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ABSTRACT

Social network analysis is the process of investigating social structures and dynamics
using the representation of networks or graphs, and it is grounded in systematic empirical
data on social interactions. A growing variety of data on social interactions, including
online friendships among a huge number of users, time-varying interactions between in-
dividuals, and higher-order interactions among actors (e.g., individuals, institutions, and
countries), provides opportunities to better understand social structures and dynamics.
In this thesis, I present four works focusing on analyses of two types of social interaction
data: friendships in online social networking services and higher-order social interactions.

In the first two works, we study how to accurately estimate structural properties of
online social networks by querying a small number of unique nodes using random walk.
Firstly, we present a practical framework for estimating properties of a social network
involving private nodes, that do not publish their own friendships, via a random walk.
The proposed framework may help us to investigate properties of the entire network
involving private nodes. Secondly, we introduce the social graph restoration problem,
motivated by the gap between the properties that the existing methodology allows one
to accurately estimate and those of interest to analysts in practical scenarios. We propose
a method for restoring the original network from a small sample obtained by a random
walk, which may lead to an exhaustive analysis of online social networks.

In the last two works, we study how to analyze the structure and dynamics of so-
cial networks involving higher-order interactions among more than two actors, without
using the one-mode projection of the original network. Firstly, we develop a family of
reference models that randomize the structure of empirical hypergraphs. The proposed
model preserves properties of the node and hyperedge at fine-tunable extents, which
may help us to find the dependence of a given property on the structure and dynamics
of empirical hypergraphs. Secondly, we analyze bipartite networks of institutions and
collaborative research grants to investigate the patterns of grant collaborations among
institutions. Our analyses suggest that institutions participating in many collaborations
tend to densely collaborate with each other and dense grant collaborations among such
institutions have advantages on the research productivity of those institutions.
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Chapter 1

Introduction

Social network analysis is the process of investigating social structures and dy-
namics using the representation of networks or graphs. In a standard form, a
social network is composed of a set of nodes (e.g., individuals, and institutions,
and countries) and a set of edges (e.g., relationships and interactions) between
nodes. A well-known example of empirical social networks is Zachary’s karate club
network [249]. Wayne Zachary observed social interactions among 34 members
of a karate club at an American university over a three-year period from 1970 to
1972, resulting in a social network consisting of 34 nodes and 78 edges between
them. Other examples of social networks include collaboration networks of film
actors (i.e., networks in which an edge between two actors is present if they have
co-starred at least one film) [237], collaboration networks of scientists (i.e., net-
works in which an edge between two scientists is present if they have co-written
at least one journal paper) [170,171], and many more [36,116,206,236].

Various mathematical and computational methods have enabled us to inves-
tigate the structure and dynamics of empirical social networks. Many social net-
works share structural patterns, such as heterogeneous distributions of the node’s
degree (i.e., number of other nodes to which a node is directly connected), an
abundance of triangles, correlation in terms of the degree of adjacent pairs of
nodes, community structure, and many more [25, 33, 128, 177]. These and other
structural properties affect social dynamic processes on networks such as epidemic
spreading, information spreading, and evolution of cooperation [25,33,128,177].

Social network analysis is grounded in systematic empirical data on social
interactions [77]. Analyses using empirical data allow us to test theories and
hypotheses on social structures and dynamics. Historically, data on social in-
teractions were collected by painstaking means, and empirical studies of social
networks were limited to a few hundred nodes [224]. The wealth of data brought
about by advances in high-throughput tools and technologies over the last decades
has greatly improved the scale and accuracy of studies on social network analysis.
In fact, a variety of large-scale and systematic datasets is now widely used for
research purposes, e.g., SNAP Datasets [137], Network Data Repository [196],
and a collection of datasets recorded by the SocioPatterns [210].

In this thesis, I focus on analysis methods for two types of social interaction
data: friendships in online social networking services and higher-order social in-
teractions. A growing interest in these data over the last two decades has provided
opportunities for understanding social structures and dynamics with higher reso-
lution than ever, as well as highlighting the challenges associated with analyzing
each data.
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Figure 1.1: Crawling-based sampling on a social network. If we query node A, we
find the neighbors of node A (suppose nodes B, C, and D). Then, we choose one
of these neighbors (suppose node B), and the walker moves to node B. We repeat
this process until we query a given small number of unique nodes.

1.1 Thesis Overview

This thesis is organized into two parts. The first part, which is composed of
Chapters 2 and 3, discusses methods for analyzing structural properties of huge
online social networks. The second part is devoted to methods for analyzing
social networks involving higher-order interactions among more than two actors.
Finally, I conclude this thesis in Chapter 6.

1.1.1 Huge Online Social Networks

The advent of huge online social networks (OSNs) has enabled us to investigate
social structures and dynamics on a worldwide scale. Examples of OSNs in-
clude Cyworld [15], MySpace [15], Orkut [15,154], Flicker [154], LiveJournal [154],
YouTube [154], Facebook [21, 85, 86, 220, 239], and Twitter [20, 90, 118, 122, 157].
Many empirical OSNs have had a huge number of users, sometimes in the hun-
dreds of millions or more (e.g., Facebook had about 2.9 billion monthly active
users as of March 31, 2022 [73]). A long series of studies have analyzed struc-
tural properties of a network where nodes represent users and edges represent
friendships between users in an OSN.

In general, researchers perform a sampling of the graph data for analyses using
public interfaces when complete data are not available to third parties due to
privacy concerns. Many OSNs provide public interfaces to allow one to retrieve
the neighbors of a user by querying the user. Crawling methods in which one
repeatedly traverses a neighbor are effective for sampling the graph data in such
OSNs (Fig. 1.1). Examples of crawling methods include the breadth-first search
[45,121,154,197,239], snowball sampling [15,89,106,134,197], forest fire sampling
[13, 65, 136, 197], and random walk [85, 86, 118]. A common challenge is how to
accurately estimate properties by querying a small number of unique nodes. This
is because (i) crawling methods typically induce sampling bias toward high-degree
nodes and (ii) public interfaces typically limit the maximum number of queries
within a particular time interval.

Re-weighted random walk is a practical framework for an unbiased estimation
of properties of the OSNs [85,86]. In this framework, one first performs a simple
random walk on the underlying network (i.e., one repeatedly moves to a uniformly
and randomly chosen neighbor using the public interfaces), which provides a se-
quence of sampled nodes that has the Markov property (i.e., a given sampled

2



node after the initial node depends on the previous sampled node). Then, one
obtains an unbiased estimate of the property of interest by re-weighting each sam-
pled node to correct the sampling bias derived from the Markov chain analysis.
Based on this framework, a number of studies have developed algorithms that ac-
curately estimate structural properties of OSNs using a small number of queries.
Examples of structural properties that have been focused on include the network
size (i.e., number of nodes) [97, 112], average degree [62, 85, 86], degree distri-
bution [85, 86], joint degree distribution [84], clustering coefficients [32, 97, 190],
motifs and graphlets [48,95,234], and node centrality [160,161].

These existing algorithms typically assume that a social network comprises
a set of nodes each of which publishes its own friendships. However, there is
a certain percentage of private nodes, that do not publish their own friendships
if they are queried in practical scenarios. For example, some previous studies
reported that private nodes account for 27% of all the nodes on the Facebook
network [45] and 34% of all the nodes on the Pokec network, which is an OSN
in Slovakia [216]. When one attempts to apply such existing algorithms to real
social networks, private nodes inhibit one from performing a simple random walk
on the network and then induce a bias in estimators.

In Chapter 2, we present a practical framework for estimating properties via
a random walk on a social network involving private nodes. First, we develop a
sampling algorithm by extending a simple random walk to the case of a social
network involving private nodes. Second, we propose estimators with reduced
biases induced by private nodes for three network properties. Our experimental
results show that the proposed estimators reduce the bias induced by private nodes
in the existing estimators by up to 92.6% on empirical social network datasets
involving private nodes. Some of the contents of this chapter have been published
in a conference paper [162]. The full contents of this chapter will be published in
a paper [164].

Analysts’ interests in properties of social networks are generally diverse [36];
these properties include local structural properties (e.g., the degree distribution
and clustering coefficient), global structural properties (e.g., the distributions of
shortest-path lengths and betweenness centrality), and visual graph representa-
tions. However, the framework of re-weighted random walk, which we focus on
in Chapter 2, is specialized in estimating local structural properties. The reasons
are as follows. First, this framework forces analysts to sample most graph data
to correct the sampling bias when attempting to estimate global structural prop-
erties, such as the shortest-path properties. Second, the quantity of re-weighted
sample means is not sufficient to predict the structure of the original network,
such as its visual representation. These observations motivate us to explore a
framework that enables us to estimate various structural properties accurately on
average.

Chapter 3 introduces the social graph restoration problem. In this problem,
given a small sample of a social network obtained by a crawling method, we aim
to generate a graph whose structural properties are as close as possible to the
corresponding properties of the original network. To address this problem, we
propose a method that generates a graph that preserves the subgraph sampled
using a random walk in addition to the estimates of local structural properties
obtained using the re-weighted random walk. Our experimental results show
that the proposed method more accurately reproduces 12 structural properties,
including both local and global structural properties, on average and the visual
representation of the original network than existing methods. The contents of
this chapter have been published in a conference paper [165].

3
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Figure 1.2: Representations of a social network involving higher-order interac-
tions. (a) An example of two interactions among two or more individuals. (b)
The corresponding hypergraph. A hypergraph is composed of nodes and hyper-
edges, where a hyperedge represents interaction among two or more nodes. (c)
The corresponding bipartite graph. A bipartite graph is composed of a set of
nodes and a set of interactions among two or more nodes, where an edge between
a node and an interaction is present if the interaction involves the node.

1.1.2 Social Networks Involving Higher-order Interactions

Real-world social networks often involve higher-order interactions among more
than two actors. Examples include group conversations in social contact networks
[151,212], multiple recipients of single emails [115], co-authoring in collaboration
networks [171,182,229], and many more [28,30]. Such networks involving higher-
order interactions can be expressed as hypergraphs or bipartite graphs (Fig. 1.2).

A major method for analyzing empirical hypergraphs or bipartite graphs is
to project them to dyadic networks (i.e., conventional networks, in which each
edge connects a pair of nodes) and then analyze them [24, 170, 171]. However,
a growing body of evidence suggests the limitations of describing the structure
and dynamics of networks including higher-order interactions only using pairwise
interactions [30,31,50,79,83,91,123,133,182,188,204,247]. In line with this, various
measurements, dynamical process models, and theories have been developed for
hypergraphs or bipartite graphs without using one-mode projection, particularly
in recent years [28].

In general, a reference model for networks produces synthetic networks that
preserve some specific properties of the given network and randomize other prop-
erties of the given network [52]. Regardless of the type of networks (e.g., dyadic
networks, hypergraphs, or bipartite graphs), it is a recommended practice that
one compares the structure and dynamics of a network at hand with those for
randomized networks produced by reference models. Such an analysis helps us
to reveal whether or not the given network has a certain structure relative to the
random case and how the structural properties not preserved by the reference
network model impacts dynamics on networks.

For dyadic networks, a family of standard reference model is the configuration
models that preserve the degree of each node or its expectation [76,155,178]. The
configuration models have been used for finding higher-order structural properties
of various networks that the node’s degree or its distribution does not imply

4



[33,153,173,174,237]. Furthermore, such findings have led to the development of
reference models that preserve some higher-order properties of the input network,
e.g., the degree correlation and the clustering coefficient of the node [26, 84, 111,
148,150,175,180,207,211]. For hypergraphs, the properties of hyperedges as well
as those of nodes are considered to affect their structure and dynamics. The
existing reference models for hypergraphs preserve only up to the degree of each
node and the size of each hyperedge (i.e., number of nodes that belong to each
hyperedge) of a given hypergraph [37,50,178,201,202].

Chapter 4 proposes a family of reference models for hypergraphs, called the
hyper dK-series. The original dK-series is a nested family of reference models
that preserve local properties of nodes of the given dyadic network [84, 148, 180].
The hyper dK-series extends the dK-series to the case of hypergraphs. The hyper
dK-series preserves up to the individual node’s degree, node’s degree correlation,
node’s redundancy coefficient, and/or the hyperedge’s size depending on the pa-
rameter values. Then, we showcase its use in investigating epidemic spreading [63]
and evolutionary game dynamics [18] models on hypergraphs. The contents of
this chapter have been published in a paper [166].

One of the popular domains of social networks involving higher-order inter-
actions may be scientific collaboration networks. In fact, scientific research has
increasingly relied on teamwork over the last decades [75, 251]. For example, the
fraction of scientific papers written by teams of researchers and the number of
authors in a scientific paper have increased over the last century on average [241].

Various factors affect outcomes of scientific teamwork, including the team
size (i.e., the number of authors of a paper) [240, 241], internationality (i.e., the
number of countries involved in a paper) [54], interdisciplinarity (i.e., the num-
ber of disciplines of authors involved in a paper) [125], ethnic diversity (i.e., the
number of ethnicities involved in a paper) [17], and team freshness (i.e., fraction
of author pairs who co-authored at least one paper before the paper) [250]. In
addition, quantitative approaches to scientific collaboration networks have con-
tributed to the understanding of patterns of collaborations among researchers
[172, 251] and their relations to research productivity (e.g., the number of pub-
lished papers or the number of citations received by published papers) of re-
searchers [9, 10,100,223,233].

A universal trend in modern scientific teamwork is that researchers from differ-
ent institutions increasingly collaborate with each other [12,60,109]. Such teams
tend to produce papers with higher citation impact compared to those written by
teams confined to a single institution [109]. The patterns of co-authorships be-
tween researchers from different institutions have been characterized by quantitive
analyses of collaboration networks among institutions [47, 152, 243]. Grant col-
laboration involving multiple institutions is also a growing trend [2,147,158]. Ma
et al. analyzed a British collaboration network among institutions in which edges
represent partnerships between two institutions in funded research projects [147].
The authors found that universities with many edges tend to be densely connected
to each other, forming a rich club. Analyses of such grant collaboration networks
may inform the government and other stakeholders on research funding allocation
among institutions [215]. Note that Ma et al. investigated a dyadic collaboration
network of research grants using the one-mode projection [147].

Chapter 5 analyzes bipartite networks of institutions and collaborative grants
to investigate the patterns of grant collaborations between two or more institu-
tions. Using publicly available data from the National Science Foundation, we
construct a bipartite network of institutions and collaborative grants. By extend-
ing the concept and algorithms of the rich club for dyadic networks to the case of
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bipartite networks, we find rich clubs both in the entire bipartite network and the
bipartite subnetwork induced by the collaborative grants involving a given num-
ber of institutions from two to five. Then, we find that the collaborative grants
within rich clubs tend to be more productive in a per-dollar sense than the con-
trol. Our results highlight the advantages of grant collaborations the institutions
in rich clubs. The contents of this chapter have been published online [167].
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Chapter 2

Random Walk Sampling in Social Networks
involving Private Nodes

2.1 Introduction

The re-weighted random walk [85,86] does not assume private nodes, that do not
publish their neighbors’ data when they are queried in empirical social networks.
Private nodes raise practical problems when one attempts to apply existing algo-
rithms to empirical social networks. First, how do we deal with private nodes to
obtain a sample sequence via a simple random walk? If a walker visits a private
node, one can handle an exception wherein the neighbors’ data of the node are
not retrievable by jumping to some public user sampled previously. However, if
one performs such exceptional processes, the sample sequence typically loses the
Markov property, which prevents us from obtaining unbiased estimates of proper-
ties. There is another serious problem. A temporary solution to problems in the
sampling phase is to not visit private nodes, as in the case study of random walks
on the Facebook graph [85, 86]. However, if a walker does not traverse private
nodes, the conventional framework [85, 86], which attempts to correct only the
sampling bias, is expected to induce biases due to private nodes in estimators.

In this chapter, we aim to provide a practical framework for estimating prop-
erties based on a random walk on social networks involving private nodes. To this
end, we first make three assumptions with respect to private nodes and formalize
two models for accessing graph data, called the ideal model and the hidden pri-
vacy model. The assumptions and access models are based on previous studies
and our observations on empirical social networks involving private nodes. Then,
we design a sampling algorithm based on a random walk and develop estimators
for the network size (i.e., number of nodes), average degree, and density of the
node label (e.g., fraction of nodes with a given label). Our framework may help
to extend random walk-based estimators of properties of a network to the case of
social networks involving private nodes.

2.1.1 Our contributions

This work has three main contributions. First, we develop a sampling algorithm
that practically works on social networks involving private nodes (Section 2.4).
We design a procedure of neighbor selection, which is a fundamental element in
the sampling phase via a random walk on the network, and derive the sampling
bias of each node induced by the walk. Then, for each access model, we describe
how to calculate the weight for each sampled node, which is essential to correct
the sampling bias. Furthermore, we propose a method to estimate the weight
using a much smaller number of queries than the exact calculation method for
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the hidden privacy model.
Second, we present estimators with reduced biases induced by private nodes

for the network size, average degree, and density of the node label (Section 2.5).
Existing estimators are expected to induce biases due to private nodes because
the conventional framework assumes the correction of only sampling bias. In our
framework, we re-weight each sampled node to attempt to correct both the sam-
pling bias and the bias induced by private nodes. Furthermore, we theoretically
show that the proposed estimators have approximately no bias induced by private
nodes if all public nodes form one connected component of the original network
(Theorems 3, 4, and 5).

Third, we validate the theoretical results and effectiveness of the proposed es-
timators using empirical social network datasets (Section 2.6). We show that the
proposed estimators acceptably perform on the two empirical datasets involving
private nodes. Specifically, for the Pokec social network dataset [216], the pro-
posed estimators reduce biases induced by private nodes in the existing estimators
by up to 92.6%. For the Facebook dataset [120], the proposed estimators provide
reasonable estimates of the network size, average degree, and cumulative degree
distribution of the Facebook graph as of 2010.

2.2 Related Work

Several studies have proposed random walk algorithms to improve the estima-
tion accuracy or the efficiency of the number of queries over a simple random
walk [132,140,141,168,190,245,255]. Ribeiro and Towsley proposed multidimen-
sional random walks, which improve the estimation accuracy in the presence of dis-
connected connected components [190]. Lee et al. proposed the non-backtracking
random walk algorithm, which improves the query efficiency while preserving the
Markov property of the sample sequence [132]. Yi et al. proposed the random
walk-based algorithm, which reduces the bias of estimators using the bootstrap-
ping technique [245]. These algorithms assume social networks involving no pri-
vate nodes. In this work, we extend a simple random walk to the case of social
networks involving private nodes. Based on our work, it is not trivial but possible
to extend these improved random walks to the case of social networks involving
private nodes.

Re-weighted random walk is a special case of respondent-driven sampling
(RDS) [85, 86]. RDS is a random walk-based sampling method for estimat-
ing the proportion of individuals in the hard-to-reach population in social sur-
veys (e.g., the fraction of infected individuals and the fraction of injection drug
users) [98, 199, 230]. In the context of the RDS, a private node corresponds to
an individual who will not respond to a survey at all. Such individuals with no
response are easily present in practical scenarios [81, 87, 106, 192, 238]. Several
studies numerically investigated the bias of the estimator induced by no-response
individuals [145,194,219]. Tomas and Gile numerically showed that the estimator
is biased when the response rate changes depending on the degree of the individual
and the presence or absence of the infection of the individual. Lu et al. numer-
ically investigated the bias when each individual does not respond with a given
probability and showed that changes in the probability little affect the bias [145].
Rocha et al. investigated the effect of the community structure on the bias when
each individual does not respond with a given probability. In this work, in the
terminology of the RDS, we assume that each individual independently does not
respond to a survey at all with a given probability (see Assumption 2 in Section
2.3.2 for details). Then, we propose an estimator of the density of the node label
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in social networks involving private nodes (Section 2.5.4). Note that the den-
sity of the node label corresponds to the proportion of individuals with a specific
characteristic (e.g., infected individual or drug user) in the context of the RDS.
We theoretically and numerically show that the proposed estimator has little bias
induced by private nodes.

Private nodes are regarded as missing graph data in random walk-based es-
timators because we are not permitted to retrieve their neighbors’ data. In this
work, we assume that each node becomes a private node independently at random
with a given probability (see Assumption 2 in Section 2.3.2 for details). Several
studies investigated the effects of completely random missing nodes on the struc-
tural properties of a network [16, 56, 103, 117, 163, 209]. Albert et al. found the
robustness of networks against randomly missing nodes (i.e., given randomly miss-
ing nodes, most of the remaining nodes form the largest connected component).
Kossinets showed that the bias of the average degree between the original network
and the remaining largest connected component increases linearly with the pro-
portion of randomly missing nodes. In this work, we theoretically analyze these
biases and design estimators to reduce them under specific assumptions and ac-
cess models. There are two important findings in this work compared with these
previous studies. First, although we are not allowed to retrieve the neighbors of a
private node by querying the node, we can find the private node in its neighbors
that are public nodes in social networks (see Assumption 1 in Section 2.3.2 for de-
tails). Second, we can reduce the bias induced by private nodes by modifying the
weight for each sampled node if each node becomes a private node independently
at random with a given probability.

2.3 Preliminaries

2.3.1 Definitions and notations

We represent a social network as a connected and undirected graph G = (V,E)
that consists of a set of nodes V = {v1, ..., vn} and a set of edges E, where n is the
number of nodes. We denote by Γ(i) = {vj | (vi, vj) ∈ E} a set of neighbors of
node vi. Let di = |Γ(i)| denote the degree (i.e., the number of neighbors) of node
vi and D =

∑n
i=1 di denote the sum of degrees. We define the average degree of

G as davg = D/n. Each node vi is associated with a label l(i). Examples of the
node label are as follows: the degree, age, or gender of node vi [85, 86, 190, 216];
vi is a social bot or not [78, 92, 228]; and vi is a drug user or not [98, 199]. Let
1{cond} denote an indicator function that returns 1 if a condition cond holds and
0 otherwise. We define the density of node label l as ρ(l) =

∑n
i=1 1{l(i)=l}/n.

Each node vi has a privacy label lpri(i) ∈ {public, private}. We distinguish
the privacy label lpri(i) from the label l(i) for each node vi. We call a node that
has a private label a private node and call a node that has a public label a public
node. The set of privacy labels of all the nodes is denoted by Lpri = {lpri(i)}ni=1.

We refer to connected subgraphs that consist of public nodes on G as public
clusters. Let {Cj}j denote a set of public clusters and C∗ = (V ∗, E∗) denote the
largest public cluster. Let n∗ = |V ∗| denote the number of nodes in C∗. We call
the neighbors of a node that are public nodes the public neighbors of the node.
We denote by d∗i = |{vj ∈ V ∗ | (vi, vj) ∈ E∗}| the public degree (i.e., the number of
public neighbors) of a node vi ∈ V ∗. Let D∗ =

∑
vi∈V ∗ d∗i denote the sum of public

degrees. We define the average degree of C∗ as d∗avg = D∗/n∗. We also define the
density of node label l of the largest public cluster as ρ∗(l) =

∑
vi∈V ∗ 1{l(i)=l}/n

∗.
Figure 2.1 shows an example of a graph with privacy labels. Let vi = i for
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Figure 2.1: An example of a social network with privacy labels. Nodes 3 and 7
are private nodes, and all other nodes are public nodes.

i = 1, 2, . . . , 9 in Fig. 2.1. Nodes v3 and v7 are private nodes, and all other nodes
are public nodes. Public neighbors of node v1 are nodes v2 and v4. There are
three public clusters, C1, C2, and C3, and C1 is the largest public cluster C∗:

• C1 = ({v1, v2, v4, v5}, {(v1, v2), (v1, v4), (v4, v5)})

• C2 = ({v8, v9}, {(v8, v9)})

• C3 = ({v6}, {}).

It holds that n∗ = 4, d∗1 = 2, d∗2 = 1, d∗4 = 2, d∗5 = 1, D∗ = 6, d∗avg = 3/2. Suppose
that we are interested in the degree as the node label (i.e., l(i) = di for each node
vi). Then, we have l(1) = 3, l(2) = 2, l(3) = 4, l(4) = 3, l(5) = 3, l(6) = 1,
l(7) = 3, l(8) = 2, and l(9) = 1. In this case, we have ρ(3) = 4/9 and ρ∗(3) = 3/4.

2.3.2 Assumptions

We make the following three assumptions.

1. If we query a public node, the indices of all its neighbors are available.
While we are not allowed to retrieve the neighbors’ data of a private node
by querying the node, we are allowed to retrieve the node from its neighbors
that are public nodes under this assumption. For example, when one queries
private node v3 in Fig. 2.1, its neighbors are not retrievable; however, when
one queries node v5, all its neighbors, i.e., v3, v4, and v7, are retrievable.
We empirically find that this assumption sufficiently holds in practical sce-
narios: (i) the Facebook graph as of the previous study [86] satisfied this
assumption; (ii) the public interfaces of Twitter as of December 2021 satisfy
this assumption [221,222]; and (iii) in the context of social surveys, even if
an individual decides not to respond to the survey at all, the individual is
encouraged to participate in the survey by its participating neighbors.

2. Each node independently becomes a private node with probability p and be-
comes a public node otherwise, where 0 ≤ p < 1. Intuitively, private
nodes tend to have low degrees under this assumption. This is because
the degree distribution of a social network is typically biased to low de-
grees [15, 85, 86, 122, 154]. We validate the effectiveness of our estimators
designed under this assumption by using social network datasets involving
real private nodes in Sections 2.6.3 and 2.6.4.

3. We have access to some arbitrary node in the largest public cluster of G to
begin our random walk. Private nodes restrict a set of public nodes that a
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walker is allowed to reach on the network. For example, if one selects node
v5 as a seed in Fig. 2.1, private node v7 inhibits a walker from reaching
public nodes v6, v8, and v9. Under this assumption, a waller is allowed to
traverse nodes on the largest public cluster of G. We do not consider the
number of queries generated for selecting a seed of our random walk from a
set of nodes on the largest public cluster. This is because we consider that
this number is sufficiently small. We discuss the validity of this assumption
in practical scenarios in Section 2.6.6.

2.3.3 Access models

We define access models for accessing graph G. We extend the standard model
[49,85,86,190] to access models involving private nodes. Suppose we queried node
vi. If node vi is a public node, then the neighbors’ data of vi and the label of vi,
i.e., l(i), are available. If node vi is a private node, then the neighbors’ data of
vi and its node label l(i) are not available1. We consider two models for available
neighbors’ data of a queried public node vi: the ideal model and the hidden privacy
model.

In the ideal model, when one queries node vi, the indices and privacy labels of
all the neighbors of vi are available. For example, when we query a public node v4
in Fig. 2.1, we obtain the set {(v1, public), (v3, private), (v5, public)}. As empirical
evidence, the Facebook graph as of the previous study [85,86] corresponds to this
access model.

In the hidden privacy model, when we query node vi, the indices of all the
neighbors of vi are available but their privacy labels are not available. For exam-
ple, when we query a public node v4 in Fig. 2.1, we obtain the set {v1, v3, v5}.
Real-world scenarios corresponding to this access model include the public inter-
faces of Twitter as of December 2021 [221, 222] and real social networks in the
context of social surveys [98,199,230].

2.3.4 Markov chain

We introduce the basics of a Markov chain for the theoretical analysis of random
walk-based estimators. First, we describe the stationary distribution of a Markov
chain, which serves to derive the sampling bias induced by a random walk. Let
P = (Pi,j)i,j∈S denote the transition probability matrix of a Markov chain on a
finite state space S. If it holds that πj =

∑
i∈S πiPi,j for all j ∈ S, a vector π =

(πi)i∈S is the stationary distribution of the chain. If all states in an irreducible
Markov chain are ergodic, then the chain is said to be ergodic (see [138] for formal
definitions). The following theorem holds in regard to the stationary distribution
π of a Markov chain.

Theorem 1. [138] If a Markov chain is ergodic, the stationary distribution π
uniquely exists.

Then, we review the strong law of large numbers for a Markov chain, which
ensures that an estimator converges almost surely to its expected value with
respect to the stationary distribution [48,132]:

Theorem 2. [110, 191] Let {Xk}rk=1 be an ergodic Markov chain with the sta-
tionary distribution π on a finite state space S. For any function f : S → R,
a quantity

∑r
k=1 f(Xk)/r converges to the expected value with respect to π, i.e.,

1We assume that the response is an empty set when one queries a private node.
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Eπ[f ] ≜
∑

i∈S πif(i), almost surely as r →∞ regardless of the initial distribution
of the chain.

2.4 Sampling Algorithm

In this section, we first design a sampling algorithm based on a random walk
considering private nodes in each access model. First, we describe how to select
a neighbor to be traversed from the current node to obtain a sample sequence
that has the Markov property. Then, we derive the sampling bias of each node
induced by our random walk. Finally, we describe a method for calculating the
public degree of each sampled node to correct the sampling bias.

2.4.1 Neighbor selection

In a simple random walk, one repeatedly moves to a neighbor that is uniformly
and randomly selected from a set of neighbors of the current node. If a walker
visits a private node in this method, two main problems generally occur for the
existing estimators based on a simple random walk. First, we are not allowed to
continue the walk because neighbors of the private node are not retrievable. Al-
though we can restart the walk from an arbitrary public node previously sampled,
the sample sequence loses the Markov property by performing such exception han-
dling. Second, it is difficult to correct the sampling bias of private nodes because
their degrees and public degrees are unclear.

We extend a simple random walk to the case of social networks involving
private nodes. We collect a sequence of indices of r sampled nodes, denoted
by (x1, x2, . . . , xr), as follows. We select a seed vx1 ∈ C∗, which is a node on
the largest public cluster, according to Assumption 3. For the k-th sampled
node (k = 1, . . . , r − 1), we first obtain a set of neighbors of vxk

, i.e., Γ(xk) by
querying vxk

. Then, we uniformly and randomly select node u ∈ Γ(xk). If u is
a public node, the walker moves to u as the next sampled node vxk+1

, otherwise,
we uniformly and randomly select a node as u from the set Γ(xk) again. In the
ideal model, where the privacy labels of all the neighbors of a queried node are
available, we check if a selected neighbor u is public without querying node u. In
the hidden privacy model, where the privacy labels of neighbors of a queried node
are not available, we judge the privacy label of node u by additionally querying
node u.

A walker that locates at vxk
has at least one public neighbor for each k =

1, . . . , r if and only if vx1 belongs to the largest public cluster comprising multiple
public nodes. Specifically, vx1 has a public neighbor that belongs to the largest
public cluster; vxk

has the public neighbor vxk−1
for each k = 2, . . . , r. Therefore,

the neighbor selection procedure for vxk
terminates with probability 1 for each k =

1, . . . , r; consequently, our random walk with length r finishes with probability 1.

2.4.2 Sampling bias

We derive the sampling bias induced by our random walk. Let the probability that
an event A will occur be denoted by Pr[A]. We define the distribution induced
by the sequence of sampled indices as πr = (Pr[xr = i])ni=1. We show that each
node on the largest public cluster is sampled in proportion to the public degree
via our random walk.

Lemma 1. The vector πr converges to π = (pi)
n
i=1 after many steps of our

random walk, where pi = 1{vi∈V ∗}d
∗
i /D

∗.
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Algorithm 1 Our random walk in the hidden privacy model.
Input: Seed vx1 ∈ C∗. Sample size r.
Output: Sampling list R.
1: R← an empty list.
2: for k = 1 to r do
3: Query vxk

and obtain the set Γ(xk).
4: dxk

← |Γ(xk)|.
5: d̂∗xk

← 0.
6: R← append (xk, dxk

, d̂∗xk
).

7: if vxk
has been visited for the first time then

8: axk
← 0.

9: bxk
← 0.

10: flag ← False.
11: while flag is False do
12: u← a neighbor uniformly and randomly chosen from Γ(xk).
13: bxk

← bxk
+ 1.

14: if u is a public node then
15: vxk+1

← u
16: axk

← axk
+ 1

17: flag ← True.
18: for k = 1 to r do
19: d̂∗xk

← dxk

axk
bxk

20: return R

Proof. First, it holds that Pr[xr = i] = 0 for each node vi ∈ V \V ∗ because
our random walk never traverses nodes that do not belong to the largest public
cluster C∗. Then, for each node vi ∈ V ∗, we show that Pr[xr = i] converges to
d∗i /D

∗ after many steps of our random walk. Our random walk has the transition
probability matrix P = (Pi,j)vi,vj∈V ∗ defined as

Pi,j =

{
1/d∗i if (vi, vj) ∈ E∗,

0 (otherwise).

The corresponding Markov chain is ergodic because it is equivalent to a simple
random walk on the largest public cluster C∗. Note that a simple random walk
on a connected graph is ergodic [138, 144]. Hence, the stationary distribution
uniquely exists because of Theorem 1. The vector (pi)

n
i=1 satisfies the defini-

tion of the stationary distribution. The probability Pr[xr = i] converges to the
corresponding stationary distribution after many steps of our random walk.

2.4.3 Calculating the public degree of each sampled node

We calculate the public degree of each sampled node to correct the sampling bias
that is attributable to the public degree. In the ideal model, we exactly calculate
the public degree of each sampled node without additional queries because the
privacy labels of all the neighbors of each sampled node are available. Conversely,
in the hidden privacy model, the exact calculation needs a considerable number of
additional queries to obtain the privacy labels of all the neighbors of each sampled
node.

