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Abstract

Superstring theory is thought to be a candidate for theory including quantum gravity. There
are five types of superstring theories in ten dimensions: Type I superstring theory, Type IIA
superstring theory, Type IIB superstring theory, E8 × E8 heterotic superstring theory, and
SO(32) heterotic superstring theory.

A unifying theory underlying these five superstring theories is thought to exist and the
theory is called M-theory. M-theory is defined in eleven-dimensional spacetime and contains
two fundamental objects. One is called an M2-brane, and the other is called an M5-brane.
The M2-brane is a 2+1 dimensional object, and the M5-brane is a 5+1 dimensional object.
As in the case of D-branes in superstring theory, in the low energy limit, superconformal
field theories (SCFTs) are realized on M2-/M5- branes. The theory realized on M2-branes is
called the 3d Aharony-Bergman-Jafferis-Maldacena (ABJM) theory. On the other hand, the
theory realized on M5-branes is called the 6d N = (2, 0) theory.

The purpose of this thesis is to investigate those SCFTs by using a quantity called the
superconformal index. Here, the superconformal index is a kind of partition function defined
in a supersymmetric field theory, which exhibits a spectrum of the local operators. We
propose a new method of calculating the superconformal indices of theories realized on M2-
/M5- branes. In our method, we calculate the index from the dual gravity theory by using
the Anti-de Sitter (AdS)/Conformal Field Theory (CFT) correspondence. The AdS/CFT
correspondence is a conjecture that states a certain CFT is equivalent to the corresponding
gravity system. Especially for the M-brane theories, AdS/CFT argues that the 3d ABJM
theory with Chern-Simon level k = 1 corresponds to M-theory on AdS4 × S7, and the 6d

N = (2, 0) theory corresponds to M-theory on AdS7 × S4.

It is already well known that in the large-N limit, where N is the number of M-branes,
the superconformal index is calculated from the bulk Kaluza-Klein modes. In our study, we
calculate the superconformal indices in the finite-N region. So far, the study of AdS/CFT in
the finite-N region has been thought to be difficult due to quantum gravity effects. However,
if we utilize the robust nature of supersymmetry, there is a possibility to avoid this problem.
We assume that at the level of the superconformal index the quantum gravity effects are not
required. Further, in the finite-N region, we need additional contributions to the indices. At
finite-N , the contribution of M-branes becomes effective, and to calculate finite-N corrections
we have to include the contribution of M-branes wrapped on the internal space. Actually,
calculating the contribution of the M-branes to the indices is the main work in this thesis.

For the ABJM theory, the finite-N corrections to the index are given by M5-branes
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wrapped on a large S5 in the internal space S7. We confirm the validity of our formula by
comparing the results of our formula with the localization results of the ABJM indices.

For the 6d N = (2, 0) theory, the finite-N corrections to the index are given by M2-
branes wrapped on a large S2 in S4. We give new results of superconformal indices of the
six-dimensional theories by using our method and decompose them in terms of the supercon-
formal representations. In addition, we analyze a special limit of the superconformal index
called the Schur-like index.

We also analyze the M-brane theories in the presence of the Zk orbifolds. For the orbifold
cases, the AdS/CFT correspondence claims that the 3d ABJM theory with Chern-Simon
level k corresponds to M-theory on AdS4×S7/Zk, and the 6d N = (1, 0) theory corresponds
to M-theory on AdS7×S4/Zk. We analyze the indices of these SCFTs from the dual gravity
theories. For 6d N = (1, 0) theories, in particular, we confirm strange flavor symmetries of
the theories via the superconformal indices.
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Chapter 1

Introduction

Standard Model based on Quantum Field Theory (QFT) is a well-established framework in
theoretical physics to describe our world. However, it is inadequate in some respects. One
of the big problems is the missing of quantum gravity.

String theory is one candidate for theory including quantum gravity. There are five types
of consistent superstring theories:

• Type I superstring theory

• Type IIA superstring theory

• Type IIB superstring theory

• E8 × E8 heterotic superstring theory

• SO(32) heterotic superstring theory

The idea that these five superstring theories have the same origin and there exists a
unique underlying fundamental theory was proposed by Witten in 1995 [1], the theory is
called M-theory. 1

The precise definition of M-theory is still missing, but at least the theory has the following
properties:

• In the low energy limit, M-theory is described by 11-dimensional supergravity.

• In a certain compactification, M-theory reproduces string-theory. Especially, S1 com-
pactification of M-theory gives type IIA superstring theory.

Since 11-dimensional supergravity contains a 3-form gauge field, M-theory has corre-
sponding objects coupled to it. The electrically coupled object is called an M2-brane, and
the magnetically coupled object is called an M5-brane. These M2-/M5- branes are objects
expanding in 2+1/5+1 spacetime dimensions. Since these M-branes are fundamental objects

1The word “M-theory” was first used in [2]
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CHAPTER 1. INTRODUCTION

M-theory
Type I

E8×E8       Hetero

Type IIB

Type IIA

SO(32)        Hetero

Figure 1.1: A schematic illustration of the relation between M-theory and five types of
superstring theories is shown.

in M-theory, studying the nature of these branes is an important problem to understand
M-theory.

Let us first recall the situation in the superstring theory. The discovery of D-branes in the
era of second revolution [3] provides us great insights for understanding the superconformal
field theories (SCFTs). We have learned that various SCFTs can be constructed as low
energy theories realized on D-branes and we can analyze them by open string perturbations.

However, the situation is different for M-theory and analyzing the field theories on M2-
/M5- branes are quite difficult. This is because we do not know how to quantize M2-/M5-
branes. To avoid this problem, in this thesis, we use the AdS (Anti de Sitter) /CFT (Con-
formal Field Theory) correspondence [4]. The AdS/CFT correspondence, which is one of the
greatest successes in string- (M-) theory, is a conjecture that claims the equivalence of a cer-
tain CFT and the corresponding gravity system. The equivalence of the two systems enables
us to analyze two systems complementarily. The most famous example of the AdS/CFT
is the correspondence between the N = 4 U(N) supersymmetric Yang-Mills (SYM) theory
and type IIB superstring theory on AdS5 × S5. This correspondence is understood by a N
D3-branes system in type IIB superstring theory.

When N is large, the corresponding gravity theory is well approximated by classical
supergravity. Therefore in this large-N region, AdS/CFT is well established and we can
easily study physics of strongly coupled field theory by using AdS/CFT.

In this thesis, we rather try to analyze in the finite-N region. In general, due to quantum
gravity effects, it was thought to be hard to use AdS/CFT in the finite-N region. However,
there is a possibility that such quantum gravity effects might not affect supersymmetric
protected quantities. From this assumption, we consider a quantity called a superconformal
index. In short, the superconformal index is a kind of partition function, which includes the
information of local gauge invariant operators.

The main theme of this thesis is to study theories realized on M2-/M5- branes via the
superconformal index. The theory on M2-branes is called the Aharony-Bergman-Jafferis-
Maldacena (ABJM) theory [5] and the theory on M5-branes is called the 6d N = (2, 0)

10



CHAPTER 1. INTRODUCTION

theory. We propose a new method of calculating the superconformal indices of these theories
from their dual gravity theories.

It is well known that, in the large-N limit, the superconformal indices are calculated from
the bulk Kaluza-Klein modes of dual gravity theories. Recently, finite-N corrections to the
index was calculated for some four-dimensional SCFTs [6, 7, 8, 9, 10]. In particular, in [6],
the authors studied the superconformal index of the N = 4 U(N) SYM theory from dual
type IIB string theory on AdS5 × S5. In this case, they found that D3-branes wrapping on
three-cycles in S5 give finite-N corrections to the index and the index of the N = 4 U(N)
SYM theory was reproduced from the dual theory even in the finite-N region. Also, for
other four-dimensional SCFTs, finite-N corrections to the indices were calculated from their
dual gravity theories by introducing contributions of D3-branes in some three-cycles in the
internal spaces.

We generalize their formulas to the M-brane theories and propose a method of calculating
the indices which is available even in the finite-N region. For our M-theory setup, finite-
N corrections to the indices are calculated from contributions of M-branes instead of D-
branes. Namely, we will see finite-N corrections to the indices of ABJM theories are given
by contributions of M5-branes in S7 from dual M-theory on AdS4 × S7 and also finite-N
corrections to the indices of 6d (2,0) theories are given by contributions of M2-branes in S4

from dual M-theory on AdS7 × S4.
For M2-brane theories, the theories of multiple M2-branes are described by the ABJM

theories and the indices of the ABJM theories were calculated in [11] by using the localization
method. We compare the indices calculated by using our formula with ABJM indices and
find a nice agreement even in the finite-N region.

For M5-brane theories, unlike the situation of M2-branes, the Lagrangians of theories
on multiple M5-branes are not yet known. Thus we cannnot use the localization method to
obtain the index except for N = 1. For the 6d theories, by using our formula, we propose new
results for the indices of these unknown theories. Further, for the orbifold case, we confirm
strange flavor symmetries of 6d N = (1, 0) theories via the superconformal indices.

This thesis is organized as follows.
In the rest of Chapter 1, we review the basic facts about type IIA superstring theory,

M-theory, the AdS/CFT correspondence, and the superconformal index. In particular, we
explain the low energy description of M-theory: eleven-dimensional supergravity, and the
basics of M-theory focused on M2-/M5- branes. Then we review the low energy limit of
type IIA superstring theory: ten-dimensional type IIA supergravity, the basics of type IIA
superstring theory mainly focused on charged objects appearing in type IIA superstring
theory, and the relation between type IIA superstring theory and M-theory. We then explain
the basics of the AdS/CFT correspondence. Also, we introduce the superconformal index as
a generalized Witten index and discuss the calculation method of the index. We also discuss
the supersymmetric localization, which is an essential technique to perform exact analyses
of supersymmetric field theories.

In Chapter 2, we review previously known superconformal indices of theories realized on
M2-branes. We first explain the theory realized on a single M2-brane and calculate its index.
Since the single M2-brane theory is a free theory, this can be easily done. Then, we review
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CHAPTER 1. INTRODUCTION

theories on multiple M2-branes and their superconformal indices. We show explicit results
for small N . We also review the index calculation from the dual gravity side in the large-N
limit. We give the explicit result of the index from the Kaluza Klein modes. In addition, we
discuss the Zk orbifold case and calculate the index for this case.

In Chapter 3, we review previously known superconformal indices of theories realized on
M5-branes. We first explain a single M5-brane theory and calculate the index of the theory.
Then, we show the large-N index, which can be calculated from the dual supergravity in
AdS7 × S4 by using AdS/CFT correspondence.

In Chapter 4, we calculate the superconformal indices of M2-brane theories from the dual
gravity side at finite-N . This chapter is based on the author’s and his collaborator’s original
work [12]. We compare our results with the indices of ABJM theories calculated in Chapter
2 and confirm the validity of our formula. We also perform the same analysis for the orbifold
case.

In Chapter 5, we calculate the superconformal indices of M5-brane theories at finite-N
from the dual gravity side. This analysis is based on our paper [12]. We compare our result
with the N = 1 6d N = (2, 0) index and confirm our formula for the 6d case. Further,
we give new results for the 6d indices with N > 1. We also study the 6d N = (1, 0) case
corresponding to the Zk orbifold case, which is based on our paper [13].

Chapter 6 is devoted to the conclusions.

1.1 M-theory

1.1.1 11-dimensional supergravity

Let us first discuss the eleven-dimensional supergravity, which is believed to be the low energy
description of M-theory. Eleven dimensions are the largest dimensions of supergravity theory
with spins ≤ 2 [14]. As a field content, this theory contains a graviton gMN , a rank 3 anti-
symmetric tensor field AMNP and their supersymmetric partner called gravitino ΨM , where
M,N,P = 0, 1, ..., 9, 11 are spacetime indices in eleven dimensions. Since the the theory is
supersymmetric, the bosonic degrees of freedom 44+84matches fermionic degrees of freedom
128, see Table 1.1.

field contents of 11d supergravity
graviton gMN 44

3-form gauge field AMNP 84
gravitino ΨM 128

Table 1.1: field contents and degree of freedom of 11d supergravity are shown.

From the requirement of the supersymmetry and invariance under general coordinate
transformation and local Lorentz transformation, the action of the 11-dimensional super-
gravity (with two or fewer derivatives) is uniquely determined up to field redefinitions. The
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CHAPTER 1. INTRODUCTION

bosonic part of the action is given by

S =
1

16πG11

[∫
d11x

√
−g
(
R− 1

2
|F4|2

)
− 1

3!

∫
A3 ∧ F4 ∧ F4

]
, (1.1)

where G11 is the 11-dimensional Newton constant, which is related to the 11-dimensional
Planck length lp by

16πG11 =
1

2π
(2πlp)

9. (1.2)

Also, R is the Ricci scalar and F4 is a four form field strength defined by F4 = dA3 and g is
the determinant of the metric.

Differential form

For a rank p anti-symmetric tensor field Aµ1...µp , we can define the p-form Ap as

Ap =
1

p!
Aµ1...µpdx

µ1 ∧ · · · dxµp , (1.3)

where ∧ is a wedge product satisfying

dxµ ∧ dxν = −dxν ∧ dxµ. (1.4)

We can define the exterior derivative d as follows:

dAp =
1

p!
∂µAµ1...µpdx

µ ∧ dxµ1 ∧ · · · dxµp . (1.5)

We also define

|Fp|2 =
1

p!
gµ1ν1 · · · gµpνpFµ1...µpFν1...νp . (1.6)

1.1.2 M-brane

To see the relation between the eleven-dimensional supergravity and M-theory, we first ex-
plain “M-branes”, which are extended objects in M-theory. To introduce M-branes, let us
first recall the ordinary 4d electromagnetism. The action of the particle of mass m with
charge q is given by

S = −m
∫
C

ds+ q

∫
C

A1, (1.7)

where C is a worldline of the particle and A1 = Aµdx
µ is a 1-form gauge field. The sec-

ond term of the action represents the coupling of the charged particle and the 1-form field.
This charged particle can be regarded as the 0-brane. This term can be easily generalized
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CHAPTER 1. INTRODUCTION

to the higher form fields in other dimensions. As we saw in the previous subsection, the
11-dimensional supergravity contains 3-form gauge potential A3. Then, in M-theory the cor-
responding charged objects exist. The electrically charged object is called the M2-brane.
The M2-brane couples to the 3-form potential by

SM2 = qM2

∫
VM2

A3, (1.8)

where qM2 is the charge of the M2-brane and VM2 is a three-dimensional hypersurface swept
by the M2-brane. We call such hypersurfaces as worldvolume. Hence, the M2-brane is a
membrane which spatially expands in two dimensions. (In general, a p-brane is an object
whose spatial dimension is p.)

We can also introduce the magnetically charged object called the M5-brane. By denoting
the dual field of A3 as A6, the coupling of the M5-brane and A6 is given by

SM5 = qM5

∫
VM5

A6, (1.9)

where qM5 is the charge of the M5-brane and VM5 is the worldvolume of the M5-brane whose
dimension is 5+1. The detailed analysis shows that charges qM2 and qM5 are given by

qM2 =
2π

(2πlp)3
, qM5 =

2π

(2πlp)6
. (1.10)

The first term of (1.7) is also easily generalized to the p-brane case. The action is called
the Nambu-Goto action and is given by

SNG = −T
∫
dp+1σ

√
− detGab, (1.11)

where σa (a = 0, ..., p) are coordinates on the brane and Gab is the induced metric defined by

Gab =
∂xM

∂σa

∂xN

∂σb
gMN , (1.12)

with gMN is the metric of the eleven-dimensional target space. The integral in (1.11) now
gives the worldvolume of the p-brane instead of worldline and also the coefficient T is the
tension of the brane. Note that the whole action of the brane includes fermionic and gauge
fields contribution which we omit here, but these terms are not necessary to the analysis in
the rest of this thesis.

BPS M-brane

In the supersymmetry algebra of 11 dimensions, the commutation relation of supercharges is
given by

{Q,Q†} = (ΓMΓ0)P
M , (1.13)
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CHAPTER 1. INTRODUCTION

where the supercharge Q is a 32-component spinor and each component is hermitian and
ΓM(M = 0, 1, ..., 9, 11) are the Gamma matrices in eleven dimensions.

It is also possible to add more central charges:

{Q,Q†} = (ΓMΓ0)P
M +

1

2
(ΓMNΓ0)Z

MN
M2 +

1

5!
(ΓM1...M5Γ0)Z

M1...M5
M5 , (1.14)

where ZMN
M2 and ZM1...M5

M5 are central charges associated to the M2-brane and M5-brane re-
spectively. Note that due to the symmetric nature of the indices on the left-hand side, only
these two central charges are allowed.

Let us consider a situation with only non-vanishing Z12
M2. In the frame P 0 = E, the

anti-commutation relation (1.14) becomes

{Q,Q†} = E + (Γ12Γ0)Z
12
M2 (1.15)

Due to the positivity of the left hand side and the fact that eigenvalues of the Γ12Γ0 is ±1,
we can find

E ≥ |Z12
M2|. (1.16)

This bound is called the Bogomol’nyi-Prasad-Sommerfield (BPS) bound. We normalize Z12
M2

such that the single M2-brane has charge 1. Then we obtain

E ≥ qM2|Z̃12
M2| (1.17)

The prefactor declares the energy of a single M2-brane of unit volume, i.e. the tension of BPS
M2-brane, thus from the first relation in (1.10) we obtain the follwing M2-brane tension:

TM2 =
2π

(2πlp)3
. (1.18)

Next, we consider the BPS M5-brane. similarly to the M2-brane case, we consider non-
vanishing Z12345

M5 and P 0 = E while other terms are zero:

{Q,Q†} = E + (Γ12345Γ0)Z
12345
M5 (1.19)

This leads to the following inequality.

E ≥ |Z12345
M5 | (1.20)

Again, we normalize Z12345
M5 such that the single M5-brane has charge 1 and obtain

E ≥ qM5|Z̃12345
M5 |, (1.21)

Then, from the second relation in (1.10) we obtain the follwing M5-brane tension:

TM5 =
2π

(2πlp)6
. (1.22)
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1.2 Type IIA superstring theory

Among five types of superstring theories, the theory with N = (1, 1) supersymmetry is called
type IIA superstring theory which is non-chiral in ten dimensions. Let us first see its low
energy effective theory, type IIA supergravity.

1.2.1 Type IIA supergravity

Type IIA supergravity theory is a ten-dimensional supergravity theory. This theory contains
graviton gµν (µ, ν = 0, 1, ..., 9), 2-form field called B-field Bµν , dilaton ϕ, Ramond-Ramond
fields Cµ, Cµνρ, and also fermionic fields. The field contents are summarized in Table 1.2.

Type IIA supergravity multiplet
graviton gµν 35

NS-NS 2-form Bµν 28
dilaton Φ 1

RR 1-form Cµ 8
RR 3-form Cµνρ 56

gravitino Ψ
(+)
µ 56+

gravitino Ψ
(−)
µ 56−

dilatino λ(+) 8+

dilatino λ(−) 8−

Table 1.2: The field contents of type IIA supergravity theory are listed.

The bosonic part of the ten-dimensional type IIA supergravity consists of three parts.

SIIA = SNS + SR + SCS. (1.23)

The first term SNS is given by

SNS =
1

2κ2

∫
d10x

√
−ge−2Φ

(
R + 4∂µΦ∂

µΦ− 1

2
|H3|2

)
, (1.24)

where H3 = dB2. The second term SR is given by

SR = − 1

4κ2

∫
d10x

√
−g
(
F 2
2 + F̃ 2

4

)
, (1.25)

where F2 = dC1 and F̃4 is defined by

F̃4 = dC3 + C1 ∧H3. (1.26)

Finally, the last term SCS is

SCS = − 1

4κ2

∫
d10x

√
−g (B2 ∧ F4 ∧ F4) , (1.27)
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The relation of string length ls and string coupling constant gs and 10d Newton constant
κ is as follows:

2κ2 = 2κ210/g
2
s =

1

2π
(2πls)

8. (1.28)

16πG10 = 2κ210 =
1

2π
(2πls)

8g2s . (1.29)

1.2.2 Objects in type IIA superstring theory

Since type IIA supergravity contains various higher rank gauge fields, type IIA superstring
theory has corresponding extended objects couple to those fields.

Fundamental string

The most important one is the fundamental string F1. The F1 string electrically couples to
2-form B-field. The motion of the string is described by the following Polyakov action:

SPolyakov = −TF1

2

∫
d2σ

√
−hhab∂aXµ∂bXµ, (1.30)

where the tension of the string TF1 is given by

TF1 =
1

2πl2s
. (1.31)

The length ls is called string length, a unique length of the string world sheet action.

Dp-brane

The Dp-brane is an object that electrically couples to R-R p + 1 form (or dual 7 − p form).
Type IIA superstring theory contains Dp-branes with p = 0, 2, 4, 6, 8. The action of Dp-brane
is given by Dirac-Born-Infeld type action:

SDBI = − 2π

(2πls)p+1

∫
dp+1σe−Φ

√
− det(Gab +Bab + 2πl2sFab). (1.32)

The vacuum expectation value of the dilaton gives the string coupling constant gs = e<Φ>.
Then the tension of Dp brane is given by

TDp =
2π

(2πls)p+1gs
. (1.33)
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NS5-brane

NS5-brane is an object that magnetically couples to 2-form B field. Let µF1 be a unit B-field
electric charge of a fundamental string. Also, let µNS5 be a unit B-field magnetic charge of
an NS5-brane. The Dirac quantization condition reads

µF1µNS5 · 2κ210 ∈ 2πZ. (1.34)

Thus, the magnetic charge of a NS5-brane is given by

µNS5 =
2π

(2πls)6g2s
. (1.35)

For supersymmetric NS5-brane, this should be equal to the tension of NS5-brane, hence we
obtain the following tension of NS5-brane:

TNS5 =
2π

(2πls)6g2s
. (1.36)

1.3 Relation between M-theory and type IIA super-

string theory

1.3.1 11d/IIA supergravity

The 11-dimensional supergravity action is related to the type IIA supergravity action by
the dimensional reduction. We compactify eleven-dimensional direction x11 as a circle with
radius R11.

Let us roughly see how the bosonic field contents of the two theories are related. The
3-form field AMNP in 11 dimensions gives the RR 3-form field Cµνρ and the 2-from B-field
Bµν in IIA supergravity:

Aµνρ ∼ Cµνρ, Aµν11 ∼ Bµν . (1.37)

The metric g
(11)

MN in 11 dimension reduces to 10 d metric gµν
(10) and RR 1-form Cµ and dilaton

Φ:

g(11)µν ∼ g(10)µν , g
(11)
µ11 ∼ Cµ, g

(11)
11,11 ∼ Φ. (1.38)

1.3.2 M/IIA

Let R11 be a radius of compactification circle in M-theory. We can relate M-theory with type
IIA string theory by the following parameter identification

l3p = l3sgs, (1.39)
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together with the relation of the Newton constant in 11 dimension and 10 dimension

G11 = 2πR11G10. (1.40)

These two relations imply that in terms of ls and gs, radius R11 is given by

R11 = gsls. (1.41)

This means that the uncompactifying limit R → ∞ corresponds to the strong coupling limit.
Namely, M-theory is the strong coupling limit of the type IIA string theory.

Various objects in type IIA string theory are also obtained from M-theory. We first
discuss the compactification of the M2-brane. We can consider two cases depending on
whether the M2-brane is wrapped around the compactified direction S1 or not. When an
M2-brane wrapped around the S1, it becomes a fundamental string. Actually, from the
equations (1.39) and (1.41), the tension of the M2-brane and the tension of the fundamental
string are related with

2πR11TM2 = TF1. (1.42)

On the other hand, an M2-brane not spreading along S1 direction becomes a D2-brane. We
can easily find the following relation between the tension of M2-brane and M2-brane.

TM2 = TD2. (1.43)

Next, we consider the compactification of the M5-brane. When an M5-brane is wrapped
around the S1, it becomes a D4-brane. We can find the relation between the tensions of these
objects

2πR11TM5 = TD4. (1.44)

On the other hand, if an M5-brane does not wrap the S1 direction, it becomes an NS5-brane.
We can confirm the following relation

TM5 = TNS5. (1.45)

We show a list of the relation between objects in M/IIA theory in Table 1.3.

1.4 AdS/CFT correspondence

The AdS/CFT correspondence is a conjecture of a duality between a certain CFT and the
corresponding gravity theory in AdS spacetime, which was proposed in 1997 [4]. Let us
first see the most famous example, the correspondence between the four-dimensional N = 4
U(N) SYM theory and type IIB string theory on AdS5 × S5. This correspondence can be
understood by a N D3-branes system. We consider a stack of N D3-branes in ten-dimensional
spacetime. We have two points of view of the system. First, the field theory view comes from
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dimension object in M-theory S1 tension object in IIA tension
0 KK-particle 1

R11
D0-brane 1

gsls

1 M2-brane ◦ 2π
(2πlp)3

F1-string 1
2πl2s

2 M2-brane 2π
(2πlp)3

D2-brane 2π
(2πls)3gs

4 M5-brane ◦ 2π
(2πlp)6

D4-brane 2π
(2πls)5gs

5 M5-brane 2π
(2πlp)6

NS5-brane 2π
(2πls)6g2s

6 KK-monopole
R2

11

(2π)6l9p
D6-brane 2π

(2πls)7gs

Table 1.3: The relation of objects appearing in M/IIA theory

the worldvolume theory on the D3-branes. At the low energy limit, four-dimensional N = 4
U(N) SYM theory is realized on the D3-branes. On the other hand, the geometry created by
the D3-branes becomes AdS5 × S5 in the near horizon limit. Thus, the N D3-branes system
in the near horizon limit is described by type IIB superstring theory on AdS5 × S5. The
AdS/CFT correspondence argues that these two descriptions are equivalent.

Here, we show the parameter relations of the system. In the AdS/CFT correspondence,
the Yang-Mills coupling gYM of the gauge theory, the string coupling gs, the string length ls,
the AdS radius L, and the number of D3-branes N are related by the following relations.

g2YM ∼ gs, L4 ∼ gsNl
4
s . (1.46)

Note that in the region where λ ≡ g2YMN ≫ 1 and N ≫ 1, the CFT is in the strongly coupled
region, and the gravity theory is approximated by the classical type IIB supergravity.

