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Abstract

Coordination between individual interests and social interests have become essential for
studying multiagent systems in the future smart society. This thesis provides a line of
work on control problems of self-interested agents in pseudo-gradient-based noncoopera-
tive dynamical systems. In the first part, we focus on developing several utility-transfer
frameworks for pseudo-gradient-based noncooperative dynamical systems to remodel
agents’ dynamical decision-making. Specifically, a zero-sum tax/subsidy approach, a
hierarchical incentive framework, and a Pareto-improving incentive mechanism are
constructed to deal with the control problem in the face of agents’ private information,
large-scale system, and Pareto improvement. In the second part, we investigate the
influence of psychological considerations in noncooperative systems, including the
loss-aversion phenomena and the incorporation of cognitive predictions of agents into

pseudo-gradient dynamics.
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Summary

Coordination between individual interests and social interests have become essential for
studying multiagent systems in the future smart society. This thesis provides a line of
work on control problems of self-interested agents in pseudo-gradient-based noncoopera-
tive dynamical systems. In the first part, we focus on developing several utility-transfer
frameworks for pseudo-gradient-based noncooperative dynamical systems to remodel
agents’ dynamical decision-making. Specifically, a zero-sum tax/subsidy approach, a
hierarchical incentive framework, and a Pareto-improving incentive mechanism are
constructed to deal with the control problems in the face of agents’ private information,
large-scale system, and Pareto improvement. In the second part, we investigate the
influence of psychological considerations in noncooperative systems, including the
loss-aversion phenomena and the incorporation of cognitive predictions of agents into
pseudo-gradient dynamics.

First of all, to deal with the control problem of noncooperative dynamical system
where the sensitivity parameters of the pseudo-gradient dynamics are uncertain to the
system manager, a zero-sum tax/subsidy approach is constructed to stabilize a possibly
unstable Nash equilibrium. We first characterize the stability of the Nash equilibrium for
arbitrary values of sensitivity and then investigate the zero-sum tax/subsidy framework
without knowing the sensitivity parameters. In the proposed framework, the system
manager defines the utility-transfer structure dividing the agents into subgroups so that
the utility transfers are completed within the subgroups in a zero-sum and distributed
manner. The amounts of tax (negative incentive) and subsidy (positive incentive) for
each agent are determined by quadratic incentive functions with well-chosen control
parameters.

For a noncooperative system with a large number of agents, the requirement for a
single system manager to know all agents’ payoff functions is extremely stringent. To
handle this issue, in light of the hierarchical government structures in real society, we
develop a hierarchical incentive framework for large-scale noncooperative dynamical

systems to achieve social welfare improvement. In the proposed framework, the agents
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in the noncooperative system are divided into several groups and are influenced by
the corresponding group managers via some intra-group incentives. We characterize
the situation where group managers try to enhance the welfare of their groups by
continually updating their own intra-group incentives to the group members. We
explore the stability of group Nash equilibrium of the hierarchical noncooperative
systems and derive conditions where the trajectory of agents’ states converges to the
group Nash equilibrium under group managers’ intra-group incentives. Furthermore,
the inter-group incentive mechanism for a system governor is proposed to reconstruct
the group utility functions at the group managers level to move the group Nash
equilibrium so that the social (entire) welfare is improved. To deal with the situation
where the system governor may not know all the agents’ individual payoff functions and
all the agents’ states, we present sufficient conditions to guarantee the convergence of
agents’ states towards a target (suboptimal but not optimal due to the lack of enough
information) equilibrium using some macroscopic data.

Usually, the constructed incentive mechanisms are designed as coercion policies
under which the agents cannot escape once in place. However, the agents may have
the freedom to break away from the mechanism when they come across some undesired
situations (e.g., when their payoffs decrease after the mechanism is executed). To
address this problem, we develop a Pareto-improving incentive mechanism to remodel
agents’ dynamical decision-making to guarantee that all the agents are Pareto improving
and their state converges to a Pareto-efficient Nash equilibrium. Considering the
priorities among the agents, we construct a weighted social welfare function for the
incentive mechanism and hence derive the socially maximum state as the target Nash
equilibrium. With the well-designed incentive functions associated with the weighted
social welfare function, the socially maximum state is ensured to be a Pareto-efficient
Nash equilibrium in the incentivized noncooperative system. Several sufficient stability
conditions are presented to guarantee that the agents are Pareto improving under the
pseudo-gradient dynamics and their state converges to the socially maximum state
with known or unknown sensitivity parameters. We reveal the fact that the Pareto
improvement and potentialization do not have an inclusive relation with each other.

In light of psychological game theory and cognitive hierarchy theory, the conven-
tional pseudo-gradient dynamics with static sensitivity by ignoring all psychological
considerations and predictions about the likely actions of other agents seem unnat-
ural to describe agents’ behavior in real society. We connect the phenomenon of
loss-aversion in prospect theory with the pseudo-gradient dynamics and focus on the

stability problem of 2-agent noncooperative switched systems, which are characterized
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as payoff-driven piecewise linear systems for describing agents’ dynamic decision-making
with the quadratic payoffs and loss-aversion phenomena. Based on the transition anal-
ysis and mode analysis, the sufficient and necessary conditions under which agents’
state converge to the Nash equilibrium are derived in accordance with the location of
the Nash equilibrium. In the analysis, we observe an interesting phenomenon that we
call a flash switching instant where a single agent’s sensitivity transition makes the
other agent immediately switch its sensitivity almost at the same time instant.
Finally, we connect cognitive hierarchy theory with the pseudo-gradient dynamics in
noncooperative systems to extend the pseudo-gradient dynamics with some prediction
behaviors under Level-k thinking. The modified pseudo-gradient dynamics under Level-
k thinking are presented according to the knowledge network of the payoff functions
so that the agents are allowed to base their decisions on the predictions about the
likely actions (best-response states) of other agents with a bounded depth of reasoning.
To deal with the uncertainties on the knowledge network of the payoff functions and
sensitivity parameters, we characterize stability property with arbitrary knowledge
network of the payoff functions for the cases with a pure population of the agents in the
same level and the mixed population of the agents in different levels. In addition, we
present the applications of the results in optical communication systems, homogeneous
oligopoly markets, and differentiated oligopoly markets. It is observed that to ensure
asymptotic stability of the differentiated oligopoly markets with Cournot competition,
a larger market with more firms requires more differentiated products. In contrast,

this phenomenon does not happen in Bertrand competition.






Chapter 1

Introduction

1.1 Control Problem in Noncooperative Systems: The

Needs of Incentive Design

Coordination issues between the individual interests and social interest have become
essentially important for studying multiagent systems in the coming smart society.
In order investigate the coordination issues, game theory has been used as one of
the disciplines concerning the relations between human decision making and resulting
phenomena as a whole [1, 2|. In noncooperative systems, each agent is presumed to be
fully rational and selfish, and hence aims to increase its own payoff by adjusting its
individual state in the system. Under this presupposition, Agents in the noncooperative
systems mutually affect the selfish decision making of the other agents through the
interconnected relations of their utilities or payoffs. Many applications are found in
both engineering and economics, e.g., wireless sensor networks [1|, communication
channel allocation [3], signal interference avoidance [4], data security in intelligent
transportation systems |[5], electricity market [6], to name but a few.

It is common knowledge that in noncooperative systems, the agents’ selfish decision
making may degrade the social welfare |7, 8]. For example, the tragedy of the commons
describes a social trap involving the conflict between the individual interests and the
public interest in the allocation of resources [9]. In such a situation, without a person
who is entitled to control the entire noncooperative system, every agent expands its
demand independently according to his own self-interest, and the limited resources are
destined to be over-exploited by the unrestricted demands, which eventually harms the

common good of all agents in the common resource systems.



For the aggregation of such self-interested agents, it has turned out that the
imposition of external policies or explicit incentive mechanisms changes agents’ decision
making tendencies and hence results in the endogenously cooperative behaviors in the
noncooperative systems [10-12]|. In such a case, the imposition of explicit incentive
mechanisms is regarded as the control behavior for the noncooperative systems. For
example, as a coercion policy which agents cannot escape once in place, a tax/subsidy
approach was proposed by [13] to reward or penalize the deviations from the average
contribution of the other competitors to the public goods. In contrast to the coercion
policy, the authors in [14] investigated a compensation mechanism where agents are
allowed to voluntarily subsidize the other agents in the pre-stage when the other agents’
decisions are not made yet. The compensation mechanisms are understood as a liberal
solution as agents have freedom to escape the mechanism. In usual, the liberal solution
works as a weak external rule to the noncooperative system and is expected to be less
efficient than the coercion solution.

In order to describe the state change of noncooperative systems, several models
are proposed in the literature. Specifically, agents’ dynamic decision behaviors are
typically characterized by the best-response dynamics (or named as dynamic fictitious
play) [15, 16] and myopic pseudo-gradient dynamics (or named as better-response
dynamics, or dynamic gradient play) [17-19| for discrete-time and continuous-time
systems, respectively. In the pseudo-gradient dynamics setup, the agents continuously
change their state according to the pseudo-gradient projection onto their own local
state space without having foresight. For example, the authors in [20] analyzed agents’
behaviors in a noncooperative system with two agents and quadratic payoff functions.
The authors in [21] investigated the agents’ behaviors with a variable learning rate
for the case where an agent wins (possesses higher utility than the opponent) in
the two-agent noncooperative system. The paper [22| proposed a congestion control
framework for data traffic with the pseudo-gradient dynamics for the users on the
internet while [23] discussed the relationship between the positively invariant set and
the set of positive externalities for a pseudo-gradient-based noncooperative system
with two agents and quadratic payoffs. The related works of dynamic agents’ behavior
characterized by pseudo-gradient dynamics are found in [24-34| and the references
therein, which include the applications of game theoretic approach inspired by the
pseudo-gradient dynamics in communication networks, smart grid, pricing mechanisms,
to name but a few.

To improve the social utility level, it is preferable to develop a compensation

mechanism that collects taxes from some agents and gives subsidies to some other



agents. Specifically, the authors in [35] modified agents’ original payoff functions
in order to reach the highest social welfare by adding a pricing term among the
agents. For stabilizing minimum latency flows in the Braess graphs, [36] considered
the capitation tax and subsidy. The authors in [37] imposed a subsidy mechanism to
achieve stabilization for heterogeneous replicator dynamics. It is necessary to emphasize
that in the above works the existence of a system manager is assumed and he/she is
characterized as a resource owner or distributor who is able to give additional subsidies.
However, the system manger in many economic applications serves merely as a mediator
and does not have productivity to pay the additional profits to the agents. In such a
case, every subsidy has to be financed by taxes taken from the others [38] and hence
the tax/subsidy mechanism ought to be designed in a zero-sum fashion, e.g., [39].

During designing the incentive mechanism, there exist some important problems
with respect to uncertainty, large-scale system, and Pareto improvement. First of all,
the system manager, ideally, has all the knowledge about the noncooperative system
including the payoff functions and the decision dynamics of the agents. In reality, it is
often difficult to observe perfect information about the activities of the noncooperative
agents. This hidden information is termed as private information in economics [40]
and this uncertainty can be obstructive for designing the incentive mechanisms. Even
though in the existing gradient-based Nash equilibrium seeking problems [35, 41-43|,
the seeking speed is predetermined, the rational agents in a noncooperative dynamical
system in general change their states according to their own inherent sensitivities
which may not be observed by the system manager. The work in [44] provided an
explicit mechanism by side payments with the idea of transferring the utility in a two
agent system, which induces cooperation and drives the noncooperative system to the
socially maximum welfare state, but unfortunately, the case with more agents and
the sensitivity parameters are not considered. Indeed, even though for a two-agent
noncooperative system, the sensitivity parameters do not change the stability property
of Nash equilibria [45], they may change the stability property in the system with more
than two agents and bring agents’ state to a worse utility state.

Secondly, for a noncooperative system with a large number of agents, the requirement
for a single system manager knowing all agents’ payoff functions is extremely stringent.
To deal with this problem, hierarchical structures consisting of a system governor (e.g.,
president) and multiple managers (e.g., mayors) often exist in our society, where the
agents are divided into several groups controlled by the corresponding group managers.
In those structures, the system governor usually observe only limited information from

each of the groups but the group mangers know more specific information in their



own groups. In the literature, some hierarchical structures of incentive mechanisms or
noncooperative systems can be found in [46-49]. For example, Ng et al. considered a
two-level incentive mechanism design problem in [47] to mitigate the straggler effects in
the federated learning training tasks. Mukaidani and Xu studied incentive Stackelberg
games with multiple leaders and followers for a class of stochastic linear systems with
external disturbance in [48|, where several agents take the position as leaders and
the rest of the agents take the position as followers so that the outcome of entire
systems depends on the state of both the leaders and the followers. Alternatively, in
the literature of economics, delegation games describe a different situation in which
some principals choose a compensation scheme for their agents while the latter play a
game on behalf of the principals [49]. In such a case, the payoffs of all players (i.e.,
principals and agents) are determined by the actions chosen by the agents. However,
to our knowledge, the theoretical analysis of pseudo-gradient-based noncooperative
dynamic systems with hierarchical incentives is not considered yet in the literature.

Thirdly, the constructed incentive mechanisms are often designed as coercion policies
under which the agents cannot escape once in place. However, since the agents may
have freedom to break away from the mechanism when the agents come across some
undesired situations (e.g., when their payoffs decrease after the mechanism is executed),
it is significant to develop incentive mechanisms enhancing the payoff values of all the
agents at the same time guaranteeing Pareto improvements [50] under the imposed
incentives. In such a case, it is essential to ensure that the desired state is Pareto
efficient [51-53]. In the literature of economics, Pareto-efficient states capture the
strategy profiles where no individual agent can be better off without making the
others worse off by deviating from the characterized state [54-56] so that there is no
space for further Pareto improvement. If the Nash equilibrium of the noncooperative
system is not Pareto efficient, then there is still some room to increase the payoffs
for some of the agents without decreasing any other agents’ payoffs [57, 58]. In this
case, some agents may seek private agreement (negotiation) with each other outside
the incentive mechanism so that the incentive mechanism constructed by the system
manager collapses. To avoid such a case, the incentive mechanism needs to guarantee
Pareto efficiency on the target (desired) Nash equilibrium [59, 60].

Moreover, depending on the specific goal of the government, the government in real
society usually gives more preferential treatments to some of the companies/individuals
when the performance of those companies/individuals is crucial in achieving the
government’s goal. For example, tackling extreme poverty was set to be an essential

policy goal by developing countries and hence their governments are likely to provide



more resources (e.g., job opportunities or common resources) to the poorer people than
the others for enhancing the poor people’s lives. Another example is that industry-
oriented countries have given more preferential treatments to the NEVs (new energy
vehicles) companies to improve international competitiveness under the challenge of
global climate issue [61]. Therefore, while designing the incentive mechanism, the
system manager may evaluate the priority among the agents for constructing a social

welfare function [62].

1.2 Psychological Consideration in Noncooperative

Dynamical Systems

As mentioned in Section 1.1, the agents’ selfish dynamic decision behaviors are typically
modeled by the pseudo-gradient dynamics for continuous-time systems [17-19]|. In
such setup, agents’ decision depends on the projection of the agents’ payoff functions
onto their own state proportioned by their own sensitivity parameters without having
foresight. Some issues in pseudo-gradient dynamics are discussed for different sce-
narios. For example, the impact of quantized communication [24], leader-following
consensus [42], augmented gradient-play dynamics [25], external disturbance [63], and
redistributive side payments [26] were investigated.

However, psychological game theory shows by experimental research that it is
inaccurate to simply assume that all the agents are fully rational and selfish because
the agents may have some social and psychological considerations such as the influence
of fairness, guilt aversion, hesitation, and inequality aversion in the decision making
[64]. On the basis of various psychological considerations, agents make their decisions
in significantly different ways [65, 66]. Therefore, the pseudo-gradient dynamics with
static sensitivity by ignoring all psychological considerations seem unnatural to describe
agents’ behavior in the real society. To our knowledge, the paper [67] is the first work to
characterize the pseudo-gradient dynamics with variable sensitivity. The essence of [67]
is to consider the situation where each agent makes a decision quickly when losing and
cautiously when winning in a two-agent iterated matrix game. However, for describing
agents’ different decision making when they are facing losses and gains, loss-aversion
in cognitive psychology and decision theory [68] tells the completely opposite scenario,
that is, agents’ decision is more cautious when they are expected to lose utilities. In
light of the difference between loss-aversion phenomena and psychological consideration
in [67], it is significant to consider the pseudo-gradient dynamics under the loss-aversion

scenario.



In the last decade, switched systems, which are characterized by a signal specifying
the mode transition among a finite number of subsystems, have widely applied to
numerous areas such as servomechanism systems [69], formation flying [70], stochastic
systems [71], to name but a few. As the most important issues in control systems,
stability properties of an equilibrium in such switched systems has been extensively
characterized [72-76]. In terms of piecewise linear systems, Iwatani and Hara character-
ized the stability problem based on poles and zeros of the subsystems [77]. Nishiyama
and Hayakawa provided a series of sufficient conditions to determine stability for
2-dimensional switched linear systems and piecewise nonlinear homogeneous systems
[78-80]. An integral function approach based on normalized growth rate was formulated
as a tool for judging whether the trajectory is coming closer to the equilibrium or not
in [78]. In the above works, the triggers of mode transitions in the switched systems are
usually understood as event-driven but the events are assumed to be independent of the
systems’ dynamics. The fundamental problems on stability and switching behaviors for
the special class of switched systems with correlative dynamics and switching events
(conditions) get few attentions.

On the other hand, on the basis of behavioural economics and cognitive hierarchy
theory, it may be inaccurate to assume that the agents are simply myopic decision-
makers without making any prediction or reasoning about the likely actions of other
agents [81]. In fact the agents usually have the tend to estimate or predict how their
opponents act in the noncooperative system based on the information of the other
agents’ payoff functions. Furthermore, more complicated behaviors may happen when
agents are conscious of the opponent’s estimation or prediction. This is because the
agents’ decision behavior may be totally different when they know or do not know
whether the other agents’ are making prediction of its own future state. The framework
of those cognitive operations is referred to as Level-k framework in cognitive hierarchy
theory.

Roughly speaking, the Level-k framework [82, 83| categorises the agents of the
noncooperative systems into several types (levels) according to the depth of the agent’s
strategic thought (reasoning). First of all, Level-k framework begins with the first
level called Level-0 in which agents make the decision non-strategically. Except for
the agents in Level-0, each agent in Level-k firmly believes that he/she is the most
sophisticated person in the system because all the other agents are in Level-(k — 1).
For this reason, the agent make the decision according to some strategic reasoning
of the other agents’ likely actions. For example, Level-1 agents (e.g., the agents in

conventional best-response dynamics or pseudo-gradient dynamics) make the decision



strategically according to its own payoff functions and the other agents’ current state
because they firmly believe that their opponents are making non-strategic decisions [84].
Some related works in cognitive hierarchy theory, predictive control, nonequilibrium
dynamic game and cyber-physical security are found in [85-88|. However, to our best
knowledge, the theoretical analysis of noncooperative systems with pseudo-gradient

dynamics under Level-k thinking is not considered yet in the literature.

1.3 Overview

The thesis is organized as follows. In Chapter 2, we develop a utility-transfer frame-
work for pseudo-gradient-based noncooperative dynamical systems to remodel agents’
dynamical decision making in the face of agents’ private information. We assume
that the sensitivity parameters in the pseudo-gradient dynamics are uncertain to the
system manager. Under this uncertainty, the system manager is expected to construct
a zero-sum tax/subsidy mechanism to (globally) stabilize a Nash equilibrium. In
particular, we first present several sufficient conditions for guaranteeing stability of a
possibly unstable Nash equilibrium in the face of uncertainty, and then we construct
a zero-sum tax/subsidy incentive structure by collecting taxes from some agents and
giving the same amount of subsidy in total to other agents so that the agents’ payoff
structure is properly modified.

In Chapter 3, we focus on the social welfare improvement problem for large-scale
hierarchical noncooperative dynamical systems driven by the pseudo-gradient dynamics.
A framework for hierarchical noncooperative systems with dynamic agents is proposed.
In the characterized framework, agents in each group are incentivized by a corresponding
group manager who represents the benefits of group utility via an intra-group incentive
mechanism. Furthermore, to improve the social welfare of the entire system, we propose
an inter-group incentive scheme in the group managers level for a system governor to
bring agents’ state to a target equilibrium. In this chapter, to deal with the uncertain
information on agents’ personal payoff functions for the system governor, sufficient
conditions are presented to guarantee the convergence of agents’ state to the target
equilibrium.

In Chapter 4, we propose a Pareto-improving incentive mechanism to improve
the weighted social welfare and achieve continual Pareto improvement for pseudo-
gradient-based noncooperative dynamical systems. The proposed explicit incentive
mechanism remodels agents’ dynamical decision making for guaranteeing that all

the agents are Pareto improving and their state converges to a Pareto-efficient Nash



equilibrium. Similar to Chapter 2, we consider the situation where the system manager
remodels agents’ dynamical decision making by collecting taxes from some agents
and giving some of the collected taxes to other agents as subsidies with a sustainable
budget constraint. Sufficient conditions are derived under which agents’ state converges
towards the socially maximum state associated with a weighted social welfare function
depending on the priority ratio of the agents and the initial state. We discuss the
connection between Pareto improvement and potentialization and reveal the fact that
the Pateto improvement and potentialization do not have an inclusive relation with
each other.

In Chapter 5, we focus on the stability problem for 2-agent noncooperative switched
systems, which are characterized as payoff-driven piecewise linear systems for describ-
ing agents’ dynamic decision making with the quadratic payoffs and loss-aversion
phenomena. In particular, we assume that each agent adopts lower sensitivity in the
pseudo-gradient dynamics for the case of losing utility than gaining utility and hence
both the system dynamics and the switching instants depend on the agents’ payoff
functions. Based on the transition analysis and mode analysis, the sufficient and
necessary conditions under which agents’ state converge to the Nash equilibrium are
derived in accordance with the location of the Nash equilibrium. In the analysis, the
mode transition sequence and interesting phenomena which we call flash switching are
characterized. It is found that the loss-aversion behaviors may destabilize the Nash
equilibrium. A sufficient condition of robust stability under which the loss-aversion
behaviors never destabilize the Nash equilibrium for any sensitivity parameters is
presented. The result indicates that by well defining (modifying) the agents’ payoff
functions, it is possible to avoid destabilization of a Nash equilibrium caused by the
agents’ loss-aversion consideration.

In Chapter 6, we we connect cognitive hierarchy theory with the pseudo-gradient
dynamics in noncooperative systems to extend the pseudo-gradient dynamics with
some prediction behaviors under Level-k£ thinking.In the characterized system, all
the agents are allowed to base their decisions on the predictions about the likely
actions (best-response states) of other agents with a bounded depth of reasoning. We
suppose that those predictions are made according to the information of the payoff
functions that the agents know from a knowledge network of the payoff functions. The
modified pseudo-gradient dynamics under Level-k thinking are presented according
to the knowledge network of the payoff functions. We suppose that the sensitivity
parameters and the knowledge network of the payoff functions in the pseudo-gradient

dynamics are uncertain to a system manager who wishes to ensure stabilization of



a Nash equilibrium. To deal with the uncertainties, we first characterize stability
property with arbitrary knowledge network of the payoff functions for the cases with
pure population of the agents in the same level and mixed population of the agents in
different levels, and then investigate a stabilization method via zero-sum tax/subsidy
approach to ensure stability of a Nash equilibrium without using the information of
sensitivity parameters nor the knowledge network of payoff functions. In addition, we
present the applications of the results in optical communication systems, homogeneous
oligopoly markets and differentiated oligopoly markets. It is observed that to ensure
asymptotic stability of the differentiated oligopoly markets with Cournot competition,
a larger market with more firms requires more differentiated products, whereas this

phenomena does not happen in Bertrand competition.

1.4 Notations

We use the following notations in this thesis. We write Zg for the set of nonnegative
integers, Z, for the set of positive integers, Z, for the set of positive odd integers, Z,
for the set of positive even integers. R for the set of real numbers, R, for the set of
positive real numbers, R™ for the set of nx1 real column vectors, R"*" for the set of
n x m real matrices, A for the logical conjunction, and V for the logical disjunction.
Moreover, det(-) denotes determinant, ()T denotes transpose, (block-)diag|-] denotes a
(block-)diagonal matrix, f’(-) denotes the gradient of function f(-), I, and 1, denote
the identity matrix and the ones vector of dimension n, respectively. Finally, [row;(A)]
denotes a matrix with entries same as ith row of matrix A, o denotes Schur product,
||| = V2Tz denotes the Euclidean norm of a vector z, ||A|| denotes the matrix norm

of a matrix A, and He(+) denotes the Hermitian part of a matrix.
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Chapter 2

Control of Uncertain Noncooperative
Dynamical Systems: A Tax/Subsidy
Approach

2.1 Introduction

In this chapter, we develop a utility-transfer framework for pseudo-gradient-based
noncooperative dynamical systems to remodel agents’ dynamical decision making in
the face of agents’ private information. Specifically, we assume that that the sensitivity
parameters in the pseudo-gradient dynamics are uncertain to the system manager.
Under this uncertainty, the system manager is expected to construct a zero-sum
tax/subsidy mechanism to (globally) stabilize a Nash equilibrium. To deal with the
uncertainty, we first characterize the stability of the Nash equilibrium for arbitrary
values of sensitivity and then investigate the zero-sum tax/subsidy framework without
knowing the sensitivity parameters. In the proposed tax/subsidy approach, the system
manager defines the utility-transfer structure dividing the agents into subgroups so that
the utility transfers are completed within the subgroups in a zero-sum and distributed
manner. The amounts of tax (negative incentive) and subsidy (positive incentive) for
each agent are determined by quadratic incentive functions with well-chosen control
parameters. It turns out from the numerical examples that the proposed framework
can guarantee global asymptotic stabilizability for some noncooperative systems with
non-quadratic payoff functions.

This chapter is organized as follows. In Section 2.2, we characterize the pseudo-

gradient-based noncooperative dynamical systems and present the main problem along
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with motivations. In Section 2.3, we discuss the stability of a Nash equilibrium for
multi-agent noncooperative systems without knowing agents’ sensitivity parameter.
In Section 2.4, we first introduce our zero-sum tax/subsidy mechanism for two-agent
noncooperative systems, and then extend it to more general multi-agent systems.
Furthermore, in Section 2.5, we present a couple of illustrative numerical examples.

Finally, Section 2.6 concludes this chapter.

2.2 Problem Formulation

2.2.1 System Description

Consider the noncooperative system with payoff functions J; : R” — R for agent € N,
where N = {1,...,n} denotes the set of agents. Each agent i € N controls its state
(strategy) z; € R, i € N. Let x = (x;,2_;) € R" denote all agents’ state (strategy)
profile, where z_; € R"! denotes the agents’ state profile except agent i. In this
chapter, we suppose that each agent ¢ aims to increase its own payoff J;(x;, x_;), where
J; may depend on all the agents’ state. We denote the noncooperative system by G(J)
with J 2 {J;}ien

Definition 2.1. [89] For the noncooperative system G(J), the state profile z* € R™ is
called a Nash equilibrium of G(J) if

Ji(xl, %) > Ji(x,xty), x, €R, i€ N. (2.1)

The best-response state x; for agent ¢ defined as the state x; yielding the largest
value of J; given the state profile x_; of the other agents is expressed by the mapping
BR; : R"! — R given by

z; = BR(z_;) £ argmax,, . Ji(z;, 1_;). (2.2)

It is worth noting that the Nash equilibrium z* is understood as an intersecting point
of the best-response curves/planes (2.2), i.e., z* = [z},..., 2|7 satisfies

BR;(z*;) = x}

—1 1)

ieN. (2.3)

Therefore, at a Nash equilibrium z* no agent has any intension to deviate unilaterally

from the equilibrium state.
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Assumption 2.1. The payoff functions J;(z), i € N, are twice continuously differen-
tiable.

Note that the noncooperative system G(.J) may not possess any Nash equilibrium.
Some sufficient conditions for existence of a Nash equilibrium with the closed convex
domain can be found in [17], [90, Chapter 2|. However, in general, guaranteeing
the existence of a Nash equilibrium for an unbounded state space is a complicated
problem. In this chapter, we suppose that there exists at least one Nash equilibrium.
In this case, under Assumption 2.1, since the Nash equilibrium z* satisfies z} =

arg max,,cg J;(z;, x*;) for all i € N it follows that

6@»

=0, icN. (2.4)

Moreover, it is important to note that the Nash equilibrium is characterized independent

of the underlying dynamics.

2.2.2 Myopic Pseudo-Gradient Dynamics

In this chapter, we suppose that each agent continuously changes its state (strategy) of
the noncooperative system G(J) in the unbounded state space R™ in order to increase
its own payoff. Specifically, we assume that the state profile z(-) is available for all the
agents and each agent follows the pseudo-gradient dynamics given by

eN, (2.5)
where «;, 1 € N, are agent-dependent positive constant parameters representing
sensitivity to the increasing/decreasing payoff per unit state change [17]. In this case,
agents selfishly concern their own payoffs and myopically change their states (strategies)
according to the current information without any foresight on the future state of the
other agents. The pseudo-gradient dynamics are widely used as the dynamics for
rational and selfish agents [20-22, 44, 25, 45, 42|. The agents’ moving rates given by
(2.5) are characterized to be proportional to the projection of the gradient of J;(z)
onto x;-axis, which is termed as the pseudo-gradient, but the sensitivity parameters «;,
i € N, which decide how fast the agents move, are in many cases private so that they
are not observed. It is important to note that at the Nash equilibrium z*, @(t) = 0
since (2.4) holds.
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2.2.3 Motivations and Problem Statement

Motivation: Some of the Nash equilibria may be unstable in the noncooperative system
G(J), since agents’ payoff functions are generally different from each other. For instance,
Fig. 2.1 shows the payoff functions of each agent in a two-agent noncooperative system
with an unstable Nash equilibrium. Assume there is a system manager, e.g., the
governor of the markets, who controls the amount of tax and subsidy (negative and
positive incentives, respectively) and demands to stabilize around a Nash equilibrium
for encouraging agents to converge to it. Assuming all the information of the payoff
functions J;(x), i € N, is known, we suppose that the system manager chooses the
Nash equilibrium possessing the largest social utility from the set of Nash equilibria
of G(J) as the target Nash equilibrium. A fundamental question is how the system
manager designs an incentive mechanism to stabilize the possibly unstable target Nash

equilibrium with uncertain sensitivity parameters «;, 1 € N.

Assumption 2.2. There exists a known Nash equilibrium z* satisfying % <0,
i € N, which is the target equilibrium such that the system manager wishes to

guarantee stability around x*.

Note that the computation of the Nash equilibrium for the noncooperative system
G(J) is beyond the scope of this paper. The relevant methods for calculating Nash
equilibria can be found in |25, 91-94] and the references therein.

Problem: Consider the the target Nash equilibrium x* with uncertain sensitivity
parameters «a;, i € N, for the system manager. Our main objectives are two folds: (i)
Find the condition for determining the stability property of the Nash equilibrium z*
with arbitrary «;, i € N; (ii) Design an explicit incentive mechanism to stabilize the

possibly unstable Nash equilibrium z* with the unknown sensitivity parameters «y,

1eN.

2.3 Stability Analysis of Nash Equilibrium with Un-

known Sensitivity Parameters

In this section, we characterize stability properties of the Nash equilibrium of the
noncooperative system G(J). Specifically, we first present the results for the general

n-agent case, and then specialize the results to 3-agent and 2-agent cases. For the
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Best response state for agent 1
Best response state for agent 2
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(a) Payoff function of agent 1
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(b) Payoff function of agent 2

Figure. 2.1 Payoff functions for an unstable Nash equilibrium.
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statement of the following results, let a 2 (o, ..., a,) and define
92 J1(x) 92J1(x)
a1 031:% on 6115%1
A(J, o, ) £ : : : (2.6)
82T (x) ) 0%, (x)
Qn 0rn,0T1 o n 9x2

Note that under Assumption 2.1, since the functions J;(z), i € N, are twice continuously

differentiable, the matrix (2.6) is a continuous function with respect to z. Moreover,

under Assumption 2.2, the diagonal terms «; ag;(f), i e N, in A(J,a,z*) are all

negative. This fact is used in the analysis of the following results.

Stability Analysis for n-Agent Noncooperative Systems

The sensitivity parameters a;, i € N, are inherent to each of the agents and are not
exactly observed. Without knowing the value of « for the n-agent noncooperative
system, the following results provide several ways to determine stability of the Nash

equilibrium.

Corollary 2.1. Consider the Nash equilibrium x* € R for the n-agent noncooperative
system G(.J) with myopic pseudo-gradient dynamics (2.5). If the payoff functions J;(z),
i € N, satisfy

(=1)"det A(J, 1,,,2%) < 0, (2.7)

then the Nash equilibrium z* is unstable for any positive constants oy, 1 € N.

Proof First, let £ £ 2 — 2*. Note that linearizing the system dynamics (2.5) around
x* yields
z(t) = A(J, a, z)E(t). (2.8)

The result is a direct consequence of the Lyapunov’s indirect method. Specifically,
consider the characteristic equation det (sI — A(J, a,z%)) = s" +ay_18" 1+ -+ +
a1s +ag = 0 of A(J, a, x*), where aq, ..., a,_; are appropriate constants. In particular,
ap = (—1)"det A(J,a,2*) = (=1)"det A(J, 1., 2*) X [[,cpr - Now, since a; > 0,17 €
N, it follows from (2.7) that ag < 0. Hence, it follows from Routh or Hurwitz criterion
that the Nash equilibrium x* is unstable. O
The fictitious sensitivity 1, in (2.7) can be replaced by any & € R} to determine
instability because it does not change the sign of the determinant of A(J, -, x*).
Relation of payoff dependency between the agents can be characterized by defining
a graph. For specific graph structures, we can specialize the condition (2.7) as shown

in the following examples.
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G+

(2) (b)

Figure. 2.2 Network topologies of payoff dependency. (a) m-agent center-sponsored star
network where agent 1 is the center, (b) directed ring network: the arrows of the graph
indicate that J;(x) = J;(x;, x;+1) where x 41 is understood as 7.

Example 2.1. Consider the noncooperative system with the payoff dependency given
by the center-sponsored star network illustrated in Fig. 2.2(a), where agent 1 is the

center of the network. In this case, note that since

[ 02J1(z*)  02J1(z%) 82J1 (x*)
8{E% 0x10z2 T 0z10Tn
0% Jo(xz*)  0%Ja(z*) 0
A J1 *\ Oxo0x1 Bzg 2.9
( 9 nvx ) - . . ’ ( N )
02 Jy (x*) 0 82 Jp(x*)
| O0z,011 ox2

the left-hand side of (2.7) is given by

* n 82J (113*) 82Jz($*) n *
(_1)n<62J1(:L‘ ) . Bxllaaci Ox;011 ) 82(]1(17 )
x? — % 11 022

(2.10)

Noting that Assumption 2.2 implies that (—1)" []", azg;(f D s negative, it follows from

Corollary 2.1 that if the payoff functions J;(x), i € N, satisfy

% n 82J (Ji*) 82*]1(1‘*)
PI(*) N~ Tnoe Gnoe >0 (2.11)
oz? , 9%Ji(a*) ’ '
=2 830%

then the Nash equilibrium z* is unstable for any positive constants a;, i € N.
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Example 2.2. Consider the noncooperative system with the payoff dependency given

by the directed ring network illustrated in Fig. 2.2(b). In this case, note that since

[ 021 (%)

82J1 (¢*)

Bxf axlazz 0 0
. 0 0
A(r]y 1n7 T ) — O O 82JN_1(33*) 82JN_1(33*) 9 (212)
ox3, OrN_10xn
92 Jyp (x*) 02 Jy (x*)
L Ozndzi 0 0 ox2 |
9%J;(z*)

the left-hand side of (2.7) is [[}-, (—% —IIis 92:071 41

as z1. Thus, it follows from Corollary 2.1 that if the payoff functions J;(z), i € N,

1(-"5.7)-

i=1

, where x,,+1 is understood

satisfy
02,0741 7

i=1

(2.13)

then the Nash equilibrium z* is unstable for any positive constants a;, i € N.

Now a sufficient condition is provided to guarantee stability without knowing «;,

i € NV, in the following theorem.

Theorem 2.1. Consider the Nash equilibrium x* € R"™ for the n-agent noncooperative

system G(J) with pseudo-gradient dynamics (2.5). If there exists & € R such that

AT(J &, 2%) + A(J, &, z%) <0, (2.14)

then the Nash equilibrium z* is locally asymptotically stable for any positive constants
Qy, 1€ N
Proof Letting # =  — 2*, consider the Lyapunov function candidate V(%) = 2T PZ

a—"} > (). Since

7’ an

with the positive-definite matrix P £ diag [%, e
AY(J,a,2")P + PA(J, o, %) = AY(J, &, %) + A(J, &, 2%) < 0,
is satisfied, it follows using the linearized dynamics (2.8) that

V(i) = 37 (t) (AT (J, &, 2%) + A(J, &, 2%))E(t) <0, (2.15)

around z* and hence the Nash equilibrium z* is asymptotically stable for all positive

sensitivity parameters a;, i € N. ]

Remark 2.1. The result in Theorem 2.1 appears to be similar to Theorems 8 and 9

of [17] but it is certainly different in that Theorem 2.1 guarantees asymptotic stability
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for arbitrary « by evaluating the sign-definiteness of A*(J, &, z*) + A(J, &, z*) for a
particular &. To determine whether such & exists, we can address the linear matrix

inequality (LMI) feasibility problem given by
diag[a]A(J, 1,,,2%) + AT (J, 1, 2%)diag[a] < 0, (2.16)

assuming that all the information of J is known.

Remark 2.2. Because of the continuity of A(J, &, x) with respect to z, (2.14) implies

that there exists a connected set

DY & {z e R": AT(J, 4, 2) + A(J, &, 2) < 0} (2.17)
containing x*. Let f(x) = [ala‘élT(lx), . ,ana‘é#(f)]T denote the vector field of the

pseudo-gradient dynamics and let V(z) = fT(z)Pf(x). It is important to note that a

subset of the region of attraction can be characterized by
Dy & {z € R": V(x) < 6}, (2.18)

with the maximum attainable § € R, such that Dy C D{ and Dg is connected in the
neighborhood of z* for all § < §. This is because V() is understood as a Lyapunov
function and it satisfies V(x(t)) = fT(z(t))(AT(J, &, z(t)) + A(J, &, () f(z(t)) < 0
for all z(t) € Dy \ {x*}. It is important to note that the estimated region of attraction
DS depends on the choice of & in A(J, &, z*) and can be substantially smaller than the
actual region of attraction. But for the special case where AT (J, &, z) + A(J,4,2) <0
holds for all x € R", since it can be shown that f(z) = 0 only when z = z* in R",
it follows that the Nash equilibrium z* is globally asymptotically stable for arbitrary
«. For instance, if the payoff functions are quadratic, then (2.14) guarantees global

asymptotic stability as (2.6) is a constant matrix.

Remark 2.3. For the noncooperative system with the payoff functions satisfying

% >0,1,5 €N, i# j,it follows from the properties of Metzler matrix that
105

(2.14) in Theorem 2.1 is also a necessary condition for the Nash equilibrium z* to be

asymptotically stable for arbitrary a.

Example 2.3. Consider the n-agent noncooperative system with the payoff dependency
given by the center-sponsored star network illustrated in Fig. 2.2(a). To investigate
the conditions for the payoff functions J;(x), i € N, such that & € R’} exists to satisfy
(2.14), note that the kth-order leading principal minor of AY(J, &, x*) + A(J, &, z*)
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A B CO I N
. A _ . . A 82.]1(1’*) ( dxq 0z, +a; dx;0xq ) ~ 82JL(1E*)
with &; = 1 is given by L, = (28—x? -2 LIS [T (265
1=2 Qi 2 =2 ¢
. . 82 J; (x* .
for k = 2,...,n. Since, by Assumption 2.2, % < 0,7 =2,...,n, and hence
€5

(—1)* Hfzg <2di 82;;(2:6*)> <0,k =2,...,n, the inequality (—1)*L;, > 0 for guaranteeing

(2.14) is equivalent to

2
82J1(x*) 1 F ( 0x10x;
—— < = — , (2.19)
0x? 2 ; 26 S5
for k = 2,...,n. Therefore, since all the terms in the right-hand side are negative,

the existence problem of & in satisfying (2.14) is equivalent to finding a solution
&= (1,4,...,4,) for (2.19) with £k = n. Now, such & exists if and only if the simple

condition

(82J1(x*) . 82Ji(x*))2

02J1(x*) 1 -~ 0x10x; ( Ox;0x1
022 2 ZL< ey 55y, 02i(a")
1 i=2 Qi 5,2
* * 2

Ph() | 5 2Ji(@*) 821 (z*) 92J; (")

1 Ox10x; v Ox;0x1 8110z; Ox;011

= -9 max = Oz Owidw (2.20)
2 a;€R 94, 2 Ji(z*) 9 Ji(z*) ’
i€Ny X2 i€Ny 02?2

is satisfied for Ny = {i € NV : PI@) P 0}, where in (2.20) we used max (AtaB)? _

Ox10x; Ox;0x1 acRy 2aC
2ATBf01rAB>OaLndC'<O.