We propose a method to estimate the public degree of each sampled node
without additional queries in the hidden privacy model. Algorithm 1 describes
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Figure 2.2: An example of the procedure for updating the quantities axk
and bxk

when the walker is located at node vxk
in the hidden privacy model.

our random walk using the proposed method for estimating the public degree
of each sampled node. The proposed method utilizes the history of neighbor
selections generated by our random walk. Specifically, we record two quantities
axk

and bxk
for each sampled node vxk

. The quantity axk
is the total number of

times public neighbors of vxk
are selected. The quantity bxk

is the total number
of times neighbors of vxk

are selected. For example, we consider the case in which
a walker is located at node v5 in the graph shown in Fig. 2.1. If we query node
v5, we obtain the set Γ(5) = {v3, v4, v7} (see Fig. 2.2(a)), where we note that
the privacy labels of v3, v4, and v7 are not included in the query response in the
hidden privacy model. Then, we uniformly and randomly select a node from Γ(5).
When we select node v4, we increase a5 and b5 by one each because v4 is a public
node (see Fig. 2.2(b)). When we select node v7, we increase b5 by one because v7
is a private node (see Fig. 2.2(c)). After completing our random walk of length
r, we calculate an estimator, d̂∗xk

, of the public degree of each sampled node vxk

as

d̂∗xk
≜ dxk

axk

bxk

.

Note that it holds that bxk
> 0 for each k = 1, . . . , r because at least one neighbor

selection is performed for each sampled node.
We ensure that the estimator d̂∗xk

is an unbiased estimator of the public degree
of vxk

.

Lemma 2. For each sampled node vxk
, the estimator d̂∗xk

converges to the true
value d∗xk

after many steps of our random walk.

Proof. Let Xxk
(l) denote a random variable that returns 1 if a public neighbor

of vxk
is selected at the l-th trial of neighbor selections at vxk

and returns 0
otherwise, where l = 1, . . . , bxk

and it holds that
∑bxk

l=1Xxk
(l) = axk

. It holds that
Pr[Xxk

(l) = 1] = d∗xk
/dxk

because Xxk
(l) follows a Bernoulli distribution for each

l. Therefore, we have E[d̂∗xk
] = dxk

d∗xk
/dxk

= d∗xk
. A sequence of random variables

{Xxk
(l)}bxkl=1 is drawn from a process of independent and identically distributed

trials. Therefore, the estimator d̂∗xk
converges to its expected value E[d̂∗xk

] = d∗xk

after many steps of our random walk because of the law of large numbers.

Then, we show that our random walk using the proposed method theoretically
generates much fewer queries than that using the exact calculation method. In
the exact method, one queries all the neighbors of each sampled node to exactly
calculate the public degree. When a node is visited for the first time, one can
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reduce the number of queries in future steps by saving the neighbor data of the
node. However, for simplicity, we do not consider this saving of the neighbors’
data of nodes queried once in the theoretical analysis. We denote by Q(k) the
number of queries generated at the k-th sampled node vxk

by the exact method.
We denote by Q′(k) the number of queries generated at the k-th sampled node
by the proposed method. Let Q = (

∑r
k=1Q(k))/r denote the ratio of the number

of queries using the exact method to the sample size. Let Q′ = (
∑r

k=1Q
′(k))/r

denote the ratio of the number of queries using the proposed method to the sample
size. We have the following lemma.

Lemma 3. The expected value of Q with respect to π is given by

Eπ[Q] =
1

D∗

∑
vi∈V ∗

d∗i di.

The expected value of Q′ with respect to π is given by

Eπ[Q
′] =

1

D∗

∑
vi∈V ∗

di.

Proof. It holds that Q(k) = dxk
because one queries all the neighbors of vxk

in
the exact method. Therefore, we have

Eπ[Q] = Eπ[Q(k)] =
∑

vi∈V ∗

d∗i
D∗E[Q(k)|xk = i] =

1

D∗

∑
vi∈V ∗

d∗i di.

The first equation holds because of the linearity of expectation. The second
equation holds because of the law of total expectation and Lemma 1.

The quantity Q′(k) follows the geometric distribution with success probability
d∗xk

/dxk
because we repeatedly query neighbors of vxk

uniformly and randomly
until a public neighbor of vxk

is first selected in the proposed method. Thus, it
holds that E[Q′(k)] = dxk

/d∗xk
. Then, we have

Eπ[Q
′] = Eπ[Q

′(k)] =
∑

vi∈V ∗

d∗i
D∗

di
d∗i

=
1

D∗

∑
vi∈V ∗

di.

Intuitively,
∑

vi∈V ∗ d∗i is the order of
∑

vi∈V di and
∑

vi∈V ∗ d∗i di is the order of∑
vi∈V d2i . The sum of squares of degrees is much larger than the sum of degrees

for a large-scale network with a heavy-tailed degree distribution [177]. Therefore,
Lemma 3 implies that the proposed method generates much fewer queries than
the exact method.

2.5 Estimators

In the conventional framework [85, 86], one re-weights each sampled node using
its public degree to correct the sampling bias. Therefore, the existing estimators
converge to the quantities of the largest public cluster. When the original graph
comprises only public nodes, as assumed in the conventional framework [85, 86],
the expected values of the estimators are equal to the quantities of the original
graph (i.e., true values). However, when there are private nodes on the original
graph, the existing estimators are generally expected to have the bias induced by
private nodes.
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It is not trivial to reduce the bias induced by private nodes. We could easily
correct the bias if we were to find the exact probability p or the proportion of
private nodes. However, the quantities are typically unknown to third parties.
Furthermore, it is difficult to apply existing methods for estimating the probability
p or the proportion of private nodes based on the privacy labels of sampled nodes
(Section 3.C.3 in Ref. [86], Section 3.2 in Ref. [112] and Section 4.2.3 in Ref. [190]).
This is because private nodes are not included in the sample sequence.

We propose estimators with reduced biases induced by private nodes for the
network size (i.e., the number of nodes), average degree, and density of the node
label. We re-weight each sampled node using both its degree and its public degree
to reduce the bias induced by private nodes. We modify the weight for each
sampled node based on the mathematical property that the public degree of a
node follows the binomial distribution with parameters of its degree and 1−p with
respect to the set of privacy labels of nodes under Assumption 2. We theoretically
show that the proposed estimators have approximately no bias induced by private
nodes if all public nodes belong to the largest public cluster of the original network.
In the following, for each of the three properties, we first introduce the existing
estimator and then describe our estimator. Then, we describe heuristic estimators
for the percentage of private nodes, which combine the existing and proposed
estimators for the network size and average degree each.

2.5.1 Network size

Existing estimator

The node collision estimator is effective for estimating the network size [97, 112].
In the estimator, one counts the number of collisions in the indices of pairs of the
sampled nodes whose ordinal numbers in the sample sequence are far away. Such
pairs of sampled nodes are regarded as being sampled independently of each other
from the stationary distribution [97,112].

Formally, the existing estimator of the network size is defined as follows. Let
I = {(k, l) | m ≤ |k − l| ∧ 1 ≤ k, l ≤ r} denote the set of integer pairs that are
between 1 and r and at least a threshold m away. We set m = 0.025r, as in the
previous study [97]. Let ϕk,l denote a variable that returns 1 if the indices of k-th
and l-th sampled public nodes are the same, i.e., xk = xl (this is called a collision)
and returns 0 otherwise. One defines the average of the number of collisions Φsize,
the average of the weights to correct the sampling bias Ψsize, and a size estimate
n̂ as

Φsize =
1

|I|
∑

(k,l)∈I

ϕk,l, Ψsize =
1

|I|
∑

(k,l)∈I

d∗xk

d∗xl

, n̂ ≜ Ψsize

Φsize
.

We have the following lemma, which is extended from the results shown in
previous studies [97,112] which assume that the original graph involves no private
nodes.

Lemma 4. The estimator n̂ asymptotically converges to the size of the largest
public cluster n∗ after many steps of our random walk.

Proof. First, we calculate the expected value with respect to π of Φsize:

Eπ [Φsize] = Eπ[ϕk,l] =
∑

vi∈V ∗

(
d∗i
D∗

)2

.
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The first equation holds because of the linearity of expectation. The second
equation holds because vxk

and vxl
are sampled independently of each other from

the stationary distribution. Then, we calculate the expected value with respect
to π of Ψsize:

Eπ [Ψsize] = Eπ

[
d∗xk

d∗xl

]
=

∑
vi∈V ∗

∑
vj∈V ∗

d∗i
d∗j

d∗j
D∗

d∗i
D∗ = n∗

∑
vi∈V ∗

(
d∗i
D∗

)2

.

Quantities Φsize and Ψsize intuitively converge to their respective expected values
with respect to π after many steps of our random walk. Therefore, we conclude
n̂ asymptotically converges to n∗.

We quantify the bias induced by private nodes of the expected value n∗. To
this end, we derive the expected value of n∗ with respect to the set of privacy labels
Lpri. Let Epri[X] denote the expected value of a random variable X with respect
to the set Lpri. We approximate the expected value of n∗ regarding the set Lpri
under the condition that all the public nodes belong to the largest public cluster.
Under this condition, it holds that Pr[vi ∈ V ∗] = Pr[lpri(i) = public] = 1 − p
because of Assumption 2.

The following lemma holds regarding the expected value of the existing esti-
mator.

Lemma 5. If all the public nodes belong to the largest public cluster, we have

Epri[n
∗] = (1− p)n.

Proof. We define a random variable Xsize(i) = 1{vi∈V ∗} for each node vi ∈ V .
Then, it holds that n∗ =

∑
vi∈V Xsize(i). The expected value of n∗ with respect

to Lpri under the given condition is given by

Epri[n
∗] =

∑
vi∈V

Epri[Xsize(i)] =
∑
vi∈V

Pr[vi ∈ V ∗] = (1− p)n.

The first equation holds based on the linearity of expectation. The second equa-
tion holds based on the law of total expectation.

Lemma 5 implies that the expected value of the existing estimator has the
bias 1− p.

Proposed estimator

We modify the weight for each pair of sampled nodes (vxk
, vxl

) such that (k, l) ∈ I
to reduce the bias of the expected value induced by private nodes. Specifically,
we define the average of the modified weights Ψ′

size and the proposed estimator
n̂′ as follows:

Ψ′
size =

1

|I|
∑

(k,l)∈I

dxk

d∗xl

, n̂′ ≜ Ψ′
size

Φsize
.

The following lemma holds in regard to the expected value of the proposed
estimator.

Lemma 6. The estimator n̂′ asymptotically converges to

ñ = n∗
∑

vi∈V ∗ d∗i di∑
vi∈V ∗(d∗i )

2

after many steps of our random walk.
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Proof. As with the proof of the Lemma 4, we have

Eπ

[
Ψ′

size
]
= Eπ

[
dxk

d∗xl

]
= n∗

∑
vi∈V ∗

d∗i di
(D∗)2

.

Quantities Φsize and Ψ′
size intuitively converge to the respective expected values

after many steps of our random walk. Therefore, n̂′ asymptotically converges to
ñ.

When there are no private nodes on G, the following proposition regarding
each estimator and each expected value holds.

Proposition 1. When the original graph G involves no private nodes, two esti-
mators, n̂ and n̂′, are equal, and two expected values, n∗ and ñ, are equal to the
true quantity n.

Proof. When the original graph G involves no private nodes, it holds that V ∗ = V
and d∗i = di for each node vi ∈ V ∗. This is because the largest public cluster C∗

is equivalent to the original graph G. Thus, it holds that n̂ = n̂′ because of the
definitions of the estimators. It also holds that n∗ = n and ñ = n because of
Lemmas 4 and 6.

We show that the expected value ñ of the proposed estimator reduces the bias
induced by private nodes compared with the existing estimator. First, we derive
the expected value with respect to the set Lpri of the public degree of a public
node:

Lemma 7. For any public node vi ∈ V ∗, we have

Epri[d
∗
i ] = (1− p)di,

Epri
[
(d∗i )

2
]
= (1− p)di[(1− p)di + p].

Proof. The public degree d∗i follows the binomial distribution with parameters of
the degree di and 1 − p regarding the set Lpri because each neighbor of node vi
independently becomes public with the probability 1−p under Assumption 2.

Then, we approximate the expected value of ñ with respect to Lpri as a product
of each expected value with respect to Lpri of each quantity in the denominator
and numerator of ñ.

Theorem 3. If all the public nodes belong to the largest public cluster, we have

Epri[ñ] ≈
Epri[n

∗]Epri[
∑

vi∈V ∗ d∗i di]

Epri[
∑

vi∈V ∗(d∗i )
2]

= αpn,

where

αp =
(1− p)

∑
vi∈V (di)

2∑
vi∈V di[(1− p)di + p]

. (2.1)

Proof. We define a random variables Xsize(i) = d∗i di1{vi∈V ∗} and Ysize(i) = (d∗i )
21{vi∈V ∗}

for each node vi ∈ V . Let Xsize =
∑

vi∈V ∗ d∗i di and Ysize =
∑

vi∈V ∗(d∗i )
2. It holds

that Xsize =
∑

vi∈V Xsize(i) and Ysize =
∑

vi∈V Ysize(i). We obtain the expected
value of Xsize with respect to Lpri:

Epri[Xsize] =
∑
vi∈V

Pr[vi ∈ V ∗]Epri[d
∗
i di] = (1− p)2

∑
vi∈V

(di)
2.
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The second equation holds because of Lemma 7. We note that the degree di is
constant with respect to Lpri. Similarly, the expected value of Ysize with respect
to Lpri is obtained as follows:

Epri[Ysize] =
∑
vi∈V

Pr[vi ∈ V ∗]Epri[(d
∗
i )

2] = (1− p)2
∑
vi∈V

di[(1− p)di + p].

Theorem 3 holds because of the above equations and Lemma 5.

We empirically find that the coefficient αp is almost equal to 1 for various
values of p in different social networks (see Section 2.6.1 for details). This is
because the sum of squares of degrees

∑
vi∈V (di)

2 is considerably larger than
the sum of degrees

∑
vi∈V di in large-scale networks with heavy-tailed degree

distributions [177]. Therefore, Theorem 3 implies that the expected value of the
proposed estimator has approximately no bias with respect to a random set of
privacy labels of nodes if all the public nodes belong to the largest public cluster.

In practice, it rarely holds true that all public nodes belong to the largest
public cluster of a large-scale social network. Hence, the expected values of the
existing and proposed estimators typically have the biases induced by public nodes
that do not belong to the largest public cluster. However, most public nodes
belong to the largest public cluster of real social networks under Assumption
2. This is supported by the nature that real-world networks with heavy-tailed
degree distributions have high robustness for the connected component against
random removal of a set of nodes [16]. In fact, we numerically find that the
proposed estimators have smaller biases induced by private nodes than the existing
estimators in real social network datasets (see Section 2.6.2 for details).

2.5.2 Average degree

Existing estimator

An existing estimator of the average degree [62,85,86], denoted by d̂avg, is defined
as

Φavg =
1

r

r∑
k=1

1

d∗xk

, d̂avg ≜ 1

Φavg
.

We have the following lemma derived from the previous study [62] which assumes
that the original graph involves no private nodes.

Lemma 8. The estimator d̂avg converges to the average degree of the largest public
cluster d∗avg after many steps of our random walk.

Proof. We calculate the expected value of Φavg with respect to π as follows:

Eπ [Φavg] = Eπ

[
1

d∗xk

]
=

∑
vi∈V ∗

d∗i
D∗

1

d∗i
=

1

d∗avg
.

The quantity Φavg converges to the expected value after many steps because of
Theorem 2. Therefore, d̂avg = 1/Φavg converges to d∗avg after many steps of our
random walk.

Then, we quantify the bias of the expected value of the existing estimator
induced by private nodes. We approximate the expected value of d∗avg with respect
to Lpri as a product of the expected value with respect to Lpri of each quantity
in the denominator and numerator of d∗avg.
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Lemma 9. If all the public nodes belong to the largest public cluster, we have

Epri[d
∗
avg] ≈

Epri[D
∗]

Epri[n∗]
= (1− p)davg.

Proof. We define a random variable Xavg(i) = d∗i 1{vi∈V ∗} for each node vi ∈ V .
It holds that D∗ =

∑
vi∈V Xavg(i). The expected value with respect to Lpri of D∗

is derived as

Epri[D
∗] =

∑
vi∈V

Pr[vi ∈ V ∗]Epri[d
∗
i ] = (1− p)2D.

Consequently, it follows that Lemma 9 holds because of the above equation and
Lemma 5.

Lemma 9 implies that the expected value of the existing estimator has the
bias 1− p.

Proposed estimator

We modify the weight for each sampled node to reduce the bias of the expected
value induced by private nodes. We define the average of the modified weights
Ψ′

size and the proposed estimator d̂′avg as follows:

Φ′
avg =

1

r

r∑
k=1

1

dxk

, d̂′avg ≜ 1

Φ′
avg

.

We have the following lemma regarding the proposed estimator.

Lemma 10. The estimator d̂′avg converges to

d̃avg =
D∗∑

vi∈V ∗ d∗i /di

after many steps of our random walk.

Proof. We calculate the expected value of Φ′
avg with respect to π as follows:

Eπ[Φ
′
avg] = Eπ

[
1

dxk

]
=

∑
vi∈V ∗

d∗i
D∗

1

di
=

1

d̃avg
.

The quantity Φ′
avg converges to the expected value because of Theorem 2, and

hence, the estimator d̂′avg converges to d̃avg after many steps of our random walk.

The following proposition holds as well as Proposition 1.

Proposition 2. When the original graph G involves no private nodes, two esti-
mators d̂avg and d̂′avg are equal, and two expected values, d∗avg and d̃avg, are equal
to the true quantity davg.

Finally, we have the following theorem.

Theorem 4. If all the public nodes belong to the largest public cluster, we have

Epri[d̃avg] ≈
Epri[D

∗]

Epri
[∑

vi∈V ∗ d∗i /di
] = davg.
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Proof. We define a random variable X̃avg(i) = 1{vi∈V ∗}d
∗
i /di for each node vi ∈ V .

Let X̃avg =
∑

vi∈V ∗ d∗i /di. It holds that X̃avg =
∑

vi∈V X̃avg(i). We obtain the
expected value of X̃avg with respect to Lpri:

Epri[X̃avg] =
∑
vi∈V

Pr[vi ∈ V ∗]Epri

[
d∗i
di

]
= (1− p)2n.

Theorem 4 holds because of the equation of Epri[D
∗] = (1− p)2D and the above

equation.

2.5.3 Node’s label density

Existing estimator

An existing estimator of the density of node label l, denoted by ρ̂(l), is defined as
follows [85,86,190]:

Φlabel =
1

r

r∑
k=1

1{l(xk)=l}

d∗xk

, ρ̂(l) ≜ Φlabel

Φavg
.

Note that the label of interest l of the node does not include the privacy label of
the node because the sample sequence contains only public nodes.

We have the following lemma derived from the previous study [190] which
assumes that the original graph involves no private nodes.

Lemma 11. The estimator ρ̂(l) converges to the density of node label l of the
largest public cluster ρ∗(l) after many steps of our random walk.

Proof. We calculate the expected value of Φlabel with respect to π as follows:

Eπ [Φlabel] = Eπ

[
1{l(xk)=l}

d∗xk

]
=

∑
vi∈V ∗

d∗i
D∗

1{l(i)=l}

d∗i
=

1

D∗

∑
vi∈V ∗

1{l(i)=l}.

The quantity Φlabel converges to the expected value Eπ [Φlabel] =
∑

vi∈V ∗ 1{l(i)=l}/D
∗

after many steps of our random walk because of Theorem 2. The quantity Φavg
also converges to the expected value Eπ [Φavg] = n∗/D∗ after many steps (see
the proof of Lemma 8). Therefore, the estimator ρ̂(l) converges to ρ∗(l) =∑

vi∈V ∗ 1{l(i)=l}/n
∗ after many steps of our random walk.

Then, we quantify the bias of the expected value ρ∗(l) of the existing estimator.

Lemma 12. If all the public nodes belong to the largest public cluster, we have

Epri[ρ
∗(l)] ≈

Epri[
∑

vi∈V ∗ 1{l(i)=l}]

Epri[n∗]
= ρ(l).

Proof. We define a random variable Xlabel(i) = 1{vi∈V ∗∧l(i)=l} for each node vi ∈
V . Let Xlabel =

∑
vi∈V ∗ 1{l(i)=l}. It holds that Xlabel =

∑
vi∈V Xlabel(i). The

expected value with respect to Lpri of Xlabel is derived as

Epri [Xlabel] =
∑
vi∈V

Pr[vi ∈ V ∗]Epri[1{l(i)=l}] = (1− p)
∑
vi∈V

1{l(i)=l}.

Note that the indicator function 1{l(i)=l} is constant with respect to the set Lpri.
Consequently, it follows that Lemma 12 holds because of the above equation and
Lemma 5.
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In contrast to the cases of the network size and average degree, Lemma 12
implies that the existing estimator ρ̂(l) has approximately no bias with respect
to the set Lpri if all public nodes belong to the largest public cluster. However,
we empirically find that our estimator presented in the following further reduces
the bias induced by private nodes.

Proposed estimator

We modify the weight for each sampled node to reduce the bias of the expected
value induced by private nodes. We define the average of the modified weights
Φ′

label and the proposed estimator ρ̂′(l) as follows:

Φ′
label =

1

r

r∑
k=1

1{l(xk)=l}

dxk

, ρ̂′(l) ≜ Φ′
label
Φ′

avg
.

The following lemma holds regarding the expected value of the proposed esti-
mator.

Lemma 13. The estimator ρ̂′(l) converges to

ρ̃(l) =

∑
vi∈V ∗ 1{l(i)=l}d

∗
i /di∑

vi∈V ∗ d∗i /di

after many steps of our random walk.

Proof. We calculate the expected value of Φ′
label with respect to π as follows:

Eπ[Φ
′
label] = Eπ

[
1{l(xk)=l}

dxk

]
=

1

D∗

∑
vi∈V ∗

d∗i
di

1{l(i)=l}.

Since Φ′
avg converges to the expected value Eπ[Φ

′
avg] = (

∑
vi∈V ∗ d∗i /di)/D

∗ be-
cause of Theorem 2, d̂avg converges to d̃avg after many steps of our random
walk.

We have the following proposition.

Proposition 3. When the original graph G involves no private nodes, two esti-
mators ρ̂(l) and ρ̂′(l) are equal, and two expected values, ρ∗(l) and ρ̃(l), are equal
to the true quantity ρ(l).

Finally, we have the following theorem.

Theorem 5. If all the public nodes belong to the largest public cluster, we have

Epri[ρ̃(l)] ≈
Epri[

∑
vi∈V ∗ 1{l(i)=l}d

∗
i /di]

Epri[
∑

vi∈V ∗ d∗i /di]
= ρ(l).

Proof. We define a random variable X̃label(i) = 1{vi∈V ∗}d
∗
i /di for each node vi ∈

V . Let X̃label =
∑

vi∈V ∗ 1{l(i)=l}d
∗
i /di. It holds that X̃label =

∑
vi∈V X̃label(i). We

obtain the expected value of X̃label with respect to Lpri:

Epri[X̃label] =
∑
vi∈V

Pr[vi ∈ V ∗]Epri

[
d∗i
di

1{l(i)=l}

]
= (1− p)2

∑
vi∈V

1{l(i)=l}.

Theorem 5 holds because of the above equation and equation Epri[
∑

vi∈V ∗ d∗i /di] =
(1− p)2n (see the proof of Theorem 4).
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2.5.4 Density of the private label of the node

The proposed estimator ρ̂′(l) is not applicable to the estimation of the density of
the private label of the node (i.e., the percentage of private nodes). This is because
the sample sequence does not contain private nodes. However, it is possible to
intuitively estimate the probability p using the existing and proposed estimators
of the network size and average degree each. Note that the probability p is almost
equal to the density of the private label in a large-scale social network under
Assumption 2. We denote by p̂size the estimator of the probability p obtained by
the existing and proposed estimators of the network size. We denote by p̂avg the
estimator of the probability p obtained by the existing and proposed estimators of
the average degree. Based on Lemmas 5 and 9 and Theorems 3 and 4, we define
estimators p̂size and p̂avg as

p̂size ≜ 1− n̂/n̂′, (2.2)

p̂avg ≜ 1− d̂avg/d̂
′
avg. (2.3)

2.5.5 Estimation in the hidden privacy model

In the hidden privacy model, we calculate each estimator using the estimated
public degree of each sampled node, d̂∗xk

. Even in this model, Lemmas 4, 6, 8, 10,
11, and 13 hold because of Lemma 2.

2.6 Experiments

We numerically evaluate the proposed estimators on social network datasets. We
aim to answer the following questions:

1. Do the proposed estimators reduce the bias induced by private nodes of the
existing estimators for the network size, average degree, and density of the
node label? (Section 2.6.2)

2. Do the proposed estimators perform acceptably on social network datasets
involving real private nodes? (Sections 2.6.3 and 2.6.4)

3. How does the proposed method for calculating the public degree of each
sampled node affect the estimation accuracy and the number of queries in
the hidden privacy model? (Section 2.6.5)

4. Is the number of additional queries generated by private nodes during seed
selection small? (Section 2.6.6)

2.6.1 Datasets

Description of the datasets

We use five social network datasets, i.e., the YouTube, Pokec, Orkut, Facebook,
and LiveJournal datasets. For these five datasets, we focus on undirected and
connected graphs by the following pre-processing: (1) removing the directions
of edges if the original graphs are directed and then (2) deleting the nodes that
are not contained in the largest connected component of the original graph. The
pre-processing does not affect any of the following experiments because the above
pre-processing is performed before setting privacy labels of nodes and no process-
ing is added to the graph after setting the privacy labels of the nodes. Table
2.1 shows the network size, average degree, and whether the dataset contains
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1 − 𝑝

(a) (c)(b) (d)

Figure 2.3: Four properties of the network datasets. (a) Cumulative degree dis-
tribution. (b) Coefficient αp as a function of p. (c) Relative size of the largest
public cluster as a function of p. (d) Average size of isolated public clusters as a
function of p.

Table 2.1: Network datasets.

Network n davg Privacy-label data Reference
YouTube 1,134,890 5.27 Not contain [119]
Pokec 1,632,803 27.32 Contain [137]
Orkut 3,072,441 76.28 Not contain [137]
Facebook 3,097,165 15.28 Not contain [196]
LiveJournal 3,997,962 17.35 Not contain [137]

the privacy-label data of nodes for the five network datasets. For the YouTube,
Orkut, Facebook, and LiveJournal datasets, we independently and randomly set
the privacy label of each node as private with a given probability p and otherwise
public, according to Assumption 2. We vary the probability p from 0.0 to 0.30
in increments of 0.03 because there were actually tens of percentages of private
nodes in social networks [41,45,66,216]. The Pokec dataset contains all the graph
data of the network involving private nodes and contains real privacy labels of all
the nodes [216]. Therefore, for the Pokec dataset, we apply the original privacy
label to each node. Then, the Pokec network contains 552,525 real private nodes
(i.e., approximately 33.8% of all the nodes).

We additionally use the dataset of the sample sequence of 1,016,275 public
Facebook users obtained by Kurant et al.’s random walk in October 2010 [120].
The random walk is equivalent to our random walk in the ideal model because
the Facebook graph as of October 2010 involves a certain percentage of private
nodes and corresponds to the ideal model. This dataset contains the ID, the exact
public degree, and the exact degree of each sampled public user, which allows us
to compare the existing estimators and the proposed estimators.

Properties of the network datasets

Figure 2.3 shows four properties of each of the five network datasets. Figure
2.3(a) shows the cumulative degree distributions of the five datasets. We see
that the networks have heavy-tailed degree distributions. Figure 2.3(b) shows the
coefficient αp, defined in Eq. (2.1), as a function of p for the five datasets. We
find that αp is almost equal to 1.0 for every value of p. This property is a result
of the characteristic that the sum of squares of degrees is considerably larger than
the sum of degrees for the networks. Figure 2.3(c) shows the relative size of the
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largest public cluster, i.e., n∗/n, averaged over 1,000 independent and random
sets of private nodes as a function of probability p for the four datasets. The gray
solid line represents an expected upper limit, i.e., 1 − p. We observe that most
public nodes belong to the largest public cluster for every probability p for the
four datasets, which is qualitatively consistent with the finding in the previous
study [16]. We also observe that all the public nodes belong to the largest public
cluster of the Pokec network with real privacy labels of the nodes. Figure 2.3(d)
shows the average size of isolated public clusters (i.e., public clusters other than
the largest public cluster) averaged over 1,000 independent and random sets of
private nodes as a function of probability p for the four datasets. The average
size of isolated public clusters is considerably small for the four datasets, which
is qualitatively consistent with the finding in the previous study [16]. We also
observe that the Pokec network with real privacy labels of the nodes has no
isolated public clusters.

2.6.2 Estimation accuracy of the proposed estimators when varying
the percentage of private nodes

First, we compare the estimation accuracy of the existing and proposed estimators
for the network size, the average degree, and the density of the node label using
YouTube, Orkut, Facebook, and LiveJournal datasets. We set the density of node
label of interest as a fraction of nodes with degree d or higher for each possible d
(i.e., we set the indicator function used in ρ̂(l) and ρ̂′(l) as 1{dxk≥d} for node vxk

).
This is equivalent to estimating the cumulative degree distribution {P (d)}dmax

d=1 ,
where dmax denotes the maximum degree of the node [85, 86, 132, 190]. For the
network size and average degree, we evaluate the estimators using the normalized
mean squared error (NRMSE) given by

√
E[(x̂/x− 1)2], where x denotes the exact

value and x̂ denotes the estimator of x. The NRMSE has been used to evaluate
both the bias and variance of a given estimator in the related literature [48,97,132,
234]. For the cumulative degree distribution, we calculate the NRMSE between
the exact distribution {P (d)}dmax

d=1 and the estimated distribution {P̂ (d)}dmax
d=1 . To

this end, we use the normalized L1 distance between {P (d)}dmax
d=1 and {P̂ (d)}dmax

d=1

given by DP (d) =
∑dmax

d=1 |P̂ (d) − P (d)|/
∑dmax

d=1 P (d). Then, the NRMSE of the

estimator {P̂ (d)}dmax
d=1 is given by

√
E[(DP (d))2].

We perform the following simulations on the YouTube, Orkut, Facebook, and
LiveJournal datasets. First, we independently and randomly set the privacy label
of each node as private with a given probability p and otherwise public, according
to Assumption 2. Second, we randomly select a seed on the largest public cluster.
Third, we perform our random walk with a length r of 1% of the number of nodes.
Finally, we calculate the existing and proposed estimators from the sampling list.
For the given p, we estimate the NRMSE of each estimator over 1,000 independent
runs.

Figure 2.4 shows the NRMSEs of the existing and proposed estimators for
the network size as a function of probability p. The following observations apply
to both access models. First, the NRMSEs of both estimators are exactly the
same when p = 0.0, as shown in Proposition 1. Second, more importantly, the
proposed estimator typically improves the NRMSE when p > 0. For example,
the proposed estimator improves the NRMSE by approximately 67.7% (i.e., from
0.308 to 0.100) when p = 0.3 in Fig. 2.4(b). These observations qualitatively
remain the same for the estimators of the average degree (see Fig. 2.5) and the
cumulative degree distribution (see Fig. 2.6), except for Figs. 2.6(b) and 2.6(f).
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(a) (c)(b) (d)

(e) (g)(f) (h)

Figure 2.4: NRMSEs of the existing and proposed estimators for the network size
as a function of probability p. Panels (a) and (e) show the results for the YouTube
dataset; panels (b) and (f) show the results for the Orkut dataset; panels (c) and
(g) show the results for the Facebook dataset; panels (d) and (h) show the results
for the LiveJournal dataset. Panels (a)–(d) show the results in the ideal model,
and panels (e)–(h) show the results in the hidden privacy model. We set the
sample size as 1% of the number of nodes.

(a) (c)(b) (d)

(e) (g)(f) (h)

Figure 2.5: NRMSEs of the existing and proposed estimators for the average
degree as a function of probability p. Panels (a) and (e) show the results for
the YouTube dataset; panels (b) and (f) show the results for the Orkut dataset;
panels (c) and (g) show the results for the Facebook dataset; panels (d) and (h)
show the results for the LiveJournal dataset. Panels (a)–(d) show the results in
the ideal model, and panels (e)–(h) show the results in the hidden privacy model.
We set the sample size as 1% of the number of nodes.
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Existing

Existing

Figure 2.6: NRMSEs of the existing and proposed estimators for the cumulative
degree distribution as a function of probability p. Panels (a) and (e) show the
results for the YouTube dataset; panels (b) and (f) show the results for the Orkut
dataset; panels (c) and (g) show the results for the Facebook dataset; panels
(d) and (h) show the results for the LiveJournal dataset. Panels (a)–(d) show
the results in the ideal model, and panels (e)–(h) show the results in the hidden
privacy model. We set the sample size as 1% of the number of nodes. We indicate
the curves by an arrow and label when two curves heavily overlap each other.

The improvement in the NRMSE results from the reduction of the bias induced
by private nodes. To confirm this, we observe the NRMSEs of expected values of
the existing and proposed estimators for each property (see Lemmas 4, 6, 8, 10,
11, and 13 for the expected value of each estimator). For the given p, we calculate
the NRMSEs of the expected values of the existing and proposed estimators over
1,000 random sets of privacy labels of nodes. Note that the expected value of
each estimator does not depend on the access model.