Now we consider M-theory setup. For a stack of N M2-branes in eleven-dimensional
spacetime, the near horizon geometry becomes AdS4 × S7. See Subsection 2.5.1 for more
detail. On the other hand, the worldvolume theory on the M2-branes is described by the
ABJM theory. Therefore, the AdS/CFT correspondence argument is the following.

• M-theory on AdS4 × S7 is equivalent to the ABJM theory.

Similarly, if we consider a stack of N M5-branes, the near horizon geometry becomes AdS7×
S4. See Subsection 3.4.1 for more detail. The worldvolume theory on the M5-branes is called
the 6d N = (2, 0) theory, and AdS/CFT statement is the following.

• M-theory on AdS7 × S4 is equivalent to the 6d N = (2, 0) theory.

1.5 Superconformal index

1.5.1 Witten index

To study quantum field theories in the strong coupling region, it is useful if we can define a
quantity which does not depend on the coupling constant. Fot theories with supersymmetry,
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we can define such a quantity. The simplest one is called the Witten index [15]. The Witten
index is defined by

IW = trH
[
(−1)F e−β∆

]
, (1.47)

where trace is taken over all states of the theory, F is the fermionic number which gives 0
for bosons and 1 for fermions. ∆ is the operator obtained from the anticommutaion relation
of a supercharge Q and its hermitian conjugate Q†

∆ = {Q,Q†}. (1.48)

Note that for the supersymmetric quantum field mechanics this ∆ gives the Hamiltonian of
the theory. These supercharges have nilpotent nature Q2 = (Q†)2 = 0. Thus, ∆ and Q (Q†)
is commutative,

[∆, Q] = [∆, Q†] = 0. (1.49)

By using these features, we can show that ∆ is positive definite. Let be |ψ⟩ an eigenstate of
∆:

∆ |ψ⟩ = ∆ |ψ⟩ . (1.50)

Sandwiching (1.48) by |ψ⟩, we obtain

∆ = |Q |ψ⟩ |2 + |Q† |ψ⟩ |2 ≥ 0. (1.51)

Here we used positivity of the norm since we are interested in unitary theories.
Next, we show that the Witten index receives contributions from only ∆ = 0 states. Let

C∆0 be sets of states with positive energy ∆ = ∆0 > 0. If a state |ϕ⟩ is included in C∆0 , then
we can write

|ϕ⟩ = ∆0

∆0

|ϕ⟩ = Q
Q†

∆0

|ϕ⟩+Q† Q

∆0

|ϕ⟩ . (1.52)

Among C∆0 , we represent a set of states annihilated by Q as CQ
∆0

and a set of states annihi-

lated by Q† as CQ†

∆0
. Then C∆0 can be written as

C∆0 = CQ
∆0

+ CQ†

∆0
. (1.53)

Since the action of Q† on |ϕ⟩ is given by

Q† |ϕ⟩ = Q†Q
Q†

∆0

|ϕ⟩+Q†Q† Q

∆0

|ϕ⟩ (1.54)

= Q†Q
Q†

∆0

|ϕ⟩ , (1.55)
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this gives the 1 to 1 map from CQ
∆0

to CQ†

∆0
. Actually, if we represent a state in CQ

∆0
as |ϕQ⟩,

QQ† |ϕQ⟩ =
(
∆0 −Q†Q

)
|ϕQ⟩ = ∆0 |ϕQ⟩ (1.56)

holds and Q/∆0 gives the inverse map. Hence, states of positive energy always appear with a
pair of bosonic state and a fermionic state, and contribution of the index is canceled out each
other due to the (−1)F factor. Thus, only the states with ∆ = 0 contribute to the Witten
index and the Witten index is also expressed as

IW = (# of bosonic states with ∆ = 0) − (# of fermionic states with ∆ = 0) (1.57)

If we change a parameter of the theory, say a coupling constant, some states may be
excited and both the number of bosonic states with ∆ = 0 and the number of fermionic
states with ∆ = 0 could change. However, the difference between them, i.e., the Witten
index, does not change since the states with ∆ > 0 always form a pair of a bosonic state and
a fermionic state.

So far, we have seen that the Witten index (1.47) receives contributions only from states
with ∆ = 0. This indicates that the index is actually independent of β. We can directly
check this fact by differentiating the Witten index

dIW

dβ
= − trH

[
(−1)F∆e−β∆

]
= 0. (1.58)

This follows from the equation below obtained from cyclic nature of the trace:

trH
[
(−1)FQQ†e−β∆

]
= − trH

[
(−1)FQ†Qe−β∆

]
. (1.59)

The condition ∆ = 0 is the necessary and sufficient condition for

Q |ψ⟩ = Q† |ψ⟩ = 0. (1.60)

Hence, these states preserve the supersymmetry and calld the Bogomol’nyi-Prasad-Sommerfield
(BPS) states.

If the Witten index is not zero, this ensures the existence of zero energy states, so super-
symmetry is not spontaneously broken. However, if the Witten index is zero, we have two
possibilities.

• Neither bosonic zero energy states nor fermionic zero energy states exist. Therefore,
supersymmetry is broken.

• The equal number of bosonic zero energy states and fermionic zero energy states exist.
Therefore, supersymmetry is unbroken.

Unfortunately, in this situation we cannot distinguish these two cases.
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1.5.2 Example: a supersymmetric harmonic oscillator

Let us consider the Witten index of a supersymmetric harmonic oscillator as a simple example
[16]. The Lagrangian of a supersymmetric harmonic oscillator which includes a bosonic
corrdinate x and its fermionic partner ψ, ψ̄, is given by

L =
1

2
ẋ− 1

2
x2 + iψ̄ψ̇ − ψ̄ψ. (1.61)

The corresponding Hamiltonian is

H =
1

2
p2 +

1

2
x2 + ψ̄ψ. (1.62)

We consider the quantum mechanics described by the Hamiltonian with commutation re-
lations [x, p] = i and {ψ, ψ̄} = 1. The bosonic creation and the annihilation operator are
defined as

a†B =
1√
2
(−ip+ x), aB =

1√
2
(ip+ x), (1.63)

which satisfy

[aB, a
†
B] = 1. (1.64)

On the other hand, the fermionic creation and the annihilation operator are given by

a†F = ψ̄, aF = ψ, (1.65)

which satisfy

{aF , a†F} = 1. (1.66)

In terms of these operators the Hamiltonian is given by

H = a†BaB + a†FaF . (1.67)

We define supercharges as

Q = a†BaF , Q† = a†FaB. (1.68)

This satisfy following algebra

{Q,Q†} = H, [H,Q] = [H,Q†] = 0. (1.69)

The usual thermal partition function is given by

Z = trH x
H =

1 + x

1− x
, x = e−β (1.70)

The Witten index is given by

IW = trH(−1)FxH = 1. (1.71)
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1.5.3 Superconformal index as generalized Witten index

In the presence of additional global symmetries, we can generalize the Witten index by adding
fugacities associated with the symmetries. Then the generalized Witten index has following
form:

I = tr
[
(−1)F e−β∆µMi

i

]
, (1.72)

∆ = {Q,Q†}. (1.73)

where Mi are generators of global symmetries and µi are associated fugacities. In order to
repeat the discussion in the previous subsection, the generators Mi must commute Q and Q†

(hence commute with ∆). Then, again boson/fermion cancellation occurs for ∆ > 0 states
and the generalized Witten index receives contributions from ∆ = 0 states, meaning that the
index (1.72) is independent of β.

In general, to remove the IR divergence, quantum field theories are defined on a compact
manifold with finite volume. For Witten indices of d dimensional field theories, the torus
T d−1 is usually used. Instead of T d−1, We can also use a d − 1 dimensional sphere Sd−1. In
addition, if the theory has conformal symmetry, we can relate a state defined on Sd−1×R with
an operator inserted at the origin of Rd. Therefore, in such a case the index has information
on local gauge invariant operators. The index is especially called the superconformal index
[17]. In this case, Mi can contain generators of a subalgebra of the superconformal symmetry
which commute with Q and Q† and also generators of other global symmetries in the theory.

This superconformal index is the main tool we use throughout this thesis. See Chapter 2
and 3 for precise definition of the superconformal index in 3 and 6 dimensions.

1.5.4 Calculation of the superconformal index for free theories

To calculate the superconformal index, it is useful to define “plethystic exponential” Pexp
by

Pexp [f(xi)] = exp

[
∞∑
n=1

1

n
f(xni )

]
. (1.74)

This is equivalent to the replacement of monomial cixi to
1

(1−xi)ci
:

Pexp

[∑
i

cixi

]
=
∏
i

1

(1− xi)ci
. (1.75)

Let us explain how to calculate the superconformal index for free theories. For theories
without gauge symmetry, the superconformal index is easily calculated by the plethystic
exponential of the single-particle index isp:

I = Pexp[isp] (1.76)
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For theories with gauge symmetry, we have to pick up the gauge singlet states. This is
achieved by the following integral:

I =

∫
dµPexp[isp], (1.77)

where dµ is the Haar measure and isp is a single-particle index including the gauge fugacities.

1.5.5 Localization formula

In general, it is difficult to calculate the partition function of quantum field theories exactly
since it contains an infinite-dimensional integral, i.e., a path integral. However, if a theory has
supersymmetry , sometimes we can reduce infinite-dimensional integral to finite-dimensional
integral, and the calculation of the exact partition function becomes possible. This method
is called supersymmetric localization [18]. The localization method is a very powerful tool
and is widely used in supersymmetric gauge theories. For the concrete examples/review see
[19] and reference there in.

In this subsection, we shortly review the mechanism of the supersymmetric localization.
We consider the following partition function in a compact manifold M:

ZM =

∫
Dϕe−S[ϕ]. (1.78)

Of course, this is an infinite dimensional integral, and it is difficult to carry out the integral
generally. We perform following deformation by adding Q-exact term with parameter t.

ZM =

∫
Dϕe−S[ϕ]−tQV [ϕ], (1.79)

where V [ϕ] is a fermionic (Grassmann odd) function and we demand Q2V [ϕ] = 0. Note that
the original action is invariant under the transformation of Q: QS[ϕ] = 0. Also, t ≥ 0 is a
deformation parameter and t = 0 reproduces the original partition function ZM = ZM(t = 0).
It seems that ZM(t) depends on t, but it is not true. To ses this, we derivatiate (1.79) by t
and find

dZM(t)

dt
= −

∫
DϕQV e−S−tQV = −

∫
DϕQ

(
V e−S−tQV

)
= 0, (1.80)

where we used QS[ϕ] = 0 and assumed that the integral measure is invariant. Hence, the
equation (1.79) is independent of t. For the calculation we take t→ ∞ limit

ZM = lim
t→∞

ZM(t). (1.81)

We choose V [ϕ] satisfying QV [ϕ] ≥ 0, then at t → ∞ contributions of QV [ϕ] > 0 are
suppressed and only the saddle points configurations satisfying QV [ϕ] = 0 contribute to the
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path integral. Let us denote the saddle points by ϕn. Now, the path integral reduces to
Gauss integral around ϕn. To perform this, we take

ϕ = ϕn + t−
1
2 ϕ̂. (1.82)

Substituting this for the deformed action, we obtain

S + tQV = S[ϕn] + (QVϕn)
(2) [ϕ̂] +O(t−

1
2 ), (1.83)

where (QVϕn)
(2) [ϕ̂] is the second order term of ϕ̂ and the first order term vanishes since

QV [ϕn] is a local minimum of QV [ϕ]. Then the partition function becomes

ZM =
∑
n

e−S(ϕn)Z1−loop(ϕn), Z1−loop(ϕn) =

∫
Dϕ̂e−(QVϕn)

(2)
[ϕ̂]. (1.84)

where Z1−loop(ϕn) represents the Gauss integral and often called the 1-loop determinant. Here
we assumed that saddle points are discrete. If not, we need integration along the spreading
direction.
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Chapter 2

Superconformal indices of M2-brane
theories

In this chapter, we review the superconformal indices of theories realized on M2-branes.
The theory on a single M2-brane is described by free scalar fields and their supersymmetric
partners. Therefore, its index calculation is relatively simple.

When the number of M2-branes N is larger than one, how theories on multiple coincident
M2-branes are described has been a long-standing problem in itself. For the N = 2 case,
Bagger, Lambert, and Gusstavson succeeded to construct a 3d N = 8 Chern-Simons theory
which describes the theory on the two M2-branes [20, 21, 22, 23, 24], and now it is called
the BLG model. Unfortunately, this theory was not successful in describing an arbitrary
number of M2-branes. After while, Aharony, Bergman, Jafferis, and Maldacena proposed a
3d Chern-Simons matter theory describing arbitrary number of M2-branes [5]. The theory is
called the ABJM theory. The superconformal index of the ABJM theory was first calculated
in [11] by using the supersymmetric localization method. We shortly review their results in
this chapter.

In the large-N limit, the dual supergravity calculation is also useful. The AdS/CFT
correspondence claims that the ABJM theory in the large-N limit is equivalent to the eleven-
dimensional supergravity on AdS4 × S7. Hence, the calculation from the dual supergravity
theory is possible. We review the basic concepts of the AdS/CFT correspondence and the
index calculation from the supergravity in large-N .

The goal of this chapter is to show the explicit result of the superconformal indices of the
following theories:

• the theory on a single M2-brane (N = 1)

• the ABJM theory (arbitrary N)

• the dual supergravity theory (N = ∞)

In the last two sections of this chapter, we also discuss the orbifolding case, i.e. theories
realized on M2-branes on C4/Zk.
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2.1 The definition of the superconformal indices for

M2-brane theories

We consider a stack of N M2-branes expanding in x0 ∼ x2 directions as in Table 2.1 or Figure
2.1.

0 1 2 3 4 5 6 7 8 9 11
M2-branes ◦ ◦ ◦

Table 2.1: The configuration of M2-branes are shown. The M2-branes are expanding in
x0 ∼ x2 direction, which are marked as ◦.

x0

x1,2

x3～ 9, x11

M2-branes

Figure 2.1: The schematic figure of the M2-branes are shown.

The system possesses SO(1, 2) Lorentz symmetry and SO(8) internal symmetry corre-
sponding to the rotation of transverse directions of the M2-branes. Let ϵ be a 32-component
spinor in eleven dimensions, which plays the role of supersymmetry transformation parame-
ter. The M2-branes break half of the supersymmetry and 16 of 32 supercharges survive. The
corresponding parameter satisfies

Γ0Γ1Γ2ϵ = ϵ. (2.1)
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Therefore, 3d N = 8 supersymmetry is preserved. Further, as we consider the low energy
limit, 3d N = 8 superconformal symmetry should be realized on the M2-branes. The 3d N =
8 superconformal algebra is Â = osp(8|4), whose bosonic subalgebra is so(2, 3)× so(8) ⊂ Â.
The generators are as follows 1:

Ĥ, Q̂i, Ŝi, P̂µ, K̂µ, R̂ab. Ĵµν , (2.2)

where Ĥ is Hamiltonian, Q̂i(Ŝi) are super (conformal) charges, P̂µ are momentum operators,

K̂µ are generators of special conformal transformations, R̂ab are R-symmetry generators ,and

Ĵµν are Lorenrz generators.
Let us define the superconformal index of the M2-brane theories. There are six Cartan

generators in Â:

Ĥ, Ĵ12, R̂12, R̂34, R̂56, R̂78. (2.3)

To define the superconformal index we choose one complex supercharge Q̂ that carries specific
Cartan charges. We take the one with the following quantum numbers:

Q̂ : (Ĥ, Ĵ12; R̂12, R̂34, R̂56, R̂78) = (+1
2
,−1

2
; +1

2
,+1

2
,+1

2
,+1

2
). (2.4)

The subalgebra of Â that keeps the above supercharge Q̂ is

B̂ × u(1)∆̂ ⊂ Â, (2.5)

where B̂ = osp(6|2) is the superalgebra whose bosonic subalgebra is sl(2,R) × so(6). The
central factor u(1)∆̂ is generated by

∆̂ ≡ {Q̂, Q̂†} = Ĥ − Ĵ12 −
1

2
(R̂12 + R̂34 + R̂56 + R̂78). (2.6)

The superconformal index associated with the BPS bound ∆̂ ≥ 0 is defined as the B̂ character
by 2

I(q̂, ûi) = tr[(−1)F x̂∆̂q̂Ĥ+Ĵ12ûR̂12
1 ûR̂34

2 ûR̂56
3 ûR̂78

4 ], û1û2û3û4 = 1. (2.7)

Due to the Bose-Fermi degeneracy for ∆̂ > 0 the index does not depend on x̂.

2.2 A single M2-brane

In this section, we consider the theory realized on a single M2-brane. We first show that the
theory is described by 8 free scalar fields and their fermionic partners. Then, we calculate
the superconformal index of the theory.

1Here, we use hats (ˆ) to distinguish from similar symbols in the next chapter. (We use hats for symbols
related to the 3d case and checks (ˇ) for symbols related to the 6d case.)

2The fugacities used here are related to those in Section 2 of [25] by q̂ = x, û1 = y
− 1

2
1 y

1
2
2 y

1
2
3 , û2 = y

1
2
1 y

− 1
2

2 y
1
2
3 ,

û3 = y
1
2
1 y

1
2
2 y

− 1
2

3 , and û4 = y
− 1

2
1 y

− 1
2

2 y
− 1

2
3 .
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2.2.1 Lagrangian

Let us consider the field theory realized on a single M2-brane. The M2-brane is expanding
in xa (a = 0, 1, 2) and infinitesimally oscillating in transverse xi (i = 3, ..., 9, 11) direction.
This configuration is again given by Table 2.1. We set the background metric as gMN = ηMN

(M,N = 0, 1, ..., 9, 11). For the worldvolume coordinates σa, we take σa = xa which is called
a static gauge. In this choice the induced metric is given by

Gab = ηab + ∂ax
i∂bx

i, (2.8)

where ∂a =
∂

∂σa . Then the Nambu-Goto action (1.11) reads

SNG = −TM2

∫
d3σ

(
1 +

1

2
(∂ax

i)2 + · · ·
)
, (2.9)

where · · · represent infinitesimal terms of order O ((∂x)4). The second term gives a kinetic
term for the scalar fields xi. We neglect constant term “1” which is not relevant to the
equation of motion and define scalar fields ϕi as

ϕi =
√
TM2x

i. (2.10)

Then the Nambu-Goto action becomes

SNG =

∫
d3σ

(
−1

2
(∂aϕ

i)2 + · · ·
)
. (2.11)

Further, by taking the decoupling limit TM2 → ∞, we can ignore the · · · terms because these
terms have T−1

M2 coefficient or higher. Therefore we obtain the action of 8 free massless scalar
fields:

SNG =

∫
d3σ

(
−1

2
(∂aϕ

i)2
)
. (2.12)

The eight scalar fields ϕi describe the fluctuation of the M2-brane. In addition, there exist
fermion fields which are supersymmetric parters of the scalar fields:

fields on the single M2-brane =

{
· 8 scalar fields ϕi (i = 1 ∼ 8)

· 8 Majorana fermions ψm (m = 1 ∼ 8)
(2.13)

The scalar fields belong to the so(8) vector representation and the fermion fields belonging
to the so(8) conjugate spinor representation.

The complete Lagrangian is given by

S =

∫
d3σ

(
−1

2
(∂aϕ

i)2 +
1

2
ψmγ

a∂aψm

)
. (2.14)

2.2.2 Superconformal index

Let us explicitly calculate the superconformal index for the single M2-brane theory. We define
the index as a formal power series of one of the fugacities q̂, which is roughly a fugacity for
the energy, and expand the index up to a certain order of q̂. 3

3Similary, for the 6d superconformal index we define the index as power series of q̌.
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Since the theory on the single M2-brane is a free theory of scalar and fermion fields, the
index is simply given by the plethystic exponential of the single-particle index

IM2
N=1 = Pexp iM2, (2.15)

where iM2 is the single-particle index of the fields on the M2-brane. The field contents and
their contributions to the index are summarized in Table 2.2. From this table, we can easily

H so(3) so(8) contribution to the index
Q 1

2
2 8s

ϕ 1
2

1 8v q̂
1
2χ[1,0,0](û)

∂2ϕ 5
2

1 8v

ψ 1 2 8c −q̂ 3
2χ[0,0,1](û)

∂ψ 2 2 8c

∂ 1 3 1 q̂2

Table 2.2: The field contents and their contributions to the superconformal index for the
single M2-brane theory are shown.

read off the single-particle index

iM2 =
q̂

1
2χ[1,0,0](û)− q̂

3
2χ[0,0,1](û)

1− q̂2
, (2.16)

where χ[a,b,c](ûa) is the characters of su(4) representation with Dynkin label [a, b, c]. Since
the subgroup su(4) ∼ so(6) ⊂ so(8) is manifest in the superconformal index, we use the
su(4) characters to write down the index. The characters of the fundamental representation
and the anti-fundamental representation in our convention are given as follows:

χ[1,0,0](û) = û1 + û2 + û3 + û4, χ[0,0,1](û) = û−1
1 + û−1

2 + û−1
3 + û−1

4 . (2.17)

Also, note that the denominator in (2.16)

1

1− q̂2
= 1 + q̂2 + (q̂2)2 + · · · . (2.18)

comes from the descendant operators generated by acting on the derivative on the fields ϕ
and ψ. Now, it is easy to perform the index calculation. We obtain the following result for
the superconformal index of the single M2-brane theory.

IM2
N=1 = 1 + χ[1,0,0]q̂

1
2 + χ[2,0,0]q̂ + (−χ[0,0,1] + χ[3,0,0])q̂

3
2

+ (−1− χ[1,0,1] + χ[4,0,0])q̂
2 + (−χ[2,0,1] + χ[5,0,0])q̂

5
2

+ (2χ[0,1,0] − χ[3,0,1] + χ[6,0,0])q̂
3 + (2χ[1,1,0] − χ[4,0,1] + χ[7,0,0])q̂

7
2

+ (−2− χ[1,0,1] + 2χ[2,1,0] − χ[5,0,1] + χ[8,0,0])q̂
4 +O(q̂

9
2 ). (2.19)
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2.3 Multiple M2-branes

2.3.1 ABJM theory

In [5], Aharony, Bergman, Jafferis, and Maldacena constructed a three-dimensional N = 6
Chern-Simons matter theory with gauge group U(N)k × U(N)−k, where integer k is called
Chern-Simons level. The theory is called the ABJM theory. It is believed that the low energy
description of the theory on N coincident M2-branes in flat space is given by the ABJM theory
with k = 1. Although the manifest supersymmetry of the Lagrangian is N = 6, it is argued
that N = 8 supersymmetry is restored non-perturbatively for the k = 1, 2 case [26, 27].

It has been confirmed through various evidence that this theory actually gives a low
energy effective theory on M2-branes. ( moduli space, supersymmetry enhancement, partition
function, etc...) For example, the AdS/CFT argument claims that the degrees of freedom of

the theory should scale as N
3
2 in the large-N limit. This characteristic behavior was found

in the S3 partition function of the ABJM theories [28, 29, 30].
The ABJM model is described by the quiver diagram shown in Figure 2.2. The circles

NN

A1, A2

k -k

B1, B2

Figure 2.2: The quiver diagram of the ABJM theory is shown.

denote U(N) gauge nodes and the arrows show the bi-fundamental (the fundamental repre-
sentation of U(N)k and the anti-fundamental representation of U(N)−k) chiral superfields.

The Lagrangian is given by

S = SCS + Skin + Spot + SY uk, (2.20)

where

SCS =
k

4π

∫
d3xϵµνρ tr

[(
Aµ∂νAρ −

2i

3
AµAνAρ

)
−
(
Ãµ∂νÃρ −

2i

3
ÃµÃνÃρ

)]
, (2.21)

Skin =
1

2π

∫
d3x tr

[
−DµqiDµq̄i + ψ̄iγµDµψi

]
, (2.22)
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Spot =
1

6πk2

∫
d3x tr

[
qiq̄iq

j q̄jq
kq̄k + q̄iq

iq̄jq
j q̄kq

k + 4qiq̄jp
kq̄iq

j p̄k − 6qiq̄jp
j q̄iq

kq̄k
]
, (2.23)

SY uk = − 1

2πk

∫
d3x tr

[
q̄iq

iψ̄jψj − qiq̄iψjψ̄
j + 2qiq̄jψiψ̄

k − 2q̄iq
jψ̄iψj + ϵijklq̄iψj q̄kψl − ϵijklqiψ̄jqkψ̄l

]
,

(2.24)

where the spacetime indices µ, ν, ρ runs from 0 to 2 and the indices i, j, k runs from 1 to 4.
The supersymmetry transformation is

δqi =
√
2ξijψj (2.25)

δψi = −
√
2γµξijDµq

j +
2
√
2π

k
ξij
(
qkq̄kq

j − qj q̄kq
k
)
− 4

√
2π

k
ξjk
(
qj q̄iq

k
)

(2.26)

δAµ = −2i
√
2π

k

[
ξijγµ

(
qiψ̄j

)
+ ξijγµ (ψiq̄j)

]
(2.27)

δÃµ =
2i
√
2π

k

[
ξijγµ (q̄iψj) + ξijγµ

(
ψ̄iqj

)]
(2.28)

The supersymmetry transformation parameter ξij belongs to the 6 of SU(4) and satisfy

ξij = −ξji, (ξij)
∗ = −1

2
ϵijklξkl. (2.29)

The Lagrangian (2.20) is invariant under the global SU(4) symmetry. We show charges of

U(N)k U(N)−k SU(4)R U(1)B
A adj. 1 1 0

Ã 1 adj. 1 0
qi N N̄ 4 1
ψi N N̄ 4̄ 1

Table 2.3: Charges of the fields are shown.

the fields in Table 2.3, where U(1)B is a baryonic symmetry.

2.4 Superconformal index for the ABJM theory

The superconformal index of the ABJM theory was studied in [11] by using the localization
method. The analysis yields following expression for the superconformal index of the ABJM
theory for each monopole charge sector.

