop MW-MSR algorithm.

Next, consider the two-hop case for this graph. For malicious node 1, we assume

that it does not only manipulate its own value as in the one-hop case, but also relays

false information. Specifically, when node 1 receives a message from node 4 and relays

the value x4[k] to node 2, it manipulates this value based on the sine function w.r.t.

time. Similarly, when node 1 receives a message from node 2 and relays the value x2[k]

to node 4, it manipulates this value to a fixed value of 0.5. Then, we observe that

resilient consensus is achieved as shown in Fig. 3.7.

3.7.2 Asynchronous MW-MSR Algorithm

In this part, we conduct simulations for the asynchronous MW-MSR algorithm. Con-

sider the directed network in Fig. 3.4 with f = 1. Let the nodes take initial states

as x[0] = [3 5 1 7 3 9]T . This graph is not 2-robust with one hop (e.g., consider the

58



3.7 Numerical Examples

sets {1, 3, 5} and {2, 4, 6}), and hence, is not robust enough to tolerate f = 1 using

the one-hop W-MSR algorithm. Here, we set node 1 to be malicious and assume that

the value of node 1 evolves based on the sine function w.r.t. time. Then, we apply the

one-hop W-MSR algorithm and observe that resilient consensus among normal nodes

is not achieved as shown in Fig. 3.8.

Next, consider the two-hop case for this graph. It becomes 3-robust with 2 hops,

and hence, it is also (2, 2)-robust with 2 hops as Corollary 3.6.1 indicates. Therefore,

in the two-hop case, it can tolerate one malicious node under both synchronous and

asynchronous updates. For malicious node 1, we assume that it does not only manipu-

late its own value as in the one-hop case, but also relays false information. Specifically,

when node 1 receives a message from node 3 and relays the value x3[k] to its other

neighbors, it manipulates this value to a fixed value of 0.5. Similarly, when node 1

receives a message from node 6 and relays the value x6[k] to other neighbors, it manip-

ulates this value to a fixed value of 9.5. Additionally, when node 1 receives a message

from node 5 and relays the value x5[k] to other neighbors, it manipulates this value

based on the sine function w.r.t. time. In Fig. 3.9, we plot the consensus error given

by ∆x0[k] = maxxN [k]−minxN [k] and observe that resilient consensus is achieved.

Lastly, we examine the two-hop algorithm under asynchronous updates with delays.

We consider the same attack, but let each normal node update in a periodic manner.

Specifically, nodes 2, 3, 4, 5, and 6 update in every 1, 5, 4, 3, and 2 steps, respectively.

The delays for the messages from one-hop neighbors and two-hop neighbors are set as 0

and 1 step, respectively. Fig. 3.10 shows the states as well as the consensus error given

by ∆xτ [k] = max zN [k]−min zN [k]. It indicates that consensus is attained despite the

malicious attacks. Note that in this situation, we can only guarantee the nonincreasing

property of ∆xτ [k] (with τ = 5). Through these simulations, we have verified the

effectiveness of the MW-MSR algorithms to achieve resilient consensus in small-scale

networks.

3.7.3 Simulations in Large Wireless Sensor Networks

In this part of the simulations, we create a WSN composed of 100 nodes located in

a grid structure as shown in Fig. 3.11. Let the nodes take indices 0, 1, . . . , 99 and

the coordinate of node i is (i mod 10, ⌊ i
10⌋). Each node can communicate only with

the nodes located within the communication radius of r. Once r is determined, the
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(a) The states of all nodes.

(b) Consensus error.

Figure 3.10: Time responses of the asynchronous two-hop MW-MSR algorithm.

Figure 3.11: The 100-node sensor network. The red nodes are set as malicious one by
one as f increases up to 11.

topology of the network is formed. Then we apply the one-hop, two-hop, and three-

hop MW-MSR algorithms to the network. Recall that f denotes the maximum number

of malicious nodes in the network, and we increase f from 0 to 11 by selecting the

malicious nodes with indices in the order of 32, 34, 36, 38, 43, 62, 64, 66, 68, 74, 14.

Here, we examine how the network connectivity affects the performance of the MW-

MSR algorithms with different hops. Using different values for the number of malicious

agents f and the communication radius r, the results of the one-hop algorithm are

presented in Fig. 3.12(a). For each f and each r (corresponding to one cell in the

figure), we compute the success rate of the algorithm to achieve resilient consensus
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over 50 Monte Carlo runs with randomly chosen initial values (within [0, 100]) of the

normal agents for each run. The malicious nodes take values based on sine functions

w.r.t. time. Similarly, we also conduct simulations for the two-hop and the three-hop

algorithms and the results are given in Figs. 3.12(b) and (c), respectively.

One can see that by increasing the number of hops l, the success rate of the algorithm

to achieve resilient consensus increases almost for every value of f . Such improvement

is especially significant when f ≤ 6 and r ≤ 3. This verifies our intuition as well

as theoretical findings that graph robustness increases as l increases. However, the

difference between the results for the two-hop and the three-hop algorithms is somewhat

minor. One reason is that the maximum robustness under the f -total model of a given

graph is bounded by the minimum in-degree 2f . This may indicate that the two-hop

communication for this graph already reaches the number of hops for the maximum

graph robustness.

In these simulations, the success rate for reaching consensus is determined by the

level of consensus error at time k = 70. If the consensus error is below the threshold

c = 1, then the run is considered as a success. Hence, if the consensus process is very

slow, it may be considered as a failure. For example, observe that for the case of f = 0

(i.e., with no attacks) the success rate increases with larger r ≤ 1.5 while the network

is connected as long as r > 1.

We should remark that the process of consensus forming can be accelerated by

increasing the number of hops, as discussed in [48] for the fault-free case. This can

be clearly seen in all plots in Fig. 3.13, presenting the time responses of the consensus

errors for several cases of f and r, where ∆x1,∆x2 and ∆x3 stand for the consensus

errors for the one-hop, two-hop, and three-hop algorithms, respectively. Based on

these examples, we conclude that by introducing multi-hop communication to the MSR

algorithms, it does not only improve the robustness of the network but also accelerates

the convergence in consensus forming even in adversarial environments.

3.8 Summary

In this chapter, we have investigated the resilient consensus problem when multi-hop

communication is available. We have proposed generalized versions of MSR algorithms

to correctly use the additional values received from multi-hop neighbors. Moreover,

we have fully characterized the network requirement for the algorithms in terms of
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(a) One-hop algorithm.

(b) Two-hop algorithm.

(c) Three-hop algorithm.

Figure 3.12: Success rate of the MW-MSR algorithm.

robustness with l hops. By introducing multi-hop communication, the convergence of

the resilient consensus process can be accelerated. Furthermore, it provides an effec-

tive way to enhance robustness of networks without increasing physical communication

links. In future works, we intend to extend our algorithms to the asynchronous Byzan-

tine consensus problem using multi-hop communication with a fixed number of hops.
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(a) Consensus error for f = 0, r = 1.2.

(b) Consensus error for f = 1, r = 1.2.

(c) Consensus error for f = 9, r = 3.1.

Figure 3.13: Consensus error of the MW-MSR algorithm.
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Chapter 4

Asynchronous Approximate

Byzantine Consensus via

Multi-hop Communication

In this chapter, we study a resilient consensus problem with a distinctive feature in

comparison to the one in Chapter 3: The adversaries are of the Byzantine type. We

solve the approximate Byzantine consensus problem based on the multi-hop extensions

of MSR algorithms from Chapter 3. We find a tight graph condition expressed in

terms of strongly robust graphs. We show that while multi-hop communication may

increase the attackers options for attacks, it is capable to enhance the resilience of the

multi-agent system under Byzantine attacks.

Compared to related works, the contributions of this chapter can be outlined as

follows. The asynchronous Byzantine consensus problem was studied in [94], but the

algorithm there requires agents to send their values to the entire network. We emphasize

that the case studied in [94] can be viewed as a special case. In fact, it corresponds to

multi-hop paths with unbounded lengths, and their condition coincides with our graph

condition by setting the path length to be the longest cycle-free one in the graph. Since

in our model, the number of hops is limited, our approach is more distributed in the

sense that we only require each normal node to have the local topology information and

neighbors’ values up to l hops away. We also study the f -local model for our algorithm,

which is even more adversarial than the f -total model studied in [94]. Besides, there

are further differences in asynchrony settings between our approach and [94]. More
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details are given in Section 4.4.

The rest of this chapter is organized as follows. Section 4.1 outlines the system

model. Section 4.2 presents the notion and properties of graph robustness with l hops.

Sections 4.3 and 4.4 derive conditions under which the MW-MSR algorithms guarantee

Byzantine consensus under synchronous and asynchronous updates, respectively. Sec-

tion 4.5 provides examples to demonstrate that multi-hop communication can improve

the robustness of general graphs. Lastly, Section 4.6 concludes this chapter.

4.1 Problem Formulation

In this section, we first state the system model studied in this chapter. Then, we outline

the structure of the resilient consensus algorithm.

4.1.1 Update Rule

Consider the directed graph G = (V,E) consisting of the node set V = {1, ..., n} and

the edge set E ⊂ V × V. The subgraph of G = (V,E) induced by the node set H ⊂ V

is the subgraph GH = (V(H),E(H)), where V(H) = H, E(H) = {(i, j) ∈ E : i, j ∈ H}.
We adopt the same relay model for the normal nodes as the one in Chapter 3, which is

similar to the ones in the multi-hop works [37; 102]. However, the threat model studied

in Chapter 3 is different from that of the current chapter.

Consider a time-invariant network modeled by the directed graph G = (V,E). The

node set V is partitioned into the set of normal nodes N and the set of adversary nodes

A, where nN = |N| and nA = |A|.
Recall that agents communicate with each other according to the communication

model indicated in Section 2.3.1. When there is no attack in the network, we can

employ the common consensus update rule (e.g., [82]). It can be given in the compact

form as

x[k + 1] = x[k] + u[k], u[k] = −L[k]x[k], (4.1)

where x[k] ∈ Rn and u[k] ∈ Rn are the state vector and the control input vector

respectively, and L[k] is the Laplacian matrix of the l-th power of G determined by the

messages mij [k] for i ∈ V and j ∈ Nl−
i .

Then we introduce asynchrony in our algorithm [21; 120]. At each time k, normal

node imay or may not update its value. If node i does not update, then xi[k+1] = xi[k],
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i.e., ui[k] = 0. Denote by U[k] ⊂ V the set of agents updating at time k. The system

is said to be synchronous if U[k] = V for all k, and otherwise it is asynchronous.

Discussions about different asynchrony settings are presented in Section 4.4.

4.1.2 Threat Models

In this chapter, we study the resilient consensus under f -total/local Byzantine attacks.

The definitions of the adversary model is given in Section 2.2.2. Byzantine models

are well studied in the area of computer science [26; 62; 113]. Note that the malicious

model studied in [21; 56] and Chapter 3 is a weaker threat model compared to Byzantine

model as malicious nodes must send the same information to their neighbors, which is

suitable for broadcast networks.

As commonly done in the literature, we assume that each normal node knows the

value of f and the topology information of the graph up to l hops. Moreover, to keep

the problem tractable, we assume that each adversary node i cannot manipulate the

path values in the messages containing its own state xi[k] and those that it relays as

stated in Assumption 2.3.1.

4.1.3 Resilient Asymptotic Consensus and Algorithm

We now introduce the type of consensus among the normal agents to be sought in this

chapter [21; 56; 102; 125].

Definition 4.1.1 If for any possible sets and behaviors of the adversary agents and

any state values of the normal nodes, the following two conditions are satisfied, then

we say that the normal agents reach resilient asymptotic consensus:

1. Safety: There exists a bounded safety interval S determined by the initial values

of the normal agents such that xi[k] ∈ S,∀i ∈ N, k ∈ Z+.

2. Agreement: There exists a state x∗ ∈ S such that limk→∞ xi[k] = x∗,∀i ∈ N.

In this chapter, the main goal is to characterize the conditions on the network struc-

ture that guarantee approximate asynchronous Byzantine consensus using the MW-

MSR algorithm (presented in Algorithm 1). Before proceeding to such an analysis, in

Section 4.3, we introduce several notions related to robust graphs. In Section 4.4, we

first consider the case of synchronous updates. Then, in Section 4.5, we consider the
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more realistic situation using multi-hop settings, which is the asynchronous updates

with time delays in the communication among agents.

4.2 Graph Robustness with Multi-hop Communication

In this section, we provide the definition of robustness with multi-hop communication,

which is the key graph condition to guarantee resilient consensus.

4.2.1 The Notion of (r, s)-Robustness with l Hops

The notion of graph robustness was first introduced in [56], and it was proved that

graph robustness gives a tight graph condition guaranteeing resilient consensus using

MSR-based algorithms. In [125], we generalized this notion to the multi-hop case,

where nodes can exchange values with their l-hop neighbors through different paths.

Its definition is as follows. See Section 3.3 for more discussions for this notion.

Definition 4.2.1 A directed graph G = (V,E) is said to be (r, s)-robust with l hops with

respect to a given set F ⊂ V, if for every pair of nonempty disjoint subsets V1,V2 ⊂ V,

at least one of the following conditions holds:

(1) Zr
V1

= V1; (2) Zr
V2

= V2; (3)
∣∣Zr

V1

∣∣+ ∣∣Zr
V2

∣∣ ≥ s,

where Zr
Va

is the set of nodes in Va (a = 1, 2) that have at least r independent paths of

at most l hops originating from nodes outside Va and all these paths do not have any

nodes in set F as intermediate nodes (i.e., the nodes in F can be source or destination

nodes in these paths). Moreover, if the graph G satisfies this property with respect to

any set F satisfying the f -total model, then we say that G is (r, s)-robust with l hops

under the f -total model. When it is clear from the context, we just say G is (r, s)-robust

with l hops.

Next, we provide some properties of graph robustness with multi-hop communica-

tion shown in Section 3.6. Note that all the properties listed coincide with the ones of

one-hop case in [56] when l = 1. Here, ⌈·⌉ denotes the ceiling function.

Lemma 4.2.1 If a graph G = (V,E) is (r, s)-robust with l hops, then the following

hold:

1. G is (r′, s′)-robust with l hops, where 0 ≤ r′ ≤ r, 1 ≤ s′ ≤ s.

67



4.2 Graph Robustness with Multi-hop Communication

2. G is (r − 1, s+ 1)-robust with l hops.

3. G has a directed spanning tree. Moreover, if G is undirected, then it is r-connected.

4. r ≤ ⌈n/2⌉. Moreover, G is (r, s)-robust with l hops if it is (r + s− 1)-robust with

l hops.

4.2.2 The Notion of r-Strongly Robust Graphs with l Hops

To deal with the Byzantine model, we need to focus on the subgraph consisting of only

the normal nodes. Define such a subgraph as the normal network as follows.

Definition 4.2.2 For a network G = (V,E), define the normal network of G, denoted

by GN, as the network induced by the normal nodes, i.e., GN = (N,EN), where EN is

the set of directed edges among the normal nodes.

Note that for the malicious model, we use the notion of robustness with l-hops to

guarantee that any normal node i can be influenced by the normal nodes outside the

set it belongs to. Generally, the Byzantine model is more adversarial in the sense that

Byzantine nodes can send different values to different neighbors. That means for an

l-hop (l ≥ 2) Byzantine neighbor j of node i, node i can receive different values of node

j even from the normal nodes between nodes j and i. Therefore, more connections

among the normal nodes are required to guarantee Byzantine consensus.

For the one-hop algorithms in [56] and [113], the graph condition that the normal

network is (f +1)-robust is proved to be necessary and sufficient for achieving resilient

consensus under the f -total Byzantine model. We now extend this notion to the multi-

hop setting and define it as r-strongly robust graphs with l hops as follows.

Definition 4.2.3 Let F be a subset of nodes in G and denote the subgraph of G induced

by node set H = V \ F as GH. Then graph G is said to be r-strongly robust with l hops

with respect to F if the induced subgraph GH is r-robust with l hops. If graph G satisfies

this property with respect to any set F satisfying the f -total/local model, then we say

that G is r-strongly robust with l hops under the f -total/local model. When it is clear

from the context, we just say G is r-strongly robust with l hops.

We can see that both robustness and strong robustness depend on the choice of set

F. Moreover, this set depends on the upper bound of the number of the adversary nodes

68



4.3 Synchronous Byzantine Consensus

(a) (b)

Figure 4.1: Both graphs are not 2-strongly robust with one hop but are 2-strongly
robust with 2 hops.

and the adversarial models (f -total/local model). We finally illustrate how multi-hop

communication can enhance resiliency through an example. The two graphs in Fig. 4.1

are not 2-strongly robust with one hop. See, for example, in the graph in Fig. 4.1(a),

if we remove the node in blue, the remaining graph is not 2-robust. The graphs are

however 2-strongly robust with 2 hops under both 1-total/local models.

4.3 Synchronous Byzantine Consensus

In this section, we provide the analysis of the MW-MSR algorithm under synchronous

updates.

It is worth noting that the recent paper [102] investigated an MSR-based algorithm

with multi-hop communication in the presence of f -total Byzantine model under syn-

chronous updates. There, they provided a necessary and sufficient condition for their

algorithm to achieve Byzantine consensus. While their proof techniques are different,

the condition can be interpreted by the notion of robustness with multi-hop commu-

nication as well. Here, we extend the proof for the f -local model, which contains the

case of the f -total model. Besides, based on our proof scheme, we can provide the

analysis of our MW-MSR algorithm applied in asynchronous updates with time delays

as we will see in Section 4.5; such a case is absent in [102]. Moreover, our condition for

the unbounded path length case is equivalent to the conditions in [26] for synchronous

undirected networks.

4.3.1 Consensus Analysis

Denote the vectors consisting of the states of the normal nodes and those of the Byzan-

tine nodes by xN [k] and xA[k], respectively. Then, for the agents using the synchronous
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MW-MSR algorithm, the safety interval is given by

S =
[
minxN [0],maxxN [0]

]
. (4.2)

We are ready to state the main result for this section.

Proposition 4.3.1 Consider a directed graph G = (V,E) with l-hop communication,

where each normal node updates its value according to the synchronous MW-MSR al-

gorithm with parameter f . Under the f -local Byzantine model, resilient asymptotic

consensus is achieved with safety interval (4.2) if and only if G is (f + 1)-strongly

robust with l hops.

Proof: (Necessity) If G is not (f + 1)-strongly robust with l hops, then there exists

a normal network GN which is not (f + 1)-robust with l hops. In such a case, there

are nonempty, disjoint subsets V1,V2 ⊂ N such that any node in the two sets has at

most f distinct paths (only the node itself is common in these paths) of at most l hops

originating from normal nodes outside of its respective set. Let the nodes in the two

sets take the maximum and minimum values in the network, respectively. Suppose that

the Byzantine nodes send the maximum and minimum values to the nodes in V1 and

V2, respectively.

Consider node i ∈ V1. Since the cardinality of the minimum message cover of the

values larger than itself (values from the Byzantine nodes) is at most f , node i will

discard these values. We claim that the cardinality of the minimum message cover of

the values smaller than itself (values from the normal nodes outside of V1) is also at

most f . This can be proved in three cases: (i) All the incoming neighbors outside of V1

are direct neighbors of node i, (ii) all the incoming neighbors outside of V1 are l-hop

(l ≥ 2) neighbors of node i, and (iii) situations other than (i) and (ii). For case (i), it is

clear that this statement holds. For case (ii), either node i has at most f independent

paths from the l-hop (l ≥ 2) neighbors outside of V1, where the cardinality of the l-hop

neighbors can be bigger than f ; or node i has more than f independent paths from

the l-hop (l ≥ 2) neighbors outside of V1, where the cardinality of the l-hop neighbors

can be at most f . In either ways, the cardinality of the minimum message cover of

the minimum values is at most f . For case (iii), note that the direct neighbors will be

part of the minimum message cover always. For the remaining l-hop neighbors outside,

following the analysis for case (ii), we can conclude that the cardinality of the minimum
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(a) (b) (c)

Figure 4.2: (a) (2, 2)-robust. (b) 2-strongly robust. (c) 3-robust.

message cover of the minimum values is at most f . Thus, in all cases, node i discards

the values from the outside of V1 and keeps its value.

Similar analysis applies when i ∈ V2. Therefore, nodes in these two sets never use

any values from outside their respective sets and consensus cannot be reached.

(Sufficiency) Besides the method used in [102], we can prove the sufficiency part

using the analysis as shown in the proof of Theorem 4.4.1, which is for asynchronous

updates, since synchronous updates form one special case. ■

We must note that if G is (f + 1)-strongly robust with l hops, then the normal

network GN is guaranteed to be (f + 1)-robust with l hops for any possible cases of

the adversary set A under the f -local model. The latter condition is tighter than the

former one, but it is not checkable in practice since the identities of the adversary nodes

in A are unknown. Thus, in Proposition 4.3.1, we provide the graph condition on G

instead of the condition on the normal network GN.

We would like to emphasize that our result is a generalization of those in the lit-

erature. As mentioned earlier, the work by [102] is restricted to the f -total model.

