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Abstract

Coordination between individual interests and social interests have become essential for
studying multiagent systems in the future smart society. This thesis provides a line of
work on control problems of self-interested agents in pseudo-gradient-based noncoopera-
tive dynamical systems. In the first part, we focus on developing several utility-transfer
frameworks for pseudo-gradient-based noncooperative dynamical systems to remodel
agents’ dynamical decision-making. Specifically, a zero-sum tax/subsidy approach, a
hierarchical incentive framework, and a Pareto-improving incentive mechanism are
constructed to deal with the control problem in the face of agents’ private information,
large-scale system, and Pareto improvement. In the second part, we investigate the
influence of psychological considerations in noncooperative systems, including the
loss-aversion phenomena and the incorporation of cognitive predictions of agents into
pseudo-gradient dynamics.
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Summary

Coordination between individual interests and social interests have become essential for
studying multiagent systems in the future smart society. This thesis provides a line of
work on control problems of self-interested agents in pseudo-gradient-based noncoopera-
tive dynamical systems. In the first part, we focus on developing several utility-transfer
frameworks for pseudo-gradient-based noncooperative dynamical systems to remodel
agents’ dynamical decision-making. Specifically, a zero-sum tax/subsidy approach, a
hierarchical incentive framework, and a Pareto-improving incentive mechanism are
constructed to deal with the control problems in the face of agents’ private information,
large-scale system, and Pareto improvement. In the second part, we investigate the
influence of psychological considerations in noncooperative systems, including the
loss-aversion phenomena and the incorporation of cognitive predictions of agents into
pseudo-gradient dynamics.

First of all, to deal with the control problem of noncooperative dynamical system
where the sensitivity parameters of the pseudo-gradient dynamics are uncertain to the
system manager, a zero-sum tax/subsidy approach is constructed to stabilize a possibly
unstable Nash equilibrium. We first characterize the stability of the Nash equilibrium for
arbitrary values of sensitivity and then investigate the zero-sum tax/subsidy framework
without knowing the sensitivity parameters. In the proposed framework, the system
manager defines the utility-transfer structure dividing the agents into subgroups so that
the utility transfers are completed within the subgroups in a zero-sum and distributed
manner. The amounts of tax (negative incentive) and subsidy (positive incentive) for
each agent are determined by quadratic incentive functions with well-chosen control
parameters.

For a noncooperative system with a large number of agents, the requirement for a
single system manager to know all agents’ payoff functions is extremely stringent. To
handle this issue, in light of the hierarchical government structures in real society, we
develop a hierarchical incentive framework for large-scale noncooperative dynamical
systems to achieve social welfare improvement. In the proposed framework, the agents



xiv

in the noncooperative system are divided into several groups and are influenced by
the corresponding group managers via some intra-group incentives. We characterize
the situation where group managers try to enhance the welfare of their groups by
continually updating their own intra-group incentives to the group members. We
explore the stability of group Nash equilibrium of the hierarchical noncooperative
systems and derive conditions where the trajectory of agents’ states converges to the
group Nash equilibrium under group managers’ intra-group incentives. Furthermore,
the inter-group incentive mechanism for a system governor is proposed to reconstruct
the group utility functions at the group managers level to move the group Nash
equilibrium so that the social (entire) welfare is improved. To deal with the situation
where the system governor may not know all the agents’ individual payoff functions and
all the agents’ states, we present sufficient conditions to guarantee the convergence of
agents’ states towards a target (suboptimal but not optimal due to the lack of enough
information) equilibrium using some macroscopic data.

Usually, the constructed incentive mechanisms are designed as coercion policies
under which the agents cannot escape once in place. However, the agents may have
the freedom to break away from the mechanism when they come across some undesired
situations (e.g., when their payoffs decrease after the mechanism is executed). To
address this problem, we develop a Pareto-improving incentive mechanism to remodel
agents’ dynamical decision-making to guarantee that all the agents are Pareto improving
and their state converges to a Pareto-efficient Nash equilibrium. Considering the
priorities among the agents, we construct a weighted social welfare function for the
incentive mechanism and hence derive the socially maximum state as the target Nash
equilibrium. With the well-designed incentive functions associated with the weighted
social welfare function, the socially maximum state is ensured to be a Pareto-efficient
Nash equilibrium in the incentivized noncooperative system. Several sufficient stability
conditions are presented to guarantee that the agents are Pareto improving under the
pseudo-gradient dynamics and their state converges to the socially maximum state
with known or unknown sensitivity parameters. We reveal the fact that the Pareto
improvement and potentialization do not have an inclusive relation with each other.

In light of psychological game theory and cognitive hierarchy theory, the conven-
tional pseudo-gradient dynamics with static sensitivity by ignoring all psychological
considerations and predictions about the likely actions of other agents seem unnat-
ural to describe agents’ behavior in real society. We connect the phenomenon of
loss-aversion in prospect theory with the pseudo-gradient dynamics and focus on the
stability problem of 2-agent noncooperative switched systems, which are characterized
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as payoff-driven piecewise linear systems for describing agents’ dynamic decision-making
with the quadratic payoffs and loss-aversion phenomena. Based on the transition anal-
ysis and mode analysis, the sufficient and necessary conditions under which agents’
state converge to the Nash equilibrium are derived in accordance with the location of
the Nash equilibrium. In the analysis, we observe an interesting phenomenon that we
call a flash switching instant where a single agent’s sensitivity transition makes the
other agent immediately switch its sensitivity almost at the same time instant.

Finally, we connect cognitive hierarchy theory with the pseudo-gradient dynamics in
noncooperative systems to extend the pseudo-gradient dynamics with some prediction
behaviors under Level-k thinking. The modified pseudo-gradient dynamics under Level-
k thinking are presented according to the knowledge network of the payoff functions
so that the agents are allowed to base their decisions on the predictions about the
likely actions (best-response states) of other agents with a bounded depth of reasoning.
To deal with the uncertainties on the knowledge network of the payoff functions and
sensitivity parameters, we characterize stability property with arbitrary knowledge
network of the payoff functions for the cases with a pure population of the agents in the
same level and the mixed population of the agents in different levels. In addition, we
present the applications of the results in optical communication systems, homogeneous
oligopoly markets, and differentiated oligopoly markets. It is observed that to ensure
asymptotic stability of the differentiated oligopoly markets with Cournot competition,
a larger market with more firms requires more differentiated products. In contrast,
this phenomenon does not happen in Bertrand competition.
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Chapter 1

Introduction

1.1 Control Problem in Noncooperative Systems: The
Needs of Incentive Design

Coordination issues between the individual interests and social interest have become
essentially important for studying multiagent systems in the coming smart society.
In order investigate the coordination issues, game theory has been used as one of
the disciplines concerning the relations between human decision making and resulting
phenomena as a whole [1, 2]. In noncooperative systems, each agent is presumed to be
fully rational and selfish, and hence aims to increase its own payoff by adjusting its
individual state in the system. Under this presupposition, Agents in the noncooperative
systems mutually affect the selfish decision making of the other agents through the
interconnected relations of their utilities or payoffs. Many applications are found in
both engineering and economics, e.g., wireless sensor networks [1], communication
channel allocation [3], signal interference avoidance [4], data security in intelligent
transportation systems [5], electricity market [6], to name but a few.

It is common knowledge that in noncooperative systems, the agents’ selfish decision
making may degrade the social welfare [7, 8]. For example, the tragedy of the commons
describes a social trap involving the conflict between the individual interests and the
public interest in the allocation of resources [9]. In such a situation, without a person
who is entitled to control the entire noncooperative system, every agent expands its
demand independently according to his own self-interest, and the limited resources are
destined to be over-exploited by the unrestricted demands, which eventually harms the
common good of all agents in the common resource systems.
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For the aggregation of such self-interested agents, it has turned out that the
imposition of external policies or explicit incentive mechanisms changes agents’ decision
making tendencies and hence results in the endogenously cooperative behaviors in the
noncooperative systems [10–12]. In such a case, the imposition of explicit incentive
mechanisms is regarded as the control behavior for the noncooperative systems. For
example, as a coercion policy which agents cannot escape once in place, a tax/subsidy
approach was proposed by [13] to reward or penalize the deviations from the average
contribution of the other competitors to the public goods. In contrast to the coercion
policy, the authors in [14] investigated a compensation mechanism where agents are
allowed to voluntarily subsidize the other agents in the pre-stage when the other agents’
decisions are not made yet. The compensation mechanisms are understood as a liberal
solution as agents have freedom to escape the mechanism. In usual, the liberal solution
works as a weak external rule to the noncooperative system and is expected to be less
efficient than the coercion solution.

In order to describe the state change of noncooperative systems, several models
are proposed in the literature. Specifically, agents’ dynamic decision behaviors are
typically characterized by the best-response dynamics (or named as dynamic fictitious
play) [15, 16] and myopic pseudo-gradient dynamics (or named as better-response
dynamics, or dynamic gradient play) [17–19] for discrete-time and continuous-time
systems, respectively. In the pseudo-gradient dynamics setup, the agents continuously
change their state according to the pseudo-gradient projection onto their own local
state space without having foresight. For example, the authors in [20] analyzed agents’
behaviors in a noncooperative system with two agents and quadratic payoff functions.
The authors in [21] investigated the agents’ behaviors with a variable learning rate
for the case where an agent wins (possesses higher utility than the opponent) in
the two-agent noncooperative system. The paper [22] proposed a congestion control
framework for data traffic with the pseudo-gradient dynamics for the users on the
internet while [23] discussed the relationship between the positively invariant set and
the set of positive externalities for a pseudo-gradient-based noncooperative system
with two agents and quadratic payoffs. The related works of dynamic agents’ behavior
characterized by pseudo-gradient dynamics are found in [24–34] and the references
therein, which include the applications of game theoretic approach inspired by the
pseudo-gradient dynamics in communication networks, smart grid, pricing mechanisms,
to name but a few.

To improve the social utility level, it is preferable to develop a compensation
mechanism that collects taxes from some agents and gives subsidies to some other
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agents. Specifically, the authors in [35] modified agents’ original payoff functions
in order to reach the highest social welfare by adding a pricing term among the
agents. For stabilizing minimum latency flows in the Braess graphs, [36] considered
the capitation tax and subsidy. The authors in [37] imposed a subsidy mechanism to
achieve stabilization for heterogeneous replicator dynamics. It is necessary to emphasize
that in the above works the existence of a system manager is assumed and he/she is
characterized as a resource owner or distributor who is able to give additional subsidies.
However, the system manger in many economic applications serves merely as a mediator
and does not have productivity to pay the additional profits to the agents. In such a
case, every subsidy has to be financed by taxes taken from the others [38] and hence
the tax/subsidy mechanism ought to be designed in a zero-sum fashion, e.g., [39].

During designing the incentive mechanism, there exist some important problems
with respect to uncertainty, large-scale system, and Pareto improvement. First of all,
the system manager, ideally, has all the knowledge about the noncooperative system
including the payoff functions and the decision dynamics of the agents. In reality, it is
often difficult to observe perfect information about the activities of the noncooperative
agents. This hidden information is termed as private information in economics [40]
and this uncertainty can be obstructive for designing the incentive mechanisms. Even
though in the existing gradient-based Nash equilibrium seeking problems [35, 41–43],
the seeking speed is predetermined, the rational agents in a noncooperative dynamical
system in general change their states according to their own inherent sensitivities
which may not be observed by the system manager. The work in [44] provided an
explicit mechanism by side payments with the idea of transferring the utility in a two
agent system, which induces cooperation and drives the noncooperative system to the
socially maximum welfare state, but unfortunately, the case with more agents and
the sensitivity parameters are not considered. Indeed, even though for a two-agent
noncooperative system, the sensitivity parameters do not change the stability property
of Nash equilibria [45], they may change the stability property in the system with more
than two agents and bring agents’ state to a worse utility state.

Secondly, for a noncooperative system with a large number of agents, the requirement
for a single system manager knowing all agents’ payoff functions is extremely stringent.
To deal with this problem, hierarchical structures consisting of a system governor (e.g.,
president) and multiple managers (e.g., mayors) often exist in our society, where the
agents are divided into several groups controlled by the corresponding group managers.
In those structures, the system governor usually observe only limited information from
each of the groups but the group mangers know more specific information in their
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own groups. In the literature, some hierarchical structures of incentive mechanisms or
noncooperative systems can be found in [46–49]. For example, Ng et al. considered a
two-level incentive mechanism design problem in [47] to mitigate the straggler effects in
the federated learning training tasks. Mukaidani and Xu studied incentive Stackelberg
games with multiple leaders and followers for a class of stochastic linear systems with
external disturbance in [48], where several agents take the position as leaders and
the rest of the agents take the position as followers so that the outcome of entire
systems depends on the state of both the leaders and the followers. Alternatively, in
the literature of economics, delegation games describe a different situation in which
some principals choose a compensation scheme for their agents while the latter play a
game on behalf of the principals [49]. In such a case, the payoffs of all players (i.e.,
principals and agents) are determined by the actions chosen by the agents. However,
to our knowledge, the theoretical analysis of pseudo-gradient-based noncooperative
dynamic systems with hierarchical incentives is not considered yet in the literature.

Thirdly, the constructed incentive mechanisms are often designed as coercion policies
under which the agents cannot escape once in place. However, since the agents may
have freedom to break away from the mechanism when the agents come across some
undesired situations (e.g., when their payoffs decrease after the mechanism is executed),
it is significant to develop incentive mechanisms enhancing the payoff values of all the
agents at the same time guaranteeing Pareto improvements [50] under the imposed
incentives. In such a case, it is essential to ensure that the desired state is Pareto
efficient [51–53]. In the literature of economics, Pareto-efficient states capture the
strategy profiles where no individual agent can be better off without making the
others worse off by deviating from the characterized state [54–56] so that there is no
space for further Pareto improvement. If the Nash equilibrium of the noncooperative
system is not Pareto efficient, then there is still some room to increase the payoffs
for some of the agents without decreasing any other agents’ payoffs [57, 58]. In this
case, some agents may seek private agreement (negotiation) with each other outside
the incentive mechanism so that the incentive mechanism constructed by the system
manager collapses. To avoid such a case, the incentive mechanism needs to guarantee
Pareto efficiency on the target (desired) Nash equilibrium [59, 60].

Moreover, depending on the specific goal of the government, the government in real
society usually gives more preferential treatments to some of the companies/individuals
when the performance of those companies/individuals is crucial in achieving the
government’s goal. For example, tackling extreme poverty was set to be an essential
policy goal by developing countries and hence their governments are likely to provide
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more resources (e.g., job opportunities or common resources) to the poorer people than
the others for enhancing the poor people’s lives. Another example is that industry-
oriented countries have given more preferential treatments to the NEVs (new energy
vehicles) companies to improve international competitiveness under the challenge of
global climate issue [61]. Therefore, while designing the incentive mechanism, the
system manager may evaluate the priority among the agents for constructing a social
welfare function [62].

1.2 Psychological Consideration in Noncooperative
Dynamical Systems

As mentioned in Section 1.1, the agents’ selfish dynamic decision behaviors are typically
modeled by the pseudo-gradient dynamics for continuous-time systems [17–19]. In
such setup, agents’ decision depends on the projection of the agents’ payoff functions
onto their own state proportioned by their own sensitivity parameters without having
foresight. Some issues in pseudo-gradient dynamics are discussed for different sce-
narios. For example, the impact of quantized communication [24], leader-following
consensus [42], augmented gradient-play dynamics [25], external disturbance [63], and
redistributive side payments [26] were investigated.

However, psychological game theory shows by experimental research that it is
inaccurate to simply assume that all the agents are fully rational and selfish because
the agents may have some social and psychological considerations such as the influence
of fairness, guilt aversion, hesitation, and inequality aversion in the decision making
[64]. On the basis of various psychological considerations, agents make their decisions
in significantly different ways [65, 66]. Therefore, the pseudo-gradient dynamics with
static sensitivity by ignoring all psychological considerations seem unnatural to describe
agents’ behavior in the real society. To our knowledge, the paper [67] is the first work to
characterize the pseudo-gradient dynamics with variable sensitivity. The essence of [67]
is to consider the situation where each agent makes a decision quickly when losing and
cautiously when winning in a two-agent iterated matrix game. However, for describing
agents’ different decision making when they are facing losses and gains, loss-aversion
in cognitive psychology and decision theory [68] tells the completely opposite scenario,
that is, agents’ decision is more cautious when they are expected to lose utilities. In
light of the difference between loss-aversion phenomena and psychological consideration
in [67], it is significant to consider the pseudo-gradient dynamics under the loss-aversion
scenario.
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In the last decade, switched systems, which are characterized by a signal specifying
the mode transition among a finite number of subsystems, have widely applied to
numerous areas such as servomechanism systems [69], formation flying [70], stochastic
systems [71], to name but a few. As the most important issues in control systems,
stability properties of an equilibrium in such switched systems has been extensively
characterized [72–76]. In terms of piecewise linear systems, Iwatani and Hara character-
ized the stability problem based on poles and zeros of the subsystems [77]. Nishiyama
and Hayakawa provided a series of sufficient conditions to determine stability for
2-dimensional switched linear systems and piecewise nonlinear homogeneous systems
[78–80]. An integral function approach based on normalized growth rate was formulated
as a tool for judging whether the trajectory is coming closer to the equilibrium or not
in [78]. In the above works, the triggers of mode transitions in the switched systems are
usually understood as event-driven but the events are assumed to be independent of the
systems’ dynamics. The fundamental problems on stability and switching behaviors for
the special class of switched systems with correlative dynamics and switching events
(conditions) get few attentions.

On the other hand, on the basis of behavioural economics and cognitive hierarchy
theory, it may be inaccurate to assume that the agents are simply myopic decision-
makers without making any prediction or reasoning about the likely actions of other
agents [81]. In fact the agents usually have the tend to estimate or predict how their
opponents act in the noncooperative system based on the information of the other
agents’ payoff functions. Furthermore, more complicated behaviors may happen when
agents are conscious of the opponent’s estimation or prediction. This is because the
agents’ decision behavior may be totally different when they know or do not know
whether the other agents’ are making prediction of its own future state. The framework
of those cognitive operations is referred to as Level-k framework in cognitive hierarchy
theory.

Roughly speaking, the Level-k framework [82, 83] categorises the agents of the
noncooperative systems into several types (levels) according to the depth of the agent’s
strategic thought (reasoning). First of all, Level-k framework begins with the first
level called Level-0 in which agents make the decision non-strategically. Except for
the agents in Level-0, each agent in Level-k firmly believes that he/she is the most
sophisticated person in the system because all the other agents are in Level-(k − 1).
For this reason, the agent make the decision according to some strategic reasoning
of the other agents’ likely actions. For example, Level-1 agents (e.g., the agents in
conventional best-response dynamics or pseudo-gradient dynamics) make the decision
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strategically according to its own payoff functions and the other agents’ current state
because they firmly believe that their opponents are making non-strategic decisions [84].
Some related works in cognitive hierarchy theory, predictive control, nonequilibrium
dynamic game and cyber-physical security are found in [85–88]. However, to our best
knowledge, the theoretical analysis of noncooperative systems with pseudo-gradient
dynamics under Level-k thinking is not considered yet in the literature.

1.3 Overview

The thesis is organized as follows. In Chapter 2, we develop a utility-transfer frame-
work for pseudo-gradient-based noncooperative dynamical systems to remodel agents’
dynamical decision making in the face of agents’ private information. We assume
that the sensitivity parameters in the pseudo-gradient dynamics are uncertain to the
system manager. Under this uncertainty, the system manager is expected to construct
a zero-sum tax/subsidy mechanism to (globally) stabilize a Nash equilibrium. In
particular, we first present several sufficient conditions for guaranteeing stability of a
possibly unstable Nash equilibrium in the face of uncertainty, and then we construct
a zero-sum tax/subsidy incentive structure by collecting taxes from some agents and
giving the same amount of subsidy in total to other agents so that the agents’ payoff
structure is properly modified.

In Chapter 3, we focus on the social welfare improvement problem for large-scale
hierarchical noncooperative dynamical systems driven by the pseudo-gradient dynamics.
A framework for hierarchical noncooperative systems with dynamic agents is proposed.
In the characterized framework, agents in each group are incentivized by a corresponding
group manager who represents the benefits of group utility via an intra-group incentive
mechanism. Furthermore, to improve the social welfare of the entire system, we propose
an inter-group incentive scheme in the group managers level for a system governor to
bring agents’ state to a target equilibrium. In this chapter, to deal with the uncertain
information on agents’ personal payoff functions for the system governor, sufficient
conditions are presented to guarantee the convergence of agents’ state to the target
equilibrium.

In Chapter 4, we propose a Pareto-improving incentive mechanism to improve
the weighted social welfare and achieve continual Pareto improvement for pseudo-
gradient-based noncooperative dynamical systems. The proposed explicit incentive
mechanism remodels agents’ dynamical decision making for guaranteeing that all
the agents are Pareto improving and their state converges to a Pareto-efficient Nash
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equilibrium. Similar to Chapter 2, we consider the situation where the system manager
remodels agents’ dynamical decision making by collecting taxes from some agents
and giving some of the collected taxes to other agents as subsidies with a sustainable
budget constraint. Sufficient conditions are derived under which agents’ state converges
towards the socially maximum state associated with a weighted social welfare function
depending on the priority ratio of the agents and the initial state. We discuss the
connection between Pareto improvement and potentialization and reveal the fact that
the Pateto improvement and potentialization do not have an inclusive relation with
each other.

In Chapter 5, we focus on the stability problem for 2-agent noncooperative switched
systems, which are characterized as payoff-driven piecewise linear systems for describ-
ing agents’ dynamic decision making with the quadratic payoffs and loss-aversion
phenomena. In particular, we assume that each agent adopts lower sensitivity in the
pseudo-gradient dynamics for the case of losing utility than gaining utility and hence
both the system dynamics and the switching instants depend on the agents’ payoff
functions. Based on the transition analysis and mode analysis, the sufficient and
necessary conditions under which agents’ state converge to the Nash equilibrium are
derived in accordance with the location of the Nash equilibrium. In the analysis, the
mode transition sequence and interesting phenomena which we call flash switching are
characterized. It is found that the loss-aversion behaviors may destabilize the Nash
equilibrium. A sufficient condition of robust stability under which the loss-aversion
behaviors never destabilize the Nash equilibrium for any sensitivity parameters is
presented. The result indicates that by well defining (modifying) the agents’ payoff
functions, it is possible to avoid destabilization of a Nash equilibrium caused by the
agents’ loss-aversion consideration.