Remark 2.4. Note that the local stability of the Nash equilibrium z* under the
dynamics (2.5) can also be directly derived if the matrix A(J, a,, *) (or, equivalently,
A(J,1,,2%)) is strictly diagonally dominant (i.e., 82;"7(;*) < =Dk 8;;;(%2?
i € N) [42]. The proof is based on Gershgorin’s circle theorem [95].

for all

Stability Analysis for 3-Agent Noncooperative Systems

Recall that based on the Lyapunov’s stability method, Theorem 2.1 requires us to look
for & to make the symmetric part of A(J, &, z*) negative definite to guarantee stability.
For the case of n = 3, it is possible to characterize a different set of stability conditions

on the payoff functions based on the Hurwitz criterion.

Proposition 2.1. Consider the Nash equilibrium z* € R3 for the 3-agent noncoopera-

tive system G({.J1, Jo, J3}) with pseudo-gradient dynamics (2.5). If the payoff funstions
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Ji(z), i € {1,2,3}, satisfy

det A(J, 13,2%) < 0, (2.21)
82J;(x*) 8% J;(z* 82J;(z*) 027, (x* .o . .
8&:(12 : 3]10(]2 ' aaczéxj) 8$]]'é1‘i) >0, 4,5€41,2,3} i#, (2.22)
8% J1(z*) 0% Ja(z*) 0% J3(x*) 9% J1(z*) 8% Ja(z*) 0% J3(x*) 9% J1(z*) 0% Ja(z*) 02 J3(x*)
2 811% 82175 8315 o axllaacz 8&0228383 &rsazl o 8x118a:3 8&0228361 3;10338x2 < O’ (223)

then the Nash equilibrium z* is asymptotically stable for any positive constants

ayq, Qg, Q3.

Proof Consider the characteristic polynomial s* + ass® + a1 s + ag of A(J, a, z*), where

27 (o
ar == 3 a5, (2.24)
ieN @
2'3}* va* 2i$* 2'33*
ay = Z(az‘%‘(a e gjx% ) ) aa;]jéx,-))), (2.25)
i#]j v
o = — det A(‘L Q, $*) = —010203 det A(J, 13, .Z‘*) (226)

Note that Assumption 2.2 implies a; > 0 and (2.21), (2.22) imply a9 > 0, a; > 0,
respectively. Furthermore, it follows from (2.22), (2.23) that

(201 — Qg = — Z
i#]j

- 041042043(

aQQIaQJi(IE*) (82J1(CE*) 82Jj(ac*) . 82(]7,(1*) 62J]‘(CC*))
i Ox? Ox? 890]2. 0z;0z; Ox;0x;
282J1 (z*) 920z (x*) 2 J3(x*)  02Ji(x*) 9% Ja(x*) 82 J3(a*)
817% ng 8x§ O0x10x2 Ox20r3 Or30T

0%J1(z*) 0% J2(2*) 02 J3(x*)
- 817118333 830228:c1 8:6;612 ) > 0. (227)

Hence, it follows from the Hurwitz criterion that the Nash equilibrium x* is stable for

any positive constants o, as, as. 0

Remark 2.5. The conditions in Proposition 2.1 provide different sufficient conditions

-1 0 50
from the one in Theorem 2.1. For example, A(J,13,2%) = | —1 —1 0 | satisfies
-1 -1 -1
(2.21)-(2.23), but there does not exist & € R? such that A"(J, &, z*) + A(J, &, z*) < 0.
—6 -5 1
On the contrary, AT (J, 13, 2%) + A(J, 13,2%) < 0 for A(J, 13,2*) = | =2 —2 -5 |,
-5 3 -1

but in this case, the condition in (2.23) is false.

For a special case of the payoff dependency, it is interesting to observe that the

conditions in Proposition 2.1 are equivalent to (2.14) in Theorem 2.1. In such a case,
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(2.21)—(2.23) guarantee the existence of & for AY(J, &, z*) + A(J, &, z*) < 0 as shown

in the following remark.

Remark 2.6. Consider the 3-agent noncooperative system with the payoff dependency
given by the undirected serial graph, which is a special case of the center-sponsored

star network discussed in Example 2.3. Note that 8;J2(,()I*) = 8;J3§x*) = 0 because
ro0x3 Tr30T2

Jo(x) and Js(z) are not the functions of x3 and x5, respectively. In this case, in-

equality (2.23) is automatically satisfied. Furthermore, note that det A(J, 13, 2*) =
L PUsa) PNt 0P h(at) | 9a(t) P ht) P Ja) | 02Nt 02 I3  Hence. the

ox3 Ox10z2 Ox20x1 02 Ox10x3 Ox30x1 027 03 O3

conditions (2.21)—(2.23) are satisfied if and only if

82J1(x*) 8% J2(x*) 02J1(x*) 02 J3(x*)  02J1(x*) 82 Ja(x*)  O2J1(z*) 82J3(x*)

2 *
a Jl(x ) <mln 8:171(9$2 amzax1 + 8x18333 81‘36%1 8113.’[2 8(1728&71 6118123 812381'1
ox? 92J3(z*) ?J3(z*) 7 2 Ja(xr) 7 92 J3(z*) ’
! Ox3 ox3 0x3 dx?

(2.28)

where the right-hand side is same as (2.20). Therefore, for this special case of the
payoff dependency, Proposition 2.1 provides exactly the same sufficient conditions as

the one given in Theorem 2.1.

Stability Analysis for 2-Agent Noncooperative Systems

Now, we assume n = 2 for the noncooperative system G({J1, J2}). The following results
are investigated in [45] and fundamental in constructing the incentive function that we
develop in Section 2.4. First, we note that stability can be determined by the sign of
the determinant of A.

Proposition 2.2. [45] Consider the Nash equilibrium z* € R? for the 2-agent non-
cooperative system G({Jy, Jo}) with pseudo-gradient dynamics (2.5). If the payoff
functions Ji(x), Jo(z) satisty

det A({Jl, JQ}, 1o, IL‘*) > 0, (229)

then the Nash equilibrium z* is asymptotically stable for any positive constants

aq, ag > 0.

Remark 2.7. The undirected graph topology of the payoff dependency for the 2-agent
system is a special case of the center-sponsored star network discussed in Example 2.3.
Note that (2.29) is equivalent to (2.20) by letting n = 2, and hence (2.29) represents

the necessary and sufficient condition for the existence of & in Theorem 2.1.
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It follows from Corollary 1 (for N = 2) and Proposition 2 that if det A({Jy, Jo}, 12, %)
> 0 (resp., < 0), then the Nash equilibrium z* is asymptotically stable (resp., un-
stable). This fact implies that the existence of & for (2.14) is in fact the necessary
and sufficient condition for stability of z* assuming that there is no eigenvalue of
A{ 1, Lo}, {aq, az}, 2*) on the imaginary axis. In the case where det A({.J1, J2}, 1o, x*)
= 0 implying that at least one of the eigenvalues of A({Jy, Jo}, {1, as}, x*) is zero,
the Nash equilibrium x* of (2.5) may be stable or unstable depending on the payoff
functions that the agents are associated with. For an example of addressing the center
manifold to determine stability, see [45].

The next result shows the fact that the eigenvalues of the 2 x 2 Jacobian matrix of

an unstable Nash equilibrium does not possess complex conjugate eigenvalues.

Proposition 2.3. [45] Consider the 2-agent noncooperative system G({Jy, Jo}). If the
Nash equilibrium z* is unstable under the pseudo-gradient dynamics (2.5), then it is a

saddle point.

Here we define a noncooperative system G({.J;, Jo}) with the quadratic payoff

functions given by
Ji(z) = 2" A + bl x4 c;, i=1,2, (2.30)

aj, a : o -
where 4; = | 11 1| € R¥? is symmetric with a;, > 0, b; = [b},b5]T € R?, and

ajy Qg
¢; € R, 7 =1,2. Note that different from the noncooperative system with non-quadratic
payoff functions, if the Jacobian matrix A({Jy, Jo}, {1, s}, 2*) is non-singular, then
the Nash equilibrium is unique. Alternatively, if A({Jy, Jo},{aq1, as}, x*) is singular,

then there may exist infinitely many Nash equilibria.

Example 2.4. Consider the 2-agent noncooperative system G({Ji, J2}) with the
quadratic payoff functions (2.30). Since det A({J1, Jo}, {1,1},2*) = 4(a},a3, — alyaly),
it follows from Proposition 2.2 that if the payoff functions J;(z), Jo(x) satisfy aj a3, <
alya?, (resp., al,a3, > ai,a?,), then the Nash equilibrium x* is unstable (resp., asymp-
totically stable). Three typical examples showing the vector fields with different
combinations of eigenvalues are given in Fig. 2.3, and the payoff functions of each
agent for the unstable case (Fig. 2.3(a)) are shown in Fig. 2.1 above. Notice that
when a},a3, = ajyal,, the red and the blue lines in Fig. 2.3, which represent the best
response state of agents 1 and 2, respectively, coincide with each other, and the Nash

equilibrium z* is Lyapunov stable (all the trajectories converge to the line in this case).
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Figure. 2.3 Vector fields of a 2-agent noncooperative system G({Ji, J2}) with quadratic payoffs
(2.30). (a) alyad, < alya?, (Real eigenvalues: positive and negative), (b) aljad, > alya?,
(Negative real eigenvalues), (c) ai;a3, > alya?, (Complex conjugate eigenvalues, real part:
negative).
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2.4 Stabilization of Existing Nash Equilibrium with
Zero-Sum Tax/Subsidy Approach

In this section, we characterize the stabilization method which is called a taz/subsidy
approach around the target Nash equilibrium x* for the noncooperative system without
the knowledge of the sensitivity parameters «;, ¢ € N. In this framework, the system
manager imposes an incentive mechanism so that the possibly unstable Nash equilibrium
state x* is stabilized by transferring the utility between the agents in a zero-sum fashion,

i.e., the payoff functions of agents are changed to J £ {ji}ie/\/ such that

Do i@ =) i), (2.31)

In this case, the pseudo-gradient dynamics (2.5) are consequently changed to

. 0J(x(t)) 0.J,(x(t))1"
z(t) = a—,...,an—} , x(0)=xz0€R", >0, 2.32
(0 = [ = o (0) =0 (232
and the corresponding Jacobian matrix (2.6) at the Nash equilibrium is given by
A(j ,a, x*). Here we suppose that the amount of tax/subsidy affects the agents’ utility
in the additive way. We begin by characterizing the tax/subsidy approach for the
simple 2-agent noncooperative systems, and then extend the approach to more general

n-agent systems.

Tax/Subsidy Approach for 2-Agent Case

In this section, we discuss the tax/subsidy approach for the 2-agent noncooperative
system G({Ji, J2}). Specifically, consider the noncooperative system G ({jl, jg}) with
the adjusted payoff functions J; (), Jo(x) given by

Ji(z) 2 Ji(x) + pF (), (2.33)
Jo(z) £ Jy(z) — pt(a), (2.34)

where p* : R? — R denotes an incentive function which is twice continuously differ-
entiable, k is a scalar parameter, and J;(z), Jo(x) are the original payoff functions
satisfying Assumption 2.2.

The incentive function p*(z) can be considered to be a feedback that is designed
by the system manager. Note that p*(x) should be determined in such a way that z*
remains the Nash equilibrium of G({J;, J»}) and Jy(z), Jy(x) should be still partially
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strictly concave at the desired Nash equilibrium z*, i.e.,

Sa <0, i=12 (2.35)

Furthermore, p*(z) should satisfy

pF(x*) =0, =0, i=12, (2.36)

for all k € R, which guarantee J;(z*) = J;(z*) and 8J;(z*)/dz; = 0, i = 1,2. This
framework indicates that the system manager collects tax p*(z) from one agent and
gives the same amount to the other agent as subsidy, so that the respective payoff
functions are accordingly changed to stabilize the possibly desirable Nash equilibrium.
Note that (2.36) implies that there is no compensation once the agents reach the target
Nash equilibrium.

Corollary 2.2. Consider the 2-agent noncooperative system G({.J;, J>}) with tax/subsidy
approach (2.33) and the pseudo-gradient dynamics (2.32). If p*(z) in (2.33) satisfies

det A({Jy, Jo}, 12, 2%) > 0, (2.37)

then the Nash equilibrium z* is stabilized for any positive constants a; and as.

Proof The result is a direct consequence of Proposition 2.2. O
As a typical form of the tax/subsidy approach, we consider the case with a simple

quadratic incentive function given by
(@) & k(wy — a7) (22 — 23), (2.38)

which satisfies (2.35)-(2.36) for all k € R. In this case, since J;(z;, z*;) = Ji(z;, z*,)

implies arg max,, cp J; (2, 2* ;) = arg max,, g Ji(z;, ©*;) = a* for each i = 1,2, the state

profile * remains the Nash equilibrium of G({.J;, J,}). Moreover, since A({J1, Jo}, 15, z*)
0 1

= A({ /1, o}, 1o, 2") + k [ Lo ] , the condition (2.37) for k to stabilize the Nash

equilibrium is given by

k€ (—00,71) U (72,00), (2.39)
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where

Ox20x1 Ox10x2 Ox10x9 Oxo0x1 az% 8$§
2
_1 62J2(:c*) . 82J1(I*) 1 62J1(I*) 82J2(:c*) o 82J1(x*) 82J2(CC*)
2 _2< Ox20x1 0x10xT2 + 2 Ox10x2 + Oxo0x1 4 8:5% 890% (> O) (241>

Similarly, consider the case with a simple quadratic incentive function

* * * * 2 * *
- :%<82J2(a: ) A )) _ %\/<62J1(a’ ) 4 Boa )> — APNE) P20 () (2.40)

pr(z) 2 %k: [(xl — ) — (@ — x;)Q], k<0, (2.42)

which satisfies (2.35)(2.36) for all k& < 0. In this case, since (2.42) implies J (1, 25) =
Ji(z1,23) + 1k(z — 27)? and Jo(xg, %) = Jo(z0, 2%) + tk(z — x3)?, it follows from
arg maxy,eg J;(v;, x*;) = xf, i = 1,2, that arg max,,cg jz(xl,x*_z) =af,1=1,2, and
hence the state profile z* remains the Nash equilibrium of G(J). Moreover, since
AT, By {1, 1), 2%) = A{Jy, LY, {1,1), %) + kI, the condition (2.37) for k to
stabilize the Nash equilibrium is given by

2 z* 2 z* 2 x* 2 x* 2
k<vé—%<8 ‘él(ﬁ )+6§3(§ )> _%\/<6 glw(% >+8gi(% )> — 4det(¥)

(PN | PTa(aY) 20 (x%)  02Da(a*)\ 2 | 4 02Ji(x*) 02 Ja(a*)
__§< 1 + =5 )_ \/< ale o 321-3 )+48x118x2 8x228m1 (<0)

8x% Bzg
(2.43)

D=

where ¥ = A({Jy, Jo}, {1,1}, z%).

For the case where the original payoff functions are quadratic as given in (2.30), the
stabilizing condition of & for the incentive function (2.38) (resp., (2.42)) is given by (2.39)
with y1 = aj, —af, — \/(ab +afy)? — daj a3y, Y2 = ajp —ajy + \/(ab +ajy)? — 4aj; a3,

(vesp., k < ajy + a3, — \/(a%l — a3y)? + 4ajyay).

Distributed Tax/Subsidy Approach for n-Agent Case

In the following, we extend the tax/subsidy approach characterized in the previous
section to a higher-dimensional system G(J) with N'= {1,...,n}. In particular, we
suppose that the system manager decomposes the agents into several subgroups and
installs distributed controllers (computers) for each of the subgroups. Each of the
distributed controllers defines a utility transfer structure represented by a graph within
the subgroup, which we call the tax/subsidy adjustment graph, such that the graph
is weakly connected. Even though the controllers work in a distributed manner, the
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system manager needs to know, a priori, the information of the payoff functions of all
the agents before the operation.

We suppose that the number of subgroups is ¢ and the tax/subsidy adjustment
graphs Gyq,...,G, are chosen as undirected graphs in such a way that there is no
isolated agent that is free from the compensation mechanism. It is important to note
that each distributed controller n € {1,..., ¢} transfers the utilities between the agents
consisting of G,, with the information from the same set of the agents, i.e., z;, i € V,,
where V, denotes the set of nodes constituting the tax/subsidy adjustment graph G,,.
Henceforth, let V; be the set of neighbor agents for agent i.

Now, consider the adjusted payoff functions given by

Ji(z) & Ji(x) + pf(z), i€N, (2.44)

with the quadratic incentive functions

1 1 )
i () 2hii(ws — 27)* — = ) kyja; — 3)°/N;
2 5 .
JEN;
+ > ky(zi—a)(w;— ), i€V, (2.45)
JEN;

where K = {kij}ijen € K £ {K € RVN |y <0,i € Nky = —kji,i,5 € Nji #
g ki; = 0,7 € Niyi € N} and N is the number of the agents in A;. Note that p ()
depends only on part of the agents’ state z;, ¢ € V,, in the subgraph G,,. Furthermore,
if there are multiple subgroups, then K can be transformed to a block-diagonal matrix
by re-ordering the labels of the agents. Notice that the incentive functions given by
(2.45) are a generalization of the combined functions of (2.38) and (2.42). Furthermore,
(2.45) implies

> pf(x)=0, zeR", KeKk, (2.46)
ieN

Opk (x*) O Jy(x*)
Ka*y=0, =" 2=0, —/ 2.4

for all i € V. In this case, since (2.45) implies J;(z;, 2*,) = Ji(2s, 7%;) + Shui(2; — 27)?,
i € N, it follows from arg max,,cg Ji(x;, x* ;) = ¥, i € N, that arg max,,cg jl(xz, x*,) =
x¥, i € N, and hence the state profile * remains the Nash equilibrium of g(j ). Con-
sequently, the Jacobian matrix of the adjusted pseudo-gradient dynamics is written as

A(J, a,z*) = diag [a] (A(J, 1, z*) + K).
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The following result provides a way to determine K € K in the incentive functions

given by (2.45) for the n-agent noncooperative system.

Corollary 2.3. Consider the n-agent noncooperative system G(.J) and the pseudo-
gradient dynamics (2.32). If the matrix K € K in (2.45) satisfies one of the following
two sets of conditions:

(3) 26 4 ki < = X, | Gt = Sievni| o) + hyj, i € Vo e {1, ¢}
(77) dlag[ |K + K'diag[a] + A™(J, &, z*) + A(J, &, 2*) < 0 for some & € R,

then the Nash equilibrium z* is stabilized by the tax/subsidy approach (2.44), (2.45)

for any positive constants «;, i € N.

Proof Note that since k;; = 0, 7 € V,, n number of inequalities characterized by
(i) make A(J, 1,,z*) strictly diagonally dominant (i.e., 8‘]’—(z) =D iz |882;7Z895]
all i € N), and the inequality in (ii) makes AT(J, &, %) + A(J,a,:n ) = diag[a| K +
KTdiag[a] + AT(J, &, z*) + A(J, &, z*) negative definite. Hence, the two results are

direct consequences of Gershgorin’s circle theorem and Theorem 2.1, respectively. [

Remark 2.8. Corollary 2.3 indicates that with the information of agents’ original payoft
functions Ji, ..., J,, the system manager can command the distributed controllers to
process the tax/subsidy framework (2.44), (2.45) by transmitting the information of
corresponding elements of a well-chosen matrix K to the distributed controllers. As
such, the system manager can stabilize the target Nash equilibrium z* for arbitrary «;,

i € N, even though the sensitivity parameters «;, i € N, are unknown to him/her.

[t can be easily found that n number of inequalities characterized by (1) are always
solvable for K € K such that .A(J , 1, %) is strictly diagonally dominant, because k;;,
i € N, can be taken to be sufficiently small so that each agent’s own utility is dominant
compared to the effect by the other agents. Moreover, even though the inequality
characterized in (4i) is a special linear matrix inequality with the constraint K € K, it
is possible to make (i) (i.e., A(J, &, z*) + AT(J, &, x*)) strictly diagonally dominant

to make sure that it is negative definite, i.e.,

92 J(x) 2J(x) .
i (%czax] + Oéj 8%(%2 + (Oé _aj)kij

J#i

27,
< —2@i(a (‘9];(;6) + k) ieN, (2.48)

for x = 2*. It is interesting to see that (2.48) can determine {k;; }icn jefi+1,..n} With
a given & satisfying &; — &; # 0,1 € Nj, j € N, and k; < 0,7 € N. Furthermore,
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when (2.48) is satisfied for all z € R™, it can be shown that the possibly unstable Nash
equilibrium z* is globally asymptotically stabilized.

Remark 2.9. The conditions (i) in Corollary 2.3 also indicate that each distributed
controller n € {1,...,c} can independently choose parameters {k;;}; jev,, if the infor-
mation of 8;;;—{(;;),

1 can work in a decentralized way even for the case where the number of the agents is

jeN,ieV,, is given. In other words, each distributed controller

large.

Remark 2.10. In the case where the number n of the agents is so large that the
calculation of the target Nash equilibrium x* is infeasible, our proposed framework can
be similarly implemented without calculating the Nash equilibria for G(J). Specifically,
by setting z* as the target state, the incentive functions for the subgroup n, n €

{1,...,c}, are given by

| L, 1 .
pi(x) 2 51%'@'(371' —7)* - B > Kyl — #5)°/N;

JEN;
+ > kigla — &) (x5 — &) + Bilws — &)
JEN;
- Z ﬂj(l’j - j;)/Njw (S Vm (249)
JEN;
with 8; € R, i € V,, satisfying
arg max J;(z;, 2%,) = 27, i€V, (2.50)

and {k;;}i jey, satisfying the condition (4) in Corollary 2.3 with x* replaced by #*. Note
that when the target state £* is not the original Nash equilibrium z* in G(.J), the linear
terms 3;(v; — &) — > e, Bi(x; — 5)/Nj of the incentive functions (2.49) with 8; € R,
i € V,, satisfying (2.50), contribute to make the target state 2* a Nash equilibrium in
G(J). In such a case, it is understood that the original Nash equilibrium z* in G(.J)
is moved to the target state &* in G(J) under the proposed tax/subsidy approach.
Alternatively, when the target state £* happens to be the same as the original Nash
equilibrium z* in G(J), the condition (2.50), which is met by the distributed controller,
requires 3; = 0 in order for (2.49) to reduce to (2.45). It is worth noting that the
establishment of (2.49) does not force the system manager to collect global information
of the payoff functions J;(z), i € N, since the target state &* is not necessary to be

the original Nash equilibrium z* in G(J).
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2.5 Illustrative Numerical Examples

In this section, a couple of numerical examples are presented for illustrating the
results and the conditions concerning the proposed zero-sum tax/subsidy mechanism.
The first example exhibits diverging trajectory whereas the trajectory of the second
example converges to one of the Nash equilibria which is not the target one without

the tax/subsidy mechanism.

Example 2.5. Consider a wireless communication system being composed of n senders
who compete with each other on quality of service characterized by signal-to-interference-
plus-noise-ratio for a unique receiver [96]. Each sender (agent) adjusts its transmission

power x; € R, to maximize its profit given by

gix; L

Ji(x) = Bologyo(1 + =22
() = Bology( S g, o

) — Bixi, 1 €N, (2.51)
where 5, € R, denotes the earning rate for service quality, ¢ € R, denotes the
additive white noise, L € R, denotes the spreading gain, ¢; € R, 1 € N, denote
the channel gain, and 3; € R, i € N, denote the price per unit power. Suppose
n=2 06=1,0=01,L=05 9. =1, go =2, f; = 0.1, B = 0.2, so that there
exists a unique Nash equilibrium z* = [1.3810,0.6905]*. It follows from Corollary 2.1
that =* is unstable under the pseudo-gradient dynamics (2.5) for any o € R? since
det A(J, 15, 2*) = —0.0064 < 0.

Now, it follows from Corollary 2.2 that the tax/subsidy approach (2.33) along
with the incentive function (2.42) with £k = —0.3 < v = —0.0408 satisfying (2.43)
guarantees that the target Nash equilibrium z* is asymptotically stabilized for any
o € RY. (In fact, the choice of k = —0.3 also satisfies (42) for all z € R with
k11 = koo = k, kio(= —ki2) = 0, and & = & = 1 so that global asymptotic
stabilization is guaranteed.) The initial state is set to z(0) = [1,0]" in the simulation.
Figure 2.4 shows the trajectories of agents’ states under the pseudo-gradient dynamics
(2.5) with 10 different values of « satisfying oy € [20,50] and ay € [30,85]. It can
be seen from the figure that the agents’ state converges to z* with the tax/subsidy

approach for all those various sensitivity parameters.

Example 2.6. Consider the noncooperative system being composed of five agents with

non-quadratic payoff functions given by J(z) = —(z1+sinz,—0.5sin x3)2+e(—mf—$§—ﬂf§)7
Jo(x) = —%(23:2 —sinr; +2sinxs)? + e(—7i—a3—a3) J3(x) = —%(31‘3 +3sinx; —sinxy —
sin @y + sin 25)? + e"TTETHE0) Ty (1) = — (24 — 2sinwg + sinwg)? 4 eTTTT),

Js(2) = —(25+ 3sin x5+ 2sin x4)% + (%717 where the payoff dependency network
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Figure. 2.4 Trajectories of the states with and without the zero-sum tax/subsidy approach
(TSA) under 10 different sets of sensitivity parameters oy € [20,50] and ay € [30,85]. The
trajectories of agents’ states diverge without the tax/subsidy approach but converge to the
target Nash equilibrium z* with the proposed tax/subsidy approach for the same set of
sensitivity parameters.

topology is shown in Fig. 2.5. Note that the noncooperative system possesses multiple
Nash equilibria and z* = [0, 0,0,0,0]T is one of the Nash equilibria which maximizes
every agent’s payoff. In this example, since det A(J, 15, 2*) = 482.67 > 0, it follows
from Corollary 2.1 that the Nash equilibrium is unstable under the pseudo-gradient
dynamics (2.5) for any a € R?.

To achieve stabilization of the Nash equilibrium z* by employing (2.44), (2.45), we
decompose the agents into 2 subgroups and and install distributed controllers for each of
the subgroups. We let the distributed controllers’ tax/subsidy adjustment graphs Gy, G
be given by Fig. 2.5 so that agents’ payoffs are transferred between agents 1 and 2in V; =
{1,2} and between agents 3 and 5 as well as between agents 4 and 5 in V, = {3,4,5}.
In this case, only the parameters {ki1, koo, k12} and {ks3, kas, kss, kss, ka5} should be
designed because K = {kij}i,je{l,_.ﬁ} should belong to the class K. Specifically, suppose

that the system manager provides the information of a;i;éﬁ:_), je{l,...,5} i€V (resp.,
i € Vs) to the distributed controller for G (resp., Gy). Then it follows from conditions
(7) of Corollary 2.3 and Remark 2.9 that the tax/subsidy approach (2.44) along with
the incentive functions (2.45) with the choice {ki; = —2, kos = 0, k1o = 1} for Gy and
{ksg = —4.2, kyy = =2, ks5 = —10, k35 = kg5 = 1} for G, guarantees that the target
Nash equilibrium z* is asymptotically stabilized for arbitrary o € R’.. Furthermore,
since these parameters in K happen to satisfy (2.48) for all z € R® with &; = 0.6, 4y =
0.2, &3 = 0.3, &y = 0.2, &5 = 0.05, we can further guarantee (with the global knowledge
of the payoff functions) that the target Nash equilibrium z* is globally asymptotically
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Figure. 2.5 Network topology of payoff dependency (black) and tax/subsidy adjustment graphs
G and Gg (red). Agents’ payoffs are transferred between agents 1 and 2 in subgroup 1 and
between agents 3 and 5 as well as between agents 4 and 5 in subgroup 2.

stabilized for arbitrary o € R%. In this case, the incentive functions (2.45) are given
by {pF(z) = —p&(x) = —2? + 1129} for G and {p&(z) = —2.122 + 2325 + 2.522,
p¥(z) = —2% + zyws + 2522, pE(2) = —ba? — w315 — waws + 2.123 + 23} for Go. The
initial state is set to x(0) = [2,1,0,—1,2]T in the simulation. Figure 2.6 shows the
trajectories of agents’ states under the pseudo-gradient dynamics (2.5) with 8 different
values of a satisfying a; € [1,4], as € [2,4], a3 € [1,4], ay € [2,3] and a5 € [2,3].
It can be seen from the figure that without tax/subsidy approach, the agents’ state
converges to another Nash equilibrium 7* = [—0.1356,0.1146, —0.2884, —1.075,2.611]*
instead of the target Nash equilibrium z* at the origin for all those various sensitivity
parameters. However, the agents’ state converges to z* when we apply the tax/subsidy

approach for the same set of sensitivity parameters.

2.6 Chapter Conclusion

In this chapter, we investigated the Nash equilibrium stabilization problem for non-
cooperative dynamical systems through a tax/subsidy approach. In the proposed
tax/subsidy approach, a system manager collects some taxes from some of the a-
gents and gives the same amount in total as subsidies to the neighbor agents in the
tax /subsidy adjustment graphs. To deal with the uncertainty in terms of the private
information, we explored the stability conditions of Nash equilibria without knowing the
private information, and also obtained the conditions under which the state trajectory
converges to the originally unstable Nash equilibrium using incentive functions. Finally,
we provided the numerical examples for demonstrating stabilization of unstable Nash

equilibrium for two-agent and five-agent noncooperative systems.
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Figure. 2.6 Trajectories of the states with and without the tax/subsidy approach (T'SA) under
8 different sets of sensitivity parameters a; € [1,4], ae € [2,4], a3 € [1,4], au € [2,3] and
as € [2,3]. The trajectories of agents’ states converge to another Nash equilibrium z* without
the tax/subsidy approach but converge to the target Nash equilibrium z* with the proposed
tax/subsidy approach for the same set of sensitivity parameters.
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Chapter 3

Control of Large-Scale
Noncooperative Dynamical Systems:

Hierarchical Incentive Framework

3.1 Introduction

In this chapter, we focus on the social welfare improvement problem for large-scale
hierarchical noncooperative dynamical systems driven by the pseudo-gradient dynamics.
Specifically, we assume that the agents in the noncooperative system belong to one
of the several groups and are influenced by the corresponding group managers via
some intra-group incentives. We characterize the situation where group managers
try to enhance the welfare of their own groups by continually updating their own
intra-group incentives to the group members. We explore the stability of group Nash
equilibrium of the hierarchical noncooperative systems, and derive conditions where
the trajectory of agents’ state converges to the group Nash equilibrium under group
managers’ intra-group incentives. Furthermore, we propose the inter-group incentive
mechanism for a system governor in order to reconstruct the group utility functions
in the group managers level to move the group Nash equilibrium so that the social
(entire) welfare is improved. To deal with the situation where the system governor
may not know all the agents’ individual payoff functions and all the agents’ state, we
present sufficient conditions to guarantee the convergence of agents’ state towards a
target (suboptimal but not optimal due to the lack of enough information) equilibrium

using some macroscopic data.
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The rest of this chapter is organized as follows. We explain hierarchical noncoop-
erative systems with dynamic agents under intra-group incentives in Section 3.2. In
Section 3.3, we propose a couple of update rules for the group managers to update
their intra-group incentives. Furthermore, in Section 3.4, we characterize the inter-
group incentive mechanisms in the manager layer to increase the social welfare of the
entire multiagent system. A couple of illustrative numerical examples are presented in

Section 3.5. Conclusions are given in Section 3.6.

3.2 Problem Formulation

3.2.1 System Description

Consider the hierarchical noncooperative system consisting of an agent layer and a
manager layer, where n number of agents belong to one of the m number of groups
in the agent layer and are influenced by the corresponding group managers with
some intra~-group incentives. Let M = {1,...,m} denote the set of groups and let
ny denote the number of agents in group k € M, where ), . n = n. The set of
overall agents is denoted by N = {1,...,n} = {Ny,..., N,,}, where Ny denotes the
set of members (agents) in group k € M satisfying N, N N; =0, j € M, j # k. Let
r=[z1,..., 2,7 = [(z)7T,..., (z™)T]T € R" denote the state profile of all the agents,
where z; € R denotes the state of agent 4, and z¥ € R™ denotes the state profile of
the agents in group k € M. The payoff function of agent ¢ € N without incentive is
denoted by J; : R™ — R, which may depend on all the agents’ state and is supposed to
be continuously differentiable and strictly concave with respect to x;.

In this chapter, we assume that the m number of the group managers try to enhance
the welfare of their own groups, which they evaluate by the individual group utility
functions, by imposing intra-group incentive mechanism to the agents in their own
groups. The group utility functions U* : R* — R, k € M, are defined as the weighted

sum of the payoff functions of their own group members, i.e.,

Uk(z) 2 ZiENk niJi(z), k€M, (3.1)

where 1; € R, , i € Ni, denote the weights (priorities) of the agents evaluated by the
group manager k € M. Furthermore, we assume that there is the system governor who

also imposes a similar inter-group incentive mechanism on the manager layer so that
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Figure. 3.1 Hierarchical noncooperative system with m groups of agents. Agents are incen-
tivized by group managers for the benefit of group utility. The network in the agent layer
represents payoff dependencies. A system governor (e.g., president) appears at the top of the
hierarchy and constructs some incentive mechanism among the group managers (e.g., mayors),
which we call inter-group incentive mechanism. The detailed discussion of the inter-group
incentives imposed by the system governor for improving the social welfare with limited
information are given in Section 3.4 below.

the welfare of the entire agents defined by

N(@) £ &U (@), (3.2)

for some weights &, € R, k € M, of the groups is improved (see the structure of the
hierarchical noncooperative system illustrated in Fig. 3.1).

In order to improve the group utility, the group managers shift the Nash equilibri-
um (defined in Definition 3.1 below) of the group through the intra-group incentive
mechanism. Specifically, the incentivized payoff functions for each agent to increase
are given by

Ji(uF,x) & Ji(x) + pF(uF 2b), ieN,, keM, (3.3)

where p¥ denotes the intra-group incentive function imposed by group manager k € M

to the agents in N; under its control given by

k

ki, k .k k § : ujxj .
A , =u;T; — _ c N , 34
D (u T ) U; T JEN\fi) - 1 7 k ( )
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and u* = {uf},cn, € R™ denotes the strategy of the group manager k. Note that the
group managers serve merely as mediators transferring payoffs among the agents so

that the sum of the incentive functions is zero, i.e., Y7, pf(u¥,2*) =0, k € M.

Definition 3.1. Given the strategy u = [(u!)?, ..., (u™)T]T € R of the group man-
agers, the profile z*(u) € R" is called a Nash equilibrium with respect to { J; (uF, x) bien
given by (3.3) if

Ji(uF, xr(u), 2%, (w) > Ji(u®, 2, 27 (u), z; €R, (3.5)

holds for all + € N and k € M, where x_; is the agents’ state profile except agent i.

With a given u, since ji(uk, x) is strictly concave with respect to x; for all i € N

under (3.4), the Nash equilibrium z*(u) satisfies

0T o () _ 9 (w)

0

+uf, i€eN, (3.6)
for all k£ € M. On the other hand, at the Nash equilibrium z*(u), the group manager
k may wish to unilaterally change its strategy u* to benefit its own group when
arg maxxcpne UF (2%, 277 (1)) # 2% (u) holds, where 2% (u) £ {2%(u)}ien, € R™
and 7% (u) & {2} (u)}ign, € R" ™. This observation induces another concept of
equilibrium at which no group manager can benefit its own group more by unilaterally

changing its strategy for the intra-group incentives.

Definition 3.2. For the group utility functions U*(z), k € M, the profile 2, € R™ is

called a group Nash equilibrium if
U (b, 2%y > UR@aF o7%), 2F e R™, ke M, (3.7)

where 7% is the agents’ state profile except group k.

It is worth mentioning that both of the Nash equilibrium and the group Nash
equilibrium are characterized independently of the agents’ underlying dynamics. Since
U*(z) is continuously differentiable for all k € M, the existing group Nash equilibrium

T, satisfies

_ [oUY(z,) oU™(x,)

1xn
0= T3 s g | € RV (3.8)
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Definition 3.3. The strategy u, = [(u})T,..., (u™)T]T € R™ is called a subgame
perfect equilibrium for intra-group incentives if the corresponding Nash equilibrium

x*(u,) coincides with the group Nash equilibrium z,.

In this chapter, we consider the situation where each agent is a selfish and dynamic
decision maker continually changing its own state by following the pseudo-gradient
dynamics [17] in terms of the incentivized payoff functions, i.e.,

0Ji(u (), x(t))

bi(t) = o , 1€Ny, keM, 3.9
zi(t) = « Bz, i € Ny € (3.9)

where aq,...,q, denote the agent-dependent sensitivity parameters. The pseudo-
gradient dynamics (3.9) capture the fact that the agents concern their own incentivized
payoffs and myopically change their states according to the current information without
any foresight on the future state |20, 21, 44, 25, 42|. Consequently, the agents’ state
dynamics (3.9) with the intra-group incentive functions (3.4) are described by the

dynamics given by

x(t) = diagla](f(z(t)) +u(t)), =(0)=mxy, t=>0, (3.10)
where f(z) £ [a‘élT(f[:), cl %&””)]T denotes the pseudo-gradient function characterized
by the agents’ individual payoff functions, and o = (ay, ..., ).

It is important that for a given u(t) = u € R™, all the Nash equilibria of the
noncooperative system are the equilibria of the dynamics (3.10) since 2(¢) = 0 holds
under (3.6) with u replaced by @. In general, there may be multiple Nash equilibria
in the noncooperative system. Some sufficient conditions for existence of a unique
Nash equilibrium can be found in [17] and [90, Chapter 2|, which can also guarantee
global stability of the pseudo-gradient dynamics with u(t) = 0. For example, sup-
posing that the Jacobian matrix V f(x) of the pseudo-gradient function f(z) satisfies
(Vf(z)) " diag[d] + diag[a]V f(z) < 0, z € R", for some & € R, it can be shown
that the nonincentivized system exhibits a unique and globally asymptotically stable
Nash equilibrium under the pseudo-gradient dynamics (with u(¢) = 0). Alternative-
ly, supposing that the nonincentivized system is a strictly monotone game (i.e., the
pseudo-gradient function f(x) satisfies (f(z) — f(2'))T(x — 2’) < 0 for all z, 2/ € R",
x # ') |90], it can be also shown that the nonincentivized system exhibits a unique and
globally asymptotically stable Nash equilibrium under the pseudo-gradient dynamics
(with u(t) = 0). In these two cases, for a given u(t) = u € R, noticing that the matrix
(V(f(x) + u))Tdiag|d] + diag[a]V(f(x) + @) remains as a negative-definite matrix or
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Figure. 3.2 Block diagram of signal flows between the layers with solid (resp., dashed) arrows
representing available signals of information (resp., control signals). The strategy uf of group
manager k and the inter-group incentive coefficient v* (introduced in Section 3.4 below) are
understood as the control signals to the agents in Nj and the group managers, respectively.

the noncooperative system remains as a strictly monotone game, the Nash equilibrium
x*(u) is the unique and globally asymptotically stable equilibrium of the dynamics
(3.10) satisfying @(t) = 0. Therefore, by well designing the strategies u*, k € M,
for the intra-group incentive schemes, the group managers may be able to move the
Nash equilibrium to a state possessing a better group utility than the nonincentivized
(u(t) = 0) case.

3.2.2 DMotivations, Information Hierarchy, and Problems

Motivation 1: In general, the group manager k is not able to obtain the group utility
functions U~*(-) from the other groups. The group managers may continually change
their own strategy u*(t), k € M, t > 0, in order to change the Nash equilibrium to a
state associated with a better group utility.

Motivation 2: Given the subgame perfect equilibrium u,, even though the agents’
state may reach the group Nash equilibrium z,, the entire social welfare may still
not be maximized because the group managers do not cooperate with each other.
Since the fact that the system governor may not know the full information of the
agents’ state and payoff functions makes it difficult to control the entire system, a
fundamental question is how to design the inter-group incentive mechanism among
the group managers to improve the social welfare only using some low dimensional

(macroscopic) data observed by the system governor.