Imα,m̃α =
1

(N !)2

N∏
α=1

∫
dζα
2πiζα

N∏
α=1

∫
dζ̃α

2πiζ̃α

×
∏

α,β q̂
|mα−m̃β |− 1

2
|mα−mβ |− 1

2
|m̃α−m̃β |∏N

α=1 ζ
kmα
α ζ̃−km̃α

α

Pexp i, (2.30)
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where the single-particle index i is given by

i(q̂, ûi; ζa, ζ̃b) = −
∑
α ̸=β

q̂|mα−mβ | ζα
ζβ

−
∑
α ̸=β

q̂|m̃α−m̃β | ζ̃α

ζ̃β

+
N∑

α,β=1

q̂|mα−m̃β |

1− q̂2

[
q̂

1
2 (û1 + û2)− q̂

3
2 (û−1

3 + û−1
4 )
] ζα
ζ̃β

+
N∑

α,β=1

q̂|mα−m̃β |

1− q̂2

[
q̂

1
2 (û3 + û4)− q̂

3
2 (û−1

1 + û−1
2 )
] ζ̃β
ζα
. (2.31)

The whole superconformal index is give by the sum of the monopole charges.

IABJM =
∑

mα,m̃α∈Z

Imα,m̃α (2.32)

Note that only when the monopole charges satisfy the following relation, the integral have
non-zero value.

mtot :=
N∑

α=1

mα =
N∑

α=1

m̃α. (2.33)

One comment is that this is the exact result, but the integral is difficult to carry out gener-
ically. Therefore we will calculate the index for specific N , for example N=1,2,3, and so
on.

2.4.1 Result for small N with Chern-Simons level k = 1

Let us calculate the superconformal index of the ABJM with Chern-Simons level k = 1 for a
small value of N . For the k = 1 case, the theory has N = 8 supersymmetry and the index
should be written in terms of su(4) characters.

We show the result of calculation of the ABJM indices for N = 1, 2, 3 with Chern-Simons
level k = 1.

IABJM
(N=1) = 1 + χ[1,0,0]q̂

1
2 + χ[2,0,0]q̂ + (−χ[0,0,1] + χ[3,0,0])q̂

3
2

+ (−1− χ[1,0,1] + χ[4,0,0])q̂
2 + (−χ[2,0,1] + χ[5,0,0])q̂

5
2

+ (2χ[0,1,0] − χ[3,0,1] + χ[6,0,0])q̂
3 + (2χ[1,1,0] − χ[4,0,1] + χ[7,0,0])q̂

7
2

+ (−2− χ[1,0,1] + 2χ[2,1,0] − χ[5,0,1] + χ[8,0,0])q̂
4 +O(q̂

9
2 ). (2.34)
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IABJM
(N=2) = 1 + χ[1,0,0]q̂

1
2 + 2χ[2,0,0]q̂ + (−χ[0,0,1] + χ[1,1,0] + 2χ[3,0,0])q̂

3
2

+ (−1 + χ[0,2,0] − 2χ[1,0,1] + χ[2,1,0] + 3χ[4,0,0])q̂
2

+ (−χ[0,1,1] − 2χ[1,0,0] + χ[1,2,0] − 3χ[2,0,1] + 2χ[3,1,0] + 3χ[5,0,0])q̂
5
2

+ (χ[0,1,0] − 2χ[1,1,1] − 3χ[2,0,0] + 2χ[2,2,0] − 4χ[3,0,1] + 2χ[4,1,0] + 4χ[6,0,0])q̂
3

+ (2χ[0,0,1] − χ[0,2,1] + χ[1,0,2] + 2χ[1,1,0] + χ[1,3,0] − 3χ[2,1,1] − 4χ[3,0,0]

+ 2χ[3,2,0] − 5χ[4,0,1] + 3χ[5,1,0] + 4χ[7,0,0])q̂
7
2

+ (−2 + χ[0,1,2] + χ[0,2,0] + χ[0,4,0] + 5χ[1,0,1] − 2χ[1,2,1] + χ[2,0,2] + 4χ[2,1,0]

+ χ[2,3,0] − 4χ[3,1,1] − 5χ[4,0,0] + 3χ[4,2,0] − 6χ[5,0,1] + 3χ[6,1,0] + 5χ[8,0,0])q̂
4

+ (χ[0,1,1] − χ[0,3,1] − 4χ[1,0,0] + χ[1,1,2] + 3χ[1,2,0] + χ[1,4,0]

+ 7χ[2,0,1] − 3χ[2,2,1] + 2χ[3,0,2] + 5χ[3,1,0] + 2χ[3,3,0] − 5χ[4,1,1]

− 6χ[5,0,0] + 3χ[5,2,0] − 7χ[6,0,1] + 4χ[7,1,0] + 5χ[9,0,0])q̂
9
2

+ (−2χ[0,0,2] − 6χ[0,1,0] + 2χ[0,3,0] − 2χ[1,3,1] − 9χ[2,0,0] + 2χ[2,1,2]

+ 4χ[2,2,0] + 2χ[2,4,0] + 9χ[3,0,1] − 4χ[3,2,1] + 2χ[4,0,2] + 7χ[4,1,0]

+ 2χ[4,3,0] − 6χ[5,1,1] − 7χ[6,0,0] + 4χ[6,2,0] − 8χ[7,0,1] + 4χ[8,1,0]

+ 6χ[10,0,0])q̂
5 +O(q̂

11
2 ). (2.35)
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IABJM
N=3 = 1 + χ[1,0,0]q̂

1
2 + 2χ[2,0,0]q + (−χ[0,0,1] + χ[1,1,0] + 3χ[3,0,0])q̂

3
2

+ (2χ[0,2,0] − 2χ[1,0,1] + 2χ[2,1,0] + 4χ[4,0,0] − 1)q̂2

+ (−2χ[1,0,0] + 3χ[1,2,0] − 4χ[2,0,1] + 4χ[3,1,0] + 5χ[5,0,0])q̂
5
2

+ (χ[0,0,2] + χ[0,3,0] − 3χ[1,1,1] − 5χ[2,0,0] + 6χ[2,2,0] − 5χ[3,0,1] + 5χ[4,1,0] + 7χ[6,0,0])q̂
3

+ (χ[0,0,1] − 4χ[0,2,1] + χ[1,0,2] − 3χ[1,1,0] + 4χ[1,3,0] − 4χ[2,1,1] − 8χ[3,0,0] + 8χ[3,2,0]

− 8χ[4,0,1] + 8χ[5,1,0] + 8χ[7,0,0])q̂
7
2

+ (−4χ[0,2,0] + 4χ[0,4,0] + 4χ[1,0,1] − 6χ[1,2,1] + 2χ[2,0,2] − 4χ[2,1,0] + 6χ[2,3,0]

− 8χ[3,1,1] − 13χ[4,0,0] + 12χ[4,2,0] − 10χ[5,0,1] + 10χ[6,1,0] + 10χ[8,0,0] − 2)q̂4

+ (5χ[0,1,1] − χ[0,3,1] − χ[1,0,0] + χ[1,1,2] − 4χ[1,2,0] + 6χ[1,4,0] + 10χ[2,0,1] − 12χ[2,2,1]

+ 3χ[3,0,2] − 8χ[3,1,0] + 11χ[3,3,0] − 11χ[4,1,1] − 18χ[5,0,0] + 15χ[5,2,0] − 13χ[6,0,1]

+ 13χ[7,1,0] + 12χ[9,0,0])q̂
9
2

+ (χ[0,0,2] + 4χ[0,1,0] + 2χ[0,2,2] + 2χ[0,3,0] + 2χ[0,5,0] + 13χ[1,1,1] − 8χ[1,3,1]

− 2χ[2,0,0] + 2χ[2,1,2] − 8χ[2,2,0] + 12χ[2,4,0] + 18χ[3,0,1] − 16χ[3,2,1] + 4χ[4,0,2]

− 10χ[4,1,0] + 14χ[4,3,0] − 16χ[5,1,1] − 25χ[6,0,0] + 20χ[6,2,0] − 16χ[7,0,1]

+ 16χ[8,1,0] + 14χ[10,0,0])q̂
5

+ (2χ[0,0,1] + 8χ[0,2,1] − 8χ[0,4,1] − χ[1,0,2] − 3χ[1,1,0] + 3χ[1,2,2] − χ[1,3,0] + 8χ[1,5,0]

+ 23χ[2,1,1] − 12χ[2,3,1] − 2χ[3,0,0] + 4χ[3,1,2] − 8χ[3,2,0] + 16χ[3,4,0] + 29χ[4,0,1]

− 24χ[4,2,1] + 5χ[5,0,2] − 15χ[5,1,0] + 20χ[5,3,0] − 20χ[6,1,1] − 32χ[7,0,0] + 24χ[7,2,0]

− 20χ[8,0,1] + 20χ[9,1,0] + 16χ[11,0,0])q̂
11
2

+ (−6χ[0,1,2] − 14χ[0,2,0] + χ[0,3,2] − 4χ[0,4,0] + 7χ[0,6,0] − 10χ[1,0,1] + 17χ[1,2,1]

− 13χ[1,4,1] − 4χ[2,0,2] − 11χ[2,1,0] + 6χ[2,2,2] + 2χ[2,3,0] + 12χ[2,5,0] + 36χ[3,1,1]

− 21χ[3,3,1] − 5χ[4,0,0] + 5χ[4,1,2] − 12χ[4,2,0] + 23χ[4,4,0] + 42χ[5,0,1] − 30χ[5,2,1]

+ 7χ[6,0,2] − 18χ[6,1,0] + 25χ[6,3,0] − 27χ[7,1,1] − 41χ[8,0,0] + 30χ[8,2,0] − 23χ[9,0,1]

+ 23χ[10,1,0] + 19χ[12,0,0])q̂
6 +O(q̂

13
2 ). (2.36)

As we anticipated the indices are written in terms of su(4) characters.

2.5 Large N limit

A duality is often useful to analyze quantum field theories. In this section, we discuus
the most famous duality in string- (M-) theory called AdS/CFT correspondence [4, 31, 32].
The AdS/CFT correspondence claims the equivalence of a conformal field theory and the
corresponding gravity system in Anti-de-Sitter spacetime. In the context of string- (M-)
theory, the gravity theory is M- (string-) theory in AdSd+1 × X, with X being a certain
compact manifold.

We consider d = 3, X = S7/Zk case here. This is called the AdS4/CFT3 correspondences.
The precise argument for the AdS4/CFT3 is
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• The M-theory on AdS4×S7/Zk is equivalent to three-dimensional ABJM theories with
Chern-Simons level k.

In the followings, we first discuss the k = 1 case, which means the duality between the
ABJM theory with Chern-Simons level k = 1 and 11d supergravity on AdS4 × S7, and
calculate the large-N index from the dual gravity side. We discus generalization to the Zk

case in Section 2.6 and 2.7.

2.5.1 M2-brane solution

Black M2-brane solution

The solution of the eleven-dimensional supergravity describing the stack of M2-branes. flat
N M5-branes is given by [33, 34]

ds2 = H(r)−2/3(−fdt2 + dx · dx) +H(r)1/3(f−1dr2 + r2dΩ2
7), (2.37)

with the 3-form field

A3 = H(r)−1dx0 ∧ dx1 ∧ dx2, (F4 = dx0 ∧ dx1 ∧ dx2 ∧ dH−1), (2.38)

where H(r) and f(r) are harmonic functions on R8 defined by

H(r) = 1 +
r̂6

r6
, f(r) = 1− r̂6h

r6
(2.39)

The lengths r̂ and r̂h satisfy the following relation:

(r̂6 + r̂6h)r̂
6 =

(
32π2Nl6p

)2
. (2.40)

The horizon is given by r = r̂h(≥ 0).

The ADM energy [35] of this solution is given by

E =
2π4

(2πlp)9

(
r̂6 +

7

6
r̂6h

)
. (2.41)

Here, let us recall the central charge of the M2-branes discussed in Section 1.1.2.

ZM2 =
2π

(2πlp)3
N (2.42)

To compare these two relation (2.41) with (2.42), it is obvious that E ≥ |ZM2| is satisfied if
r̂h ≥ 0. The equality is satisfied when r̂h is 0 since, in this case, r̂6 = 32π2Nl6p. Thus, this is
consistent with the BPS bound discussed in Section 1.1.2.
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Extremal black M2-brane solution

Let us consider the extremal (BPS) solution, satisfying E = |ZM2| given by r̂h = 0 condition.
This solution preserves 16 of 32 supercharges. The metric reduces to

ds2 = H(r)−2/3ηabdx
adxb +H(r)1/3(dr2 + r2dΩ2

7), (2.43)

where a, b = 0, 1, 2 run the worldvolume directions for the M2-brane and a harmonic function
H(r) is given by

H(r) = 1 +
r̂6

r6
, (2.44)

with r̂ satisfying

r̂6 = 32π2Nl6p. (2.45)

Again the 3-form field is given by

A3 = H(r)−1dx0 ∧ dx1 ∧ dx2, (F4 = dx0 ∧ dx1 ∧ dx2 ∧ dH−1). (2.46)

Near horizon geometry of M2-brane solution

Let us take the near horizon limit r ≪ r̂ of (2.43). In this limit, H(r) is approximated to
r̂6/r6 and the metric reads

ds2 =
r4

r̂4
ηabdx

adxb +
r̂2

r2
dr2 + r̂2dΩ2

7. (2.47)

Now we can see that r̂ is nothing but the radius of S7. To move on the standard convention,
we perform the variable change

z =
r̂3

2r2
. (2.48)

Then, the metric becomes AdS4 × S7:

ds2 =
r̂2

4z2
(
ηabdx

adxb + dz2
)
+ r̂2dΩ2

7

= L̂2ds2AdS4
+ r̂2ds2S7 , (2.49)

where L̂ is the AdS4 radius and this is just one half of the radius of S7

L̂ =
r̂

2
. (2.50)

The bosonic symmetry of the supergravity solution (2.49) is SO(2, 3) × SO(8). The
SO(2, 3) part corresponds to conformal symmetry in 3 dimension and SO(8) corresponds
to the 3d N = 8 R-symmetry. Hence, we expect that the dual superconformal field theory
realized on multiple M2-branes has the N = 8 superconformal symmetry. This is consistent
with the amount of supersymmetry of the ABJM theory for k = 1. Furthermore, the N

3
2

behavior of the entropy of the black M2-brane is shown in [36]. This is also consistent with
the analysis of the partition function of the ABJM theory.
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2.5.2 Index from Kaluza Klein modes

Let us calculate the superconformal index of the M2-brane theory in the large-N limit.
Although we can calculate the index by using the localization formula (2.30), here instead,
we calculate the index from the dual supergravity theory on AdS4×S7. On the supergravity
side, the index can be calculated by the contribution of the Kaluza Klein modes in S7. The
contribution is given by plethystic exponential of the single-particle index of the Kaluza-Klein
modes:

IS7

KK = Pexp iS
7

KK, (2.51)

with the single-particle index given by [25]

iKK =
(1− q̂

3
2 û−1

1 )(1− q̂
3
2 û−1

2 )(1− q̂
3
2 û−1

3 )(1− q̂
3
2 û−1

4 )

(1− q̂
1
2 û1)(1− q̂

1
2 û2)(1− q̂

1
2 û3)(1− q̂

1
2 û4)(1− q̂2)2

− 1− q̂2 + q̂4

(1− q̂2)2
. (2.52)

The explicit calculation of (2.51) reads the following result of the Kaluza Klein index in
AdS4 × S7:

IKK = 1 + χ[1,0,0]q̂
1
2 + 2χ[2,0,0]q̂ + (3χ[3,0,0] + χ[1,1,0] − χ[0,0,1])q̂

3
2

+ (5χ[4,0,0] + 2χ[2,1,0] + 2χ[0,2,0] − 2χ[1,0,1] − 1)q̂2 +O(q̂
5
2 ). (2.53)

The agreement of the KK index in (2.51) with the large-N ABJM index was confirmed
in [11]. Namely,

IABJM
N=∞ = IS7

KK. (2.54)

2.6 Zk orbifold

Next, let us consider the Zk orbifold case. The ABJM model with Chern-Simons level k
corresponds to M2-branes on C2/Zk. We define zi (i = 1, 2, 3, 4) coordinates by

z1 = x3 + ix4, z2 = x5 + ix6, z3 = x7 + ix8, z4 = x9 + ix11. (2.55)

The orbifold is defined by

(z1, z2, z3, z4) → (ωkz1, ωkz2, ω
−1
k z3, ω

−1
k z4), ωk ≡ exp

2πi

k
. (2.56)

The orbifold with k ≥ 3 brakes SO(8) symmetry to SO(6). Further, this orbifolding generally
leaves the N = 6 of N = 8 supersymmetry unbroken. For k = 1 and k = 2, the N = 8
supersymmetry remains unbroken. This is consistent with the supersymmetry enhancement
of the ABJM theory.
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2.6.1 ABJM with k > 1

Here, we show the indices for N = 1, 2, 3 with k = 2, 3. We can also calculate the ABJM
indices with k > 1 by using the formula (2.30)

The k = 2 results are as follows:

IABJM
(N,k)=(1,2) = 1 + χ[2,0,0]q̂ + (−1− χ[1,0,1] + χ[4,0,0])q̂

2 +O(q̂3). (2.57)

IABJM
(N,k)=(2,2) = 1 + χ[2,0,0]q̂ + (χ[0,2,0] − χ[1,0,1] + 2χ[4,0,0])q̂

2

+ (−χ[1,1,1] − χ[2,0,0] + χ[2,2,0] − 2χ[3,0,1] + χ[4,1,0] + 2χ[6,0,0])q̂
3 +O(q̂4). (2.58)

IABJM
(N,k)=(3,2) = 1 + χ[2,0,0]q̂ + (χ[0,2,0] − χ[1,0,1] + 2χ[4,0,0])q̂

2

+ (χ[0,0,2] − χ[1,1,1] + 2χ[2,2,0] − 2χ[3,0,1] + χ[4,1,0] + 3χ[6,0,0])q̂
3

+ (−1− χ[0,2,0] + 2χ[0,4,0] − 2χ[1,2,1] + χ[2,0,2] + χ[2,3,0] − 2χ[3,1,1]

− 2χ[4,0,0] + 4χ[4,2,0] − 4χ[5,0,1] + 2χ[6,1,0] + 4χ[8,0,0])q̂
4 +O(q̂

9
2 ). (2.59)

Since the theory still possesses the N = 8 supersymmetry, the indices are written in terms
of su(4) characters.

Next, we show the k = 3 indices. If k ≥ 3 the supersymmetry is N = 6. Correspondingly,
the R-symmetry is so(6) = su(4), and after the choice of the complex supercharge Q̂ the
manifest symmetry becomes so(2) × so(4) = u(1) × su(2)1 × su(2)2. Correspondingly, we
define fugacities u, u′, and u′′ for u(1), su(2)1, and su(2)2 by

û1 = uu′, û2 = uu′−1, û1 = u−1u′′, û2 = u−1u′′−1. (2.60)

In the following we use the so(4) characters χa,b ≡ χa(u
′)χb(u

′′). The results are as follows:

IABJM
(N,k)=(1,3) = 1 + χ1,1q̂ + (u−3χ0,3 + u3χ3,0)q̂

3
2

+ (−2− χ0,2 − χ2,0 + χ2,2)q̂
2 +O(q̂

5
2 ). (2.61)

IABJM
(N,k)=(2,3) = 1 + χ1,1q̂ + (u−3χ0,3 + u3χ3,0)q̂

3
2 + (−χ0,2 − χ2,0 + 2χ2,2)q̂

2

+ (2u−3χ1,4 + 2u3χ4,1)q̂
5
2

+ (u−6(χ0,2 + 2χ0,6)− 2χ1,1 − χ1,3 − χ3,1 + 3χ3,3

+ u6(χ2,0 + 2χ6,0))q̂
3 +O(q̂

7
2 ). (2.62)

IABJM
(N,k)=(3,3) = 1 + χ1,1q̂ + (u3χ3,0 + u−3χ0,3)q̂

3
2 + (−χ0,2 − χ2,0 + 2χ2,2)q̂

2

+ 2(u3χ4,1 + u−3χ1,4)q̂
5
2

+ (u6(χ2,0 + 2χ6,0)− χ1,3 − χ3,1 + 4χ3,3 + u−6(χ0,2 + 2χ0,6))q̂
3

+ (u3(−χ1,0 + χ1,2 − χ3,0 − χ5,0 + 4χ5,2)

+ u−3(−χ0,1 − χ0,3 − χ0,5 + χ2,1 + 4χ2,5))q̂
7
2

+ (u6(χ3,1 + χ5,1 + 4χ7,1)− 1 + χ0,4 − 3χ2,2 − χ2,4 + χ4,0 − χ4,2

+ 7χ4,4 + u−6(χ1,1 + χ1,1 + χ1,3 + χ1,5 + 4χ1,7))q̂
4 +O(q̂

9
2 ). (2.63)
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2.7 Large N index from supergravity on AdS4 × S7/Zk
To calculate the large-N superconformal index for the Zk orbifold case from the supergravity
on AdS4 × S7/Zk, we only have to introduce the orbifold projection on the single-particle
index (2.52). We define orbifold projection operator Pk as follows:

Pkg(û1, û2, û3, û4) =
1

k

k−1∑
i=0

g(ωi
kû1, ω

i
kû2, ω

−i
k û3, ω

−i
k û4), (2.64)

where g(û1, û2, û3, û4) is a function of su(4) fugacities. Then, the formula (2.51) is replaced
to

IZk
KK = PexpPkiKK. (2.65)

The k = 2 result is given by

IZ2
KK = 1 + χ[2,0,0]q̂ + (χ[0,2,0] − χ[1,0,1] + 2χ[4,0,0])q̂

2

+ (χ[0,0,2] − χ[1,1,1] + 2χ[2,2,0] − 2χ[3,0,1] + χ[4,1,0] + 3χ[6,0,0])q̂
3

+ (3χ[0,4,0] − 2χ[1,2,1] + 2χ[2,0,2] + χ[2,3,0] − 2χ[3,1,1] − χ[4,0,0] + 5χ[4,2,0] − 4χ[5,0,1]

+ 2χ[6,1,0] + 5χ[8,0,0])q̂
4 +O(q̂5). (2.66)

The index is again written in terms of su(4) characters. Finally, we give the KK index for
the k = 3 case.

IZ3
KK = 1 + χ1,1q̂ + (u3χ3,0 + u−3χ0,3)q̂

3
2 + (−χ0,2 − χ2,0 + 2χ2,2)q̂

2

+ 2(u3χ4,1 + u−3χ1,4)q̂
5
2

+ (u6(χ2,0 + 2χ6,0)− χ1,3 − χ3,1 + 4χ3,3 + u−6(χ0,2 + 2χ0,6))q̂
3

+ (u3(−χ1,0 + χ1,2 − χ3,0 − χ5,0 + 4χ5,2)

+ u−3(−χ0,1 − χ0,3 − χ0,5 + χ2,1 + 4χ2,5))q̂
7
2

+ (+u6(χ1,1 + χ3,1 + χ5,1 + 4χ7,1) + χ0,4 − χ2,2 − χ2,4 + χ4,0

− χ4,2 + 8χ4,4 + 1 + u−6(χ1,1 + χ1,3 + χ1,5 + 4χ1,7))q̂
4 +O(q̂

9
2 ). (2.67)

Note that the KK index for the Zk orbifold case also agrees with the large-N ABJM index
with Chern-Simons level k.

IABJM
(N,k)=(∞,k) = IZk

KK. (2.68)

Summary of Chapter 2

In this chapter, we explained the superconformal index of the M2-brane theories investigated
so far. We first defined the superconformal indices of the M2-brane theories in (2.7). Then,
we discussed the way to calculate the superconformal index. When the number of M2-brane
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N is 1, the theory is described by the free theory of scalar fields and fermions, and the index
is given by (2.15). For general N , the theory is described by the ABJM theory, and the index
can be calculated by the localization formula (2.30). In the large N limit, we can use the
dual supergravity description. We saw that in the dual gravity theory, the superconformal
index is given by the contribution of the Kaluza Klein modes on S7. We also discussed the
superconformal index for the Zk orbifold case in Section 2.6 and Section 2.7.
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Chapter 3

Superconformal indices of M5-brane
theories

In this chapter, we review the superconformal indices of theories realized on M5-branes.
Similarly to the M2-brane case, the theory on a single M5-brane is described by the free
theory of a tensor multiplet and we can easily calculate the index.

However, analyzing theories on multiple M5-branes is quite difficult. The theory on
M5-branes is called the 6d N = (2, 0) theory, but the (2,0) theory is not well understood.
Particularly, we have no Lagrangian description of the theory yet. Hence, we cannot calculate
the index of the 6d N = (2, 0) theory with N > 1 directly by the localization method.

In the large-N limit, we can use the AdS/CFT correspondence to calculate the index
of the 6d (2,0) theory. The dual gravity theory is the eleven-dimensional supergravity on
AdS7 × S4 and we can calculate the index from the Kaluza Klein spectrum.

The goal of this chapter is to show the superconformal indices of the following theories:

• the theory on a single M5-brane (N = 1)

• the dual supergravity theory (N = ∞)

In Section 3.5 ∼ 3.7, we also discuss a theory realized on M5-branes on the orbifold sin-
gularity C2/Zk, called the 6d N = (1, 0) theory, and its gravity dual: The eleven-dimensional
supergravity on AdS7 × S4/Zk.

3.1 6d N = (2, 0) theory

The superconformal field theory realized on N flat M5-branes is called the 6d N = (2, 0)
theory, which was investigated in [37, 38, 39]. Unlike the ABJM case, the Lagrangian of this
theory is not known yet and thus, it is difficult to study the theory directly. If we remove the
center of mass (2,0) tensor multiplet, we obtain an interacting superconformal field theory
which is especially called the 6d AN−1 theory.
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There are also other stringy constructions of the theory. A construction from type IIB
superstring theory compactification [37] and an F-theory construction [40, 41] are known,
but we do not treat them in detail in this thesis.

A reduction to the 5d theory is also important since the theory admits Lagrangian descrip-
tion. S1 compactification of the 6d N = (2, 0) theory gives the 5d N = 2 supersymmetric
Yang-Mills theory and we can extract the information of the 6d N = (2, 0) theory from the
5d theory. In fact, the 6d N = (2, 0) index was calculated from the 5d SYM theory [42].
However, the method is highly complicated and their analysis was limited to a few terms of
the index. See Footnote in the page 73 for more detail.