In Chapter 6, we we connect cognitive hierarchy theory with the pseudo-gradient
dynamics in noncooperative systems to extend the pseudo-gradient dynamics with
some prediction behaviors under Level-k thinking.In the characterized system, all
the agents are allowed to base their decisions on the predictions about the likely
actions (best-response states) of other agents with a bounded depth of reasoning. We
suppose that those predictions are made according to the information of the payoff
functions that the agents know from a knowledge network of the payoff functions. The
modified pseudo-gradient dynamics under Level-k thinking are presented according
to the knowledge network of the payoff functions. We suppose that the sensitivity
parameters and the knowledge network of the payoff functions in the pseudo-gradient
dynamics are uncertain to a system manager who wishes to ensure stabilization of
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a Nash equilibrium. To deal with the uncertainties, we first characterize stability
property with arbitrary knowledge network of the payoff functions for the cases with
pure population of the agents in the same level and mixed population of the agents in
different levels, and then investigate a stabilization method via zero-sum tax/subsidy
approach to ensure stability of a Nash equilibrium without using the information of
sensitivity parameters nor the knowledge network of payoff functions. In addition, we
present the applications of the results in optical communication systems, homogeneous
oligopoly markets and differentiated oligopoly markets. It is observed that to ensure
asymptotic stability of the differentiated oligopoly markets with Cournot competition,
a larger market with more firms requires more differentiated products, whereas this
phenomena does not happen in Bertrand competition.

1.4 Notations

We use the following notations in this thesis. We write Z0 for the set of nonnegative
integers, Z+ for the set of positive integers, Zo for the set of positive odd integers, Ze

for the set of positive even integers. R for the set of real numbers, R+ for the set of
positive real numbers, Rn for the set of n×1 real column vectors, Rn×m for the set of
n×m real matrices, ∧ for the logical conjunction, and ∨ for the logical disjunction.
Moreover, det(·) denotes determinant, (·)T denotes transpose, (block-)diag[·] denotes a
(block-)diagonal matrix, f ′(·) denotes the gradient of function f(·), In and 1n denote
the identity matrix and the ones vector of dimension n, respectively. Finally, [rowi(A)]

denotes a matrix with entries same as ith row of matrix A, ◦ denotes Schur product,
∥x∥ =

√
xTx denotes the Euclidean norm of a vector x, ∥A∥ denotes the matrix norm

of a matrix A, and He(·) denotes the Hermitian part of a matrix.
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Chapter 2

Control of Uncertain Noncooperative
Dynamical Systems: A Tax/Subsidy
Approach

2.1 Introduction

In this chapter, we develop a utility-transfer framework for pseudo-gradient-based
noncooperative dynamical systems to remodel agents’ dynamical decision making in
the face of agents’ private information. Specifically, we assume that that the sensitivity
parameters in the pseudo-gradient dynamics are uncertain to the system manager.
Under this uncertainty, the system manager is expected to construct a zero-sum
tax/subsidy mechanism to (globally) stabilize a Nash equilibrium. To deal with the
uncertainty, we first characterize the stability of the Nash equilibrium for arbitrary
values of sensitivity and then investigate the zero-sum tax/subsidy framework without
knowing the sensitivity parameters. In the proposed tax/subsidy approach, the system
manager defines the utility-transfer structure dividing the agents into subgroups so that
the utility transfers are completed within the subgroups in a zero-sum and distributed
manner. The amounts of tax (negative incentive) and subsidy (positive incentive) for
each agent are determined by quadratic incentive functions with well-chosen control
parameters. It turns out from the numerical examples that the proposed framework
can guarantee global asymptotic stabilizability for some noncooperative systems with
non-quadratic payoff functions.

This chapter is organized as follows. In Section 2.2, we characterize the pseudo-
gradient-based noncooperative dynamical systems and present the main problem along



12

with motivations. In Section 2.3, we discuss the stability of a Nash equilibrium for
multi-agent noncooperative systems without knowing agents’ sensitivity parameter.
In Section 2.4, we first introduce our zero-sum tax/subsidy mechanism for two-agent
noncooperative systems, and then extend it to more general multi-agent systems.
Furthermore, in Section 2.5, we present a couple of illustrative numerical examples.
Finally, Section 2.6 concludes this chapter.

2.2 Problem Formulation

2.2.1 System Description

Consider the noncooperative system with payoff functions Ji : Rn → R for agent i ∈ N ,
where N , {1, . . . , n} denotes the set of agents. Each agent i ∈ N controls its state
(strategy) xi ∈ R, i ∈ N . Let x = (xi, x−i) ∈ Rn denote all agents’ state (strategy)
profile, where x−i ∈ Rn−1 denotes the agents’ state profile except agent i. In this
chapter, we suppose that each agent i aims to increase its own payoff Ji(xi, x−i), where
Ji may depend on all the agents’ state. We denote the noncooperative system by G(J)
with J , {Ji}i∈N .

Definition 2.1. [89] For the noncooperative system G(J), the state profile x∗ ∈ Rn is
called a Nash equilibrium of G(J) if

Ji(x
∗
i , x

∗
−i) ≥ Ji(xi, x

∗
−i), xi ∈ R, i ∈ N . (2.1)

The best-response state xi for agent i defined as the state xi yielding the largest
value of Ji given the state profile x−i of the other agents is expressed by the mapping
BRi : Rn−1 → R given by

xi = BRi(x−i) , argmaxxi∈RJi(xi, x−i). (2.2)

It is worth noting that the Nash equilibrium x∗ is understood as an intersecting point
of the best-response curves/planes (2.2), i.e., x∗ = [x∗1, . . . , x

∗
n]

T satisfies

BRi(x
∗
−i) = x∗i , i ∈ N . (2.3)

Therefore, at a Nash equilibrium x∗ no agent has any intension to deviate unilaterally
from the equilibrium state.
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Assumption 2.1. The payoff functions Ji(x), i ∈ N , are twice continuously differen-
tiable.

Note that the noncooperative system G(J) may not possess any Nash equilibrium.
Some sufficient conditions for existence of a Nash equilibrium with the closed convex
domain can be found in [17], [90, Chapter 2]. However, in general, guaranteeing
the existence of a Nash equilibrium for an unbounded state space is a complicated
problem. In this chapter, we suppose that there exists at least one Nash equilibrium.
In this case, under Assumption 2.1, since the Nash equilibrium x∗ satisfies x∗i =

argmaxxi∈R Ji(xi, x
∗
−i) for all i ∈ N , it follows that

∂Ji(x
∗)

∂xi
= 0, i ∈ N . (2.4)

Moreover, it is important to note that the Nash equilibrium is characterized independent
of the underlying dynamics.

2.2.2 Myopic Pseudo-Gradient Dynamics

In this chapter, we suppose that each agent continuously changes its state (strategy) of
the noncooperative system G(J) in the unbounded state space Rn in order to increase
its own payoff. Specifically, we assume that the state profile x(·) is available for all the
agents and each agent follows the pseudo-gradient dynamics given by

ẋi(t) = αi
∂Ji(x(t))

∂xi
, i ∈ N , (2.5)

where αi, i ∈ N , are agent-dependent positive constant parameters representing
sensitivity to the increasing/decreasing payoff per unit state change [17]. In this case,
agents selfishly concern their own payoffs and myopically change their states (strategies)
according to the current information without any foresight on the future state of the
other agents. The pseudo-gradient dynamics are widely used as the dynamics for
rational and selfish agents [20–22, 44, 25, 45, 42]. The agents’ moving rates given by
(2.5) are characterized to be proportional to the projection of the gradient of Ji(x)
onto xi-axis, which is termed as the pseudo-gradient, but the sensitivity parameters αi,
i ∈ N , which decide how fast the agents move, are in many cases private so that they
are not observed. It is important to note that at the Nash equilibrium x∗, ẋ(t) = 0

since (2.4) holds.
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2.2.3 Motivations and Problem Statement

Motivation: Some of the Nash equilibria may be unstable in the noncooperative system
G(J), since agents’ payoff functions are generally different from each other. For instance,
Fig. 2.1 shows the payoff functions of each agent in a two-agent noncooperative system
with an unstable Nash equilibrium. Assume there is a system manager, e.g., the
governor of the markets, who controls the amount of tax and subsidy (negative and
positive incentives, respectively) and demands to stabilize around a Nash equilibrium
for encouraging agents to converge to it. Assuming all the information of the payoff
functions Ji(x), i ∈ N , is known, we suppose that the system manager chooses the
Nash equilibrium possessing the largest social utility from the set of Nash equilibria
of G(J) as the target Nash equilibrium. A fundamental question is how the system
manager designs an incentive mechanism to stabilize the possibly unstable target Nash
equilibrium with uncertain sensitivity parameters αi, i ∈ N .

Assumption 2.2. There exists a known Nash equilibrium x∗ satisfying ∂2Ji(x
∗)

∂x2
i

< 0,
i ∈ N , which is the target equilibrium such that the system manager wishes to
guarantee stability around x∗.

Note that the computation of the Nash equilibrium for the noncooperative system
G(J) is beyond the scope of this paper. The relevant methods for calculating Nash
equilibria can be found in [25, 91–94] and the references therein.

Problem: Consider the the target Nash equilibrium x∗ with uncertain sensitivity
parameters αi, i ∈ N , for the system manager. Our main objectives are two folds: (i)
Find the condition for determining the stability property of the Nash equilibrium x∗

with arbitrary αi, i ∈ N ; (ii) Design an explicit incentive mechanism to stabilize the
possibly unstable Nash equilibrium x∗ with the unknown sensitivity parameters αi,
i ∈ N .

2.3 Stability Analysis of Nash Equilibrium with Un-
known Sensitivity Parameters

In this section, we characterize stability properties of the Nash equilibrium of the
noncooperative system G(J). Specifically, we first present the results for the general
n-agent case, and then specialize the results to 3-agent and 2-agent cases. For the
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Figure. 2.1 Payoff functions for an unstable Nash equilibrium.
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statement of the following results, let α , (α1, . . . , αn) and define

A(J, α, x) ,


α1

∂2J1(x)

∂x2
1

· · · α1
∂2J1(x)
∂x1∂xn

... . . . ...
αn

∂2Jn(x)
∂xn∂x1

· · · αn
∂2Jn(x)
∂x2

n

 . (2.6)

Note that under Assumption 2.1, since the functions Ji(x), i ∈ N , are twice continuously
differentiable, the matrix (2.6) is a continuous function with respect to x. Moreover,
under Assumption 2.2, the diagonal terms αi

∂2Ji(x
∗)

∂x2
i

, i ∈ N , in A(J, α, x∗) are all
negative. This fact is used in the analysis of the following results.

Stability Analysis for n-Agent Noncooperative Systems

The sensitivity parameters αi, i ∈ N , are inherent to each of the agents and are not
exactly observed. Without knowing the value of α for the n-agent noncooperative
system, the following results provide several ways to determine stability of the Nash
equilibrium.

Corollary 2.1. Consider the Nash equilibrium x∗ ∈ Rn for the n-agent noncooperative
system G(J) with myopic pseudo-gradient dynamics (2.5). If the payoff functions Ji(x),
i ∈ N , satisfy

(−1)n detA(J, 1n, x
∗) < 0, (2.7)

then the Nash equilibrium x∗ is unstable for any positive constants αi, i ∈ N .

Proof First, let x̃ , x− x∗. Note that linearizing the system dynamics (2.5) around
x∗ yields

˙̃x(t) = A(J, α, x∗)x̃(t). (2.8)

The result is a direct consequence of the Lyapunov’s indirect method. Specifically,
consider the characteristic equation det (sI −A(J, α, x∗)) = sn + aN−1s

N−1 + · · · +
a1s+ a0 = 0 of A(J, α, x∗), where a0, . . . , an−1 are appropriate constants. In particular,
a0 = (−1)n detA(J, α, x∗) = (−1)n detA(J, 1n, x

∗)×
∏

i∈N αi. Now, since αi > 0, i ∈
N , it follows from (2.7) that a0 < 0. Hence, it follows from Routh or Hurwitz criterion
that the Nash equilibrium x∗ is unstable. �

The fictitious sensitivity 1n in (2.7) can be replaced by any α̂ ∈ Rn
+ to determine

instability because it does not change the sign of the determinant of A(J, ·, x∗).
Relation of payoff dependency between the agents can be characterized by defining

a graph. For specific graph structures, we can specialize the condition (2.7) as shown
in the following examples.
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Figure. 2.2 Network topologies of payoff dependency. (a) n-agent center-sponsored star
network where agent 1 is the center, (b) directed ring network: the arrows of the graph
indicate that Ji(x) = Ji(xi, xi+1) where xN+1 is understood as x1.

Example 2.1. Consider the noncooperative system with the payoff dependency given
by the center-sponsored star network illustrated in Fig. 2.2(a), where agent 1 is the
center of the network. In this case, note that since

A(J, 1n, x
∗) =


∂2J1(x∗)

∂x2
1

∂2J1(x∗)
∂x1∂x2

· · · ∂2J1(x∗)
∂x1∂xn

∂2J2(x∗)
∂x2∂x1

∂2J2(x∗)
∂x2

2
0

... . . .
∂2Jn(x∗)
∂xn∂x1

0 ∂2Jn(x∗)
∂x2

n

 , (2.9)

the left-hand side of (2.7) is given by

(−1)n
(∂2J1(x∗)

∂x21
−

n∑
i=2

∂2J1(x∗)
∂x1∂xi

∂2Ji(x
∗)

∂xi∂x1

∂2Ji(x∗)
∂x2

i

) n∏
i=2

∂2Ji(x
∗)

∂x2i
. (2.10)

Noting that Assumption 2.2 implies that (−1)n
∏n

i=2
∂2Ji(x

∗)
∂x2

i
is negative, it follows from

Corollary 2.1 that if the payoff functions Ji(x), i ∈ N , satisfy

∂2J1(x
∗)

∂x21
−

n∑
i=2

∂2J1(x∗)
∂x1∂xi

∂2Ji(x
∗)

∂xi∂x1

∂2Ji(x∗)
∂x2

i

> 0, (2.11)

then the Nash equilibrium x∗ is unstable for any positive constants αi, i ∈ N .
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Example 2.2. Consider the noncooperative system with the payoff dependency given
by the directed ring network illustrated in Fig. 2.2(b). In this case, note that since

A(J, 1n, x
∗) =


∂2J1(x∗)

∂x2
1

∂2J1(x∗)
∂x1∂x2

0 0

0
. . . . . . 0

0 0 ∂2JN−1(x
∗)

∂x2
N−1

∂2JN−1(x
∗)

∂xN−1∂xn

∂2Jn(x∗)
∂xn∂x1

0 0 ∂2Jn(x∗)
∂x2

n

 , (2.12)

the left-hand side of (2.7) is
∏n

i=1

(
−∂2Ji(x

∗)
∂x2

i

)
−
∏n

i=1
∂2Ji(x

∗)
∂xi∂xi+1

, where xn+1 is understood
as x1. Thus, it follows from Corollary 2.1 that if the payoff functions Ji(x), i ∈ N ,
satisfy

n∏
i=1

(
−∂

2Ji(x
∗)

∂x2i

)
<

n∏
i=1

∂2Ji(x
∗)

∂xi∂xi+1

, (2.13)

then the Nash equilibrium x∗ is unstable for any positive constants αi, i ∈ N .

Now a sufficient condition is provided to guarantee stability without knowing αi,
i ∈ N , in the following theorem.

Theorem 2.1. Consider the Nash equilibrium x∗ ∈ Rn for the n-agent noncooperative
system G(J) with pseudo-gradient dynamics (2.5). If there exists α̂ ∈ Rn

+ such that

AT(J, α̂, x∗) +A(J, α̂, x∗) < 0, (2.14)

then the Nash equilibrium x∗ is locally asymptotically stable for any positive constants
αi, i ∈ N .

Proof Letting x̃ = x− x∗, consider the Lyapunov function candidate V (x̃) = x̃TPx̃

with the positive-definite matrix P , diag
[
α̂1

α1
, . . . , α̂n

αn

]
> 0. Since

AT(J, α, x∗)P + PA(J, α, x∗) = AT(J, α̂, x∗) +A(J, α̂, x∗) < 0,

is satisfied, it follows using the linearized dynamics (2.8) that

V̇ (x̃(t)) = x̃T(t)(AT(J, α̂, x∗) +A(J, α̂, x∗))x̃(t) < 0, (2.15)

around x∗ and hence the Nash equilibrium x∗ is asymptotically stable for all positive
sensitivity parameters αi, i ∈ N . �

Remark 2.1. The result in Theorem 2.1 appears to be similar to Theorems 8 and 9
of [17] but it is certainly different in that Theorem 2.1 guarantees asymptotic stability
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for arbitrary α by evaluating the sign-definiteness of AT(J, α̂, x∗) +A(J, α̂, x∗) for a
particular α̂. To determine whether such α̂ exists, we can address the linear matrix
inequality (LMI) feasibility problem given by

diag[α̂]A(J, 1n, x
∗) +AT(J, 1n, x

∗)diag[α̂] < 0, (2.16)

assuming that all the information of J is known.

Remark 2.2. Because of the continuity of A(J, α̂, x) with respect to x, (2.14) implies
that there exists a connected set

Dα̂
1 , {x ∈ Rn : AT(J, α̂, x) +A(J, α̂, x) < 0} (2.17)

containing x∗. Let f(x) , [α1
∂J1(x)
∂x1

, . . . , αn
∂Jn(x)
∂xn

]T denote the vector field of the
pseudo-gradient dynamics and let V (x) , fT(x)Pf(x). It is important to note that a
subset of the region of attraction can be characterized by

Dδ
2 , {x ∈ Rn : V (x) < δ}, (2.18)

with the maximum attainable δ ∈ R+ such that Dδ
2 ⊆ Dα̂

1 and Dδ̃
2 is connected in the

neighborhood of x∗ for all δ̃ < δ. This is because V (x) is understood as a Lyapunov
function and it satisfies V̇ (x(t)) = fT(x(t))(AT(J, α̂, x(t)) +A(J, α̂, x(t)))f(x(t)) < 0

for all x(t) ∈ Dδ
2 \ {x∗}. It is important to note that the estimated region of attraction

Dδ
2 depends on the choice of α̂ in A(J, α̂, x∗) and can be substantially smaller than the

actual region of attraction. But for the special case where AT(J, α̂, x) +A(J, α̂, x) < 0

holds for all x ∈ Rn, since it can be shown that f(x) = 0 only when x = x∗ in Rn,
it follows that the Nash equilibrium x∗ is globally asymptotically stable for arbitrary
α. For instance, if the payoff functions are quadratic, then (2.14) guarantees global
asymptotic stability as (2.6) is a constant matrix.

Remark 2.3. For the noncooperative system with the payoff functions satisfying
∂2Ji(x

∗)
∂xi∂xj

≥ 0, i, j ∈ N , i ̸= j, it follows from the properties of Metzler matrix that
(2.14) in Theorem 2.1 is also a necessary condition for the Nash equilibrium x∗ to be
asymptotically stable for arbitrary α.

Example 2.3. Consider the n-agent noncooperative system with the payoff dependency
given by the center-sponsored star network illustrated in Fig. 2.2(a). To investigate
the conditions for the payoff functions Ji(x), i ∈ N , such that α̂ ∈ Rn

+ exists to satisfy
(2.14), note that the kth-order leading principal minor of AT(J, α̂, x∗) + A(J, α̂, x∗)
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with α̂1 = 1 is given by Lk ,
(
2∂2J1(x∗)

∂x2
1

−
k∑

i=2

(
∂2J1(x

∗)
∂x1∂xi

+α̂i
∂2Ji(x

∗)
∂xi∂x1

)2

2α̂i
∂2Ji(x

∗)
∂x2

i

) k∏
i=2

(
2α̂i

∂2Ji(x
∗)

∂x2
i

)
for k = 2, . . . , n. Since, by Assumption 2.2, ∂2Ji(x

∗)
∂x2

i
< 0, i = 2, . . . , n, and hence

(−1)k
∏k

i=2

(
2α̂i

∂2Ji(x
∗)

∂x2
i

)
< 0, k = 2, . . . , n, the inequality (−1)kLk > 0 for guaranteeing

(2.14) is equivalent to

∂2J1(x
∗)

∂x21
<

1

2

k∑
i=2

(
∂2J1(x∗)
∂x1∂xi

+ α̂i
∂2Ji(x

∗)
∂xi∂x1

)2
2α̂i

∂2Ji(x∗)
∂x2

i

, (2.19)

for k = 2, . . . , n. Therefore, since all the terms in the right-hand side are negative,
the existence problem of α̂ in satisfying (2.14) is equivalent to finding a solution
α̂ = (1, α̂2, . . . , α̂n) for (2.19) with k = n. Now, such α̂ exists if and only if the simple
condition

∂2J1(x
∗)

∂x21
<

1

2

n∑
i=2

max
α̂i∈R+

(
∂2J1(x∗)
∂x1∂xi

+ α̂i
∂2Ji(x

∗)
∂xi∂x1

)2
2α̂i

∂2Ji(x∗)
∂x2

i

=
1

2

∑
i∈N0

max
α̂i∈R+

(
∂2J1(x∗)
∂x1∂xi

+ α̂i
∂2Ji(x

∗)
∂xi∂x1

)2
2α̂i

∂2Ji(x∗)
∂x2

i

=
∑
i∈N0

∂2J1(x∗)
∂x1∂xi

∂2Ji(x
∗)

∂xi∂x1

∂2Ji(x∗)
∂x2

i

, (2.20)

is satisfied for N0 , {i ∈ N : ∂2J1(x∗)
∂x1∂xi

∂2Ji(x
∗)

∂xi∂x1
> 0}, where in (2.20) we used max

α∈R+

(A+αB)2

2αC
=

2AB
C

for AB > 0 and C < 0.

Remark 2.4. Note that the local stability of the Nash equilibrium x∗ under the
dynamics (2.5) can also be directly derived if the matrix A(J, α, x∗) (or, equivalently,
A(J, 1n, x

∗)) is strictly diagonally dominant (i.e., ∂2Ji(x
∗)

∂x2
i

< −
∑

j ̸=i |
∂2Ji(x

∗)
∂xi∂xj

| for all
i ∈ N ) [42]. The proof is based on Gershgorin’s circle theorem [95].

Stability Analysis for 3-Agent Noncooperative Systems

Recall that based on the Lyapunov’s stability method, Theorem 2.1 requires us to look
for α̂ to make the symmetric part of A(J, α̂, x∗) negative definite to guarantee stability.
For the case of n = 3, it is possible to characterize a different set of stability conditions
on the payoff functions based on the Hurwitz criterion.