41

Consequently, the information hierarchy among the three layers of the hierarchical
noncooperative system is summarized below.

Available information for group managers: In this paper, we assume that
group manager k has access to the payoff functions J;(-), i € Ny, and the state x;(t),
i € Ny, in its own group. The state profile z7%(t) of other groups can be continually or
intermittently observed by group manager k. No communication between the group
mangers is assumed, i.e., the strategies of the other group managers is unavailable.
The block diagram of information hierarchy is illustrated in Fig. 3.2.

Available information for agents: The state profile z(+) is available for all the
agents. No information of payoff functions is exchanged among the agents. The signal
uf(t) from group manager k is available only for agent 1.

Available information for system governor: We suppose that the system
governor does not know the full information of the agents’ state and payoff functions,
but have access to the group utility functions U*(-), k € M, and the low dimensional
(macroscopic) data T, k € M (defined in Section 3.4 later) from the groups.

Now, we present the main problem of this chapter.

Problem: Considering the hierarchical noncooperative dynamical system, our main
objectives in the paper are two folds: i) Design some update rules for the group manager
k € M to continually update its strategy u*(¢) only using the information on the agents’
state z(t) and payoff functions J;(+), ¢ € Ni, without the knowledge of the strategies of
the other group managers; ii) Design the inter-group incentive mechanism among the
group managers to stabilize a target equilibrium for improving the entire social welfare

using limited information.

3.3 Update Rules for Group Managers’ Intra-group

Incentives

In this section, we propose our update rule for group manager k to update u*(t) for its
intra-group incentive mechanism under the scenarios with 2 types of observations, i.e.,
continual and intermittent observations, on x7*(t) whereas the state information z*(t)
of its own group is available for all ¢t. Furthermore, we assume that group manager k
has access to the payoff functions J;(-), ¢ € Ny, in its own group and no communication

between the group mangers is assumed in this chapter.
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3.3.1 Update Rule with Continual Observation

In this section, we consider the situation where the value of 27*(¢) is fully observed by
group manager k for every time instant ¢t > 0. Note that our main idea in constructing
the update rule of u*(¢) for group manager k is to make the best-response state for
group k coincide with the individual best-response state for all the group members in

Ni. Specifically, we consider the update rule for the group managers given by

nk —k
uf(t) = —@Jl(x (t), (t>>, 1 €N, keM, (3.11)
aIZ’
where
#*(t) = (27" (1)) £ arg maxrern UM (2*, 277(1)), (3.12)

represents the best-response state of group k given the other groups’ state 27%(¢). The
update rule (3.11) captures the fact that the group managers concern their own group
utilities and myopically change their strategies according to the current information
without foresight on the other groups’ future state. Note that the best-response state
#*(t) of group k is invariant under the same priority ratio, i.e., Mis1 : Miyo : =+ : Nigny,

withi=n;+no+ ... +np_1.

Assumption 3.1. The group utility function U*(z) is strictly concave with respect

to a* for each group k € M.

Assumption 3.1 ensures that there is a unique #* for given x=*. Recalling that the
group utility function U*(z) is continuously differentiable, the mapping 7% : R*~" —
R™ in (3.12) is understood as a continuously differentiable function with respect

to 7% for each group k& € M. For the statement of the following results, we let

. . T
the state profile z € R" be partitioned by = = | (2¥)T ! (z*)T ! (z%)T | , where
zF € RES i and ak e Rn-2isim . Considering the Jacobian matrix Vf(z) =
[row; (V f(z))]jen, s - - - » towi (V f(2))]jen, ] of f(x) given in (3.10), we partition the

matrix [row;(V f(z))]ien, € R™*™ by

rowi(Vf@)lien, = | V/5(@) | Vf4 @) | V@) |, keM,  (313)
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where V f*(z) € Rex X550 i Vik(z) € R (n=325-1m0) - and VfH(z) € Rw>me, Fur-

thermore, we denote

_ OVF (k) 0°U*(x)1-1 0°U*(x) —Xiam
A\ Byasa Z7 \7—0m+) < ) € R (7 Zi:1”z)’
Yi(z7) ork [ Dk dak ] dxkOr e=(7k k)
(3.14)
a’}/k(CCli Z‘k) 82Uk(l‘) -1 82Uk(x) k-1
ki —kya T \W—by) PhX 2t T
V2 (z™) oxk <[ Oxk ok ] 8xk8xik) z=(vk,z—k) <K 7
(3.15)

where we used the fact that

dg(x) {Wf(as,g(x))} - 9w g(x))
ox 0y? 0xdy

e R™" (3.16)

holds for g(x) = argmax, f(z,y) € R™ with a continuously differentiable function
f:R" x R™ — R. With a slight abuse of notation, we write V~¥ (z) for V4% (z7F),

and V+* (z) for V¥ (z7%). Before we present a theorem, we define an n x n matrix

L) —V @)V (@)
Ay z) = |- @V @) V) SVP@VRE gy
V@)V ) Vi)

for a group Nash equilibrium x, € R".

Theorem 3.1. Consider a group Nash equilibrium z, € R" of the noncooperative
system with the pseudo-gradient dynamics (3.9) and the intra-group incentive function
(3.4) under Assumption 3.1. Let the group managers’ strategy u* be updated by
(3.11) and (3.12). If the matrix A, £ diaga]A(v,z,) is Hurwitz, then the group Nash
equilibrium z, is locally asymptotically stable and the group managers’ strategy u(t)

converges to the corresponding subgame perfect equilibrium as t — oo.

Proof First, note that the group Nash equilibrium is an equilibrium of the closed-loop

dynamics of (3.10)—(3.12). Recalling that u is a function of « under the update rule
_8f1(£1,z_1) Oyl (z—1) . aft(al,xz1) gz—1
Ozl ox Oz—1 O
(3.11), it follows that Vu(z) = : can be
_ofm@maTm) o™ (™) ofm(@E™aT™) gxT ™
oz™ oz Ox—m oz
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expressed by

L s L —VE 2TV - VL@ 2
=V 2%, 572 Vy2 (572) — V(2?72 @ Qe =V A%, 57V (z7%) = Vi3, 272)
V() = | mrmmmmm e o
"l%ﬁ(ﬁéﬁ;ﬁi:ﬁ?)'%i%(&E%’)’i’%’}ﬁ(ﬁ}?ﬁj"""""""""; """"""""""" Qumxnm
(3.18)

Therefore, the Jacobian matrix of the closed-loop dynamics of (3.10)—(3.12) at the
group Nash equilibrium x, is given by diag[a](Vu(xz,) + Vf(z,)) = As. Then, it

follows from Lyapunov’s indirect method that the result is immediate. 0

Remark 3.1. To construct the update rule (3.11), each manager k only needs to
observe the state profile z7%(t) € R"™™ from the other groups instead of observing
the other mangers’ strategy u=*(¢) and hence the proposed update rule in the manager
layer is certainly different from the existing Nash equilibrium seeking dynamics. But
note that the state profile z*(t) € R™ is also required for constructing the intra-group

incentive functions (3.4) within group Nj.

Remark 3.2. Implementing the update rule (3.11) is understood as a reasonable
and intuitive but myopic try for the group managers. None of those group managers
can know stability beforehand because they never know the exact expression of the
matrix A as the information z,, Vf~*(x), VyZ*(z), and V3" (z) are undisclosed to
them. To guarantee stability of the hierarchical noncooperative system, the behavior
of a system governor who imposes inter-group incentive mechanism among the group

managers is explored in Section 3.4.

The next result provides a sufficient stability condition without the information of

agents’ personal sensitivity parameters aq, ..., ay.

Proposition 3.1. Consider a group Nash equilibrium z, € R" of the noncooperative
system with the pseudo-gradient dynamics (3.9) and the intra-group incentive function
(3.4) under Assumption 3.1. Let the group managers’ strategy u* be updated by (3.11)
and (3.12). If there exists @ € R} such that A" (v, z,)diag[a] + diag[a]A(y,z4) <0
holds, then the group Nash equilibrium z, is locally asymptotically stable and the group
managers’ strategy u(t) converges to the corresponding subgame perfect equilibrium

as t — oo for any a € R}.

Proof First, letting & = o — x,. Recall that linearizing the system dynamics (3.9)

around z, yields

I(t) = A (t). (3.19)
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Consider the Lyapunov function candidate V(%) = #TP# with the matrix P £
diag [%, cee z—x] > (. Since

is satisfied, it follows using the linearized dynamics (3.19) that
V(i) = (t)(ATP + PA)E(t) < 0, (3.20)

around x, and hence the group Nash equilibrium z, is locally asymptotically stable
for any o € RY}. O

Now, we specialize the results to the noncooperative systems with quadratic payoff
functions J;(z), i € N, given by

Ji(z) = %xTAZ-x +biw+c, i€N, (3.21)
ay ceeod,
where A; oo € R™™ with a!, < 0 (indicating that J;(x) is strictly
@, e,
concave with respect to z;), b; = [b},...,00]T € R", and ¢; € R, i € N. Supposing
rowy (Ay)
that A = : € R™" is nonsingular, for the given u, it follows that
row, (A,)
there exists a unique Nash equilibrium x*(u) given by z*(u) = —A~'(b + u), where
b2 [bl,..., 07T € R*. Hence, for a group Nash equilibrium z,, the subgame perfect
equilibrium u, is given by u, = —Ax, — b.

Consequently, the agents’ state dynamics (3.9) with the quadratic payoff functions
(3.21) and the intra-group incentive functions (3.4) are described by the affine dynamics
given by

t(t) = diagla](Az(t) + b+ u(t)), z(0) =xz¢, t>0. (3.22)
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For the following statements, for each k € M, we let A* Iy ZieNk n:A; and B* a
ZieNk n;b; be partitioned by

AP = AR 1 AF L AR e R™™, (3.23)

. . T
B* — [ « L BHT x| eR (3.24)
Z?;f Nk Tk n—Zle Nk

which are used in (3.1) to be rewritten as U*(x) = %xTAkx—I-IB%kT:U—FZieNk nici, k € M.
Note that “*” represents some matrices with consistent orders. Here, we note that
AF € R | € M, are symmetric so that Ay, k € M, are symmetric. Furthermore,
we define Py = {ai;}ijen, € R™ ™, P = {a; bien, jeqv,..N,_1} € RW*Xi5i i and
P ={al;}ien, jetNi,Nm} € Rrex (=1 m0) 50 that

rowi(A)lien, = | Py | Pt B | €R™ ™, ke M. (3.25)

In this case, notice that Py is equivalent to the matrix V f*(z) defined in (3.13).

Assumption 3.2. The group utility functions U*(z), k € M, are concave with respect
to 2, i.e., AF < 0, k € M. Furthermore, there exists a unique group Nash equilibrium
rp € R™.

Remark 3.3. Note that the assumption of A¥ < 0 in Assumption 3.2 guarantees the
existence and uniqueness of #%(t) in (3.12) given by

aF(t) = —(AD) AR R () + At 2t () + BY], (3.26)

which implies that the matrices defined in (3.14) and (3.15) are simply given by
VAk(z7F) = —(A})TTAR ) VAR (a7F) = —(AF)'A*, k € M. Furthermore, it follows
from (3.8) that the unique group Nash equilibrium =z, satisfies Gz, + p = 0 with

A AZ ‘ A2 AJr A .
G= [ AR SR e R p= : € R"™. Those facts are used in the
R B R B™
A™ LA™

proof of the following theorem.
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Theorem 3.2. Consider the noncooperative system with the pseudo-gradient dynamics
(3.9), quadratic payoff functions (3.21), and the intra-group incentive function (3.4)
under Assumption 3.2. Let the group managers’ strategy u* be updated by (3.11) and
(3.12). Then, the group Nash equilibrium z, is globally asymptotically stable and
the group managers’ strategy wu(t) converges to the corresponding subgame perfect
equilibrium u, = —Ax, — b as t — oo, if and only if the matrix A; = diag[a|A; is
Hurwitz with

Ay = block-diag[ Py (A}) 7!, ..., Po(AT™) G, (3.27)

Proof First, note that the sufficiency is a direct consequence from Theorem 3.1. For
necessity, it follows from f*(x) 2 {fi(z)}ien, = [rowi(A)]ien,  + b* with v* = {bi}ien,
that (3.11), (3.25) and (3.26) yield

zk (t)
ut(t) == fH(@*,2a7H ) = =[Py P B| @) | -0
o (1)
=(P(AN)TTAY — P, )k () + (Pk;(Aﬁ)_lAi — P,j)xi + P.(AN)'BY — b
Then, it follows that
u(t) =Kaz(t) +1 -0, (3.28)
where
Py(AD)71A%2 — Py i Oy | Py(A2)71AZ — P
K= |---- 2 ,(,,,2),,,‘,,,,,,,,,,2,,,1 ,,,,, ><'.2(2)'+ ,,,,,, 2 , (329)
Pu(AD)TAT P, C Onn
T
L= [ (PADTBYT. L (PalAm) BT |
= block-diag[P,(A}) ™!, ..., P (A™) 7Y p € R™ (3.30)

Now, the closed-loop dynamics of (3.11) and (3.22) are given by
z(t) = diagla] (A + K)z(t) + 1) = As(z(t) — z,), (3.31)

where we used A + K = A; and Agz(t) + [ = block-diag[P(A])™!, ..., P (A™)71]

(Gx+p) = As(x(t) —x,). Since the group Nash equilibrium z, is a unique equilibrium
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of the closed-loop dynamics under Assumption 3.2, it follows that z, is globally
asymptotically stable if only if Ay is Hurwitz. The convergence result for u(t) is also
immediate since (3.28) holds. O

Remark 3.4. The feedback matrix K is understood as the matrix Vu defined in (3.18),
where V f¥ (2%, 27%) = P} and V f* (2%, 27%) = P, k € M, hold for any z € R™.

Remark 3.5. If A* = 0 and A® = 0 hold for all k¥ € M, then the pseudo-gradient
dynamics of the agents in N; are not mutually affected by the agents in the other
groups, and hence 2*(t) = arg max regn, U (2%, 275(t)) = —(A¥)7!BY in (3.26) is in
fact constant being independent of the values of x7*(¢) for all & € M. Hence, the
system is understood as a combination of m number of independent noncooperative
systems with the sets of agents N;, Ny, ..., N,, incentivized by the corresponding group

managers.

3.3.2 Update Rule With Intermittent Observation

It is not always the case where the group managers are able to observe the state
profile x7%(¢) from the other groups for every time instant ¢ > 0. In this section, we
characterize the situation where group manager k only has intermittent access to x=*(¢)
at some specific time instants, whereas the state information z*(t) of its own group is
available for all ¢ to process the intra-group incentive function (3.4). It is observed from
real society that the governments/public may have intermittent access to realize the
financial status of local companies because those local companies usually have termly
financial reports to the public or they may need to go through a temporary inspection
for some specific time instants required by the financial department of the government.

Therefore, we consider the sampled-data-based, piecewise constant update rule (3.11)
and (3.12) with (2%(¢), 27%(t)) replaced by (2*(ts),z7*(t,)) for t, < t < t;1, where
{ts}s=012.. denotes the sequence of sampling instants with o = 0 and lim,_, ts = co.
The sampling intervals between two sampling instants are defined by T, £ ¢, —t, € R,
for s € Zy, which may be constant or time-varying depending on the information
disclosure structure. In this case, linearizing the pseudo-gradient f(z) and the update
rule u(z) around the group Nash equilibrium z,, the linearized closed-loop dynamics
of (3.10) and (3.11) with the shifted & =  — ', state are given by

‘i‘(t> - dlag[oz](Vf(xA)i(t) + VUJ(IA)‘%@S)): te [t57t5+1)7 (332)

where Vu(z) is defined in (3.18).
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Suppose that the payoff functions J;(z), i € N, are given as quadratic functions
(3.21). Then, it follows that the entire profile v in pseudo-gradient dynamics (3.22)
characterized from managers’ intra-group incentive schemes is given by u(t) = Kz (ts) +
[—b,t € [ts,tst1), where the matrix K and the vector [ are defined in (3.29) and (3.30).
In this case, the closed-loop dynamics of (3.11) and (3.22) are given by

z(t) = @(t) = diage](Az(t) + Ka(ty) + 1)
= diag[a](A(Z(t) + xn) + K(Z(ts) + x4) + 1)
= diag[a](AZ(t) + KZ(ts)), t€ [ts,tst1), (3.33)

where we used the fact (A+ K)z, +1=0.

The next result provides a sufficient stability condition for the proposed sampled-
data-based update rule of (3.11), (3.12) with quadratic payoff functions. But note that
as long as local stability is concerned around a group Nash equilibrium z,, the result
can be generalized to nonquadratic cases considering the linearized dynamics (3.32)
(i.e., using Vf(x,) as A and using Vu(z,) as K).

For the statements of the following results, let ®(¢) = ediaeld4t ([ 4 A7 1K) — A71K.

Proposition 3.2. Consider the noncooperative system with the pseudo-gradient
dynamics (3.9), intra-group incentive function (3.4), and quadratic payoff functions
(3.21) under Assumption 3.2. Let the group managers’ strategy u* be updated by
the sampled-data-based update rule of (3.11), (3.12) with (2*(¢), z7%(t)) replaced by
(2% (t,), 27%(t,)). If there exists a positive-definite matrix P € R™ " such that

OT(T,)PP(T,) — P < 0, (3.34)

for all s € Zg, then the group Nash equilibrium z, is globally asymptotically stable
and the group managers’ strategy u(t) converges to the corresponding subgame perfect
equilibrium as t — oc.

Proof First, it follows from (3.33) that
z(t) = diag[a]A(E(t) + AT K2(t)), t € [ts, terr). (3.35)
Then, the solution of the continuous-time dynamics (3.35) satisfies

i(t) + ALK #(t,) = e®eeldAT (1) + ATV K #(ty)), (3.36)
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for t € [t,,ts11) with 7 = ¢ —t, € [0,T,), which indicates

Bterr) = eVl (31 ) + AT K3 (t,)) — AT K (t,)
= (edill AT (1 4 ATVK) — ATV R)E(t,) = (T))i(t,), s € Zo.  (3.37)

Consider the Lyapunov function candidate V(%) = &' PZ for the discrete-time dynamics
(3.37) with P satisfying (3.34). Then, it follows that

AV (3(ts)) = V(@ (ts1) = V(@(t)) = 3 (ter1) PE(tsrr) — &7 () PE(Ls)

= 3" (t,) (@ (T,) P(Ty) — P)i(ts) <0, (3.38)
for all s =0,1,2,..., and hence the proof is complete. The convergence result for wu(t)
is also immediate since (3.28) and limg_,, ts = co hold. O

Proposition 3.2 indicates that the choice of the sampling instants {ts}s—o12.. is
essential in the sampled-data-based update rule of (3.11), (3.12). The next result shows
that sufficiently small sampling intervals should preserve the asymptotic stability when
the group Nash equilibrium is asymptotically stable under the continual update rule
(3.11), (3.12).

Theorem 3.3. Consider the noncooperative system with the pseudo-gradient dynamics
(3.9), intra-group incentive function (3.4), and quadratic payoff functions (3.21) under
Assumption 3.2. Let the group managers’ strategy u* be updated by the sampled-data-
based update rule of (3.11), (3.12) with (2%(t), z7%(t)) replaced by (2*(t,), z7*(t,)).
If the matrix Ay = diag[a|As is Hurwitz with A defined in (3.27), then there exists
a positive scalar ¢ € R, such that the group Nash equilibrium z, is asymptotically

stable for any sampling instants ¢, s € Z, satisfying Ts < 0, s € Z.

Proof Since A; = diagla]As = diagla](A + K) is Hurwitz, there exists a positive-
definite matrix P € R"*" such that

0 = (diag[a](A + K))'P + Pdiag[a](A + K) + Q, (3.39)

for any positive-definite matrix @ € R®"". Tt follows from (3.36) that the state z(t)
can be expressed as 7 (t) = ®(7)Z(t,), t € [ts,tsr1) with 7 2 — ¢, € [0,7}). Since ()
is continuous and ®(0) = I,, holds, there exists a 7" € R, such that ®(7) is invertible
for all t < T. Hence, it follows from ®~1(7)z(t) = Z(ts) that

12(t:) — 2@ = [[(27} () = L)T@) < |27 (7) — LIz @) (3.40)
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Since ®(7) — I,, — 0 as 7 — 0, there exists ( € R such that

w

O 7 I <—
17 = 1l < P g alE]

(3.41)

holds for all 7 < ¢, where w = A\pin(Q) > 0 denotes the minimum eigenvalue of Q.
Now, let ¢ = min((,T") so that Ty < ¢ and Ty < T for all s € Zy.

Now, consider the Lyapunov function candidate V(z) = 127 Pz. Then, it follows
from 2TQz > w||7||?, (3.39), (3.40), and (3.41) that the time derivative of V(Z) along
the system trajectories of (3.33) is given by

V(t) = 27 (t) Pdiag[a](AZ(t) + Ki(t) + K#(t,) — Ki(t))

—21(1)Qx(t) + & (1) Pdiagla] K (2(t;) — Z(t))
< —wl|Z(®)|* + l2(t) ||| Pdiagla] K[| 2 (t;) — 2(t)]
< —w||z(t)|]* + || Pdiag[a] K[| () — L|ll|Z(t)|

—(w — || Pdiag[e] K[| (1) = L|DIIZ(#)]]* <0

and hence the group Nash equilibrium x, is asymptotically stable. 0

Even though the conditions shown in Proposition 3.2 and Theorem 3.3 require the
knowledge of agents’ sensitivity o € R”, it is worth noting that Theorem 3.3 along with
Proposition 3.1 in Section 3.3.1 suggests a sufficient stability condition for unknown

agents’ sensitivity parameters o € R7}.

Corollary 3.1. Consider the noncooperative system with the pseudo-gradient dynam-
ics (3.9), intra-group incentive function (3.4), and quadratic payoff functions (3.21)
under Assumption 3.2. Let the group managers’ strategy u* be update by the sampled-
data-based update rule of (3.11), (3.12) with (2*(t), z7%(t)) replaced by (2*(t,), x7*(t)).
Suppose that there exists & € R} such that Aldiag[d] + diag[a]As < 0 for the matrix
Ag defined in (3.27). Then, there exists a positive scalar o € R, such that the group
Nash equilibrium z, is asymptotically stable for any o € R’} and any sampling instants
ts, s € Zg, satisfying Ty < 0, s € Zy.

Proof The result is direct consequence of Theorem 3.3 by noting from Proposition 3.1
that the matrix A = diag[a]As is Hurwitz for any o € R O
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3.4 Social Welfare Improvement Via Inter-group In-

centives

In this section, we characterize the inter-group incentive mechanism in the manager
layer to improve the weighted social welfare of the entire hierarchical system defined in
(3.2). Similar to the process for the group managers who are capable to control the
amounts of tax and subsidy in the agent layer, we assume that the system governor
is able to control the amount of tax and subsidy in the manager layer under limited
information in order to to stabilize a target equilibrium increasing the weighted social
welfare function as much as possible!. To this end, the system governor is supposed
to impose an explicit inter-group incentive mechanism to change the group Nash
equilibrium by reconstructing the group utility functions and hence affect the group
managers’ behavior.

As the system governor in many economic applications serves merely as a mediator
and does not have productivity to pay the additional profits to the agents [38, 39|, we
consider the hierarchical noncooperative system under inter-group incentives with the

reconstructed group utility functions U*(x) given by
Uk(z) 2 Urz) + ¢"(z), keM, (3.42)
where ¢*(Z) denotes the inter-group incentive function? for group k satisfying

PAGERT (3.43)

keM

and T denotes limited information of the state profile x which is precisely defined
below. This constraint, once again, represents the case where the system governor
serves merely as a mediator transferring payoffs among the agents.

In general, the system governor may not know the specific values of agents’ state
x1(t), ..., z,(t) especially when n is large. In this chapter, we suppose that the system
governor observes some kind of macroscopic data (e.g., average of the state values) from
each of the groups, and the inter-group incentive function g*(z) is a simple function

mapping from R™ to R (instead of R™ — R). Those observed data can be considered

IThe system governor may not achieve the maximum point because of the lack of enough information
as discussed later.

2Those inter-group incentives are equally distributed to (or collected from) the group members in
the agent layer irrespective of the state so that they do not affect the behavior of the pseudo-gradient
dynamics.
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as a linear mapping from the agents’ state given by

zl(t) Crzt(t) Cy 0
z(t) = : = : = z(t) & Cx(t),
z™(t) Crnx™(t) 0 Chm

where C), € Rk € M, and C € R™*". For example, if the observed data z* is
simply given as the average of the state values by 7% = 1/n, Y ien, Ti, then it implies

Now, consider the inter-group incentive function given by

N Yi i
T)=0v"T" — ), 3.44
g"(z) > G ™) (3.44)
where v £ [vy,...,v,,]T € R™ represents the inter-group incentive coefficient, so that
the parameter £*(¢) in the group manager’s strategy update rule (3.11) is remodeled
from (3.12) to

() = (xR (), 0") £ arg max Uk (2", 27k (t)). (3.45)
zFeR"k

Note that the group Nash equilibrium under the inter-group incentive mechanis-
m depends on v and is denoted by z,(v) € R™. For a given v € R™, we sup-
pose that there exists a unique group Nash equilibrium z,(v) satisfying = (v) =
(x5 (v),v%), k € M, under Assumption 3.1 (i.e., 0 = [%, e %} =
w +olCy, ..., % + vam] ). Note that there may not exist a coefficient
v such that z,(v) coincide with the maximum point of TI(x) because the inter-group
incentive function (3.44) under observed (limited) data restricts feasibility on changing
the partial derivatives of %

incentive coefficient v* maximizing the weighted social welfare I1(x,(v)) given by (3.2)

, k € M, but there may exist a best inter-group

at v =v* € R™. For the following statements, we denote the best inter-group incen-

tive coefficient by v* £ arg max,cgm I1(2,(v)) and use the corresponding group Nash
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equilibrium z* = x,(v*) as a target equilibrium?®. Moreover, we denote

V’y_]i(a:’k, vk) =

o OFF(2F ak oF) _ ({820’“@)}—1 8%7’“(96))

O’ OxkQrk 1 0wk 0x® J|
_ ([aQUk(x)} ~19°U*(x) ) c Rx (=31 ni)
Oxkozk Oxkox " v (3 (a—k wk) o)
(3.46)
O (kb ok 277k —1 927k
vk (b oy 2 D (:c_,zs+,v ) _ <[8 li (fr;)} 0 IkJ (92)
oxk orkox orkox_ e (3 (b o) k)
277k -1 92[Jk -1
(Erapee) S e
ox*kox axkax_ z=(7F(z—k wk),z—k)
which are known to the system governor because the group utility functions U!, ..., U™
are supposed to be known to him. In addition, we denote
OF* (k%)
A )
W(,v) = =
- [aQU'f(x)] ~192U%(x)
- Oxkdzk Ok vk
z=(¥*(z =k vk),z—k)
PUSF @0, e ) e
- _[ Ok Ok } CI;F e R™, keM, (3.48)
2! ($, U) 0
and define I'(z,v) £ e Rmm,
0 T (2, 0)

Remark 3.6. If ny = 1 for all £ € M, the considered problem is reduced to an incentive

designing problem for m-agent systems (which has been addressed in Chapter 2).

Now, we propose a framework of how the system governor appropriately designs
v(t) € R™ for the inter-group incentives in the manager layer to encourage the trajectory
of agents’ state converge towards the target equilibrium z*. In the beginning, let us
suppose that v(t) = v* € R™.

Corollary 3.2. Consider the hierarchical noncooperative system with pseudo-gradient

dynamics (3.9). Let the intra-group incentive function (3.4) be updated by (3.11)

k
3Here, note that if a%Tix), k € M, at the the maximum point of II(z) are coincidently equal to
0xCk, k € M, for some scaling factors oy € R, k € M, then the target equilibrium x* is understood the

maximum point of IT(x) whereas the best inter-group incentive coefficient is given by v* = [51, -+ , 5, .
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with (3.45). If the matrix A, = diag[a]A(7,2*) is Hurwitz, then the inter-group
incentive functions (3.42), (3.44) along with v(f) = v* € R™ guarantee that the target

equilibrium z* is locally asymptotically stable.

Proof The proof is a direct consequence of Theorem 3.2 since the Jacobian matrix at
z* is As. O

Remark 3.7. For the case of quadratic payoff functions J;(x), i € N, as defined in
(3.21), it follows that the parameter #*(¢) in (3.45) is given by

PR(t) = — (AR THAR 2" (¢) + AR 2k (1) + BE + CLok (1)), (3.49)
Hence, the matrices V% (+), V4% (-) are given by

VAL (27, 0F) = Vi (a7F) = —(A) AL, (3.50)
VA (@ 0b) = Vb (2 7h) = —(A)) 1 AE, (3.51)

so that they do not depend on v* and z. As a direct consequence of Theorem 3.2, it
can be shown that the inter-group incentive function (3.44) along with v(t) = v* € R™
guarantees that the target equilibrium x* is globally asymptotically stable if and only
if A, £ diag[a]A(7, 2*) = diag[a]A(y, 7*) = diag|a] A, is Hurwitz with A, defined in
(3.27).

It is intuitive that only letting v be a constant vector does not guarantee the
convergence when the matrix A is not Hurwitz. Hence, it is natural to consider a
feedback controller for the inter-group incentive mechanism for the system governor

based on the observed data Z(t). Specifically, consider a linear feedback controller

o(t) = v* + K(3(t) — 7*) € R™, (3.52)

with 7* £ Cz* and K = {ki; }ijem € R™™. Note that the linear feedback controller
(3.52) ensures that the target equilibrium z* is an equilibrium of the closed-loop
dynamics of (3.10), (3.11), (3.45) given by

(t) = diag[o][f (x(t)) + u(xz(t), v(Z(t)))], (3.53)
z(t) = Cx(t), (3.54)
where the group managers’ strategy profile u(z, v(z)) = [(u!(z71, v ()T, ..., (u™(z™™,

v™(7)))T]T € R is understood as a function solely depending on z. Now, linearizing
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the pseudo-gradient f(z) and the update rule u(x,v) around the target equilibrium z*,

the linearized closed-loop dynamics with the shifted T = = — 2* state are given by
i(t) = A(t), (3.55)

where

A, £ diag[a](Vf(z*) + Va(z*, v*)), (3.56)

and Vau(x*,v*) is the Jacobian matrix of the function u(z,v(z)) with respect to z at

(x*,v*) = (x*,v(2*)) given by

ou(z,v)  Ou(z,v) v
Va(xr*,v*) = ’ - — 3.57
LG ( ox + OV 0T )|,y ( )
Note that the expression of % is given by
] A B ZVLEL T VAL o) - V@)
ooy _ | VPGV 0 SV ) o TVSA@ )V (2 0?) V@ e
ox - PR

Then, it follows from

oft (A (@t wl)z=h) 95 (z = h)
1
ou(z,v) O ) dv
ov

ofm @A™ (™), T ™) 0™ (T ™)
ox™ ov

= — block-diag[V (), ..., V™ ()|l (z,v) € R™™, (3.59)

and 9 90 O
v v Oox o mxn
or ~owor  LOERTT (3:60)

that the Jacobian matrix in the linearized closed-loop dynamics (3.55) is given by

A, = diag[a] block-diag[V [ (z*), ..., Vf™(2*)](S — ['(z*,v*) KC), where

R R S Vi, vl)
VA2 (22 0%) T, | VA2 (272, 0v?
S A f)i,,(,,. ,,,,,,, ),24.1fy+(.> ) (361)
Vit L, R
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Remark 3.8. Note that when K = 0 (i.e., v(t) = v*), the matrix A is same as the
matrix A, £ diag|a]A(7, 2*) that is used in Corollary 3.2 because I'(x,v) = 0.

However, it is necessary to point out that the matrices V f*(z*), k € M, are yielded
from the agents’ individual payoff functions and hence may be unknown to the system
governor. To deal with the uncertanty in V f*(2*), k € M, we present the following

result for guaranteeing asymptotic stabilization.

Theorem 3.4. Consider the hierarchical noncooperative system with pseudo-gradient
dynamics (3.9). Let the intra-group incentive function (3.4) be updated by (3.11) with
(3.45). Suppose that there exists & € R” such that the matrix

He(diag[a] block-diag[V f (z*), ..., Vf™(z*)]diag[a]) (3.62)

is negative definite. Then, the inter-group incentives (3.42), (3.44), (3.52) with the
matrix K € R™™ satisfying

R £ He(diag[a] (S — I'(2*,v*)KC)) > 0, (3.63)

guarantee that the solution z(¢) = z* of the closed-loop dynamics given by (3.53),
(3.54) is locally asymptotically stable.

Proof Consider the Lyapunov function candidate V(z) = (z — 2*)" P(z — x*) with
the positive-definite matrix P = —(diag[a]diag[V f!(2*),..., Vf™(2*)]diag[a])~! > 0.
Since the Lyapunov inequality (D(S — I'(z*,v*)KC))TPT + PD(S — T'(z*,v*)KC) =
—2R < 0 is satisfied with D = diag[a] block-diag[V f1(z*),..., Vf™(x*)], it follows
using the linearized dynamics (3.55) that

V(x(t)) = —2(x(t) — )" R(2(t) — 2*) < 0, (3.64)

around x* and hence the target equilibrium x* is asymptotically stable for any matrices
V fF(x*), k € M, and any o € R O

Remark 3.9. The conditions in Theorem 3.4 can be simplified for the case where
the payoff functions are quadratic and given by (3.21). Specifically, supposing that
there exists & € R} such that He(diag[a] block-diag[P;, ..., P,|diag[a]) < 0 holds, the

condition (3.63) reduces to

He (diag[d]’lblock ~ diag[(AD7, .. (AM) (G + CTK’C)) > 0. (3.65)
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This is because S = block-diag[(A])™!, ..., (A")™"]G and
[(z*,v*) = —diag[(A}) ", ..., (A7) T"]CT, (3.66)

hold under 7, = —(AF)~'CT and (3.51). An interesting discussion is on controllability
and observability analysis for the noncooperative system. It follows that the open-loop

dynamics in terms of the shifted state z = x — x* are given by

T(t) = Az(t) + Bo(t), y(t) £ Z(t) = Ci(t), (3.67)
where A £ diag[a]A, € R with A, defined in (3.27) and

B £ —diag[a] block-diag[V f*(z*), ..., Vf™(z*)]T(z*, v*) (3.68)
— —diag[a] block-diag[P; (AD)7, ..., Ph(A™) 7 CT € R™™, (3.69)

It is important to note that the open-loop dynamics (3.67) are understood as a

continuous-time, linear time-invariant system with v(¢) € R™ being the control input

and y(t) € R™ being the output. Hence, this system is controllable if
rank[B AB A’B --- A""'B] =n, (3.70)
whereas the system is observable if
rank[CT (CA)T (CAH)T ... (CA""HTT =n. (3.71)

Note that the matrix C' appears in both of the controllablility and observablility
conditions, which also indicates why some of state (e.g., the maximum point of II(z))

may be unreachable in the hierarchical noncooperative system for a given matrix C.

3.5 Illustrative Numerical Examples

In this section, a couple of numerical examples are provided to demonstrate the efficacy

of our proposed approach.

Example 3.1. Consider the 4-agent hierarchical noncooperative market with the
agents’ sets N = {1,2}, Ny = {3,4}, and the payoff functions (3.21) with aj, = —2,
aly =3,al, = -8, aky = -8, al, = 2,03, = -8, a% =1,a3, = —2,a3, = 2, a3, = =3,

3 _ 3 _ 3 _ 4 _ 4 _ 4 _ 4 _ 4 _ 4 _
azs = —2,a3, = 1,ay, = —6,a7; = =2, a33 =1, ay, = —1, a3 = 3, azgg = —6, agy = =8,
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aj, = —2, by = 15, b¥ = —15, by = 10, and the other unmentioned parameters being
zero. Suppose that there is no system governor coordinating the two subgroups. Let the
priorities evaluated by the group managers be equal, e.g., n; =1y =1 and 3 =ny = 1.
letting the sensitivity parameters be given by ae = (1,1, 1, 1), the group Nash equilibrium
without inter-group incentive is given by z, = [—1.3350,0.2341,4.3729, —3.6594]T and
-2 3 0.0952 —0.4286
the matrix A, = Ay = L =2 —00238 0.3571 is Hurwitz. Then, it follows
3 4.6 —2 1
6 10 —8 -2
from Theorem 3.2 that the group Nash equilibrium x, is globally asymptotically stable
under the pseudo-gradient dynamics (3.9) incentivized by the intra-group incentive
scheme (3.4), (3.11). On the other hand, let the smapling instants t5, s € Zo, satisfy
that Ty = ts41 — ts € {0.15,0.09} for the sampled-data-based update rule. In this
case, ®(T,) = el4(I; + A7'K) — A7'K with K given by (3.29) for T, = 0.15 and
29.9538 48.0453 —12.0335 —4.0689
0.09 satisfies (3.34) for P = 48.0453  82.7924 - 211742 —7.3734 > 0. It follows
—12.0335 —21.1742 14.8137 1.7948
—4.0689 —7.3734 1.7948 3.9462
from Proposition 3.2 that the group Nash equilibrium x, is globally asymptotically
stable under the sampled-data-based update rule. Those results can be verified by the
trajectories of the agents’ state z(t) and the group managers’ strategy u(t) shown in

Figs. 3.3a and 3.3b.

Example 3.2. Consider the 4-agent hierarchical noncooperative market with agents’
sets Ny = {1,2}, N, = {3, 4}, and the payoff functions (3.21) with a}, = —2, a}, = 1,

CL%3 = 1> ah = 87 Q%Q = _87 a’zll4 = _37 a%l = _87 a%Z = 17 a%Z = _27 CL%4 = 27 CL§3 = _9?
az, = =3, a3, = -1, a3, = —b, a§3 = -9, a§4 = -8, a3, = -8.1, a}, = -2, a‘ll3 =1,
al, = —6, a3 =9, ai; = —6, al, = =8, a}, = =9, b =4, b} = —1, b2 = 10, b3 = 10,
b} = —40, b3 = 1, and the other unmentioned parameters being zero. Let the priorities

evaluated by the group managers be given by 1, = 2y, = 2 and n3 = 1y = 1. Letting
the sensitivity parameters be given by a = (1,1,1,1), the group Nash equilibrium
without inter-group incentive is given by z, = [—0.3652,0.349,0.5834, —0.3109], and

—2 1 0.3188 2.8116
. 1 -2 —0.1159 —0.8406 ) . .
the matrix A, = is not Hurwitz. Then, it
579.8 466.2 -9 —8
—168.4 —129.6 —8 -9

follows from Theorem 3.2 that the group Nash equilibrium x, under the pseudo-

gradient dynamics (3.9) incentivized by the intra-group incentive scheme (3.4), (3.11)
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————t 1 (t) under CUR
—————t z2(t) under CUR
x3(t) under CUR
——— x4(t) under CUR
x1(t) under SUR
x9(t) under SUR
x3(t) under SUR
x4(t) under SUR
10 15 20
t
(a) Trajectories of agents’ state z(t)
' ———— u% (t) under CUR
——— u% (t) under CUR
ug (t) under CUR
——— UZ (t) under CUR
u% (t) under SUR
u (t) under SUR
u% (t) under SUR
ui (t) under SUR
5 10 15 20

t
(b) Trajectories of group managers’ strategy w(t)

Figure. 3.3 Trajectories of z(t) and wu(t) influenced by the managers’ intra-group incentives
and update rule (3.11). Dash-dotted: under the continual update rule (CUR), solid: under
the sampled-data-based update rule (SUR). The black dash-dotted lines in (a) represent the
group Nash equilibrium x,.
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is unstable, which can be verified by the oscillatory trajectories of x(t) and u(t) shown
as transparent dashed lines in Figs. 3.4a and 3.4b.

Now, letting the group priority evaluated by the system governor be equal, e.g.,
& = & = 1, we construct the inter-group incentive scheme (3.42), (3.44) in the
manager layer to achieve social welfare improvement. We suppose that the observed
data from the 2 groups are simply given by z! = x; + x5 and 7? = 23 + 24 so that
CF = 1Ek, k = 1,2, hold. In this case, the best inter-group incentive coefficient is
found as v* £ arg max,ep2 (U (24 (v)) + U(2,(v))) = [12.7543, —6.5762]T and hence
the corresponding group Nash equilibrium given by z* = [—0.7372,0.8663,1.6718,
—1.4746,]" is considered as the target equilibrium. Then, it follows from Theorem 3.4

that the inter-group incentive scheme (3.42) along with the inter-group incentive

. I —136.8393 46.9339 e .
function (3.44) updated by (3.52) with K = satisfying the linear
—159.7815 —0.5447

matrix inequality (3.65) with & = (1,1,1,1) guarantees that the target equilibrium x*
is asymptotically stabilized, which can be verified by the trajectories of z(¢) and u(t)
shown as solid lines in Figs. 3.4a and 3.4b.