On the other hand, [26] has studied the undirected networks case where the multi-hop

communication has unbounded path lengths. In fact, our condition is equivalent to the

two conditions there: (i) n ≥ 3f + 1 and (ii) the graph connectivity is no less than

2f +1. We can establish the condition (i) by noticing that complete networks have the

largest robustness. By Lemma 4.2.1(4), the robustness of such a graph after removing

any f nodes is no greater than ⌈n−f
2 ⌉. Thus, our result implies ⌈n−f

2 ⌉ ≥ f + 1, which

is equivalent to n ≥ 3f + 1. For the connectivity condition (ii), note that according to

our graph condition, the graph after removing any f nodes needs to be (f + 1)-robust

with l hops. Then, we can conclude that the graph connectivity is no less than 2f + 1

for any graph being (f + 1)-strongly robust with l hops.
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4.3.2 Discussions on Different Graph Conditions

In Table 1.1, we have seen a summary of graph conditions for resilient consensus under

different threat models and update schemes. Notably, there are three conditions under

the f -total/local model. We will clarify the relations among these conditions in the

next proposition. It shows a certain order among the different models as we will discuss

further.

Proposition 4.3.2 For the following graph conditions on any directed graph G = (V,E)

under the f -total/local model, where l ∈ Z+:

(A) G is (2f + 1)-robust with l hops,

(B) G is (f + 1)-strongly robust with l hops,

(C) G is (f + 1, f + 1)-robust with l hops,

it holds that A ⇒ B and B ⇒ C. Moreover, C ⇏ B and B ⇏ A.

Proof: (A ⇒ B) For a graph satisfying A, take a set F satisfying the f -total/f -local

model. Select any nonempty disjoint subsets V1,V2 ⊂ H, where H = V \ F. Choose

i ∈ Z
2f+1
V1

. Then, after removing nodes in the set F from V, it must hold that i ∈ Z
f+1
V1

in GH. Hence, GH is (f + 1)-robust with l hops. This is true for any set F. Thus, B

holds.

(B ⇒ C) We show that ¬C ⇒ ¬B. In a graph satisfying ¬C, for some nonempty

disjoint subsets V1,V2 ⊂ V, at most f nodes in V1,V2 have f + 1 independent paths

originating from the nodes outside. We choose these f nodes as the set F. As a conse-

quence, none of the remaining nodes in V1,V2 has f +1 independent paths originating

from the nodes outside. Hence this GH is not (f + 1)-robust with l hops.

(C ⇏ B, B ⇏ A) We show these cases through counter examples in Fig. 4.2.

Suppose that the set F satisfies 1-total model (i.e., |F| = f = 1). The graph in

Fig. 4.2(a) is (2, 2)-robust (satisfying A), but does not satisfy that any GH is 2-robust

where H = V \ F (not satisfying B). The graph in Fig. 4.2(b) satisfies that any GH is

2-robust (satisfying B), but this graph is not 3-robust (not satisfying C). Moreover,

this graph needs one more edge to be 3-robust as indicated in Fig. 4.2(c). ■

For synchronous update schemes, conditions (A) and (C) are for malicious adver-

saries under the f -local and f -total models, respectively. On the other hand, condition

(B) is for Byzantine adversaries for both f -local/total models as we have seen in this

section. It is clear that in comparison to the malicious model, Byzantine adversaries
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are more adversarial and must require further connectivity in the network. Condition

(A) has been known as a sufficient condition for the f -local malicious model, but we

have now established a tighter result as shown in the following corollary.

Corollary 4.3.1 Consider a directed graph G = (V,E) with l-hop communication,

where each normal node updates its value according to the synchronous MW-MSR al-

gorithm with parameter f . Under the f -local malicious model, resilient asymptotic

consensus is achieved with safety interval (4.2) if G is (f + 1)-strongly robust with l

hops and only if G is (f + 1, f + 1)-robust with l hops.

4.4 Asynchronous Byzantine Consensus

In this section, we provide the analysis of the MW-MSR algorithm under asynchronous

updates with delays in communication. Furthermore, we show that our approach has

certain advantages over the conventional ones in terms of threat models and computa-

tional complexity.

4.4.1 Discussions on Asynchrony

In the synchronous updates case studied in Section 4.3 as well as in [102], normal nodes

are assumed to exchange values with l-hop neighbors within the same time step. In

practice, however, normal nodes may not be synchronized nor have access to the current

values of all l-hop neighbors simultaneously, especially when l is large. Thus, for the

MSR algorithm with multi-hop communication, it is clearly desirable to carry out the

analysis for asynchronous updates with time delays. In [94], the authors studied the

Byzantine consensus under asynchronous updates using a flooding-based algorithm,

which essentially requires the normal nodes to know the global network topology and

send their values to the entire network. From the perspective of our study, this is a

specific case where the path lengths are unbounded (i.e., l ≥ l∗, where l∗ is the length

of the longest cycle-free path in the network).

In this section, we provide the analysis for a network using the MW-MSR algorithm

in the presence of f -total/local Byzantine model under asynchronous updates with time

delays. The asynchrony setting in this paper follows the approach generally assumed in

asynchronous consensus works for fault-free networks [59; 120], and those considering
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malicious attacks (e.g., [21]). That is, when a normal node updates, it uses the most

recently received values of its l-hop neighbors.

Here, we would like to briefly highlight how delays in asynchronous algorithms for

resilient consensus are handled in the area of computer science especially through the

notion of rounds commonly used in, e.g., [4; 6; 94]. There, each node labels its updated

value with round r, representing the number of transmissions made so far. Moreover,

if a normal node wants to update its next value with round r + 1, it has to wait until

receiving a sufficient number of values labeled with the same round r. This may cause

potentially large delays in making the (r + 1)th update for some nodes. We note that

the use of rounds can create further problems due to following the fixed order in the

indices of rounds. That is, node i may receive the value of round r+1 before the one of

round r from its neighbor. This may occur even along a non-faulty path. In this case,

based on rounds, the old data from round r will be used even though more recent data

of round r + 1 is available at the node. This is because the FIFO (first-in-first-out)

message receiving mechanism is applied in [4], [94]. However, in our asynchrony setting,

this is not a problem since node i will use the most recently received value of node j

to update whenever node i chooses to update.

4.4.2 Consensus Analysis

When communication among nodes is subject to possible time delays, we can write the

control input as

ui[k] =
∑

j∈Nl−
i

aij [k]x
P
j [k − τPij [k]], (4.3)

where τPij [k] ∈ Z+ denotes the delay in this (j, i)-path P at time k and xPj [k] denotes

the value of node j at time k sent along path P . The delays are time varying and may

be different in each path, but we assume the common upper bound τ in any normal

path P (i.e., all nodes on path P are normal) as

0 ≤ τPij [k] ≤ τ, j ∈ Nl−
i , k ∈ Z+. (4.4)

Hence, each normal node i becomes aware of the value of each of its normal l-hop

neighbor j in each normal (j, i)-path P at least once in τ time steps, but possibly at
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different time instants [21]. This assumption also indicates that for each normal node,

the gap between two consecutive updates should be less than τ . Although we have this

bound on the delays of values of normal nodes, normal nodes need neither the value of

this bound nor the information that whether a path P is a normal path or not.

Compared to the synchronous case, in the asynchronous MW-MSR algorithm, we

use the delayed values from neighbors as the input values. The structure of the asyn-

chronous algorithm can be outlined as follows. At each time k, each normal node i

will choose to update or not. If it chooses not to update, i.e., i /∈ U[k], then it will

keep its value as xi[k + 1] = xi[k]. Otherwise, it will use the most recently received

values of its l-hop neighbors on each l-hop path to update its value using the MW-MSR

algorithm in Algorithm 1. As in the one-hop MSR algorithm, if node i does not receive

any value along some path P originating from its l-hop neighbor j (which corresponds

to the crash model), then node i will consider this value on path P as one empty value

and will discard this value when it applies the WM-MSR algorithm. As we discussed

earlier, in the asynchronous case also, manipulation in message path information can

be handled by normal nodes.

To proceed with our analysis, we introduce some notations. Let D[k] be a diagonal

matrix whose ith entry is given by di[k] =
∑n

j=1 aij [k]. Then, let the matrices Aγ [k] ∈
Rn×n for 0 ≤ γ ≤ τ , and Lτ [k] ∈ Rn×(τ+1)n be given by

Aγ [k] =

aij [k] if i ̸= j and τij [k] = γ,

0 otherwise,
(4.5)

and Lτ [k] =
[
D[k]−A0[k] −A1[k] · · · −Aτ [k]

]
. Note that the summation of each

row of Lτ [k] is zero.

Now, the control input can be expressed as

uN [k] = −LN
τ [k]z[k],

uA[k] : arbitrary,
(4.6)

where z[k] = [x[k]Tx[k − 1]T · · ·x[k − τ ]T ]T is a (τ + 1)n-dimensional vector for k ≥ 0

and LN
τ [k] is a matrix formed by the first nN rows of Lτ [k]. Here, z[0] is the vector of

given initial values.
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Then, the agent dynamics can be written as

x[k + 1] = Γ[k]z[k] +

[
0

InA

]
uA[k], (4.7)

where Γ[k] is an n × (τ + 1)n matrix given by Γ[k] =
[
In 0

]
−

[
LN
τ [k]T 0

]T
. The

safety interval is given by

Sτ =
[
min zN [0],max zN [0]

]
. (4.8)

The theorem stated below is the main result of this paper providing a necessary and

sufficient graph condition for the MW-MSR algorithm under the asynchronous updates.

Theorem 4.4.1 Consider a directed graph G = (V,E) with l-hop communication,

where each normal node updates its value according to the asynchronous MW-MSR

algorithm with parameter f . Under the f -local Byzantine model for the adversarial

nodes, resilient asymptotic consensus is achieved with the safety interval given by (4.8)

if and only if G is (f + 1)-strongly robust with l hops.

Proof: (Necessity) The synchronous network is a special case of the asynchronous

ones with τ = 0. Thus, the necessary condition in Proposition 4.3.1 is valid here.

(Sufficiency) We first show that the safety holds. For k = 0, by (4.8), we have

xi[0] ∈ Sτ , ∀i ∈ N. For k = 1, by (4.7), the values of normal agents can be expressed as

xN [1] =

([
In 0

]
+

[
LN
τ [k]
0

])
z[0]. (4.9)

By step 2 in MW-MSR, for any normal agent, if some l-hop neighbors are Byzantine and

the values passed through these Byzantine neighbors are outside of [min zN [0],max zN [0]],

then they will be ignored. Thus, the right-hand side of (4.9) becomes convex combi-

nations of values in the interval [min zN [0],max zN [0]] = Sτ . Then we have xi[1] ∈
Sτ ,∀i ∈ N.

Next, for k ≥ 1, define two variables by

xτ [k] = max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
,

xτ [k] = min
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
.

(4.10)

We must prove that xτ [k] is a nonincreasing function of k ≥ 1. By (4.7), at time k ≥ 2,
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each normal agent updates its value based on a convex combination of the neighbors’

values from k−1 to k−τ . We know from step 2 of MW-MSR that the values outside of

the interval determined by the normal agents’ values will be ignored. Hence, we obtain

xi[k + 1] ≤ max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
for any i ∈ N. It also follows that

xi[k] ≤ max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
,

xi[k − 1] ≤ max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
,

...

xi[k + 1− τ ] ≤ max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
for any i ∈ N. Therefore, xτ [k] is nonincreasing in time as

xτ [k + 1] = max
(
xN [k + 1], xN [k], . . . , xN [k + 1− τ ]

)
≤ max

(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
= xτ [k].

We can similarly prove that xτ [k] is nondecreasing in time. This indicates that for

k ≥ 2, we have xi[k] ∈ Sτ for i ∈ N. Thus, we have shown the safety condition.

Next, we show the convergence. As shown above, xτ [k] and xτ [k] are monotone and

bounded, and thus both of their limits exist and are denoted by x∗τ and x∗τ , respectively.

We claim that the limits satisfy x∗τ = x∗τ , i.e., consensus is achieved. We prove by

contradiction and assume that x∗τ > x∗τ .

Recall that α lower bounds the nonzero entries of Γ[k]. Choose ϵ0 > 0 small enough

that x∗τ − ϵ0 > x∗τ + ϵ0. Fix

ϵ <
ϵ0α

(τ+1)nN

(1− α(τ+1)nN )
, 0 < ϵ < ϵ0. (4.11)

Define the sequence {ϵγ} by

ϵγ+1 = αϵγ − (1− α)ϵ, γ = 0, 1, . . . , (τ + 1)nN − 1.

So we have 0 < ϵγ+1 < ϵγ for all γ. In particular, they are positive because by (4.11),
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it holds that

ϵ(τ+1)nN
= α(τ+1)nN ϵ0 −

(τ+1)nN−1∑
m=0

αm(1− α)ϵ

= α(τ+1)nN ϵ0 − (1− α(τ+1)nN )ϵ > 0.

Take kϵ ∈ Z+ such that xτ [k] < x∗τ + ϵ and xτ [k] > x∗τ − ϵ for k ≥ kϵ. Such kϵ exists

due to the convergence of xτ [k] and xτ [k]. Then we can define the two disjoint sets as

Z1τ (kϵ + γ, ϵγ) = {j ∈ N : xj [kϵ + γ] > x∗τ − ϵγ},

Z2τ (kϵ + γ, ϵγ) = {j ∈ N : xj [kϵ + γ] < x∗τ + ϵγ}.

Next, we show that one of the two sets becomes empty in a finite number of steps,

which contradicts the assumption on x∗τ and x∗τ being the limits. Consider the set

Z1τ (kϵ, ϵ0). Due to the definition of xτ [k] and its limit x∗τ , one or more normal nodes

are contained in the union of the sets Z1τ (kϵ + γ, ϵγ) for 0 ≤ γ ≤ τ + 1. We claim that

Z1τ (kϵ, ϵ0) is in fact nonempty. To prove this, it is sufficient to show that if a normal

node j is not in Z1τ (kϵ + γ, ϵγ), then it is not in Z1τ (kϵ + γ + 1, ϵγ+1) for γ = 0, . . . , τ .

Suppose that node j satisfies xj [kϵ + γ] ≤ x∗τ − ϵγ . Every normal node updates

its value to a convex combination of the multi-hop neighbors’ values at the current or

previous times. Though such neighbors may be Byzantine here, the ones with values

greater than xτ [kϵ + γ] are ignored in step 2 of the MW-MSR algorithm. Hence, the

value of node j at the next time step is bounded as

xj [kϵ + γ + 1] ≤ (1− α)xτ [kϵ + γ] + α(x∗τ − ϵγ)

≤ (1− α)(x∗τ + ϵ) + α(x∗τ − ϵγ)

≤ x∗τ − αϵγ + (1− α)ϵ = x∗τ − ϵγ+1.

(4.12)

It thus follows that node j is not in Z1τ (kϵ+γ+1, ϵγ+1). This means that the cardinality

of the set Z1τ (kϵ + γ, ϵγ) is nonincreasing for γ = 0, . . . , τ + 1. The same holds for

Z2τ (kϵ + γ, ϵγ), hence Z2τ (kϵ, ϵ0) is nonempty too.

We next show that one of these two sets in fact becomes empty in finite time. Since

G is (f +1)-strongly robust with l hops with respect to any set F satisfying the f -local

model, the normal network GN is guaranteed to be (f + 1)-robust with l hops with

respect to the set A (i.e., the set of adversarial nodes). Therefore, between the two
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nonempty disjoint sets Z1τ (kϵ, ϵ0) and Z2τ (kϵ, ϵ0), one of them has a normal agent with

at least f + 1 independent normal paths originating from normal nodes outside.

Suppose that Z1τ (kϵ, ϵ0) has this property and let i be the node in this set which

has at least f +1 independent normal paths originating from the normal nodes outside

Z1τ (kϵ, ϵ0). By the argument above, these normal nodes will not be in Z1τ (kϵ + γ, ϵγ)

for 0 ≤ γ ≤ τ . By step 2 of the MW-MSR algorithm, one of these normal neighbors

will be used in the updates of node i at any time since node i can only remove the

values of which the cardinality of the minimum message cover is f . In particular, when

node i makes an update at time kϵ + τ , a normal node’s delayed value is used, upper

bounded by x∗τ − ϵτ . It thus follows that, at time kϵ+ τ , when node i makes an update,

its value can be bounded as

xi[kϵ + τ + 1] ≤ (1− α)xτ [kϵ + τ ] + α(x∗τ − ϵτ ).

By (4.12), we have xi[kϵ + τ + 1] ≤ x∗τ − ϵτ+1. We can conclude that if node i

in Z1τ (kϵ, ϵ0) has f + 1 independent normal paths originating from the normal nodes

outside the set, then it goes outside of Z1τ (kϵ + τ + 1, ϵτ+1) after τ + 1 steps. Conse-

quently, Z1τ (kϵ + τ + 1, ϵτ+1) has the cardinality smaller than that of Z1τ (kϵ, ϵ0), that

is, |Z1τ (kϵ + τ + 1, ϵτ+1)| < |Z1τ (kϵ, ϵ0)|. Likewise, it follows that if Z2τ (kϵ, ϵ0) has a

node having at least f+1 independent normal paths originating from the normal nodes

outside, then |Z2τ (kϵ + τ + 1, ϵτ+1)| < |Z2τ (kϵ, ϵ0)|.
Since there are only nN normal nodes, we can repeat the steps above until one of

the sets Z1τ (kϵ + τ + 1, ϵτ+1) and Z2τ (kϵ + τ + 1, ϵτ+1) becomes empty, and it takes

no more than (τ +1)nN steps. Once the set becomes empty, it remains so indefinitely.

This contradicts the assumption that x∗τ and x∗τ are the limits. Therefore, we obtain

x∗τ = x∗τ . ■

Note that f -total model can be viewed as a special case of f -local model, and

thus the necessary and sufficient conditions stated in Theorem 4.4.1 is also valid for

f -total Byzantine model. We emphasize that f -local is more suitable for a large scale

network because the model locally focuses on each node with a small f -total model. If

the locations of adversary nodes are spread in a more uniform way over the network,

then the total tolerable number of adversary can be very large. However, with the

same number of adversary nodes for the f -total model, the network requires more

connections. See the example in Fig. 4.1(a). Asynchronous Byzantine consensus can
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be reached using the MW-MSR algorithm in this network for the 1-local model when

the normal nodes communicate with their two-hop neighbors. For instance, the two

nodes in red can be Byzantine under such a model.

4.4.3 Comparison with Conventional Methods

In this part, we outline the advantages of the proposed method compared to the conven-

tional works. We would like to highlight the following four aspects: (i) Our algorithm

does not use “rounds” that can cause possibly large delays in forming consensus as we

mentioned before; (ii) we consider the f -local model, which is more adversarial than

the f -total model; (iii) our graph condition is tight and generalizes the ones in the

literature for both synchronous and asynchronous cases; (iv) the algorithm is compu-

tationally more efficient than existing ones.

4.4.3.1 Advantages in Threat Models and Graph Conditions

In what follows, we discuss further details about these advantages. Specifically, the

f -total model in [94; 102] can be viewed as a special case of the f -local model, and

thus the condition stated in Theorem 4.4.1 is also sufficient for the f -total Byzantine

model. We emphasize that the f -local model is more suitable for large-scale networks

especially if the adversary nodes are well spread within the system. Then even if the

total number of such nodes is large, under the f -local model, we can take a small f .

If we treat such a system based on the f -total model, the requirement on network

connectivity will be much larger.

We remark that the condition of the graph being (f + 1)-strongly robust makes

the system sufficiently resilient to mitigate the influence of asynchrony and delays in

communication. Here, it is important to note that this graph condition is the same for

the case of synchronous updates using multi-hop communication. The condition first

appeared in [102], which studies the synchronous update case of approximate Byzantine

consensus with l-hop communication. It also appeared in [94; 109] for synchronous and

asynchronous schemes, respectively, which study the special case of l ≥ l∗.

Similar to the discussion in Section 4.3.2, based on Theorem 4.4.1, we can obtain a

tight result for the resilient consensus under the f -total/local malicious model for the

asynchronous update scheme since the malicious model is as a special case of Byzantine

model. For this case, it has been known that (2f + 1)-robustness with l hops is a
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sufficient condition (see Table 1.1) while (f + 1, f + 1)-robustness with l hops is a

necessary condition; see, e.g., [21; 56] for the one-hop case and [125] for the multi-hop

case. The following corollary is immediate in view of Proposition 4.3.2.

Corollary 4.4.1 Consider a directed graph G = (V,E) with l-hop communication,

where each normal node updates its value according to the asynchronous MW-MSR

algorithm with parameter f . Under the f -local malicious model, resilient asymptotic

consensus is achieved with safety interval (4.8) if G is (f + 1)-strongly robust with l

hops and only if G is (f + 1, f + 1)-robust with l hops.

4.4.3.2 Advantages in Computational Complexity

Finally, we highlight that the proposed MW-MSR algorithms is more light weighted

and efficient in terms of complexity in comparison with the algorithm in [94]. The

asynchrony settings of the two algorithms are similar, but we exploit the power of the

MW-MSR algorithm to filter the possible extreme values caused by Byzantine nodes.

To show this, we first outline the structure of the algorithm in [94]. Intuitively,

the algorithm there can be divided into two parts: Verification of the received values

and the MSR algorithm (called Filter and Average algorithm). More specifically, each

node is required to send its value to the entire network at the beginning of each asyn-

chronous round. Then in the verification part, for each possible set of Byzantine nodes

F (satisfying the f -total model), each normal node i receives values from the neighbors

and for each received value, it verifies if this value is consistent in the paths excluding

the nodes in set F. Then node i waits for enough verified values with round r as the

input for the Filter-and-Average part. There, each normal node updates its value using

these inputs. To satisfy the safety condition, the normal nodes will remove the largest

and smallest values of which the message cover is f .