Proposition 2.1. Consider the Nash equilibrium x∗ ∈ R3 for the 3-agent noncoopera-
tive system G({J1, J2, J3}) with pseudo-gradient dynamics (2.5). If the payoff funstions
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Ji(x), i ∈ {1, 2, 3}, satisfy

detA(J, 13, x
∗) < 0, (2.21)

∂2Ji(x
∗)

∂x2
i

∂2Jj(x
∗)

∂x2
j

− ∂2Ji(x
∗)

∂xi∂xj

∂2Jj(x
∗)

∂xj∂xi
> 0, i, j ∈ {1, 2, 3}, i ̸= j, (2.22)

2∂2J1(x∗)
∂x2

1

∂2J2(x∗)
∂x2

2

∂2J3(x∗)
∂x2

3
− ∂2J1(x∗)

∂x1∂x2

∂2J2(x∗)
∂x2∂x3

∂2J3(x∗)
∂x3∂x1

− ∂2J1(x∗)
∂x1∂x3

∂2J2(x∗)
∂x2∂x1

∂2J3(x∗)
∂x3∂x2

< 0, (2.23)

then the Nash equilibrium x∗ is asymptotically stable for any positive constants
α1, α2, α3.

Proof Consider the characteristic polynomial s3+a2s2+a1s+a0 of A(J, α, x∗), where

a2 =−
∑
i∈N

αi
∂2Ji(x

∗)
∂x2

i
, (2.24)

a1 =
∑
i ̸=j

(
αiαj(

∂2Ji(x
∗)

∂x2
i

∂2Jj(x
∗)

∂x2
j

− ∂2Ji(x
∗)

∂xi∂xj

∂2Jj(x
∗)

∂xj∂xi
)
)
, (2.25)

a0 =− detA(J, α, x∗) = −α1α2α3 detA(J, 13, x
∗). (2.26)

Note that Assumption 2.2 implies a2 > 0 and (2.21), (2.22) imply a0 > 0, a1 > 0,
respectively. Furthermore, it follows from (2.22), (2.23) that

a2a1 − a0 =−
∑
i ̸=j

(
α2
iαj

∂2Ji(x
∗)

∂x2
i

(∂2Ji(x
∗)

∂x2
i

∂2Jj(x
∗)

∂x2
j

− ∂2Ji(x
∗)

∂xi∂xj

∂2Jj(x
∗)

∂xj∂xi

))
− α1α2α3(2

∂2J1(x∗)
∂x2

1

∂2J2(x∗)
∂x2

2

∂2J3(x∗)
∂x2

3
− ∂2J1(x∗)

∂x1∂x2

∂2J2(x∗)
∂x2∂x3

∂2J3(x∗)
∂x3∂x1

− ∂2J1(x∗)
∂x1∂x3

∂2J2(x∗)
∂x2∂x1

∂2J3(x∗)
∂x3∂x2

) > 0. (2.27)

Hence, it follows from the Hurwitz criterion that the Nash equilibrium x∗ is stable for
any positive constants α1, α2, α3. �

Remark 2.5. The conditions in Proposition 2.1 provide different sufficient conditions

from the one in Theorem 2.1. For example, A(J, 13, x
∗) =

 −1 0 50

−1 −1 0

−1 −1 −1

 satisfies

(2.21)–(2.23), but there does not exist α̂ ∈ R3
+ such that AT(J, α̂, x∗) +A(J, α̂, x∗) < 0.

On the contrary, AT(J, 13, x
∗) +A(J, 13, x

∗) < 0 for A(J, 13, x
∗) =

 −6 −5 1

−2 −2 −5

−5 3 −1

,

but in this case, the condition in (2.23) is false.

For a special case of the payoff dependency, it is interesting to observe that the
conditions in Proposition 2.1 are equivalent to (2.14) in Theorem 2.1. In such a case,
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(2.21)–(2.23) guarantee the existence of α̂ for AT(J, α̂, x∗) +A(J, α̂, x∗) < 0 as shown
in the following remark.

Remark 2.6. Consider the 3-agent noncooperative system with the payoff dependency
given by the undirected serial graph, which is a special case of the center-sponsored
star network discussed in Example 2.3. Note that ∂2J2(x∗)

∂x2∂x3
= ∂2J3(x∗)

∂x3∂x2
= 0 because

J2(x) and J3(x) are not the functions of x3 and x2, respectively. In this case, in-
equality (2.23) is automatically satisfied. Furthermore, note that detA(J, 13, x

∗) =

−∂2J3(x∗)
∂x2

3

∂2J1(x∗)
∂x1∂x2

∂2J2(x∗)
∂x2∂x1

− ∂2J2(x∗)
∂x2

2

∂2J1(x∗)
∂x1∂x3

∂2J3(x∗)
∂x3∂x1

+ ∂2J1(x∗)
∂x2

1

∂2J2(x∗)
∂x2

2

∂2J3(x∗)
∂x2

3
. Hence, the

conditions (2.21)–(2.23) are satisfied if and only if

∂2J1(x
∗)

∂x21
< min

{ ∂2J1(x∗)
∂x1∂x2

∂2J2(x∗)
∂x2∂x1

∂2J2(x∗)
∂x2

2

+

∂2J1(x∗)
∂x1∂x3

∂2J3(x∗)
∂x3∂x1

∂2J3(x∗)
∂x2

3

,

∂2J1(x∗)
∂x1∂x2

∂2J2(x∗)
∂x2∂x1

∂2J2(x∗)
∂x2

2

,

∂2J1(x∗)
∂x1∂x3

∂2J3(x∗)
∂x3∂x1

∂2J3(x∗)
∂x2

3

}
,

(2.28)

where the right-hand side is same as (2.20). Therefore, for this special case of the
payoff dependency, Proposition 2.1 provides exactly the same sufficient conditions as
the one given in Theorem 2.1.

Stability Analysis for 2-Agent Noncooperative Systems

Now, we assume n = 2 for the noncooperative system G({J1, J2}). The following results
are investigated in [45] and fundamental in constructing the incentive function that we
develop in Section 2.4. First, we note that stability can be determined by the sign of
the determinant of A.

Proposition 2.2. [45] Consider the Nash equilibrium x∗ ∈ R2 for the 2-agent non-
cooperative system G({J1, J2}) with pseudo-gradient dynamics (2.5). If the payoff
functions J1(x), J2(x) satisfy

detA({J1, J2}, 12, x∗) > 0, (2.29)

then the Nash equilibrium x∗ is asymptotically stable for any positive constants
α1, α2 > 0.

Remark 2.7. The undirected graph topology of the payoff dependency for the 2-agent
system is a special case of the center-sponsored star network discussed in Example 2.3.
Note that (2.29) is equivalent to (2.20) by letting n = 2, and hence (2.29) represents
the necessary and sufficient condition for the existence of α̂ in Theorem 2.1.
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It follows from Corollary 1 (forN = 2) and Proposition 2 that if detA({J1, J2}, 12, x∗)
> 0 (resp., < 0), then the Nash equilibrium x∗ is asymptotically stable (resp., un-
stable). This fact implies that the existence of α̂ for (2.14) is in fact the necessary
and sufficient condition for stability of x∗ assuming that there is no eigenvalue of
A({J1, J2}, {α1, α2}, x∗) on the imaginary axis. In the case where detA({J1, J2}, 12, x∗)
= 0 implying that at least one of the eigenvalues of A({J1, J2}, {α1, α2}, x∗) is zero,
the Nash equilibrium x∗ of (2.5) may be stable or unstable depending on the payoff
functions that the agents are associated with. For an example of addressing the center
manifold to determine stability, see [45].

The next result shows the fact that the eigenvalues of the 2× 2 Jacobian matrix of
an unstable Nash equilibrium does not possess complex conjugate eigenvalues.

Proposition 2.3. [45] Consider the 2-agent noncooperative system G({J1, J2}). If the
Nash equilibrium x∗ is unstable under the pseudo-gradient dynamics (2.5), then it is a
saddle point.

Here we define a noncooperative system G({J1, J2}) with the quadratic payoff
functions given by

Ji(x) = −xTAix+ bTi x+ ci, i = 1, 2, (2.30)

where Ai ,

[
ai11 ai12
ai12 ai22

]
∈ R2×2 is symmetric with aiii > 0, bi , [bi1, b

i
2]

T ∈ R2, and

ci ∈ R, i = 1, 2. Note that different from the noncooperative system with non-quadratic
payoff functions, if the Jacobian matrix A({J1, J2}, {α1, α2}, x∗) is non-singular, then
the Nash equilibrium is unique. Alternatively, if A({J1, J2}, {α1, α2}, x∗) is singular,
then there may exist infinitely many Nash equilibria.

Example 2.4. Consider the 2-agent noncooperative system G({J1, J2}) with the
quadratic payoff functions (2.30). Since detA({J1, J2}, {1, 1}, x∗) = 4(a111a

2
22 − a112a

2
12),

it follows from Proposition 2.2 that if the payoff functions J1(x), J2(x) satisfy a111a222 <
a112a

2
12 (resp., a111a222 > a112a

2
12), then the Nash equilibrium x∗ is unstable (resp., asymp-

totically stable). Three typical examples showing the vector fields with different
combinations of eigenvalues are given in Fig. 2.3, and the payoff functions of each
agent for the unstable case (Fig. 2.3(a)) are shown in Fig. 2.1 above. Notice that
when a111a222 = a112a

2
12, the red and the blue lines in Fig. 2.3, which represent the best

response state of agents 1 and 2, respectively, coincide with each other, and the Nash
equilibrium x∗ is Lyapunov stable (all the trajectories converge to the line in this case).
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(a) (b)

(c)

Figure. 2.3 Vector fields of a 2-agent noncooperative system G({J1, J2}) with quadratic payoffs
(2.30). (a) a111a

2
22 < a112a

2
12 (Real eigenvalues: positive and negative), (b) a111a

2
22 > a112a

2
12

(Negative real eigenvalues), (c) a111a
2
22 > a112a

2
12 (Complex conjugate eigenvalues, real part:

negative).
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2.4 Stabilization of Existing Nash Equilibrium with
Zero-Sum Tax/Subsidy Approach

In this section, we characterize the stabilization method which is called a tax/subsidy
approach around the target Nash equilibrium x∗ for the noncooperative system without
the knowledge of the sensitivity parameters αi, i ∈ N . In this framework, the system
manager imposes an incentive mechanism so that the possibly unstable Nash equilibrium
state x∗ is stabilized by transferring the utility between the agents in a zero-sum fashion,
i.e., the payoff functions of agents are changed to J̃ , {J̃i}i∈N such that∑

i∈N
J̃i(x) =

∑
i∈N

Ji(x). (2.31)

In this case, the pseudo-gradient dynamics (2.5) are consequently changed to

ẋ(t) =
[
α1
∂J̃1(x(t))

∂x1
, . . . , αn

∂J̃n(x(t))

∂xn

]T
, x(0) = x0 ∈ Rn, t ≥ 0, (2.32)

and the corresponding Jacobian matrix (2.6) at the Nash equilibrium is given by
A(J̃ , α, x∗). Here we suppose that the amount of tax/subsidy affects the agents’ utility
in the additive way. We begin by characterizing the tax/subsidy approach for the
simple 2-agent noncooperative systems, and then extend the approach to more general
n-agent systems.

Tax/Subsidy Approach for 2-Agent Case

In this section, we discuss the tax/subsidy approach for the 2-agent noncooperative
system G({J1, J2}). Specifically, consider the noncooperative system G({J̃1, J̃2}) with
the adjusted payoff functions J̃1(x), J̃2(x) given by

J̃1(x) , J1(x) + pk(x), (2.33)

J̃2(x) , J2(x)− pk(x), (2.34)

where pk : R2 → R denotes an incentive function which is twice continuously differ-
entiable, k is a scalar parameter, and J1(x), J2(x) are the original payoff functions
satisfying Assumption 2.2.

The incentive function pk(x) can be considered to be a feedback that is designed
by the system manager. Note that pk(x) should be determined in such a way that x∗

remains the Nash equilibrium of G({J̃1, J̃2}) and J̃1(x), J̃2(x) should be still partially
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strictly concave at the desired Nash equilibrium x∗, i.e.,

∂2J̃i(x
∗)

∂x2i
< 0, i = 1, 2. (2.35)

Furthermore, pk(x) should satisfy

pk(x∗) = 0,
∂pk(x∗)

∂xi
= 0, i = 1, 2, (2.36)

for all k ∈ R, which guarantee J̃i(x∗) = Ji(x
∗) and ∂J̃i(x

∗)/∂xi = 0, i = 1, 2. This
framework indicates that the system manager collects tax pk(x) from one agent and
gives the same amount to the other agent as subsidy, so that the respective payoff
functions are accordingly changed to stabilize the possibly desirable Nash equilibrium.
Note that (2.36) implies that there is no compensation once the agents reach the target
Nash equilibrium.

Corollary 2.2. Consider the 2-agent noncooperative system G({J1, J2}) with tax/subsidy
approach (2.33) and the pseudo-gradient dynamics (2.32). If pk(x) in (2.33) satisfies

detA({J̃1, J̃2}, 12, x∗) > 0, (2.37)

then the Nash equilibrium x∗ is stabilized for any positive constants α1 and α2.

Proof The result is a direct consequence of Proposition 2.2. �

As a typical form of the tax/subsidy approach, we consider the case with a simple
quadratic incentive function given by

pk(x) , k(x1 − x∗1)(x2 − x∗2), (2.38)

which satisfies (2.35)–(2.36) for all k ∈ R. In this case, since J̃i(xi, x∗−i) = Ji(xi, x
∗
−i)

implies argmaxxi∈R J̃i(xi, x
∗
−i) = argmaxxi∈R Ji(xi, x

∗
−i) = x∗i for each i = 1, 2, the state

profile x∗ remains the Nash equilibrium of G({J̃1, J̃2}). Moreover, since A({J̃1, J̃2}, 12, x∗)

= A({J1, J2}, 12, x∗) + k

[
0 1

−1 0

]
, the condition (2.37) for k to stabilize the Nash

equilibrium is given by
k ∈ (−∞, γ1) ∪ (γ2,∞), (2.39)
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where

γ1 =
1
2

(
∂2J2(x∗)
∂x2∂x1

− ∂2J1(x∗)
∂x1∂x2

)
− 1

2

√(
∂2J1(x∗)
∂x1∂x2

+ ∂2J2(x∗)
∂x2∂x1

)2
− 4∂2J1(x∗)

∂x2
1

∂2J2(x∗)
∂x2

2
(< 0), (2.40)

γ2 =
1
2

(
∂2J2(x∗)
∂x2∂x1

− ∂2J1(x∗)
∂x1∂x2

)
+ 1

2

√(
∂2J1(x∗)
∂x1∂x2

+ ∂2J2(x∗)
∂x2∂x1

)2
− 4∂2J1(x∗)

∂x2
1

∂2J2(x∗)
∂x2

2
(> 0). (2.41)

Similarly, consider the case with a simple quadratic incentive function

pk(x) ,
1

2
k
[
(x1 − x∗1)

2 − (x2 − x∗2)
2
]
, k ≤ 0, (2.42)

which satisfies (2.35)–(2.36) for all k ≤ 0. In this case, since (2.42) implies J̃1(x1, x∗2) =
J1(x1, x

∗
2) +

1
2
k(x1 − x∗1)

2 and J̃2(x2, x
∗
1) = J2(x2, x

∗
1) +

1
2
k(x2 − x∗2)

2, it follows from
argmaxxi∈R Ji(xi, x

∗
−i) = x∗i , i = 1, 2, that argmaxxi∈R J̃i(xi, x

∗
−i) = x∗i , i = 1, 2, and

hence the state profile x∗ remains the Nash equilibrium of G(J̃). Moreover, since
A({J̃1, J̃2}, {1, 1}, x∗) = A({J1, J2}, {1, 1}, x∗) + kI2, the condition (2.37) for k to
stabilize the Nash equilibrium is given by

k < γ ,− 1
2

(
∂2J1(x∗)

∂x2
1

+ ∂2J2(x∗)
∂x2

2

)
− 1

2

√(
∂2J1(x∗)

∂x2
1

+ ∂2J2(x∗)
∂x2

2

)2
− 4 det(Ψ)

=− 1
2

(
∂2J1(x∗)

∂x2
1

+ ∂2J2(x∗)
∂x2

2

)
− 1

2

√(
∂2J1(x∗)

∂x2
1

− ∂2J2(x∗)
∂x2

2

)2
+ 4∂2J1(x∗)

∂x1∂x2

∂2J2(x∗)
∂x2∂x1

(≤ 0)

(2.43)

where Ψ = A({J1, J2}, {1, 1}, x∗).
For the case where the original payoff functions are quadratic as given in (2.30), the

stabilizing condition of k for the incentive function (2.38) (resp., (2.42)) is given by (2.39)
with γ1 = a112−a212−

√
(a112 + a212)

2 − 4a111a
2
22, γ2 = a112−a212+

√
(a112 + a212)

2 − 4a111a
2
22

(resp., k < a111 + a222 −
√

(a111 − a222)
2 + 4a112a

2
12).

Distributed Tax/Subsidy Approach for n-Agent Case

In the following, we extend the tax/subsidy approach characterized in the previous
section to a higher-dimensional system G(J) with N = {1, . . . , n}. In particular, we
suppose that the system manager decomposes the agents into several subgroups and
installs distributed controllers (computers) for each of the subgroups. Each of the
distributed controllers defines a utility transfer structure represented by a graph within
the subgroup, which we call the tax/subsidy adjustment graph, such that the graph
is weakly connected. Even though the controllers work in a distributed manner, the



28

system manager needs to know, a priori, the information of the payoff functions of all
the agents before the operation.

We suppose that the number of subgroups is c and the tax/subsidy adjustment
graphs G1, . . . ,Gc are chosen as undirected graphs in such a way that there is no
isolated agent that is free from the compensation mechanism. It is important to note
that each distributed controller η ∈ {1, . . . , c} transfers the utilities between the agents
consisting of Gη with the information from the same set of the agents, i.e., xi, i ∈ Vη,
where Vη denotes the set of nodes constituting the tax/subsidy adjustment graph Gη.
Henceforth, let Ni be the set of neighbor agents for agent i.

Now, consider the adjusted payoff functions given by

J̃i(x) , Ji(x) + pKi (x), i ∈ N , (2.44)

with the quadratic incentive functions

pKi (x) ,
1

2
kii(xi − x∗i )

2 − 1

2

∑
j∈Ni

kjj(xj − x∗j)
2/Nj

+
∑
j∈Ni

kij(xi − x∗i )(xj − x∗j), i ∈ Vη, (2.45)

where K = {kij}i,j∈N ∈ K , {K ∈ RN×N : kii ≤ 0, i ∈ N , kij = −kji, i, j ∈ N , i ̸=
j, kij = 0, j ̸∈ Ni, i ∈ N} and Ni is the number of the agents in Ni. Note that pKi (x)
depends only on part of the agents’ state xi, i ∈ Vη, in the subgraph Gη. Furthermore,
if there are multiple subgroups, then K can be transformed to a block-diagonal matrix
by re-ordering the labels of the agents. Notice that the incentive functions given by
(2.45) are a generalization of the combined functions of (2.38) and (2.42). Furthermore,
(2.45) implies ∑

i∈N

pKi (x) = 0, x ∈ Rn, K ∈ K, (2.46)

pKi (x
∗) = 0,

∂pKi (x
∗)

∂xi
= 0,

∂2J̃i(x
∗)

∂x2i
< 0, (2.47)

for all i ∈ N . In this case, since (2.45) implies J̃i(xi, x∗−i) = Ji(xi, x
∗
−i) +

1
2
kii(xi − x∗i )

2,
i ∈ N , it follows from argmaxxi∈R Ji(xi, x

∗
−i) = x∗i , i ∈ N , that argmaxxi∈R J̃i(xi, x

∗
−i) =

x∗i , i ∈ N , and hence the state profile x∗ remains the Nash equilibrium of G(J̃). Con-
sequently, the Jacobian matrix of the adjusted pseudo-gradient dynamics is written as
A(J̃ , α, x∗) = diag [α] (A(J, 1n, x

∗) +K).
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The following result provides a way to determine K ∈ K in the incentive functions
given by (2.45) for the n-agent noncooperative system.

Corollary 2.3. Consider the n-agent noncooperative system G(J) and the pseudo-
gradient dynamics (2.32). If the matrix K ∈ K in (2.45) satisfies one of the following
two sets of conditions:
(i) ∂2Ji(x

∗)
∂x2

i
+ kii <−

∑
j ̸∈Vη

∣∣∣∂2Ji(x
∗)

∂xi∂xj

∣∣∣−∑j∈Vη\{i}

∣∣∣∂2Ji(x
∗)

∂xi∂xj
+ kij

∣∣∣, i ∈ Vη, η ∈ {1, . . . , c}.
(ii) diag[α̂]K +KTdiag[α̂] +AT(J, α̂, x∗) +A(J, α̂, x∗) < 0 for some α̂ ∈ Rn

+,
then the Nash equilibrium x∗ is stabilized by the tax/subsidy approach (2.44), (2.45)
for any positive constants αi, i ∈ N .

Proof Note that since kij = 0, j ̸∈ Vη, n number of inequalities characterized by
(i) make A(J̃ , 1n, x

∗) strictly diagonally dominant (i.e., ∂2J̃i(x
∗)

∂x2
i

< −
∑

j ̸=i |
∂2J̃i(x

∗)
∂xi∂xj

| for

all i ∈ N ), and the inequality in (ii) makes AT(J̃ , α̂, x∗) +A(J̃ , α̂, x∗) = diag[α̂]K +

KTdiag[α̂] + AT(J, α̂, x∗) + A(J, α̂, x∗) negative definite. Hence, the two results are
direct consequences of Gershgorin’s circle theorem and Theorem 2.1, respectively. �

Remark 2.8. Corollary 2.3 indicates that with the information of agents’ original payoff
functions J1, . . . , Jn, the system manager can command the distributed controllers to
process the tax/subsidy framework (2.44), (2.45) by transmitting the information of
corresponding elements of a well-chosen matrix K to the distributed controllers. As
such, the system manager can stabilize the target Nash equilibrium x∗ for arbitrary αi,
i ∈ N , even though the sensitivity parameters αi, i ∈ N , are unknown to him/her.

It can be easily found that n number of inequalities characterized by (i) are always
solvable for K ∈ K such that A(J̃ , 1n, x

∗) is strictly diagonally dominant, because kii,
i ∈ N , can be taken to be sufficiently small so that each agent’s own utility is dominant
compared to the effect by the other agents. Moreover, even though the inequality
characterized in (ii) is a special linear matrix inequality with the constraint K ∈ K, it
is possible to make (ii) (i.e., A(J̃ , α̂, x∗) +AT(J̃ , α̂, x∗)) strictly diagonally dominant
to make sure that it is negative definite, i.e.,

∑
j ̸=i

∣∣∣α̂i
∂2Ji(x)

∂xi∂xj
+ α̂j

∂2Jj(x)

∂xj∂xi
+ (α̂i − α̂j)kij

∣∣∣
< −2α̂i

(∂2Ji(x)
∂x2i

+ kii

)
, i ∈ N , (2.48)

for x = x∗. It is interesting to see that (2.48) can determine {kij}i∈N ,j∈{i+1,...,n} with
a given α̂ satisfying α̂i − α̂j ̸= 0, i ∈ Nj, j ∈ Ni, and kii ≤ 0, i ∈ N . Furthermore,
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when (2.48) is satisfied for all x ∈ Rn, it can be shown that the possibly unstable Nash
equilibrium x∗ is globally asymptotically stabilized.