Example 3.3. Consider a market economic country being composed of n firms (agents)
located in m cities (groups) selling homogeneous products produced by themselves with
the market price function [97] given by A = A\g — > | Biz;, where z; € Ry denotes
the quantity of the produced products, 5; € R, denotes the market power of the
firm-i, and \g € R, is a market specific parameter representing the cap price. In this
country (Cournot game), firms compete in quantities rather than prices according
to the payoff functions given by J;(z) = Az; — Ci(z;), i € N, where C;i(-) is the
production cost of firm-i given by Cj(z;) = a;z? + bix;, i € N, with a; > 0 and
b; > 0. The gross sales value of production in city k£ € M is given as the group
utility function U*(z) defined in (3.1) with n; = 1, i € Ny, whereas the gross domestic
product is given as the social welfare function II(z) defined in (3.2) with & = 1,
k € M. In terms of incentives, each firm in city k£ is influenced by the production
taxes/subsidies (intra-group incentive) linearly depending on the firm’s production
quantity given by (3.4) administered by a mayor (group manager). Each city k € M is
influenced by the transaction taxes/subsidies (inter-group incentive) linearly depending

on the sum of the firms’ production quantities 7% = lzkmk in city k given by (3.44)

T

administered by the national economic administration (system governor), i.e., C% = Lo

k € M. Different from the objective of mayor & on maximizing the incentivized group
utility U*, the objective of the national economic administration is to maximize the

gross domestic product II(x) using the observed data z*, k € M, and the gross
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2F z1(t) with v =0
5 - NH T 25 (t) with v = 0
z3(t) with v =0
1K 24(t) with v = 0
3 x1(t) with IG incentive
x2(t) with IG incentive
x3(t) with IG incentive
x4(t) with IG incentive

2 3 4
t
(a) Trajectories of agents’ state z(t)
20 ' ' ' ]
-20 ui(t) with v = 0
ud (t) with v = 0
’LL(t) u3(t) with v = 0
u3(t) with v = 0
-60} ui (t) with IG incentive
u3 (t) with IG incentive
u3(t) with IG incentive
| u2(t) with IG incentive
-100 . . 10
0 1 2 3 4
t

(b) Trajectories of group managers’ strategy u(t)

Figure. 3.4 Trajectories of x(t) and u(t) of the hierarchical noncooperative system under
intra-group incentives with and without the inter-group (IG) incentives. Agents’ state diverges
without inter-group incentives (i.e., v = 0) but converges to the target equilibrium z* with
inter-group incentives.



63

sales value of production U*(z), k € M. Now, let n = 60 and suppose that the
amount of firms in each city is equal to each other satisfying ny = n/m, k € M.
Figure 3.5(a) shows the gross domestic product (social welfare) II(x) at the (unique)
group Nash equilibrium z,(0) without inter-group incentive for a; = 10, i € N
by =3,i€ N, \ =38, and 3 € (0,0.2), i € N, satisfying Assumption 3.1 with
m = 1,2,3,4,5,6,10,12, 15,20, 30, and 60, where the number of firms in each city
k € M is given by n; = 60, 30,20, 15,12, 10,6, 5, 4, 3,2, and 1, respectively. Figure 3.5(b)
captures the difference value between the gross domestic product II(z) at the group
Nash equilibrium x,(v) with v = 0 and v = v* £ argmax,eg= [1(x4(v)), which is
understood as the improvement made by the national economic administration via
constructing the inter-group incentives.

Note that when m = 1 (i.e., ny = 60), the system governor and inter-group
incentives vanish so that the mayor is the unique institution constructing the incentive
mechanism for the entire society with complete information from the agent layer and
hence the social maximum is achieved. Alternatively, when m = 60 (i.e., ny = 1), the
mayors and intra-group incentives vanish so that the national economic administration
is the unique institution constructing the incentive mechanism for the entire society
with complete information from the agent layer and hence the social maximum is
achieved. In either of the two cases, the three-layer hierarchical incentive structure
reduces to the two-layer incentive structure characterized in Chapter 2. However, the
full information of all the 60 agents’ payoff functions and states can be hardly known to
an individual and hence the three-layer incentive structure has to be established. Even

though degeneration from the social maximum happens in the three-layer incentive
U (z

e
Jr € R at the maximum point of II(x), the orange line in Fig. 3.5(a) is understood as

= §,ni ! is not true for any scaling factor

structure (i.e., m # 1, m # 60) since

the maximum value of social welfare that the national economic administration can
help to reach. It is interesting to note from Fig. 3.5(a) that a larger number of groups
m indicates a larger improvement by constructing the inter-group incentive, but does
not indicate a larger social welfare II(x,(v*)) at the group Nash equilibrium with the
best inter-group incentive coefficient. This is because increasing m results in decreasing

ny and may decrease the social welfare II(z,(0)) with only intra-group incentives.

3.6 Chapter Conclusion

In this chapter, we investigated the stability and stabilization problem for the non-

cooperative systems. In the characterized framework of hierarchical noncooperative
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Figure. 3.5 Gross domestic product (a) at z,(0) and z,(v*) and improved gross domestic
product (b) versus the number of groups m of a 60-agent system with ny = n/m, k € M. Note
that when m increases, the system governor possesses more information from the agent-layer.
The improved gross domestic product is given by II(x,(v*)) — (x4 (0)).
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systems, agents selfishly make their decision under some intra-group incentives, which
are controlled by the group managers and updated by our proposed update rules. We
explored the stability of group Nash equilibrium of the hierarchical noncooperative
systems with dynamic agents, and derived conditions where the trajectory of agents’
state converges to the group Nash equilibrium under group managers’ intra-group
incentives. Furthermore, we proposed the inter-group incentive mechanism for a system
governor in order to reconstruct the group utility functions in the group managers level
to move the group Nash equilibrium so that the social welfare is improved. To deal with
the situation where the system governor may not know all the agents’ individual payoff
functions and all the agents’ state, we presented sufficient conditions to guarantee
the convergence of agents’ state towards a target equilibrium using some macroscopic
data. In this chapter, even though we assumed that the system governor is able to
obtain 1-dimensional data from each group, the case where richer (higher-dimensional)
information is available for the system governor is expected to have higher welfare
state when we evaluate the target equilibrium. Finally, we provided three numerical
examples for demonstrating stability and stabilization of group Nash equilibrium for
4-agent hierarchical noncooperative systems and 60-agent hierarchical noncooperative

systems.
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Chapter 4

Control of Noncooperative Dynamical
Systems With Pareto Improvement:
Pareto-Improving Incentive

Mechanism

4.1 Introduction

In this chapter, we develop an explicit incentive mechanism for noncooperative systems
to remodel agents’ dynamical decision making for guaranteeing that all the agents
are Pareto improving and their state converges to a Pareto-efficient Nash equilibrium.
Specifically, we suppose that the system manger collects taxes from some agents and
gives some of the collected taxes to other agents as subsidies with a sustainable budget
constraint. Considering the priorities among the agents, we construct a weighted social
welfare function for the incentive mechanism and hence derive the socially maximum
state as the target Nash equilibrium. With the well-designed incentive functions
associated with the weighted social welfare function, the socially maximum state is
ensured to be a Pareto-efficient Nash equilibrium in the incentivized noncooperative
system. Several sufficient stability conditions are presented to guarantee that the agents
are Pareto improving under the pseudo-gradient dynamics and their state converges
to the socially maximum state with known or unknown sensitivity parameters. As a
result, it turns out that the initial state plays an important role on constructing the
Pareto-improving incentive mechanism under sustainable budget constraint. For the

case with equal priority between the agents, a balanced budget constraint is guaranteed
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and the connection between Pareto improvement and potentialization is explored.
Our numerical examples exhibit a direct evidence that the Pateto improvement and
potentialization do not have an inclusive relation with each other.

The rest of this chapter is organized as follows. We explain the incentivized
noncooperative system and introduce the problem of this paper in Section 4.2. In
Section 4.3, we design the incentive mechanisms to achieve Pareto improvements with
arbitrary priorities for the agents under sustainable budget constraint for a given initial
state. In Section 4.4, we specialize the result to the case where the priorities of the
agents are all the same. Several numerical examples are shown in those two sections.

Finally, we conclude this chapter in Section 4.5.

4.2 Problem Formulation

4.2.1 System Description

Consider a noncooperative system with n number of agents adjusting their state
(strategy) in an unbounded state space R™. Let A" = {1,...,n} denote the set of all
agents. The payoff function of agent i is denoted by J; : R* — R : 2 — J;(z) and the
profile of all agents’ state is denoted by x = [z1,...,2z,]T € R", where z; € R is agent
¢’s individual state. We assume that there is a system manager who imposes some
incentive mechanisms among the agents to reconstruct the agents’ payoff functions
and hence alters agents’ decision for improving the welfare of the entire system. (The
precise definition of the welfare of the entire system is given as the weighted social
welfare function in Section 4.3 considering the priory of the agents.) Specifically, let

agents’ incentivized payoff functions be given by
Ji(z) & Ji(x) + pi(z), €N, (4.1)

where p; : R” — R is the incentive function for agent ¢« € /. We denote the incentivized
noncooperative system by G(J) and the original (un-incentivized) noncooperative
system by G(.J) with J £ {J;}ien and J 2 {J }ienr. In order to establish the pseudo-
gradient dynamics for the agents, we assume that the payoff functions J;(x), i € N,
and the incentive functions p;(x), i € N, are continuously differentiable.

It is worth noting that at a Nash equilibrium (defined in Definition 4.1 below) no
agent has any intension to deviate unilaterally from the equilibrium state. Therefore,
the Nash equilibrium is often working as an operating point in noncooperative systems.

Furthermore, we note that Pareto efficiency is an important notion in economics for
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indicating efficiency of a society. For the convenience of readers, the notions of the

Nash equilibrium and a Pareto-efficient state are given as follows.

Definition 4.1. For the incentivized noncooperative system G(.J), the state profile

z* € R" is called a Nash equilibrium if
Ji(&5,75,) > Jiw, 7)), z€R, ieN. (4.2)

Definition 4.2. For the incentivized noncooperative system G (j ), the state profile

7* € R" is Pareto efficient (optimal) if there is no other state x € R™ such that
Ji(x) > Ji(i*) for all i € N with strict inequalities for some i € N

Note that the state profile #* € R" which maximizes the function Y, Ji(z) is
always Pareto efficient in G(J) because no agent can further increase J;(z) without
decreasing others’ payoffs from #*. Furthermore, since J;(z), i € N, and p;(z), i € N,

are continuously differentiable, the Nash equilibrium z* satisfies

oz, =0, i1eN. (4.3)

In general, the Nash equilibrium z* in the original noncooperative system G(J) is
not Pareto efficient. Pareto improvement [55] can actually be achieved under private
agreements made by some agents who are able to communicate (negotiate) with each
other. However, those private agreements are hardly observed by the system manager
and hence bring difficulties on properly incentivizing the agents. To avoid the case
where agents seek private negotiation from the basis of the incentivized (reconstructed)
payoff functions given by the system manager, the system manager should properly
design the incentive functions to make the Nash equilibrium #* of G(.J) be Pareto

efficient.

4.2.2 Motivation and Problem

Before we present the main problem of this paper, we give some motivations of this
work. Considering the case where the agents (companies) may leave the market when
their payoffs decrease after the incentive mechanism is executed, it is important to
discuss how to design a special incentive mechanism where every agent’s payoff is
monotonically increasing over time in the incentivized noncooperative dynamical system

G(J). In other words, not only may the system manager wish to guarantee the Pareto
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efficiency at the Nash equilibrium #* of G(.J), but also jl(a:(t)) >0,t>0,foralli e N
along the system trajectories of (2.32).

Definition 4.3. Given the system trajectory z(t), t > 0, with x(0) = z,, the agents

in the incentivized noncooperative system Q(j ) are Pareto improving if

jl(ﬂfo) = Ji(.on), 1€ N, (44)
Ji(z(t) >0, t>0, ieN, (4.5)

where J;(zg) denotes the payoff value of agent i at the initial time.

Note that the condition (4.4) is equivalent to
p,(l’o) = 0, 1€ N, (46)

representing the assumption that there is no change in the payoff levels when we start
to impose the incentive mechanism. On the other hand, the system manager in many
economic applications serves merely as a mediator (or a tax collector) and does not
have productivity to pay the additional profits to the agents. In such a case, it is worth
asking whether it is possible to achieve (4.4) and (4.5) by using some well-designed

incentive functions p;(x), i € N, satisfying

D PilE®) <0, >0 (4.7)

Note that the condition (4.7) imposes some sustainable budget constraint representing
the fact that the system manager collects taxes from some agents and gives some of
the collected taxes to other agents as subsidies. When the equality holds, the system
manager is understood as a mediator who collects taxes from some agents and gives
the same amount of subsidy in total to other agents.

Now, we present the problem of this paper as follows.

Problem: Consider the incentivized noncooperative system G (j ) with the pseudo-
gradient dynamics (2.32). Suppose that the system manager knows all the agents’
payoff functions J;(x), i € N. Our objective is to design the incentive functions p;(z),
i € N, satisfying (4.7) for the incentive mechanism guaranteeing that the agents are

Pareto improving and their state converges to a Pareto-efficient Nash equilibrium in

G(J).
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4.3 Achieving Pareto Improvements with Sustainable

Budget Constraint

In this section, we characterize the incentive mechanisms for the noncooperative
system. It is necessary to emphasize that the system manager may evaluate the
priority among the agents. In real society, the policies given by a government are often
constructed according to the specific goal of the government considering the priority. For
example, the government may give more preferential treatments to the semiconductor
companies when the government wishes to raise the international competitiveness of
the semiconductor industry in its country. Another example is that the government
may provide more resources (e.g., job opportunity or common resource) to the poorer
people than the others in its country for enhancing the poor people’s income and hence
for tackling extreme poverty.

In light of this observation, we suppose that the priority ratio of the agents evaluated

by the system manager is given by

Miee i N, (4.8)

for some n; € Ry, i € N. Without loss of generality, 7, is taken as 1. Then, we consider

the weighted social welfare function U : R™ — R given by

Ulz) £ Zz’e]\/ nidi(x). (4.9)

Furthermore, we define the target state as the socially maximum state with respect to

U(z) given by
£ argmax U(x). (4.10)

z€R™

i*

Now, we consider the situation where the incentive functions p;(z), i € N, in (4.1)

satisfy
ZZEN Ji(z) = oU(x), z€R", (4.11)
arg max Ji(zi, #) =&, i €N, (4.12)
S

with ¢ > 0 being a scaling factor characterized later. Obviously, the variable o
does not affect the maximum state of ) ., Ji(x), but we keep the notation for
further characterization of some requirements below. As a result, the constraint (4.11)

guarantees that the target state z* is Pareto efficient in g(J ), whereas the constraints
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(4.12) make Z* to be a Nash equilibrium. In other words, the target state £* maximizing
the social welfare function U(x) is a Pareto-efficient Nash equilibrium in the incentivized
noncooperative system G(.J) under (4.11) and (4.12). Note that the condition (4.11)
along with (4.1) and (4.9) is equivalent to

D pilw) =) Jix) =) @) =) (on — 1)Ji(x). (4.13)

ieN ieN ieN ieEN

Hence, the incentive functions should be designed in such a way that the system

trajectories of (2.32) remain in the domain
Dyua(0) = {x eR": Z(O‘m — 1) Ji(z) < 0} : (4.14)
ieN

in order to maintain the sustainable budget constraint (4.7). For the given priority
ratio (4.8), it turns out that the initial state zo plays an important role during designing
the incentive functions. In the following statements, we explore two requirements
on the initial state xq for constructing our incentive mechanism to allow the system

trajectories of (2.32) to remain in the domain Dyg.

Requirement 1:

Since (4.6) holds at the initial state o and hence ), pi(zo) = 0, (4.13) implies that
the scaling factor o in (4.9) should be determined to satisfy

> (omi = 1)Ji(xo) = 0. (4.15)

ieN
Note that the solution o of (4.15) is unique as given by

_ Z?:l Ji(o)
o(xg) = —Z?:1 PAPNE (4.16)

In order for o(xg) to be positive, our framework requires the initial state zq to satisfy

Xo € Dscale £ {LE e R"™: Z Jl(l')/znljl(.’lf) > O} . (417)
=1 i=1

We emphasize that the condition (4.17) may not hold for some initial state zo (and

hence we cannot find a positive scaling factor o(zy)). Figure 4.1 shows an example



73

6F 6
1
2;:1 Ji(z) =0 L= =
-7 SN
7 - N
ul 7 P ‘~\\\\ | I Yien(oni = 1)Ji(z)=0
7 P N 4
/7 Pl N
// \\\
Z2 [I ’ ) \ T
; oy 1 | o
1
2 ! A ,I oAk ;1 2 A
\ | € ;1
\ | / //
\\ \\ C // y
o,/
e \\ N 312 ///
0 <~ N St 0
\\\\\\ ™
n Tl
upiess Yiimidi(e) =0 Diud(o(z0))
2 i : ; : 2 L . . .
-2 0 2 ) 4 6 -2 0 2 4 6

Figure. 4.1 An example of (a) the domain Dgc,le and (b) the domain Dyyq(o(zp)). The
boundary of Dycale are the two dashed curves elaborated by > 7 | Ji(z) = 0and Y1 | n;Ji(x) =
0 in (a). The domain Dpyq(o(xp)) is characterized by the initial state indicated by the point
B in (b). In this example, the socially maximum state £* is not contained in Dyyq(o(xo)).
Another domain Dyyq(o(z0)) characterized by the initial state on the point C in (a) is depicted
in Fig. 4.2 where 2* € Dyyq(0(x0)) holds. The initial state is likely to be on the boundary of

Dbud (0’(33‘0))

of an infeasible initial state (e.g., point A) outside the domain Dy, indicated by the
striated region given the priority ratio n; : o for a two-agent noncooperative system
G(J). Note that Dyl is invariant with respect to o(xg). Specifically, it follows from
(4.17) that Dyeale is characterized as the union of the domains {x € R" : ™" | J;(z) >
0NY " midi(z) >0} and {x e R* : >0 Ji(x) < 0N D" miJi(x) < 0} so that the
boundary of Dy is given by Y ", Ji(z) = 0 and > ., n;J;(x) = 0 irrespective of
the agents’ individual payoff functions. When the priority ratio (4.8) changes, the
domain D, alters along with the changes of the level set of the weighted social
welfare function. But when all the agents have the equal priority (i.e., 71 = -+ =n,),
those two boundaries coincide with each other and the domain D, is understood as
the entire space R™ because Y ;- J;(z)/ > i, m:J;(x) is constant and positive in (4.17)

for all x € R™. This special case is elaborated in Section 4.4 below.

Requirement 2:

It is important to notice from (4.16) that since the value of o(xy) depends on the initial
state xg, the domain Dyuq(o(xg)) given by (4.14) also depends on the initial state x.

Recalling that the system trajectories of (2.32) should remain in the domain Dyyq(o (o))
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for maintaining the sustainable budget constraint (4.7), some initial state may not
be allowed for the existence of the incentive functions that meets this requirement.
For instance, when the target state 2*, which does not depend on the initial state as
given by (4.10), does not belong to the domain Dy,q(0(xg)), there is no possibility to
establish incentive functions satisfying (4.7) around the target state 2*. An example
of the initial state where #* & Dyuq(o(x¢)) holds is shown as the point B in Fig. 4.1,
where the domain Dyuq(0(x)) is indicated by the blue region. Therefore, in order to
make the socially maximum state * be the target state for the incentive mechanisms,
we further suppose that the initial state xy yields the domain Dyuq(co(z)) satisfying
* € int Dpya(o(xp)). In the case where there is a incentive supply from outside the
system and its supply rate is given by ¢ € R, the right-hand side of (4.7) should
be replaced by c. In this case, the characterization of Dyua(o(xg)) can be similarly
established.

Now, we design the incentive functions p;(x), i € N, to satisfy (4.5), (4.6), (4.11)

and (4.12). Specifically, we consider the incentive functions used in (4.1) given by

pi(z) £ Go(zo)U( (@) + ) by — &) (@ — 27) + wi(0), (4.18)

J#i
for each agent i € N, where (; € (0,1),i € N, satisfying Yoien G =1, by = —by,

iaj S N7 wl(x(]) = Jz<ZL’0) - gbo-(xO)U(lb) - Zy;ﬁz bzg (xﬁz - )(xOJ *')7 (&S N, so that
(4.6) holds. Then, the agent’s incentivized payoff functions (4.1) are given by

jz(x) = Go(xo)U(z) + Z bij(zi — 27) (15 — 27) + wi(2o). (4.19)
J#

Proposition 4.1. If the incentive functions are constructed by (4.18), then the socially
maximum state £* associated with the weighted social welfare function U(z) is a Pareto-

efficient Nash equilibrium in G(.J).

Proof Note that (4.11) holds because ) ;.\ G = 1, bjj = —bj;, i,5 € N. The proof
is immediate by noting from (4.19) that J;(z;, &* ) Go(xo)U(zi,3%,) + ¢y 1 €N,
imply (4.12) holds. O

Consequently, it follows from (2.32) and (4.19) that the pseudo-gradient dynamics
are given by
i(t) = f(z(t)),

(0
where f(z) £ diagla](Zg(z) + B(z — £*)) with Z = diag[(1, ..., (] € R, g(z) £
o(zo)U'(z) € R", and B £ {b;;}ijen = —BT € R™™. For the statement of the

)=z €R", t>0, (4.20)
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ieN

[Gg(z) + Bi(z — 2%)]T f(z) > 0}, i € N. Note that J;(x(t)) > 0 when the agents’ state
x(t) belongs to D;.

Theorem 4.1. Consider the n-agent noncooperative system G(J) with the incentive
mechanism (4.1) and the pseudo-gradient dynamics (4.20). If the parameters ¢; € (0,1),
i € N, and b;; = —bj; € R, i,j € N, are chosen in such a way that there exists a
function V' : R™ — R such that

V(i) = 0, (4.21)
V(z) >0, (4.22)
V'(z)f(x) <0, (4.23)

forallz € D2 {z € R* : V(z) < V(x0)} \ {#*} satisfying D C DyN---ND, N
Dpud(o(xg)) for the given initial state g, then the incentive functions p;(x), i € N,
given by (4.18) guarantee that the socially maximum state 2* is an asymptotically
stable equilibrium point and all the agents are Pareto improving with the sustainable
budget constraint (4.7).

Proof It follows from (4.21)—(4.23) that 2* is an asymptotically stable equilibrium
point. Furthermore, since the trajectory remains in the domain D (and hence D;), it
follows that J;(z(t)) = J!(z(t)) f(z(t)) > 0 for all i € N and t > 0. Moreover, since
the trajectory remains in the domain Dyyq(o(20)), it follows from (4.13) and (4.14)
that (4.7) holds. The proof is complete. O
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Example 4.1. Consider the two-agent noncooperative system with

Ji(z) = —0.527 + 0.3z 129 — 0.523 + 421 — 5.8, (4.24)
Jo(x) = —0.527 — 0.12129 — 0.525 + 45 + 5.8. (4.25)

Even though the constant terms —5.8 and 5.8 in the payoff functions above do not
affect the behavior of the agents (these constants are included in wy(xg), .. ., w,(xo)
in (4.18) so that its time derivative vanishes in the calculation of pseudo-gradient),
we keep the constant terms to effectively illustrate the domains in the figures. Let
the priority evaluated by the system manager be given by n; = 1 and 7, = 0.5. Note
that the domain Dy, is already indicated by the striated domain in Fig. 4.1 and
the socially maximum state is given by 2* = [2.9714,1.8286]T. Supposing that the
initial state is given by x¢ = [4,0.4]T, which is exactly the point C in Fig. 4.1 satisfying
xo € Dscale, the scaling factor is obtained by (4.16) as o(z) = 0.8074. In this case, the
domain Dyuq(o(xg)) satisfying 2* € int Dyyq(o(zo)) is illustrated as the red region in
Fig. 4.2. Let the sensitivity parameters be given by a = (1, 1) so that the vector field
of the incentivized pseudo-gradient dynamics is given by f(x) = Zg(x) + B(z — %)
with g(x) = 0.50(z0)[—3z1 + 0.529 + 8,0.52; — 3z5 + 4]T. Tt follows from Theorem 4.1
that the incentive mechanism (4.1) along with the incentive function (4.18) with
(G =1—C =04, biy = —by; = 0.3 satisfying (4.21)—(4.23), D; = Dy, = R?, and
2 1.2

D C Dyua(o(xg)) with V(x) = (z — %) L9 108 (x — &*) guarantees that the

agents’ state z(t) converges to the socially maximum state * and both of the agents
are Pareto improving with the sustainable budget constraint (4.7). Figure 4.3 shows
the trajectories of the agents’ payoffs and incentives versus time. It can be seen from
Figs. 4.2 and 4.3 that the agents’ state indeed converges to the socially maximum state
#* with monotonically increasing Jy(z(t)) and Jo(z(t)) even though the sum of the
incentive functions p;(z(t)) and ps(x(t)) are nonpositive for all ¢ > 0 (see the red solid
curve in Fig. 4.3(b)).

Example 4.2. Consider the two-agent noncooperative system with

Ji(z) = =] — 25 + 0.52175 — sin(x25) + 3.82; — 4, (4.26)
Jo(z) = —aF — 25 + 8z + 3.879 — 20. (4.27)

Let the priority evaluated by the system manager be given by 77, = 1 and 7, = 2.
Note that the domain Dy is given by R? because Ji(z) < 0 and Jo(x) < 0 for all
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Figure. 4.2 Level sets of Jj(z) and Jy(x) with the domain Dyuq(co(z0)) and the trajectory
of z(t) under the incentive functions (4.18) with ¢(; = 1 — (3 = 0.4, bjs = —b9; = 0.3 in
Example 4.1. The state converges to the socially maximum state £* and its trajectory is
contained in the domain Dyyuq(o(z0)).

x € R% Furthermore, the socially maximum state is given by #* = [3.3779, 1.4480]".
Supposing that the initial state is given by zy = [3.6720, 1.5360]T, the scaling factor is
obtained by (4.16) as o(x¢) = 0.8311. In this case, the domain Dy,q(c(x)) satisfying
* € int Dypya(o(z)) is illustrated as the red region in Fig. 4.4. Let the sensitivity
parameters be given by a = (1, 1.5) so that the vector field of the incentivized pseudo-
gradient dynamics is given by f(x) = diag|a](Z¢g(x) + B(xz — &*)) with

—6x1 + 0.529 — @9 cos(zyzo) + 19.8

r) =0T
g( ) ( 0) 05.171 — 6x2 — I COS(«TflfL‘Q) + 7.6

It follows from Theorem 4.1 that the incentive mechanism (4.1) along with the incentive
function (4.18) with (; =1 — (3 = 0.5 and b1y = —bg; = 2 satisfying (4.21)—(4.23) and
D C Dy N Dy N Dyua(o(zg)) with V(z) = —=U(x) + U(z*) guarantees that the agents’
state x(t) converges to the socially maximum state 2* and both of the agents are Pareto
improving with the sustainable budget constraint (4.7).

In general, it may be hard to examine the existence of the domain Dy N---N D,
when the number of the agents is large. However, the next result deals with the case
where the sensitivity parameters of the agents are uncertain and suggests that the

domain Dy N --- N D, exists as long as b;; is taken to be sufficiently lose to 0.
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Figure. 4.3 Trajectories of the amount of incentives and agents’ payoffs under the incentive
functions (4.18) with (; = 1 — (o = 0.4, bjo = —be; = 0.3 in Example 4.1. The agents’
payoffs are monotonically increasing under the incentives satisfying pj (z¢) = p2(xo) = 0 and
p1(x(t)) + p2(x(t)) < 0 for all t > 0.
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Figure. 4.4 Level sets of U(x) with the domain Dyyq(o(zo)) and the trajectory of z(¢) under
the incentive functions (4.18) with {; =1 — (3 = 0.5, by = —ba; = 2 in Example 4.2. The
state converges to the socially maximum state £* and its trajectory is contained in the domains
Dbud(O'(l‘o)), Dl and Dg.

Corollary 4.1. Consider the n-agent noncooperative system G(.J) with the incentive
mechanism (4.1) and the pseudo-gradient dynamics (4.20). If the domain D £ {x €
R™: U(x) > U(xo)} satisfies D C Dyya(o (o)) for the given initial state xg, then the
incentive functions p;(z), i € N, given by (4.18) with b;; = 0, i, j € N, guarantee that
the socially maximum state z* is an asymptotically stable equilibrium point and all
the agents are Pareto improving with the sustainable budget constraint (4.7) for any

positive constants oy, i € N.

Proof The result is a direct consequence of Theorem 4.1 with V(z) £ —U(z) + U(&*
and D; = {z € R" : (Gig(a)+ Bil—i*)|"f(z) > 0} = {x € R" : Gig"(x)dliaglo] Zg(x) >
0} =R", i € N, for the case of b;; =0, 7,5 € N. O

Now, we specialize the result of Theorem 4.1 with quadratic payoff functions given
by

~—

1



80

where A; = {a} 1} Gmenar € R, b; 2 [bi,...,b0]" € R" and ¢; € R, i € N. The

social welfare function (4.9) is hence given by
L ¢ T
U(z) = % Az + Bz + ¢, (4.29)

with co £ YoienMici € R, A = Y ien Midi € R and B = Y ien Mibi € R™. Supposing
that U(x) is concave (i.e., A < 0), it follows that the unique socially maximum state

#* is given by 2* = —A~'B € R" and the social welfare function can be rewritten as
1 ~T A A 1 ~+\T A 4k
Ux) = 3 Az — E(x )T AT + co, (4.30)

with & £ 2 — &*. For the statement of the following results, let
A = diag[a](o(x9) ZA + B) € R™™, (4.31)

Corollary 4.2. Consider the n-agent noncooperative system G(J) with the incentive
mechanism (4.1), the pseudo-gradient dynamics (4.20), and the quadratic payoff
functions (4.28). Let P; £ (;o(zo)A + B; € R™™ i € N. If the parameters ¢; € (0,1),
i€ N, and b;; = —b;; € R, 4,5 € N, are chosen in such a way that

0< AP +PA, icN, (4.32)

then the incentive functions p;(z), ¢ € N, given by (4.18) guarantee that the socially
maximum state £* is globally asymptotically stable. Furthermore, all the agents are
Pareto improving with the sustainable budget constraint (4.7) for the given initial state
g satisfying D C Dyua(o (7)), where D 2 {z € R™ : V() < V(w)} \ {2*} with V(z)
satisfying (4.21)—(4.23).

Proof First, note that the vector field f(x) of the pseudo-gradient dynamics (4.20)
becomes f(x) = diag[a](o(z¢)ZA + B)Z. Furthermore, note from (4.19) and (4.30)

that the agents’ incentivized payoff functions are given by

Ji(z) = ;TP@ + Ci(—%(i*)TAi* + co) + wi(zo), €N, (4.33)
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Therefore, it follows that

Jl(x)f(z) = (P3)" f(z) = (P%)"diag[a](o(z0) ZA + B)&

1
= 5g}T(ATR- + PA)T >0, i€N, (4.34)
for all z € R™\ {2*} and hence
D;={zcR": J/(z)f(z) >0} =R", iecN. (4.35)

Then, the result is a direct consequence of Theorem 4.1 using the Lyapunov function
candidate V(x) = —U(x) + U(2*) satistying (4.21)—(4.23) since

Vi(@)f (@) = ——— 3" J(w) f(2) <0, (4:36)

holds for all z € R™\ {z*}. O

Note that it may be hard to determine the parameters ¢;, i € N, and b;;, 1,7 € N, to
guarantee D C Dyuq(o(zp)) when the number of the agents is large because we cannot
casily find the function V'(x). The following result provides different conditions without
looking for a function V(z) guaranteeing D C Dyuq(o(zo)) for the noncooperative
system G(J) with quadratic payoff functions when A possesses a real eigenvalue in its
spectrum.

Proposition 4.2. Consider the n-agent noncooperative system G(.J) with the incentive
mechanism (4.1), the pseudo-gradient dynamics (4.20), and the quadratic payoff
functions (4.28). If the parameters ¢; € (0,1), ¢ € N, and b;; = —bj; € R, i,j € N/, are
chosen in such a way that (4.32) holds along with

o — 2" € null(A — A1), (4.37)

where A € R is a real eigenvalue of the matrix A, then all the agents are Pareto
improving with the sustainable budget constraint (4.7) for the given initial state
xo satisfying that the straight segment from xy to 2* is contained in the domain
Drua(o(xp)).

Proof The proof is immediate since (4.37) indicates that the vector xg — z* is the
eigenvector of the matrix A associated with the eigenvalue A\ and hence the system
trajectory x(t) is a straight line starting at the initial state zo and ending at the target
state z*. 0J
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For a given vector & £ [#1,...,%,]T = zy — #* € R, even though it appears to
be hard to find the parameters ¢;, i € N, and b;j, i,7 € N, such that the condition
(4.37) is satisfied, it is possible to solve some linear equations to derive such parameters
by constructing a special form for the matrix A when n > 5 and #; # 0, ¢ € N. For
example, let by, = —Go(z0)Al, j € N, where Ag 2 A(i,7), so that A is given by a
special matrix shown in (B.4) in Appendix B with A7 £ ¢ (z¢)AJ. Note that (1, 1)-entry
of A, which is alfl,&% < 0, is one of its eigenvalues because A is a lower block-triangular
matrix. Now, taking A = a;(;Al, it follows from (B.4) that the condition (4.37) is

equivalent to
0=(A—-mGALL)Z, (4.38)

which is essentially a system of n — 1 number of linear equations shown in (B.5) in
Appendix B with n—1 variables given by bsy, bag, bag, . . ., by, for the given (; € (0,1),1i €
N, satisfying Y%, (; = 1, and bss, bsg, . . ., bin—1)n, because row; (A —a1(io(20)ALL,) =
0F holds. Now, note that the matrix IT in (B.5) satisfies det(IT) = 0 and hence there are
infinitely many solutions of (bs4, bas, bas, - - . , ba,,) when the parameters ¢; € (0,1),i € N,
and bss, bsg, - - ., bn—1)n satisfy rank(II) = rank([IL,{]). Note that &; # 0, i = 2,3,4,
imply rank(IT) = n — 2 and hence the condition rank(IT) = rank([II, £]) is equivalent to

z z z Tn
2o+ 26+ 2G4+ 2 =0. (4.39)
(6%} a3 Qg (677

This is because rank([I1, £]) = rank(I'[I1, £]) = n — 2 hold with

0 0 0 e 0 &

Oégi’4 —01392’2 0 e 0 52
MILE=| —ars 0 —agry -+ 0 & |, (4.40)

|0 0 0 o —ands | o ]
Toasg Toan
. A 10 1 0 . b s oA
for a nonsingular I = | =~ = . € R=Dx=1 if and only if & =
o 0 --- 1

£ 4 Qaag, L oatac, g 4 qafne L — () Therefore, since & € R is an affine function

Zaag Toay Zaam

of bgs, we can always find bss to satisfy (4.39) (i.e., rank(II) = rank([II, £])) and hence
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there exist parameters (;, i € N, and b;;, i,j € N, satisfying (4.37) when n > 5 and
2;#£0,1€N.

However, when n < 5, the conditions of Z; # 0, ¢ € A/, may no longer be able
to guarantee the existence of parameters (;, i € N, and b;;, i,j € N, such that the
condition (4.37) holds. For example, suppose n = 2. Given an arbitrary (3, letting
bia = —(10(x9)A2, the condition (4.38) yields a 1-dimensional linear equation of (,

given by
aATE) + (2GAS — i 1A})E, = 0. (4.41)
Recalling that (; + (; = 1, it follows that

OégAgi’l — OélA%fz

2 2 (4.42)
(O[lA% + OéQA%)xQ

G =

Therefore, there exist parameters ¢; € (0,1), (2 € (0, 1), and bs2, such that the condition

(4.37) is satisfied when the initial state zg = [zgy, z0]" satisfy

QQA%(ZL'Ql — ZIAL‘T) — alA% ([L’OQ — [i’;)

! _ 2 e (0,1). (4.43)
(A} + agA3) (w02 — @3)

Example 4.3. Consider the four-agent noncooperative system with the quadratic

payoff functions (4.28) with

[ —1 0.1 0.1 0.1 -2 =02 0 0
01 -2 01 O —-0.2 -1 0 0.1

Al — ) AQ = )
0.1 0.1 0 O 0 0 0 0.1

(01 0 0 0

0
T 0 —-01 0 0.1 1 —02 0 0
01 0 0 0 02 -1 0 01
0 0 -2 02 0 0 -1 —-05
01 0 02 -1 0 01 -05 -2
[ 4 0 0 0
0 4 0 0
b = by = by = by = ,
! 0 2 10 ’ —4 ! 0
0 0 0 —4
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Figure. 4.5 Trajectories of the agents’ state and the amount of incentives under the incentive
functions (4.18) in Example 4.3. The dash-dot lines in figure (a) indicate the socially maximum
state.

and ¢; = ¢ = ¢c3 = ¢4 = 0. Let the priority evaluated by the system manager be
given by n; = 1, 7, = 0.5, n3 = 1, and n4 = 0.5. Note that, in this case, the socially
maximum state is given by #* = [1.4462,0.4974, —1.5223, —0.6644]T. Supposing that
the initial state is given by xq = [1.2,0.2, —1.3,0]T, the scaling factor is obtained by
(4.17) as o(xp) = 0.8011. In this case, it can be verified that the straight segment from
Ty to &* is contained in the domain Dyyg(o (o)) since Y . (on; — 1)J;(xz) < 0 holds
with o = y(xg — 2%) + 2* for all v € (0,1). Let the sensitivity parameters be given
by e = (1,1,1,1) so that the matrix A is given by A = o(z)ZA + B. Let (; = 0.25,
1 =1,2,3,4, by = —0.1007, by3 = 0, byy = —0.0868, by3 = —0.0641, byy = 0, and
bss = 0.0238, so that the condition (4.32) holds and the condition (4.37) holds for the
real eigenvalue of A given by A = —0.5712. It follows from Proposition 4.2 that the
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incentive mechanism (4.1) along with the incentive functions (4.18) guarantee that all
the agents are Pareto improving with the sustainable budget constraint (4.7). Figure 4.5
shows the trajectories of the agents’ state and incentives versus time. It can be seen
from those figures that the agents’ state indeed converges to the socially maximum state

#* under the sustainable budget constraint (4.7) (see the red solid curve in Fig. 4.5(b)).

4.4 Connection Between Pareto Improvement and Po-

tentialization Under Equal Priority

In general, the domains Dyuq(0(z9)) and Dgeale characterized in Section 4.3 are not
the entire state space and hence we may not be able to construct a Pareto-improving
incentive functions for some initial state xy with unequal priority. But for a special
situation where the agents have the equal priority in (4.8), i.e., n; = 1 € R, for all
i € N, recall from (4.17) that Dscale = R™ holds. In this case, since the scaling factor
is simply obtained from (4.16) as o(zg) = 1 irrespective of the initial state, it is worth
noting from (4.13) and (4.14) that the incentive functions p;(z), i € N, satisfy

Zp,(x) = Z(J(xo)m — 1) Ji(x) =0, ze€R", (4.44)

ieN ieN

i.e., the system manager exactly works as a mediator transferring the payoft values
among the n agents, and hence the domain Dyuq(0(x9)) becomes R™ for all o € R™.

Furthermore, the social welfare function (4.9) simply becomes

Ux) =Y _ Jix). (4.45)

ieN
Therefore, in this section, we specialize the incentive mechanism characterized in
Section 4.3 to this special situation and show the fact that the Pareto-improving

incentive mechanism can be constructed for any initial state xo in R".

Theorem 4.2. Consider the n-agent noncooperative system G(J) with the incentive
mechanism (4.1) and the pseudo-gradient dynamics (4.20). Suppose that the agents
have the equal priority in (4.8) with n; = 1 for all ¢ € N. If the parameters (; €
(0,1), ¢ € N, and b;; = —b; € R, i,j € N, are chosen in such a way that the
socially maximum state 2* belongs to the interior of D; N --- N D, then the incentive
functions p;(z), i € N, given by (4.18) guarantee that the socially maximum state Z*

is asymptotically stable. Furthermore, all the agents are Pareto improving with the
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Figure. 4.6 Level sets of U(z) with the guaranteed region of attraction under the incentive
functions (4.18) with (; = 1 — (2 = 0.4, big = —bo; = 1.9 in Example 4.4.

sustainable (balanced) budget constraint (4.7) holding with equality for any initial
state zg € D, where D = {x € R" : V(r) < ¢} with the maximum attainable § € R
such that D C Dy N ---ND, with V(z) satisfying (4.21)—(4.23).