The Filter-and-Average algorithm and our MW-MSR algorithm are similar, but the

main difference is that the former algorithm uses verified values with round r as input

and the MW-MSR algorithm uses the most recent values of l-hop neighbors on each

l-hop path. Hence, all the operations before the Filter-and-Average algorithm in the

main algorithm for verification in [94] are additional in terms of computation. Besides,

the verification algorithm there should be executed for each possible set F, i.e., at

least
(
n
f

)
executions of the main algorithm on each node for each asynchronous round.

Although this can be executed in parallel threads (one F per thread), it still requires
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(a) The states of all nodes.
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(b) Consensus error.

Figure 4.3: Time responses of the synchronous one-hop W-MSR algorithm.

a huge amount of computation resources and memory to verify and store the values

from the nodes in the entire network. Even for the case of l ≥ l∗, the computational

complexity of the MW-MSR algorithm is less than the algorithm in [94].

Why the verification part is essential for the algorithm in [94] is partially because

of their asynchrony setting based on rounds and the verification can prevent the dupli-

cation of messages of normal nodes with same round r. In contrast, in our asynchrony

setting, we need not guarantee the correctness of a received value and we use the

most recent value for each l-hop path (hence, no duplication). Thus, we can fully

utilize the ability of MW-MSR algorithm to filter the extreme values that could possi-

bly be manipulated by Byzantine nodes. The trade-off is that we can only guarantee

∆xτ [k] = max zN [k]−min zN [k] to be nonincreasing, while for the round based asyn-

chrony, ∆x[r] = maxxN [r] − minxN [r] is guaranteed to be nonincreasing. Besides,

since our algorithm is iterative and only requires values and topology information up

to l hops away, our algorithm is more light-weighted compared to that in [94].
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(b) Consensus error.

Figure 4.4: Time responses of the synchronous two-hop MW-MSR algorithm.

4.5 Numerical Example

In this section, we carry out simulations for the asynchronous MW-MSR algorithm

with time delays.

Consider the network in Fig. 4.1(b). This graph is not 2-strongly robust with one

hop, but is 2-strongly robust with 2 hops. Suppose that node 5 is Byzantine and is

capable to send four different values to its four neighbors (indicated by red dashed

lines in Fig. 4.3(a)). Let the initial normal states be xN [0] = [2 4 6 8]T . According to

[56], [113], this graph does not meet the condition for 1-total Byzantine model even for

synchronous updates. Therefore, consensus among normal nodes cannot be reached in

this network with one-hop communication. The results for state values and consensus

error (∆x0[k] = maxxN [k] − minxN [k]) are given in Fig. 4.3. Then, we examine the

synchronous two-hop MW-MSR algorithm under the same attack. The results for state

values and consensus error are given in Fig. 4.4. Observe that resilient consensus is

achieved.

Lastly, we perform simulations for the asynchronous two-hop MW-MSR algorithm

under the same attack. Let the normal nodes update in an asynchronous periodic

sense, which means that for nodes 1, 2, 3, and 4, they update in every 1, 4, 3, 2 steps,
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(b) Consensus error.

Figure 4.5: Time responses of the asynchronous two-hop MW-MSR algorithm.

respectively (all nodes update once at k = 0). The time delay for the values from one-

hop neighbors and two-hop neighbors are set as 0 and 1 step, respectively. Thus, in the

current setting, we can choose τ = 4. The results are presented in Fig. 4.5. Observe

that resilient consensus is achieved, delays have some effects and the convergence takes

more time than the synchronous algorithm. We can also notice in Fig. 4.5(b) that the

safety interval ∆xτ [k] = max zN [k]−min zN [k] is nonincreasing.

4.6 Summary

We have solved the approximate Byzantine consensus problem under asynchronous

updates and time delays in the communication between agents. Our approach is based

on the multi-hop weighted MSR algorithm. We have also provided a tight necessary

and sufficient graph condition for the network using the MW-MSR algorithm. An

important implication of our results is that under the f -total/local Byzantine model,

the graph condition remains the same even if the algorithm becomes asynchronous and

the communication is subject to time delays. Moreover, our algorithm is iterative and

only require local information and topology for each node, and hence it is more light

weighted and distributed compared to the conventional flooding-based algorithms.
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Chapter 5

Resilient Quantized Consensus

with Multi-hop Communication

In this chapter, we study the problem of resilient quantized consensus where agents

take integer-valued states. To solve this problem, we develop a quantized version of the

MW-MSR algorithm. We provide necessary and sufficient conditions for our algorithm

to achieve resilient quantized consensus for synchronous/asynchronous updates under

malicious/Byzantine attacks. Compared to existing literature, our algorithm has a

tighter graph condition and we provide a unified analysis for different network settings.

Related literature for resilient quantized consensus (and exact consensus) is sum-

marized in Table 5.1 ([∗] represents our work). We extend the results in [22] under

the malicious model to a multi-hop setting and provide extra analysis for Byzantine

attacks. We also provide a tighter sufficient condition than the condition given in [22]

for asynchronous resilient quantized consensus under malicious attacks.

The resilient quantized consensus works using the flooding communication [26; 52;

109; 117] correspond to our unbounded path length case (l ≥ l∗). On the other hand,

we deal with the general l-hop case. With different network settings, the works in Table

5.1 have different graph conditions. For the synchronous binary consensus under the

malicious model, our graph condition is equivalent to [53] in the case of unbounded path

length. Details are given in Section 5.2. The recent work [117] studies binary Byzantine

consensus in asynchronous updates with delays and derives the same conditions as the

two in [26]. We claim that the graph conditions of unbounded path length case for our

algorithm coincides with the conditions in [26; 109; 117].
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5.1 Problem Formulation

Table 5.1: Related works for resilient quantized consensus.

Synchronous Asynchronous

Malicious
Undirected G

[22; 52; 53], [∗] [22], [∗]
Directed G

Byzantine
Undirected G [26], [∗] [117], [∗]

Directed G [109], [∗] [∗]

The rest of this chapter is organized as follows. Section 5.1 outlines the system

model. Sections 5.2 and 5.3 derive conditions under which the QMW-MSR algorithms

guarantee resilient quantized consensus under synchronous and asynchronous updates,

respectively. Section 5.4 concludes this chapter.

5.1 Problem Formulation

5.1.1 Quantized Consensus and Update Rule

Consider a time-invariant network modeled by the directed graph G = (V,E) composed

of n nodes. The node set V is partitioned into the set of normal nodes N and the set

of adversary nodes A, where |N| = nN and |A| = nA. The latter set is unknown to the

normal nodes at time step k = 0.

Recall that agents communicate with each other according to the communication

model indicated in Section 2.3.1. Note that in quantized consensus, the function gi(x)

in (2.8) is quantized. When there is no attack in the network, we can employ the

common consensus update rule for (2.8) (e.g., [82]), which can be given in the compact

form as
x[k + 1] = x[k] + u[k],

u[k] = −L[k]x[k],
(5.1)

where x[k] ∈ Rn and u[k] ∈ Rn are the state vector and control input vector respectively,

and L[k] is the Laplacian matrix of the l-th power of G determined by the messages

mij [k], i ∈ V and j ∈ Nl−
i .

In many multi-agent system applications, state values of agents are preferred to be

integers due to digitalization or limited memory of the agents. In this chapter, we focus

on the quantized consensus using the following quantization function Q : R → Z to
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5.1 Problem Formulation

transform the real-valued input in (5.1) to integers, which is studied in [5], [22]. Hence,

the states and the inputs are constrained as xi[k] ∈ Z and ui[k] ∈ Z for i ∈ V.

Q(y) =

{
⌊y⌋ with probability p(y),
⌈y⌉ with probability 1− p(y),

(5.2)

where p(y) = ⌈y⌉ − y, and ⌊∗⌋ denotes the floor function. Then based on (5.1), we can

write the quantized control input for normal node i as

ui[k] = Q

( ∑
j∈Nl−

i

aij [k]xj [k]

)
, (5.3)

where aij [k] is the (i, j)th entry of the adjacency matrix A[k] of graph Gl at time k.

Then we denote by xN [k] ∈ ZnN and xA[k] ∈ ZnA the state vectors of normal nodes

and adversary nodes respectively.

Note that the probabilistic quantizer equipped on each agent is independent and

each node will choose the floor or ceiling function at each time. Moreover, the proba-

bility p can be different on each node and each time as long as 0 < p < 1. Thus, the

control input (5.3) can be implemented in a distributed fashion.

Then we introduce the asynchrony in our algorithm [21], [22]. At each time k,

normal node i may and may not update its value. If node i does not update, then

xi[k + 1] = xi[k], i.e., ui[k] = 0. Denote by U[k] ⊂ V the set of agents updating at

time k. The system is said to be synchronous if U[k] = V for all k, and otherwise it is

asynchronous.

5.1.2 Threat Model

In this chapter, we consider the same adversary models studied in Chapters 3 and 4,

i.e., f -total/f -local malicious/Byzantine models. The malicious model is reasonable in

applications such as wireless sensor networks and robotic networks, where neighbors’

information is obtained by broadcast communication or vision sensors. Byzantine model

is possible in point-to-point networks and is more adversarial than malicious model

given that all malicious nodes are Byzantine, but not vice versa [62], [56].

As commonly done in the literature [56], [102], we assume that each normal node

knows the value of f and the topology information of the graph up to l hops. We

assume that each adversary node i cannot manipulate the path values in the messages
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5.2 Synchronous Networks

containing its own state xi[k] and those that it relays as stated in Assumption 2.3.1.

5.1.3 Resilient Quantized Consensus and Algorithm

We now introduce the type of consensus among the normal agents to be sought in this

chapter [22].

Definition 5.1.1 If for any possible sets and behaviors of the malicious agents and

any state values of the normal nodes, the following two conditions are satisfied, then

we say that the normal agents reach resilient quantized consensus:

1. Safety: There exists a bounded safety interval S determined by the initial values

of the normal agents such that xi[k] ∈ S,∀i ∈ N, k ∈ Z+.

2. Agreement: There exists a state x∗ ∈ S such that limk→∞ xi[k] = x∗, ∀i ∈ N.

There exists a finite time ka ≥ 0 such that Prob{xN [ka] ∈ C |x[0]} = 1, where the

consensus set C is defined as

C = {x ∈ ZnN |x1 = · · · = xnN }.

Next, we introduce our resilient quantized consensus algorithm. It is a quantized

version of our MW-MSR algorithm in previous work. We outline its structure in Al-

gorithm 2. Intuitively speaking, for normal node i, it uses only the quantized values

from its multi-hop neighbors and itself as the input for the algorithm. Then, in step 3,

it updates using the randomized quantizer introduced before.

In this chapter, we are interested in finding the conditions on the network such that

the above algorithm achieve resilient quantized consensus almost surely under different

attack models. We consider the case of synchronous updates in Section 5.3. Then, in

Section 5.4, we consider the more realistic situation using multi-hop settings, that is

the asynchronous updates with time delays in the communication among agents.

5.2 Synchronous Networks

In this section, we analyze the performance of the QMW-MSR algorithm under syn-

chronous updates, i.e., all the nodes update values synchronously at each time k

(U[k] = V for all time k).

88



5.2 Synchronous Networks

Algorithm 2: QMW-MSR Algorithm

1) At each time k, normal node i sends its own message to nodes in Nl+
i .

Then, it obtains the quantized values of the nodes in Nl−
i and itself, whose set

is denoted by Mi[k], and sorts the values in Mi[k] in an increasing order.

2) (a) Define two subsets of Mi[k] based on the message values:

Mi[k] = {m ∈ Mi[k] : value(m) > xi[k]},

Mi[k] = {m ∈ Mi[k] : value(m) < xi[k]}.

(b) Then, let Ri[k] = Mi[k] if the cardinality of a minimum cover of Mi[k] is

less than f , i.e.,
∣∣T∗(Mi[k])

∣∣ < f . Otherwise, let Ri[k] be the largest sized

subset of Mi[k] such that (i) for all m ∈ Mi[k] \ Ri[k] and m′ ∈ Ri[k] we have

value(m) ≤ value(m′), and (ii) the cardinality of a minimum cover of Ri[k] is

exactly f , i.e.,
∣∣T∗(Ri[k])

∣∣ = f .

(c) Similarly, let Ri[k] = Mi[k] if the cardinality of a minimum cover of Mi[k]

is less than f , i.e., |T∗(Mi[k])| < f . Otherwise, let Ri[k] be the largest sized

subset of Mi[k] such that (i) for all m ∈ Mi[k] \ Ri[k] and m′ ∈ Ri[k] we have

value(m) ≥ value(m′), and (ii) the cardinality of a minimum cover of Ri[k] is

exactly f , i.e., |T∗(Ri[k])| = f .

(d) Finally, let Ri[k] = Ri[k] ∪ Ri[k].

3) Node i updates its value as follows:

xi[k + 1] = Q

( ∑
m∈Mi[k]\Ri[k]

ai[k]value(m)

)
, (5.4)

where ai[k] = 1/(|Mi[k] \ Ri[k]|).

5.2.1 Matrix Representation

For ease of notation in our analysis, reorder the agents so that the normal agents take

indices 1, . . . , nN and the malicious agents take indices nN + 1, . . . , n. Then the state

vector and control input vector can be written as

x[k] =

[
xN [k]
xA[k]

]
, u[k] =

[
uN [k]
uA[k]

]
. (5.5)
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5.2 Synchronous Networks

Regarding the control inputs uN [k] and uA[k], the normal agents follow (5.1) while the

adversary agents may not. Hence, they can be expressed as

uN [k] = Q
(
− LN [k]x[k]

)
,

uA[k] : arbitrary,
(5.6)

where LN [k] ∈ RnN×n is the matrix formed by the first nN rows of L[k] associated with

normal agents. The row sums of this matrix LN [k] are zero as in L[k].

Thus, we can rewrite the system as

x[k + 1] = Q

((
In −

[
LN [k]

0

])
x[k]

)
+

[
0

InA

]
uA[k]. (5.7)

5.2.2 Consensus Analysis

In this section, we characterize network conditions to guarantee resilient consensus

using the QMW-MSR algorithm.

First, we present the safety condition for resilient quantized consensus. For the

agents using the synchronous QMW-MSR algorithm, the safety interval is given by

xi[k] ∈ S =
[
minxN [0],maxxN [0]

]
, ∀i ∈ N, k ∈ Z+. (5.8)

Now we are ready to provide a necessary and sufficient condition for resilient consen-

sus using the QMW-MSR algorithm. The following theorem is the main contribution

of this chapter.

Theorem 5.2.1 Consider a directed graph G = (V,E) with l-hop communication,

where each normal node updates its value according to the synchronous QMW-MSR

algorithm with parameter f . Under the f -total malicious model, resilient quantized

consensus is achieved almost surely if and only if the network topology is (f +1, f +1)-

robust with l hops.

To establish quantized consensus in this probabilistic setting, we need the following

lemma, which is proved to be sufficient for guaranteeing resilient quantized consensus

almost surely [22].

Lemma 5.2.1 Consider the network modeled by graph G = (V,E) with the QMW-MSR

algorithm. Suppose that the following three conditions are satisfied for the normal nodes:
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C1) There exists a bounded set S determined by the initial states of the normal nodes

such that xi[k] ∈ S,∀i ∈ N, k ∈ Z+.

C2) For each state x[k] = x0 at time k, there exist a finite time kb such that Prob{xN [k+

kb] ∈ C |x[k] = x0} > 0.

C3) If x[k] ∈ C, then x[k′] ∈ C,∀k′ > k.

Then, the network reaches quantized consensus almost surely.

Intuitively, if the algorithm satisfies these conditions for normal agents, then, the

scenarios for reaching consensus occur infinitely often with high probability. This is

because the probability for such an event to occur is positive based on the condition

(C2). Then, once normal agents reach consensus, consensus is preserved infinitely by

(C3).

Proof of Theorem 5.2.1: (Necessity) If G is not (f + 1, f + 1)-robust with l hops,

then there are nonempty, disjoint subsets V1,V2 ⊂ V, such that none of the conditions

in Definition 3.3.2 holds. Suppose the initial value of each node in V1 is a and each

node in V2 is b, with a < b. Let all other nodes have initial values as ⌊(a + b)/2⌋.
Since |Zf+1

V1
|+ |Zf+1

V2
| ≤ f , suppose all nodes in Z

f+1
V1

and Z
f+1
V2

are malicious and take

constant values. Then there is still at least one normal node in both V1 and V2 since

|Zf+1
V1

| < |V1| and |Zf+1
V2

| < |V2| respectively. Then these normal nodes in V1 and

V2 remove all the values of incoming neighbors outside of their respective sets since

the message cover of these values has cardinality equal to f or less. According to the

QMW-MSR algorithm, such normal nodes will keep their values and consensus cannot

be achieved.

(Sufficiency) We show that the conditions (C1)-(C3) in Lemma 5.2.1 hold. To

prove the safety condition (C1), let x[k] and x[k] to be the maximum and minimum

values of the normal nodes at time k, respectively, i.e., x[k] = maxxN [k], x[k] =

minxN [k]. Observe that the values used in the QMW-MSR update rule always lie

within the interval
[
x[k], x[k]

]
. Moreover, the update rule in (5.7) is a quantized convex

combination of the values in the interval
[
x[k], x[k]

]
⊂ S. Hence, xi[k] ∈ S,∀i ∈ N, k ∈

Z+.

Then we prove condition (C2). We can see from above that both x[k] and x[k] are

monotone and bounded sequences, thus there is a finite time kc such that they both

reach their final values with probability 1. Denote the final values of x[k] and x[k] by
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x∗ and x∗, respectively. We will prove by contradiction to show that x∗ = x∗, thus the

normal nodes will reach consensus. Suppose that x∗ > x∗. When k ≥ kc, we can define

the following sets

Z1[k] = {i ∈ V : xi[k] ≥ x∗},

Z2[k] = {i ∈ V : xi[k] ≤ x∗}.

We first show that with positive probability, the normal agents in Z1[k] decrease

their values, and the normal agents in Z2[k] increase their values at the next time step.

Clearly, Z1[k] and Z2[k] are nonempty and disjoint by assumption. Since the network is

(f+1, f+1)-robust with l hops with respect to any set satisfying the f -total model and

there are at most f malicious nodes. Thus, there always exists a normal node i either

in Z1[k] or Z2[k] with f +1 independent paths originating from the nodes outside of its

respective set and these paths do not contain any intermediate node in the adversary

set A. Without loss of generality, we suppose that the normal agent i in Z1[k] has this

property. Since at time k, normal nodes in Z1[k] reach the value x∗, we have xi[k] = x∗.

Then node i updates its value as

xi[k + 1] ≤ Q
(
(1− α)x∗ + α(x∗ − 1)

)
= Q (x∗ − α) . (5.9)

By (5.2), the quantizer takes the floor function as Q (x∗ − α) = x∗− 1 with probability

α. Thus, with positive probability, we have xi[k+1] ≤ x∗−1. This indicates that with

positive probability, one of the normal agents taking the maximum value x∗ decreases

its value by at least one. Similarly, if the normal node i is in Z2[k], then with positive

probability, its quantizer chooses the ceiling function, then its value will increase above

x∗.

Next, we show that with positive probability, none of the normal nodes in V \Z1[k]

enters Z1[k + 1] at the next time step. If the normal node i is in V \ Z1[k] at time

k, it is upper bounded by x∗ − 1. According to the QMW-MSR algorithm, all values

bigger than x∗ will be discarded by node i, and the inequality (5.9) holds for node

i. Therefore, with positive probability α, node i will not enter Z1[k + 1]. Follow the

similar reasoning, we can conclude that with positive probability, none of the normal

nodes in V \ Z2[k] enters Z2[k + 1] at the next time step.

Combining the two arguments, we conclude that for any k ≥ kc + nN , the number

of normal agents in one of the sets Z1[k] and Z2[k] is zero with positive probability
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because the number of normal nodes is nN . This is a contradiction and proves (C2).

Lastly, we show condition (C3) holds. Assume that the normal nodes have reached

the common value x∗ at time k. Since there are at most f malicious nodes, according

to the QMW-MSR algorithm, all malicious nodes j with values xj [k] ̸= x∗ are ignored

by the normal nodes. Thus, xi[k + 1] = x∗, ∀i ∈ N. Complete the proof. ■

Note that this necessary and sufficient condition for resilient quantized consensus,

(f +1, f +1)-robustness with l hops, is consistent with the graph condition for resilient

asymptotic real-valued consensus with l-hop communication studied in [125]. There,

the updating rules there are without any randomization and that work is more delicated

to reveal the graph condition for MSR based algorithms to guarantee resilient consensus

in a multi-hop setting. While this paper studies agents taking quantized values and the

convergence is in finite time in a probabilistic sense.

It is noted that our approach can be applied to the binary valued consensus case

[62], [34], [52], [53], [117]. As long as the initial states of all agents are restricted to 0

and 1, the safety interval in (5.8) indicates that the normal agents’ values will remain

binary and come to agreement eventually. All results presented in this chapter remain

true for the binary case.

As mentioned earlier, the authors of [52; 53] study the synchronous binary Byzantine

consensus under malicious attacks and they provide a necessary and sufficient graph

condition for their algorithm to achieve binary consensus. We note that our graph

condition is equivalent to theirs for the case of unbounded hops, while our algorithm

also contains the general l-hop case. See the discussions in Section 3.6.2. There, we

have shown more details about the relation between our condition and theirs.