3.2 The definition of the superconformal indices for

M5-brane theories

We consider M5-branes expanding spreading in x0 ∼ x5 directions. See Table 3.2 and Figure
3.2. The system possesses SO(2, 6) and SO(5) symmetry.

0 1 2 3 4 5 6 7 8 9 11
M5-brane ◦ ◦ ◦ ◦ ◦ ◦

Table 3.1: The configuration of M5-branes is shown. The M5-branes are expanding in x0 ∼ x5

directions, which are marked as ◦.

Again, the insertion of the M5-branes breaks half of the supersymmetry parametrized by
ϵ satisfying

Γ0Γ1...Γ5ϵ = ϵ. (3.1)

This leaves only left-handed supersymmetry and 6d N = (2, 0) supersymmetry is realized
on the M5-brane. At the low energy limit, the supersymmetry together with the SO(2, 6)
and SO(5) symmetry enhanced to the 6d N = (2, 0) superconformal symmetry. The six-
dimensional N = (2, 0) superconformal algebra is Ǎ := osp(8∗|4), whose bosonic subalgebra
is

so(2, 6)× so(5) ⊂ Ǎ. (3.2)

The generators are

Ȟ, Q̌i, Ši, P̌µ, Ǩµ, Řab, J̌µν , (3.3)

where Ȟ is Hamiltonian, Q̌i(Ši) are (conformal) supercharges, P̌µ are momentum operator,
Ǩµ are generators of special conformal transformations, Řab are R-symmetry generators, and
J̌µν are Lorenrz generators.
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x0

x1～ 5

x6～ 9, x11

M5-branes

Figure 3.1: The schematic figure of the M5-branes configuration is shown.

Let us define the superconformal index of the 6d (2,0) theory. There are six Cartan
generators:

Ȟ, J̌12, J̌34, J̌56, Ř12, Ř34. (3.4)

To define the superconformal index, we need to choose one complex supercharge Q̌ carrying
specific Cartan charges. We take the one with the quantum numbers

Q̌ : (Ȟ, J̌12, J̌34, J̌56; Ř12, Ř34) = (+1
2
,−1

2
,−1

2
,−1

2
; +1

2
,+1

2
). (3.5)

The subalgebra that keeps Q̌ intact is

B̌ × u(1)∆̌, (3.6)

where B̌ = osp(6|2) is the super algebra whose bosonic subalgebra is su(1, 3) × su(2) ⊂ B̌.
The central factor u(1)∆̌ is generated by

∆̌ ≡ {Q̌, Q̌†} = Ȟ − (J̌12 + J̌34 + J̌56)− 2(Ř12 + Ř34). (3.7)
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We define the superconformal index associated with the BPS bound ∆̌ ≥ 0 as the B̌ character
by 1

I(q̌, y̌a, ǔ) = tr[(−1)F x̌∆̌q̌Ȟ+ 1
3
(J̌12+J̌34+J̌56)y̌J̌121 y̌J̌342 y̌J̌563 ǔŘ12−Ř34 ], y̌1y̌2y̌3 = 1. (3.8)

Due to the Bose-Fermi degeneracy for ∆̌ > 0 The index does not depend on x̌.

3.3 A Single M5-brane

In this section, we consider the theory realized on a single M5-brane. We first show the
Lagrangian of the free theory of the single M5-brane. Then, we discuss its superconformal
index.

3.3.1 Lagranigan

A similar analysis to the single M2-brane case shows that, in the decoupling limit TM5 → ∞,
the Nambu-Goto action of the M5-brane reduces to the action of 5 free massless scalar fields:

SNG =

∫
d6σ

(
−1

2
(∂aϕ

i)2
)
, (3.9)

where a runs from 0 to 5 and i runs from 1 to 5. The five scalars describe the fluctuation of
the M5-brane in the five transverse directions.

Now, let us include the supersymmetry partners. Except for a gravity multiplet, only
6d N = (2, 0) multiplet is a (2,0) tensor multiplet. The five scalar fields, one anti-self dual
tensor fields, and four fermions form a 6d N = (2, 0) tensor multiplet. The single M5-brane
theory is described by the free theory of the (2,0) tensor multiplet.

fields on the single M5-brane =


· 5 scalar fields ϕi (i = 1 ∼ 5)

· 1 anti-self dual tensor fields Bab

· 4 fermions ψm (m = 1 ∼ 4)

(3.10)

The scalar fields belong to the so(5) vector representation, the fermion fields belong to the
so(5) spinor representations, and the anti-self dual tensor field is an so(5) singlet. Then, the
complete Lagrangian for the single M5-brane theory is given by

S =

∫
d6σ

(
−1

2
(∂aϕ

i)2 +
1

2
ψmγ

a∂aψm +
1

2
|H3|2

)
, (3.11)

where H3 = dB2 Note that the anti-self dual condition leads to |H3|2 = 0. Here, we use the
action only to derive the equation of the motion, and impose the condition after the equation
of motion is obtained.

1The fugacities q̌, y̌i, and ǔ are related to those used in Section 3 of [25] by q̌ = x3, y̌1 = y1, y̌2 = y−1
1 y2,

y̌3 = y−1
2 , and ǔ = z

1
2
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3.3.2 Superconformal index

Let us calculate the index of the single M5-brane theory. In this case, the six-dimensional
theory is the free theory of a single tensor multiplet and we can easily calculate the index.
From Table 3.3.2, we can read off the single-particle index of the (2,0) tensor multiplet. It is

H so(6) so(5) contribution to the index
Q 1

2
4 4 q̌2χ1(ǔ)

ϕ 2 1 5
∂2ϕ 4 1 5

ψ 5
2

4 4 −q̌ 8
3χ[0,1](y̌)

∂ψ 7
2

4 4
H3 3 10 1 q̌4

∂H3 4 15 1
∂2H3 5 6 1
∂3H3 6 1 1

∂ 1 6 1 q̌
4
3 y̌1,2,3

Table 3.2: The field contents and contribution to the index of the N = (2, 0) tensor multiplet

explicitly given by [25]

iM5 =
q̌2χ1(ǔ)− q̌

8
3χ[0,1](y̌) + q̌4

(1− q̌
4
3 y̌1)(1− q̌

4
3 y̌2)(1− q̌

4
3 y̌3)

, (3.12)

where χm(ǔ) is the su(2) character of the spin m/2 representation

χm(ǔ) =
ǔm+1 − ǔ−m−1

ǔ− ǔ−1
= ǔm + · · ·+ ǔ−m, (3.13)

and χ[a,b](y̌) is the su(3) character of the representation with Dynkin labels [a, b]. χ[1,0] for
the fundamental representation and χ[0,1] for the anti-fundamental representation are

χ[1,0](y̌) = y̌1 + y̌2 + y̌3, χ[0,1](y̌) = y̌−1
1 + y̌−1

2 + y̌−1
3 . (3.14)

Let I(2,0)
N be the superconformal index of the theory realized on the stack of N M5-branes.

The superconformal index of 6d (2,0) theory with N = 1 is simply given by I(2,0)
N=1 = Pexp iM5.

The explicit calculation shows the following superconformal index of the 6d N = (2, 0) theory
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with N = 1:

I(2,0)
N=1 = 1 + χǔ

1 q̌
2 − χ[0,1]q̌

8
3 + χǔ

1χ[1,0]q̌
10
3 + (χǔ

2 − χ[1,1])q̌
4 + χǔ

1(χ[2,0] − χ[0,1])q̌
14
3

+ ((χǔ
2 + 2)χ[1,0] − χ[2,1])q̌

16
3 + (χǔ

3 + χǔ
1(−2χ[1,1] + χ[3,0] − 1))q̌6

+ (−(χǔ
2 − 2)χ[0,1] + χ[1,2] + 2χǔ

2χ[2,0] + 2χ[2,0] − χ[3,1])q̌
20
3

+ (χǔ
3χ[1,0] + χǔ

1(−χ[0,2] − 3χ[2,1] + χ[4,0]))q̌
22
3

+ (χǔ
4 + χ[0,3] + 2χ[1,1] + χ[2,2] − χǔ

2(χ[1,1] − 2χ[3,0] + 1) + 4χ[3,0] − χ[4,1] − 2)q̌8

+ (χǔ
1(2χ[0,1] − χ[1,2] + χ[2,0] − 4χ[3,1] + χ[5,0])− χǔ

3(χ[0,1] − 2χ[2,0]))q̌
26
3

+ (−2χ[0,2] + (−χǔ
2 + χǔ

4 − 3)χ[1,0] + χ[1,3] − 3χǔ
2χ[2,1] + 2χ[2,1] + 2χ[3,2]

+ 3χǔ
2χ[4,0] + 4χ[4,0] − χ[5,1])q̌

28
3

+ (χǔ
5 − χǔ

3(χ[1,1] − 3χ[3,0] + 1) + χǔ
1(χ[0,3] + 6χ[1,1] − χ[2,2] + 3χ[3,0] − 5χ[4,1]

+ χ[6,0] − 1))q̌10 +O(q̌
55
3 ). (3.15)

3.4 Large N limit

Contrary to the ABJM case, we do not have a direct method of calculating the indices of 6d

N = (2, 0) theories with N > 1. Instead, in this section, we use the AdS/CFT correspondence
to calculate the large-N limit of the index. The statement for the AdS7/CFT6 is

• The M-theory on AdS7 × S4 is equivalent to the 6d N = (2, 0) theory

Further, in the presence of the Zk orbifold, the supersymmetry is reduced from N = (2, 0) to

N = (1, 0). The theory realized on M5-branes on C2/Zk is called the 6d N = (1, 0) theory.
For the orbifold the AdS7/CFT6 claims

• The M-theory on AdS7 × S4/Zk is equivalent to the 6d N = (1, 0) theory

In the followings, we first discuss the k = 1 case and calculate the large-N index from the
Kaluza Klein spectrum. Then, we discuss the Zk orbifold case.

3.4.1 M5-brane solution

Extremal black M5-brane solution

Similarly to the M2-brane case, the extremal M5-brane solution preserving 16 supercharges
is given by [43]

ds2 = H(r)−1/3ηabdx
adxb +H(r)2/3(dr2 + r2dΩ2

4), (3.16)

with the 6-form field

A6 = H(r)−1dx0 ∧ dx1 ∧ · · · ∧ dx5. (3.17)
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a, b = 0, 1, ..., 5 run directions parallel to the M5-brane and H(r) is again the harmonic
function defined by

H(r) = 1 +
ř3

r3
. (3.18)

The length ř, which becomes radius of S4 in near horizon limit, is given by

ř3 = πNl3p. (3.19)

Near horizon geometry of M5-brane solution

Again, we consider the near horizon limit of (3.16) by taking r ≪ ř. With the variable change
z = 2ř3/2/r1/2, the metric reduces to AdS7 × S4:

ds2 =
4ř2

z2
(
ηabdx

adxb + dz2
)
+ ř2dΩ2

4

= Ľ2ds2AdS7
+ ř2ds2S4 , (3.20)

where Ľ = 2ř, meaning that the radius of AdS7 is two times the radius of S4.

The bosonic symmetry of the supergravity solution (3.20) is SO(2, 6) × SO(5). The
SO(2, 6) part corresponds to the conformal symmetry in 6 dimension and SO(5) corresponds
to the 6d N = (2, 0) R-symmetry. Hence, we expect that the dual superconformal theory is
a 6d N = (2, 0) superconformal field theory. Further, the entropy of the M5-branes scales as

S ∼ N3. (3.21)

This is consistent with the field theory analysis [44].

3.4.2 Index from Kaluza Klein modes

The large-N limit I(2,0)
N=∞ of the superconformal index is given by the Kaluza-Klein index of

AdS7 × S4. It is given by IS4

KK = Pexp iS
4

KK with the single-particle index [25]

iS
4

KK =
q̌2χ1(ǔ)− q̌

8
3χ[0,1](y̌) + q̌

16
3 χ[1,0](y̌)− q̌6χ1(ǔ)

(1− ǔq̌2)(1− ǔ−1q̌2)(1− y̌1q̌
4
3 )(1− y̌2q̌

4
3 )(1− y̌3q̌

4
3 )
. (3.22)
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We show the explicit result of the Kaluza Klein index.

IS4

KK = 1 + χu
1q

2 − χ[0,1]q
8
3 + χ[1,0]χ

u
1q

10
3 +

(
2χu

2 − χ[1,1]

)
q4 +

(
χ[2,0]χ

u
1 − 2χ[0,1]χ

u
1

)
q

14
3

+
(
χ[1,0] (2χ

u
2 + 3)− χ[2,1]

)
q

16
3 +

(
−3χ[1,1]χ

u
1 + χ[3,0]χ

u
1 − χu

1 + 3χu
3

)
q6

+
(
χ[0,1] (2− 4χu

2) + χ[2,0] (3χ
u
2 + 4) + χ[1,2] − χ[2,0] − χ[3,1]

)
q

20
3

+
(
−4χ[2,1]χ

u(1) + χ[4,0]χ
u
1 + χ[1,0] (4χ

u
1 + 4χu

3)
)
q

22
3

+
(
χ[1,1] (1− 6χu

2) + 3χ[3,0] (χ
u
2 + 2) + χ[0,3] − χ[1,1] + χ[2,2] − χ[3,0] − χ[4,1] − 3χu

2 + 5χu
4 − 4

)
q8

+
(
χ[1,2]χ

u
1 − χ[2,0]χ

u
1 − 5χ[3,1]χ

u
1 + χ[5,0]χ

u
1 + χ[0,1] (5χ

u
1 − 6χu

3) + χ[2,0] (9χ
u
1 + 6χu

3)
)
q

26
3

+
(
χ[2,1] (−10χu

2 − 1) + χ[4,0] (4χ
u
2 + 7) + χ[1,0] (6χ

u
2 + 7χu

4 − 9)

−3χ[0,2] + 3χ[1,0] + χ[1,3] − χ[2,1] + 2χ[3,2] − 2χ[4,0] − χ[5,1]

)
q

28
3

+
(
2χ[0,3]χ

u
1 − 2χ[1,1]χ

u
1 + 2χ[2,2]χ

u
1 − 2χ[3,0]χ

u
1 − 6χ[4,1]χ

u
1 + χ[6,0]χ

u
1 + χ[1,1] (7χ

u
1 − 11χu

3)

+χ[3,0] (15χ
u
1 + 8χu

3)− 9χu
1 − 6χu

3 + 7χu
5

)
q10 +O

(
q

46
3

)
. (3.23)

3.5 6d N = (1, 0) theory

Let us discuss the Zk orbifold case. Generally, in the presence of the orbifold singularity
C2/Γ, where Γ is a discrete subgroup of SU(2), the 6d N = (1, 0) theories are realized on the
worldvoume of M5-branes. Among many types of 6d (1, 0) theories, in this thesis, we only
discuss the Γ = Zk case.

3.5.1 M-theory set-up

We consider M-theory in the background R1,5 × C2/Zk × RT . Let Xµ (µ = 0, 1, . . . , 5), zi
(i = 1, 2), and x5 be the coordinates of R1,5, C2, and RT , respectively. We also define xm
(m = 1, 2, 3, 4) by

z1 = x1 + ix2, z2 = x3 + ix4. (3.24)

Let us define the orbifold action. Let Rab (a, b = 1, . . . , 5) be the generators of the rotation
group SO(5)R in the xa space. We define the orbifold by Zk generated by

exp

(
2πi

k
(R12 −R34)

)
. (3.25)

This acts on (z1, z2, x5) as

(z1, z2, x5) → (e2πi/kz1, e
−2πi/kz2, x5). (3.26)

We put N M5-branes at x1 = · · · = x5 = 0. If it were not for the orbifolding, the
AN−1-type N = (2, 0) theory would be realized on the worldvolume of the M5-branes. The
orbifolding breaks the N = (2, 0) supersymmetry down to N = (1, 0). At the same time, the

50



CHAPTER 3. SUPERCONFORMAL INDICES OF M5-BRANE THEORIES

SO(5)R symmetry is broken to SU(2)R × U(1)F for k ≥ 3. U(1)F is replaced by SU(2)F for
k = 2. The SU(2)R is the R-symmetry of the 6d (1, 0) SCFTs, while U(1)F or SU(2)F does
not act on the N = (1, 0) supercharges and is treated as a flavor symmetry. In addition,
the orbifold singularity provides SU(k) flavor symmetry. The singular locus R1,5 × RT is
divided by the M5-branes at x5 = 0 into two parts: the x5 > 0 part and the x5 < 0 part.
Correspondingly, we have two copies of SU(k) symmetry which we denote by SU(k)a and
SU(k)b. In summary, the bosonic global symmetry is

SO(2, 6)conf × SU(2)R ×Gflavor, (3.27)

where SO(2, 6)conf × SU(2)R is the bosonic subgroup of the 6d N = (1, 0) superconformal
symmetry OSp(8|2) and the flavor symmetry Gflavor is generically given by

Gflavor = U(1)F × SU(k)a × SU(k)b. (3.28)

A subtle point is that the symmetry may be different from what is read off from the
corresponding quiver gauge theory discussed in the next subsection. It was proposed that a
certain discrete symmetry of the quiver gauge theory, which is not manifest perturbatively,
is gauged in the strong coupling limit and as a result the flavor symmetry is reduced [45].
For example, in the case of N = k = 2, although the flavor symmetry of the quiver gauge
theory is SO(8), that of the superconformal theory is SO(7) [46]. See Table 3.3 for the flavor
symmetries for different k and N .

Table 3.3: The flavor symmetries of N = (1, 0) theories.

N ̸= 2 N = 2
k = 2 SU(2)a × SU(2)b × SU(2)F SO(7)
k ≥ 3 SU(k)a × SU(k)b × U(1)F SU(2k)

On the dual AdS side, these symmetries are manifest when N ̸= 2. For generic values of
k and N the flavor symmetry is SU(k)a×SU(k)b×U(1)F . In addition, we also have SU(2)R
symmetry.

U(1)F ×SU(2)R is the isometry of S4/Zk, and two SU(k) symmetries are associated with
the two Ak−1 singularities at the fixed points. In the case of k = 2 and N ̸= 2, U(1)F is
enhanced to SU(2)F , and this is also understood as the isometry of S4/Z2.

However, the enhancement for N = 2 is not manifest on the AdS side, and it is interesting
to study how this is realized. This cannot be seen in the large-N limit, and to confirm such
symmetry enhancement we need to include finite-N corrections. We will discuss this subject
in Section 5.2.

3.5.2 Type IIA description

For the analysis of the operator spectrum and the flavor symmetry of the theory, it is conve-
nient to consider the quiver gauge theories realized in the tensor branch. By taking U(1)F
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orbits as M-theory circles we can regard the system as a type IIA brane configuration [47]. N
M5-branes become N NS5-branes, and the Ak−1 singularity becomes a stack of k D6-branes.

The (2, 0) tensor multiplet on an M5-brane separate into a (1, 0) tensor multiplet and
a (1, 0) hypermultiplet on the corresponding NS5-brane, and the scalar component in the
(1, 0) tensor multiplet corresponds to the location of the NS5-branes in the x5 direction. At
a generic point in the tensor branch all the NS5-branes are separated one by one in the x5
direction, and a linear quiver gauge theory is realized on the D6-branes.

N -2 1

k k kk

2

k

3

k

N -1 

k

Figure 3.2: The linear quiver diagram of the gauge theory realized in the tensor branch
is shown. The circles denote SU(k) gauge nodes and the boxes declares the SU(k) flavor
symmetries.

The worldvolume of the stack of D6-branes is divided into N + 1 parts by the NS5-
branes. We label the NS5-branes by i = 1, 2, . . . , N . The D6-branes suspended between two
NS5-branes i and i + 1 give SU(k)i gauge group while two semi-infinite parts of D6-branes

give the flavor symmetries SU(k)a ≡ SU(k)0 and SU(k)b ≡ SU(k)N . Let (hi, h̃i) be the

hypermultiplet arising from open strings crossing the i-th NS5-brane. hi and h̃i belong to
the bi-fundamental representations (k, k) and (k, k), respectively, of SU(k)i−1×SU(k)i. The
SU(N) groups and the hypermultiplets are depicted as the linear quiver diagram in Figure
3.2. In addition, we also have degrees of freedom that are implicit in the diagram; in each
gauge node there exists a tensor multiplet corresponding to the degrees of freedom of the
NS5-brane.

Among different gauge invariant operators let us focus on two classes of operators. The
first class includes operators defined by

Sij = (h0)ia(h̃0)aj, S ′
ij = (h̃N)ia(hN)aj. (3.29)

The other class includes

Lij = (h0)ia1(h1)a1a2 · · · (hN)aN j, L′
ij = (h̃N)iaN · · · (h1)a2a1(h0)a1j. (3.30)

These operators play an important role when we discuss the flavor symmetry.
The operators Sij and S ′

ij belong to the adjoint representations of SU(k)0 and SU(k)N ,
respectively. They have dimension 4 and are the primary operators of the current multiplets
of the generic flavor symmetry

Gflavor = SU(k)0 × SU(k)N × U(1)F . (3.31)

(Although there are N classical U(1) symmetries only one of them is anomaly free.)
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The operators Lij and L′
ij, which belong to the bi-fundamental representations (k, k)+1

and (k, k)−1 of Gflavor in (3.31), respectively, have dimension 2N . These operators appear in
the spectrum only when N is finite, and play a role similar to baryonic operators in four-
dimensional quiver gauge theories. They are expected to correspond to wrapped M2-branes
on the gravity side. Indeed, their dimension coincide with the mass of an M2-brane wrapped
around a large S2/Zk in the unit of the inverse AdS radius.

The flavor symmetry (3.31) is enhanced if one of k or N becomes 2. If k = 2 and N ≥ 3
U(1)F is enhanced to SU(2)F . Correspondingly, the index is written in terms of SU(2)F
characters. This symmetry is manifest on the gravity side as the isometry of S4/Z2.

The enhancement for N = 2 is more interesting. If N = 2 the operators L and L′ have
dimension 4 as well as S and S ′, and they give additional current multiplets. As the result
the flavor symmetry (3.31) is enhanced to SU(2k) for k ≥ 3. On the gravity side, this
enhancement should be realized when we include the contribution of wrapped M2-branes.

The k = N = 2 case is most interesting. In this case, there are eight SU(2) gauge sym-
metry doublet in the hypermultiplets, and we can write down 28 gauge invariant dimension
4 operators forming the SO(8) adjoint representation. They correspond to the SO(8) global
symmetry of the quiver gauge theory. However, it is known that the symmetry is reduced to
SO(7) in a highly non-trivial way [46], and it would be nice if we can reproduce this flavor
symmetry on the gravity side by the index calculation.

3.6 Supperconformal indices of 6d N = (1, 0) theories

We define the superconformal index as follows. Let H and Jij (i, j = 1, . . . , 6) be the
generators of SO(2)H × SO(6)spin ⊂ SO(2, 6)conf , and take H, J12, J34, and J56 as Cartan
generators. H is the Hamiltonian and Jij are Lorentz generators. We also take R12 and R34

as SO(5)R Cartan generators. To define the index we need to choose one component of the
supercharge. We take the component with the following quantum numbers:

Q : (H, J12, J34, J56;R12, R34) = (+1
2
,−1

2
,−1

2
,−1

2
; +1

2
,+1

2
). (3.32)

Note that Q is invariant under the orbifold group Zk generated by (3.25). The anticommu-
tation relation between Q and its hermitian conjugate Q† is

∆ ≡ {Q,Q†} = H − (J12 + J34 + J56)− 2(R12 +R34). (3.33)

Then we define the superconformal index by

I(q, ya, u, ai, bi) = tr

[
(−1)Fx∆qH+ 1

3
(J12+J34+J56)yJ121 yJ342 yJ563 uR12−R34

k−1∏
i=1

a
Fa,i

i b
Fb,i

i

]
. (3.34)

Due to the boson/fermion cancellation only the BPS operators with ∆ = 0 contribute to the
index, and hence the index does not depend on x. The choice of Q breaks the SO(6)spin to
U(1)spin×SU(3)spin, and y1, y2, and y3 are the SU(3)spin fugacities constrained by y1y2y3 = 1.
Fa,i and Fb,i are respectively Cartan generators of SU(k)a and SU(k)b. u is the fugacity for
U(1)F generated by R12 − R34. Note that for k = 1 this index agree with the N = (2, 0)
superconformal index defined in (3.8).
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3.6.1 Result for N = 1

The theory with N = 1 is the free theory consisting of the “center-of-mass” tensor multiplet
and hypermultiplets belonging to the bi-fundamental representation of SU(k)a × SU(k)b.
The index with the tensor multiplet contribution removed is given by

I(1,0)
N=1 = Pexp

[
ihyper(χ

a
fund.χ

b
fund.

u+ χa
fund.

