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ABSTRACT 
 

 

FUNDAMENTAL DIAGRAMS AND TRAFFIC STATE ESTIMATION METHODS: 

ANALYSIS AND MODELING USING ZEN TRAFFIC DATA 

 

SEPTEMBER 2022 

 

GARIMA DAHIYA 

 

B.Sc., UNIVERSITY OF DELHI 

M.Sc., INDIAN INSTITUTE OF TECHNOLOGY MANDI 

Doctorate, TOKYO INSTITUTE OF TECHNOLOGY 

 

 

Traffic congestions is causing poor road traffic performance that has negative impacts on economic 

productivity, environmental quality, and safety. Earlier these kinds of problems were usually 

addressed through development of new infrastructure however, building new transportation 

networks is neither an advantage in terms of cost nor it is a sustainable solution. Therefore, it is 

required to use the existing road network in an optimized manner, together with a shift towards 

sustainability. For doing so, one of the several challenges is to provide accurate information about 

current traffic state (flow 𝑞 , density 𝑘 , speed 𝑣 ). Understanding the current traffic flow 

characteristics provides essential input for design, planning, operations, traffic management and 

control, and information provision for route choice guidance.  

Traffic state variables are vital for traffic control and operations however, obtaining these 

parameters simultaneously is difficult as they are not measured everywhere due to the associated 

financial and technological limitations. On this account, the process of inferencing these variables 

on a road segment at certain spatiotemporal resolution using partially observed traffic data is 

referred to as traffic state estimation (TSE). 

The Fundamental diagram (FD) describes the empirical relationship between traffic states and 

contains remarkable information about traffic characteristics. Hence, sound mathematical models 

that better represent the FD prepare a solid foundation for traffic flow analysis and efficient traffic 

control. Researchers have been examining simple and low computational FDs that can sufficiently 

describe the traffic dynamics. Once it is known, all that is needed for TSE is to locate where the 
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system is on the FD at any desired moment. These allow in describing the evolution of traffic 

dynamics and lead to smart solutions to optimize the existing traffic system.  

The aim of this dissertation is to systematically analyze various existing FDs and develop a 

physical model-based TSE method by utilizing data assimilation (DA) framework. This 

dissertation consists of seven chapters. In chapter 1, the background, objectives, and outline of the 

thesis are introduced. Chapter 2 summarizes the literature review on fundamentals and traffic state 

variables, FD and TSE and discusses the scope of the doctoral research. Chapter 3 discusses about 

the traffic data collection methodologies, the complete trajectory data utilized for this research 

namely, Zen Traffic Data (ZTD) and advantages associated with utilizing ZTD over other high-

tech trajectory datasets. Moving on, in this research towards analysis and modeling of FDs and 

TSE methods, three main objectives are introduced. 

Chapter 4 describes the first objective of this dissertation which contributes to the empirical 

analysis of various existing speed-density (𝑣 − 𝑘) FDs by estimating and studying their parameters 

at varying spatiotemporal resolutions using ZTD, followed by a theoretical investigation with 

respect to the stationarity and continuity of traffic flow. The objective is twofold: first, to identify 

a model a.) with less complex form; b.) based on ‘weaker’ assumptions; c.) reasonably achieves 

mathematical elegance and empirical accuracy, which are all desirable to have; and second, to 

make the validation more reliable by conducting it over various space-time resolutions which 

provides theoretical and practical support to practitioners in decisively choosing most workable 

FD at a particular resolution.  

Over past decades, researchers have also contributed to development of several TSE methods 

using probe vehicle data including ones that don’t rely on any ‘strong’ assumptions, such as 

explicit priori knowledge of traffic dynamics like FD, or historic data, which renders the method 

robust against uncertain traffic phenomena. However, their estimation capabilities have not been 

validated using high-resolution, complete trajectory data with wide coverage. Chapter 5 elaborates 

the second objective of this dissertation that contributes to the analysis of a ‘weaker’ assumption-

based TSE method (proposed by Seo et al., (2015b)) at different spatiotemporal resolutions and 

probe penetration rates using ZTD. 

The third objective of this dissertation contributes to the development and implementation of 

a physical model-based TSE method and is described in chapter 6. To improve the estimation 

capability at fine space-time resolution, using fewer probe vehicles, in both the regimes, free-flow 
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and congested, and in complete space-time domain, it extends the ‘weaker’ assumption-based 

approach to estimate the traffic state more accurately by utilizing a DA framework. In it, the state 

variable, density 𝑘, is estimated by first, simulating the 𝑘 obtained from a physical model (Cell 

Transmission Model) which are then integrated with the observed traffic states (𝑘 and 𝑣 from 

probe data) using Ensemble Kalman Filtering technique. In addition, the parameters of physical 

model are obtained by automatic calibration of a triangular FD. The results from this adaptive 

calibration and estimation show that the accuracy of estimating the traffic state using this approach 

increases and the estimated 𝑘 corresponds well with the 𝑘 computed using Edie’s generalized 

definitions (Edie, 1963) and 100% trajectory data (ground truth). 

In chapter 7, conclusions, achievements, and future research directions are summarized. 
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LIST OF NOTATIONS 
 

Following notations are used throughout in the dissertation unless specified otherwise.  

 

a, 𝜃1:  Scalar parameter 

𝐴:   Space-time region or cell 

𝐴𝑇,𝑋:  Rectangular spatiotemporal area of a cell 𝐴 in a space-time mesh 

𝐴𝑣𝑒:  Mean of vehicles’ speed (𝑚/𝑠) 

𝑎𝑛(𝐴):  Spatiotemporal area between a vehicle 𝑛 and its leading vehicle within 𝐴 

𝑎𝑛(𝐴𝑇,𝑋):  Spatiotemporal area between a probe 𝑛 and its leading vehicle in 𝐴𝑇,𝑋 

|𝐴|:  Area of space-time region 𝐴  

𝐶𝑗:   Kinematic wave speed at jam density (𝑚/𝑠) 

c%:  Covering percentage 

𝑑(𝐴):  Distance travelled by all the vehicles in space-time region 𝐴 

𝑑𝑛(𝐴):  Distance travelled by vehicle 𝑛 in space-time region 𝐴 

𝑑𝑒𝑡:  Matrix determinant  

𝐹:   Function representing triangular FD 

𝑓𝑖:   Total flow leaving cell i to off-ramp 

𝑓𝑡:   System model 

𝑔:   Cost based objective function 

𝑔1:   Objective function calculated using initial feasible solution 

ℎ:   Time headway (𝑠) 

ℎ𝑎𝑣:  Average time headway (𝑠) 

ℎ𝑚:  Average headway of vehicle 𝑚 in a cell  

ℎ𝑚,𝜏:  Headway of vehicle 𝑚 at time 𝜏 in a cell  

ℎ𝑡:   Observation model 

𝐻𝑡:   Matrix constructed based on locations where measurements are acquired 

𝑖, 𝑗:   Non-negative indices 

𝑘:   Density (𝑣𝑒ℎ/𝑚) 
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𝑘(𝐴):  Density in a space-time region 𝐴 (𝑣𝑒ℎ/𝑚) 

𝑘𝑐:   Critical density (𝑣𝑒ℎ/𝑚) 

𝑘𝑑(𝑡):  Measured downstream boundary density at time index t (𝑣𝑒ℎ/𝑚) 

𝑘𝑖(𝑡):  Density for cell i at time index t (𝑣𝑒ℎ/𝑚) 

𝑘𝐽 or 𝑘𝑗:  Jam density (𝑣𝑒ℎ/𝑚) 

𝑘𝑚:  Optimum density (𝑣𝑒ℎ/𝑚) 

𝑘𝑡:   Inflection point where the 𝑞 − 𝑘 curve turns from free-flow to congested  

𝑘𝑢(𝑡):  Measured upstream boundary density at time index t (𝑣𝑒ℎ/𝑚) 

𝑘. 𝑝.:  Kilopost 

𝑘(𝑥, 𝑡):  Density at a location 𝑥 and time 𝑡 

𝑘̂𝑖(𝑡):  Measured density of cell i at time index t (𝑣𝑒ℎ/𝑚) 

𝑙:   Ensemble index 

𝑙𝑖:   Length of cell i (𝑚) 

𝑀:   Total number of ensembles for EnKF 

𝑚, 𝑛:  Shape parameters representing environment and type of facility 

𝑛𝑡:   Number of vehicles passing a particular point in a defined time 𝑡 

𝑛𝑥:   Number of vehicles on a roadway of length 𝑥 at a given instance of time 

𝜂𝑡:   Observation noise 

𝜂𝑑𝑒𝑛𝑠𝑖𝑡𝑦 :  Error model for density 

𝜂𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 :  Error model for velocity 

𝑁(𝐴):  Set of all vehicles in space-time region (cell) 𝐴 

𝒩:   Normal distribution 

𝑂𝑖:   Empirically observed data  

𝑃𝑖 or 𝐸𝑖:  Value estimated by the model 

𝑃(𝐴):  Set of all probe vehicles in space-time region (cell) 𝐴 

p%:  Probe penetration rate 

𝑝(𝑥𝑡|𝓏1, . . , 𝓏𝑡): Most probable state 

q:   Flow (𝑣𝑒ℎ/𝑠) 

𝑞(𝐴):  Flow (𝑣𝑒ℎ/𝑠) in a space-time region 𝐴 (𝑠) 

𝑞𝑑(𝑡):  Measured downstream boundary flow at time index t (𝑣𝑒ℎ/𝑠) 
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𝑞𝑖(𝑡):  Total flow entering cell i during time interval [𝑡∆𝑡, (𝑡 + 1)∆𝑡) (𝑣𝑒ℎ/𝑠) 

𝑞𝑖(𝑡 + 1):  Total flow leaving cell i during time interval [𝑡∆𝑡, (𝑡 + 1)∆𝑡) (𝑣𝑒ℎ/𝑠) 

𝑞𝑢(𝑡):  Measured upstream boundary flow at time index t (𝑣𝑒ℎ/𝑠) 

𝑄𝑀 :  Maximum allowable flow (𝑣𝑒ℎ/𝑠) 

𝑅𝑖:   Space-time region  

𝑟𝑖:   Total flow entering cell i from on-ramp 

𝑠:   Space headway (𝑚) 

𝑠𝑎𝑣:  Average space headway (𝑚)  

𝑠𝑚:   Average spacing of vehicle 𝑚 in a cell  

𝑠𝑚,𝜏:  Spacing of vehicle 𝑚 at time 𝜏 in a cell 

𝑡:   Time 

t(A):  Time spent by all vehicles in a space-time region 𝐴 (𝑠) 

𝑡𝑛(𝐴):  Time spent by vehicle 𝑛 in space-time region 𝐴 

(𝑡0, 𝑥0):   Coordinates of the predetermined origin 

(𝑡𝑖 , 𝑥𝑖):  Coordinate of vehicle’s position (on its trajectory) in a space-time domain 

(𝑡𝑖 , 𝑥𝑗):  Co-ordinates of the upper-left corner of region 𝐴𝑖
𝑗
 

𝑡 − 1|𝑡:  Subindex denoting the prior of a variable 

𝑡|𝑡:   Subindex denoting the posterior of a variable 

𝑣:   Velocity (𝑚/𝑠) 

𝑣(𝐴):  Velocity (𝑣𝑒ℎ/𝑠) in a space-time region 𝐴 (𝑠) 

𝑣𝑏:   Average travel speed at saturation region (𝑚/𝑠) 

𝑣𝑓:   Free-flow speed (𝑚/𝑠) 

𝑣𝑖:   Spot speed (𝑚/𝑠) 

𝑣𝑚:   Optimum speed (𝑚/𝑠) 

𝑣𝑠:   Space mean speed (𝑚/𝑠) 

𝑣𝑡:   Time mean speed (𝑚/𝑠) 

𝜗:   Coefficient of variation 

𝑤𝑐:   Backward congestion wave speed (𝑚/𝑠)  

𝜔𝑡:   System noise 

𝑥:   Space 
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𝑥:   Vector of all decision variables 

𝑥1:   Initial feasible solution (FD parameters)  

𝑥∗:   Optimal solution 

𝑥𝑖:   Decision variable 

𝑥𝑡:   State vector 

𝓏𝑡:   Observation vector 

𝜆:   Proportionality factor 

𝜃, E:  Shape parameters 

𝜃2:   Lopsidedness of the curve 

𝜎:   Standard deviation 

𝛿:   Percent error 

𝜀1:   Tolerance for optimization problem 

𝐼𝑡𝑒𝑟𝑚:  Maximum iteration number 

∆𝑥 or 𝑑𝑥:  Spatial resolution 

∆𝑡 or 𝑑𝑡:  Temporal resolution 

∆𝜏:   Small time duration 
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LIST OF ABBREVIATIONS 
 

Following abbreviations are used throughout in the dissertation.  

 

AC:  Automatic calibration 

ADAS:  Advanced driving assistance systems 

ARE:  Average relative error 

ATIS:  Advanced traveler information system 

ATM:  Active traffic management 

AVI:  Automatic vehicle identification 

AVL:  Automatic vehicle location 

BVP:  Boundary value problem 

CDR:  Call-details record 

CFL:  Courant–Friedrichs–Lewy 

CL:  Conservation law 

CTM:  Cell transmission model 

DA:  Data assimilation 

DLS:  Damped least-squares 

DRG:  Dynamic route guidance 

EKF:  Extended Kalman filter 

EnKF:  Ensemble Kalman filter 

FCD:  Floating car data 

FCM:  Fuzzy c-means 

FD:  Fundamental diagram 

FIFO:  First-in first-out 

GNA:  Gauss–Newton algorithm 

GPS:  Global positioning system 

ICT:  Information and communication technology 

IDL:  Inductive detector loops 
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1 

1 INTRODUCTION 

 

 

1.1 Background  

 

Traffic engineering pertains to the analysis of traffic behavior and to design transportations 

networks and infrastructures for a safe, smooth, and economical operations of traffic (NPTEL, 

2012). Traffic engineers conduct studies related to traffic volume to keep the efficiency of a 

transportation system high. However, with a continuous increase in population, the demand for 

mobility is constantly increasing and traffic problems are emerging in all large cities. The vehicular 

traffic is tremendously increasing resulting in increased congestion. Traffic congestion is causing 

poor traffic performance that has negative impacts on economic productivity, environmental 

quality and safety through higher fuel consumption, increased costs of goods and services, delays, 

increased air pollution, and worsened safety conditions (Sutandi, 2007). Earlier these kinds of 

problems were usually addressed through increased capacity by developing new infrastructure to 

increase the number of existing transportation systems however, building new transportation 

networks is not a feasible solution (Hills, 1996; Goodwin, 1996; Litman, 2004). It is neither an 

advantage in terms of cost nor it is a sustainable solution. Therefore, it is required to use the 

existing road network in an optimized manner, together with a shift towards sustainability.  

It requires development of alternatives that increase the capacity through improved efficiency 

of existing systems that focuses on building fewer lane-miles, while investigating Intelligent 

Transport Systems (ITS). To reduce congestion and optimize the existing traffic systems, it is vital 

to study and explore smart solutions and one of the several challenges is to provide accurate 

information about current and future traffic state. Understanding the current traffic flow 

characteristics provides essential input for design, strategic transportation planning such as 

infrastructure improvements, operations, traffic management and control such as ramp metering, 

variable speed limit, pricing, and information provision for route choice guidance that can be used 

to influence the choices made by travelers. Nevertheless, accurate information about the traffic 
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state is crucial to establish a successful traffic control strategy and will help traffic managers in 

taking actions before the system reaches the state of congestion.   

 

1.2 Research objectives and contribution 

 

On a roadway link, at a macroscopic level, traffic can be represented by the three fundamental 

parameters of traffic flow namely, Flow (𝑞), which is the number of vehicles that pass a given 

point per unit time; Density (𝑘), which is the number of vehicles per unit length of a roadway at a 

given instance of time; and Speed (𝑣), which is the mean of the instantaneous speeds among 

vehicles. Flow and speed are also known as volume and velocity, respectively. A subset of (𝑞, 𝑘, 𝑣) 

is known as traffic state. By combining all possible steady traffic states (equilibrium or stationary 

traffic) in an equilibrium function, the Fundamental diagram (FD) is obtained which describes the 

empirical relationship between traffic states and can be graphically described using three two-

dimensional diagrams namely, speed-density (𝑣 − 𝑘) relation, flow-density (𝑞 − 𝑘) relation, and 

speed-flow ( 𝑣 − 𝑞 ) relation. The FD has been the foundation of traffic flow theory and 

transportation engineering for many years as it contains remarkable information about traffic flow 

characteristics. Based on prevailing traffic conditions, that information can assist active traffic 

management (ATM) in alleviating congestion by accessing network dynamics accurately such as 

when and where congestion builds and how it dispatches. It plays a crucial role for traffic control 

and assignment, predicting the capability of road system, or predict its behavior when applying 

inflow regulations and speed limits. Hence, sound mathematical models that better represent the 

FD prepare a solid foundation for traffic flow analysis and efficient traffic control. Researchers 

have been examining simple and fast, in terms of computational cost, FDs that can sufficiently 

describe the dynamics of a roadway. Once it is known, all that is needed to have a traffic state 

estimate is to locate where the system is on the FD at any desired moment. These allow in 

describing the evolution of traffic dynamics and lead to smart solutions to optimize the existing 

traffic system. 

Traffic state variables are vital for traffic control and operations however, obtaining these 

parameters simultaneously is difficult as they are not measured everywhere due to the associated 

financial and technological limitations. Traditionally, traffic conditions were monitored by 

conventional fixed-location sensors such as inductive loop detectors and ultrasonic detectors, but 
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due to the recent advancements in information and communication technologies (ICTs), the 

collection of traffic data is gradually shifting to more mobile sensor-based data collection. Vehicles 

with sensors such as on-vehicle Global Positioning System (GPS) devices and call-details records 

(CDRs) are often referred to as probe vehicles or floating cars. Unlike fixed-point data which have 

multiple demerits associated to them such as unreliability of accuracy and precision, frequent 

misses or double counting, high operational costs and insufficiency of data, the probe vehicles can 

cover wide spatiotemporal domain and collect vast amount of trajectory data with much more 

detailed and rich information. On this account, the process of inferencing the traffic state variables 

on a road segment with high spatiotemporal resolution using partially observed traffic data is 

referred to as Traffic State Estimation (TSE). In this research towards analysis and modeling of 

FDs and TSE methods, three objectives are introduced.  

 

Objective 1: First objective of this dissertation is to contribute to the empirical analysis of 

various existing speed-density (𝑣 − 𝑘) fundamental diagrams by estimating and studying their 

parameters at varying spatiotemporal resolutions using complete vehicles’ trajectory data 

followed by a theoretical investigation with respect to the stationarity and continuity of traffic flow.  

 

The objective is twofold: first, to identify a model a.) with less complex form; b.) based on 

‘weaker’ assumptions; c.) reasonably achieves mathematical elegance and empirical accuracy, 

which are all desirable to have; and second, to make the validation more reliable by conducting it 

over various space-time resolutions which provides theoretical and practical support to 

practitioners in decisively choosing most workable FD at a particular resolution. In the past, 

several studies have contributed to similar analysis however, in some of them the investigation 

was carried out either only with sampled or aggregated datasets or complete data with limited 

coverage, and a few of them included only the empirical analysis and the mathematical discussion 

on the stationarity and continuity was not included. Moreover, none of the previous studies have 

analyzed the model performance and application conditions with respect to the space-time 

resolution, in addition with a focus on simple (less complex and compact natured), less 

parameterized, ‘weaker’ assumption-based 𝑣 − 𝑘  model. As an effort of such a pursuit, the 

objective is to identify such a 𝑣 − 𝑘 relation which are empirically accurate and mathematically 

elegant and, are easy to handle for practitioners working with extensive traffic data. This study 
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will assist in understanding the fundamentals of traffic dynamics in detail and with more accuracy, 

at different space-time resolutions. Using such detailed empirical evidence, it is feasible to predict 

congestion and its propagation, and mutual relationship between change in level of services and 

traffic volume. 

 

Objective 2: The second objective of this dissertation contributes to the analysis of a ‘weaker’ 

assumption and extended floating car data (𝑥𝐹𝐶𝐷)-based TSE method (proposed by Seo et al., 

(2015b)).  

 

Over past decades, researchers have contributed to development of several TSE methods using 

probe vehicle data including ones that do not reply on ‘strong’ assumptions, such as explicit a 

priori knowledge of traffic dynamics or historic data, which renders the method robust against 

uncertain traffic phenomena. However, their estimation capabilities have not been validated using 

vehicles’ high-resolution, complete, and detailed trajectory data with high space-time coverage. 

The analysis of the estimation capability of the method using real world complete trajectory data 

is vital and essential because the method does not rely on ‘strong’ assumptions, rather is based on 

‘weaker’ assumptions, which are preferable for practical applications. Moreover, at an age of near 

ubiquitous sensor (e.g., cell phone) penetration, and with the massive emergence of connected 

vehicles, the TSE methods based on ‘weaker’ assumptions might become prevalent in the near 

future for transportation planning purposes. Like the pursuit of the first objective to identify a 

model based on ‘weaker’ assumptions, which are preferable for practical applications, the 

motivation, here, is to analyze the validity of this TSE method at different settings: temporal 

resolution, spatial resolution, and probe penetration rate, using high-resolution complete trajectory 

data.  

 

Objective 3: The third objective of this doctoral research is to contribute to the development 

and implementation of a physical model-based method for traffic state estimation and to facilitate 

an adaptation of the model to the conditions of highways and roadway links. 

 

Continuing to the above discussion, to be able to retrieve much accurate traffic state estimates 

in complete spatiotemporal domain (including unobserved cells i.e., cells via which no probe 
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vehicle traversed) at high space-time resolution by utilizing fewer probe vehicles in both the 

regimes, congested and non-congested, is always desirable. Hence, with a focus on such 

requirements, the third objective of this doctoral research is to contribute to the development and 

implementation of a physical model-based method for traffic state estimation and to facilitate an 

adaptation of the model to the conditions of highways and roadway links. To improve the 

estimation capability at fine space-time resolution, using fewer probe vehicles, in both the regimes, 

free-flow and congested, and in complete space-time domain, it extended the ‘weaker’ assumption-

based approach to estimate the traffic state more accurately by utilizing a data assimilation (DA) 

framework and probe vehicles’ data. The hypothesis is that utilization of DA techniques in 

formulating a model-based TSE method shall provide more accurate estimates under the discussed 

requirements. In it, the state variable, density (𝑘), is estimated by simulating the 𝑘 obtained from 

a physical model (Cell Transmission Model: CTM) (Daganzo, 1994) which are then integrated 

(fused) with the observed traffic states (𝑘 and 𝑣 ) using Ensemble Kalman Filtering (EnKF) 

technique. As per literature review, several other studies have utilized the KFTs for estimating the 

traffic states. However, it is clear that numerous proposed TSE methodologies have either been 

mostly validated through microscopic or macroscopic simulations and not complete (100 % 

vehicles’) real traffic data, experimental data or rarely utilized real traffic data with small 

spatiotemporal coverage. The nature of the past studies differs from the study related to third 

objective in terms of calibration methods of the FD, the choice of traffic flow model, the kind of 

data assimilation technique used to estimate the state variable, and as mentioned before, whether 

the estimation capability of the method was validated with real traffic data. In addition, the 

parameters of physical model are obtained by automatic calibration (AC) of a triangular FD which 

involves solving the SQP to minimize the discrepancy between the simulated traffic density and 

observed traffic density by probe vehicles at every time step. It renders the TSE method to be more 

robust by adapting to the dynamics of traffic data. The results from the calibration and estimation 

show that the accuracy of estimating the traffic state using this approach increases and the 

estimated 𝑘 corresponds well with the 𝑘 computed using Edie’s generalized definitions (Edie, 

1963) and 100% trajectory data (ground truth). 

 

Utilization of Zen Traffic Data: The underlying advantage of contributions made through this 

research to the vast literature of transportation engineering lies in the utilization of a high-tech, 
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high-resolution, detailed, and complete trajectory data namely, Zen Traffic Data (ZTD), provided 

by Hanshin Expressway Co. Ltd. The massive ZTD sets can be considered appropriate for traffic 

studies that involve TSE and can also give meaning to validation of physical models that are not 

solely data driven (Dahiya et al., 2022). A major part of the motivation for this doctoral research 

also comes from the fact that ZTD has extreme potential in the evaluation of classical concepts in 

the fundamental theory of traffic flow, traffic flow models, functional forms of FDs, traffic state 

estimation methods, several of which have been developed and proposed by researchers over past 

decades, some based on theoretical assumptions and others driven by data, and have not been 

evaluated or validated with complete trajectory data (ground truth) to verify their capabilities. In 

addition, ZTD can be utilized in formulation and evaluation of new traffic state estimation methods 

which can possibly estimate TS at high spatiotemporal resolutions and complete space-time 

domain. One of the practical outcomes of utilizing ZTD is the retrieval of detailed information for 

making better informed decisions. 

 

In fact, these are the principal postulates that motivates the studies carried out as per the 

research plan of this thesis. It is within the context that information technology (IT) and traffic 

blend together to create ITS. In summary, this thesis studies analysis and modeling of FDs and 

TSE methods using complete trajectory data: ZTD. We expect the analyses and the devised TSE 

method to be utilized and implemented in real-world traffic design, management, and control to 

mitigate traffic issues, congestion being the major one. 

 

1.3 Outline of the dissertation 

 

The aim of this dissertation is to systematically analyze various existing FDs and develop a 

physical model-based TSE method by utilizing data assimilation (DA) framework. This 

dissertation consists of seven chapters and the structure of the thesis can be visualized in Figure 

1.1. In this chapter, the background, objectives, and outline of the thesis are introduced. Chapter 2 

summarizes the literature review on fundamentals and traffic state variables, FD and TSE and 

discusses the scope of the doctoral research. Chapter 3 discusses about the traffic data collection 

methodologies, the complete trajectory data utilized for this research namely, Zen Traffic Data 

(ZTD) and advantages associated with utilizing ZTD over other high-tech trajectory datasets. 
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Chapter 4 describes the first objective of this dissertation which contributes to the empirical 

analysis of various existing speed-density (𝑣 − 𝑘) FDs by estimating and studying their parameters 

at varying spatiotemporal resolutions using ZTD followed by a theoretical investigation with 

respect to the stationarity and continuity of traffic flow. Chapter 5 elaborates the second objective 

of this dissertation that contributes to the analysis of a ‘weaker’ assumption and extended floating 

car data (𝑥𝐹𝐶𝐷)-based TSE method at different spatiotemporal resolutions and probe penetration 

rates using ZTD. The third objective of this dissertation contributes to the development and 

implementation of a physical model-based TSE method using DA framework and complete 

trajectory dataset. It is described in chapter 6. In chapter 7, conclusions, achievements, and future 

research directions are summarized. 

 

 

Figure 1.1 Structure of thesis 
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2 LITERATURE REVIEW  

 

 

2.1 Traffic state 

 

This section summarizes basic concepts and traffic state variables which are a fundamental part of 

the Traffic Flow Theory. 

 

2.1.1 Introduction 

 

The stream of traffic consists of a combination of driver behavior and vehicle behavior which 

are both non-uniform in nature. Traffic is influenced by the individual characteristics of the vehicle, 

the human beings, and their interactions with each other. Therefore, the flow of traffic changes 

with location and time corresponding to the variation in human behavior. However, for the purpose 

of design and planning, traffic engineers assume that these changes are within certain range and 

traffic stream involves some parameters based on which its characteristics can be predictable.  

 

Figure 2.1 Space-time diagram 

Distance x 

Time t 
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These parameters can be macroscopic which characterize the traffic as a whole, or microscopic 

that studies the behavior of individual vehicles with respect to each other in a traffic stream. While 

the microscopic parameters include the measurement of separation between the vehicles i.e., the 

headway which can be either time headway or spacing headway, the macroscopic parameters are 

also the fundamental parameters of traffic flow which are density, flow, and speed.  

The position of a moving vehicle on a distance of 𝑥 and in time interval 𝑡 can be represented 

by a coordinate in space-time (𝑡, 𝑥) plane where 𝑥 will be a function of 𝑡 along the road stretch. 

These coordinates generate a graph that gives the relation of the vehicle’s position on the road 

stretch relative to time and this graphical representation of 𝑥(𝑡)  is known as a trajectory. It 

provides an intuitive, clear, and complete summary of vehicular motion in one dimension. Space-

time diagram, as shown in Figure 2.1, is a 2D plot and is a convenient tool in understanding the 

motion of a vehicle or multiple vehicles. Its analysis can assist in determining the fundamental 

parameters of traffic flow like 𝑞, 𝑘 𝑎𝑛𝑑 𝑣 and other derived characteristics such as headway and 

spacing. 

 

2.1.2 Traffic state variables 

 

Traffic flow has several parameters associated with it that provide information regarding the nature 

of traffic flow and help analysts in determining any variation in the traffic flow characteristics. A 

thorough knowledge of traffic stream parameters and their mutual relationships is required to 

understand the traffic behavior. Density, flow, and average speed (or simply speed, also known as 

velocity) are the three fundamental parameters of traffic flow. They provide information regarding 

the nature of traffic on a link at a macroscopic level and aid analysts in detecting any variation in 

the flow characteristics, which in turn aids in traffic operations and planning. The flow (𝑞), also 

known as the flow rate or volume by practitioners, is the number of vehicles that pass a given point 

per unit time. The density (𝑘) is the number of vehicles per unit space at a given instance of time. 

The average speed (𝑣 ) is the mean of the instantaneous speeds of the vehicles. Edie (1963) 

proposed a generalized definition of traffic states in a space-time region 𝐴, defined as follows: 

 

 
𝑞(𝑨) =

𝑑(𝑨)

|𝑨|
 ( 2.1 ) 
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𝑘(𝑨) =

𝑡(𝑨)

|𝑨|
 ( 2.2 ) 

 

 
𝑣(𝑨) =

𝑑(𝑨)

𝑡(𝑨)
 ( 2.3 ) 

 

In these equations, 𝑑(𝐴)  represents total distance traveled by all the vehicles in region 

𝐴 (𝑣𝑒ℎ 𝑚), 𝑡(𝐴) is total time all the vehicles spent in region 𝐴 (𝑣𝑒ℎ 𝑠), and |𝐴| depicts the space-

time area of region 𝐴 (𝑚 𝑠). These definitions can be applied to either a single lane or multiple 

lanes in a link. 

 

2.1.2.1 Flow 
 

The flow (or volume 𝑞) is the number of vehicles that pass a given point on roadway during a 

specific time interval. The measurement is carried out by counting the number of vehicles, 𝑛𝑡, 

passing a particular point in a defined time 𝑡.  

 

 𝑞 =
𝑛𝑡

𝑡
 ( 2.4 ) 

 

Conventionally, flow is measured by manual counting, detector/sensor, moving-car observer 

method etc. Flow is treated as an important parameters of traffic flow as it assists in determining 

the design of a highway and the related facilities by establishing the importance of a particular 

route with respect to other routes, distribution of traffic on road, and the fluctuations in flow. Figure 

2.2 illustrates the flow 𝑞 on a space-time domain computed using real traffic trajectory data and 

Edie’s generalized definition. 

 

2.1.2.2 Density 

 

The density (𝑘) is defined as the number of vehicles occupying a given length of a roadway at a 

given instance of time and can be expressed as follows: 
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 𝑘 =
𝑛𝑥

𝑥
 ( 2.5 ) 

 

where, 𝑘 represents the density and 𝑛𝑥 is the number of vehicles on a roadway of length 𝑥 at a 

given instance of time. Density (𝑘) is the measure most directly related to the traffic demand, and 

it measures the proximity of vehicles in the traffic stream. Figure 2.3 illustrates the density 𝑘 on a 

space-time domain computed using real traffic trajectory data and Edie’s generalized definition. 

 

 

Figure 2.2 Flow 𝑞 (veh/s) in a spatiotemporal mesh 

 

 

Figure 2.3 Density 𝑘 (veh/m) in a spatiotemporal mesh 
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2.1.2.3 Speed 

 

Speed (or velocity 𝑣) is defined as the rate of motion in distance per unit of time and can be 

considered as a quality measurement of travel because drivers and passengers are usually 

concerned about the speed of the journey than the design aspect of the transportation network. It 

can be mathematically represented as: 

 
𝑣 =

𝑑

𝑡
 ( 2.6 ) 

 

where, 𝑣 (in 𝑚/𝑠) is the speed of vehicle, 𝑑 (in 𝑚) is the distance travelled in time 𝑡 (in 𝑠). Figure 

2.4 illustrates the speed 𝑣 on a space-time domain computed using real traffic trajectory data and 

Edie’s generalized definition. 

 

 

Figure 2.4 Velocity 𝑣 (m/s) (or speed) in a spatiotemporal mesh 

In practice, several types of speed are utilized such as spot speed, running speed, journey 

speed, time mean speed and space mean speed.  

 

1. Spot speed: It is the instantaneous speed of a vehicle at a specific location and is utilized 

for designing the geometry of road, location, design and size of traffic signs, safe speed 

and speed zone, accident analysis, and road maintenance.  
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2. Running speed: It is the average speed of a vehicle maintained over a particular course of 

time while the vehicle is in motion i.e., it does not consider the time while the vehicle was 

not in motion. 

 

3. Journey speed: It is the effective speed of a vehicle between two points including the time 

when the vehicle was not in motion. The journey speed is always less or equal to the 

running speed and in case it is less, it indicates that the journey included stop–go motions 

with enforced acceleration and deceleration. 

 

4. Time mean speed (𝒗𝒕): It is the average of the speeds of all vehicles passing a particular 

point on a roadway and is a simple average of spot speeds denoted by: 

 

 
𝑣𝑡 =

1

𝑛
∑ 𝑣𝑖

𝑛

𝑖=1

 ( 2.7 ) 

 

where, 𝑣𝑖 is the spot speed of 𝑖𝑡ℎ vehicle, and 𝑛 is the number of observations.  

 

5. Space mean speed: It is the average speed of all the vehicles occupying a given section of 

a roadway at a given instance of time. Let 𝑣𝑖 be the spot speed of 𝑖𝑡ℎ vehicle and 𝑡𝑖 be the 

time the vehicle takes to travel unit distance and is thus, given by 
1

𝑣𝑖
. If there are 𝑛 such 

vehicles, then the average travel time 𝑡𝑠 is given by: 

 

 
𝑡𝑠 =

∑ 𝑡𝑖

𝑛
=

1

𝑛
∑

1

𝑣𝑖
 ( 2.8 ) 

 

and the average speed 𝑣𝑠 is given by: 

 

 𝑣𝑠 =
𝑛

∑
1
𝑣𝑖

𝑛
𝑖=1

 
( 2.9 ) 
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2.1.3 Derived characteristics 

 

A few other significant parameters of traffic flow viz., time headway and distance headway, can 

be derived from the fundamental parameters of traffic flow and can be visualized in Figure 2.5. 

 

1. Time headway: It is a microscopic characteristic related to the traffic flow and time 

headway or simply headway is the time difference between the passage of two successive 

vehicles (two consecutive rear bumpers) as they cross a given point. On a space-time 

diagram, the horizontal gap between any two trajectories, representing the motion of 

vehicles, is basically the time headway. Flow (𝑞) is the number of vehicles 𝑛𝑡 measured in 

a time interval 𝑡 and if all headways ℎ during this time are added then, 

 

 

∑ ℎ𝑖

𝑛𝑡

1

= 𝑡 ( 2.10 ) 

 

 
𝑞 =

𝑛𝑡

𝑡
=

𝑛𝑡

∑ ℎ𝑖
𝑛𝑡
1

=
1

ℎ𝑎𝑣
 ( 2.11 ) 

 

where, ℎ𝑎𝑣 is the average headway and is the inverse of the flow. 

 

2. Distance headway: It is the distance between corresponding points of two successive 

vehicles at any given instance of time, for example the distance from the rear bumper of a 

leading vehicle to rear bumper of the following vehicle at a given point of time. On a space-

time diagram, the vertical gap between any two trajectories, representing the motion of 

vehicles, is basically the distance headway. Density (𝑘) is the number of vehicles 𝑛𝑥 

present on a roadway of length 𝑥 at a given instance of time and if then all the space 

headways 𝑠 are added then, 

 

 

∑ 𝑠𝑖

𝑛𝑥

1

= 𝑥 ( 2.12 ) 
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𝑘 =

𝑛𝑥

𝑥
=

𝑛𝑥

∑ 𝑠𝑖
𝑛𝑥
1

=
1

𝑠𝑎𝑣
 ( 2.13 ) 

 

where, 𝑠𝑎𝑣  is the average distance headway and is the inverse of the density 𝑘  and is 

sometimes also referred to a spacing. 

 

 

Figure 2.5 Representation of headway and spacing in a space-time diagram 

 

2.2 Fundamental Diagram (FD) 

 

2.2.1 Introduction and applications of FD 

 

The relationship between the fundamental parameters of traffic flow (or traffic state variables) 

namely, flow 𝑞, density 𝑘 and speed 𝑣, is referred to as the fundamental relation of traffic flow 

and the fundamental equation of traffic flow is given by: 

 

 𝑞 = 𝑘 × 𝑣 ( 2.14 ) 

 

Distance x 

Time t 

Spacing (𝑠) 

Headway (ℎ) 
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where, 𝑞 is the flow, 𝑘 is the density and 𝑣 is the speed. The fundamental diagram (FD) is obtained 

by combining all possible steady traffic states (sometimes referred to as equilibrium or stationary 

traffic) in an equilibrium function that can be graphically described using three two-dimensional 

diagrams which are speed-density (𝑣 − 𝑘) relation, flow-density (𝑞 − 𝑘) relation, and the speed-

flow (𝑣 − 𝑞) relation. A traffic state with a density greater than critical density (𝑘𝑐) is considered 

as congested regime and the state with density lower than or equal to 𝑘𝑐  is referred to as free-flow 

regime. 