Figure 2.7(a)–(d) shows the NRMSEs of expected values of the existing and
proposed estimators for the network size as a function of probability p. The
following observations apply to the four datasets. First, the NRMSEs of both
estimators are equal to zero when p = 0, as shown in Proposition 1. Second,
the proposed estimator improves the NRMSE of the expected value when p > 0.
These observations are qualitatively the same for the estimators of the average de-
gree (see Fig. 2.7(e)–(h)) and the estimators of the cumulative degree distribution
(see Fig. 2.7(i)–(l)). The proposed estimator for the cumulative degree distribu-
tion slightly reduces the bias induced by private nodes on the Orkut dataset (see
Fig. 2.7(j)), which is qualitatively consistent with the little improvement in the
NRMSE of the proposed estimator in Figs. 2.6(b) and (f).

The existing and proposed estimators have the bias induced by public nodes
that do not belong to the largest public cluster. This is because our random walk
samples only the nodes that belong to the largest public cluster. On the Orkut
dataset, where almost all of the public nodes belong to the largest public cluster
(see Fig. 2.3(c)), the proposed estimators for the network size, average degree, and
cumulative degree distribution have approximately no bias for any probability p
(see Figs. 2.7(b), 2.7(f), and 2.7(j)). These results support our theoretical results
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Figure 2.7: NRMSEs of the expected values of the existing and proposed esti-
mators as a function of probability p. Panels (a), (e), and (i) show the results
for the YouTube dataset; panels (b), (f), and (j) show the results for the Orkut
dataset; panels (c), (g), and (k) show the results for the Facebook dataset; panels
(d), (h), and (l) show the results for the LiveJournal dataset. Panels (a)–(d) show
the results for the network size; panels (e)–(h) show the results for the average
degree; panels (i)–(l) show the results for the cumulative degree distribution.

of Theorems 3, 4, and 5. The biases of the existing estimators for the network
size and average degree approximately increase linearly with probability p, which
supports Lemmas 5 and 9 (see Fig. 2.7(b) and Fig. 2.7(f)). The existing estimator
for the cumulative degree distribution has approximately no bias for any p, which
supports Lemma 12 (see Fig. 2.7(j)). On the other hand, on the YouTube dataset,
where there are the most public nodes that do not belong to the largest public
cluster among the four datasets (see Fig. 2.3(c)), the biases of the existing and
proposed estimators relatively increase as the probability p increases (see Figs.
2.7(a), 2.7(e), and 2.7(i)). Nevertheless, the proposed estimators still have smaller
biases induced by private nodes than the existing estimators when p > 0.

2.6.3 Estimation on the Pokec dataset

We evaluate the proposed estimators using the Pokec network dataset involving
real private nodes [137, 216]. We perform the following simulations on the Pokec
dataset. First, we apply the original privacy label contained in the dataset to
each node. Second, we compute the largest public cluster of the Pokec network.
Third, we randomly select a seed on the largest public cluster. Fourth, we perform
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(a) (c)(b)

(d) (f)(e)

Figure 2.8: NRMSEs of the existing and proposed estimators as a function of the
sample size on the Pokec dataset. Panels (a) and (d) show the results for the
network size; panels (b) and (e) show the results for the average degree; panels
(c) and (f) show the results for the cumulative degree distribution. Panels (a)–(c)
show the results in the ideal model, and panels (d)–(f) show the results in the
hidden privacy model.

our random walk with length r. Finally, we calculate the existing and proposed
estimators from the sampling list. We vary the length r from 0.5% of the number
of nodes to 5% of the number of nodes in increments of 0.5% of the number of
nodes. For the given r, we estimate the NRMSE of each estimator over 1,000
independent runs.

Figure 2.8 shows the NRMSE of the existing and proposed estimators for the
three properties as a function of the sample size. For each property, the proposed
estimator improves the NRMSE for any sample size in both access models. For
example, the proposed estimator for the network size improves the NRMSE by
approximately 92.6% (i.e., from 0.339 to 0.025) in the case of 5% sample size
in the ideal model (see Fig. 2.8(a)). The improvement in the NRMSE results
from the reduction of the bias of the proposed estimators. Table 2.2 shows the
errors (i.e., the relative error or the L1 distance) of the expected values of the
existing and proposed estimators for each property. The proposed estimators
improve the corresponding error by 97.3% for the network size, 87.5% for the
average degree, and 32.1% for the cumulative degree distribution. Furthermore,
for each property, the proposed estimator has the expected value that is almost
equal to the true quantity of the whole Pokec network involving real private nodes.
Although Assumption 2 does not hold for the Pokec network, we found that the
proposed estimators yield reasonable results as claimed in Theorems 3, 4, and 5.

2.6.4 Estimation on the Facebook sample dataset

We use the sample sequence of 1,016,275 public nodes obtained by Kurant et al.’s
random walk on the Facebook graph in October 2010 [120]. The dataset contains
the ID, the exact public degree, and the exact degree of each sampled public node.
Therefore, we compare the existing and proposed estimators for the network size,
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Table 2.2: Expected errors of the existing and proposed estimators for the three
properties on the Pokec dataset. For the network size and average degree, the
error shows the relative error. For the cumulative degree distribution, the error
shows the L1 distance.

Network property Existing Proposed
Network size 0.338 0.009
Average degree 0.287 0.036
Cumulative degree distribution 0.112 0.076

Table 2.3: Estimates of the network size and average degree obtained from the
Facebook sample dataset.

Network property Existing Proposed
Network size 480,298,540 656,874,081
Average degree 102.07 137.03

average degree, and cumulative degree distribution of the Facebook graph as of
October 2010.

Table 2.3 shows the existing and proposed estimators for the network size and
average degree. It is difficult to calculate the error of each estimator because the
true quantities of the Facebook graph as of October 2010 are unknown. However,
we consider that the estimates are reasonable considering two findings in almost
the same period. First, Facebook reported that there were 500 million active
users as of July 2010 [72]. This means that there were at least 500 million users,
including inactive users, at that time. Notably, the estimates of the network
size shown in Table 2.3 count both active and inactive users. Our estimate, i.e.,
657 million, is greater than 500 million, and we speculate that the difference
(approximately 157 million) mainly comprises inactive users. Second, Catanese
et al. obtained the unbiased estimate of the proportion of private nodes as 0.266
from a uniform sample of Facebook users in August 2010 [45]2. According to Table
2.3, we obtain the estimates of the proportion of private nodes, i.e., p̂size defined
in Eq. (2.2) and p̂avg defined in Eq. (2.3), as 0.269 and 0.255, respectively.
These two estimates are considerably close to the ground truth value of 0.266.
Figure 2.9 shows the existing and proposed estimators for the cumulative degree
distribution. We observe that two estimates heavily overlap each other. This
result is qualitatively consistent with our theoretical results of Lemma 11 and
Theorem 5.

2.6.5 Effectiveness of the proposed method for calculating the public
degree of each sampled node

We evaluate the proposed method for calculating the public degree of each sam-
pled node in the hidden privacy model. The proposed estimator for the network
size requires the public degree of each sampled node for re-weighting (see Section
2.5.1). Therefore, we compare the NRMSE and the proportion of queried nodes

2When Catanese et al. performed a uniform sampling of users on Facebook during August
2010, the user id was 32 bit. As mentioned in Refs. [85, 86], shortly after that, Facebook’s user
id went to 64 bit, and uniform sampling in the 64-bit space is typically infeasible.
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Figure 2.9: Estimates of the cumulative degree distribution obtained from the
Facebook sample dataset. Two curves heavily overlap each other.

for the proposed size estimator using the proposed method and exact method,
respectively. In the exact method, one queries all the neighbors of each sampled
node to calculate the exact public degree in re-weighting. We perform the sim-
ulations on the YouTube, Orkut, Facebook, and LiveJournal datasets using the
same procedure followed in Section 2.6.2.

Figure 2.10 shows the results for the four datasets. The following observations
apply to all the four datasets. First, the proposed method achieves almost the
same NRMSE as the exact method (see Fig. 2.10(a)–(d)). Second, although the
exact method queries tens of percent of nodes which are much greater than the
1% sample size, the proposed method queries approximately 1% nodes (see Fig.
2.10(e)–(h)). These results support our theoretical result of Lemma 3. Therefore,
the proposed method reduces the proportion of queried nodes by tens of percent
while maintaining almost the estimation accuracy compared with the case of using
the exact method.

2.6.6 Selection of a seed on the largest public cluster

Thus far, we have assumed that we have access to some arbitrary node in the
largest public cluster of the original graph to begin our random walk (see Assump-
tion 3). In practical scenarios, we require additional queries in the seed-selection
phase by restarting a random walk from another seed in the following two cases.
The first case is when a given seed is a private node. This is the case, for example,
when one selects nodes v3 or v7 as a seed in the graph shown in Fig. 2.1. The
second case is when a given public seed is on an isolated public cluster (i.e., a
public cluster other than the largest public cluster). This is the case, for example,
when one selects nodes v6, v8, or v9 as a seed in the graph shown in Fig. 2.1.

We consider that the number of queries generated in each case is sufficiently
small. We generate a small number of queries in the first case because (i) the
proportion of private nodes is generally smaller than that of public nodes in real
social networks (e.g., 27% on Facebook [45] and 34% on Pokec [216]) and (ii)
one query is enough to check the privacy label of a node. In the second case, we
generate a small number of queries under Assumption 2 owing to the following two
natures of real-world networks having heavy-tailed degree distributions [16]. First,
most public nodes belong to the largest public cluster. In our simulations, even if
p = 0.3, 99.1% on Orkut, 91.4% on LiveJournal, 82.8% on Facebook, and 76.7%
on YouTube of public nodes belong to the largest public cluster (see Fig. 2.3(c)).
Therefore, a selected public seed belongs to the largest public cluster with high
probability. Second, the average size of isolated public clusters is considerably
smaller than the size of the largest public cluster. In our simulations, the average
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Figure 2.10: Effects of the proposed method for calculating the public degree of
each sampled node in the hidden privacy model. Panels (a) and (d) show the
results for the YouTube dataset; panels (b) and (e) show the results for the Orkut
dataset; panels (c) and (f) show the results for the Facebook dataset; panels
(d) and (h) show the results for the LiveJournal dataset. Panels (a)–(d) show
the NRMSEs of the existing and proposed estimators for the network size as a
function of probability p. Panels (e)–(h) show the proportion of queried nodes
using the exact and proposed methods for calculating the public degree of each
sampled node as a function of probability p. We set the sample size as 1% of the
number of nodes. We indicate the curves by an arrow and label when two curves
heavily overlap each other.

size is only approximately one for every probability p on the four datasets (see
Fig. 2.3(d)). Therefore, even if a selected seed belongs to an isolated public
cluster, we will generate a small number of queries there. Finally, we consider
that two real-world datasets support Assumption 3. There are no isolated public
clusters on the Pokec network; therefore, the second case does not occur on this
network. The Facebook sample dataset yields an estimate of 657 million users and
contains one million unique public users; therefore, we consider that the sample
was obtained from the largest public cluster of the Facebook graph as of October
2010.

2.7 Conclusion

In this chapter, we proposed a framework for estimating properties based on a
random walk on social networks involving private nodes. Social networks typically
involve a certain percentage of private nodes that do not publish their neighbors’
data when they are queried. However, previous studies have ignored the effects
of private nodes on random walk-based estimators because private nodes inhibit
the performing of a simple random walk on the network. We extended a simple
random walk and the existing estimators for the three properties to the case
of social networks involving private nodes based on the three assumptions with
respect to private nodes. Although Assumption 2 oversimplifies the distribution of
private nodes in social networks, the proposed estimators based on the assumption
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realized reasonable estimates on the two social network datasets involving real
private nodes. We expect that this work will lead to the accurate estimation
of the properties of social networks and finally to the understanding of social
characteristics such as human connections and behaviors.
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Chapter 3

Social Graph Restoration via Random Walk
Sampling

3.1 Introduction

Analysts are often interested in various characteristics of social networks, such as
local structural properties (e.g., the degree distribution and clustering coefficient),
global structural properties (e.g., the distributions of shortest-path lengths and
betweenness centrality), and visual graph representations [36]. Throughout the
work presented in Chapter 2, we raise the following question: will only such
improvement of the re-weighted random walk realizes methods to exhaustively
analyze properties of online social networks? The answer may be no because the
re-weighted random walk is specialized in estimating local structural properties
in principle.

In this chapter, we study the social graph restoration problem: given a small
sample of a social graph obtained by crawling, we aim to generate a graph
whose structural properties are as close as possible to the corresponding prop-
erties of the original graph. To address this problem, we propose a method
that generates a graph that preserves the estimates of local structural proper-
ties and the structure of the subgraph sampled by a random walk. Our experi-
mental results show that the proposed method outperforms existing methods in
terms of the average accuracy of 12 structural properties and the visual repre-
sentation of generated graphs. The source code for our method is available at
https://github.com/kazuibasou/social-graph-restoration.

3.2 Related Work

In the past decade, a number of algorithms based on the re-weighted random
walk have been developed for accurately estimating structural properties using
a small number of queries. Examples of such structural properties include the
network size [97,112], average degree [62,85,86], degree distribution [85,86], joint
degree distribution [84], clustering coefficients [32, 97, 190], motifs and graphlets
[48,95,234], and node centrality [160,161]. Most of these existing algorithms focus
on estimating local structural properties.

We regard subgraph sampling as a baseline method for the social graph restora-
tion problem. In subgraph sampling, one constructs the subgraph induced from
a set of edges obtained using a crawling method [13, 134, 136]. In early stud-
ies, the subgraph was implicitly assumed to be a representative sample of the
original graph [15, 45, 122, 154, 239]. However, Gjoka et al. demonstrated that
crawling methods typically introduce a significant sampling bias toward high-
degree nodes [85, 86]. In this work, we compare the proposed method with sub-
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graph sampling using each of the well-used crawling methods (i.e., breadth-first
search [45, 121, 154, 197, 239], snowball sampling [15, 89, 106, 134, 197], forest fire
sampling [13, 65, 136, 197], and random walk). We confirm that subgraph sam-
pling using a small sample typically introduces bias in structural properties on
average and misses the surrounding structure that consists of low-degree nodes in
the graph visualization.

Gjoka et al. proposed a method for generating a graph that preserves the esti-
mates of the joint degree distribution and degree-dependent clustering coefficient
obtained by re-weighted random walk [84]. The authors showed that the gen-
erated graph accurately reproduces not only local structural properties but also
global structural properties that are not intended to be preserved. In this work,
we propose a method for generating a graph that preserves both the estimates of
local structural properties (i.e., the number of nodes, average degree, degree dis-
tribution, joint degree distribution, and degree-dependent clustering coefficient)
and the structure of the subgraph sampled by a random walk. Specifically, we
add nodes and edges to the subgraph sampled by a random walk to ensure that
the final graph preserves the estimates of local structural properties. Our under-
lying idea is to optimally use the raw structural information of the subgraph in
the generation process. Our experimental results show that the proposed method
more accurately reproduces an average of 12 structural properties and the visual
representation of the original graph and has a generation time that is several times
faster than that of Gjoka et al.’s method.

Several studies have developed random walk algorithms to improve the accu-
racy of estimators or the efficiency of the number of queries [132, 140, 141, 162,
168,190,245,255]. Ribeiro and Towsley proposed multidimensional random walks,
which improve the estimation accuracy over a simple random walk (i.e., one re-
peatedly moves to a neighbor chosen uniformly and randomly on the graph) in
the presence of disconnected connected components [190]. Lee et al. proposed the
non-backtracking random walk algorithm, which improves the query efficiency
while preserving the Markov property of the sample sequence [132]. Nakajima
and Shudo recently proposed a random walk algorithm to reduce the bias caused
by private nodes whose neighbors’ data are not retrievable in social networks [162].
In this work, we propose a method for restoring the original social graph via a
simple random walk. However, while it is not trivial, it is possible to combine the
above improved random walks with the proposed method.

Graph-generative models have been developed to reproduce the structural
properties of a given graph [35,46,88,135,148,180,193,208,227,248]. In this work,
we extend a family of generative models called the dK-series [84, 148,180] to the
generation of a graph that preserves the estimates of local structural properties
and the structure of the subgraph sampled by a random walk. It is not trivial
to extend any generative model including the dK-series, which assumes that all
graph data are available, to the social graph restoration problem because of the
following three reasons. First, we need to estimate the input parameters of the
model from a sample of the original graph. Second, we need to construct the input
parameters from their estimates so that those parameters meet all conditions
required to realize the desired graph. Third, although one adds nodes and edges
in an empty graph in most generative models, we add nodes and edges to the
sampled subgraph to restore the original graph.

Social graph restoration is related to matrix completion [44], in which one
complements entries in a given matrix, and is also related to link prediction [142],
network completion [114], and network inference [96,103,176], in which one com-
plements nodes or edges in a given graph. However, the subgraph sampled by a
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random walk omits nodes biased toward low degrees and their edges, which is a
special case of the assumption of these problems regarding missing nodes or edges.
The proposed method is specialized in the case of complementing the nodes and
edges in the subgraph sampled by a random walk.

3.3 Preliminaries

3.3.1 Problem definition

We represent a connected and undirected social graph as G = (V, E), where V =
{v1, v2, . . . , vn} is a set of nodes (users) and E is a set of edges (friendships). We
allow multiple edges and loops. Let n denote the number of nodes and m denote
the number of edges. We denote the adjacency matrix for G by A. We assume
that Aij is the number of edges between vi and vj (i ̸= j). We assume that Aii

is equal to twice the number of loops of vi by convention [177]. Let N (i) denote
a set of edges connected to vi. Let di = |N (i)| be the degree of vi and kmax be
the maximum degree of the node. Let 1{cond} denote a function that returns 1 if
a condition cond holds and 0 otherwise.

We assume the standard model for accessing graph G as in Refs. [15, 85, 86,
122, 154, 239]: (i) if one queries node vi, the set N (i) is available; (ii) completely
or randomly accessing G is not feasible; and (iii) the graph G is static. Crawling
methods (e.g., breadth-first search and random walk) are effective for sampling
the nodes and edges of a graph in this access model.

We study the following problem: given a sampling list of the indices and
connected edges of a small fraction of nodes queried using a crawling method,
we generate a graph whose structural properties are as close as possible to the
corresponding structural properties of the original graph G.

3.3.2 Random walk

We obtain a sequence of sampled nodes via a simple random walk as follows.
We select a seed node vx1 , where xi denotes the index of the i-th sampled node.
For the i-th sampled node (i = 1, . . . , r − 1), we select an edge uniformly at
random from the set N (xi) and then pass through the edge. Finally, we obtain
a list of the indices and connected edges of r sampled nodes, as denoted by
L = ((xi,N (xi)))

r
i=1.

3.3.3 dK-series

We use the concept of a family of graph-generative models called the dK-series
[84, 148, 180]. The dK-series defines a series of random graphs called dK-graphs
that preserve all the joint degree distributions of the nodes in the subgraphs of
size d or less in a given graph. 0K-graphs preserve the number of nodes n and
the average degree k̄ of a given graph, where we define

k̄ =
2m

n
. (3.1)

1K-graphs preserve n, k̄, and the degree distribution {P (k)}k of a given graph.
We define

P (k) =
n(k)

n
(3.2)
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Figure 3.1: An example of a random walk on a graph.

for k = 1, . . . , kmax, where n(k) is the number of nodes with degree k. Preserving
n, k̄, and {P (k)}k is identical to preserving {n(k)}k. We refer to {n(k)}k as a
degree vector, as in Ref. [211]. 2K-graphs preserve n, k̄, {P (k)}k, and the joint
degree distribution {P (k, k′)}k,k′ of a given graph. We define

P (k, k′) =
µ(k, k′)m(k, k′)

2m
(3.3)

for k = 1, . . . , kmax, k′ = 1, . . . , kmax, where m(k, k′) is the number of edges
between nodes with degree k and nodes with degree k′. We define µ(k, k′) =
1 if k ̸= k′ and µ(k, k) = 2 otherwise such that P (k, k′) is normalized; i.e.,∑kmax

k=1

∑kmax
k′=1 P (k, k′) = 1. Preserving n, k̄, {P (k)}k, and {P (k, k′)}k,k′ is iden-

tical to preserving {m(k, k′)}k,k′ . We refer to {m(k, k′)}k,k′ as a joint degree
matrix, as in Ref. [211]. 2.5K-graphs preserve n, k̄, {P (k)}k, {P (k, k′)}k,k′ ,
and the degree-dependent clustering coefficient {c̄(k)}k of a given graph. For
k = 1, . . . , kmax, we define

c̄(k) =
1

n(k)

n∑
i=1, di=k

2ti
k(k − 1)

,

where ti =
∑n−1

j=1, j ̸=i

∑n
l=j+1, l ̸=iAijAilAjl is the number of triangles to which vi

belongs and c̄(1) = 0.
dK-graphs more accurately reproduce the structural properties of a given

graph as the value of d increases [148,180]. Gjoka et al. demonstrated that 2.5K-
graphs successfully reproduce not only local structural properties but also global
structural properties (e.g., shortest path properties) that are not intended to be
preserved [84].

3.3.4 Subgraph sampling

In our method, we first construct the subgraph induced from a set of edges ob-
tained using a random walk. We find a subset of edges in G obtained through a
random walk as

E ′ =
∪

vi∈V ′
qry

N (i),

where V ′qry denotes a set of queried nodes. In other words, E ′ is a union set
of edges connected to each of queried nodes. Then, we construct the subgraph,
G′ = (V ′, E ′), which is induced from the subset E ′. The subset V ′ consists of
two disjoint sets, i.e., V ′qry and V ′vis, where V ′vis denotes a set of nodes visible as
neighbors of the queried nodes.
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Figure 3.1 shows an example in which we traverse nodes in the order v1, v3,
v6, and v3 via a random walk on a graph. In this example, we obtain G′ = (V ′, E ′),
where V ′qry = {v1, v3, v6}, V ′vis = {v2, v4, v5, v8}, V ′ = {v1, v2, v3, v4, v5, v6, v8} and
E ′ = {(v1, v3), (v2, v3), (v3, v4), (v3, v6), (v5, v6), (v6, v8)}.

3.3.5 Unbiased estimators of local structural properties

Then, we estimate the number of nodes, average degree, degree distribution, joint
degree distribution, and degree-dependent clustering coefficient of the original
graph from the sampling list L. For this purpose, we use existing estimators
based on re-weighted random walk as follows.

Let I = {(i, j) | M ≤ |i− j| ∧ 1 ≤ i, j ≤ r} denote a set of integer pairs that
are between 1 and r and are located at least a threshold M away. An unbiased
estimator of the number of nodes [97,112] is given by

n̂ ≜
∑

(i,j)∈I dxi/dxj∑
(i,j)∈I 1{xi=xj}

.

We set M = 0.025r, as in the previous study [97].
An unbiased estimator of the average degree [62, 86] is given by ˆ̄k ≜ 1/Φ̄,

where we define

Φ̄ =
1

r

r∑
i=1

1/dxi .

An unbiased estimator of the degree distribution [85, 86, 190] is given by P̂ (k) ≜
Φ(k)/Φ̄, where we define

Φ(k) =
1

kr

r∑
i=1

1{dxi=k}.

An unbiased estimator of the joint degree distribution is given by combining
the following two methods [84]: induced edges (IE) and traversed edges (TE).
The unbiased estimator of the joint degree distribution using IE is defined as
P̂IE(k, k

′) ≜ n̂ˆ̄kΦ(k, k′), where we define

Φ(k, k′) =
1

kk′|I|
∑

(i,j)∈I

1{dxi=k∧dxj=k′}Axixj .

Then, the unbiased estimator of the joint degree distribution using TE is defined
as

P̂TE(k, k
′)

≜ 1

2(r − 1)

r−1∑
i=1

(1{dxi=k∧dxi+1=k′} + 1{dxi=k′∧dxi+1=k}).

Finally, the hybrid unbiased estimator P̂ (k, k′) is defined with ˆ̄k as a threshold:

P̂ (k, k′) ≜
{
P̂IE(k, k

′) (if k + k′ ≥ 2ˆ̄k),

P̂TE(k, k
′) (if k + k′ < 2ˆ̄k).

The original paper [84] did not prove that P̂ (k, k′) is an unbiased estimator of
P (k, k′). Therefore, we prove that in Section 3.8.

38



An unbiased estimator of the degree-dependent clustering coefficient [97] is
given by ˆ̄c(k) ≜ Φc̄(k)/Φ(k), where we define

Φc̄(k) =
1

(k − 1)(r − 2)

r−1∑
i=2

1{dxi=k}Axi−1xi+1 .

3.4 Proposed Method

3.4.1 Overview

In this section, we propose a method for restoring the original graph G based
on the subgraph G′ and the estimates of five local structural properties (i.e., the
number of nodes n̂, average degree ˆ̄k, degree distribution {P̂ (k)}k, joint degree
distribution {P̂ (k, k′)}k,k′ , and degree-dependent clustering coefficient {ˆ̄c(k)}k).
Our idea is to add nodes and edges to the subgraph to generate a graph that
preserves these estimates of local structural properties. We intend to reproduce
the global structural properties of the original graph by preserving local structural
properties, as in the underlying idea of the dK-series [84,148,180]. Furthermore,
we intend to reproduce the structural properties and the visual representation of
the original graph more accurately by preserving the structure of the subgraph.

The proposed method consists of four phases (see also Fig. 3.2). We denote
the graph to be generated by the proposed method as G̃ throughout this section.
In the first phase, we construct the target degree vector, as denoted by {n∗(k)}k
(Section 3.4.2). This vector determines the number of nodes with degree k in G̃.
We construct the target degree vector based on the subgraph G′ and the estimates
n̂ and {P̂ (k)}k. In the second phase, we construct the target joint degree matrix,
as denoted by {m∗(k, k′)}k,k′ (Section 3.4.3). This matrix determines the number
of edges between nodes with degree k and nodes with degree k′ in G̃. We construct
the target joint degree matrix based on the subgraph G̃, the estimates n̂, ˆ̄k, and
{P̂ (k, k′)}k,k′ , and the target degree vector {n∗(k)}k. In the third phase, we add
nodes and edges to the subgraph to ensure that the generated graph G̃ preserves
{n∗(k)}k and {m∗(k, k′)}k,k′ (Section 3.4.4). In the fourth phase, we repeatedly
rewire edges in the generated graph G̃ so that G̃ also preserves the estimate {ˆ̄c(k)}k
(Section 3.4.5). In the following sections, we describe each phase of the proposed
method in detail.

3.4.2 Constructing a target degree vector

In the first phase, we construct a target degree vector based on the subgraph
G′ and the estimates of the number of nodes n̂ and the degree distribution P̂ (k).
The target degree vector, as denoted by {n∗(k)}k, determines the number of nodes
with degree k in the graph to be generated G̃.

We denote by k∗max the target maximum degree of the graph to be generated,
G̃. In general, a target degree vector, {n∗(k)}k, needs to satisfy the following two
conditions to realize a graph that preserves it [178]:

(DV-1) n∗(k) is a nonnegative integer for each k = 1, . . . , k∗max.

(DV-2)
∑k∗max

k=1 kn∗(k) is an even number.

However, the immediate estimate of the number of nodes with degree k ob-
tained by n̂(k) = n̂P̂ (k) (see Eq. (3.2)) typically does not satisfy these realiza-
tion conditions. For example, n̂(k) is not typically an integer for each degree k.

39



• 𝒢!
• "𝑛
• { %𝑃(𝑘)}"

Input:

Output:

Example:  

• 𝒢!
• "𝑛
• %+𝑘
• { %𝑃(𝑘, 𝑘′)}","!
• {𝑛∗(𝑘)}"

{𝑚∗(𝑘, 𝑘′)}","!

{𝑚∗(𝑘, 𝑘′)}"%&,"!%&
' =

0 0 1 4
0 0 1 1
1 1 2 3
4 1 3 0

First phase Second phase

Input:

Output: 

• 𝒢!
• {𝑛∗(𝑘)}"
• {𝑚∗(𝑘, 𝑘′)}","!

5𝒢 such that it contains 𝒢! and 
preserves {𝑛∗(𝑘)}" and {𝑚∗(𝑘, 𝑘′)}","!

Input:

Output: 

• 5𝒢 such that it contains 𝒢! and 
preserves {𝑛∗(𝑘)}" and {𝑚∗(𝑘, 𝑘′)}","!

• { 6̅𝑐 (𝑘)}"

5𝒢 such that it contains 𝒢! and 
preserves {𝑛∗(𝑘)}" , {𝑚∗(𝑘, 𝑘′)}","! , and { 6̅𝑐(𝑘)}"

Third phase Fourth phase

• "𝑛
• %+𝑘
• { %𝑃(𝑘)}"
• { %𝑃(𝑘, 𝑘′)}","!
• { 6̅𝑐 (𝑘)}"

Preliminary phase

{𝑛∗(𝑘)}"

Random walk

Subgraph construction Re-weighted random walk

Input:

Output:

Example:  

Queried node

Visible node

Non-visible node

Visible edge

Non-visible edge

!!

!"

!#

!$

!%

!&

!'

!(

!)

!!*

!!

!"

!#

!$

!%

!& !(

!!

!"

!#

!$

!%

!&

!'

!(

!)

!!*

!!!

Added node

Added edge
!!

!"

!#

!$

!%

!&

!'

!(

!)

!!*

!!!

{𝑛∗(𝑘)}"%&' = 5 1 3 2

Figure 3.2: Workflow of the proposed method. G′ represents the subgraph ob-
tained by a random walk; n̂ represents the estimate of the number of nodes; ˆ̄k rep-
resents the estimate of the average degree; {P̂ (k)}k represents the estimate of the
degree distribution; {n∗(k)}k represents the target degree vector; {P̂ (k, k′)}k,k′
represents the estimate of the joint degree distribution; {m∗(k, k′)}k represents
the target joint degree matrix; {ˆ̄c(k)}k represents the estimate of the degree-
dependent clustering coefficient; and G̃ represents the graph to be generated by
the proposed method.
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Algorithm 2 Adjust the target degree vector to ensure that it satisfies condition
(DV-2).

Input: Estimates: n̂ and {P̂ (k)}k.
Input: Target maximum degree: k∗max.
Input: Target degree vector: {n∗(k)}k.
1: if

∑k∗max
k=1 kn∗(k) is an odd number then

2: Select degree k such that k is an odd number and ∆+(k) is the smallest.
3: n(k)← n(k) + 1.
4: return {n∗(k)}k.

Therefore, we construct {n∗(k)}k, which satisfies the realization conditions while
minimizing the error of {n∗(k)}k relative to the original estimate {n̂(k)}k.

Initialization step

We initialize n∗(k) for each degree k using n̂ and P̂ (k) such that {n∗(k)}k satisfies
condition (DV-1). Let NearInt(a) denote a function that returns the nearest
integer to real value a and max(b, c) denote a function that returns the larger of
the two integers b and c.

First, we set the target maximum degree k∗max as the larger value between the
maximum degree k such that P̂ (k) > 0 and the maximum degree of the node in
the subgraph G′. Then, for each degree k = 1, . . . , k∗max, we set

n∗(k) =

{
max(NearInt(n̂P̂ (k)), 1) if P̂ (k) > 0,

0 if P̂ (k) = 0.

Note that we initialize n∗(k) with a positive integer for each degree k such that
P̂ (k) > 0. For example, if n̂P̂ (1) = 0.1, we set n∗(1) = 1 and not n∗(1) = 0. This
is because if we obtain a positive estimate P̂ (k) > 0 then there must be at least
one node with degree k in the original graph G based on the definition of P̂ (k).

Adjustment step

Then, we adjust the target degree vector {n∗(k)}k such that {n∗(k)}k satisfies
condition (DV-2) as follows (see also Algorithm 2). If and only if the sum of
degrees, i.e.,

∑k∗max
k=1 kn∗(k), is an odd number, we increase n∗(k) by one for degree

k (1 ≤ k ≤ k∗max) such that k is an odd number and the increase in the error of
n∗(k) relative to the original estimate n̂(k) = n̂P̂ (k) upon increasing n∗(k) by
one, denoted by ∆+(k), is the smallest value. We define ∆+(k) as

∆+(k) =

{ |n̂(k)−(n∗(k)+1)|
n̂(k) − |n̂(k)−n∗(k)|

n̂(k) if P̂ (k) > 0,

∞ if P̂ (k) = 0.

If there are two or more candidates for degree k with the same increase ∆+(k), we
choose the smallest degree k to minimize the increase in the number of edges in
the graph to be generated, i.e.,

∑k∗max
k=1 kn∗(k). The target degree vector does not

break condition (DV-1) because the adjustment step comprises only increasing
n∗(k) for some degree k.