χb
fund.u

−1)
]
, (3.35)

where ihyper is given by [25]

ihyper =
q2

(1− q
4
3y1)(1− q

4
3y2)(1− q

4
3y3)

. (3.36)

Expanding (3.35) with k = 2 we obtain

I(1,0)
N=1,k=2 = 1 + χa

[1]χ
b
[1]χ

u
[1]q

2 + χa
[1]χ

b
[1]χ

u
[1]χ

y
[1,0]q

10
3 + (χa

[2] + χb
[2] + χu

[2] + χa
[2]χ

b
[2]χ

u
[2])q

4 +O(q
14
3 ),

(3.37)

where χu
[n] are the SU(2) characters defined by

χu
[n] =

un+1 − u−(n+1)

u− u−1
, (3.38)

and χy
[m1,m2]

are the SU(3) characters of the representations with Dynkin labels [m1,m2]. On
the otehr hand, for the k = 3 case we obtain

I(1,0)
N=1,k=3 = 1 +

(
uχa

[1,0]χ
b
[0,1] + u−1χa

[0,1]χ
b
[1,0]

)
q2 +

(
uχa

[1,0]χ
b
[0,1]χ

y
[1,0] + u−1χa

[0,1]χ
b
[1,0]χ

y
[1,0]

)
q

10
3

+
(
1 + χa

[1,1] + χb
[1,1] + u2χa

[0,1]χ
b
[1,0] + u−2χa

[1,0]χ
b
[0,1]

+u2χa
[2,0]χ

b
[0,2] + u−2χa

[0,2]χ
b
[2,0] + χa

[1,1]χ
b
[1,1]

)
q4 +O(q

14
3 ). (3.39)

3.7 Large N index from supergravity on AdS7 × S4/Zk

Here, we calculate the large-N indices of the N = (1, 0) theories from the dual gravity theo-
ries: The eleven-dimensional supergravity on AdS7×S4/Zk. We denote the bulk contribution
as Ibulk. This is given by the plethystic exponential of the single-particle index, which is the
sum of two contributions: the supergravity Kaluza-Klein modes in the internal space S4/Zk

and the vector multiplets localized at the two fixed points of S4/Zk.
The contribution of the Kaluza-Klein modes in AdS7×S4 without orbifolding has already

been studied in [25] and is given by Pexp iKK with the single-particle index

iKK =
q2χu

[1] − q
8
3χy

[0,1] + q
16
3 χy

[1,0] − q6χu
[1]

(1− uq2)(1− u−1q2)(1− y1q
4
3 )(1− y2q

4
3 )(1− y3q

4
3 )
. (3.40)
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The Kaluza-Klein modes in the orbifold S4/Zk is obtained by picking up the Zk invariant
modes from the modes in S4 [48]. Correspondingly, the single-particle index for the orbifold
is given by PkiKK, where Pk is the projection operator associated with the Zk orbifold which
acts on a function of the fugacity u as

Pkf(u) =
1

k

k−1∑
l=0

f(e2πil/ku). (3.41)

The other contribution we need to include in the single-particle index comes from two
Ak−1 singularities on C2/Zk at (z1, z2, x5) = (0, 0,±1), where the 7d SU(k)a ×SU(k)b vector
multiplets are localized. In general, a gauge field in the bulk of AdS corresponds to a flavor
symmetry on the boundary, and the corresponding current multiplet contributes to the index.
The corresponding single-particle index is iF (χ

a
adj.+χ

b
adj.), where χ

a/b
adj. are characters of adjoint

representations of the global SU(k)a/b symmetries and iF is given by

iF =
q4

(1− q
4
3y1)(1− q

4
3y2)(1− q

4
3y3)

. (3.42)

Note that iF is independent of u and we do not have to perform the Zk projection.
By combining two contributions, we can calculate the index for the large-N limit. For

example, for k = 2 we obtain

Pexp(P2iKK + iF (χ
a
[2] + χb

[2])) = 1− χy
[0,1]q

8
3 + (χu

[2] + χa
[2] + χb

[2] − χy
[1,1])q

4

+ ((2 + χu
[2] + χa

[2] + χb
[2])χ

y
[1,0] − χy

[2,1])q
16
3 +O(q

20
3 ). (3.43)

This includes the contribution of the “center of mass” free tensor multiplet. The existence
of such a decoupled free sector is suggested by the coefficient “2” of the term χy

[1,0]q
16
3 in

the above expansion, which is identified as the contribution of two copies of stress-tensor
multiplets. Such a free tensor multiplet exists for all k and N , and we always remove its
contribution in the following calculation. Namely, we define Ibulk in (5.59) by

Ibulk = Pexp(PkiKK + iF (χ
a
adj + χb

adj)− itensor), (3.44)

where the single-particle index itensor of the free tensor multiplet is given by [25]

itensor =
−q 8

3χy
[0,1] + q4

(1− q
4
3y1)(1− q

4
3y2)(1− q

4
3y3)

. (3.45)

For k = 2, 3, the equation (3.44) gives

Ibulk
k=2 = Pexp(P2iKK + iF (χ

a
[2] + χb

[2])− itensor)

= 1 + (χu
[2] + χa

[2] + χb
[2])q

4 + (1 + χu
[2] + χa

[2] + χb
[2])χ

y
[1,0]q

16
3 +O(q

20
3 ), (3.46)

Ibulk
k=3 = Pexp(P3iKK + iF (χ

a
[1,1] + χb

[1,1])− itensor)

= 1 + (1 + χa
[1,1] + χb

[1,1])q
4 + (2 + χa

[1,1] + χb
[1,1])χ

y
[1,0]q

16
3 + (−χu

[1] + χu
[3])q

6 +O(q
20
3 ).

(3.47)
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These are interpreted as the indices in the large-N limit. The q4 terms in each index are
the contribution of the flavor current multiplets, and we can read off the expected flavor
symmetries SU(2)3 for k = 2 and SU(3)2 × U(1) for k = 3. We also confirm that all other
terms are consistent with these flavor symmetries.

Summary of Chapter 3

In this chapter, we explained the superconformal index of the M5-brane theories investigated
so far. We first study the index of the N = (2, 0) theory. The definition of the superconformal
index for the N = (2, 0) theory is given by (3.8). For the single M5-brane (N = 1) case, we
calculated the index from the free theory of the tensor multiplet. On the other hand, when
N is large, we use the dual supergravity description to calculate the index.

We also discussed the superconformal index of the 6d N = (1, 0) theory. The definition
of the index for the (1,0) theory is given by (3.34). Similarly to the (2,0) case, we calculated
the index for the N = 1 case and the large N case. In addition, we discussed the expected
flavor symmetries of the 6d (1,0) theory, which are summarized in Table 3.3.
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Chapter 4

Finite N corrections to the indices of
the M2-brane theories

In this chapter, we discuss a new method of calculating the superconformal indices of M2-
brane theories from the dual gravity side in the finite-N region. We will see that finite-N
corrections to the indices of ABJM theories are given by M5-branes wrapped on S5 ⊂ S7.
This chapter is based on the author’s and his collaborator’s work [12].

4.1 Finite N corrections to the indices of the ABJM

theories with k = 1

4.1.1 Difference appearing at finite-N

We consider the ABJM theory with Chern-Simons level k = 1 and its gravity dual. Let us
first see the difference between the finite-N indices of ABJM theories and the Kaluza Klein
index. Here, we set ûa fugacities to be 1 for simplicity and the results (2.53) read

IKK|û=1 = 1 + 4q̂
1
2 + 20q̂ + 76q̂

3
2 + 274q̂2 + 900q̂

5
2 + 2826q̂3 + 8400q̂

7
2 + 24079q̂4

+ 66540q̂
9
2 + 178578q̂5 + 466248q̂

11
2 + 1188829q̂6 +O(q̂

13
2 ). (4.1)

On the other hand, the indices of ABJM theories (2.34) ∼ (2.36) are

IABJM
N=1 |û=1 = 1 + 4q̂

1
2 + 10q̂ + 16q̂

3
2 + 19q̂2 + 20q̂

5
2 + 26q̂3 + 40q̂

7
2 + 49q̂4

+O(q̂
9
2 ), (4.2)

IABJM
N=2 |û=1 = 1 + 4q̂

1
2 + 20q̂ + 56q̂

3
2 + 139q̂2 + 260q̂

5
2 + 436q̂3 + 640q̂

7
2 + 954q̂4

+ 1420q̂
9
2 + 2076q̂5 +O(q̂

11
2 ), (4.3)

IABJM
N=3 |û=1 = 1 + 4q̂

1
2 + 20q̂ + 76q̂

3
2 + 239q̂2 + 644q̂

5
2 + 1512q̂3 + 3100q̂

7
2 + 5743q̂4

+ 9856q̂
9
2 + 16182q̂5 + 25988q̂

11
2 + 40764q̂6 +O(q̂

13
2 ). (4.4)
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We can easily find the following finite-N “corrections”.

IABJM
N=1 |û=1 − IKK|û=1 = −10q̂ + · · · , (4.5)

IABJM
N=2 |û=1 − IKK|û=1 = −20q̂

3
2 + · · · , (4.6)

IABJM
N=3 |û=1 − IKK|û=1 = −35q̂2 + · · · . (4.7)

We can see that the differences appear at the order q̂
1
2
(N+1). If we restore the û fugacities,

we obtain

IABJM
N − IKK = −χ[N+1,0,0](û)q̂

1
2
(N+1) + · · · . (4.8)

Now our question is, what is the origin of these differences appearing at finite-N , or equiva-
lently, how we can reproduce the index of the field theory side at finite-N from the gravity
side. As we will discuss in the next subsection, the answer is contributions of M5-branes
wrapped on five-cycles in S7.

4.1.2 Wrapped M5-brane

The parameter relations in (2.45) imply that

r̂6

l6p
∼ N. (4.9)

This suggests that if N is large, we can neglect effects of quantum gravity and classical
supergravity description is valid. However, if N is finite (small) the supergravity description
is no longer valid and quantum gravity effect becomes important, since the typical length of
the solution r̂ is in the same order as Planck length lp at finite-N .

However, we may be able to overcome this difficult problem by using the robust nature
of supersymmetry. Namely, we claim that there is still a possibility to avoid such quantum
gravity effects by using a supersymmetry protected quantity. We think the superconformal
index is one candidate for such a quantity. If this assumption is true we can calculate the
index on the gravity side without considering quantum gravity corrections.

Further, at finite-N we need to consider another contribution to the index in addition to
the KK modes. To see this, we rewrite the parameter relation (2.45) by using the tension of
the M5-brane (1.22). The relation becomes

N = π3TM5r̂
6, (4.10)

and implies that M5-brane contribution is necessary at finite-N .
Actually, in the context of AdS/CFT, conformal dimension δ of an operator in the CFT

corresponds to the mass m of corresponding object in the AdS space multiplied by AdS
radius LAdS:

δ = mLAdS. (4.11)
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The mass of the wrapped M5-brane on a great circle of S7 (multiplied by the AdS4 radius)
is given by

TM5r̂
5V5L̂ =

N

2
, (4.12)

where V5 = π3 is the volume of a unit five-sphere. The wrapped M5-brane contribution seems
to reproduce the corrections discussed in the previous subsection. Note that the difference in
(4.8) appears at the order O(q̂

1
2
(N+1)), not at the order O(q̂

N
2 ). This is due to the tachyonic

shift explained later. See discussion around the equation (4.23).
In the large-N limit, such heavy branes do not contribute to the index, but at finite-N ,

as we saw, contributions of these branes become effective. Hence, the relation in the large-N
limit (2.51) should be modified at finite-N . We propose the following hypothesis formula of
the index valid at finite-N . The change is simply the inclusion of contributions of wrapped
M5-branes:

IABJM
N = IKK

(
1 +

∑
C

IM5
C

)
. (4.13)

IM5
C is the contribution of M5-branes in a certain configuration C and consists of two factors;

IM5
C = Iground

C Iexcitations
C . The factor Iground

C gives the classical contribution from wrapped M5-
branes without fluctuations. The other factor Iexcitations

C is the index of the theory realized on
the configuration C. The sum runs over “the representative configurations” of M5-branes.
In the next subsection, we will discuss this wrapped M5-brane contribution in detail.

The objects contributing to the indices at finite-N are schematically shown in Figure 4.1.

S
7

M5-brane

S
7

Kaluza Klein
particles

Figure 4.1: The objects contributing to the indices at finite-N are shown. The left figure
shows the Kaluza Klein particles in S7, which gives the large-N indices. The right figure
shows the M5-brane wrapped on a great circle in S7, which gives the finite-N corrections to
the indices.

4.1.3 Detail of M5-branes contribution

We determine the representative configurations C by a preliminary analysis of a rigid M5-
brane, an M5-brane wrapped on a large S5 in S7. Let us introduce complex coordinates za

59



CHAPTER 4. FINITE N CORRECTIONS TO THE INDICES OF THE M2-BRANE
THEORIES

(a = 1, 2, 3, 4) to describe the S7 by
∑4

a=1 |za|2 = 1. The R-symmetry su(4) ⊂ B̂ acts on
these coordinates in the natural way. For a rigid M5-brane to be BPS with respect to the
chosen supercharge Q̂ the worldvolume must be given by the holomorphic equation [49]

c1z1 + c2z2 + c3z3 + c4z4 = 0, (4.14)

where ca are homogeneous coordinates in P3. The collective motion of the M5-brane can be
treated as a particle in the moduli space P3. By the analysis of the coupling of the brane
and the background flux we find the wave function Ψ of a rigid M5-brane is a section of the
line bundle O(N) over P3. We can give Ψ as a homogeneous function of the coordinates ca of
degree N . States described by such wave functions belong to the su(4) representation with
Dynkin labels [N, 0, 0]. On the gauge theory side these states are identified with baryonic

type operators in the ABJM theory[5]. The corresponding index is q̂
1
2
Nχ[N,0,0](ûa), where

χ[a,b,c](ûa) is the su(4) character of the representation [a, b, c].

Now let us remember the Weyl’s character formula. It gives q̂
1
2
Nχ[N,0,0](ûa) as the sum:

q̂
1
2
Nχ[N,0,0](ûa) =

q̂
1
2
N ûN4

(1− û1

û4
)(1− û2

û4
)(1− û3

û4
)
+ (permutations)

= q̂
1
2
N ûN4 Pexp

(
û1
û4

+
û2
û4

+
û3
û4

)
+ (permutations), (4.15)

where “permutations” represents three terms obtained from the first term by cyclic permu-
tations of ûa. From the quantum mechanical point of view, the first term can be interpreted
as the partition function of the system with the ground state q̂

1
2
N ûN4 and three bosonic exci-

tations û1/û4, û2/û4, and û3/û4. We define the representative configuration as the M5-brane
corresponding to the ground state. For the first term in (4.15) it is given by z4 = 0. Corre-
sponding to the other terms obtained by the permutations there are three more representative
configurations za = 0 (a = 1, 2, 3).

The main idea in [6] is that we can obtain the finite-N corrections to the index by
ornamenting the Weyl’s formula (4.15) with all other fluctuation modes by replacing the
zero-mode contribution û1/û4 + û2/û4 + û3/û4 by the complete single-particle index of the
theory on the worldvolume of the M5-brane. In addition, to obtain the complete corrections,
we need to take account of representative configurations including more than one branes [50].
Namely, the general form of C is given by

C : zn1
1 z

n2
2 z

n3
3 z

n4
4 = 0, na ∈ Z≥0, (n1, n2, n3, n4) ̸= (0, 0, 0, 0), (4.16)

where a multiple zero is understood as coincident branes. (n1, n2, n3, n4) = (0, 0, 0, 0) is ex-
cluded because it corresponds to the first term in the parentheses in (4.13). The contribution
of each configuration C is factorized into two factors Iground

C and Iexcitations
C . Each wrapped

brane contributes N/2 to the energy (in the unit of L̂−1) and the ground state of C includes

the factor q̂
1
2
nN with n = n1 + n2 + n3 + n4. Iground

C is given as the product of the ground
state contribution of each brane:

Iground
C = q̂

1
2
nN ûn1N

1 ûn2N
2 ûn3N

3 ûn4N
4 . (4.17)
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Iexcitations
C is the contribution of excitations on C. If n ≥ 2 the theory on C is interacting

and it is not so easy to calculate Iexcitations
C . In this work we only consider four configurations

with n = 1 given by za = 0 (a = 1, 2, 3, 4). Then, the theory on C is free and Iexcitations
C is

given by

Iexcitations
za=0 = Pexp iM5

za=0, (4.18)

where iM5
za=0 is the single-particle index of the fluctuation modes on the worldvolume of an

M5-brane wrapped on za = 0.

The single-particle index from the DBI action

Let us calculate the single-particle index iM5
za=0 for each representative configuration. In the

following we consider the configuration z4 = 0. The other three are obtained by the permu-
tations of the fugacities ûa. We start with the analysis of the scalar modes. If we neglect the
self-dual potential field and fermion fields on the worldvolume the M5-brane action is given
as the sum of the Nambu-Goto action SNG and the Chern-Simons term SCS:

SNG = −TM5

∫
d6σ
√

− detGab, SCS =

∫
A6, (4.19)

where Gab is the induced metric and A6 is the background 6-form potential satisfying dA6 =
(2πN/V7)vol(S

7). We use the following AdS4 × S7 metric:

ds2 = L̂2(− cosh2 ρdt̂2 + dρ2 + sinh2 ρdΩ2
2) + r̂2(cos2 θdΩ2

5 + dθ2 + sin2 θdϕ2). (4.20)

We consider an M5-brane wrapped on R × S5 defined by ρ = θ = 0. There are 5 scalar
fields corresponding to transverse directions of the M5-brane: three in AdS4 and two in S7.
To describe fluctuations in AdS4 we introduce a three-dimensional unit vector n and rewrite
dΩ2

2 as dn2. We define fluctuation fields by

X = ρn, z = θeiϕ. (4.21)

By neglecting higher order terms and using the relations (2.50) and (4.10), we obtain

SNG + SCS =
N

2π3

∫
dt̂dΩ5

[
− 1 +

1

2
(∂t̂X)2 − 1

8
(∇X)2 − 1

2
X2

+ 2|∂t̂z|2 −
1

2
|∇z|2 + 5

2
|z|2 + 3i(−z∗∂t̂z + z∂t̂z

∗)

]
, (4.22)

where ∇ is the derivative on the unit S5. The constant term gives the energy E = 1
2
N of the

wrapped M5-brane. By solving the equations of motion we can easily obtain the spectrum
of fluctuation modes. (See Table 4.1.3.) We have six zero-modes of z∗ at ℓ = 1 and three of
them are BPS. They correspond to three excitations û1/û4, û2/û4, and û3/û4 appearing in
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fields Ĵ12 so(6) R̂78 Ĥ
X 0,±1 [0, ℓ, 0] 0 (ℓ+ 2)/2
z 0 [0, ℓ, 0] +1 (ℓ+ 5)/2
z∗ 0 [0, ℓ, 0] −1 (ℓ− 1)/2

Table 4.1: Scalar fluctuation modes on an M5-brane wrapped on z4 = 0. ℓ = 0, 1, 2, . . . is the
angular momentum on S5.

the Weyl’s formula (4.15). We also have one BPS mode of z∗ at ℓ = 0 which corresponds to

a term q̂−
1
2 û−1

4 . We call such modes with negative energy tachyonic modes.
A few comments on the tachyonic modes are in order. First, When the single-particle

index includes a term proportional to the negative power of q̂, for example q̂−
1
2 (We set other

fugacities to be 1.), the plethystic exponential of this term is given by

Pexp(q−
1
2 ) =

1

1− q−
1
2

= − q
1
2

1− q
1
2

. (4.23)

We can see that this factor increases the order of the index by q̂
1
2 and changes the overall sign

of the correction. Now we find, together with the ground state contribution, the correction
starts at the order O(q̂

1
2
(N+1)) with the negative coefficient. This precisely agrees with the

analysis in Subsection 4.1.1.
We also note that the existence of the tachyonic mode does not cause the instability of

the system. The tachyonic mode carries the R-charge R̂78 = −1, and a tachyonic particle
is always created together with an anti-particle with R̂78 = +1. As is shown in Table 4.1.3
such an anti-particle, which corresponds to the ℓ = 0 mode of z, carries the energy E = 5/2,
and the pair creation raises the total energy of the system. Another comment is about the
consistency with the BPS bound. Ordinarily, a particle with negative energy is against the
BPS bound E ≥ 0. In the theory on the wrapped brane, however, we do not have such
a bound. An M5-brane wrapped on z4 = 0 breaks the half supersymmetries. Among 32
supercharges only 16 that commute with the generator

Ẑ = Ĥ − R̂78 (4.24)

are preserved. The algebra of the preserved symmetry is

Ĉ × u(1)Ẑ , Ĉ = su(2|4). (4.25)

The central factor u(1)Ẑ is generated by Ẑ. The bosonic subalgebra of Ĉ is so(3)×so(6)×u(1)
generated by

Ĵij (i, j = 1, 2, 3), R̂ab (a, b = 1, . . . , 6), Ĉ ≡ Ĥ − 1

2
R̂78. (4.26)

The fluctuation modes on the M5-brane form a representation of the unbroken algebra Ĉ.
The Hamiltonian Ĥ appears in Ĉ only through Ĉ, and the bound obtained from the algebra
is not Ĥ ≥ 0 but Ĉ ≥ 0. The tachyonic mode saturates this bound.

62



CHAPTER 4. FINITE N CORRECTIONS TO THE INDICES OF THE M2-BRANE
THEORIES

The single-particle index via the variable change

In principle, we can calculate the complete single-particle index iM5
za=0 by carrying out the

mode expansion of the tensor and the fermion fields. However, there is an easy way to obtain
the index from the known 6d superconformal index of the tensor multiplet.

We are interested in the theory of a tensor multiplet living on R × S5, the worldvolume
of a wrapped M5-brane. This system is similar to the system of a tensor multiplet living on
the boundary of AdS7. In Section secsinglem5, we investigated the six-dimensional system
living on the AdS boundary R×S5, on which the (2, 0) superconformal algebra Ǎ acts. The
two free theories, the theory on a wrapped M5-brane in AdS4 × S7 and the theory on the
boundary of AdS7, are in fact the same theory, at least at the linearized level, and we can
obtain the index of the former from the index of the latter by a simple variable change of
fugacities.

We first establish the relation between the symmetry algebras. Namely, we need to
find an isomorphism between the unbroken algebra on the wrapped M5-brane (4.25) and a
subalgebra of Ǎ. There is an ambiguity of the choice of the subalgebra of Ǎ. A convenient
one is the symmetry (5.12) realized on a wrapped M2-brane studied in the next chapter. It
is isomorphic to (4.25);

Ĉ × u(1)Ẑ ≃ Č × u(1)Ž . (4.27)

The explicit relations between the two sets of the bosonic generators are as follows.

J̌ij = R̂ij (i, j = 1, . . . , 6), Řa+2,b+2 = Ĵab (a, b = 1, 2, 3),

Ž = 2Ẑ, Č = 2Ĉ. (4.28)

We can relate the two systems not only at the level of the symmetry but also at the level
of the Lagrangians. The boundary metric of AdS7 is

ds2 ∝ −dť2 + dΩ2
5. (4.29)

For distinction from t̂ used in (4.22) we use ť for the time coordinate. The Lagrangian of the
five scalar fields ϕI (I = 1, . . . , 5) living on this background is

L ∝
5∑

I=1

[
(∂ťϕI)

2 − (∇ϕI)
2 − 4ϕ2

I

]
, (4.30)

where the last term is the conformal coupling to the background curvature. We simply relate
the triplet fields by X ∝ (ϕ3, ϕ4, ϕ5), while in the relation between z and ϕ1,2 we need to
apply the time-dependent phase rotation

z ∝ e−3iť(ϕ1 + iϕ2), (4.31)

corresponding to the relation of two Hamiltonians 2Ĥ = Ȟ − 3Ř12 obtained from the last
two equations in (4.28). In addition, we rescale the time coordinate by t̂ = 2ť to match the
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background metric (4.29) and the metric on the wrapped M5-brane

ds2 = r̂2
(
−1

4
dt̂2 + dΩ2

5

)
(4.32)

obtained from (4.20) by the restriction ρ = θ = 0. Then, we obtain the Lagrangian in (4.22)
from (4.30).

We can extend the relations (4.28) to fermionic generators. An important fact is that the
supercharges used to define the superconformal indices on two sides are related by

Q̌ =
√
2Q̂†, (4.33)

and the relation ∆̌ = 2∆̂ immediately follows from this. This implies that the supercon-
formal indices defined on two sides are essentially the same. Indeed, we can rewrite the
six-dimensional index (3.8) to the three-dimensional index (2.7) by using the map (4.28) and
the variable change

q̌ = q̂
3
8 û

− 1
4

4 , y̌1 = û1û
1
3
4 , y̌2 = û2û

1
3
4 , y̌3 = û3û

1
3
4 , ǔ = q̂−

5
4 û

− 1
2

4 . (4.34)

Applying the variable change (4.34) to the index iM5 in (3.12) of the free tensor multiplet
we obtain the following single-particle index for the excitations on an M5-brane wrapped on
z4 = 0:

iM5
z4=0 =

q̂−
1
2 û−1

4 − q̂û−1
4 (û−1

1 + û−1
2 + û−1

3 ) + q̂
3
2 û−1

4 + q̂2

(1− q̂
1
2 û1)(1− q̂

1
2 û2)(1− q̂

1
2 û3)

=
1

q̂
1
2 û4

+
û1 + û2 + û3

û4
+ · · · . (4.35)

The first few terms in the expansion correspond to the tachyonic modes and rigid motion
modes obtained in the analysis of scalar fluctuations.

4.1.4 Comparison

Let us calculate the indices by using our formula and compare the results with the ABJM
indices. In the last subsection, we obtained the following hypothetical formula

IABJM
N = Igrav

N +O(q̂
1
2
(2N+δ)), (4.36)

where the first term in the right-hand side is defined by

Igrav
N := IKK

(
1 +

4∑
a=1

q̂
1
2
N ûNa Pexp iM5

za=0

)
, (4.37)

and the second term O(q̂
1
2
(2N+δ)) is the expected error due to the neglect of the multiple-

wrapping configurations with the tachyonic shift δ. Based on the experience in the D3-brane
case we expect δ is independent of N , and this is directly confirmed below for small N .
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Let us see the result including the single-wrapping M5-branes by using our formula. We
again set ûi = 1 for readability. See Appendix A for the full expressions of the indices. For
the N = 1, 2, 3 case, the formula (4.37) gives

Igrav
N=1|û=1 = 1 + 4q̂

1
2 + 10q̂ + 16q̂

3
2 + 19q̂2 + 20q̂

5
2 + 26q̂3 + 40q̂

7
2 + 5769q̂4

+O(q̂
9
2 ), (4.38)

Igrav
N=2|û=1 = 1 + 4q̂

1
2 + 20q̂ + 56q̂

3
2 + 139q̂2 + 260q̂

5
2 + 436q̂3 + 640q̂

7
2 + 954q̂4

+ 1420q̂
9
2 + 15518q̂5 +O(q̂

11
2 ), (4.39)

Igrav
N=3|û=1 = 1 + 4q̂

1
2 + 20q̂ + 76q̂

3
2 + 239q̂2 + 644q̂

5
2 + 1512q̂3 + 3100q̂

7
2 + 5743q̂4

+ 9856q̂
9
2 + 16182q̂5 + 25988q̂

11
2 + 70079q̂6 +O(q̂

13
2 ). (4.40)

We find nice agreement with the CFT results (4.2),(4.3),(4.4). Now the differences appear at

q̂
1
2
(2N+6), which means δ = 6. (Recall that with only the Kaluza Klein modes we have errors

at q̂
1
2
(2N+1).) Unfortunately, we have no clear explanation for this value of δ.

