T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	間柱型粘弾性ダンパーの初期温度と性能低下を考慮した超高層建物の 応答評価 その 3 高振動数載荷による長時間加振実験
Title(English)	Response evaluation of high rise building considering initial temperature and performance degradation of Stud-type VE damper (Part3 Long-term vibration experiment of high frequency)
著者(和文)	
Authors(English)	Jumpei Yasunaga, Ryosuke Kinoshita, Daiki Sato, Alex Shegay, Ryota Tobari, Takuya Ueki, Yosuke Kaneshiro
出典(和文)	 日本建築学会大会学術講演梗概集, , , pp. 479-480
Citation(English)	, , , pp. 479-480
発行日 / Pub. date	2022, 9

間柱型粘弾性ダンパーの初期温度と性能低下を考慮した超高層建物の応答評価

その3 高振動数載荷による長時間加振実験

正会員	○安永隼平*1	同	樹下亮佑*2	同	佐藤大樹*3
同	Alex Shegay *3	同	戸張涼太*4	同	植木卓也*1
同	金城陽介*1				

間柱型粘弾性ダンパー	長時間加振実験	性能低下
温度依存性	振動数依存性	長周期地震動

1. 序

前報
¹⁾では、長周期地震動に対する繰り返し加振による 粘弾性ダンパーの性能低下の評価を目的として、粘弾性 ダンパーの正弦波加振実験を実施した。しかし、0.1、 0.33 Hz と比較的低振動数での検討にとどまっている。そ こで、本報その3では1.0Hz載荷の実験を実施し、繰り返 し加振による粘弾性ダンパーの性能低下を,前報)の実験 結果と合わせて評価する。

2. 実験概要

Table1 に前報¹⁾の実験を含めた載荷パラメータを, Fig.1 に試験体を示す。本報その3では、新たに1.0Hz載荷の実 験5ケースを実施する。計測箇所は水平変位(変位計x1, x2), 鉛直変位(変位計 y1, y2, y3, y4)に加え, 粘弾性 パネル内部の温度(熱電対 Tlf, Tlb, T2Uf, T2Ub, T2Df, T2Db) および雰囲気温度(熱電対T4L, T4R) とする。ダ ンパー特性値である等価せん断弾性率 Geq および等価減衰 定数 Heq の算出方法については前報¹⁾を参照されたい。

3. 実験結果

前報)では、等価せん断弾性率の低下率 GλΩθ には温度基 準化エネルギー密度 Ω_{θ} ,等価減衰定数の低下率 H_{Ω} にはエ ネルギー密度 Ω を用いて評価することで,載荷条件によ らず粘弾性ダンパーの性能低下を一律に評価可能である ことを示した。そこで、Fig.2 に等価せん断弾性率の低下 率 $G_{\Omega_{\theta}}$ と温度基準化エネルギー密度 Ω_{θ} の関係,等価減衰 定数の低下率 μ_{0} とエネルギー密度 Ω の関係を,前報¹⁾の 実験結果と併せて示す。 GλΩθ および HλΩは、各サイクルの G_{eq} および H_{eq} を3 サイクル目の G_{eq} , H_{eq} で基準化してお り,3 サイクル目以降の値を 10 サイクルごとにプロット している。また、載荷条件の名称は、左から振動数 f、最 大せん断ひずみ γ_{dmax} , 初期温度 θ_0 を表す。Fig.2 より, $H\lambda_{\Omega}$ は Ω を用いることで低下の傾向を一律に評価可能である が、GAQ6は 1.0Hz 載荷時に前報)の実験結果よりも大きく 低下することがわかる。そこで、ランダム振動時に振動 数を評価するのは困難であるという点,長周期地震動時

Response evaluation of high rise building considering initial temperature and performance degradation of Stud-type VE damper (Part3 Long-term vibration experiment of high frequency)

Table1 Experiment parameters

Fig.2 Deterioration of G_{eq} and H_{eq} (experiment) に入力エネルギーが増大するのは周期 1.0 秒以上であると いう点から, Glat は下限である 1.0 Hz, Hla は全実験結果

(a) $_{G\lambda_{\Omega\theta}}$ vs. Ω_{θ}

Jumpei Yasunaga, Ryosuke Kinoshita, Daiki Sato, Alex SHEGAY, Ryota Tobari, Takuya Ueki, Yosuke Kaneshiro