Modification step

In general, to generate a graph that preserves a given target degree vector, we
assign a target degree to each node, i.e., the degree of each node in the generated
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Algorithm 3 Modify the target degree vector to ensure that it satisfies condition
(DV-3).
Input: Subgraph: G′ = (V ′, E ′).
Input: Estimates: n̂ and {P̂ (k)}k.
Input: Target maximum degree: k∗max.
Input: Target degree vector: {n∗(k)}k.
1: Calculate degree d′i of each node in the subgraph v′i ∈ V ′.
2: for each v′i ∈ V ′qry in arbitrary order do
3: d∗i ← d′i.
4: Calculate the present n′(k) for each k = 1, . . . , k∗max.
5: for k = 1, . . . , k∗max do
6: n∗(k)← max(n∗(k), n′(k)).
7: for each v′i ∈ V ′vis in decreasing order of d′i do
8: Construct the degree sequence Dseq(i).
9: if Dseq(i) is not empty then

10: Select degree k uniformly randomly from Dseq(i).
11: else
12: Select degree k such that d′i ≤ k ≤ k∗max and ∆+(k) is the smallest.
13: d∗i ← k.
14: n′(k)← n′(k) + 1.
15: n∗(k)← max(n∗(k), n′(k)).
16: return {n∗(k)}k.

graph [148, 178]. Therefore, we next assign the target degree, denoted by d∗i , of
each node v′i in the subgraph G′ whose target degree is constrained by the degree
of the subgraph. In parallel with this assignment process, we modify the target
degree vector to ensure that it also satisfies another condition to realize a gener-
ated graph G̃ that contains the subgraph G′. Specifically, the target number of
nodes with degree k, i.e., n∗(k), needs to be no less than the number of nodes with
the target degree k in the subgraph, which is defined as n′(k) =

∑
v′i∈V ′ 1{d∗i=k},

for each degree k:

(DV-3) n∗(k) ≥ n′(k) for each degree k = 1, . . . , k∗max.

We modify the target degree vector to ensure that it satisfies all conditions (i.e.,
(DV-1), (DV-2), and (DV-3)) while minimizing the error of {n∗(k)}k relative to
the original estimate {n̂(k)}k.

Before we assign the target degree of each node v′i in the subgraph G′, we
clarify the relationship between the degree d′i of v′i in G′ and the degree di of v′i
in the original graph G:

Lemma 14. For each node in the subgraph v′i ∈ V ′, the degree d′i in G′ and the
degree di in G satisfy

di = d′i if v′i ∈ V ′qry,
di ≥ d′i if v′i ∈ V ′vis.

Proof. The first equation holds because all edges incident to a queried node are
contained in G′ based on the problem definition. The second inequality holds
because a visible node is connected only to queried neighbors in G′.

We modify the target degree vector as follows (see also Algorithm 3). First, for
each queried node v′i ∈ V ′qry in arbitrary order, we assign a target degree d∗i = d′i
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that is the same as the degree of the node in the subgraph G′, according to Lemma
14 (lines 2–3 in Algorithm 3). Second, we calculate the present number of nodes
with target degree k in the subgraph, i.e., n′(k), for each degree k = 1, . . . , k∗max
(line 4 in Algorithm 3). Then, we modify the target number n∗(k) to n∗(k) = n′(k)
if and only if n∗(k) < n′(k) for each degree k = 1, . . . , k∗max to satisfy condition
(DV-3) (lines 5–6 in Algorithm 3).

Next, for each visible node v′i ∈ V ′vis, we assign the target degree d∗i such that
d∗i ≥ d′i, according to Lemma 14. For this purpose, we first select the visible node
v′i ∈ V ′vis that is not assigned the target degree and has the largest degree in the
subgraph. Second, we construct a sequence of target degrees that can be assigned
to v′i, as denoted by Dseq(i), in which degree k appears n∗(k)−n′(k) times for each
k = d′i, . . . , k

∗
max (line 8 in Algorithm 3). If Dseq(i) is not empty, we choose degree

k uniformly and randomly from Dseq(i) (lines 9–10 in Algorithm 3). Otherwise,
we select degree k such that d′i ≤ k ≤ k∗max and the increase in the error ∆+(k)
is the smallest (lines 11–12 in Algorithm 3). If two or more candidates exist
for degree k with the same increase ∆+(k), we choose the smallest. Then, we
assign the target degree of v′i as d∗i = k and increase n′(k) by one (lines 13–14 in
Algorithm 3). We modify the target number n∗(k) to n∗(k) = n′(k) if and only
if n∗(k) < n′(k) (line 15 in Algorithm 3). We continue this procedure until we
assign a target degree to all visible nodes.

Note that we assign target degrees to visible nodes in decreasing order of
the degrees in the subgraph. This is because a node with a larger degree in
the subgraph tends to have fewer candidate target degrees in social graphs with
heavy-tailed degree distributions [15,85,86,122,154].

The target degree vector, {n∗(k)}k, does not break condition (DV-1) if we
execute the modification algorithm on the target degree vector. This is because
the algorithm comprises only increasing n∗(k) values for multiple degrees of k.
On the other hand, this modification step may make {n∗(k)}k break condition
(DV-2). In this case, we perform the adjustment process (Algorithm 2) again. If
we execute the adjustment algorithm on the target degree vector, {n∗(k)}k does
not break conditions (DV-1) and (DV-3). This is because the algorithm comprises
only increasing n∗(k) for some degree k. Therefore, {n∗(k)}k finally satisfies all
conditions, i.e., (DV-1), (DV-2), and (DV-3).

3.4.3 Constructing a target joint degree matrix

In the second phase, we construct the target joint degree matrix based on the
subgraph G′, the target degree vector {n∗(k)}k, and the estimates of the number
of nodes n̂, the average degree ˆ̄k, and the joint degree distribution P̂ (k, k′). The
target joint degree matrix, as denoted by {m∗(k, k′)}k,k′ , determines the number
of edges between nodes with degree k and nodes with degree k′ in the graph to
be generated G̃.

As in the case of constructing the target degree vector, the target joint degree
matrix, {m∗(k, k′)}k,k′ , needs to satisfy the following three conditions to realize
a graph that preserves it:

(JDM-1) m∗(k, k′) is a nonnegative integer for each degree k = 1, . . . , k∗max and
k′ = 1, . . . , k∗max.

(JDM-2) m∗(k, k′) = m∗(k′, k) for each degree k = 1, . . . , k∗max and each k =
1, . . . , k∗max such that k ̸= k′.

(JDM-3)
∑k∗max

k′=1 µ(k, k
′)m∗(k, k′) = kn∗(k) for each degree k = 1, . . . , k∗max.
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These conditions are obtained by relaxing the conditions required to realize a
graph that preserves {m∗(k, k′)}k,k′ and contains no multiple edges or self-loops
[211].

However, as in the case of constructing the target degree vector, the immediate
estimate of the number of edges between nodes with degree k and nodes with de-
gree k′ obtained by m̂(k, k′) = n̂ˆ̄kP̂ (k, k′)/µ(k, k′) (see Eqs. (3.1) and (3.3)) typi-
cally does not satisfy the realization conditions. Therefore, we construct m∗(k, k′)
for each k and k′ that satisfies the realization conditions while minimizing the er-
ror of {m∗(k, k′)}k,k′ relative to the original estimate {m̂(k, k′)}k,k′ .

Initialization step

First, we initialize m∗(k, k′) for each degree k and k′ using n̂, ˆ̄k, and P̂ (k, k′) such
that it satisfies conditions (JDM-1) and (JDM-2). Specifically, for each degree
k = 1, . . . , k∗max and k′ = 1, . . . , k∗max, we set

m∗(k, k′) ={
max(NearInt(n̂ˆ̄kP̂ (k, k′)/µ(k, k′), 1) if P̂ (k, k′) > 0,

0 if P̂ (k, k′) = 0.

It holds that m∗(k, k′) = m∗(k′, k) because P̂ (k, k′) = P̂ (k′, k) holds for k ̸= k′.
Note that we initialize m∗(k, k′) as a positive integer for each degree k and k′ such
that P̂ (k, k′) > 0. This is because if we obtain a positive estimate P̂ (k, k′) > 0
then there must be at least one edge between nodes with degree k and nodes with
degree k′ in the original graph G based on the definition of P̂ (k, k′).

Adjustment step

Then, we adjust m∗(k, k′) for each k and k′ to ensure that it satisfies condition
(JDM-3) (see also Algorithm 4). We denote the present sum of m∗(k, k′) for
degree k′ = 1, . . . , k∗max as s(k) =

∑k∗max
k′=1 µ(k, k

′)m∗(k, k′). We also denote the
target sum for degree k as s∗(k) = kn∗(k). We denote the set of degrees k by
which we adjust the present sum s(k) as D.

For each degree k ∈ D, we repeatedly increase or decrease m∗(k, k′) by one for
multiple degrees k′ until the present sum s(k) is equal to the target sum s∗(k).
We define

D = {k | 1 ≤ k ≤ k∗max ∧ s(k) ̸= s∗(k)} ∪ {1}.

We include degree k = 1 in the set D to enable us to finely adjust the target joint
degree matrix to ensure that it satisfies condition (JDM-3). We adjust n∗(k) if
and only if s(k) cannot reach s∗(k) only with the adjustment of m∗(k, k′) for
multiple degrees k′.

We impose three constraints in adjusting the target joint degree matrix. First,
we ensure that m∗(k, k′) is not less than the input lower limit denoted by mmin(k, k

′)
for each k and k′. We assume that mmin(k, k

′) ≥ 0. The first constraint prevents
m∗(k, k′) from violating condition (JDM-1) and is also used in the modification
step, which is described in the next section. Second, if we increase (decrease)
m∗(k, k′) by one for k′ ̸= k, we also increase (decrease) m∗(k′, k) by one. The
second constraint prevents m∗(k, k′) and m∗(k′, k) such that k ̸= k′ from violating
condition (JDM-2). The second constraint makes it difficult to adjust the target
joint degree matrix because both present sums s(k) and s(k′) change if we change
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Algorithm 4 Adjust the target joint degree matrix to ensure that it satisfies
condition (JDM-3).

Input: Estimates: n̂, ˆ̄k, and {P̂ (k, k′)}k,k′ .
Input: Target maximum degree: k∗max.
Input: Target degree vector: {n∗(k)}k.
Input: Target joint degree matrix: {m∗(k, k′)}k,k′ .
Input: Lower limits: {mmin(k, k

′)}k,k′ .
1: for each k ∈ D in decreasing order of k do
2: if k = 1 and |s(1)− s∗(1)| is an odd number then
3: n∗(1)← n∗(1) + 1.
4: while s(k) ̸= s∗(k) do
5: if s(k) < s∗(k) then
6: Select degree k′ ∈ D′

+(k) with the smallest ∆+(k, k
′).

7: m∗(k, k′)← m∗(k, k′) + 1.
8: if k ̸= k′ then
9: m∗(k′, k)← m∗(k′, k) + 1.

10: else
11: if D′

−(k) is not empty then
12: Select degree k′ ∈ D′

−(k) with the smallest ∆−(k, k
′).

13: m∗(k, k′)← m∗(k, k′)− 1.
14: if k ̸= k′ then
15: m∗(k′, k)← m∗(k′, k)− 1.
16: else
17: if k = 1 then
18: n∗(1)← n∗(1) + 2.
19: else
20: n∗(k)← n∗(k) + 1.
21: return {m∗(k, k′)}k,k′ .

m∗(k, k′) for k′ ̸= k. We address this difficulty by imposing the following third
constraint: when we attempt to adjust the present sum s(k) for degree k, we do
not change m∗(k, k′) for any degree k′ such that s(k′) = s∗(k′) already holds true
before adjusting the present sum s(k). The third constraint prevents the sum
s(k′) for any degree k′ already been adjusted before adjusting the sum s(k) from
violating condition (JDM-3).

We adjust the present sum s(k) for degree k ∈ D in descending order of k. This
ordering is based on the following two observations: (i) the later the adjustment
order of s(k) is, the fewer the elements of m∗(k, k′) that can be changed, and (ii)
the smaller degree k is, the fewer the edges that need to be added to make s(k)
equal to s∗(k). Accordingly, when we adjust s(k), we are allowed to change only
m∗(k, k′) for degree k′ ∈ D such that k′ ≤ k.

When we adjust the present sum of degree 1, i.e., s(1), we first need to ensure
that the absolute difference between the present and target sums, i.e., |s(1) −
s∗(1)|, is an even number. This reason is as follows. The sum s(1) increases or
decreases only by an even number because we are allowed to increase or decrease
only m∗(1, 1) due to our third constraint. Thus, if |s(1)−s∗(1)| is an odd number,
s(1) will not reach s∗(1). Therefore, in this case, we make the absolute difference
an even number by increasing n∗(1) by one (lines 2–3 in Algorithm 4).

If s(k) < s∗(k), we increase m∗(k, k′) by one for degree k′ (lines 5–9 in Algo-
rithm 4). For the given k, we define the set of degrees k′ for which m∗(k, k′) is
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increased by one as

D′
+(k) =

{
{k′ | k′ ∈ D ∧ k′ ≤ k} if s(k) ̸= s∗(k)− 1,

{k′ | k′ ∈ D ∧ k′ < k} if s(k) = s∗(k)− 1.

We exclude degree k if s(k) = s∗(k)−1 to avoid increasing s(k) by two, where we
recall that s(k) is increased by two if we increase m∗(k, k) by one because of the
factor µ(k, k) = 2. The set D′

+(k) always contains at least one degree k′. This is
because if k > 1, the set D′

+(k) contains at least degree k′ = 1; otherwise, it holds
that D′

inc(1) = {1} because our adjustment algorithm maintains |s∗(1) − s(1)|
as an even number. Then, we increase m∗(k, k′) by one for degree k′ ∈ D′

+(k)
such that the increase in the error of m∗(k, k′) relative to the original estimate
m̂(k, k′) = n̂ˆ̄kP̂ (k, k′)/µ(k, k′) upon increasing m∗(k, k′) by one, as denoted by
∆+(k, k

′), is the smallest. We define ∆+(k, k
′) as

∆+(k, k
′) ={ |m̂(k,k′)−(m∗(k,k′)+1)|
m̂(k,k′) − |m̂(k,k′)−m∗(k,k′)|

m̂(k,k′) if P̂ (k, k′) > 0,

∞ if P̂ (k, k′) = 0.

If two or more candidates for degree k′ exist with the same increase ∆+(k, k
′), we

uniformly and randomly choose from among the k′ values. This random selection
is based on our preliminary observation.

If s(k) > s∗(k), we attempt to decrease m∗(k, k′) by one for degree k′ (lines
10–20 in Algorithm 4). We strictly adhere to the lower limit of m∗(k, k′), i.e.,
mmin(k, k

′), for each k and k′. Unless we state otherwise, we set the lower limit
as

mmin(k, k
′) = 0

for any k and k′. For the given k, we define the set of degrees k′ for which m∗(k, k′)
is decreased by one as

D′
−(k) =
{k′ | k′ ∈ D ∧ k′ ≤ k ∧m∗(k, k′) > mmin(k, k

′)}
if s(k) ̸= s∗(k) + 1,

{k′ | k′ ∈ D ∧ k′ < k ∧m∗(k, k′) > mmin(k, k
′)}

if s(k) = s∗(k) + 1.

If D′
−(k) is not an empty set, we decrease m∗(k, k′) by one for degree k′ ∈ D′

−(k)
such that the increase in the error of m∗(k, k′) relative to the original estimate
m̂(k, k′) upon decreasing m∗(k, k′) by one, as denoted by ∆−(k, k

′), is the smallest.
We define ∆−(k, k

′) as

∆−(k, k
′) ={ |m̂(k,k′)−(m∗(k,k′)−1)|
m̂(k,k′) − |m̂(k,k′)−m∗(k,k′)|

m̂(k,k′) if P̂ (k, k′) > 0,

∞ if P̂ (k, k′) = 0.

If two or more candidates for degree k′ exist, we uniformly and randomly choose
k′ between among the k′ values.

The set D′
−(k) may be an empty set due to the constraint of the lower limits.

In this case, we increase the target sum s∗(k) to shift the adjustment process
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Algorithm 5 Modify the target joint degree matrix to ensure that it satisfies
condition (JDM-4).
Input: Subgraph: G′ = (V ′, E ′).
Input: Estimates: n̂, ˆ̄k, and {P̂ (k, k′)}k,k′ .
Input: Target maximum degree: k∗max.
Input: Target degree of each node in the subgraph: {d∗i }vi∈V ∗

Input: Target joint degree matrix: {m∗(k, k′)}k,k′ .
1: Calculate m′(k, k′) for each k = 1, . . . , k∗max and k′ = 1, . . . , k∗max.
2: for k1 = 1, . . . , k∗max do
3: for k2 = k1, . . . , k

∗
max do

4: while m∗(k1, k2) < m′(k1, k2) do
5: m∗(k1, k2)← m∗(k1, k2) + 1.
6: if k1 ̸= k2 then
7: m∗(k2, k1)← m∗(k2, k1) + 1.
8: if D′′

−(k1) is not empty then
9: Select degree k3 ∈ D′′

−(k1) with the smallest ∆−(k1, k3).
10: m∗(k1, k3)← m∗(k1, k3)− 1.
11: if k3 ̸= k1 then
12: m∗(k3, k1)← m∗(k3, k1)− 1.
13: if D′′

−(k2) is not empty then
14: Select degree k4 ∈ D′′

−(k2) with the smallest ∆−(k2, k4).
15: m∗(k2, k4)← m∗(k2, k4)− 1.
16: if k4 ̸= k2 then
17: m∗(k4, k2)← m∗(k4, k2)− 1.
18: if both degrees k3 and k4 have been found then
19: m∗(k3, k4)← m∗(k3, k4) + 1.
20: if k3 ̸= k4 then
21: m∗(k4, k3)← m∗(k4, k3) + 1.
22: return {m∗(k, k′)}k,k′ .

toward the adjustment in which we increase the present sum s(k). Specifically, if
k > 1, we increase s∗(k) by k by increasing n∗(k) by one; otherwise, we increase
s∗(1) by two while maintaining |s∗(1) − s(1)| as an even number by increasing
n∗(1) by two (lines 16–20 in Algorithm 4).

For any degree k ∈ D, the present sum s(k) will reach the target sum s∗(k) in
a finite number of steps. The reason is as follows. If we increase m(k, k′) by one
for degree k′ ̸= k, the present sum s(k) increases by one. If we increase m(k, k)
by one, the present sum s(k) increases by two. When k > 1, there is at least
one degree k′ such that the sum s(k) is increased by one because the set D′

+(k)
always contains degree k′ = 1. When k = 1, we are allowed to increase the sum
s(1) by only two because D′

+(1) = {1}. However, we maintain |s(1) − s∗(1)| as
an even number throughout the process. Therefore, s(k) will reach s∗(k) in the
case of an adjustment by increasing. In the case of an adjustment by decreasing,
although there is the case in which the set D′

−(k) is an empty set, we recall that
we shift the process toward the adjustment by increasing in that case.

Modification step

Next, we modify the target joint degree matrix to ensure that it also satisfies the
required condition for realizing a generated graph G̃ that contains the subgraph G′.
Specifically, the target number of nodes between nodes with degree k and nodes
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with degree k′, i.e., m∗(k, k′), should be no less than the number of edges between
nodes with target degree k and nodes with target degree k′ in the subgraph, which
is defined as m′(k, k′) =

∑
(v′i,v

′
j)∈E ′ 1{(d∗i=k∧d∗j=k′)∨(d∗i=k′∧d∗j=k)}, for each k and k′:

(JDM-4) m∗(k, k′) ≥ m′(k, k′) for each k = 1, . . . , k∗max and k′ = 1, . . . , k∗max.

We modify the target joint degree matrix to ensure that it satisfies all conditions,
i.e., (JDM-1), (JDM-2), (JDM-3), and (JDM-4), while minimizing the error of
{m∗(k, k′)}k,k′ relative to the original estimate {m̂(k, k′)}k,k′ .

The basic idea behind our modification algorithm for the target joint degree
matrix is as follows. Suppose that m∗(k1, k2) < m′(k1, k2) for a pair of degrees
k1 and k2; hence, we need to modify m∗(k1, k2) to ensure that m∗(k1, k2) ≥
m′(k1, k2) holds. A simple modification involves forcibly increasing m∗(k1, k2)
to m∗(k1, k2) = m′(k1, k2). However, if one performs this forced increase on
multiple pairs of k1 and k2, the sum s(k) will violate condition (JDM-3) for
multiple degrees k, and the target number of edges in the graph to be generated,
i.e.,

∑k∗max
k=1

∑k∗max
k′=k m

∗(k, k′), will cumulatively increase. Therefore, if we increase
m∗(k1, k2) by one, we attempt to decrease m∗(k1, k3) by one for degree k3 such
that k3 ̸= k2 to ensure that both sums s(k1) and s(k2) are retained, minimizing
the violation of condition (JDM-3) and the increase in the target number of edges.

Specifically, we modify the target joint degree matrix as follows (see also Algo-
rithm 5). For each pair of degrees k1 and k2 (1 ≤ k1 ≤ k∗max, k1 ≤ k2 ≤ k∗max), we
repeat the following procedure until m∗(k1, k2) is not less than m′(k1, k2). First,
we increase m∗(k1, k2) by one (line 5 in Algorithm 5). If k1 ̸= k2, we also increase
m∗(k2, k1) by one (lines 6–7 in Algorithm 5). Second, we attempt to find a degree
k3 such that k3 ̸= k2 and m∗(k1, k3) can be decreased by one to ensure that the
sum s(k1) is retained. We define a set of such degrees for the given degree k as

D′′
−(k) =

{k′ | 1 ≤ k′ ≤ k∗max ∧ k′ ≠ k ∧m∗(k, k′) > m′(k, k′)}.

If D′′
−(k1) is not empty, we select k3 ∈ D′′

−(k1) with the smallest ∆−(k1, k3) and
decrease m∗(k1, k3) by one (lines 8–10 in Algorithm 5). If there are two or more
candidates for k3 with the same increase ∆−(k1, k3), we uniformly and randomly
choose k3 from among those candidates. If k3 ̸= k1, we also decrease m∗(k3, k1)
by one (lines 11–12 in Algorithm 5). Third, since m∗(k2, k1) has been increased
by one, we attempt to decrease m(k2, k4) by one for degree k4 such that k4 ̸= k2
to ensure that the sum s(k2) is retained. If the set D′′

−(k2) is not empty, we
select the k4 ∈ D′′

−(k2) with the smallest ∆−(k2, k4) and decrease m∗(k2, k4) by
one (lines 13–15 in Algorithm 5). If two or more candidates for k4 exist with the
same increase ∆−(k2, k4), we uniformly and randomly choose from among the k4
values. If k2 ̸= k4, we also decrease m∗(k4, k2) by one (lines 16–17 in Algorithm
5). Finally, if and only if both k3 and k4 have been found, we increase m∗(k3, k4)
by one and increase m∗(k4, k3) by one if k3 ̸= k4 to ensure that both sums s(k3)
and s(k4) are retained (lines 18–21 in Algorithm 5).

If we find either of degrees k3 and k4, m∗(k1, k2) is increased by one while pre-
serving the target number of edges, i.e.,

∑k∗max
k=1

∑k∗max
k′=k m

∗(k, k′). This is because
m∗(k1, k2) is increased by one, and either m∗(k1, k3) or m∗(k2, k4) is decreased by
one. Furthermore, if both k3 and k4 have been found, m∗(k1, k2) is increased by
one while preserving the target number of edges and the sum s(k) for any degree
k because all sums s(k1), s(k2), s(k3), and s(k4) are retained.

The target joint degree matrix, i.e., {m∗(k, k′)}k,k′ , does not break conditions
(JDM-1) and (JDM-2) if we execute the modification algorithm on the target joint
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Algorithm 6 Construct a graph that preserves the target degree vector and the
target joint degree matrix from the subgraph.
Input: Subgraph: G′.
Input: Target degree vector: {n∗(k)}k.
Input: Target joint degree matrix: {m∗(k, k′)}k,k′ .
1: G̃ ← G′.
2: Add (

∑k∗max
k=1 n∗(k))− n′ nodes to a set of nodes in G̃.

3: Construct the degree sequence Dseq in which degree k appears n∗(k)− n′(k)
times for k = 1, . . . , k∗max.

4: Randomly shuffle Dseq.
5: for each added node ṽi ∈ Vadd in arbitrary order do
6: k ← the last element in Dseq.
7: Remove the last element in Dseq.
8: d∗i ← k.
9: for each node ṽi ∈ Vqry ∪ Vvis do

10: Attach d∗i − d′i half-edges to ṽi.
11: for each node ṽi ∈ Vadd do
12: Attach d∗i half-edges to ṽi.
13: for k = 1, . . . , k∗max do
14: for k′ = k, . . . , k∗max do
15: for i = 1 to m∗(k, k′)−m′(k, k′) do
16: Uniformly and randomly select a free half-edge of the nodes with the

target degree k and a free half-edge of the nodes with the target degree
k′ and connect them.

17: return G̃.

degree matrix. On the other hand, {m∗(k, k′)}k,k′ may break condition (JDM-3).
In this case, we again execute the adjustment algorithm on the target joint degree
matrix (Algorithm 4), with the lower limit mmin(k, k

′) set as

mmin(k, k
′) = m′(k, k′)

for each degree k and k′ to ensure that {m∗(k, k′)}k,k′ retains condition (JDM-
4). If we perform the adjustment algorithm again, {m∗(k, k′)}k,k′ still satisfies
conditions (JDM-1), (JDM-2), and (JDM-4), and hence, it finally satisfies all
conditions, i.e., (JDM-1), (JDM-2), (JDM-3), and (JDM-4).

3.4.4 Adding nodes and edges to the subgraph

In the third phase, we add nodes and edges to the subgraph G′ to ensure that
the graph to be generated, G̃, preserves the target degree vector {n∗(k)}k and the
target joint degree matrix {m∗(k, k′)}k,k′ . It is trivial to construct a graph that
preserves the given {n∗(k)}k and {m∗(k, k′)}k,k′ from an empty graph [76, 148,
211]. We extend the existing construction procedure to the case of constructing
the graph G̃ that preserves {n∗(k)}k and {m∗(k, k′)}k,k′ from the subgraph G′ (see
also Algorithm 6).

First, we set the graph G̃ as the subgraph G′ (line 1 in Algorithm 6). Second,
we add (

∑k∗max
k=1 n∗(k)) − n′ nodes to a set of nodes in the subgraph such that G̃

contains
∑k∗max

k=1 n∗(k) nodes, where n′ is the number of nodes in the subgraph and∑k∗max
k=1 n∗(k) is the target number of nodes in G̃ (line 2 in Algorithm 6). We denote

the set of added nodes as Vadd. We denote the set of nodes in G̃ as Ṽ. It holds
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Algorithm 7 Rewire edges to ensure that the generated graph preserves the
estimate of the degree-dependent clustering coefficient.
Input: Generated graph: G̃ = (Ṽ, Ẽ).
Input: Estimate: {ˆ̄c(k)}k.
Input: Coefficient of the number of rewiring attempts: RC.
1: Ẽrew ← a set of candidate edges to be rewired in G̃.
2: R← RC|Ẽrew| // the number of rewiring attempts.
3: {˜̄c(k)}k ← the present degree-dependent clustering coefficient of G̃.
4: D ← L1 distance between {˜̄c(k)}k) and {ˆ̄c(k)}k.
5: for r′ = 1 to R do
6: (ṽi, ṽj), (ṽa, ṽb)← random edge pair in Ẽrew.
7: {˜̄crew(k)}k ← degree-dependent clustering coefficient when the selected edge

pair is rewired.
8: Drew ← L1 distance between {˜̄crew(k)}k and {ˆ̄c(k)}k.
9: if Drew < D then

10: Remove edges (ṽi, ṽj) and (ṽa, ṽb).
11: Add edges (ṽi, ṽb) and (ṽa, ṽj).
12: Update Ẽrew.
13: D ← Drew.
14: return G̃.

that Ṽ is a union of three disjoint sets, i.e., Vqry, Vvis, and Vadd. Third, for each
degree k = 1, . . . , k∗max we arbitrarily assign a target degree k to the n∗(k)−n′(k)
nodes that are not assigned a target degree in Vadd (lines 3–8 in Algorithm 6).
Note that n∗(k)−n′(k) ≥ 0 always holds true because {n∗(k)}k satisfies condition
(DV-3). Fourth, we ensure that each node in the subgraph ṽi ∈ Vqry ∪ Vvis has
d∗i − d′i half-edges, where d∗i is the target degree of ṽi and d′i is the degree of ṽi
in the subgraph (lines 9–10 in Algorithm 6). Fifth, we ensure that each added
node ṽi ∈ Vadd has d∗i half-edges (lines 11–12 in Algorithm 6). Finally, for each
degree k = 1, . . . , k∗max and k′ = k, . . . , k∗max, we repeat the following procedure
m∗(k, k′) − m′(k, k′) times: we randomly connect a free half-edge of the nodes
with the target degree k and a free half-edge of the nodes with the target degree
k′ (lines 13–15 in Algorithm 6).

3.4.5 Rewiring edges in the generated graph

In general, it is practically difficult to generate a graph that exactly preserves
a given degree-dependent clustering coefficient because the clustering coefficients
of multiple nodes simultaneously change if an edge is added or removed [180,
218]. In practice, one performs a large number of rewiring attempts of edges in a
given graph to ensure that the graph approximately preserves the given degree-
dependent clustering coefficient [84,148,180].

We perform the following process of rewiring edges in the generated graph G̃
to ensure that G̃ approximately preserves {ˆ̄c(k)}k (see also Algorithm 7). We first
uniformly and randomly select an edge pair (ṽi, ṽj) ∈ Ẽrew and (ṽi′ , ṽj′) ∈ Ẽrew
such that the degrees of ṽi and ṽi′ are equal, where Ẽrew is a set of candidate edges
to be rewired. We define Ẽrew as

Ẽrew = Ẽ \ E ′, (3.4)

where Ẽ represents a set of edges in G̃. Then, we replace (ṽi, ṽj) and (ṽi′ , ṽj′)
with (ṽi, ṽj′) and (ṽi′ , ṽj) if and only if the normalized L1 distance between the
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estimated and present degree-dependent clustering coefficients, denoted by D,
decreases when we rewire the edges. We define D as

D =

∑k∗max
k=1 |˜̄c(k)− ˆ̄c(k)|∑k∗max

k=1
ˆ̄c(k)

,

where {˜̄c(k)}k represents the present degree-dependent clustering coefficient of G̃.
If the rewiring is accepted, we update the set Ẽrew. We repeat this rewiring at-
tempt a sufficiently large number of R = RC|Ẽrew| times, where RC is a coefficient
of the number of rewiring attempts.

The rewiring process exactly preserves both the degree vector {n∗(k)}k and
the joint degree matrix {m∗(k, k′)}k,k′ of the generated graph G̃ for the following
two reasons. First, the rewiring process preserves the degree of each node and
hence preserves {n∗(k)}k. Second, the rewiring preserves m∗(k, k′) for each k and
k′ because the degrees of ṽi and ṽj are equal [84,148,180].

We empirically require the rewiring of several hundred times the number of
candidate edges [84, 180]. Thus, the exact recalculation of {˜̄c(k)}k per rewiring
attempt is not practical. In practice, it is sufficient to update the difference in
the number of triangles to which only nodes that are involved in the rewiring, i.e.,
vi, vj , vi′ , vj′ , and their neighbors, belong. Updating the number of triangles to
which a node involved in one rewiring attempt requires an average time of O(˜̄k2),
where ˜̄k represents the average degree of G̃. In total, the rewiring algorithm
requires an average time of O(˜̄k2RC|Ẽrew|).

The rewiring process exactly preserves the structure of the subgraph G′ of G̃
because we exclude the edges in the subgraph from the candidate edges to be
rewired, as shown in Eq. (3.4). In contrast, every edge in a given graph is a
candidate edge to be rewired in Gjoka et al.’s procedure (i.e., Ẽrew = Ẽ) [84].
This is because Gjoka et al.’s rewiring process does not use any structure of the
subgraph sampled by a random walk. Our rewiring procedure has two advantages
over Gjoka et al.’s procedure because of the reduction in the number of candidate
edges to be rewired: (i) our method is more likely to succeed in the rewiring of
edges such that the generated graph approximately preserves {ˆ̄c(k)}k, and (ii)
the proposed procedure reduces the rewiring time to O(˜̄k2RC(|Ẽ | − |E ′|)) from
O(˜̄k2RC|Ẽ |) in Gjoka et al.’s procedure.

3.5 Experimental Design

We evaluate the proposed method in terms of the accuracy of structural proper-
ties, the visual representation of generated graphs, and the generation time. We
conduct all experiments on a Linux server with an Intel Xeon E5-2698 (2.20 GHz)
processor and 503 GB of main memory. All code is implemented in C++. The
datasets and source code used in our experiments are available at Ref. [159].

3.5.1 Datasets

We use seven datasets of social graphs that are publicly available at Refs. [137,
196]. We preprocessed each dataset by first removing multiple edges and the
directions of edges from the original graph and then by extracting the largest
connected component. Table 3.1 lists the numbers of nodes and edges in all the
graphs used in our experiments.
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Table 3.1: Datasets.

Dataset Number of nodes Number of edges
Anybeat [196] 12,645 49,132
Brightkite [196] 56,739 212,945
Epinions [137] 75,877 405,739
Slashdot [196] 77,360 469,180
Gowalla [196] 196,591 950,327
Livemocha [196] 104,103 2,193,083
YouTube [137] 1,134,890 2,987,624

3.5.2 Structural properties of interest

We focus on 12 structural properties of a given graph.

1. Number of nodes, n.

2. Average degree, k̄.

3. Degree distribution, {P (k)}k.

4. Neighbor connectivity [33], as denoted by {k̄nn(k)}k. We define

k̄nn(k) =
1

n(k)

n∑
i=1, di=k

1

k

n∑
j=1

Ai,jdj

for each k. This property measures the average degree of neighbors of nodes
with degree k, which is a coarse-grained version of the joint degree distri-
bution [148,180].