4.2 Zk orbifold

Let us consider the case with the Chern-Simons level k larger than 1. corresponding to Zk

orbifold.
For the AdS4 × S7/Zk case, the non-trivial fifth homology H5(S

7/Zk,Z) = Zk means
S7/Zk have topologically non-trivial five-cycles. M5-branes can be wrapped on these cycles.

Let us calculate the mass of the wrapped M5-brane in the presence of the Zk orbifold.
The relation between the M5-brane tension and the radius of S7 is modified as follows:

TM5 =
2π

(2πlp)6
=

2πN

6r̂7V7/k
=

Nk

r̂6π3
, (4.41)

where V7 = π4

3
is volume of unit seven-sphere, while the relation of radii of AdS4 and S7 is

preserved:

L̂ =
r̂

2
. (4.42)

Then the mass of the wrapped M5-brane for the orbifold case is given by

TM5r̂
5V5
k
L̂ =

N

2
. (4.43)

Hence, the M5-brane again gives the finite-N corrections to the index.
As in the Kaluza Klein index, the M5-brane contribution to the index for the orbifold case

can be calculated simply by applying the orbifold projection operator Pk on the single-particle
index:

IM5
za=0 = q̂

1
2
N ûNa PexpPki

M5
za=0. (4.44)
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Because of the non-trivial five-cycle homology H5(S
7/Zk) = Zk we can classify states by

the topological wrapping number B ∈ Zk of M5-branes, and we can calculate the index for
each sector with specific B. If a configuration C is given by equation h(z) = 0 the function
h(z) must have a specific Zk charge for consistency with the Zk orbifolding. Namely, it must
satisfy

h(ωkz1, ωkz2, ω
−1
k z3, ω

−1
k z4) = ωB

k h(z1, z2, z3, z4) (4.45)

with some B ∈ Zk. Then, B is the topological wrapping number of the worldvolume. Among
the four representative configurations with n = 1, z1 = 0 and z2 = 0 carry B = +1, and
z3 = 0 and z4 = 0 carry B = −1.

On the ABJM theory side k is the Chern-Simons level, and a wrapped M5-brane with
B ̸= 0 corresponds to a baryonic operator carrying Zk baryonic charge B. In the ABJM
theory with the gauge group U(N)k × U(N)−k this baryonic symmetry is a part of gauge
symmetry, and baryonic operators are not gauge invariant. In order to calculate the index
with the contribution of baryonic operators we need to use the ABJM theory with the gauge
group (U(N)k × U(N)−k)/Zk where the Zk quotient acts on the diagonal U(1) symmetry
[51, 52]. In the index calculation, this quotient changes the quantization of monopole charges.

The index of ABJM theory is calculated by summing up contribution of different monopole
charges [11]. The monopole charges are labeled by 2N GNO charges: (m1. . . . ,mN) for U(N)k
and (m̃1, . . . , m̃N) for U(N)−k. In the U(N)k×U(N)−k theory all charges are integers, while
in the (U(N)k × U(N)−k)/Zk theory the quantization condition is given by

mα, m̃α ∈ Z +
B

k
, B ∈ Zk. (4.46)

The index of the B = 0 sector is the same as the index of the U(N)k × U(N)−k ABJM
theory, while B ̸= 0 sector gives the index for baryonic operators, which corresponds to the
contribution of M5-branes with topological wrapping number B on the gravity side.

In the following we calculate the indices for k = 2 and k = 3 on both sides of the duality,
and confirm the agreement up to the expected order of q̂. We use the notations IABJM(B/k)

N

and Igrav(B/k)
N for the indices calculated on the two sides of the duality.

4.2.1 Comparison

k = 2

In the case of k = 2, there are two sectors labeled by B ∈ Z2.
Let us first calculate the index of the B = 0 sector. The indices for N = 1, 2, 3 are

IABJM(0/2)
N=1 |û=1 = 1 + 10q̂ + 19q̂2 +O(q̂3), (4.47)

IABJM(0/2)
N=2 |û=1 = 1 + 10q̂ + 75q̂2 + 220q̂3 +O(q̂4), (4.48)

IABJM(0/2)
N=3 |û=1 = 1 + 10q̂ + 75q̂2 + 450q̂3 + 1595q̂4 +O(q̂5). (4.49)
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Let us compare these with the Kaluza-Klein contribution.

IZ2
KK|û=1 = 1 + 10q̂ + 75q̂2 + 450q̂3 + 2365q̂4 +O(q̂5). (4.50)

We find the corrections appear at order q̂
1
2
(2N+2). They are interpreted as contributions of

two-brane configurations, which belong to the B = 0 sector. Hence, it exceeds our scope.
Next, let us consider the index of B = 1 sector:

IABJM(1/2)
N=1 |û=1 = 4q̂

1
2 + 16q̂

3
2 + 20q̂

5
2 + 40q̂

7
2 + 40q̂

9
2 +O(q̂

11
2 ), (4.51)

IABJM(1/2)
N=2 |û=1 = 10q̂ + 65q̂2 + 220q̂3 + 455q̂4 + 1060q̂5 + 1645q̂6 +O(q̂

13
2 ), (4.52)

IABJM(1/2)
N=3 |û=1 = 20q̂

3
2 + 164q̂

5
2 + 780q̂

7
2 + 2500q̂

9
2 + 6300q̂

11
2 + 15720q̂

13
2

+ 30496q̂
15
2 +O(q̂8). (4.53)

On the gravity side we need to consider wrapped M5-brane with B = 1. Because B is Z2-
valued B = +1 and B = −1 are identified, and all four configurations za = 0 (a = 1, 2, 3, 4)
contribute to the index;

Igrav(1/2)
N = IZ2

KK

4∑
a=1

q̂
1
2
N ûNa PexpP2i

M5
za=0. (4.54)

The results for N = 1, 2, 3 are

Igrav(1/2)
N=1 |û=1 = 4q̂

1
2 + 16q̂

3
2 + 20q̂

5
2 + 40q̂

7
2 − 1500q̂

9
2 +O(q̂5), (4.55)

Igrav(1/2)
N=2 |û=1 = 10q̂ + 65q̂2 + 220q̂3 + 455q̂4 + 1060q̂5 − 7210q̂6 +O(q̂

13
2 ), (4.56)

Igrav(1/2)
N=3 |û=1 = 20q̂

3
2 + 164q̂

5
2 + 780q̂

7
2 + 2500q̂

9
2 + 6300q̂

11
2 + 15720q̂

13
2

− 12008q̂
15
2 +O(q̂8). (4.57)

In all cases the leading term is of order q̂
1
2
N , and there is no tachyonic shift. This is

because the Z2 projection removes the tachyonic term from the single-particle index. This is
consistent with the fact that the branes are wrapped on topologically non-trivial cycles. The
error between the ABJM index and (4.54) appears at q̂

1
2
(3N+6). This is consistent with the

fact that only brane configuration with odd n contribute to the index of the B = 1 sector
and the error is due to n = 3 configurations.

k = 3

The Zk orbifolding with k ≥ 3 breaks the N = 8 supersymmetry down to N = 6.
We consider k = 3 case and there are three sectors specified by B ∈ Z3. Let us first

consider the B = 0 sector. The ABJM index is given for N = 1, 2, 3 as follows.

IABJM(0/3)
N=1 |û=1 = 1 + 4q̂ + 8q̂

3
2 + q̂2 +O(q̂

5
2 ), (4.58)

IABJM(0/3)
N=2 |û=1 = 1 + 4q̂ + 8q̂

3
2 + 12q̂2 + 40q̂

5
2 + 58q̂3 +O(q̂

7
2 ), (4.59)

IABJM(0/3)
N=3 |û=1 = 1 + 4q̂ + 8q̂

3
2 + 12q̂2 + 40q̂

5
2 + 82q̂3 + 132q̂

7
2 + 303q̂4

+O(q̂
9
2 ). (4.60)
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Let us compare these with the Kaluza-Klein index

IZ3
KK|û=1 = 1 + 4q̂ + 8q̂

3
2 + 12q̂2 + 40q̂

5
2 + 82q̂3 + 132q̂

7
2 + 348q̂4 +O(q̂

9
2 ). (4.61)

We find the corrections at q̂
1
2
(2N+2). We can interpret these corrections as the contributions

of brane configurations with n = 2 consisting of a brane with B = +1 and another brane
with B = −1.

Next, let us consider baryonic sectors with B = ±1. These two sectors are related by the
charge conjugation symmetry B → −B we focus only on the B = +1 sector. The ABJM
index is given as follows for N = 1, 2, 3.

IABJM(1/3)
N=1 |û=1 = 2q̂

1
2 + 3q̂ + 4q̂

3
2 + 9q̂2 +O(q̂

5
2 ), (4.62)

IABJM(1/3)
N=2 |û=1 = 3q̂ + 6q̂

3
2 + 14q̂2 + 32q̂

5
2 + 51q̂3 +O(q̂

7
2 ), (4.63)

IABJM(1/3)
N=3 |û=1 = 4q̂

3
2 + 9q̂2 + 24q̂

5
2 + 65q̂3 + 126q̂

7
2 + 215q̂4 +O(q̂

9
2 ). (4.64)

On the gravity side we take only two single-wrapping configurations z1 = 0 and z2 = 0 into
account because the other two carry B = −1.

Igrav(1/3)
N = IZ3

KK

2∑
a=1

q̂
1
2
N ûNa PexpP3i

M5
za=0. (4.65)

The results for N = 1, 2, 3 are

Igrav(1/3)
N=1 |û=1 = 2q̂

1
2 + 3q̂ + 4q̂

3
2 − q̂2 +O(q̂

5
2 ), (4.66)

Igrav(1/3)
N=2 |û=1 = 3q̂ + 6q̂

3
2 + 14q̂2 + 32q̂

5
2 + 36q̂3 +O(q̂

7
2 ), (4.67)

Igrav(1/3)
N=3 |û=1 = 4q̂

3
2 + 9q̂2 + 24q̂

5
2 + 65q̂3 + 126q̂

7
2 + 194q̂4 +O(q̂

9
2 ). (4.68)

We find errors at q̂
1
2
(2N+2). We can interpret them as the contribution of n = 2 configurations

with B = −2 ≈ +1.

Summary of Chapter 4

In this chapter, we investigated a method of calculating the superconformal index of the
M2-brane theories from the dual gravity theory in the finite-N region. Our formula (4.13)
includes the wrapped M5-brane contribution as the finite-N corrections.

We checked the validity of our formula by comparing the results obtained via the formula
with the ABJM indices. Especially, we found the agreement of the indices up to the order
O(q̂

1
2
(2N+6)) for k = 1. The difference is thought to be the contribution of multiple-wrapping

M5-branes we ignored in the analyses in this chapter. For k > 1, we also did a similar analysis
for each baryonic charge sector and found nice agreement of the indices.
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Chapter 5

Finite N corrections to the indices of
the M5-brane theories

Next, we discuss the superconformal indices of 6d N = (2, 0) theories. As we saw, this theory
is realized on a stack of M5-branes, and the gravity dual is M-theory on AdS7 × S4. Since
there are no Lagrangian descriptions of the theory until now, we cannot perform the direct
localization analysis to calculate the superconformal index.

We propose a formula for calculating the indices from the dual gravity theory, which is
very similar to the previous one (4.13). In this 6d case, finite-N corrections to the indices of
6d (2,0) theories are given by the contribution of M2-branes wrapped on S2 ⊂ S4. For the
N = 1 case, we confirm the validity of our formula by comparing the result from our formula
with the free theory calculation (3.15). For N > 1, by removing the free tensor multiplet
contribution, we propose new results of the indices of 6d AN−1 theories. We also expand the
indices of AN−1 theories in terms of superconformal representations.

We also discuss the superconformal index of the 6d N = (1, 0) theory in Sec 5.2.

5.1 Finite N corrections to the indices of the 6d N =

(2, 0) theories

5.1.1 Difference at finite-N

As in the previous AdS4/CFT3 example, we first show the difference between the finite-N
superconformal index of the 6d N = (2, 0) theory and the Kaluza Klein index. From the
equations (3.15) and (3.23), we obtain

I(2,0)
N=1 − IS4

KK = −χu
2 q̌

4 + · · · . (5.1)

Although we can perform the calculation for the N = 1 case only, this seems to implies

I(2,0)
N − IS4

KK = −χu
N+1q̌

2(N+1) + · · · . (5.2)
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Let us discuss the parameter relations for the AdS7/CFT6 case. In terms of the M2-brane
tension, the relation (3.19) can be written as

N = 4πTM2ř
3. (5.3)

Also, the mass of the M2-brane wrapped on maximal S4 (multiplied by AdS7 length) is given
by

TM2ř
2V2Ľ = 2N, (5.4)

with V2 = 4π is volume of two-sphere. This suggest that the M2-brane contribution gives
the finite-N corrections to the indices of the 6d (2, 0) theories. Note that the appearance of
the difference at the order O(q̌2(N+1)) in (5.2), not as the order O(q̌2(N+1)) is again due to
the tachyonic shift.

5.1.2 Wrapped M2-brane

Similarly to the previous AdS4/CFT3 case, for the theory on a finite number of M5-branes
we propose the following formula of the superconformal index:

I(2,0)
N = IKK

(
1 +

∑
C

IM2
C

)
. (5.5)

IM2
C is the contribution of an M2-brane configuration C. The sum of C runs over representa-

tive configurations, which are determined shortly in a parallel way to the three-dimensional
case. We again schematically show the objects contributing to the indices at finite-N in
Figure 5.1.

S
4

M2-brane

S
4

Kaluza Klein
particles

Figure 5.1: The objects contributing to the indices at finite-N are shown. The left figure
shows the Kaluza Klein particles in S4, which gives the large-N indices. The right figure
shows the M2-brane wrapped on a great circle in S4, which gives the finite-N corrections to
the indices.

Let us introduce Cartesian coordinates x1, . . . , x5 and describe S4 by
∑5

a=1 x
2
a = 1. We

also introduce the complex coordinates

z1 = x1 + ix2, z2 = x3 + ix4. (5.6)
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The subalgebra su(2) ⊂ so(5) of the R-symmetry commuting with Q̌ transforms these com-
plex coordinates as a doublet. For a rigid M2-brane wrapped on a large S2 in S4 to preserve
the supersymmetry Q̌, the M2-brane worldvolume must be given by the holomorphic equation
[53]

a1z1 + a2z2 = 0, (5.7)

where (a1, a2) are homogeneous coordinates of the moduli space P1 of the rigid brane. Due
to the coupling to the background flux the wave function Ψ of the rigid brane is a section
of O(N) line bundle over P1. Namely, Ψ can be given as a homogeneous polynomial of
(a1, a2) of degree N . There are N + 1 such linearly independent polynomials belonging to
the (N + 1)-dimensional representation of su(2) acting on P1. The corresponding index is

q̌2NχN(ǔ) =
q̌2N ǔN

1− ǔ−2
+
q̌2N ǔ−N

1− ǔ2
. (5.8)

As in the case of wrapped M5-branes the two terms are interpreted as the contribution of
two representative configurations of M2-brane, z1 = 0 and z2 = 0, respectively. The general
representative configurations are given in the form

C : zn1
1 z

n2
2 = 0, n1, n2 ∈ Z≥0, (n1, n2) ̸= (0, 0), (5.9)

and the corresponding contribution IM2
C is given by

IM2
C = q̌2nN ǔ(n1−n2)NIexcitations

C , (5.10)

where n = n1 + n2. For C with n ≥ 2 it is difficult to calculate Iexcitations
C , while for n = 1

configurations za = 0 (a = 1, 2) the theory on the wrapped brane is free and given by
Iexcitations
za=1 = Pexp iM2

za=0, where i
M2
za=0 is the single-particle index on an M2-brane wrapped on

za = 0.
Let us consider an M2-brane wrapped on S2 ⊂ S4 on z1 = 0. Among 32 supercharges

only 16 that commute with

Ž = Ȟ − Ř12 (5.11)

are preserved by the wrapped brane. The superconformal algebra Ǎ is broken to

so(2)Ž × Č, Č = su(4|2), (5.12)

where so(2)Ž is the central factor generated by Ž. The bosonic subalgebra su(4) × su(2) ×
u(1) ⊂ Č is generated by

J̌ij (i, j = 1, . . . , 6), Řab (a, b = 3, 4, 5), Č ≡ Ȟ − 2Ř12. (5.13)

As is explained in the last section this is isomorphic to the symmetry preserved by a wrapped
M5-brane in (4.25). By using the isomorphism map (4.28), we can obtain iM2

z1=0 from iM2 in
(2.16) by a simple variable change. The inverse of (4.34) is

q̂ = q̌ǔ−
1
2 , û1 = q̌

5
6 y̌1ǔ

1
4 , û2 = q̌

5
6 y̌2ǔ

1
4 , û3 = q̌

5
6 y̌3ǔ

1
4 , û4 = q̌−

5
2 ǔ−

3
4 , (5.14)
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Table 5.1: Scalar modes on an M2-brane wrapped on z1 = 0. ℓ = 0, 1, 2, . . . is the orbital
angular momentum in S2. States with (R12, R34) = (−1, ℓ) saturate the BPS bound Ȟ ≥
2(Ř12 + Ř34).

so(6) Ř12 Ř34 Ȟ
6 0 −ℓ ∼ ℓ 2ℓ+ 1
1 +1 −ℓ ∼ ℓ 2ℓ+ 4
1 −1 −ℓ ∼ ℓ 2ℓ− 2

and by substituting these relations into (2.16) we obtain

iM2
z1=0 =

q̌−2ǔ−1 − q̌
2
3 ǔ−1χ[0,1](y̌) + q̌

4
3χ[1,0](y̌)− q̌4

1− q̌2ǔ−1
. (5.15)

The index iM2
z2=0 for the other configuration z2 = 0 is obtained from (5.15) by the Weyl

reflection ǔ→ ǔ−1.

It is of course possible to calculate the index directly by the mode expansion of fields on
the wrapped brane. We show the results for scalar fields in Table 5.1. There is one BPS
tachyonic mode with Ȟ = −2 and one BPS zero mode. These correspond to the first two
terms in the q̌ expansion of iM2

z1=0:

iM2
z1=0 =

1

q̌2ǔ
+

1

ǔ2
+ · · · . (5.16)

5.1.3 Results and consistency check

The formula for the finite-N corrections is

I(2,0)
N = Igrav

N +O(q̌2(2N+δ)), (5.17)

where Igrav
N includes the Kaluza-Klein contribution and the contribution of single wrapping

M2-branes, and the second term is the contribution of multiple wrapping configurations,
which we do not calculate in this paper. δ is the tachyonic shift of configurations with n = 2.
The explicit form of Igrav

N is

Igrav
N = IKK

(
1 + q̌2N ǔN Pexp iM2

z1=0 + q̌2N ǔ−N Pexp iM2
z2=0

)
. (5.18)
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Let us first consider the N = 1 case. The formula (5.18) with N = 1 gives

Igrav
N=1 = 1 + χǔ

1 q̌
2 − χ[0,1]q̌

8
3 + χ[1,0]χ

ǔ
1 q̌

10
3 +

(
χǔ
2 − χ[1,1]

)
q̌4 +

(
χ[2,0] − χ[0,1]

)
χǔ
1 q̌

14
3

+
(
χ[1,0]

(
χǔ
2 + 2

)
− χ[2,1]

)
q̌

16
3 +

((
−2χ[1,1] + χ[3,0] − 1

)
χǔ
1 + χǔ

3

)
q̌6

+
(
2χ[2,0]χ

ǔ
2 − χ[0,1]

(
χǔ
2 − 2

)
+ χ[1,2] + 2χ[2,0] − χ[3,1]

)
q̌

20
3

+
(
−χ[0,2]χ

ǔ
1 − 3χ[2,1]χ

ǔ
1 + χ[4,0]χ

ǔ
1 + χ[1,0]χ

ǔ
3

)
q̌

22
3

+
(
2χ[3,0]χ

ǔ
2 − χ[1,1]

(
χǔ
2 − 2

)
+ χ[0,3] + χ[2,2] + 4χ[3,0] − χ[4,1] − χǔ

2 + χǔ
4 − 2

)
q̌8

+
(
−χ[1,2]χ

ǔ
1 + χ[2,0]χ

ǔ
1 − 4χ[3,1]χ

ǔ
1 + χ[5,0]χ

ǔ
1 + χ[0,1]

(
2χǔ

1 − χǔ
3

)
+ 2χ[2,0]χ

ǔ
3

)
q̌

26
3

+
(
−3χ[2,1]χ

ǔ
2 + 3χ[4,0]χ

ǔ
2 + χ[1,0]

(
−χǔ

2 + χǔ
4 − 3

)
−2χ[0,2] + χ[1,3] + 2χ[2,1] + 2χ[3,2] + 4χ[4,0] − χ[5,1]

)
q̌

28
3

+
( (
χ[0,3] + 6χ[1,1] − χ[2,2] + 3χ[3,0] − 5χ[4,1] + χ[6,0] − 1

)
χǔ
1

−
(
χ[1,1] − 3χ[3,0] + 1

)
χǔ
3

)
q̌10 +O(q̌

32
3 ). (5.19)

On the other hand, for the N = 1 case, the six-dimensional theory is the free theory of a
single tensor multiplet and we explicitly calculated the index in (3.15). If we compare the
gravity calculation (5.19) with the field theory calculation (3.15), we obtain

I(2,0)
N=1 − Igrav

N=1 = χǔ
5 q̌

10 +O(q̌
32
3 ). (5.20)

We find nice agreement. The error appears at order q̌10. This means the tachyonic shift
δ = 3. Although we have no interpretation of this value of δ, let us assume that this is
N -independent as in the 3d and 4d cases.

The first few terms for N ≥ 2 are

Igrav
N≥2 = 1 + χǔ

1 q̌
2 − χ[0,1]q̌

8
3 + χ[1,0]χ

ǔ
1 q̌

10
3 +

(
2χǔ

2 − χ[1,1]

)
q̌4 +

(
χ[2,0] − 2χ[0,1]

)
χǔ
1 q̌

14
3

+
(
χ[1,0]

(
2χǔ

2 + 3
)
− χ[2,1]

)
q̌

16
3 +O(q̌6). (5.21)

The leading finite-N correction given by (5.18) is −χǔ
N+1q̌

2(N+1),1 and the terms in the range
shown in (5.21) is the same as the supergravity approximation IKK.

The second term χǔ
1 q̌

2 is the contribution of the primary operators in the free tensor
multiplet. The term χǔ

2 q̌
4 is the contribution of the stress-tensor multiplet. The coefficient

2 of the term suggests that the theory has two stress-energy tensors. Namely, the system
consists of two decoupled theories. One is the free theory of the tensor multiplet, and the
other is the interacting theory called the AN−1 theory.

By removing the contribution of the free tensor multiplet we obtain the index of the AN−1

theory:

IAN−1
=

I(2,0)
N

I(2,0)
N=1

. (5.22)

1In [42], the finite-N index of the 6d (2, 0) theory was studied from 5d SYM on CP2 × S1. Especially,
the authors found that the leading correction for N = 2 is −q3y3, where the fugacities q and y are related to
ours by q̌ = q

3
4 and ǔ = q−

1
2 y. See (3.65) in [42]. This is consistent with our result: −χǔ

3 q̌
6 = −q3y3 + · · · .
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Explicit forms of IAN−1
for small N obtained by using (5.18) are as follows.