5.3 Asynchronous Network

In this section, we analyze the QMW-MSR algorithm under asynchronous updates.

5.3.1 Randomized Updates versus Deterministic Updates

In this part, we first analyze the QMW-MSR algorithm under asynchronous randomized

updates without delays.

Recall that we denote the set of normal nodes updating at time k is represented by

U[k]. For deterministic updates, we assume that each normal node i makes an update
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at least once in k time steps, that is,

k+k−1⋃
m=k

U[m] = N for k ∈ Z+, (5.10)

while adversary nodes may deviate from this update setting.

For randomized updates, we assume that each normal node i makes an update at

time k ≥ 0 with probability pi ∈ (0, 1] in an i.i.d. fashion. That is, for node i, at each

time k

Prob{i ∈ U[k]} = pi, Prob{i /∈ U[k]} = 1− pi. (5.11)

Note that with randomized updates, the algorithm remains fully distributed since the

probabilities pi at each node can be different.

An advantage of randomized updates is that the malicious nodes cannot predict

the update times of the normal nodes in advance. Moreover, there is always nonzero

probability that all normal nodes in the system update their states simultaneously at

each time k. This feature enables us to establish a stronger result than that for the

deterministic case.

The following theorem shows that for the randomized updates, the necessary and

sufficient condition for resilient quantized consensus is the same as that for the syn-

chronous case in Theorem 5.2.1.

Theorem 5.3.1 Consider a directed graph G = (V,E) with l-hop communication,

where each normal node updates its value according to the randomized QMW-MSR

algorithm with parameter f . Under the f -total malicious model, resilient quantized

consensus is achieved almost surely if and only if the network topology is (f +1, f +1)-

robust with l hops.

Proof: (Necessity) We omit the proof as the synchronous network is a special case

of asynchronous network, thus the necessary condition for synchronous case holds for

asynchronous case.

(Sufficiency) We show that the conditions (C1)–(C3) in Lemma 5.2.1 hold. It is easy

to see that conditions (C1) and (C3) hold in the randomized updates too. Therefore,

we only need to show (C2). We know from (C1) that x[k] and x[k] will reach their

final values x∗ and x∗ at some time kc, respectively. Like the proof of Theorem 5.2.1,
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we prove (C2) by contradiction. Assume x∗ > x∗, then the sets Z1[k] and Z2[k] are

disjoint and nonempty.

We can first prove that, at each k ≥ kc, a normal node in at least one of these sets

goes out from the corresponding set at the next time step with positive probability.

Note that in the asynchronous randomized updates, the probability for any normal

node to update at this time k is positive. Besides, since the graph is (f + 1, f + 1)-

robustness with l hops, there is a normal node i in either Z1[k] or Z2[k] which has the

(f + 1)-reachability. Thus, with positive probability, node i updates at time k and it

will goes out of Z1[k] or Z2[k] depending on which set it belongs to.

Then we show that with positive probability, none of the normal nodes outside Zj [k]

enters Zj [k + 1] for j = 1, 2. Consider the normal node i in V \ Z1[k] at time k, with

positive probability, it updates at this time and will not enter Z1[k + 1] by the same

reasoning in the proof of Theorem 5.2.1.

Lastly, we can conclude that for any k ≥ kc + nN , one of the two sets, Z1[k] or

Z2[k], contains no normal node with positive probability, which contradicts x∗ > x∗. ■

5.3.2 Asynchronous Updates with Delays

Then we see how the QMW-MSR algorithm will perform under asynchronous updates

with delays.

We employ the control input taking account of possible delays in the values from

the neighbors as

ui[k] = Q

( ∑
j∈Nl−

i

aij [k]x
P
j [k − τPij [k]]

)
, (5.12)

where τPij [k] ∈ Z+ denotes the delay in this (j, i)-path P at time k and xPj [k] denotes

the value of node j at time k sent along path P . The delays are time varying and may

be different at each path, but we assume the common upper bound τ on any normal

path P (all internal nodes on path P are normal nodes) as

0 ≤ τPij [k] ≤ τ, j ∈ Nl−
i , k ∈ Z+. (5.13)

Hence, each normal node i becomes aware of the value of each of its normal l-hop

neighbor j on each normal (j, i)-path P at least once in τ time steps, but possibly at

different time instants [21]. This assumption also indicates that for each normal node,
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the gap between two consecutive updates should be less than τ , i.e., k ≤ τ . Although

we have this bound on the delay of values of normal nodes, normal nodes need neither

the value of this bound nor the information that whether a path P is a normal path or

not.

The structure of asynchronous QMW-MSR algorithm can be outlined as follows.

At each time k, each normal node i will choose to update or not. If it chooses not to

update, i.e., i /∈ U[k], then it will keep its value as xi[k + 1] = xi[k]. Otherwise, it will

use the most recently received values of all its l-hop neighbors on each l-hop path to

update its value using the QMW-MSR algorithm. Like the one-hop MSR algorithm, if

node i does not receive any value along some path P originating from its l-hop neighbor

j (crash model), then node i will take this value on path P as one empty value and will

discard this value when it applies QWM-MSR algorithm. As we discussed earlier, in

the asynchronous case also, manipulating message paths is equivalent to manipulating

message values only.

Let D[k] be a diagonal matrix whose ith entry is given by di[k] =
∑n

j=1 aij [k]. Then,

let the matrices Aγ [k] ∈ Rn×n for 0 ≤ γ ≤ τ , and Lτ [k] ∈ Rn×(τ+1)n be given by

Aγ [k] =

{
aij [k] if i ̸= j and τij [k] = γ,
0 otherwise,

(5.14)

and Lτ [k] =
[
D[k]−A0[k] −A1[k] · · · −Aτ [k]

]
. Note that the summation of each row

of Lτ [k] is zero.

Now, the control input can be expressed as

uN [k] = Q
(
− LN

τ [k]z[k]
)
,

uF [k] : arbitrary,
(5.15)

where z[k] = [x[k]Tx[k − 1]T · · ·x[k − τ ]T ]T is a (τ + 1)n-dimensional vector for k ≥ 0

and LN
τ [k] is a matrix formed by the first nN rows of Lτ [k]. Here, z[0] is the given

initial values of the agents. Then, the agent dynamics can be written as

x[k + 1] = Q
(
Γ[k]z[k]

)
+

[
0

InA

]
uA[k], (5.16)

where Γ[k] is an n× (τ + 1)n matrix given by Γ[k] =
[
In 0

]
−
[
LN
τ [k]T 0

]T
.
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The safety interval differs from the synchronous case and is given by

Sτ =
[
min zN [0],max zN [0]

]
. (5.17)

The main result of this section now follows.

Theorem 5.3.2 Consider a directed graph G = (V,E) with l-hop communication,

where each normal node updates its value according to the asynchronous QMW-MSR

algorithm with parameter f under deterministic updates and time delays in the com-

munication. Under the f -total/local malicious model, resilient quantized consensus is

achieved almost surely only if the underlying graph is (f + 1, f + 1)-robust with l hops.

Moreover, if the underlying graph is (f + 1)-strongly robust with l hops, then resilient

quantized consensus is reached almost surely with the safety interval given by (5.17).

Proof: (Necessity) We omit the proof as the synchronous network is a special case

of asynchronous network, thus the necessary condition for synchronous case holds for

asynchronous case.

(Sufficiency) We show that the conditions (C1)–(C3) in Lemma 5.2.1 hold. To show

(C1), define the minimum and maximum values of the normal agents at time k and the

previous τ time steps by

z[k] = max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
,

z[k] = min
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
.

(5.18)

Then we prove that z[k] is a nonincreasing function. By (5.16), at time k ≥ 1, each

normal agent updates its value based on a quantized convex combination of the neigh-

bors’ values from k to k − τ . We know from step 2 of the QMW-MSR algorithm

that the values outside of the interval [z[k], z[k]] will be ignored. Hence, we obtain

xi[k + 1] ≤ max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
= z[k] for any i ∈ N. It also follows

that
xi[k] ≤ max

(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
xi[k − 1] ≤ max

(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
...

xi[k + 1− τ ] ≤ max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
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for any i ∈ N. Therefore, we have

z[k + 1] = max
(
xN [k + 1], xN [k], . . . , xN [k + 1− τ ]

)
,

≤ max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
= z[k].

We can similarly prove that z[k] is nondecreasing in time, i.e., z[k+1] ≥ z[k]. This

indicates that for k ≥ 1, we have xi[k] ∈ Sτ for i ∈ N. When k = 0, the safety condition

clearly holds, thus, the safety condition holds for all time k.

Next, we show (C2). Since z[k] and z[k] are contained in Sτ and are monotone,

there is a finite time kc such that they both reach their final values with probability

1, denoted by z∗ and z∗, respectively. We will prove by contradiction to show that

z∗ = z∗. Assume z∗ > z∗. When k ≥ kc, we can define the following sets

Z1[k] = {i ∈ N : xi[k] = z∗},

Z2[k] = {i ∈ N : xi[k] = z∗}.

Due to the convergence of z[k], at least one normal node is contained in the union of

the sets Z1[kc + γ] for 0 ≤ γ ≤ τ . The same holds for z[k]. We claim that Z1[kc] is in

fact nonempty. To prove this, it is sufficient to show that if Z1[kc + γ] is empty, then

the probability of Z1[kc + γ + 1] to be empty is nonzero for γ = 0, . . . , τ .

First, we show that none of the normal agents in V \ Z1[k] enters Z1[k + 1] at the

next time step with positive probability. If there is no node updating at time k, then no

node can enter Z1[k + 1]. However, we know that each normal node makes an update

at least once in τ time steps. Assume that the normal node i makes an update at time

kc + γ. Since Z1[kc + γ] is empty by assumption, node i is upper bounded by z∗ − 1.

Then we have

xi[kc + γ + 1] ≤ Q
(
(1− α)z∗ + α(z∗ − 1)

)
= Q (z∗ − α) , (5.19)

where the quantizer takes Q (x∗ − α) = x∗ − 1 with probability α. We can also prove

that Z2[kc] is nonempty by the same analysis.

Then we show that with positive probability, the nodes in Z1[k] decrease their

values, and the nodes in Z2[k] increase their values at the next time step. Since G is

(f + 1)-strongly robust with l hops, for nonempty and disjoint sets Z1[k] and Z2[k],

at least one of these two sets includes a node having at least f + 1 independent paths
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originating from the normal nodes outside the corresponding set and these paths do

not contain any intermediate nodes in set A. Without loss of generality, assume node

i ∈ Z1[k], then xi[k] = z∗. Due to the f -total/local model of adversary nodes, node i

will discard all the values larger than z∗ by step 2 of the QMW-MSR algorithm, and

will use at least one value from the normal nodes outside Z1[k], which is smaller than

z∗. Thus,

xi[k + 1] ≤ Q
(
(1− α)z∗ + α(z∗ − 1)

)
= Q (z∗ − α) , (5.20)

where the quantizer takes Q (x∗ − α) = x∗ − 1 with probability α. Therefore, with

positive probability, one of the normal nodes in Z1[k] decreases its values by at least

one. Similarly, we can prove that with positive probability, one of the normal nodes in

Z2[k] increases its values by at least one.

Then we conclude that at each time step, some nodes in Z1[k] and Z2[k] will go

out from the corresponding set. Hence, for any k ≥ kc + k · nN , the number of normal

agents in one of the sets Z1[k] and Z2[k] is zero with positive probability because the

number of normal nodes is nN and each normal node will update at least once in k

steps. This is a contradiction and proves (C2).

Lastly, we show (C3). Once the normal nodes have reached the common value x∗

at time k. Since there are at most f adversary nodes in the l-hop neighbors of any

normal node, according to the QMW-MSR algorithm, all malicious nodes j with values

xj [k] ̸= x∗ are ignored by the normal nodes. Thus, xi[k + 1] = x∗, ∀i ∈ N. Complete

the proof. ■

In [22], a sufficient condition for resilient quantized consensus under asynchronous

deterministic updates is provided as the graph G is (2f +1)-robust (with one-hop). As

mentioned in Proposition 4.3.2, if graph G is (2f +1)-robust, then it is (f +1)-strongly

robust (with one-hop), not vice versa. Hence, our sufficient condition is tighter than

that in [22]. However, wo note that checking strong robustness of a given graph is

more complex compared to checking robustness because we need to check
(
n
f

)
times for

robustness of GH.

Recall that in Section 5.3.1, using randomized updates, we are able to derive a

tighter sufficient condition for resilient consensus of asynchronous networks without

delay, which is that G is (f + 1, f + 1)-robust with l hops. However, when time delays

are in presence in the communication among nodes, this condition is not sufficient

anymore even if we apply randomized updates. Simply speaking, a reason for this
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phenomenon is that if the nonuniform delays are in presence in different paths, then

malicious nodes can update frequently, and their delayed values received by the normal

neighbors may appear different for different neighbors. In this case, malicious nodes can

have attack ability close to Byzantine nodes, and hence a stricter condition is needed

for guaranteeing resilient consensus. The proof for the following proposition is similar

to that for Theorem 5.3.2.

Proposition 5.3.1 Consider a directed graph G = (V,E) with l-hop communication,

where each normal node updates its value according to the asynchronous QMW-MSR

algorithm with parameter f under randomized updates and time delays in the commu-

nication. Under the f -total/local malicious model, resilient asymptotic consensus is

achieved almost surely only if the underlying graph is (f + 1, f + 1)-robust with l hops.

Moreover, if the underlying graph is (f + 1)-strongly robust with l hops, then resilient

consensus is reached almost surely with the safety interval given by (5.17).

For Byzantine attacks, the necessary condition needs to be even stricter than for

malicious attacks.

Proposition 5.3.2 Consider a directed graph G = (V,E) with l-hop communication,

where each normal node updates its value according to the asynchronous QMW-MSR

algorithm with parameter f under randomized/deterministic updates and time delays

in the communication. Under the f -total/local Byzantine model, resilient asymptotic

consensus is achieved almost surely with the safety interval given by (5.17) if and only

if the underlying graph is (f + 1)-strongly robust with l hops.

Proof: The proof of the necessity part is similar to the real-valued consensus in our

previous work and we omit it here.

For the sufficiency part, we need to show the conditions (C1)–(C3) in Lemma 5.2.1

hold. Note that in the proof of Theorem 5.3.2, conditions (C1) and (C3) still hold for

Byzantine attacks. For condition (C2), note that the sets Z1[k] and Z2[k] are defined

as the subsets of the set of normal nodes N, and node i in one of these two sets will use

at least one value from the normal nodes outside its corresponding set. Both situations

are applied for normal nodes, thus, all the analysis in the proof of Theorem 5.3.2 still

holds even under Byzantine attacks. ■

100



5.4 Summary

5.4 Summary

We have studied the problem of resilient quantized consensus with asynchronous up-

dates and time delays in the communication between agents. We have proved necessary

and sufficient conditions for our algorithm to guarantee resilient quantized consensus

for synchronous/asynchronous updates under malicious/Byzantine attacks. Compared

to the existing methods, our algorithm has a tighter graph condition and we provide a

unified analysis for different network settings.
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Chapter 6

Event-triggered Approximate

Byzantine Consensus with

Multi-hop Communication

In this chapter, we consider a resilient consensus problem where some agents are under

Byzantine attacks. In particular, we develop an event-triggered update rule to tackle

this problem as well as reduce the communication for each agent.

As we discussed in Chapters 3 and 4, through multi-hop communication, the connec-

tivity requirement for resilient consensus becomes less stringent than the conditions for

the one-hop case. This is enabled by increasing the amount of data exchanged among

agents through message relaying. In this chapter, we aim to reduce the transmissions

for the agents using the MW-MSR algorithm through event-triggered protocols [45]. In

the literature [23; 50; 68; 114], event-triggered schemes have shown their effectiveness

in reducing the transmissions for the agents using distributed algorithms even under

adversarial environments.

Specifically, agents using the event-triggered MW-MSR algorithm will update lo-

cally, and they send their own state values along with relayed values only when the

difference between the current value and the past communicated value exceeds a given

threshold. Through simulations, we can see that the agents’ transmissions can be sig-

nificantly reduced compared to the multi-hop algorithm without the event-triggered

protocol in Chapter 4. Furthermore, compared to the one-hop MSR algorithm with

or without event-triggered protocols [114], [56], the connectivity requirement for our
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algorithm is less stringent. Besides, we analyze the performance of our algorithm with

delays in communication, which is a case not studied in [114].

The rest of this chapter is organized as follows. Section 6.1 outlines the system

model. Section 6.2 presents the event-triggered MW-MSR algorithm. In Section 6.3,

we derive a condition under which the proposed algorithm reaches resilient consensus

under asynchronous updates with delays. In Section 6.4, we provide an alternative

event-triggered scheme and its analysis. Section 6.5 provides numerical examples to

show the effectiveness of the proposed algorithm. Lastly, Section 6.6 concludes this

chapter.

6.1 Problem Formulation

6.1.1 Update Rule

In the directed graph G = (V,E), the node set V is partitioned into the set of normal

nodes N and the set of adversary nodes A, where |N| = N . The partition is unknown

to the normal nodes at all times.

The update rule for normal agent i is described by

xi[k + 1] = xi[k] + ui[k], (6.1)

where xi[k] ∈ R is the state and ui[k] is the control input given by

ui[k] =
∑

j∈Ni[k]

aij [k](x̂j [k]− xi[k]). (6.2)

Here, x̂j [k] ∈ R is an auxiliary state, representing the last communicated state of node

j at time k. It is defined as

x̂j [k] = xj [t
j
h], k ∈ [tjh, t

j
h+1), (6.3)

where tj0, t
j
1, . . . denote the transmission times of node j determined by the triggering

function to be given below. The initial values xi[0], xj [0] are given, and aij [k] is the

weight for the edge (j, i). Note that at initial time, x̂i[0] need not be the same as xi[0].

Let aii[k] = 1 −
∑

j∈Nl−
i [k] aij [k]. Assume that γ ≤ aij [k] < 1 if aij [k] ̸= 0 or i = j for

i, j ∈ V, where 0 < γ < 1. In the resilient consensus algorithm to be introduced, the
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neighbors whose values are used for updates change over time and, hence, the weights

aij [k] are time varying.

We now introduce the triggering function. Denote the error at time k between the

updated state xi[k + 1] and the auxiliary state x̂i(k) by ei[k] = x̂i[k] − xi[k + 1] for

k ≥ 0. Then, let

fi[k] = |ei[k]| − (c0 + c1[k]), (6.4)

where c0 ≥ 0 is a constant and c1[k] takes nonnegative and decreasing values with

c1[k] → 0 in finite time. The roles of c0 and c1[k] are to reduce the triggering frequency,

and especially c1[k] allows the threshold to be large in the initial phase. Each node i

will check this function and whenever it finds fi[k] to be positive, it will transmit its

new state xi[k + 1] to its neighbors.

We employ the control input taking account of possible delays in the transmission.

Thus, we extend (6.2) as

ui[k] =
∑

j∈Nl−
i

aij [k](x̂
P
j [k − τPij [k]]− xi[k]), (6.5)

where x̂Pj [k] denotes the value of node j at time k sent along path P and τPij [k] ∈ Z+

denotes the delay in this (j, i)-path P at time k. The delays are time varying and may

be different in each path. We assume the common upper bound τ on any normal path

P , over which all internal nodes are normal, as

0 ≤ τPij [k] ≤ τ, j ∈ Nl−
i , k ∈ Z+. (6.6)

In the following part, we also assume that every normal node i updates its value at

least once in every θ ≥ 1 steps. When θ = 1, updates are synchronous. Although

we impose this bound on the delays for message transmissions, the normal nodes need

neither the value of this bound nor the information whether a path P is a normal one

or not. Also, there is no constraint on the size of τ .

Under the delay bound τ imposed in (6.5), triggered values of each node must reach

all the multi-hop neighbors in τ steps. We have two possible relay models that can be

employed in the proposed multi-hop algorithm:

(i) Periodic relay model: Each node relays all the recently received messages to

its one-hop neighbors every λ steps. If λ = 1, each node must immediately relay the
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received messages. This is referred to as the immediate relay model.

(ii) Package relay model: Each node relays all the recently received messages along

with its own values (e.g., in a message package) to its one-hop neighbors when its own

event is triggered.

Among the two modes, clearly, the package relay model requires less frequent mes-

sage transmissions and may be a more natural model in the event-based algorithm

studied here. We note however that with this model, it must be assumed that at time

k = 0, the neighboring agents exchage their state values. This is to cope with the

situation where no event is triggered by any of the agents. This can occur since the

event triggering function only takes account of the local states. We will illustrate the

difference of the effects of the two relay models through simulations later.

6.1.2 Threat Model

In this chapter, we study the resilient consensus under f -total/local Byzantine attacks.

The definitions of the adversary model is given in Section 2.2.2. As commonly done in

the literature, we assume that each normal node knows the value of f and the topology

information of the graph up to l hops. We assume that each adversary node i cannot

manipulate the path values in the messages containing its own state xi[k] and those

that it relays as stated in Assumption 2.3.1.

6.1.3 Resilient Asymptotic Consensus

We now introduce the type of consensus among the normal agents to be sought in this

chapter [114]. Note that in event-triggered schemes, the consensus condition is different

from the one in Chapters 3 and 4.