 

1. Flow-Density (𝒒 − 𝒌) curve: The flow 𝑞 and density 𝑘 vary with time and location and 

the relationship between flow and density is normally represented by a parabolic curve as 

shown in Figure 2.6. When the density is zero, the flow will also be zero since there are no 

vehicles on the road. As the number of vehicles gradually increases, both the density and 

the flow, increases. It reaches a situation where the flow becomes maximum (𝑄𝑀) and 

density at that point is referred to as critical density (𝑘𝑐). Beyond that, when more and more 

vehicles add on, the flow starts to decrease and at the maximum density (also called jam 

density, 𝑘𝐽) the vehicles can’t move anymore. Hence, the flow is zero because there’s no 

motion. 

 

 

 

Figure 2.6 Flow-Density (𝑞 − 𝑘) FD 
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2. Speed-Density (𝒗 − 𝒌) curve: As illustrated in Figure 2.7, the relationship between speed 

and density can be a weakly monotonic non-linear relation however, the simplest 

assumption made in literature with respect to this relationship is that speed varies linearly 

with density. Corresponding to the zero density, vehicles will flow at their desired speed 

or maximum speed which is referred to as the free-flow speed (𝑣𝑓). When the density 

reaches to the point of jam density, the speed becomes zero.  

3. Speed-Flow (𝒗 − 𝒒) curve: In the 𝑣 − 𝑞 relation, the flow is zero either because there are 

no vehicles on the roadway or there are too many vehicles that they cannot move and the 

speed at this point is zero due to zero motion. At the maximum flow (𝑄𝑀), the speed is 

between zero and the free-flow speed (𝑣𝑓). The same can be visualized in Figure 2.8. 

 

Figure 2.7 Speed-Density (𝑣 − 𝑘) FD 

 

Figure 2.8 Speed-Flow (𝑣 − 𝑞) FD 
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The relationship between these fundamental relations can visualized by combing the three 

diagrams as shown in Figure 2.9. One of the most widely used functional form of a FD is the 

triangular FD (Newell, 1993) which simplifies a FD as a piecewise linear function which two lines 

in 𝑞 − 𝑘 relation. The FD describes the empirical relationship between the traffic states and is a 

vital tool which enables analysis of fundamental relationships. The traffic states follow the 

fundamental diagram if the region is steady and conversely, non-steady region’s traffic states will 

not be reflected on the FD. The necessary condition for the steadiness of a region is that the speeds 

of two probe vehicles of the region are time invariant and equal. Under such situation, 𝑣 = 𝑉(𝑘), 

where 𝑉  represents the speed-density (𝑣 − 𝑘) FD. Based on prevailing traffic conditions, the 

information on the FD can assist active traffic management to alleviate congestion by accessing 

network traffic dynamics accurately. FD is useful for traffic assignment and developing new 

models for traffic operations. Now, traffic flow simulations by accurate traffic models are 

extremely valuable for design and evaluation of traffic surveillance and management strategies. 

Compared with microscopic models, macroscopic models simulate aggregated traffic behavior 

meanwhile, offer reliable, fast simulations, which make them suitable for integration into a real-

time traffic management system. They are categorized as 1st order and 2nd order models and 1st 

order models are widely used in ATM systems as they’re capable of capturing many important 

traffic phenomena in an efficient and stable manner. The FD, which represents the relation between 

𝑞 and k, plays a vital role in 1st order traffic models and must be calibrated before deploying the 

model.  

Calibration of FD is to estimate its parameters accurately to maximize the model’s descriptive 

power to reproduce traffic flow characteristics. It is, therefore, a vital research problem. In addition, 

the FD contains remarkable information about traffic characteristics and helps in understanding 

fundamentals, such as free-flow speed, maximum flow rate, critical density, and capacity 

(Greenshields et al., 1935), which are used for traffic control and assignment, predicting the 

capability of road system, or predict its behavior when applying inflow regulations and speed limits. 

Hence, sound mathematical models, that better represent the FD, prepare a solid foundation for 

traffic flow analysis and efficient traffic control. Furthermore, FD also plays a significant role in 

Traffic States Estimation (TSE) methods whose estimation approach is essentially model driven. 

On this account, it becomes important to identify sound mathematical models that better represent 

the FD by calibrating them with detailed traffic state information. 
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Figure 2.9 Combined FD 

 

2.2.2 Background and literature review on FD 

 

Among the three FDs, the speed-density (𝑣 − 𝑘) relationship, first documented in Greenshields’ 

seminal work (Greenshields et al., 1935), is straightforward and easy to explain because it is a one-

to-one relation between the driver behavior and the number of vehicles which are present on the 

road. Since then, a variety of equilibrium models have been developed with two competing goals: 

mathematical elegance and empirical accuracy. Some researchers have relied almost completely 

on the statistical analysis of data for developing functions (with no theoretical background, being 

based primarily on the researcher’s observations), while others have begun with a purely 

theoretical concept, from which relationships were derived and later tested (Drake et al., 1966). In 

the former approach, an analytical expression containing several parameters is proposed. The 

expressions are then calibrated based on traffic data and lastly, an interpretation of the parameters 

in terms of properties of traffic flow is sought. The latter approach is more phenomenological or 
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behavioral as it is based on assumptions about the driver behavior with respect to some traffic 

variables.  

Although none of these two approaches should give superior results, a relation is suitable, 

realistic, and is considered to be accurate if it is statistically able to reproduce the empirical traffic 

data of the traffic stream and follows the static and dynamic properties related to the stationarity 

and continuity of the traffic flow which are attractive to mathematical modeling of traffic dynamics. 

In addition, the assumptions on the formulation of relationship can be ‘weak’ or ‘strong’. An 

assumption is ‘stronger’ if it requires validation of extensive empirical data for its justification. 

Relations with such kind of assumptions are developed based on the empirical observations, 

including shape of the curve of empirical data, and the values of model parameters which are 

subject of empirical observations. If the assumptions are valid, it can be extensively used, however, 

excessive errors can be caused if the assumptions become invalid (for example, under 

unpredictable or uncertain traffic conditions). Therefore, in general, it is practically preferable if 

the relationship is developed with ‘weaker’ assumptions, i.e., requiring little prior knowledge such 

as assumption of linearity between traffic flow variables of density (𝑘) and speed (𝑣). For example, 

Greenshields’ model is frequently used for illustrative and pedagogical purposes because it 

contains a simple linear equation (Wang et al., 2010). Therefore, a model can be easily utilized by 

practitioners working with big data if it (1) reasonably achieves the two goals of mathematical 

elegance and empirical accuracy; (2) is primarily less complex in terms of number of parameters, 

which would make it easy to handle, i.e., it is a simple functional form with parameters of physical 

significance; (3) works over the entire density range (i.e., single-regime in one equation); and (4) 

is based on ‘weaker’ assumptions.  

Decades of extensive work of modelers since 1935, has significantly contributed to developing 

single-regime stream models with varying degrees of success in terms of empirical accuracy and 

by preserving mathematical elegance of being a single-equation form. Single-regime relationships 

are ones that involves a single mathematical function which is differentiable over the complete 

regime including free-flow regime and congested regime. In other words, a single mathematical 

function describes the relationship between the traffic state variables for complete regime and these 

relationships are continuous throughout without any break in the continuity at or around critical 

density. However, these models vary in their parameters, structure, and calibrating data sources, 

all of which impact model utility (Xu et al., 2014). Eighty-five years after the seminal Greenshields 
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model, a variety of further improvements are also made by decomposing single-regime equations 

to multi-regime for better fitting leading to better empirical accuracy but reduced mathematical 

elegance and analytical tractability. For instance, after Edie (1961) several authors, such as Koshi 

et al. (1983) and Payne (1984), have suggested that discontinuous functions are required to 

properly describe the speed-density (𝑣 − 𝑘 ) dependence. However, Del Castillo and Benítez 

(1995) and Hall et al. (1986) have argued against the findings of Edie (1961) and Koshi et al. 

(1983) by stating that the data used do not necessarily correspond to equilibrium conditions and 

the results and the (𝑣 − 𝑘) curves obtained were influenced by the nature of traffic operations at 

the particular location of the study. Del Castillo and Benítez (1995) pointed out that the method of 

finding equilibrium points by Payne (1984) might be the cause of discontinuity. Also, this 

dissertation shares the opinion of Del Castillo and Benítez on the matter that if one assumes a 

discontinuous or a non-differentiable speed-density (𝑣 − 𝑘) curve, one rules out, beforehand, the 

possibility of a smooth transition regime. This also serves as an argument to support the 

assumption of continuity and differentiability of a mathematically elegant 𝑣 − 𝑘 curve.  

 

2.2.3 Literature review on analysis of 𝒗 − 𝒌 fundamental relations and 

research gap 

 

One of the first study to conduct a statistical analysis of speed-density (𝑣 − 𝑘) hypotheses was by 

Drake et al. (1966). However, the investigation was carried out only with sampled traffic flow 

characteristics captured by motion and presence detectors. Wang et al. (2010) and Wang et al. 

(2013) analyzed various existing multi- and single-regime 𝑣 − 𝑘 models with varying number of 

parameters, including Greenshields’ (Greenshields et al., 1935), Greenberg’s (Greenberg (1959)), 

Underwood’s (Underwood (1961)), Northwestern’s, Drew’s (Drew (1968)), and Pipes–Munjal’s 

models, and proposed the logistic model that outperformed other considered 𝑣 − 𝑘 relationships. 

However, the study included only the empirical analysis of 𝑣 − 𝑘 models, and the mathematical 

discussion on stationarity and continuity was not included. Moreover, the used GA 400 ITS data 

(containing only speed data with a temporal sampling rate of 20 𝑠) was aggregated every 5 𝑚𝑖𝑛𝑠 

to generate the FD. Gaddam and Rao (2019) performed a very similar analysis by considering only 

some of those single-regime models and including 4 more models of May and Keller (1967), 

Papageorgiou et al. (1989), Lee et al. (1998), and Wang et al. (2010). In addition to that, several 
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static and dynamic properties were evaluated followed by proposal of two new models, one being 

a modified version of Lee et al.’s model by introducing two more shape parameters in the 

functional form. Xu et al. (2014) summarized and analyzed ten typical 𝑣 − 𝑘 relation models by 

parameter calibrations and fitting errors using field data collected by a detector. They concluded 

that the fitting errors were not sensitive to using different sets of field data, whereas some 

physically meaningful parameters, such as free-flow speed and jam density, varied widely under 

different sets of field data. In addition, the model fit relative errors cannot be the sole basis for 

judging the validity of model. Lu et al. (2019) investigated variable structure models with two 

limbs of the inverse 𝜆-shape and compared with a few models over time at fixed location using 

properly aggregated next-generation simulation (US Department of Transportation, 2006) data 

with only a focus on saturated traffic as the data for the free-flow regime were not available. In 

addition, the spatial-temporal coverage of NGSIM dataset is still limited to 600 𝑚 and 15 𝑚𝑖𝑛.  

However, none of the previous studies have analyzed the model performance and application 

conditions with respect to the space-time resolutions, in addition with a focus on simple, less 

parameterized, ‘weaker’ assumption-based 𝑣 − 𝑘  model which makes it easy for practitioners 

working with extensive data. As an effort of such a pursuit, one of the objectives of this doctoral 

research is to evaluate and study the important single-regime 𝑣 − 𝑘 relations, and the sensitivity 

of the fitting errors and calibrated parameters of the considered 𝑣 − 𝑘 forms to different space-

time resolutions. The identification of the most suitable functional form at a particular space-time 

resolution will help in understanding the fundamentals such as maximum flow rate, critical density, 

free-flow speed more accurately at different space-time resolutions, which are very important to 

evaluate the quality of the road and road networks. It will help practitioners in decisively choosing 

the most workable FD at desired spatiotemporal resolution (based on the available traffic data). 

Using such detailed empirical evidence, it becomes feasible to predict the congestion and its 

propagation, and mutual relationship between change in level of services and traffic volume. Since 

it is meaningful to highlight the importance of the models that have high empirical accuracy, are 

based on simple assumptions, and are easy to handle with their noncomplex and compact nature, 

for practitioners with extensive traffic data in actual scenario, the goal is also to identify such a 

𝑣 − 𝑘 relation that pursues both, mathematical elegance, and empirical accuracy. This is done by 

performing a statistical analysis of different forms and their parameters at varying resolutions and 

highlight their mathematical properties. Most importantly, to demonstrate the models’ applicable 
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conditions and capabilities to track empirical data using spatiotemporally detailed and complete 

traffic data at temporal sampling rate as fine as 0.1 𝑠 (no aggregation). 

 

2.3 Traffic State Estimation (TSE) 

 

2.3.1 Introduction: definition, importance, and challenges 

 

The process of the inference of traffic state variables at observed and unobserved areas on a road 

segment with high spatiotemporal resolution using partially observed traffic data at observed areas 

is referred to as Traffic State Estimation (TSE). It is a key component of traffic control and 

operations as traffic states are not measured everywhere due to technological and financial 

limitations. For instance, traffic control, such as ramp metering, variable speed limit, pricing, and 

information provision for root choice guidance, require precise traffic state information in order to 

mitigate congestion effectively.  

 

 

 

Figure 2.10 Traffic state estimation (TSE) process 

 

Strategic transportation planning such as infrastructure improvements, road construction etc. 

also requires traffic state estimates because these operations and planning tasks can be greatly 

improved by efficient and accurate traffic estimates. Since actual traffic observations are not 

available everywhere and the available ones are associated with noises thus, it is required to 
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estimate the traffic states in the unobserved areas and the available observations also need to be 

denoised and estimated accurately. Obtaining TS in a complete space-time domain is associated 

with great technological and financial cost, especially at fine spatiotemporal resolutions. 

 

2.3.2 Estimation approaches 

 

Traffic state estimation depends on the estimation approach, traffic flow model, and input data 

(Seo et al., 2017). The estimation approach can be model-driven, data-driven or streaming-data-

driven based on the input data and the assumptions made by the method on traffic dynamics.  

 

2.3.2.1 Model-based approaches 
 

The physics-based mathematical models of traffic flow, utilized by the model-driven estimation 

approach, describe the physical and theoretical aspects of traffic dynamics. They are representative 

of physics of traffic and add value to the observations. TSE methods based on models developed 

using empirical observations are considered to have ‘strong’ assumptions because these methods 

rely on an explicit a priori knowledge of traffic dynamics and can be vulnerable under uncertain 

phenomena. Although they have high explanatory power and can be integrated with traffic control 

operations directly, a poor physical model or poor calibration of the model may lead to poor TSE. 

Moreover, they are not always consistent with the detailed disaggregated mobile datasets that are 

recently garnering significant attention owing to recent advancements in ICT. Solving boundary 

value problems (BVPs) can be regarded as model-driven TSE, where the boundary conditions and 

models are assumed to be correct. Several methods have been developed to combine mobile data 

with stationary data using first or second order models and filtering techniques such as Kalman 

filtering techniques (KFTs) (such as Kalman filter (Kalman and Bucy, 1961), Ensemble Kalman 

filter, Extended Kalman filter, Particle filter etc.) for TSE. 

 

2.3.2.2 Data-driven approaches 

 

To deal with the limitations of model-based approaches, it is required to either improve these 

theoretical models or to utilize of data-driven or streaming-data-driven estimation approaches (Seo 
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et al., 2017). Now, even though the data-driven approaches do not rely on physical traffic flow 

models, they rely extensively on historical data to find dependence using statistical methods or 

machine learning (ML). Although ML is capable of efficiently predicting non-linear phenomena 

often found in the transportation field, the computation costs for training and learning can be high. 

Moreover, the methods can be considered black boxes, and it is difficult to obtain deductive 

insights. Additionally, they may fail if irregular events or long-term trends occur. Imputation 

methods have been developed to complement missing data and techniques such as kernel 

regression (KR), fuzzy c-means (FCM), k-nearest neighbors (kNN) etc., and have been used to 

incorporate more spatial-temporal information. Traffic flow models and the use of (statistical) 

dependency on historical data are considered ‘strong’ assumptions. 

 

2.3.2.3 Streaming-data-driven approaches 

 

The streaming-data-driven approaches rely on streaming data and use ‘weaker’ assumptions such 

as Conservation Law (CL). They require less a priori knowledge and no historical data. They can 

be robust against uncertain phenomena and unpredictable incidents. For instance, the moving 

observer method and its variants have been used for TSE with only a random sampling assumption. 

In a few studies, extended floating car data (𝑥𝐹𝐶𝐷) were used with and without the conservation 

law. In general, it is preferable for practical applications if accurate TSE is achievable based on 

‘weaker’ assumptions (Seo et al., 2017). 

 

2.3.3 Literature review on TSE 
 

Extensive research has been done in formulating traffic state estimation methods. In context of 

data-driven TSE approaches, Ni and Leonard (2005) utilized Bayesian estimation by incorporating 

time series-based model to Bayesian network for improving the robustness of method. Tan et al. 

(2014) proposed a TSE method based on robust principal component analysis. van Erp et al. (2017) 

evaluated traffic sensing data-based estimation error characteristics in macroscopic TSE. 

Sunderrajan et al. (2016) presents an analysis of using probe vehicle for reconstructing traffic state 

and estimate the state from floating car data and describes the probe penetration rate for accurate 

TSE.  
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With reference to the streaming-data-driven TSE approaches, several studies have contributed 

to the development of TSE method that rely on streaming data and ‘weaker’ assumptions such as 

random sampling condition or Conservation Law. For instance, a TSE method using connected 

vehicles and stationary detectors was proposed by Grumert and Tapani (2018) where the only 

required information were the speed and the position of the connected vehicles and made use of 

the sparsely located stationary detectors to limit the dependence on the infrastructure equipment. 

Seo et al., (2015b) proposed a 𝑥𝐹𝐶𝐷-based TSE method that provides estimates of flow and 

density using headway and spacing measurements recorded by the probe vehicles.  

Solving the traffic flow models, based on deterministic theories, with given initial and 

boundary conditions using data from sources such as probe vehicles is also regarded is model-

based TSE. For instance, Bladin et al. (2013) and Fan et al. (2014) used physics-based models to 

estimate non-stationary traffic state. Coifman (2002) proposed a method for utilizing 

disaggregated stationary data for vehicle trajectories based on the application of Lighthill–

Whitman–Richards (LWR) model (Lighthill and Whitham, 1995; Richards, 1956). Certain model-

based TSE methods have been proposed that utilize first and second order traffic flow models as 

part of data assimilation frameworks to produce traffic state estimates by combing mobile data 

with stationary data.  

 

2.3.3.1 Data assimilation (DA) and TSE using DA techniques 

 

Data assimilation (DA), also referred to as inverse modeling, are a class of techniques that aim at 

fusing information from both sides, computational sciences, and real measurements, to provide 

better estimates of the system’s state and therefore, they lie at the interface between the two sides. 

It is used to refer to the problems of estimation (or inference) or modelcalibration (or system 

identification) respectively. In particular, such techniques yield optimized state of a system that 

describe the system’s dynamics and evolution by combining prior information about initial 

system’s state and parameterization, possibly incomplete dynamical models, and sparse and 

corrupted measurement data. The mechanism of DA from a higher level is shown in Figure 2.11. 

In context of traffic state estimation (TSE), DA approaches are widely employed by TSE 

studies, and they fall under the model-based traffic states estimation approach where neither the 

traffic flow models, nor the data are considered as perfect. The most popular DA techniques 
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employ the Kalman Filter (KF) (Kalman and Bucy, 1961) and its extensions and variations (KFTs: 

KF–like techniques). The goal is to estimates ‘the most probable state’ which may not be identical 

to both model prediction and observation. This approach corrects the model’s prediction based on 

the observations and it has the benefit of integrating the modeling and measurement errors. 

 

 

Figure 2.11 Mechanism of data assimilation 

 

In general, the KFTs are based on state-space model consisting of a system or process equation 

(2.15) and an observation or measurement equation (2.16). The system equation represents the 

dynamics of the system, and the observation equation represents observations of the system. 

 

 𝑥𝑡 = 𝑓𝑡(𝑥𝑡−1, 𝜔𝑡−1) ( 2.15 ) 

   

 𝓏𝑡 = ℎ𝑡(𝑥𝑡 , 𝜂𝑡) ( 2.16 ) 

where at time 𝑡, 

 

𝑥𝑡: state vector   𝓏𝑡: observation vector 

𝑓𝑡: system model   ℎ𝑡: observation model 

𝜔𝑡: system noise   𝜂𝑡: observation noise 
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Mathematically, the main objective of KFTs is to obtain the 𝑥𝑡 (system’s state vector) that 

maximizes 𝑝(𝑥𝑡|𝓏1, 𝓏2, . . , 𝓏𝑡)  (most probably state) with respect to an available observation 

vector, assumed system model, and noises of the system and the observations. In the context of 

TSE, 𝑥𝑡 often corresponds to a discretized traffic state (such as density) or cummulative flow that 

is the subject of TSE. Then, 𝑓𝑡 represents the numeric scheme used for the continuous PDE of the 

traffic flow model, to which the model noise 𝜔𝑡  is added. Now, 𝜔𝑡  can either be explicitly 

modeled from its source or assumed as simple white noise with a given deviation and it 

encompasses the modeling error or uncertainty. The model parameters, such as FD parameters, are 

either endogenously estimated together with the traffic state or exogenously assumed. The 

observation vector 𝓏𝑡  corresponds to the observed traffic data. The observation model ℎ𝑡 

corresponds to a mapping from traffic state to observed traffic data. A linear observation model, 

which means that the state variables are directly observed, is often employed. It is easy to construct 

an observation model when working with stationary data and a conventional traffic flow model 

however, when working with mobile data certain challenges associated with the low probe 

penetration rates or low temporal sampling rate arise, which require special techniques to handle 

those issues (Seo et al., 2017). Measurement errors are represented by the observation noise  𝜂𝑡.  

In context of the model noise and observation noise, two kinds of noises that are majorly 

assumed are additive noise and multiplicative noise. Multiplicative noise is due to random 

scattering in the state under test and it is coherent with the driving state to a varying degree whereas 

additive noise is noncoherent. Additive noise, such as Gaussian noise, is less impactful and 

complex than multiplicative noise, such as Gamma distribution, in which the noise is multiplied 

to the system state. For instance, the spread of ensembles is very vast, dynamic, and much more 

turbulent in phenomena such as weather. However, the flow in phenomena like river and traffic is 

different from anomalous climate dynamics. Even though, the multiplicative noise can be handled 

by converting them into additive noise by converting multiplicative nature into additive using 

logarithmic transformation followed by applying any filtering technique and late inverse log is 

used to get the correct result. However, utilizing additive noise for traffic phenomenon reduces the 

complexity and the computational cost of KFT implementation for estimation. In fact, it is 

meaningful to utilize multiplicative noise if we assume that the random term (or noise) depends 

on (is coherent with) the state of the system.  
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Extensive literature has studied have utilized the KFTs for estimating the traffic states through 

various combinations of observations and system models1. Some of the KFTs are listed below 

along with their key features.  

 

Kalman Filter (KF): It is the most basic KFT that assumes both, the system model and 

observation equation to be linear. It is efficient in terms of computational cost; however, standard 

traffic flow models are nonlinear and for that reason simple KF are not widely used. Sun et al. 

(2003) and Thai and Bayen (2015) employed Kalman Filtering technique where the system model 

behaves linearly. 

 

Extended Kalman Filter (EKF): It can use non-linear model to some extent however, it can’t be 

used with models that are non-differentiable (such as Eulerian CTM). Tampere and Immers (2007) 

applied Extended Kalman Filter for TSE using CTM with implicit mode switching and dynamic 

parameters. Wong and Wong (2002) and Göttlich et al. (2013) are some of the other applications 

of Extended Kalman Filter where Lax–Friedrichs scheme was used. 

 

Unscented Kalman Filter (UKF): UKF overcomes the shortcoming of EKF as it can use 

nonlinear system model and it doesn’t require an analytical differential. Mihaylova et al. (2006) 

and Yuan et al. (2012) utilized the Godunov discretization scheme (Godunov, 1959) and employed 

Unscented Kalman Filter and Extended Kalman Filter, respectively. 

 

Particle Filter (PF): PF extensively uses Monte–Carlo simulation to represent non-linear 

phenomena and unlike other KFTs it doesn’t require matrix inversions. It has a high computation 

cost, and it is difficult to apply to large scale estimations. Mihaylova and Boel (2004) and Wright 

and Horowitz (2016) are a couple of applications of Particle Filter in the context of traffic state 

estimation. 

 

 
1 For additional reviews on KFT-based TSE methods refer to Seo et al., (2017); El Faouzi et al. (2011); van Lint and 

Hoogendoorn (2010). 
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Ensemble Kalman Filter (EnKF): EnKF overcomes the shortcomings of Extended Kalman Filter, 

employs Monte–Carlo simulation and can use nonlinear and/or non-differentiable system models. 

Work et al. (2008) and Seo et al. (2015a) employed Ensemble Kalman Filter. 

 

In continuation to above discussion, Ouessai and Keche (2019) proposed a real-time traffic 

state estimation method based on second-order divided difference Kalman Filter. Yang et al. 

(2018) proposed a Lagrangian space Kalman filter approach for freeway TSE. Zheng et al. (2018) 

utilized Ensemble filtering techniques for DA and proposed a method for traffic state estimation 

using stochastic Lagrangian dynamics. Bekiaris-Liberis et al. (2016) addressed the problem of 

estimating traffic states in highway segments in the presence of mixed connected and conventional 

vehicles. Wang et al. (2009) devised a real-time nonlinear freeway traffic state estimator using 

detector data and second order traffic flow model with a particular focus on its adaptive features. 

Nanthawichit et al. (2003) utilized probe vehicle data and integrated into the observation equation 

of Kalman Filter to provide real-time TSE and short-term travel time prediction on a freeway. 

Wang and Papageorgiou (2005) used freeway detector data and second order traffic model for 

estimating traffic state. van Lint et al. (2008) estimated state and parameters using detector data 

and first-order traffic flow model. Herrera and Bayen (2010) utilized aggregated speed data of 

probe vehicles, boundary detector data and speed-based traffic flow model for estimating traffic 

state. Disaggregated prove vehicle data and boundary flow data were used by Yuan et al. (2012) 

to estimate traffic state by using Lagrangian-coordinate first order traffic flow model.  

 

2.3.4 TSE: research gap and contribution 

 

From the literature, it is also clear that numerous proposed TSE methodologies, be it ‘weaker’ 

assumptions-based or model-based, have either been mostly validated through microscopic or 

macroscopic simulations, experimental data or rarely utilized real traffic data with small 

spatiotemporal coverage and/or aggregated type datasets; and not complete (100% vehicles’) and 

detailed real traffic data.  

In context with model-based estimation approaches for TSE, for instance, Tampere and 

Immers (2007) utilized the Extended Kalman Filter. Since Extended Kalman Filter can handle 

nonlinear model to some extent, this study linearized the CTM model around its current state based 
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on certain assumptions and illustrated the application of approach in a short time real and a 

simulated case study. On the other hand, Ouessai and Keche (2019) increased the complexity of 

the TSE method by utilizing a higher-order traffic flow model with Divided Difference Kalman 

Filter. In addition, the real-world dataset of highway traffic collected included mean traffic speed 

and mean traffic flow, using which the density was derived based on fundamental relation of traffic 

flow. Yang et al. (2018) proposed a less complex TSE method by utilizing the simple Linear 

Kalman Filter with a first order model: travel time transition model (TTM). However, the 

calibration of FD was based on fixed or least-square fitting and, the method was not validated with 

real traffic data rather it was based on VISSIM simulated data. Nanthawichit et al. (2003) proposed 

a method for dealing with probe data along with conventional detector data to estimate traffic state 

using Kalman Filter. However, this method employed a second order model and was then tested 

under several traffic conditions by using hypothetical data only.  

Now, in context with ‘weaker’ assumptions-based approach for TSE, at an age of near 

ubiquitous sensor (e.g., cell phone) penetration, and with massive emergence of connected vehicles, 

these ‘weaker’ assumptions-based TSE methods might become prevalent in near future. As an 

effort of such a pursuit, this doctoral research, first, analyzes a ‘weaker’ assumption and extended 

floating car data (𝑥𝐹𝐶𝐷)-based TSE method (proposed by Seo et al., (2015b)), under current low 

penetration environment, that do not reply on ‘strong’ assumptions and whose estimation 

capabilities have not been validated using vehicles’ high-resolution, complete, and detailed 

trajectory data with high space-time coverage. Then following that, to improve the estimation 

capability at fine space-time resolution, using fewer probe vehicles, in both the regimes, free-flow 

and congested, and in complete space-time domain, it extended the ‘weaker’ assumption-based 

approach to estimate the traffic state more accurately through an adaptive approach by utilizing a 

data assimilation (DA) framework and probe vehicle data. The hypothesis is that utilization of DA 

techniques in formulating a model-based TSE method shall provide more accurate estimates under 

the discussed requirements. The nature of this study of proposition, development, and 

implementation of a model-based TSE method (referred to as ‘This study’ in Figure 2.12) differs 

from the past similar studies (as illustrated in Figure 2.12) in terms of calibration methods of the 

FD, the choice of traffic flow model, the kind of data assimilation technique used to estimate the 

state variable, and as mentioned before, whether the estimation capability of the method was 

validated with real traffic data. For instance, a very similar study to the current study is Seo et al. 
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(2015a), that utilized an Ensemble Kalman Filtering technique with a first-order traffic flow 

model: CTM.  

The following discussion compares the study with the current study, explains the need of 

improving the methodology through current study, and highlights the theoretical merits of the 

current study over it. Firstly, the FD calibration method in Seo et al. (2015a) is based on a LS fit 

which is done by performing a regression analysis to find minimum distance from points calculated 

from headway-spacing measures from the probe vehicle data and a triangular FD. LS fit does not 

consider the dynamics of traffic and without an accurately performed steady state analysis it is 

difficult to obtain a FD with reasonably accurate FD parameters. Moreover, in absence of (𝑞, 𝑘) 

points from the congested regime the LS fit may not be able to infer the backward wave speed and 

jam density correctly. To remedy this, the FD Calibration method in the current study involves an 

iterative process to automatically calibrate the FD by solving the SQP to minimize the discrepancy 

between the simulated traffic density and observed traffic density by probe vehicles at every time 

step. It renders the TSE method to be more robust by adapting to the dynamics of traffic data. 

Secondly, in terms of EnKF specifications, Seo et al. (2015a) utilizes only density measures from 

the probe vehicles as part of the observation equation. However, it is possible to obtain additional 

observed information from the same probe vehicle data which can help in improving the quality 

of TSE. In such a pursuit, this study uses the observed density and velocity measures, making the 

observation equation as nonlinear, to calculate the covariance in the Kalman Gain calculation step. 

This additional information on velocity observation from probe vehicles contributes to the 

increased prospects of better estimation results. Finally, the validation of the proposed TSE method 

involves analyzing numerical characteristics through statistical metric scores by using the ZTD 

provided by Hanshin Expressway Co. Ltd. The validation with real traffic data enhances the 

reliability and applicability of a proposed model or estimation method. In contrast, Seo et al. 

(2015a) investigated the numerical characteristics of the TSE method through a simulation 

experiment.  
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Figure 2.12 Literature review of similar studies on model-based TSE using DA 
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2.4 Research scope of the dissertation 

 

This dissertation “Fundamental Diagram and Traffic State Estimation Methods: Analysis and 

Modeling using Zen Traffic Data” systematically studies the traffic states (TS) and fundamental 

diagrams (FD), which are the most fundamental concepts of the theory of traffic flow, and then 

shifts the focus to the traffic state estimation (TSE). As discussed in section 1.1, for traffic 

modeling, management, and safe, smooth, and economical traffic operations, it is very critical to 

understand the current state of traffic through estimating the traffic states using partially observed 

traffic data and also to understand the inter-relationship between the traffic state variables through 

FD of road traffic. This dissertation answers three major research questions which were left 

unanswered by the extensive literature or, except for a meagre prospect, were left unproved without 

reasonable assurance in accuracy and applicability. They are: 

 

1. While working with extensive data, which FD is most potential for traffic engineers in terms 

of accuracy, mathematical alignments to the continuity and stationarity of traffic flow, less 

computation cost, dependence on no strong assumptions? Moreover, which is the most 

workable form of FD at a specific resolution subject to traffic flow analysis? 

 

2. Can the information on current state of traffic obtained from a probe data based-TSE 

method (Seo et al., (2015b)), that does not rely on strong assumptions, be relied upon and 

how much accuracy can be expected in estimates at a resolution for which the estimates 

are desired? Also, what are the factors that affect the accuracy of such methods? Is it 

spatial resolution at which the estimates are required, or temporal resolution or is it the 

number of probe vehicles that are present on the freeway?   

 

3. How can a DA framework-based TSE method be best designed as to deliver highly reliable 

estimates of traffic states at high spatiotemporal resolution and using few percentages of 

probe vehicles, which can be implemented on a wide space-time domain that even 

undergoes the state of congestion? 
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Amidst the growing traffic problems, this study contributes to the practices for keeping the 

efficiency of traffic system high without building new transportation infrastructures. By taking 

advantage of the advancements in ITS technologies, the studies conducted as part of this 

dissertation provides a deeper and much reliable comprehension of traffic flow analysis through 

studying FDs, TSE methods and devising advanced TSE methodology, which produces quite 

accurate estimates of traffic states using data from only a few numbers of probe vehicle and 

roadside detectors, that can help traffic engineers in alleviating congestion.  

Besides the methodological contributions, this thesis also makes practical contributions. The 

results from a.) the analysis of FDs, and b.) the analysis of ‘weaker’ assumption based-TSE method, 

are suitable for direct appliance in understanding the dynamics of traffic. In addition, the proposed 

model-based TSE method is developed with the aim of real-world implementation and is suitable 

for the current low-penetration-rate vehicle environment. It can provide essential input for 

improving the efficiency of short-term traffic performance through operations, traffic management 

and control before the freeway reaches the state of congestion. For instance, the control measures 

that are typically employed in freeway networks include ramp metering, link control that comprise 

of lane control, variables speed limit, congested warning, keep-lane instructions etc., and driver 

information and guidance system.  

Speaking specifically of link control measures, the information on estimated current state of 

density can help in managing the changeable message signs with indications for ‘keep lane’ or 

congestion warning to drivers which may help drivers in deciding the choice of route. This 

information can be used in controlling traffic by prohibiting the usage of a link or a lane which are 

heavily used or around incident locations. These measures are believed to homogenize the traffic 

flow (i.e., more homogeneous speeds of cars within a lane and of average speeds on different 

lanes) which helps to reduce the risk of falling into congestion at high traffic densities and to 

increase the freeway's capacity.  

Also, route guidance traffic control strategies can utilize sufficiently interpreted current traffic 

state measurements on different links on the network to recommend the route to the road users 

through reactive strategies (which react to estimated current traffic states without the real-time use 

of mathematical models or predictive tools) and predictive strategies (which can predict future 

traffic conditions in order to improve the quality of provided recommendations).  
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Therefore, we expect the proposed method in this thesis to be implemented on an even larger 

scale and help traffic engineers and transportation agencies in solving more real-world issues 

related to traffic, congestion being a major one.  
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3 TRAFFIC DATA 

 

 

3.1 Introduction 

 

ITS aims to enhance public safety, reduce congestion, improve access to travel and transit 

information, generate cost savings to motor carriers, transit operators, toll authorities and 

government agencies, and reduce detrimental environmental impacts. Intelligence requires 

information, and information requires data, which is generated by experiments and surveillance. 

Traffic engineering studies differ from other studies in that they require extensive data from the 

field, which cannot be accurately generated in a laboratory (Dahiya and Asakura, 2021). In order 

to mitigate the congestion, traffic data collection is one of the most essential elements required for 

traffic flow analysis. However, collecting information from the entire transportation system is not 

always possible due to the associated technological limitations and financial costs. 

Several methodologies for collecting traffic data without any significant assumptions, 

including a variety of information such as cumulative flow, vehicles’ speeds, positioning, travel 

time etc., have been developed since the genesis of traffic engineering (Greenshields et al., 1935). 

At present, there exist numerous automated ways of obtaining traffic data. Because of recent 

advancement in ICT, a wide variety of empirical data is available at present time that includes 

volume count, vehicle classification, vehicle occupancy, travel time, delay, vehicular speed, and 

position etc. Stationary data (or Eulerian data) obtained from in-situ technologies and mobile data 

(or Lagrangian data) obtained from in-vehicle technologies are two major categories of empirical 

traffic data available based on the measurement methodology. Another independent categorization 

of traffic data introduced by Seo et al. (2017) is of aggregated (information from multiple vehicles 

is aggregated and stored) and disaggregated data (data is not aggregated but stored as collected). 

Disaggregated data contains more information than the aggregated one.  Analysis, calibration and 

modeling of fundamental relations and TSE methods have mostly utilized stationary sensors’ data, 

mobile data, such as the GPS probe vehicles that only contain average speed or sampled trajectories 
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data. This means that other traffic state variables cannot be obtained from it without some 

additional assumptions.  

The remainder of this chapter discusses about the traffic data collection methodologies in 

section 3.2 and 3.3, including fixed-point data and mobile data, respectively. Then it introduces 

the complete trajectory data utilized for this research namely, Zen Traffic Data (ZTD) and several 

advantages associated with utilizing ZTD over other high-tech trajectory datasets in section 3.4. 