IA1 = 1 + χǔ
2 q̌

4 − χ[0,1]χ
ǔ
1 q̌

14
3 + χ[1,0]

(
χǔ
2 + 1

)
q̌

16
3 − (χ[1,1] + 1)χǔ

1 q̌
6

+
(
χ[2,0]

(
χǔ
2 + 1

)
+ χ[0,1]

)
q̌

20
3 − (χ[1,0] + χ[2,1])χ

ǔ
1 q̌

22
3

+
(
χ[3,0]

(
χǔ
2 + 1

)
+ χ[1,1] + χǔ

4

)
q̌8 +

(
−χ[2,0]χ

ǔ
1 − χ[3,1]χ

ǔ
1 − χ[0,1]χ

ǔ
3

)
q̌

26
3

+
(
χ[4,0]

(
χǔ
2 + 1

)
+ χ[1,0]

(
2χǔ

2 + χǔ
4

)
+ χ[2,1]

)
q̌

28
3

+
(
−χ[1,1](χ

ǔ
1 + 2χǔ

3)− χ[3,0]χ
ǔ
1 − χ[4,1]χ

ǔ
1 − 2χǔ

1 − χǔ
3

)
q̌10

+O(q̌
32
3 ). (5.23)

IA2 = 1 + χǔ
2 q̌

4 − χ[0,1]χ
ǔ
1 q̌

14
3 + χ[1,0]

(
χǔ
2 + 1

)
q̌

16
3 +

(
χǔ
3 − (χ[1,1] + 1)χǔ

1

)
q̌6

+
(
χ[2,0]

(
χǔ
2 + 1

)
− χ[0,1]

(
χǔ
2 − 1

))
q̌

20
3

+
(
χ[1,0]χ

ǔ
3 − χ[2,1]χ

ǔ
1

)
q̌

22
3 +

(
−χ[1,1]

(
χǔ
2 − 1

)
+ χ[3,0]

(
χǔ
2 + 1

)
− χǔ

2 + χǔ
4

)
q̌8

+
(
(χ[2,0] − χ[0,1])χ

ǔ
3 − χ[3,1]χ

ǔ
1

)
q̌

26
3

+
(
−χ[2,1]

(
χǔ
2 − 1

)
+ 2χ[1,0]χ

ǔ
2 + χ[4,0]χ

ǔ
2 + χ[1,0]χ

ǔ
4 + χ[0,2] + χ[4,0]

)
q̌

28
3

+
(
−2χ[1,1](χ

ǔ
1 + χǔ

3)− χ[4,1]χ
ǔ
1 + χ[3,0]χ

ǔ
3 − 3χǔ

1 − χǔ
3 + χǔ

5

)
q̌10

+O(q̌
32
3 ). (5.24)

IA3 = 1 + χǔ
2 q̌

4 − χ[0,1]χ
ǔ
1 q̌

14
3 + χ[1,0]

(
χǔ
2 + 1

)
q̌

16
3 +

(
χǔ
3 − (χ[1,1] + 1)χǔ

1

)
q̌6

+
(
χ[2,0]

(
χǔ
2 + 1

)
− χ[0,1]

(
χǔ
2 − 1

))
q̌

20
3

+
(
χ[1,0]χ

ǔ
3 − χ[2,1]χ

ǔ
1

)
q̌

22
3 +

(
−χ[1,1]

(
χǔ
2 − 1

)
+ χ[3,0]

(
χǔ
2 + 1

)
− χǔ

2 + 2χǔ
4

)
q̌8

+
(
(χ[2,0] − 2χ[0,1])χ

ǔ
3 − χ[3,1]χ

ǔ
1

)
q̌

26
3

+
(
−χ[2,1]

(
χǔ
2 − 1

)
+ 3χ[1,0]χ

ǔ
2 + χ[4,0]χ

ǔ
2 + 2χ[1,0]χ

ǔ
4 + χ[0,2] + χ[4,0]

)
q̌

28
3

+
(
−χ[1,1](2χ

ǔ
1 + 3χǔ

3)− χ[4,1]χ
ǔ
1 + χ[3,0]χ

ǔ
3 − 3χǔ

1 − 2χǔ
3 + χǔ

5

)
q̌10

+O(q̌
32
3 ). (5.25)

IA≥4
= 1 + χǔ

2 q̌
4 − χ[0,1]χ

ǔ
1 q̌

14
3 + χ[1,0]

(
χǔ
2 + 1

)
q̌

16
3 +

(
χǔ
3 − (χ[1,1] + 1)χǔ

1

)
q̌6

+
(
χ[2,0]

(
χǔ
2 + 1

)
− χ[0,1]

(
χǔ
2 − 1

))
q̌

20
3

+
(
χ[1,0]χ

ǔ
3 − χ[2,1]χ

ǔ
1

)
q̌

22
3 +

(
−χ[1,1]

(
χǔ
2 − 1

)
+ χ[3,0]

(
χǔ
2 + 1

)
− χǔ

2 + 2χǔ
4

)
q̌8

+
(
(χ[2,0] − 2χ[0,1])χ

ǔ
3 − χ[3,1]χ

ǔ
1

)
q̌

26
3

+
(
−χ[2,1]

(
χǔ
2 − 1

)
+ 3χ[1,0]χ

ǔ
2 + χ[4,0]χ

ǔ
2 + 2χ[1,0]χ

ǔ
4 + χ[0,2] + χ[4,0]

)
q̌

28
3

+
(
−χ[1,1](2χ

ǔ
1 + 3χǔ

3)− χ[4,1]χ
ǔ
1 + χ[3,0]χ

ǔ
3 − 3χǔ

1 − 2χǔ
3 + 2χǔ

5

)
q̌10

+O(q̌
32
3 ). (5.26)
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We gave the above q̌-expansion up to q̌10 terms. The error in IAN−1
estimated with δ = 3 is

q̌2(2N+3), and all terms shown above are expected to be correct.
As far as we are aware there are no explicit results in the literature which can be compared

with these results. As a consistency check, let us expand these results by indices of super-
conformal representations. It is guaranteed by construction that (5.18) can be expanded by
characters of the bosonic subalgebra su(3) × su(2). However, it is non-trivial if it can be
expanded by the indices of superconformal representations. The results are as follows.

IA1 = 1 +D[2, 0] +D[4, 0] + B[2, 0]0 +O(q̌
32
3 ), (5.27)

IA2 = 1 +D[2, 0] +D[3, 0] +D[4, 0] +D[0, 4] + B[2, 0]0 +D[5, 0]

+D[3, 2] +O(q̌
32
3 ), (5.28)

IA3 = 1 +D[2, 0] +D[3, 0] + 2D[4, 0] +D[0, 4] + B[2, 0]0 +D[5, 0]

+D[3, 2] +D[1, 4] +O(q̌
32
3 ), (5.29)

IA≥4
= 1 +D[2, 0] +D[3, 0] + 2D[4, 0] +D[0, 4] + B[2, 0]0 + 2D[5, 0]

+D[3, 2] +D[1, 4] +O(q̌
32
3 ). (5.30)

We exploited the notation for representations used in [54] to denote the corresponding in-
dices. See the following discussion for a detailed explanation for the index of each irreducible
representation. These results support the correctness of the formula (5.18). In addition, the
expansion of IA1 seems to be exceptionally simple. In particular, as was pointed out in [54]
the D[0, 4] representation is absent in the A1 theory.

Detail of 6d superconformal representations

To calculate the index of superconformal representations we mainly followed the procedure
proposed in [55]. In the expansion in the previous calculations the D-type and B-type repre-
sentations appear. We used the notations in [54]. They correspond to those used in [55] as
follows.

D[a, b] = D1[0, 0, 0]
(b,a)
2a+2b, B[a, b]n = Bℓ[0, n, 0]

(b,a)
n+2a+2b+4 (5.31)

where ℓ is the level of the primary null state. It is ℓ = 3 for n = 0 and ℓ = 1 for n ≥ 1.
The series of representations D[m, 0] (m = 1, 2, 3, . . .) appear in the Kaluza-Klein spec-

trum in AdS7 × S4, and have been well studied. The superconformal index of each of them
is2

D[m, 0] =
χǔ
mq̌

2m − χǔ
m−1χ(0,1)q̌

2m+ 2
3 + χǔ

m−2χ(1,0)q̌
2m+ 4

3 − χǔ
m−3q̌

2m+2

(1− q̌
4
3 y̌1)(1− q̌

4
3 y̌2)(1− q̌

4
3 y̌3)

(5.32)

The index of the free tensor multiplet (3.12) is obtained by setting m = 1, and the single-
particle index of Kaluza-Klein modes (3.22) is obtained by summing up (5.32) over m ∈ Z≥1.

2For D[1, 0] and D[2, 0] we use the definitions χǔ
−1 = 0 and χǔ

−2 = −1.
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For m = 1 (free tensor multiplet) and m = 2 (stress tensor multiplet) some Racah Speiser
(RS) trial states have negative coefficients. They are interpreted as equations of motion and
conservation laws.

Other D-type representations appearing in the expansion are

D[0, 4] = q̌8 − χǔ
1χ[0,1]q̌

26
3 + (χ[0,2] + χ[1,0] + χǔ

2χ[1,0])q̌
28
3

− (χǔ
1 + χǔ

3 + 2χǔ
1χ[1,1])q̌

10 +O(q̌
32
3 ), (5.33)

D[1, 4] = χǔ
1 q̌

10 +O(q̌
32
3 ), (5.34)

D[3, 2] = χǔ
3 q̌

10 +O(q̌
32
3 ). (5.35)

For D[0, 4] and D[1, 4] the RS procedure works well, and we obtain no RS trial weights
with negative coefficients. For D[3, 2] we obtain many weights with negative coefficients.
In [55] it is proposed that such weights should be simply eliminated. However, we found
that this procedure gives x̌-dependent result. Namely, the elimination spoils the Bose-Fermi
degeneracy of states with ∆̌ ̸= 0. Fortunately, the elimination affects terms of order q̌12 or
higher, and the lowest order of the x̌-dependent terms is q̌

38
3 . Therefore, we expect the term

shown in (5.35) is correct.
The B-type representation appearing in the expansion is

B[2, 0]0 = χǔ
2χ[1,0]q̌

28
3 − (χǔ

1 + χǔ
1χ[1,1] + χǔ

3χ[1,1])q̌
10 +O(q̌

32
3 ). (5.36)

For this representation we obtain many weights with negative coefficients. We again found
that the elimination of them causes the x̌-dependence of the result. The elimination affects
the terms of order q̌10 or higher, and the x̌-dependence appears at q̌

32
3 . (5.36) is the index

after the elimination. Fortunately, terms shown in (5.36) do not depend on x̌.
We also calculated (5.36) in another way. For n ≥ 1 the primary null state of B[2, 0]n

appears at level ℓ = 1, and the procedure is much simpler than the case of n = 0 for
which the level of the primary null state is ℓ = 3. The RS procedure works well for such
representations and all generated weights have positive coefficients. To obtain B[2, 0]0 we
simply substitute n = 0 in the general formula for n ≥ 1. Although we have no justification
for this “continuation,” this kind of continuation reproduces correct results in many cases.
Indeed, we obtained the result whose first few terms agree with (5.36), and this strongly
suggests the correctness of (5.36).

5.1.4 Schur-like index

As shown in (5.9) a generic representative configuration consists of M2-branes wrapped on
two cycles z1 = 0 and z2 = 0. We can simplify the problem by taking a special limit in
which only one of these two cycles, say, z1 = 0, contributes to the index. For M2-branes
wrapped on z2 = 0 not to contribute to the index we need to tune the fugacities so that an
extra supersymmetry which is broken by the M2-brane wrapped on z2 = 0 is preserved by
the definition of the index (3.8).
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The single-particle index iM2
z2=0 includes −q̌ 2

3 ǔχ[0,1](y̌), which is the Weyl reflection of the
second term in the numerator of (5.15), and it consists of three terms

−q̌
2
3 ǔχ[0,1](y̌) = −q̌

2
3 ǔy̌−1

1 − q̌
2
3 ǔy̌−1

2 − q̌
2
3 ǔy̌−1

3 . (5.37)

These three terms correspond to Nambu-Goldstone fermions associated with the breaking of
supersymmetry due to the presence of the wrapped brane. Let us focus on the first term
corresponding to the supercharge Q̌′ with the quantum numbers 3

Q̌′ : (Ȟ, J̌12, J̌34, J̌56, Ř12, Ř34) = (+1
2
,−1

2
,+1

2
,+1

2
,+1

2
,−1

2
). (5.38)

To make the definition of the index (3.8) respect this supercharge we impose the following
condition on the fugacities.

q̌
2
3 ǔy̌−1

1 = 1. (5.39)

Then the first term in (5.37) becomes −1, and its plethystic exponential vanishes. As a result,
only configurations consisting of M2-branes wrapped on z1 = 0 contribute to the index. We
adopt the following parametrization of fugacities satisfying (5.39) (and y̌1y̌2y̌3 = 1).

q̌ = q̌′x̌′, y̌1 = q̌′
2
3 x̌′−

4
3 , y̌2 = q̌′−

1
3 x̌′

2
3 y̌, y̌3 = q̌′−

1
3 x̌′

2
3 y̌−1, ǔ = x̌′−2. (5.40)

New fugacities q̌′, x̌′, y̌ are unconstrained variables. With this specialization the index (3.8)
becomes

Ĩ(q̌′, y̌) = tr[(−1)F x̌∆̌x̌′∆̌
′
q̌′Ȟ+J̌12 y̌J̌34−J̌56 ], (5.41)

where

∆̌′ = {Q̌′, Q̌′†} = Ȟ − (J̌12 − J̌34 − J̌56)− 2(Ř12 − Ř34). (5.42)

(5.41) is nothing but the Schur-like index studied in [56]. 4 In fact, the analytic result of the
index for M5-brane theories was obtained from five-dimensional U(N) SYM [42, 56]:

Ĩ(2,0)
N = Pexp

[
q̌′2 + q̌′4 + · · ·+ q̌′2N

1− q̌′2

]
=

N∏
k=1

∞∏
m=0

1

1− q̌′2(k+m)

= Ĩ(2,0)
N=∞

∞∏
k=0

∞∏
m=0

(1− q̌′2N q̌′2(k+m+1)). (5.43)

3The Zk symmetry (2.56) acts on the first two terms and the last term in different ways and this causes
inequality between the third one and the others. We should not take the third term to define the Schur-like
limit because the corresponding supercharge is non-perturbative in the sense that it is not manifest in the
ABJM Lagrangian and is generated dynamically.

4The fugacities in this paper are related to those in [56] by q̌′ = q
1
2 and y̌ = s.
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By expanding this with respect to q̌′2N we obtain

Ĩ(2,0)
N = Ĩ(2,0)

N=∞

(
1 +

∞∑
n=1

q̌′2nNFn(q̌
′)

)
, (5.44)

where Fn(q̌
′) are rational functions of q̌′. The functions for n = 1, 2, 3 are

F1(q̌
′) =

−q̌′2

(1− q̌′2)2
= −q̌′2 − 2q̌′4 − 3q̌′6 − · · · , (5.45)

F2(q̌
′) =

2q̌′6

(1− q̌′2)2(1− q̌′4)2
= 2q̌′6 + 4q̌′8 + 10q̌′10 + · · · , (5.46)

F3(q̌
′) =

−q̌′10 − 4q̌′12 − q̌′14

(1− q̌′2)2(1− q̌′4)2(1− q̌′6)2
= −q̌′10 − 6q̌′12 − 14q̌′14 − · · · . (5.47)

Let us compare (5.44) with the hypothetical relation (5.5), which reduces in the Schur-like
limit to the following relation:

Ĩ(2,0)
N (q̌′, y̌) = ĨKK

(
1 +

∞∑
n=1

q̌′2nN ĨM2
n (q̌′, y̌)

)
, (5.48)

where ĨM2
n is the Schur-like index of the theory realized on a stack of n M2-branes wrapped

around the cycle z1 = 0. The agreement in the large-N limit is easily confirmed:

Ĩ(2,0)
N=∞ = Pexp

q̌′2

(1− q̌′2)2
= ĨKK. (5.49)

The agreement of finite-N corrections requires

ĨM2
n (q̌′, y̌) = Fn(q̌

′) n = 1, 2, 3, . . . . (5.50)

For n = 1, the single-wrapping contribution, we can easily confirm (5.50) by using the Schur-
like limit of iM2

z1=0 in (5.15)

ĩM2
z1=0 =

1

q̌′2
+ q̌′2. (5.51)

For n ≥ 2 we expect that Fn is the index of the ABJM theory realized on S2 ⊂ S4. It
is straightforward to write down the integral form if the index. A non-trivial point is how
we should choose the integration contours. Although at present, we have not completely
understood it we found that with a certain prescription we can reproduce the first few terms
in F2 and F3. See the discussion below for details.
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Detail of Schur like index

Let us discuss the Schur like index in more detail. The integral form giving the Schur-like
index of each monopole sector Ĩmα,m̃α is obtained from (2.30) by setting k = 1 and the
variable change

q̂ = q̌′x̌′2, û1 = q̌′
3
2 x̌′−1, û2 = q̌′

1
2 x̌′y̌, û3 = q̌′

1
2 x̌′y̌−1, û4 = q̌′−

5
2 x̌′−1. (5.52)

These are compositions of (5.14) and (5.40). The single-particle index (2.31) reduces to

ĩ(q̌′, x̌′; ζα, ζ̃α) =−
∑
α ̸=β

q̂|mα−mβ | ζα
ζβ

−
∑
α ̸=β

q̂|m̃α−m̃β | ζ̃α

ζ̃β

+
N∑

α,β=1

q̂|mα−m̃β |

(
q̌′2
ζα

ζ̃β
+ q̌′−2 ζ̃β

ζα

)
, (5.53)

where we leave q̂ to keep the expression simple. As expected this is y̌-independent. Although
the Schur-like index must be x̌′-independent the single-particle index depends on x̌′ through
q̂ = q̌′x̌′2. This is because the above formula is derived by deforming the Lagrangian by
Q̌-exact terms, which does not respect the extra supercharge Q̌′ used in the definition of the
Schur-like index.

If we regard Ĩma,m̃a as a function of q̌′ and q̂, we can easily factor out the q̌′-dependence
by the replacement

ζα → q̌′−1ζα, ζ̃α → q̌′ζ̃α, (5.54)

and obtain

Ĩmα,m̃α = q̌′2mtot × (function of q̂). (5.55)

Furthermore, the x̌′-independence of the Schur-like index guarantees that the function of q̂
is in fact a q̂-independent constant.

In order to carry out the gauge fugacity integrals, we need to choose integration contours.
Although we have not yet completely understood how we should do it, we found a prescription
that reproduces the known results after some trial and error. We express the integrand as
the expansion

∞∑
k=0

q̌′k
∑
l

x̌′lfk,l(ζα, ζ̃α). (5.56)

Namely, we first expand the integrand with respect to q̌′, and then expand the result with
respect to x̌′. The coefficients fk,l are Laurant polynomials of the gauge fugacities. The
integration over gauge fugacities is equivalent to picking up the terms independent of gauge
fugacities form each fk,l. For each monopole sector the gauge integral leaves only terms of
the form q̌′2mtot x̌′0. We confirmed that by the summation over monopole sectors the first few
terms of F2 and F3 shown in (5.46) and (5.47) are reproduced.
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5.2 Finite N corrections to the indices of the 6d N =

(1, 0) theories

In this section, we calculate the superconformal indices of 6d N = (1, 0) theories by gener-
alizing the method discussed in the previous section. For the N = 1 case, we will confirm
the validity of our formula by comparing with the free theory results (3.37) and (3.39). For
the N = 2 case, we will check the non-trivial flavor symmetries of 6d (1,0) theories from
the superconformal indices. We also calculate the N = 3 indices, which give a new predic-
tion of the indices of 6d N = (1, 0) theories. This section is based on the author’s and his
collaborator’s original work [13].

5.2.1 Conjectural formula

Based on the idea explained in the previous section we propose the formula of the index for
6d (1, 0) theories

I(1,0)
N,k = Ibulk

∞∑
n1,n2=0

IM2
(n1,n2)

. (5.57)

This formula gives the index as the combination of contributions from objects in the dual
geometry AdS7 × S4/Zk, where the internal space S4/Zk is defined by

|z1|2 + |z2|2 + x25 = 1, (5.58)

together with the identification by the Zk action (3.26). Ibulk is the contribution of Kaluza-
Klein modes in the bulk. We also include in Ibulk the contribution from localized modes
at the fixed points of the orbifold. IM2

(n1,n2)
are contributions of wrapped M2-branes in the

internal space. n1 and n2 are numbers of M2-brane wrapped on the two specific two-cycles
z1 = 0 and z2 = 0, respectively. We show the schematic figure of these objects in Figure 5.2.

M2-brane
Kaluza Klein
particles fixed points

N

S

Figure 5.2: The objects contributing to the indices at finite-N are shown. The left figure
shows the Kaluza Klein particles in S4/Zk and the middle figure shows the contribution of
localized modes at the poles. These two contributions give the large-N index. The right
figure shows the M2-brane wrapped on a non-trivial cycle in S4/Zk, which gives the finite-N
corrections to the indices.
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As we will explain later, the q expansion of I(n1,n2) starts from order q2(n1+n2)N terms.
In the large-N limit all contributions but I(0,0) = 1 decouple and the formula reduces to

I(1,0)
N=∞,k = Ibulk. On the other hand, if N is finite, all sectors labeled by (n1, n2) contribute

to the index. I(n1,n2) for each (n1, n2) is calculated as the index of the theory realized on the
wrapped M2-branes by the standard localization formula. If n1+n2 ≥ 2 the formula includes
non-trivial gauge integrals, and unfortunately, we have not yet found systematic rules for the
integration contours. For this reason we leave the analysis of n1 + n2 ≥ 2 for future work
and in this paper we focus only on the single-wrapping sectors (n1, n2) = (1, 0) and (0, 1).
Namely, we consider the formula

I(1,0)
N,k = Igrav

N,k +O(q4N), (5.59)

where Igrav
N,k is defined by

Igrav
N,k = Ibulk

(
1 + IM2

(1,0) + IM2
(0,1)

)
. (5.60)

With the conjectural formula (5.59), we can calculate the index for an arbitrary N and k up
to the expected error of order q4N .

5.2.2 Wrapped M2-branes on S4/Zk

Next, we consider the contribution of M2-branes. Again the worldvolume of a BPS M2-brane
is described by the intersection of S4 and a holomorphic surface [49, 57]

f(z1, z2) = 0. (5.61)

The consistency with the Zk orbifolding require the function f to satisfy

f(e2πi/kz1, e
−2πi/kz2) = e2πiw/kf(z1, z2), (5.62)

where w ∈ Z/kZ is the topological wrapping number.
In the previous section, we discussed the system without Zk orbifolding and proposed

that we can take only M2-brane configurations given by monomials of the form f(z1, z2) =
zn1
1 z

n2
2 and showed that the formula passes some non-trivial checks. Let us adopt the same

assumption. The function f(z1, z2) = zn1
1 z

n2
2 gives the system with n1 M2-branes wrapped

on z1 = 0 and n2 M2-branes wrapped on z2 = 0. The total topological wrapping number
is w = n1 − n2 mod k. IM2

(n1,n2)
in (5.57) is the contribution from the specific wrapping

sector with (n1, n2). We focus on the two sectors (1, 0) and (0, 1). In the absence of the Zk

orbifolding, the contribution of the (1, 0) sector, a single M2-brane wrapped on z1 = 0, is

(q2u)N Pexp iM2
z1=0, (5.63)

with the single-particle index iM2
z1=0 given by

iM2
z1=0 =

q−2u−1 − q
2
3u−1χy

[0,1] + q
4
3χy

[1,0] − q4

1− q2u−1
. (5.64)
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To obtain the index for the Zk orbifold, we need two modifications. First, we perform the Zk

projection on the single-particle index. Second, we insert the character of the SU(k)a×SU(k)b
bi-fundamental representation because the wrapped M2-brane couples to the localized vector
multiplets at the fixed points (z1, z2, x5) = (0, 0,±1). As the result, the contribution of the
(1, 0) sector is given by

IM2
(1,0) = (q2u)Nχa

fund.χ
b
fund.

Pexp
[
Pki

M2
z1=0

]
, (5.65)

where χ
a/b
fund. (χ

a/b

fund.
) are characters of (anti-) fundamental representations of the SU(k)a/b

symmetries. The contribution of the other sector (0, 1) is given from (5.65) by the replacement
u → u−1, ai → a−1

i , and bi → b−1
i . u → u−1 is the Weyl reflection of SO(5)R exchanging z1

and z2. The inversion of ai and bi are necessary because the cycle z2 = 0 has the opposite
topological wrapping number to the cycle z1 = 0; the former has w = +1 while the latter
has w = −1. After the replacement we obtain

IM2
(0,1) = (q2u−1)Nχa

fund.
χb
fund. Pexp

[
Pki

M2
z2=0

]
, (5.66)

where iM2
z2=0 = iM2

z1=0|u→u−1 .
If k = 2 the flavor characters appearing in (5.65) and (5.66) are the same, χa

fund.χ
b
fund.

=

χa
fund.

χb
fund., and IM2

(1,0) + IM2
(0,1) is invariant under the SU(2)R Weyl reflection u→ u−1. This is

consistent with the symmetry enhancement U(1)F → SU(2)F .

5.2.3 Results and consistency check

Now we are ready to calculate the index of the 6d (1, 0) theories by using our formula (5.60)
for different values of k and N .

N = 1

Let us compare the index on the gravity side based on the formula (5.60) with the free theory
result from (3.35). As we do not include the multiple-wrapping M2-branes, the errors should
start at q4 terms and we check the agreement up to errors of this order.

Let us first consider the k = 2 case. On the gravity side (5.60) yields

Igrav
N=1,k=2 = 1 + χa

[1]χ
b
[1]χ

u
[1]q

2 + χa
[1]χ

b
[1]χ

u
[1]χ

y
[1,0]q

10
3 + (χa

[2] + χb
[2] + χu

[2])q
4 +O(q

14
3 ). (5.67)

If we compare this result with (3.37), we find

I(1,0)
N=1,k=2 − Igr

N=1,k=2 = χa
[2]χ

b
[2]χ

u
[2]q

4 +O(q
14
3 ). (5.68)

We can see the agreement up to the error of O(q4) as expected.
Then, we consider the k = 3 case. For k = 3 the result on the gravity side is

Igrav
N=1,k=3 = 1 +

(
uχa

[1,0]χ
b
[0,1] + u−1χa

[0,1]χ
b
[1,0]

)
q2 +

(
uχa

[1,0]χ
b
[0,1]χ

y
[1,0] + u−1χa

[0,1]χ
b
[1,0]χ

y
[1,0]

)
q

10
3

+
(
1 + χa

[1,1] + χb
[1,1] + u2χa

[0,1]χ
b
[1,0] + u−2χa

[1,0]χ
b
[0,1]

)
q4 +O(q

14
3 ). (5.69)
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Comparing the result with the field theory calculation (3.39), we obtain

I(1,0)
N=1,k=3 − Igrav

N=1,k=3 =
(
u2χa

[2,0]χ
b
[0,2] + u−2χa

[0,2]χ
b
[2,0] + χa

[1,1]χ
b
[1,1]

)
q4 +O(q

14
3 ). (5.70)

Again we can find agreement up to the expected error terms of order q4.

N = 2

When N = 2, the generic flavor symmetry SU(k)a × SU(k)b × U(1) is enhanced to SU(2k)
for k ≥ 3 and SO(7) for k = 2 [46, 58, 45]. Then, the indices should be written in terms
of the characters of the enhanced symmetries. Let us confirm this for k = 2 and k = 3.
The expected errors due to double-wrapping configurations are of order q8, and we show the
results below the order.

We consider the k = N = 2 case first. In this case the index should be written in terms
of the SO(7) character χ

SO(7)
[l1,l2;l3]

. The last component of the Dynkin labels corresponds to the

short root. The formula (5.59) gives

Igrav
N=k=2 = 1 + χ

SO(7)
[0,1;0]q

4 + (1 + χ
SO(7)
[0,1;0] )χ

y
[1,0]q

16
3

+
(
(1 + χ

SO(7)
[0,1;0] )χ

y
[2,0] + (1− χ

SO(7)
[1,0;0] )χ

y
[0,1]

)
q

20
3 +O(q8). (5.71)

This is correctly expanded in terms of SO(7) characters. We also confirm that it is not
written in terms of characters of SO(8), the symmetry of the corresponding quiver gauge
theory.

Next we consider the k = 3 and N = 2 case. The expected flavor symmetry is SU(6).
The formula (5.59) gives

Igrav
N=2,k=3 = 1 + χ

SU(6)
[1,0,0,0,1]q

4 + (1 + χ
SU(6)
[1,0,0,0,1])χ

y
[1,0]q

16
3 + χ

SU(6)
[0,0,1,0,0]q

6

+
(
1 + χ

SU(6)
[1,0,0,0,1]

)
χy
[2,0]q

20
3 + χ

SU(6)
[0,0,1,0,0]χ

y
[1,0]q

22
3 +O(q8), (5.72)

and this is correctly written in terms of SU(6) characters.