Remark 2.9. The conditions (i) in Corollary 2.3 also indicate that each distributed
controller η ∈ {1, . . . , c} can independently choose parameters {kij}i,j∈Vη , if the infor-
mation of ∂2Ji(x

∗)
∂xi∂xj

, j ∈ N , i ∈ Vη, is given. In other words, each distributed controller
η can work in a decentralized way even for the case where the number of the agents is
large.

Remark 2.10. In the case where the number n of the agents is so large that the
calculation of the target Nash equilibrium x∗ is infeasible, our proposed framework can
be similarly implemented without calculating the Nash equilibria for G(J). Specifically,
by setting x̂∗ as the target state, the incentive functions for the subgroup η, η ∈
{1, . . . , c}, are given by

pKi (x) ,
1

2
kii(xi − x̂∗i )

2 − 1

2

∑
j∈Ni

kjj(xj − x̂∗j)
2/Nj

+
∑
j∈Ni

kij(xi − x̂∗i )(xj − x̂∗j) + βi(xi − x̂∗i )

−
∑
j∈Ni

βj(xj − x̂∗j)/Nj, i ∈ Vη, (2.49)

with βi ∈ R, i ∈ Vη, satisfying

argmax J̃i(xi, x̂
∗
−i) = x̂∗i , i ∈ Vη, (2.50)

and {kij}i,j∈Vη satisfying the condition (i) in Corollary 2.3 with x∗ replaced by x̂∗. Note
that when the target state x̂∗ is not the original Nash equilibrium x∗ in G(J), the linear
terms βi(xi − x̂∗i )−

∑
j∈Ni

βj(xj − x̂∗j)/Nj of the incentive functions (2.49) with βi ∈ R,
i ∈ Vη, satisfying (2.50), contribute to make the target state x̂∗ a Nash equilibrium in
G(J̃). In such a case, it is understood that the original Nash equilibrium x∗ in G(J)
is moved to the target state x̂∗ in G(J̃) under the proposed tax/subsidy approach.
Alternatively, when the target state x̂∗ happens to be the same as the original Nash
equilibrium x∗ in G(J), the condition (2.50), which is met by the distributed controller,
requires βi = 0 in order for (2.49) to reduce to (2.45). It is worth noting that the
establishment of (2.49) does not force the system manager to collect global information
of the payoff functions Ji(x), i ∈ N , since the target state x̂∗ is not necessary to be
the original Nash equilibrium x∗ in G(J).
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2.5 Illustrative Numerical Examples

In this section, a couple of numerical examples are presented for illustrating the
results and the conditions concerning the proposed zero-sum tax/subsidy mechanism.
The first example exhibits diverging trajectory whereas the trajectory of the second
example converges to one of the Nash equilibria which is not the target one without
the tax/subsidy mechanism.

Example 2.5. Consider a wireless communication system being composed of n senders
who compete with each other on quality of service characterized by signal-to-interference-
plus-noise-ratio for a unique receiver [96]. Each sender (agent) adjusts its transmission
power xi ∈ R+ to maximize its profit given by

Ji(x) = β0 log10(1 +
gixiL∑

j ̸=i gixj + σ
)− βixi, i ∈ N , (2.51)

where β0 ∈ R+ denotes the earning rate for service quality, σ ∈ R+ denotes the
additive white noise, L ∈ R+ denotes the spreading gain, gi ∈ R+, i ∈ N , denote
the channel gain, and βi ∈ R+, i ∈ N , denote the price per unit power. Suppose
n = 2, β0 = 1, σ = 0.1, L = 0.5, g1 = 1, g2 = 2, β1 = 0.1, β2 = 0.2, so that there
exists a unique Nash equilibrium x∗ = [1.3810, 0.6905]T. It follows from Corollary 2.1
that x∗ is unstable under the pseudo-gradient dynamics (2.5) for any α ∈ R2

+ since
detA(J, 12, x

∗) = −0.0064 < 0.
Now, it follows from Corollary 2.2 that the tax/subsidy approach (2.33) along

with the incentive function (2.42) with k = −0.3 < γ = −0.0408 satisfying (2.43)
guarantees that the target Nash equilibrium x∗ is asymptotically stabilized for any
α ∈ R2

+. (In fact, the choice of k = −0.3 also satisfies (42) for all x ∈ R2
+ with

k11 = k22 = k, k12(= −k12) = 0, and α̂1 = α̂2 = 1 so that global asymptotic
stabilization is guaranteed.) The initial state is set to x(0) = [1, 0]T in the simulation.
Figure 2.4 shows the trajectories of agents’ states under the pseudo-gradient dynamics
(2.5) with 10 different values of α satisfying α1 ∈ [20, 50] and α2 ∈ [30, 85]. It can
be seen from the figure that the agents’ state converges to x∗ with the tax/subsidy
approach for all those various sensitivity parameters.

Example 2.6. Consider the noncooperative system being composed of five agents with
non-quadratic payoff functions given by J1(x) = −(x1+sinx2−0.5 sinx3)

2+e(−x2
1−x2

2−x2
3),

J2(x) = −1
2
(2x2− sinx1+2 sinx3)

2+ e(−x2
1−x2

2−x2
3), J3(x) = −1

3
(3x3+3 sinx1− sinx2−

sinx4 + sinx5)
2 + e(−x2

1−x2
2−x2

3−x2
4−x2

5), J4(x) = −(x4 − 2 sinx3 + sinx5)
2 + e(−x2

3−x2
4−x2

5),
J5(x) = −(x5+3 sinx3+2 sinx4)

2+e(−x2
3−x2

4−x2
5), where the payoff dependency network
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Figure. 2.4 Trajectories of the states with and without the zero-sum tax/subsidy approach
(TSA) under 10 different sets of sensitivity parameters α1 ∈ [20, 50] and α2 ∈ [30, 85]. The
trajectories of agents’ states diverge without the tax/subsidy approach but converge to the
target Nash equilibrium x∗ with the proposed tax/subsidy approach for the same set of
sensitivity parameters.

topology is shown in Fig. 2.5. Note that the noncooperative system possesses multiple
Nash equilibria and x∗ = [0, 0, 0, 0, 0]T is one of the Nash equilibria which maximizes
every agent’s payoff. In this example, since detA(J, 15, x

∗) = 482.67 > 0, it follows
from Corollary 2.1 that the Nash equilibrium is unstable under the pseudo-gradient
dynamics (2.5) for any α ∈ R5

+.
To achieve stabilization of the Nash equilibrium x∗ by employing (2.44), (2.45), we

decompose the agents into 2 subgroups and and install distributed controllers for each of
the subgroups. We let the distributed controllers’ tax/subsidy adjustment graphs G1,G2

be given by Fig. 2.5 so that agents’ payoffs are transferred between agents 1 and 2 in V1 =

{1, 2} and between agents 3 and 5 as well as between agents 4 and 5 in V2 = {3, 4, 5}.
In this case, only the parameters {k11, k22, k12} and {k33, k44, k55, k35, k45} should be
designed because K = {kij}i,j∈{1,...,5} should belong to the class K. Specifically, suppose
that the system manager provides the information of ∂2Ji(x

∗)
∂xi∂xj

, j ∈ {1, ..., 5}, i ∈ V1 (resp.,
i ∈ V2) to the distributed controller for G1 (resp., G2). Then it follows from conditions
(i) of Corollary 2.3 and Remark 2.9 that the tax/subsidy approach (2.44) along with
the incentive functions (2.45) with the choice {k11 = −2, k22 = 0, k12 = 1} for G1 and
{k33 = −4.2, k44 = −2, k55 = −10, k35 = k45 = 1} for G2 guarantees that the target
Nash equilibrium x∗ is asymptotically stabilized for arbitrary α ∈ R5

+. Furthermore,
since these parameters in K happen to satisfy (2.48) for all x ∈ R5 with α̂1 = 0.6, α̂2 =

0.2, α̂3 = 0.3, α̂4 = 0.2, α̂5 = 0.05, we can further guarantee (with the global knowledge
of the payoff functions) that the target Nash equilibrium x∗ is globally asymptotically
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Figure. 2.5 Network topology of payoff dependency (black) and tax/subsidy adjustment graphs
G1 and G2 (red). Agents’ payoffs are transferred between agents 1 and 2 in subgroup 1 and
between agents 3 and 5 as well as between agents 4 and 5 in subgroup 2.

stabilized for arbitrary α ∈ R5
+. In this case, the incentive functions (2.45) are given

by {pK1 (x) = −pK2 (x) = −x21 + x1x2} for G1 and {pK3 (x) = −2.1x23 + x3x5 + 2.5x25,
pK4 (x) = −x24 + x4x5 + 2.5x25, pK5 (x) = −5x25 − x3x5 − x4x5 + 2.1x23 + x24} for G2. The
initial state is set to x(0) = [2, 1, 0,−1, 2]T in the simulation. Figure 2.6 shows the
trajectories of agents’ states under the pseudo-gradient dynamics (2.5) with 8 different
values of α satisfying α1 ∈ [1, 4], α2 ∈ [2, 4], α3 ∈ [1, 4], α4 ∈ [2, 3] and α5 ∈ [2, 3].
It can be seen from the figure that without tax/subsidy approach, the agents’ state
converges to another Nash equilibrium x̃∗ = [−0.1356, 0.1146,−0.2884,−1.075, 2.611]T

instead of the target Nash equilibrium x∗ at the origin for all those various sensitivity
parameters. However, the agents’ state converges to x∗ when we apply the tax/subsidy
approach for the same set of sensitivity parameters.

2.6 Chapter Conclusion

In this chapter, we investigated the Nash equilibrium stabilization problem for non-
cooperative dynamical systems through a tax/subsidy approach. In the proposed
tax/subsidy approach, a system manager collects some taxes from some of the a-
gents and gives the same amount in total as subsidies to the neighbor agents in the
tax/subsidy adjustment graphs. To deal with the uncertainty in terms of the private
information, we explored the stability conditions of Nash equilibria without knowing the
private information, and also obtained the conditions under which the state trajectory
converges to the originally unstable Nash equilibrium using incentive functions. Finally,
we provided the numerical examples for demonstrating stabilization of unstable Nash
equilibrium for two-agent and five-agent noncooperative systems.
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Figure. 2.6 Trajectories of the states with and without the tax/subsidy approach (TSA) under
8 different sets of sensitivity parameters α1 ∈ [1, 4], α2 ∈ [2, 4], α3 ∈ [1, 4], α4 ∈ [2, 3] and
α5 ∈ [2, 3]. The trajectories of agents’ states converge to another Nash equilibrium x̃∗ without
the tax/subsidy approach but converge to the target Nash equilibrium x∗ with the proposed
tax/subsidy approach for the same set of sensitivity parameters.
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Chapter 3

Control of Large-Scale
Noncooperative Dynamical Systems:
Hierarchical Incentive Framework

3.1 Introduction

In this chapter, we focus on the social welfare improvement problem for large-scale
hierarchical noncooperative dynamical systems driven by the pseudo-gradient dynamics.
Specifically, we assume that the agents in the noncooperative system belong to one
of the several groups and are influenced by the corresponding group managers via
some intra-group incentives. We characterize the situation where group managers
try to enhance the welfare of their own groups by continually updating their own
intra-group incentives to the group members. We explore the stability of group Nash
equilibrium of the hierarchical noncooperative systems, and derive conditions where
the trajectory of agents’ state converges to the group Nash equilibrium under group
managers’ intra-group incentives. Furthermore, we propose the inter-group incentive
mechanism for a system governor in order to reconstruct the group utility functions
in the group managers level to move the group Nash equilibrium so that the social
(entire) welfare is improved. To deal with the situation where the system governor
may not know all the agents’ individual payoff functions and all the agents’ state, we
present sufficient conditions to guarantee the convergence of agents’ state towards a
target (suboptimal but not optimal due to the lack of enough information) equilibrium
using some macroscopic data.
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The rest of this chapter is organized as follows. We explain hierarchical noncoop-
erative systems with dynamic agents under intra-group incentives in Section 3.2. In
Section 3.3, we propose a couple of update rules for the group managers to update
their intra-group incentives. Furthermore, in Section 3.4, we characterize the inter-
group incentive mechanisms in the manager layer to increase the social welfare of the
entire multiagent system. A couple of illustrative numerical examples are presented in
Section 3.5. Conclusions are given in Section 3.6.

3.2 Problem Formulation

3.2.1 System Description

Consider the hierarchical noncooperative system consisting of an agent layer and a
manager layer, where n number of agents belong to one of the m number of groups
in the agent layer and are influenced by the corresponding group managers with
some intra-group incentives. Let M = {1, . . . ,m} denote the set of groups and let
nk denote the number of agents in group k ∈ M, where

∑
k∈M nk = n. The set of

overall agents is denoted by N = {1, . . . , n} = {N1, . . ., Nm}, where Nk denotes the
set of members (agents) in group k ∈ M satisfying Nk ∩ Nj = ∅, j ∈ M, j ̸= k. Let
x = [x1, . . . , xn]

T = [(x1)T, . . . , (xm)T]T ∈ Rn denote the state profile of all the agents,
where xi ∈ R denotes the state of agent i, and xk ∈ Rnk denotes the state profile of
the agents in group k ∈ M. The payoff function of agent i ∈ N without incentive is
denoted by Ji : Rn → R, which may depend on all the agents’ state and is supposed to
be continuously differentiable and strictly concave with respect to xi.

In this chapter, we assume that the m number of the group managers try to enhance
the welfare of their own groups, which they evaluate by the individual group utility
functions, by imposing intra-group incentive mechanism to the agents in their own
groups. The group utility functions Uk : Rn → R, k ∈ M, are defined as the weighted
sum of the payoff functions of their own group members, i.e.,

Uk(x) ,
∑

i∈Nk

ηiJi(x), k ∈ M, (3.1)

where ηi ∈ R+, i ∈ Nk, denote the weights (priorities) of the agents evaluated by the
group manager k ∈ M. Furthermore, we assume that there is the system governor who
also imposes a similar inter-group incentive mechanism on the manager layer so that
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Figure. 3.1 Hierarchical noncooperative system with m groups of agents. Agents are incen-
tivized by group managers for the benefit of group utility. The network in the agent layer
represents payoff dependencies. A system governor (e.g., president) appears at the top of the
hierarchy and constructs some incentive mechanism among the group managers (e.g., mayors),
which we call inter-group incentive mechanism. The detailed discussion of the inter-group
incentives imposed by the system governor for improving the social welfare with limited
information are given in Section 3.4 below.

the welfare of the entire agents defined by

Π(x) ,
∑

k∈M
ξkU

k(x), (3.2)

for some weights ξk ∈ R+, k ∈ M, of the groups is improved (see the structure of the
hierarchical noncooperative system illustrated in Fig. 3.1).

In order to improve the group utility, the group managers shift the Nash equilibri-
um (defined in Definition 3.1 below) of the group through the intra-group incentive
mechanism. Specifically, the incentivized payoff functions for each agent to increase
are given by

J̃i(u
k, x) , Ji(x) + pki (u

k, xk), i ∈ Nk, k ∈ M, (3.3)

where pki denotes the intra-group incentive function imposed by group manager k ∈ M
to the agents in Nk under its control given by

pki (u
k, xk) = uki xi −

∑
j∈Nk\{i}

ukjxj

nk − 1
, i ∈ Nk, (3.4)
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and uk = {uki }i∈Nk
∈ Rnk denotes the strategy of the group manager k. Note that the

group managers serve merely as mediators transferring payoffs among the agents so
that the sum of the incentive functions is zero, i.e.,

∑
i∈Nk

pki (u
k, xk) = 0, k ∈ M.

Definition 3.1. Given the strategy u = [(u1)T, . . . , (um)T]T ∈ Rn of the group man-
agers, the profile x∗(u) ∈ Rn is called a Nash equilibrium with respect to {J̃i(uk, x)}i∈N
given by (3.3) if

J̃i(u
k, x∗i (u), x

∗
−i(u)) ≥ J̃i(u

k, xi, x
∗
−i(u)), xi ∈ R, (3.5)

holds for all i ∈ Nk and k ∈ M, where x−i is the agents’ state profile except agent i.

With a given u, since J̃i(uk, x) is strictly concave with respect to xi for all i ∈ N
under (3.4), the Nash equilibrium x∗(u) satisfies

0 =
∂J̃k

i (u
k, x∗(u))

∂xi
=
∂Jk

i (x
∗(u))

∂xi
+ uki , i ∈ Nk, (3.6)

for all k ∈ M. On the other hand, at the Nash equilibrium x∗(u), the group manager
k may wish to unilaterally change its strategy uk to benefit its own group when
argmaxxk∈Rnk Uk(xk, x−k∗(u)) ̸= xk

∗
(u) holds, where xk

∗
(u) , {x∗i (u)}i∈Nk

∈ Rnk

and x−k∗(u) , {x∗i (u)}i ̸∈Nk
∈ Rn−nk . This observation induces another concept of

equilibrium at which no group manager can benefit its own group more by unilaterally
changing its strategy for the intra-group incentives.

Definition 3.2. For the group utility functions Uk(x), k ∈ M, the profile x△ ∈ Rn is
called a group Nash equilibrium if

Uk(xk△, x
−k
△ ) ≥ Uk(xk, x−k

△ ), xk ∈ Rnk , k ∈ M, (3.7)

where x−k is the agents’ state profile except group k.

It is worth mentioning that both of the Nash equilibrium and the group Nash
equilibrium are characterized independently of the agents’ underlying dynamics. Since
Uk(x) is continuously differentiable for all k ∈ M, the existing group Nash equilibrium
x△ satisfies

0 =

[
∂U1(x△)

∂x1
, . . . ,

∂Um(x△)

∂xm

]
∈ R1×n. (3.8)
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Definition 3.3. The strategy u△ = [(u1△)
T, . . . , (um△ )

T]T ∈ Rn is called a subgame
perfect equilibrium for intra-group incentives if the corresponding Nash equilibrium
x∗(u△) coincides with the group Nash equilibrium x△.

In this chapter, we consider the situation where each agent is a selfish and dynamic
decision maker continually changing its own state by following the pseudo-gradient
dynamics [17] in terms of the incentivized payoff functions, i.e.,

ẋi(t) = αi
∂J̃i(u

k(t), x(t))

∂xi
, i ∈ Nk, k ∈ M, (3.9)

where α1, . . . , αn denote the agent-dependent sensitivity parameters. The pseudo-
gradient dynamics (3.9) capture the fact that the agents concern their own incentivized
payoffs and myopically change their states according to the current information without
any foresight on the future state [20, 21, 44, 25, 42]. Consequently, the agents’ state
dynamics (3.9) with the intra-group incentive functions (3.4) are described by the
dynamics given by

ẋ(t) = diag[α](f(x(t)) + u(t)), x(0) = x0, t ≥ 0, (3.10)

where f(x) , [∂J1(x)
∂x1

, . . . , ∂Jn(x)
∂xn

]T denotes the pseudo-gradient function characterized
by the agents’ individual payoff functions, and α , (α1, . . . , αn).

It is important that for a given u(t) ≡ ū ∈ Rn, all the Nash equilibria of the
noncooperative system are the equilibria of the dynamics (3.10) since ẋ(t) ≡ 0 holds
under (3.6) with u replaced by ū. In general, there may be multiple Nash equilibria
in the noncooperative system. Some sufficient conditions for existence of a unique
Nash equilibrium can be found in [17] and [90, Chapter 2], which can also guarantee
global stability of the pseudo-gradient dynamics with u(t) ≡ 0. For example, sup-
posing that the Jacobian matrix ∇f(x) of the pseudo-gradient function f(x) satisfies
(∇f(x))Tdiag[α̂] + diag[α̂]∇f(x) < 0, x ∈ Rn, for some α̂ ∈ Rn

+, it can be shown
that the nonincentivized system exhibits a unique and globally asymptotically stable
Nash equilibrium under the pseudo-gradient dynamics (with u(t) ≡ 0). Alternative-
ly, supposing that the nonincentivized system is a strictly monotone game (i.e., the
pseudo-gradient function f(x) satisfies (f(x)− f(x′))T(x− x′) < 0 for all x, x′ ∈ Rn,
x ̸= x′) [90], it can be also shown that the nonincentivized system exhibits a unique and
globally asymptotically stable Nash equilibrium under the pseudo-gradient dynamics
(with u(t) ≡ 0). In these two cases, for a given u(t) ≡ ū ∈ Rn, noticing that the matrix
(∇(f(x) + ū))Tdiag[α̂] + diag[α̂]∇(f(x) + ū) remains as a negative-definite matrix or



40

Payoff function

State

Group k

Group 

manager

k
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Other groups
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Agent i Agent j

Communication in agent-layer
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Figure. 3.2 Block diagram of signal flows between the layers with solid (resp., dashed) arrows
representing available signals of information (resp., control signals). The strategy uki of group
manager k and the inter-group incentive coefficient vk (introduced in Section 3.4 below) are
understood as the control signals to the agents in Nk and the group managers, respectively.

the noncooperative system remains as a strictly monotone game, the Nash equilibrium
x∗(ū) is the unique and globally asymptotically stable equilibrium of the dynamics
(3.10) satisfying ẋ(t) ≡ 0. Therefore, by well designing the strategies uk, k ∈ M,
for the intra-group incentive schemes, the group managers may be able to move the
Nash equilibrium to a state possessing a better group utility than the nonincentivized
(u(t) ≡ 0) case.

3.2.2 Motivations, Information Hierarchy, and Problems

Motivation 1 : In general, the group manager k is not able to obtain the group utility
functions U−k(·) from the other groups. The group managers may continually change
their own strategy uk(t), k ∈ M, t ≥ 0, in order to change the Nash equilibrium to a
state associated with a better group utility.

Motivation 2 : Given the subgame perfect equilibrium u△, even though the agents’
state may reach the group Nash equilibrium x△, the entire social welfare may still
not be maximized because the group managers do not cooperate with each other.
Since the fact that the system governor may not know the full information of the
agents’ state and payoff functions makes it difficult to control the entire system, a
fundamental question is how to design the inter-group incentive mechanism among
the group managers to improve the social welfare only using some low dimensional
(macroscopic) data observed by the system governor.
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Consequently, the information hierarchy among the three layers of the hierarchical
noncooperative system is summarized below.