5. Network clustering coefficient [33], as defined by

c̄ =
1

n

n∑
i=1

2ti
di(di − 1)

.

6. Degree-dependent clustering coefficient, {c̄(k)}k.

7. Edgewise shared partner distribution [104], as denoted by {P (s)}s. We
define

P (s) =
1

m

∑
(vi,vj)∈E,i<j

1{sp(i,j)=s}

for each s, where sp(i, j) =
∑n

k=1, k ̸=i, k ̸=j Ai,kAj,k. This property measures
the proportion of edges that have s common neighbors.

8. Average shortest-path length, as denoted by l̄. We define

l̄ =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

li,j ,

where li,j denotes the shortest-path length between vi and vj .
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9. Shortest-path length distribution, as denoted by {P (l)}l. We define

P (l) =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1{li,j=l}.

10. Diameter, which is the longest shortest-path length between two nodes and
is denoted by lmax.

11. Degree-dependent betweenness centrality, as denoted by {b̄(k)}k. We define

b̄(k) =
1

n(k)

n∑
i=1, di=k

bi,

where bi is the betweenness centrality of vi. We define

bi =

n∑
j=1, j ̸=i

n∑
k=1, k ̸=i, k ̸=j

σj,k(i)

σj,k
,

where σj,k(i) is the number of shortest paths between node vj and node vk
that pass through node vi and σj,k is the number of shortest paths between
node vj and node vk. This property measures the average betweenness
centrality of the nodes with degree k [148,180].

12. Largest eigenvalue of an adjacency matrix A, as denoted by λ1.

We regard properties (1)–(7) as local structural properties and properties (8)–(12)
as global structural properties. For the properties involving shortest paths (i.e., l̄,
{P (l)}l, lmax, and {b̄(k)}k), we calculate those of the largest connected component
of a given graph. To reduce the simulation time, we use the parallel algorithms
presented in Ref. [22] to calculate l̄, {P (l)}l, lmax, and {b̄(k)}k of a given graph.
Note that the use of these parallel algorithms does not affect the performance of
each method.

3.5.3 Accuracy measure

To measure the accuracy of the structural properties of a generated graph, we cal-
culate the normalized L1 distance for each of the 12 structural properties between
the original and generated graphs, as in Ref. [84]. For each structural property,
we denote the vector representing the property of the original graph as x and the
vector representing that of the generated graph as x̃. We define the normalized
L1 distance between x and x̃ as

∑
i |x̃i−xi|/

∑
i xi. For example, the L1 distance

between the degree distribution of the original graph, {P (k)}k, and that of the
generated graph, as denoted by {P̃ (k)}k, is given by

∑
k |P̃ (k)−P (k)|/

∑
k P (k).

For the scalar properties (i.e., n, k̄, c̄, lmax, and λ1), the L1 distance is equivalent
to the relative error. For example, the L1 distance between the number of nodes
in the original graph, n, and that in the generated graph, as denoted by ñ, is
given by |ñ− n|/n.

3.5.4 Methods to be compared

We compare our method with two existing methods.
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• Subgraph sampling [13,15,122,136,154,239]. One constructs a subgraph
induced from a set of edges obtained using a crawling method. The crawl-
ing method is arbitrary. Therefore, we consider three well-used crawling
methods in addition to a random walk (RW).

– Breadth-first search (BFS) [45, 121, 154, 197, 239]. One selects a seed
node and explores all of its neighbors. Then, one traverses the earliest
explored node, and explores all of its neighbors that have not been
traversed. One repeats this procedure.

– Snowball sampling [15, 89, 106, 134, 197]. All the neighbors are not
explored, unlike the BFS procedure, and at most k neighbors are chosen
randomly at every iteration.

– Forest fire sampling (FF) [13, 65, 136, 197]. FF is a stochastic ver-
sion of snowball sampling. At every iteration, one explores a random
proportion of neighbors. The proportion is sampled from a geometric
distribution with the mean pf/(1−pf ), where pf is a parameter. Note
that this process can finish before a target fraction of nodes is sampled.
In this case, we uniformly randomly select a node from the sampled
nodes and revive the process from the node, as in Ref. [121].

• Gjoka et al.’s method [84]. This method generates a graph that pre-
serves the estimates of local structural properties. This method does not
use any structure of the subgraph sampled by a random walk. Unfortu-
nately, we found that it is difficult to reproduce the original method based
on their paper and the source code [84]. We describe how to implement the
reproducible version of Gjoka et al.’s method in Section 3.9.

We apply each method in a single run as follows. We first uniformly and
randomly select a seed node from a set of nodes. Then, we start BFS, snowball
sampling, FF, and RW from the same seed. We continue each sampling procedure
until the percentage of queried nodes reaches a given value. For subgraph sampling
using RW, Gjoka et al’s method, and the proposed method, we perform these
methods for the same RW to achieve a fair comparison.

3.5.5 Parameters

In snowball sampling, we set k = 50, as in Ref. [197]. In FF, we set pf = 0.7, as
in Ref. [13]. In the proposed and Gjoka et al.’s methods, we set the coefficient of
the number of rewiring attempts as RC = 500, based on Ref. [180].

3.6 Experimental Results

3.6.1 Accuracy of structural properties

Figure 3.3 shows the average L1 distance over the 12 structural properties from
different methods for the Anybeat, Brightkite, and Epinions datasets, with the
percentage of queried nodes varying from 1% to 10%. We observe that the pro-
posed method outperforms the compared methods in terms of the average L1 dis-
tance for all the percentages of queried nodes. Specifically, the proposed method
improves the lowest average L1 distance among the compared methods by 13.1%,
50.5%, and 52.8% (i.e., from 0.099 to 0.086, from 0.151 to 0.075, and from 0.123
to 0.058, respectively) using 10% queried nodes on the Anybeat, Brightkite, and
Epinions graphs, respectively.
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Figure 3.3: Average L1 distance over the 12 structural properties from different
methods. We vary the percentage of queried nodes from 1% to 10% in increments
of 1%. All results are the average over 10 runs.

Table 3.2 shows the L1 distance for each structural property from different
methods using 10% queried nodes on the Slashdot, Gowalla, and Livemocha
datasets. We first compare the proposed method with subgraph sampling us-
ing BFS, snowball, FF, and RW. First, the proposed method typically improves
the L1 distance for n, k̄, {P (k)}k, and {k̄nn(k)}k. Second, the proposed method
typically worsens the L1 distance for c̄ and {c̄(k)}k. This is because the generated
graph does not exactly preserves the estimate of the node clustering due to the
rewiring process. Third, in many cases, the proposed method improves the L1

distance for global properties, i.e., l̄, {P (l)}l, lmax, {b̄(k)}k, and λ1.
We then compare the proposed method with Gjoka et al.’s method. First,

the proposed method achieves comparable or sometimes better L1 distances for
n, k̄, {P (k)}k, and {k̄nn(k)}k. This stems from our design of the algorithms for
constructing the target degree vector and the target joint degree matrix while
minimizing their errors relative to the original estimates. Second, the proposed
method improves the L1 distance for {c̄(k)}k. This is because the proposed
method is more likely to succeed in the rewiring of edges to approach the es-
timate of {ˆ̄c(k)}k because the edges in the sampled subgraph are excluded from
the candidate edges to be rewired. Third, the proposed method improves the L1

distance for {P (s)}s but worsens that for c̄. Fourth, the proposed method often
improves the L1 distance for global properties, i.e., l̄, {P (l)}l, lmax, {b̄(k)}k, and
λ1.

Table 3.3 shows the average and standard deviation of the L1 distance for
the 12 properties from different methods using 10% queried nodes. The proposed
method achieves the lowest average and standard deviation for the six datasets.
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3.6.2 Graph visualization

We compare the visual representations of graphs generated by different methods.
Figure 3.4(a) shows the original graph and Figs. 3.4(b)–(g) show the visual

representations of the graphs generated by each method using 10% queried nodes
for the Anybeat dataset. We make the following observations. First, all subgraphs
constructed using the BFS, snowball, FF, and RW methods capture the core struc-
ture consisting of high-degree nodes but not the peripheral structure consisting
of low-degree nodes (see Figs. 3.4(b)–3.4(e)). This is because crawling methods
typically collect samples biased toward high-degree nodes [85,86]. Second, Gjoka
et al.’s method hardly reproduces the visual representation of the original graph
(see Fig. 3.4(f)) because their method does not use any structures of the sampled
subgraph. Third, the proposed method successfully reproduces the original struc-
ture in the visualization (see Fig. 3.4(g)) because the generated graph preserves
the structure of the sampled subgraph. Fourth, the proposed method successfully
reproduces not only the core structure but also the peripheral structure, which
subgraph sampling does not reproduce.

3.6.3 Generation time

We compare the generation times of different methods. Table 3.4 shows the gen-
eration times (in seconds) of the different methods using 10% queried nodes for
six datasets. For the proposed and Gjoka et al.’s methods, we show both the
total generation time and the running time of the rewiring process. Subgraph
sampling is much faster because the construction time of the subgraph is linearly
proportional to the number of edges in the subgraph. The proposed and Gjoka
et al.’s methods require much longer generation times than subgraph sampling,
mainly due to the process of rewiring edges. However, interestingly, the proposed
method is several times faster than Gjoka et al.’s method for all six datasets,
e.g., 9.0 times faster for the Anybeat dataset and 10.4 times faster for the Epin-
ions dataset. This is because the proposed method reduces the running time of
the process of rewiring edges, which is a bottleneck in the generation time, be-
cause our rewiring procedure excludes the edges in the sampled subgraph from
the candidate edges to be rewired. For the proposed and Gjoka et al.’s meth-
ods, although the rewiring time is reduced upon decreasing the coefficient of the
number of rewiring attempts RC, we note that the reproducibility of the struc-
tural properties, including clustering coefficients, of the generated graphs is also
reduced.
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(a) Original graph

(b) BFS

(e) RW

(c) Snowball

(f) Gjoka et al.

(d) FF

(g) Proposed

Figure 3.4: Graph visualization for the Anybeat dataset. (a) Original graph.
(b)–(g) Graphs generated by the different methods using 10% queried nodes. The
black circles represent nodes and the gray curves represent edges. We used Yifan
Hu’s algorithm (so-called Scalable Force Directed Placement, SFDP) implemented
in Gephi software [27, 101] to visualize each graph. In addition, for the graphs
generated by the subgraph sampling and the proposed method (i.e., (b), (c),
(d), (e), and (g)), we manually rotated each graph to ensure that the sampled
subgraph approximately overlaps the corresponding part of the original graph.
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3.6.4 Performance on the YouTube dataset

Finally, we compare the performance of the different methods using 1% queried
nodes on the YouTube dataset. Table 3.5 shows the L1 distance for each property,
the average and standard deviation of the L1 distance for the 12 properties, and
the generation time for each method. First, the proposed method achieves the
lowest L1 distance for most of the 12 properties. Second, the proposed method
improves the average and standard deviation of the L1 distance over the 12 proper-
ties by 47.3% (from 0.262 to 0.138) and 41.1% (from 0.236 to 0.139), respectively,
compared with the lowest value among the existing methods. Third, the gen-
eration time of the proposed method is reduced by 43.7% compared to that of
Gjoka et al.’s method. As expected, the main factor in this increased speed is
the reduction in the rewiring time; the proposed method requires 37,990 seconds
for rewiring, whereas Gjoka et al.’s method requires 77,271 seconds. Although
subgraph sampling is considerably faster, the reproducibility of the structural
properties of the subgraphs is much worse than that of graphs generated by the
proposed method.
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3.7 Conclusion

In this chapter, we proposed a method for restoring the original social graph from
a small sample obtained by a random walk. The proposed method generates a
graph that preserves estimates of local structural properties and the structure of
the subgraph sampled by a random walk. We compared the proposed method
with subgraph sampling and Gjoka et al.’s method in terms of the accuracy of
12 structural properties, the visual representation, and the generation time for
generated graphs. We showed that the proposed method generates graphs that
more accurately reproduce the structural properties on average and the visual
representation of the original graph than the compared methods. Furthermore,
the generation time of the proposed method is several times faster than that of
Gjoka et al.’s method. If most of the graph data could be sampled (e.g., if 50% or
more of the nodes could be queried), subgraph sampling is more effective than the
proposed method because the subgraph should be almost structurally equivalent
to the original graph and its construction time is fast. However, it is often difficult
to collect a large sample of social graphs in practical scenarios. For example, the
percentage of queried nodes was less than 1% in a case study of crawling the
Facebook graph [85,86]. Based on these results, we suggest investing in methods
to complement the nodes and edges in the subgraph sampled by a random walk
to realize exhaustive analyses of social graphs with limited data access.

There are several future directions for this research. The first is to study a
method with theoretical guarantees for restoring the social graph. The proposed
method enables us to estimate various structural properties with good accuracy
on average but has one limitation; i.e., there is no guarantee of error bounds in
the structural properties for the generated graphs. This is mainly because the
dK-series [84, 148, 180], which is the family of generative models underlying the
proposed method, does not guarantee error bounds in the structural properties
of the generated graphs. The second is to study a scalable restoration method to
deal with large-scale social graphs. The proposed method suffers from a consid-
erably high computational overhead compared to subgraph sampling, although
the proposed method is several times faster than Gjoka et al.’s method [84]. This
is mainly due to the process of rewiring edges in a generated graph and existing
studies on the dK-series [84, 148, 180] also faced high computational costs due
to the rewiring process. Studying a restoration method based on scalable graph
generative models that accurately reproduce the structural properties of a given
graph could improve this limitation. Finally, it would be interesting to use or ex-
tend the dissimilarity [205] of a given graph to investigate how well the proposed
method restores the original social graph.
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3.8 Unbiasedness of an estimator of the joint degree distribution

In this section, we prove that the estimator P̂ (k, k′) proposed in [84] is an unbiased
estimator of the joint degree distribution P (k, k′).

Lemma 15. P̂ (k, k′) is an asymptotically unbiased estimator of P (k, k′).

Proof. We show that both P̂IE(k, k
′) and P̂TE(k, k

′) are asymptotically unbiased
estimators of P (k, k′). First, we calculate the expectation of Φ(k, k′) with respect
to the stationary distribution of a simple random walk.

E[Φ(k, k′)]

=E
[

1

kk′
1{dxi′=k∧dxj′=k′}Axi′ ,xj′

]
=

n∑
i=1

n∑
j=1

di
2m

dj
2m

× E
[

1

kk′
1{dxi′=k∧dxj′=k′}Axi′ ,xj′

∣∣∣∣xi′ = i, xj′ = j

]
=

1

4m2

n∑
i=1, di=k

n∑
j=1, dj=k

Ai,j

=
1

2m
P (k, k′).

The first equation holds because of the linearity of expectation. The second
equation holds for the following reasons: (i) the stationary distribution of a simple
random walk in a state space of a set of nodes is given by πV = (di/2m)ni=1 [138];
(ii) we have the law of total expectation; and (iii) a node pair vx′

i
and vx′

j
is

regarded as being independently sampled if those ordinal numbers in the sample
sequence (i.e., xi′ and xj′) are sufficiently far apart [97, 112]. Then, we conclude
that P̂IE(k, k

′) is an asymptotically unbiased estimator of P (k, k′) because it holds
that

E[n̂]E[d̂avg]E[Φ(k, k′)] = ndavg
1

2m
P (k, k′)

= P (k, k′).

The second equation holds because of the handshaking lemma.
Next, we calculate the expectation of P̂TE(k, k

′):

E[P̂TE(k, k
′)]

=
∑

(vi,vj)∈E

1

2m

(
1{di=k∧dj=k′} + 1{di=k′∧dj=k}

)
=P (k, k′).

The first equation holds for the following reasons; (i) we have the linearity of
expectation; (ii) the stationary distribution of a simple random walk in a state
space of a set of edges is given by πE = (1/2m)(vi,vj)∈E [138]; and (iii) we have
the law of total expectation. Therefore, we obtain the desired result.

3.9 Implementation of Gjoka et al.’s method

In this section, we describe the implementation of Gjoka et al.’s method [84]. The
underlying idea of Gjoka et al.’s method is to generate a graph that preserves
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the estimates of local structural properties obtained by re-weighted random walk.
However, we found that it is difficult to reproduce the original method from their
paper [84] and the source code. Therefore, we implemented a reproducible version
of this method by utilizing the algorithms of the proposed method as follows.

First, we obtain the estimates of local structural properties (i.e., the number
of nodes n̂, average degree ˆ̄k, degree distribution {P̂ (k)}k, joint degree distri-
bution {P̂ (k, k′)}k,k′ , and degree-dependent clustering coefficient {ˆ̄c(k)}k) using
re-weighted random walk (see Section III. E). Second, we construct the target
degree vector. To this end, we perform the initialization step described in Section
IV. B and then perform the adjustment step described in Section IV. B. We do
not perform the modification step for the target degree vector because Gjoka et
al.’s method does not use any structural information of the subgraph sampled by
a random walk. Third, we construct the target joint degree matrix. To this end,
we perform the initialization step described in Section IV. C and then perform the
adjustment step described in Section IV. C. We do not perform the modification
step for the target joint degree matrix for the same reason given in the construc-
tion of the target degree vector. Fourth, we construct a graph that preserves the
target degree vector and the target joint degree matrix from an empty graph by
using the existing procedure [148,211]. Finally, we perform a process of rewiring
edges so that the final graph approximately preserves the estimate of the degree-
dependent clustering coefficient {ˆ̄c(k)}k. The rewiring procedure is the same as
that described in Section IV. E, except that all the edges in the generated graph
are candidates of edges to be rewired (i.e., Ẽrew = Ẽ).
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Chapter 4

Randomizing Hypergraphs Preserving Degree
Correlation and Local Clustering

4.1 Introduction

Many social networks involve direct interactions among more than two actors
and can be represented by hypergraphs, in which hyperedges encode higher-order
interactions among an arbitrary number of nodes. To analyze structures and
dynamics of given hypergraphs, a solid practice is to compare them with those
for randomized hypergraphs that preserve some specific properties of the original
hypergraphs. The existing models for randomized hypergraphs, however, preserve
only up to the degree of each node and the size of each hyperedge of a given
hypergraph [37,50,178,201,202].

In this chapter, we propose a family of reference models for hypergraphs, called
the hyper dK-series. The original dK-series is a nested family of reference models
that preserve local properties of nodes of the given dyadic network [84, 148, 180].
The hyper dK-series preserves up to the individual node’s degree, node’s degree
correlation, node’s redundancy coefficient, and/or the hyperedge’s size depending
on the parameter values, i.e., dv ∈ {0, 1, 2, 2.5} and de ∈ {0, 1}. Furthermore, we
numerically find that the hyper dK-series with dv = 2.5 more accurately preserves
the shortest path length and degree distribution of the one-mode projection of the
original hypergraph, which the method does not intend to preserve, than the other
dv-values. We also apply the hyper dK-series to numerical simulations of epidemic
spreading and evolutionary game dynamics on empirical social hypergraphs. We
find that the hyperedge’s size affects these dynamics more than any of the node’s
properties and that the node’s degree correlation (i.e., the property with dv = 2)
and redundancy (i.e., the property with dv = 2.5) in the empirical hypergraphs
promote cooperation. Our code for the hyper dK-series is available at https:

//github.com/kazuibasou/hyper-dk-series.

4.2 Preliminaries

4.2.1 Hypergraph and bipartite graph

We represent a network including higher-order interactions among two or more en-
tities as an unweighted hypergraph that consists of a set of nodes V = {v1, . . . , vN}
and a set of hyperedges E = {e1, . . . , eM}, where N is the number of nodes, and
M is the number of hyperedges. We assume that the original hypergraph, for
which we generate sample hypergraphs using reference models, contains no mul-
tiple edges. Each hyperedge ej ∈ E is a subset of V with arbitrary cardinality
|ej |.
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Figure 4.1: Hypergraph and the corresponding bipartite graph. (a) A hypergraph
that consists of V = {v1, v2, v2} and E = {e1, e2}, where e1 = {v1, v2} and
e2 = {v1, v2, v3}. (b) The corresponding bipartite graph, which consists of V , E,
and E = {(v1, e1), (v1, e2), (v2, e1), (v2, e2), (v3, e2)}.

We denote by G = (V,E, E) the bipartite graph that corresponds to the given
hypergraph, where E is a set of edges in the bipartite graph. An edge (vi, ej)
exists between each node vi and each hyperedge ej if and only if vi belongs to the
hyperedge ej in the hypergraph. We denote by M = |E| the number of edges in
G. We show in Fig. 4.1 a hypergraph and its bipartite-graph representation.

4.2.2 Local properties of nodes and hyperedges

In this section, we describe local properties of bipartite graph G some of which
our reference models preserve. We denote the incidence matrix of G by B = (Bij),
where i = 1, . . . , N, j = 1, . . . ,M , Bij = 1 if (vi, ej) ∈ E , and Bij = 0 otherwise.
Let ki =

∑M
j=1Bij be the degree of node vi. We denote the size of hyperedge ej ,

i.e., the number of nodes that belong to hyperedge ej , by sj =
∑N

i=1Bij .
We define the joint degree distribution of two nodes that share at least one

hyperedge, which extends the joint degree distribution for dyadic networks defined
in Refs. [148,180]. Let m(k, k′) denote the number of hyperedges that nodes with
degree k = 1, . . . ,M and nodes with degree k′ = k, . . . ,M share. For example,
in a bipartite graph shown in Fig. 4.1(b), one obtains m(1, 2) = 2 because node
v1 with degree k1 = 2 and node v3 with degree k3 = 1 share a hyperedge e2,
and node v2 with degree k2 = 2 and node v3 share a hyperedge e2. Similarly,
one obtains m(1, 1) = 0 and m(2, 2) = 2. We define the pairwise joint degree
distribution of the node, denoted by P (k, k′), as

P (k, k′) =
2m(k, k′)∑M

j=1 sj(sj − 1)
. (4.1)

Note that P (k, k′) is normalized, i.e.,
∑M

k=1

∑M
k′=k P (k, k′) = 1. We also define

the average degree of the nearest neighbors of nodes with degree k, which extends
the definition for dyadic networks defined in Refs. [33,181], by

knn(k) =

∑M
k′=1 k

′P (k, k′)∑M
k′=1 P (k, k′)

. (4.2)

Equations (4.1) and (4.2) are consistent with the corresponding definitions for
dyadic networks when sj = 2 for each hyperedge ej ∈ E.

We also examine quadruple relationships around a node in a bipartite graph,
which is similar to local clustering (i.e., abundance of triangles) in dyadic net-
works. The redundancy coefficient of node vi, denoted by ri, quantifies the amount
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Table 4.1: Properties of nodes and hyperedges corresponding to each dv and de
value. The hyper dK-series with (dv, de) = (2, 1), for example, preserves the
quantities for dv = 0, 1, 2, and de = 0, 1 shown in this table.

Parameter
value

Properties to be preserved

dv = 0 Average degree of the node
dv = 1 Degree of each node
dv = 2 Pairwise joint degree distribution of the node
dv = 2.5 Degree-dependent redundancy coefficient of the node
de = 0 Average size of the hyperedge
de = 1 Size of each hyperedge

of quadratic relationships around the node in a bipartite graph [127]. It is the
fraction of pairs of hyperedges to which vi belongs such that at least one different
node also belongs to both hyperedges. Formally, if ki > 1, we define

ri =
2

ki(ki − 1)

M∑
j=1

j−1∑
j′=1

Bi,jBi,j′1{|Γ| > 0} (4.3)

where we define Γ = {vi′ ∈ V \{vi} | Bi′,jBi′,j′ > 0} and 1{cond} denotes an indi-
cator function that returns 1 if a condition cond holds, and it returns 0 otherwise.
We define ri = 0 if ki ∈ {0, 1}. The degree-dependent redundancy coefficient of
the node is the average of the redundancy coefficient over the nodes with degree
k, i.e.,

r(k) =
1

n(k)

N∑
i=1, ki=k

ri, (4.4)

where n(k) is the number of nodes with degree k.
One can also define the pairwise joint size distribution of the hyperedge and

the redundancy coefficient of the hyperedge in the same way as for the node.
However, we do not introduce them because we construct reference models that
preserve up to the size distribution of the hyperedge. This choice stands on our
observation that it is practically difficult to generate randomized bipartite graphs
preserving up to pairwise correlation and quadratic relationships for both nodes’
degrees and hyperedges’ sizes. If one is interested in preserving the size correlation
and redundancy for hyperedges instead of the corresponding quantities for nodes,
one can apply our algorithm described in the following text after interchanging
the nodes and hyperedges in the bipartite-graph representation of the hypergraph.

4.3 Reference Models for Hypergraphs — Hyper dK-series

In this section, we propose a family of reference models for hypergraphs that
preserve local properties of nodes and hyperedges in the given hypergraph to
different extents. We extend a class of reference models for dyadic networks called
the dK-series [84, 148, 180] to the case of hypergraphs. The dK-series preserves
some local properties of nodes (i.e., degree distribution, joint degree distribution,
or degree-dependent clustering coefficient) of a given dyadic network.
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Figure 4.2: An example schematically showing the algorithm of the hyper dK-
series with dv ∈ {0, 1} and de ∈ {0, 1}. (a) A bipartite graph. (b) (dv, de) = (0, 0).
(c) (dv, de) = (1, 0). (d) (dv, de) = (0, 1). (e) (dv, de) = (1, 1).

The proposed model, which we refer to as hyper dK-series, produces a bipartite
graph that preserves the joint degree distributions of the node in the subgraphs
of size dv ∈ {0, 1, 2, 2.5} or less and the size distributions of the hyperedge in the
subgraphs of size de ∈ {0, 1} or less in the given bipartite graph G. We list the
quantity corresponding to each dv and de value in Table 4.1. By definition, the
hyper dK-series with dv = 0 preserves the numbers of edges in G, or equivalently,
the average degree of the node. The hyper dK-series with dv = 1 preserves the
degree of each node. With de = 0 and de = 1, the hyper dK-series similarly pre-
serves the average size of hyperedges and the size of each hyperedge, respectively.
With dv = 2, it preserves the degree of each node and aims to preserve the pair-
wise joint degree distribution of the node. With dv = 2.5, it intends to preserve
the joint degree distributions of nodes in the subgraphs of size between dv = 2 and
dv = 3. By definition, this means that the hyper dK-series preserves the degree
of each node, approximately preserves the pairwise joint degree distribution of
the node, and approximately preserves the degree-dependent redundancy coeffi-
cient of the node. Like the dK-series for dyadic networks [84,148,180], the hyper
dK-series have an inclusiveness property. In other words, the hyper dK-series
with given values of dv and de preserve quantities that any hyper dK-series with
(d′v, d

′
e), where d′v ≤ dv and d′e ≤ de, preserve.

4.3.1 dv ∈ {0, 1}

In this section, we describe generation of bipartite graphs using the hyper dK-
series with dv ∈ {0, 1} and de ∈ {0, 1}. We distinguish between the original
bipartite graph, denoted by G = (V,E, E), and the bipartite graph produced
by the hyper dK-series, denoted by G̃ = (V,E, Ẽ). We allow G̃ to have multiple
edges between nodes and hyperedges and to have multiple connected components,
which are allowed in previous studies as well [127, 178]. We define a component
of a bipartite graph as any of its maximal subgraphs in which any two nodes are
connected to each other by a path within the subgraph. Our algorithm of the
hyper dK-series starts with a bipartite graph with N nodes, M hyperedges, and
no edge.

When (dv, de) = (0, 0), we sequentially add edges to construct G̃ as follows.
We select a node uniformly randomly, i.e., with probability 1/N and a hyperedge
uniformly at random, i.e., with probability 1/M , and connect them (Fig. 4.2(b)).
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We repeat this procedureM times. The generated bipartite graph has N nodes,
M hyperedges, and M edges, and hence preserves the average nodal degree and
the average size of the hyperedge. When (dv, de) = (1, 0), we first attach ki half-
edges to each node vi (Fig. 4.2(c)). Then, we connect each of the M half-edges
to a hyperedge chosen uniformly at random, i.e., with probability 1/M . The case
of (dv, de) = (0, 1) is parallel to that of (dv, de) = (1, 0). Specifically, we first
attach sj half-edges to each hyperedge ej (Fig. 4.2(d)) and then connect each of
the M half-edges to a node chosen uniformly at random, i.e., with probability
1/N . When (dv, de) = (1, 1), we first attach ki half-edges to each node vi and
sj half-edges to each hyperedge ej (Fig. 4.2(e)). Then, we select a free (i.e.,
yet available) half-edge attached to a node and a free half-edge attached to a
hyperedge uniformly at random and connect them to create a hyperedge. We
repeat these steps until we exhaust all the free half-edges.

The hyper dK-series with dv ∈ {0, 1} and de ∈ {0, 1} are the same as the
existing reference models for bipartite graphs. Specifically, the hyper dK-series
with (dv, de) = (1, 1) is a standard configuration model for bipartite graphs [76,
178], which one often uses as a reference model for bipartite graphs [93, 127, 184,
185, 201, 217] and hypergraphs [50]. The hyper dK-series with (dv, de) = (0, 0)
is the bipartite version of the Erdős-Rényi random graph [71]. The hyper dK-
series with (dv, de) = (0, 1) and (1, 0) has also been used as a reference model for
bipartite graphs [202] and hypergraphs [254].

4.3.2 dv ∈ {2, 2.5}

The hyper dK-series with dv ≤ 1 and de ≤ 1 exactly preserves up to the degree
of each node and the size of each hyperedge. However, it is practically difficult
to construct a bipartite graph that exactly preserves the pairwise joint degree
distribution of the node by starting from the empty network and adding edges.
The intuitive explanation for this difficulty is as follows. Consider an edge, of
which one end has already been attached to a node v with degree k. Suppose
that we connect the other end of this edge to hyperedge e of size s. If s ≥ 3, then
m(k, k′), i.e., the number of hyperedges that a node with degree k and a node
with degree k′ share simultaneously changes for multiple values of k′ in general.
This fact makes it difficult to connect edges between nodes and hyperedges one
by one while exactly preserving the node’s pairwise joint degree distribution, i.e.,
P (k, k′), for all k and k′.

This problem is similar to the one for dyadic networks; it is difficult to con-
struct dyadic networks that exactly preserve higher-order structures than the pair-
wise joint degree distribution of the node [84,148,180]. To mitigate this problem,
the algorithm of the dK-series for dyadic networks uses the so-called targeting-
rewiring process with the aim of preserving the pairwise joint degree distribution
and the triadic relationships, i.e., the degree-dependent clustering coefficient of
the node. In the targeting-rewiring process, one repeatedly rewires edges in the
generated network such that the final network exactly preserves the pairwise joint
degree distribution and approximately preserves the degree-dependent clustering
coefficient of the input network.

We extend the targeting-rewiring process for dK-series to the case of bipartite
graphs to realize the algorithm of hyper dK-series with dv ∈ {2, 2.5}. We show
the composition of the hyper dK-series with dv ∈ {2, 2.5}, which involves the
targeting-rewiring process, in Fig. 4.4. Specifically, the hyper dK-series with
dv = 2 starts by generating a bipartite graph using the hyper dK-series with d′v =
1 and the given de ∈ {0, 1} (see Fig. 4.4(a) and 4.4(b)). The generated network
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Figure 4.3: Workflow of the hyper dK-series with dv ∈ {2, 2.5} and de ∈ {0, 1}.
M represents the number of hyperedges; P (k) represents the degree distribu-
tion of the node; P (s) represents the size distribution of the hyperedge; P (k, k′)
represents the joint degree distribution of the node; r(k) represents the degree-
dependent redundancy coefficient of the node.

preserves the degree of each node and either the average size of hyperedges or the
size of each hyperedge depending on whether de = 0 or de = 1, respectively. Then,
we run the targeting-rewiring process for dv = 2, which amounts to repeatedly
rewiring edges such that the randomized hypergraph approximately restores the
joint degree distribution of the original hypergraph while exactly preserving the
degree of each node.

The targeting-rewiring process for dv = 2 runs as follows. We first select
a pair of edges (vi, ej) and (vi′ , ej′) such that i ̸= i′ and j ̸= j′ uniformly at
random (see Fig. 4.4(a)). Then, we replace (vi, ej) and (vi′ , ej′) by (vi, ej′) and
(vi′ , ej) if and only if a distance between the original and present pairwise joint
degree distribution, denoted by D2, decreases if we rewire the edges. Using the
normalized L1 distance, we define D2 by

D2 =

∑M
k=1

∑M
k′=k |P ′(k, k′)− P (k, k′)|∑M
k=1

∑M
k′=k P (k, k′)

=
M∑
k=1

M∑
k′=k

∣∣∣∣∣ 2m′(k, k′)∑M
j=1 s

′
j(s

′
j − 1)

− 2m(k, k′)∑M
j=1 sj(sj − 1)

∣∣∣∣∣ , (4.5)

where P ′(k, k′), m′(k, k′), and s′j represent the pairwise joint degree distribution
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Figure 4.4: Rewiring of two edges in the targeting-rewiring process. (a) dv = 2.
(b) dv = 2.5. In (a), we allow k ̸= k′. In (b), we require k = k′. Note that the
algorithm for dv = 2.5 undergoes the rewiring process for dv = 2 shown in (a)
before one runs the rewiring process shown in (b).

of the node, the number of hyperedges that nodes with degree k and nodes with
degree k′ share, and the size of hyperedge ej , respectively, for the rewired hyper-
graph. To derive the second line in Eq. (4.5), we have used

∑M
k=1

∑M
k′=k P (k, k′) =

1. We repeat the rewiring attempts R times until D2 becomes sufficiently small
and hardly decreases by further rewiring. We set R = 500M.