Definition 6.1.1 Given c ≥ 0, if for any possible sets and behaviors of the adversary

agents and any state values of the normal nodes, the following two conditions are sat-

isfied, then we say that the normal agents reach resilient consensus at the error level

c:

1. Safety: There exists a bounded safety interval S determined by the initial values

of the normal agents such that xi[k] ∈ S,∀i ∈ N, k ∈ Z+.

2. Agreement: For all i, j ∈ N, it holds that lim supk→∞ |xi[k]− xj [k]| ≤ c.
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6.2 Event-triggered Algorithm Design

In this section, we outline the structure of the event-triggered multi-hop weighted MSR

(EMW-MSR) algorithm.

6.2.1 Asynchronous Event-triggered MW-MSR algorithm

At each time k, each normal node i updates as follows:

1. Receive step: Node i receives neighbors’ values through different paths (described

in (6.5)) and chooses to update its state or not. If it chooses to update, then it proceeds

to step 2. Otherwise, it keeps its value as xi[k + 1] = xi[k].

2. Update step: Node i updates its value xi[k + 1] according to Algorithm 3 using

the values most recently received from neighbors and its own value xi[k].

3. Transmit step: Node i checks the value of fi[k] and sets the value of x̂i[k+ 1] as

x̂i[k + 1] =

xi[k + 1], if fi[k] > 0,

x̂i[k], otherwise.
(6.7)

Here, the auxiliary variable will be updated only when the current value has varied

enough to exceed a threshold, and only at this time the node sends its value and the

relayed values over each l-hop path to node j ∈ Nl+
i .

In the Transmit step and Receive step, the nodes exchange messages with others

that are up to l hops away. Then in the Update step, node i updates its state using

Algorithm 3. Note that the adversary nodes may deviate from this specification as we

describe in the next subsection.

One important feature here to further reduce the amount of data in each transmis-

sion when an event is triggered is to require that the nodes can send only the relayed

values that have changed since last event.

6.3 Consensus Analysis

In this section, we first prove the convergence of the asynchronous event-triggered

MW-MSR algorithm. Then we discuss the effects of different relay models on the

performance of the proposed algorithm.

To prove the convergence, we introduce two kinds of minimum and maximum of the
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Algorithm 3: EMW-MSR Algorithm (Update step)

1) At time k, normal node i obtains the most recently received event-triggered

values of the nodes in Nl−
i and its state xi[k], whose set is denoted by Mi[k],

and sorts the values in Mi[k] in an increasing order.

2) (a) Define two subsets of Mi[k] based on the message values:

Mi[k] = {m ∈ Mi[k] : value(m) > xi[k]},

Mi[k] = {m ∈ Mi[k] : value(m) < xi[k]}.

(b) Then, let Ri[k] = Mi[k] if the cardinality of a minimum cover of Mi[k] is

less than f , i.e.,
∣∣T∗(Mi[k])

∣∣ < f . Otherwise, let Ri[k] be the largest sized

subset of Mi[k] such that (i) for all m ∈ Mi[k] \ Ri[k] and m′ ∈ Ri[k] we have

value(m) ≤ value(m′), and (ii) the cardinality of a minimum cover of Ri[k] is

exactly f , i.e.,
∣∣T∗(Ri[k])

∣∣ = f .

(c) Similarly, we can get Ri[k] from Mi[k], which contains the smallest values.

(d) Finally, let Ri[k] = Ri[k] ∪ Ri[k].

3) Node i updates its value as follows:

xi[k + 1] =
∑

m∈Di[k]

ai[k]value(m), (6.8)

where ai[k] = 1/ |Di[k]| and Di[k] = Mi[k] \ Ri[k].

states of the normal agents. Denote the state vector and the transmitted state vector

of normal agents at time k by xN [k] and x̂N [k], respectively.

First, we denote the minimum and maximum of the states of the normal agents

from time k − τ to time k as

xτ [k] = max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
,

xτ [k] = min
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
,

(6.9)

respectively. Next, we denote the joint minimum and maximum of the states and the

transmitted states of the normal agents from time k − τ to time k, respectively, as

x̂τ [k] = max
(
xN [k], . . . , xN [k − τ ], x̂N [k], . . . , x̂N [k − τ ]

)
,

x̂τ [k] = min
(
xN [k], . . . , xN [k − τ ], x̂N [k], . . . , x̂N [k − τ ]

)
.

(6.10)

We are ready to state the main theorem of the chapter.
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Theorem 6.3.1 Consider a directed graph G = (V,E) with l-hop communication,

where each normal node updates its value according to the asynchronous event-triggered

MW-MSR algorithm. Under the f -local Byzantine model, the normal nodes reach re-

silient consensus at an error level c if and only if the underlying graph is (f+1)-strongly

robust with l hops. Moreover, the safety interval is given by S = [x̂τ [0], x̂τ [0]], and the

consensus error level c is achieved if the parameter c0 in the triggering function (??)

satisfies

c0 ≤
γNθ

4Nθ
c. (6.11)

Proof: (Necessity) This part follows from our previous work in Chapter 4, which

considers the special case without the triggering function, that is, c0 = c1[k] = 0.

(Sufficiency) First, we show by induction that the safety condition is satisfied. Note

that the update rule (6.8) in Algorithm 1 can be rewritten as

xi[k + 1] = ai[k]xi[k] +
∑

j∈Di[k]

ai[k]x̂
P
j [k − τPij [k]], (6.12)

where ai[k] = 1/ |Di[k]|. At time k = 0, it is clear by definition that xi[0], x̂i[0] ∈ S. We

first show that x̂τ [k] is nonincreasing in time. From (6.12), we have xi[k + 1] ≤ x̂τ [k]

for all i ∈ N since the values larger than x̂τ [k] are ignored in step 2 of Algorithm 1.

Moreover, by (6.7), it follows that x̂i[k + 1] ≤ x̂τ [k] for all i ∈ N. Together, we have

x̂τ [k + 1] ≤ x̂τ [k]. We can similarly prove that x̂τ [k] is nondecreasing in time.

We next show the consensus part. Note that for time k ∈ (tjh, t
j
h+1) between two

triggering instants, we have fi[k] ≤ 0. Moreover, for the neighbor node j ∈ Nl−
i , if

fj [k] > 0, then we have x̂j [k + 1] = xj [k + 1]. If fj [k] ≤ 0, then x̂j [k + 1] = x̂j [k] =

xj [k + 1] + ej [k]. As a result, it holds x̂j [k] = xj [k] + êj [k − 1] for k ≥ 1, where

êj [k] =

ej [k], if fi[k] ≤ 0,

0, otherwise.
(6.13)

Note that

|ej [k]| ≤ c0 + c1[k], ∀k ≥ 0. (6.14)
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Then, we can write (6.12) as

xi[k + 1] = ai[k]xi[k] +
∑

j∈Mi[k]\Ri[k]

ai[k](x
P
j [k − τPij [k]] + êj [k − τPij [k]− 1]). (6.15)

This can be bounded as

xi[k + 1] ≤ ai[k]xτ [k] +
∑

j∈Mi[k]\Ri[k]

ai[k](xτ [k] + êj [k − τPij [k]− 1])

≤ xτ [k] + max
j∈Mi[k]\Ri[k]

|êj [k − τPij [k]− 1]|.
(6.16)

Thus, by (6.14), letting c1[k] = c1[0] for k < 0, we have

xi[k + 1] ≤ xτ [k] + c0 + c1[k − τ − 1]. (6.17)

Similarly, we have

xi[k + 1] ≥ xτ [k]− c0 − c1[k − τ − 1]. (6.18)

Let V [k] = xτ [k]− xτ [k]. Then, define two sequences by

x0[k + 1] = x0[k] + c0 + c1[k − τ − 1],

x0[k + 1] = x0[k]− c0 − c1[k − τ − 1],
(6.19)

where x0[0] = xτ [0] − σ0, and x0[0] = xτ [0] + σ0 with σ0 = σV [0]. Then the following

inequalities hold:

xτ [k] ≤ x0[k] + σ0,

xτ [k] ≥ x0[k]− σ0.
(6.20)

We show xτ [k] ≤ x0[k] + σ0 by induction, and xτ [k] ≥ x0[k] − σ0 can be proved in a

similar way. When k = 0, we clearly have xτ [0] = x0[0]+σ0. Suppose that (6.20) holds.

Then, we have at time k + 1

xτ [k + 1] = max
(
xN [k + 1], xN [k], . . . , xN [k + 1− τ ]

)
≤ xτ [k] + c0 + c1[k − τ − 1]

≤ (x0[k] + σ0) + c0 + c1[k − τ − 1]

= x0[k + 1] + σ0.

(6.21)
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The first inequality holds because from (6.17), we have maxxN [k + 1] ≤ xτ [k] + c0 +

c1[k − τ − 1]. Moreover, from (6.9), we have max
(
xN [k], . . . , xN [k + 1− τ ]

)
≤ xτ [k].

We next introduce another sequence ε0[k] defined by

ε0[k + 1] = γε0[k]− (1− γ)σ0, (6.22)

where ε0[0] = εV [0]. Take the positive ε and σ so that

ε+ σ =
1

2
, 0 < σ <

γNθ

1− γNθ
ε. (6.23)

Here, we claim that it holds

0 < ε0[k + 1] < ε0[k], k = 0, 1, . . . , Nθ − 1. (6.24)

This is proved as follows. Since 0 < γ < 1, from (6.22), we can easily have ε0[k + 1] <

ε0[k]. It is thus sufficient to show ε0[Nθ] > 0. From (6.22), we have

ε0[Nθ] = γNθε0[0]−
Nθ−1∑
j=0

γj(1− γ)σ0

=
(
γNθε− (1− γNθ)σ

)
V [0].

This is positive because we have chosen ε and σ as in (6.23).

For the sequence ε0[k], define two sets as

Z1(k, ε0[k]) = {i ∈ N : xi[k] > x0[k]− ε0[k]},

Z2(k, ε0[k]) = {i ∈ N : xi[k] < x0[k] + ε0[k]}.

These sets are both nonempty at time k = 0 and, in particular, each contains at least one

normal node; this is because, by definition, xτ [0] > x0[0]−ε0[0] and xτ [0] < x0[0]+ε0[0].

In the following, we show that Z1(k, ε0[k]) and Z2(k, ε0[k]) are disjoint sets. To this

end, we must show

x0[k]− ε0[k] ≥ x0[0] + ε0[0]. (6.25)

110



6.3 Consensus Analysis

By (6.19) for x0[k] and x0[k], we have

(x0[k]− ε0[k])− (x0[k] + ε0[k])

=

x0[0] + c0k +

k−τ−2∑
j=−τ−1

c1[j]

−

x0[0]− c0k −
k−τ−2∑
j=−τ−1

c1[j]

− 2ε0[k].

Since x0[0] = xτ [0]− σ0 and x0[0] = xτ [0] + σ0 with σ0 = σV [0], we have

(x0[k]− ε0[k])− (x0[k] + ε0[k])

= (xτ [0]− xτ [0])− 2σ0 + 2c0k + 2
k−τ−2∑
j=−τ−1

c1[j]− 2ε0[k]

= V [0]− 2σV [0] + 2c0k + 2
k−τ−2∑
j=−τ−1

c1[j]− 2ε0[k]

> (1− 2σ − 2ε)V [0] + 2c0k + 2
k−τ−2∑
j=−τ−1

c1[j] ≥ 0.

The last inequality holds since ε + σ = 1/2 and ε0[k] < ε0[0] = εV [0]. Thus, we have

proved (6.25).

So far, we have shown that the two sets Z1(k, ε0[k]) and Z2(k, ε0[k]) are disjoint.

Notice that the network is (f+1)-strongly robust with l hops w.r.t. any set F following

the f -local model and the set of Byzantine nodes A also satisfies the f -local model.

Hence, the network is (f + 1)-strongly robust with l hops w.r.t. the set A and at

least one of the conditions in Definition 3.3.2 for robustness holds. Therefore, if the

two sets are both nonempty, then for these two nonempty disjoint sets Z1(k, ε0[k]) and

Z2(k, ε0[k]), one of them has a normal agent with at least f + 1 independent normal

paths originating from some normal nodes outside.

Suppose that normal node i ∈ Z1(k, ε0[k]) has the above-mentioned property. A

similar argument holds when i ∈ Z2(k, ε0[k]). Now, we go back to the update rule

(6.15) for node i and rewrite it by partitioning the neighbor set into two parts: those

that belong to Z1(k, ε0[k]) and those that do not. Node i has at least f+1 independent

normal paths originating from the normal nodes outside. According to Algorithm 3, it

will use at least one value originating from the normal nodes outside Z1(k, ε0[k]); thus,
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we obtain

xi[k + 1] = ai[k]xi[k] +
∑

j∈Di[k]∩Z1

ai[k]x
P
j [k − τPij [k]]

+
∑

j∈Di[k]\Z1

ai[k]x
P
j [k − τPij [k]] +

∑
j∈Di[k]

ai[k]êj [k − τPij [k]− 1]

≤ ai[k]xτ [k] +
∑

j∈Di[k]∩Z1

ai[k]xτ [k]

+
∑

j∈Di[k]\Z1

ai[k](x0[k]− ε0[k]) +
∑

j∈Di[k]

ai[k]êj [k − τPij [k]− 1].

Combining (6.20) and the fact that ai[k] is lower bounded by γ, we have

xi[k + 1] ≤ (1− γ)xτ [k] + γ(x0[k]− ε0[k]) + c0 + c1[k − τ − 1]

≤ (1− γ)(x0[k] + σ0) + γ(x0[k]− ε0[k]) + c0 + c1[k − τ − 1]

≤ x0[k] + c0 + c1[k − τ − 1] + (1− γ)σ0 − γε0[k]

= x0[k + 1]− ε0[k + 1]

(6.26)

for k = 0, 1, . . . , Nθ − 1, where the first inequality follows from the assumption that

Z1(k, ε0[k]) is nonempty, and the equality follows from (6.19) and (6.22). The relation

in (6.26) shows that once an update happens at node i, then this node will move out

of Z1(k + 1, ε0[k + 1]). It is further noted that inequality (6.26) also holds for the

normal nodes that are not in Z1(k, ε0[k]) at time k. This indicates that the nodes

outside Z1(k, ε0[k]) will not move in Z1(k + 1, ε0[k + 1]). Similar results hold for the

set Z2(k + 1, ε0[k + 1]).

Recall that the normal nodes update at least once for every θ steps. As a result,

if the two sets Z1(k, ε0[k]) and Z2(k, ε0[k]) are both nonempty at time k, then after

Nθ time steps, all the normal nodes will be out of at least one of them. Suppose that

Z1(k, ε0[k]) is empty. When such an event occurs at k = 0, it clearly follows that
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xτ [Nθ] ≤ x0[Nθ]− ε0[Nθ]. From the definition of V [k], we have

V [Nθ] = xτ [Nθ]− xτ [Nθ]

≤ (x0[Nθ]− ε0[Nθ])− (x0[Nθ]− σ0)

= x0[0]− x0[0] + 2c0Nθ + 2

Nθ−τ−2∑
j=−τ−1

c1[j]− ε0[Nθ] + σ0

= (xτ [0]− σ0)− (xτ [0] + σ0) + 2c0Nθ + 2

Nθ−τ−2∑
j=−τ−1

c1[j]

− ε0[Nθ] + σ0

= V [0]− σV [0] + 2c0Nθ + 2

Nθ−τ−2∑
j=−τ−1

c1[j]

−
(
γNθε− (1− γNθ)σ

)
V [0]

=
(
1− γNθ(ε+ σ)

)
V [0] + 2c0Nθ + 2

Nθ−τ−2∑
j=−τ−1

c1[j].

By (6.23), we have

V [Nθ] ≤
(
1− γNθ

2

)
V [0] + 2c0Nθ + 2

Nθ−τ−2∑
j=−τ−1

c1[j]. (6.27)

If there are more updates by node i after time k = Nθ, this argument can be extended

further as

V [hNθ] ≤
(
1− γNθ

2

)
V [(h− 1)Nθ] + 2c0Nθ + 2

hNθ−τ−2∑
j=(h−1)Nθ−τ−1

c1[j]. (6.28)
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Hence, we have

V [hNθ] ≤
(
1− γNθ

2

)h

V [0] +
h−1∑
t=0

(
1− γNθ

2

)h−1−t
2c0Nθ + 2

(t+1)Nθ−τ−2∑
j=tNθ−τ−1

c1[j]


≤

(
1− γNθ

2

)h

V [0] + 2c0Nθ
1−

(
1− γNθ

2

)h

1−
(
1− γNθ

2

)
+

h−1∑
t=0

(
1− γNθ

2

)h−1−t
2

(t+1)Nθ−τ−2∑
j=tNθ−τ−1

c1[j]

 .

(6.29)

Since c1[k] → 0 in finite time, there exists a finite time h0 such that c1[k] = 0, k ≥ h0Nθ.

Then, for h ≥ h0, we can obtain from (6.29)

lim sup
h→∞

V [hNθ] ≤ 2c0Nθ

1−
(
1− γNθ

2

) =
4c0Nθ

γNθ
≤ c. (6.30)

The analysis is similar for the dynamics of V [hNθ + t], t = 0, 1, . . . , Nθ − 1, and we

obtain as in (6.29):

lim sup
h→∞

V [hNθ + t] ≤ 4c0Nθ

γNθ
≤ c. ■

As we can see from (6.27), the delays make the consensus error bigger than the one

under no delays for every Nθ steps, i.e., the term containing c1[k] is bigger that the

one under no delays. However, when the iteration number is large enough as in (6.29),

the term containing c1[k] converges to 0, which results in the same error bound c as the

one under no delays in the one-hop case [114]. This fact shows that although delays

can slow down the consensus process, they do not affect the consensus error bound as

also observed in [21], [125].

6.4 An Alternative Event-triggered Scheme

In this section, we provide an alternative event-triggered scheme 2, which uses only the

event-triggered values to update.

The new update rule is modified from (6.12) (i.e., scheme 1). In (6.12), for node i to

update the new state xi[k+1], its current state xi[k] is required. On the one hand, this

means that even when the new state is not communicated, it still needs to be stored
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at every time step. On the other, since the current state xi[k] is newer than x̂i[k], it

seems desirable to speed up the convergence. We will, however, show that it may be

better to use only x̂i[k] for both storage and convergence reasons. Here, scheme 2 is

a generalization of the one in [114] which considered the synchronous algorithm with

one-hop communication. This type of event-triggered scheme is also motivated by those

in [50] and [121].

In the local update, for k ∈ Z+, each normal node i ∈ N updates its current state

by

xi[k + 1] = x̂i[k] +
∑

j∈Di[k]

ai[k](x̂
P
j [k − τPij [k]]− x̂i[k]), (6.31)

where ai[k] = 1/ |Di[k]|.
Note that the new state xi[k + 1] need not be stored until the next time step,

but is merely used for checking the condition of the triggering function fi[k] in (6.4).

Accordingly, in Algorithm 1, the input should be adjusted such that node i uses x̂i[k]

instead of xi[k] in determining the set Di[k].

Next, we denote the state vector containing the event-triggered values of normal

nodes from time k − τ to time k as

z[k] =
[
x̂N [k]T x̂N [k − 1]T · · · x̂N [k − τ ]T

]T
, (6.32)

which is a N(τ + 1)-dimensional vector for k ≥ 0. We also define its maximum value

and minimum value as z[k] = max z[k], z[k] = min z[k], respectively.

Then, we are ready to present the main result of this section.

Theorem 6.4.1 Consider a directed graph G = (V,E) with l-hop communication,

where each normal node updates its value according to the asynchronous event-triggered

scheme 2. Under the f -local Byzantine model, the normal nodes reach resilient consen-

sus at an error level c if and only if the underlying graph is (f +1)-strongly robust with

l hops. Moreover, the safety interval is given by S = [x̂τ [0], x̂τ [0]], and the consensus

error level c is achieved if the parameter c0 in the triggering function (6.4) satisfies

c0 ≤
γN(τ+1)−1(1− γ)

1− γN(τ+1)−1
c. (6.33)

Proof: (Necessity) This part follows from the proof of Theorem 6.3.1.
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(Sufficiency) First, we show by induction that the safety condition is satisfied. Note

that the update rule (6.31) can be rewritten as

xi[k + 1] = ai[k]x̂i[k] +
∑

j∈Di[k]

ai[k]x̂
P
j [k − τPij [k]], (6.34)

where ai[k] = 1/ |Di[k]|. At time k = 0, it is clear by definition that xi[0], x̂i[0] ∈ S. We

first show that x̂τ [k] is nonincreasing in time. From (6.34), we have xi[k + 1] ≤ x̂τ [k]

for all i ∈ N since the values larger than x̂τ [k] are ignored in step 2 of Algorithm 1.

Moreover, by (6.7), it follows that x̂i[k + 1] ≤ x̂τ [k] for all i ∈ N. Together, we have

x̂τ [k+ 1] ≤ x̂τ [k]. We can similarly prove that x̂τ [k] is nondecreasing in time. Besides,

using a similar proof, we have z[k] is nonincreasing in time and z[k] is nondecreasing

in time. Hence, we have shown the safety condition.

Next, we shown the consensus part. We first sort the normal nodes’ values in

the vector z[k] at time k in increasing order. Denote by si[k] the index of the agent

taking the ith value from the smallest to the largest. Hence, the values are sorted as

zs1 [k] ≤ zs2 [k] ≤ · · · ≤ zsN(τ+1)
[k].