 

3.2 Fixed-point data 

 

Fixed sensors, such as inductive detector loops (IDL), pneumatic tube detectors, embedded 

magnetometers, ultrasonic detectors, passive or active infrared detectors, laser detectors, weigh-

in-motion (WIM) and closed-circuit television cameras, can be considered as conventional that 

collect stationary or fixed-point data. The in-situ technology utilizes the detectors located on or 

along the roadside and are split into two categories of intrusive and non-intrusive methods based 

on method of data collection. The intrusive methods consist of a data recorder and a sensor placed 

on or inside the roadway, installation of which causes a potential disruption of traffic, whereas 

non-intrusive methods are based on remote observations and are mounted at or above the road 

surface and their installation causes less or no disruption of traffic. Passive magnetic or magneto-

meter sensors, an intrusive technology with a circular or elliptical offset zone of detection, are 

either permanently mounted within holes in the roads or affixed to the road in some fashion and 

communicates information, such as short-term traffic counting, vehicle classification by axle 

counts and spacing, to a nearby base station through wired or wireless communication. It reads the 

fluctuations in the relative strength of the Earth’s magnetic field with the presence of a moving 

metal object i.e., a vehicle. Generally, in order to receive speed or vehicle classification assessment 

at least two sensors are required because a single sensor can only provide flow and occupancy 

information. IDL, an intrusive technology, consist of coated wire coils buried in grooves cut on 

the surface of road and are sealed over with bituminous fillers and communicates to the processing 

unit via cables buried with the loops. A single loop can collect data related to flow 𝑞 and density 

𝑘 and with two detectors other parameters like speed and vehicle length can also be obtained. 

Another intrusive technology, WIM consist of a piezoelectric sensor system laid across the road 

and are usually coupled with other intrusive or non-intrusive technologies to provide additional 
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data. It detects the variation in voltage caused by pressure exerted on the sensor by an axle and 

thereby obtain the axle’s weight and spacing based on the time the vehicle takes to cross. The non-

intrusive technologies, such as video image detection (VID), infrared sensors, microwave-Doppler 

and Radar, ultrasonic sensors, and passive acoustic array sensors, are expanding rapidly with 

continuing advancements in the field of signal processing and are providing supplemental traffic 

information for specific locations or applications such as queue detection. The roadside mast-

mounted sensors cover an oblique upstream or downstream area a field of regard. VIDs collect 

variety of data by performing frame-by-frame analysis of images processed from the videos 

obtained from roadside cameras and makes it possible to capture all desired traffic information. 

Detectors mounted under gantries or the underside of bridges, a non-intrusive technology, have 

the field of regard directly below them. Open path monitors are mounted on the roadside at ground 

level that fire beams across the road for side-by-side masking. Other overhead mounted sensor 

technology–infrared sensors, are used for signal control and view approaching or departing traffic, 

sometimes from a side-looking configuration. Another non-intrusive technology–passive acoustic 

arrays sensors use an array of microphones to detect the sound of an approaching vehicle which is 

above an ambient threshold using which aid in estimating vehicle location and speed information, 

occupancy etc. through signal processing.  

Technologies for collecting fixed-point data vary as to their ability to provide accurate 

additional information and their reliability. However, their accuracy and precision may not be 

reliable, for instance, because of frequent misses and/or double counting by loop detectors, 

sensitivity towards weather conditions or environmental effects affecting sensor performance like 

sound propagation degradation in pulse and active ultrasonic sensors and passive acoustic array 

sensors. The problem of missing data arises mainly because of the sparse sensor installation owing 

to the impracticality of installing detectors everywhere and the generally high operational costs of 

roadside sensors. For instance, the tube installation in magnetic sensors is not durable with a life 

span of less than a month and are not suitable for high flow or high-speed roads. Similarly, the 

piezoelectric sensors for WIM systems must be replaced at least once every three years. Likewise, 

the loops of the IDL are damaged easily. Moreover, they have a very low sample rate for data 

collection. Therefore, the limitation to the fixed-point sensors is that the amount of data they 

provide is not always sufficient for traffic control.  
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3.3 Mobile data 

 

Over the past three decades, the in-vehicle technologies generically termed as Automatic Vehicle 

Location (AVL) systems, that have a direct impact on the policy instruments available to 

authorities for the operation of ITS and are believed to play a vital role in improving efficiency of 

transportation networks, have really come into realization through the advantage of satellite-based 

technologies. They provide either positioning information whenever a vehicle equipped with 

transponders, that receive and transmit information from roadside units, passes a specific point in 

the transportation network, or continuous information as the vehicle, equipped with Global 

Positioning System (GPS) technology, travel through the network. One such mobile data collection 

technology is radio-frequency identification (RFID) or transponder systems. It is an automatic 

identification method which utilizes RFID tags or transponders for the purpose of collecting data 

using radio waves. These tags are comprised of a microchip and an antenna to collect information 

and transmit data to readers, respectively. However, there are certain drawbacks associated to the 

RFID such as reader collision when signals from two or more readers overlap, and sometimes the 

tags are unable to respond to simultaneous queries. 

Owing to recent advancements in information and communication technologies (ICTs), 

mobile sensors, such as on-vehicle GPS devices, signpost-based transponders, automatic vehicle 

identification (AVI) transponders, call detail records (CDRs), dynamic route guidance (DRG), and 

second generation on-board diagnostics systems (OBD–II), collect the mobile data with broader 

coverage of road network and are relatively new as compared to fixed-point sensors. As a result 

of emerging connected and automated vehicles, the mobile sensors are increasingly used as sources 

of data. Vehicles with such sensors, often referred to as probe vehicles or floating cars, are a cost-

effective way to collect data termed as Floating Car Data (FCD). Probe vehicles use on-board 

electronics to determine its position and register experienced traffic conditions to a traffic center 

where the received traffic data is combined and processed with other data from other monitoring 

sources to provide relevant traffic information which is vital for Advanced Traveler Information 

System (ATIS). The principle of FCD is to collect real-time traffic data such as car location, speed, 

and direction of travel, by locating the vehicle over the network via mobile phones or GPS that act 

as sensors for the road network. This data is sent anonymously to a central processing center where 

traffic engineers use this information for extracting useful insights such as status of traffic and 
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alternative routes and redistribute to the drivers on road. GPS has recently gained a much 

popularity due to their ability to provide real-time location data with high precision. However, 

only a limited number of vehicles are equipped with GPS, and it deals with high equipment costs 

as compared to floating cellular data. FCD is an alternative or rather complement source of high-

quality data to existing technologies which are becoming crucial in developing new Intelligent 

Transport Systems (ITS) as they are potentially able to improve reliability of the transportation 

system, its efficiency and safety. Two important characteristics of probe vehicle data are 

penetration rate (ratio of probe vehicles to all the traffic) and temporal sampling rate (time interval 

between consecutive reporting of data). In general, it is preferable if both the characteristics are 

high when collecting the data. Probe vehicles are capable of collecting mobile data from a wider 

spatiotemporal domain and are relatively cheaper traffic data collection tool as compared to 

stationary sensors (Herrera et al., 2010; Zito et al., 1995). The new type of mobile data, collected 

by probes that are equipped with advanced on-vehicle sensors, consists of more than just the 

positioning and speed of the vehicle trajectory; thus, it has been named extended floating car data 

(𝑥𝐹𝐶𝐷) (Huber et al., 1999). However, the probe vehicle data may contain biases based on 

sampling and differences in the driving behavior of the probes. For instance, if the probe vehicles 

belong to a logistic fleet, they may travel at slower than average speeds. In addition, vehicles with 

recent advanced driving technologies (e.g., ADAS and connected vehicles), which may be used as 

probe vehicles, may exhibit different driving characteristics compared to completely manually 

operated vehicles and progressively change driving and traffic patterns. 

 

3.4 Zen Traffic Data (ZTD) 

 

For this doctoral research, complete and high-tech data, with a high temporal sampling rate of 0.1 

𝑠, have been utilized, namely the Zen Traffic Data (ZTD). The data consists of wide range and 

long period of all vehicle trajectory data and any other data affecting traffic events and as a result, 

the real complicated traffic phenomenon itself, that no one has been able to grasp so far with in 

depth details of each vehicle, has been digitalized (source: https://zen-traffic-data.net/). It has been 

developed using image sensing technology by targeting congestion bottlenecks. Image processing 

involves frame-by-frame analysis of video images captured by roadside cameras and depending 

on the processing methodology, complex systems allow extraction of all desired traffic information, 

https://zen-traffic-data.net/
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including parameters that are not readily obtainable using other types of detectors. A video image 

processor system typically consists of multiple cameras, microprocessor-based computers for 

digitalizing and processing the imagery of traffic scene to determine changes between successive 

frames, and software for interpreting the images and converting them into traffic flow data. 

Generally, the algorithms are designed to remove the gray level variation in the image background 

caused due to weather conditions, shadows, daytime or nighttime artifacts and color imagery can 

also be exploited to obtain the data. As described in Figure 3.1, the system design consists of four 

major stages namely, vehicle image collection, vehicle detection via detection of frame features, 

vehicle searches that matches the detected features of frames, and database creation by refining 

matched vehicle features.  

For ZTD, the cameras, for recoding the videos and observe all vehicles at an interval of 0.1 

second, are installed on light poles of height close to 10 𝑚 and they are installed on the full length 

of the target section of the Hanshin Expressway at an interval of 40 𝑚 distance. The image sensing 

devices collect the image data of moving vehicles from the rear side of the vehicle from a distance 

so that the personal information of the driver or vehicle, such as passenger’s face or driving license 

plate numbers, cannot be identified. Now, creating these images is a difficult task due to the 

inability of computers, unlike humans, in distinguishing the background and vehicles by 

considering a single image. So, a greater number of frames improve the quality of image data 

which are analyzed frame-by-frame to detect features corresponding to moving vehicles in the 

scene. This is done by removing the static background resulting in images consisting of blobs 

(collection of pixels with non-zero values) corresponding to the identified vehicle which are further 

enhanced by processing. At times, presence of false blobs, due to excessive noise in the image, 

requires further processing for extracting traffic data. Then, vehicle tracking or vehicle searches 

are done by matching the detected features from previous frames with those of the current frame 

to generate sequential vehicle trajectory. These matched vehicle features can be redefined to 

correct features in the frame. At last, the final database consisting of demographic information 

about the roadway such as longitude, cross slopes, road curvature etc., vehicle trajectory, vehicle 

specific information such as car length etc., location at 0.1 𝑠 interval, and information of nearby 

vehicles is created. This vehicle trajectory database contains roughly 100% of each vehicle’s 

continuous trajectory in the target sections and is intended to realize a safer, more secure, and 

comfortable driving for all highway users (source: https://zen-traffic-data.net/).  

https://zen-traffic-data.net/
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Figure 3.1 Data generation process for ZTD 

(Source: https://zen-traffic-data.net/english/generate/) 

https://zen-traffic-data.net/english/generate/
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3.4.1 Sections observed and data characteristics 

 

ZTD is a large-scale trajectory dataset developed by Hanshin Expressway Co. Ltd. for sections on 

two routes as depicted in Figure 3.2, 3.3 and 3.4:  

• Hanshin Expressway Route 11 (Ikeda route Osaka bound) nearby the Tsukamoto Junction 

• Hanshin Expressway Route 4 (Wangan route Osaka bound) at the Ohama-Sambo Junction 

 

The section on the Ikeda Route 11, around Tsukamoto Junction (5.0 – 3.0 𝑘. 𝑝., in the inbound 

direction) is initially an ‘S’-shaped curve, which subsequently becomes a simple straight line, as 

shown in Figure 3.3. It consists of two lanes, a merging section with a major on-ramp, two slightly 

curved sections, and a sag section.  

 

 

Figure 3.2 Sections observed on Hanshin Expressway for obtaining ZTD 

 

Figure 3.3 Target section Hanshin Expressway Route 11 (Ikeda route) 
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Figure 3.4 Target section on Hanshin Expressway Route 4 (Wangan route) 

(Source of Figures 3.2, 3.3 & 3.4: https://zen-traffic-data.net/english/outline/dataprovision.html?area=tsukamoto) 

 

Table 3.1 Vehicle specific data obtained through ZTD 

 

 

For this section there are 5 data products available: L001_F001, L001_F002, L001_F003, 

L001_F004, L001_F005 containing continuous trajectory details of 100% vehicles driving for a 

distance of 2 𝑘𝑚 (5.0 – 3.0 𝑘. 𝑝.) for 1 ℎ𝑜𝑢𝑟 (different times of day, 2 for 7 – 8 a.m., 2 for 3 – 4 

p.m. and 1 for 10 – 11 a.m.). 

These 5 datasets have a wide spatiotemporal coverage and are specifically used for this 

research datasets to perform empirical spatiotemporal analysis. As tabulated in Table 3.1 and 3.2, 

the ZTD includes continuous trajectory information (and any other data affecting traffic events) of 

all the vehicles (almost 100 %) as described by parameters, namely vehicle_id (vehicle ID), 

datetime (time with a 0.1 𝑠 precision), vehicle_type (Type 1: normal or Type 2: large vehicles, 

https://zen-traffic-data.net/english/outline/dataprovision.html?area=tsukamoto
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such as bus, truck etc.), velocity, traffic_lane (driving, passing or entrance), kilopost (distance from 

the starting point of the expressway route), vehicle_length (estimated vehicle length obtained from 

image recognition), latitude, longitude etc. for each vehicle. For instance, the traffic data 

L001_F001, contains the details of 3,375 vehicles with vehicle IDs ranging from 0 to 3,734 from 

7:00 a.m. to 8:00 a.m. for 2 𝑘𝑚 (5 𝑘. 𝑝. to 3 𝑘. 𝑝.). For the purpose of clear visualization of this 

particular dataset of ZTD, Figure 3.5 shows the velocity heat plot observed in each lane of Hanshin 

Expressway Route 11. 

Table 3.2 Demographic specific data obtained by each vehicle using ZTD 

 

(Source of Table 3.1 & 3.2: https://zen-traffic-data.net/) 

 

 

Figure 3.5 Observed velocity in the space-time diagram per lane (nearby Tsukamoto Junction of Hanshin Expressway Route 11 

Ikeda Line (Osaka bound) 

(Source: https://zen-traffic-data.net/english/outline/) 

https://zen-traffic-data.net/
https://zen-traffic-data.net/english/outline/
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It can be seen that within a morning peak hour the vehicles were driving at their desired 

velocity of around 50 – 60 𝑘𝑚/ℎ𝑟. In the latter half of the time domain there are several instances 

where the velocities of vehicles even dropped less than 15 𝑘𝑚/ℎ𝑟. 

For the ZTD L001_F001, Edie’s generalized definitions of were used to calculate the traffic 

state variables at spatiotemporal resolutions of {50 𝑚 x 10 𝑠} and {400 𝑚 x 60 𝑠}. Figures 3.6, 

3.7 and 3.8 shows the flow 𝑞, density 𝑘, and the velocity 𝑣 at the resolution of {50 𝑚 x 10 𝑠} and 

Figures 3.9, 3.10 and 3.11 show the heat plot of traffic state variables at the resolution of {400 𝑚 

x 60 𝑠}. It can be inferred that the flow 𝑞 on the section from 07:00 a.m. to 08:00 a.m. ranges from 

0 to 1.5 𝑣𝑒ℎ/𝑠, density 𝑘 ranges from 0 to 0.18 𝑣𝑒ℎ/𝑚, and velocity ranges from 0 to 30 𝑚/𝑠.  

 

 

 

Figure 3.6 Flow 𝑞 (𝑣𝑒ℎ/𝑠) calculated using Edie's definitions for ZTD: L001_F001 at a space-time resolution {50 𝑚 x 10 𝑠} 

 

 

 

Figure 3.7 Density 𝑘 (𝑣𝑒ℎ/𝑚) calculated using Edie's definitions for ZTD: L001_F001 at a space-time resolution {50 𝑚 x 10 𝑠} 
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Figure 3.8 Velocity 𝑣 (𝑚/𝑠) calculated using Edie's definitions for ZTD: L001_F001 at a space-time resolution {50 𝑚 x 10 𝑠} 

 

 

Figure 3.9 Flow 𝑞 (𝑣𝑒ℎ/𝑠) calculated using Edie's definitions for ZTD: L001_F001 at a space-time resolution {400 𝑚 x 60 𝑠} 

 

 

Figure 3.10 Density 𝑘 (𝑣𝑒ℎ/𝑚) calculated using Edie's definitions for ZTD: L001_F001 at space-time resolution {400 𝑚 x 60 𝑠} 
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Figure 3.11 Velocity 𝑣 (𝑚/𝑠) calculated using Edie's definitions for ZTD: L001_F001 at a space-time resolution {400 𝑚 x 60 𝑠} 

 

Since highly detailed and technical data like ZTD is not possible to be obtained and utilized 

for real application over all transportation networks, the objectives of this doctoral research utilize 

the ZTD by creating probe vehicles-like situation (datasets). The objectives related to the analysis 

and modeling are all aimed to be conducted in the limelight of real-world situation where probe 

penetration rates of 2 − 5% can be expected. Keeping such conditions under consideration, 𝑝% 

of probe vehicles can be randomly extracted from ZTD (along with their corresponding ZTD) and 

can be utilized as probe vehicles with 𝑝% probe penetration rate into the actual traffic flow. Figure 

3.12 illustrates trajectories of such randomly extracted probe vehicles from complete ZTD. It 

shows traffic trajectories of 5% vehicles randomly selected from 100% vehicles driving on Lane 

1 of a subsection (300 𝑚 length out of 2 𝑘𝑚 section) for 1 ℎ𝑜𝑢𝑟 (07:00 – 08:00 a.m.: morning 

peak hour).  

 

 

Figure 3.12 Space-time diagram of 5% vehicles driving on lane 1 of a 300 𝑚 section (3.75 𝑘. 𝑝. to 3.45 𝑘. 𝑝.) for ZTD: 

L001_F001 
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The accuracy of the ZTD has been evaluated by Seo et al. (2021) concluding the recall rate to 

be 96.8% and the precision rate to be 97.1%. The evaluation also concluded that the detection 

performance was almost insensitive to traffic conditions, weather conditions, and the time of the 

day. The ZTD can be considered equivalent to data obtained from all vehicles equipped with 

advanced driving assistance systems (ADAS), which can be utilized as a source of data for volume-

related information and to verify classical concepts in the fundamental theory of traffic flow, traffic 

flow models, functional forms of FDs, traffic state estimation methods, several of which have been 

developed and proposed by researchers over past decades, some based on theoretical assumptions 

and others driven by data, but have not been evaluated with complete high-resolution trajectory 

data.  

 

3.4.2 Merits of utilizing ZTD over other high-tech trajectory datasets 

 

The accuracy evaluation of the ZTD by Seo et al. (2021) concluded the recall rate and the precision 

rate to be very high and the detection performance was almost insensitive to exogenous conditions. 

The problems of data delay, data loss, inaccurate data, and inconsistent data, which are usually 

present even in data obtained from recently developed conventional vehicle-to-everything (V2X) 

technologies, as stated by Sun et al. (2017), are non-existent in ZTD to a great extent. In practice, 

it is very difficult to collect complete trajectory datasets because of the wide ranging 

spatiotemporally phenomenon nature of traffic flow. Probe vehicles can collect sampled vehicle 

trajectory data from a wide-ranging domain (Herrera et al., 2010), but they are not complete due 

to their small penetration rate. In 2005, NGSIM (US Department of Transportation, 2006) datasets 

were collected by deploying seven or eight synchronized cameras with image recognition systems. 

However, the spatiotemporal coverage was limited to 600 𝑚  and 15 𝑚𝑖𝑛  (Seo et al., 2021). 

Moreover, as shown in previous works (Coifman and Li, 2017; Montanino and Punzo, 2015), raw 

NGSIM trajectories cannot be used for further analysis as false-positive trajectory collisions and 

physically illogical vehicle speeds and accelerations happen to occur in the datasets (Krajewski et 

al., 2018). In October 2018, 𝜋NEUMA (New Era of Urban traffic Monitoring with Aerial footage) 

datasets recorded traffic streams in multi-modal congested environment using a swarm of ten 

drones hovering over the central business district of Athens, Greece (Barmpounakis and 

Geroliminis, 2020). However, there were “blind gaps” of about 10 𝑚𝑖𝑛𝑠  after regular time 
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intervals where no trajectory data were recorded. This allows the setup to monitor traffic 

continuously for 15−20 𝑚𝑖𝑛𝑠 only. Those gaps are used for technical tasks, which are to change 

the batteries of the drones and then send them back in their previous hovering position. In addition, 

there are some time periods when no data is available for certain zones within the coverage area 

due to technical issues where one or more drones may have stopped working. Like 𝜋NEUMA 

datasets, highD datasets include post-processed trajectory data extracted from drone video 

recordings at German highways around Cologne during 2017 and 2018 (Krajewski et al., 2018). 

However, the spatiotemporal coverage of each recording is limited to 420 𝑚 and 17 𝑚𝑖𝑛 where 

each vehicle is visible for a median duration of 13.6 𝑠. 

Thus, compared to other high-tech vehicle trajectory datasets, it is quite advantageous to 

utilize ZTD for traffic studies as discussed. The spatiotemporal coverage of 2 𝑘𝑚 and 1 ℎ𝑜𝑢𝑟 is 

high and the detailed continuous trajectory information for all the vehicles is available at a 

minuscule temporal sampling rate of 0.1 𝑠 without any data loss. A unique vehicle ID is allocated 

to each vehicle which is maintained throughout the section. All these aspects make ZTD a potential 

traffic trajectory data of supreme quality which can aid in understanding traffic phenomenon and 

dynamics much more precisely and accurately.  
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4 ANALYSIS OF 𝒗 − 𝒌 RELATIONS 

 

 

This chapter discusses the empirical analysis of various existing speed-density (𝑣 − 𝑘) FDs by 

estimating and studying their parameters at varying spatiotemporal resolutions using ZTD 

followed by a theoretical investigation with respect to the stationarity and continuity of traffic flow.  

 

4.1 Objective 

 

This study2  aims to empirically analyze various existing single-regime 𝑣 − 𝑘  relationships of 

different forms by estimating and studying their parameters at varying spatiotemporal resolutions 

using complete vehicles’ trajectory data. The empirical validation using statistical procedures is 

followed by a theoretical analysis of the considered 𝑣 − 𝑘 relations which was not discussed at all 

in some studies or not completely concluded for all 𝑣 − 𝑘 relations in few research works. The 

objective is twofold: first, to identify a model a.) with less complex form; b.) based on ‘weaker’ 

assumptions; c.) reasonably achieves mathematical elegance and empirical accuracy, which are all 

desirable to have; and second, to make the validation more reliable by conducting it over various 

space-time resolutions which also provides theoretical and practical support to practitioners in 

decisively choosing most workable 𝑣 − 𝑘 functional relation at a particular resolution setting. One 

of the main contributions of this study is the calibration of FDs using detailed spatiotemporally 

information. This study utilizes complete trajectory data to compute more accurate values of 

fundamental parameters at fine resolutions which is not possible with other conventional datasets. 

The approach of this research is not to propose a new 𝑣 − 𝑘 functional form but to validate several 

existing forms using detailed traffic states obtained from complete trajectory data and to study 

their sensitivity to varying time and space resolutions.  

 

 
2 This section is majorly based on the research conducted with Prof. Yasuo Asakura and Assoc. Prof. Wataru 

Nakanishi published in Asian Transport Studies (Dahiya et al., 2022). 
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The remainder of the chapter is structured as follows: section 4.2 elaborates the considered 

𝑣 − 𝑘 relations where subsections 4.2.1 and 4.2.2, discusses the parameters involved in those 

considered 𝑣 − 𝑘 relations and describes the static and dynamic properties of 𝑞 − 𝑘 − 𝑣 relations, 

respectively. Section 4.3 describes the data preparation methodology for utilizing ZTD and is 

followed by section 4.4 on parameter estimation. Sections 4.5 and 4.6 details the empirical 

validation conducted through statistical analysis using ZTD and theoretical investigation, 

respectively. Finally, the chapter concludes the findings in section 4.7. The gist of the analysis is 

covered in section 4.8 that reviews the analysis. 

 

4.2 Functional forms of the 𝒗 − 𝒌 relations 

 

Because no consensus has been reached so far on the continuity of the speed-density (𝑣 − 𝑘) 

functions, this study considers only the single-regime 𝑣 − 𝑘 relations. They can be categorized 

into classes based on their nature namely, linear, logarithmic and exponential, and complex 

functional forms of 𝑣 − 𝑘 equations. Drake et al. (1966) is among the initial works that presented 

and analyzed 𝑣 − 𝑘 relations based on such classification of mathematical nature. Table 4.1 lists 

all the single-regime 𝑣 − 𝑘  relations considered in this study. Structure of a similar table was 

initially described by Wang et al. (2010) and has been further modified and reused by Xu et al. 

(2014) and Gaddam and Rao (2019). The contents of Table 4.1 are alike to one by Gaddam and 

Rao (2019). Based on the assumption that the velocity decreases linearly with density, the linear 

models are developed and are the simplest in nature. Greenshields et al. (1935) was devoted to the 

investigation of a continuous linear curve with an attractive mathematical simplicity. Even though, 

in past studies, it has proved to be insufficient to match empirical observations, the model was of 

groundbreaking significance and has been widely used, including in the Highway Capacity Manual 

1965 edition and 1985 edition. Model by May and Keller (1967), containing shape parameters 𝑚 

and 𝑛 (both > 0), is the generalized form of all the linear equations. By changing the values of 

these parameters (both or one) to 1, the other equations of Greenshields et al. (1935), Drew (1968) 

and Pipes (1967) can be generated. Based on the hydrodynamic analogy, Greenberg (1959) 

introduced the logarithmic form of 𝑣 − 𝑘 equation which involves the parameters optimum speed 

(𝑣𝑚 ) and jam density (𝑘𝑗 ). They combined the equations of motion and continuity for one-

dimensional compressible flow by treating the traffic as a perfect stream. It bridges the gap 
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between macroscopic models and the third General Motors car-following model, but it produces 

infinite speed at free-flow conditions (May, 1990). Gazis et al. (1959) showed that this relationship 

can be independently derived from their microscopic car-following theory for the case in which 

the sensitivity of the following vehicle is inversely proportional to the spacing between vehicles. 

Upon failure of curve by Greenberg (1959) to remain finite at zero density, Underwood (1961) 

suggested that perhaps the infinity asymptote should be along the density scale. This relation can 

be traced to the car-following rule, where sensitivity is directly proportional to the speed of the 

following vehicle and inversely proportional to the square of the spacing (Drake et al., 1966). The 

exponential model of Papageorgiou et al. (1989) is a generalized form of Drake’s model (Drake et 

al., 1966) and Underwood’s model, where parameter 𝑎 takes values 2 and 1, respectively.  

The complex form of Newell (1961) 𝑣 − 𝑘 model is derived from nonlinear car-following 

theories and comprises of a proportionality factor (𝜆) which is a function of 𝐶𝑗 and 𝑘𝑗 at macro 

level (Gaddam and Rao, 2019). It is computed by comparing the model of Del Castillo and Benítez 

(1995) and Newell (1961) such that −
𝜆

𝑘𝑗
=  𝐶𝑗. The traffic flow behavior is strongly characterized 

by the kinematic wave speed of the vehicles at jam density (𝐶𝑗), as believed and utilized by Del 

Castillo and Benítez’s 𝑣 − 𝑘  models of single and double exponential forms also known as 

exponential curve and generalized sensitive curve, respectively. Model by Lee et al. (1998) 

consisting of 4 parameters is a rational model and model by Wang et al. (2010) consisting of 5 

parameters is a logistic model, developed to capture the dynamic behavior of traffic flow occurring 

at the highway ramps. The latter has been developed using 100 stations data on GA 400 

expressway in Atlanta. A rational function is a simple math model that works on the theory of 

correlation. It can be more accurate than polynomials or thin plate spline as it considers elevation 

and has less physical significance to the underlying phenomenon of traffic theory. Similarly, the 

logistic model is stochastic in nature and finds application in a range of fields, including 

biomathematics, economics, statistics etc. 
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Table 4.1 Speed-Density (𝑣 − 𝑘) functional relationship 

 

Author Functional Form Parameters 

Linear 

Greenshields et al. (1935) 𝑣 =  𝑣𝑓 (1 − 
𝑘

𝑘𝑗
) 𝑣𝑓, 𝑘𝑗 

Drew (1968) 𝑣 =  𝑣𝑓 [1 − (
𝑘

𝑘𝑗
)

𝑚

] 𝑣𝑓, 𝑘𝑗 , 𝑚 

Pipes (1967) 𝑣 =  𝑣𝑓 (1 −  
𝑘

𝑘𝑗
)

𝑛

 𝑣𝑓, 𝑘𝑗 , 𝑛 

May and Keller (1967) 𝑣 =  𝑣𝑓 [1 − (
𝑘

𝑘𝑗
)

𝑚

]

𝑛

 𝑣𝑓 , 𝑘𝑗 , 𝑚, 𝑛 

Logarithmic 

Greenberg (1959) 𝑣 =  𝑣𝑚𝑙𝑛
𝑘𝑗

𝑘
 𝑣𝑚, 𝑘𝑗 

Exponential 

Underwood (1961) 𝑣 =  𝑣𝑓𝑒𝑥𝑝 ( 
−𝑘

𝑘𝑚
) 𝑣𝑓, 𝑘𝑚 

Drake et al. (1966) 𝑣 =  𝑣𝑓 𝑒𝑥𝑝 [−
1

2
(

𝑘

𝑘𝑚
)

2

] 𝑣𝑓, 𝑘𝑚 

Papageorgiou et al. (1989) 𝑣 =  𝑣𝑓 𝑒𝑥𝑝 [−
1

𝑎
(

𝑘

𝑘𝑚
)

𝑎

] 𝑣𝑓, 𝑘𝑚 , 𝑎 

Complex 

Newell (1961) 𝑣 =  𝑣𝑓 {1 − 𝑒𝑥𝑝 [
−𝜆

𝑣𝑓
 (

1

𝑘
− 

1

𝑘𝑗
)]} 𝑣𝑓, 𝑘𝑗 , 𝜆 

Del Castillo and Benítez (1995) 

Exponential curve 

𝑣 =  𝑣𝑓 {1 − 𝑒𝑥𝑝 [
|𝐶𝑗|

𝑣𝑓
 (1 −  

𝑘𝑗

𝑘
)]} 

Maximum sensitivity curve 

𝑣 =  𝑣𝑓 {1 − 𝑒𝑥𝑝 [1 − 𝑒𝑥𝑝 (
|𝐶𝑗|

𝑣𝑓
 (

𝑘𝑗

𝑘
− 1))]} 

𝑣𝑓, 𝑘𝑗 , 𝐶𝑗 

Lee et al. (1998) 𝑣 =  

𝑣𝑓 (1 −
𝑘
𝑘𝑗

)

1 − 𝐸 (
𝑘
𝑘𝑗

)
𝜃
 𝑣𝑓, 𝑘𝑗 , 𝐸, 𝜃 

Wang et al. (2010) 
𝑣(𝑘, 𝜃) =  𝑣𝑏 + 

𝑣𝑓 − 𝑣𝑏

[1 + 𝑒𝑥𝑝 (
𝑘 − 𝑘𝑡

𝜃1
)]

𝜃2
 

𝑣𝑓, 𝑘𝑡 , 𝑣𝑏, 𝜃1, 𝜃2 

Modified Lee et al. model by 

Gaddam and Rao (2019) 
𝑣 =  

𝑣𝑓 [1 − (
𝑘
𝑘𝑗

)
𝑎

]

1 + 𝐸 (
𝑘
𝑘𝑗

)
𝜃

 𝑣𝑓, 𝑘𝑗 , 𝐸, 𝜃, 𝑎 
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4.2.1 Parameters involved in the 𝒗 − 𝒌 relations 

 

For the discussed 𝑣 − 𝑘 models, the list of parameters that have physical significance includes the 

free-flow speed (𝑣𝑓), jam density (𝑘𝑗), 𝑚 and 𝑛 (representing the environment and type of facility, 

respectively), optimum density (𝑘𝑚), optimum velocity (𝑣𝑚), proportionality factor (𝜆) (a function 

of the relative speed and the inter-vehicles distance), kinematic wave speed of vehicles at jam 

density (𝐶𝑗), inflection point where the 𝑞 − 𝑘 curve turns from free-flow to congested flow (𝑘𝑡), 

and average travel speed of vehicles at saturation region (stop-and-go) (𝑣𝑏). Kinematic wave speed 

at jam density (𝐶𝑗), is claimed to strongly characterize the traffic flow relationships by Del Castillo 

and Benítez (1995). For Wang et al.’s model 𝑣𝑓 and 𝑣𝑏 are the upper and lower asymptotes of the 

𝑣 − 𝑘 curve, respectively. 𝜃1 (a scalar parameter) describes the stretch of curve over the whole 

density range, 𝜃2 controls the lopsidedness of the curve and 𝑘𝑡 is the point of transition of curve 

from free-flow to congested flow. Usually, 𝑣𝑓 mostly lies between speed limit and highway design 

speed and is relatively easy to estimate from empirical data. As per the literature review, the value 

of 𝑘𝑗 is observed in the range 115−155 𝑣𝑒ℎ/𝑘𝑚 and that of 𝐶𝑗 lies between −6.94 𝑚/𝑠 to −4.16 

𝑚/𝑠 (Duckstein et al., 1970; Lam and Rothery, 1970; Ozaki, 1993). Since the first proposed 

equation by Gaddam and Rao (2019) yielded complex values of parameters and could not be 

estimated using the ZTD therefore, it was not considered in this analysis. 

 

4.2.2 Static and dynamic properties of the functional relations 

 

The first group of mathematical properties of the flow-speed-density (𝑣 − 𝑘) curves, which a 

precise model should satisfy, are the following static properties (based on stationarity of traffic 

flow), that may be regarded as trivial or obvious:  

 

1) Free-flow property: 𝑣(𝑘)𝑘→0 = 𝑣𝑓. 

2) Independent property: 𝑣′(0) = 0; i.e., the vehicle moves at the free-flow speed when 

the interaction between vehicles is negligible. 

3) Jam density property: 𝑣(𝑘)𝑘→𝑘𝑗
= 0; i.e., vehicles stop at the jam density. 

4) Density range: 0 < 𝑘 ≤ 𝑘𝑗; i.e., density varies from zero to maximum density.  
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5) Speed range: 0 < 𝑣 ≤ 𝑣𝑓; i.e., speed varies between zero and free-flow speed. 

6) Slope property: speed decreases with density, i.e., 𝑣′(𝑘) < 0. 

 

The abovementioned properties can be deduced by considering the traffic flow as a stationary 

phenomenon and were already stated by Greenshields (1935). Hence, as “static”, they have been 

referred to again by Del Castillo and Benítez (1995). The representation of a stable shock wave 

propagation in saturated congested flow region is very essential and to study the continuity of 

traffic flow two dynamic properties are introduced. The first one was introduced by Del Castillo 

and Benítez, and it implies that the kinematic wave speed (𝐶𝑗) of the traffic at a jam condition must 

be a negative constant (i.e., 𝑞′(𝑘)𝑘→𝑘𝑗
 is a negative constant). It represents shock wave propagation 

in a saturation flow region. A shockwave in real traffic would correspond to a sudden change of 

speed and to produce stable shock waves at congested conditions, it is required for flow-density 

relation to be convex (i.e., 𝑞"(𝑘)𝑘→𝑘𝑗
> 0, second property). Otherwise, stable shock waves can 

only occur as transitions from low to high density. However, if there exists a subdomain where the 

relation has a convex curvature then stable start waves can arise when traffic accelerated from this 

subdomain to a region of lower density.  

 

4.3 Utilization of ZTD 

 

For this study, the ZTD L001_F001, covering space-time profile of distance of 2 𝑘𝑚 (5 𝑘. 𝑝. to 3 

𝑘. 𝑝. i.e., 5000 𝑚 to 3000 𝑚) and 1 ℎ𝑜𝑢𝑟 (7:00 a.m. to 8:00 a.m.), is utilized. The whole 2 𝑘𝑚 

section of expressway is considered as one link, where traffic can be represented as a set of vehicle 

trajectories. The ZTD contains data of vehicle trajectories, and it can be a reasonable assumption 

if the lanes (driving and passing) are considered as sufficiently wide area where effects of lane-

changing can be ignored. For the analysis of the 𝑣 − 𝑘 relations at different space-time resolutions, 

the entire space-time area was divided into mesh of varying spatial (hereafter, 𝑑𝑥) and temporal 

resolutions (hereafter, 𝑑𝑡). The value of 𝑑𝑥 varied as {25 𝑚, 50 𝑚, 100 𝑚, 200 𝑚, 400 𝑚, 500 𝑚} 

and the 𝑑𝑡 varied as {1 𝑠, 5 𝑠, 10 𝑠, 30 𝑠, 60 𝑠} (forming total 30 datasets). At a macroscopic level, 

the traffic state, which is a set of the following variables: flow (𝑞), density (𝑘), and average speed 

(𝑣 ), for each cell of mesh, was computed using the Edie’s definition (Edie, 1963) for every 
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combination of 𝑑𝑥 and 𝑑𝑡. In order to visualize the traffic states on the 𝑞 − 𝑘 FD, the set of all the 

near-steady traffic states of near-steady areas were extracted. According to the definition of 

steadiness, for each dataset, the coefficient of variation (𝜗), i.e., the ratio of standard deviation (𝜎) 

and the mean of vehicles’ speed (𝐴𝑣𝑒) of all the vehicles in each cell, was calculated from 

empirical data and the cell was considered a steady cell if the ratio is less than or equal to 0.15, 

i.e., 𝜗 (=
𝜎

𝐴𝑣𝑒
) ≤ 0.15.  The 𝑞 − 𝑘  plots of steady and non-steady traffic states for varying 

spatiotemporal resolution were visualized, and since there is not enough room and no need to 

include all of the processed figures here, Figure 4.1 represents one of the plots for 𝑑𝑥 = 50 𝑚 and 

𝑑𝑡 = 10 𝑠. The x-axis of the plot represents the density (𝑣𝑒ℎ/𝑚), and the y-axis represents the flow 

(𝑣𝑒ℎ/𝑠); the blue colored points represent the steady traffic states, and the red colored points are 

for the non-steady traffic states. After extracting the steady traffic states for each dataset, separate 

flow-density (𝑞 − 𝑘) and velocity-density (𝑣 − 𝑘) plots were visualized. Figure 4.2 and Figure 4.3 

represents one of the 𝑞 − 𝑘 plots and 𝑣 − 𝑘 plots each, respectively for 𝑑𝑥 = 50 𝑚 and 𝑑𝑡 = 10 𝑠. 