The rewiring preserves the normalization factor,
∑M

j=1 s
′
j(s

′
j − 1), because the

rewiring does not alter s′j for any j = 1, . . . ,M . This property makes it easy
to calculate D2. In other words, for each edge (v, e) to be added or removed by
the rewiring, it is sufficient to calculate how the number of hyperedges, m′(k, k′),
where k and k′ are the degrees of two nodes belonging to hyperedge e, changes
(see Eq. (4.5)).

It is also difficult to construct bipartite graphs that exactly preserve the degree-
dependent redundancy coefficient of the node, r(k), over the values of k. This
is because the redundancy coefficients of multiple nodes simultaneously change
if one adds or removes an edge in general. Therefore, for dv = 2.5, we further
repeatedly rewire edges of the hypergraph generated by the hyper dK-series with
dv = 2 as follows. (We call this procedure targeting-rewriting for dv = 2.5. See
also Figs. 4.4(c) and 4.4(d).) We first select a pair of edges (vi, ej) and (vi′ , ej′)
such that i ̸= i′, j ̸= j′, and ki = ki′ uniformly at random (see Fig. 4.4(b)). Then,
we replace (vi, ej) and (vi′ , ej′) by (vi, ej′) and (vi′ , ej) if and only if the distance
defined by

D2.5 =

∑M
k=1 |r′(k)− r(k)|∑M

k=1 r(k)
, (4.6)

where r′(k) represents the degree-dependent redundancy coefficient of the node
for the rewired hypergraph, decreases after the rewiring. We repeat the rewiring
attempts R = 500M times.

It is easy to calculate D2.5 upon a rewiring attempt. To explain this, we
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rewrite Eq. (4.6) as

D2.5 =

∑M
k=1

1
n(k) |

∑N
i=1, ki=k(r

′
i − ri)|∑M

k=1
1

n(k)

∑N
i=1, ki=k ri

, (4.7)

where r′i represents the redundancy coefficient of node vi for the rewired hyper-
graph. To derive Eq. (4.7), we have used the fact that the rewiring exactly
preserves the degree of each node. Equation (4.7) implies that it is sufficient to
only calculate the change in r′i for the nodes that are involved in the rewiring (i.e.,
vi and vi′) and those that share at least one hyperedge with either vi or vi′ .

The first subprocess comprising the hyper dK-series with dv ∈ {2, 2.5} is to
generate a randomized hypergraph using the hyper dK-series with dv = 1 (see Fig.
4.4). This process preserves the node’s degree distribution and destroys the degree
correlation and redundancy of the node. The second subprocess comprising the
hyper dK-series with dv ∈ {2, 2.5} is the targeting-rewiring process. This process
also preserves the node’s degree distribution. Therefore, the entire procedure of
the hyper dK-series with dv ∈ {2, 2.5} preserves the node’s degree. Furthermore,
the targeting-rewriting with dv = 2 and dv = 2.5 makes the degree correlation
and redundancy, respectively, approach those of the original hypergraph, which
has been lost in the course of the first subprocess. Therefore, the entire hyper dK-
series with dv = 2 and dv = 2.5 approximately preserves the degree correlation
and the redundancy, respectively.

The targeting-rewiring process for dv = 2.5 also preserves the degree correla-
tion, i.e., P ′(k, k′) for each k and k′, for the following two reasons. First, owing
to the constraint that ki = ki′ , the rewiring preserves m′(k, k′), i.e., the number
of hyperedges that nodes with degree k and nodes with degree k′ share, for any k
and k′. Second, the rewiring preserves the normalization factor

∑M
j=1 s

′
j(s

′
j − 1)

as in the case of dv = 2.
The targeting-rewiring process for dv = 2 or 2.5 preserves the size of each hy-

peredge of the randomized hypergraph. However, with (dv, de) = (2, 0) or (2.5, 0),
the hyper dK-series does not preserve the size of each hyperedge of the input hy-
pergraph. This is because we first generate a bipartite graph with (dv, de) = (1, 0),
which destroys the size distribution of hyperedges, prior to the targeting-rewiring
(see Figs. 4.4(a) and 4.4(c)).

4.3.3 An alternative algorithm for (dv, de) = (2, 1): Randomizing rewiring

For (dv, de) = (2, 1), we have an alternative to the targeting-rewiring process,
which is an extension of the so-called randomizing-rewiring process in dK-series
for dyadic networks [148, 180] to the case of bipartite graphs. The randomizing
rewiring produces bipartite graphs that exactly preserve both nodal degree dis-
tribution and P (k, k′). In randomizing rewiring, the initial bipartite graph is a
replica of the original bipartite graph G. Then, we select a pair of edges, (vi, ej)
and (vi′ , ej′), such that i ̸= i′, j ̸= j′, and ki = ki′ uniformly at random, and
then replace (vi, ej) and (vi′ , ej′) by (vi, ej′) and (vi′ , ej). The rewiring preserves
the degree of each node, P (k, k′), and the size of each hyperedge. We repeat this
rewiring procedure R′ times, where R′ is sufficiently large, and use the final result
as G̃. We set R′ = 100M because we have found up to our numerical efforts
that the overlap of edges of G and those of the rewired hypergraph converges
sufficiently before R′ = 100M.

The randomizing rewiring has an advantage over the targeting rewiring in
that it exactly preserves both the degree of each node and P (k, k′) of the in-
put bipartite graph; the targeting rewiring only approximately preserves P (k, k′).
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Table 4.2: Properties of the empirical data sets. N : number of nodes, M : number
of hyperedges, M: number of edges in the corresponding bipartite graph, k̄: av-
erage degree of the node, s̄: average size of the hyperedge, r̄: average redundancy
coefficient of the node, l̄: average shortest path length between nodes.

Data N M M k̄ s̄ r̄ l̄

drug 628 816 5,688 9.06 6.97 0.70 3.53
Enron 143 1,512 4,550 31.82 3.01 0.35 2.08
primary-school 242 12,704 30,729 126.98 2.42 0.06 1.73
high-school 327 7,818 18,192 55.63 2.33 0.07 2.16

However, in contrast to the case of dyadic networks for which the randomizing
rewiring is efficient [148, 180], the randomizing rewiring for the hyper dK-series
has two drawbacks. First, it is only practical with (dv, de) = (2, 1). On one hand,
although we can easily extend the randomizing rewiring to the case of dv ≤ 1 and
de ≤ 1, efficient algorithms for generating bipartite graphs exactly preserving the
quantities with dv ≤ 1 and de ≤ 1 already exist, as we described in Section 4.3.1.
On the other hand, it is practically difficult to apply the randomizing rewiring
in the case of (dv, de) = (2, 0), (2.5, 0), and (2.5, 1) because a proposed random
rewiring that respects the constraints imposed by the given (dv, de) rarely pre-
serves P (k, k′). Second, the overlap of the edges in G and those in the rewired
hypergraph converges to a nonnegligibly large value with the randomizing rewiring
with (dv, de) = (2, 1). In other words, the randomizing rewiring does not suffi-
ciently randomly shuffle the edges of the original bipartite graph even if one carries
out the rewiring many times. We show numerical evidence of this phenomenon
in Section 4.6. Therefore, we use the targeting rewiring in the following analyses
when (dv, de) = (2, 1).

4.4 Results

4.4.1 Data

In this section, we apply the hyper dK-series to four empirical hypergraphs. The
NDC-classes hypergraph, which we refer to as the drug hypergraph in the following
text, is a drug network constructed from the National Drug Code Directory [30].
Its nodes are class labels, such as serotonin reuptake inhibitor, and a hyperedge
is a set of class labels associated with a single drug. The Enron hypergraph is an
email communication network [30,115], in which a node is an email address, and
a hyperedge is a set of all recipient addresses of an email. The primary-school
hypergraph is a social contact network, where nodes are individuals (i.e., students
or teachers), and a hyperedge represents an event in which a set of individuals are
in face-to-face contact event with each other [30,212]. The high-school hypergraph
is also a social contact network, where nodes are students, and a hyperedge is a
face-to-face contact event among a set of students [30,151]. We preprocessed each
data set by first removing multiple hyperedges in the original hypergraph, and
then by extracting the largest connected component. Table 4.2 shows properties
of the largest connected component, which we use in the following analysis, for
the four data sets.
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4.4.2 Structural properties

For each empirical hypergraph, we compare six structural properties among the
given hypergraph and hypergraphs generated by the hyper dK-series with dv ∈
{0, 1, 2, 2.5} and de ∈ {0, 1}. We also analyze an existing reference model for
bipartite graphs, the B2K [37], as a benchmark. In terms of the terminology of
hypergraphs, the B2K model preserves the degree of each node, the size of each
hyperedge, and the number of hyperedges with size s to which nodes with degree
k belong for each k and s.

Figure 4.5 compares the six structural properties between the drug hyper-
graph, the hyper dK-series, and the B2K model. The results for the hyper dK-
series with de = 0 and various values of dv together with those for the original
drug hypergraph and the B2K model are shown in Fig. 4.5(a)–4.5(f). We make
the following observations. First, Fig. 4.5(a) indicates that the hyper dK-series
with dv ∈ {1, 2, 2.5} but not dv = 0 exactly preserves the degree of each node
(and therefore the degree distribution) of the drug hypergraph, which is expected.
Second, Fig. 4.5(b) indicates that the hyper dK-series with dv ∈ {2, 2.5} but not
dv ∈ {0, 1} approximately preserves the average degree of the nearest neighbors of
nodes with degree k, denoted by knn(k), in the input hypergraph. Because knn(k)
is a derivative of the pairwise joint distribution of the node’s degree, P (k, k′),
which the hyper dK-series with dv ≥ 2 intends to preserve, this result is also
expected. The hyper dK-series with dv ∈ {0, 1} produces networks without no-
ticeable degree correlation of the node (see Fig. 4.5(b)). Third, as expected,
the hyper dK-series with dv = 2.5 but not with smaller dv values approximately
preserves the degree-dependent redundancy coefficient of the node, r(k), of the
empirical hypergraph (see Fig. 4.5(c)). Fourth, as expected, the hyper dK-series
with any dv ∈ {0, 1, 2, 2.5} and de = 0 does not preserve the distribution of the size
of the hyperedge of the original hypergraph; it only preserves the average size of
the hyperedge (see Fig. 4.5(d)). Fifth, the hyper dK-series with a larger value of
dv better approximates the distribution of the shortest path length between node
pairs although the hyper dK-series is not designed to preserve this quantity (see
Fig. 4.5(e)). Finally, we show in Fig. 4.5(f) the cumulative degree distribution of
the one-mode projection, where each pair of nodes in the projected network are
adjacent if they belong to at least one common hyperedge, and the multiplicity of
the edge is equal to the number of hyperedges that the two nodes share [139,189].
The hyper dK-series progressively better approximates the cumulative degree dis-
tribution of the one-mode projection when dv is larger, whereas the results are
similar between dv = 2 and dv = 2.5. Note that the hyper dK-series is not
designed to preserve the degree distribution of the one-mode projection.

We show in Fig. 4.5(g)–4.5(l) the results for the hyper dK-series with de = 1
and various values of dv together with those for the B2K model. The results for
the empirical hypergraph and the B2K model shown in these figures are the same
as those shown in Fig. 4.5(a)–4.5(f). We make the following observations. First,
as expected, the results shown in Fig. 4.5(g)–4.5(i) are similar to those shown in
Fig. 4.5(a)–4.5(c). In other words, the hyper dK-series with dv ≥ 1 preserves the
degree distribution of the node, that with dv ≥ 2 additionally preserves knn(k),
and that with dv = 2.5 additionally preserves r(k). Second, Fig. 4.5(j) indicates
that the hyper dK-series preserves the distribution of the size of hyperedge, which
is because we set de = 1. Third, similar to the case of de = 0, the hyper dK-series
with a larger dv value better approximates the distribution of the shortest path
length between nodes (see Fig. 4.5(k)). A comparison between Figs. 4.5(e) and
4.5(k) suggests that the approximation accuracy is not notably different between
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de = 0 and de = 1. Finally, a comparison between Figs. 4.5(f) and 4.5(l) suggests
that the hyper dK-series with dv ≥ 2 and de = 1 more accurately approximates
the cumulative degree distribution of the one-mode projection than the hyper
dK-series with the same dv value and de = 0 and than that with dv ≤ 1 and
de = 1. This is presumably because the node’s degree in the one-mode projection
depends not only on the degree of the node in the original hypergraph but also
on the size of each hyperedge to which the node belongs.

The B2K model exactly preserves the distributions of node’s degree and hyper-
edge’s size, as expected (see Figs. 4.5(a) and 4.5(d)). However, it little preserves
the node’s degree correlation and the redundancy coefficient of the empirical net-
work (see Figs. 4.5(b) and 4.5(c)). Therefore, roughly speaking, the complex-
ity of the B2K model is somewhere between that of the hyper dK-series with
(dv, de) = (1, 1) and that with (dv, de) = (2, 1). We also find that the B2K model
accurately preserves the degree distribution of the one-mode projection (see Fig.
4.5(f)) although the B2K model does not intend to preserve it.

To be quantitative, we measure the distance in the distribution of each of
the six quantities between the empirical hypergraph and each type of synthetic
hypergraph for each data set. For the degree distribution of the node, the size
distribution of the hyperedge, and the degree distribution of one-mode projec-
tion, we calculate the Kolmogorov-Smirnov distance between the cumulative dis-
tribution for the original bipartite graph and that for the generated bipartite
graph. The Kolmogorov-Smirnov distance between two cumulative distributions,
denoted by F1(x) and F2(x), is given by supx |F1(x) − F2(x)|. For knn(k), r(k),
and the distribution of the shortest path length between nodes (which we denote
by P (ℓ) for the shortest path length ℓ), we calculate the normalized L1 distance
between the vector corresponding to the original bipartite graph, denoted by
x = (x1, x2, . . . , xL), and that corresponding to the synthetic bipartite graph, de-
noted by x̃ = (x̃1, x̃2, . . . , x̃L). Specifically, we set xk = knn(k) with k = 1, . . . ,M ,
xk = r(k) with k = 1, . . . ,M , or xk = P (ℓ) with k = 1, . . . , N − 1, and similar
for x̃. The distance between x and x̃ is defined by

∑L
i=1 |x̃i − xi|/

∑L
i=1 |xi|. We

calculate the distance average of each property over the independent 100 runs for
each model. In each model, we generate an independent bipartite graph for each
run.

We show the distance measurement results in Table 4.3. The following obser-
vations apply to all the data sets unless we state otherwise. First, we verify that
the degree distribution of the node is the same between the empirical data and
the hyper dK-series with dv ≥ 1 and the B2K model. Second, the hyper dK-series
with dv = 2 realize a considerably small distance to the empirical data in terms
of knn(k). Third, the hyper dK-series with dv = 2.5 yields a small distance to the
empirical data in terms of r(k). Fourth, the distribution of hyperedge’s size is the
same between the empirical data, any hyper dK-series with de = 1, and the B2K
model. Fifth, for both de = 0 and de = 1, the hyper dK-series is more similar
to the empirical data in terms of the distribution of shortest path length between
nodes (i.e., P (ℓ)) when dv is larger. However, with the exception of primary-school
hypergraph, the relative error between the hyper dK-series and the empirical hy-
pergraph in terms of P (ℓ) is large (i.e., > 30%) even with (dv, de) = (2.5, 1).
Finally, the hyper dK-series with (dv, de) = (2, 1), (2.5, 1) and the B2K model are
close to the empirical data in terms of the degree distribution of the one-mode
projection. All these results are consistent with those shown in Fig. 4.5. We also
statistically tested how significantly the hyper dK-series changes each structural
property of a given hypergraph (see Section 4.8).

To examine if the targeting rewiring introduces sufficient randomization, we
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Figure 4.5: Structural properties of the drug hypergraph, the networks generated
by the hyper dK-series, and the B2K model. We use the hyper dK-series with
de = 0 in (a)–(f) and de = 1 in (g)–(l). Panels (a) and (g): cumulative degree
distribution of the node, (b) and (h): average degree of nearest neighbors of
nodes with degree k, (c) and (i): degree-dependent redundancy coefficient of the
node, (d) and (j): cumulative size distribution of the hyperedge, (e) and (k):
distribution of shortest path length between nodes, and (f) and (l): cumulative
degree distribution of the one-mode projection. We define the shortest path length
between two nodes as the smallest number of hyperedges on the path between the
two nodes among all the paths. The average shortest path length is the average
of the shortest average path between a pair of nodes over all pairs of nodes in the
largest connected component. The largest connected component of randomized
hypergraphs contains almost all nodes for all the four empirical hypergraphs (see
Section 4.7 for details). We indicate the curves by the arrow and label wherever
multiple curves completely or heavily overlap each other.
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Table 4.3: Distance between the empirical hypergraphs and those generated by
the reference models (i.e., hyper dK-series and B2K model). In the table, P (k)
represents the cumulative degree distribution of the node; knn(k) represents the
average degree of the nearest neighbors of nodes with degree k; r(k) represents
the degree-dependent redundancy coefficient of the node; P (s) represents the
cumulative size distribution of the hyperedge; P (l) represents the distribution of
the shortest path length between nodes; P (k̆) represents the cumulative degree
distribution of the one-mode projection.

Data Model P (k) knn(k) r(k) P (s) P (l) P (k̆)

drug

(dv, de) = (0, 0) 0.605 0.948 0.977 0.250 1.582 0.669
(1, 0) 0.000 0.396 0.625 0.252 1.335 0.234
(2, 0) 0.000 0.041 0.427 0.252 0.765 0.093

(2.5, 0) 0.000 0.041 0.139 0.252 0.440 0.088
(0, 1) 0.598 0.945 0.957 0.000 1.610 0.701
(1, 1) 0.000 0.397 0.502 0.000 1.409 0.311
(2, 1) 0.000 0.022 0.393 0.000 0.783 0.049

(2.5, 1) 0.000 0.022 0.137 0.000 0.582 0.043
B2K 0.000 0.326 0.394 0.000 0.850 0.027

Enron

(dv, de) = (0, 0) 0.427 0.821 0.955 0.163 0.623 0.385
(1, 0) 0.000 0.195 0.767 0.163 0.487 0.075
(2, 0) 0.000 0.012 0.400 0.163 0.432 0.090

(2.5, 0) 0.000 0.012 0.058 0.163 0.331 0.083
(0, 1) 0.426 0.808 0.948 0.000 0.671 0.393
(1, 1) 0.000 0.195 0.747 0.000 0.483 0.080
(2, 1) 0.000 0.030 0.498 0.000 0.434 0.057

(2.5, 1) 0.000 0.030 0.175 0.000 0.352 0.047
B2K 0.000 0.192 0.729 0.000 0.474 0.052

primary-school

(dv, de) = (0, 0) 0.374 0.832 0.924 0.304 0.860 0.704
(1, 0) 0.000 0.088 0.547 0.305 0.705 0.372
(2, 0) 0.000 0.007 0.370 0.305 0.371 0.358

(2.5, 0) 0.000 0.007 0.206 0.305 0.346 0.357
(0, 1) 0.377 0.834 0.970 0.000 0.537 0.390
(1, 1) 0.000 0.089 0.807 0.000 0.434 0.041
(2, 1) 0.000 0.014 0.563 0.000 0.244 0.031

(2.5, 1) 0.000 0.014 0.112 0.000 0.035 0.032
B2K 0.000 0.088 0.811 0.000 0.421 0.019

high-school

(dv, de) = (0, 0) 0.308 0.698 0.908 0.326 0.534 0.622
(1, 0) 0.000 0.111 0.724 0.326 0.528 0.364
(2, 0) 0.000 0.009 0.434 0.326 0.511 0.321

(2.5, 0) 0.000 0.009 0.030 0.326 0.505 0.322
(0, 1) 0.312 0.692 0.963 0.000 0.534 0.345
(1, 1) 0.000 0.112 0.894 0.000 0.515 0.073
(2, 1) 0.000 0.025 0.792 0.000 0.497 0.050

(2.5, 1) 0.000 0.025 0.092 0.000 0.440 0.051
B2K 0.000 0.102 0.884 0.000 0.499 0.019
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Figure 4.6: Distance between the original and synthetic hypergraphs in the
targeting-rewiring process for the drug data set. (a) dv = 2. (b) dv = 2.5.
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Figure 4.7: Fraction of infected nodes in the SIS model on hypergraphs. The
results for primary-school data set are shown in (a)–(d), and those for the high-
school data set are shown in (e)–(h). We set (de, θ) = (0, 0.1) in (a) and (e);
(de, θ) = (1, 0.1) in (b) and (f); (de, θ) = (0, 0.5) in (c) and (g); (de, θ) = (1, 0.5)
in (d) and (h). We indicate the curves by the arrow and label wherever multiple
curves heavily overlap each other.

measure the distance measures D2 and D2.5, which are defined in Eqs. (4.5) and
(4.6), as a function of the number of rewiring attempts, R, for the hyper dK-series
with dv ∈ {2, 2.5} and de ∈ {0, 1}. The results for the drug data set are shown in
Fig. 4.6. For both de = 0 and de = 1, D2 rapidly decreased to values that are ≈
15% larger than the final value in the first ≈ 100M targeting rewiring attempts.
Then, D2 continued to decrease slowly towards the final value. Similarly, D2.5 in
the case of both de = 0 and de = 1 rapidly decreased to values that are ≈ 10%
larger than the final values in the first 100M targeting rewiring attempts and
then slowly decayed towards the final values. We confirmed that the trajectories
of D2 and D2.5 were similar for the other three data sets.

4.4.3 Epidemic spreading

A primary application of the hyper dK-series is to simulations of dynamical or
other processes on hypergraphs. Specifically, comparisons between the results on
the original and synthetic hypergraphs generally help us to understand particular
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Figure 4.8: Evolution of cooperation in the public goods game on hypergraphs.
Panels (a)–(d) show the fraction of cooperators for the primary-school data set,
and panels (e)–(h) are for the high-school data set. We set (de, β) = (0, 0) in
(a) and (e); (de, β) = (1, 0) in (b) and (f); (de, β) = (0, 1) in (c) and (g); and
(de, β) = (1, 1) in (d) and (h). We indicate the curves by the arrow and label
wherever multiple curves heavily overlap each other.

structural properties of the hypergraph that impact the processes on hypergraphs.
For example, comparisons between a dynamical process on networks generated by
the hyper dK-series with dv = 0 and with dv = 1 will reveal the effect of the node’s
degree distribution. This is because the hyper dK-series with dv = 0 destroys the
degree distribution of the original hypergraph, whereas that with dv = 1 preserves
it. Likewise, comparisons between dv = 1 and dv = 2 will reveal the effects of
degree correlation; comparisons between dv = 2 and dv = 2.5 will reveal the
effects of redundancy; comparisons between de = 0 and 1 will reveal the effects
of the hyperedge’s size distribution. We showcase the application of the hyper
dK-series with epidemic spreading and evolutionary game dynamics models.

In this section, we examine a susceptible-infected-susceptible (SIS) model on
hypergraphs in continuous time [63]. Each node is in either the susceptible state
or the infectious state at any time t. Each infectious node recovers and becomes
susceptible according to a Poisson process with rate δ. A fundamental assumption
underlying the present model, which distinguishes it from other SIS models on
hypergraphs [34,108,214], is that the contagion process is critical-mass dynamics,
which generalizes a previous model [105]. Let ρj denote the fraction of infectious
nodes in hyperedge ej ∈ E. For each hyperedge ej , each susceptible node in ej
becomes infected at rate λj if and only if ρj ≥ θ, where θ is a parameter. We set
δ = 1 and λj = λ log2 |ej |, where λ is a parameter [63].

We assume that all the nodes are initially infectious and run the SIS model
on the primary-school and high-school hypergraphs until t = 100. We confirmed
that the fraction of infected nodes converges to an approximate stationary value
before t = 100. For the given θ and λ values, we average the fraction of infected
nodes over 95 ≤ t ≤ 100 and over 100 runs. In the case of the hyper dK-series,
we generate an independent bipartite graph for each run.

In Figs. 4.7(a) and 4.7(b), we set θ = 0.1 and compare the fraction of infected
nodes among the primary-school hypergraph and hypergraphs generated by the
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corresponding hyper dK-series. We set de = 0 in Fig. 4.7(a) and de = 1 in
Fig. 4.7(b). The results for the empirical hypergraph shown in Figs. 4.7(a) and
4.7(b) are the same. We make the following observations. First, the hyper dK-
series with de = 0 considerably overestimates the fraction of infected nodes and
underestimates the epidemic threshold for the empirical hypergraph for any dv.
Second, the fraction of infected nodes in the hyper dK-series with de = 1 is closer
to that in the empirical hypergraph than with de = 0. Third, the hyper dK-
series with (dv, de) = (1, 1), (2, 1), and (2.5, 1) accurately estimate the fraction
of infected nodes and the epidemic threshold in the empirical hypergraph and
almost to the same extent. In other words, the hyper dK-series with (dv, de) =
(1, 1) is necessary and sufficient for reproducing the fraction of infected nodes
as a function of the infection rate. These results indicate that the size of each
hyperedge, or equivalently, its distribution, is a main determinant of the epidemic
spreading more than are the node’s local properties with dv > 1, such as the degree
correlation and redundancy coefficient, and mesoscopic or macroscopic structure
of the hypergraph. These results qualitatively remain the same for a different
threshold value, i.e., θ = 0.5 (see Figs. 4.7(c) and 4.7(d)) and for the high-school
hypergraph (see Figs. 4.7(e)–4.7(h)).

4.4.4 Evolutionary dynamics

Next, we compare evolutionary dynamics on the empirical hypergraphs and the
hyper dK-series. We use a previously proposed model of public goods game on
hypergraphs, which proceeds as follows [18]. Each node selects either to cooperate
or defect in each round of evolutionary dynamics. A cooperator transfers an asset
c to the public goods of hyperedge e, where |e| ≥ 2. A defector does not contribute
to the public goods. The total investment in e is nCc, where nC is the number of
cooperators in e. Then, one multiplies the total investment by the synergy factor
R, where R > 1, and then equally distributes the multiplied total investment
among all the nodes in e. The payoff that a cooperator and defector receives from
hyperedge e is equal to πC = RnCc/|e| − c and πD = RnCc/|e|, respectively. As
in the previous study [18], we assume R = α|ej |β , where α > 0 and β ≥ 0.

We numerically simulate the evolutionary public goods game on the given hy-
pergraph as follows. Initially, each node is independently cooperator or defector
with a probability of 0.5 each. In each round, we first uniformly randomly select
a node vi, whose strategy (i.e., cooperation or defection) may be updated, with
probability 1/N and then select a hyperedge ej to which vi belongs with proba-
bility 1/ki uniformly at random. We continue this selection procedure until we
select a hyperedge with |ej | ≥ 2. We have confirmed that each node belongs to
at least one hyperedge with |ej | ≥ 2 in all cases. Then, all the nodes that belong
to ej play the public goods game just once in each of the hyperedges to which
they belong. Each node accumulates the payoffs from all the games that the node
plays. Then, we divide the accumulated payoff by the number of games that the
node has played. We denote by πi the payoff of node vi. Node vi adopts the
strategy of the node that has gained the largest payoff in hyperedge ej , denoted
by vi′ , with probability (πi′ − πi)/∆. When β < 1, we set

∆ =

αs̃β−1
min (s̃min − 1)− αsβ−1

max + 1 if α ≤ 2

s̃β−1
min +sβ−1

max
,

αs̃βmin − 1 otherwise,
(4.8)

where s̃min = max{smin, 2}, and smax and smin are the largest and smallest sizes
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of the hyperedge, respectively. When β ≥ 1, we set

∆ =

αsβ−1
max(smax − 1)− αs̃β−1

min + 1 if α ≤ 2

s̃β−1
min +sβ−1

max
,

αsβmax − 1 otherwise.
(4.9)

Equations (4.8) and (4.9) guarantees that the probability (πi′ − πi)/∆ is normal-
ized (see Ref. [18] for details). If πi′ ≤ πi, node vi does not adopt the strategy of
vi′ . For the given α and β values, we measure the fraction of cooperators as the
average over the (106+1)st and (106+103)th rounds in a single run and over 100
runs. In the case of the hyper dK-series, we generate an independent bipartite
graph for each run.

In Figs. 4.8(a) and 4.8(b), we set β = 0 and compare the fraction of cooper-
ators on the primary-school hypergraph and the hyper dK-series. We set de = 0
in Fig. 4.8(a) and de = 1 in Fig. 4.8(b). The results for the empirical hypergraph
shown in Figs. 4.8(a) and 4.8(b) are the same. We make the following observa-
tions. First, at both de values, the node’s pairwise degree correlation present in
the empirical hypergraph promotes the cooperation but the node’s degree distri-
bution or the profile of the redundancy coefficient does not. Second, the fraction of
cooperators in the hyper dK-series with any dv and de = 0 is considerably smaller
than that in the empirical hypergraph. In contrast, the fraction of cooperators
in the hyper dK-series with de = 1 is generally close to that in the empirical
hypergraph. Therefore, destroying the distribution of the hyperedge’s size in the
original hypergraph suppresses cooperation. In fact, the size distribution of the
hyperedge is a stronger determinant of the amount of cooperation than any of the
node’s local properties investigated (i.e., the degree distribution, pairwise degree
correlation, and redundancy coefficient).

Figures 4.8(c) and 4.8(d) show the results for β = 1. We make the following
observations. First, when de = 0 (see Fig. 4.8(c)), preserving the node’s de-
gree correlation and redundancy of the original hypergraph individually enhances
cooperation. However, when one destroys the degree correlation (i.e., dv = 0
or 1), there is less cooperation than in the original hypergraph. Furthermore,
intriguingly, the hyper dK-series with (dv, de) = (2, 0) and (2.5, 0) realize more
cooperation than on the original hypergraph, suggesting that destroying the net-
work structure that is higher-order than the degree-correlation and redundancy
promotes cooperation. Second, there is less cooperation when the distribution of
the hyperedge’s size is preserved (i.e., de = 1; Fig. 4.8(d)) than destroyed (i.e.,
de = 0; Fig. 4.8(c)). This result is opposite to that for β = 0 (see Figs. 4.8(a)
and 4.8(b)). Third, similarly to the case of de = 0, the preservation of the node’s
degree correlation and redundancy (but not higher-order structure) of the original
hypergraph individually increases cooperation in the case of de = 1. In particu-
lar, hyper dK-series with (dv, de) = (2.5, 1) realizes more cooperation than on the
original hypergraph (see the purple line in Fig. 4.8(d)). A comparison between
Figs. 4.8(c) and 4.8(d) suggests that, no matter whether the distribution of the
hyperedge’s size is destroyed or preserved, destroying the structure that is higher-
order than the node’s redundancy by randomization yields more cooperation than
in the original hypergraph. All these results qualitatively remain the same for the
high-school hypergraph (see Figs. 4.8(e)–4.8(h)).

The critical point α = αc(β) separating the defection and cooperation phases
is analytically calculated as follows [18]:

αc(β) =
1∑smax

s=s̃min
p̃(s)sβ−1

, (4.10)
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where p̃(s) = p(s)/
∑smax

s=s̃min
p(s), and p(s) represents the fraction of hyperedges of

size s. Note that it holds that
∑smax

s=s̃min
p̃(s) = 1. In the infinite well-mixed popu-

lation, the evolutionary dynamics converge to full defection and full cooperation
when α < αc(β) and α > αc(β), respectively.

When β = 0, the primary-school hypergraph yields αc(0) ≈ 2.31. Roughly
consistent with this, the fraction of cooperators on the empirical hypergraph
reaches ≈ 1.0 at α ≈ 2.5 in our simulations (see the red lines in Figs. 4.8(a)
and 4.8(b)). The corresponding hyper dK-series with any dv and de = 0 leads
to αc(0) ≈ 2.77, which underestimates the threshold obtained from the numerical
simulations, i.e., α ≈ 3.3 (see Fig. 4.8(a)). However, Eq. (4.10) and our numeri-
cal results are consistent in the sense that the critical point in terms of α for the
hyper dK-series with de = 0 is larger than that for the empirical hypergraph. The
hyper dK-series with any dv and de = 1 has the same analytically determined
threshold, αc(0) ≈ 2.31, as the empirical hypergraph because these hypergraphs
have the same distribution of the hyperedge’s size. This result is also consistent
with our numerical result that the fraction of cooperators reaches ≈ 1.0 at α ≈ 2.5
in the hyper dK-series with any dv and de = 1 (see Fig. 4.8(b)). When β = 1,
Eq. (4.10) predicts that αc(1) = 1.0 regardless of dv and the size distribution
of the hyperedge (therefore, regardless of de). This result is consistent with our
numerical results shown in Figs. 4.8(c) and 4.8(d).