Introduce two sequences of conditions for the bound of gaps between two values.

The condition sequence {Am} is defined as

� A1 : zs2 [k]− zs1 [k] ≤ (c0 + c1[k])/γ.

� A2 : zs3 [k]− zs2 [k] ≤ (c0 + c1[k])/γ
2.

� · · ·

� AN(τ+1)−1 : zsN(τ+1)
[k]− zsN(τ+1)−1

[k] ≤ (c0 + c1[k])/γ
N(τ+1)−1.

The condition sequence {Bm} is defined as

� BN(τ+1) : zsN(τ+1)
[k]− zsN(τ+1)−1

[k] ≤ (c0 + c1[k])/γ.

� BN(τ+1)−1 : zsN(τ+1)−1
[k]− zsN(τ+1)−2

[k] ≤ (c0 + c1[k])/γ
2.

� · · ·

� B2 : zs2 [k]− zs1 [k] ≤ (c0 + c1[k])/γ
N(τ+1)−1.

Let mA be the minimum m = 1, . . . , N(τ + 1) − 1 such that condition Am is not

satisfied. Also, Let mB be the maximum m = 2, . . . , N(τ + 1) such that condition Bm
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is not satisfied. Thus, we have

zsmA+1 [k]− zsmA
[k] >

c0 + c1[k]

γmA
,

zsmB
[k]− zsmB−1 [k] >

c0 + c1[k]

γN(τ+1)−mB+1
.

(6.35)

Moreover, conditions A1 to AmA−1 and BmB+1 to BN(τ+1) are satisfied. Then, for

0 ≤ k ≤ k′, we introduce two sets

Z1(k, k
′) = {i ∈ N : x̂i[k

′] < zsmA
[k] + c0 + c1[k]},

Z2(k, k
′) = {i ∈ N : x̂i[k

′] > zsmB
[k]− c0 − c1[k]}.

There are several cases concerning the relationship betweenmA,mB and Z1(k, k),Z2(k, k).

We study them separately.

Case 1. mA < mB: There are four subcases, denoted by (1-a) to (1-d).

(1-a) Z1(k, k) ̸= ∅,Z2(k, k) ̸= ∅: For a normal node j /∈ Z1(k, k), by definition, the

inequality x̂j [k] ≥ zsmA
[k] + c0 + c1[k] holds. Moreover, since the minimum element of

z[k] that exceeds zsmA
[k] is zsmA+1 [k], we also have x̂j [k] ≥ zsmA+1 [k]. If j ∈ U[k], then

values less than zs1 [k] will be ignored. Additionally, since the update is based on the

convex combination as shown in (6.34), it holds

xj [k + 1] ≥ (1− γ)zs1 [k] + γzsmA+1 [k]. (6.36)

Using conditions A1 to AmA−1 , we can bound zs1 [k] as

zs1 [k] ≥ zs2 [k]−
c0 + c1[k]

γ

≥ zs3 [k]−
(
1

γ
+

1

γ2

)
(c0 + c1[k]) ≥ · · ·

≥ zsmA
[k]−

(
1

γ
+

1

γ2
+ · · ·+ 1

γmA−1

)
(c0 + c1[k]).
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Substitute this into (6.36) and obtain

xi[k + 1] ≥ zsmA
[k] + γ

(
zsmA+1 [k]− zsmA

[k]
)
− 1

γmA−1
(c0 + c1[k]) + c0 + c1[k]

> zsmA
[k] + γ

c0 + c1[k]

γmA
− 1

γmA−1
(c0 + c1[k]) + c0 + c1[k]

= zsmA
[k] + c0 + c1[k],

(6.37)

where the second inequality is from (6.35).

On the other hand, for an agent j /∈ U[k], we have xj [k+1] = xj [k]. By assumption

j /∈ Z1(k, k), it holds j /∈ Z1(k, k + 1). Either the case is, we conclude that if a normal

node is not in Z1(k, k), then it will not move into Z1(k, k
′) at time k′ > k. Likewise,

for Z2(k, k), we can show a similar statement.

Furthermore, Z1(k, k) and Z2(k, k) are disjoint. This is because by using the two

inequalities in (6.35), from 1 ≤ mA < mB ≤ N(τ + 1) and 0 < γ ≤ 1/2, it follows that

zsmB
[k]− zsmA

[k] > max

{
1

γmA
,

1

γN(τ+1)−mB+1

}
(c0 + c1[k]) ≥ 2(c0 + c1[k]).

Notice that the network is (f + 1)-strongly robust with l hops w.r.t. any set F

following the f -local model. Use the discussions in the proof of Theorem 6.3.1, it holds

that for the two nonempty disjoint sets Z1(k, k) and Z2(k, k), one of them (or both)

has a normal agent with at least f+1 independent normal paths originating from some

normal nodes outside.

Suppose that normal node i ∈ Z1(k, k) has the abovementioned property. A similar

argument holds when i ∈ Z2(k, k). If node i chooses to update at time k ≤ ki < k + θ

(recall that each normal node should update once in θ steps), then x̂i[k
′ + 1] = x̂i[k

′]

and xi[k
′ + 1] = xi[k

′] for k ≤ k′ < ki. Thus, it holds that i ∈ Z1(k, k
i) ⊆ Z1(k, k).

Hence, node i still has the abovementioned property. When it updates at time ki, it

should use at least one value outside the set Z1(k, k
i) (i.e., this value is greater than

zsmA+1 [k]). Similar to (6.36) and (6.37), we have

xi[k
i + 1] ≥ (1− γ)zs1 [k

i] + γzsmA+1 [k]

≥ (1− γ)zs1 [k] + γzsmA+1 [k]

> zsmA
[k] + c0 + c1[k],
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indicating that at time ki+1, node imoves out of Z1(k, k) (since in this case, fi[k
i] > 0).

Thus after θ steps, the cardinality of Z1(k, k + θ) is smaller than that of Z1(k, k).

Similar results also hold for the case i ∈ Z2(k, k). If Z1(k, k) and Z2(k, k) are

nonempty, we can repeat the above steps until one of them becomes empty. As a

result, z will decrease by c0 + c1[k] (or z will increase by c0 + c1[k]) after Nθ steps.

(1-b) Z1(k, k) = ∅,Z2(k, k) ̸= ∅: We have Z1(k, k + θ) = ∅, i.e.,

z[k + θ] ≥ zsmA+1 [k] + c0 + c1[k] ≥ zs1 [k] + c0 + c1[k].

and z increases by c0 + c1[k] after θ steps.

(1-c) Z1(k, k) ̸= ∅,Z2(k, k) = ∅: Similarly, z decreases by c0 + c1[k] after θ steps.

(1-d) Z1(k, k) = ∅,Z2(k, k) = ∅: Both the arguments in (1-b) and (1-c) hold.

Case 2. mA ≥ mB: This case is impossible. We can show this by contradic-

tion. Since mA ≥ mB, we know that conditions AmB−1 and BmA+1 are both satisfied.

Combined with AmA and BmB not being satisfied, we have

c0 + c1[k]

γmA
< zsmA+1 [k]− zsmA

[k] ≤ c0 + c1[k]

γN(τ+1)−mA
,

c0 + c1[k]

γN(τ+1)−mB+1
< zsmB

[k]− zsmB−1 [k] ≤
c0 + c1[k]

γmB−1
.

(6.38)

The inequalities in the first line in (6.38) indicate that it must hold mA < N(τ + 1)/2.

The inequalities in the second line in (6.38) imply that mB > (N(τ + 1) + 1)/2. This

results in mA < mB, which contradicts mA ≥ mB .

We can now conclude that after a finite number of time steps, all conditions in

the sequences {Am} and {Bm} must be satisfied. Otherwise, the difference between z

and z will decrease more than c0 by an update induced by an event. If such events

continuously occur, z − z will become smaller and eventually negative, which cannot

happen. Therefore, we have lim supk→∞ z[k]− z[k] ≤ c. ■

Remark 6.4.1 In scheme 1, the update frequency θ has effects on the consensus error

bound. However, in scheme 2, the consensus error bound is affected by the delay bound

τ . We provide an intuitive explanation for the differences between the two error bounds.

In scheme 1, nodes update using the state value xi[k] and compare the neighbors’ values

with xi[k]. Hence, if all the nodes update frequently (e.g., θ = 1), the variance in the

values caused by the delays is lower. In other words, the power for an event to be
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(a) (b)

Figure 6.1: (a) The graph is not 2-strongly robust with one hop but is 2-strongly robust
with 2 hops. (b) The graph is 2-strongly robust with one hop.

triggered at each node is accumulated at every θ steps. In scheme 2, nodes update using

the triggered value x̂i[k]. Even if all the nodes update frequently, the local update values

xi[k+1] are not stored. Therefore, the events will not occur until the new event-triggered

values from neighbors have arrived.

6.5 Numerical Examples

In this section, we conduct simulations for networks applying the event-triggered MW-

MSR algorithm. For all the simulations, we set the parameters c0 and c1[k] of the

triggering function as c0 = 1.215× 10−2 and c1[k] = 0.5× e−0.06(k+20), respectively.

6.5.1 Topology Gap between One-hop and Multi-hop Algorithms

In this part, we show that the proposed algorithm can guarantee resilient consensus

in a network where the conventional one-hop algorithm cannot. Consider the network

in Fig. 6.1(a). This graph is not 2-strongly robust with one hop, but is with 2 hops.

Suppose that node 5 is Byzantine and sends four different values to its four neighbors.

Let the initial normal states be xN [0] = [2 4 6 8]T . According to [56], [114], this

graph does not meet the condition for 1-total Byzantine model even for synchronous

updates. Thus, resilient consensus is impossible as shown in Fig. 6.2(a) where the four

red dashed lines indicate the adversarial values and the dots represent the time instants

when events are triggered by the normal nodes.

Then, we perform simulations for the asynchronous two-hop event-triggered MW-

MSR algorithm under the same attacks. Let the normal nodes update synchronously

with delays in communication (θ = 1). Moreover, we choose the package relay model,

i.e., nodes only relay the messages when events are triggered at the nodes. Observe that

120
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(a) One-hop case without delays.

(b) Two-hop case with delays.

Figure 6.2: Time responses using different event-triggered MSR algorithms.

resilient consensus is achieved as shown in Fig. 6.2(b). This verifies the effectiveness

of the proposed algorithm.

6.5.2 The Amount of Transmissions of Different Algorithms

In this part, we show that the amount of transmissions of the proposed algorithm

can be further reduced compared to the one-hop algorithm. This time, we consider

the network in Fig. 6.1(b). This graph is 2-strongly robust with one hop, and hence,

with 2 hops. Node 6 is Byzantine and is capable to send two different values to its

neighbors (including different relayed values). Let the initial normal states be xN [0] =

[2 4 6 8 10]T . By [56] and Theorem 6.3.1, this graph satisfies the condition for 1-total

Byzantine model. Thus, resilient consensus can be achieved with both one-hop and

two-hop algorithms, and the results are given in Fig. 6.3.

From Fig. 6.3, we can also see that the numbers of events of the two-hop algorithm

with immediate relays and package relays are both smaller than that of the one-hop

algorithm. This is because by introducing the multi-hop communication, each node can

have more information of the network, which may result in faster speed of the consensus
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Table 6.1: Average triggering times per normal node

Algorithms Average events Average transmissions

One-hop 7.26 7.26

Two-hop with immediate relays 3.05 12.20

Two-hop with package relays 6.99 6.99

process and less events. Moreover, observe that the two-hop algorithm with immediate

relays has less events than the algorithm with package relays. Obviously, the immediate

relay model is an ideal model and it requires additional communication resources for the

relaying process. Note that for this model, each event is accompanied with additional

transmissions for relays as each node has three neighbors. In contrast, the package

relay model is more realistic and energy-saving since it requires only communication

for the events, but reaching consensus takes longer.

To verify these properties of the algorithms, we further conducted Monte Carlo

simulations in the same network for 50 runs by randomly taking initial normal states

within [0, 10]. The Byzantine node 6 misbehaves as in the previous simulation. Table

I displays the average times of events and transmissions per normal node of the three

algorithms. In all runs, consensus was achieved and the results are consistent with our

analysis so far. In particular, the package relay model requires the least number of

transmissions overall.

6.6 Summary

In this chapter, we have investigated the resilient consensus problem using the event-

triggered MSR algorithm with multi-hop communication. We have characterized the

network requirement for the proposed algorithm to guarantee resilient consensus with

a certain error level. We found that the delays in communication may slow down

the consensus process, but they do not affect the consensus error. By introducing

multi-hop communication, even sparse graphs can meet the condition for robustness.

Furthermore, the event-triggered scheme provides an effective way to reduce the number

of transmissions for the multi-hop communication.
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6.6 Summary

(a) One-hop case without delays.

(b) Two-hop case with immediate relays.

(c) Two-hop case with package relays.

Figure 6.3: Time responses using different event-triggered MSR algorithms.
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Chapter 7

Secure Consensus with

Distributed Detection via

Two-hop Communication

In this chapter, we consider a resilient consensus problem under malicious attacks from

the view point of detection algorithms. The approach is to equip all nodes with a

scheme to detect neighboring nodes when they behave in an abnormal fashion. To this

end, the nodes exchange not only their own states but also information regarding their

neighbor nodes which can be considered as a two-hop communication algorithm. It

is shown that the detection scheme becomes effective by requiring certain connectivity

properties in the network so that the non-malicious nodes can share enough information

about their common neighbors.

Specifically, the main objective of this chapter is to address the problem of designing

fully distributed FDI methods requiring only local information by the agents. In this

setting, each non-faulty, normal agent in the network acts as a detector, monitoring its

neighbors by iteratively exchanging more information than in conventional consensus.

Specifically, the agents not only send their own states but also relay their neighbors’

state values. In this way, they can verify if the states sent by a particular neighbor are

consistent with those of others. In the course, we exploit the property in the malicious

model that the adversarial nodes are restricted to send the same information to its

neighbors.

The key to achieve distributed detection is to impose the network to have sufficient
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connectivity. In particular, for the agents to receive trustable information regarding

its one/two-hop neighbors, it is critical that there are multiple ways to have access to

the neighbors through the presence of common neighbors and multiple paths. By both

schemes, we can further achieve consensus among the non-faulty ones in a resilient

manner. We clarify tight conditions on the network structures in terms of the graph

connectivity for the proposed algorithms. The first scheme has a simple structure

as the normal agents can detect malicious neighbors but must rely on secure mobile

agents to communicate the detection information to others. On the other hand, the

second scheme can perform fully distributed detection. The major difference in their

requirements lies in the necessary network structures. The first scheme functions on

networks with less connectivity than the second one; this is because in the latter scheme,

majority voting [84] is used for agents to decide the true values of the two-hop neighbors.

We will see however that the required connectivity level can be less than that in MSR-

based resilient consensus algorithms. Moreover, the proposed algorithms can function

properly when more than half of the nodes turn malicious under certain topologies,

which is a case out of the capabilities of conventional algorithms.

The rest of this chapter is organized as follows. In Section 7.1,the system model is

introduced. Section 7.2 is devoted to the basics of the distributed detection framework

with detection share. In Section 7.3, we present our main algorithm being capable of

fully distributed detection of adversaries. In both cases, we provide necessary and suf-

ficient graph conditions for the detection schemes. In Section 7.4, numerical examples

are provided to illustrate the effectiveness of the proposed schemes. We conclude the

chapter in Section 7.5.

7.1 Problem Formulation

7.1.1 Update Rule and Threat Model

Consider a time-invariant network modeled by the directed graph G = (V,E). The node

set V is partitioned into the set of normal nodes N and the set of adversary nodes A.

The latter set is unknown to the normal nodes at time step k = 0. The adversary nodes

in A try to prevent the normal nodes in N from reaching consensus. Denote by Ai[k]

the set of indices of the adversary nodes known to or detected by node i by time step k.

This set is updated differently in the two proposed schemes and is specified later. The
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7.1 Problem Formulation

set of agent i’s neighbors not behaving adversarially is denoted by Mi[k] = Ni \Ai[k].

All algorithms in this paper are synchronous. Each normal node i updates its state

value xi[k] by

xi[k + 1] =
∑

j∈M+
i [k]

ωij [k]xj [k], (7.1)

where M+
i [k] = {i} ∪Mi[k] and ωij [k] = 1/(1 + |Mi[k]|).

Next, we introduce the threat model studied here. Note that they are the one-hop

versions of the threat models shown in Section 2.2.2.

Definition 7.1.1 (f -total / f -local set) The set of adversary nodes A is said to be

f -total if it contains at most f nodes, i.e., |A| ≤ f . Similarly, it is said to be f -local if

for any normal node i ∈ N, it has at most f adversary nodes as its in-neighbors, i.e.,

|Ni ∩A| ≤ f, ∀i ∈ N.

In this chapter, we focus on the malicious model. This model is reasonable in

applications such as wireless sensor networks, where neighbors’ information is obtained

by broadcast communication. This class of adversaries has not been well studied in

computer science where the Byzantine model is traditionally more common [62].

We now introduce the type of consensus among the normal agents to be sought in

this chapter. Here, we use the notation x
(i)
i [k] to indicate the state xi[k] of each normal

agent i stored by itself. Its formal definition is given in Section 7.1.2.

Definition 7.1.2 If for any possible sets and behaviors of the malicious agents and

any state values of the normal nodes, the following two conditions are satisfied, then

we say that the normal agents reach resilient consensus:

1. Safety condition: All normal states remain in the interval S = [mini∈V x
(i)
i [0],maxi∈V x

(i)
i [0]],

where V = {i ∈ V : x
(i)
i [0] ∈ [xmin, xmax]} determined by the initial states of all agents:

x
(i)
i [k] ∈ S,∀i ∈ N, k ∈ Z+.

2. Consensus condition: There exists a state x∗ ∈ S such that limk→∞ x
(i)
i [k] =

x∗, ∀i ∈ N.

Note that for our algorithms it is hard to detect adversary nodes which take extreme

initial values but perform the consensus like normal nodes. In fact, it is hard for any

algorithm to detect such nodes [31; 40; 44; 130; 131]. Since one can never know that such

a node is normal with an extreme initial value or it is simply adversarial. To mitigate
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the impact of such adversary nodes, we set the safety interval [xmin, xmax] for normal

nodes so that neighbors taking values outside this interval will be considered malicious.

Here, the safety condition is different from those in MSR-based works [6; 21; 56; 65],

where the interval S is set only by the initial values of the normal agents.

In this chapter, we develop two distributed schemes for achieving both detection

of malicious agents and resilient consensus under the f -total/local model. A common

characteristic of these algorithms is that they both employ two-hop communication,

where each agent transmits its own state and the states of its neighbors. We will

clarify the necessary network structure for the schemes to accomplish this goal. In

particular, our schemes require less connectivity for the networks in comparison with

the conventional MSR-based algorithms.

The two proposed schemes are dealt with in Sections 7.2 and 7.3. They differ

in two aspects related to communication and network connectivity: The first scheme

is introduced more for illustrating the idea behind adversary detection via two-hop

communication; it uses secure mobile agents to verify the detection report and send

the detection information to all nodes, but the network can be more sparse. The second

scheme is the main algorithm of this paper, being capable of fully distributed detection

under more dense networks.

Before we proceed, we explain more about the class of MSR-based algorithms. In

such algorithms, the normal agents remove the extreme state values at each iteration.

Specifically they may remove up to f largest values and f smallest values. This indicates

that the network must be at least (2f + 1)-connected. However, it is known that more

connectivity is needed. In general, under the f -total model, resilient consensus can be

reached by MSR-based algorithms if and only if the underlying graph is (f +1, f +1)-

robust (e.g., [56]).

7.1.2 Information Set for Two-hop Communication

In our detection frameworks, each normal node acts as a detector for its neighbors. To

this end, the nodes update and exchange their information sets containing their own and

neighbors’ values, IDs and corresponding identities (normal or malicious). Specifically,

at each time step, each node will check the information sets received from its neighbors

by comparing them and also with the past information sets. Then, it determines

whether the information set is from an adversary node. After confirming the identities
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of its neighbors, it will utilize the values of nodes that have behaved normally in the

update rule (7.1), and send a new information set containing its updated value and

the values of all the neighbors from the previous time step along with corresponding

identities.

In the update rule (7.1), each normal agent uses its own state and its neighbors’

states. However, to explicitly indicate the difference between the broadcast states and

the manipulated states, we introduce two notations. For agent i, we denote its value

by x
(i)
i [k], to indicate that it is stored in agent i itself and then broadcasted. Let x

(j)
i [k]

be the value stored by its neighbor node j after receiving the broadcast value x
(i)
i [k]. If

node j is malicious, this information can be modified from x
(i)
i [k] and take a different

value when it is stored by agent j.

Now, for each normal node i ∈ N, we rewrite the update scheme in (??) using these

notations as

x
(i)
i [k + 1] =

∑
j∈M+

i [k]

ωij [k]x
(i)
j [k]. (7.2)

For each malicious node i ∈ A, it can update its broadcast state arbitrarily as

x
(i)
i [k + 1] = ui[k], (7.3)

where ui[k] may even be a function of states of all nodes in the network by time step

k. (See also Assumption 7.1.2.)

Both normal and malicious nodes transmit information sets to their neighbors.