Proof Consider the Lyapunov function candidate defined by V(z) = —U(z) 4+ U(&*).
Since #* € int (Dy; N --- N D,) indicates J!(z)f(z) > 0, i € N, around the socially
maximum state *, it follows that V'(z)f(z) = — Y, Ji(z) f(x) > 0 holds around
2* and hence 2* is asymptotically stable. Now, recalling that Dyuq(o(z)) = R™ for

any initial state ¢ € R", the result is immediate. U

Example 4.4. Consider the two-agent noncooperative system with

Ji(z) = —sin(z125) — 0.2z, — 6~ (170" ~(@22=2)* (4.46)
Jo(z) = =227 — 225 + 122, + 3.8, — 24. (4.47)

Let the priority evaluated by the system manager be given by 7, : 79, = 1 : 1.
Note that the socially maximum state is given by #* = [3.2321,1.3303]. Let the
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sensitivity parameters be given by o = (3,1). In this case, it follows from Theorem 4.2
that the incentive mechanism (4.1) along with the incentive functions (4.18) with
¢t =1—C( =04 and by = —byy = 1.9 satisfying 2* € int (D; N Dy) (see the white
region representing the domain D; N D, in Fig. 4.6) guarantees that the socially
maximum state £* is asymptotically stable. Furthermore, both of the agents are Pareto
improving with the sustainable budget constraint (4.7) holding with equality for all
9 € D2 {z € R": V(z) < 6} with V(z) = —U(x) + U(2*) where the maximum
attainable ¢ is given by ¢ = 1.0354.

The following result provides one of the ways to achieve Pareto improvements

without the information of agents’ personal sensitivity parameters aq,...,ay. We let
D2{zeR":V(r) = -Ulx)+U(*) <6}, (4.48)

with the maximum attainable § € R, such that U’(z) = 0 holds only at z* in D.

Corollary 4.3. Consider the n-agent noncooperative system G(J) with the incentive
mechanism (4.1) and the pseudo-gradient dynamics (4.20). Suppose that the agents
have the equal priority in (4.8) with n; = 1 for all « € M. Then the incentive functions
pi(z), i € N, given by (4.18) with b;; = 0, i,j € N, guarantee that the socially
maximum state z* is asymptotically stable and all the agents are Pareto improving
with the sustainable (balanced) budget constraint (4.7) holding with equality for all z
in D given by (4.48) for any positive constants «;, i € N.

Proof First, let g(z) = U’(z). Note that the vector field f(x) of the pseudo-gradient
dynamics (4.20) becomes f(x) = diag[a|Zg(x) and hence

Vi) flo) == Ji)f(z) =~ Zie G ()diagla] Zg(x) <0, (4.49)

ieN !

for all x € R™ except for the state x satisfying g(x) = 0. Furthermore, since D; =
{z e R" : J(x)f(z) > 0} = {z € R" : ;¢"(x)diag[a] Zg(x) > 0} = R™, i € N, the
result is a direct consequence of Theorem 4.2 using the Lyapunov function candidate

V(z) = =U(x) + U(z*) satisfying (4.21)—(4.23). O

Remark 4.1. The incentive mechanism in Corollary 4.3 (i.e., b;; = 0, 7,57 € N)
potentializes the agents’ payoff functions in G(J), i.e., G(.J) reduces to a special class
of potential games by noting that each agent’s payoff function is characterized as
Ji(x) = GU(z) + w; by the common function U(z) in (4.45). Furthermore, since the
domain D is understood as an invariant set for arbitrary sensitivity parameters «y,
i € N/, they do not have to be known.
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Example 4.5. Consider the two-agent noncooperative system with

Ji(z) = —sin(zy25) — 020, — 9?1707 ~(@2=2% _ 9y (4.50)
Jo(x) = =222 — 222 + 1221 + 3.81y — de~ (1727~ (@275, (4.51)

Let the priority evaluated by the system manager be given by 77 : 7o = 1 : 1.
Note that U’'(x) = 0 holds at the socially maximum state #* = [3.3524,1.3187]7T,
the state z! = [4.6971,2.0236]T, and the locally maximum state z? = [4.496, 1.715]".
Figure 4.7 shows the domain D of (4.48) indicated by the grey region with § = 1.24. It
follows from Corollary 4.3 that the incentive mechanism (4.1) along with the incentive
functions (4.18) with (; =1 — (3 = 0.4 and by, = —by; = 0 guarantees that the socially
maximum state 2* is asymptotically stable and both of the agents are Pareto improving
with the sustainable budget constraint (4.7) holding with equality for all =y € D for
any sensitivity parameters oy and as. With the sensitivity parameters be given by
a = (2,1), the vector field of the pseudo-gradient dynamics (4.20) is shown in Fig. 4.7.
It can be seen from the figure that the socially maximum state 2*, the state x!, and
the locally maximum state 22 are asymptotically stable, unstable, and asymptotically
stable, respectively. Note that the state z! is a saddle point of the pseudo-gradient
dynamics and the domain D is an invariant set for arbitrary sensitivity parameters a;
and as.

Now, we specialize the result of Theorem 4.2 with the quadratic payoff functions
given by (4.28).

Corollary 4.4. Consider the n-agent noncooperative system G(J) with the incentive
mechanism (4.1), the pseudo-gradient dynamics (4.20), and the quadratic payoff
functions (4.28). Suppose that the agents have the equal priority in (4.8) with n; = 1
for all i € N. Let A £ diag[a](ZA + B) € R and P, = GGA + B; € R™™ i € N.
If the parameters ¢; € (0,1), 7 € N, and b;; = —bj; € R, 4,5 € N, are chosen in such
a way that (4.32) holds, then the incentive functions p;(x), i € N, given by (4.18)
guarantee that the socially maximum state 2* is globally asymptotically stable and all

the agents are Pareto improving for any initial state xq € R".

Proof Recalling (4.33)—(4.36), the result is a direct consequence of Theorem 4.2. [

Note that the selection of the parameters (;,7 € N, and b;;,i, j € N, may potential-
ize the agents’ payoff functions in the incentivized noncooperative system. For example,
it is straightforward to see that if b;; = 0 for all 4, j € N, then the agents are all Pateto
improving (because of AT P, + P, A = 2(;Adiag[a]ZA > 0, i € N) and the incentivized

noncooperative system G (j ) is exactly a weighted potential game (see the definitions of
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Figure. 4.7 Level sets of U(x) with the vector field of the pseudo-gradient dynamics (4.20)

0 in Example 4.5.

The state z! is a saddle point of the dynamics. The guaranteed region of attraction D (grey

region) is understood as the invariant set for arbitrary a; and ao.

1 —C2 =04, bz = —ba

under the incentive functions (4.18) with (;
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various types of potential games in Appendix B). But the connection between Pateto
improvement and potentialization is obscure when b;; is nonzero for some i,j € N.
Does Pareto improvement always imply potentialization or potentialization always
indicate Pateto improvement? To clarify the connections between Pareto improvement
and potentialization, we present two numerical examples below. It turns out from
those numerical examples that the Pateto improvement and potentialization do not

have an inclusive relation with each other.

Example 4.6. Consider the two-agent noncooperative system with quadratic payoff
functions Ji(x) and Jo(x) such that the social welfare function is given by (4.30)
with A = _02 04 and 2* = [0,0]T. Now, supposing a = (1,3) and letting
(=G=1—=( € (0,1), b =0ba = —by € R, the feasible (-b region satisfying the
condition (4.32) in Corollary 4.4 is shown in Fig. 4.8. It can be seen from the figure
that the feasible (-b region is closed and bounded. Figure 4.9 shows the level sets of
{ji}i:LQ and the agents’ trajectories under the values of ( = 0.6 and b = 0.6 satisfying
the condition (4.32). It is interesting to see that even b # 0 (where agents’ incentivized
payoff functions are not simple proportion of the social welfare function U(x)), the
agents’ state still converges to the socially maximum state with a monotonically
increasing payoff (in other words, agents are driven by a noncooperative way but result
in a cooperative benefit). In fact, in this example, it can be shown that the incentivized
noncooperative system G(.J) is never an ordinal potential (nor a weighted potential)
game when b is non-zero. Hence, our example numerically shows the fact that Pareto

improvements do not indicate potentialization.

Next, we show an example to reveal that the agents in the incentivized noncoopera-

tive system g(J ) possessing an ordinal potential may not be Pareto improving.

Example 4.7. Consider the two-agent noncooperative system with quadratic payoff
functions Ji(x) and Jo(x) such that the social welfare function is given by (4.30)
-2 =2
with A = 5 4 and 2* = [0,0]T. Now, supposing a = (3,1) and letting
(=G=1-=¢ € (0,1), b =0by = —by € R, the feasible (-b region satisfying the
condition (4.32) in Corollary 4.4 is shown in Fig. 4.10. Similar to Example 4.6, it can
be seen from the figure that the feasible (-b region is bounded and closed. Moreover,
we illustrate the ¢-b region under which the incentivized noncooperative system G(.J) is
working as an ordinal potential game as the grey region in Fig. 4.10, where we used the

fact that G(.J) possesses an ordinal potential if and only if (—2¢ +b)(—2(1—¢) —b) > 0
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Pareto-improving region

Figure. 4.8 Feasible solutions in (-b region for achieving Pareto improvement in Example 4.6.
The overlapped (brown) region of the red and the green regions denotes the region under
which the agents are Pareto improving. In this example, the incentivized noncooperative
system G (j ) possesses an ordinal potential (or weighted potential) only when b = 0.

T2

~— —

5
5/

0
T

2

Figure. 4.9 Level sets and trajectories under £k = 0.6,b = 0.6 in Example 4.6.
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Potential game , /

0.8 (Ordinal)

04
bo

-0.4

Poténtial game
(Weighted)
-0.8F 4

/
4 . / .
-0.5 0 0.5 1 1.5
AP+ PA>0 AP+ PA >0
Pareto-improving region Potentialization region

Figure. 4.10 Feasible solutions in {-b domain for achieving Pareto improvement in Example 4.7.
The overlapped (brown) region of the red and the green regions denotes the region under
which the agents are Pareto improving. The grey region denotes the potentialization region
under which the incentivized noncooperative system G (j ) possesses an ordinal potential.
Obviously, the brown region is not contained in the grey region, and vice versa.



93

(see Lemma B.1 in Appendix B below). It can be seen from the figure that the feasible
¢-b region is not contained in the grey region (the strip bounded by the dashed lines),
and vice versa. Hence, our example numerically shows the fact that the agents in the
incentivized noncooperative system Q(j ) possessing an ordinal potential may not be

Pareto improving.

4.5 Chapter Conclusion

In this chapter, we investigated the social welfare improvement problem for the
noncooperative dynamical systems through a Pareto-improving incentive mechanism
under sustainable budget constraint, where a system manager collects taxes from
some agents and gives some of the collected taxes to other agents as subsidies in
order to remodel agents’ dynamical decision making. Sufficient stability conditions
for our incentive functions were proposed to guarantee that the agents are Pareto
improving under the pseudo-gradient dynamics and their state converges to a Pareto-
efficient Nash equilibrium associated with a weighted social welfare function depending
on the priority ratio of the agents. It was found that the initial state plays an
important role on constructing our incentive mechanism to satisfy the sustainable budget
constraint. Furthermore, we revealed the connection between Pareto improvement and
potentialization with equal priority between the agents. Our numerical examples give

a direct evidence that the Pareto improvement is not the same as potentialization.






95

Chapter 5

Stability Analysis of
Loss-Aversion-Based Noncooperative

Switched Systems

5.1 Introduction

In this chapter, we focus on the stability problem for 2-agent noncooperative switched
systems, which are characterized as payoff-driven piecewise linear systems for describ-
ing agents’ dynamic decision making with the quadratic payoffs and loss-aversion
phenomena. Specifically, we assume that each agent adopts lower sensitivity in the
pseudo-gradient dynamics for the case of losing utility than gaining utility and hence
both the systems’ dynamics and the switching instants depend on agents’ payoff
functions. To determine stability property of the loss-aversion-based noncooperative
switched systems, we characterize the domains in which agents’ payoffs are either
increasing or decreasing, and use the normalized radial growth rate for the Nash
equilibrium. By assuming that the agents keep on rotating, we reveal an interesting
property of agents’ decision behaviors in terms of the consistent rotational direction of
the trajectories in the state space. This chapter categorizes the loss-aversion-based non-
cooperative systems to 3 cases in accordance with the location of the Nash equilibrium
relative to the 2 payoff functions and comprehensively analyze the differences between
the 3 cases in terms of mode transition and normalized radial growth rates. Observing
the fact that the Nash equilibrium is always on the boundaries of the aforementioned
domains, by making the approximation for the domains around the Nash equilibrium,

we characterize the partition of the state space and the mode transitions as a piecewise
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linear system. Moreover, we observe an interesting phenomenon that we call a flash
switching instant where a single agents’ sensitivity transition makes the other agent
immediately switch its sensitivity almost at the same time instant, and we characterize

the necessary condition for a switching instant holding such a phenomenon.

5.2 Problem Formulation

5.2.1 Noncooperative Systems with Quadratic Payoffs

Consider the noncooperative system with 2 agents selfishly controlling their individual
state 7; € R, i € {1,2}. Let & = [z1,25)T € R? denote the agents’ state profile. In this
chapter, we consider the situation where each agent ¢ aims to increase its own payoff
function J;(z;, z;), where J; : R*> — R and j is the opponent of agent i # j. We denote
the noncooperative system by G(J) with J = {.J;, Jo}.

In this chapter, we consider the noncooperative system G(J) with quadratic payoff
functions J; : R? — R given by

1
Ji(z) = 5ggTAZ-a;+b;faz:+ci, i€ {1,2}, (5.1)

i i
ai; A1

where A; £ € R?*? with a!, < 0 (indicating that J;(z) is strictly concave

ayy Qg
with respect to z;) and al a2, # alya?,, b; = b}, 05T € R?, and ¢; € R, i € {1,2}. It
is important to note that there exists a unique Nash equilibrium z* in G(J) in the

unbounded state space satisfying

- 0J1(x) 1

0= a—ml = Q1171 + abl’g —+ b%, (52)
0J:
0= 0h() _ a2,y + a2,xo + b3, (5.3)
8332

for x = x*. Specifically, the unique Nash equilibrium is given by

—1
ZE* - _ a’%l (1%2 b% (5 4)
2 2 B2 | :
A1y Qoo 2

because the condition al a3, # al,a?, implies the inverse exists. Notice that the
straight lines (5.2) and (5.3) are understood as the best-response lines for agents 1 and

2, respectively.
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5.2.2 Loss-Aversion-Based Pseudo-Gradient Dynamics

In this chapter, we consider the situation where each agent selfishly and continually
changes its state in the noncooperative system G(J). We suppose the state profile x(-) is
available for both the agents. In addition, associated with agents’ payoff functions Jy, Js,
the pseudo-gradient dynamics are used to describe agents’ myopic selfish behaviors

given by

ii(t) = ai(t)é—i, ie{1,2}, (5.5)

where oy (t), as(t) € Ry are agents’ personal (private) sensitivity parameters. Note
that the pseudo-gradient dynamics capture the fact that the agents concern their own
payoffs and myopically change their states according to the current information without
any foresight on the future state.

Different from the models in [42, 25|, where a4 (), as(t) are constant, in this chapter
we suppose that each agent directly observes its own payoff level J;(t) for agent i,
i.e., the payoff level J; is not calculated by (5.1) through the knowledge of x. As
such, each agent is supposed to be able to evaluate J; at infinitesimally small previous
time instant ¢~. Furthermore, the agents’ sensitivity parameters aq, as are piecewise

constant between 2 values following the loss-aversion-based psychological consideration
defined by

ar if Ji(t7) <0
a;(t) & L ! e {1,2}, 5.6
Q { all, if J;(t7) >0, .2} (5:6)
where o, ol € R, capture the sensitivity of the change of agent i’s state per unit time

against losing and gaining payoff environment, respectively, for ¢ € {1,2}. As soon as
agent i reaches the state observing J;(t) = 0, it switches its a;(t) to the other value.
An interesting observation that this sensitivity parameter change by one agent may
give rise to the parameter change of the other agent is elaborated in Section 5.4 below.

We connect the phenomenon of loss-aversion in prospect theory [65] with the
noncooperative behaviors in G(J). It is well known that humans are more cautious
to make the decision when they face losing payoff than gaining payoff. As a typical
example, in the stock investment market, investors (agents) have the tendency to hold
losing investments very long and sell winning investments very soon [98]. In light of this

observation, in this chapter we suppose that the sensitivity parameters satisfy o < oll]
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i € {1,2}, to describe agents’ slower behavior for the case where their corresponding
Ji(t) is negative.
It is important to note that there are 4 possibly different combinations (modes) of

agents’ sensitivities depending on the signs of J; and J,. Henceforth, we let

o't £ diagloy, 5], o™ £ diag[ay', 3], (5.7)
ot 2 diag[alf, OzQH], oM 2 diag[a?, OzQH], (5.8)

to denote the entire sensitivity profile of the 2 agents. Consequently, agents’ decision
behaviors (5.5) with the loss-aversion-based sensitivity (5.6) and the quadratic payoff
functions (5.1) under mode k € K £ {LL, HL, LH, HH} are described as

_ O (z(t)) dJa(z(1)]" .
i(t) = a*® { o TR = Ay (alt) — ), (5.9)
1 1
where A;, = oF aél a;Z denotes the system matrix under mode k € K and z* is
(1p A

given by (5.4). As discussed in the following sections, it turns out that which mode is

active can be characterized by some domains in the state space.

5.3 Hyperbolic/Elliptic Domains Characterizing U-
tility Trends

In this section, we characterize the 4 domains associated with the 4 modes in K
depending on the utility trends (increasing or decreasing) of the 2 players. Specifically,
we define the 4 domains in which the signs of .J; and .J, associated with (5.1) remain
the same to be positive /negative along the system trajectories of (5.5). With a slight
abuse of notation, let the functions jf :R? — R represent the time rate of change J; of
J; as a function of the state x for agent i €{1,2} with mode k € IC given by

. 0Ji(x) 0J;(x) 1 T
k A ¥y =T k Ty ) * . T *
J(x) = [ o o, Ag(z —2") = 5% Qiz+ (Apb; — AiAya™) = — b Ay

= =) Qw — ) + B w — a), (5.10)
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with QF 2 A;A; + ATA; € R¥2 and gF 2 AT(Az* +b;) € R% i € {1,2},k € K.

The function J*(z) is reminiscent of the time rate of change of J;(-) along the system
_ 9Ji(z(1))

trajectories given by Jl(t) = 5222 1(t) with mode k being active at state z.

We define the domains Dy, k € IC, in which each of the agents keeps either the high

sensitivity a!! or the low sensitivity ol as

DL = {z cR*: J1LL(9C) <0, J2LL($) < 0}, (5.11)
Dy, 2 {z € R?: J(2) > 0, i (x) < 0}, (5.12)
Diy 2 {z e R?: JM(2) <0, M (z) > 0}, (5.13)
Dy = {z € R?: JFH(@ >0, J?H(x) > 0} (5.14)

Note that some of these 4 domains may not exist (as explained in Remark 5.1 below).
Furthermore, the Nash equilibrium z* belongs to all the existing domains, since
J¥(x*) =0 for all i € {1,2} and k € K.

It is important to note that the boundaries of Dy, k € K, may be either straight
lines or quadratic curves depending on whether 3% in (5.10) vanishes or not. Specifically,
since Ay, k € K, are nonsingular, A;x* 4+ b; # 0 (resp., A;z* +b; = 0) if and only if
BF = AT (A;x* + b;) # 0 (resp., ¥ =0), k € K, so that the boundaries associated with
J¥(x) = 0 are quadratic (hyperbolic/elliptic) curves (resp., straight lines intersected at
x* when QF is sign-indefinite). Since the domains Dy, k € K, are characterized by the
two equations J¥(z) = 0 and J¥(z) = 0, we categorize 3 cases as shown in Fig. 5.1,
that is, A;z* +b; # 0 for i € {1,2} (Case 1); A;z* 4+ b; = 0 for ¢ € {1,2} (Case 2); and
Ayz* + by #0, Agx™ + by = 0 (Case 3). In any case, 2* is always on the cusp of Dy, for
mode k that exists (except for the domain where 3% = 0 and Q¥ is positive definite

(see Remark 5.1 for an example)). Here we note that because A;x* + b; is equal to
0Ji(x*)

—5.—, the above 3 cases are categorized according to whether z* coincides with the
maximum (or saddle) point of J;(x) for agent i (i.e., % = 0) or not.

Remark 5.1. Some of the domains int Dy, &k € K, may not exist. For example,
consider Case 2 where there exists A > 0 such that Ji(z) = AJy(z). In this case,
since QF = A ardiag[), 1]Ay + AAodiag[\, 1]a* Ay > 0 and Q5 = Ayafdiag[\, 1]4, +
Aydiag[), 1]a¥ Ay > 0 hold for all k € K, it follows that int Dy, int Dy, int Dpy = 0
and Dy = R2. Alternatively, consider the case with the zero-sum payoffs, where
Ji(x) = —Jo(z). In this case, since JF(x) = —JF(x) holds for all z € R? and k € K,
we have int Dy, = int Dy = 0 and Dy, | Dy = R%

Remark 5.2. There may exist some overlaps between Dy, k € K. Figure 5.2 shows a

typical example of the 4 domains indicated by the orange regions. Note that point A
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(/7] JE=)<o
] A@<o
oDy

o Nash equilibrium z*

T

Figure. 5.1 Examples of the domain Dyry,. (a): Case 1, (b): Case 2, (c): Case 3.

o Nash equilibrium z*

Figure. 5.2 An example of the 4 domains Dy, Dur,, Dru, Duu for Case 1. The figure for the
case of k = LL is the copy of Fig. 5.1(a).
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belongs to the 2 domains Dy and Dyy but not Dy, nor Dyy,. In defining the mode of
the system dynamics (5.9) in the overlapped regions, the agents keep mode k at time

tT if z(t) € int Dy, given an active mode k at time ¢.

Lemma 5.1. Consider the loss-aversion-based noncooperative system G(J) with the
pseudo-gradient dynamics (5.5), (5.6). Then, it follows that

U D =R’ (5.15)
ke
for any o' > ok, i =1,2.

— ’L

Proof First, by defining

Al(z) £ (a1,21 + alyws +01)* > 0 (5.16)
A7) £ (ajy71 + agwe + bY)(a % Ty + a5,y + b3), (5.17)
AN(z) £ (a} o1 + a2yx + b7)(al, 21 + alyzs + b)), (5.18)
A3 () £ (afy1 + asoms +03)* > 0 (5.19)

the functions in (5.10) can be calculated with (5.4) as

Jf(z) = ofAl(z) + ofAX(z), i€{1,2}, keK. (5.20)
Let 6; = off —aF > 0,47 = 1,2. Now, we suppose Dr, # R? so that there exists
7 € R? such that 7 ¢ Dyp. In this case, there are three cases in terms of 7 that may
happen: JIV(Z) > 0 A JH(Z) < 0; JM(Z) < 0 A JFE(Z) > 0; JH(Z) > 0 A JEE(Z) > 0.
For the case of JM(Z) > 0 A JI(Z) < 0, since A(Z) > 0, we have JI(z) =
JM(Z) + 0,AL(Z) > 0. Moreover, since JI(z) = alAl(z) + akA2(z) < 0 and
A3(z) > 0 imply A}(Z) < 0, we have JI*(z) = JIM(Z) + 6,AL(z) < 0. Hence, T € Dyy..
For the case of JM*(Z) < 0 A JJH(Z) > 0, since JM(Z) = alAl(z) + ok A2(z) < 0
and Al(Z) > 0 imply A?(Z) < 0, we have JM(z) = JM(Z) 4 6,A%(Z) < 0. Moreover,
since A(z) > 0, we have Ji(z) = J¥“(2) + 6,A%(z) > 0. Hence, & € Dyy. For
the case of JM(z) > 0 A JY(Z) > 0, note that since Al(z) > 0 and A2(z) > 0, the
inequalities JT(z) = JM(Z) + 6,AL(Z) > 0 and JY(Z) = JI*(Z) + 0,A3(Z) > 0 must
hold. Now, we further suppose that & & Dyr, and T ¢ Dy hold, i.e., we suppose
that JI(Z) > 0 A JEH(Z) > 0 holds. Then, since JM(z) = JH(z )+(51A (z) >
0 A JHH(Z) = JI(F) 4 6,A2(Z) > 0, we have T € Dyy.

Thus, for any # € R?, there exist k € K s.t. & € Dy, which completes the proof. [J
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Remark 5.3. Note that if the agents’ loss-averse behavior is characterized by aff < o,
i = 1,2, then [, Dr = R* may not hold even though (5.11)-(5.14) are a complete

enumeration of all possible cases.

Different from the standard piecewise linear system with conewise partitions |77, 78|,
the main problem in investigating stability property in this chapter is to appropriately
deal with the overlaps of the domains (Remark 5.2) and non-conewise domains. In the
following section, we introduce how to appropriately partition the state space depending
on the rotational directions of the system trajectories and how to characterize stability
according to a piecewise linearized system of (5.5), (5.6) whose state is traveling over

the partitioned domains.

5.4 Stability Analysis With Complex Conjugate Eigen-

values

In this section, we characterize stability properties of the Nash equilibrium z* for
the loss-aversion-based noncooperative system G(.J). Specifically, we first present the
properties of agents’ behavior under (5.5), (5.6) in terms of the rotational direction of
the trajectories. We let & £ z — 2* and consider the polar form (r, ) of the coordinate
(Z1,T2). Note that the rotational direction of the trajectories at phase # under mode

k € K can be determined by the sign of

. d ~ _L ~ ~ A~ 1 ~ P
= (tan™t 22) = TR e | 1
dt x]_ 331 _|_ 3:2 TZ ﬂf2 ':1:2
= det[n(0), A (0)] = n" (0) Pen (), (5.21)
where 7(0) = [cos0,sin 0]T and
k2 —afaj, +ajad,
R N i 2 ] . kek, (5.22)
Qa1 TXA59 _akal
2 1012
with oY £ o, oXY £ o, X, Y € {L,H}. In particular, the trajectories under mode

k € K are moving in the counterclockwise (resp., clockwise) direction when O, > 0
(resp., O < 0).
To focus on the case where there exist infinitely many mode transitions for the

agents, we assume that the eigenvalues of A are all complex conjugate in our stability
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analysis. The case where there are finite number of mode transitions can be handled

by simply investigating the stability property of the possible final modes.

Assumption 5.1. The system matrix A, has a pair of complex conjugate eigenvalues
for all the modes k € K.

Under Assumption 5.1, the eigenvalues of the system matrix A, are computed as
U £ VU7 — afal(atia3, — ajyaly), where ¢y, 2 %(a’fah + afaj,) < 0, which implies

that the complex conjugate eigenvalues of A, have negative real part for all £ € .

Note that the expression in the square root satisfies 0 > 17 — a¥ak(a} a3, — alyal,) =
1(afaly — aba3y)? + ofabaiyad,, which implies that ajyaf, < 0 (ie., ajy <0 Aa, >0
or aj, > 0 Aa}, < 0) and det P, = —1(afaj; — oba3,)? — afabal,al, > 0, k € K.

These facts are used in the following lemma and its proof. Note that the case where
Ay possesses real eigenvalues may also exhibit infinitely many mode transitions. This

complicated case is addressed in Section 5.5 below.

Lemma 5.2. Consider the loss-aversion-based noncooperative system G(J) with the
pseudo-gradient dynamics (5.5), (5.6) under Assumption 5.1. Then, the rotational
directions of the trajectories are consistently the same in the entire state space R2.
Specifically, if aj, < 0 and a?, > 0 (resp., a}, > 0 and a?, < 0), then the trajectory of
(5.5), (5.6), keeps the counterclockwise (resp., clockwise) direction for any al! > ok,
i=1,2.

Proof Note that a{, < 0 A a?, > 0 and aj, > 0 A a3, < 0 imply that the diagonal
elements of Py are all positive and negative, respectively, and hence P, > 0 (resp.,
P, < 0), k € K, because Assumption 5.1 implies det P, > 0. Thus, the result is
immediate since 6, = 17(0)Py(0). O

This result is used in the following sections to partition the state space and to

define a piecewise linearized system of (5.5), (5.6).

Case 1: Aux*+0b; #0, i€ {1,2}

In this section, we characterize the local stability property of the Nash equilibrium x*
for A;x*+0b; # 0 for i € {1,2}. Recall that x* is located on the cusp of the domains Dy,
k € K (see Fig. 5.2). In the beginning, we approximate the domain Dy, around z* to
the convex cone Dj by linearizing the quadratic curves characterized by Jf(;v) =0 and
J¥(z) = 0 around z* for all k € K. In particular, since z* corresponds to the origin

in the shifted space Z, we denote the linearized straight lines of the curves J*(z) = 0,
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Figure. 5.3 Approximated domain where a%Q(abx}‘—l—aézaz;—kb;) > 0, aly (a3 2i+ad,xs+b3) > 0.
(a): Dry, (b): the approximated domains Dy, k € K, around the neighborhood of Nash
equilibrium. The rotational direction is counterclockwise since v < 0 A 44 > 0 implies
aly <0A a2y > 0.

i€ {l,2}, k€K, at z* as

Ve 3, =0, i€{1,2}, keKk, (5.23)
%(f) %(;)) \x:x*e R, i € {1,2}, k € K. For example, Fig. 5.3 shows the

domain Dy, and its approximated cone f?LL in the neighborhood of z*.

where 7} £ (

For the statement of the following result, note that al, # 0 and a2, # 0 since

alya?, < 0 under Assumption 5.1.

Proposition 5.1. If A;z* +b; # 0 for i = 1 (resp., i = 2), then 7} = Zﬁ (resp.,

2
22

Vs _é> k€ K, for any off, oy, oy, ay € Ry.

Proof First, recall (5.20). Then, for each mode k € IC, we have

a‘]f(x)—gaa (a1x+ 1 +b1)+ k1(2 + a2 +b2)
Ers 101101121 T Q1972 1 Qo190 A1 X1 T QgoT2 2
+ o/gaﬂ(abxl + a§2x2 + bé), (5.24)
OJF (x
P ol (alyn + alyes ) + ofady(adn + as +53)
2

+ agagz(aile + adywy + b3), (5.25)
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(9J§(x)_ k.2 /2 2 b2 k2 /.1 1 bl
Oz =205a75(a1971 + axT2 + b3) + afay;(ay; 71 + ajpwe + by)
1
+ O/fah(a%ﬂl + a%ﬂ? + b%%
0Jk (x
62x( ) :20/5@%2(@?2% + a3,my + b3) + oz’fan
2

k 1 2 2 2

(ahxl + abxg + bi)

(5.26)

(5.27)

By noting that the Nash equilibrium x* satisfies (5.2) and (5.3) and hence a},z} +

alywh + bl = 0 and 2,27 + a5 + b3 = 0, for each mode k € K, we have

oJk
0| _ k%, (alyet + by + BY), (5.28)
8901 .
o.J¥
O e (abyat + abya + BY), (5.29)
81:2 .,
oJk
ﬂ = O‘lfa%l(aflmi + a%zx; + bf), (5-30)
(91;1 .
oJk
L@ bl (adia ol + ) (531)
X2

Consequently, since Ajz* + by # 0 and Ayx* + by # 0 imply alyx} + adoxh + b # 0 and
a2, @} + alyxh + b2 # 0, respectively, it follows that

8J} () , 8.J (=) X
81‘1 . a 81‘1 S a

Y LN =l S IR XY ¢ (5.32)
02 r=x* Oz2 r=x*

Thus, the proof is complete.

Remark 5.4. It is interesting to note from Proposition 1 that the linearized line
(5.23) of JF(z) = 0 coincides with the best-response line (5.3) for agent 2 (instead of

agent 1). The similar observations hold for the linearized lines of J¥(z) = 0.

Remark 5.5. Since a},a3, # aj,a?, holds in (5.1), it follows that v¥ # +4, k € K, and
hence the boundaries of ﬁk, k € I, are simply characterized by the two intersected
straight lines (5.2) and (5.3). Consequently, since int D, = () holds only for ¥ = ~%,
k € K, all of the 4 approximated cones must exist with int Dy, k € K, being non-empty.

Lemma 5.3. The approximated domains Dy, k € K, are identified to be the 4 convex

cones partitioned by the best-response lines (5.2) and (5.3), and satisfy (int D;) N
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(int D;) = 0 for i,j € K, i # j, nt Dy # 0, k € K, for any !l > ok, i = 1,2. Moreover,
the domain Dy, (resp., ISHL) is centrally symmetric about the Nash equilibrium z* to

,ZA)HH (resp. y ﬁLH) .

Proof As the curve JF(z) = 0 (vesp., J¥(z) = 0) is linearized by the straight line
(5.3) (resp., (5.2)) for all k € KC (Proposition 5.1), the proof is immediate by checking
whether the 4 domains {z € R?: J*(z) > 0}, k € K, share exactly the same half plane
in the neighborhood of z*, which is proved by the fact that

Jf( ) —O"fA (2) + Q§A2< ) = (o/fahan + aga%zau)s + 50‘5&2(@%21‘? + a%ﬂé + bé)

~eakal,(al,xh + agry + b)), keK, (5.33)

J5 (&) =afAL(#) + a5 A3 (2) = (afatsal, + fay af))e” + eatal, (af 2] + alyws + b7)
~eatal (a2} + alyrh +b2), ke K. (5.34)
hold for & £ [2% + ¢, 235]T with an infinitesimal number ¢. O

Remark 5.6. Lemma 5.3 implies that the best-response lines (5.2) and (5.3) coincide
with the switching phases (see a typical example of the approximated domains ﬁk,
k € KC, shown in Fig. 5.3(b)) and hence the switching phases at which agents switch the

2 1
modes around the Nash equlhbrlum x* are given by 6 = arctan(—2), arctan(—4),
22 12

arctan(—= ) + m, arctan(—> ) + 7. Recalling the fact shown in Lemma 5.2, the
transition of agents’ modes around x* includes only two possibilities depending on the

rotational directions, which are

-—HH—-LH—-LL—-HL —-HH —---, (5.35)
-—HH ->HL -LL—-LH—HH—---. (5.36)

The transition sequence of the noncooperative system G(J) used for Fig. 5.3(b) is
depicted in Fig. 5.4, where the sequence is given by the former one since the rotational

direction of the trajectories is counterclockwise.

Now, the local stability property of Nash equilibrium x* of the pseudo-gradient
dynamics (5.5), (5.6) is equivalent to the stability property of the piecewise linearized
system given by

i(t) = Ap(2(t) — %), x(t) € Dy (5.37)

Recalling that Dy, k € K, satisfy Urex D, = R? (Lemma 5.3) and (int D;) N (int 15]) =0
for i,j € K, i # j, we use the method shown in [78]| to determine stability of the
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Figure. 5.4 Mode transition in (5.5), (5.6) around z* in the same G(J) as Fig. 5.3 where
Aix* +b; £0,1 € {1,2}.

piecewise linear system (5.37). Specifically, define the normalized radial growth rate
for each mode k£ € K by

A Ldr T (0)An(0)

T(0)Arn(0)
pe(0) = —95 = det[n(6), Ay (0)]

7
n*(0)Pen(0)’

where Py is defined in (5.22). Note that pi(0), k € IC, are continuous in 6. Then, the

integral of the normalized radial growth rate is given by

(5.38)

Oo+2m

w2 [ oo (@), (539
)

where 0y € R and K () € K is a function of the phase 6 representing which mode is

active for (5.37) around the Nash equilibrium z*. Note that v, in (5.39) is invariant

under ¢, because pg () is a periodic function of 6 of period 27. The value of 7, is

numerically evaluated once the active mode K (#) is determined.

Theorem 5.1. Consider the loss-aversion-based noncooperative system G(J) with
the pseudo-gradient dynamics (5.5), (5.6) under Assumption 5.1 for A;x* + b; # 0,
i€ {1,2}. If ajymg > 0 and a?yyg < 0 (vesp., ajyyg < 0 and afyyg > 0), then the
Nash equilibrium z* in (5.5), (5.6) hold, is asymptotically stable (resp., unstable).

Proof First, note that v, = 0900+27r pre)(0)d0 = f9i0+27r%§_gd9 =

represents the ratio of the distances between the Nash equilibrium x* and the

TGO +27

—0=2 - where
T’@O

log
7"90 +27

%
states when the state travels for one round from the phase 6y to 6y + 27w. For the

counterclockwise case (i.e., aly < 0 A a2y > 0), 75 < 0 (resp., 1g > 0) implies that the
state is coming closer to (resp., farther from) z* under (5.37) after it travels for one

round. For the clockwise case (i.e., aj, > 0 A a?, < 0), the opposite is true. Hence, if
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alyy > 0 A alyy < 0 (resp., alyy < 0 Aayy > 0), then noting alya?, < 0, the Nash

equilibrium z* is asymptotically stable (resp., unstable). O

Remark 5.7. Even though it follows from Lemma 5.3 that oil, o}, odl ok do not

change the partition of Dy, k e K, they affect the normalized radial growth rates
P, k € K, in (5.38) by altering Py, Ag, k € K, and hence may change the stability

property.

Remark 5.8. The parameters al,, al;, b, b? neither change the normalized radial
growth rates pg(0), k € K, nor the switching phases 6 = arctan(—%), arctan(—%),
arctan(—%) + arctan(—%) + 7, but they affect the active mode K (6) due to a
permutation of the locations of Dy, k € K, among the 4 convex cones partitioned by

(5.2) and (5.3), and hence may change the stability property.

Case 2: Ax*+b, =0, 1€ {1,2}

In this section, we characterize the stability property of the Nash equilibrium z* for
Ajz* +b; = 0 for ¢ € {1,2}. In such a case, recall that the domains Dy, k € K, are
convex cones with z* being the center since J¥(z) = (z — 2*)TQ¥(z — %), i € {1,2},
k€K, in (5.10).

Note that if QF > 0,7 € {1,2}, k € K, then it follows that int Dy, int Dy, int Drg =
0, and Dy = R? (Remark 5.1) so that there is no mode transition. Henceforth, in
this section for Case 2, suppose that the matrices Q¥ = QfT, i€ {l,2}, k€ K, are all
sign-indefinite. Under this condition, each of the domains Dy, k € K, satisfies D), # R?
and the boundaries of the existing convex cones Dy, characterized by J¥(x) = 0 and/or

JE(x) = 0 are given by the 2 lines out of the 4 lines

AT I+ 3 =0, AE 4+ 3,=0, (5.40)
ASTE + By =0, Ab % +39=0, (5.41)

where

o Q?(l,z) * \/Q?(1,2)Q§(1,2) - Q?(1,1)Q§(2,2)
’Y. =

; €R, (5.42)
Qi‘c(z,z)

and QF¥(a,b) denotes the (a,b)th entry of QF.
In general, it turns out that there may be overlapped regions between Dy, k € K.

Depending on the rotational direction characterized in Lemma 5.2, we define the
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Dy,

Dy
|
(a) Du, =D =0 )

| \\ Dy ///ll Dr1,° Nash equilibrium z* o Flash switching instant

Figure. 5.5 An example of the partition of Dy, k € K, from the domains Dy, k € K, for A;z* +
b = 0,1 € {1,2}. (a): Di,k € K, (b): effective domains Dy, k € K, with counterclockwise
trajectories.

effective domains Dy, k € K, indicating that which mode is active in the overlapped
regions by properly partitioning the state space. Specifically, we assume that the modes
do not change until increasing/decresing property of .J; changes so that agent i switches
its sensitivity parameter a;(-) when agent ¢ reaches the boundary of the current mode
(see the effective domains for a trajectory moving in the counterclockwise direction in
Fig. 5.5(b) yielded from the domains Dy, k € K, given in Fig. 5.5(a)). Note as a direct
consequence of Lemma 5.1 that Dy, k € K, satisfy Urex D, = R2.

Consequently, the stability property of the Nash equilibrium z* of the pseudo-
gradient dynamics (5.5), (5.6) is equivalent to the stability property in the piecewise
linear system given by (5.37) with Dy, replaced by Dy. Similar to the previous section,
we use the integral of the normalized radial growth rate v, to determine stability of
the Nash equilibrium z*. Note that since the active mode of (5.37) at phase 6 + 7
is exactly same as the active mode at phase 6 (i.e., K(0 + m) = K(f)), we have

Oo+m
Veg = 2 f90°+ pr () (0)d6.