In the 𝑞 − 𝑘 plot in Figure 4.2, the x-axis represents the density (𝑣𝑒ℎ/𝑚), and the y-axis represents 

the flow (𝑣𝑒ℎ/𝑠). In the 𝑣 − 𝑘 plot shown in Figure 4.3, the x-axis represents the density (𝑣𝑒ℎ/𝑚), 

and the y-axis represents the velocity (𝑚/𝑠). 

 

 

 

Figure 4.1 q-k plot (steady & non-steady) computed using Edie’s definitions for ZTD L001_F001 (7:00 – 8:00 a.m.) for space-

time resolution {50 m x 10 s} 
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Figure 4.2 q-k plot (steady) computed using Edie’s definitions for ZTD L001_F001 (7:00 – 8:00 a.m.) for space-time resolution 

{50 m x 10 s} 

 

 

Figure 4.3 𝑣 − 𝑘 plot (steady) computed using Edie’s definitions for ZTD L001_F001 (7:00 – 8:00 a.m.) for space-time 

resolution {50 𝑚 x 10 𝑠} 

 

4.4 Parameter estimation 

 

4.4.1 Parameters obtained from the empirical observations 

 

This section discusses the estimation of parameters of the 𝑣 − 𝑘 relations considered in the study 

and their sensitivity to the spatiotemporal resolutions. Some of the parameters involved in the 

mathematical formulation of the 𝑣 − 𝑘 relationships are directly computed from the empirical data 

and then in turn used to estimate other parameters with the use of an optimization algorithm. For 
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each dataset, varying as per the spatiotemporal resolution, the maximum velocity (or maximum 

speed) observed in any cell is considered as the free-flow speed for that dataset. The jam density 

and the kinematic wave speed are the parameters which are very difficult and challenging to be 

directly observed and estimated from the empirical data. For 1 ℎ𝑜𝑢𝑟 (7:00–8:00 a.m.), ~89% of 

the vehicles were of Type 1 with an average vehicle size of 3.93 𝑚, while ~11% of the vehicles 

were of Type 2 with an average vehicle size of 9.17 𝑚. Correspondingly, the jam density (𝑘𝑗) 

(𝑣𝑒ℎ/𝑚) was approximated, keeping in mind the critical distance to be around 1.5 𝑚 to 0.346 

𝑣𝑒ℎ/𝑚 which was close to the range of 115–155 𝑣𝑒ℎ/𝑘𝑚 mentioned in the literature. Using the 

coordinates of the optimum point (𝑘𝑚 , 𝑞𝑚), at which the flow was observed to be maximum for 

each stationary dataset extracted from the whole data, and (𝑘𝑗 , 0), the value of 𝐶𝑗 is approximated 

for each dataset which lies within the range of –25 to –15 𝑘𝑚/ℎ𝑟 mentioned in literature (except 

for few outliers). The optimum velocity was calculated using the fundamental equation of traffic 

flow. At macroscopic level, the proportionality factor (𝜆) is a function of the kinematic wave speed 

and jam density of the vehicular flow and can be derived by comparing the Newell’s and Del 

Castillo’s exponential equations where −
𝜆

𝑘𝑗
 represents 𝐶𝑗 therefore, 𝜆 = 𝐶𝑗𝑘𝑗 (Gaddam and Rao, 

2019).  

Using the original data containing the trajectory details of 3,735 vehicles, certain areas with 

saturated flow was visualized and the average speeds maintained by all the vehicles in those areas 

were calculated. The mean of average speed maintained by all the vehicles in different saturated 

areas accounted to be 6.753 𝑚/𝑠, and hence considered for analysis. Certain parameters (average 

value over varying 𝑑𝑥 , 𝑑𝑡), such as optimum density (0.083 𝑣𝑒ℎ/𝑘𝑚), proportionality factor 

(1.807) and kinematic wave speed of vehicles at jam density (–5.314 𝑚/𝑠) seem promising, well 

estimated from empirical data and they remained stable throughout the varying spatiotemporal 

resolution, with their standard deviations standing at 0.019, 0.665, and 1.957, respectively.  

 

4.4.2 Parameters estimated using Levenberg–Marquardt algorithm 

 

The shape parameters of different 𝑣 − 𝑘  models namely, 𝑚 of Drew’s, 𝑛 of Pipes’, 𝑚 and 𝑛 of 

May and Keller’s, 𝑎 of Papageorgiou et al.’s, 𝐸 and 𝜃 of Lee et al.’s, 𝑘𝑡, 𝜃1 (a scalar parameter, 

which describes how the 𝑣 − 𝑘 curve is stretched out over the whole density curve) and 𝜃2 (which 
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controls the lopsidedness of the curve) of Wang et al.’s and 𝑎, 𝐸, and 𝜃 of modified Lee et al.’s, 

were estimated for each dataset using the Levenberg–Marquardt (LMA or just LM) optimization 

algorithm, also known as damped least-squares (DLS) method, implemented in MATLAB. The 

LM algorithm interpolates between the method of gradient descent and Gauss–Newton algorithm 

(GNA) and is more robust, which means that in many cases even if it starts very far off the final 

minimum, it still finds a solution. It is the most commonly used non-linear least square algorithm. 

It has been widely used for calibration; Wang et al. (2010), Xu et al. (2014), and Gaddam and Rao 

(2019) have used it. Table 4.2 shows the parameter values estimated for all combinations of 𝑑𝑥 

and 𝑑𝑡. 

The mean and standard deviation of each of the parameters estimated directly from empirical 

datasets, and using LM algorithm, were calculated over all spatiotemporal resolutions. Most of the 

parameters estimated using the LM algorithm namely (average value over varying 𝑑𝑥, 𝑑𝑡), 𝑚 

(0.493), 𝑛  (3.006), 𝑎  (1.402), 𝜃  (1.912), 𝑘𝑡 (0.093), 𝜃1  (0.036), 𝜃2  (2.649), 𝜃  (2.915) (modified 

Lee et al.), are estimated for each dataset with standard deviation less than 1. It implies that these 

parameters are not very sensitive to the variations in temporal resolution or spatial resolution. 

However, for certain parameters such as 𝑣𝑓, a trend could be visualized. The free-flow speed (𝑣𝑓) 

was observed to be highest (43 𝑚/𝑠) at the finest resolution {25 𝑚 x 1 𝑠} and lowest (21.721 𝑚/𝑠) 

at the coarsest resolution {500 𝑚 x 60 𝑠}. The value of parameter decreased with increase in 

spatial resolution (maintaining 𝑑𝑡 at a constant value) and also decreased with increase in temporal 

resolution (maintaining 𝑑𝑥 at a constant value). The highest variation occurred in the parameter 𝐸 

in both, Lee et al.’s and modified Lee et al.’s models, with a standard deviation of 25.188 and 

18.956, respectively.  

 

4.5 Curve fitting and statistical evaluation 

 

Geometric fitting of each kind of linear, exponential and logarithmic, and complex (including 

rational and logistic) forms of 𝑣 − 𝑘 models is performed for each dataset. Figure 4.4 shows the 

geometric fitting of the linear 𝑣 − 𝑘 models of Greenshields et al., Drew, Pipes, and May and 

Keller for several spatiotemporal resolutions (for 𝑑𝑥 = 25 𝑚, 100 𝑚, and 500 𝑚 and for all values 

of 𝑑𝑡 ) and Figure 4.5 shows the fitting of the exponential and logarithmic 𝑣 − 𝑘  models of 

Greenberg, Underwood, Drake et al., and Papageorgiou et al.  
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Table 4.2 Values of estimated parameters using LM algorithm for ZTD: L001_F001 
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Figure 4.6 shows the fitting of the complex forms of the Newell, Del Castillo and Benítez, Lee et 

al., Wang et al., and modified Lee et al. models for similar spatiotemporal resolutions. Figure 4.4 

graphically depicts the trend which is common for all the datasets, that amongst the linear forms, 

May and Keller’s 𝑣 − 𝑘 model proves to be outperforming in capturing the nature of the empirical 

data as compared to other linear forms.  Greenshields et al.’s model seems to overestimate the 

velocity, irrespective of the spatial or temporal resolution, and is unable to capture the curvature 

of the actual data most primarily because of the absence of the shape parameters 𝑚 and 𝑛, which 

are present in rest three linear forms (one or both). The reason could be that the seminal 𝑣 − 𝑘 

model by Greenshields was formulated by utilizing only seven data points collected from one lane 

in a two-way rural road (7th data point was taken from a different road) which are surely not enough 

to generate a whole picture of a speed-density (𝑣 − 𝑘) model. Similarly, the functional form of the 

Pipes model commences to overestimate the velocities beyond the critical density as the spatial or 

temporal resolution becomes coarser.  

From Figure 4.5, the trend of logarithmic and exponential 𝑣 − 𝑘 relation, common to all the 

datasets, can be graphically visualized. It was observed that the model proposed by Papageorgiou 

et al. is a better estimator of velocity as compared to overestimating models of Greenberg and 

Drake et al. (for finer spatiotemporal resolutions) and the underestimating model of Underwood 

(at coarser temporal resolutions). Even though Greenberg’s model gained popularity after 

Greenshields’ model as it bridged the gap analytically however, its main criticism is its inability 

to predict speed at lower densities which can very well be visualized from the plots. Similarly, it 

can be graphically concluded from Figure 4.6 that among the complex forms, modified Lee et al.’s 

and Wang et al.’s models are better candidates to be considered for fitting the empirical velocity-

density data. Whereas the form by Lee et al. overestimates velocity as finer temporal resolutions.  

 

 

            {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 1 𝑠}                         {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 1 𝑠}                       {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 1 𝑠} 
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            {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 5 𝑠}                          {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 5 𝑠}                      {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 5 𝑠} 

 

            {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 10 𝑠}                        {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 10 𝑠}                    {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 10 𝑠} 

 

           {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 30 𝑠}                      {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 30 𝑠}                       {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 30 𝑠} 

 

            {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 60 𝑠}                      {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 60 𝑠}                      {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 60 𝑠} 

Figure 4.4 Geometric fitness of the linear traffic stream models for (steady) ZTD (7:00 – 8:00 a.m.) for varying spatiotemporal 

resolutions 

 

 

           {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 1 𝑠}                          {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 1 𝑠}                      {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 1 𝑠} 
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             {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 5 𝑠}                           {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 5 𝑠}                       {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 5 𝑠} 

 

           {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 10 𝑠}                         {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 10 𝑠}                      {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 10 𝑠} 

 

            {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 30 𝑠}                      {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 30 𝑠}                       {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 30 𝑠} 

 

            {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 60 𝑠}                      {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 60 𝑠}                      {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 60 𝑠} 

 

Figure 4.5 Geometric fitness of the exponential and logarithmic traffic stream models for (steady) ZTD (7:00 – 8:00 a.m.) for 

varying spatiotemporal resolutions 

 

 

          {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 1 𝑠}                         {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 1 𝑠}                        {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 1 𝑠} 
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             {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 5 𝑠}                       {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 5 𝑠}                         {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 5 𝑠} 

 

            {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 10 𝑠}                      {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 10 𝑠}                       {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 10 𝑠} 

 

            {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 30 𝑠}                       {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 30 𝑠}                     {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 30 𝑠} 

 

           {𝑑𝑥 = 25 𝑚, 𝑑𝑡 = 60 𝑠}                        {𝑑𝑥 = 100 𝑚, 𝑑𝑡 = 60 𝑠}                      {𝑑𝑥 = 500 𝑚, 𝑑𝑡 = 60 𝑠} 

 

Figure 4.6 Geometric fitness of the complex traffic stream models for (steady) ZTD (7:00 – 8:00 a.m.) for varying spatiotemporal 

resolutions 

The wide scatter often found in 𝑞 − 𝑘 plots is mainly because it may include non-equilibrium 

states and if such non-equilibrium states are removed, an actual data-based bivariate 𝑞 − 𝑘 plots 

will be well-defined (Cassidy, 1998; Coifman, 2014). However, the 𝑞 − 𝑘 and 𝑣 − 𝑘 data, as per 

Figure 4.2 and Figure 4.3, plotted using stationary traffic states (with assumed condition on 

stationary) displays a great deal of scatter. The scatter in the congested regime is known as 

hysteresis phenomenon in which trajectories of heterogenous vehicles with their respective driving 



Chapter 4  Analysis of 𝑣 − 𝑘 Relations 

 68 

styles of acceleration and deceleration forms different curves when transitioning from lower 

density to higher or that from higher to lower (Newell, 1962; Treiterer and Myers, 1974; Laval, 

2011). Figure 4.7 and Figure 4.8 depicts the 𝑞 − 𝑘  and 𝑣 − 𝑘  plots for the spatiotemporal 

resolutions of {𝑑𝑥 = 400 𝑚, 𝑑𝑡 = 60 𝑠} and it can be seen that the relationship can be said to exist 

only between data averaged over fairly long periods of time and space. Certain models do not fit 

to the actual traffic data accurately because they either depend on parameters estimated from 

empirical observations (such as Greenberg’s model) or have a fixed form (such as Greenshields et 

al. model with “linear” form) (Dahiya et al., 2020). 

 

Figure 4.7 𝑞 − 𝑘 plot of (steady) ZTD L001_F001 (7:00 – 8:00 a.m.) for space-time resolution {400 𝑚 x 60 𝑠} 

 

Figure 4.8 𝑣 − 𝑘 plot of (steady) ZTD L001_F001 (7:00 – 8:00 a.m.) for space-time resolution {400 𝑚 x 60 𝑠} 

 

To analyze the models’ fitness deeply and evaluate the well fitted models of 𝑣 − 𝑘 

relationships numerically, statistical analysis is done. To do so, statistical scores such as the root 
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mean square error (RMSE) and the average relative error (ARE), are calculated as per definitions 

in equations (4.1) and (4.2). RMSE is a measure of the spread of prediction errors (also known as 

residuals), i.e., the standard deviation. Residuals are a measure of how far from the regression line 

the data points are. Likewise, ARE is another tool for computing model accuracy in predicting the 

data. The lower the values of ARE and RMSE are, the greater is the model accuracy. 

 

𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) =  √
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1

𝑛
 ( 4.1 ) 

 

 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 (𝐴𝑅𝐸) =

1

𝑛
∑

|𝑃𝑖 − 𝑂𝑖|

|𝑂𝑖|

𝑛

𝑖=1

 ( 4.2 ) 

where at a specific value of density at 𝑖𝑡ℎ point, 𝑂𝑖 represents empirically observed data, 𝑃𝑖 is the 

value estimated by the model and 𝑛 is the number of data points in the dataset. 

Each 𝑣 − 𝑘 model is ranked based on the values of RMSE and ARE separately, using which 

an overall rank is computed by taking the arithmetic mean of RMSE ranking and ARE ranking, 

for each model in each dataset as can be visualized in Table 4.3 (for case 𝑑𝑥 = 25 𝑚, 𝑑𝑡 = varying). 

Moreover, Table 4.4 represents the variation of overall rankings of all the models for different 

spatiotemporal resolutions and gives insights about the model performance which can be utilized 

or applied at a particular resolution. From the analysis, it can be concluded that Wang et al.’s and 

modified Lee et al.’s model are the best performing models in the category of complex models and 

that they outperform all other 𝑣 − 𝑘  models overall as well. The spatiotemporally detailed 

information aids in determining the sensitivity of the 𝑣 − 𝑘 models to spatiotemporal resolutions. 

For example, Wang et al.’s model outperforms all the other models considered in capturing the 

nature of the empirical data when the spatial resolution is finer than 400 𝑚. 

Likewise, at coarser spatial resolutions, RMSE and ARE in modified Lee et al.’s model starts 

to decrease when traffic state values are aggregated for longer distances and performs better than 

Wang et al.’s model. Following them are the models of May and Keller and Papageorgiou et al. 

which are also the best-performing models in their categories of Linear and Exponential & 

Logarithmic models, respectively. Greenshields et al.’s and Greenberg’s model have throughout 

performed poorly in representing the data, with large values of RMSE and ARE for almost all 

spatiotemporal resolutions. The accuracy of Underwood’s model deteriorates as the spatial 
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resolution becomes coarser, irrespective of time resolution. From the statistical analysis and 

graphical representation, it can be concluded that some models are sensitive to resolution, and 

some are not. Even being a simple linear model, May and Keller’s model has been amongst the 

top 3 models in terms of the statistical error, for almost all the datasets.  

Digging deep, statistical metric, mean bias (MB) amongst predicted and empirical data, has 

been calculated for the models of Wang et al., modified Lee et al., and May and Keller, for each 

dataset. The MB captures the average bias in the prediction and in the observed as defined by 

equation (4.3), which uses the same variables as equations (4.1) and (4.2).  

 
𝑀𝑒𝑎𝑛 𝑏𝑖𝑎𝑠 (𝑀𝐵) =

1

𝑛
∑(𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

 ( 4.3 ) 

It was found that the May and Keller’s model had the least value of MB when averaged for 

all datasets (for varying spatiotemporal resolutions). The values were 0.011, 0.191, and 0.041 for 

the models of May and Keller, Wang et al., and modified Lee et al., respectively. The models 

which are more stochastic in nature with a large number of parameters, such as Wang et al.’s 

model (five parameters), and modified Lee et al.’s model (five parameters), are sound descriptors 

of empirical data. By incorporating the parameter “𝑎” in Lee et al.’s model (four parameters), to 

formulate modified Lee et al.’s model, the accuracy has been considerably improved. However, 

the noncomplex and linear form of 𝑣 − 𝑘 relation of the May and Keller’s model can be considered 

of high potential in practical applications. Thus, by identifying May and Keller’s model as a model 

of less complexity that was developed based on ‘weaker’ assumptions and which reasonably 

achieves empirical accuracy (which are all desirable to have); and by empirically analyzing various 

existing 𝑣 − 𝑘  relations of different forms and estimating their parameters at varying 

spatiotemporal resolutions using the trajectory data of 100% vehicles (which also makes their 

identification and validation more reliable), the two objectives of the study have been achieved.  

The empirical validation using statistical procedures is followed by a theoretical analysis of the 

considered 𝑣 − 𝑘 relations which was not discussed at all in some related previous studies or not 

completely concluded for all 𝑣 − 𝑘 relations in few research works. To ascertain whether the 

models follow the static and dynamic properties of traffic flow, the following section presents a 

theoretical analysis. Collectively with empirical analysis it will provide theoretical and practical 

support to practitioners in decisively choosing most workable 𝑣 − 𝑘 functional relation. 
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Table 4.3 Ranking the 𝑣 − 𝑘 relations based on statistical metric scores for spatial resolution 𝑑𝑥 = 25m 
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Table 4.4 Overall ranking of 𝑣 − 𝑘 relations using ZTD L001_F001 for varying spatiotemporal resolutions 
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4.6 Theoretical analysis 

 

Following the empirical analysis of the considered 𝑣 − 𝑘  relations, the static and dynamic 

properties of the models are validated in this section. Even though the data considered in the 

statistical evaluation of the 𝑣 − 𝑘 relations were extracted using the definition of stationarity but 

for a model to accurately represent the traffic behavior, it is required for it to satisfy the static 

properties that are derived from the fact that traffic flow is stationary and is always at equilibrium. 

Dynamic properties that are obtained from the continuum theory of traffic flow relates to the stable 

propagation of shock wave in the saturation flow region and kinematic wave speed, which is an 

important characteristic of traffic flow behavior. Table 4.5 presents information about which all 

properties are satisfied by the different 𝑣 − 𝑘 models. 

 

4.6.1 Evaluation of the static properties of the models 

 

As discussed earlier, static properties consist of six major properties related to the mathematical 

nature of the 𝑣 − 𝑘 curve and boundary value conditions of velocity and density. These properties 

are evaluated mathematically through first-order derivative and/or limit calculations of the 𝑣 − 𝑘 

relations based on the definition of properties. The value of vehicular speed must range between 

the free-flow speed (𝑣(𝑘)𝑘→0 = 𝑣𝑓 and 0 (𝑣(𝑘)𝑘→𝑘𝑗
= 0). 𝑣′(𝑘)𝑘→0 = 0 is a local property and 

implies that as the traffic density approaches zero, the variation of velocity with respect to density 

would be zero, i.e., the dependence of velocity on density disappears. The value of density ranges 

between zero and jam density (𝑘𝑗) and the speed of vehicles tends to 0 as the traffic approaches a 

jam situation.  It can also be graphically visualized that the speed decreases with density, i.e., 

𝑣′(𝑘) < 0. Table 4.5 shows that the models of Drew, May and Keller, Newell, Del Castillo and 

Benítez, and modified Lee et al. satisfy all the six static properties. Greenberg’s model fails to 

predict speed at lower densities, because as the density approaches zero, the speed tends to increase 

to infinity. Even though Underwood’s model was developed as an attempt to overcome the 

limitations of Greenberg’s model, however, it fails to satisfy the speed range properties because 

the speed becomes zero only when the density reaches infinity. So, it cannot be utilized for 

predicting speeds at higher densities. A similar theoretical investigation was conducted by Gaddam 
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and Rao (2019) and concluded the inability of models of Underwood, Drake et al., and 

Papageorgiou et al. in satisfying both, the jam density property and speed range property. Even 

though the analytical conclusion of this study is like theirs but not completely. It depends on the 

ratio of the jam density (𝑘𝑗) and optimum density (𝑘𝑚). This is empirically supported by parameter 

estimation results, which revealed that for all the datasets considered in this study, with varying 

spatiotemporal resolution, the velocity actually stood very close to zero when the density reached 

jam density. For each dataset, the value of estimated velocity is less than or around 1 𝑚/𝑠 when 

𝑘 → 𝑘𝑗 . Moreover, almost any jam always has some finite movement (Drake et al., 1966). 

However, the statistically dominating logistic model of Wang et al. is unable to satisfy the jam 

density property, density range property and speed range property. Among the three 𝑣 − 𝑘 models 

that perform best statistically, only two, namely, the simple linear form of May and Keller and 

highly parameterized form of modified Lee et al. model, satisfy all six static properties. This adds 

mathematical elegance as another property to May and Keller’s model, which has been identified 

as having high potential in previous section. 

 

4.6.2 Evaluation of the dynamic properties of the models 

 

The validation of the two dynamic properties for the models that are neither sound estimators of 

empirical data nor satisfies all the static properties holds not much meaning to itself. Models such 

as Greenshields et al. and Greenberg are poor representors of the actual traffic data with large 

values of RMSE as compared to other models as well as do not satisfy some of the static properties. 

The last two columns of Table 4.5 show the evaluation of the 𝑣 − 𝑘 relation towards dynamic 

properties: kinematic wave speed property and stable shock wave property. 

Kinematic wave speed property is checked by finding the value of first-order derivative of the 

flow equation with respect to density, as 𝑘 → 𝑘𝑗. For a model to satisfy this property, the value of 

this gradient at jam density has to be a negative constant. From the analysis, it is observed that the 

property holds good for Greenberg’s model, amongst the Logarithmic and Exponential models; 

Newell’s, Del Castillo and Benítez’s, Lee et al.’s, and modified Lee et al.’s models from the 

complex forms of models, where the value of 𝑞′(𝑘) as 𝑘 → 𝑘𝑗  becomes a negative constant. For 

all linear forms and remaining logarithmic and exponential forms (models of Underwood, Drake 
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et al., and Papageorgiou et al.), the values of 𝑞′(𝑘) as 𝑘 → 𝑘𝑗 are either tending to 0 or close to the 

negative of free-flow velocity (𝑣𝑓). The only complex form that does not satisfy this property is 

Wang et al.’s model, the only model producing −∞ value of 𝑞′(𝑘) as 𝑘 → 𝑘𝑗. The stable shock 

wave property is analyzed by obtaining the second–order derivative of the flow equation with 

respect to density, as 𝑘 → 𝑘𝑗. Amongst the linear models, the model of Pipes, and May and Keller 

show a positive curvature based on some mathematical conditions of inequalities. Among the 

logarithmic and exponential models, only exponential forms of Underwood, Drake et al., and 

Papageorgiou et al. models show convex nature in their subdomain and thus can produce stable 

shock waves. Only Lee et al. and modified Lee et al. models of complex forms satisfy the stable 

shock wave property. The analysis of the dynamic properties reveals that none of the existing 

models, except modified Lee et al. model, satisfies both the properties. Also, except Modified Lee 

et al.’s model, none of the considered speed-density ( 𝑣 − 𝑘 ) models entirely fulfills the 

abovementioned restrictions, including both static and dynamic properties. Some of them extend 

over an infinite range of densities or speeds, which is obviously not realistic, and the property more 

often violated is that of stable shock wave property.  

 

 

Table 4.5 Validation of mathematical (static & dynamic) properties of 𝑣 − 𝑘 relations 

 

 

Free flow 

property (i)

Independent 

property (ii)

Jam density 

property (iii)

Density range 

property (iv)

Speed range 

property (v)

Slope 

property (vi)

Kinematic wave 

speed property

Stable shock 

wave property

Greenshields et. al. ü û ü ü ü ü û û

Drew ü ü ü ü ü ü û û

Pipes ü û ü ü ü ü û O

May & Keller ü ü ü ü ü ü û O

Greenberg û û ü ü û ü ü û

Underwood ü û û û û ü û ü

Drake et. al. ü ü û û û ü û ü

Papageorgiou et. al. ü ü û û û ü û O

Newell ü ü ü ü ü ü ü û

Del Castillo & Benitez 

(Exponential curve)
ü ü ü ü ü ü ü û

Del Castillo & Benitez (Max. 

Sensitivity curve)
ü ü ü ü ü ü ü û

Lee et. al. ü û ü ü ü ü ü O

Wang et. al. ü ü û û û ü û û

Modified Lee et. al.'s model ü ü ü ü ü ü ü ü

Complex

Static Properties Dynamic Properties

v-k Relations

Linear

Logarithmic 

& 

Exponential 

ü satisfies û does not satisfy O satisfy based on certain condition of inequalities
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4.7 Conclusions and discussions 

 

This study aimed to analyze statistically and theoretically the performance of single-regime speed-

density (𝑣 − 𝑘) functional relationships at varying spatiotemporal resolutions in simulating the 

real traffic using the high resolution and complete trajectory data, namely, the ZTD. One of the 

key foci of this study was on identifying a model with less complex form, based on ‘weaker’ 

assumptions, reasonably achieves mathematical elegance, and empirical accuracy, which are all 

desirable to have; and second, to make the validation more reliable by conducting it over various 

space-time resolutions. The study assumed the existence of the stationary traffic state and 

considered the 𝑣 − 𝑘 relations to be fundamental diagrams.  

 

Conclusions: The statistical analysis initiated by estimating the parameters of the considered 𝑣 −

𝑘 relations from empirical data and using the LM Optimization Algorithm and studying their 

sensitivity to variation in spatial and temporal resolutions. Upon analysis it was concluded that 

modified Lee et al. model, Wang et al. model and May and Keller’s model empirically 

outperformed the rest of the 𝑣 − 𝑘  forms in that order for all the considered spatiotemporal 

resolutions. Modified Lee et al.’s and Wang et al.’s models are complex and highly parameterized, 

whereas the model of May and Keller is based on a simple assumption of linearity. The analysis 

revealed the models’ performances and their sensitivity to the variation of spatial and temporal 

resolutions. The reason for the poor performances of certain models, irrespective of resolutions, 

could be attributed to the assumptions taken into consideration while formulating the models in 

theoretical sense. Leading the discussion towards the theoretical analysis, the advantages of a 

theoretically strong functional form are as follows: firstly, it adds value to the relationship among 

the traffic states if it is representative of the physics of traffic. Therefore, utilizing a theoretically 

strong fundamental relationship, for instance in traffic states estimation where the approach is 

based on physical traffic flow models, will eventually help in estimating an accurate traffic state 

even with less dependency on large input data. In addition, it has high explanatory power, i.e., 

even if there are errors present in the estimation, it would be possible to identify the reasons as 

well as confidence intervals. The theoretical analysis of the considered 𝑣 − 𝑘 relations reveals that 

only the modified Lee et al.’s model by Gaddam and Rao (2019) is capable of satisfying all the 

static and dynamic properties, which also has an empirically strong functional form. Following to 



Chapter 4  Analysis of 𝑣 − 𝑘 Relations 

 77 

it are the models of Newell and Del Castillo and Benítez (both satisfy 7 properties (static: 6, 

dynamic: 1); but performed poorly in statistical analysis); May and Keller (static: 6, dynamic: 1 

(conditionally)), and Lee et al. (static: 5, dynamic: 1+1 (conditionally)). It is unavoidable to 

mention that in spite of the fact that Newell’s complex 𝑣 − 𝑘 relation theoretically performs very 

well by satisfying all 6 static properties and the kinematic wave speed dynamic property, it 

statistically showed poor performance. Nonetheless, the graphical fits of Newell’s form along with 

modified Lee et al.’s form give an indication of existence of some uniform bias in the estimation, 

which can either be bias corrected or reconsidered in regard to theoretical assumptions made while 

it was formulated, in order to revamp the Newell’s functional 𝑣 − 𝑘 relationship. 

 

Discussions: Simple and easy-to-handle compact equation with low computational cost that 

reasonably achieves empirical and mathematical elegance can prove to be more efficient in terms 

of quality and quantity when using with emerging extensive data. Conclusively, the linear model 

of May and Keller can be considered as a potential fundamental relationship for practitioners, 

analysts and traffic engineers working on extensive voluminous data for the following reasons:  

 

1) Its compact and less complex linear form with only two shape parameters and two parameters 

of physical significance makes it easy-to-handle for computational work. 

2) The formulation approach is not data driven, rather is based on a simple mathematical 

argument. The rationale for this argument arises from the assumption that the speed decreases 

linearly with density. 

3) The empirical accuracy of the model is very close to the outperforming complex forms of 

modified Lee et al. (rational model) and Wang et al. (logistic model) models. 

4) In terms of mathematical elegance, it satisfies all the static properties and one dynamic 

property (conditionally). Other 𝑣 − 𝑘 relations with similar performance are those developed 

by Drew, Newell, Del Castillo and Benítez, and modified Lee et al. However, the first three 

are empirically poor estimators and also, the models of Newell and Del Castillo and Benítez 

have more complex mathematical equations as compared to that of May and Keller. The 

modified Lee et al.’s model, with three shape parameters, is a rational and comparatively more 

complex form of function. 
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The importance of the research also lies in the utilization of the spatiotemporally detailed and 

complete ZTD to compute more accurate values of the fundamental parameters at fine resolutions, 

which was not possible with other conventional datasets. ZTD is more reliable for deducing 

inferences from the performance or accuracy evaluation done on fundamental relations or TSE 

methods because of its spatiotemporally detailed information (at a temporal sampling rate of 0.1 

s). Wide-ranging and detailed data is difficult to be acquired simultaneously (using loop detectors 

or fixed-point observation methods) because the observable area of the methods is limited to the 

vicinity of the devices’ installed points. In ZTD, a unique vehicle ID is allocated to each vehicle 

that traveled on the expressway, which is observed and maintained throughout the target section 

of road and target time duration. There is a continuity of data at 0.1 𝑠 time step with no loss. Such 

detailed information was rarely available in the past.  

 

4.8 Gist: input, assumptions, output 

 

This chapter included analysis of the single-regime speed-density (𝑣 − 𝑘) relationships for urban 

expressways using high resolution ZTD containing all vehicles’ trajectory data. The steady-state 

(an assumption) traffic data were extracted for varying spatiotemporal resolutions (input). It is 

followed by estimation of traffic flow parameters (output), namely, jam density, kinematic-wave-

speed, and proportionality factor (a behavioral parameter) using empirical data. Functional and 

shape parameters (output) were estimated using the Levenberg–Marquardt algorithm.  

Statistical metrics were used to assess the performance and model fitness in all categories of 

linear, exponential and logarithmic, and complex forms of 𝑣 − 𝑘  relationships for different 

resolutions. It concluded complex forms of Wang’s model, modified Lee et al.’s model, and linear 

form of May and Keller’s model are top 3 best performing models. The theoretical analysis reveals 

that certain relationships satisfy all the static properties and that only one satisfies both the dynamic 

properties of traffic behavior. Highly parameterized forms had the lowest errors. However, the 

linear form of model developed by May and Keller (1967) has high application potential. The 

limitation and future research directions are discussed in section 7.2.1. 
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5 ANALYSIS OF 𝒙𝑭𝑪𝑫-BASED TSE METHOD 

 

 

This chapter elaborates the analysis of a ‘weaker’ assumption and extended floating car data 

(𝑥𝐹𝐶𝐷)-based TSE method and explores its estimation capability at different spatiotemporal 

resolutions and probe penetration rates using ZTD. 

 

5.1 Objective 

 

This study3 aims to evaluate the performance of an extended floating car data (𝑥𝐹𝐶𝐷)-based traffic 

state estimation method proposed by Seo et al., (2015b), which does not rely on any strong 

assumptions such as Fundamental Diagram, using high-resolution complete trajectory data: ZTD.  

The method is ‘weaker’ assumption-based traffic state estimation method which utilizes only 

mobile data: 𝑥𝐹𝐶𝐷, where each probe vehicle could measure the spacing between it and its leading 

vehicle. With continuous advancements in autonomous technologies and the massive emergence 

of connected vehicles, this approach may become prevalent in the near future, provided it can 

estimate nearly accurate traffic state. However, currently, only a few percentages of probes are 

expected on the highways of Japan, where the maximum size of the spatiotemporal cell can be 200 

𝑚  x 300 𝑠 . Additionally, ramp metering and signal control require spatiotemporally detailed 

information for the target road sections. This study aims to analyze the performance of the 

estimation method at different settings, namely, probe penetration rate, spatial resolution, and 

temporal resolution. In other words, the objective is to explore that using this TSE method how 

much accuracy can be expected under finer spatiotemporal resolution and fewer probe penetration 

rates. Traffic state estimated by this method, considering randomly sampled trajectories of ZTD 

as those of probe vehicles with known penetration rates, are compared with ones obtained by 

complete ZTD by applying Edie’s generalized definitions (Edie, 1963). The variation in estimation 

 

 
3 This section is majorly based on the research conducted with Prof. Yasuo Asakura published in International 

Journal of Intelligent Transportation Systems Research (Dahiya and Asakura, 2021). 
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errors and covering percentages are analyzed for varying settings: spatiotemporal resolution and 

probe penetration rates.  

The remainder of the chapter is structured as follows: section 5.2 describes the TSE method, 

section 5.3 explains the methodology and the utilization of ZTD for the analysis, and section 5.4 

showcases the details of the estimation results. Following to that, section 5.5 elaborated the 

empirical analysis of the TSE method conducted through statistical analysis using ZTD and 

concludes with discussions in section 5.6. The gist of the analysis is covered in section 5.7 that 

reviews the analysis. 

 

5.2 The estimation method (Seo et al., 2015b) and the need for study 
 

The estimation of high-resolution traffic states is mainly beneficial for traffic control to mitigate 

congestion. Over the past decade, researchers have contributed to the methodologies for estimating 

traffic state, i.e., the density, flow, and velocity, from traffic data without any exogenous 

assumptions on traffic flow characteristics, such as Fundamental Diagram (FD), which renders the 

estimation methods robust against unpredictable or uncertain traffic phenomena. The considered 

‘weaker’ assumption-based traffic state estimation method obtains volume-related variables in 

predetermined space-time regions by employing vehicles that could measure their positions and 

the distances to their leading vehicle (space headway between the probe vehicle and its leading 

vehicle in the same lane). The estimators for the flow, density, and velocity, are formulated (using 

Edie’s definitions) (Edie, 1963) as follows:  

 

𝑞(𝑨) =
𝑑(𝑨)

|𝑨|
⇒ 𝑞(𝐴) =

∑ 𝑑𝑛(𝐴)𝑛∈𝑁(𝐴)

∑ |𝑎𝑛(𝐴)𝑛∈𝑁(𝐴) |
⇒ 𝑞̂(𝐴) =

∑ 𝑑𝑛(𝐴)𝑛∈𝑃(𝐴)

∑ |𝑎𝑛(𝐴)𝑛∈𝑃(𝐴) |
 ( 5.1 ) 

 

𝑘(𝑨) =
𝑡(𝑨)

|𝑨|
⇒ 𝑘(𝐴) =

∑ 𝑡𝑛(𝐴)𝑛∈𝑁(𝐴)

∑ |𝑎𝑛(𝐴)𝑛∈𝑁(𝐴) |
⇒ 𝑘̂(𝐴) =

∑ 𝑡𝑛(𝐴)𝑛∈𝑃(𝐴)

∑ |𝑎𝑛(𝐴)𝑛∈𝑃(𝐴) |
 ( 5.2 ) 

 

𝑣(𝑨) =
𝑑(𝑨)

𝑡(𝑨)
⇒ 𝑣(𝐴) =

∑ 𝑑𝑛(𝐴)𝑛∈𝑁(𝐴)

∑ 𝑡𝑛(𝐴)𝑛∈𝑁(𝐴)
⇒ 𝑣̂(𝐴) =

∑ 𝑑𝑛(𝐴)𝑛∈𝑃(𝐴)

∑ 𝑡𝑛(𝐴)𝑛∈𝑃(𝐴)
 ( 5.3 ) 

 



Chapter 5  Analysis of 𝑥𝐹𝐶𝐷-based TSE Method 

 81 

In ∑ |𝑎𝑛(𝐴)𝑛∈𝑁(𝐴) |, 𝑎𝑛(𝐴) represents the space-time region between vehicle n and its leading 

vehicle in a spatiotemporal cell, A, of a meshed spatiotemporal region, R, N(A) represents the set 

of all vehicles in the cell A. 𝑑𝑛(𝐴) is the total distance traveled by vehicle n in cell A and 𝑡𝑛(𝐴) is 

the total time spent by vehicle n in cell A. When estimating traffic states using probe vehicles, N(A) 

is replaced by P(A), which depicts the set of all probe vehicles in region A, as illustrated in Figure 

5.1. 