N = 3

Here, we show the results for N = 3 calculated on the gravity side. Because we do not have
results we can compare, we give the results simply as predictions. The expected errors are
of order q12, and we show the results below the order.

We first consider the N = 3 and k = 2 case. The global symmetry for N = 3 and k = 2

83



CHAPTER 5. FINITE N CORRECTIONS TO THE INDICES OF THE M5-BRANE
THEORIES

is Gflavor = SU(2)a × SU(2)b × SU(2)F . The formula (5.59) gives

Igrav
N=3,k=2 = 1 + (χa

[2] + χb
[2] + χu

[2])q
4 + (χa

[2]χ
y
[1,0] + χb

[2]χ
y
[1,0] + χu

[2]χ
y
[1,0] + χy

[1,0])q
16
3

+ χa
[1]χ

b
[1]χ

u
[3]q

6 + (χy
[0,1] + χa

[2]χ
y
[2,0] + χb

[2]χ
y
[2,0] + χy

[2,0] + χu
[2](χ

y
[2,0] − χy

[0,1]))q
20
3

+ χa
[1]χ

b
[1]χ

u
[3]χ

y
[1,0]q

22
3 + (χa

[4] + χa
[2]χ

b
[2] + χb

[4] + 2χu
[4] + χy

[1,1] + χa
[2]χ

y
[3,0] + χb

[2]χ
y
[3,0] + χy

[3,0]

+ χu
[2](χ

a
[2] + χb

[2] − χy
[1,1] + χy

[3,0] − 1) + 2)q8

+ (χa
[1]χ

b
[1]χ

u
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[1]χ
b
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u
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y
[0,1])q

26
3
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[2]χ

y
[1,0] + χa

[4]χ
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[2]χ
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[2]χ

y
[1,0] + 2χb

[2]χ
y
[1,0] + χb

[4]χ
y
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[4]χ
y
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y
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y
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b
[1] + χa
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b
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+ (3χa
[2]χ

y
[0,1] + χa

[2]χ
b
[2]χ

y
[0,1] + 3χb
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y
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y
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y
[2,0] + 6χy
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y
[2,0] − 2χy
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b
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u
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a
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b
[1]χ

y
[2,1]) + χu
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b
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b
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3 +O

(
q12
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. (5.73)
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Next we consider the N = 3 and k = 3 case. The global symmetry is Gflavor = SU(3)a ×
SU(3)b × U(1)F . The formula (5.59) gives

Igrav
N=3,k=3 = 1 + (χa

[1,1] + χb
[1,1] + 1)q4 + (χa

[1,1]χ
y
[1,0] + χb

[1,1]χ
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. (5.74)

Summary of Chapter 5

In this chapter, we studied a method of calculating the superconformal index of the M5-brane
theories from the dual gravity theory in the finite-N region. We first analyzed the index of
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the 6d N = (2, 0) theory and proposed the formula (5.5). The formula includes the wrapped
M2-brane contribution as the finite-N corrections. For N = 1, we checked the validity of our
formula by comparing the results obtained via the formula with the free theory result (3.15).
For N ≥ 2, we proposed the new results of the indices of the AN−1 theories (5.23) ∼ (5.26)
and decomposed them in terms of the superconformal representations.

We also analyzed the superconformal index of the 6d N = (1, 0) theory and proposed
the formula (5.57). Again, for the (1,0) theory, the finite N corrections are given by the
contribution of the wrapped M5-branes. For N = 1, we compared our results via the formula
with the free theory results (3.37) and (3.39) and found nice refinement. For N = 2, we
explicitly checked our results exhibit expected flavor symmetries. We also proposed the
indices of the N = 3 case by using our formula.
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Chapter 6

Conclusions and discussion

In this thesis, we investigated a new method of calculating the superconformal indices from
dual gravity theories at finite-N . Especially, we calculated the finite-N corrections to the
superconformal indices for theories realized on M2-/M5- branes. The significance of our
formula is the inclusion of the contribution of M5-/M2- branes as the finite-N corrections.

In Chapter 4, we studied the indices of M2-brane theories from dual M-theory on AdS4×
S7. We compared the results from our formula (4.13) with the ABJM indices and found a
nice agreement. Let us review the results in more detail. The large-N index of Kaluza Klein
modes and finite-N ABJM indices differ from q̂

N+1
2 order. Then, by using the equation (4.13)

and including the single M5-brane contribution, we found the error appearing at q̂
2N+6

2 order.
Thus, we have an excellent refinement of the indices. The error is due to the lack of multiple
wrapping M5-branes which we did not take into account. These terms should be restored by
introducing such multiple wrapping branes, but it is beyond the scope of this thesis.

We also analyzed the Zk orbifold case corresponding to ABJM theories with Chern-Simons
level k. We classified sectors with baryonic charge B ∈ Zk and calculated the indices for each
sector from the dual gravity side. In this thesis, we explicitly analyzed k = 2, 3 cases.

The k = 2 case has two sectors B = 0, 1. For the B = 0 sector, the difference between
the large-N Kaluza Klein index and finite-N ABJM indices appear at q̂

2N+2
2 order. This is

thought to be a contribution of double wrapping M5-branes and there is no single M5-brane
contribution. For the B = 1 sector, we computed the single M5-brane contribution to the
indices. The leading contribution starts at q̂

N
2 , meaning that there is no tachyonic shift,

and we found agreement with ABJM indices up to q̂
3N+6

2 . The error is thought to be triple
wrapping M5-branes contribution we ignored.

On the other hand, the k = 3 case has B = 0,±1 sectors. For the B = 0 sector, again
the difference between the Kaluza Klein index and the ABJM indices appear at q̂

2N+2
2 order

and there are no single M5-brane contributions. For the B = ±1 sectors, since these two
sectors are related by the charge conjugation, we only analyzed the B = +1 sector. Again,
we calculated the single M5-brane contribution and found agreement up to q̂

2N+2
2 , which is

thought to be double wrapping M5-branes contribution.

Although all these M2-brane indices are already known results, we succeeded in showing
the correctness of our formula for all examples.
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In Chapter 5, we studied the indices of M5-brane theories from dual M-theory on AdS7×
S4. Especially, we propose new results of the indices of 6d N = (2, 0) theories from our
formula (5.5). Detailed results are as follows. For the 6d case, the difference between the
Kaluza Klein index and the 6d index appears at q̌2(N+1) order. (We only checked this for
N = 1, since we can calculate the 6d (2,0) indices only for the N = 1 case.) Then, introducing
the single M2-brane contribution via the formula (5.5), for N = 1, we found the agreement
of the indices on both duality sides up to q̌10. It seems that generally the error appears
at q̌2(2N+3), and this is due to the contribution of multiple M2-branes we did not take into
account. For N > 1, by removing the free tensor multiplet contribution, we calculated
the indices of AN−1 theories from our formula. Since, except for the highly complicated
calculation from the 5d SYM theory, there has been no way to calculate the indices of 6d

N = (2, 0) theories with N > 1, our formula proposes new results of the indices of the AN−1

theories. We also rewrote the indices of the AN−1 theories in terms of the superconformal
representations and found that it is consistent with the bootstrap analysis. In addition, we
analyze the Schur index of the 6d N = (2, 0) theory.

Also, we analyzed Zk orbifold case corresponding to the 6d N = (1, 0) theory. The gravity
calculation consists of three parts; the Kaluza Klein modes, the localized vector multiplets
at the poles, and the wrapped M2-branes, which give finite-N corrections to the indices. For
the N = 1 case, we checked our formula reproduce the index of the free theory up to q̌4. For
the N = 2 case, we confirmed that our indices reproduced the non-trivial flavor symmetries
studied in [46, 45]. We also propose new results of the indices of 6d N = (1, 0) theories for
the N = 3 case.

There are many future works. First, it is an important task to calculate the multiple
wrapping M5-/M2- branes contribution and reproduce higher-order terms of the indices. To
calculate the multiple wrapping contributions, not only the contribution of multiple wrapping
branes itself, but also we have to consider intersection modes on the branes.

Fortunately for the indices of the M5-brane theories, we can calculate the indices of
multiple wrapping M2-brane, by using the ABJM index formula together with fugacities
change. However, now we have no idea about the analysis of the intersection modes.

On the other hand, for the indices of the M2-brane theories, the situation is even worse.
We have no way to calculate the multiple M5-branes contributions to the indices since we
have no analytic formula for the indices for the 6d N = (2, 0) theories. Itwould be very nice
if we could solve this problem and reproduce the higher-order terms of the indices.

Second, a similar analysis has been done recently by [59, 60]. They reformulated the
superconformal indices of some 4-dimensional superconformal field theories and M2-brane
theories by using a method called a determinant modification. Further, inspired by their re-
sults, the indices of M5-brane theories were calculated in [61]. To compare their results with
our results, careful treatment for the analytic continuation is required. It is also an impor-
tant problem to discuss the relation between our formula and the determinant modification
method.

Finally, an application to BPS black holes may be possible. Since the superconformal
index counts BPS states in the theory, it is natural to expect that the index reproduces
the entropy of the dual BPS black hole. Recently many works towards this problem have
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been done starting from [62, 63] and the entropies of five-dimensional asymptotically AdS
black holes were reproduced from the superconformal indices of dual four-dimensional field
theories. Further, analyses in [64, 65] show that the q-expansion form of the index is enough
to capture the behavior of the entropy of the dual BPS black hole. It is an interesting task
to calculate the higher-order terms of the index of the 6d N = (2, 0) theory and to analyze
the dual BPS AdS7 black hole [66, 67].

89





Appendix A

Full expressions of the indices

A.1 k = 1

We show the full expression of the superconformal indices from AdS4 × S7. The index is
written in su(4) characters.

Igrav
N=1 = (· · · terms identical to (2.34) · · · )

+ (χ[0,0,4] + χ[0,2,0] + χ[0,4,0] + χ[0,6,0] − χ[1,0,1] + χ[2,0,2] + 2χ[2,1,0]

+ χ[2,2,2] + χ[4,0,0] + χ[4,2,0] + χ[4,4,0] − χ[5,0,1] + χ[6,0,2] + 2χ[8,0,0]

+ χ[8,2,0] + χ[12,0,0] − 1)q̂4 +O(q̂
9
2 ). (A.1)

Igrav
N=2 = (· · · terms identical to (2.35) · · · )

+ (−χ[0,0,2] − 6χ[0,1,0] + χ[0,2,2] + 2χ[0,3,0] + χ[0,4,2] − 2χ[1,3,1] − 8χ[2,0,0]

+ χ[2,0,4] + 2χ[2,1,2] + 5χ[2,2,0] + 3χ[2,4,0] + χ[2,6,0] + 9χ[3,0,1] − 4χ[3,2,1]

+ 3χ[4,0,2] + 7χ[4,1,0] + χ[4,2,2] + 2χ[4,3,0] − 6χ[5,1,1] − 6χ[6,0,0] + 5χ[6,2,0]

+ χ[6,4,0] − 8χ[7,0,1] + χ[8,0,2] + 4χ[8,1,0] + 7χ[10,0,0] + χ[10,2,0] + χ[14,0,0])q̂
5

+O(q̂
11
2 ). (A.2)

Igrav
N=3 = (· · · terms identical with (2.36) · · · )

+ (χ[0,0,4] − 6χ[0,1,2] − 13χ[0,2,0] + χ[0,2,4] + χ[0,3,2] − 3χ[0,4,0] + 8χ[0,6,0] + χ[0,8,0]

− 10χ[1,0,1] + 17χ[1,2,1] − 13χ[1,4,1] − 3χ[2,0,2] − 11χ[2,1,0] + 7χ[2,2,2] + 2χ[2,3,0]

+ χ[2,4,2] + 12χ[2,5,0] + 36χ[3,1,1] − 21χ[3,3,1] − 4χ[4,0,0] + χ[4,0,4] + 5χ[4,1,2]

− 11χ[4,2,0] + 24χ[4,4,0] + χ[4,6,0] + 42χ[5,0,1] − 30χ[5,2,1] + 8χ[6,0,2] − 18χ[6,1,0]

+ χ[6,2,2] + 25χ[6,3,0] − 27χ[7,1,1] − 40χ[8,0,0] + 31χ[8,2,0] + χ[8,4,0] − 23χ[9,0,1]

+ χ[10,0,2] + 23χ[10,1,0] + 20χ[12,0,0] + χ[12,2,0] + χ[16,0,0] + 1)q̂6 +O(q̂
13
2 ). (A.3)
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A.2 k = 2

In the case of k = 2 the system still has N = 8 supersymmetry, and the index can be
expanded in terms of su(4) characters.

IABJM(0/2)
N=1 = 1 + χ[2,0,0]q̂ + (−1− χ[1,0,1] + χ[4,0,0])q̂

2 +O(q̂3). (A.4)

IABJM(0/2)
N=2 = 1 + χ[2,0,0]q̂ + (χ[0,2,0] − χ[1,0,1] + 2χ[4,0,0])q̂

2

+ (−χ[1,1,1] − χ[2,0,0] + χ[2,2,0] − 2χ[3,0,1] + χ[4,1,0] + 2χ[6,0,0])q̂
3 +O(q̂4). (A.5)

IABJM(0/2)
N=3 = 1 + χ[2,0,0]q̂ + (χ[0,2,0] − χ[1,0,1] + 2χ[4,0,0])q̂

2

+ (χ[0,0,2] − χ[1,1,1] + 2χ[2,2,0] − 2χ[3,0,1] + χ[4,1,0] + 3χ[6,0,0])q̂
3

+ (−1− χ[0,2,0] + 2χ[0,4,0] − 2χ[1,2,1] + χ[2,0,2] + χ[2,3,0] − 2χ[3,1,1]

− 2χ[4,0,0] + 4χ[4,2,0] − 4χ[5,0,1] + 2χ[6,1,0] + 4χ[8,0,0])q̂
4 +O(q̂

9
2 ). (A.6)

IABJM(1/2)
N=1 = χ[1,0,0]q̂

1
2 + (−χ[0,0,1] + χ[3,0,0])q̂

3
2 + (−χ[2,0,1] + χ[5,0,0])q̂

5
2

+ (2χ[1,1,0] − χ[4,0,1] + χ[7,0,0])q̂
7
2

+ (−χ[0,1,1] − 3χ[1,0,0] − χ[2,0,1] + 2χ[3,1,0] − χ[6,0,1] + χ[9,0,0])q̂
9
2 +O(q̂

11
2 ). (A.7)

Igrav(1/2)
N=1 = (· · · terms identical with (A.7) · · · )

+ (−χ[0,1,1] − χ[0,3,1] − 3χ[1,0,0] − χ[2,0,1] − χ[3,0,2]

+ 2χ[3,1,0] − χ[3,3,0] − χ[5,2,0] − χ[6,0,1])q̂
9
2 +O(q̂

11
2 ). (A.8)

IABJM(1/2)
N=2 = χ[2,0,0]q̂ + (−χ[1,0,1] + χ[2,1,0] + χ[4,0,0])q̂

2

+ (−χ[1,1,1] − χ[2,0,0] + χ[2,2,0] − 2χ[3,0,1] + χ[4,1,0] + 2χ[6,0,0])q̂
3

+ (χ[0,2,0] + 2χ[1,0,1] − χ[1,2,1] + χ[2,0,2] + χ[2,1,0] + χ[2,3,0] − 2χ[3,1,1]

− 2χ[4,0,0] + χ[4,2,0] − 3χ[5,0,1] + 2χ[6,1,0] + 2χ[8,0,0])q̂
4

+ (−χ[0,0,2] − 2χ[0,1,0] + χ[0,3,0] + χ[1,1,1] − χ[1,3,1] − 3χ[2,0,0] + χ[2,1,2]

+ 2χ[2,2,0] + χ[2,4,0] + 4χ[3,0,1] − 2χ[3,2,1] + χ[4,0,2] + 3χ[4,1,0] + χ[4,3,0]

− 3χ[5,1,1] − 3χ[6,0,0] + 2χ[6,2,0] − 4χ[7,0,1] + 2χ[8,1,0] + 3χ[10,0,0])q̂
5

+ (−χ[0,1,2] − 2χ[0,2,0] + χ[0,4,0] − χ[1,2,1] − χ[1,4,1] − 3χ[2,0,2] − 9χ[2,1,0]

+ χ[2,2,2] + 2χ[2,3,0] + χ[2,5,0] − 2χ[3,3,1] − 7χ[4,0,0] + χ[4,1,2] + 4χ[4,2,0]

+ χ[4,4,0] + 6χ[5,0,1] − 3χ[5,2,1] + 2χ[6,0,2] + 4χ[6,1,0] + 2χ[6,3,0]

− 4χ[7,1,1] − 4χ[8,0,0] + 2χ[8,2,0] − 5χ[9,0,1] + 3χ[10,1,0] + 3χ[12,0,0] + 1)q̂6

+O(q̂
13
2 ). (A.9)
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Igrav(1/2)
N=2 = (· · · terms identical with (A.9) · · · )

+ (−χ[0,0,4] − χ[0,1,2] − 2χ[0,2,0] + χ[0,4,0] − χ[0,6,0] − 2χ[1,2,1] − χ[1,4,1]

− 3χ[2,0,2] − 9χ[2,1,0] + 2χ[2,3,0] + χ[2,5,0] − 3χ[3,3,1]− 8χ[4,0,0] + 4χ[4,2,0]

+ 6χ[5,0,1] − 3χ[5,2,1] + χ[6,0,2] + 4χ[6,1,0] + χ[6,3,0] − 4χ[7,1,1]

− 4χ[8,0,0] + χ[8,2,0] − 5χ[9,0,1] + 3χ[10,1,0] + 2χ[12,0,0] + 1)q̂6 +O(q̂
13
2 ). (A.10)

IABJM(1/2)
N=3 = χ[3,0,0]q̂

3
2 + (χ[1,2,0] − χ[2,0,1] + χ[3,1,0] + χ[5,0,0])q̂

5
2

+ (−χ[0,2,1] − χ[1,1,0] + χ[1,3,0] − χ[2,1,1] − χ[3,0,0]

+ 2χ[3,2,0] − 2χ[4,0,1] + 2χ[5,1,0] + 2χ[7,0,0])q̂
7
2

+ (χ[0,1,1] − χ[1,2,0] + χ[1,4,0] + χ[2,0,1] − 3χ[2,2,1] + χ[3,0,2] − 2χ[3,1,0]

+ 3χ[3,3,0] − 3χ[4,1,1] − 3χ[5,0,0] + 4χ[5,2,0] − 3χ[6,0,1] + 3χ[7,1,0] + 3χ[9,0,0])q̂
9
2

+ (χ[0,0,1] + 2χ[0,2,1] − 2χ[0,4,1] + χ[1,0,2] + χ[1,1,0] + χ[1,2,2] + 2χ[1,5,0]

+ 5χ[2,1,1] − 3χ[2,3,1] + χ[3,1,2] − 2χ[3,2,0] + 4χ[3,4,0] + 4χ[4,0,1]

− 6χ[4,2,1] + χ[5,0,2] − 4χ[5,1,0] + 5χ[5,3,0] − 5χ[6,1,1] − 6χ[7,0,0]

+ 6χ[7,2,0] − 5χ[8,0,1] + 5χ[9,1,0] + 4χ[11,0,0])q̂
11
2

+ (−χ[0,0,3] − 5χ[0,1,1] + 2χ[0,3,1] − χ[0,5,1] − 2χ[1,0,0] − 2χ[1,1,2]

− 5χ[1,2,0] + χ[1,3,2] + 3χ[1,6,0] − 2χ[2,0,1] + 7χ[2,2,1] − 6χ[2,4,1]

− χ[3,1,0] + 2χ[3,2,2] + 5χ[3,5,0] + 12χ[4,1,1] − 7χ[4,3,1] + 2χ[5,1,2]

− 3χ[5,2,0] + 7χ[5,4,0] + 10χ[6,0,1] − 10χ[6,2,1] + 2χ[7,0,2]

− 6χ[7,1,0] + 8χ[7,3,0] − 8χ[8,1,1] − 10χ[9,0,0] + 9χ[9,2,0]

− 7χ[10,0,1] + 7χ[11,1,0] + 5χ[13,0,0])q̂
13
2

+ (2χ[0,0,1] + 3χ[0,4,1] − 3χ[0,6,1] + χ[1,0,2] + 3χ[1,1,0] − 4χ[1,2,2] − 9χ[1,3,0]

+ χ[1,4,2] + χ[1,5,0] + 3χ[1,7,0] − 2χ[2,0,3] − 13χ[2,1,1] + 8χ[2,3,1] − 6χ[2,5,1]

− 4χ[3,0,0] − 7χ[3,1,2] − 17χ[3,2,0] + 3χ[3,3,2] + χ[3,4,0] + 7χ[3,6,0] − 11χ[4,0,1]

+ 14χ[4,2,1] − 12χ[4,4,1] − 3χ[5,0,2] − 10χ[5,1,0] + 4χ[5,2,2] + χ[5,3,0] + 9χ[5,5,0]

+ 21χ[6,1,1] − 12χ[6,3,1] − 2χ[7,0,0] + 3χ[7,1,2] − 4χ[7,2,0] + 11χ[7,4,0]

+ 18χ[8,0,1] − 15χ[8,2,1] + 3χ[9,0,2] − 9χ[9,1,0] + 12χ[9,3,0] − 12χ[10,1,1]

− 15χ[11,0,0] + 12χ[11,2,0] − 9χ[12,0,1] + 9χ[13,1,0] + 7χ[15,0,0])q̂
15
2 +O(q̂8).

(A.11)
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Igrav(1/2)
N=3 = (· · · terms identical with (A.11) · · · )

+ (2χ[0,0,1] − χ[0,3,3] + 3χ[0,4,1] − 3χ[0,6,1] + 3χ[1,1,0] − 4χ[1,2,2]

− 10χ[1,3,0] + χ[1,5,0] + 3χ[1,7,0] − 3χ[2,0,3] − 13χ[2,1,1] + 7χ[2,3,1]

− 7χ[2,5,1] − 4χ[3,0,0] − χ[3,0,4] − 8χ[3,1,2] − 18χ[3,2,0] + 2χ[3,3,2]

+ χ[3,4,0] + 6χ[3,6,0] − 11χ[4,0,1] − χ[4,1,3] + 13χ[4,2,1] − 12χ[4,4,1]

− 3χ[5,0,2] − 11χ[5,1,0] + 2χ[5,2,2] + χ[5,3,0] + 8χ[5,5,0] + 21χ[6,1,1]

− 13χ[6,3,1] − 3χ[7,0,0] + 2χ[7,1,2] − 4χ[7,2,0] + 10χ[7,4,0] + 18χ[8,0,1]

− 15χ[8,2,1] + 2χ[9,0,2] − 9χ[9,1,0] + 11χ[9,3,0] − 12χ[10,1,1] − 15χ[11,0,0]

+ 11χ[11,2,0] − 9χ[12,0,1] + 9χ[13,1,0] + 6χ[15,0,0])q̂
15
2 +O(q̂

17
2 ). (A.12)

A.3 k = 3

IABJM(1/3)
N=1 = uχ1,0q̂

1
2 + u−2χ0,2q̂ + u(χ2,1 − χ0,1)q̂

3
2

+
(
u4χ4,0 − u−2χ1,1 + u−2χ1,3

)
q̂2 +O(q̂

5
2 ). (A.13)

Igrav(1/3)
N=1 = (· · · terms identical with (A.13) · · · )

+
(
u4χ4,0 − u−2χ1,1 + u−2χ1,3 − u−8χ0,2 − u−8χ0,6

)
q̂2 +O(q̂

5
2 ). (A.14)

IABJM(1/3)
N=2 = u2χ2,0q̂ + u−1χ1,2q̂

3
2 +

(
u2χ3,1 + u−4χ0,4 + u−4

)
q̂2

+
(
u5χ3,0 + u5χ5,0 − u−1χ0,1 + 2u−1χ2,3

)
q̂

5
2

+
(
2u−4χ1,5 − u2χ2,0 − u2χ2,2 − u2χ4,0 + 3u2χ4,2 − u2

)
q̂3 +O(q̂

7
2 ). (A.15)

Igrav(1/3)
N=2 = (· · · terms identical with (A.15) · · · )

+ (2u−4χ1,5 − u2χ2,0 − u2χ2,2 − u2χ4,0 + 3u2χ4,2 − u2

− u−10χ0,4 − u−10χ0,8 − u−10)q̂3 +O(q̂
7
2 ). (A.16)

IABJM(1/3)
N=3 = u3χ3,0q̂

3
2 + χ2,2q̂

2 +
(
u3χ0,1 + u3χ4,1 + u−3χ1,0 + u−3χ1,4

)
q̂

5
2

+
(
u6χ2,0 + u6χ4,0 + u6χ6,0 + u−6χ0,2 + u−6χ0,6 + χ1,3 + 2χ3,3

)
q̂3

+
(
−u3χ1,0 − u3χ3,0 + u3χ3,2 − u3χ5,0 + 3u3χ5,2

+u−3χ2,1 + u−3χ2,3 + 3u−3χ2,5

)
q̂

7
2

+
(
u6χ3,1 + u6χ5,1 + 2u6χ7,1 + 2u−6χ1,3 + u−6χ1,5 + 2u−6χ1,7 − 2χ0,2

+χ0,4 − χ2,0 − 3χ2,2 + 2χ4,0 + 5χ4,4 − 1) q̂4 +O(q̂
9
2 ). (A.17)
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Igrav(1/3)
N=3 = (· · · terms identical with (A.17) · · · )

+
(
u6χ3,1 + u6χ5,1 + 2u6χ7,1 + 2u−6χ1,3 + u−6χ1,5 + 2u−6χ1,7 − 2χ0,2

+ χ0,4 − χ2,0 − 3χ2,2 + 2χ4,0 + 5χ4,4 − 1

−u−12χ0,2 − u−12χ0,6 − u−12χ0,10

)
q̂4 +O(q̂

9
2 ). (A.18)
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