Theorem 5.2. Consider the loss-aversion-based noncooperative system G(.J) with the
pseudo-gradient dynamics (5.5), (5.6) under Assumption 5.1 for A;z*+b; = 0,7 € {1, 2}.
Then the following statements hold:

1) If ajyyg > 0 and alyye < 0, then the Nash equilibrium z* in (5.5), (5.6) is
globally asymptotically stable;

2) If 7,y = 0, then (5.5), (5.6) are marginally stable and the trajectory of (5.5),
(5.6) constitutes a closed orbit;

3) If alyye < 0 and a?yyg > 0, then the Nash equilibrium z* in (5.5), (5.6) is

unstable.
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Figure. 5.6 Mode transition sequence in (5.5), (5.6) around the flash switching instants ¢; and
ty in Fig. 5.5. At those flash switching instants, agent 2 first switches its sensitivity parameter
and agent 1 further switches its sensitivity right after agent 2’s switch.

Proof The proof for 1) and 3) is similar to the proof of Theorem 5.1. For both cases
of counterclockwise and clockwise trajectories, v,z = 0 implies that the trajectory goes
back to the same point when it travels for one round from the phase 6, to 6y + 2.
Now, 2) is immediate. O

Next, we present several interesting observations on agents’ behavior in the following
statements. In terms of the mode transition sequence, there may exist some time
instant ¢ at phase 6 at which the agents switch the sensitivity parameters such that

the active mode K (6(t)) experiences

K(0(t7)) # K(0(t)) # K(6(t7)). (5.43)

We call such a switching instant ¢ as a flash switching instant. Figure 5.6 shows an
example of the mode transition around a flash switching instant ¢; used for Fig. 5.5(b),
where agents’ state enters into Dy, after leaving Dy at time £;. In this example,
when the 2 agents are in the domain Dpy and agent 2 reaches its boundary at ¢,
agent 2 switches the sensitivity from ol to ak since Jy(t;) becomes 0 from Jy(¢7) > 0.
However, since agent 2’s switching behavior results in J; (t1) > 0 from J;(¢7) < 0, agent
1 further switches its sensitivity from ol to oil right after the agent 2’s switch (¢]).
After time ¢}, since agents’ state successfully enters into the domain Dgr,, the agents
keep the mode HL. In the example of Fig. 5.5, the next switching instant ¢y (and
all the switching instants) shown to be flash switching instants as well. In short, the
reason why there may exist a flash switching instant is that a single agents’ sensitivity
transition can be a trigger to make the other agent immediately switch its sensitivity

almost at the same time instant.
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Under the following assumption, the next results show that the effective domain

Dy, can never be adjacent to Dyy and a flash switching instant t exists only if the
sequence of the active modes satisfies (K(0(¢t7)), K(6(t"))) € {(LH, HL), (HL, LH)}.

Assumption 5.2. The straight lines characterized by J¥(z) = 0 do not coincide
with the lines characterized by J¥(z) = 0 for any modes k € K. In other words,
AR AT A5t A4 are all different in (5.40), (5.41) when k is fixed.

Before we present a theorem, we give the following lemma.

Lemma 5.4. If both A; and A, in (5.1) are sign-indefinite under Assumption 5.1
for Ajx* +b; = 0,5 € {1,2}, then int Dy, and int Dy are non-empty for any
ol ol ol ol € R,. Furthermore, the best response line ai,z; + alyzy + b1 = 0
for agent 1 (resp., a%,x1 + a3,y + b3 = 0 for agent 2) belongs only to int Dyy (resp.,

int DHL) .

Proof Note that a},a?, <0, al; < 0,7 = 1,2, and since A; and A, are sign-indefinite,
det A; = alyab, — (aiy)? < 0,7 = {1,2}. Furthermore, on the line a};x; + alyxs + b} =
al @1 + ajyTe = 0, since Af(z) = 0,Ad(z) = 0 in (5.16) and (5.18), it follows from
(5.20) that

Ji () =afAf(2) + a5A%(2) = a5 AT(x) = af(afys + apls)(alyi + a5yds)

1,2 1,2
—af 22 T A (1 o1 4 (al,)))iR < 0, (5.44)
A19079

Jy (x) =afAy() + a5 A%(z) = azAj(x) = a5(atyrr + agrs +63)2 >0, (5.45)

hold for all ¥ € K and any off,al all,al € R,. Thus, the best response line

al,ry + atyzy + b = 0 for agent 1 belongs only to int Dpy for any o, ok, ofl, of € R,
and hence int Dy is non-empty.

The proof for the other case can be similarly handled. OJ

Theorem 5.3. Let t1,t5 be two consecutive switching instants for the noncooperative
system G(J) under Assumption 5.2 for A;x*+b; = 0,7 € {1,2}. If K(A(t)) = LL or HH
for t; <t < ty, then neither the switching instant ¢; nor ¢, is a flash switching instant
and the mode transition satisfies K(0(¢7)), K(6(t)) € {LH,HL} for any ol > ok,
1 =1,2. If, in addition, both A; and A, are sign-indefinite with Assumption 5.1, then
(K(0(t)), K(0(t3))) € {(LH,HL), (HL, LH)} for any off > o}, i =1,2.

Proof First, we prove K (0(ty)) = K(0(t3)) € {LH,HL} (implying that ¢, is not a

flash switching instant). To this end, let the state at ¢ as T and characterize cases in
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terms of K(6(t;)) and z. For example, consider K (6(t;)) = LL (i.e., K(6(t)) = LL,
t; <t < ty) and JH(Z) = 0A JM(Z) < 0 (ie., K(A(ty)) = HL). In this case,
Since A2(Z) > 0 and JM(Z) = aFAL(Z) + oFA3(Z) < 0 imply AL(Z) < 0, we have
JHL () ~ JM(z) = JM(Z) + 6,AL(F) < 0. Note that when Al(Z) > 0, we have
JAL () = JEN(Z) = JM(E) 4+ 6,AL(Z) > 0. Alternatively, when Al(z) = JM(z) =
0, we have A2(z) = JM(Z) = 0. By neglecting the second-order infinitesimal in
Al(z(t])) in (5.20), it follows that J*(t7) ~ akA%(x(t5)) holds for k € K. Hence, since
JUL(tf) > 0, it follows that JI(t]) ~ abA2(z(t])) ~ JF(t3) > 0. Consequently,
z(ty) € int Dyp, holds for both the two cases above in terms of A}(Z) and hence
K(0(t5)) = K(0(ty)) = HL holds. The proof for the other cases can be similarly handled
with the conclusion of K (6(t,)) = K (A(t5)) € {LH,HL}. Thus, K(0(t5)) = K(0(ts)) €
{LH,HL} for K(6(t;)) € {LL,HH}. Furthermore, since K(6(¢{)) € {LL,HH}, it
follows that K(0(t;)) ¢ {LL,HH}, i.e., K(0(¢t;)) € {LH, HL}, which implies that ¢; is
not a flash switching instant, either.

Next, we prove K (0(t7)) # K(6(t5)) for sign-indefinite A;, A5. To this end, we show
that Dry, Dy, are never composed of 4 convex cones. Suppose, ad absurdum, Dyy =
{z eR?: JM(z) <0} N {z e R?: JM(z) > 0} is composed of 4 convex cones in G(.J)
with a certain set of sensitivity parameters (oll, of, ofl, o) = (all, &b, afl, a%). In this
case, from a geometric consideration of the domains, it follows that {z € R? : JM(z) <
0} U {z € R? : J}(z) > 0} = R2 Next, consider a set of sensitivity parameters

(all, ol adl ok) with ol = &l and o} = all. Note that since the sensitivity profile
oMl = diag[al, adl] for the second set is the same as the value of o"! = diag[a}, all]

in the first set, the domain
int Dy, = {z € R?: J(z) > 0} N {z € R? : Ji(z) < 0}
= {z eR?: JMM(z) > 0} N {z € R?: JM(z) < 0}
= (R?*\ {z e R?: JM(z) < 0}) N {z € R?: J}H(z) < 0}
= ({z e R?: JHM(z) > 0} \ DLy) N {z € R?: JM(2) < 0}

is empty, which contradicts with Lemma 5.4. Thus, Dpy is never composed of 4 convex
cones. The proof for Dyy, can be similarly handled. Now, suppose, ad absurdum, that
K(0(t7)) = K(0(t5)) € {LH,HL}. Since the rotational direction of the trajectories are
consistently the same in R2, it follows that ﬁLL U ﬁLH =R? or ﬁLL U ﬁHL = R? must
hold for K(6(t)) = LL, t; < t < to, which also contradicts with Lemma 5.4. (The case

of K(0(t)) = HH, t; <t < ty, can be similarly handled.) Thus, the proof is complete.
O
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Remark 5.9. Theorem 5.3 implies that if YiLL or 25HH exists for sign-indefinite Ay,
A,, then ﬁLH and @HL are adjacent to f)LL and /or f?HH and hence the mode transition

sequence around f?LL and @HH is respectively given by ---=LH=LL=HL=---

and --- =LH = HH = HL = ---. Alternatively, in the case where Dy, = Dyn = 0
(as in Flg 55), both ﬁLH and ,ZiHL must exist, since ﬁLHUﬁHL = Rg and ﬁLH; bHL 7é RQ.
In such a case, the mode transition sequence is given by --- = LH=HL=--- . As a

result, the modes LH and HL always exist when A; and A, are sign-indefinite.

Remark 5.10. Theorem 5.3 does not imply that there always exists a flash switching
instant when the mode transition LH — HL or HL. — LH happens. For instance,
consider the case with zero-sum payoffs. In this case, the overall mode transition
sequence is composed of only modes LH and HL and the agents always simultaneously
switch the sensitivity parameters at the same switching instants since the straight lines
JU(z) = 0 and J}(x) = 0 (or, JM(z) = 0 and JM*(z) = 0) coincide with each other.

As a result, the switching instants in such a system are not flash switching instants.

Note that the case where Q%, k € K, are positive definite and Q%, k € K, are
sign-indefinite can be similarly handled by evaluating the sign of v, in (5.39) with

possibly fewer number of domains.

Case 3: Ajx* +b; #0, Asx™ +by =0

In this section, we characterize the stability property of the Nash equilibrium z* for
Az + by # 0, Ayx* + by = 0 with all sign-indefinite matrices Q%, k € K, in (5.10). In
such a case, each of the domains Dy, k € K, is understood as the overlap of convex
cones and the regions whose boundaries are characterized by hyperbolic (or elliptic)
functions (see the example shown in Fig. 5.1(c) for £ = LL).

Similar to Case I in Section 5.4, we approximate the domain Dy around z* to the
convex cone Dy, by linearizing the quadratic curve characterized by JF(z) = 0 around
x* to the straight line (5.3) for all £ € K. It can be similarly shown that DiL UDin
and Dy U Dy, are the two half planes partitioned by (5.3) (see Fig. 5.7(b)). Then,
considering the overlapped regions, similar to Case 2 (Section 5.4), we define the
effective domains Dy, k € K, by partitioning the state space according to the rotational
direction (see Fig. 5.7(c)). Different from Case 2 where some of the effective domains
Dy, k € K, may be empty, none of Di, k € K, is empty in Case 3 and hence all of
the 4 modes exist. Then, the stability property of the Nash equilibrium z* of the
pseudo-gradient dynamics (5.5), (5.6) is equivalent to the stability property in the
piecewise linearized system given by (5.37) with D;, replaced by Dj.
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o Nash equilibrium z* JH@)=0,ke K ----Agent 1 switches
77X\ Rotational direction —— J¥(z)=0,k€ X  ----Agent 2 switches

Figure. 5.7 An example of the partitions of Dy, k € K,Dy, k € K, and Dy, k € K, under
Assumption 5.1 for Ajx* +b; # 0, Agx* +be = 0. (a): Dy, k € K, (b): approximated domains
Dy, k € K, (c): effective domains Dy, k € K, determined from (b) with trajectories moving in
the clockwise direction.

Theorem 5.4. Consider the loss-aversion-based noncooperative system G(.J) with
the pseudo-gradient dynamics (5.5), (5.6) under Assumption 5.1 for Ayz* + by # 0,
Asz* + by = 0. If ajyng > 0 and afyyg < 0 (resp., ajyyg < 0 and alyyyg > 0), then the
Nash equilibrium z* in (5.5), (5.6) is asymptotically stable (resp., unstable), where 7,
is defined in (5.39).

Proof The proof is similar to the proof of Theorems 5.1 and 5.2. 0

Proposition 5.2. Assume that x* satisfies Ajx* 4+ by # 0, Ayx™ + by = 0. Then there

is no flash switching instant for any o' > al, i = 1,2, in the neighborhood of x*.

Proof Let 1,3 be two consecutive switching instants. Note that if K(6(¢)) = LL or
HH (resp., LH or HL) for t; < t < ty, then K(6(¢t;)), K(0(t3)) € {LH,HL} (resp.,
{LL, HH}). Moreover, since J§(z) = oA} (z) + a5 Ad(z), k € K, and A3(z) = 0 on the
best-response line (5.3), the sensitivity change ol — ail or ol — o} does not change
the sign of J¥(z), k € K, on the best-response line (5.3) and hence agents’ state can
never enter Dy, after leaving Dyy. In other words, around the Nash equilibrium z*, if
K(6(t)) = LH or HL for ¢; < t < ty where t1, t2 are two consecutive switching instants,
then K (0(t7)), K(0(t3)) € {LL,HH} for any ol > ok, i = 1,2. Therefore, there does
not exist any flash switching instant in the loss-aversion-based noncooperative system
around the Nash equilibrium x* for Ajz* + b; # 0, Asx™ + by = 0. O

Note that the case where QX, k € K, are positive definite can be similarly handled
by evaluating the sign of 7, in (5.39) with possibly fewer number of domains. In this
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case, the modes LH and HH always exist. As a result, there exist at least 2 modes in

the loss-aversion-based noncooperative system for Ajx* + by # 0, Ayx™* + by = 0.

Discussion

In this section, we further compare the Cases 1-3 characterized in the previous sections
in terms of the normalized radial growth rate and extend the proposed framework for
the case where the order of the payoff functions is greater than 2.

The following result shows a special property of the normalized radial growth rates
pe(0), k € K, defined in (5.38).

Proposition 5.3. The normalized radial growth rates p.(6), k € K, possess the

ll2 al (l2
common values at the 4 phases 6 = arctan(—-4?), arctan(—_3*), arctan(—=?) + 7,
22 12 22

arctan(—ail) + 7 characterized as the switching phases for Case 1 (Remark 5.6).

afy
2 2 2 1
Specifically, pk(arctan(—%)) = pk(arctan(—%) +7) = %, pk(arctan(—%)) =
1 1
pk(arctan(—%) +m) = —% for all k € K with any ofl, ol ol o} € R,.

Proof The proof is immediate by checking the values of p(6) at the specified phases.
O

Remark 5.11. Proposition 5.3 implies that the normalized radial growth rate pxg)(6)
in Case 1 is continuous on 6, since pi(#), k € K, possess the same values at the 4
switching phases (see Fig. 5.8(a)). However, in Cases 2 and 3, since agents may switch
the sensitivity parameters at a phase 6 ¢ {arctan(—%), arctan(—%), arctan(—%)%—w,
arctan(—%) + 7}, pro)(0) is most likely to be discontinuous at the switching phases
(see Fig. 5.8(b)).

To discuss how a small perturbation on the parameters in A;, Ay, by, by affect
the stability of the Nash equilibrium z*, since from (5.4) the small perturbations on
aly, aly, bi, a3, a3, b3 change the location of the Nash equilibrium in the state space,
we focus only on the parameters aj,, a3, b3, b3 which do not affect the value of x*.
Specifically, consider Case 2 (A;x* +b; = 0,7 € {1,2}). Then even a small change
in a3, or by yields Ajz* + by # 0 so that Case 2 changes to Case 3 however small
the perturbation is. Moreover, if there further exists a small perturbation on a?, or
b?, then Ayz* + by also becomes nonzero and hence Case 3 changes to Case 1. For
example, it can be seen from Fig. 5.8 that since the small perturbations on b2, b3 for
Aiz* 4+ b; = 0,7 € {1,2}, change the noncooperative system G(.J) from Case 2 to
Case 1, the active mode K () may drastically change depending on the phase 6 and
hence the stability property of the Nash equilibrium x* may also be affected.
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Figure. 5.8 Typical normalized radial growth rates pg(g) (), px(0),k € K,0 € [—7, 7], with
the same Aj, Ag, b}, b2 but different b2,b3. (a): A;z* +b; # 0,7 € {1,2} (Case 1), (b):
Aiz* +b; = 0,i € {1,2} (Case 2). The parameters b3, b} in (a) are obtained by giving small
perturbations on b? and b3 in (b).
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It is worth noting that as long as local stability is concerned around a Nash
equilibrium z*, the similar results can be drawn for the case of non-quadratic payoff
functions which yield nonlinear pseudo-gradient dynamics. Specifically, for a (not

necessarily quadratic) payoff function J;(x), it can be expressed in the form of

Ji(x) = Ji@*) + (ZZENTE 4 LT AE 4 ey(x)
= LTAx+blz + ¢ +(x), (5.46)

where €;(z) includes 3rd- or higher-order terms, A; € R?*? is the Hessian matrix of J;(z)
evaluated at z*, b; = 220 — Az € R?, and ¢; = Ji(2*) — (ZBEN)Tyr 4 LT A0 €
R. Noting that A; in (5.46) plays a similar role as the one in (5.1), stability analysis
around the Nash equilibrium can be similarly conducted as in the theorems and the

propositions given in this section.

5.5 Stability Analysis With Real Eigenvalues

In this section, we generalize the stability results in Section 5.4 by relaxing the restriction
on complex conjugate eigenvalues. For simplicity, we suppose that A;z* + b; # 0,
i € {1,2}, hold with al,a2, # alya?, # 0. In this case, the approximated domains D,
k € K, of the piecewise linearized system (5.37) are partitioned by the best-response

lines (5.2) and (5.3) (Lemma 5.3). Moreover, since the eigenvalues of A, are given by

kA 2 k- k(1 .2 1,2
Al = Y — \/1% - a1a2(a11a22 — a}ya3y),

Y £ it vl - aof(adia, - alad), (547

with ¢ = I(afal, + oka3,) < 0, all of the matrices Ay, k € K, are stable (resp.,
unstable) for aj a3, — al,a?y, > 0 (resp., < 0). The eigenvectors of the system matrix

Ay, (# ol for all o < 0 under al,a?, # 0) are denoted by v and v} satisfying

Ayof = Mok ie {1,2}). (5.48)

A A

In the following subsections, we first handle the stable subsystems case (ai,a%,—ai,a3, >

0), then we give the results for the unstable subsystems case (ai,a3, — aj,a3y < 0).

Stable Subsystems

In this section, we consider the case with stable subsystems, i.e., a},a3, — ajya?, > 0.
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U1

Dy

Y
1

(a)

Figure. 5.9 Examples of the noncooperative system with a strongly transitive mode k € K
where \¥, A5 € R, alja2, > alya?,. Arrows: eigenvectors. (a): A¥ # A& (two independent
eigenvectors), (b): A¥ = A5 with the improper node z*. The mode k is strongly transitive
since the rotational direction of the trajectories keeps counterclockwise or clockwise in Dy.

Definition 5.1. [77] The mode k € K is strongly transitive if there exists a time
instant ¢ such that z(t) & Dy, for any x satisfying 2o € Dy, \ {z*}.

Definition 5.2. [77] The mode k € K is weakly transitive if one of the following
statements is true for any z, satisfying o € Dy \ {z*}:

1) there exists a time instant ¢ such that z(t) & Dy.

2) z(t) € Dy, for all t > 0 and lim,_,o z(t) = z*.

To reveal the generalized results on stability property, we use the above notions
for the rest of this paper. Here, we note that every strongly transitive mode is also
a weakly transitive mode [77]; if all of the modes are strongly transitive, then there
exist infinitely many mode transitions in the noncooperative system. Section 5.4 only
handles the simplest case with 4 strongly transitive modes and infinitely many mode
transitions since A¥, A5 € C hold for all modes k € K. However for the case with some
real eigenvalues, there may still exist 4 strongly transitive modes and infinitely many

mode transitions.

Remark 5.12. Recalling o* A # o1 for all 0 < 0 under a},a?, # 0, the noncoopera-
tive system traces a straight-line trajectory only when the initial state z( is on the
eigenvectors. Hence, the mode k € K satisfying \¥, A} € R is strongly transitive if and

only if no eigenvectors are containing in f)k (see Fig. 5.9).



119

Now, we begin to identify the transitivity of the 4 modes. In the following results,
we first present a necessary condition for a mode to be strongly transitive, and then

we present the detail conditions to identify the transitivity.

Proposition 5.4. Let Kgp C K be the set of strongly transitive modes for A;x*+b; # 0,
i € {1,2}. If Kgr is non-empty, then a}yaf, < 0 holds and the rotational directions of
the system trajectories never change in the domains Dy, k € Kgr, around the Nash
equilibrium z* for any o' > ok, i = 1,2. Specifically, if al, < 0 A a2, > 0 (resp.,
at, > 0 A a2, < 0) holds, then the rotational directions of the system trajectories are
counterclockwise (resp., clockwise).

Proof: Note that on the best-response lines (5.3) and (5.2), we have

TP~ _ k2 ~2 k1 ~2 ko1 k. 2\~ -~
T PpT = asajyT] — afajs®s + (—afay; + asa5,)T1 T
1 (.22 2 (k1 k2 2 1 1,2
(k2 k 012(05) aip(aay — 05a%9) | o o —Aiya1y +A1103) o
= (agay, — of (a2,)? 2 )1 = ayai, (a2, )? P
a32 32 a3z
(5.49)
~Tp ~_ k.2 ~2 E 1 ~2 ko1 E 2\~ ~
TT P = asajyT] — afajs®s + (—afaj; + asas,)T12e
2 (12 1 (k1 k2 2 1 1,2
= ( ) Q1a(ary) okl & app(ayay; — a2a22))i,2 — okl —Q1901 + a11a22i2
- 2 (al )2 1%12 al 2 2%12 ((ll )2 29
11 11 11
(5.50)

respectively, which can be used in (5.21) for determining the rotational direction
at the states on best-response lines. Now, note that the rotation directions of the
trajectories in a strongly transitive domain Dy (including the boundaries (5.2) and
(5.3)) with £ € Kgr must be the same and hence it follows from (5.49) and (5.50)
that the non-empty set Kgr indicates a}ya?, < 0. Noting that the signs of (5.49) and
(5.50) do not change when o} or af changes, it follows that the rotational directions of
the system trajectories are the same in the domains f?k, k € Kgr. Thus, the result is
immediate since aj, < 0 Aa2, > 0 (resp., aly, > 0Aa?, < 0) under —a?,al, +al a3, >0
indicates that (5.49), (5.50), and 6 defined in (5.21) are positive (resp., negative) and
hence the rotational directions of the system trajectories are counterclockwise (resp.,

clockwise). n

Remark 5.13. Note that Proposition 5.4 is a generalized result of Lemma 5.2.
Lemma 5.2 characterizes a special case with Kgr = K so that the rotational directions

of the trajectories are consistently the same in the entire state space R2.

In general, all modes being strongly transitive is only a sufficient condition for a

piecewise linear system possessing infinitely many mode transitions [77]. For example, a
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sliding mode may exist in the boundary of two convex cones if the rotational directions
of the system trajectories changes are opposite among two strongly transitive modes
(see Example 13 of [77]). However, as the mode transition does not affect the rotational
direction of the trajectories at the boundaries of the domains Dy, (see (5.49) and (5.50)),
it follows that the sliding mode never happen in the loss-aversion-based noncooperative
system and hence that all modes being strongly transitive is also a necessary condition
for the piecewise linearized system (5.37) possessing infinitely many mode transitions.

Hence, the following result is immediate.

Lemma 5.5. Consider the loss-aversion-based noncooperative system G(.J) with the
pseudo-gradient dynamics (5.5), (5.6) for A;z* + b; # 0, ¢ € {1,2}. Then, there
exists infinitely many transitions around the Nash equilibrium z* if and only if all of
the modes are strongly transitive, i.e., Kgyr = K. Moreover, in that case, the active
mode experiences all of the 4 modes and the transition sequence only includes two

possibilities, which are expressed in (5.35) and (5.36).

Next, we present the conditions to identify the transitivity of mode k € K to derive
the set Kgr.

Proposition 5.5. Consider the loss-aversion-based noncooperative system G(J) with
the pseudo-gradient dynamics (5.5), (5.6) for A;z* +b; # 0, i € {1,2}. Let k be
a mode satisfying A}, A5 € R. If al a3, > al,a?, > 0 holds, then all of the modes
LL,HL, LH, HH are weakly but not strongly transitive around the Nash equilibrium
x* for any of! > ol i = 1,2. If al,a?, < 0 holds and a2, (a2} + ad,zs + bY),
(abal, — akad,)(a?,2% + a2yah + b2) possess different signs for k € {LL, HH} (resp.,
{LH,HL}) (or, same signs for k € {LH,HL} (resp., {LL,HH})), then k is strongly

(resp., weakly but not strongly) transitive around z*.

Proof: Since aj,a?, < 0 is the necessary condition for strongly transitive modes,
the result for the case al,a?, > 0 is a direct consequence of Proposition 5.4. Now,
consider aj,a?, < 0 and suppose that n is an infinitesimal real number. In this case,
a state on the elgenvector vF sufficiently close to the Nash equilibrium z* can be
expressed by nvF — x*. Recalling the definition of eigenvectors in (5.48), it follows from
AF(nuf — %) = n)\kvk that

JE (ol — ) —)\k772vk ApF + Nen(Apz® 4 b)) Tof
z)‘fn(Alf +bi) o} = )\kna2a12(a%2$1 + agyt; + by), (5.51)

]

jf(nvf —z") :AanUfTszf + )\fn(AQ:c* + bQ)T’Uk

7

RA(Asa”™ + by) Mo = Nin(A] — aga3,)(afya] + adprs + 7). (5.52)
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hold for i = 1,2. Note from (5.47) that

k k2
Al — ag, ={, — \/@Z)k — afaj(aj; a3, — ajyal;) = i — \/¢k +afafajaly, (5.53)

A5 — afad, =tk + \/@Dk — afaf(al,ady — alyat,) = O + \/@% +afajajsaty,  (5.54)

for ¢y, £ +(afai, — aka3,) and hence both the signs of (5.53) and (5.54) depend on the
sign of 1y, with alya2, < 0. Hence, if a2,(al,xt 4+ alyas +bL) and (ofal, — akal,) (a2, 2t +
a?ywh + b?) have the same sign for k¥ = LL or HH, then there exists  # 0 such that
(5.51), (5.52) possess the same signs for each ¢ = 1,2, which implies that both the

eigenvectors v¥, v§ are containing in D;, and hence mode k is weakly but not strongly

transitive. Alternatively, if a3y(aly2} +alyzs+03) and (afal, —aka3,)(a? 25 +alyxs+0?)
have different signs, then there is no 1 such that (5.51) and (5.52) possess the same
signs and hence none of eigenvectors v¥, v§ is containing in Dy, ie., mode k is strongly
transitive. The proof for £ = HL or LH can be similarly handled. Thus, the proof is

complete. 0

Remark 5.14. Noticing that A\¥, A5 are complex conjugate for all the modes when
al,a?, is negatively small enough, it is interesting to observe that as al,a?, increases
from a negatively infinite small value to a positive value al,a3,, the transitivity of the

4 modes experiences from full strongly transitive to full non-strongly transitive.

Now, recalling the definition of normalized radial growth rate 7., in (5.39), we are

ready to present the generalized result for stability.

Theorem 5.5. Consider the noncooperative system with dynamics (5.5), (5.6) for
Az +b; # 0,1 € {1,2} with stable subsystems (i.e., a};a3, > aj,ai,). If some of the
modes are weakly but not strongly transitive, i.e., Kgt C K, then the Nash equilibrium
x* is asymptotically stable. Alternatively, if all the modes are strongly transitive, i.e.,
Kgr = K, and in addition, if ajyyg > 0 and afyyrg < 0 (vesp., ajyrg < 0 and adyyeg > 0)
hold, then the Nash equilibrium z* in dynamics (5.5), (5.6) is asymptotically stable
(resp., unstable).

Proof: The result is a direct consequence of Proposition 5.4 and Proposition 5.5. [J
We present the robust stability condition for the uncertain loss-averse parameters

all > ol as follows.

Corollary 5.1. Consider the noncooperative system with dynamics (5.5), (5.6) for
Aix* +b; #£ 0,4 € {1,2}. If a}ya3, > alyal, > 0 holds, then the Nash equilibrium z* is
asymptotically stable for any o' > ok, i = 1,2.
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Proof: The result is a direct consequence of Theorem 5.5 and Proposition 5.4 by
noting that Kgr = @) under a},a?, > 0. O

Unstable Subsystems

In this section, we consider the case with unstable subsystems, i.e., a},a3, — al,a?, < 0.
In this case, the eigenvalues A\¥, A5 must be real and satisfy A\¥ < 0 and A5 > 0 (see
Proposition 2.3 in Chapter 2) and hence for the subsystem under mode k there exists a
stable manifold and an unstable manifold characterized by the eigenvectors v¥ and v§
respectively. Here, we notice that the analysis in terms of the approximated domains
in Proposition 5.3 still hold. Similar to the previous section, we present the condition
to determine the transitivity properties of the 4 modes and then show the stability.
Before we present a proposition, we note that the mode k € IC is strongly transitive
if no eigenvectors are containing in Dj; the mode k is weakly but not strongly transitive

if only the stable eigenvector (i.e., v¥) is containing in @k; the mode £ is non-weakly

transitive if the unstable eigenvector (i.e., v%) is containing in Dy.

Proposition 5.6. Consider the loss-aversion-based noncooperative system G(J) with
the pseudo-gradient dynamics (5.5), (5.6) for A;x*+b; # 0,4 € {1,2}. If alya3, < alyal,
holds, then none of the modes LL, HL, LH, HH is strongly transitive around the Nash
equilibrium x*. If, in addition, a?,(al,x} + alyx} + b)) and a?,z% + a?,x% + b? possess
different (resp., same) signs, then the modes LI, HH are weakly transitive but LH, HL
are non-weakly transitive (resp., LH, HL are weakly transitive but LL, HH are non-

weakly transitive).

Proof: First, the result that one of the modes LL, HL, LH, HH is strongly transitive
around the Nash equilibrium z* is a direct consequence of Proposition 5.4 since
alya?, > alya3, > 0. Next, it follows from \§ — aba2, > 0, k € K, that the variables
(5.51) and (5.52) with ¢ = 2 possess the same (resp., different) signs for all modes
k € K when a2,(al,xt + aloxl + b)) and a? x} + a?,25 + b? have the same (resp.,
different) sign. Thus, when a2, (alyxt + a2 + b)) and a? z} + a2,x% + b? possess the
different signs, it follows that the unstable manifold characterized by the unstable
eigenvector v¥ is containing in D, only for £ = LH, HL. and hence the modes LH, HL.
(resp., LL, HH) are non-weakly transitive and (resp., weakly transitive). Alternatively,
when a?y(aizf + adors + b)) and a? 27 + a5 + b? possess the same signs, it follows
that the unstable manifold characterized by the unstable eigenvector v} is containing
in Dy only for the modes & = LL, HH and hence the modes LL, HH (resp., LH, HL) are

non-weakly transitive and (resp., weakly transitive). Il
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Figure. 5.10 A diagram showing the stability change and mode transitivity change along with
the change of alya?,.

Then, the following statement is immediate.

Theorem 5.6. Consider the noncooperative system with dynamics (5.5), (5.6) for
Aix* +b; #0, 4 € {1,2}, with unstable subsystems (i.e., a};a3, < al,a?,). Then, the

Nash equilibrium z* is unstable for any ol! > ol i =1,2.
Proof: The result is a direct consequence of Proposition 5.6. 0

Remark 5.15. Theorem 5.6 reveals the fact that loss-aversion behavior are not able

to stabilize the unstable two-agent noncooperative system.

Discussion

In this subsection, we show a diagram summarizing the stability results derived from
the above 2 subsections in Fig. 5.10, which can be seen as a bifurcation diagram
illustrating the stability change and the mode transitivity change along with the change
of the bifurcation parameter al,a?,. It turns out that with the change of the value
al,a?,, loss-aversion behavior may or may not destabilize the Nash equilibrium z*.
First, recall that the eigenvalues \¥, A% defined in (5.47) are complex conjugate
and hence all of the 4 modes are strongly transitive for all the modes when ai,a?,
is negatively small enough. In this case, loss-aversion behavior destabilizes the Nash
equilibrium z* when the integral of normalized radial growth rate 7,, defined in (5.39)
satisfies al,y < 0 and a?yy > 0 (see Theorem 5.5). Then, as the value of ajya?,
increases, the eigenvalues A\¥, A5 tune to real for some modes k € K and some of the
modes change to be weakly (but not strongly) transitive. In this case, loss-aversion
behavior does not destabilize the Nash equilibrium z*. When a},a}, increases to a
positive value, i.e., aj,al, > 0, then all of the 4 modes tune to weakly but not strongly
transitive and hence the Nash equilibrium x* is robust stability for any loss-averse
parameters afl > al (see Corollary 5.1). In this case, loss-aversion behavior never

destabilize the Nash equilibrium z* for any loss-averse parameters o' > ol. Next, as



124

alya?, increases to a positive value larger than al a3, so that all of the subsystems are

unstable, it turns out that two of the four modes are non-weakly transitive and hence
the Nash equilibrium z* in unstable for any al! > ol (see Theorem 5.6). In this case,

it can be seen from the result that loss-aversion behavior can not bring stabilization.

5.6 Illustrative Numerical Examples

In this section, we provide a couple of numerical examples in order to validate the
results in the paper.
-2 —4

|

Example 5.1. Consider the noncooperative system G(J) with 4; = [ L o

—6 3
Ay = [ . } by = [-10,—5]T, by = [30, —25]T, ¢ = 162.47,¢» = 0, where the
Nash equilibrium z* = [5, —5|T satisfies A;x* +b; # 0,7 € {1,2} (Case 1). Letting

af =af =1, ofl =2, ol = 3, Assumption 5.1 is satisfied. Figure 5.11 shows the

curves of Jf(x) = 0,7 = 1,2, for all the modes k € K. In this case, A}l + A; < 0 for
all k € IC, 0 € [0, 2], and hence the normalized radial growth rates px(0) < 0,k € K,
imply vz < 0. Hence, it follows from Theorem 5.5 that the Nash equilibrium z* is
asymptotically stable, which can be verified by the trajectories of states and payoffs
shown in Figs. 5.12 and 5.13.

-2 4 }

Example 5.2. Consider the noncooperative system G(J) with A; = [ A 10

A, = [—10 —4

-4 =2
x* = [0,0]T satisfies A;z* +b; = 0,7 € {1,2} (Case 2). Suppose that ol = oll = 6,
ol = oll = 9 for representing the case where the agents are not loss-averse. Then, the

}, by = by = [0,0]Y, ¢; = ¢ = 0, where the Nash equilibrium

eigenvalues of A, = Ay, = Ay = Agy are given by —15.0+29.2¢, which imply that the
Nash equilibrium is stable with the identical subsystem dynamics for all the modes. Now,
suppose that both agents are loss-averse and let ot = o = 1, then the eigenvalues of
Ay, k = LL,HL, LH, HH, are respectively given by —1.04+4.0¢, —7.0£8.47, —10.0+8.9¢,
and —15.0 & 29.27 so that Ay, k € K, are still all stable matrices. Figure 5.14(a) shows
the domains of Dy, k € K. Noting that ajy > 0 and a?, < 0, it follows from Lemma 5.2
that the rotational direction is clockwise. Hence, we re-partition the state space from
Dy, k € K, to identify the effective domains Dy, k € K, as shown in Fig. 5.14(b), and
hence derive the function of K (). Note that the integral of the normalized radial
growth rate is 7y, = fo% pr)(0)d0 =2 [ p9)(0)dd = —0.3224 < 0. Hence, it follows
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Figure. 5.11 The curves of JF(z) =0, i € {1,2}, k € K, in Example 5.1.

from Theorem 5.2 that the Nash equilibrium is unstable since ajyyg < 0 and a?yyeg > 0
even though all the subsystem matrices are stable. The result of Lemma 5.2 and
Theorem 5.2 can be verified from the trajectories of states and payoff values shown in
Figs. 5.15 and 5.16.

T
-2 4
Example 5.3. Consider the noncooperative system G(J) with A; = T ] ,

] , by =1[0,—20]T, by = [0,0]T, ¢; = ¢ = 0, where the Nash equilibrium

14 —4
—4 =2
x* = [0,0]T satisfies Ajz* + by # 0, Asx* + by = 0 (Case 3). Letting of =2, o =1,
all = 4, ol = 3, the eigenvalues of Ay, k = LL, HL, LH, HH, are respectively given by
~3.045.6i, 5.0+ 7.4i, —5.0 + 9.4i, and —7.0 + 13.8i. The domains Dy, k € K, the
approximated domains Dy, k € K, and the effective domains Dy, k € K, are already

Ay =

shown in Fig. 5.7(a), (b), (c), respectively. Figure 5.17 shows the the normalized radial
growth rate prg)(#), 6 € [0,27]. Note that the integral of the normalized radial growth

rate is

2
Veg = / pre()(0)dd = 0.9520 > 0. (5.55)
0

Hence, it follows from Theorem 5.4 that the Nash equilibrium is stable since ajy7y,g > 0
and afyyrg < 0. The result of Theorem 5.4 can be verified from the trajectories of

states and payoff values shown in Figs. 5.18 and 5.19.
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Figure. 5.12 The approximated domains ﬁk, k € K, and an orbit with £ = =z — z*, in
Example 5.1.
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Figure. 5.13 Agents’ payoffs versus time in Example 5.1.

Figure. 5.14 The domains of Dy, and Dy, k € K, in Example 5.2. (a): Dy, k € K, (b): Dy,
k € K (obtained from (a) with clockwise rotational direction) from which K () is determined.
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Figure. 5.15 The effective domains Dy, k € K, and an orbit in Example 5.2.
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Figure. 5.16 Agents’ payoffs versus time in Example 5.2.
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Figure. 5.17 Normalized radial growth rates py(0), k € K, and pg (), 0 € [0,27], in
Example 5.3.
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Figure. 5.18 The effective domains Dy, k € K, and an orbit in Example 5.3.
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Figure. 5.19 Agents’ payoffs versus time in Example 5.3.

—4 0.2
Example 5.4. Consider a noncooperative system with A; = [ 02 10 ], Ay =

—4.2 —-0.2
-02 -4
holds and the Nash equilibrium x* = [0, 0] satisfies A;z* +b; # 0, i € {1,2}.

, by = [0,2005]T, by, = [2000,0]T, ¢; = ¢3 = 0, where a},a2, > a},al,

Let o =3, all =5, af =4, ol = 6 so that A, \k € R hold for k € K. In this
case, it follows from Proposition 5.4 that at least one of the 4 modes is weakly but not
strongly transitive and the Nash equilibrium x* is asymptotically stable. Furthermore,
it follows from Theorem 5.5 that the modes HH, LL, HL are strongly transitive but
mode LH is weakly but not strongly transitive. Figure 5.15 shows the approximated
cones Dy, k € K. The eigenvectors of the 4 modes are shown as colored lines in Fig. 5.15
where the dashed (resp., solid) lines denote the eigenvectors satisfying vF ¢ D, (resp.,
vF € D). Tt can be seen from the figure that only the mode LH is weakly but not
strongly transitive since the eigenvectors v¥, v§ are containing in the domain Dy only
for k = LH. The trajectories of agents’ sensitivity parameters and payoff values under
the initial state zo = [4,1]T are shown in Fig. 5.21. It can be seen from the figure that
the mode is changed from LL to HL, HH, LH and never changed after LH, and hence
the modes HH, LL, HL. are strongly transitive but mode LH is weakly but not strongly

transitive, which verifies Theorems 5.5, 5.5 and Proposition 5.4.