For the high-school hypergraph, we obtain αc(0) ≈ 2.23 for the empirical
hypergraph and the hyper dK-series with de = 1, αc(0) ≈ 2.75 for the hyper dK-
series with de = 0, and αc(1) = 1.0 for the empirical and synthetic hypergraphs. In
our numerical simulations, we obtain αc(0) ≈ 2.5 for for the empirical hypergraph
(see the red lines in Figs. 4.8(e) and 4.8(f)) and the hyper dK-series with de = 1
(see Fig. 4.8(f)), αc(0) ≈ 3.3 for the hyper dK-series with de = 0 (see Fig. 4.8(e)),
and αc(1) ≈ 1.0 for the empirical and synthetic hypergraphs (see Figs. 4.8(g) and
4.8(h)). These results are qualitatively the same as those for the primary-school
hypergraph.

4.5 Conclusion

We proposed a family of reference models for hypergraphs called the hyper dK-
series. The hyper dK-series preserves the local properties of nodes and hyper-
edges in the given hypergraph to different extents. We empirically showed that
the hyper dK-series preserves the properties of nodes and hyperedges, as in-
tended, across different hypergraph data sets. We also showcased its use as
reference models in investigating epidemic spreading and evolution of coopera-
tion on hypergraphs. Models of dynamical processes on hypergraphs, such as
the epidemic spreading [34,108,124,214], evolutionary dynamics [18, 42], opinion
dynamics [99, 169, 198], and synchronization [64, 146, 156, 200], have been pro-
posed. Deploying the hyper dK-series to studies of various models of dynamics
is expected to better reveal how the dynamics depend on the specific structural
properties of the given hypergraphs.

Up to our numerical efforts, we found that the hyper dK-series with a larger
dv value better approximates the distribution of the shortest path length between
nodes for the empirical hypergraphs. However, as expected, even the hyper dK-
series with the largest dv value (i.e., dv = 2.5) does not accurately approximate
the distribution of the shortest path length. In particular, we found that the
average shortest path length for the hypergraphs generated by the hyper dK-
series with dv = 2.5 is smaller than that for the empirical hypergraph for all
the four data sets (e.g., the drug hypergraph has the average shortest length of
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3.53, whereas the hyper dK-series has 3.03 for (dv, de) = (2.5, 0) and 2.77 for
(dv, de) = (2.5, 1)). The community structure is one of network structures that is
higher-order than the redundancy coefficient of the node and likely increases the
shortest path length between nodes. Extending the hyper dK-series to reference
models that additionally preserve the community structure warrants future work.
To this end, it may be useful to employ a family of stochastic block models with
the community structure for bipartite graphs [23, 67, 126, 244] or hypergraphs
[14,51,80,113].
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Figure 4.9: Comparison between the targeting-rewiring and randomizing-rewiring
processes for the drug hypergraph. We set (dv, de) = (2, 1). (a) Cumulative
degree distribution of the node, (b) average degree of the nearest neighbors of
nodes with degree k, (c) degree-dependent redundancy coefficient of the node,
(d) cumulative size distribution of the hyperedge, (e) distribution of the shortest
path length between nodes, and (f) cumulative degree distribution of the one-
mode projection. We indicate the curves behind other curves by the arrow and
label wherever multiple curves completely or almost overlap each other.

4.6 Comparison of the targeting rewiring and randomizing rewiring
for (dv, de) = (2, 1)

In this section we compare the targeting-rewiring and randomizing-rewiring pro-
cesses with (dv, de) = (2, 1). We show the distributions of the six quantities for
the two rewiring processes for the drug hypergraph in Fig. 4.9. Both rewiring
processes exactly preserve the degree distribution of the node and the size dis-
tribution of the hyperedge of the original bipartite graph (see Figs. 4.9(a) and
4.9(d)). The randomizing-rewiring process exactly preserves knn(k), whereas the
targeting-rewiring process only approximately preserves it (see Fig. 4.9(b)). The
two rewiring methods produce similar networks in terms of the degree-dependent
redundancy coefficient, the distribution of the shortest path length between nodes,
and the degree distribution of the one-mode projection, as shown in Figs. 4.9(c),
4.9(e), and 4.9(f), respectively.

We also compare the two rewiring processes in terms of the overlap of the
edges of the empirical hypergraph and those of the synthetic hypergraphs. Figure
4.10(a) shows the Jaccard index between sets of edges in the drug hypergraph
and the hypergraph generated by the randomizing rewiring as a function of the
number of rewiring attempts. The figure indicates that the Jaccard index steadily
decreases as the randomizing rewiring proceeds. However, it plateaus at ≈ 0.32,
which implies that a set of edges in the synthetic bipartite graph is not sufficiently
shuffled due to the constraints that each edge rewiring step has to preserve P (k, k′)
in addition to the degree of each node. The Jaccard index similarly plateaus at
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Figure 4.10: The Jaccard index between a set of edges of the empirical hypergraph
and that of the hypergraph generated under the randomizing rewiring. We set
(dv, de) = (2, 1). (a) Drug, (b) Enron, (c) primary-school, and (d) high-school.
The Jaccard index between the sets of edges is given by |E ∩ Ẽ|/|E ∪ Ẽ|, where E
and Ẽ are the set of edges in the original and synthetic hypergraphs, respectively.
In calculating the Jaccard index, we removed multiplicity of edges in Ẽ .

≈ 0.45, ≈ 0.45, and ≈ 0.21 for the Enron, primary-school, and high-school hy-
pergraphs, respectively (see Figs. 4.10(b), 4.10(c), and 4.10(d), respectively). In
contrast, the Jaccard index is ≈ 0.036, ≈ 0.016, ≈ 0.006, ≈ 0.005 under the
targeting rewiring for the drug, Enron, primary-school, and high-school hyper-
graphs, respectively. Therefore, we conclude that the randomizing rewiring does
not sufficiently shuffle the edges of the input hypergraph.

4.7 Size of the largest connected component of hypergraphs gen-
erated by hyper dK-series

We measured how the size (i.e., number of nodes) of the largest connected com-
ponent of the empirical hypergraphs changes by randomization using the hyper
dK-series. We show in Table 4.4 the size of the largest connected component of
hypergraphs the hyper dK-series generates, divided by that of the original hy-
pergraph. The table indicates that we barely lose nodes in the largest connected
component by the randomization.

4.8 Statistical test for the structural properties of hypergraphs
generated by hyper dK-series

In this section, we statistically test whether the hyper dK-series changes each
structural property of a given hypergraph. Consider a combination of any of
the four empirical hypergraphs, any (dv, de) pair, and any of the six structural
properties. To carry out a t-test, we first generate 100 pairs of independent hy-
pergraphs using the hyper dK-series. Second, we measure the distance between
the two hypergraphs in each pair in terms of the distance measure for the se-
lected structural property. We denote by µrand and σrand the mean and standard
deviation, respectively, of the distance calculated on the basis of the 100 pairs
of randomized hypergraphs. Third, we generate another 100 hypergraphs using
the hyper dK-series with the same (dv, de). Fourth, we measure the distance be-
tween the empirical hypergraph and each of the 100 hypergraphs in terms of the
selected structural property. We denote by µemp and σemp the mean and stan-
dard deviation, respectively, of the distance between a randomized hypergraph
and the empirical hypergraph calculated on the basis of the 100 pairs. Finally,
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we calculate the effect size for the t-test, called the Cohen’s d [55], as

d =
µemp − µrand√
(σemp)2+(σrand)2

2

. (S1)

We define d = 0 if both µemp − µrand and (σemp)2 + (σrand)2 are equal to zero.
We regard the effect size to be very small (d = ±0.01), small (d = ±0.2), medium
(d = ±0.5), large (d = ±0.8), very large (d = ±1.2), and huge (d = ±2.0) [55,203].

Table 4.5 shows µrand, σrand, µemp, σemp, and Cohen’s d for the cumulative
degree distribution of the node. The effect size is huge when (dv, de) = (0, 0)
and (0, 1) for all the four empirical hypergraphs because the hyper dK-series with
(dv, de) = (0, 0) and (0, 1) destroys the degree of each node. For the other (dv, de)
values, the effect size is zero because the hyper dK-series with dv ∈ {1, 2, 2.5}
exactly preserves the degree of each node.

Table 4.6 shows the results for the average degree of the nearest neighbors of
nodes with degree k. The effect size is huge when dv is 0 or 1 because the hyper
dK-series with these dv values destroys the degree correlation. When dv is 2 or
2.5, the hyper dK-series intends to preserve the degree correlation of the node.
However, Table 4.6 indicates that the effect size ranges from medium to huge
values, depending on the empirical network and the de value. This is because the
σrand and σemp are small. Nevertheless, the Cohen’s d values in these cases are
much smaller than those for dv = 0 and 1.

Table 4.7 shows the results for the degree-dependent redundancy coefficient of
the node. The effect size is huge when dv is 0, 1, or 2 because the hyper dK-series
with these dv values destroys the redundancy of the node of a given hypergraph.
When dv is 2.5, the hyper dK-series intends to preserve the redundancy of the
node. However, the effect size is huge for all the four hypergraphs and de values.
As in the case of the degree correlation, this is because σrand and σemp are small.
Nevertheless, similar to Table 4.6, d is much smaller with dv = 2.5 than with
dv ≤ 2.

Table 4.8 shows the results for the cumulative size distribution of the hyper-
edge. The effect size is huge when de = 0 for all the four empirical hypergraphs
because the hyper dK-series with de = 0 destroys the size of each hyperedge.
When de = 1, the effect size is equal to zero because the hyper dK-series with
de = 1 exactly preserves the size of each hyperedge.

Tables 4.9 and 4.10 show the results for the distribution of the shortest path
length between nodes and those for the cumulative degree distribution of the one-
mode projection, respectively. For both properties, the effect size is huge in almost
all cases. This result is consistent with the fact that the hyper dK-series does
not intend to preserve these two properties. However, the d value is considerably
smaller when dv or de is larger in most cases.
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Table 4.4: Relative size of the largest connected component of hypergraphs gen-
erated by the hyper dK-series. We show the mean ± standard deviation (SD) for
each parameter set. We calculated the mean and the standard deviation on the
basis of 100 randomized hypergraphs.

Data (dv, de) Mean ± SD

drug

(0, 0) 1.000 ± 0.000
(1, 0) 0.999 ± 0.001
(2, 0) 0.984 ± 0.014
(2.5, 0) 0.980 ± 0.015
(0, 1) 0.999 ± 0.001
(1, 1) 0.999 ± 0.001
(2, 1) 0.974 ± 0.009
(2.5, 1) 0.952 ± 0.014

Enron

(0, 0) 1.000 ± 0.000
(1, 0) 0.999 ± 0.001
(2, 0) 1.000 ± 0.000
(2.5, 0) 0.999 ± 0.001
(0, 1) 1.000 ± 0.000
(1, 1) 1.000 ± 0.000
(2, 1) 0.999 ± 0.001
(2.5, 1) 0.999 ± 0.001

primary-school

(0, 0) 1.000 ± 0.000
(1, 0) 1.000 ± 0.000
(2, 0) 1.000 ± 0.000
(2.5, 0) 1.000 ± 0.000
(0, 1) 1.000 ± 0.000
(1, 1) 1.000 ± 0.000
(2, 1) 1.000 ± 0.000
(2.5, 1) 1.000 ± 0.000

high-school

(0, 0) 1.000 ± 0.000
(1, 0) 0.999 ± 0.001
(2, 0) 1.000 ± 0.000
(2.5, 0) 1.000 ± 0.000
(0, 1) 1.000 ± 0.000
(1, 1) 1.000 ± 0.000
(2, 1) 1.000 ± 0.000
(2.5, 1) 1.000 ± 0.000

88



Table 4.5: Effect size for the cumulative degree distribution of the node.

Data (dv, de) µrand σrand µemp σemp Cohen’s
d

drug

(0, 0) 0.028 0.010 0.603 0.008 62.88
(1, 0) 0.000 0.000 0.000 0.000 0.000
(2, 0) 0.000 0.000 0.000 0.000 0.000
(2.5, 0) 0.000 0.000 0.000 0.000 0.000
(0, 1) 0.027 0.008 0.602 0.008 69.04
(1, 1) 0.000 0.000 0.000 0.000 0.000
(2, 1) 0.000 0.000 0.000 0.000 0.000
(2.5, 1) 0.000 0.000 0.000 0.000 0.000

Enron

(0, 0) 0.062 0.018 0.421 0.019 19.58
(1, 0) 0.000 0.000 0.000 0.000 0.000
(2, 0) 0.000 0.000 0.000 0.000 0.000
(2.5, 0) 0.000 0.000 0.000 0.000 0.000
(0, 1) 0.062 0.020 0.421 0.016 19.98
(1, 1) 0.000 0.000 0.000 0.000 0.000
(2, 1) 0.000 0.000 0.000 0.000 0.000
(2.5, 1) 0.000 0.000 0.000 0.000 0.000

primary-school

(0, 0) 0.053 0.014 0.374 0.009 27.06
(1, 0) 0.000 0.000 0.000 0.000 0.000
(2, 0) 0.000 0.000 0.000 0.000 0.000
(2.5, 0) 0.000 0.000 0.000 0.000 0.000
(0, 1) 0.052 0.013 0.373 0.009 27.86
(1, 1) 0.000 0.000 0.000 0.000 0.000
(2, 1) 0.000 0.000 0.000 0.000 0.000
(2.5, 1) 0.000 0.000 0.000 0.000 0.000

high-school

(0, 0) 0.045 0.011 0.312 0.010 25.51
(1, 0) 0.000 0.000 0.000 0.000 0.000
(2, 0) 0.000 0.000 0.000 0.000 0.000
(2.5, 0) 0.000 0.000 0.000 0.000 0.000
(0, 1) 0.042 0.011 0.311 0.010 25.69
(1, 1) 0.000 0.000 0.000 0.000 0.000
(2, 1) 0.000 0.000 0.000 0.000 0.000
(2.5, 1) 0.000 0.000 0.000 0.000 0.000
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Table 4.6: Effect size for the average degree of the nearest neighbors of nodes
with degree k.

Data (dv, de) µrand σrand µemp σemp Cohen’s
d

drug

(0, 0) 0.146 0.065 0.946 0.004 17.35
(1, 0) 0.058 0.007 0.395 0.008 46.99
(2, 0) 0.015 0.002 0.042 0.003 10.05
(2.5, 0) 0.015 0.002 0.042 0.003 10.05
(0, 1) 0.142 0.060 0.946 0.004 18.80
(1, 1) 0.049 0.006 0.394 0.006 58.56
(2, 1) 0.013 0.002 0.022 0.002 3.644
(2.5, 1) 0.013 0.002 0.022 0.002 3.644

Enron

(0, 0) 0.246 0.075 0.794 0.018 10.07
(1, 0) 0.052 0.005 0.194 0.007 22.52
(2, 0) 0.015 0.002 0.013 0.002 -1.087
(2.5, 0) 0.015 0.002 0.013 0.002 -1.087
(0, 1) 0.248 0.081 0.795 0.019 9.300
(1, 1) 0.051 0.005 0.194 0.006 25.25
(2, 1) 0.028 0.004 0.029 0.003 0.425
(2.5, 1) 0.028 0.004 0.029 0.003 0.425

primary-school

(0, 0) 0.257 0.049 0.838 0.017 15.99
(1, 0) 0.021 0.001 0.089 0.002 41.77
(2, 0) 0.006 0.001 0.007 0.001 0.844
(2.5, 0) 0.006 0.001 0.007 0.001 0.844
(0, 1) 0.259 0.058 0.840 0.017 13.56
(1, 1) 0.026 0.002 0.089 0.002 32.88
(2, 1) 0.010 0.001 0.014 0.001 4.733
(2.5, 1) 0.010 0.001 0.014 0.001 4.733

high-school

(0, 0) 0.209 0.051 0.710 0.014 13.38
(1, 0) 0.034 0.004 0.114 0.003 21.34
(2, 0) 0.011 0.002 0.010 0.002 -0.565
(2.5, 0) 0.011 0.002 0.010 0.002 -0.565
(0, 1) 0.211 0.061 0.708 0.015 11.23
(1, 1) 0.042 0.005 0.114 0.004 16.33
(2, 1) 0.020 0.003 0.025 0.002 2.007
(2.5, 1) 0.020 0.003 0.025 0.002 2.007
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Table 4.7: Effect size for the degree-dependent redundancy coefficient of the node.

Data (dv, de) µrand σrand µemp σemp Cohen’s
d

drug

(0, 0) 0.362 0.154 0.975 0.004 5.642
(1, 0) 0.129 0.013 0.638 0.008 47.62
(2, 0) 0.049 0.006 0.430 0.005 68.89
(2.5, 0) 0.042 0.005 0.136 0.006 16.30
(0, 1) 0.328 0.109 0.956 0.006 8.113
(1, 1) 0.124 0.013 0.508 0.008 36.74
(2, 1) 0.063 0.008 0.394 0.006 47.09
(2.5, 1) 0.050 0.006 0.135 0.006 14.77

Enron

(0, 0) 0.379 0.082 0.949 0.005 9.835
(1, 0) 0.278 0.045 0.765 0.011 14.88
(2, 0) 0.104 0.027 0.418 0.014 14.81
(2.5, 0) 0.045 0.011 0.058 0.011 1.186
(0, 1) 0.420 0.082 0.943 0.006 9.013
(1, 1) 0.323 0.049 0.752 0.012 11.99
(2, 1) 0.158 0.027 0.499 0.013 16.28
(2.5, 1) 0.093 0.017 0.148 0.015 3.530

primary-school

(0, 0) 0.324 0.047 0.927 0.008 17.83
(1, 0) 0.147 0.009 0.547 0.006 54.16
(2, 0) 0.058 0.005 0.371 0.008 46.30
(2.5, 0) 0.034 0.004 0.206 0.007 29.40
(0, 1) 0.326 0.054 0.970 0.003 16.91
(1, 1) 0.150 0.012 0.808 0.002 78.27
(2, 1) 0.106 0.008 0.564 0.004 68.08
(2.5, 1) 0.058 0.005 0.115 0.005 11.72

high-school

(0, 0) 0.326 0.048 0.910 0.005 17.26
(1, 0) 0.304 0.079 0.741 0.031 7.296
(2, 0) 0.129 0.019 0.409 0.015 16.32
(2.5, 0) 0.013 0.005 0.030 0.005 3.792
(0, 1) 0.359 0.059 0.965 0.002 14.57
(1, 1) 0.393 0.228 0.895 0.019 3.103
(2, 1) 0.225 0.034 0.761 0.008 22.00
(2.5, 1) 0.044 0.007 0.064 0.008 2.697
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Table 4.8: Effect size for the cumulative size distribution of the hyperedge.

Data (dv, de) µrand σrand µemp σemp Cohen’s
d

drug

(0, 0) 0.023 0.007 0.249 0.011 24.41
(1, 0) 0.022 0.007 0.252 0.010 26.86
(2, 0) 0.022 0.007 0.252 0.010 26.86
(2.5, 0) 0.022 0.007 0.252 0.010 26.86
(0, 1) 0.000 0.000 0.000 0.000 0.000
(1, 1) 0.000 0.000 0.000 0.000 0.000
(2, 1) 0.000 0.000 0.000 0.000 0.000
(2.5, 1) 0.000 0.000 0.000 0.000 0.000

Enron

(0, 0) 0.016 0.006 0.163 0.007 23.91
(1, 0) 0.016 0.006 0.164 0.006 24.36
(2, 0) 0.016 0.006 0.164 0.006 24.36
(2.5, 0) 0.016 0.006 0.164 0.006 24.36
(0, 1) 0.000 0.000 0.000 0.000 0.000
(1, 1) 0.000 0.000 0.000 0.000 0.000
(2, 1) 0.000 0.000 0.000 0.000 0.000
(2.5, 1) 0.000 0.000 0.000 0.000 0.000

primary-school

(0, 0) 0.005 0.002 0.304 0.003 124.64
(1, 0) 0.005 0.002 0.304 0.003 125.55
(2, 0) 0.005 0.002 0.304 0.003 125.55
(2.5, 0) 0.005 0.002 0.304 0.003 125.55
(0, 1) 0.000 0.000 0.000 0.000 0.000
(1, 1) 0.000 0.000 0.000 0.000 0.000
(2, 1) 0.000 0.000 0.000 0.000 0.000
(2.5, 1) 0.000 0.000 0.000 0.000 0.000

high-school

(0, 0) 0.006 0.003 0.325 0.004 96.33
(1, 0) 0.007 0.003 0.324 0.003 105.77
(2, 0) 0.007 0.003 0.324 0.003 105.77
(2.5, 0) 0.007 0.003 0.324 0.003 105.77
(0, 1) 0.000 0.000 0.000 0.000 0.000
(1, 1) 0.000 0.000 0.000 0.000 0.000
(2, 1) 0.000 0.000 0.000 0.000 0.000
(2.5, 1) 0.000 0.000 0.000 0.000 0.000
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Table 4.9: Effect size for the distribution of the shortest path length between
nodes.

Data (dv, de) µrand σrand µemp σemp Cohen’s
d

drug

(0, 0) 0.006 0.005 1.577 0.005 334.86
(1, 0) 0.019 0.012 1.331 0.016 92.60
(2, 0) 0.043 0.024 0.762 0.032 25.39
(2.5, 0) 0.074 0.041 0.437 0.052 7.711
(0, 1) 0.005 0.003 1.609 0.005 435.53
(1, 1) 0.018 0.013 1.416 0.019 85.59
(2, 1) 0.043 0.023 0.788 0.029 28.82
(2.5, 1) 0.077 0.036 0.590 0.045 12.61

Enron

(0, 0) 0.012 0.009 0.607 0.010 61.19
(1, 0) 0.013 0.009 0.489 0.004 70.38
(2, 0) 0.012 0.007 0.434 0.007 60.01
(2.5, 0) 0.016 0.009 0.352 0.014 28.21
(0, 1) 0.009 0.006 0.655 0.009 82.50
(1, 1) 0.015 0.009 0.486 0.005 66.53
(2, 1) 0.013 0.008 0.438 0.008 51.94
(2.5, 1) 0.020 0.012 0.370 0.012 28.35

primary-school

(0, 0) 0.005 0.004 0.860 0.005 191.98
(1, 0) 0.005 0.004 0.706 0.005 166.63
(2, 0) 0.004 0.003 0.372 0.003 124.09
(2.5, 0) 0.004 0.003 0.346 0.004 93.71
(0, 1) 0.004 0.003 0.538 0.003 163.88
(1, 1) 0.003 0.003 0.435 0.003 154.58
(2, 1) 0.003 0.002 0.244 0.003 108.59
(2.5, 1) 0.004 0.003 0.035 0.000 16.02

high-school

(0, 0) 0.004 0.003 0.534 0.000 218.95
(1, 0) 0.006 0.003 0.529 0.002 184.54
(2, 0) 0.005 0.003 0.510 0.003 185.10
(2.5, 0) 0.006 0.003 0.504 0.003 159.05
(0, 1) 0.002 0.001 0.534 0.000 677.59
(1, 1) 0.004 0.002 0.514 0.003 228.79
(2, 1) 0.003 0.002 0.494 0.002 253.58
(2.5, 1) 0.004 0.003 0.440 0.003 156.22
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Table 4.10: Effect size for the cumulative degree distribution of the one-mode
projection.

Data (dv, de) µrand σrand µemp σemp Cohen’s
d

drug

(0, 0) 0.036 0.009 0.663 0.008 73.88
(1, 0) 0.026 0.006 0.237 0.009 27.67
(2, 0) 0.027 0.008 0.086 0.010 6.477
(2.5, 0) 0.029 0.009 0.080 0.011 5.106
(0, 1) 0.035 0.010 0.700 0.008 75.60
(1, 1) 0.031 0.009 0.313 0.012 27.07
(2, 1) 0.030 0.008 0.052 0.009 2.609
(2.5, 1) 0.032 0.009 0.045 0.009 1.532

Enron

(0, 0) 0.087 0.025 0.379 0.011 14.88
(1, 0) 0.049 0.011 0.074 0.008 2.553
(2, 0) 0.041 0.011 0.085 0.012 3.792
(2.5, 0) 0.046 0.011 0.071 0.011 2.274
(0, 1) 0.072 0.017 0.390 0.017 18.47
(1, 1) 0.058 0.013 0.081 0.012 1.880
(2, 1) 0.044 0.010 0.057 0.010 1.297
(2.5, 1) 0.050 0.012 0.050 0.010 -0.070

primary-school

(0, 0) 0.069 0.018 0.697 0.015 38.60
(1, 0) 0.038 0.006 0.370 0.008 44.64
(2, 0) 0.027 0.006 0.359 0.005 60.54
(2.5, 0) 0.028 0.005 0.359 0.006 58.58
(0, 1) 0.054 0.015 0.385 0.011 24.59
(1, 1) 0.029 0.005 0.044 0.004 3.198
(2, 1) 0.024 0.004 0.032 0.003 2.326
(2.5, 1) 0.025 0.004 0.032 0.004 1.738

high-school

(0, 0) 0.056 0.018 0.628 0.014 35.84
(1, 0) 0.035 0.008 0.361 0.013 31.38
(2, 0) 0.027 0.006 0.321 0.008 41.20
(2.5, 0) 0.030 0.006 0.320 0.008 42.14
(0, 1) 0.047 0.012 0.347 0.009 28.38
(1, 1) 0.027 0.005 0.072 0.005 9.151
(2, 1) 0.024 0.004 0.050 0.004 6.595
(2.5, 1) 0.024 0.004 0.049 0.004 6.194
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Chapter 5

Higher-Order Rich-Club Phenomenon in
Collaborative Research Grant Networks

5.1 Introduction

The reliance on teamwork in scientific work has increased over the past decades
[75]. Funded research projects are often collaborative among institutions, and
institutions with many collaborations tend to be densely connected to each other,
which is known as the rich-club phenomenon in networks of research grant col-
laborations [147].

In this chapter, we represent grant collaboration networks among institutions
as bipartite networks to investigate the properties of grant collaborations between
two or more institutions. Despite coordination cost that collaborating institutions
owe, it is not uncommon that more than two institutions participate in a funded
research project [12, 60, 61]. Grants with large monetary amounts often require
or at least encourage inter-institutional collaboration and are sometimes a main
reason for collaboration among institutions [39]. Large grant teams in terms of
the number of investigators tend to be more productive [58], and collaboration
with such large and productive teams tends to lead to receiving future grants [69],
which may also lead to an increase in the number of collaborating institutions.
These observations motivate us to investigate networks of higher-order grant col-
laborations among institutions.

The relationships between research funding and research productivity have
been investigated for individual grants [129], investigators [29, 70, 107], institu-
tions [38, 147, 183, 195], and geographical regions [256]. Understanding such re-
lationships is expected to assist the government and other stakeholders to de-
velop strategies for allocating research funds to different units for enhancing re-
search productivity. Evidence supports positive correlations between the mone-
tary amount of research funding received by an institution and its research pro-
ductivity [38,147,183,195]. On the other hand, the per-dollar productivity of an
institution that receives a large amount of research funding tends to be diminish-
ing [8,231,246,252]. Given this, in the present study we ask the following question:
do institutions participating in many collaborative grants gain advantages in their
per-dollar productivity when they densely collaborate with each other (i.e., they
form a rich club) in research grants? We examine this question using bipartite-
network representation of collaborative grants among institutions, which allows
us to investigating relationships among rich clubs, research productivity, and the
collaboration size.
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Collaborative grant 𝑢!
Institution Award number Award amount
𝑣! 0000001 $100,000

𝑣" 0000002 $200,000

(b)(a)

𝑢! 𝑢"𝑢#

𝑣! 𝑣# 𝑣" 𝑣$

Collaborative grant 𝑢"
Institution Award number Award amount
𝑣! 0000003 $500,000

𝑣" 0000004 $200,000

𝑣# 0000005 $300,000

Collaborative grant 𝑢$
Institution Award number Award amount
𝑣" 0000006 $1,000,000

𝑣$ 0000007 $700,000

𝑣# 0000008 $400,000

Figure 5.1: An example of three collaborative grants and the corresponding bi-
partite network of institutions and collaborative grants.

5.2 Methods

5.2.1 Construction of data sets

Collaborative grants

We use publicly available data on the grants administered by the National Sci-
ence Foundation (NSF) [6]. We focused on the collaborative grants in each of
which multiple institutions participate and each institution was responsible for a
separate award. Therefore, each collaborative grant is composed of a set of linked
awards each of which is separately administered by a single institution. For this
type of collaborative grant, research proposals submitted by collaborating insti-
tutions must have the same project title beginning with ‘Collaborative Research:’
(e.g., see Ref. [3] for the latest guide posted by the NSF. We confirmed that this
rule was applied at least since 1999 [1]). Therefore, we first collected the data of
the awards with the project title beginning with ‘Collaborative Research:’ and
the start date between January 1, 2000 and December 31, 2020. Second, we iden-
tified the set of institutions that received at least one such award. Third, we used
the Wikipedia APIs [5] to categorize each institution into one of 48 types; see
Table 5.1 for the complete list of institution types. Fourth, we obtained the data
of the awards received by the institutions whose type name includes ‘university’,
‘college’, or ‘school’ (see Section 5.5 for the list of institution types that we fo-
cused on). Among these institutions, there are 14,081 collaborative grants each
of which contains at least two awards (i.e., institutions). Fifth, for each collabo-
rative grant, we identified the set of participating institutions, the 7-digit award
number (i.e., ID) assigned to each participating institution, and the monetary
amount distributed to each participating institution.

To quantify the research outputs produced under the collaborative grants,
we use the Web of Science Core Collection database [7]. There are 1,082,349
papers that were published between January 1, 2000 and December 31, 2020 and
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include at least one of the words‘National Science Foundation’ and‘NSF’ in the
acknowledgment section. The fraction of papers with acknowledgment data in this
data set has increased since 2008 because the Web of Science started recording the
funding acknowledgment data in August 2008 [4]. For each of these papers, we
extracted the 7-digit award numbers mentioned in the acknowledgement section,
the number of times cited by other papers in the database, the research disciplines
assigned to the paper, which is available in the data set, the publication year, and
the document type. We retained the 1,066,324 papers whose document types are
either‘Article’,‘Review’,‘Letter’,‘Editorial Material’,‘Meeting Abstract’ or
‘Proceedings Paper’, as suggested in Ref. [232]. Then, for each award comprising
a collaborative grant, we identified the papers that mentioned its award number in
the acknowledgment section. We removed the collaborative grants with less than
five published papers in the database because such collaborative grants often have
extreme productivity values due to the small number of the associated papers.
Then, we were left with 7,026 collaborative grants, each of which is associated
with at least five of the 101,283 published papers. These collaborative grants
have been awarded to 570 institutions in total.

Single-institution grants

For comparison, we also analyzed the grants that were composed of just one
award given to one institution. To prepare such data, we first identified the
awards of which the project title did not begin with ‘Collaborative Research:’
and the start date was between January 1, 2000 and December 31, 2020. There
are 148,795 awards that meet these criteria and have been received by any of the
570 institutions that have participated in at least one collaborative grant. Second,
for each of these awards, we identified the institution that received the award, the
7-digit award number (i.e., ID) assigned to the institution, the monetary amount
of the award, and the first and last names of a principal investigator (PI) and
co-PIs. Third, for each award, we identified the papers that mentioned its award
number in the acknowledgment section. We removed the awards associated with
less than five published papers in the Web of Science database. Then, we were left
with 41,510 awards. According to the NSF’s guide [3], these awards belong to one
of the following three types of grant: (i) single-institution grant without co-PI,
(ii) single-institution grant in which all the co-PIs are from the same institution as
the PI’s, and (iii) collaborative grant in which at least one co-PI from a different
institution from the PI’s participates and the PI’s institution is responsible for
the award.

We focus on the awards of types (i) and (ii) because they are genuine single-
institution grants. We found 24,866 awards of type (i) among the 41,510 awards.
It is not straightforward to classify the remaining 16,644 awards into types (ii)
and (iii) because the affiliations of the co-PIs are not available in our data set.
Therefore, we attempted to identify the awards of type (ii) as follows. First, for
each co-PI in a given award, we obtain the set of candidate affiliations of the co-PI
as the set of the affiliations of the authors who have the same first name initial
and the same full last name as the co-PI in any of the papers associated with
the award. Second, we regard that an award is of type (ii) if and only if the set
of candidate affiliations of every co-PI in the award includes the institution that
has received the award. We obtained 7,854 awards of type (ii) among the 16,644
awards with co-PIs. Otherwise, we regard that the award is of type (iii).

In summary, we obtained 24, 866 + 7, 854 = 32, 720 single-institution grants,
each of which is associated with at least five of the 363,116 published papers.
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These grants have been awarded to 441 institutions in total.

5.2.2 Bipartite network of institutions and collaborative grants

From the data on the collaborative grants, we construct a bipartite network
that consists of a set of institutions V = {v1, . . . , vN}, where N is the num-
ber of institutions, a set of collaborative grants U = {u1, . . . , uM}, where M
is the number of collaborative grants, and a set of edges E. An edge (vi, uj)
exists between institution vi and collaborative grant uj if and only if vi re-
ceived an award in the collaborative grant uj . A unique 7-digit award num-
ber and a unique monetary amount are associated with each edge (vi, uj) ∈ E.
We denote by ki the degree of vi, i.e., the number of awards that institution
vi received from collaborative grants. We denote by sj the degree of uj , i.e.,
the number of collaborating institutions in collaborative grant uj . We show in
Fig. 5.1 a hypothetical bipartite network of four institutions and three collabo-
rative grants. In this example, we have V = {v1, v2, v3, v4}, U = {u1, u2, u3},
E = {(v1, u1), (v1, u2), (v2, u1), (v2, u2), (v2, u3), (v3, u3), (v4, u2), (v4, u3)}, k1 =
2, k2 = 3, k3 = 1, k4 = 2, s1 = 2, s2 = 3, and s3 = 3.