(b) $_{H\lambda\Omega}$ vs. Ω

に対応する近似式を作成し、繰り返し加振による粘弾性 ダンパーの性能低下を評価することとする。Fig.2 に作成 した近似式を黄色線で示す。近似式は実験より得られた _cλ₂₀の下限値および_Hλ₂の中央値付近と対応しており、そ れぞれの低下傾向をよく捉えられていることがわかる。

4. 強制変位加振解析による解析モデルの妥当性の検証

実験より得られた粘弾性ダンパーの変位波形を粘弾性 ダンパーの解析モデルに与える解析(以降,強制変位加 振解析)を行い,解析結果と実験結果と比較することで, 解析モデルの妥当性を検証する。粘弾性ダンパーの解析 モデルは,文献 2)の塑性項を簡略化し,非線形ばねと Maxwell要素を加えた文献3)のモデルを用いる。Fig.3 に強 制変位加振解析の概念図を示し,以下にその概要を示す。

まず、粘弾性ダンパーと並列に設置された弾性ばねの 剛性 K_f を粘弾性ダンパーの等価剛性 K_{deq} に対して十分大 きく取る ($K_f >> K_{deq}$)。次に、実験より得られた粘弾性ダ ンパーの変位時刻歴 $u_d(t)$ を粘弾性ダンパーの解析モデルに 与えるための荷重 F(t)を次式で算出する。

 $F(t) = (K_f + K_{deq}) \cdot u_d(t)$ (1) ここに, (t)は時間 t によって変化する値であることを示す。 $K_f >> K_{deq}$ であるため,式(1)は次式のように近似できる。

 $F(t) \approx K_f \cdot u_d(t) \tag{2}$

式(2)より得られた荷重の時刻歴波形を与えることで、 実験より得られた粘弾性ダンパーの変位時刻歴 $u_d(t)$ を粘弾 性ダンパーの解析モデルにも与える。また、粘弾性ダン パーの解析モデルは、ステップごとに算出されるエネル ギー吸収量をもとに、3章で作成した近似式より $_{d\lambda Q\theta, H\lambda Q}$ を算出し、等価せん断弾性率 G_{eq} 、等価減衰定数 H_{eq} を低 下させながら解析を行うことで、繰り返し加振による性 能低下を再現する。

Fig.4 に粘弾性ダンパーの履歴ループの実験結果と解析 結果の比較を, Fig.5 に等価せん断弾性率の低下率 $_{\alpha\lambda\alpha\theta}$ お よび等価減衰定数の低下率 $_{\mu\lambda\alpha}$ の解析結果と近似式の対応 関係を示す。Fig.4 より,解析結果は実験より得られた履 歴ループを精度よく再現できており,解析モデルおよび 近似式の妥当性がうかがえる。また,Fig.5 に示すように, 等価せん断弾性率の低下率 $_{\alpha\lambda\alpha\theta}$ および等価減衰定数の低下 率 $_{\mu\lambda\alpha}$ は近似式に沿って低下していることがわかる。

5. まとめ

本報その3では、1.0 Hz 載荷の正弦波加振実験を実施し、 繰り返し加振による粘弾性ダンパーの性能低下を前報¹⁾の 実験結果と合わせて評価した。実験より、等価せん断弾

*¹ JFE スチール株式会社

- *2 元東京工業大学
- *3 東京工業大学
- *⁴ JFE シビル株式会社

Fig.5 Deterioration of G_{eq} and H_{eq} (analysis) 性率 G_{eq} は高振動数であるほど大きく低下し,等価減衰定 数 H_{eq} は載荷条件によらず概ね一様の低下傾向であった。 そこで,等価せん断弾性率の低下率 $_{c\lambda a\theta}$ は下限である 1.0 Hz 載荷時,等価減衰定数の低下率 $_{H\lambda a}$ は全実験結果に適合 する近似式を作成し,繰り返し加振による粘弾性ダンパ 一の性能低下を評価した。また,強制変位加振解析を行 い,近似式に沿って性能を低下させることで,本報で用 いる粘弾性ダンパーの解析モデルが,繰り返し加振によ る性能低下を精度よく再現可能であることを確認した。

謝辞および参考文献はその4にまとめて示す。

*¹ JFE Steel Corporation

- *² Former Tokyo Institute of Technology
- *³ Tokyo Institute of Technology

*4 JFE Civil Engineering & Construction Corporation