5.7 Chapter Conclusion

In this chapter, we investigated the stability conditions of the noncooperative switched
systems with loss-averse agents, where each agent under pseudo-gradient dynamics

exhibits lower sensitivity for the cases of losing payoffs. We characterized the notion
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—4z, 4+ 0.229 =0
L ort

Figure. 5.20 Phase portrait with an orbit where —0.2%; — 422 = 0 and —4%; 4+ 0.2Z2 = 0 are
the best response lines for agents 2 and 1.

of the flash switching phenomenon and examined stability properties in accordance
with the location of the Nash equilibrium for 3 cases. We revealed how the sensitivity
parameters influence the stability property of the system in terms of the dynamics,
partition of the state space, mode transition, and the normalized radial growth rate
for each of the 3 cases. One of the illustrative examples indicates that loss-aversion
behavior inspired by psychological consideration in prospect theory may result in

changing the stability property of the Nash equilibrium from stable to unstable.
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Chapter 6

Incorporation of Predictions of Other
Agents’ Behavior into

Pseudo-Gradient Dynamics

6.1 Introduction

In this chapter, we we connect cognitive hierarchy theory with the pseudo-gradient
dynamics in noncooperative systems to extend the pseudo-gradient dynamics with
some prediction behaviors under Level-k thinking. In the characterized framework, all
the agents are allowed to base their decisions on the predictions about the likely actions
of other agents with a bounded depth of reasoning. Each agent believes that he/she is
the most sophisticated person in the noncooperative system and makes the decision
according to some strategic reasoning of the other agents’ likely action. Depending
on a knowledge network of payoff functions, the modified pseudo-gradient dynamics
are presented under the assumption that the agents may be able to reasoning the
other agents’ best-response states and use these predicted states in the pseudo-gradient
dynamics. Some sufficient conditions are presented to guarantee stability of a Nash
equilibrium with uncertain sensitivity parameters or uncertain knowledge network.
The transition of the agents’ target state while increasing the depth of reasoning for a
two-agent noncooperative system with quadratic payoff functions is characterized. We
present the applications of our results to optical communication systems, homogeneous
oligopoly markets and differentiated oligopoly markets. Our result indicates that
to ensure asymptotic stability of the differentiated oligopoly markets with Cournot

competition, a larger market with more firms requires more differentiated products.
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6.2 Problem Formulation

6.2.1 Conventional Pseudo-Gradient Dynamics

Consider the noncooperative system G(J) defined in Chapter 2 with n number of
agents, where the set of overall agents is denoted by N’ = {1,...,n} and the agents
are playing noncooperative games. Let x = [z1,...,2,|T = (x;,7_;) € R" denote the
state profile of all the agents, where z; € R and x_; € R""! denote the state of agent
1 and the state profile except agent i, respectively. Recall from Chapter 2 that the
conventional pseudo-gradient dynamics given by

with a; € Ry, i € N, capture the fact that the agents concern their own payoffs
(without taking into account the other agents’ payoffs) and myopically change their
states without any foresight on the future state. In this case, each agent’s best-response

state BR;(z_;(t)) corresponds to the largest value of J; given the state profile x_;(¢) and
9Ji(BRi(z—i(t)),x—i(t))

ox;

satisfies = 0 under Assumption 2.1. Therefore, the best-response
state BR;(x_;(t)) for agent i, which does not depend on z;(t), is understood as the
target state of agent ¢ at time t. For example, Fig. 6.1(a) shows the case of 2 agents
where the targeted best-response state BRy(z1(t)) for agent 2 is greater than z5(t) so
that agent 2 tries to improve its payoff function Jy(z(¢)) by moving upward in the
phase space. Under Assumption 2.1, since the Nash equilibrium z* satisfies (2.3), it

follows that

8.’171'

which imply #(¢) = 0 at the Nash equilibrium z* for the conventional pseudo-gradient

=0, ieN, (6.2)

dynamics (6.1).

6.2.2 Prediction-Incorporated Pseudo-Gradient Dynamics

Involving Level-k thinking from cognitive hierarchy theory into the noncooperative
system G(.J), we consider a scenario where some of the agents may base their decisions
on the predictions about the likely actions of other agents. To establish predictions of
such likely actions, it is important to notice that the information of the payoff functions
of these agents are essential for the agents. In this paper, we suppose that the agents
know the payoff functions of part of the overall agents so that the agents can predict

the behavior of these agents. Here, we characterize the relation of the possession of
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Figure. 6.1 Moving directions of z2 of a two-agent noncooperative system with red (resp.,
blue) arrow representing the moving direction of agent 1 (resp., agent 2). (a): both agents
are Level-1, (b): agent 1 is Level-1 but agent 2 is Level-2. Agent 2 believes that agent 1 is
targeting on BRj(x2(t)) and hence the moving direction of its state is opposite in comparison
to Case (a).

the payoff information among the agents by defining a directed graph (termed as the
knowledge network) as explained below.

Knowledge network of payoff functions: Let the knowledge network be repre-
sented by a directed graph G(N, E), where E C {(j,1) € N?:i # j} denotes the set
of edges of the graph. The edge (7,4) directed from agent j to i indicates that agent i
can obtain the information of the payoff function J;(-). The neighbor set of agent i
representing the set of agents whose payoff functions are known to agent ¢ is denoted
by N; 2 {j € N': (j,i) € E}. Among these agents in N, the set of agents with the
edges also directed from agent i is denoted by NP"' £ {5 € N : (i, j) € E}, whereas the
set of the rest of the other neighbor agents is denoted by N?ﬁ 2{ieN;:(i,j) & E}
satisfying ; = NP"' U NP, For example, for the knowledge network G(N, E) shown
in Fig. 6.2, N3 = {1,4} holds with N5"" = {1} and N} = {4}. This decomposition
of N; is necessary when agents become sophisticated as explained later. Furthermore,
the adjacency matrix for G(NV, E) is defined as A,q = [a;;] € R™", where a;; = 1 if
j € N, and a;; = 0 otherwise.

Assumption 6.1. The knowledge network is not a public information, i.e., only the
connections of (j,i) € E, j € N, and (i,j) € E, j € N, associated with agent i can be

known to agent .
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Figure. 6.2 A knowledge network of payoff functions G(N, E). The arrows represent the fact
that the agent at the destination node knows the payoff function of the agent at the start
node.

For the following statements, we denote the set of Level-k agents that we define
below by L, CN, k=1,2,....

Level-1 agent: Without any prediction, agent ¢ € IL; who tries to improve
Ji(z;, x_;) by adjusting its state x; towards the targeted best-response state BR;(x_;)
based on the current state of the other agents z_; is referred to as a Level-1 agent.
The dynamic decision process of Level-1 agents is given by

i(t) = aiajim ((;l’ix_i(t)),

i €Ly, (6.3)

which is equivalent to the conventional pseudo-gradient dynamics (6.1).

Level-2 agent: A more sophisticated agent ¢ € L, believes in the hypothesis that
all the other agents j € N\ {i} are Level-1 following the pseudo-gradient dynamics
(6.3) and hence targeting on their own best-response states BR;(xz_;) (even though
this hypothesis is not true in reality). Therefore, agent i tries to adjust its state x;
following the pseudo-gradient dynamics as if its neighbor agents j € N; were already
at their targeted best-response states BR;(z_;) instead of being based on the current
states ;. Those targeted best-response states BR;(z_;), j € N, are regarded as
the predicted states of the agents from agent ¢’s point of view. For the other agents
Jj € N\ {i,N;}, since agent ¢ does not possess the knowledge of their payoff functions,
agent ¢ cannot predict their targeted best-response states and hence relies on the
current states £ £ {z;};enn ;). Consequently, the pseudo-gradient dynamics for

Level-2 agents are given by

0Ji(wi(t), 2 (t), z45(t))

—1 —1

8$i ’

Qfl(t) = Q4 1€ LQ, (64)

where 2™, £ {BR;(7_;)}jen; denotes the predicted states of the neighbor agents

calculated by agent i. In the case where agent i € Ly has no access to the information
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of any other agent’s payoff function, i.e., N; = 0, it follows that (6.4) reduces to (6.3)
because no prediction can be made. For this reason, agent ¢ can act as a Level-2 agent
only if at least one of the other agents’ payoff functions is known (i.e., N; # 0).

An example of the moving direction of the state x(t) with n = 2, L; = {1},
Lo, = {2} and E = {(1,2),(2,1)} is elaborated in Fig. 6.1(b), whereas the case with
L, = {1,2} (which corresponds to the conventional pseudo-gradient dynamics) is shown
in Fig. 6.1(a).

Predictions under cognitive reasoning' It is important to notice that the
calculation of the predicted states z"; of the neighbor agents for agent i € L, with
k > 3 is not as simple as the one deﬁned in (6.4) because the neighbor agents in
NP and NP™ in A; should be separately treated with different times of iterations of
cognitive reasoning. Specifically, agent i believes that the neighbor agents in Nfrl are
making cognitive operations (predictions) about the likely targeted best-response state
of agent i and hence tries to be more sophisticated than these agents with multiple
cognitive operations for calculating the predicted state. However, agent i does not
need to make multiple cognitive operations to the rest of the neighbor agents in Ner
since they are impossible to predict the targeted best-response state of agent i. In this
paper, the predicted state of agent j € NP calculated by agent i € Ly is defined with
only one iteration of BR;(z_;), which has the same expression as in z"; of (6. 4)

Denoting the profile of the predicted states of the neighbor agents in NE’ and
NP*? for agent i € Ly by 2™ and 27 = {BR, (x,j)}jeNfrz, respectively, we emphasize
that the actual targeted best-response state of agent ¢ (following the pseudo-gradient
dynamics as if its neighbor agents were already at the predicted states) is given by
BR; (2™}, 2”7, ™). Before we give the detailed expression of the predicted states of
the nelghbor agents j € Nfrl for agent ¢ € IL;, we note that the predicted state of agent
j is in general different from the actual targeted best-response state of agent j (even
when j € LLj_; is true in reality) for noncooperative systems with more than 2 agents.
Recalling the fact from (6.4) that :L‘Iirjl is given by {BRs(x—s)}sel\@?” for agent j € Lo,
it follows that the actual targeted best-response state of agent j € L, is given by

BR( prl 131;27 un) BR( 7rj’ un)

= BRj({BRs(fE—s)}se/\fj7 {zstsempingy)s 7 € La. (6.5)

However, since N; is unknown for agent ¢ by Assumption 6.1, agent i € Ly may hardly
predict the actual targeted best-response state of neighbor agent j € L, with uncertain

N\ {i} even with full knowledge of the other agents’ payoff functions when n > 2.
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In this paper, we assume that agent ¢ € IL; evaluates the profile x‘fil of the targeted
best-response states of the neighbor agents j € Nfrl under the naive hypothesis that
agent j is aware of the payoff function of only agent 7, i.e., Nj = N?rl = {i}, N?rQ = (),
because agent i does not have the information of N;. In this case, it follows from
(6.5) with A; = {i} that the predicted states of the neighbor agents j € NP for agent
i € Ly is evaluated as BR;(BR;(z_;), z_(;;)) with z_(;;) € R""? denoting the state
profile except agents j and i (i.e., x_(;;) = {@s}seanfj3), and hence the actual targeted

best-response state of agent i € L3 is given by

BRi(a?}, %7, 2%) = BRi({y) Fienerts {05} e, 25)
= BRil{ebjenpt A0} jenpe: {mshoaniingy) (6.6)

with ¢} = BR;(BR;(2_), 7_(;4)) and ¢; = BR;(z_;). Likewise, for agent i € Ly, with
the hypothesis of N?rl = {i}, N?ﬂ = (), it follows from (6.6) that the predicted states

of the neighbor agents j € NP are evaluated as
BR;(BRi(BR;(2—;), 2—i)), £-(50)) (6.7)

which can be further used in characterizing the actual targeted best-response state
(6.6) of agent i € L, with goé- replaced by the predicted states (6.7). Subsequently, the
above procedure continues for higher-level agents.

Based on the above discussion, we define the functions Bsz(m) to characterize the
prl 4 {BRﬁi(x)}jeN?“ of the predicted states of the neighbor agent j in NP

profile ="
evaluated by agent ¢ € Ly given by

BR7,(z) = BR;(z—;), (6.8)
BR3,(x) = BR;(BRi(—s), 7)), (6.9)
BR],(z) = BR;(BRi(BR;(2_;), 2_(i,j)), T—(j0))- (6.10)

For the higher-level agents, BRfl(x) can be recursively expressed by
Bsz(@ = BR?@'(BR?,?(@; r_j), k>4 (6.11)

Note that the function BRfl(x) evaluated by agent ¢ is defined as the mapping with
k — 1 times of iterations of BR;(z_;) along with BR;(x_;) itself. The predicted state
BRfl(:E) coincides with the actual targeted best-response state of agent j € Ly_; when
n = 2 as the hypotheses of N; = N;’rl = {i}, N;’TZ = () hold in reality. An example
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showing the predicted state and the actual targeted best-response state of agent 2
coincides is shown in Fig. 6.3(b) with Ly = {2} and L3 = {1}.

Level-k agent: The prediction-incorporated pseudo-gradient dynamics for Level-k
agents with k£ > 3 are given by
OJi(wi(t), 225 (¢), a7 (1), a™3(1))

ii(t) = ay — o ! el (6.12)

recalling 2" = {BR;I-(:I:)}].EWH and 27 = {BR;(2—;)};enpr2- Once again, the essence
of the general form (6.12) is that agent i € Ly, tries to adjust its state z; following the
pseudo-gradient dynamics as if its neighbor agents j € N”" (resp., N”?) were already
at the predicted states Bsz(x) (resp., BRj(z_;)) instead of the current states z;.

Remark 6.1. Note that the dynamics (6.12) for & = 2 is compatible with (6.4) since

prl _pr2
(=2, o2

) reduces to =™, for agent i € LLy. Moreover, (6.12) for k£ = 1 is also compatible
with (6.3) for agent i € Ly with N”"" = NP2 = () since 2" reduces to z_; in (6.3). In
the case where no agent is the destination of agent ¢ € Ly in G(N, E) with k& > 3, i.e.,
NP = () or NP = A, (6.12) reduces to (6.4). Therefore, agent i can act as a Level-k
agent with & > 3 only if there is at least one edge directed from agent i to its neighbor
N;, ie., NP £ ) (e.g., agent 4 of the knowledge network shown in Fig. 6.2 is never a

Level-k agent with & > 3).

In this paper, since the agents usually have only a finite depth of reasoning, we
suppose that there is a limit £ € Z, to the depth to which the agents can reason
strategically, i.e., k < £. Note that the Nash equilibrium z* is the equilibrium of the

pseudo-gradient dynamics (6.3), (6.4), and (6.12) for arbitrary set of Ly, ..., L¢, because

8(]7,(%1,1_1) _ aJl(w’L:x}:r»pmlir;) . 8Ji(mi)mgri1’m§ri27mlir;)
ox; - 0’ Ox; - O’ and Ox;

on the discussion about this Nash equilibrium under the prediction-incorporated

= 0 at x*. Henceforth, we focus

pseudo-gradient dynamics.

6.2.3 Motivating Example and Problem Statement

In this section, we first show a numerical example where the Level-k thinking sig-
nificantly changes the behavior of the dynamical system, and then present the main
problems of this paper. Specifically, consider a 5-agent noncooperative system with
the knowledge network of payoff functions G(N, E) given by Fig. 6.2, where agent
4 is never a Level-3 agent under N®"' = ( and all the other agents are able to be a
Level-k agent with k > 3. In this case, it follows from N3 = {1,2} with N{"' = {1}
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Figure. 6.3 Target states of the agents of a two-agent noncooperative system under F =
{(1,2),(2,1)} with red (resp., blue) arrow representing the moving direction of agent 1 (resp.,
agent 2). (a): Lo = {1,2}, (b): Lo = {2}, Lg = {1}. The predicted state BR%ﬂl(z) predicted
by agent 1 in (b) is the same as the actual targeted best-response state of agent 2 given by
BRQ(BRl (l‘g(t)))

and N2 = {2} that the prediction-incorporated pseudo-gradient dynamics (6.12) for
agent 3 being a Level-k agent with £ > 2 is given by

0J5(BRY' (2(1)), BRa(x-2(1)), 2-1.2) (1))

o , (6.13)

ZL’3<t> = (3

where the current state x4 and x5 are used because the information of Jy(-) and J5(-)
are unknown (i.e., agents 4 and 5 are not included in N3). The trajectories of the agents’
state under the prediction-incorporated pseudo-gradient dynamics with Ly = A\ {4}
and Ly = {4} are shown as dashed lines in Fig. 6.4, whereas the trajectories under the
conventional pseudo-gradient dynamics (6.3) with L; = A/ are shown as solid lines. It
can be seen from this example that Level-k thinking may destabilize the noncooperative
dynamical system.

Motivation: The information of the agents’ sensitivity parameters and the knowledge
network of the payoff functions may not be precisely observed by anybody. Assume
that there is a system manager who is authorized to control the amount of incentives
in order to stabilize a Nash equilibrium z* by encouraging agents to converge to it. A
fundamental question is how to ensure stability of the Nash equilibrium with those

uncertain information.
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Figure. 6.4 Trajectories of the agents’ state z(¢). Solid lines: conventional pseudo-gradient
dynamics with Ly = N = {1,2,3,4,5}, dashed lines: L3 = {1,2,3,5} and Lo = {4} under
the knowledge network of payoff functions given by Fig. 6.2.

Problem: Consider the noncooperative system G(.J) with the pseudo-gradient
dynamics under predictions. Suppose that the agents have only bounded rationality
on reasoning with Level-k < ¢ € Z,. Our main objectives are two folds: (i) find the
stability conditions of the Nash equilibrium z* with arbitrary sensitivity parameters «;,
i € N, with the knowledge network G(N, E); (ii) develop a framework to guarantee
stability of the Nash equilibrium z* under the unknown sensitivity parameters «;,

i € N, with uncertain cognitive hierarchy levels of the agents.

6.3 Stability Analysis of Prediction-

Incorporated Pseudo-Gradient Dynamics

In this section, we characterize stability properties of the Nash equilibrium for the
noncooperative system G(.J) with pseudo-gradient dynamics (6.3), (6.4), and (6.12).
Specifically, we first assume that the agents are at Level-k < ¢ = 2, and then extend
the results for the cases with ¢ = 3 and £ > 3. The reason why we present the
results for £ = 2 and £ = 3 in separate subsections comes from the fact that the
neighbor agents of each agent should be decomposed into 2 groups as we did in
Section 6.2.2 where we characterized the prediction-incorporated pseudo-gradient

dynamics for ¢ > 2. For the statement of the following results, let a = (o, ..., ay)
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9%J1(x) 9%J1(x)
aq 8@‘% g 0x10Tn
A . . . . . .
and A(J, o, ) = : : , which is exactly the Jacobian matrix
9% Jn(z) L 0% Jn(x)
" Ox,0z1 n 9z2

of the (conventional) pseudo-gradient dynanmics (6.3) for L; = A/ (all the agents are at
Level-1). Since this case is addressed in Chapter 2, we consider the case where at least

one agent is in Lo, ..., L¢ in this paper.

Noncooperative Systems with Mixed Level-1 and Level-2 Agents

In this section, we present the stability conditions of the Nash equilibrium for the
case where the agents have bounded rationality on reasoning with Level-k < 2, i.e.,
L, ULy, = N with Ly # (). First, we present a sufficient condition for determining

stability of the Nash equilibrium z* with arbitrary «;, i € N. For the statement of
OBR1(z_1)
ox

the following results, we define A(z) = : € R™ ™. Note that the diagonal

OBRn (z_n)
ox
terms of A(x) are all zero because BR;(z_;) does not depend on z;. The vector fields of

a two-agent noncooperative system are introduced later for comparisons with systems

with higher cognitive hierarchy level agents (see Section 6.3 below).

Proposition 6.1. Consider the noncooperative system G(.JJ) with the agents either at
Level-1 or Level-2 satisfying L; ULy = A so that the agents follow the pseudo-gradient
dynamics (6.3) and (6.4) depending on their cognitive hierarchy levels. Let

I (J, o, ) = [row;(TIo(J, o, ) )|sens € R™, (6.14)
with
rows(TIa(J, o, z)) & § TOVilALS ), i €Ly (6.15)
row;(Ry(J, o, ), i € Lo,
where
Ro(J, o, ) 2A(J, o, x) o (1,11 — Aug)
+ (A(J, a, z) 0 Agq)A(x) € R™*™, (6.16)

If there exists & € Rf such that

105 (J, &, %) + Hy(J, &, %) < 0, (6.17)
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then the Nash equilibrium z* satisfying (2.1) is locally asymptotically stable for any
sensitivity parameters a; € R, i € N.

Proof First, it follows from

*)Ox; 0 J;(z*) O
Z (‘9%8% ox Z(l_aﬁ) O0z;0x; Ox

ieEN\WN; 1EN

= rowj(A(J Lo, 7)) o (1F — row;(A.q)) € R, (6.18)
Z ) OBRi(a7,) > 02, (*) OBR, (z* )

=~ 3%8371 Oz = " Oz,;0; Oz

- (rowj (A(J, 1, 2%)) 0 rowj(Aad)>A(x*) e RI*™, (6.19)

for j € N that the Jacobian matrix of the pseudo-gradient dynamics (6.4) at the
equilibrium z* with L, = A is given by

Z 82J1(.72 8:01 + 282J1(x*)8BRi(iL‘*_i)

0x10%; 0x10x; ox
1EN\N 1EN
diag|a]
0% Jn(z*) axl 82 J, (x*) OBRi(z* ;)
Z Oxn0xr; O + Z 0xn0x; ox
’LGN\Nn 1EN,
= Ro(J, a, ™). (6.20)

Recalling that A(J, «, z) is the Jacobian matrix of the pseudo-gradient dynamics (6.3)
with L; = N, it follows that the Jacobian matrix of the pseudo-gradient dynamics
(6.3), (6.4) at x* given IL; and Ly is given by II5(J, v, ). Hence, linearizing the system

dynamics (6.4) with # £ 2 — 2* around z* yields
z(t) = o (J, o, 27)(1). (6.21)

Consider the Lyapunov function candidate V(%) = T P with a positive-definite matrix
P2 diag[%, ce Z—x] Since

I (J, o, %) P + Plly(J, o, %) = 105 (J, &, %) + Ty (J, &, %) < 0,
is satisfied, it follows using the linearized dynamics (6.21) that

V(E(t) = T () (IY(J, &, %) +11,(J, &, %)) #(t) <0, (6.22)
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around x* and hence the Nash equilibrium x* is asymptotically stable for all a; € R,
ieN. O

Remark 6.2. Note that II5(J, &, 2*) is the Jacobian matrix of the prediction-incorporated
pseudo-gradient dynamics consisting of (6.3), (6.4) depending on the adjacency matrix
A,q of the knowledge network G(N, E) of the payoff functions. In the case where none
of the agents has the access to the information of the other agents’ payoft functions,
ie, N; =0, i€ N, the matrices Ryo(J, &, z*) and Tly(J, &, x*) reduce to A(J, o, z*),
which is exactly the Jacobian matrix of the conventional pseudo-gradient dynamics

(6.1).
Remark 6.3. Note that the (i, j)th element of A(x*) is given by

dr;  Omdx; ' Oz

J# 1, (6.23)

where we used the fact that

9g(x) _ _32f($,9($))/52f($>9($))
Ox Oxdy Oy? ’

(6.24)

holds for g(z) = arg max, f(z,y) with a continuous function f : R xR — R [99]. Thus,

the matrix A(z*) can be written as
A*) = —diagl¥] A, 1, %) + 1, (6.25)
with ¢ = [1 /8 Jl(x . 1/8 (7)) which implies that

Ry(J, o, ") = A(J, o, %) + (A(J, o, %) 0 Apa) (A(z") — 1)
= diag[a] A — diag[a](A o Auq)diag[i]A4, (6.26)

with A = A(J, 1,, z*). For example, supposing that G(N, E) is a complete graph, it
follows from Ao A,q = A—diag™'[¢] that Ry(J, o, 2*) = 2diag|e] A — diag[a] Adiag[y] A.

Remark 6.4. For the noncooperative system satisfying [[Io);; > 0, i,j € N, i #
j, it follows from the properties of Metzler matrices that the condition (6.17) in
Proposition 6.1 is also a necessary condition for the Nash equilibrium z* to be locally
asymptotically stable for arbitrary «. Note that the typical numerical examples
satisfying [Ilo);; = [Ralij > 0, 4,5 € N, i # j, can be found in oligopoly markets given
in Section 6.5 below with L; = () and Ly = N.
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Now, we characterize the stability conditions for arbitrary cognitive hierarchy levels
of the agents. In this case, II5(J, v, ) cannot be constructed to determine stability as
in Proposition 6.1. The following result provides some sufficient conditions to guarantee

stability with arbitrary IL; and Ls.

Proposition 6.2. Consider the noncooperative system G(.JJ) with the agents either at
Level-1 or Level-2 satisfying IL; UL, = A so that the agents follow the pseudo-gradient
dynamics (6.3) and (6.4) depending on their cognitive hierarchy levels. If the payoff
functions J;(z), i € N, satisfy

Z T\ ) 4 2
02 <0, 1€EN, (6.27)
with 6; £ min (4}, 67), 0} £ — Zj;éz a:p Bac )| and
02J;(z*) OBRs(x* ;)
2 A
o = ;‘ ~ @) (‘3 8:5] 82:81: dzs  Ox;
*) OBRs(z* )
B Z &vlaxs dx; (0:25)
56/\/

then the Nash equilibrium z* satisfying (2.1) is locally asymptotically stable for any
cognitive level sets L; and L, and any sensitivity parameters a; € R, i € N. If, in

addition, (6.27) holds with

0%J;(x*) OBRs(z* ;)
0 _52A Z’@xf)x]

)
0x;01, 0z;

2.2

j#s s#i

(6.29)

then the Nash equilibrium z* is locally asymptotically stable for any knowledge network
G(N, E) of the payoff functions.

Proof First, note from the expression (6.20) that the (,7)th element of Ry(J, 1, z*)

is given by

O Jy(x*) 0?J;(x*) OBRs(z*,)
R S e (6:30)

whereas the (7, j)th element is given by

*)OBRs(z*,)
1 —
( a’L] 8 axj SEZ axlams 81_] ’ ] ?é Z?
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recalling that a;; = 1 if j € NV;, and a;; = 0 otherwise. Then, the condition (6.27) with
6; = min(8}, 6?) indicates that the matrix ITy(J, 1,, 2*) (or, equivalently, Ily(.J, o, 2*))
is strictly diagonally dominant because the matrices Rq(J, o, 2*) and A(J, v, x*) are all
strictly diagonally dominant. Now, it follows from Gershgorin’s circle theorem [95] that
the matrix II(J, o, z*) is Hurwitz and hence the Nash equilibrium z* is asymptotically

stable for any LL; and L, and any «;, ¢ € N. Next, it follows from

Z‘@x@xj ZZ

JEN seEN;
:_Z‘ 8x8xj

0%J;(x*) OBRs(z* ;)
ox; E)xs oz,

*) OBR,(z*,)
ZZ) 8x8xs 0z;

8BR( )
_Z‘ 8x8x5 ox;

82J 0%J;(x*) OBR,(z*
Z‘ )+Z (z%) (z)

P 8 2,07 = O0x;0x Oz,
2 Ji(x*) OBR(z*
-y o Jia") (@) _ 57, €N, (6.31)
= 0x;0x ox;

and 67 < 4}, i € N, that 67 < min(6},6?) holds for i € N, i.e., the conditions (6.27)
along with (6.29) indicate that (6.27) holds with §; = min(é; (52) i € N. The proof is

177

complete. O

Remark 6.5. The sufficient conditions in Propositions 6.1 and 6.2 have an inclusive
relation since a strictly diagonally dominant matrix II5(J, &, 2*) [100, Theorem 3] in
Proposition 6.2 indicates that there must exists & € RY satisfying the condition (6.17)
in Proposition 6.1. This is consistent with common sense that guaranteeing stability

for some arbitrary parameters may may require stringent stability conditions.

Noncooperative Systems with Mixed Level-1, Level-2, and Level-3 Agents

In this section, we present the stability conditions of the Nash equilibrium for the
case where the agents have bounded rationality on reasoning with Level-k < 3, i.e.,
L, ULy, UL3 = N. For the statement of the following results, we decompose the
knowledge network G(N, E) into an undirected network G.q(N, Fyq) and a directed
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network G4(N, Eq) with
Ew ={(j,9) € E: (i,) € B}, (6.32)

Eq={(j,1) € E: (i,5) € E}. (6.33)

It is immediate that £ = E,q U E4q and E.q N Eq = (. Let the adjacency matrices of
Gu(N, Eyq) and Gq(N, Eq) be denoted by By = [b‘;jd] € R™" and By = [b?j] € R

respectively. Here, note that B,q is symmetric and satisfies
Bua + By = Aaa. (6.34)
Depending on the adjacency matrix B;, we define a matrix

(rowy (A(J, o, z)) o row;(Byuq) ) Fi ()
Ws(J, o, x) = : : (6.35)
(row,,(A(J, o, x)) o row,,(Bua)) F2 ()

OBR1(BRi(z—4),2—(1,1))

ox
: . : OBR; (BRi(_:),7_(i.5) -
with F?(z) & : e R¥™ i € N, where ( gcx Vo) g
8BR7L(BRi(1’—i)7$7(n,i))
oz

defined as 0.
Now, a sufficient condition is provided in the following theorem to determine the

stability of the Nash equilibrium z* with arbitrary a;, i € N.

Proposition 6.3. Consider the noncooperative system G(.J) with the agents at Level-
k < 3 satisfying IL; ULy ULs = N so that the agents follow the pseudo-gradient
dynamics (6.3), (6.4), and (6.12) depending on their cognitive hierarchy levels. Let

II5(J, o, ) = [row;(TI3(J, o, ) ]sens € R™, (6.36)

with
row;(A(J,a, x)), i€ Ly;
row; (I13(J, v, 7)) £ row;(Ra(J, o, ), 1€ Lo; (6.37)
row;(Rs(J, o, z)), i€ Ls,

where Ry(J, i, ) € R™™ is defined in (6.16) and

RS(J7 Q, I‘) éA(‘L Q, LC) © (171111; - Aad) + W3(J7 a, ZL’)
+ (A(J, a, ) o By)A(x) € R™™. (6.38)
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If there exists & € RY such that
I3 (J, &, x*) + H3(J, &, 2*) < 0, (6.39)

then the Nash equilibrium z* satisfying (2.1) is locally asymptotically stable for any
sensitivity parameters a; € R, 7 € N.

Proof First, it follows from (6.18) and

5 0% J;(x*) OBR;(BR;(x_;), i 5))

. Oz;0x; ox
i€NY"
_ Z bud aQJJ(I*) aBR‘Z(BRj (x:j)a ZLL(@'J))
N 7 8%81:1 ox
= (rowj(A(J, Ly, z")) o rowj(Bud)> FP(a*) e R,
vt Oz ;0x; Ox = I Oxj0x; Ox
- (rowj(.A(J 1, %)) 0 rowj(Bd))A(x*) e RI*", (6.40)

hold for j € N that the Jacobian matrix of the pseudo-gradient dynamics (6.12) at z*
with Ly = N is given by

921 (z*) 8211 (z 8BR1(:I:_Z 821 (z*) OBRi(BR1 (2% 1),2* ; 1)
Z 8x181 rl + Z Ox10x; + Z O0x10x; ox
iEN\N iENPT2 ieNPT!

diag|a]
8% Jn(z*) 8;31 ) OBR; (z 92 Jn (z%) 8BR¢(BRn(33*_n),z*_(i7n))

) Z axnazz oz + Z Bzvnaac + Z Oxn0x; oz
| iEN\W, ieNPr2 ieNpr J
= A(J, a,2*) o (1,17 — Ag) + (A(J, o, %) 0 By)A(z*) + Ws(J, a, 2*) = Rs(J, a0, x¥).
(6.41)

Recalling that A(J, o, z) (resp., Ra(J,«r,x)) is the Jacobian matrix of the pseudo-
gradient dynamics (6.3), (6.4) with L; = N (resp., Ly = N), it follows that the
Jacobian matrix of the pseudo-gradient dynamics (6.3), (6.4), and (6.12) at z* given
L,, Lo, and Lj is given by II3(J, o, x). The rest of the proof can be similarly obtained
as in the proof of Proposition 6.1. O

Now, we characterize the stability conditions for arbitrary cognitive hierarchy levels

of the agents. In this case, II3(J, o, ) cannot be constructed to determine stability as
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in Proposition 6.3. The following result provides some sufficient conditions to guarantee
stability with arbitrary L, Lo, and IL;.

Proposition 6.4. Consider the noncooperative system G(.J) with the agents at Level-
k < 3 satisfying IL; ULy ULs = N so that the agents follow the pseudo-gradient
dynamics (6.3), (6.4), and (6.12) depending on their cognitive hierarchy levels. If the
payoff functions J;(z), i € N, satisfy (6.27) with §; = min(6}, 62, 67) for

1771 Y

N *) OBR,(2* )
o == Z’ - aij) 8:@8:1:3 SZ 81’ 8:B5 0x;

J#i
Z *) OBR,(2* ;) OBR;(z*,)
8:1728933 ox; oz,
seNpr
0 Ji(x*) OBR,(2 )
B Z 0x;0x, ox;, (6.-42)
sENPT2

then the Nash equilibrium x* is locally asymptotically stable for any cognitive level
sets L, Ly, and L3 and any sensitivity parameters a; € Ry, i € N. If, in addition,
(6.27) holds with

“) 9BR, (2" ) 9BR;(z*,)
—peg Y Y2 i
=0 =0 - poror 8@63:8 Oz oz ’ (6.43)

then the Nash equilibrium z* is locally asymptotically stable for any knowledge network
G(N, E) of the payoff functions.

. ., . . OBRs(BR, (27 ), Z>) OBRs(z* ) 8BRi(z* ;) | OBRs(z* )
Proof First, it is worth noting that oz, D o, T o,

OBR,(BRi(2",),2" , )

for j # i, s # i, whereas =0 for j =i, s # i. Now, note from

Ox;
(6.41) that the (7, j)th element of R3(J, 1,,x*) is given by [Rs);; = (1 — ay;)2 B ém]) +
92.J,(z*) OBRs(z* ) 92.J,(z*) OBRs(z* ) OBR, (a* 827, (x
ZSEM axlézs) Ox; + ZSENPrl a:pléxs) ox; Ox; whereas [R3]” - Bagf ) +
ZSENPr o (;T:) aBR;ﬂEx*S recalhng that a;; = 1 if j € NV, and a;; = 0 otherwise. Then,
the condition (6.27) with J; = min(d}, 62,0?) indicates that the matrix II3(J, 1,, 2*)

(or, equivalently, II3(J, o, x*)) is strictly diagonally dominant because Rs(J, a, x*),
Ry(J, o, z*), and A(J, a, x*) are strictly diagonally dominant. Then, it follows from
Gershgorin’s circle theorem [95] that the matrix II3(.J, i, 2*) is Hurwitz and hence the

Nash equilibrium z* is asymptotically stable for any L, Ly, L3, and any a;, i € N.
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Next it follows from

Q?S_%:) 6x8:v]

) OBRs(x* )
Zz‘ﬁxﬁxs 0z

eN seN; J
*) OBR4(z* ;) OBR;(x*,)
J#i seNprl al’g afL‘j
B Z ) *) OBR,(z*,)
0x; 895] Oz,
8BR ( ) OBR;(z*,)
J# sENprl al’z al‘j
B Z *) 0BRs(z* )
8@8963 ox;
sENpr2
*) 0BR4(z*,) 5
< — = 0; .
; ) [Rsli Z 83318:63 o o (6.44)

and §° < 67 < min(6},62), i € N, that 67 < min(6},62,53) holds for i € N, i.e., the

1771 1771

conditions (6.27) along with (6.43) imply that (6.27) holds with ¢; = min(4} (52 83),

1771

i € N. Thus, the proof is complete. O

Noncooperative Systems with Higher Cognitive Hierarchy Level Agents

In this section, we generalize the results in Sections 6.3 and 6.3 to the case where
the agents have bounded rationality on reasoning with Level-k < ¢ with & > 3,

ie,LyU---ULe = N. For the statement of following results, we define a matrix

k (z
(row (A(J, o, 7)) o row (Bua)) FF(z) aBP;;;()

Wi(J, a,z) = : with FF(z) £ : €
(rown (A(J, a, 7)) 0 Tow, (Bua)) ¥ (z) oBRE, @

ox
R™" i € N, where BR;C@() is defined in (6.11). Now, a sufficient condition is provided

in the following theorem to guarantee stability without knowing o, ¢ € N.

Theorem 6.1. Consider the noncooperative system G(J) with the agents at Level-
k < & with € > 3 satisfying L; U --- UL¢ = N so that the agents follow the pseudo-
gradient dynamics (6.3), (6.4), and (6.12) depending on their cognitive hierarchy levels.
Let

e (J, o, ) = [row; (e (J, o, ) )]ienr € R™T, (6.45)
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with
row;(A(J, o, x)), 1€ Ly

I‘OWi(R2<J7Oé,x>), (&S ILQ?

row; (Tle(J, o, 7)) & (6.46)

row;(Re(J, o, x)), i € L,
where Ry(J, a, ) € R™™ is defined in (6.16) and

Ri(J,o,z) & A(J, a,m) o (1,1} — Auq) + Wi(J, o, 2) + (A(J, @, z) o Ba)A(z), k> 3.
(6.47)
If there exists & € Rﬁ such that

¢ (J, &, x%) + e (J, &, 2%) <0, (6.48)

then the Nash equilibrium z* satisfying (2.1) is locally asymptotically stable for any

sensitivity parameters oy € R,, i € N.

Proof The proof is similar to the proof of Theorem 6.3. 0
Now, we characterize the stability conditions for arbitrary cognitive hierarchy levels
of the agents Ly, - - - | L.

Theorem 6.2. Consider the noncooperative system G(.J) with the agents at Level-
k < & with € > 3 satisfying L; U--- UL¢ = N so that the agents follow the pseudo-
gradient dynamics (6.3), (6.4), and (6.12) depending on their cognitive hierarchy levels.

Lot W = e 4+ + €5 and 98 = Jel” + - + e with ey = P T ang
a € Z,. If the payoff functions J;(x), i € N, satisfy (6.27) with d; = min(8}, 62, ... 0°%)
and
PJi(x*) 02 J;(x*) OBR4(z* )
ok & — Ik : s
‘ 01,0 Msi Zz 01,0 ox;
seNP! sENPT
02 J;(x*) O?Ji(x*) 02 J;(x*) OBRs(z* )
V(1 = g L) o7SaT) i i s
YJ -G From. ™ T 2 Tron. on
J# enprt seNP?

(6.49)
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for 3 < k < & with

( OBRs(z*,) OBRi(ar,) OBRs(a* ) 1 552 S
Ox; oz \II 2 + Oz \IJiiQ ) ke Lo, J 7é v ] 7é S5
9BRs (2% ) OBR; (x_l) OBRs(z* ) . 557 S
ox; Ox; ‘Il 2 + Oz \Ijsi2 ) ke Z87 J # 1, ] 7é S
jk & OBRE (a%) 0, keZ, j=1;
ST o ) oGy b2 o
kJ?Lwi_S €si k€ Ze, j=1;
€ k€Zs, j=s;
\ 0, k€ Ze, j=s,

(6.50)

then the Nash equilibrium z* satisfying (2.1) is locally asymptotically stable for any
cognitive level sets Ly, - -+ ,L¢ and any sensitivity parameters o;; € Ry, 7 € N. If, in
addition, (6.27) holds with &; = &% with

( _Z 0%J;(z*) Z Z 92J;(z*) OBRs(z* )| 552
83313% Bwlaws Oz st
JF J#s s#i s
02J;(z*) 3BRS (x* ) OBR;(z* ;) = )
k _g ; ‘ awzazs 81’1 8.’['] St Y k E ZO’
6' — JFL SFL - . 1
) —Z 927 (x Z z 02J;(x 8BR5( ) % (65 )
396181] szﬁxs oz st
J#i J#8 s#i o
9%J;(z*) OBRs (z*,) OBR;(z* ;) 5
Z Z ‘ Ox;0xs ox; O %i ) ke Ze,
\ i s

then the Nash equilibrium z* is locally asymptotically stable for any knowledge network
G(N, E) of the payoff functions.

ko(x*) . . .
Proof First, note from (6.8)—(6.11) that BBIZS—;J_() is understood as 0 when j = ¢ (resp.,

k: *
j = s) for an odd (resp., even) number k € Z. Furthermore, = ast( '
J

OBR(z*,) 552 Al . : f
—a €5 (resp., €, ) when j =i (resp., j = s) for an even (resp., odd) k € Z.. For

OBRE (z*) _ OBRs(BRi(BR{,(z")a" , )"

is understood by

" (s)

the other cases (i.e., j # i, j # s), o = e is given by

OBRs(z* ) (8BRZ'(.Z‘*_Z-) 8BR’§;2(;L~*) aBRi(x*_i)> OBRs(z*,) ¢ ‘BBR’;EQ(z*) OBRs(z* ) GBRi(Iil))
Ox; 0z Oz ; 6x2j Oz st 6390]- Ox; Oz ;

OBRg (z* . OBRZ (z* OBRs(z* OBR3 ,(z* OBR(z* ,) OBR,(¢*

# Now, it follows from ‘“_( ) — s(:_v‘s) and “_( ) = S(J_C‘S) (, l)+
x Ox; Ox; Ox; ox; Ox;

—8BRBSI === for j # ¢ and j # s that can be recursively expressed by (6.50). It

follows that the (7, 7)th element of Rk(J 1n,:1; ) given by [Ryli; = (1 — aij)aagf—éx_) +

J;(z*) OBRs(z* ) 92J;(x Dom _ 9%Ji(z")
p = 8961815 iy Y se NP Gt ml’, j # i, whereas [Ryl; = a7 T+
( )BBRS(QLS 02 JZ(;E ) ik o . o
ZSENPrZ o — e T 2osen goges M- Hence, the condition (6.27) with ¢; =

min(d},...,6%) indicates that the matrices IT¢(J, 1,, z*) (or, equivalently IT¢(J, a, z*))

aRM*)
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is strictly diagonally dominant because R¢(J, o, %), ..., Ro(J, o, ), A(J, o, ) are
strictly diagonally dominant. Now, it follows from Gershgorin’s circle theorem [95]
that the matrix Il¢(J, a, 2*) is Hurwitz and hence the Nash equilibrium z* is locally

asymptotically stable for any Ly, ..., L¢, and any «o;, ¢ € N. Next, using m®* = 0 and
follows from the inequalities (B.6) and (B.7) in Appendix B that 7 < 6F holds for any
k > 3. Recalling 87 < min(d},02,5?) and noting from (6.51) that §¥*' < ¢ holds for
any k > 3, it follows that 6° < min(8},...46%), i.e., the conditions (6.27) along with
§; = 0% imply that (6.27) holds with &; = min(8},...,8%), i € N'. The proof is complete.

g

m for an odd k and using m¥* = and m¥ = 0 for an even k, it

Remark 6.6. Note that the accumulation ¢ or U$, = 0 for « < 0 and o = 0 can
be understood as 0 and 1, respectively. In this case, the expression (6.51) for éf is
compatible with (6.29) and (6.43) for k = 2 and k = 3, respectively. Furthermore, the
expression (6.49) for §F is compatible with 67 and 67 defined in (6.28) and (6.28) for
k =2 and k = 3, respectively. Therefore, the results in Theorem 6.2 are understood as

a synthesis of the ones in Propositions 6.2 and 6.4.