Available information for group managers: In this paper, we assume that
group manager k has access to the payoff functions Ji(·), i ∈ Nk, and the state xi(t),
i ∈ Nk, in its own group. The state profile x−k(t) of other groups can be continually or
intermittently observed by group manager k. No communication between the group
mangers is assumed, i.e., the strategies of the other group managers is unavailable.
The block diagram of information hierarchy is illustrated in Fig. 3.2.

Available information for agents: The state profile x(·) is available for all the
agents. No information of payoff functions is exchanged among the agents. The signal
uki (t) from group manager k is available only for agent i.

Available information for system governor: We suppose that the system
governor does not know the full information of the agents’ state and payoff functions,
but have access to the group utility functions Uk(·), k ∈ M, and the low dimensional
(macroscopic) data x̄k, k ∈ M (defined in Section 3.4 later) from the groups.

Now, we present the main problem of this chapter.
Problem: Considering the hierarchical noncooperative dynamical system, our main

objectives in the paper are two folds: i) Design some update rules for the group manager
k ∈ M to continually update its strategy uk(t) only using the information on the agents’
state x(t) and payoff functions Ji(·), i ∈ Nk, without the knowledge of the strategies of
the other group managers; ii) Design the inter-group incentive mechanism among the
group managers to stabilize a target equilibrium for improving the entire social welfare
using limited information.

3.3 Update Rules for Group Managers’ Intra-group
Incentives

In this section, we propose our update rule for group manager k to update uk(t) for its
intra-group incentive mechanism under the scenarios with 2 types of observations, i.e.,
continual and intermittent observations, on x−k(t) whereas the state information xk(t)
of its own group is available for all t. Furthermore, we assume that group manager k
has access to the payoff functions Ji(·), i ∈ Nk, in its own group and no communication
between the group mangers is assumed in this chapter.
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3.3.1 Update Rule with Continual Observation

In this section, we consider the situation where the value of x−k(t) is fully observed by
group manager k for every time instant t ≥ 0. Note that our main idea in constructing
the update rule of uk(t) for group manager k is to make the best-response state for
group k coincide with the individual best-response state for all the group members in
Nk. Specifically, we consider the update rule for the group managers given by

uki (t) = −∂Ji(x̂
k(t), x−k(t))

∂xi
, i ∈ Nk, k ∈ M, (3.11)

where
x̂k(t) = γk(x−k(t)) , argmaxxk∈Rnk U

k(xk, x−k(t)), (3.12)

represents the best-response state of group k given the other groups’ state x−k(t). The
update rule (3.11) captures the fact that the group managers concern their own group
utilities and myopically change their strategies according to the current information
without foresight on the other groups’ future state. Note that the best-response state
x̂k(t) of group k is invariant under the same priority ratio, i.e., ηi+1 : ηi+2 : · · · : ηi+nk

with i = n1 + n2 + . . .+ nk−1.

Assumption 3.1. The group utility function Uk(x) is strictly concave with respect
to xk for each group k ∈ M.

Assumption 3.1 ensures that there is a unique x̂k for given x−k. Recalling that the
group utility function Uk(x) is continuously differentiable, the mapping γk : Rn−nk →
Rnk in (3.12) is understood as a continuously differentiable function with respect
to x−k for each group k ∈ M. For the statement of the following results, we let

the state profile x ∈ Rn be partitioned by x =
[
(xk−)

T (xk)T (xk+)
T
]T

, where

xk− ∈ R
∑k−1

i=1 ni and xk+ ∈ Rn−
∑k

i=1 ni . Considering the Jacobian matrix ∇f(x) =

[[rowi(∇f(x))]Ti∈N1
, . . . , [rowi(∇f(x))]Ti∈Nm

]T of f(x) given in (3.10), we partition the
matrix [rowi(∇f(x))]i∈Nk

∈ Rnk×n by

[rowi(∇f(x))]i∈Nk
=
[
∇fk

−(x) ∇fk(x) ∇fk
+(x)

]
, k ∈ M, (3.13)
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where ∇fk
−(x) ∈ Rnk×

∑k−1
i=1 ni , ∇fk

+(x) ∈ Rnk×(n−
∑k

i=1 ni), and ∇fk(x) ∈ Rnk×nk . Fur-
thermore, we denote

∇γk+(x−k) ,
∂γk(xk−, x

k
+)

∂xk+
= −

([∂2Uk(x)

∂xk∂xk

]−1 ∂2Uk(x)

∂xk∂x−k
+

)∣∣∣∣
x=(γk,x−k)

∈ Rnk×(n−
∑k

i=1 ni),

(3.14)

∇γk−(x−k) ,
∂γk(xk−, x

k
+)

∂xk−
= −

([∂2Uk(x)

∂xk∂xk

]−1 ∂2Uk(x)

∂xk∂x−k
−

)∣∣∣∣
x=(γk,x−k)

∈ Rnk×
∑k−1

i=1 ni ,

(3.15)

where we used the fact that

∂g(x)

∂x
= −

[
∂2f(x, g(x))

∂y2

]−1
∂2f(x, g(x))

∂x∂y
∈ Rm×n (3.16)

holds for g(x) = argmaxy f(x, y) ∈ Rm with a continuously differentiable function
f : Rn × Rm → R. With a slight abuse of notation, we write ∇γk+(x) for ∇γk+(x−k),
and ∇γk−(x) for ∇γk−(x−k). Before we present a theorem, we define an n× n matrix

A(γ, x) =


∇f 1(x) −∇f 1(x)∇γ1+(x)

−∇f 2(x)∇γ2−(x) ∇f 2(x) −∇f 2(x)∇γ2+(x)
... . . . ...

−∇fm(x)∇γm− (x) ∇fm(x)

 , (3.17)

for a group Nash equilibrium x△ ∈ Rn.

Theorem 3.1. Consider a group Nash equilibrium x△ ∈ Rn of the noncooperative
system with the pseudo-gradient dynamics (3.9) and the intra-group incentive function
(3.4) under Assumption 3.1. Let the group managers’ strategy uk be updated by
(3.11) and (3.12). If the matrix As , diag[α]A(γ, x△) is Hurwitz, then the group Nash
equilibrium x△ is locally asymptotically stable and the group managers’ strategy u(t)
converges to the corresponding subgame perfect equilibrium as t→ ∞.

Proof First, note that the group Nash equilibrium is an equilibrium of the closed-loop
dynamics of (3.10)–(3.12). Recalling that u is a function of x under the update rule

(3.11), it follows that ∇u(x) =


−∂f1(x̂1,x−1)

∂x1

∂γ1(x−1)
∂x

− ∂f1(x̂1,x−1)
∂x−1

∂x−1

∂x
...

−∂fm(x̂m,x−m)
∂xm

∂γm(x−m)
∂x

− ∂fm(x̂m,x−m)
∂x−m

∂x−m

∂x

 can be
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expressed by

∇u(x) =


0n1×n1 −∇f 1(x̂1, x−1)∇γ1+(x−1)−∇f 1

+(x̂
1, x−1)

−∇f 2(x̂2, x−2)∇γ2−(x−2)−∇f 2
−(x̂

2, x−2) 0n2×n2 −∇f 2(x̂2, x−2)∇γ2+(x−2)−∇f 2
+(x̂

2, x−2)
... . . . ...

−∇fm(x̂m, x−m)∇γm− (x−m)−∇fm
− (x̂m, x−m) 0nm×nm

 .
(3.18)

Therefore, the Jacobian matrix of the closed-loop dynamics of (3.10)–(3.12) at the
group Nash equilibrium x△ is given by diag[α](∇u(x△) + ∇f(x△)) = As. Then, it
follows from Lyapunov’s indirect method that the result is immediate. �

Remark 3.1. To construct the update rule (3.11), each manager k only needs to
observe the state profile x−k(t) ∈ Rn−nk from the other groups instead of observing
the other mangers’ strategy u−k(t) and hence the proposed update rule in the manager
layer is certainly different from the existing Nash equilibrium seeking dynamics. But
note that the state profile xk(t) ∈ Rnk is also required for constructing the intra-group
incentive functions (3.4) within group Nk.

Remark 3.2. Implementing the update rule (3.11) is understood as a reasonable
and intuitive but myopic try for the group managers. None of those group managers
can know stability beforehand because they never know the exact expression of the
matrix As as the information x△, ∇f−k(x), ∇γ−k

− (x), and ∇γ−k
+ (x) are undisclosed to

them. To guarantee stability of the hierarchical noncooperative system, the behavior
of a system governor who imposes inter-group incentive mechanism among the group
managers is explored in Section 3.4.

The next result provides a sufficient stability condition without the information of
agents’ personal sensitivity parameters α1, . . . , αN .

Proposition 3.1. Consider a group Nash equilibrium x△ ∈ Rn of the noncooperative
system with the pseudo-gradient dynamics (3.9) and the intra-group incentive function
(3.4) under Assumption 3.1. Let the group managers’ strategy uk be updated by (3.11)
and (3.12). If there exists α̂ ∈ Rn

+ such that AT(γ, x△)diag[α̂] + diag[α̂]A(γ, x△) < 0

holds, then the group Nash equilibrium x△ is locally asymptotically stable and the group
managers’ strategy u(t) converges to the corresponding subgame perfect equilibrium
as t→ ∞ for any α ∈ Rn

+.

Proof First, letting x̃ , x − x△. Recall that linearizing the system dynamics (3.9)
around x△ yields

˙̃x(t) = Asx̃(t). (3.19)
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Consider the Lyapunov function candidate V (x̃) = x̃TPx̃ with the matrix P ,

diag
[
α̂1

α1
, . . . , α̂N

αN

]
> 0. Since

AT
s P + PAs = AT(γ, x△)diag[α̂] + diag[α̂]A(γ, x△) < 0,

is satisfied, it follows using the linearized dynamics (3.19) that

V̇ (x̃(t)) = x̃T(t)(AT
s P + PAs)x̃(t) < 0, (3.20)

around x△ and hence the group Nash equilibrium x△ is locally asymptotically stable
for any α ∈ Rn

+. �

Now, we specialize the results to the noncooperative systems with quadratic payoff
functions Ji(x), i ∈ N , given by

Ji(x) =
1

2
xTAix+ bTi x+ ci, i ∈ N, (3.21)

where Ai ,

 ai11 · · · ai1n
... . . . ...
ai1n · · · ainn

 ∈ Rn×n with aiii < 0 (indicating that Ji(x) is strictly

concave with respect to xi), bi , [bi1, . . . , b
i
n]

T ∈ Rn, and ci ∈ R, i ∈ N . Supposing

that A ,

 row1(A1)
...

rown(An)

 ∈ Rn×n is nonsingular, for the given u, it follows that

there exists a unique Nash equilibrium x∗(u) given by x∗(u) = −A−1(b + u), where
b , [b11, . . . , b

n
n]

T ∈ Rn. Hence, for a group Nash equilibrium x△, the subgame perfect
equilibrium u△ is given by u△ = −Ax△ − b.

Consequently, the agents’ state dynamics (3.9) with the quadratic payoff functions
(3.21) and the intra-group incentive functions (3.4) are described by the affine dynamics
given by

ẋ(t) = diag[α](Ax(t) + b+ u(t)), x(0) = x0, t ≥ 0. (3.22)
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For the following statements, for each k ∈ M, we let Ak ,
∑

i∈Nk
ηiAi and Bk ,∑

i∈Nk
ηibi be partitioned by

Ak =

 ∗ (Ak
−)

T ∗
Ak

− Ak
k Ak

+

∗ (Ak
+)

T ∗

 ∈ Rn×n, (3.23)

︸ ︷︷ ︸∑k−1
i=1 nk

︸ ︷︷ ︸
nk

︸ ︷︷ ︸
n−

∑k
i=1 nk

Bk =
[

∗ (Bk
k)

T ∗
]T

∈ Rn, (3.24)︸ ︷︷ ︸∑k−1
i=1 nk

︸ ︷︷ ︸
nk

︸ ︷︷ ︸
n−

∑k
i=1 nk

which are used in (3.1) to be rewritten as Uk(x) = 1
2
xTAkx+BkTx+

∑
i∈Nk

ηici, k ∈ M.

Note that “*” represents some matrices with consistent orders. Here, we note that
Ak

k ∈ Rnk×nk , k ∈ M, are symmetric so that Ak, k ∈ M, are symmetric. Furthermore,
we define Pk = {aiij}i,j∈Nk

∈ Rnk×nk , P−
k = {aiij}i∈Nk,j∈{N1,...,Nk−1} ∈ Rnk×

∑k−1
i=1 ni , and

P+
k = {aiij}i∈Nk,j∈{Nk+1,...,Nm} ∈ Rnk×(n−

∑k
i=1 ni), so that

[rowi(A)]i∈Nk
=
[
P−
k Pk P+

k

]
∈ Rnk×n, k ∈ M. (3.25)

In this case, notice that Pk is equivalent to the matrix ∇fk(x) defined in (3.13).

Assumption 3.2. The group utility functions Uk(x), k ∈ M, are concave with respect
to xk, i.e., Ak

k < 0, k ∈ M. Furthermore, there exists a unique group Nash equilibrium
x△ ∈ Rn.

Remark 3.3. Note that the assumption of Ak
k < 0 in Assumption 3.2 guarantees the

existence and uniqueness of x̂k(t) in (3.12) given by

x̂k(t) = −(Ak
k)

−1[Ak
−x

k
−(t) + Ak

+x
k
+(t) + Bk

k], (3.26)

which implies that the matrices defined in (3.14) and (3.15) are simply given by
∇γk+(x−k) = −(Ak

k)
−1Ak

+, ∇γk+(x−k) = −(Ak
k)

−1Ak
−, k ∈ M. Furthermore, it follows

from (3.8) that the unique group Nash equilibrium x△ satisfies Gx△ + ρ = 0 with

G ,


A1

1 A1
+

A2
− A2

2 A2
+

. . .
Am

− Am
m

 ∈ Rn×n, ρ ,

 B1
1
...

Bm
m

 ∈ Rn. Those facts are used in the

proof of the following theorem.
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Theorem 3.2. Consider the noncooperative system with the pseudo-gradient dynamics
(3.9), quadratic payoff functions (3.21), and the intra-group incentive function (3.4)
under Assumption 3.2. Let the group managers’ strategy uk be updated by (3.11) and
(3.12). Then, the group Nash equilibrium x△ is globally asymptotically stable and
the group managers’ strategy u(t) converges to the corresponding subgame perfect
equilibrium u△ = −Ax△ − b as t → ∞, if and only if the matrix As = diag[α]As is
Hurwitz with

As = block-diag[P1(A1
1)

−1, . . . , Pm(Am
m)

−1]G. (3.27)

Proof First, note that the sufficiency is a direct consequence from Theorem 3.1. For
necessity, it follows from fk(x) , {fi(x)}i∈Nk

= [rowi(A)]i∈Nk
x+ bk with bk = {bii}i∈Nk

that (3.11), (3.25) and (3.26) yield

uk(t) =− fk(x̂k, x−k(t)) = −[P−
k Pk P+

k ]

 xk−(t)

x̂k(t)

xk+(t)

− bk

=(Pk(Ak
k)

−1Ak
− − P−

k )xk−(t) + (Pk(Ak
k)

−1Ak
+ − P+

k )xk+ + Pk(Ak
k)

−1Bk
k − bk.

Then, it follows that

u(t) =Kx(t) + l − b, (3.28)

where

K =


0n1×n1 P1(A1

1)
−1A1

+ − P+
1

P2(A2
2)

−1A2
− − P−

2 0n2×n2 P2(A2
2)

−1A2
+ − P+

2
... . . . ...

Pm(Am
m)

−1Am
− − P−

m 0nm×nm

 , (3.29)

l =
[
(P1(A1

1)
−1B1

1)
T, . . . , (Pm(Am

m)
−1Bm

m)
T
]T

= block-diag[P1(A1
1)

−1, . . . , Pm(Am
m)

−1]ρ ∈ Rn. (3.30)

Now, the closed-loop dynamics of (3.11) and (3.22) are given by

ẋ(t) = diag[α]((A+K)x(t) + l) = As(x(t)− x△), (3.31)

where we used A + K = As and Asx(t) + l = block-diag[P1(A1
1)

−1, . . . , Pm(Am
m)

−1]

·(Gx+ρ) = As(x(t)−x△). Since the group Nash equilibrium x△ is a unique equilibrium
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of the closed-loop dynamics under Assumption 3.2, it follows that x△ is globally
asymptotically stable if only if As is Hurwitz. The convergence result for u(t) is also
immediate since (3.28) holds. �

Remark 3.4. The feedback matrix K is understood as the matrix ∇u defined in (3.18),
where ∇fk

+(x̂
k, x−k) = P+

k and ∇fk
−(x̂

k, x−k) = P−
k , k ∈ M, hold for any x ∈ Rn.

Remark 3.5. If Ak
− = 0 and Ak

+ = 0 hold for all k ∈ M, then the pseudo-gradient
dynamics of the agents in Nk are not mutually affected by the agents in the other
groups, and hence x̂k(t) = argmaxxk∈Rnk Uk(xk, x−k(t)) = −(Ak

k)
−1Bk

k in (3.26) is in
fact constant being independent of the values of x−k(t) for all k ∈ M. Hence, the
system is understood as a combination of m number of independent noncooperative
systems with the sets of agents N1, N2, . . ., Nm incentivized by the corresponding group
managers.

3.3.2 Update Rule With Intermittent Observation

It is not always the case where the group managers are able to observe the state
profile x−k(t) from the other groups for every time instant t ≥ 0. In this section, we
characterize the situation where group manager k only has intermittent access to x−k(t)

at some specific time instants, whereas the state information xk(t) of its own group is
available for all t to process the intra-group incentive function (3.4). It is observed from
real society that the governments/public may have intermittent access to realize the
financial status of local companies because those local companies usually have termly
financial reports to the public or they may need to go through a temporary inspection
for some specific time instants required by the financial department of the government.

Therefore, we consider the sampled-data-based, piecewise constant update rule (3.11)
and (3.12) with (x̂k(t), x−k(t)) replaced by (x̂k(ts), x

−k(ts)) for ts ≤ t < ts+1, where
{ts}s=0,1,2,... denotes the sequence of sampling instants with t0 = 0 and lims→∞ ts = ∞.
The sampling intervals between two sampling instants are defined by Ts , ts+1−ts ∈ R+

for s ∈ Z0, which may be constant or time-varying depending on the information
disclosure structure. In this case, linearizing the pseudo-gradient f(x) and the update
rule u(x) around the group Nash equilibrium x△, the linearized closed-loop dynamics
of (3.10) and (3.11) with the shifted x̃ = x− x△ state are given by

˙̃x(t) = diag[α](∇f(x△)x̃(t) +∇u(x△)x̃(ts)), t ∈ [ts, ts+1), (3.32)

where ∇u(x) is defined in (3.18).
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Suppose that the payoff functions Ji(x), i ∈ N , are given as quadratic functions
(3.21). Then, it follows that the entire profile u in pseudo-gradient dynamics (3.22)
characterized from managers’ intra-group incentive schemes is given by u(t) = Kx(ts)+

l− b, t ∈ [ts, ts+1), where the matrix K and the vector l are defined in (3.29) and (3.30).
In this case, the closed-loop dynamics of (3.11) and (3.22) are given by

˙̃x(t) = ẋ(t) = diag[α](Ax(t) +Kx(ts) + l)

= diag[α](A(x̃(t) + x△) +K(x̃(ts) + x△) + l)

= diag[α](Ax̃(t) +Kx̃(ts)), t ∈ [ts, ts+1), (3.33)

where we used the fact (A+K)x△ + l = 0.
The next result provides a sufficient stability condition for the proposed sampled-

data-based update rule of (3.11), (3.12) with quadratic payoff functions. But note that
as long as local stability is concerned around a group Nash equilibrium x△, the result
can be generalized to nonquadratic cases considering the linearized dynamics (3.32)
(i.e., using ∇f(x△) as A and using ∇u(x△) as K).

For the statements of the following results, let Φ(t) , ediag[α]At(In+A
−1K)−A−1K.

Proposition 3.2. Consider the noncooperative system with the pseudo-gradient
dynamics (3.9), intra-group incentive function (3.4), and quadratic payoff functions
(3.21) under Assumption 3.2. Let the group managers’ strategy uk be updated by
the sampled-data-based update rule of (3.11), (3.12) with (x̂k(t), x−k(t)) replaced by
(x̂k(ts), x

−k(ts)). If there exists a positive-definite matrix P ∈ Rn×n such that

ΦT(Ts)PΦ(Ts)− P < 0, (3.34)

for all s ∈ Z0, then the group Nash equilibrium x△ is globally asymptotically stable
and the group managers’ strategy u(t) converges to the corresponding subgame perfect
equilibrium as t→ ∞.

Proof First, it follows from (3.33) that

˙̃x(t) = diag[α]A(x̃(t) + A−1Kx̃(ts)), t ∈ [ts, ts+1). (3.35)

Then, the solution of the continuous-time dynamics (3.35) satisfies

x̃(t) + A−1Kx̃(ts) = ediag[α]Aτ (x̃(ts) + A−1Kx̃(ts)), (3.36)
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for t ∈ [ts, ts+1) with τ , t− ts ∈ [0, Ts), which indicates

x̃(ts+1) = ediag[α]ATs(x̃(ts) + A−1Kx̃(ts))− A−1Kx̃(ts)

= (ediag[α]ATs(In + A−1K)− A−1K)x̃(ts) = Φ(Ts)x̃(ts), s ∈ Z0. (3.37)

Consider the Lyapunov function candidate V (x̃) = x̃TPx̃ for the discrete-time dynamics
(3.37) with P satisfying (3.34). Then, it follows that

∆V (x̃(ts)) = V (x̃(ts+1))− V (x̃(ts)) = x̃T(ts+1)Px̃(ts+1)− x̃T(ts)Px̃(ts)

= x̃T(ts)(Φ
T(Ts)PΦ(Ts)− P )x̃(ts) < 0, (3.38)

for all s = 0, 1, 2, . . ., and hence the proof is complete. The convergence result for u(t)
is also immediate since (3.28) and lims→∞ ts = ∞ hold. �

Proposition 3.2 indicates that the choice of the sampling instants {ts}s=0,1,2,... is
essential in the sampled-data-based update rule of (3.11), (3.12). The next result shows
that sufficiently small sampling intervals should preserve the asymptotic stability when
the group Nash equilibrium is asymptotically stable under the continual update rule
(3.11), (3.12).

Theorem 3.3. Consider the noncooperative system with the pseudo-gradient dynamics
(3.9), intra-group incentive function (3.4), and quadratic payoff functions (3.21) under
Assumption 3.2. Let the group managers’ strategy uk be updated by the sampled-data-
based update rule of (3.11), (3.12) with (x̂k(t), x−k(t)) replaced by (x̂k(ts), x

−k(ts)).
If the matrix As = diag[α]As is Hurwitz with As defined in (3.27), then there exists
a positive scalar σ ∈ R+ such that the group Nash equilibrium x△ is asymptotically
stable for any sampling instants ts, s ∈ Z0, satisfying Ts < σ, s ∈ Z0.