Specifically, the information set Φi[k] of node i is sent to its neighbors at time k ≥ 1

and contains the value of itself at time k and past values of itself and its neighbors at

time k − 1 and corresponding identities of the neighbors, and is set as

Φi[k] =
(
(i, x

(i)
i [k|k]), {(j, x(i)j [k − 1|k])}j∈Ni∪{i},Ai[k − 1]

)
. (7.4)

We use the notation x
(i)
i [k−1|k] to indicate that this state is in the set Φi[k] from time

k. Note that Φi[k − 1] and Φi[k] contain x
(i)
i [k − 1|k − 1] and x

(i)
i [k − 1|k], and if node

i is malicious, these values may be different. Moreover, under the malicious model, all

neighbors of agent i receive the same information set from agent i.

As an example, consider the graph in Fig. 7.1(a). Let the initial state be x[0] =
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(a) (b)

Figure 7.1: 9-node graphs: (a) 4-connected and (b) (4,4)-robust.

[8 10 4 2 1 5 9 3 6]T . The information set of node 2 at time step 1 is given by

Φ2[1] = ((2, 7.4), {(1, 8), (2, 10), (3, 4), (7, 9), (9, 6)},A2[0]) . (7.5)

Here, the state of node 2 is updated by (7.2) as the average of the current values with

equal weights: x2[1] = (1/5)
∑

j∈M+
2 [0] xj [0] = 7.4. This information set Φ2[1] is sent to

node 2’s neighbors (i.e., nodes 1, 3, 7, and 9). After confirming that node 2 is normal

through the detection algorithm, nodes 1, 3, 7, and 9 will then forward node 2’s value

to their neighbors at the next time step.

We introduce assumptions on the nodes’ knowledge and the attacks that the mali-

cious nodes can generate.

Assumption 7.1.1 Each normal node has access to only the information sets received

from its neighbors. It also has the topology information of its two-hop neighbors, i.e.,

the neighbors of its neighbors.

Assumption 7.1.2 Each malicious node has all the information of the network (even

if there is no edge from some nodes) and can manipulate its own information set in

(7.4) before broadcasting it to the neighbors. It can change the state values and IDs of

its own and its neighbors.

As stated in Assumption 7.1.1, each normal node has only partial knowledge about

the network. This is actually a relaxed version of the assumption that each fault-

free node knows the topology of the entire network, which is commonly made in the

observer based detection works [86; 106], multi-hop communication related works [62;

93], and Byzantine agreement works [109]. In contrast, for most of the MSR-based

works [21; 56], each fault-free node is assumed to have access to only the information

from its one-hop neighbors. Thus, MSR-based works impose a weaker assumption than
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Assumption 7.1.1, however with the tradeoff of not having detection capabilities for

malicious agents. In an uncertain environment where neighbors cannot be trusted, it

may not be possible to obtain accurate status regarding the two-hop neighbors. To keep

the problem tractable, each node is aware of the topology up to its two-hop neighbors

in this paper. This setting may be justified and of low cost as in many sensor networks,

the nodes are geographically fixed and the network topology will not change.

On the other hand, a malicious node is capable to manipulate any value in its own

information set by changing or deleting the value or adding some pairs of values and

agent IDs. Since the normal agents have the knowledge of the topology up to their

two-hop neighbors, attackers will be known by their direct neighbors when they do

not send out their information sets, delete values from neighbors, or add non-existing

agents as neighbors. Moreover, in the case that a malicious neighbor of some node

adapts the same ID as a normal neighbor, such attacks will be detected too.

At this point, we summarize the common settings for the two schemes mentioned so

far: (i) We deal with malicious adversary nodes (including omissive/crash model). (ii)

The underlying network graph is time invariant. (iii) The update rules are synchronous.

(iv) Both schemes are applied for scalar consensus.

7.2 Scheme 1 with Detection Share

In the first scheme for distributed detection and resilient consensus, the normal nodes

are capable to detect malicious neighbors by using the two-hop information in undi-

rected networks. It provides the basics for using two-hop communication in an adver-

sarial environment, which is motivated by the works [130; 131].

7.2.1 Resilient Consensus Scheme 1

The update rule together with the detection algorithm can be outlined as follows:

Scheme 1 Each agent i ∈ V exchanges with its neighbors the information set Φi[k] in

(7.4). Each normal agent first runs the detection algorithm in Algorithm 4. Once it de-

tects any malicious agent in its neighbors, then the detection information is broadcasted

to all agents through the secure mobile agents. Finally, it will use the values from its

normal neighbors to update its value by the update rule (7.1).
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Algorithm 4: Detection Algorithm for Scheme 1

Input: Φj [k], j ∈ Ni ∪ {i}
Output: IDs of the malicious neighbors

Initialization: Take the check set Ci[0] and malicious node set Ai[0] to be

empty. Moreover, node i receives and stores the initial states of its neighbors

as x
(i)
j [0] = x

(j)
j [0] for all j ∈ Ni. If x

(i)
j [0] /∈ [xmin, xmax] for any j ∈ Ni, node i

will consider node j as malicious and put j’s ID in Ai[0]. Then, node i can

update using the values from the nodes in M+
i [0] to get x

(i)
i [1].

At each time k ≥ 1, node i executes the following steps:

Let Ai[k] = Ai[k − 1]. By Assumption 7.2.1, the malicious nodes detected at

time k − 1 is shared among all the nodes by time k.

for j ∈ Mi[k] do
if (Step 1) Φj [k] contains any different identities of the nodes known by

node i (any node in Ai[k] is labeled as malicious, otherwise is labeled as

normal.) then
it will output node j as malicious.

end

if (Step 2) Φj [k] contains IDs of neighbors of node j which are different

from those known to node i then
it will output node j as malicious.

end

if (Step 3) any value of x
(j)
h [k − 1|k], h ∈ Ni, in Φj [k] is not equal to the

value in the check set Ci[k − 1] then
it will output node j as malicious.

end

if (Step 4) x
(j)
j [k|k] in Φj [k] does not follow the update rule (??) then

it will output node j as malicious.

end

if (Step 5) node j has not been detected as malicious by node i through the

4 steps above then
it will output node j as normal.

end

end

Return identities (malicious or normal) of neighbors. If node i detects node j

as malicious or it receives a report on node j through the detection share, it

will put node j’s ID in Ai[k].

Node i stores x
(j)
j [k|k] from Φj [k], j ∈ Ni ∪ {i}, into Ci[k].
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7.2.2 Detection Algorithm Design

For the first scheme, the detection share function explained below is needed for the

communication among the nodes when events of detecting adversaries occur.

Assumption 7.2.1 Once a malicious node is detected by any of the normal nodes, its

ID will be securely notified to all nodes within the same time step as the malicious node

is detected.

This type of assumptions appears in [130; 131] as well. We however stress that our

results have advantages over these works in terms of the network structure requirements.

We will make more precise comparisons later. In practice, for this detection share,

a certain level of resources is necessary. This can be realized by introducing fault-

free mobile nodes which are appropriately distributed throughout the network and are

capable to verify if the detection reports from a node is true or false. Here, we suppose

that the nodes may turn malicious over time with the upper bound f on the total

number of such nodes. Thus, the verification must take place in real-time. Each time

a node claims to have detected a malicious neighbor, the mobile agent nearest to the

node visits it and verifies the evidence of the report, i.e., by collecting the information

sets of the node and its neighbors of that time step. If it finds the detection report

to be valid, then it broadcasts the detection information to all nodes through secure

communication [60]. Otherwise, it broadcasts that the node sending the report is

malicious. We emphasize that these mobile agents must verify the detection reports

only when they receive from agents, and they need not carry out the detection of

adversaries themselves, which requires keeping track of the entire network all the time

as in [130].

We now present our distributed detection scheme in Algorithm 4. To ensure that

all nodes follow the specified update rule, the normal nodes utilize the information

set Φi[k] given in (7.4) and check consistency among the data received from their

neighbors. In Algorithm 4, step 1 is to guarantee that each normal node should not

use the information from the nodes detected to be malicious by the previous time step.

Moreover, it ensures that a node does not falsely claim another node being malicious.

Step 2 is to prevent the malicious nodes from faking any neighbors. Step 3 is to enforce

the normal nodes not to modify the values received from their neighbors. Finally, step 4

is to guarantee that the normal nodes follow the given update rule.
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(a) (b)

Figure 7.2: Example graphs: Nodes 1 and 2 are malicious. In (a), there is no common
normal neighbor, while in (b), node 4 is.

Our approach is distributed as this detection scheme is implemented on each node.

By contrast, in [131], a strict assumption on the malicious nodes is imposed so that the

cooperation between the malicious nodes is not allowed. In particular, it is assumed

that malicious nodes can not be neighbors. It is difficult to guarantee this in practice

since clearly the identities of the malicious nodes are unknown prior to operation. Even

faults may occur simultaneously in two neighboring nodes. In the later work [130] by

the same authors, to relax this assumption, mobile agents are employed. Such agents

execute the fault detection and isolation (FDI) function by collecting information as

they continuously circulate within the network. However, for Scheme 1, the mobile

agents are used only for verification of the detection reports when the events of detection

occur. Later, in the next section, we will introduce another detection algorithm with

the ability of fully distributed detection of adversaries.

Furthermore, a common assumption made in [40; 130; 131] is that the normal nodes

form a connected graph. Although this is a necessary requirement for the normal nodes

to achieve consensus, it is impossible to check whether a given graph has this property

a priori even if the bound f on malicious agents is known. In Scheme 1, we address

this issue by imposing a connectivity condition to guarantee that the original network

has a certain redundant structure.

7.2.3 Necessary Graph Structure for Scheme 1

Here, we introduce some conditions on the network structure to fully utilize the de-

tection capability of Algorithm 4. From the definitions of the information sets and

the detection algorithm, it is clear that a malicious node can be detected if there is at

least one normal node among its neighbors that monitors its behavior. However, such

detection may fail if neighboring malicious nodes cooperate with each other. Hence, it

is critical that one or more normal nodes are present as their common neighbors. We

illustrate this point using the simple four-node network in Fig. 7.2(a). Take nodes 1
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and 2 to be malicious. They can cooperate as follows: Node 1 manipulates x
(1)
2 [k−1|k]

in its information set, and node 2 manipulates x
(2)
1 [k−1|k] in its information set. In this

network, since there is no normal node having access to the information sets of both

nodes 1 and 2, such an attack will not be detected. Now, in the network in Fig. 7.2(b),

the normal node 4 is a common neighbor of nodes 1 and 2. As it has access to both

x
(1)
1 [k− 1|k− 1] and x

(2)
2 [k− 1|k− 1], it can detect when node 1 or 2 changes the value

of the other.

The following lemma formally states this requirement and its proof can be found in

Appendix A of [127].

Lemma 7.2.1 Consider the network of nodes modeled by the undirected graph G =

(V,E). Algorithm 1 detects every pair of neighboring misbehaving nodes if and only if

they have at least one normal node as their common neighbor.

Since the identities of the malicious nodes are unknown, we must impose a con-

nectivity requirement so that the condition in the lemma holds for any combination of

nodes being malicious neighbors in the network. The theorem below provides the main

result of this section. Its proof can be found in Appendix B of [127].

Theorem 7.2.1 Consider the network modeled by the undirected graph G = (V,E) with

the adversary set A to be an f -total malicious set. Suppose that Assumptions 7.1.1,

7.1.2 and 7.2.1 hold. Then, under Scheme 1, the following hold.

(a) All malicious nodes that behave against the given update rule (7.1) are detected

if and only if for every pair of neighboring nodes, they have at least f −1 two-hop paths

connecting them.

(b) Under the condition of (a), normal nodes can achieve resilient consensus if G is

(f + 1)-connected.

We note that in the case of undirected graphs, for a pair of neighboring nodes to

share common neighbors is equivalent to having two-hop paths connecting them. For

directed graphs, we need to be more careful as we will see in Section 7.3. Note that

the conditions in Theorem 7.2.1 do not require dense graph structures. For example,

we can check by inspection that both graphs in Fig. 7.1 satisfy the conditions for the

case with f = 3.

Our study is motivated by the MSR algorithms studied in, e.g., [22; 56]. There, the

notion of graph robustness is shown to be critical to guarantee consensus in the presence
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of malicious agents. This can be achieved by the nodes removing extreme values of

neighbors while no detection is performed. On the other hand, our approach is to

achieve adversary detection for resilient consensus, and this is realized by using extended

information sets. As a result, the connectivity requirement becomes less restrictive

compared to the MSR algorithms though the necessary resources for communication

and computation are higher.

As mentioned before, for the MSR algorithms under the f -total malicious model,

resilient consensus is guaranteed if and only if the graph is (f + 1, f + 1)-robust. It is

known from [56] that such a graph has the property of being (f + 1)-connected, but

the converse does not hold in general. The difference between these classes of graphs

can be checked by the two graphs in Fig. 7.1. The graph in (a) is 4-connected and

moreover satisfies the two-hop condition in Theorem 7.2.1 for f = 3. The one in (b) on

the other hand is (4,4)-robust as required by the MSR algorithm with f = 3. Hence,

when the number of malicious nodes in the network is the same, the constraint on the

graph structure for Scheme 1 is less stringent than that for MSR algorithms.

7.3 Scheme 2 with Fully Distributed Detection

Having the basics established for the detection via two-hop communication, we present

our main result on Scheme 2 for resilient consensus in this part. Compared to Scheme 1,

it is notable that the new scheme can achieve fully distributed detection for each normal

node without the use of detection share. This feature can be realized by introducing

majority voting [8; 84] and requiring a more dense graph structure. Then we pro-

vide a necessary and sufficient condition on graph structures for the detection part of

Scheme 2. Lastly, we show that Scheme 2 can tolerate more malicious nodes in both

complete networks and incomplete networks compared to MSR-based algorithms.

7.3.1 Resilient Consensus Scheme 2

The update rule together with the detection algorithm can be outlined as follows:

Scheme 2 Each agent i ∈ V sends its out-neighbors the information set Φi[k] in (7.4).

After receiving the information sets from its in-neighbors, it first runs the detection

algorithm in Algorithm 5. If it detects any malicious neighbors, it reports this detec-

tion information to its out-neighbors. Then, it will utilize the values from its normal
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neighbors to update its value by the update rule (7.1).

It is important to note that malicious nodes may send fake detection reports to

normal nodes in this scheme, which is different from Scheme 1 where the secure de-

tection share is utilized. Hence, the normal nodes must verify if each received data is

authentic.

7.3.2 Detection Algorithm Design

Malicious neighbor sets here enable the normal nodes to keep track of its neighbors

identified to be malicious.

Definition 7.3.1 (Malicious neighbor set Ai[k] ⊂ V) Once node i detects any mali-

cious node among its neighbors at time k, it puts the node’s ID in Ai[k]. Also, once

node i receives at least f + 1 detection reports on some node, it will put the node’s ID

in Ai[k]. This set is accessible only to node i itself.

From Scheme 1, we see that the information set plays a crucial role in our detection

framework. For any normal node i to verify the identity of its neighbors, the information

sets of the neighbors need to be investigated in two parts: (i) the current value, i.e., if

it is updated according to the given update rule; (ii) the past values, i.e., if they are

manipulated and different from the true values of the corresponding nodes.

The two proposed schemes share common features in checking the neighbors’ current

values. Nevertheless, certain difference lies between the two schemes about checking

the past values of the neighbors. With the detection share function in Scheme 1, normal

node i needs to check whether its own past value is manipulated in the information

sets of its one-hop neighbors. By contrast, in Scheme 2, node i should check whether

any entries of the past values are manipulated in the information sets of its one-hop

neighbors. Thus node i needs to obtain the true state values of its neighbors’ neighbors,

i.e., two-hop neighbors. For this purpose, the information sets of its one-hop neighbors

must be utilized. Among the multiple information sets containing the state value of its

two-hop neighbor h, there may be some malicious node relaying a wrong value of node

h. Thus node i needs to carry out a majority voting on the true state value of two-hop

neighbor h through all the one-hop neighbors’ information sets containing the value of

node h. Here, majority voting means that if node i receives m values of node h, among
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the m values, if more than m/2 values are the same, then node i will take this value as

the true value of node h.

To fully utilize the capability of Algorithm 5, we here define the necessary graph

condition for Algorithm 5.

Definition 7.3.2 A directed graph G = (V,E) is said to satisfy the condition for Algo-

rithm 2 with parameter f if for any in-neighbor j ∈ Ni of node i, and any h ∈ Nj , h ̸= i,

one of the following conditions holds:

1. h ∈ Ni;

2. h /∈ Ni, and there are at least 2f +1 directed two-hop paths from h to i (including

the one through j).

We now present our distributed detection in Algorithm 5. Here, each node i per-

forms majority voting on two things: the nodes’ values and detection information. Since

we consider the f -total/f -local model in this paper, at most f values could be false

in the neighborhood of node i. Thus if node i receives the same information from at

least f + 1 distinct neighbors, it considers this information trustable. After obtaining

the true values of its one-hop neighbors and two-hop neighbors, it follows the same

detection procedures as the ones in Scheme 1.

7.3.3 Necessary Graph Structure for Scheme 2

In directed networks, the necessary condition for node i to detect its neighbor j when

it misbehaves is the following: node i has full access to the information that node j

must use to update its value if node j is normal, that is, the true values x
(h)
h [k − 1],

∀h ∈ Nj , used in the control input of node j and the correct detection information of

the two-hop neighbor h.

Similar to Scheme 1, we must impose a connectivity requirement on every node and

its neighbors for Scheme 2, such that the detection is guaranteed for any combination

of nodes being malicious in the network. The following theorem is the main result of

this section.

Note that this result is stated for the f -local model. However, it applies to the

case of f -total model. This is because f -local model is more general and adversarial

than the f -total model, and more than f malicious agents in total may be in the entire

network.
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Algorithm 5: Detection Algorithm for Scheme 2

Input: Φj [k], j ∈ Ni ∪ {i}
Output: IDs of the malicious neighbors

Initialization: Node i creates a check set Ci[k − 1] to store the values of

one-hop neighbors x
(j)
j [k − 1] and also the values of two-hop neighbors

x
(h)
h [k − 1] at time k − 1. Then, node i executes the same procedures as those

in the initialization of Algorithm 1.

At each time k ≥ 1, node i executes the following steps:

For each value of two-hop neighbor x
(h)
h [k − 1], it gathers x

(j)
h [k − 1|k] from

Φj [k], j ∈ Ni, does the majority voting on the value of x
(h)
h [k − 1] and stores

x
(h)
h [k − 1] into Ci[k − 1].

Let Ai[k] = Ai[k − 1]. Once node i receives at least f + 1 detection reports on

some node (contained in Aj [k − 1] in Φj [k], j ∈ Ni), it puts the node’s ID in

Ai[k].

for j ∈ Mi[k] do
Steps 1-5 in Algorithm 4.

end

Return identities (malicious or normal) of neighbors. If node i detects node j

as malicious, it will put node j’s ID in Ai[k].

Node i stores x
(j)
j [k|k] from Φj [k], j ∈ Ni ∪ {i}, into Ci[k].

Theorem 7.3.1 Consider the network modeled by the directed graph G = (V,E) where

the adversary set A follows the f -local malicious model. Suppose that Assumptions

7.1.1 and 7.1.2 hold. Then, under Scheme 2, the following hold.

(a) All malicious nodes that behave against the given update rule (7.1) are detected if

and only if G satisfies the condition for Algorithm 2 with parameter f (Definition 7.3.2).

(b) Under the condition of (a), normal nodes can achieve resilient consensus if G

has (f + 1)-connected rooted spanning trees.

Proof: (a) Necessity: We prove by contradiction. Suppose that there is a node

h ∈ Nj with h /∈ Ni, and that there are at most 2f two-hop paths from node h to node

i including the path containing node j. Take node j to be malicious. In this case, node

i will get copies of x
(h)
h [k − 1] from at most 2f different information sets. Here, note

that node i can also obtain copy of x
(h)
h [k − 1] from Φj [k], i.e., x

(j)
h [k − 1]. Among the

2f copies of x
(h)
h [k − 1], no majority is guaranteed when we consider the worst case.

That is, there may be f identical values created by malicious nodes and f identical
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values created by normal nodes. Thus node i cannot determine which one is actually

the true value of x
(h)
h [k − 1]. Hence, node j cannot be detected by node i.

Sufficiency: For detection, we prove sufficiency by showing that node i can confirm

the true value of every entry of the information set Φj [k] of neighbor node j by obtaining

the true value x
(h)
h [k − 1] of every neighbor h ∈ Nj of node j, from the previous time

step k − 1. Moreover, node i can obtain the correct detection information of its two-

hop neighbors before the detection loop at time k. Then we can prove that node i will

detect node j at time k if node j sends out faulty Φj [k].

For node i, consider the following two cases separately: (i) only condition 1 holds;

(ii) only condition 2 holds.

(i) In the case where h ∈ Ni, it is clear that node i can receive the true value of

x
(h)
h [k − 1] from Φh[k − 1] and have the correct detection information of its one-hop

neighbor h before time k.

(ii) Suppose that h /∈ Ni, and there are at least 2f +1 directed two-hop paths from

node h to node i. In this case, there is some normal node l ∈ Nout
h ∩ Ni which carries

the true value of x
(h)
h [k − 1] in its information set Φl[k]. If the majority of the 2f + 1

paths from h to i contains nodes as l, then node i can get the true value of x
(h)
h [k− 1].