This method was previously verified by comparing traffic states estimated by the method, 

using the data obtained from the employed 20 probes equipped with mono-eye cameras and GPS 

loggers that drove multiple laps, and those observed by detectors at certain settings that involved 

two probe vehicle penetration rates and two spatiotemporal resolutions. The spatiotemporal area 

between a probe vehicle and its leading vehicle was computed by using approximations based on 

the spacing measured by the probe vehicle. The TSE method under consideration relies on ‘weaker’ 

assumptions of ‘error free assumption’ (measurements by probes have no error and the driving 

route is identified without error) and ‘random sampling assumption’ (probes are randomly 

distributed in traffic with unknown penetration rates during estimation and the driving behavior of 

probes and non-probes are similar). However, the study stated that the data acquired from the probe 

vehicle that was used for its validation contained biases (i.e., the random sampling assumption was 

not satisfied) such as differences between the driving behavior of probes and differences between 

the spacing measurements. It suggests that without such biases, the estimation accuracy may be 

improved. The spacing measurement method involved the identification of leading vehicles in the 

images (captured by probes), from which their apparent sizes were measured. The spacing was 

calculated based on the apparent size, assumed actual size, angle of view of the camera, etc. The 

actual body length was assumed to be the same as that of the probe vehicles (5 𝑚). Other variables 

were manually measured using the images. If the assumed or measured variables contained errors, 

the estimated spacing contained errors, which in turn affected the calculation of 𝑎𝑛(𝐴). Although 

the assumed variables were based on common knowledge of statistics and regulations and detector 

data, the amount of the errors could not be determined because there is no ground truth data for 

the vehicle size during the experiment. 

The proposed method relied on assumptions that may not always be satisfied in the real world, 

namely the error free and random sampling assumptions (Seo et al., 2015b). With the advancement 

in data acquisition technologies and the advent of connected vehicles in the near future, it is 
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expected that probe vehicles with advanced driver assistance system (ADAS), potentially capable 

of recording the exact spatiotemporal coordinates of the leading vehicle too, will be used to obtain 

data similar to ZTD. The spatiotemporal resolution considered in this analysis was not coarse; 

therefore, for the sake of analyzing the accuracy of the method, the objective of this study is to 

analyze the validity of the discussed probe vehicle-based traffic states estimation method using the 

high-resolution ZTD for different settings: spatial resolution (hereafter, ∆𝑥), temporal resolution 

(hereafter, ∆𝑡), and probe vehicle penetration rate (hereafter, 𝑝%). In this study, 𝑝% vehicles are 

randomly selected from 100% vehicles driving on a lane for a fixed distance and time, instead of 

employing probe drivers, to evaluate the true estimation capability of the TSE method. In addition, 

the ZTD contains comprehensive trajectory details of 100% vehicles, which aids in identifying the 

leading vehicle to each vehicle in every lane. Therefore, exact spatiotemporal coordinates of a 

vehicle and its leading vehicle were used to calculate a nearly accurate value of the spatiotemporal 

area between a vehicle and its leading vehicle (𝑎𝑛(𝐴)) without any approximation. This satisfied 

the random sampling assumption of the estimation method, where the possibility of bias in the 

driving characteristics of the selected probes to the rest is absent. 

 

5.3 Methodology and utilization of ZTD 
 

For this study, the ZTD L001_F001, covering space-time profile of distance of 2 𝑘𝑚 (5 𝑘. 𝑝. to 3 

𝑘. 𝑝. i.e., 5000 𝑚 to 3000 𝑚) and 1 ℎ𝑜𝑢𝑟 (7:00 a.m. to 8:00 a.m.), is utilized. In it the lane changing 

is prohibited for the distance between 4200 𝑚 and 3400 𝑚, and a merging to the driving lane from 

outside the entrance lane occurs at 3.8 𝑘. 𝑝. (Tsukamoto junction) as depicted in Figure 5.2. The 

color bar in the figure aids in understanding the speed profiles of all the vehicles at all space-time 

locations for both, the driving and the passing lanes for 1 ℎ𝑜𝑢𝑟 on the said 2 𝑘𝑚 distance.  

 

Assumption 5.1: In this lane change prohibited distance, for simplification of analysis two 

sections: 4250 𝑚 to 3850 𝑚 (400 𝑚 long section) and 3750 𝑚 to 3450 𝑚 (300 𝑚 long section) are 

specifically considered that have minimum lane-changing behavior and maintain the conservation 

of vehicles throughout each section. In each lane of these sections there is no vehicle’s overtaking 

nor merging/diverging sections (i.e., a first-in first-out (FIFO) condition and a conservation law 

(CL) is satisfied). 
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Figure 5.1 Illustration of formulation of 𝑥𝐹𝐶𝐷-based TSE method (Seo et al., 2015b) 

n=2 n=3 n=4

n=5

time-space region A

Space x

Time t

n=1
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Figure 5.2 Four space-time sub-sections considered due to prohibition of lane changing behavior 

(Source: https://zen-traffic-data.net/english/outline/) 

 

However, from 7:00 a.m. to 8:00 a.m., some lane changing behavior was still observed in both 

these sections: 106 out of 3405 vehicles (3.1%) changed lanes on the 300 𝑚 section and 389 out 

of 3391 vehicles (11.5%) changed lanes on the 400 𝑚 section, as also tabulated in Table 5.1. The 

percentage of vehicles showing differences in driving behavior was not high; therefore, these were 

excluded from the analysis to assume homogenous driving behavior among drivers. Resultingly, 

the number of considered vehicles that drove on 300 𝑚 section (lane 1) (R1), 300 𝑚 section (lane 

2) (R2), 400 𝑚 section (lane 1) (R3) and 400 𝑚 section (lane 2) (R4) for one ℎ𝑜𝑢𝑟 (7:00 a.m. to 

8:00 a.m.) without changing lanes were 1400, 1735, 1182 and 1715 respectively. Using 

voluminous ZTD, it was possible to identify the sequential order of vehicles driving in each lane 

of each section for one morning peak ℎ𝑜𝑢𝑟 for 2 𝑘𝑚 and which was maintained throughout the 

section. Hence, the leading vehicle to each vehicle was identified along with their trajectories in 

their respective space-time regions (Ri). This serves as an essential ingredient in estimating traffic 

states by the estimation method using ZTD. 

Table 5.1 Percentage of vehicles observed changing lanes in the lane change prohibited area for 300 𝑚 section and 400 𝑚 

section of ZTD: L001_F001 

 300 𝒎 section 400 𝒎 section 

Number of vehicles 

changing lanes 
106 out of 3405 (3.1%) 389 out of 3391 (11.5%) 

Number of vehicles 

considered 
1400 (Lane 1), 1735 (Lane 2) 1182 (Lane 1), 1715 (Lane 2) 

R3: 4250-3850m (400m section), Lane 1

R1: 3750-3450m (300m section), Lane 1

R2: 3750-3450m (300m section), Lane 2

R4: 4250-3850m (400m section), Lane 2

4 space-time regions are specifically 

considered for this analysis that has 

minimum lane changing behavior and 

maintains the conservation of vehicles 

throughout each section. 

https://zen-traffic-data.net/english/outline/
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Each space-time area is divided into meshes of varying spatiotemporal resolutions i.e., each 

space-time region (Ri) subject to the traffic state estimation is divided into multiple discrete, 

identical, and rectangular space-time regions that can be horizontal or vertical depending on the 

combination of spatial and temporal resolutions as per Figure 5.3. Any rule can be used to divide 

the space-time region of the traffic flow. The simplest rules are employed in this study, where the 

traffic flow is divided into Eulerian rectangles of identical sizes. These are familiar coordinates in 

current traffic flow data, where fixed-point detectors are installed at a certain time and space 

resolution or interval. The coordinates can be represented as follows:  

 

𝐴𝑖
𝑗

= {(𝑡, 𝑥)|𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1, 𝑥𝑗 ≤ 𝑥 ≤ 𝑥𝑗+1} 𝑖 ≥ 0, 𝑗 ≥ 0 ( 5.4 ) 

  

𝑡𝑖+1 = 𝑡𝑖 + ∆𝑡  ( 5.5 ) 

  

𝑥𝑗+1 = 𝑥𝑗 + ∆𝑥  ( 5.6 ) 

  

where,  

 

𝑖, 𝑗: non-negative indices for time and space, 

(𝑡0, 𝑥0): coordinates of the predetermined origin, 

(𝑡𝑖 , 𝑥𝑗): coordinates of the upper-left corner of region 𝐴𝑖
𝑗
, 

∆𝑡: predetermined time resolution i.e., ∆𝑡 =  {15 𝑠, 30 𝑠, 60 𝑠, 120 𝑠, 300 𝑠}, 

∆𝑥 : predetermined space resolution i.e., ∆𝑥 =  {25 𝑚, 50 𝑚, 100 𝑚, 150 𝑚, 300 𝑚} for R1 

and R2, and ∆𝑥 =  {25 𝑚, 50 𝑚, 100 𝑚, 200 𝑚, 400 𝑚} for R3 and R4. 

 

The value of 𝑥 varies as 3450 ≤ 𝑥 ≤ 3750 for R1 and R2 and 3850 ≤ 𝑥 ≤ 4250 for R3 and R4, 

and 𝑡 varies as 25200000 𝑚𝑠 ≤ 𝑡 ≤ 28800000 𝑚𝑠 (7:00 a.m. to 8:00 a.m.). Corresponding to 

each Ri, there are 25 combinations of ∆𝑡 and ∆𝑥 (25 meshes), where each cell of each mesh is 

identified by cell 𝐴𝑖
𝑗
 (hereafter, A).  
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Figure 5.3 Space-time area divided into mesh of Eulerian rectangles 

 

5.4 Estimation results over varying settings 
 

First, the traffic state, which at a macroscopic level is a set of the following variables: flow 𝑞, 

density 𝑘, and average speed 𝑣, is computed using Edie’s definitions for each cell (A) of each mesh 

(for every combination of ∆𝑥 and ∆𝑡) corresponding to every Ri. Under every setting, the trajectory 

information from the ZTD of all vehicles driving through a cell is used to compute 𝑞 (𝑣𝑒ℎ/𝑠), 

𝑘 (𝑣𝑒ℎ/𝑚), and 𝑣 (𝑚/𝑠). Assuming the ZTD as a source of ground truth, these values are used to 

make comparison with the traffic state computed using the estimation method. Figure 5.5 

illustrates the trajectories of 100%  vehicles driving on the Lane 1 of 300 𝑚  section (R1) of 

L001_F001. Using the described methodology, Figure 5.6 shows the actual traffic flow computed 

for ∆𝑥 = 25 𝑚 and ∆𝑡 = 30 𝑠 on R1 (for instance). For all space-time regions Ri, the traffic flow 

ranges from 0.3 to 0.5 𝑣𝑒ℎ/𝑠 (18–30 𝑣𝑒ℎ/𝑚𝑖𝑛) in a majority of the meshed cells (A), and at a few 

positions and times on the sections the traffic flow is over 0.6 𝑣𝑒ℎ/𝑠 (36 𝑣𝑒ℎ/𝑚𝑖𝑛) (reaching 

values of flow at critical density), which mostly occurs on lane 2 and before 7:20 a.m.  

Estimating the traffic state using the estimation method requires random sampling of 𝑝% 

vehicles (hereafter referred to as probe vehicles) from the total number of vehicles driving through 

each space-time region Ri. Each vehicle (with its trajectory data) is chosen entirely by chance by 

utilizing the pseudo–random decimal numbers (real numbers between 0 and 1) generated by the 

RAND function in MS Excel and has an equal probability of being selected as an element of the 
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random sample, in alignment to the probability theory and statistics. The selection isn’t based on 

any uniform pattern, such as the selection of a vehicle after every fixed number of vehicles or in 

every fixed unit of time. These 𝑝% selected vehicles are a part of the actual traffic and not 

deployed for analysis. For instance, Figure 5.7 a.), b.), c.) and d.) depicts the traffic trajectories of 

5%, 3%, 1% 𝑎𝑛𝑑 0.5% randomly selected vehicles from 100% of vehicles driving (total 1400) in 

region Lane 1 of 300 𝑚 section (R1), respectively. For varying 𝑝% values, the traffic states are 

estimated using the equations (5.1)− (5.3) (right) for each cell (A) of each mesh (for every 

combination of ∆𝑥 and ∆𝑡) corresponding to every Ri, through which at least one probe vehicles 

pass. For computing the spatiotemporal area (𝑎𝑛(𝐴)) between a probe vehicle (n) and its leading 

vehicle in the same lane (as illustrated in Figure 5.4), identified using the ZTD, the exact 

spatiotemporal coordinates of their trajectories at a 0.1s pitch are used. For doing so, Gauss’s area 

formula, described by Meister (1769) and by Carl Friedrich Gauss in 1795 was implemented in 

Python. It is also known as the Surveyor’s formula (Braden, 1986) and is considered as a special 

case of Green’s theorem (first presented by (Cauchy, 1846)). Let the set of spatiotemporal 

coordinates of vehicle n and its leading vehicle enclosed within the space-time region of cell A, 

which form a polygon in the clockwise or anticlockwise direction in the spatiotemporal plane, be 

represented as {(𝑡1, 𝑥1), (𝑡2, 𝑥2), … , (𝑡𝑁 , 𝑥𝑁)}. The area 𝑎𝑛(𝐴) is derived as follows: 

 

𝑎𝑛(𝐴) =
1

2
|∑ 𝑡𝑖𝑥𝑖+1 + 𝑡𝑁𝑥1 − ∑ 𝑡𝑖+1𝑥𝑖 + 𝑡1𝑥𝑁

𝑁−1
𝑖=1

𝑁−1
𝑖=1 |  ( 5.7 ) 

  

Alternatively, 

  

 

 

𝑎𝑛(𝐴) =
1

2
|∑ 𝑡𝑖(𝑥𝑖+1 − 𝑥𝑖−1)𝑁

𝑖=1 | =
1

2
|∑ 𝑥𝑖(𝑡𝑖+1 − 𝑡𝑖−1)𝑁

𝑖=1 |  
( 5.8 ) 

  

𝑎𝑛(𝐴) =
1

2
|∑ (𝑡𝑖𝑥𝑖+1 − 𝑡𝑖+1𝑥𝑖)

𝑁
𝑖=1 |  ( 5.9 ) 

  

𝑎𝑛(𝐴) =
1

2
|∑ (𝑡𝑖+1 + 𝑡𝑖)(𝑥𝑖+1 − 𝑥𝑖)

𝑁
𝑖=1 | =

1

2
|∑ 𝑑𝑒𝑡 (

𝑡𝑖 𝑡𝑖+1

𝑥𝑖 𝑥𝑖+1
)𝑁

𝑖=1 |  ( 5.10 ) 
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Figure 5.4 Representation of spatiotemporal area between a probe vehicle and its leading vehicle in a space-time cell 

 

Figure 5.5 Trajectories of 100% vehicles driving on the Lane 1 of 300 𝑚 section of ZTD: L001_F001 

 

Figure 5.6 Actual flow on Lane 1 of 300 𝑚 section of ZTD: L001_F001 computed using 100% vehicles' trajectory information 

and Edie's generalized definitions 

 

a.)  

space-time region A 

Space x 

Time t 

n=4 (non-probe) 

n=5 (probe) 
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b.) 

 

c.) 

 

d.) 

Figure 5.7 Trajectories of a.) 5%, b.) 3%, c.) 1% and d.) 0.5% of randomly sampled probe vehicles (extracted from 100% ZTD) 

driving on the Lane 1 of 300 𝑚 section of ZTD: L001_F001 

 

Figure 5.8 Representation of observed cells i.e., cells via which at least one probe vehicle traverse 
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Figure 5.9 Density 𝑘 (𝑣𝑒ℎ/𝑚) estimated from Edie’s definitions and 100% ZTD (topmost row) and estimation method for ∆x = 

50 𝑚, ∆t = 60 𝑠, p% varying from 5% to 0.5%) for Lane 1 of 300 𝑚 section (bottom four rows from top to bottom order) 
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Figure 5.10 Flow 𝑞 (𝑣𝑒ℎ/𝑠) estimated from Edie’s definitions and 100% ZTD (topmost row) and estimation method for ∆x = 50 

𝑚, ∆t = 60 𝑠, p% varying from 5% to 0.5%) for Lane 1 of 300 𝑚 section (bottom four rows from top to bottom order) 
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Figure 5.11 Velocity 𝑣 (𝑚/𝑠) estimated from Edie’s definitions and 100% ZTD (topmost row) and estimation method for ∆x = 50 

𝑚, ∆t = 60 𝑠, p% varying from 5% to 0.5%) for Lane 1 of 300 𝑚 section (bottom four rows from top to bottom order) 
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The topmost rows in Figure 5.9, Figure 5.10 and Figure 5.11 correspond to the traffic state, 𝑘 

(𝑣𝑒ℎ/𝑚), 𝑞 (𝑣𝑒ℎ/𝑠), and 𝑣 (𝑚/𝑠), respectively, estimated using Edie’s definitions and the ZTD 

of 100% vehicles for R1 (∆𝑥 = 50 𝑚, ∆𝑡 = 60 𝑠). The following rows in Figure 5.9, Figure 5.10 

and Figure 5.11 illustrate the traffic states, 𝑘 (𝑣𝑒ℎ/𝑚), 𝑞 (𝑣𝑒ℎ/𝑠) and 𝑣 (𝑚/𝑠), respectively, 

estimated from the estimation method for 𝑝% = 5%, 3%, 1% 𝑎𝑛𝑑 0.5%, in this order for R1 

(∆𝑥 = 50 𝑚, ∆𝑡 = 60 𝑠). For any cell through which no probe vehicle passes, the values of the 

allocated traffic state equal zero, as illustrated in Figure 5.8. This is a type of missing data that is 

different from missing data caused by randomness, attrition, or unobserved original data; rather, it 

is an intentional missing as part of extracting only 𝑝% data for this analysis.  

 

5.5 Empirical analysis 
 

A fixed combination of ∆𝑥, ∆𝑡 and 𝑝% is referred to as a setting. The total number of such settings 

equals 100. The traffic states obtained under each setting, for each cell A of all spatiotemporal 

regions Ri, using the estimation method are compared with traffic state obtained using ZTD of all 

the vehicles driving through cell A on a one-to-one basis. To yield the least biased comparison for 

cells through which no probe passed, the analysis strategy used is a direct approach: Deletion 

Method (Listwise Deletion). It is a complete-case analysis, where only the cells with observed 

probes are considered from both datasets. The 𝑝% probe vehicles are selected randomly; therefore, 

the cells with no probes do not occur in any systematic order, which could lead to a bias. Its 

advantages are simplicity and comparability across analyses. The reasons for not considering 

value-allocating methods for assigning values to the cells through which no probe drives (such as 

the mean imputation method, using information from related cells, or a hybrid of both methods) 

are discussed. The objective of this analysis is to study the accuracy of the estimation method for 

different 𝑝% values. For this method to be applicable in actual scenario, it is important to check 

the accuracy by not deliberately adding any biases. When 𝑝% is very less then technique-filled 

cells, for higher spatiotemporal resolutions, will be much larger than the cells with method-

estimated data. This would not reflect true errors during comparison. When we fill the empty cells 

with values from other settings, it will give an amalgamation of values and it will not reflect the 

true variation in error over spatiotemporal resolutions and 𝑝%.  
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To visualize the performance of the estimation method, flow-density (𝑞 − 𝑘) diagrams were 

plotted for all combinations of spatiotemporal resolutions and probe vehicle penetration rates 

combined for all four regions Ri. A few of them are illustrated in Figure 5.13. The 𝑞 − 𝑘 plots 

suggest that the estimation method is able to capture the robust behavior of actual traffic dynamics 

when the traffic is in the free-flow regime. However, for densities beyond the density around 

critical density the performance of the estimation method appears degraded. Although there exists 

a cloud of incorrect estimations beyond the critical density, it coexists with the correct estimations 

to some extent. This implies that existence of a density greater than the critical density in a 

spatiotemporal cell A is not the sole reason for the diversion of predictions made by the estimation 

method from actual traffic states in that cell A. For an extensive evaluation, statistical analysis was 

conducted as discussed in the following section. 

 

 

 

Figure 5.12 Representation of the process of comparison through error analysis 

 

 

                                  𝑝% = 5%                                                             𝑝% = 1% 

 

{25 𝑚 x 15 𝑠} 
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{25 𝑚 x 120 𝑠} 

 

{100 𝑚 x 15 𝑠} 

 

{100 𝑚 x 120 𝑠} 

 

Figure 5.13 𝑞 − 𝑘 plot for traffic state estimated from Edie’s definitions using the ZTD of 100% vehicles (Blue) and from the 

estimation method (Red) for a few different settings 

5.5.1 Statistical error analysis 
 

To analyze the numeric differences in the traffic states estimated by the probe vehicle-based 

estimation method (𝐸𝑖) and those obtained from the ZTD of 100% vehicles (𝑂𝑖 ) driving in a 

spatiotemporal cell A of region Ri, the percent error is calculated for each considered cell A under 

all 100 settings as per equation (5.11). Furthermore, as illustrated in Figure 5.12, the mean absolute 
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percentage errors (MAPEs) and root mean square errors (RMSEs) are also calculated (n: number 

of cells considered) as per equations (5.12) and (5.13). 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 (𝛿) = |
𝐸𝑖−𝑂𝑖

𝑂𝑖
| . 100%  ( 5.11 ) 

 

𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =
100%

𝑛
∑ |

𝐸𝑖−𝑂𝑖

𝑂𝑖
|𝑛

𝑖=1   ( 5.12 ) 

 

𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 =  √
∑ (𝐸𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
  ( 5.13 ) 

 

Additionally, the number of probes driving through each spatiotemporal cell was recorded for 

all combinations of considered spatial resolution, temporal resolution, and probe vehicle 

penetration rate. Intuitively, as the spatial resolution and/or temporal resolution becomes more 

coarser, or the probe vehicle penetration rate increases, the average number of probes in each cell 

is expected to increase. However, to determine the precise numerical value, Table 5.3 details the 

average number of probes observed in the cells through which at least one probe vehicle passed 

under a few of the different settings, averaged over all four regions (Ri). Under the considered 

settings, the higher values of the average number of probes observed in the cells ranges from 6.22 

to 6.75 for ∆𝑡 = 300𝑠 and 𝑝% = 5%. The value of ∆𝑥 is not influencing the averages as such. 

The second reason that can be considered for the deviation of estimated traffic states from the 

actual ones is the average number of probe vehicles in the spatiotemporal area under consideration.  

Figure 5.14 illustrates that with an increase in average number of probe vehicles in a 

spatiotemporal area result in a drastic decrease in the MAPE in the estimated density and flow. 

When the average number of probes is 1 in a cell A, the MAPE in the estimated density and flow 

is as high as around 140%. At the same time number of probes in a cell is not influencing the errors 

in the estimated speed very much. Similarly, Figures 5.15, 5.16 and 5.17 show the depletion in 

RMSE in estimated 𝑘, 𝑞, and 𝑣 with an increase in the average number of probe vehicles in the 

spatiotemporal area, respectively. When the average number of probes is as high as around 6 or 7, 

the MAPE in estimated 𝑘, 𝑞, and 𝑣 are as low as around 20% for 𝑘 and 𝑞 and less than 10% for v. 
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Also, the RMSE in k, 𝑞 and 𝑣 will be around 0.01 𝑣𝑒ℎ/𝑚, 0.09 𝑣𝑒ℎ/𝑠 (5.4 𝑣𝑒ℎ/𝑚𝑖𝑛) and 

0.75 to 1.25 𝑚/𝑠, when the average number of probe vehicles in a spatiotemporal region is around 

6 or 7. Primarily, high vehicular density and/or low availability of probes driving through a 

spatiotemporal region leads to a substandard performance of the estimation method in replicating 

the actual behavior of traffic flow and estimating traffic state. When the probe penetration rate 

drops below 3% and the temporal resolution becomes finer than 2 min, the average number of 

probe vehicles in the considered spatiotemporal regions falls below 2 and the MAPE in the 

estimated density and flow rises over 40%.  

 

 

Figure 5.14 Variation in MAPE with respect to the variation in the average number of probes in a cell A of the spatiotemporal 

mesh 

 

 

 

Figure 5.15 Variation in RMSE in Density 𝑘 (𝑣𝑒ℎ/𝑚) with respect to the variation in the average number of probes in a cell A of 

the spatiotemporal mesh 
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Figure 5.16 Variation in RMSE in Flow 𝑞 (𝑣𝑒ℎ/𝑠) with respect to the variation in the average number of probes in a cell A of the 

spatiotemporal mesh 

 

 

Figure 5.17 Variation in RMSE in Velocity 𝑣 (𝑚/𝑠) with respect to the variation in the average number of probes in a cell A of 

the spatiotemporal mesh 

The variation in MAPE under all the different settings can be more clearly visualized in Figure 

5.18. Under all settings, the MAPE for k, q, and 𝑣 went as low as around 20%, 18%, and 4.5%, 

respectively. The variation in ∆𝑥 did not significantly affect the average number of probe vehicles 

that drove through the considered spatiotemporal cells of fixed ∆𝑡 and 𝑝% and in turn did not 

affect much the variation in MAPE in k, q, and v. However, for a fixed ∆𝑥 and 𝑝%, ∆𝑡 exhibits a 

monotonically increasing nonlinear relationship with the average number of probes observed 

driving through the cells of the spatiotemporal mesh. This implies that as ∆𝑡 becomes coarser, the 

MAPE is expected to decrease. Likewise, to ∆𝑡, a drop in 𝑝% leads to a decrease in the average 



Chapter 5  Analysis of 𝑥𝐹𝐶𝐷-based TSE Method 

 100 

number of probes; however, this drop is gradual for a ∆𝑡 and steep when ∆𝑡 is greater than 120 𝑠. 

This, by its nature, has a direct effect on the propagation of MAPE i.e., for a fixed ∆𝑥 and ∆𝑡, a 

drop in 𝑝% results in an escalation in MAPE. A similar trend was observed with the variation in 

RMSE of the estimated traffic state being predominantly affected by ∆𝑡 and 𝑝% (Table 5.2). The 

method estimates 𝑣 with much lower MAPE and RMSE, as compared to the 𝑘 and q, irrespective 

of the observation settings and the average number of probe vehicles in the spatiotemporal cell. 

As also described in Figure 5.19, the analysis reveals that when the freeway is in congested regime 

and when the probe penetration rate is less than 3% and/or the temporal resolution is finer than 

120 𝑠, the MAPE in estimated density and flow increases which leads to substandard performance 

of the estimation method. 

To analyze the effect of the employed random sampling method on the stability of estimation, 

the estimation method was evaluated for different series of randomly sampled probe vehicles from 

the complete ZTD at the same settings. It implied that the variation in MAPE in k, q, and 𝑣 at 

different settings was similar, except for a very fine temporal resolution (say ∆𝑡 = 15 𝑠) and a low 

probe percentage (such as 1%). Under such settings, the estimation performance was unstable but 

definitively poor. This instability in estimation using the TSE method can be lessened by 

considering relatively larger 𝑝% or setting the temporal resolution to be coarser than 15 𝑠. Overall, 

this justifies the reliability of the employed random sampling procedure for evaluating the 

estimation capability of the considered estimation method. The selection of the 𝑝% of probes is 

random; therefore, it is possible that a probe belongs to a logistic fleet, which may lead to a slower 

than average traveling speed. This will lead to a biased traffic state estimation in the space-time 

cells via which such a probe vehicle passes. This bias, in general, can be ignored for this analysis 

when 𝑝% is not very small; however, when 𝑝% is very small such as 1% or 0.5%, the MAPE and 

RMSE, calculated between traffic states obtained from Edie’s generalized definitions and the 

estimation method, may be affected. In such a case, the differences between the individual sampled 

probe and others in a particular cell, that could be due to driver’s and/or vehicular condition, may 

lead to a lower accuracy. Additionally, certain vehicle_ids that were changing lanes in the ‘lane 

change prohibited’ area was excluded beforehand from the ZTD, which could have led to a false 

recognition of the leading vehicle to a probe vehicle. The accuracy of the estimation method in 

estimating traffic states positively correlates with the number of probe vehicles in the space-time 

region. According to the available 𝑝% or the required accuracy, the practitioners can choose the 
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desired spatiotemporal resolution settings. The accuracy depends on the settings: mainly, temporal 

resolution (∆𝑡), and probe penetration rate (𝑝%), but indirectly. This analysis provides an insight 

into various combinations of settings, expected probe vehicles in spatiotemporal cells, and the 

corresponding expected accuracy. Another important factor to be considered when employing a 

set of settings in estimating traffic states is the covering percentage (𝑐%), which is discussed in 

the following section. 

 

a.) 𝑝% = 5% 

 

b.) 𝑝% = 3% 

 

c.) 𝑝% = 1% 

 

d.) 𝑝% = 0.5% 

Figure 5.18 Variation in MAPEs in Density (𝑣𝑒ℎ/𝑚) (left), Flow (𝑣𝑒ℎ/𝑠) (middle) and Velocity (or speed) (𝑚/𝑠) (right) over 

varying settings for R1, R2, R3 and R4 combined 
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Figure 5.19 Influence of settings on the performance of 𝑥𝐹𝐶𝐷-based TSE method in estimating traffic states 

 

5.5.2 Covering percentage 
 

The covering percentage (𝑐%) is the percentage of cells through which probe vehicles pass given 

a fixed setting over a region Ri. It is intuitive that the 𝑐% has a positive correlation with the probe 

vehicle penetration rate i.e., the number of probes and the size of the cell in Ri, which was 

corroborated by the inferences from the analysis. Unlike the accuracy of the estimation method on 

which ∆𝑥 has a low to negligible effect, ∆𝑥 has a positive correlation with the 𝑐%. In fact, in terms 

of the difference in 𝑐% brought about by unit change in a setting, the factors that affect the 𝑐% in 

order of decreasing dominance are 𝑝%, ∆𝑡, and ∆𝑥. The variation in 𝑐% over different settings for 

R1 (for instance) is shown in Figure 5.20. However, to be able to retrieve the estimates of traffic 

states in complete spatiotemporal domain is always desirable i.e., to have a higher 𝑐%. The 𝑐% is 

positively related to the 𝑝%, implying that the 𝑐% increases as the average number of probe 

vehicles driving through the spatiotemporal cells in the mesh of the space-time region Ri increases. 

However, a higher covering percentage does not imply a high accuracy by an estimation method 

for obtaining traffic states. For instance, the traffic states of a very large spatiotemporal area 

estimated using trajectory data from a single probe may lead to a high covering percentage, but 

with lower accuracy. Hence, for a combination of finer ∆𝑡 (finer than 2 𝑚𝑖𝑛) and a lower 𝑝% i.e., 

below 3%, a compromise is made with both accuracy and the 𝑐%.  

 

Figure 5.20 Variation in covering percentage in R1 over varying settings 
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5.6 Conclusions and discussions 
 

Conclusions: The 𝑞 − 𝑘 plots for the estimated traffic states along with the actual traffic states 

suggested that in the free-flow regime, the estimation method was able to reproduce the scatter 

present in the 𝑞 − 𝑘 plots of the actual traffic states, in the estimated states without the assumption 

of stationarity. As the density increases further, the performance of the estimation method 

deteriorates. The statistical analysis suggested that the MAPE and RMSE scores for the estimated 

density and flow are inversely related to the number of probes in a spatiotemporal region, which 

is predominantly affected by only the temporal resolution and the probe vehicle penetration rate. 

Specifically, the MAPE for 𝑞 and 𝑘 can be as high as 140% for the finest spatiotemporal resolution 

among the considered settings if the average number of probes in the cells of a spatiotemporal 

mesh is 1. Whereas, when the average number of probes in the cells of a spatiotemporal mesh is 

around 6 or 7 the MAPE values can be lower than 20% for 𝑘 and 𝑞 and around 10% for v. 

Concurrently, the RMSE in 𝑘, q, and 𝑣 curtails to 0.01 𝑣𝑒ℎ/𝑚, 0.09 𝑣𝑒ℎ/𝑠 (5.4 𝑣𝑒ℎ/𝑚𝑖𝑛), and 

0.75 to 1.25 𝑚/𝑠, respectively. When the probe penetration rate falls below 3% and the temporal 

resolution is finer than 2 min, the MAPE in estimated 𝑘 and 𝑞 rises over 40%. Nevertheless, under 

all the settings considered for this analysis, the MAPE for 𝑘, q, and 𝑣 went as low as around 20%, 

18%, and 4.5%, respectively. The method estimates 𝑣 with much lower MAPE and RMSE values, 

irrespective of the observation settings, as compared to 𝑘 and q. The accuracy of the estimates 

depends on two settings: temporal resolution (∆𝑡), and probe penetration rate (𝑝%), but indirectly. 

This analysis provides an insight into the various combinations of settings, expected probe 

vehicles in spatiotemporal cells, the corresponding covering percentage, and the expected accuracy. 

It is always desirable to be able to retrieve the estimates of traffic states in a complete 

spatiotemporal domain i.e., to have a higher 𝑐%. However, for a combination of a finer ∆𝑡 i.e., 

finer than 2 min and a lower 𝑝% i.e., below 3%, a compromise is made with both accuracy and 

the 𝑐%. Additionally, the consideration of appropriate value of ∆𝑥 may be ignored in terms of 

accuracy yet ∆𝑥 has a positive correlation with the 𝑐%. Thus, according to the available 𝑝% or the 

required accuracy and 𝑐%, practitioners could select the desired and appropriate spatiotemporal 

resolution settings.  
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Discussions: The initial challenge in evaluating the performance of an 𝑥𝐹𝐶𝐷-based traffic state 

estimation method lies in the identification of the leading vehicle to a probe vehicle. This was 

meticulously performed with the aid of the ZTD, which enabled the identification of the exact 

trajectories of the leading and the probe vehicles. The detailed resolution of the ZTD played a 

critical role in evaluating the actual performance without any approximations based on the spacing 

measurements calculated using assumptions. The exact spatiotemporal coordinates of vehicles 

were utilized in reckoning the spatiotemporal area between a probe vehicle and its leading vehicle. 

The importance of this result lies in the utilization of detailed ZTD in estimating the traffic state 

using the discussed estimation method, while using other conventional datasets failed to provide 

the same degree of accuracy evaluation. The ZTD is more reliable than other conventional datasets 

in deducing inferences from the performance or accuracy evaluation of estimation methods. A 

unique vehicle ID has been allocated to each vehicle that traveled on the expressway, which is 

observed and maintained throughout a target section and target time duration. There is a continuity 

of data at 0.1 𝑠 time step with no loss.  

However, in actual, few percentages of GPS probes are expected in the actual highways of 

Japan (where the maximum cell size for traffic control is ∆𝑥 = 200 𝑚 and ∆𝑡 = 300 𝑠), and the 

settings considered in this analysis aided in visualizing expected errors in the estimation results 

using this method at finer ∆𝑥 and ∆𝑡 and a lower 𝑝%. The accuracy of the estimation method in 

estimating traffic states positively correlates with the number of probe vehicles in the space-time 

region. According to the available 𝑝% or the required accuracy, the practitioners can choose the 

desired spatiotemporal resolution settings. This analysis provides an insight into various 

combinations of settings, expected probe vehicles in spatiotemporal cells, and the corresponding 

expected accuracy. With few percentages of prove vehicles, the method can estimate traffic states 

at coarser resolutions with 100% coverage when the expressway is not in the congested state. This 

low resolution is sometimes useful for planning purposes and for potential area-wide traffic 

management. 

 

5.7 Gist: input, assumptions, output 
 

This chapter included the evaluation of performance of an 𝑥𝐹𝐶𝐷-based traffic state estimation 

method, unconfined by any exogenous assumptions such as FD, proposed by Seo et al. (2015b). 
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This was conducted at several spatiotemporal resolutions (including fine resolutions) and varying 

probe vehicle penetration rates using high resolution complete trajectory data, the Zen Traffic Data. 

The input required for estimating the traffic states using this TSE method is the information 

on the positioning and spacing between a probe vehicle and its leading vehicle. Using that 

information, the approximate spatiotemporal area between two vehicles in a spatiotemporal cell 

can be computed which form a part of the state estimation equations.  

The output will be the estimates of traffic states in the observed spatiotemporal cells of the 

covered domain. Based on the quality and quantity of probe vehicle data, the assumptions will be 

associated with the calculation of spatiotemporal area between a probe vehicle and its leading 

vehicle. The limitation and future research directions are discussed in section 7.2.2. 
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6 TSE USING DATA ASSIMILATION (DA)  

 

 

This chapter describes the development and implementation of a physical model-based TSE 

method using DA framework that utilizes spacing and headway measurements from probe vehicles.  