Proof Since As = diag[α]As = diag[α](A + K) is Hurwitz, there exists a positive-
definite matrix P ∈ Rn×n such that

0 = (diag[α](A+K))TP + Pdiag[α](A+K) +Q, (3.39)

for any positive-definite matrix Q ∈ RRn×n . It follows from (3.36) that the state x(t)
can be expressed as x̃(t) = Φ(τ)x̃(ts), t ∈ [ts, ts+1) with τ , t− ts ∈ [0, Ts). Since Φ(t)

is continuous and Φ(0) = In holds, there exists a T ∈ R+ such that Φ(τ) is invertible
for all t < T . Hence, it follows from Φ−1(τ)x̃(t) = x̃(ts) that

∥x̃(ts)− x̃(t)∥ = ∥(Φ−1(τ)− In)x̃(t)∥ ≤ ∥Φ−1(τ)− In∥∥x̃(t)∥. (3.40)
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Since Φ(τ)− In → 0 as τ → 0, there exists ζ ∈ R+ such that

∥Φ−1(τ)− In∥ <
w

∥Pdiag[α]K∥
, (3.41)

holds for all τ < ζ, where w = λmin(Q) > 0 denotes the minimum eigenvalue of Q.
Now, let σ = min(ζ, T ) so that Ts < ζ and Ts < T for all s ∈ Z0.

Now, consider the Lyapunov function candidate V (x̃) = 1
2
x̃TPx̃. Then, it follows

from x̃TQx̃ > w∥x̃∥2, (3.39), (3.40), and (3.41) that the time derivative of V (x̃) along
the system trajectories of (3.33) is given by

V̇ (t) = x̃T(t)Pdiag[α](Ax̃(t) +Kx̃(t) +Kx̃(ts)−Kx̃(t))

= −x̃T(t)Qx̃(t) + x̃T(t)Pdiag[α]K(x̃(ts)− x̃(t))

≤ −w∥x̃(t)∥2 + ∥x̃(t)∥∥Pdiag[α]K∥∥x̃(ts)− x̃(t)∥
≤ −w∥x̃(t)∥2 + ∥Pdiag[α]K∥∥Φ−1(τ)− In∥∥x̃(t)∥2

= −(w − ∥Pdiag[α]K∥∥Φ−1(τ)− In∥)∥x̃(t)∥2 < 0,

and hence the group Nash equilibrium x△ is asymptotically stable. �

Even though the conditions shown in Proposition 3.2 and Theorem 3.3 require the
knowledge of agents’ sensitivity α ∈ Rn

+, it is worth noting that Theorem 3.3 along with
Proposition 3.1 in Section 3.3.1 suggests a sufficient stability condition for unknown
agents’ sensitivity parameters α ∈ Rn

+.

Corollary 3.1. Consider the noncooperative system with the pseudo-gradient dynam-
ics (3.9), intra-group incentive function (3.4), and quadratic payoff functions (3.21)
under Assumption 3.2. Let the group managers’ strategy uk be update by the sampled-
data-based update rule of (3.11), (3.12) with (x̂k(t), x−k(t)) replaced by (x̂k(ts), x

−k(ts)).
Suppose that there exists α̂ ∈ Rn

+ such that AT
s diag[α̂] + diag[α̂]As < 0 for the matrix

As defined in (3.27). Then, there exists a positive scalar σ ∈ R+ such that the group
Nash equilibrium x△ is asymptotically stable for any α ∈ Rn

+ and any sampling instants
ts, s ∈ Z0, satisfying Ts < σ, s ∈ Z0.

Proof The result is direct consequence of Theorem 3.3 by noting from Proposition 3.1
that the matrix As = diag[α]As is Hurwitz for any α ∈ Rn

+. �
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3.4 Social Welfare Improvement Via Inter-group In-
centives

In this section, we characterize the inter-group incentive mechanism in the manager
layer to improve the weighted social welfare of the entire hierarchical system defined in
(3.2). Similar to the process for the group managers who are capable to control the
amounts of tax and subsidy in the agent layer, we assume that the system governor
is able to control the amount of tax and subsidy in the manager layer under limited
information in order to to stabilize a target equilibrium increasing the weighted social
welfare function as much as possible1. To this end, the system governor is supposed
to impose an explicit inter-group incentive mechanism to change the group Nash
equilibrium by reconstructing the group utility functions and hence affect the group
managers’ behavior.

As the system governor in many economic applications serves merely as a mediator
and does not have productivity to pay the additional profits to the agents [38, 39], we
consider the hierarchical noncooperative system under inter-group incentives with the
reconstructed group utility functions Ũk(x) given by

Ũk(x) , Uk(x) + gk(x̄), k ∈ M, (3.42)

where gk(x̄) denotes the inter-group incentive function2 for group k satisfying∑
k∈M

gk(x̄) = 0 (3.43)

and x̄ denotes limited information of the state profile x which is precisely defined
below. This constraint, once again, represents the case where the system governor
serves merely as a mediator transferring payoffs among the agents.

In general, the system governor may not know the specific values of agents’ state
x1(t), . . . , xn(t) especially when n is large. In this chapter, we suppose that the system
governor observes some kind of macroscopic data (e.g., average of the state values) from
each of the groups, and the inter-group incentive function gk(x) is a simple function
mapping from Rm to R (instead of Rn → R). Those observed data can be considered

1The system governor may not achieve the maximum point because of the lack of enough information
as discussed later.

2Those inter-group incentives are equally distributed to (or collected from) the group members in
the agent layer irrespective of the state so that they do not affect the behavior of the pseudo-gradient
dynamics.



53

as a linear mapping from the agents’ state given by

x̄(t) ,

 x̄1(t)
...

x̄m(t)

 =

 C1x
1(t)
...

Cmx
m(t)

 =

 C1 0
. . .

0 Cm

x(t) , Cx(t),

where Ck ∈ R1×nk , k ∈ M, and C ∈ Rm×n. For example, if the observed data x̄k is
simply given as the average of the state values by x̄k = 1/nk

∑
i∈Nk

xi, then it implies
Ck = 1Tnk

/nk.
Now, consider the inter-group incentive function given by

gk(x̄) = vkx̄k −
∑

j ̸=k

( vj
m− 1

x̄j
)
, (3.44)

where v , [v1, . . . , vm]
T ∈ Rm represents the inter-group incentive coefficient, so that

the parameter x̂k(t) in the group manager’s strategy update rule (3.11) is remodeled
from (3.12) to

x̂k(t) = γ̃k(x−k(t), vk) , arg max
xk∈Rnk

Ũk(xk, x−k(t)). (3.45)

Note that the group Nash equilibrium under the inter-group incentive mechanis-
m depends on v and is denoted by x△(v) ∈ Rn. For a given v ∈ Rm, we sup-
pose that there exists a unique group Nash equilibrium x△(v) satisfying xk△(v) =

γ̃k(x−k
△ (v), vk), k ∈ M, under Assumption 3.1 (i.e., 0 =

[
∂Ũ1(x△(v))

∂x1 , . . . , ∂Ũ
m(x△(v))
∂xm

]
=[

∂U1(x△(v))
∂x1 + v1C1, . . . ,

∂Um(x△(v))
∂xm + vmCm

]
). Note that there may not exist a coefficient

v such that x△(v) coincide with the maximum point of Π(x) because the inter-group
incentive function (3.44) under observed (limited) data restricts feasibility on changing
the partial derivatives of ∂Ũk(x△(v))

∂xk , k ∈ M, but there may exist a best inter-group
incentive coefficient v⋆ maximizing the weighted social welfare Π(x△(v)) given by (3.2)
at v = v⋆ ∈ Rm. For the following statements, we denote the best inter-group incen-
tive coefficient by v⋆ , argmaxv∈Rm Π(x△(v)) and use the corresponding group Nash
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equilibrium x⋆ , x△(v
⋆) as a target equilibrium3. Moreover, we denote

∇γ̃k+(x−k, vk) ,
∂γ̃k(xk−, x

k
+, v

k)

∂xk+
= −

([∂2Ũk(x)

∂xk∂xk

]−1 ∂2Ũk(x)

∂xk∂x−k
+

)∣∣∣∣∣
x=(γ̃k(x−k,vk),x−k)

= −
([∂2Uk(x)

∂xk∂xk

]−1 ∂2Uk(x)

∂xk∂x−k
+

)∣∣∣∣
x=(γ̃k(x−k,vk),x−k)

∈ Rnk×(n−
∑k

i=1 ni),

(3.46)

∇γ̃k−(x−k, vk) ,
∂γ̃k(xk−, x

k
+, v

k)

∂xk−
= −

([∂2Ũk(x)

∂xk∂xk

]−1 ∂2Ũk(x)

∂xk∂x−k
−

)∣∣∣∣∣
x=(γ̃k(x−k,vk),x−k)

= −
([∂2Uk(x)

∂xk∂xk

]−1 ∂2Uk(x)

∂xk∂x−k
−

)∣∣∣∣
x=(γ̃k(x−k,vk),x−k)

∈ Rnk×
∑k−1

i=1 ni , (3.47)

which are known to the system governor because the group utility functions U1, . . . , Um

are supposed to be known to him. In addition, we denote

γk(x, v) ,
∂γ̃k(xk, vk)

∂vk

= −

([∂2Ũk(x)

∂xk∂xk

]−1∂2Ũk(x)

∂xk∂vk

)∣∣∣∣∣
x=(γ̃k(x−k,vk),x−k)

= −
[∂2Uk(γ̃k(x−k, vk), x−k)

∂xk∂xk

]−1

CT
k ∈ Rnk , k ∈ M, (3.48)

and define Γ(x, v) ,

 γ1(x, v) 0
. . .

0 γm(x, v)

 ∈ Rn×m.

Remark 3.6. If nk = 1 for all k ∈ M, the considered problem is reduced to an incentive
designing problem for m-agent systems (which has been addressed in Chapter 2).

Now, we propose a framework of how the system governor appropriately designs
v(t) ∈ Rm for the inter-group incentives in the manager layer to encourage the trajectory
of agents’ state converge towards the target equilibrium x⋆. In the beginning, let us
suppose that v(t) ≡ v⋆ ∈ Rm.

Corollary 3.2. Consider the hierarchical noncooperative system with pseudo-gradient
dynamics (3.9). Let the intra-group incentive function (3.4) be updated by (3.11)

3Here, note that if ∂Uk(x)
∂xk , k ∈ M, at the the maximum point of Π(x) are coincidently equal to

δkCk, k ∈ M, for some scaling factors δk ∈ R, k ∈ M, then the target equilibrium x⋆ is understood the
maximum point of Π(x) whereas the best inter-group incentive coefficient is given by v⋆ = [δ1, · · · , δm]T.
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with (3.45). If the matrix As , diag[α]A(γ̃, x⋆) is Hurwitz, then the inter-group
incentive functions (3.42), (3.44) along with v(t) ≡ v⋆ ∈ Rm guarantee that the target
equilibrium x⋆ is locally asymptotically stable.

Proof The proof is a direct consequence of Theorem 3.2 since the Jacobian matrix at
x⋆ is As. �

Remark 3.7. For the case of quadratic payoff functions Ji(x), i ∈ N , as defined in
(3.21), it follows that the parameter x̂k(t) in (3.45) is given by

x̂k(t) = −(Ak
k)

−1[Ak
−x

k
−(t) + Ak

+x
k
+(t) + Bk

k + CT
k v

k(t)]. (3.49)

Hence, the matrices ∇γ̃k+(·), ∇γ̃k−(·) are given by

∇γ̃k+(x−k, vk) = ∇γk+(x−k) = −(Ak
k)

−1Ak
+, (3.50)

∇γ̃k−(x−k, vk) = ∇γk−(x−k) = −(Ak
k)

−1Ak
−, (3.51)

so that they do not depend on vk and x. As a direct consequence of Theorem 3.2, it
can be shown that the inter-group incentive function (3.44) along with v(t) ≡ v⋆ ∈ Rm

guarantees that the target equilibrium x⋆ is globally asymptotically stable if and only
if As , diag[α]A(γ̃, x⋆) = diag[α]A(γ, x⋆) = diag[α]As is Hurwitz with As defined in
(3.27).

It is intuitive that only letting v be a constant vector does not guarantee the
convergence when the matrix As is not Hurwitz. Hence, it is natural to consider a
feedback controller for the inter-group incentive mechanism for the system governor
based on the observed data x̄(t). Specifically, consider a linear feedback controller

v(t) = v⋆ + K̃(x̄(t)− x̄⋆) ∈ Rm, (3.52)

with x̄⋆ , Cx⋆ and K̃ = {kij}i,j∈M ∈ Rm×m. Note that the linear feedback controller
(3.52) ensures that the target equilibrium x⋆ is an equilibrium of the closed-loop
dynamics of (3.10), (3.11), (3.45) given by

ẋ(t) = diag[α][f(x(t)) + u(x(t), v(x̄(t)))], (3.53)

x̄(t) = Cx(t), (3.54)

where the group managers’ strategy profile u(x, v(x̄)) = [(u1(x−1, v1(x̄)))T, . . . , (um(x−m,

vm(x̄)))T]T ∈ Rn is understood as a function solely depending on x. Now, linearizing
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the pseudo-gradient f(x) and the update rule u(x, v) around the target equilibrium x⋆,
the linearized closed-loop dynamics with the shifted x̃ = x− x⋆ state are given by

˙̃x(t) = Ãsx̃(t), (3.55)

where
Ãs , diag[α](∇f(x⋆) +∇ũ(x⋆, v⋆)), (3.56)

and ∇ũ(x⋆, v⋆) is the Jacobian matrix of the function u(x, v(x̄)) with respect to x at
(x⋆, v⋆) = (x⋆, v(x⋆)) given by

∇ũ(x⋆, v⋆) =
(
∂u(x, v)

∂x
+
∂u(x, v)

∂v

∂v

∂x

)∣∣∣∣
x=x⋆,v=v⋆

. (3.57)

Note that the expression of ∂u(x,v)
∂x

is given by

∂u(x,v)
∂x

=


0n1×n1 −∇f 1(x̂1, x−1)∇γ̃1+(x−1, v1)−∇f 1

+(x̂
1, x−1)

−∇f 2(x̂2, x−2)∇γ̃2−(x−2, v2)−∇f 2
−(x̂

2, x−2) 0n2×n2 −∇f 2(x̂2, x−2)∇γ̃2+(x−2, v2)−∇f 2
+(x̂

2, x−2)
... . . . ...

−∇fm(x̂m, x−m)∇γ̃m− (x−m, vm)−∇fm
− (x̂m, x−m) 0nm×nm

.
(3.58)

Then, it follows from

∂u(x, v)

∂v
= −


∂f1(γ̃1(x−1,v1),x−1)

∂x1

∂γ̃1(x−1,v1)
∂v

...
∂fm(γ̃m(x−m,vm),x−m)

∂xm

∂γ̃m(x−m,vm)
∂v


= − block-diag[∇f 1(x), . . . ,∇fm(x)]Γ(x, v) ∈ Rn×m, (3.59)

and
∂v

∂x
=
∂v

∂x̄

∂x̄

∂x
= K̃C ∈ Rm×n, (3.60)

that the Jacobian matrix in the linearized closed-loop dynamics (3.55) is given by
Ãs = diag[α] block-diag[∇f 1(x⋆), . . . ,∇fm(x⋆)](S − Γ(x⋆, v⋆)KC), where

S ,


In1 ∇γ̃1+(x−1, v1)

∇γ̃2−(x−2, v2) In2 ∇γ̃2+(x−2, v2)
... . . . ...

∇γ̃m− (x−m, vm) Inm


∣∣∣∣∣∣∣∣∣∣
x=x⋆,v=v⋆

. (3.61)
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Remark 3.8. Note that when K̃ = 0 (i.e., v(t) ≡ v⋆), the matrix Ãs is same as the
matrix As , diag[α]A(γ̃, x⋆) that is used in Corollary 3.2 because Γ(x, v) = 0.

However, it is necessary to point out that the matrices ∇fk(x⋆), k ∈ M, are yielded
from the agents’ individual payoff functions and hence may be unknown to the system
governor. To deal with the uncertanty in ∇fk(x⋆), k ∈ M, we present the following
result for guaranteeing asymptotic stabilization.

Theorem 3.4. Consider the hierarchical noncooperative system with pseudo-gradient
dynamics (3.9). Let the intra-group incentive function (3.4) be updated by (3.11) with
(3.45). Suppose that there exists α̂ ∈ Rn

+ such that the matrix

He(diag[α] block-diag[∇f 1(x⋆), . . . ,∇fm(x⋆)]diag[α̂]) (3.62)

is negative definite. Then, the inter-group incentives (3.42), (3.44), (3.52) with the
matrix K̃ ∈ Rm×m satisfying

R , He
(
diag[α̂]−1(S − Γ(x⋆, v⋆)K̃C)

)
> 0, (3.63)

guarantee that the solution x(t) ≡ x⋆ of the closed-loop dynamics given by (3.53),
(3.54) is locally asymptotically stable.

Proof Consider the Lyapunov function candidate V (x) = (x − x⋆)TP (x − x⋆) with
the positive-definite matrix P , −(diag[α]diag[∇f 1(x⋆), . . . ,∇fm(x⋆)]diag[α̂])−1 > 0.
Since the Lyapunov inequality (D(S − Γ(x⋆, v⋆)K̃C))TPT + PD(S − Γ(x⋆, v⋆)K̃C) =

−2R < 0 is satisfied with D = diag[α] block-diag[∇f 1(x⋆), . . . ,∇fm(x⋆)], it follows
using the linearized dynamics (3.55) that

V̇ (x(t)) = −2(x(t)− x⋆)TR(x(t)− x⋆) < 0, (3.64)

around x⋆ and hence the target equilibrium x⋆ is asymptotically stable for any matrices
∇fk(x⋆), k ∈ M, and any α ∈ Rn

+. �

Remark 3.9. The conditions in Theorem 3.4 can be simplified for the case where
the payoff functions are quadratic and given by (3.21). Specifically, supposing that
there exists α̂ ∈ Rn

+ such that He(diag[α] block-diag[P1, . . . , Pn]diag[α̂]) < 0 holds, the
condition (3.63) reduces to

He
(
diag[α̂]−1block− diag[(A1

1)
−1, . . . , (An

n)
−n](G+ CTK̃C)

)
> 0. (3.65)
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This is because S = block-diag[(A1
1)

−1, . . . , (An
n)

−n]G and

Γ(x⋆, v⋆) = −diag[(A1
1)

−1, . . . , (An
n)

−n]CT, (3.66)

hold under γk = −(Ak
k)

−1CT
k and (3.51). An interesting discussion is on controllability

and observability analysis for the noncooperative system. It follows that the open-loop
dynamics in terms of the shifted state x̃ = x− x⋆ are given by

˙̃x(t) = Ãx̃(t) +Bv(t), y(t) , ˜̄x(t) = Cx̃(t), (3.67)

where Ã , diag[α]As ∈ Rn×n with As defined in (3.27) and

B , −diag[α] block-diag[∇f 1(x⋆), . . . ,∇fm(x⋆)]Γ(x⋆, v⋆) (3.68)

= −diag[α] block-diag[P1(A1
1)

−1, . . . , Pm(Am
m)

−1]CT ∈ Rn×m. (3.69)

It is important to note that the open-loop dynamics (3.67) are understood as a
continuous-time, linear time-invariant system with v(t) ∈ Rm being the control input
and y(t) ∈ Rm being the output. Hence, this system is controllable if

rank[B ÃB Ã2B · · · Ãn−1B] = n, (3.70)

whereas the system is observable if

rank[CT (CÃ)T (CÃ2)T · · · (CÃn−1)T]T = n. (3.71)

Note that the matrix C appears in both of the controllablility and observablility
conditions, which also indicates why some of state (e.g., the maximum point of Π(x))
may be unreachable in the hierarchical noncooperative system for a given matrix C.

3.5 Illustrative Numerical Examples

In this section, a couple of numerical examples are provided to demonstrate the efficacy
of our proposed approach.

Example 3.1. Consider the 4-agent hierarchical noncooperative market with the
agents’ sets N1 = {1, 2}, N2 = {3, 4}, and the payoff functions (3.21) with a111 = −2,
a112 = 3, a114 = −8, a122 = −8, a144 = −2, a211 = −8, a212 = 1, a222 = −2, a224 = 2, a244 = −3,
a333 = −2, a334 = 1, a344 = −6, a411 = −2, a413 = 1, a414 = −1, a423 = 3, a433 = −6, a434 = −8,
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a444 = −2, b12 = 15, b21 = −15, b43 = 10, and the other unmentioned parameters being
zero. Suppose that there is no system governor coordinating the two subgroups. Let the
priorities evaluated by the group managers be equal, e.g., η1 = η2 = 1 and η3 = η4 = 1.
letting the sensitivity parameters be given by α = (1, 1, 1, 1), the group Nash equilibrium
without inter-group incentive is given by x△ = [−1.3350, 0.2341, 4.3729, −3.6594]T and

the matrix As = As =


−2 3 0.0952 −0.4286

1 −2 −0.0238 0.3571

3 4.6 −2 1

6 10 −8 −2

 is Hurwitz. Then, it follows

from Theorem 3.2 that the group Nash equilibrium x△ is globally asymptotically stable
under the pseudo-gradient dynamics (3.9) incentivized by the intra-group incentive
scheme (3.4), (3.11). On the other hand, let the smapling instants ts, s ∈ Z0, satisfy
that Ts = ts+1 − ts ∈ {0.15, 0.09} for the sampled-data-based update rule. In this
case, Φ(Ts) = eTsA(I4 + A−1K) − A−1K with K given by (3.29) for Ts = 0.15 and

0.09 satisfies (3.34) for P =


29.9538 48.0453 −12.0335 −4.0689

48.0453 82.7924 −21.1742 −7.3734

−12.0335 −21.1742 14.8137 1.7948

−4.0689 −7.3734 1.7948 3.9462

 > 0. It follows

from Proposition 3.2 that the group Nash equilibrium x△ is globally asymptotically
stable under the sampled-data-based update rule. Those results can be verified by the
trajectories of the agents’ state x(t) and the group managers’ strategy u(t) shown in
Figs. 3.3a and 3.3b.