Since there are at most f malicious nodes among the in-neighbors of node i, and there

are at least 2f + 1 directed two-hop paths from h to i including the path containing

node j, we have the needed majority.

We can apply the same analysis on the detection information of node i’s two-hop

neighbors. In the same case, if node h sends out faulty Φh[k− 1], then it is detected by

its one-hop neighbors at time k− 1. Recall that there are at least 2f +1 directed two-

hop paths from node h to node i and at most f malicious nodes among the in-neighbors

of node i. Thus, node i can obtain the correct identities of its two-hop neighbors by

majority voting before the detection loop of time k.

Therefore, node i knows the true value of x
(h)
h [k−1] and obtains the correct detection

information of its two-hop neighbors h before running the detection loop at time k. Thus

if node j ∈ Ni sends out faulty Φj [k] by possible manipulation including modifying the

entry of x
(j)
h [k − 1] in Φj [k], by simply breaking the update rule, or by sending false

information on the identity of node h, then node i will detect.

(b) Malicious nodes will be detected immediately once they misbehave. Thus mis-

behaviors of malicious nodes cannot affect normal nodes since normal nodes exclude
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values from detected malicious nodes. Hence, the safety condition is guaranteed. More-

over, by the graph G having (f +1)-connected rooted spanning trees, after removing f

malicious nodes, the subgraph of normal nodes contains at least one rooted spanning

tree. Therefore, resilient consensus is achieved ([83]). ■

7.3.4 Discussion

The conditions for Scheme 2 guarantee that for any out-neighbor i of node j, it has

full access to the broadcast values of in-neighbors of node j. It gains the values either

by being a direct neighbor of node j’s in-neighbors or through majority voting over at

least 2f + 1 paths. For the latter case, the majority of the voting always exists and is

correct since there are at most f malicious nodes in the neighbors of node i due to the

f -total/f -local model. Also, the majority voting enables node i to verify if a detection

report on its two-hop neighbors is valid. In the computer science literature, similar

redundancy schemes are often used to provide security and reliability to systems. For

example, if a transmission system is designed to tolerate up to f failures, it must have

2f +1 copies of the transmitted information along with majority voting for verification

[8].

Here we provide some example graphs satisfying the conditions in Theorem 7.3.1.

The network in Fig. 7.3(a) satisfies the conditions for Scheme 2 under the 1-local

model, i.e., there is at most one malicious node in the neighbors of each normal node.

Moreover, there is a characteristic three-layer structure. We can extend this idea to the

cases with any f . Each layer should have 2f +1 nodes for f -total/f -local model. Each

node in one layer should be connected with every node in the neighbor layers and have

no connection with the nodes in its own layer. This structure can also have many layers

as long as the f -total or f -local set is satisfied for each i ∈ N. Furthermore, combining

this structure with complete subgraphs (i.e., cliques), we can have graph structures like

Fig. 7.3(b), which satisfies the conditions for Scheme 2 as well.

It is observed that each node in a complete graph can detect every malicious node

since it has access to the state value of every node in the network. Thus we can enhance

the performance of Scheme 2 by introducing nodes having such properties. Node i is

said to be a full access node if it is an out-neighbor of all other nodes in the network,

i.e., di = n− 1.

It is important to note that we do not assume such full access nodes to be normal.
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(a) (b)

Figure 7.3: Example graphs satisfying the criteria for Scheme 2.

Figure 7.4: Undirected graph of 5 nodes with nodes 2 and 3 to be malicious.

As long as the conditions for Scheme 2 are met, a full access node can also be detected

by its normal neighbors when it behaves maliciously. This setting is different from

the authorized central nodes and the mobile detectors in [130], which randomly visit

each node in the network and are assumed to be fault-free. Nevertheless, a full access

node has the following property when it is normal. This result can be easily proved by

Theorem 7.3.1 since any node in the network is an in-neighbor of the full access node.

Corollary 7.3.1 A normal full access node can detect any node that behaves against

the update rule (7.1) in the network under Scheme 2.

As a result, Scheme 2 can guarantee resilient consensus in incomplete networks when

the majority of the nodes are normal, if a full access node is deployed properly in the

network. For example, the five-node network in Fig. 7.4 could tolerate two malicious

nodes when the conditions for 1-local are met except for the full access node 1. In the

same graph, if only node 1 becomes malicious and the conditions for 1-local are also

met for other nodes, then resilient consensus is still guaranteed.

The use of full access nodes may be difficult in practice. In the simulation, we will

examine another approach to enhance the connectivity of the network by the intro-

duction of relay nodes. Such nodes are limited in number, but forward the received

messages with stronger transmission power so that the messages reach more nodes in

the system. The use of relay nodes has been well studied for wireless sensor networks

(e.g., [129]).

Now, by the role that full access nodes can play, we can derive the maximum
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tolerable number of malicious nodes in incomplete graphs for Scheme 2. See Appendix

C of [127] for the proof.

Proposition 7.3.1 Consider the network of nodes modeled by the incomplete directed

graph G = (V,E) with n nodes. Assume that it meets the conditions for Scheme 2 given

in Theorem 7.3.1 (under the f -total model). Then Scheme 2 detects all the f malicious

nodes in the network and guarantees resilient consensus only if n > 2f .

As we have seen in Proposition 7.3.1, Scheme 2 can tolerate n ≥ 2f+1 in incomplete

networks if full access nodes are deployed properly. For Scheme 1, we can similarly

obtain a necessary bound on the number of malicious nodes as n ≥ f + 3 by following

the proof technique of Proposition 7.3.1. These bounds are for incomplete graphs and

are conservative if applied to complete graphs. For Scheme 2, the bound for complete

graphs is shown to be n ≥ f + 2 as stated in the following corollary of Theorem 7.3.1.

This bound in fact holds for Scheme 1 too, which can be derived as a corollary of

Theorem 7.2.1.

Corollary 7.3.2 For a complete graph Kn, it can tolerate f ≤ n− 2 malicious nodes

in the graph for the normal ones to reach resilient consensus by using Scheme 2.

We summarize the maximum tolerable numbers of malicious nodes in complete

graphs for several algorithms in Table 7.1. In computer science [9; 56; 62], a common

limitation is that MSR-based algorithms have the maximum tolerable number of ma-

licious nodes n ≥ 2f + 1 only for complete graphs. In comparison, it is clear that the

proposed Schemes 1 and 2 can tolerate more adversaries.

We conduct some comparisons between Schemes 1 and 2. Their differences are

shown in Table 7.2. Observe that Scheme 1 requires less connections in graphs compared

to Scheme 2. For example, in the 9-node networks in Fig. 7.5, networks (a) and (b)

satisfy the conditions for Schemes 1 and 2 under 2-total malicious model, respectively.

It is observed that in this case strictly more connections are required for Scheme 2.

Thus, in general networks without any full access node, the requirement for Scheme 1

is easier to meet than that for Scheme 2.

We remark that for Scheme 2 under f -local model the tolerable number of malicious

nodes in incomplete graphs could be more than the bound n ≥ 2f+1. As mentioned in

Corollary 7.3.1, full access nodes can detect any malicious node in the network. Thus in
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Table 7.1: Tolerable number of malicious nodes for complete graphs.

Scheme 1 Scheme 2 W-MSR MSR

n ≥ f + 2 n ≥ f + 2 n ≥ 2f + 1 n ≥ 2f + 1

Table 7.2: Differences between Schemes 1 and 2.

Scheme 1 Scheme 2

Network Undirected Directed

Distributed
detection

With
detection share

Fully distributed
detection

Malicious
model f -total

f -total
f -local

Graph
condition

(detection) (a) (b)

dense graphs which are close to complete graphs, Scheme 2 can function properly even

when more than half of the nodes turn malicious. For example, in the 9-node incomplete

network in Fig. 7.7, Scheme 2 performs well even when there are 6 malicious nodes.

More details are discussed in the numerical examples.

7.4 Numerical Examples

In this section, we demonstrate the performance of the proposed detection schemes

through numerical examples. We first use small-scale networks to verify the theoretical

results and then conduct extensive simulations based on geometric random graphs of

larger scale.

7.4.1 Resilient Consensus under Scheme 1

Consider the network shown in Fig. 7.1(a). It is a 4-connected graph with at least

two two-hop paths connecting every pair of neighbors. Given these properties, Theo-

rem 7.2.1 indicates that Scheme 1 can detect and remove at most three malicious nodes,

i.e., f ≤ 3, and resilient consensus is guaranteed. Here, we set nodes 3, 5, and 6 to be
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(a) (b)

Figure 7.5: 9-node graphs under 2-total malicious model.

malicious as indicated in orange in Fig. 7.1(a).

First, we examined the case without attacks. The time responses of the states of

all nodes arriving at consensus are shown in Fig. 7.6(a). Next, in attack scenario 1,

nodes 3 and 6 try to cooperate to avoid being detected. The simulation result is shown

in Fig. 7.6(b). By time k = 4, consensus is almost achieved among normal nodes,

but the malicious nodes start to manipulate their information sets. Specifically, node

3 changes the past value received from node 6 and similarly node 6 changes the past

value received from node 3. These attacks are quickly detected. We indicate the events

of malicious node detections by dashed lines. Here, for instance, the dashed line at time

5 indicates that nodes 3 and 6 are detected as malicious. In this case, we observe that

Scheme 1 performs well. Finally, we note that for the W-MSR algorithm from [56], the

4-connected network in Fig. 7.1(a) is not sufficient to achieve resilient consensus.

7.4.2 Resilient Consensus under Scheme 2

Next, we consider the network shown in Fig. 7.7 with 5 in-coming edges of node 1

removed from the complete graph K9. It satisfies the condition for Scheme 2 under 1-

local malicious model in Theorem 7.3.1 for non-full access node 1. Here, we set nodes 2,

3, 4, 5, 6 and 7 to be malicious and the initial state to be x[0] = [8 10 4 2 1 5 9 3 6]T .

First, we examined the case without attacks. The time responses of the states of

all nodes are shown in Fig. 7.8(a). Next, in attack scenario 1, malicious nodes 2, 3, 5, 6

and 7 manipulate their own values; also, node 4 is malicious and keeps using the values

received from them. The simulation result is shown in Fig. 7.8(b). At time k = 3, these

attacks start, but are immediately detected at the next time step, with normal nodes

not affected. In both cases, the normal nodes achieve consensus.

Now, we discuss the applicability of the MSR algorithm from [56] under the same

network. As discussed earlier, for this algorithm, the connectivity structure of the
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(b) Attack scenario 1.

Figure 7.6: Scheme 1: Time responses of the states of all nodes.

Figure 7.7: 9-node network satisfying the criteria for Scheme 2.

network in Fig. 7.7 is not sufficient for tolerating 6 malicious nodes. In fact, for a

network with 9 nodes, even if it is a complete graph, only up to 4 malicious nodes can

be tolerated ([56]). In general, it is impossible for MSR algorithms to function properly

when more than half of the nodes are malicious. Moreover, we also analyze how the

iterative approximate Byzantine consensus (IABC) algorithm from [102] performs under

the same network. Consider the case when each node knows the topology of two-hop

neighbors and the relay depth is two-hop, as we assume for Scheme 2 here. To meet

the condition in [102], node 8 should be connected with at least 9 nodes if we consider

the 4-local case for node 8, but this is obviously not true in this network. Thus node 8

cannot make agreement with other normal nodes. This is because in [102], the more

adversarial class of Byzantine nodes is considered.
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(b) Attack scenario 1.

Figure 7.8: Scheme 2: Time responses of the states of all nodes.

7.4.3 Application to Large Wireless Sensor Networks

In this simulation, we create a WSN composed of 100 nodes. At first, we place them

at random locations in a 100 × 100 planar box. Each node can communicate only

with the nodes located within the communication radius of r. Once r is determined,

a random geometric network is formed. By increasing communication radius r, the

network becomes denser and eventually a complete network when r ≥ 122. After the

network is formed, f nodes are randomly selected to be malicious nodes satisfying our

assumptions mentioned before. When we add more malicious nodes in the network, we

keep the malicious nodes chosen before and turn normal nodes to new malicious nodes.

Then we apply the proposed schemes and the W-MSR algorithm to the network.

Recall that the malicious nodes can manipulate their own information sets by ma-

nipulating either the current value or values from the last time step. In particular, we

consider the following two attack scenarios: (i) The first scenario is static in the sense

that each malicious node takes a fixed value of 120. (ii) The second scenario is more

dynamic as each malicious node randomly selects a neighbor and modifies the value

from that neighbor arbitrarily and follows the update rule.

Here, we examine how the network connectivity affects the performance of the pro-

posed resilient consensus schemes under the two attack scenarios. Using different values
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for the number of malicious agents f and the communication radius r, we compare the

following four algorithms: (i) The original consensus algorithm without adversaries,

(ii) W-MSR algorithm, (iii) Scheme 1, and (iv) Scheme 2. For each f and r, we com-

puted the success rate of each algorithm over 20 Monte Carlo runs with randomly

chosen initial values of the normal agents in the interval [0,100]. The results of the con-

sensus algorithm without adversaries provide the baseline, indicating when the network

becomes connected.

The results under the first attack scenario are presented in Fig. 7.9. In the plots (a)–

(b), we increased the number f of adversaries. Notice that the two proposed schemes

are clearly effective against the malicious nodes, and their success rates remain almost

the same as the case without any adversaries, where the success rates become 1 around

r = 20. In contrast, the conventional W-MSR degrades in its performance as the

number of malicious nodes increases.

The difference between the two proposed schemes becomes more evident under the

second attack scenario. In Fig. 7.10, the results are shown as in Fig. 7.9. It is obvious

that Scheme 1 is capable to reach resilient consensus similarly to the previous case

under scenario 1. However, under this scenario, Scheme 2 performs even worse than

the W-MSR approach. On the other hand, an interesting phenomenon can be observed

for the case f = 60 in Fig. 7.10(c), where f > n/2 holds. Both Schemes 1 and 2

can guarantee resilient consensus when the network becomes complete while for the W-

MSR algorithm, this is not possible. This verifies our analysis before in Section 7.3. We

highlight again that among the two proposed algorithms, Scheme 2 is fully distributed

and more scalable. Thus, there is a tradeoff between the requirements on network

connectivities and computation resources.

We next check that the performance of Scheme 2 can be significantly improved

by increasing the number of edges in the network. Earlier in Section 7.3, through

example graphs in Fig. 7.5, we have seen such a property more analytically. Here, to

increase edges, we introduce 16 additional relay nodes as discussed in Section 7.3.4.

Such a node has strong communication capabilities; it receives data from the nodes

within their communication ranges of radius r and then simply sends out, or relays,

the received data to nodes within its own communication radius rrelay = r + 27. Relay

nodes are located at the coordinates (20x, 20y), x, y = 1, 2, 3, 4. In our setting, such

nodes only relay information received from general nodes and not from other relay
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(a) f = 15.

(b) f = 30.

Figure 7.9: Performance of different resilient consensus algorithms under attack scenario
1.

nodes; also they do not conduct any detection nor consensus algorithm. These nodes

bring in the same effects as introducing more directed edges in the network. In Fig. ??,

the success rates of Scheme 2 and the W-MSR algorithm are indicated, respectively,

by the blue and red dashed lines. One can observe that Scheme 2 performs almost

the same as Scheme 1 and much better than the W-MSR algorithm especially when f

grows.

7.5 Summary

In this chapter, we have designed two novel distributed detection schemes to solve the

resilient consensus problem. The key features of the schemes lie in the assumption on

the adversaries based on the malicious agent model and the use of two-hop communi-

cation among the agents. We have clarified that the levels of network connectivities

for both schemes can be more sparse compared to conventional approaches. In the

two schemes, the normal agents perform as detectors by monitoring the behaviors of

their neighbors, but they are different in terms of distributed computation capabilities

and the required network connectivities. We have presented their properties through

extensive numerical examples.
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(a) f = 15.

(b) f = 30.

(c) f = 60.

Figure 7.10: Performance of different resilient consensus algorithms under attack sce-
nario 2.
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Chapter 8

Conclusion

8.1 Summary of Contributions

In the last decade, distributed systems under cyber-attacks have gained much attention.

Simultaneously, with the growth of security issues in Cyber-Physical Systems, consensus

in the presence of adversary agents or attacks has become a vital issue and needs

to be studied urgently. For the conventional one-hop MSR algorithms, the required

graph connectivity is stringent, which has limited applications for general networks. On

the other hand, for the conventional detection based algorithms, they usually require

additional centralized/authorized resources for the detection function. To broaden

the applications of resilient consensus algorithms for general networks, we have made

advances in both directions as presented in this thesis.

More concretely, we have generalized the MSR algorithms with multi-hop communi-

cation in order to make the resilient consensus succeed in sparse networks. Specifically,

we have developed the multi-hop weighted MSR algorithm with synchronous and asyn-

chronous updates. We analyzed its performance under different types of attacks (i.e.,

the f -total/local malicious/Byzantine models). We found necessary and sufficient con-

ditions guaranteeing resilient consensus under different attacks. These conditions are

expressed in terms of graph robustness with l hops, which is a notion extended from

the existing literature. Example graphs and simulations have been provided to verify

that the proposed algorithm can achieve resilient consensus in sparse networks.

Besides, we have also developed the quantized version of the MW-MSR algorithms

such that our algorithm can also be applied in the multi-agent networks where agents

have only limited computational resources for computing integer values. Lastly, to
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further reduce the transmissions among agents, we have developed the event-triggered

MW-MSR algorithm. Compared to conventional methods, our approach does not only

achieve the resilient consensus in sparse networks but also has a smaller number of

transmissions per node when reaching consensus.

Recently, the fault detection techniques have been studied extensively in the systems

control area, which are practical for solving the cyber security issues of multi-agent

systems. We are also interested in the resilient consensus algorithms with detection

functions. Based on the detection techniques, we have developed two protocols which

aim to solve resilient consensus with an emphasis on distributed detection. We have

proved necessary and sufficient conditions on graph structures for the two protocols

to achieve fault detection in time invariant networks under the f -total/local malicious

model, respectively. In order to achieve such distributed detection, we have introduced

the two-hop communication techniques and voting scheme in the detection protocols,

which make our protocols novel algorithms compared to conventional one-hop consensus

algorithms. The effectiveness of both protocols has been proved by numerical examples.

8.2 Future Works

Due to the growth of the applications of network systems, distributed algorithms and

cyber-physical systems, more and more devices and systems are connected by the net-

working services. Yet, a single cyber-attack lunched by adversaries can cause a huge

damage to the critical systems, e.g., power grids. It is of vital importance for the net-

work systems to have resilience against cyber-attacks. There are two main approaches

to enhance the resilience of multi-agent systems: fault detection based algorithms and

resilient algorithms without detection functions. In the following researches, how to

make the detection algorithms more distributed and of less computational complexity

is a crucial problem.

On the other hand, when centralized systems are converted to distributed systems,

one can easily imagine that not all the local systems will play their role properly.

Hence, the resilience against faults should be part of the nature of the well-designed

distributed algorithms. The research on the various techniques enhancing the resilience

of distributed algorithms is a long-standing research topic in the next decades.

For the future works in short terms, the techniques for resilience studied in this

thesis can be applied to the security studies of more complex group objectives such as
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WSNs, flocking, formation control and economic dispatch problems in smart grids. In

the following, we list several directions for future research.

Resilient Multi-dimensional Consensus

So far, our algorithms are all designed for agents having one dimensional states. How-

ever, in robotic networks, agents usually have two dimensional or three dimensional

states (e.g., locations of robots on a flat surface or locations of drones in the air). One

possible direction is to make use of resilient consensus techniques on each dimension of

each agent. This method is simple and effective, although it is slightly conservative in

the sense that it only guarantees the safety interval of each dimension.

Another possible direction is to apply the detection method to the multi-dimensional

consensus problem. That means agents exchange the information sets containing the

multi-dimensional states with neighbors. The detection part then can be designed

to check if the neighbors are following the given update rule which involves multi-

dimensional consensus.

Resilient Average Consensus

In economic dispatch problem and some applications of WSNs, it is desirable for the

agents to reach a common average value of their initial states using distributed algo-

rithms. Such algorithms are called average consensus algorithms [13]. Here, the possible

direction is to apply the detection method to the resilient average consensus problem,

where normal nodes should reach a common average value of their initial states. The

running sum ratio consensus algorithm [41] could be the basis for such a successful

resilient average consensus algorithm. Because such an algorithm can remove the ef-

fects from the detected adversary neighbors if each node can have the true detection

information of their neighbors.

Resilient Synchronization of Pulse-coupled Oscillators

The goal of resilient synchronization problem is that the local clocks of the normal
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agents must move on together at the end despite malicious attacks. Pulse-based syn-

chronization has attracted much attention in sensor networks and wireless communi-

cations [118] because of its simple and identical messages (so-called pulses), i.e., each

agent only sends a pulse signal to its neighbors in a period. In this sense, pulse-based

synchronization has much less energy consumption compared with conventional packet-

based synchronization approaches. Hence, a new type of resilient synchronization of

the pulse-coupled oscillators is also an interesting direction to explore.

Resilient Consensus under Mobile Adversaries

The recent work [116] studied the resilient consensus under the mobile malicious model.

In such a model, nodes can be infected by adversarial neighbors and become adversarial

agents. Moreover, adversary agents can also recover from attacks and become normal

agents. This model was inspired by the infection disease that happened in social envi-

ronment. A more interesting direction could be the analysis of our algorithms under

such mobile adversary models.
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