 

6.1 Background and objective 

 

In spite simple probe vehicles or floating cars are impotent to collect data as detailed as ZTD yet, 

inspecting the traffic state estimation method in chapter 5 using ZTD elucidated the application of 

the estimation method using 𝑥𝐹𝐶𝐷 which can record the spacing measurements. At present, 2–3% 

of probe vehicles are expected in highways in Japan (where maximum cell size for traffic control 

can be 𝑑𝑥 = 200 𝑚, 𝑑𝑡 = 300 𝑠). When working with such percentages of probe vehicles, the 

method can estimate traffic states at coarser resolutions with 100% coverage when the expressway 

it is not in the congested state. Also, this low resolution is sometimes useful for planning purposes 

and analyzing MFD for possible area-wide traffic managements. Under such situations the analysts 

can estimate traffic states with satisfactory accuracy at coarser spatiotemporal resolution with the 

approach. However, due to a smaller number of probes the accuracy at even coarser resolutions 

isn’t found out to be the best, which may be improved with the advancement in ICT as more probes 

are likely to be realized. 

The important inferences from the visual and statistical analysis of traffic state estimation 

method (explored in chapter 5) reveal that the method was able to capture the robust behavior of 

actual traffic dynamics when the traffic is in free-flow regime. For the free-flow regime, the 

estimation method was able to reproduce the scatter in the 𝑞 − 𝑘 plots of the actual traffic states 

with the estimated states without the assumption of stationarity. For density beyond critical density, 

the performance appeared degraded, and the performance of the estimation method deteriorates. 

For instance, the same has been depicted in Figure 6.1. It can be visualized that beyond critical 

density, cloud of incorrect estimations coexists with the correct estimations to some extent. Also, 

working with fewer penetration rates and/or high space-time resolution led to the problem of 
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unavailable estimates in unobserved cells of the space-time regions. At lower 𝑝%  or higher 

spatiotemporal resolution, the c% is less i.e., TSE was obtained for partially observed cells only. 

To produce accurate estimates (in non-congested regime) at high resolution, the estimation method 

may require larger probe penetration rates and the accuracy may not be as high as that of model-

driven or data-driven approaches.  

 

 

 

 

 

Figure 6.1 Performance analysis of 𝑥𝐹𝐶𝐷-based TSE method (Seo et al., 2015b) 

 

However, to be able to retrieve much accurate traffic state estimates in complete 

spatiotemporal domain (including unobserved cells i.e., cells via which no probe vehicle traversed) 

at high space-time resolution by utilizing fewer probe vehicles in both the regimes, congested and 

non-congested, is always desirable. With such requirements, utilizing a model-based approach 

along with a data assimilation (DA) framework is a vital research direction which needs to be 

explored in combination with the exploration of smart solutions using ITS. Utilization of DA 

techniques is expected to provide more accurate estimates under the discussed requirements. In 

such a pursuit, the TSE method analyzed in chapter 5 is believed to have provided a useful 

foundation for extending the estimation approach by incorporating a model-based approach along 

with a data assimilation (DA) framework. Hence, the third objective of this dissertation is to 

contribute to the development and implementation of a physical model-based method for traffic 

state estimation and to facilitate an adaptation of the model by utilizing advance probe data to the 

conditions of highways and roadway links and is described in this chapter. To improve the 

As the density further 

increases the performance 

of the estimation method 

deteriorates.  

For the free flow regime, the estimation method was able to reproduce the scatter in the 𝑞 − 𝑘 

plots of the actual traffic states with the estimated states without the assumption of stationarity.  



Chapter 6  TSE using Data Assimilation (DA) 

 108 

estimation capability, it extends the ‘weaker’ assumption-based approach to estimate the traffic 

state more accurately by utilizing a data assimilation (DA) framework using probe vehicle data as 

depicted in Figure 6.2. The study endeavors to propose a model-based traffic state estimation 

method that can provide reliable and reasonably acceptable accurate traffic state estimates, 1.) 

using few probe vehicles i.e., small probe penetration rate (= 5%), 2.) in complete space-time 

domain, 3.) for both regimes of free-flow and congested, and 4.) at high spatiotemporal resolution. 

The formulation involves additional assumptions such as consideration of a triangular form on FD 

of traffic flow and a discretization of a physics-based model namely, Lighthill–Whitham–Richards 

Model (LWR Model) (Lighthill and Whitham, 1995; Richards, 1956), which are often accepted 

by traditional traffic flow theory. In it, the state variable, density (𝑘), is estimated by simulating 

the 𝑘 obtained from a physical model (Cell Transmission Model: CTM) (Daganzo, 1994) which 

are then integrated (fused) with the observed traffic states (𝑘 and 𝑣) using Ensemble Kalman 

Filtering (EnKF) technique (Evensen, 1994). In addition, the parameters of physical model are 

obtained by automatic calibration (AC) of a triangular FD.  

 

 

 

Figure 6.2 Hypothesis of extending 𝑥𝐹𝐶𝐷-based TSE method to model-based TSE method 

 

6.2 Modeling and workflow: an adaptive approach 

 

This model-based traffic state estimation approach consists of two major steps: a.) automatic 

calibration of a triangular FD, which is used to define the parameters of a physics-based model 

namely, Cell Transmission Model (CTM) and b.) TSE employing the calibrated CTM and EnKF 

technique, as described in Figure 6.3. Before proceeding with the discussion on the AC of FD, it 

is important to briefly discuss the data utilized in both the subtasks of formulating the TSE method. 

Detailed utilization of ZTD in each subtask in further discussed in section 6.4.3 and section 6.5.1 

separately. 

Hypothesis: by extending this method to model-based approach the 

accuracy in estimating traffic state at higher space-time resolution, fewer 

probe penetration rate and congested highway conditions may improve

The objective is to formulate the model-based TSE method employing 

DA techniques using ZTD and evaluate the performance in estimating 

traffic state in complete time-space domain

TSE Method 
evaluated in Ch. 5.

Model-based TSE 
method employing DA
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Figure 6.3 Methodology and workflow 
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Assumption 6.1: On the Hanshin Expressway (around Tsukamoto Junction), two smaller sections 

(one of 300 𝑚  and one of 150 𝑚), each with two lanes (driving lane and passing lane), are 

particularly considered for this analysis. The 5 datasets of ZTD of Hanshin Expressway (around 

Tsukamoto Junction) are L001_F001, ..002, ..003, ..004 and ..005. The ZTD corresponding to the 

considered subsections of expressway is extracted from each larger dataset and are termed as DS1, 

DS2, DS3, DS4 and DS5 for a clearer understanding. Diving into deeper details of data, DS1 now 

consists of 4 space-time domains namely, 300 𝑚 section: lane 1, 300 𝑚 section: lane 2, 150 𝑚 

section: lane 1 and 150 𝑚 section: lane 2, as illustrated in Figure 6.4, and the same is valid for the 

rest DS2~DS5. 

 

Figure 6.4 Considered sections with minimum lane changing behavior 

(Source: https://zen-traffic-data.net/english/outline/) 

 

1. Study area: 

 

The first major part of this chapter involves the automatic calibration (AC) of a triangular FD 

using data from all 4 space-time domains of each of 5 datasets (DS1~DS5), followed by 

implementation of proposed TSE method on 1 space-time region of DS1 (300 𝑚: lane 1) and 

validation using real data (i.e., ZTD itself from 300 𝑚: lane 1 space-time domain of DS1), initially. 

Later, the proposed method has been implemented on the complete space-time domain of 2 𝑘𝑚 

distance and 1 ℎ𝑜𝑢𝑟 (07:00 – 08:00 am) and validated using L001_F001 and in that case the AC 

of FD is also performed using the data from the same space-time domain i.e., L001_F001.  

 

2. Setting up the resolution based on CFL condition: 

 

Now, the maximum speed observed in each lane of the considered space-time domains (total 

20) was observed to be 110 𝑘𝑚/ℎ𝑟 at multiple occasions. Although, the space-time resolutions of 

3800-3500m (300m section), Lane 1 & 2

4200-4050m (150m section), Lane 1 & 2

https://zen-traffic-data.net/english/outline/
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the observation and that of the system model of EnKF implementation can be different, keeping 

in mind the Courant–Friedrichs–Lewy (CFL) condition, the spatial-temporal resolution for both, 

automatic calibration of FD (subtask a.)) and TSE using model-based method (subtask b.)), is set 

as: ∆𝑥 = 150𝑚, ∆𝑡 = 5𝑠. Hence, for both the subtasks, same space-time resolution is set–{150 𝑚 

x 5 𝑠}, in accordance with the CFL condition. Then, all 20 space-time regions are divided into 

mesh of spatiotemporal resolutions {150 𝑚 x 5 𝑠} i.e., multiple discrete, identical, and rectangular 

space-time regions.  

 

3. Probe data extraction from complete ZTD: 

 

5% of vehicles are randomly sampled from 100% ZTD corresponding to the 4 space-time 

domains of each dataset DS1~DS5. These randomly sampled vehicles are considered as probe 

vehicles and from hereon are referred to as probe vehicles and ZTD corresponding to these vehicles 

is referred to as probe vehicle data. This is required to formulate, experiment, and validate the 

proposed methodology by utilizing partially observed traffic data and this extracted data is 

considered similar to data collected by probe vehicles. It is needless to mention that the 100% 

ZTD of each dataset (DS1, DS.2, DS3, DS4, and DS5) includes the complete trajectory details of 

all the vehicles driving on target sections around Tsukamoto Junction on Hanshin Expressway for 

different 1- ℎ𝑜𝑢𝑟  intervals and is therefore, considered as the source truth for validation the 

methodology at various steps. 

 

4. Automatic calibration (AC) of FD: 

 

AC of the triangular FD (discussed in detail in section 6.4) requires the headway and spacing 

measurements of each probe vehicle to its leading vehicles. Such data is generally the data obtained 

from extended floating cars and is termed as 𝑥𝐹𝐶𝐷 (extended floating car data). In case of probe 

vehicle data extracted from ZTD, such headway and spacing measurements are mathematically 

extracted from the trajectory information of each probe vehicle and the vehicle leading to each 

probe vehicle. Next, since triangular FD and CTM are interdependent, the AC of FD involves 

calibration of the FD to find the optimized values of its parameters, which in turn defined the 

parameters of the CTM for TSE. The calibration is done at a space-time resolution of {150 𝑚 x 5 
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𝑠}. In other words, the headway and spacing measurements from the probe vehicles are aggregated 

at a resolution of {150 𝑚 x 5 𝑠}. For unobserved cells i.e., cells via which no probe vehicle 

traversed (thus, the headway and spacing measurements cannot be extracted) the headway and 

spacing measurements are interpolated from the coarser resolutions such as {150 𝑚 x 60 𝑠} and 

{150 𝑚 x 150 𝑠}.  

 

5. TSE upon combining CTM and EnKF: 

 

For the next subtask of formulating and implementing the TSE method using DA framework, 

the estimation of traffic state (density 𝑘) using EnKF technique and CTM involves three steps. 

The CTM is a numerical computational method for solving the LWR model (Lighthill and 

Whitham, 1995; Richards, 1956) and is utilized as the traffic flow model. For the DA technique, 

Ensemble Kalman Filter is employed. In the first step, the density 𝑘 and velocity 𝑣 are computed 

using the 𝑥𝐹𝐶𝐷-based TSE approach (Seo et al., (2015b), TSE method discussed in chapter 5) 

from 5% probe vehicles’ data at a space-time resolution of {150 𝑚 x 5 𝑠} and are considered as 

observations for the observation equation of the EnKF. In the second step, density 𝑘 is updated 

from the observed density 𝑘 and velocity 𝑣, calibrated FD parameters (required to simulate density 

using CTM) and estimated density 𝑘 in the previous step using DA framework (EnKF). The third 

step involves the validation and comparison analysis of the proposed TSE method. In it, traffic 

state estimates (density 𝑘) from both, the proposed model-based method, and the 𝑥𝐹𝐶𝐷-based 

method, are compared with the traffic states computed using Edie’s generalized definition (Edie, 

1963) and corresponding 100% ZTD (DS1: 300 𝑚 section: lane 1), which is considered as the 

source truth for this analysis.  

 

6.3 The Cell Transmission Model (CTM) 

 

This Lighthill–Whitham–Richards Model (LWR Model) (Lighthill and Whitham, 1995; Richards, 

1956), also known as the first-order traffic flow model and kinematic wave theory, is a simplified 

yet sufficient physics-based traffic flow model that describes the evolution of traffic density 𝑘 

through a partial differential equation (PDE) described as follows: 
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 𝜕𝑘(𝑥, 𝑡)

𝜕𝑡
+

𝜕(𝑘(𝑥, 𝑡)𝑣(𝑘(𝑥, 𝑡)))

𝜕𝑥
= 0 ( 6.1 ) 

 

 𝑘(𝑥, 𝑡) ∈ [0, 𝑘𝐽] ( 6.2 ) 

 

Its two main principles include a FD (equation (6.3)) and the CL (equation (6.1)). Assuming 

that the traffic dynamics are described by the LWR model then, to close the model, a constructive 

relation between 𝑘  and 𝑣  must be specified. One simplified and common assumption is a 

triangular FD (𝑞 = 𝑘 ×  𝑣(𝑘)) (Newell, 1993): 

    

 

𝑣(𝑘(𝑥, 𝑡)) = {

𝑣𝑓,               𝑘 ≤ 𝑘𝑐

−𝑤𝑐(1 −
𝑘𝐽

𝑘
),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ( 6.3 ) 

 

Here, 𝑘(𝑥, 𝑡) is the density at a location 𝑥 and time 𝑡, 𝑘𝐽 denotes the jam density, 𝑣𝑓 is the 

maximum velocity i.e., the free-flow velocity, 𝑤𝑐  is the maximum backward propagation wave 

speed and 𝑘𝑐  denotes the critical density. These are the parameters involved in the triangular FD. 

 

Figure 6.5 Triangular FD 

Several numerical computational schemes for solving the LWR model have been proposed to 

determine the cumulative flow in the space-time area of interest based on given boundary 

conditions. The CTM (Daganzo, 1994) is a Godunov discretization scheme (Godunov, 1959) of 

simplified Lighthill–Whitham–Richards (LWR) model (Lighthill and Whitham, 1995; Richards, 

1956), which divides a freeway corridor into n cells, each with one on-ramp and one off-ramp and 
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be characterized by an FD. The FDs can be uniform over all cells or allowed to vary from cell to 

cell and thus, the parameters of a cell are: 𝑣𝑓 (free-flow speed), 𝑤𝑐  (backward congestion wave 

speed), 𝑄𝑀  (the maximum allowable flow), 𝑘𝐽  (the jam density) and 𝑘𝑐  (critical density). As a 

consensus in transportation literature, traffic density is a natural measure for traffic surveillance 

and control purposes as it characterizes level of congestion so, for each cell 𝑖 = 1,  2,  … , 𝑛, at time 

𝑡 = 1,  2, … , ℎ, the density 𝑘  of cell 𝑖  evolves according to the conservation of vehicles as in 

equation (6.4):  

 

 
𝑘𝑖(𝑡 + 1) = 𝑘𝑖(𝑡) +

∆𝑡

𝑙𝑖
(𝑞𝑖(𝑡) − 𝑞𝑖+1(𝑡) + 𝑟𝑖(𝑡) − 𝑓𝑖(𝑡)) ( 6.4 ) 

 

where 𝑘𝑖(𝑡) is the vehicle density for cell 𝑖 at time index 𝑡, 𝑙𝑖 is the length of cell 𝑖, 𝑞𝑖(𝑡) is total 

flow (𝑣𝑒ℎ/𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒) entering cell 𝑖 during time interval [𝑡∆𝑡, (𝑡 + 1)∆𝑡), 𝑞𝑖(𝑡 + 1) is the total 

flow (𝑣𝑒ℎ/𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒) leaving cell 𝑖 during time interval [𝑡∆𝑡, (𝑡 + 1)∆𝑡), and 𝑟𝑖 and 𝑓𝑖 are flow 

entering cell 𝑖 from on-ramp and flow leaving cell 𝑖 to off-ramp, respectively and they can be 

measured by detectors. One requirement of this model known as Courant–Friedrichs–Lewy 

condition, as also mentioned earlier, is that the cell length must be longer than the free-flow travel 

distance, i.e., 𝑣𝑓,𝑖∆𝑡 ≤ 𝑙𝑖 . 

 

 

Figure 6.6 Cell discretization for CTM 

 

Assumption 6.2: The FD parameters are considered to be uniform over all cells and it is presumed 

that detectors are installed at the boundaries of the section such that the aggregated boundary traffic 

flows (𝑞𝑢 𝑎𝑛𝑑 𝑞𝑑) and densities (𝑘𝑢  𝑎𝑛𝑑 𝑘𝑑) are measured. 

 

Assumption 6.3: As depicted in Figure 6.7, it is considered that the section has no cells with on-

ramp or off-ramp i.e., 𝑟𝑖 and 𝑓𝑖 are zero for all cells.  
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Figure 6.7 Cell discretization with no on-ramp or off-ramp 

 

𝑞𝑖(𝑡) is determined by taking minimum of the maximum flow supplied by cell 𝑖 − 1 over interval 

[𝑡, 𝑡 + 1) under free-flow condition and the maximum flow that can be received by cell 𝑖 under 

congested condition over the same time interval (Zhong et al., 2016).  

 

 𝑞𝑖(𝑡) = min {𝑣𝑓,𝑖−1𝑘𝑖−1(𝑡), 𝑄𝑀,𝑖−1, 𝑄𝑀,𝑖 , 𝑤𝑐,𝑖(𝑘𝐽,𝑖 − 𝑘𝑖(𝑡))} ( 6.5 ) 

 

In consistency with the explanation of Zhong et al. (2016) regarding boundary conditions, 

CTM assumes that the downstream end of section can always discharge vehicles at either 

maximum allowed speed (𝑣𝑓) or maximum allowed flow rate (or capacity), i.e., the downstream 

end is connected to a sink. However, in actual traffic section, traffic at the downstream end may 

be either free-flowing or congested so, the model considers the congested condition at downstream 

boundaries. Hence,  

 

 
𝑞1(𝑡) = {

min {𝑞𝑢(𝑡), 𝑄𝑀,1, 𝑤𝑐,1 (𝑘𝐽,1 − 𝑘1(𝑡))} ,   𝑖𝑓𝑘𝑢(𝑡) < 𝑘𝑐,1,

min {𝑄𝑀,1, 𝑤𝑐,1(𝑘𝐽,1 − 𝑘1(𝑡))},   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ( 6.6 ) 

 

 
𝑞𝑛+1(𝑡) = {

min{𝑣𝑓,𝑛𝑘𝑛(𝑡), 𝑄𝑀,𝑛 } ,   𝑖𝑓𝑘𝑑(𝑡) < 𝑘𝑐,𝑛 ,

min {𝑣𝑓,𝑛𝑘𝑛(𝑡), 𝑄𝑀,𝑛, 𝑘𝑑(𝑡)},   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ( 6.7 ) 

 

These calculations of flow in each cell as per equations (6.5) −(6.7) are a key input for the 

discretized evolution equation of density equation (6.4). The density simulated by equation (6.4) 

is a key input for the optimization problem of calibrating the triangular FD as described in the 

following section 6.4.  
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6.4 Automatic Calibration (AC) of FD 

 

The concept of FD has a significant role in methods based on KFTs and most methods assume 

exogenous conditions on the FD such as its functional form and parameters. However, FD is a 

complicated phenomenon which involves various factors that cannot be described completely. 

Therefore, careful calibration of FD prior to TSE is vital. Regarding calibration of FD, a standard 

practice is to formulate it as a Least-Square (LS) estimation problem, but such conventional 

calibration methods do not take traffic flow dynamics into consideration, which renders the 

simulation to be unrobust and the simulation may not be adaptive to the variability of traffic data 

caused by uncertainties such as accidents, adverse weather conditions, etc. However, utilizing the 

local neighborhood information of a particular data point to construct the principal curve in a 

calibration process can improve the model accuracy and thus, traffic flow models may be better 

choice for accessing ‘local neighborhood information’ (Zhong et al., 2016). To tackle such issues, 

the AC method is adopted to calibrate the triangular FD4 which considers the spatiotemporal 

causalities of traffic data and in turn to improve the accuracy of TSE by adapting to the variability 

of data.  

The AC of FD is done through a dynamic approach and in an iterative manner on similar 

guidelines as Zhong et al. (2016). The FD calibrated from last step is incorporated into the CTM 

to simulate its effect on traffic flow modeling. Simulated density from the CTM is compared 

against the measured density wherein an optimization merit is conducted. The objective of this 

optimization is to seek parameters (of the FD) that minimizes the discrepancy between simulated 

(model-generated) data and real data in terms on mean squared error-based cost function. Through 

this integration of the advantages of data-driven (i.e., optimization counterpart that corresponds to 

the adaptiveness) and the model-driven (i.e., the CTM that relates to the robustness), the 

adaptiveness and the robustness are achieved. After finding the optimized values of the FD 

parameters, the CTM is defined and is used as the system model of the process equation of EnKF 

technique, and TSE is then to be done as per the methodology explained in section 6.5. 

 

 

 
4 By employing an approximate functional form, FD can be estimated empirically based on sufficiently high-resolution 

traffic data (e.g., Chiabaut et al., 2009; Qu et al., 2015). 
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6.4.1 Methodology 

 

Density 𝑘 is used to define the merit function, which is a mean square error-based cost function to 

minimize discrepancy between simulated traffic density (𝑘𝑖(𝑡)) and its measured counterpart 

(𝑘̂𝑖(𝑡)). The cost function is defined as in equation (6.8): 

 

 

𝑔 = ∑ ∑(𝑘̂𝑖(𝑡) − 𝑘𝑖(𝑡))2

𝑛

𝑖=1

ℎ

𝑡=1

 ( 6.8 ) 

 

As all the parameters of assumed triangular shaped FD, free-flow velocity, critical density, 

jam density and backward wave speed, are not mutually independent, so the independent parameter 

set is identified i.e., the free-flow speed, critical density, and jam density and are chosen as the 

decision variables 𝑥𝑖 = [𝑣𝑓, 𝑘𝑐 , 𝑘𝐽]
𝑇

 for all cell 𝑖  along the roadway section. Letting 𝒙  be the 

vector of all decision variables; the objective becomes to find 𝑥∗  that minimizes 𝑔 . Since 

determining the freeway capacities empirically is not a trivial task hence, operational capacity i.e., 

maximum flow observed across the space-time domain of the considered sections is considered. 

 

Assumption 6.4: As illustrated in Figure 6.8, it is presumed that detectors are installed at the 

boundaries of the section such that the aggregated boundary traffic flows (𝑞𝑢 𝑎𝑛𝑑 𝑞𝑑) and densities 

(𝑘𝑢 𝑎𝑛𝑑 𝑘𝑑) are measured. 

 

 

 

         a.) 3.5–3.8 𝑘. 𝑝. (300 𝑚 section Lane 1, Lane 2)                      b.) 4.05–4.2 𝑘. 𝑝. (150 𝑚 section Lane 1, Lane 2) 

 

Figure 6.8 Boundary flow measurement in a.) 300 𝑚 section and b.) 150 𝑚 section 

150m 
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6.4.2 Optimization problem and initialization 

 

The optimization problem of automatically calibrating the triangular FD can be stated as: 

 

 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 𝑄𝑃1:  𝑥∗ = 𝑎𝑟𝑔   𝑥𝑔
 𝑚𝑖𝑛 ( 6.9 ) 

 

Equality constraints: 

 
𝑘𝑖(𝑡 + 1) = 𝑘𝑖(𝑡) +

∆𝑡

𝑙𝑖
(𝑞𝑖(𝑡) − 𝑞𝑖+1(𝑡)) ( 6.10 ) 

 

 
𝑞1(𝑡) = {

min {𝑞𝑢(𝑡), 𝑄𝑀 , 𝑤𝑐 (𝑘𝐽 − 𝑘1(𝑡))} ,   𝑖𝑓𝑘𝑢(𝑡) < 𝑘𝑐,1,

min {𝑄𝑀 , 𝑤𝑐(𝑘𝐽 − 𝑘1(𝑡))},   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ( 6.11 ) 

 

 𝑞𝑖(𝑘) = min {𝑣𝑓𝑘𝑖−1(𝑡), 𝑄𝑀 , 𝑤𝑐(𝑘𝐽 − 𝑘𝑖(𝑡))} ( 6.12 ) 

 

 
𝑞𝑛+1(𝑡) = {

min{𝑣𝑓𝑘𝑛(𝑡), 𝑄𝑀  } ,   𝑖𝑓𝑘𝑑(𝑡) < 𝑘𝑐,𝑛,

min {𝑣𝑓𝑘𝑛(𝑡), 𝑄𝑀 , 𝑞𝑑(𝑡)},   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ( 6.13 ) 

 

 

Definition constraints: 

 𝑣𝑓∆𝑡 ≤ 𝑙,  ∀𝑖, ( 6.14 ) 

   

 𝑄𝑀 = 𝑣𝑓𝑘𝑐 ,  ∀𝑖, ( 6.15 ) 

 

 
𝑤𝑐 =

𝑄𝑀

𝑘𝐽 − 𝑘𝑐
,  ∀𝑖, ( 6.16 ) 

 

 𝑤𝑐 < 𝑣𝑓,  ∀𝑖, ( 6.17 ) 

 

 𝑣𝑓,  𝑤𝑐,  𝑄𝑀 ,  𝑘𝑐,  𝑘𝐽 > 0,  ∀𝑖. ( 6.18 ) 
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The constraints should hold for all cell 𝑖 and time step 𝑡. Sequential Quadratic Programming 

(SQP) algorithm, which is a non-linear programming algorithm, has been used to solve the 

problem of parameter estimation and the iterative process is as depicted in Figure 6.9.  

 

Figure 6.9 Iterative process of solving optimization problem for AC of FD 

 

The steps involved in solving the optimization problem are: 

 

Step 1 – Initialization: The initial FD parameters are derived from regression of headway-spacing 

relation in the probe vehicle data and the problem posed is same as described in Seo et al. (2015a). 

The values of 𝑣𝑓, 𝑘𝑐  and 𝑘𝐽 are solution of the following optimization problem:  

 

 

 𝑣𝑓,𝑘𝑐,𝑘𝐽

𝑎𝑟𝑔𝑚𝑖𝑛
∑ ∑ 𝐷(ℎ𝑚,𝜏, 𝑠𝑚,𝜏, 𝑣𝑓, 𝑘𝑐 , 𝑘𝐽)2

(𝑚,𝜏)∈𝑃(𝑐𝑒𝑙𝑙)

 

𝑐𝑒𝑙𝑙∈𝑅𝑒𝑔𝑖𝑜𝑛 𝑅

 ( 6.19 ) 

 

 𝑠. 𝑡. 𝑣𝑓 ≥ 0, 𝑘𝑐 ≥ 0, 𝑘𝐽 ≥ 0 ( 6.20 ) 

 

where ℎ𝑚,𝜏 is the average stationary headway of vehicle 𝑚 at time 𝜏 in a cell of spatiotemporal 

mesh, 𝑠𝑚,𝜏 is the average stationary spacing of vehicle 𝑚 at time 𝜏 in a cell of spatiotemporal mesh, 

Step 1. 
Initialization

Step 2. Solution 
of NLP SubproblemStep 3. Check 

convergence of NLP 
Subproblem

Step 4. 
Stopping Test
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D is the function returning minimum distance from a point (𝑞, 𝑘) = (1
ℎ𝑚,𝜏

⁄ , 1
𝑠𝑚,𝜏

⁄ ) to a curve 

𝑞 = 𝐹(𝑘, 𝑣𝑓, 𝑘𝑐 , 𝑘𝐽) and F is the function representing a triangular FD. This problem finds FD 

parameter values that minimize the total distance between observed stationary headway-spacing 

points and the FD curve. The term stationary headway-spacing points implies that the change rates 

of the variables headway and spacing in a small duration of time ∆𝜏 e.g., (
ℎ𝑚,𝜏 − ℎ𝑚,𝜏−∆𝜏

ℎ𝑚,𝜏
⁄ ) 

are small enough and the criteria for stationary headway-spacing determination is set as 1% during 

∆𝜏 i.e., 
ℎ𝑚,𝜏 − ℎ𝑚,𝜏−∆𝜏

ℎ𝑚,𝜏
⁄ ≤ 0.01.  

 

The initialization step also includes specification of simulation configurations. The number of 

cells is set as 2 for 300 𝑚 section (3.8–3.5 𝑘. 𝑝.) and 1 for 150 𝑚 section (4.2–4.05 𝑘. 𝑝.), cell 

length 𝑙 is constant for all cells which is 150 𝑚. According to the CFL condition, the time step ∆𝑡 

is set to be 5 𝑠 (as the maximum observed speed was around 30 𝑚/𝑠).  The initial feasible FD is 

identified from the conventional calibration method as described above and is denoted by 𝒙1. Then, 

the dynamic cell densities are estimated by the CTM with 𝒙1 and the objective function 𝑔1 is 

calculated. 

 

Step 2 – Solution of NLP subproblem: Sequential Quadratic Programming is applied to solve 

the nonlinear programming subproblem. 

 

Step 3 – Check convergence of NLP subproblem: If the present tolerance 𝜀1 or the maximum 

iteration number 𝐼𝑡𝑒𝑟𝑚 of the NLP is achieved, declare the solution to be 𝒙𝑠+1, and go to Step 4. 

Otherwise, declare the solution to be initial condition of NLP and go to Step 2 (Zhong et al., 2016). 

 

Step 4 – Stopping test: If ‖𝒙𝑠+1 − 𝒙𝑠‖ ≤ 𝜀, where 𝜀 ∈ 𝑅+ is a preset tolerance (0.001), stop and 

declare 𝒙∗ ≈ 𝒙𝑠+1. Otherwise, set 𝑠 = 𝑠 + 1 and go to Step 1 with the last feasible solution from 

NLP as the initial feasible FD. 
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6.4.3 Utilization of ZTD for AC of FD 

 

On the distance of 2 𝑘𝑚 (5 𝑘. 𝑝. to 3 𝑘. 𝑝. i.e., 5000 𝑚 to 3000 𝑚) the lane changing is prohibited 

for the distance between 4200 𝑚 to 3400 𝑚 and a merging from outside entrance lane happens at 

3.8 𝑘𝑖𝑙𝑜𝑝𝑜𝑠𝑡 (Tsukamoto Junction).  

 

Assumption 6.5: In this lane change prohibited distance, for simplification of analysis two smaller 

sections (one of 300 𝑚 i.e., 3.80 𝑘. 𝑝. to 3.50 𝑘. 𝑝. and one of 150 𝑚 i.e., 4.20 𝑘. 𝑝. to 4.05 𝑘. 𝑝.), 

each with two lanes, between 4.2 𝑘. 𝑝. and 3.4 𝑘. 𝑝. are particularly considered for this analysis 

that have minimum lane-changing behavior and maintain the conservation of vehicles throughout 

each section. In each lane of these sections there is no vehicle’s overtaking nor merging/diverging 

sections (i.e., a first-in first-out (FIFO) condition and a Conservation Law (CL) is satisfied). 

 

The 5 datasets of ZTD of Hanshin Expressway (around Tsukamoto Junction) are 

L001_F001, ..002, ..003, ..004 and ..005. The ZTD corresponding to the considered subsections of 

expressway is extracted from each larger dataset and are termed as DS1, DS2, DS3, DS4 and DS5 

for a clearer understanding. Diving into deeper details of data, as depicted in Figure 6.10, DS1 

now consists of 4 space-time domains viz., 300 𝑚 section: lane 1, 300 𝑚 section: lane 2, 150 𝑚 

section: lane 1 and 150 𝑚 section: lane 2, and the same is valid for the rest DS2, DS3, DS4 and 

DS5. Now even though the lane changing was prohibited in the considered subsections, certain 

lane changing behavior was still observed as shown in Table 6.1. Such vehicles have been excluded 

for this part of analysis. The aggregated boundary traffic flows ( 𝑞𝑢 𝑎𝑛𝑑 𝑞𝑑 ) and densities 

(𝑘𝑢 𝑎𝑛𝑑 𝑘𝑑) are presumed to be measured by the detectors installed at the boundaries of the section. 

Therefore, 100% ZTD is used to calculate aggregated boundary traffic flows and densities at the 

boundaries of the sections.  

For AC of FD, 5% of vehicles are randomly sampled from 100% ZTD corresponding to the 

4 space-time domains of each dataset DS1~DS5. These randomly sampled vehicles are considered 

as probe vehicles and from hereon are referred to as probe vehicles and ZTD corresponding to 

these vehicles is referred to as probe vehicle data. Using ZTD it was possible to identify the 

sequential order of vehicles driving in each lane of each space-time domain for 1 ℎ𝑜𝑢𝑟, that was 

maintained throughout the section due to minimum lane changing behavior. Hence, the leading 
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vehicle to each vehicle was identified with their trajectories in their respective space-time region. 

This serves as a very essential ingredient in: 

a.) finding the spacing and headway between a probe vehicle and its leading vehicles at time 

𝑡 for automatic calibration of FD 

b.) observing traffic state using the 𝑥𝐹𝐶𝐷-based method (step 1. of second subtask) 

 

 

Figure 6.10 Four spatiotemporal regions considered for the study 

(Source: https://zen-traffic-data.net/english/outline/) 
 

Table 6.1 Lane changing behavior observed in the considered section 

 
4.2–4.05 𝒌. 𝒑. (150 𝒎 section) 3.8–3.5 𝒌. 𝒑. (300 𝒎 section) 

DS1 from L001_F001  

(7–8 a.m.) 

19 out of 2976 (0.64%) 38 out of 3261 (1.16%) 

Lane 1: 1214, Lane 2: 1743 Lane 1: 1467, Lane 2: 1756 

DS2 from L001_F002  

(7–8 a.m.) 

15 out of 3123 (0.48%) 41 out of 3392 (1.21%) 

Lane 1: 1298, Lane 2: 1810 Lane 1: 1523, Lane 2: 1828 

DS3 from L001_F003  

(3–4 p.m.) 

13 out of 2806 (0.46%) 31 out of 3134 (0.99%) 

Lane 1: 1204, Lane 2: 1589 Lane 1: 1498, Lane 2: 1605 

DS4 from L001_F004 

(3–4 p.m.) 

23 out of 2876 (0.80%) 37 out of 3200 (1.16%) 

Lane 1: 1168, Lane 2: 1684 Lane 1: 1482, Lane 2: 1681 

DS5 from L001_F005  

(10–11 a.m.) 

16 out of 2721 (0.59%) 19 out of 2885 (0.66%) 

Lane 1: 1158, Lane 2: 1547 Lane 1: 1318, Lane 2: 1548 

R3: 4200-4050m (150m section), Lane 1

R1: 3800-3500m (300m section), Lane 1

R2: 3800-3500m (300m section), Lane 2

R4: 4200-4050m (150m section), Lane 2

4 space-time regions are specifically

considered for this analysis that has

minimum lane changing behavior and

maintains the conservation of vehicles

throughout each section.

https://zen-traffic-data.net/english/outline/
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Following that, each space-time region is divided into mesh of spatiotemporal resolutions 

{150 𝑚 x 5 𝑠} i.e., multiple discrete, identical, and rectangular space-time regions as illustrated in 

Figure 6.11. 

 

 

          a.) 3.5–3.8 𝑘. 𝑝. (300 𝑚 section Lane 1, Lane 2)                     b.) 4.05–4.2 𝑘. 𝑝. (150 𝑚 section Lane 1, Lane 2) 

 

Figure 6.11 Discretization of spatiotemporal region for CTM 

 

The average headway and spacing measurements of probe vehicles in a cell to their leading 

vehicles, both in a particular cell, are used to compute the flow-density (𝑞, 𝑘) points in each cell 

of a spatiotemporal mesh. They serve as the input data for initializing the optimization problem 

for automatically calibrating the triangular FD. The average headway and spacing measurements 

in a cell are calculated by finding the arithmetic average of all stationary headway and spacing 

measurements of each probe vehicle to its leading vehicle in that cell as given by equations (6.21) 

– (6.22). The headway and spacing measurements are mathematically extracted from the trajectory 

information of each probe vehicle and its leading vehicle from the probe data extracted from 100% 

ZTD as shown in Figure 6.12 and Figure 6.13. The relation between average headway and spacing 

measurements and (𝑞, 𝑘) points are given by equation (6.23).  

 

 ℎ𝑚 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(ℎ𝑚,𝜏1, ℎ𝑚,𝜏2, ℎ𝑚,𝜏3) ( 6.21 ) 

 𝑠𝑚 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑠𝑚,𝜏1, 𝑠𝑚,𝜏2, 𝑠𝑚,𝜏3) ( 6.22 ) 

 (𝑞𝑖,𝑡 , 𝑘𝑖,𝑡) = (1
ℎ𝑚

⁄ , 1
𝑠𝑚

⁄ ) ( 6.23 ) 

 

The (𝑞, 𝑘) points are calculated for all four space-time regions (150 𝑚 section Lane 1, 150 𝑚 

section Lane 2, 300 𝑚 section for lane 1, 300 𝑚 section lane 2) and for all 5 datasets (DS1~DS5) 

at a spatiotemporal resolution of {150 𝑚 x 5 𝑠} and for cells via which no probe vehicles passed 
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the (𝑞, 𝑘) points computed from coarser resolutions such as {150 𝑚 x 60 𝑠} and {150 𝑚 x 150 𝑠} 

are used for those unobserved cells. In other words, the headway and spacing measurements from 

the probe vehicles are aggregated at a resolution of {150 𝑚 x 5 𝑠}. For unobserved cells i.e., cells 

via which no probe vehicle traversed (thus, the headway and spacing measurements cannot be 

extracted) the headway and spacing measurements are interpolated from the coarser resolutions 

such as {150 𝑚 x 60 𝑠} and {150 𝑚 x 150 𝑠} and finally the input for the initialization of the 

calibration of FD problem at a space-time resolution of {150 𝑚 x 5 𝑠} is ready. Note that for AC 

of FD, to create an optimization density between simulated density and measured density, the 

density 𝑘 computed using these headway measurements are also used as the observed density for 

each cell of spatiotemporal meshes of the considered space-time domains.  