Example 3.2. Consider the 4-agent hierarchical noncooperative market with agents’
sets N1 = {1, 2}, N2 = {3, 4}, and the payoff functions (3.21) with a111 = −2, a112 = 1,
a113 = 1, a114 = 8, a122 = −8, a144 = −3, a211 = −8, a212 = 1, a222 = −2, a224 = 2, a233 = −9,
a244 = −3, a311 = −1, a314 = −5, a333 = −9, a334 = −8, a344 = −8.1, a411 = −2, a413 = 1,
a414 = −6, a423 = 9, a433 = −6, a434 = −8, a444 = −9, b12 = 4, b21 = −1, b23 = 10, b31 = 10,
b41 = −40, b43 = 1, and the other unmentioned parameters being zero. Let the priorities
evaluated by the group managers be given by η1 = 2η2 = 2 and η3 = η4 = 1. Letting
the sensitivity parameters be given by α = (1, 1, 1, 1), the group Nash equilibrium
without inter-group incentive is given by x△ = [−0.3652, 0.349, 0.5834,−0.3109]T, and

the matrix As =


−2 1 0.3188 2.8116

1 −2 −0.1159 −0.8406

579.8 466.2 −9 −8

−168.4 −129.6 −8 −9

 is not Hurwitz. Then, it

follows from Theorem 3.2 that the group Nash equilibrium x△ under the pseudo-
gradient dynamics (3.9) incentivized by the intra-group incentive scheme (3.4), (3.11)
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Figure. 3.3 Trajectories of x(t) and u(t) influenced by the managers’ intra-group incentives
and update rule (3.11). Dash-dotted: under the continual update rule (CUR), solid: under
the sampled-data-based update rule (SUR). The black dash-dotted lines in (a) represent the
group Nash equilibrium x△.
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is unstable, which can be verified by the oscillatory trajectories of x(t) and u(t) shown
as transparent dashed lines in Figs. 3.4a and 3.4b.

Now, letting the group priority evaluated by the system governor be equal, e.g.,
ξ1 = ξ2 = 1, we construct the inter-group incentive scheme (3.42), (3.44) in the
manager layer to achieve social welfare improvement. We suppose that the observed
data from the 2 groups are simply given by x̄1 = x1 + x2 and x̄2 = x3 + x4 so that
Ck = 1Tnk

, k = 1, 2, hold. In this case, the best inter-group incentive coefficient is
found as v⋆ , argmaxv∈R2(U1(x△(v)) + U2(x△(v))) = [12.7543,−6.5762]T and hence
the corresponding group Nash equilibrium given by x⋆ = [−0.7372, 0.8663, 1.6718,

−1.4746, ]T is considered as the target equilibrium. Then, it follows from Theorem 3.4
that the inter-group incentive scheme (3.42) along with the inter-group incentive

function (3.44) updated by (3.52) with K̃ =

[
−136.8393 46.9339

−159.7815 −0.5447

]
satisfying the linear

matrix inequality (3.65) with α̂ = (1, 1, 1, 1) guarantees that the target equilibrium x⋆

is asymptotically stabilized, which can be verified by the trajectories of x(t) and u(t)
shown as solid lines in Figs. 3.4a and 3.4b.

Example 3.3. Consider a market economic country being composed of n firms (agents)
located in m cities (groups) selling homogeneous products produced by themselves with
the market price function [97] given by λ = λ0 −

∑n
i=1 βixi, where xi ∈ R+ denotes

the quantity of the produced products, βi ∈ R+ denotes the market power of the
firm-i, and λ0 ∈ R+ is a market specific parameter representing the cap price. In this
country (Cournot game), firms compete in quantities rather than prices according
to the payoff functions given by Ji(x) = λxi − Ci(xi), i ∈ N , where Ci(·) is the
production cost of firm-i given by Ci(xi) = aix

2
i + bixi, i ∈ N , with ai ≥ 0 and

bi > 0. The gross sales value of production in city k ∈ M is given as the group
utility function Uk(x) defined in (3.1) with ηi = 1, i ∈ Nk, whereas the gross domestic
product is given as the social welfare function Π(x) defined in (3.2) with ξk = 1,
k ∈ M. In terms of incentives, each firm in city k is influenced by the production
taxes/subsidies (intra-group incentive) linearly depending on the firm’s production
quantity given by (3.4) administered by a mayor (group manager). Each city k ∈ M is
influenced by the transaction taxes/subsidies (inter-group incentive) linearly depending
on the sum of the firms’ production quantities x̄k = 1Tnk

xk in city k given by (3.44)
administered by the national economic administration (system governor), i.e., Ck = 1Tnk

,
k ∈ M. Different from the objective of mayor k on maximizing the incentivized group
utility Ũk, the objective of the national economic administration is to maximize the
gross domestic product Π(x) using the observed data x̄k, k ∈ M, and the gross
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Figure. 3.4 Trajectories of x(t) and u(t) of the hierarchical noncooperative system under
intra-group incentives with and without the inter-group (IG) incentives. Agents’ state diverges
without inter-group incentives (i.e., v = 0) but converges to the target equilibrium x⋆ with
inter-group incentives.
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sales value of production Uk(x), k ∈ M. Now, let n = 60 and suppose that the
amount of firms in each city is equal to each other satisfying nk = n/m, k ∈ M.
Figure 3.5(a) shows the gross domestic product (social welfare) Π(x) at the (unique)
group Nash equilibrium x△(0) without inter-group incentive for ai = 10, i ∈ N ,
bi = 3, i ∈ N , λ0 = 8, and βi ∈ (0, 0.2), i ∈ N , satisfying Assumption 3.1 with
m = 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60, where the number of firms in each city
k ∈ M is given by nk = 60, 30, 20, 15, 12, 10, 6, 5, 4, 3, 2, and 1, respectively. Figure 3.5(b)
captures the difference value between the gross domestic product Π(x) at the group
Nash equilibrium x△(v) with v = 0 and v = v⋆ , argmaxv∈Rm Π(x△(v)), which is
understood as the improvement made by the national economic administration via
constructing the inter-group incentives.

Note that when m = 1 (i.e., nk = 60), the system governor and inter-group
incentives vanish so that the mayor is the unique institution constructing the incentive
mechanism for the entire society with complete information from the agent layer and
hence the social maximum is achieved. Alternatively, when m = 60 (i.e., nk = 1), the
mayors and intra-group incentives vanish so that the national economic administration
is the unique institution constructing the incentive mechanism for the entire society
with complete information from the agent layer and hence the social maximum is
achieved. In either of the two cases, the three-layer hierarchical incentive structure
reduces to the two-layer incentive structure characterized in Chapter 2. However, the
full information of all the 60 agents’ payoff functions and states can be hardly known to
an individual and hence the three-layer incentive structure has to be established. Even
though degeneration from the social maximum happens in the three-layer incentive
structure (i.e., m ̸= 1,m ̸= 60) since ∂Uk(x)

∂xk = δknk
T is not true for any scaling factor

δk ∈ R at the maximum point of Π(x), the orange line in Fig. 3.5(a) is understood as
the maximum value of social welfare that the national economic administration can
help to reach. It is interesting to note from Fig. 3.5(a) that a larger number of groups
m indicates a larger improvement by constructing the inter-group incentive, but does
not indicate a larger social welfare Π(x△(v

⋆)) at the group Nash equilibrium with the
best inter-group incentive coefficient. This is because increasing m results in decreasing
nk and may decrease the social welfare Π(x△(0)) with only intra-group incentives.

3.6 Chapter Conclusion

In this chapter, we investigated the stability and stabilization problem for the non-
cooperative systems. In the characterized framework of hierarchical noncooperative
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Figure. 3.5 Gross domestic product (a) at x△(0) and x△(v
⋆) and improved gross domestic

product (b) versus the number of groups m of a 60-agent system with nk = n/m, k ∈ M. Note
that when m increases, the system governor possesses more information from the agent-layer.
The improved gross domestic product is given by Π(x△(v

⋆))−Π(x△(0)).
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systems, agents selfishly make their decision under some intra-group incentives, which
are controlled by the group managers and updated by our proposed update rules. We
explored the stability of group Nash equilibrium of the hierarchical noncooperative
systems with dynamic agents, and derived conditions where the trajectory of agents’
state converges to the group Nash equilibrium under group managers’ intra-group
incentives. Furthermore, we proposed the inter-group incentive mechanism for a system
governor in order to reconstruct the group utility functions in the group managers level
to move the group Nash equilibrium so that the social welfare is improved. To deal with
the situation where the system governor may not know all the agents’ individual payoff
functions and all the agents’ state, we presented sufficient conditions to guarantee
the convergence of agents’ state towards a target equilibrium using some macroscopic
data. In this chapter, even though we assumed that the system governor is able to
obtain 1-dimensional data from each group, the case where richer (higher-dimensional)
information is available for the system governor is expected to have higher welfare
state when we evaluate the target equilibrium. Finally, we provided three numerical
examples for demonstrating stability and stabilization of group Nash equilibrium for
4-agent hierarchical noncooperative systems and 60-agent hierarchical noncooperative
systems.
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Chapter 4

Control of Noncooperative Dynamical
Systems With Pareto Improvement:
Pareto-Improving Incentive
Mechanism

4.1 Introduction

In this chapter, we develop an explicit incentive mechanism for noncooperative systems
to remodel agents’ dynamical decision making for guaranteeing that all the agents
are Pareto improving and their state converges to a Pareto-efficient Nash equilibrium.
Specifically, we suppose that the system manger collects taxes from some agents and
gives some of the collected taxes to other agents as subsidies with a sustainable budget
constraint. Considering the priorities among the agents, we construct a weighted social
welfare function for the incentive mechanism and hence derive the socially maximum
state as the target Nash equilibrium. With the well-designed incentive functions
associated with the weighted social welfare function, the socially maximum state is
ensured to be a Pareto-efficient Nash equilibrium in the incentivized noncooperative
system. Several sufficient stability conditions are presented to guarantee that the agents
are Pareto improving under the pseudo-gradient dynamics and their state converges
to the socially maximum state with known or unknown sensitivity parameters. As a
result, it turns out that the initial state plays an important role on constructing the
Pareto-improving incentive mechanism under sustainable budget constraint. For the
case with equal priority between the agents, a balanced budget constraint is guaranteed
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and the connection between Pareto improvement and potentialization is explored.
Our numerical examples exhibit a direct evidence that the Pateto improvement and
potentialization do not have an inclusive relation with each other.

The rest of this chapter is organized as follows. We explain the incentivized
noncooperative system and introduce the problem of this paper in Section 4.2. In
Section 4.3, we design the incentive mechanisms to achieve Pareto improvements with
arbitrary priorities for the agents under sustainable budget constraint for a given initial
state. In Section 4.4, we specialize the result to the case where the priorities of the
agents are all the same. Several numerical examples are shown in those two sections.
Finally, we conclude this chapter in Section 4.5.

4.2 Problem Formulation

4.2.1 System Description

Consider a noncooperative system with n number of agents adjusting their state
(strategy) in an unbounded state space Rn. Let N , {1, . . . , n} denote the set of all
agents. The payoff function of agent i is denoted by Ji : Rn → R : x 7→ Ji(x) and the
profile of all agents’ state is denoted by x = [x1, . . . , xn]

T ∈ Rn, where xi ∈ R is agent
i’s individual state. We assume that there is a system manager who imposes some
incentive mechanisms among the agents to reconstruct the agents’ payoff functions
and hence alters agents’ decision for improving the welfare of the entire system. (The
precise definition of the welfare of the entire system is given as the weighted social
welfare function in Section 4.3 considering the priory of the agents.) Specifically, let
agents’ incentivized payoff functions be given by

J̃i(x) , Ji(x) + pi(x), i ∈ N , (4.1)

where pi : Rn → R is the incentive function for agent i ∈ N . We denote the incentivized
noncooperative system by G(J̃) and the original (un-incentivized) noncooperative
system by G(J) with J̃ , {J̃i}i∈N and J , {Ji}i∈N . In order to establish the pseudo-
gradient dynamics for the agents, we assume that the payoff functions Ji(x), i ∈ N ,
and the incentive functions pi(x), i ∈ N , are continuously differentiable.

It is worth noting that at a Nash equilibrium (defined in Definition 4.1 below) no
agent has any intension to deviate unilaterally from the equilibrium state. Therefore,
the Nash equilibrium is often working as an operating point in noncooperative systems.
Furthermore, we note that Pareto efficiency is an important notion in economics for
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indicating efficiency of a society. For the convenience of readers, the notions of the
Nash equilibrium and a Pareto-efficient state are given as follows.

Definition 4.1. For the incentivized noncooperative system G(J̃), the state profile
x̃∗ ∈ Rn is called a Nash equilibrium if

J̃i(x̃
∗
i , x̃

∗
−i) ≥ J̃i(xi, x̃

∗
−i), xi ∈ R, i ∈ N . (4.2)

Definition 4.2. For the incentivized noncooperative system G(J̃), the state profile
x̃∗ ∈ Rn is Pareto efficient (optimal) if there is no other state x ∈ Rn such that
J̃i(x) ≥ J̃i(x̃

∗) for all i ∈ N with strict inequalities for some i ∈ N .

Note that the state profile x̂∗ ∈ Rn which maximizes the function
∑

i∈N J̃i(x) is
always Pareto efficient in G(J̃) because no agent can further increase J̃i(x) without
decreasing others’ payoffs from x̂∗. Furthermore, since Ji(x), i ∈ N , and pi(x), i ∈ N ,
are continuously differentiable, the Nash equilibrium x̃∗ satisfies

∂J̃i(x̃
∗)

∂xi
= 0, i ∈ N . (4.3)

In general, the Nash equilibrium x∗ in the original noncooperative system G(J) is
not Pareto efficient. Pareto improvement [55] can actually be achieved under private
agreements made by some agents who are able to communicate (negotiate) with each
other. However, those private agreements are hardly observed by the system manager
and hence bring difficulties on properly incentivizing the agents. To avoid the case
where agents seek private negotiation from the basis of the incentivized (reconstructed)
payoff functions given by the system manager, the system manager should properly
design the incentive functions to make the Nash equilibrium x̃∗ of G(J̃) be Pareto
efficient.

4.2.2 Motivation and Problem

Before we present the main problem of this paper, we give some motivations of this
work. Considering the case where the agents (companies) may leave the market when
their payoffs decrease after the incentive mechanism is executed, it is important to
discuss how to design a special incentive mechanism where every agent’s payoff is
monotonically increasing over time in the incentivized noncooperative dynamical system
G(J̃). In other words, not only may the system manager wish to guarantee the Pareto
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efficiency at the Nash equilibrium x̃∗ of G(J̃), but also ˙̃Ji(x(t)) ≥ 0, t ≥ 0, for all i ∈ N
along the system trajectories of (2.32).

Definition 4.3. Given the system trajectory x(t), t ≥ 0, with x(0) = x0, the agents
in the incentivized noncooperative system G(J̃) are Pareto improving if

J̃i(x0) = Ji(x0), i ∈ N , (4.4)
˙̃Ji(x(t)) ≥ 0, t ≥ 0, i ∈ N , (4.5)

where Ji(x0) denotes the payoff value of agent i at the initial time.

Note that the condition (4.4) is equivalent to

pi(x0) = 0, i ∈ N , (4.6)

representing the assumption that there is no change in the payoff levels when we start
to impose the incentive mechanism. On the other hand, the system manager in many
economic applications serves merely as a mediator (or a tax collector) and does not
have productivity to pay the additional profits to the agents. In such a case, it is worth
asking whether it is possible to achieve (4.4) and (4.5) by using some well-designed
incentive functions pi(x), i ∈ N , satisfying∑

i∈N
pi(x(t)) ≤ 0, t ≥ 0. (4.7)

Note that the condition (4.7) imposes some sustainable budget constraint representing
the fact that the system manager collects taxes from some agents and gives some of
the collected taxes to other agents as subsidies. When the equality holds, the system
manager is understood as a mediator who collects taxes from some agents and gives
the same amount of subsidy in total to other agents.

Now, we present the problem of this paper as follows.
Problem: Consider the incentivized noncooperative system G(J̃) with the pseudo-

gradient dynamics (2.32). Suppose that the system manager knows all the agents’
payoff functions Ji(x), i ∈ N . Our objective is to design the incentive functions pi(x),
i ∈ N , satisfying (4.7) for the incentive mechanism guaranteeing that the agents are
Pareto improving and their state converges to a Pareto-efficient Nash equilibrium in
G(J̃).
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4.3 Achieving Pareto Improvements with Sustainable
Budget Constraint

In this section, we characterize the incentive mechanisms for the noncooperative
system. It is necessary to emphasize that the system manager may evaluate the
priority among the agents. In real society, the policies given by a government are often
constructed according to the specific goal of the government considering the priority. For
example, the government may give more preferential treatments to the semiconductor
companies when the government wishes to raise the international competitiveness of
the semiconductor industry in its country. Another example is that the government
may provide more resources (e.g., job opportunity or common resource) to the poorer
people than the others in its country for enhancing the poor people’s income and hence
for tackling extreme poverty.

In light of this observation, we suppose that the priority ratio of the agents evaluated
by the system manager is given by

η1 : · · · : ηn, (4.8)

for some ηi ∈ R+, i ∈ N . Without loss of generality, η1 is taken as 1. Then, we consider
the weighted social welfare function U : Rn → R given by

U(x) ,
∑

i∈N
ηiJi(x). (4.9)

Furthermore, we define the target state as the socially maximum state with respect to
U(x) given by

x̂∗ , argmax
x∈Rn

U(x). (4.10)

Now, we consider the situation where the incentive functions pi(x), i ∈ N , in (4.1)
satisfy ∑

i∈N
J̃i(x) = σU(x), x ∈ Rn, (4.11)

argmax
xi∈R

J̃i(xi, x̂
∗
−i) = x̂i, i ∈ N , (4.12)

with σ > 0 being a scaling factor characterized later. Obviously, the variable σ

does not affect the maximum state of
∑

i∈N J̃i(x), but we keep the notation for
further characterization of some requirements below. As a result, the constraint (4.11)
guarantees that the target state x̂∗ is Pareto efficient in G(J̃), whereas the constraints
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(4.12) make x̂∗ to be a Nash equilibrium. In other words, the target state x̂∗ maximizing
the social welfare function U(x) is a Pareto-efficient Nash equilibrium in the incentivized
noncooperative system G(J̃) under (4.11) and (4.12). Note that the condition (4.11)
along with (4.1) and (4.9) is equivalent to∑

i∈N

pi(x) =
∑
i∈N

J̃i(x)−
∑
i∈N

Ji(x) =
∑
i∈N

(σηi − 1)Ji(x). (4.13)

Hence, the incentive functions should be designed in such a way that the system
trajectories of (2.32) remain in the domain

Dbud(σ) ,

{
x ∈ Rn :

∑
i∈N

(σηi − 1)Ji(x) ≤ 0

}
, (4.14)

in order to maintain the sustainable budget constraint (4.7). For the given priority
ratio (4.8), it turns out that the initial state x0 plays an important role during designing
the incentive functions. In the following statements, we explore two requirements
on the initial state x0 for constructing our incentive mechanism to allow the system
trajectories of (2.32) to remain in the domain Dbud.

Requirement 1:

Since (4.6) holds at the initial state x0 and hence
∑

i∈N pi(x0) = 0, (4.13) implies that
the scaling factor σ in (4.9) should be determined to satisfy∑

i∈N

(σηi − 1)Ji(x0) = 0. (4.15)

Note that the solution σ of (4.15) is unique as given by

σ(x0) =

∑n
i=1 Ji(x0)∑n

i=1 ηiJi(x0)
. (4.16)

In order for σ(x0) to be positive, our framework requires the initial state x0 to satisfy

x0 ∈ Dscale ,

{
x ∈ Rn :

n∑
i=1

Ji(x)
/ n∑

i=1

ηiJi(x) > 0

}
. (4.17)

We emphasize that the condition (4.17) may not hold for some initial state x0 (and
hence we cannot find a positive scaling factor σ(x0)). Figure 4.1 shows an example
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Figure. 4.1 An example of (a) the domain Dscale and (b) the domain Dbud(σ(x0)). The
boundary of Dscale are the two dashed curves elaborated by

∑n
i=1 Ji(x) = 0 and

∑n
i=1 ηiJi(x) =

0 in (a). The domain Dbud(σ(x0)) is characterized by the initial state indicated by the point
B in (b). In this example, the socially maximum state x̂∗ is not contained in Dbud(σ(x0)).
Another domain Dbud(σ(x0)) characterized by the initial state on the point C in (a) is depicted
in Fig. 4.2 where x̂∗ ∈ Dbud(σ(x0)) holds. The initial state is likely to be on the boundary of
Dbud(σ(x0)).

of an infeasible initial state (e.g., point A) outside the domain Dscale indicated by the
striated region given the priority ratio η1 : η2 for a two-agent noncooperative system
G(J). Note that Dscale is invariant with respect to σ(x0). Specifically, it follows from
(4.17) that Dscale is characterized as the union of the domains {x ∈ Rn :

∑n
i=1 Ji(x) >

0 ∩
∑n

i=1 ηiJi(x) > 0} and {x ∈ Rn :
∑n

i=1 Ji(x) < 0 ∩
∑n

i=1 ηiJi(x) < 0} so that the
boundary of Dscale is given by

∑n
i=1 Ji(x) = 0 and

∑n
i=1 ηiJi(x) = 0 irrespective of

the agents’ individual payoff functions. When the priority ratio (4.8) changes, the
domain Dscale alters along with the changes of the level set of the weighted social
welfare function. But when all the agents have the equal priority (i.e., η1 = · · · = ηn),
those two boundaries coincide with each other and the domain Dscale is understood as
the entire space Rn because

∑n
i=1 Ji(x)

/∑n
i=1 ηiJi(x) is constant and positive in (4.17)

for all x ∈ Rn. This special case is elaborated in Section 4.4 below.

Requirement 2:

It is important to notice from (4.16) that since the value of σ(x0) depends on the initial
state x0, the domain Dbud(σ(x0)) given by (4.14) also depends on the initial state x0.
Recalling that the system trajectories of (2.32) should remain in the domain Dbud(σ(x0))
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for maintaining the sustainable budget constraint (4.7), some initial state may not
be allowed for the existence of the incentive functions that meets this requirement.
For instance, when the target state x̂∗, which does not depend on the initial state as
given by (4.10), does not belong to the domain Dbud(σ(x0)), there is no possibility to
establish incentive functions satisfying (4.7) around the target state x̂∗. An example
of the initial state where x̂∗ ̸∈ Dbud(σ(x0)) holds is shown as the point B in Fig. 4.1,
where the domain Dbud(σ(x0)) is indicated by the blue region. Therefore, in order to
make the socially maximum state x̂∗ be the target state for the incentive mechanisms,
we further suppose that the initial state x0 yields the domain Dbud(σ(x0)) satisfying
x̂∗ ∈ intDbud(σ(x0)). In the case where there is a incentive supply from outside the
system and its supply rate is given by c ∈ R+, the right-hand side of (4.7) should
be replaced by c. In this case, the characterization of Dbud(σ(x0)) can be similarly
established.