5.2.3 Detection of rich clubs

A rich club of a dyadic network is defined as a subnetwork in which the nodes with
the highest degrees (i.e., the nodes with the largest numbers of connected edges)
are densely inter-connected to each other [57,253]. There are a few studies on rich
clubs in bipartite networks. Opsahl et al. investigated rich clubs in a bipartite
network of academic authors and papers [179]. They constructed a weighted uni-
partite network in which the weight of each edge between two authors is equal to
the number of coauthored papers, which corresponds to the one-mode projection
of the bipartite network to a unipartite network, and then applied a method to
detect weighted rich clubs for dyadic networks. The same method was applied
to detect a rich club in a bipartite bran network [59], a bipartite transportation
network [74], and a bipartite technological network [53]. In the present work,
we investigate rich clubs in higher-order networks of collaborative grants among
institutions, which one-mode projection does not characterize. Specifically, we
develop and apply a method to detect rich clubs in bipartite networks without
using the one-mode projection.

We define a rich club of a given bipartite network composed of institutions
and collaborative grants in which the institutions with the largest degrees densely
collaborate with each other. To compute the rich club, we first calculate the
rich-club coefficient, denoted by ϕ(k), for the original bipartite network for a
given degree k. By extending the definition for dyadic networks [57, 253], we
define ϕ(k) as the number of collaborative grants that are exclusively composed
of the institutions with a degree larger than k divided by the maximum possible
number of collaborative grants that are exclusively composed of some of these
nodes. Formally, we define

ϕ(k) =
|U>k|∑N>k

i=2

(
N>k
i

) , (5.1)

where U>k is the set of collaborative grants that are exclusively composed of the
institutions with a degree larger than k, and N>k is the number of institutions
with a degree larger than k. To examine the presence of a rich club, we need
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to compare ϕ(k) with values for a reference model [57]. Therefore, we define the
normalized rich-club coefficient, denoted by ρ(k), as

ρ(k) =
ϕ(k)

ϕrand(k)
, (5.2)

where ϕrand(k) is the rich-club coefficient for the reference model of bipartite
network. If ρ(k) is sufficiently larger than 1, we say that the institutions with
a degree larger than k form a rich club. For dyadic networks, a standard choice
of the reference model is the configuration model, which randomizes the edges
of the original network while preserving the degree of each node [57]. Here we
use a counterpart of the configuration model for bipartite networks in which we
randomize the edges of the original bipartite network while preserving the degree
of each institution and each collaborative grant [166, 178]. We compute ϕrand(k)
as the rich-club coefficient averaged over 10,000 randomized bipartite networks.

5.2.4 Measuring research productivity for awards, institutions, and
grants

Each award in collaborative grants is associated with a monetary amount and
a set of journal and conference papers supported by the award, with which we
calculate the per-dollar research productivity [129] as follows. First, to compare
the citation count across different publication years and research disciplines, we
normalize the number of citations received by each of the 101,283 papers, which
are associated with at least one collaborative grant [187, 232]. To this end, we
denote by c the number of citations that a given paper z has received. We define
c0 as the number of citations that a paper that was published in the same year
as z and belongs to a research discipline assigned to z has received on average.
Specifically, we set c0 = (

∑
d∈D(z) c̄d,y(z))/|D(z)|, where D(z) is the set of the

research disciplines assigned to z, |D(z)| is the number of research disciplines to
which z belongs, y(z) is the publication year of z, and c̄d,y(z) is the average number
of citations received by the papers published in discipline d and year y(z). Each
paper is assigned to at least one of the 42 research disciplines [102] (see Section
5.6 for details). We define the normalized number of citations received by z as
c/c0. Then, we define the per-dollar productivity of the award given to institution
vi in collaborative grant uj , denoted by xij , as the sum of c/c0 over all the papers
associated with the award, which we then divide by the monetary amount of the
award.

We measure the productivity of collaborative funded research for a given sub-
set of institutions, denoted by V ′ (V ′ ⊆ V ), as follows. We first calculate the
average per-dollar productivity of the awards in collaborative grants that the
institutions in V ′ have received, denoted by x̄inst(V

′). Then, we define the nor-
malized productivity for the set of institutions V ′ as x̄inst(V

′)/x̄, where x̄ is the
average per-dollar productivity of all the awards in collaborative grants. For
example, when we consider the set of institutions V ′ = {v1, v3} in a bipartite
network shown in Fig. 5.1(b), we obtain x̄inst(V

′) = (x11 + x12 + x33)/3. Note
that x̄ = (x11 + x12 + x21 + x22 + x23 + x33 + x42 + x43)/8. If the normalized
productivity is larger than 1, the productivity of V ′ is higher than the average
productivity of all the institutions.

We measure the productivity of a given subset of collaborative grants, de-
noted by U ′ (U ′ ⊆ U), as follows. We first calculate the average per-dollar
productivity of the awards in U ′, denoted by x̄grant(U

′). We are interested in
whether institutional collaborations yield higher productivity than the average
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productivity of the participating institutions. Therefore, we define the normal-
ized productivity of U ′ as x̄grant(U

′)/x̄inst(V
′(U ′)), where V ′(U ′) is the set of

institutions participating in at least one collaborative grant in U ′. Note that
x̄inst(V

′(U ′)) is the average per-dollar productivity of the awards that the institu-
tions in V ′(U ′) have received. As an example, let us consider the set of collabora-
tive grants U ′ = {u1, u2} in a bipartite network shown in Fig. 5.1(b). One obtains
x̄grant(U

′) = (x11 + x21 + x12 + x22 + x42)/5. Because set of institutions V ′(U ′) is
{v1, v2, v4}, one obtains x̄inst(V

′(U ′)) = (x11+x12+x21+x22+x23+x42+x43)/7.
If the normalized productivity is larger than 1, the productivity of the collabo-
rative grants in U ′ is higher than the average productivity of the institutions
participating in a collaborative grant in U ′.

To quantify the productivity of single-institution grants, we adapt the above
procedure for collaborative grants to the case of single-institution grants as fol-
lows. First, we construct a bipartite network composed of institutions and single-
institution grants. Second, we normalize the number of citations received by
each of the 363,116 papers that are associated with at least one single-institution
grant by the publication year and research discipline. Then, we directly apply
the definitions of productivity in the case of bipartite networks of institutions and
collaborative grants to the bipartite networks of institutions and single-institution
grants.

5.3 Results

5.3.1 Higher-order rich clubs in collaborative grants

We explore possibility of higher-order rich clubs in collaborative grants. We are
also interested in how a rich-club phenomenon depends on the number of insti-
tutions in a collaborative grant. Therefore, we calculate the normalized rich-club
coefficients for the entire bipartite network and the bipartite subnetwork induced
by the collaborative grants of degree (i.e., the number of collaborating institu-
tions), s. We consider s ∈ {2, 3, 4, 5} because collaborative grants with s ≥ 6 are
rare; there are less than 100 grants for each s ≥ 6.

Figure 5.2(a) shows the normalized rich-club coefficients for the different bi-
partite networks. Figure 5.2(a) indicates that the entire bipartite network shows
a rich-club phenomenon (i.e., rich-club coefficient > 1.10, although this crite-
rion is arbitrary) for the threshold of the number of awards from collaborative
grants, k, approximately 100 ≤ k ≤ 200. (The P -value is less than 0.005 for
1 ≤ k ≤ 193 according to the Bonferroni-corrected permutation test; see Section
5.7.) The rich-club coefficient reaches the maximum value of approximately 1.21
at k = 144. The figure also indicates that, although the bipartite subnetwork
with s = 2 has rich clubs that are statistically significant (see Section 5.7), the
rich-club coefficient values are modest with the largest value of 1.13. In contrast,
the bipartite subnetwork only composed of collaborations among s = 3 institu-
tions, the subnetwork restricted to s = 4, and that restricted to s = 5 show
relatively strong and persistent rich clubs across a range of k. Therefore, the
institutions that receive the largest numbers of awards from either the triadic,
quartic, and quintic collaborative grants tend to more densely collaborate with
each other than the institutions with the largest numbers of awards from dyadic
collaborative grants. Note that the normalized rich-club coefficient for the en-
tire bipartite network (diamonds in Fig. 5.2(a)) is mostly determined by that for
the subnetwork induced by the dyadic collaborative grants (crosses in Fig. 5.2(a)).
This is because dyadic collaborative grants are dominant in number; they account
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Figure 5.2: Rich-club phenomena in networks of grant collaboration. (a) Nor-
malized rich-club coefficient ρ(k) as a function of the number of awards that the
institution received from collaborative grants. We measured ρ(k) for the entire
network (labeled “All collaborations”), the subnetwork only composed of collab-
oration between s = 2 institutions, that with s = 3, s = 4, and s = 5. In this
figure, Fig. 5.3(b), Fig. 5.4(a)–(e), and Fig. 5.5, we omit data points for a given
value of k if there are less than five instances contributing to the data point.
(b) Rank correlation matrix between the different networks, where the rank is in
terms of the number of awards in collaborative grants that the institution has
received. We used the top 50 institutions in the entire network to calculate the
rank correlation. (c) PCA result for the 50 institutions with the largest numbers
of awards in the entire network. The number indicates the institution’s rank in
the entire network. See Section 5.8 for the names of the 50 institutions.
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for approximately 67% of all the collaborative grants.
We next compare the rich clubs in the different subnetworks. We focus on the

50 institutions with the largest numbers of awards in the entire bipartite network
of collaborative grants. For these institutions, we calculate the Spearman’s rank
correlation coefficient in terms of the number of awards between each pair of the
five bipartite networks (i.e., the entire network, s = 2 subnetwork, s = 3 subnet-
work, s = 4 subnetwork, and s = 5 subnetwork). We show the rank correlation
for all pairs of networks in Fig. 5.2(b). We find that the entire network is the most
strongly correlated with the s = 2 subnetwork. This result is expected because
the collaborations between s = 2 institutions are by far the largest contributor
to the entire network. Figure 5.2(b) also indicates that the correlation is larger
when s is closer between two subnetworks.

This result led us to hypothesize that some institutions are good at securing
collaborative grants involving fewer institutions, while other institutions are the
opposite. To test this hypothesis, we classify the same 50 institutions using a
principal component analysis (PCA). To run the PCA, we encode each institution
into a four-dimensional vector composed of the normalized number of awards in
collaborative grants with s = 2, s = 3, s = 4, and s = 5. Specifically, we scale
each entry of the vector to have mean 0 and standard deviation 1. Then, we run
the PCA on the normalized vectors using the scikit-learn library [186].

We show the PCA result in Fig. 5.2(c). Each data point is labeled with the
institution’s rank in terms of the number of awards in collaborative grants that
the institution has received; see Table 5.2 for the names of the 50 institutions.
The first two principal components, denoted by PC1 and PC2, explain 74.7% and
13.1% of the variance of the data, respectively. Therefore, we conclude that the
two-dimensional representation of the institutions shown in Fig. 5.2(c), where the
two axes correspond to PC1 and PC2, is sufficient. The eigenvector corresponding
to PC1 is (0.53, 0.54, 0.49, 0.44), which indicates that the number of awards from
collaborative grants of any size of collaboration approximately equally contributes
to PC1. As expected, institutions with a higher rank (i.e., data points labeled
with a smaller number in Fig. 5.2(c)) tend to have a higher PC1 value. The
eigenvector corresponding to PC2 is (−0.25,−0.28,−0.22, 0.89). Therefore, the
PC2 classifies the 50 institutions into those frequent in collaborations with smaller
numbers of institutions (i.e., 2 ≤ s ≤ 4) and those frequent in collaborative
grants with s = 5. For example, the University of California, Berkeley ranks the
11th, 11th, 3rd, and 1st in the s = 2, s = 3, s = 4, and s = 5 subnetworks,
respectively; University of Washington ranks the 6th, 2nd, 9th, and 2nd in the
same four subnetworks; University of Colorado at Boulder ranks the 8th, 7th,
4th, and 4th; University of California, Los Angeles ranks the 24th, 29th, 22nd,
and 7th; University of California, Santa Barbara ranks the 22nd, 38th, 42nd,
and 8th; Rice University ranks the 45th, 44th, 82nd, and 6th. The latter three
universities have a much higher rank in the subnetwork with s = 5 than that
in the entire network. The behavior of institutions with a low PC2 value is the
opposite. For example, University of Illinois at Urbana-Champaign ranks the 1st,
1st, 8th, and 10th in the s = 2, s = 3, s = 4, and s = 5 subnetworks, respectively;
University of Michigan, Ann Arbor ranks the 3rd, 3rd, 5th, and 17th in the same
four subnetworks; Massachusetts Institute of Technology ranks 5th, 9th, 12th,
and 28th; Duke University ranks 18th, 18th, 34th, and 55th; Virginia Polytechnic
Institute and State University ranks 32nd, 19th, 14th, and 53rd.
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Figure 5.3: Research productivity of award-rich institutions. We analyze the
single-institution grants, all the collaborative grants, and the collaborative grants
with different values of s. (a) Rank plot of the institutions in terms of the number
of awards. (b) Normalized productivity of the institutions with more than k
awards from grants. We denote by V>k the set of those institutions.

5.3.2 Research productivity of the institutions with the largest num-
bers of collaborative grants

We now investigate research productivity of the institutions with the largest num-
bers of awards from collaborative grants. Note that these institutions form pu-
tative rich clubs. For comparison, we also analyze the research productivity of
the institutions with the largest numbers of awards from single-institution grants.
Here we analyze the data separately for all the collaborative grants, the collabo-
rative grants comprising s ∈ {2, 3, 4, 5} institutions, and single-institution grants.

First, we show the rank plot of the number of awards received by the in-
stitution, k, in Fig. 5.3(a). The figure indicates that k is skewed toward the
top-ranked institutions. For example, the top 20% of institutions obtained ap-
proximately 82% of the awards in collaborative grants and approximately 79% of
the awards in single-institution grants. This result is consistent with the concen-
tration of research funding in top-ranked institutions observed in the NSF [242],
the National Institutes of Health grants in the US [130,231], and the Engineering
and Physical Sciences Research Council grants in the UK [147]. We also found
that the top-ranked institutions less dominate the distribution of awards in the
case of collaboration with a larger number of institutions (i.e., larger s). For ex-
ample, the top 20% of institutions account for approximately 79% of the awards in
single-institution grants (i.e., s = 1), 76% for s = 2, 70% for s = 3, 60% for s = 4,
and 53% for s = 5. To be further quantitative, we have calculated the coefficient
of variation for the distribution of the number of awards, which is equal to 1.75,
1.67, 1.49, 1.17, and 0.95 for s = 1, s = 2, s = 3, s = 4, and s = 5, respectively;
the Gini coefficient is 0.74, 0.72, 0.66, 0.56, and 0.46 for s = 1, s = 2, s = 3,
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s = 4, and s = 5, respectively.
Second, we show the normalized productivity of the institutions as a function

of k in Fig. 5.3(b). We find that the institutions with approximately 100 or more
awards from collaborative grants tend to be less productive in the per-dollar sense
than those with fewer awards. Similarly, the institutions with approximately 100
or more awards from single-institution grants tend to be less productive than
those with fewer awards. This result of the diminishing per-dollar productivity
at the institution level is consistent with the previous results [8, 231, 246, 252].
Figure 5.3(b) also indicates that similar diminishing productivity is present for
collaborative grants of different collaboration sizes, s ∈ {2, 3, 4, 5}.

5.3.3 Research productivity of the collaborative grants within rich
clubs

Given the results shown in Fig. 5.3, rich clubs may be detrimental to productivity
because a rich club is a set of high-degree nodes, i.e., institutions with many
awards. However, Fig. 5.3 does not imply that collaborative grants among rich-
club institutions are not productive; we did not look into collaboration among rich-
club institutions with Fig. 5.3. Therefore, we now investigate possible associations
between the rich clubs in collaborative grant networks and research productivity.
We first validate the productivity of the collaborative grants within rich clubs,
which are exclusively composed of the institutions with the largest numbers of
awards. We denote by U>k,≥p the set of collaborative grants in which the fraction
of the institutions with more than k awards from collaborative grants is at least
p. We compare productivity of the collaborative grants, U>k,≥p, for different p
values.

We show in Fig. 5.4 the normalized productivity of the collaborative grants in
U>k,≥p for different values of k and p for the entire network and the subnetwork
of each collaboration size s ∈ {2, 3, 4, 5}. For the entire network, Fig. 5.4(a)
indicates that the collaborative grants in U>k,≥p with p = 1 and large k tend to
be more productive than the expectation for the participating institutions. The
maximum value of the normalized productivity is approximately 1.15 at k = 159.
The figure also indicates that the collaborative grants in U>k,≥p with p = 1 for
given value of k tend to have a higher normalized productivity than those in
U>k,≥p with 0 < p < 1. For example, at k = 159, the normalized productivity is
1.15, 1.10, 1.00, 0.97, and 0.98 for p = 1, p = 0.8, p = 0.6, p = 0.4, and p = 0.2,
respectively. Figures 5.4(b)–(e) indicate that the normalized productivity for
U>k,≥p with p = 1 tends to be larger than 1 at large k values in the subnetwork
with s ∈ {2, 3, 4, 5}. This result is qualitatively the same as that for the entire
collaboration network shown in Fig. 5.4(a). Figures 5.4(b)–(e) also indicate that
the normalized productivity for U>k,≥p with p = 1 tends to be larger than that
for U>k,≥p with 0 < p < 1 in each subnetwork with s ∈ {2, 3, 4, 5}. By definition,
the normalized productivity of the single-institution grants is exactly equal to
1 for any k. Altogether, these results indicate that collaborations among the
institutions with the largest numbers of collaborative grants tend to be productive,
not because such institutions tend to be strong in research but because they
collaborate.

To further investigate the association between rich clubs and productivity,
we investigate relationships between the normalized rich-club coefficient, ρ(k),
and the normalized productivity of the collaborative grants that are exclusively
composed of the institutions in the rich club. We denote by U>k the set of
collaborative grants that are exclusively composed of the institutions with more

104



0

(b)

(c) (d)

(e)

(a)

Figure 5.4: Advantage of collaborations between the award-rich institutions. We
plot the normalized productivity of the collaborative grants in each of which
fraction of the institutions receiving more than k awards from collaborative grants
is at least p. We denote by V>k,≥p the set of the institutions participating in at
least one collaborative grant in U>k,≥p. (a) Entire network. (b) Subnetwork with
s = 2. (c) Subnetwork with s = 3. (d) Subnetwork with s = 4. (e) Subnetwork
with s = 5.
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Figure 5.5: Overlay of the rich-club coefficient and productivity of the collabora-
tive grants. Each panel shows the normalized rich-club coefficient and the nor-
malized productivity as a function of the number of awards k that the institution
has received from collaborative grants. (a) Entire network. (b) Subnetwork with
s = 2. (c) Subnetwork with s = 3. (d) Subnetwork with s = 4. (e) Subnetwork
with s = 5.
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than k awards from collaborative grants. Note that U>k is equivalent to U>k,≥p

with p = 1. If ρ(k) is sufficiently larger than 1, then U>k is the set of collaborative
grants contained in the rich club. Therefore, if rich clubs are associated with high
research productivity, the normalized productivity of U>k should be larger than
1 for the k values at which ρ(k) is sufficiently larger than 1.

We show in Fig. 5.5 the plots of ρ(k) and the normalized productivity of
U>k against k, separately for the entire network and the subnetworks with s ∈
{2, 3, 4, 5}. The figure indicates that the normalized productivity of U>k tends
to be larger than 1 if ρ(k) is larger than 1 in the entire network (Fig. 5.5(a)).
For example, ρ(k) is largest at k = 144. The institutions with more than 144
awards collaborate with each other approximately 21% more densely than in a
randomized network (i.e., ρ(144) ≈ 1.21). The productivity of the collaborative
grants in U>144 is approximately 14% higher than expected from the average
productivity of the institutions participating in a collaborative grant in U>144.
However, at k = 299, the rich club is absent (i.e., ρ(299) ≈ 0.67), and the produc-
tivity of the collaborative grants in U>299 is 30% lower than the expectation for
the participating institutions. The Pearson correlation coefficient between ρ(k)
and the normalized productivity, where we regarded a pair of these two quanti-
ties for a value of k as a data point, is equal to r = 0.85 (P -value is less than
0.001). We also found a significant positive correlation between these two quan-
tities for the subnetwork with s = 2 (r = 0.89, P < 0.001; see Fig. 5.5(b)), s = 4
(r = 0.61, P < 0.005; see Fig. 5.5(d)), and s = 5 (r = 0.98, P < 0.001; see
Fig. 5.5(e)). For the subnetwork with s = 3, while we found a negative correla-
tion (r = −0.81, P < 0.001; see Fig. 5.5(c)), the normalized productivity tends
to be larger than 1 if ρ(k) is larger than 1 for approximately 1 ≤ k ≤ 45.

5.4 Discussion

We investigated higher-order rich-club phenomena in networks of collaborative
research grants. To this end, we developed a method to detect rich clubs in bi-
partite networks. We observed rich clubs in both the entire bipartite network
and the subnetworks induced by the collaborative grants with a given number of
collaborating institutions, s, where s ∈ {2, 3, 4, 5}. The subnetworks with s = 3,
4, and 5 had stronger rich clubs than that with s = 2. Regarding performances
of rich clubs, we found that the collaborative grants within rich clubs tend to
have higher per-dollar productivity than the average productivity expected for
the institutions participating in the collaboration. We emphasize that the higher
productivity of rich clubs is a genuine effect of collaboration because the produc-
tivity of the single-institution grants is normalized to 1. These results support our
hypothesis that collaborations among institutions in rich clubs are productive.

Our results extend the findings on the rich clubs in grant collaboration net-
works shown in a previous study [147] in the following two aspects. First, we found
that some collaboration-rich institutions tend to densely collaborate with each
other in research grants involving fewer institutions, whereas other collaboration-
rich institutions tend to do so in research grants involving more institutions. One
factor underlying this phenomenon may be strategies of individual institutions
regarding interdisciplinary research projects. Evidence suggests that interdisci-
plinary research projects are less likely to attract funding in a short term [40],
whereas they positively contribute to long-term funding performance [213]. This
tendency may affect funding strategy of individual researchers and institutions,
which may affect the distribution of the size of collaboration in terms of the num-
ber of institutions for the institution to which the researchers belong. Note that
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Ma et al. employed the one-mode projection and therefore the impact of the size
of collaboration is not a question that they focused on in their study. Second, the
benefits of rich clubs to the per-dollar productivity seem to come from collabora-
tions among the institutions that belong to the rich clubs. Ma et al. indicated that
the rich clubs attract a large number or monetary amount of awards and tend to
produce a large number of papers with high quality [147]. In contrast, our results
indicate that collaborations among the institutions in rich clubs are productive
in terms of the per-dollar productivity, whereas the institutions themselves with
many collaborations are not particularly productive.

The generality of rich clubs in grant collaboration networks deserves further
investigation. For example, the presence of rich-club phenomena and their as-
sociation with productivity may be stronger in some research disciplines than in
others. Our results do not guarantee the benefits of rich clubs in productivity
across different disciplines. In fact, the strength of the correlation between pro-
ductivity and institutional collaborations in writing papers substantially depends
on research disciplines [11]. Rich clubs and their relevance to research productivity
may also depend on funding agencies. The National Institute of Health financially
encourages that multiple investigators with expertise in different health profession
fields work together in research projects [143], which may lead to rich-club phe-
nomena in networks in which the node is a department or institution. Moreover,
higher-order rich-club phenomena in grant collaboration networks may depend on
the definition of the node. In fact, Ma et al. reported that a British collabora-
tion network among investigators in which an edge represents two investigators’
co-funded research projects does not have rich clubs [147].

We did not address causality between rich clubs and research productivity.
Furthermore, the higher productivity of the collaborative grants within the rich
clubs may be associated with various properties of the member institutions other
than the density of their collaborations, including the internationality of the fac-
ulty [149], departmental and institutional size [68], grant type [107], and funding
support from industries [94], which may affect productivity. Additionally, there
are other forms of dense mesoscopic structure of grant collaboration networks,
most famous one of which is probably the community structure. Such other forms
of dense mesoscopic structure may also affect research productivity. Examples of
collaborations that may form such mesoscopic or community structures include
teams composed of private universities that may be subsidized by their financial
resources [12], collaborations among investigators from different departmental af-
filiations [158], and collaborations between universities and industries [19]. More-
over, many co-authorship networks among authors also show structures including
the community structure and rich clubs [82, 179, 251]. The present method is
also applicable to the investigation of higher-order rich-club phenomena in co-
authorship networks. Further exploring the associations and causality between
mesoscopic structure of networks involving higher-order interaction and research
productivity for various types of scientific collaborations warrants future work.
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5.5 Institution types

Table 5.1 shows the list of institution types that we have used.

5.6 Research disciplines

Each paper in our data set is originally assigned to at least one of the 153 research
disciplines defined in the Web of Science Core Collection database. However,
some disciplines contain, for example, only one paper published in a given year.
Therefore, we used a previously proposed set of 42 disciplines that is a coarse
graining of the original categorization [102]. See Supplementary Table S1 in Ref.
[102] for the mapping from the 153 disciplines to the 42 disciplines.

5.7 Statistical test for normalized rich-club coefficients

To assess the significance of the normalized rich-club coefficient, we ran the per-
mutation test employed in previous studies [225, 226, 235]. We denote by D the
set of degrees, k, such that there are at least five collaborative grants in which
only the institutions with more than k awards participate. For a given degree
k ∈ D, we calculate the rich-club coefficient of the original network, i.e., ϕ(k),
and 10,000 values of ϕrand(k) using the random bipartite network model. Then,
for each k ∈ D, we define the P -value as the fraction of the ϕrand(k) values that
are larger than ϕ(k). Our null hypothesis is that ϕ(k) is equal to the average of
the 10,000 values of ϕrand(k). The alternative hypothesis is that ϕ(k) is larger
than the average of the 10,000 values of ϕrand(k). We test the null hypothesis
with Bonferroni-adjusted α-level of 0.005/|D| for each degree k ∈ D. We show
in Fig. 5.6 the significant and nonsignificant rich-club coefficients for the entire
network and the different subnetworks.

5.8 Top 50 institutions in terms of the number of collaborative
grants

Table 5.2 shows the top 50 institutions with the largest number of awards from
collaborative grants.
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Table 5.1: Types of institutions. The institutions not found
on the Wikipedia database are assigned ‘N/A’ type. Those
with * are the types of institution that we have used in the
present study.

Aquarium *Private university
Arboretum Public academic health science center
Garden Public agency
Government *Public college
Health center *Public community college
Hospital *Public community college district
Medical center *Public community college system
Military academy *Public graduate school
Museum *Public law school
Naval academy *Public liberal arts college
*Private art and design college *Public liberal arts university
*Private art and design school *Public medical school
*Private college *Public research university
*Private community college *Public school of optometry
*Private engineering and technology school *Public two-year college
*Private graduate college *Public university
*Private graduate medical school Research agency
*Private graduate school Research facility
*Private liberal arts college Research institute
*Private liberal arts university Science center
*Private medical and professional school Space agency
*Private medical school Think tank
*Private research university Zoo
*Private undergraduate and graduate school N/A

110



Table 5.2: The top 50 institutions in terms of the number of
collaborative grants. “Public” and “Private” in the last column
refer to public and private research university, respectively.

Rank Institution Number Institution
of awards type

1 University of Illinois at Urbana-Champaign 356 Public
2 University of Michigan, Ann Arbor 316 Public
3 Pennsylvania State University 308 Public
4 University of Washington 299 Public
5 Georgia Institute of Technology 298 Public
6 University of Colorado at Boulder 285 Public
7 University of Texas at Austin 282 Public
8 Massachusetts Institute of Technology 273 Private
9 University of California, Berkeley 273 Public
10 Purdue University 264 Public
11 Columbia University 261 Private
12 University of Wisconsin, Madison 237 Public
13 Arizona State University 235 Public
14 University of Minnesota, Twin Cities 229 Public
15 Ohio State University 221 Public
16 Cornell University 211 Private
17 Stanford University 211 Private
18 University of Arizona 210 Public
19 Carnegie Mellon University 201 Private
20 Oregon State University 193 Public
21 University of California, Los Angeles 190 Public
22 Duke University 189 Private
23 Virginia Polytechnic Institute and State

University
185 Public

24 Rutgers University, New Brunswick 184 Public
25 Princeton University 183 Private
26 University of Florida 180 Public
27 Northwestern University 177 Private
28 University of Southern California 177 Private
29 University of California, Davis 176 Public
30 University of California, Santa Barbara 172 Public
31 University of California, San Diego 171 Public
32 University of Maryland, College Park 169 Public
33 Harvard University 160 Private
34 University of California, Irvine 159 Public
35 University of California, Santa Cruz 144 Public
36 Michigan State University 143 Public
37 North Carolina State University 141 Public
38 University of Massachusetts at Amherst 138 Public
39 University of North Carolina at Chapel Hill 138 Public
40 Yale University 135 Private
41 University of Pennsylvania 132 Private
42 Iowa State University 127 Public
43 Stony Brook University 127 Public
44 Rice University 126 Private
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45 Boston University 123 Private
46 Johns Hopkins University 121 Private
47 University of Pittsburgh 121 Public
48 University of Virginia 120 Public
49 University of Alaska Fairbanks 118 Public
50 University of Delaware 117 Public
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(a) (b)

(c) (d)

(e)

Figure 5.6: Normalized rich-club coefficient as a function of the number of awards
received by the institution. A circle indicates a significant normalized rich-club
coefficient (P < 0.005, Bonferroni-corrected permutation test). A cross indicates
a non-significant normalized rich-club coefficient. (a) Entire network. (b) Sub-
network with s = 2. (c) Subnetwork with s = 3. (d) Subnetwork with s = 4. (e)
Subnetwork with s = 5.
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Chapter 6

Conclusions

In this thesis, I presented four works of my contributions to the field of social
network analysis, with the hope to highlight the opportunities and promises to
better understand social structures and dynamics. In the first two works presented
in Chapters 2 and 3, we studied how to accurately estimate properties of OSNs
by querying a small fraction of nodes via a random walk. In the last two works
presented in Chapters 4 and 5, we studied how to analyze the structure and
dynamics of real-world social networks involving higher-order interactions without
using conventional one-mode projection. My research spirit, which is consistent
throughout this thesis, is to realize analysis methods that are faithful to the
empirical data and practical scenarios of real-world social networks.

To realize exhaustive analyses of online social networks with limited data ac-
cess, I suggest investing in solutions for the social graph restoration problem,
proposed in Chapter 3. Specifically, there are two future directions. The first is
to pursue algorithms to estimate local structural properties more accurately based
on the re-weighted random walk. Estimators of local structural properties seem
to be an essential resource for restoring the original social network from its small
sample. Developing more accurate random-walk-based estimators of local struc-
tural properties directly contributes to restoring the original social network. The
second is to explore generative models that more accurately reproduce various
structural properties of an empirical social network at hand using its local struc-
tural properties. Note that we require to estimate the input properties of such
generative models in the social graph restoration problem. In these two respects,
the dK-series provided one powerful solution for the social graph restoration prob-
lem.

Empirical networks involving higher-order interactions are increasingly avail-
able, and various measurements, dynamical process models, theories, and analyti-
cal methods have been developed for hypergraphs and bipartite graphs, especially
in recent years. Whether networks involving higher-order interactions are repre-
sented by hypergraphs or bipartite graphs depends on the empirical data. As in
Chapter 4, when we are mainly interested in the properties of higher-order inter-
actions between nodes, a standard choice is to model the original network as a
hypergraph. On the other hand, when a node has a specific role or meaning in
a higher-order interaction, we should model the original network as a bipartite
graph and we should not use the term ‘hyperedges’ for their interactions. For ex-
ample, in the network of NSF’s research grants in Chapter 5, each institution was
responsible for a separate award in a collaborative grant, and hence, we should
use bipartite-network representation.

The so-called ‘big data’ does not solve all the problems in social network
analysis. For example, big data pitfalls learned from Google Flu Trends are
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known [131]. Google Flu Trends, which was an active project between 2008 and
2015, tried to predict flu activity using a huge number of Google Search queries.
Despite a huge amount of query data, Google Flu Trends was predicting over
twice as many doctor visits as the Centers for Disease Control and Prevention
(CDC) reported [43]. Two issues that contributed to the mistakes of Google Flu
Trends were explored: ‘big data hubris’ and ‘algorithm dynamics’ [131]. In light
of this lesson, let us take a bird’s eye view of my works. In the work of Chapter
2 in this thesis, while the empirical data on social networks involving private
nodes were already available in 2011, the issues related to private nodes were left
until we addressed them in 2020. We addressed those issues by modeling a social
network involving private nodes and developing algorithms considering them. In
the work of Chapter 5, methods to detect the rich clubs and measure the research
productivity help us to find associations between rich clubs and the research
productivity. Note that it is practically difficult to strictly link each collaboration
among institutions and its research outputs using dyadic network representation.
Toward a comprehensive and deep understanding of social interactions, we require
not only valuable empirical data but also analysis methods that are faithful to
the empirical data and practical scenarios of real-world social networks, the latter
being the common research spirit in all of my works in this thesis.
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