 

Figure 6.12 Headway and spacing measurement between a probe vehicle and its leading vehicle 

 

Figure 6.13 Average headway and spacing measurement in a particular cell 

time-space region A 

Space x 

Time t 

n=4 (non-probe) 

n=5 (probe) 

𝜏 

ℎ𝑚,𝜏 

𝑠𝑚,𝜏 
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6.4.4 Calibration results and their utilization 

 

The calibration of FD for defining parameters of CTM relies upon several factors: 

 

i. traffic measurements: we’re assuming the density is calculated from the spacing 

measurements obtained from the probe data and the probe data is extracted from real traffic 

data i.e., ZTD (which is reliable) 

 

ii. measure of goodness-of-fit used to create objective function: traffic density is natural 

measure to characterize traffic congestion and therefore, density is used to define the merit 

function (mean square error-based cost function) that minimizes the discrepancy between 

the simulated density (𝑘𝑖(𝑡)), and it’s measured counterpart (𝑘̂𝑖(𝑡)). 

 

 objective function: 𝑔 = ∑ ∑ (𝑘̂𝑖(𝑡) − 𝑘𝑖(𝑡))2𝑛
𝑖=1

ℎ
𝑡=1  ( 6.24 ) 

 

 objective: find 𝑥∗that minimizes 𝑔 ( 6.25 ) 

 

iii. traffic model: the CTM model 

 

iv. parameters to be calibrated (subject to triangular shape that minimize the cost 

function): as not all parameters of FD of CTM are mutually independent therefore, the 

independent parameters are identified to reduce effort.  𝑥𝑖 = [𝑢𝑖 , 𝑘𝑐,𝑖 , 𝜅𝑖]
𝑇
represents the 

decision variable for each cell 𝑖 along the stretch of the section and x be the vector of 

decision variables. 

 

Because of the non-smoothness of the CTM (induced by the min operator), the algorithm may 

admit a deficiency that only local optimal solutions can be found. Whereas, it has been proven by 

Sumalee et al. (2011) that CTM is a convex program that admits a unique solution. The objective 

function of the calibration algorithm is strictly convex function while the feasible region defined 

by CTM is also convex, the calibration method would admit a unique solution and a local 

minimizer would be also a global one. However, given the iterative nature of solving the 
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optimization problem through SQP, there is a possibility that the solution may not converge under 

certain conditions. Therefore, the solution needs to be carefully acknowledged. 

The (𝑞, 𝑘) points calculated using headway-spacing measurements of 5% probes in all the 

space-time regions using all datasets are plotted as shown in Figure 6.14 for various combinations 

(such as described in Table 6.2). These (𝑞, 𝑘)  points are used to calibrate an initial FD by 

conventional LS calibration method. These LS-fitted parameters are then used as initial condition 

for the optimization problem of automatic calibration of triangular FD. The values of optimized 

FD parameters for various combination of datasets are described in Table 6.2. The automatically 

calibrated FD of 𝑣𝑓, 𝑘𝑐 , and 𝑘𝐽 , calibrated using 5% probe vehicles lie in the range of [15.99, 

22.55] 𝑚/𝑠 , [0.041,0.054] 𝑣𝑒ℎ/𝑚 , and [0.102,0.143] 𝑣𝑒ℎ/𝑚 , respectively. The standard 

deviation in optimized 𝑣𝑓 , 𝑘𝑐 , and 𝑘𝐽  for various combination of datasets is 2.10 𝑚/𝑠 , 0.004 

𝑣𝑒ℎ/𝑚  and 0.014 𝑣𝑒ℎ/𝑚 , respectively, which are quite low and provides meaning to the 

reliability of optimized parameters. The average of these parameters over all combinations of 

datasets is 19.39 𝑚/𝑠 for 𝑣𝑓 , 0.046 𝑣𝑒ℎ/𝑚 for 𝑘𝑐  and 0.113 𝑣𝑒ℎ/𝑚 for 𝑘𝐽 . In Figure 6.14, the 

blue curve is the FD obtained from the LS regression fitting. In fact, parameters of this LS fit FD 

are used as initial conditions for the optimization problem of AC of FD. The pink curve depicts 

the automatically calibrated FD whose parameters are listed in Table 6.2. Compared with the 

conventional LS calibration method, the AC results are quite different in terms of capacity, jam 

density and congestion wave speed. Another interesting finding is even though these 2 FDs are so 

different, their free-flow parts are close. The conventional LS method generally underestimates 

the flow, and the automatic calibrated FD outperforms because it searches for the ‘best capacity’ 

(as well as other parameters simultaneously). The primary reasons for the differences between the 

FDs estimated using two approaches are: 

 

o Usually, the FD is assumed to be valid under the equilibrium state of traffic. Since, a 

rigorous and accurate steady state analysis is difficult to perform before the calibration of 

FD, there exist a lot of unstable (𝑞, 𝑘) points which results in underperformance of LS fit. 

However, if such unsteady points can be removed the calibration results using LS fit and 

AC of FD are likely to become similar. 
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o At the same time, AC approach utilizes the CTM for better understanding the dynamics of 

traffic based on observations to calibrate a better FD where the bias caused by the unstable 

(𝑞, 𝑘) points is subdued to some extent. 

 

o Finally, the LS fit aims to just minimize the Euclidian distances between the (𝑞, 𝑘) points 

to a triangular FD. Under situations such as when there is high density of unstable points 

compared to stable points (due to poor or no steady state analysis) or absence of enough 

(𝑞, 𝑘) points (when the freeway doesn’t undergo severe congestion), the LS fit will give 

equal weightage to the unstable points and will estimate an incorrect FD in terms of 

maximum capacity, jam density or congested wave speed. 

 

To compare the reliability and closeness of the optimized FD parameters, the similar 

automatic calibration optimization problem is implemented for all the considered 20 space-time 

regions using 100% ZTD (instead of using only 5% ZTD i.e., probe vehicle data). Figure 6.15 and 

Figure 6.16 illustrate the plots of LS fit FD and automatically calibrated FD over the (𝑞, 𝑘) points. 

Note that here, (𝑞, 𝑘) points are not computed through the headway and spacing measurements, 

rather Edie’s generalized definitions are used which makes the calibration even more reliable. Now, 

even though the AC of FD, depicted in Figure 6.15 and Figure 6.16, utilize 100% ZTD and employ 

Edie’s generalized definitions for calculating (𝑞, 𝑘) points, the interesting finding is that the values 

of optimized parameters (of FD) lie close to the parameters found using (𝑞, 𝑘) points computed 

using the headway and spacing measurements of 5% ZTD (considered as probes). The same has 

been shown in Table 6.3 and Table 6.4. The average values of optimized 𝑣𝑓 , 𝑘𝑐 , and 𝑘𝐽  for 

different lanes of 300 𝑚 section is 17.33 𝑚/𝑠, 0.045 𝑣𝑒ℎ/𝑚 and 0.111 𝑣𝑒ℎ/𝑚, respectively. The 

average values of optimized 𝑣𝑓, 𝑘𝑐 , and 𝑘𝐽 for different lanes of 150 𝑚 section is 21.88 𝑚/𝑠, 0.033 

𝑣𝑒ℎ/𝑚 and 0.097 𝑣𝑒ℎ/𝑚, respectively. The values of automatically calibrated FD using 5% probe 

vehicles’ headway-spacing measurements are similar to the ones of automatically calibrated FD 

using 100% vehicles of ZTD using which the (𝑞, 𝑘) points are calculated by Edie’s generalized 

definitions. This implies that the parameters of automatically calibrated FD are calibrated with 

reasonable accuracy. Therefore, the optimized parameters can be utilized to define the CTM for 

the next subtask of estimating the traffic state (density) using a physics-based model i.e., CTM (for 

system equation), observations of density and velocity using 𝑥𝐹𝐶𝐷-based TSE method (Seo et al., 
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2015b) (for observation equation) and a DA technique i.e., EnKF (for estimating the most probable 

state).  

Here, the main reason for conducting a long exercise of calibrating FD for various 

combination of datasets was to analyze the performance of calibration methodology in terms of 

accuracy and variation of datasets. Since the reliability is now verified therefore, the optimized 𝑣𝑓, 

𝑘𝑐 , and 𝑘𝐽 obtained from (𝑞, 𝑘) points from all datasets combined i.e., Figure 6.14 e.) are taken 

forward which are: 𝑣𝑓 = 18.42 𝑚/𝑠, 𝑘𝑐 = 0.054 𝑣𝑒ℎ/𝑚 and 𝑘𝐽 = 0.113 𝑣𝑒ℎ/𝑚. 

 

 

     

                 a.) all regions for 150 𝑚 section                               b.) all regions for 300 𝑚 section 

 

     

                      c.) all regions for Lane 1                                          d.) all regions for Lane 2 
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e.) all data 

 

     

           f.) all regions for 150 𝑚 section Lane 1                  g.) all regions for 150 𝑚 section Lane 2 

 

     

           h.) all regions for 300 𝑚 section Lane 1                   i.) all regions for 300 𝑚 section Lane 2 

 

Figure 6.14 Automatic calibration of FD using 5% probe vehicles 
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Table 6.2 Optimized FD parameters calibrated from 5% probes with headway-spacing measurement 

 
optimized 𝒗𝒇 optimized 𝒌𝒄 optimized 𝒌𝑱 

all data for 150 𝒎 21.48 0.043 0.109 

all data for 300 𝒎 19.10 0.048 0.143 

all data for lane1 16.49 0.047 0.116 

all data for lane 2 21.37 0.044 0.107 

all data 18.42 0.054 0.113 

all data 150 𝒎 lane1 19.99 0.044 0.093 

all data 150 𝒎 lane2 22.55 0.041 0.102 

all data 300 𝒎 lane1 15.99 0.053 0.108 

all data 300 𝒎 lane2 19.12 0.045 0.128 

Standard deviation 2.10 0.004 0.014 

Average 19.39 0.046 0.113 

 

 

     

              a.) For DS1, 150 𝑚 section Lane 1                           b.) For DS1, 150 𝑚 section Lane 2 
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               c.) For DS2, 𝑚 section Lane 1                          d.) For DS2, 150 𝑚 section Lane 2 

 

 

     

               e.) For DS3, 150 𝑚 section Lane 1                          f.) For DS3, 150 𝑚 section Lane 2 

 

 

     

               g.) For DS4, 150 𝑚 section Lane 1                          h.) For DS4, 150 𝑚 section Lane 2 
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               i.) For DS5, 150 𝑚 section Lane 1                          j.) For DS5, 𝑚 section Lane 2 

 

Figure 6.15 AC of FD from 100% ZTD using Edie’s generalized definitions (4.2–4.05 𝑘. 𝑝.) 

 

 

 

 
Table 6.3 Optimized FD parameters calibrated from 100% ZTD using Edie’s generalized definitions (4.2–4.05 𝑘. 𝑝.) 

  
optimized 𝒗𝒇 optimized 𝒌𝒄 optimized 𝒌𝑱 

DS 1 150 𝒎 Lane 1 20.44 0.028 0.101 

150 𝒎 Lane 2 23.18 0.037 0.109 

DS 2 150 𝒎 Lane 1 18.99 0.033 0.103 

150 𝒎 Lane 2 22.90 0.037 0.094 

DS 3 150 𝒎 Lane 1 20.27 0.033 0.093 

150 𝒎 Lane 2 24.67 0.033 0.097 

DS 4 150 𝒎 Lane 1 19.79 0.031 0.092 

150 𝒎 Lane 2 26.02 0.033 0.089 

DS 5 150 𝒎 Lane 1 19.17 0.031 0.096 

150 𝒎 Lane 2 22.72 0.033 0.093 

Standard deviation 2.30 0.003 0.006 

Average 21.81 0.033 0.097 
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               a.) For DS1, 300 𝑚 section Lane 1                          b.) For DS1, 300 𝑚 section Lane 2 

 

     

               c.) For DS2, 300 𝑚 section Lane 1                          d.) For DS2, 300 𝑚 section Lane 2 

 

     

               e.) For DS3, 300 𝑚 section Lane 1                          f.) For DS3, 300 𝑚 section Lane 2 
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               g.) For DS4, 300 𝑚 section Lane 1                          h.) For DS4, 300 𝑚 section Lane 2 

     

               i.) For DS5, 300 𝑚 section Lane 1                          j.) For DS5, 300 𝑚 section Lane 2 

Figure 6.16 AC of FD from 100% ZTD using Edie’s generalized definitions (3.8–3.5 𝑘. 𝑝.) 

Table 6.4 Optimized FD parameters calibrated from 100% ZTD using Edie’s generalized definitions (3.8–3.5 𝑘. 𝑝.) 

  
optimized 𝒗𝒇 optimized 𝒌𝒄 optimized 𝒌𝑱 

DS 1 300 𝒎 lane 1 18.72 0.036 0.100 

300 𝒎 lane 2 18.76 0.048 0.112 

DS 2 300 𝒎 lane 1 15.70 0.048 0.112 

300 𝒎 lane 2 18.13 0.050 0.105 

DS 3 300 𝒎 lane 1 15.40 0.045 0.116 

300 𝒎 lane 2 18.03 0.045 0.102 

DS 4 300 𝒎 lane 1 14.13 0.052 0.126 

300 𝒎 lane 2 18.51 0.043 0.120 

DS 5 300 𝒎 lane 1 17.05 0.041 0.099 

300 𝒎 lane 2 18.90 0.043 0.121 

Standard deviation 1.60 0.004 0.009 

Average 17.33 0.045 0.111 



Chapter 6  TSE using Data Assimilation (DA) 

 135 

6.5 TSE: combining CTM and Ensemble Kalman Filtering (EnKF) 

technique 

 

For this study, Ensemble Kalman Filter (EnKF) is employed as a DA technique due to its capability 

of dealing nonlinear phenomena such as traffic flow for system model.   

 

System model of EnKF (Ensemble Kalman Filter): It is also known as process equation, 

represents the dynamic of system such as nonlinear system equation such as traffic dynamics. 

 

 𝑥𝑡 = 𝑓(𝑥𝑡−1) + 𝜔𝑡−1 ( 6.26 ) 

 

Here, at timestep 𝑡, 𝑥𝑡 is the state vector, 𝑓𝑡 depicts the system model representing numeric 

scheme used for continuous PDE traffic flow model, and 𝜔𝑡 represents the noise associated with 

the traffic model. For this study, as described earlier the continuous PDE of the traffic flow model 

considered is the LWR model (Lighthill and Whitham, 1995; Richards, 1956) and the 

corresponding numeric scheme used is the Godunov discretization scheme (Godunov, 1959) of 

LWR, i.e., CTM (Daganzo, 1994). The parameters of CTM comes from the process of AC of FD 

(section 6.4). Additive noise model is used for both the evolution and observation equations. For 

this study, it is assumed to follow a normal distribution: 𝒩(0, 1.02).  

 

Observation equation:  

 

 𝓏𝑡 = ℎ𝑡(𝑥𝑡) + 𝜂𝑡 ( 6.27 ) 

 

At timestep 𝑡, 𝓏𝑡 represents the vector of traffic state measurements (corresponsing to traffic 

data). Traffic density measurements from 𝑥𝐹𝐶𝐷 -based method is estimated with 5 %  probe 

vehicles at {150 𝑚 x 5 𝑠}. For the unobserved cells, traffic density measurements from coarser 

resolutions are used to estimate density using EnKF. ℎ𝑡 depicts the nonlinear observation operator 

that related the system state with the measurements (observed), and it needs to be defined to link 
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the system state to the measurements. The system state at time 𝑡 is defined by the vector 𝑥𝑡 =

[𝑘𝑡
0,  … , 𝑘𝑡

𝑖𝑚𝑎𝑥 ]. The observation operator ℎ is given by: 

 

 ℎ𝑡(𝑥𝑡) = 𝐻𝑡 [
𝑥𝑡

𝑣(𝑥𝑡)] ( 6.28 ) 

 

Here, Measurement errors are represented by the observation noise  𝜂𝑡, and the matrix 𝐻𝑡 is 

constructed based on locations where the measurements are acquired. The observation noise term: 

 

 
𝜂𝑡 = [

𝜂𝑡
𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝜂𝑡
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

] ( 6.29 ) 

 

is composed of two parts, 𝜂𝑑𝑒𝑛𝑠𝑖𝑡𝑦  and 𝜂𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 . It explains that different error models are 

assumed for density and speed measurements and for this study the observation noises related to 

measured density 𝑘 and velocity 𝑣 are also assumed to follow a normal distribution: 𝒩(0, 1.02). 

 

6.5.1 Utilization of ZTD for TSE and observed traffic states 

 

In section 6.5, the implementation and validation of proposed model-based TSE method is done 

on the 300 𝑚 (Lane 1) space-time domain of DS1. 5% probe vehicles from this target region are 

used to estimate the observed traffic state 𝓏𝑡 from the 𝑥𝐹𝐶𝐷-based TSE method (Seo et al., 2015b) 

at a resolution {150 𝑚 x 5 𝑠} as per the equations (6.30) – (6.31) where 𝐴𝑇,𝑋 is the rectangular 

spatiotemporal area of a cell in a mesh of space-time domain and 𝑎𝑛(𝐴𝑇,𝑋) is the spatiotemporal 

area between a probe vehicle 𝑛 and its leading vehicle as depicted in Figure 6.17.  

 

 
𝑘̂(𝐴) =

∑ 𝑡𝑛(𝐴𝑇,𝑋)𝑛∈𝑃(𝐴𝑇,𝑋)

∑ |𝑎𝑛(𝐴𝑇,𝑋)𝑛∈𝑃(𝐴𝑇,𝑋) |
 ( 6.30 ) 

 

 
𝑣̂(𝐴) =

∑ 𝑑𝑛(𝐴𝑇,𝑋)𝑛∈𝑃(𝐴𝑇,𝑋)

∑ 𝑡𝑛(𝐴𝑇,𝑋)𝑛∈𝑃(𝐴𝑇,𝑋)
 ( 6.31 ) 
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 𝐴𝑇,𝑋 = {(𝑥, 𝑡) | 𝑋 ≤ 𝑥 ≤ 𝑋 + ∆𝑥,  𝑇 ≤ 𝑡 ≤ 𝑇 + ∆𝑡} ( 6.32 ) 

   

𝑃(𝐴) denotes the set of all probe vehicles in the cell A, 𝑑𝑛(𝐴) is the total distance traveled by 

vehicle n in cell A and 𝑡𝑛(𝐴) is the total distance traveled by vehicle n in cell A.  

 

 

Figure 6.17 Spatiotemporal area between a probe vehicle and its leading vehicle 

Equations (6.30) – (6.31) are the observed density and velocity, respectively from the probe 

vehicle data and ∆𝑥 = 150𝑚 and ∆𝑡 = 5𝑠 are predetermined space and time resolutions. For cells 

via which no probe vehicles passed the (𝑞, 𝑘, 𝑣) points computed from coarser resolution ({150 𝑚 

x 60 𝑠} and {150 𝑚 x 300 𝑠}) are used for those unobserved cells as shown in Figure 6.18. The 

aggregated boundary traffic flows (𝑞𝑢 𝑎𝑛𝑑 𝑞𝑑 ) and densities (𝑘𝑢  𝑎𝑛𝑑 𝑘𝑑) are presumed to be 

measured by the detectors installed at the boundaries of the section. Therefore, 100% ZTD is used 

to calculate aggregated boundary traffic flows and densities at the boundaries of the target section: 

DS1, 300 𝑚 (Lane 1).  
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Figure 6.18 Utilizing information from coarser resolution 

 

6.5.2 State estimation process and application conditions 

 

As described in the Figure 6.19, the state estimation process using EnKF comprise of 6 stages 

namely, ‘predicted state’, ‘predicted covariance’, ‘Kalman Gain’ calculation, ‘update state’, 

‘update covariance’ and ‘state selection’. Firstly, certain number of ensembles are created. Here, 

𝑀 denotes the total number of ensembles considered and 𝑙 denotes the ensemble index. Using the 

system model 𝑓 the state is predicted at each ensemble 𝑙. Then the covariance matrix is predicted 
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using the predicted state and other defined parameters of the EnKF such as observation operator. 

This step is followed by the computation of Kalman Gain. After the measurements are received, 

the predicted state and the covariance are updated using the measurements at the current step and 

the computed Kalman Gain in the update state step and update covariance step, respectively. The 

subindex 𝑡 − 1|𝑡 denote the prior of a variable (before the measurements are obtained), and the 

subindex 𝑡|𝑡 denote the posterior of a variable (after the measurements are obtained). Finally, the 

state selection step is performed that delivers the predicted state at time step 𝑡. 

 

 

Figure 6.19 Flow of Ensemble Kalman Filtering (EnKF) technique 

 

The application conditions include the choice of traffic flow model as the state model for 

EnKF, defining the parameters of the calibrated model and the choice of noise distributions. Now 

since, 1st order models are widely used in ATM systems due to their capability of capturing many 

important traffic phenomena in an efficient and stable manner, for this study, first order traffic 

model namely, LWR model (Lighthill and Whitham, 1995; Richards, 1956) has been considered 

for the state model. CTM is the Godunov discretization (Godunov, 1959) of the LWR model and 

thus employed to utilize in the EnKF mechanism and its parameters are automatically calibrated 

to improve the accuracy of the model in simulating the traffic density by adapting to the variability 
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of the data. As described in section 6.2, the first major part of this chapter involves the AC of FD 

using data from all 4 space-time domains of each of 5 datasets (DS1~DS5) and implementation 

and validation of proposed TSE method using data from 300 𝑚 (Lane 1) space-time domain of 

DS1. So, the space-time region of lane 1 on 300 𝑚 section of DS1 dataset, results in the number 

of cells as 2. This is so because as per the CFL conditions the resolution subject to TSE has been 

fixed as {150 𝑚 x 5 𝑠}. Since the temporal domain of the subject area is 1 ℎ𝑜𝑢𝑟 hence, a ∆𝑡 = 5 𝑠 

results in 720–time steps. In order to analyze the maximum capability of this model-based method 

in estimating traffic state this study, as its first implementation, is conducted on such small length 

of section. Although this leads to a smaller number of cells to utilize or simulate the CTM, however, 

this should not affect the appropriateness of method formulation and accuracy in TSE in small 

sections rather it may provide a strong foundation for the appropriateness of this model to be 

applied in a wider section. The initial conditions in all cells are assumed to follow a normal 

distribution, where the mean is the average of the density measurements from the 𝑥𝐹𝐶𝐷-based 

TSE method using 5% probe vehicles and the standard deviation is 5% of the mean. All the noise 

models are specified by a Gaussian distribution. The number of ensembles for the model is set as 

𝑀 = 100. The algorithm for 300 𝑚 long section with temporal domain of 1 ℎ𝑜𝑢𝑟 runs in less than 

a minute, and thus it is suitable for real-time applications. The same application conditions are also 

tabulated in Table 6.5. 

 

6.6 Estimation results 

 

The objective of this study is to propose a model-based traffic state estimation method that can 

provide reliable and reasonably acceptable accurate traffic state estimates, 1.) using few probe 

vehicles i.e., small probe penetration rate (= 5%), 2.) in complete space-time domain, 3.) for both 

regimes of free-flow and congested, and 4.) at high spatiotemporal resolution. 

The settings and configurations of implementation of the proposed model-based method is in 

alignment to the fact that it is tried to retrieve the traffic state (density) using 5% probe data (small 

probe penetration rate) and at high spatiotemporal resolution of {150 𝑚  x 5 𝑠}. Figure 6.22 

illustrates that the traffic state, using the proposed method, has been estimated in the complete 

space-time domain of 300 𝑚 section (Lane 1) and 1 ℎ𝑜𝑢𝑟. Unlike in the case of 𝑥𝐹𝐶𝐷-based TSE 

method (Figure 6.21) where the traffic estimates are unavailable in the unobserved cells due to 
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small probe penetration rate and high spatiotemporal resolution, the proposed method estimates 

the traffic state in the complete space-time domain and at a fine resolution of {150 𝑚 x 5 𝑠}. Figure 

6.20 shows the actual density on the target section for the same space-time domain (obtained using 

100% ZTD and Edie’s generalized definitions) and it is visible that at multiple positions and 

situations, several regions have observed density more than the critical density. It implies that the 

regions subject to TSE in Figure 6.22 include both the regimes of free-flow and congested. The 

process of analyzing the estimation capability of proposed model-based TSE (utilizing EnKF) 

boils down to statistically analyzing the accuracy of estimates in each spatiotemporal cell of the 

mesh of target space-time domain. The following section 6.7 includes a visual and statistical 

analysis of the proposed method with respect to the ground truth. It also includes a comparison 

analysis of the estimation accuracy with the 𝑥𝐹𝐶𝐷-based TSE method. 

 

 

Table 6.5 Application conditions for TSE in DS1: 300 𝑚 (Lane 1) using EnKF 

Section 3.8–3.5 𝒌. 𝒑. (DS1, Lane 1) 

Section length (𝑘𝑚) 0.300 

Number of cells 2 

∆𝑡 (ℎ𝑜𝑢𝑟) 5
3600⁄ = 0.001389 

∆𝑡 (𝑘𝑚) 0.150 

𝑣𝑓 (𝑘𝑚/ℎ𝑟) 66.312 

𝑘𝑐  (𝑣𝑒ℎ/𝑘𝑚) 540 

𝑘𝐽 (𝑣𝑒ℎ/𝑘𝑚) 1130 

𝜔 𝒩(0, 1.02) 

𝜂𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝒩(0, 1.02) 

𝜂𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝒩(0, 1.02) 
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Figure 6.20 Density 𝑘 (𝑣𝑒ℎ/𝑚) obtained using 100% ZTD and Edie's generalized definitions 

 

Figure 6.21 Density 𝑘 (𝑣𝑒ℎ/𝑚) obtained using 5% probe data and 𝑥𝐹𝐶𝐷-based TSE method (Seo et al., 2015b) 

 

Figure 6.22 Density 𝑘 (𝑣𝑒ℎ/𝑚) obtained using 5% probe data and model-based TSE method (employing EnKF) 
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6.7 Evaluation of the proposed DA-based TSE method 

 

The traffic state (density 𝑘) estimates from a.) 𝑥𝐹𝐶𝐷-based TSE method and b.) model-driven TSE 

method employing EnKF, for all cells of the spatiotemporal mesh are compared against the density 

𝑘 obtained using 100% ZTD and Edie’s generalized definitions. The flow of comparison is as 

shown in Figure 6.23. 

 

Figure 6.23 Flow of comparison analysis 

 

6.7.1 Ground truth 

 

The density 𝑘 obtained for each spatiotemporal cell of the target section (DS1, 300 𝑚 (Lane 1)) 

using 100% ZTD and Edie’s generalized definitions is considered as the source truth for analyzing 

the numerical characteristics of the proposed TSE method. Equation (6.33) gives the Edie’s 

generalized definition (Edie, 1963) for obtaining density in a cell 𝐴. 

 

 
𝑘(𝑨) =

𝑡(𝑨)

|𝑨|
 ( 6.33 ) 

 

6.7.2 Comparison among two TSE methods: error analysis 

 

The visual analysis reveal that the traffic state values estimated using only 5% probe vehicles and 

the model-based method employing the DA technique (gray points) lies close to the traffic state 

values computed from 100% vehicles’ data and Edie’s generalized definitions (red points) as 

shown in Figure 6.24 and Figure 6.27 for cell 1 and cell 2 of the target section, respectively. Figure 

6.25 and Figure 6.28 illustrates the density estimates obtained from 𝑥𝐹𝐶𝐷-based TSE method 
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using 5% probe vehicle data in the same target section for cell 1 and cell 2, respectively. It is 

clearly visible that no visual correlation can be developed between these estimates and the ones 

obtained from 100% vehicles’ data and Edie’s generalized definitions (red points). The reason 

could be the presence of multiple unobserved areas. Hence, for a clearer understanding and 

inferences, it is vital to perform statistical comparison analysis by calculating metric scores such 

as root mean square error (RMSE), mean absolute error (MAE) and Bias. The statistical error 

analysis reveals that the metric scores of RMSE, ARE and Bias are smaller when density computed 

using 100% vehicles and Edie’s definitions is compared with ones estimated from model-based 

method than the ones estimated using 𝑥𝐹𝐶𝐷-based method. The same can be visualized in Figure 

6.26 and Figure 6.29 for cell 1 and cell 2, respectively. Figure 6.26 a.) and Figure 6.29 a.) 

correspond to the metric scores when only the observed cells (with respect to 𝑥𝐹𝐶𝐷-based TSE 

method) are considered, and the rest are excluded for a fairer comparison.  

 

Figure 6.24 Density 𝑘 (𝑣𝑒ℎ/𝑚) estimated from different methods in cell 1 of DS1: 300 𝑚 (Lane 1) 

 

Figure 6.25 Density 𝑘 (𝑣𝑒ℎ/𝑚) estimated from 𝑥𝐹𝐶𝐷-based TSE method in cell 1 of DS1: 300 𝑚 (Lane 1) (excluding outliers) 
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                   a.) only for observed cell                                          b.) including all cells  

                                                                                                              (𝑘 = 0 for unobserved cells in case of 𝑥𝐹𝐶𝐷-based method) 

 

Figure 6.26 Statistical comparison analysis of cell 1 of DS1: 300 𝑚 (Lane 1) 

 

 

Figure 6.27 Density 𝑘 (𝑣𝑒ℎ/𝑚) estimated from different methods in cell 2 of DS1: 300 𝑚 (Lane 1) 

 

Figure 6.28 Density 𝑘 (𝑣𝑒ℎ/𝑚) estimated from 𝑥𝐹𝐶𝐷-based TSE method in cell 2 of DS1: 300 𝑚 (Lane 1) (excluding outliers) 
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                 a.) only for observed cell                                             b.) including all cells  

                                                                                                              (𝑘 = 0 for unobserved cells in case of 𝑥𝐹𝐶𝐷-based method) 

 

Figure 6.29 Statistical comparison analysis of cell 2 of DS1: 300 𝑚 (Lane 1) 

 

6.7.3 Conclusions and recommendations 

 

From the visual and statistical analysis, it can be concluded that the proposed model-based traffic 

state estimation method can provide reliable and reasonably acceptable accurate traffic state 

estimates, 1.) using few probe vehicles i.e., small probe penetration rate (= 5%), 2.) in complete 

space-time domain, 3.) for both regimes of free-flow and congested, and 4.) at high spatiotemporal 

resolution ({150 𝑚 x 5 𝑠}). Utilization of DA techniques proved to be useful in providing more 

accurate estimates under the discussed requirements. The TSE method analyzed in chapter 5 

provided a useful foundation for extending the estimation approach by incorporating a model-

based approach along with a data assimilation (DA) framework. This study contributed to the 

development and implementation of an improved (in terms of estimation accuracy) physical 

model-based method for traffic state estimation and to facilitate an adaptation of the model by 

utilizing advance probe data to the conditions of highways and roadway links. The ‘weaker’ 

assumption-based approach is successfully extended to estimate the traffic state more accurately 

by utilizing a data assimilation (DA) framework. In addition, the parameters of physical model are 

obtained by automatic calibration (AC) of a triangular FD which made the estimation more robust 

by adapting to the variability of data. The results from the calibration and estimation show that the 

accuracy of estimating the traffic state using this approach increases and the estimated 𝑘 

corresponds well with the 𝑘 computed using Edie’s generalized definitions (Edie, 1963) and 100% 

trajectory data (ground truth). 
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Even though the traffic state estimation is desirable in wider section, the implementation in a 

300 𝑚 wide section (resulting in only 2 cells for simulating density using CTM) provides a base 

for applicability of this model-based method in much wider sections based on its capability to 

estimate in smaller sections. The further section 6.8 includes the application of this model-based 

method in TSE on wider roadway section where the CTM model involves larger number of cells.  

 

6.8 Application of DA-based TSE method on a wider section 

 

This section includes the implementation of the proposed model-based TSE method, which 

employs a DA framework to provide accurate traffic state estimates, in a wider section of 2 𝑘𝑚. 

The motivation comes from the successful implementation and retrieval of reliable traffic state 

estimates from the proposed methodology for a smaller section i.e., a single lane (Lane 1) of 300  

𝑚 long section of Hanshin Expressway Ikeda Route 11 (around Tsukamoto Junction). The ZTD 

corresponding this section is part of a larger dataset namely, L001_F001. L001_F001 includes the 

complete and continuous vehicle trajectory information of 3,475 vehicles on Hanshin Expressway 

Ikeda Route 11 (around Tsukamoto Junction). The objective is to explore the estimation capability 

of the proposed method now on this wider section. L001_F001 includes the ZTD of a wider section 

that spans for 2 𝑘𝑚 and a time duration of 1 ℎ𝑜𝑢𝑟 (07:00 – 08:00 a.m.). In such a case, the number 

of cells will be much larger than 2 while utilizing CTM for simulating density, either for the 

purpose of automatic calibration of FD or utilizing it for estimating density using a DA framework.  

 

6.8.1 Utilization of ZTD and application conditions 

 

The methodology of implementing the proposed method to obtain traffic state estimates on a wider 

section are very similar to its application on the 300 𝑚 short length section except for a few 

changes. As discussed earlier, the model-based TSE approach consists of two major steps: a.) 

automatic calibration of a triangular FD, which is used to define the parameters of a physics-based 

model (CTM) and b.) TSE employing the calibrated CTM and EnKF technique. The objective is 

to implement and validate the method on the complete space-time domain of 2 𝑘𝑚 distance and 1 

ℎ𝑜𝑢𝑟 and in that case, the AC of FD is also performed using the data from the same space-time 
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domain i.e., L001_F001. As per the Courant–Friedrichs–Lewy (CFL) condition, the 

spatiotemporal resolution for AC of FD and TSE using DA is set the same as: ∆𝑡 = 150𝑚, ∆𝑡 =

5 𝑠. Then, the complete space-time region is divided into mesh of spatiotemporal resolutions {150 

𝑚 x 5 𝑠} i.e., multiple discrete, identical, and rectangular space-time regions. 5% of vehicles are 

randomly sampled from 100% ZTD corresponding to L001_F001 and are referred to as probe 

vehicles and ZTD corresponding to partial traffic data referred to as probe vehicle data. To treat 

the 5% randomly sampled vehicles from 100% vehicles (whose information is included in ZTD), 

it is essential to extract data from ZTD that has similar nature to the data collected by extended 

floating cars i.e., headway measurements, spacing measurements, velocity, positioning etc. 

Therefore, this time no special considerations have been given to the vehicles showing the lane 

changing behavior. The task of identifying the leading vehicle to any probe vehicle can be done at 

every available instance of time. It means that since the temporal sampling rate of ZTD is 0.1 𝑠, 

so to identify the leading vehicle to any probe vehicle the trajectories can be analyzed at every 0.1 

𝑠. However, spacing and headway measurements (required for AC of FD) at such precise time 

steps are not essential so the identification of the leading vehicle is done at an interval of 1 𝑠. The 

FDs are considered to be uniform over all cells and the aggregated boundary traffic flows and 

traffic densities are presumed to be measured by detectors and therefore such aggregated flows 

and densities are computed using 100% ZTD at a fixed length interval of 300 𝑚. In addition, the 

assumption on on-ramp and off-ramp stays put. The average headway and spacing measurements 

of probe vehicles in a cell to their leading vehicles, both in a particular cell, are used to compute 

the flow–density (𝑞, 𝑘) points in each cell of a spatiotemporal mesh. 

The calibration is done at a space-time resolution of {150 𝑚 x 5 𝑠}. In other words, the 

headway and spacing measurements from the probe vehicles are aggregated at a resolution of {150 

𝑚 x 5 𝑠}. For unobserved cells i.e., cells via which no probe vehicle traversed (thus, the headway 

and spacing measurements cannot be extracted) the headway and spacing measurements are 

interpolated from the coarser resolutions such as {150 𝑚 x 60 𝑠} and {150 𝑚 x 150 𝑠}.  

In the next subtask of formulating and implementing the TSE method using DA framework, 

first, the density 𝑘 and velocity 𝑣 are computed using the 𝑥𝐹𝐶𝐷-based TSE approach from 5% 

probe vehicles’ data at a space-time resolution of {150 𝑚 x 5 𝑠} and are considered as observations 

for the observation equation of the EnKF. In the second step, density 𝑘  is updated from the 

observed density 𝑘 and velocity 𝑣, calibrated FD parameters (required to simulate density using 
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CTM) and estimated density 𝑘 in the previous step using DA framework (EnKF). The third step 

involves the validation and comparison analysis of the proposed TSE method. In it, traffic state 

estimates (density 𝑘) from both, the proposed model-based method, and the 𝑥𝐹𝐶𝐷-based method, 

are compared with the traffic states computed using Edie’s generalized definition and 

corresponding 100% ZTD (L001_F001, which is considered as the source truth for this analysis). 

For each cell of the mesh of space-time domain, the observed traffic state 𝓏𝑡 is obtained from the 

𝑥𝐹𝐶𝐷-based TSE method using probe vehicle data at a resolution {150 𝑚 x 5 𝑠}. For cells via 

which no probe vehicles passed the (𝑞, 𝑘, 𝑣) points computed from coarser resolution ({150 𝑚 x 

60 𝑠} and {150 𝑚 x 300 𝑠}) are used for those unobserved cells.  