Remark 6.7. Consider the noncooperative systems with the quadratic payoff functions
Ji(x), i € N, given by

1
ay cceoay,
where A; £ ool € R™" with a!, < 0 (indicating that J;(z) is strictly
Ty 0 g

concave with respect to z;) and aﬁj = a?i, b = b, ... DT eR™ and ¢; € R, i € N.

In this case, the best-response state BR;(z_;) is given by

Zj;éi aj;z; + b

BRi(z_;) = — ; , 1eN, (6.53)
Qg
I'OWl(Al)
that ZRC%) % polds for ¢ # j. Supposing that A = : i
so tha —ox;, = o olds for i # j. Supposing that = : 1S
row, (A,)

nonsingular, it follows that there exists a unique Nash equilibrium x* given by z* =
— A~ e R™ for b = [b},...,b"]T. In this case, the conditions in Theorems 6.1 and

6.2 can further guarantee globally asymptotic stability of z*. Moreover, the condition
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(6.51) can be explicitly expressed by

k-3
& =- ZZ w__z‘ (05 +...+0,7)
JF#i J#Z s#i i
k=3
(0% +...+ 0.7 ), ke (6.54)
J#s s#i
k=4
éf:_z ’J ZZ lsas _z SZ+ '+Usz2 )
j#i j;ﬁz s ss Qg
SN a2 0"+ 0T, ke (6.55)
J#s s#i ss

9’L Z?
asy a’

it follows from (6.23) that 0% can also be explicitly expressed by (6.54) and (6.55) with

replaced by dd:;]laz ,i,] €N

with oy = |egi| = > 0. In the case where the payoff functions are nonquadratic,

Remark 6.8. It follows from Chapter 2 that the condition (6.27) with ¢; = &; = 4}
guarantees asymptotic stability of the Nash equilibrium for the conventional pseudo-
gradient dynamics for any sensitivity parameters. Furthermore, note that §¥! < 6
holds for any k € Z, , which implies that the condition §; = éf in Theorem 6.2 requires

a smaller éf for a noncooperative system with higher cognitive hierarchy levels.

The following proposition reveals the fact that, compared to the conventional
pseudo-gradient dynamics, Level-¢ thinking may destabilize the Nash equilibrium z*
for a two-agent noncooperative system with & = 4,8,12,..., but never change the
stability of x* for other cases. An example showing the destabilized vector fields when
¢ = 4 are illustrated in Fig. 6.5, which also indicates that agents’ Level-k thinking may
bring more equilibria in the pseudo-gradient dynamics. In such a case, even though the
Nash equilibria are still the equilibria of the prediction-incorporated pseudo-gradient
dynamics, the trajectory of the agents’ state may be attracted to other equilibria when

we change &.

Proposition 6.5. Consider the two-agent noncooperative system G({.Jy, Jo}) with
both the agents at Level-¢ following either the pseudo-gradient dynamics (6.3), (6.4),
or (6.12) under the complete knowledge network G(N, E) with L = {1,2} and
E ={(1,2),(2,1)}. If the payoff functions J;(x) and Jo(z) satisfy det A(J, 12,2%) >0
(resp., det A(J, 15, 2*) < 0) for £ € Z, satisfying & # 4m for any m € Z,, then the
Nash equilibrium z* satisfying (2.1) is locally asymptotically stable (resp., unstable) for
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5\% Sg\%z

N

-5 0 5
Level-2 agents

5\\\ 12

:x\

I

Level-3 agents Level-4 agents

Figure. 6.5 Vector fields of the prediction-incorporated pseudo-gradient dynamics of a two-agent
noncooperative system with a unique Nash equilibrium z* = [0, 0] and Level-¢ agents for & =
1,2,3,4. The red solid lines: 1 = BRj(x2); blue solid lines: 25 = BRg(x1); red dash-doted

lines: 1 = BR1(BR2(BRi(z2))); blue dash-doted lines: 23 = BRao(BR1(BRa(z1))). When
& =4, there exists 9 equilibria in the pseudo-gradient dynamics with z* being destabilized.

any sensitivity parameters ag, ap € R, . Alternatively, if the payoff functions J;(x) and

Jo(x) satisty a;j;éi:) 8;;]226()2? — 822;(;*) 8221(5*) < 0 (resp., > 0) for £ € Z, satisfying

¢ = 4m with some m € Z,, then the Nash equilibrium x* is locally asymptotically

stable (resp., unstable) for any sensitivity parameters ag, as € R
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Proof Note that when £ is even (i.e., & = 2m for some m € Z,), it follows that

e (J, v, o) = diag[ag 71, aee]| with

(32J1(:E*) 82J2(:I:*))€/2 . (32J1(:D*) 82J2($*))€/2

— 81‘% 85”% 82181'2 81’28x1
= 92 J(z*) (62J1(:p*) 82J2(x*))§/2_1 ) (6.56)
823 da? 022
(Mfﬂh(m*))w _ (32J1(m*)82J2(:6*))€/2
Ty = 8$% 8x% Or10x2 Ox20T1 (6'57)

927, (z*) (62J1(x*) aQJQ(x*))fﬂ—l
072 0x? x5

In this case, when £/2 is odd (i.e., £ = 4m + 2 for some m € Z), it follows from the
monotonically increasing function f(x) = 2¢/2 that det A(J, 15, 2*) = 82‘97(;*)82;27(;) -

Ph@) Phet) o (resp., < 0) indicates 71,72 < 0 (resp., > 0). Alternatively,

8x18r2 8z2811
82J1(a:*) 02 Jo(x*) N

when £/2 is even (i.e., £ = 4m for some m € Z,), it follows that e es Bt

82‘(;17(;*)82227(;*) < 0 (resp., > 0) indicates 71,7 < 0 (resp., > 0). Therefore, the
results for the case where ¢ is even is immediate since 71,75 < 0 (resp., > 0) implies
the Jacobian matrix Il¢(J, a,z*) = diag[a;7y, ae7s] of the system dynamics (6.12)

is stable (resp., unstable). Next, consider the case with odd £ (i.e., £ = 2m + 1

82J1 (x*) 92.J1 (x*)
. % a1 Ox? a1 0x10x2
for a m € Zy). In this case, Il¢(J, o, 2%) = 02,7 (%) 02 (a) where 7 =
Q2 0zx20z1 Q2 0x2

02 J1(a*) 2o (a*)\ 55+ | (21 (a*) B2 Ja(a*) | S5+ o
(azllé;)#{(;l)) 2 /(%%) 2 . Furthermore, det IL¢(J, o, 2*) is given by

82J1(:E*) 82J2(1‘*) I3 82J1(:E*) 82J2(1‘*) I3
Qg [( 027 ox3 ) - ( O0x10xe Ox20xz1 ) }
(82J1(x*) 82J2(z*))§_1 ’
O0x20x1 823

(6.58)

which possesses the opposite sign as det A(J, 15, z*) for an odd number £. Therefore,
the results are immediate since det A(J, 15, 2*) > 0 (resp., < 0) implies the Jacobian
matrix II¢(J, a, 2*) of the system dynamics (6.12) is stable (resp., unstable) with
negative diagonal terms. O

Next, we characterize the transition of the agents’ targeted best-response state
with respect to the cognitive level £ € Z, in a two-agent noncooperative system
with L = {1,2} and quadratic payoff functions (6.52). Specifically, denote the
targeted best-response state of agents Ly = {1,2} for { € Z, at time t as xfgt(t) =
[xfgtl(t),xfth(t)]T € R?, where xfgti(t) is the targeted best-response state of agent
i € {1,2}. Recalling that the predicted state BRﬁz(x) evaluated by agent ¢ € L
coincides with the targeted best-response state of agent j € L¢_; for n = 2 (i.e,,

BRgl(x(t)) = a:fg_t; (t), 1,5 € {1,2}, i # j), it follows that the targeted best-response
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state xfgt(t) with £ > 2 is given by

13 _
Tegt (t) = BR, (fﬁgﬁ (t))

tg

BR;(BRS, (2(1)))
BRs (BRiQ(I(t)))

BRy (z553(1)) ]

whereas x{,(t) = [BRy(22(t)), BRa(21(t))]" is understood as the targeted best-response
state state in the conventional pseudo-gradient dynamics. Now, it follows from the
best-response mapping (6.53) that the transition of the targeted best-response state

with respect to the cognitive level follows the recursive relation given by
T () = Bt () +C, £€=1,2,3,..., (6.59)

with x{,(t) = Bx(t) + C, where

0 %2 _b
A a1 al
B2A(M) = ) nol = pol (6.60)
__ 9o 0 _ b
L5P) A9

Noticing that the recursive relation (6.59) possesses a similar expression as the best-

response dynamics [16] given with slight abuse of notation by
e(t+1)=Bax(t)+C, t=0,1,2,..., (6.61)

where Bx* + C' = z* holds and hence the Nash equilibrium z* is the fixed point of
(6.61). Here, since both of the eigenvalues A, Ay of B satisfy A} = \3 = a],a%,/ai,a,,
it follows from the property of discrete-time linear systems that the agents’ targeted
best-response state xfgt(t) converges to the Nash equilibrium z* as & — oo for any
z(t) € R? when |afya},/a};ad,| < 1. An example showing Level-§ agents’ targeted
best-response state xfgt(t) with £ = 1,...,8 is illustrated in Fig. 6.6(b) where the
agents’ targeted best-response state xfgt(t) converges to the Nash equilibrium z* as

& — o0.

6.4 Incentive-Based Stabilization by a System Man-
ager

In this section, assuming the existence of the system manager who has all the information
of the payoff functions J;(z), i € N, and is authorized to design an incentive rule, we

generalize the stabilization method via zero-sum tax/subsidy approach in Chapter 2
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Ty = BRQ(xl)

Target of Level-3
agent 2

{

., 'BR2(BRi(BRx(x(1))))

BR: (BRo(BR: (2(0)))\,
(a) z1 = BRu(x2) (b) z1 = BRi(z2)

Figure. 6.6 Target states of the agents of a two-agent noncooperative system with the agents

at different hierarchy levels. (a): both agents are Level 3; (b): both the agents are Level-
¢ with € = 1,2,3,4,.... The knowledge network of payoff functions are considered with

E={(1,2),(2,1)}.

to ensure stability of a Nash equilibrium for the agents at Level-k < & with £ > 1.

Consider the incentivized payoff functions
Ji(x) & Ji(z) + pK(z), ieN, (6.62)

with the quadratic incentive functions

() 2kl — a1 = 537 Kiilay — 5 (0= 1)
+ i kij(x; — xf)(x; — ;), ieN, (6.63)

where K = {ki;}ijen € K2 {K € RV 1 ky; <0,i € N kij = —kji,i,5 € Nyi # j}.
In this case, the sum of all the incentive functions satisfy ) ._ . i ( )=0foralxzeR"
and hence the system manager serves merely as a mediator in the noncooeprative
system to assure that every subsidy is financed by taxes taken from the others, i.e.,
Sien Ji(@) = X Ji(x). Furthermore, the Nash equilibrium z* of G(.J) remains the
Nash equilibrium of G(.J) (see Chapter 2).

Assuming that the cognitive hierarchy levels for each of the agents are known, we

present a sufficient condition to ensure stabilization for the Nash equilibrium z*.

Corollary 6.1. Consider the incentivized noncooperative system g(j ) with the agents
at Level-k < ¢ with £ > 3 satisfying L; U - -- UL¢ = A so that the agents follow the
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pseudo-gradient dynamics (6.3), (6.4), and (6.12) with J;(x) replaced by incentivized
jz( ), depending on their cognitive hierarchy levels. If there exists & € RN such that

I (J, 6, 2%) +Te(J, &, 2%) <0, (6.64)

then the incentive functions (6.63) guarantees that the Nash equilibrium z* is asymp-

totically stabilized for any sensitivity parameters a; € Ry, i € N.

Proof The result is a direct consequence of Theorem 6.1. U
Now, supposing that the cognitive hierarchy levels for each of the agents are
uncertain, the following result provides some sufficient conditions to guarantee stability

without knowing Ly, - -+, L.

Corollary 6.2. Consider the incentivized noncooperative system G(.J) with the agents
at Level-k < ¢ with £ > 3 satisfying Ly U --- UL¢ = A so that the agents follow the
pseudo-gradient dynamics (6.3), (6.4), and (6.12) with J;(x) replaced by incentivized
Ji(x), depending on their cognitive hierarchy levels. If the matrix K € K in (6.63)

satisfies o7, (2)
i(x” .
ki < (51 — aTiQ7 1€ N, (665)
with 6; = min(8!,...,0%) for 6%, k =1,...,¢, defined in (6.28) and (6.49) with anéx )
replaced by 88‘]’52) + kyj, and 8131?;—3[(:*_1.) replaced by (60;]’32) + kzj)/(adi’ax + ki),

i,j € N, then the incentive functions (6.63) guarantees that the Nash equilibrium z*

is asymptotically stabilized for any cognitive level sets IL;, - - - , s and any sensitivity
parameters a; € R+, i e N. I, in addition (6.65) holds with §; = 05 defined in
(6.54), (6.55) with a}; replaced by 2 8 az ) 4 kij, i,7 € N, then the Nash equilibrium
x* is locally asyrnptotlcally stable for any knowledge network G(N, E) of the payoff

functions.

Proof The result is a direct consequence of Theorem 6.2 by noting from (6.23) that

OBR;(z* ) 52 92 J;(
B = <ax8x —|—/<;”)/( ( —|—I<:m) for j +# i. O

It can be easily found that n number of inequalities characterized by (6.65) are

always solvable for K € K, because k;;, i € N, can be taken to be sufficiently small
so that each agent’s own payoff is dominant compared to the effect by the other
agents. Different from Corollary 6.1, Corollary 6.2 gives contribution to find the
explicit lower boundary for k;;, i € N/, guaranteeing asymptotic stabilization without

knowing G(N, E).
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6.5 Applications With Numerical Examples

In this section, a couple of numerical examples are presented for illustrating the results

and the conditions concerning the proposed stabilization method by incentive functions.

6.5.1 Application to Optical Communication System

Consider a power control problem in optical communication system with n channels
who compete with each other on quality of service characterized by channel optical
signal-to-noise ratio (OSNR). Each channel adjusts its input power z; € R, to maximize

its profit [101] given by

Q;T;

Ji(x) = BiIn(1 4+
> i Vijj+o

) =iz, €N, (6.66)

where 3; € R, is the earning rate for optical communication quality, o € R, is the
constant noise power, a, € R, is a channel specific parameter, I';; € Ry, 7 # 1,
are the channel gains, and 7; € Ry, i € N, denote the price per unit power. It
follows from 0.J;(z)/0x; = = F;;f otas — i that the Nash equilibrium «* satisfying
a;x; + Z#i Ly = whi _ 5 i e N, is unique and given by I'"'b where I'i; =Ty,

v ~
j#i, Ty =a;, 1€ N, and b, = “i/—?’ — 0,1 € N, when the matrix I" is non-singular.

Furthermore, it is obtained that

—a;Bil'; . .
62,]1(1;) _ (Zj;ﬁipijxj+ﬂj+aixi)27 J#

— 2
0x;0x; —aifi =
e (32 Dijzjtotaim:)?” J=

(6.67)

Example 6.1. Consider n = 3 for the optical communication system and let a; = 0.74,
ag = 0.79, ag = 0.52, 51 = 3.656, By =4.28, B3 =7, 19 =25, 'j3 =14, 'yy = 1.8,
I3 =18, I'sy =37, '3 = 1.0, 7y =4, 2 =4, 73 = 1, and o = 0.0043, so that
there exists a unique Nash equilibrium given by z* = [1.7568,2.7188,4.2384]T. In
this example, since AT (J, 13, 2*) + A(J, 13,2*) < 0 holds, it follows that the Nash
equilibrium z* is asymptotically stable in the conventional pseudo-gradient dynamics
for any sensitivity parameters. Figure 6.7 shows the trajectories of agents’ states under
the pseudo-gradient dynamics (6.3), (6.4), (6.12) with Ly = {1,2} and agent 3 at
Level-k < 3 under 8 different knowledge graphs satisfying {(2,1),(1,2),(3,1)} C E,
where agent 3 is understood as a Level-1 agent if {(1,3)} ¢ E and {(2,3)} ¢ E, a
Level-2 agent if {(2,3)} € £ but {(1,3),(3,2)} ¢ E, and a Level-3 agent otherwise.

In the simulation, the initial state is set to z(0) = [1,4,2]" with random « satisfying
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t

(b) With incentive mechanism

Figure. 6.7 Trajectories of z(t) under the incentive function (6.63) with 8 different knowledge
graphs satisfying {(2,1),(1,2),(3,1)} C E. All the agents are Level-3, i.e., Lg = {1,2,3}.
The diverged dashed lines in (a) are simulated under E = {(2,1),(1,2),(3,1),(3,2)}.

a1, ay € [2,4] and a3 € [4,6]. It can be seen from Fig. 6.7(a) that the Nash equilibrium
x* may be unstable under Level-3 thinking for some knowledge graphs (see the diverged
dashed lines which correspond to the case where Ly = {1,2} and L; = {3} under

E= {(2’ 1)7 (172)7 (37 1>’ (372)})

Now, it follows from Corollary 6.2 that the incentive mechanism (6.62) along with
the incentive function (6.63) with k1; = ks = —0.12 and k33 = —0.262 satisfying
(6.65) with &; = 8% defined in (6.54) for £ = 3 guarantees that the Nash equilibrium
x* is asymptotically stabilized for any cognitive level sets Ly, Ly, L3, any sensitivity
parameters a; € Ry, i € N, and any knowledge network G(N, E'). This result can be
verified by the trajectories of the agents’ state shown in Fig. 6.7(b).
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6.5.2 Application to Cournot Games in Homogeneous Oligopoly

Consider a market being composed of n firms selling homogeneous products produced

by themselves, where the market price (inverse demand) function [97] is given by

A= )\0 — 22;1 51'33'1', (668)

where x; € R, denotes the quantity of the produced products, 8; € R, denotes the
market power of the firm-i, and \g € R, is a market specific parameter representing
the cap price. In this market, firms compete in quantities rather than prices according

to the payoff functions given by

Ji(x) = dw; — Ci(zy), i €N, (6.69)
where C(+) denotes the production cost of firm-i given by

Ci(x;) = a;2? + by, i €N, (6.70)

with a; > 0 and b; > 0. Here, it is straightforward to see that increasing the production
quantity z; may result in decreasing the market price A\ significantly for a large market
power 3;. Therefore, the market powers f3;, i € N, are understood as the parameters
representing the sensitivity of the market in terms of the influence of individual
firms by manipulating the supply of the product. It follows from 0J;(z)/0z; =
—2(a; + Bi)x; — Z#i a;xj + Ao — b; that the Nash equilibrium z* satisfying —2(a; +
Bi)xs — Z#i Bjx+ XN — b = 0,7 € N, is unique and given by —A~'p with flij = —05;,
J#£ i, Ay = —2(a; + 5;), 1 € N, and b; = N\g — b;, i € N, when the matrix A is

2 7. * ~ . .
non-singular. Moreover, since 8&;1?52) = A;; <0, it follows from the properties of
10

Metzler matrices that the Nash equilibrium is asymptotically stable (for arbitrary «)
under the conventional pseudo-gradient dynamics if and only if there exists & € Rﬂ\r’
such that AT (J, &, %) + A(J, &, 2*) = ATdiag[a] + diag[a]A < 0. Supposing that the

knowledge network is a complete graph, the following result is immediate.

Theorem 6.3. Suppose that the knowledge network is a complete graph. Then,
it follows that the Nash equilibrium z* of the Cournot game (6.68)—(6.70) under
the pseudo-gradient dynamics (6.4) with L, = N is asymptotically stable for any
sensitivity parameters o; € Ry, i € N, if and only if there exists & € Rf such that
R"diag[a] + diag[@]R < 0 for R = [Ry;] defined with R;; = 3 Ll 50§ A1,

s%{lz.]} 2as+2ﬁs
Rn’ = —26Li — 2ﬁz + Zs#i %, 1€ N
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Proof First, recall the fact from Remark 6.3 that R(J,1,,2*) = 2A — Adiag[i)] A

for the knowledge network being a complete graph, where P = [P;;] = satisfies
Pij = =25 — ng{i,j} —Qaf]f28537 J# i, Py = —2a; —20; — ZS# 2aff2sﬁs’ i € N. Recalling

A

Ay = =B, 5 # 1, Ay = —2(a; + B,), it follows that R = Ry(J, 1,,2*) = T5(J, 1,,, z*)
and hence the sufficiency result is a direct consequence of Proposition 6.1. Furthermore,
since I,(J,a, %) = Ry(J,a,z*) = diag[a]R is a Metzler matrix, it follows that
I, (J, a, z*) is Hurwitz only if there exists & € RY such that R"diag|d] + diag|a]R < 0.

Thus, the necessity is immediate. [l

Example 6.2. Consider n = 5 for Cournot game (market) and let a; = 0.23, ay = 0.35,
az = 0.46, ay = 0.18, a5 = 0.05, f; = 1.09, By = 1.42, 53 =1.99, 5, = 1.19, B5 = 1.54,
by = 5.2, by = 3.6, bg = 6.6, by = 3.2, b5 = 5.2, and \y = 15, so that there exists
a unique Nash equilibrium given by z* = [1.1038, 1.5618,0.1068, 2.3941, 1.0432]T. In
this example, since AT (J, 15, 2*) + A(J, 15,2%) < 0 holds, it follows that the Nash
equilibrium x* is asymptotically stable in the conventional pseudo-gradient dynamics
for any sensitivity parameters. However, since there is no feasible & in the linear
matrix inequality (LMI) feasibility problem RTdiag[a] + diag[@]R < 0, it follows from
Theorem 6.3 that the Nash equilibrium is unstable under the pseudo-gradient dynamics
(6.4) with Ly = N for any sensitivity parameters. This result can be verified by
the dashed trajectories of agents’ state shown in Fig. 6.8(a), where the sensitivity
parameter « are set to ay, as,ay € [0.5,2.5], ag, a5 € [1,3], and the initial state is
z(0) =1[2,1,1,1,1]".

Now it follows from Corollary 6.1 that the incentive mechanism (6.62) along with
the incentive function (6.63) with ky; = koy = —3, kg3 = kyy = —2, and ky = —4
satisfying (6.64) with & = 1,, guarantees that the Nash equilibrium z* is asymptotically
stabilized under the pseudo-gradient dynamics (6.4) with Ly = A for any sensitivity
parameters a; € R, i € N. This result can be verified by the trajectories of the
agents’ state shown in Fig. 6.8(b).

6.5.3 Application to Differentiated Oligopoly

Consider a market being composed of n firms selling different products, where the

market price (inverse demand) function [102] is given by

pi=2o—Ba—P80), ap i€N, (6.71)

where p; € R, denotes the price of the produced products, \g € R, denotes the cap
price, ¢; € R, denotes the quantity of the produced products, 5 € R, denotes a market
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Solid lines: Level-1
Dash lines: Level-2

; 2 3

(a) Without incentive mechanism

O ) 1 1
0 1 " 2 3

(b) With incentive mechanism

Figure. 6.8 Trajectories of x(t) under the pseudo-gradient dynamic with Level-1 and Level-2
agents. In (a), solid line: L; = N; dashed: Ly = N. In (b), Ly = A. In both (a) and (b),
blue: x1(t), orange: xa(t), yellow: x3(t), green: x4(t), purple: x5(t).
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power, and § € [0,1) denotes the degree of product differentiation. In this market,

firms compete in either quantities or prices according to the payoft functions given by

where ¢; € R, denotes the marginal cost of firm-i satisfying ¢; < \g. Here, it is worth
noting that a lager ¢ indicates a smaller differentiation among the products. That is
to say, if ¢ is extremely close to 1, then it is understood that the n firms are selling
almost homogeneous products in the market, whereas the n firms are selling almost
totally different types of products in the market if § = 0. This is because the price of
firm’s product is closely related to existing of replaceable products. In terms of the
(dynamic) strategy of the firms, there are two different competitions named Cournot
and Bertrand competition for the case when the firms compete in quantities and prices

respectively.

Cournot competition

Consider the quantities as the decision variables of the firms (i.e., z; = ¢;) so that the

payoff functions from (6.72) are given by

In this case, it follows from 0.J;(z)/0z; = —2Bx; — B0y, ,; x; + Ao — ¢; that the Nash
equilibrium x* satisfying —26x} — 36 Z#i i+ Ao—c=0,i€ N, is unique and given
by —A~'b with A; = =86 <0, j #i, Ay = —26<0,i € N, and b; = \g — ¢;, i € N.

Lemma 6.1. The Nash equilibrium z* of the n-firms differentiated oligopoly market
(6.71), (6.72) with Cournot competition is asymptotically stable under the conventional

pseudo-gradient dynamics (6.1) for any sensitivity parameters «; € Ry, i € N.

Proof First, recall that A(J, 1, 2*) = Ais symmetric matrix. The result is immediate
since the eigenvalues of %(AT + fl) =Agivenby \j = - = \y_qg = —B(2-96) <0,
A = —B(2+ (n—1)8) <0, imply AT + A < 0. O

Proposition 6.6. Suppose that the knowledge network is a complete graph. Then,
the Nash equilibrium z* of the n-firms differentiated oligopoly market (6.71), (6.72)
with Cournot competition is asymptotically stable under the pseudo-gradient dynamics
(6.4) with Ly = N for any sensitivity parameters o; € R,, i € N, if and only if
the degree of product differentiation ¢ € [0,1) of the market satisfies § < 2/(n — 1).
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Furthermore, if the degree of product differentiation ¢ € [0, 1) satisfies 6 = 2/(n — 1),
then the Nash equilibrium z* is Lyapunov stable under the pseudo-gradient dynamics

(6.4) with Ly = AV for any sensitivity parameters o; € Ry, i € N.

Proof First, recall the fact from Remark 6.3 that Ry(J, 1,,2*) = 24 — Adiag[i)] A
for the knowledge network being a complete graph, where P = [P;] = fldiag[w]fl
satisfies P;; = =286 — (n — 2)36%/2, j # i, Py = =28 — (n — 1)36%/2, i € N. Thus,
it follows from R = Ry(J,1,,2*) = 2A — P that R;; = (n — 2)36%/2 > 0, j # i,
Ry = =26+ (n—1)562/2 i € N, which imply R and diag[a]R to be Metzler matrices.
Thus, diag[a]]:? is Hurwitz for any o; € Ry, 7 € N, if and only if the symmetric matrix

R is Hurwitz. Now, note that the eigenvalues of R is given by

M==X N1 =28+ (n—1)p6/2— (n—2)36*/2 = p(—2+6%/2) <0, (6.74)
A= =28+ (n—1)6%/2+ (n—1)(n—2)B5*/2 = B(—=2+ (n — 1)%6%/2).  (6.75)

Thus, the Nash equilibrium z* is asymptotically stable if and only if —2 + (n —
1)262/2 < 0. For the case § = 2/(n — 1), consider the Lyapunov function candidate

V(%) = #" P& with the positive-definite matrix P £ diag[;-,---, ;-] > 0. Since
RTdiag[a] P + Pdiag[a]R = RT + R = 2R < 0 is satisfied, it follows that the Nash
equilibrium z* is Lyapunov stable for any o; € Ry, i € N. O

Theorem 6.6 indicates an interesting observation that to ensure asymptotic stability,
a larger market (with bigger n) requires more differentiated products (i.e., with smaller
d) when firms compete in product quantities instead of product prices (see the curve
in Fig. 6.9). When n = 2, the Nash equilibrium is always asymptotically stable for any
degree of product differentiation § € [0,1). Moreover, the market power 5 € R, does

not give any contribution on affecting the stability of the Nash equilibrium.

Bertrand competition

Consider the prices as the decision variables of the firms (i.e., z; = p;). It follows from
the demand function of (6.71) given by [102]

(1 =08) = (1 4+d(n—1))pi + 63,41
%= B(1—68)(1+nd) ’ (6:76)

that the payoff functions from (6.72) are given by

M(1=0)—(1+d(n—1))x; + (52#2. T

Ji(x) = (2 — ;) B(1—0)(1+nd)

(6.77)
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Figure. 6.9 The n-§ region of the n-firms differentiated oligopoly market with Cournot
competition and Level-2 thinking. The nodes on the solid curve are understood the case
where the Nash equilibrum is Lyapunov stable.

In this case, it follows from

B = —2f8x; — 55;% +Xo — G (6.78)

that the Nash equilibrium 2* satisfying =282 — 863, ;@5 + X —¢; = 0,7 € N, is

unique and given by —A~1b with flij = m >0, j #1, Ay = —% <0,

. _ 2o(1=8)~4ci(14+5(n—1)) .
i€ N, and b; = =° 308 (L) ,ieN.

Corollary 6.3. Consider the the n-firms differentiated oligopoly market (6.71), (6.72)
with the firms at Level-k < ¢ satisfying L; U --- UL = N so that the firms follow the
pseudo-gradient dynamics (6.3), (6.4), (6.12) depending on their cognitive hierarchy
levels. If the firms follow Bertrand competition, then the Nash equilibrium z* is
asymptotically stable for any degree of product differentiation d, any cognitive level
sets Ly, ..., Lg, any sensitivity parameters o; € R, ¢ € N, and any knowledge network
G(N, E) of payoff functions.

. . ~ . ~ S(n—
Proqf First, note that aj; = A;; = m, a; = Ay = —%, Osi =

2 .
s, aﬁi = (2—&-25((571))2 <1 lmply that

S 1
Asi Ais

Yy=0g+...+05 = 5 : (6.79)
L- (2425(n—1))2

Hence, it follows from (6.54) and (6.55) that

(n —1)203y (n —1)%5%y

O = G S 1)) 21 20(n 1)’

(6.80)
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Plal; — 0°) = —(24+26(n — 1)) — @6 < 0. (6.81)

Then, the result is a direct consequence of Theorem 6.2 as (6.27) holds with &; = §5 for
& = o0. O

It is interesting to observe that the cognitive operations of Level-2 agents never
destabilize the Nash equilibrium of the n-firms differentiated oligopoly market with
Bertrand competition for any degree of product differentiation, but may destabilize
the Nash equilibrium with Cournot competition for a too large degree of product
differentiation when the number of firms is larger than 3 (see Fig. 6.9). Recalling that
the matrix A is given by Aij = —p9, j #1, Ay = —28,i € N, in Cournot competition,
and Aij = m, Jj # 1, Ay = —%, ¢ € N, in Bertrand competition,
both of the matrices A in Cournot and Bertrand competitions belong to the same class
of matrices where all the off-diagonal terms are the same and all the diagonal terms
are the same. Noticing that the condition (6.27) in Theorem 6.2 requires sufficiently
small Aj; to ensure stability, the reason why the difference in terms of stability comes
between Cournot and Bertrand competitions is because the absolute value of the ratio
Ay / Aij given by 2/4 in Cournot competition is not big enough as the one given by
2/6 +2(n — 1) in Bertrand competition for any j # i.

6.6 Chapter Conclusion

We investigated the stability problem for noncooperative dynamical systems with Level-
k thinking under bounded depth of reasoning. In the characterized noncooperative
system, the agents are allowed to base their decisions on the predictions about the likely
actions of other agents. Depending on a knowledge network of the payoff functions, the
prediction-incorporated pseudo-gradient dynamics are proposed. We presented sufficient
conditions to guarantee stability of a Nash equilibrium with uncertain sensitivity
parameters and uncertain knowledge network of the payoff functions in order to
characterize a stabilization method with incentives. The applications of our results
in optical communication systems, homogeneous oligopoly markets and differentiated
oligopoly markets were considered. We observed that to ensure asymptotic stability of
the differentiated oligopoly markets with Cournot competition, larger market requires

more differentiated products. But this phenomena does not happen in Bertrand
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competition because the cognitive operations in Level-£ thinking never destabilize the

n-firms differentiated oligopoly market with Bertrand competition.
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Chapter 7

Concluding Remarks and Future

Research Recommendations

7.1 Conclusion

In this thesis, we provided a line of work on control problems of self-interested agents
in pseudo-gradient-based noncooperative dynamical systems.

First, in Chapter 2, we investigated the Nash equilibrium stabilization problem for
noncooperative dynamical systems through a tax/subsidy approach. In the proposed
tax/subsidy approach, the system manager defines the utility-transfer structure dividing
the agents into subgroups so that the utility transfers are completed within the
subgroups in a zero-sum and distributed manner. To deal with the uncertainty, we first
characterized the stability of the Nash equilibrium for arbitrary values of sensitivity and
then investigated the zero-sum tax/subsidy framework without knowing the sensitivity
parameters.

In Chapter 3, we developed a hierarchical incentive framework for large-scale
noncooperative dynamical systems to achieve social welfare improvement. In the
proposed framework, the agents in the noncooperative system are divided into several
groups and are influenced by the corresponding group managers via some intra-group
incentives. We explored the stability of group Nash equilibrium of the hierarchical
noncooperative systems and derive conditions where the trajectory of agents’ states
converges to the group Nash equilibrium under group managers’ intra-group incentives.
Furthermore, the inter-group incentive mechanism for a system governor is proposed
to reconstruct the group utility functions at the group managers level to move the
group Nash equilibrium so that the social (entire) welfare is improved. To deal with

the situation where the system governor may not know all the agents’ individual payoff
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functions and all the agents’ states, we presented sufficient conditions to guarantee the
convergence of agents’ states towards a target (suboptimal but not optimal due to the
lack of enough information) equilibrium using some macroscopic data.

In Chapter 4, we investigated the social welfare improvement problem for the
noncooperative dynamical systems through a Pareto-improving incentive mechanism
under sustainable budget constraint, where a system manager collects taxes from
some agents and gives some of the collected taxes to other agents as subsidies in
order to remodel agents’ dynamical decision making. We presented sufficient stability
conditions for our incentive functions were proposed to guarantee that the agents are
Pareto improving under the pseudo-gradient dynamics and their state converges to a
Pareto-efficient Nash equilibrium associated with a weighted social welfare function
depending on the priority ratio of the agents.

In Chapter 5, we investigated the stability conditions of the noncooperative switched
systems with loss-averse agents, where each agent under pseudo-gradient dynamics
exhibits lower sensitivity for the cases of losing payoffs. We characterized the notion
of the flash switching phenomenon and examined stability properties in accordance
with the location of the Nash equilibrium for 3 cases. We revealed how the sensitivity
parameters influence the stability property of the system in terms of the dynamics,
partition of the state space, mode transition, and the normalized radial growth rate
for each of the 3 cases.

In Chapter 6, we investigated the stability problem for noncooperative dynamical
systems with Level-k thinking under bounded depth of reasoning. We characterized the
transition of the agents’ target state while increasing the depth of reasoning for a two-
agent noncooperative system with quadratic payoff functions. We presented sufficient
conditions to guarantee stability of a Nash equilibrium with uncertain sensitivity
parameters and uncertain knowledge network of the payoff functions in order to
characterize a stabilization method with incentives. The applications of our results
in optical communication systems, homogeneous oligopoly markets and differentiated

oligopoly markets were considered.

7.2 Future Research Recommendations

There still remain several open problems on the analysis and stabilization of agent’s
selfish behaviors in the noncooperative dynamical systems. For the hierarchical non-
cooperative system in Chapter 3, allowing the agents to switch the membership may

be an interesting future direction. In real society, many cities construct some special
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subsidies to attract young people, talents, and potential firms to move to their city so
that the vitality and development prospects of the city can be guaranteed. Therefore,
with the switching of the agents, the social welfare may be significatively influenced
with the changing of the group topology. It is nature to ask what is the best grouping
topology for the hierarchical noncooperative system. Moreover, Chapter 6 showed an
example where the cognitive hierarchy levels may destabilize the Nash equilibrium of
the noncooperative system and generate some new equilibria in the dynamical system.
From the system manager’s point of view, letting the agents change their cognitive
hierarchy levels can be a essential method to improve the social welfare. The future
research direction may includes the investigation of cognitive hierarchy level switching
framework.

The emerging problems in intelligent transportation system and smart grid market
with game theoretic approach are expected in the future research directions. The
security problems in engineering systems with game theoretic approach are also expected.
Furthermore, the payoff-value based learning dynamics is important in the future
research direction. The agents’ behavioral dynamics in the most of the literature
require the exact payoff function. However, the agents may not really know the explicit
form of their payoff functions but the value of payoff functions. In such a case, how
to construct the behavioral dynamics for the agents is an important question in the

future research.
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Appendix B

Supplemental Information

Several classes of potential games are found in the literature [103]. Specifically, a
noncooperative game with the payoff functions J;(x), i € N, is called an (exact)

potential game if there exists a function f : R™ — R such that
Ji(zi, i) — Ji(@g, i) = [z, v) — (2, 220), (B.1)

for any i € N, z; € R, #; € R, and x_; € R, This notion can be generalized to the
notion of weighted potential game when there exists a positive weight vector (w;);en
such that J;(x;, x_;) — Ji(&5, 2_;) = wi(f(x;, 2 ;) — f(Zs,2_;)) for any i € N, z; € R,
7; € R, and z_; € R* 1. Furthermore, the notion of weighted potential game can be

generalized to the notion of ordinal potential game when
JZ‘(ZL‘Z‘, l’_l‘) > JZ(Z%Z,ZL‘_Z) <~ f(ZL‘Z, l'_i) > f(li‘l, l’_l‘), <B2)

forany i e N, 7; € R, #; € R, and z_; € R""!. The weighted potential game (and

hence the exact potential game) is a special class of ordinal potential game.

Lemma B.1. Consider the two-agent noncooperative system G with quadratic payoft
functions (2.30) satisfying aj; < 0 and a3, < 0. Then, the game G admits a ordinal
potential if and only if aj,a?, > 0.

Proof: The necessity is proved by Theorem 1 of [103]. For sufficiency, when ai,a?, > 0,

the function given by

1 1 .2 1 .2
f<x>=§<x—x*>T[a11“;2 “}2a32]<x—x*>, (B.3)
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Figure. B.1 Graphic abstract of two-agent loss-aversion-based noncooperative system with

zero-sum payoff functions.

is an ordinal potential for G because the function f(z) satisfies arg max,,er Ji(x;, x—;) =

arg maxg,er f(x;,x_;), i = 1,2, and hence (B.2) holds.
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Figure. B.2 Trajectories of the agents’ state, predicted state, and targeted best-response state
in a two-agent noncooperative system with prediction-incorporated pseudo-gradient dynamics.
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