The number of cells to be 14 for simulating density using CTM. This is so because as per the 

CFL conditions the resolution subject to TSE has been fixed as {150 𝑚 x 5 𝑠}. Since the temporal 

domain of the subject area is 1 ℎ𝑜𝑢𝑟 hence, a ∆𝑡 = 5 𝑠 results in 720–time steps. The initial 

conditions in all cells are assumed to follow a normal distribution, where the mean is the average 

of the density measurements from the 𝑥𝐹𝐶𝐷-based TSE method using 5% probe vehicles and the 

standard deviation is 5%  of the mean. All of the noise models are specified by a Gaussian 

distribution. The number of ensembles for the model is set as 𝑀 = 100. The same application 

conditions are also tabulated in Table 6.6. 

 

Table 6.6 Application conditions for TSE in L001_F001 using EnKF 

Section L001_F001 

Section length (𝑘𝑚) 2 

Number of cells 14 

∆𝑡 (ℎ𝑜𝑢𝑟) 5
3600⁄ = 0.001389 

∆𝑥 (𝑘𝑚) 0.150 

𝑣𝑓 (𝑘𝑚/ℎ𝑟) 70.128 

𝑘𝑐  (𝑣𝑒ℎ/𝑘𝑚) 700 

𝑘𝐽 (𝑣𝑒ℎ/𝑘𝑚) 2100 

𝜔 𝒩(0, 1.02) 

𝜂𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝒩(0, 1.02) 

𝜂𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝒩(0, 1.02) 
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6.8.2 Estimation results 

 

The (𝑞, 𝑘) points calculated using headway-spacing measurements of 5% probes in all the space-

time regions using all datasets are plotted as shown in Figure 6.30. These points are used to 

calibrate an initial FD by conventional LS calibration method. These parameters are then used as 

initial condition for the optimization problem of automatic calibration of triangular FD. The values 

of optimized FD parameters for various combination of datasets are: 

 

𝑣𝑓 = 19.48 𝑚/𝑠 

𝑘𝑐 = 0.07 𝑣𝑒ℎ/𝑚 

𝑘𝐽 = 0.21 𝑣𝑒ℎ/𝑚 

 

In Figure 6.30, the blue curve is the FD obtained from the LS regression fitting. In fact, 

parameters of this LS fit FD are used as initial conditions for the optimization problem of AC of 

FD. The pink curve depicts the automatically calibrated FD. As discussed in the case of short 

length section, the conventional LS method underestimates the flow, and the automatic calibrated 

FD outperforms because it searches for the ‘best capacity’ (as well as other parameters 

simultaneously). Figure 6.32 illustrates that the traffic state, using the proposed method, has been 

estimated in the complete space-time domain of 2 𝑘𝑚 and 1 ℎ𝑜𝑢𝑟. Figure 6.31 shows the actual 

density on the target section for the same space-time domain (obtained using 100% ZTD and 

Edie’s generalized definitions) and it is easy to make a visual correlation between the two figures.  

 

 

Figure 6.30 AC of FD using 5% probe data from wider section (L001_F001) 
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Figure 6.31 Density 𝑘 (𝑣𝑒ℎ/𝑚) from 100% ZTD and Edie's generalized definitions on wider section 

 

 

 

Figure 6.32 Density 𝑘 (𝑣𝑒ℎ/𝑚) using 5% probe vehicles and model-based TSE method (using EnKF) on wider section 

 

6.8.3 Error analysis 

 

Unlike in the case of 𝑥𝐹𝐶𝐷-based TSE method (Figure 6.33 c.)) where the traffic estimates are 

unavailable in the unobserved cells due to small probe penetration rate and high spatiotemporal 

resolution, the proposed method estimates the traffic state in the complete space-time domain and 

at a fine resolution of {150 𝑚 x 5 𝑠} as shown in Figure 6.33 b.). Figure 6.33 a.) shows the actual 

density on the target section for the same space-time domain (obtained using 100% ZTD and 



Chapter 6  TSE using Data Assimilation (DA) 

 152 

Edie’s generalized definitions) and it is visible that at multiple positions and situations, several 

regions have observed density more than the critical density. The visual analysis reveal that the 

traffic state values estimated using only 5 %  probe vehicles and the model-based method 

employing the DA technique (Figure 6.33 b.)) are highly correlated to the traffic state values 

computed from 100% vehicles’ data and Edie’s generalized definitions (Figure 6.33 a.)). 

The traffic state (density 𝑘) estimates from a.) 𝑥𝐹𝐶𝐷-based TSE method and b.) model-driven 

TSE method employing EnKF, for all cells of the spatiotemporal mesh are compared against the 

density 𝑘 obtained using 100% ZTD and Edie’s generalized definitions. The density 𝑘 obtained 

for each spatiotemporal cell of the target section using 100 %  ZTD and Edie’s generalized 

definitions is considered as the source truth for analyzing the numerical characteristics of the 

proposed TSE method. The statistical comparison analysis is done by calculating metric scores 

such as root mean square error (RMSE), mean absolute error (MAE) and Bias. The analysis reveals 

that the metric scores of RMSE, ARE and Bias are smaller when density computed using 100% 

vehicles and Edie’s definitions is compared with ones estimated from model-based method than 

the ones estimated using 𝑥𝐹𝐶𝐷-based method. Figure 6.34 a.) correspond to the metric scores 

when only the observed cells (with respect to 𝑥𝐹𝐶𝐷-based TSE method) are considered, and the 

rest are excluded for a fairer comparison. Figure 6.34 b.) correspond to the metric scores when 

comparing all the cells of the target spatiotemporal mesh. 

 

 

a.) 
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b.) 

 

c.) 

Figure 6.33 Density 𝑘 (𝑣𝑒ℎ/𝑚) from a.) 100% ZTD & Edie's definitions, b.) 5% probes and model-based TSE method (EnKF), 

and c.) 5% probes and 𝑥𝐹𝐶𝐷-based TSE method 

 

            

                 a.) only for observed cell                                             b.) including all cells  

                                                                                                              (𝑘 = 0 for unobserved cells in case of 𝑥𝐹𝐶𝐷-based method) 

Figure 6.34 Statistical comparison analysis in wider section 
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6.9 Conclusions and discussions 
 

Conclusions: The results from the implementation and verification of the improved estimation 

capability of proposed model-based TSE on a wider section reveal that it is possible to implement 

the proposed methodology in a wider section for estimating more accurate traffic state estimates 

as compared to the 𝑥𝐹𝐶𝐷-based TSE method. Moreover, using this methodology it is possible to 

estimate traffic state in complete space-time domain at high spatiotemporal resolutions and by 

utilizing the data from few probe vehicles and roadside detectors. The results from the calibration 

and estimation show that the accuracy of estimating the traffic state using this approach increases 

and the estimated 𝑘 corresponds well with the 𝑘 computed using Edie’s generalized definitions 

and 100% trajectory data (ground truth). The error metric scores of RMSE, MAE and MB have 

reduced significantly when estimating density using model-based approach. On the wider section, 

RMSE dropped by around 75–80%, the MAE dropped by around 30–35%, and there is a decrease 

in MB by 15–50%. However, when the method was implemented on a smaller section where 

special consideration was given to the lane changing behavior, RMSE dropped by around 50–80%, 

the MAE dropped by around 35–52%, and there is a decrease in MB by 30–40%.  

 

Discussions: There are several factors that are believed to support the outperformance of the 

proposed method than the ‘weaker’ assumption-based TSE method which are as follows: 

1) Data assimilation technique is utilized to find the most probable state of the traffic where 

neither the physics-based model nor the observation from probe data is considered perfect. 

2) The method is based on model-based approach and assumes a priori knowledge on traffic 

dynamics through physics-based model (CTM) and triangular FD. 

3) This CTM is defined through automatically calibrating the FD which takes the variability of 

data into consideration and renders the TSE method to be robust and adaptive. 

4) Regarding EnKF specification, the observation equation embodies additional information 

from probes i.e., observed velocity along with the observed density. 

 

In fact, the AC of FD and the utilization of additional observed information i.e., observed 

velocity from the probe vehicles can be considered as the two major key factors for the 

outperformance of the proposed method. Due to the above reasons, at similar traffic conditions 
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and available traffic data, the proposed method is anticipated to perform better than the ‘weaker’ 

assumption-based method irrespective of cell size (provided that the CFL condition is satisfied) or 

probe penetration rate. However, it can factually be stated upon detailed analysis with respect to 

variation in resolution and probe penetration rate (which is out of scope of this research).  

At the same time, it is indisputable that the performance of the proposed method depends on 

the quality and quantity of traffic data available. Data from probe vehicles should include spacing 

and headway measurements and the total boundary flows and densities at the boundaries of the 

target section or total flows and densities at fixed (couple of hundreds) interval of distance such as 

300 𝑚 can be collected by fixed sensors. It is indeed true that the model-based TSE method 

(employing DA framework) depends not just on the data from the probe vehicles but also the 

boundary flows and densities from the detectors whereas the 𝑥𝐹𝐶𝐷-based TSE method requires 

only the spacing and headway measurements. In fact, the detector data is very easy to obtain at 

present situation due to advancements in ITS infrastructures. However, it is worth exploring the 

TSE approach by relaxing certain assumptions such as boundary flows and densities from detectors. 

Moreover, exploring smart solutions to obtain boundary conditions from probe vehicles itself are 

worth the challenge. 

The TSE demonstrated in chapter 6 is under traffic flow conditions with is relatively higher 

than very low traffic flow situations such as after midnight. The proposed method utilizes spacing 

and headway measurements of probe vehicles to its leading vehicle. Although there are no restricts 

or assumptions considered for the minimum or maximum observable spacing and headway 

distances, it will not be possible to utilize the probe vehicle to their full potential for obtaining the 

observations if the distance between the probe vehicles and their leading vehicles is too high such 

that the leading vehicle is not identifiable by the probe vehicle. This kind of situation is highly 

likely to happen during very low traffic flow and low traffic density situations. Therefore, the 

proposed TSE method will not be able to estimate the traffic state under low flow, low density 

situation. 

 

6.10 Gist: input, assumptions, output 
 

This chapter contributed to the development and implementation of a physical model-based 

method for TSE and to facilitate an adaptation of the model by utilizing advance probe data to the 
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conditions of highways and roadway links. To improve the estimation capability, it extended the 

‘weaker’ assumption-based approach to estimate the traffic state more accurately by utilizing a 

data assimilation (DA) framework using probe vehicle data. The study endeavors to propose a 

model-based traffic state estimation method that can provide reliable and reasonably acceptable 

accurate traffic state estimates, 1.) using few probe vehicles i.e., small probe penetration rate (=

5%), 2.) in complete space-time domain, 3.) for both regimes of free-flow and congested, and 4.) 

at high spatiotemporal resolution.  

The formulation involves additional assumptions such as consideration of a triangular form 

on FD of traffic flow and a discretization of a physics-based model namely, Lighthill–Whitham–

Richards Model (LWR Model) (Lighthill and Whitham, 1995; Richards, 1956), which are often 

accepted by traditional traffic flow theory. In it, the state variable, density (𝑘), is estimated (output) 

by simulating the 𝑘 obtained from a physical model (Cell Transmission Model: CTM) (Daganzo, 

1994) which are then integrated (fused) with the observed traffic states (𝑘 and 𝑣) (input) using 

Ensemble Kalman Filtering (EnKF) technique (Evensen, 1994). In addition, the parameters of 

physical model are obtained by automatic calibration (AC) of a triangular FD.  

The major difference between the 𝑥𝐹𝐶𝐷-based TSE method explored in chapter 5 and the 

method proposed in chapter 6 is the estimation approach of the TSE. 𝑥𝐹𝐶𝐷-based method is a 

streaming-data-driven TSE method which only relies on ‘weaker’ assumptions. The proposed 

method utilizes a model-driven TSE approach and involves assumptions which are generally 

acceptable in traffic flow theory such as a traffic flow model, functional form of the FD as 

triangular, values of total flows and densities from detectors etc. Even though it is desirable to 

have estimates from methods based on ‘weaker’ assumptions, however, model-driven TSE 

methods have high explanatory powers and tend to provide more accurate estimates because the 

model is representative of the physics of traffic and add values to the observations. It is easier to 

integrate this method to traffic control operations. The only key task is to calibrate the model-

driven TSE method carefully. This study showcases careful selection and calibration of FD utilized 

to define the CTM and the validity of the model is conducted using large and complete real world 

traffic data i.e., ZTD. The assumptions, limitation, and future research directions are discusses in 

section 7.2.3 and section 7.2.4. 
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7 SUMMARY AND FUTURE DIRECTIONS 

 

 

7.1  Achievements, overall conclusions, and practical implications 

 

Due to increased demand in mobility because of an overwhelming increase in population, 

congestion is causing poor traffic performance that has negative impacts on economy, environment, 

and safety. Instead of building new infrastructures for reducing congestion, this study explored 

smart solutions by focusing on recent advancements in ICT and contributes to the sustainable 

solutions for optimally using the existing transportation. For managing congestion efficiently and 

sustainably, one of the several challenges is to provide accurate information about current traffic 

state (flow 𝑞, density 𝑘, speed 𝑣), which are essential inputs for operations, traffic management 

and control and information provision for route choice guidance, using partially observed traffic 

data (collected by probe vehicles and roadside detectors). By using the methodologies and analysis 

described in this research it becomes possible to understand the current traffic flow characteristics 

with reasonable accuracy. Through this research, various existing FDs were systematically 

analyzed, followed by the performance evaluation of a ‘weaker’ assumption-based TSE method 

which was then successfully extended to develop a physical model-based TSE method by utilizing 

data assimilation (DA) framework.  

ZTD, an excellent data product collected through advanced methodologies and image 

processing technology obtained from Hanshin Expressway Co. Ltd., played a vital role in 

successfully conducting this research. A major part of the motivation for this doctoral research 

also came from the fact that ZTD has extreme potential for the evaluation of classical concepts in 

the fundamental theory of traffic flow, traffic flow models, functional forms of FDs, traffic state 

estimation methods, several of which have been developed and proposed by researchers over past 

decades, some based on theoretical assumptions and others driven by data and have not been 

evaluated or validated with complete trajectory data (ground truth) to verify their capabilities. In 

fact, in this study, ZTD has been successfully utilized in formulation and evaluation of a new traffic 

state estimation method for estimating reasonably accurate traffic states at high spatiotemporal 
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resolutions and complete space-time domain. The summary corresponding to each achieved 

objective is as follows: 

 

I. First objective (in chapter 4) 

 

Achievements: Through the fulfilment of the first objective of this doctoral research, in 

Chapter 4 various existing speed-density (𝑣 − 𝑘) FDs were empirically and theoretically analyzed, 

in terms of their accuracy, correlation to the real traffic data, whether the considered relations are 

theoretical valid with respect to the static and dynamic properties of FDs, at varying spatiotemporal 

resolutions by utilizing the complete trajectory data. Eventually, a model a.) with less complex 

form; b.) based on ‘weaker’ assumptions; c.) reasonably achieves mathematical elegance and 

empirical accuracy, was identified namely, May and Keller’s model. The empirical accuracy of 

the model is very close to the outperforming complex forms of modified Lee et al. (rational model) 

and Wang et al. (logistic model) models. Moreover, the reliability of the analysis was provided 

weight by conducting the empirical validation over several space-time resolutions which also 

provides theoretical and practical support to practitioners in decisively choosing most workable 

FD at a particular resolution.  

 

Overall conclusions: Overall, the May and Keller’s functional linear relation proved to be a 

sound mathematical models that represent the FD due to its empirical accuracy and mathematical 

elegance. Due to its simple and fast computational cost it has been supported to have a lot of 

potential for real world applications and it can assist in understanding the traffic characteristics 

with very low costs, especially when the traffic engineers are working with extensive traffic data. 

This analysis was vital and unique from the past research as none of the previous studies have 

analyzed the model performance and application conditions of different 𝑣 − 𝑘  relations with 

respect to the space-time resolution, in addition with a focus to identify an overall simple (less 

complex and compact natured), less parameterized, ‘weaker’ assumption-based 𝑣 − 𝑘 model.  

 

Practical implications and possible applicability in real-world scenario: Based on prevailing 

traffic conditions, the inferred FD (May and Keller’s model) can assist active traffic management 

(ATM) in alleviating congestion by accessing network dynamics accurately (such as when and 
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where congestion builds and how it dispatches) under fast and low computation cost. It can play a 

crucial role for traffic control and assignment, predicting the capability of road system, or predict 

its behavior when applying inflow regulations and speed limits. For application that do not require 

precise and detailed estimated of traffic state in complete space-time domain, May and Keller’s 

FD can help in estimating the traffic state by locating where the system is on the FD at a desired 

moment.  

For understanding the fundamentals such as maximum flow rate, critical density, free-flow 

speed on expressway and highways, which are very important to evaluate the quality of the road 

and road networks, the results of analysis can be directly utilized by traffic engineers. Due it its 

high empirical accuracy, dependency on simple assumptions, and ease of handling with its 

noncomplex and compact nature (which makes it a model with low computation cost), May and 

Keller’s model can be as it is utilized with its parameters estimated as in the study. Similarly, based 

on the resolution of interest, practitioners can utilize the result of analysis and decide the most 

workable FD (with parameters as estimated in the study) for understanding the traffic dynamics 

through FD. Practitioners working with extensive traffic data can estimate the parameters of the 

May and Keller’s functional form ( 𝑣𝑓, 𝑘𝑗 , 𝑚, 𝑎𝑛𝑑 𝑛 ) using the available extensive data for 

understanding the fundamentals of any kind traffic link (other than expressways and highways as 

well). The available data such as headway and spacing measurements from extended floating car 

data can be used to obtain the (𝑞, 𝑘) points to estimate the parameters of the chosen FD that can in 

turn, aid in predicting the congestion, its propagation, and mutual relationship between change in 

level of services and traffic volume.  

 

II. Second objective (in chapter 5) 

 

Achievements: The fulfillment of second objective of this dissertation successfully 

contributed to the performance evaluation of an 𝑥𝐹𝐶𝐷-based TSE method, unconfined by any 

exogenous assumptions such as FD, proposed by Seo et al., (2015b) in chapter 5. The analysis was 

conducted at finer spatiotemporal resolutions and varying probe vehicle penetration rates using 

high resolution complete trajectory data (ZTD). It revealed that the accuracy of the estimates 

depends on two settings: temporal resolution (∆𝑡), and probe penetration rate (𝑝%), but indirectly. 

It is always desirable to be able to retrieve the estimates of traffic states in a complete 
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spatiotemporal domain i.e., with a higher 𝑐%. However, for a combination of a finer ∆𝑡 i.e., finer 

than 2 min and a lower 𝑝% i.e., below 3%, a compromise is made with both accuracy and the 𝑐%. 

Thus, according to the available 𝑝% or the required accuracy and 𝑐%, practitioners could select 

the desired and appropriate spatiotemporal resolution settings. The achievement, here, is that the 

analysis provides an insight into the various combinations of settings, expected probe vehicles in 

spatiotemporal cells, the corresponding covering percentage, and the expected accuracy. Thus, 

according to the available 𝑝% or the required accuracy and 𝑐%, practitioners could select the 

desired and appropriate spatiotemporal resolution settings. 

 

Overall conclusions: Like several other TSE methods developed over past decade which 

utilize probe vehicle data for estimating traffic state, the estimation capabilities of this estimation 

method had not been validated using vehicles’ high-resolution, complete, and detailed trajectory 

data with high space-time coverage. The analysis of the estimation capability of the method using 

real world complete trajectory data was vital and essential because the method does not rely on 

‘strong’ assumptions, rather is based on ‘weaker’ assumptions, which are preferable for practical 

applications. In actual, few percentage of GPS probes are expected in the actual highways of Japan 

(where the maximum cell size for traffic control is ∆𝑥 = 200 𝑚 and ∆𝑡 = 300 𝑠), and the settings 

considered in this analysis aided in visualizing expected errors in the estimation results using this 

method at finer ∆𝑥 and ∆𝑡 and a lower 𝑝% (current low penetration environment).  

 

Practical implications and possible applicability in real-world scenario: With few 

percentages of prove vehicles, the method can estimate traffic states at coarser resolutions with 

100% coverage with reasonable accuracy when the expressway is not in the congested state. This 

low resolution is sometimes useful for planning purposes and for potential area-wide traffic 

management. Inspecting the 𝑥𝐹𝐶𝐷-based TSE method using the ZTD elucidated the application 

of the estimation method in estimating traffic states at freeways at desired settings using probe 

vehicles that are proficient at providing information regarding the spacing between it and its 

leading vehicle. However, due to a smaller number of probes the accuracy at even coarser 

resolutions isn’t the best, which may be improved with the advancement in ICT as more probes 

are likely to be realized. Furthermore, at an age of near ubiquitous sensor (e.g., cell phone) 

penetration, and with the massive emergence of connected vehicles, the validation result suggests 
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that the approach might become prevalent in the near future for transportation planning purposes 

with a probe vehicle penetration rate of several percentages. So, with the information on total flow, 

traffic engineers can understand the expected average number of probe vehicles in a spatiotemporal 

cell of a particular spatiotemporal resolution combination and probe penetration rate. This will 

ultimately help in deducing the expected accuracy in estimating TS using this method. In another 

situation, with total traffic flow information, traffic engineers can understand the number of probe 

vehicles required to attain a certain level of accuracy. Thus, according to the available 𝑝% 

(dependent on total flow) or the required accuracy and 𝑐%, practitioners could select the desired 

and appropriate spatiotemporal resolution settings for TSE. 

 

III. Third objective (in chapter 6) 

 

Achievements: To be able to retrieve much accurate traffic state estimates in complete 

spatiotemporal domain (including unobserved cells i.e., cells via which no probe vehicle traversed) 

at high space-time resolution by utilizing fewer probe vehicles in both the regimes, congested and 

non-congested, is always desirable. Hence, with a focus on such requirements, the third 

achievement of this thesis successfully contributed to the development and implementation of a 

physical model-based method for traffic state estimation of highways and roadway links in chapter 

6. In such a pursuit, the TSE method analyzed in chapter 5 provided a useful foundation for 

extending the estimation approach by incorporating a model-based approach along with a data 

assimilation (DA) framework. To improve the estimation capability 1.) by using few probe 

vehicles i.e., small probe penetration rate (= 5%), 2.) in complete space-time domain, 3.) for both 

regimes of free-flow and congested, and 4.) at high spatiotemporal resolution, it extended the 

‘weaker’ assumption-based approach to estimate the traffic state more accurately by utilizing a 

data assimilation (DA) framework and vehicles’ complete trajectory data.  

 

Overall conclusions: In alignment to the hypothesis, utilization of DA techniques provided 

more accurate estimates under the discussed requirements. The results from the adaptive approach 

of AC of FD and TSE (employing DA framework) show that the accuracy of estimating the traffic 

state increases and the estimated 𝑘 corresponds well with the 𝑘 computed using Edie’s generalized 

definitions (Edie, 1963) and 100% trajectory data (ground truth). 
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Practical implications and possible applicability in real-world scenario: The proposed 

model-based TSE method can be utilized to estimate reasonably accurate traffic states on a freeway 

by utilizing few percentages of probe penetration (= 5%) and detector data including only the total 

flows and densities at fixed lengths of 300 𝑚. In this study, the significance of interval length 

between observations from detectors is not explored. Therefore, a couple of 100 meters of intervals 

can be considered. In fact, such information can be easily obtained from roadside fixed sensors. 

Additional data required for the application of this method in real world scenario includes spacing 

and headway measurements of probe vehicles to their leading vehicles. For estimating TS on a 

freeway’s space-time domain of interest, the probe data from the target section with probe 

penetration rate of around 5%, will be utilized to first calibrate the triangular FD by finding 

optimized its parameters namely, free-flow speed, critical density, and jam density. These 

parameters will be used to define the CTM which plays a vital role in TSE using DA framework. 

Based on probe data information, the spatiotemporal resolution for AC of FD and TSE can be set 

in accordance with the CFL condition. The resolution will aid in configuring the EnKF correctly. 

The measurements from the probe data will be fed as an input to the 𝑥𝐹𝐶𝐷-based TSE method 

(explored in chapter 5) for obtaining the observed traffic states (density and velocity). The final 

output will include much accurate TS estimates over complete domain at desired spatiotemporal 

resolutions. Since it is essential to retrieve much accurate traffic state estimates in complete 

spatiotemporal domain, at high space-time resolution by utilizing fewer probe vehicles in both the 

regimes, congested and non-congested, the proposition of this methodology earns a great scope of 

application.   

In fact, these were the principal postulates that motivated the studies carried out as per the 

research plan of this thesis. It is within the context that information technology (IT) and traffic 

blend together to create Intelligent Transport Systems (ITS). One of the practical outcomes of 

utilizing ZTD is the retrieval of information for making better informed decisions. In summary, 

this thesis studied analysis and modeling of FDs and TSE methods using complete trajectory data: 

ZTD. The analyses and the devised TSE method are expected to be utilized and implemented in 

real-world traffic design, planning, management, and control to mitigate traffic issues, congestion 

being the major one.  

Since highly detailed and technical data like ZTD is not possible to be obtained and utilized 

for real application over all transportation networks, objective 2 and objective 3 of this doctoral 
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research utilized the ZTD by creating probe vehicles-like situation (datasets). For real-world 

application, highly precise temporal sampling rate of the probe vehicle data is not a compulsory 

requirement for implementing the results and methodologies described in the thesis, however it is 

beneficial for the temporal sampling rate of collected data to be smaller than the desired temporal 

resolution of the target space-time region under analysis.  

 

Interconnection between chapter 4, chapter 5, and chapter 6: The explanations, analysis and 

discussions in chapter 4 revolves around the Fundamental Diagram (FD) and chapter 5 and chapter 

6 encompass the concepts and methodologies associated with Traffic State Estimation (TSE). Both 

are crucial for understanding the traffic phenomena and dynamics of road traffic. Chapter 4 and 

chapter 5 included independent studies on several speed-density FDs and a weaker’ assumption-

based TSE method, respectively.  

In chapter 4, parameters of several existing speed-density were estimated by utilizing 

complete vehicles’ trajectory data to identify a simple, ‘weaker’ assumption-based FD that 

reasonably achieves empirical accuracy and theoretical elegance, and to identify the most workable 

form of a FD at various spatiotemporal resolutions. The key ingredients required were the 

stationary 𝑘 𝑎𝑛𝑑 𝑣  points from stationary cells (an assumption) of mesh of a spatiotemporal 

domain which were computed using 100% ZTD and Edie’s definitions. The direct output included 

the parameters of considered speed-density relations using which the statistical analysis was 

performed. 

In chapter 5, ‘weaker’ assumption-based TSE method was analyzed using probe vehicle-like 

data obtained using ZTD. The key ingredient required was the spatiotemporal area between a probe 

and its leading vehicle which can be computed using the headway and spacing measurements from 

probes and positioning of probes. The direct output included the TS estimates at different 

spatiotemporal resolutions using which the performance of TSE was evaluated. 

However, chapter 6 proposes an adaptive approach of calibrating a FD which is directly utilized 

in estimating TS using a DA framework. If the sections considered in chapter 5 and chapter 6 were 

exactly same, the output of the chapter 5 could have been directly utilized in chapter 6 as the 

observation from probe vehicles (for observation equation of EnKF). The same headway and 

spacing measurements from probes are used for AC of FD. It is also important to highlight the fact 

that the approach of calibrating the FD in chapter 6 is theoretically stronger with more explanatory 
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power as compared to the calibration approach in chapter 4. In chapter 6, a dynamic approach is 

adopted that takes the variability of data into account by using simulated density from CTM for 

providing optimized parameters of FD. The direct comparison of final output from TSE method 

discussed in chapter 5 (TS estimates using ‘weaker’ assumption-based TSE method) and chapter 

6 (TS estimates using model-based TSE method) are compared in section 6.7 and section 6.8.3 of 

chapter 6 itself. 

 

7.2 Dependency of expected average number of probe vehicles in a space-

time cell on the total flow 

 

In chapter 5 and chapter 6, certain percentage of vehicles (𝑝%) have been randomly sampled from 

the 100% vehicles (whose trajectory information is included in ZTD) and are considered as probe 

vehicles.  

In chapter 6, 5% (~172 vehicles) of vehicles are utilized to estimate the traffic state at a 

resolution of {150 m x 5 s} where the total flow of this ZTD (L001_F001) was 3,415 vehicles 

driving for a distance of 2 km and for 1 hour. Under such conditions the average number of probe 

vehicles passing through observed cells is 1.14 vehicles with a covering percentage of ~68%. 

Moreover, the traffic before 1200 s (i.e., before 7:20 a.m.) appears to be in the free-flow regime 

and no congestion can be seen as per the velocity profile of L001_F001. With same set of probes 

the average number of probe vehicles passing through observed cells is 1.07 vehicles. After 1200 

s (i.e., between 7:20 a.m. and 8:00 a.m.), the congested traffic conditions seem to appear (as per 

the velocity profile of L001_F001) and the average number of probe vehicles passing through 

observed cells is 1.16 vehicles. 

Before 7:20 a.m. the total flow observed was 1204 veh/20 mins (i.e., 3612 veh/hour). 

Extracting 5% of this total flow will result in ~60 vehicles. Under such flow conditions the average 

number of probe vehicles passing through observed cells is 1.32 vehicles with a covering 

percentage of ~43%. Between 7:20 a.m. and 8:00 a.m., the total flow observed was 2324 veh/40 

mins (i.e., 3486 veh/hour). Extracting 5% of this total flow will result in ~116 vehicles. Under 

such flow conditions the average number of probe vehicles passing through observed cells is 1.48 

vehicles with a covering percentage of ~58%.  
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As that number of vehicles considered as 5% probes depend on the total flow, hence, it proves 

that it is better to highlight that the expected accuracy of TSE method is also influenced by the 

traffic flow conditions (total flow). Accuracy of a TSE method depends on the expected average 

number of probe vehicles in a cell at a particular setting i.e., spatial resolution, temporal resolution, 

and probe penetration rate. And, at the same time the expected average number of probes depend 

on, obviously, 1.) the settings and 2.) the total flow in the target space-time region which tells 

about the minimum number of probes required to make a particular probe penetration rate.  

In chapter 5 as well, the performance analysis of weaker assumption-based TSE method at 

varying spatiotemporal resolution and probe penetration rate has an indirect but significant 

dependency on the total flow of the considered space-time regions. In simpler words, the total flow 

determines the minimum number of vehicles required to make a certain probe penetration rate and 

in turn, the expected average number of probes in a cell. The average number of probe vehicles 

passing through observed cells at different spatiotemporal resolutions and probe penetration rate 

with the total flow of each section as ~ 3400 vehicles per hour is then shown by Table 5.3 of 

chapter 5. The table is important because the average number of probes in a spatiotemporal area is 

a key factor in accurately estimating the traffic states. So, Table 5.2 and Table 5.3 collectively 

assist in determining the expected accuracy in the estimates by the estimation method at various 

combinations of settings. 

For practical applications, in order to determine the expected accuracy at any combination of 

setting the total flow is required to find what penetration rate it is with available probes. 

Alternatively, when analysts have a desired accuracy level then total flow will help in deciding the 

minimum number of probes required to attain that accuracy at a specific combination of settings.  

When the total flow on a freeway is around 3400 − 3600 veh/hour, the expected average 

number of probe vehicles in observed cells at these settings: ∆𝑥 = 150𝑚, ∆𝑡 = 5𝑠, 𝑝% = 5%, is 

in the range of  1.14 − 1.48 vehicles. Then, this kind of relation between total flow and expected 

average number of probes in a spatiotemporal cell at a particular setting is very meaningful and 

also, very important for traffic flow analysis. This is so because 5% of probe vehicles at a different 

flow rate, such as when the flow is very less, can result in different expected number of probe 

vehicles in a cell of such spatiotemporal resolutions. The thesis, however, doesn’t include the 

research on the mathematical or analytical relationship between the two. Rather the above 

discussion highlights the presence of influence of total flow in determining minimum number of 
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probes required to make certain percentage of probes and in turn inferencing the expected average 

number of probe vehicles in a cell at a particular setting (which ultimately affect the accuracy of 

the TSE method). 

 

7.3 Limitations and future directions 

 

7.3.1 Single-regime speed-density (𝒗 − 𝒌) functional relations 
 

While analyzing various existing speed-density (𝑣 − 𝑘) relations in chapter 4, the improved data 

quality and data quantity led to some theoretical challenges for single-regime fundamental 

relations, which are unable to explain the reasons behind the scatter and unstableness in the traffic 

states. The reasons could be the theoretical assumptions made when devising these functional 

forms in regard to the multi-lane multi-class traffic treated as single-lane single-class and the 

stationarity of traffic, which have been widely used is past studies and current study as well. 

Another reason for the difficulty in explaining the scatter can be the inherent nature of traffic flow, 

specifically the uncertainty in human behaviors, their respective desired speeds and critical 

headway distances, highway geometries, and vehicle characteristics. A big assumption for most of 

the 𝑣 − 𝑘 relations is that a specific value of velocity corresponds to each value of density, which 

in the actual scenario can be a form of a distribution function. In this context, this study analyzed 

only single-regime 𝑣 − 𝑘 relations, which serves as a limitation of the study. By contrast, with the 

recent developments in technology, the actual disaggregated data (such as ZTD) can be collected 

from a multi-lane multi-class environment and be used to evaluate more complex and multi-class 

FDs such as for different vehicle types. Moving forward in the same direction, development of a 

potentially better speed-density (𝑣 − 𝑘 ) relation can be attempted through further studies by 

incorporating other parameters of the ZTD with physical significance, such as the number of lanes, 

type of facility, and composition of vehicles etc.  

 

7.3.2 𝒙𝑭𝑪𝑫-based TSE utilizing large ubiquitous sensor penetration 
 

In context with the analysis of ‘weaker’ assumption-based TSE method in chapter 5, at an age of 

near ubiquitous sensor (e.g., cell phone) penetration, and with the massive emergence of connected 
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vehicles, the validation result suggests that the approach might become prevalent in the near future 

for planning purposes with a probe vehicle penetration rate of several percentages. Namely, for 

traffic management and control purposes, the proposed method may require a higher penetration 

rate but considering the possible widespread implementation of ADAS in the future, such a high 

penetration rate might be realized. Since the analysis in chapter 5 limits the scope of space-time 

domain to smaller section and special considerations are given to the lane changing behavior, to 

test the applicability of the method in real world situation with the assumption of large ubiquitous 

sensor penetration, it becomes a vital research problem to evaluate the estimation method 1.) in a 

wider section, 2.) with larger penetration rate, and 3.) inclusive of all kinds of user road behavior.  

 

7.3.3 Aggregated boundary flows and densities using probe data 
 

The model-based TSE devised in chapter 6 employs EnKF for estimating the most probable traffic 

state using the model simulated density obtained from CTM. However, the application of CTM 

involved a few assumptions. First, it is assumed that the section has no cell with on-ramp or off-

ramp, second, the FD parameters are assumed to be constant over all the discretized cells for CTM 

and third, it is presumed that detectors are installed at the boundaries of the section such that the 

aggregated boundary traffic flows (𝑞𝑢 𝑎𝑛𝑑 𝑞𝑑) and densities (𝑘𝑢  𝑎𝑛𝑑 𝑘𝑑) are measured. For this 

study the aggregated flows and densities are computed using 100% ZTD at a fixed length interval 

of 300 𝑚 and are assumed to be obtained from detectors. These assumptions can be considered as 

a limitation of the study. To further enhance the formulation methodology, the third assumption 

can be relaxed making the estimation method independent of the boundary flows and densities 

collected by the detectors. In fact, such boundary flows can be mathematically computed using the 

available probe data at the boundaries of the section and this can be considered a future direction 

worth exploring.  

 

7.3.4 Short-term traffic state prediction using DA 
 

The model-based TSE method employing DA framework can be further extended to contribute  

to the development and implementation of a model for making short-range prediction of the future 

traffic state. The good news is that there is a growing amount of data available and the 



Chapter 7  Summary and Future Directions 

 168 

corresponding increase in computing power due to advancement in Information and 

Communication Technology (ICT). Therefore, there is a possibility of developing prediction 

methodology at the intersection of machine learning (ML) and data assimilation by focusing on 

the opportunities offered by advance data-driven techniques to improve and/or correct out 

knowledge-based models. The prime predominant purpose of this research will be twofold, 1.) 

implementation the model-based TSE method (proposed in chapter 6) running on DA framework 

that includes automatic calibration (AC) of FD, and 2.) formulating and implementing the 

prediction model where the final accurate predictions are obtained from assimilating parametric 

and non-parametric short-term predictions. The current state estimates obtained from the model-

based approach can be used to make future predictions of traffic state by implementing a hybrid 

prediction approach that assimilates parametric and non-parametric short-term prediction based on 

data assimilation framework. To obtain non-parametric prediction ML algorithm (such as neural 

network) can be utilized, while the parametric predictions can be obtained by running forward in 

time the CTM model to predict future traffic state. Although few studies have been conducted to 

predict the traffic states using DA methods however, none of the studies have utilized such detailed 

estimates of traffic state values which can be available in complete space-time domain at a 

resolution as fine as {150 𝑚 x 5 𝑠} and probe penetration rate of probe vehicles as low as 5%. In 

other words, the motive here is to assimilate the parametric predictions of traffic state with non-

parametric predictions to obtain the best possible short-range forecast of the traffic state as per the 

flow illustrated in Figure 7.1. Data assimilation will be at the center of our predictive system and 

will be used to minimize the error for predictive systems where there is uncertainty in both the 

predictive models. These precise traffic state predictions will aid in mitigating congestion 

effectively.  

 

 

Figure 7.1 Short-term traffic state prediction using model-based TSE method, DA framework and machine learning (ML) 
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