Now, we design the incentive functions pi(x), i ∈ N , to satisfy (4.5), (4.6), (4.11)
and (4.12). Specifically, we consider the incentive functions used in (4.1) given by

pi(x) , ζiσ(x0)U(x)− Ji(x) +
∑
j ̸=i

bij(xi − x̂∗i )(xj − x̂∗j) + wi(x0), (4.18)

for each agent i ∈ N , where ζi ∈ (0, 1), i ∈ N , satisfying
∑

i∈N ζi = 1, bij = −bji,
i, j ∈ N , wi(x0) = Ji(x0)− ζiσ(x0)U(x0)−

∑
j ̸=i bij(x0i − x̂∗i )(x0j − x̂∗j), i ∈ N , so that

(4.6) holds. Then, the agent’s incentivized payoff functions (4.1) are given by

J̃i(x) = ζiσ(x0)U(x) +
∑
j ̸=i

bij(xi − x̂∗i )(xj − x̂∗j) + wi(x0). (4.19)

Proposition 4.1. If the incentive functions are constructed by (4.18), then the socially
maximum state x̂∗ associated with the weighted social welfare function U(x) is a Pareto-
efficient Nash equilibrium in G(J̃).

Proof Note that (4.11) holds because
∑

i∈N ζi = 1, bij = −bji, i, j ∈ N . The proof
is immediate by noting from (4.19) that J̃i(xi, x̂∗−i) = ζiσ(x0)U(xi, x̂

∗
−i) + ci, i ∈ N ,

imply (4.12) holds. �

Consequently, it follows from (2.32) and (4.19) that the pseudo-gradient dynamics
are given by

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn, t ≥ 0, (4.20)

where f(x) , diag[α](Zg(x) + B(x − x̂∗)) with Z = diag[ζ1, . . . , ζn] ∈ Rn×n, g(x) ,
σ(x0)U

′(x) ∈ Rn, and B , {bij}i,j∈N = −BT ∈ Rn×n. For the statement of the
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following results, we let Bi ,


0(i−1)×(i−1)

bi1
0(i−1)×(n−i)...

bi1 · · · bii · · · bin

0(n−i)×(i−1)

...
0(n−i)×(n−i)

bin


∈ Rn×n with bii =

0. Note that B1 =


0 b12 · · · b1n

b12 0 · · · 0
...

... . . . ...
b1n 0 · · · 0

, Bn =


0 · · · 0 bn1
... . . . ...

...
0 · · · 0 bn(n−1)

bn1 · · · bn(n−1) 0

, and

∑
i∈N

Bi = 0. Furthermore, we let Di , {x ∈ Rn : J̃ ′
i(x)f(x) ≥ 0} = {x ∈ Rn :

[ζig(x) +Bi(x− x̂∗)]Tf(x) ≥ 0}, i ∈ N . Note that ˙̃Ji(x(t)) ≥ 0 when the agents’ state
x(t) belongs to Di.

Theorem 4.1. Consider the n-agent noncooperative system G(J) with the incentive
mechanism (4.1) and the pseudo-gradient dynamics (4.20). If the parameters ζi ∈ (0, 1),
i ∈ N , and bij = −bji ∈ R, i, j ∈ N , are chosen in such a way that there exists a
function V : Rn → R such that

V (x̂∗) = 0, (4.21)

V (x) > 0, (4.22)

V ′(x)f(x) < 0, (4.23)

for all x ∈ D , {x ∈ Rn : V (x) ≤ V (x0)} \ {x̂∗} satisfying D ⊆ D1 ∩ · · · ∩ Dn ∩
Dbud(σ(x0)) for the given initial state x0, then the incentive functions pi(x), i ∈ N ,
given by (4.18) guarantee that the socially maximum state x̂∗ is an asymptotically
stable equilibrium point and all the agents are Pareto improving with the sustainable
budget constraint (4.7).

Proof It follows from (4.21)–(4.23) that x̂∗ is an asymptotically stable equilibrium
point. Furthermore, since the trajectory remains in the domain D (and hence Di), it
follows that ˙̃Ji(x(t)) = J̃ ′

i(x(t))f(x(t)) ≥ 0 for all i ∈ N and t ≥ 0. Moreover, since
the trajectory remains in the domain Dbud(σ(x0)), it follows from (4.13) and (4.14)
that (4.7) holds. The proof is complete. �
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Example 4.1. Consider the two-agent noncooperative system with

J1(x) = −0.5x21 + 0.3x1x2 − 0.5x22 + 4x1 − 5.8, (4.24)

J2(x) = −0.5x21 − 0.1x1x2 − 0.5x22 + 4x2 + 5.8. (4.25)

Even though the constant terms −5.8 and 5.8 in the payoff functions above do not
affect the behavior of the agents (these constants are included in w1(x0), . . . , wn(x0)

in (4.18) so that its time derivative vanishes in the calculation of pseudo-gradient),
we keep the constant terms to effectively illustrate the domains in the figures. Let
the priority evaluated by the system manager be given by η1 = 1 and η2 = 0.5. Note
that the domain Dscale is already indicated by the striated domain in Fig. 4.1 and
the socially maximum state is given by x̂∗ = [2.9714, 1.8286]T. Supposing that the
initial state is given by x0 = [4, 0.4]T, which is exactly the point C in Fig. 4.1 satisfying
x0 ∈ Dscale, the scaling factor is obtained by (4.16) as σ(x0) = 0.8074. In this case, the
domain Dbud(σ(x0)) satisfying x̂∗ ∈ intDbud(σ(x0)) is illustrated as the red region in
Fig. 4.2. Let the sensitivity parameters be given by α = (1, 1) so that the vector field
of the incentivized pseudo-gradient dynamics is given by f(x) = Zg(x) + B(x− x̂∗)

with g(x) = 0.5σ(x0)[−3x1 + 0.5x2 + 8, 0.5x1 − 3x2 + 4]T. It follows from Theorem 4.1
that the incentive mechanism (4.1) along with the incentive function (4.18) with
ζ1 = 1 − ζ2 = 0.4, b12 = −b21 = 0.3 satisfying (4.21)–(4.23), D1 = D2 = R2, and

D ⊆ Dbud(σ(x0)) with V (x) = (x − x̂∗)T

[
2 1.2

1.2 1.08

]
(x − x̂∗) guarantees that the

agents’ state x(t) converges to the socially maximum state x̂∗ and both of the agents
are Pareto improving with the sustainable budget constraint (4.7). Figure 4.3 shows
the trajectories of the agents’ payoffs and incentives versus time. It can be seen from
Figs. 4.2 and 4.3 that the agents’ state indeed converges to the socially maximum state
x̂∗ with monotonically increasing J̃1(x(t)) and J̃2(x(t)) even though the sum of the
incentive functions p1(x(t)) and p2(x(t)) are nonpositive for all t ≥ 0 (see the red solid
curve in Fig. 4.3(b)).

Example 4.2. Consider the two-agent noncooperative system with

J1(x) = −x21 − x22 + 0.5x1x2 − sin(x1x2) + 3.8x1 − 4, (4.26)

J2(x) = −x21 − x22 + 8x1 + 3.8x2 − 20. (4.27)

Let the priority evaluated by the system manager be given by η1 = 1 and η2 = 2.
Note that the domain Dscale is given by R2 because J1(x) < 0 and J2(x) < 0 for all
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Figure. 4.2 Level sets of J̃1(x) and J̃2(x) with the domain Dbud(σ(x0)) and the trajectory
of x(t) under the incentive functions (4.18) with ζ1 = 1 − ζ2 = 0.4, b12 = −b21 = 0.3 in
Example 4.1. The state converges to the socially maximum state x̂∗ and its trajectory is
contained in the domain Dbud(σ(x0)).

x ∈ R2. Furthermore, the socially maximum state is given by x̂∗ = [3.3779, 1.4480]T.
Supposing that the initial state is given by x0 = [3.6720, 1.5360]T, the scaling factor is
obtained by (4.16) as σ(x0) = 0.8311. In this case, the domain Dbud(σ(x0)) satisfying
x̂∗ ∈ intDbud(σ(x0)) is illustrated as the red region in Fig. 4.4. Let the sensitivity
parameters be given by α = (1, 1.5) so that the vector field of the incentivized pseudo-
gradient dynamics is given by f(x) = diag[α](Zg(x) +B(x− x̂∗)) with

g(x) = σ(x0)

[
−6x1 + 0.5x2 − x2 cos(x1x2) + 19.8

0.5x1 − 6x2 − x1 cos(x1x2) + 7.6

]
.

It follows from Theorem 4.1 that the incentive mechanism (4.1) along with the incentive
function (4.18) with ζ1 = 1− ζ2 = 0.5 and b12 = −b21 = 2 satisfying (4.21)–(4.23) and
D ⊆ D1 ∩ D2 ∩ Dbud(σ(x0)) with V (x) = −U(x) + U(x̂∗) guarantees that the agents’
state x(t) converges to the socially maximum state x̂∗ and both of the agents are Pareto
improving with the sustainable budget constraint (4.7).

In general, it may be hard to examine the existence of the domain D1 ∩ · · · ∩ Dn

when the number of the agents is large. However, the next result deals with the case
where the sensitivity parameters of the agents are uncertain and suggests that the
domain D1 ∩ · · · ∩ Dn exists as long as bij is taken to be sufficiently lose to 0.
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Figure. 4.3 Trajectories of the amount of incentives and agents’ payoffs under the incentive
functions (4.18) with ζ1 = 1 − ζ2 = 0.4, b12 = −b21 = 0.3 in Example 4.1. The agents’
payoffs are monotonically increasing under the incentives satisfying p1(x0) = p2(x0) = 0 and
p1(x(t)) + p2(x(t)) < 0 for all t > 0.
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Figure. 4.4 Level sets of U(x) with the domain Dbud(σ(x0)) and the trajectory of x(t) under
the incentive functions (4.18) with ζ1 = 1− ζ2 = 0.5, b12 = −b21 = 2 in Example 4.2. The
state converges to the socially maximum state x̂∗ and its trajectory is contained in the domains
Dbud(σ(x0)), D1 and D2.

Corollary 4.1. Consider the n-agent noncooperative system G(J) with the incentive
mechanism (4.1) and the pseudo-gradient dynamics (4.20). If the domain D , {x ∈
Rn : U(x) ≥ U(x0)} satisfies D ⊆ Dbud(σ(x0)) for the given initial state x0, then the
incentive functions pi(x), i ∈ N , given by (4.18) with bij = 0, i, j ∈ N , guarantee that
the socially maximum state x̂∗ is an asymptotically stable equilibrium point and all
the agents are Pareto improving with the sustainable budget constraint (4.7) for any
positive constants αi, i ∈ N .

Proof The result is a direct consequence of Theorem 4.1 with V (x) , −U(x) + U(x̂∗)

and Di = {x ∈ Rn : [ζig(x)+Bi(x−x̂∗)]Tf(x) ≥ 0} = {x ∈ Rn : ζig
T(x)diag[α]Zg(x) ≥

0} = Rn, i ∈ N , for the case of bij = 0, i, j ∈ N . �

Now, we specialize the result of Theorem 4.1 with quadratic payoff functions given
by

Ji(x) =
1

2
xTAix+ bTi x+ ci, i ∈ N , (4.28)
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where Ai , {aij,k}(j,k)∈N×N ∈ Rn×n, bi , [bi1, . . . , b
i
n]

T ∈ Rn, and ci ∈ R, i ∈ N . The
social welfare function (4.9) is hence given by

U(x) =
1

2
xTAx+ BTx+ c0, (4.29)

with c0 ,
∑

i∈N ηici ∈ R, A ,
∑

i∈N ηiAi ∈ Rn×n and B ,
∑

i∈N ηibi ∈ Rn. Supposing
that U(x) is concave (i.e., A < 0), it follows that the unique socially maximum state
x̂∗ is given by x̂∗ = −A−1B ∈ Rn and the social welfare function can be rewritten as

U(x) =
1

2
x̃TAx̃− 1

2
(x̂∗)TAx̂∗ + c0, (4.30)

with x̃ , x− x̂∗. For the statement of the following results, let

A , diag[α](σ(x0)ZA+B) ∈ Rn×n. (4.31)

Corollary 4.2. Consider the n-agent noncooperative system G(J) with the incentive
mechanism (4.1), the pseudo-gradient dynamics (4.20), and the quadratic payoff
functions (4.28). Let Pi , ζiσ(x0)A+Bi ∈ Rn×n, i ∈ N . If the parameters ζi ∈ (0, 1),
i ∈ N , and bij = −bji ∈ R, i, j ∈ N , are chosen in such a way that

0 < ATPi + PiA, i ∈ N , (4.32)

then the incentive functions pi(x), i ∈ N , given by (4.18) guarantee that the socially
maximum state x̂∗ is globally asymptotically stable. Furthermore, all the agents are
Pareto improving with the sustainable budget constraint (4.7) for the given initial state
x0 satisfying D ⊆ Dbud(σ(x0)), where D , {x ∈ Rn : V (x) ≤ V (x0)} \ {x̂∗} with V (x)

satisfying (4.21)–(4.23).

Proof First, note that the vector field f(x) of the pseudo-gradient dynamics (4.20)
becomes f(x) = diag[α](σ(x0)ZA + B)x̃. Furthermore, note from (4.19) and (4.30)
that the agents’ incentivized payoff functions are given by

J̃i(x) =
1

2
x̃TPix̃+ ζi(−

1

2
(x̂∗)TAx̂∗ + c0) + wi(x0), i ∈ N . (4.33)
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Therefore, it follows that

J̃ ′
i(x)f(x) = (Pix̃)

Tf(x) = (Pix̃)
Tdiag[α](σ(x0)ZA+B)x̃

=
1

2
x̃T(ATPi + PiA)x̃ > 0, i ∈ N , (4.34)

for all x ∈ Rn \ {x̂∗} and hence

Di = {x ∈ Rn : J̃ ′
i(x)f(x) ≥ 0} = Rn, i ∈ N . (4.35)

Then, the result is a direct consequence of Theorem 4.1 using the Lyapunov function
candidate V (x) = −U(x) + U(x̂∗) satisfying (4.21)–(4.23) since

V ′(x)f(x) = − 1

σ(x0)

∑
i∈N

J̃ ′
i(x)f(x) < 0, (4.36)

holds for all x ∈ Rn \ {x̂∗}. �

Note that it may be hard to determine the parameters ζi, i ∈ N , and bij , i, j ∈ N , to
guarantee D ⊆ Dbud(σ(x0)) when the number of the agents is large because we cannot
easily find the function V (x). The following result provides different conditions without
looking for a function V (x) guaranteeing D ⊆ Dbud(σ(x0)) for the noncooperative
system G(J) with quadratic payoff functions when A possesses a real eigenvalue in its
spectrum.

Proposition 4.2. Consider the n-agent noncooperative system G(J) with the incentive
mechanism (4.1), the pseudo-gradient dynamics (4.20), and the quadratic payoff
functions (4.28). If the parameters ζi ∈ (0, 1), i ∈ N , and bij = −bji ∈ R, i, j ∈ N , are
chosen in such a way that (4.32) holds along with

x0 − x̂∗ ∈ null(A− λIn), (4.37)

where λ ∈ R is a real eigenvalue of the matrix A, then all the agents are Pareto
improving with the sustainable budget constraint (4.7) for the given initial state
x0 satisfying that the straight segment from x0 to x̂∗ is contained in the domain
Dbud(σ(x0)).

Proof The proof is immediate since (4.37) indicates that the vector x0 − x̂∗ is the
eigenvector of the matrix A associated with the eigenvalue λ and hence the system
trajectory x(t) is a straight line starting at the initial state x0 and ending at the target
state x̂∗. �
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For a given vector x̂ , [x̂1, . . . , x̂n]
T = x0 − x̂∗ ∈ Rn, even though it appears to

be hard to find the parameters ζi, i ∈ N , and bij, i, j ∈ N , such that the condition
(4.37) is satisfied, it is possible to solve some linear equations to derive such parameters
by constructing a special form for the matrix A when n ≥ 5 and x̂i ̸= 0, i ∈ N . For
example, let b1j = −ζ1σ(x0)Aj

1, j ∈ N , where Aj
i , A(i, j), so that A is given by a

special matrix shown in (B.4) in Appendix B with Ãj
i , σ(x0)Aj

i . Note that (1, 1)-entry
of A, which is α1ζ1Ã1

1 < 0, is one of its eigenvalues because A is a lower block-triangular
matrix. Now, taking λ = α1ζ1Ã1

1, it follows from (B.4) that the condition (4.37) is
equivalent to

0 = (A− α1ζ1Ã1
1In)x̂, (4.38)

which is essentially a system of n − 1 number of linear equations shown in (B.5) in
Appendix B with n−1 variables given by b34, b23, b24, . . . , b2n for the given ζi ∈ (0, 1), i ∈
N , satisfying

∑n
i=1 ζi = 1, and b35, b36, . . . , b(n−1)n, because row1(A−α1ζ1σ(x0)A1

1In) =

0Tn holds. Now, note that the matrix Π in (B.5) satisfies det(Π) = 0 and hence there are
infinitely many solutions of (b34, b23, b24, . . . , b2n) when the parameters ζi ∈ (0, 1), i ∈ N ,
and b35, b36, . . . , b(n−1)n satisfy rank(Π) = rank([Π, ξ]). Note that x̂i ̸= 0, i = 2, 3, 4,
imply rank(Π) = n− 2 and hence the condition rank(Π) = rank([Π, ξ]) is equivalent to

x̂2
α2

ξ1 +
x̂3
α3

ξ2 +
x̂4
α4

ζ3 + . . .+
x̂n
αn

ζn−1 = 0. (4.39)

This is because rank([Π, ξ]) = rank(Γ[Π, ξ]) = n− 2 hold with

Γ[Π, ξ] =


0 0 0 · · · 0

α3x̂4 −α3x̂2 0 · · · 0

−α4x̂3 0 −α4x̂2 · · · 0
...

...
... . . . ...

0 0 0 · · · −αnx̂2

∣∣∣∣∣∣∣∣∣∣∣∣

ξ̃1

ξ2

ξ3
...

ξn−1

 , (4.40)

for a nonsingular Γ ,


1 α2x̂3

x̂2α3
· · · α2x̂n

x̂2αn

0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 ∈ R(n−1)×(n−1) if and only if ξ̃1 ,

ξ1 +
α2x̂3

x̂2α3
ξ2 +

α2x̂4

x̂2α4
ζ3 + . . .+ α2x̂n

x̂2αn
ζn−1 = 0 . Therefore, since ξ2 ∈ R is an affine function

of b35, we can always find b35 to satisfy (4.39) (i.e., rank(Π) = rank([Π, ξ])) and hence
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there exist parameters ζi, i ∈ N , and bij, i, j ∈ N , satisfying (4.37) when n ≥ 5 and
x̂i ̸= 0, i ∈ N .

However, when n < 5, the conditions of x̂i ≠ 0, i ∈ N , may no longer be able
to guarantee the existence of parameters ζi, i ∈ N , and bij, i, j ∈ N , such that the
condition (4.37) holds. For example, suppose n = 2. Given an arbitrary ζ1, letting
b12 = −ζ1σ(x0)A2

1, the condition (4.38) yields a 1-dimensional linear equation of ζ2
given by

α2Ã2
1x̂1 + (α2ζ2Ã2

2 − α1ζ1Ã1
1)x̂2 = 0. (4.41)

Recalling that ζ1 + ζ2 = 1, it follows that

ζ2 =
α2Ã2

2x̂1 − α1Ã1
1x̂2

(α1Ã1
1 + α2Ã2

2)x̂2
. (4.42)

Therefore, there exist parameters ζ1 ∈ (0, 1), ζ2 ∈ (0, 1), and b12, such that the condition
(4.37) is satisfied when the initial state x0 = [x01, x02]

T satisfy

α2Ã2
2(x01 − x̂∗1)− α1Ã1

1(x02 − x̂∗2)

(α1Ã1
1 + α2Ã2

2)(x02 − x̂∗2)
∈ (0, 1). (4.43)

Example 4.3. Consider the four-agent noncooperative system with the quadratic
payoff functions (4.28) with

A1 =


−1 0.1 0.1 0.1

0.1 −2 0.1 0

0.1 0.1 0 0

0.1 0 0 0

 , A2 =


−2 −0.2 0 0

−0.2 −1 0 0.1

0 0 0 0.1

0 0.1 0.1 −1

 ,

A3 =


0 −0.1 0 0.1

−0.1 0 0 0

0 0 −2 0.2

0.1 0 0.2 −1

 , A4 =


−1 −0.2 0 0

−0.2 −1 0 0.1

0 0 −1 −0.5

0 0.1 −0.5 −2

 ,

b1 =


4

0

0

0

 , b2 =


0

4

10

0

 , b3 =


0

0

−4

0

 , b4 =


0

0

0

−4

 ,
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Figure. 4.5 Trajectories of the agents’ state and the amount of incentives under the incentive
functions (4.18) in Example 4.3. The dash-dot lines in figure (a) indicate the socially maximum
state.

and c1 = c2 = c3 = c4 = 0. Let the priority evaluated by the system manager be
given by η1 = 1, η2 = 0.5, η3 = 1, and η4 = 0.5. Note that, in this case, the socially
maximum state is given by x̂∗ = [1.4462, 0.4974,−1.5223,−0.6644]T. Supposing that
the initial state is given by x0 = [1.2, 0.2,−1.3, 0]T, the scaling factor is obtained by
(4.17) as σ(x0) = 0.8011. In this case, it can be verified that the straight segment from
x0 to x̂∗ is contained in the domain Dbud(σ(x0)) since

∑
i∈N (σηi − 1)Ji(x) ≤ 0 holds

with x = γ(x0 − x̂∗) + x̂∗ for all γ ∈ (0, 1). Let the sensitivity parameters be given
by α = (1, 1, 1, 1) so that the matrix A is given by A = σ(x0)ZA+B. Let ζi = 0.25,
i = 1, 2, 3, 4, b12 = −0.1007, b13 = 0, b14 = −0.0868, b23 = −0.0641, b24 = 0, and
b34 = 0.0238, so that the condition (4.32) holds and the condition (4.37) holds for the
real eigenvalue of A given by λ = −0.5712. It follows from Proposition 4.2 that the
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incentive mechanism (4.1) along with the incentive functions (4.18) guarantee that all
the agents are Pareto improving with the sustainable budget constraint (4.7). Figure 4.5
shows the trajectories of the agents’ state and incentives versus time. It can be seen
from those figures that the agents’ state indeed converges to the socially maximum state
x̂∗ under the sustainable budget constraint (4.7) (see the red solid curve in Fig. 4.5(b)).

4.4 Connection Between Pareto Improvement and Po-
tentialization Under Equal Priority

In general, the domains Dbud(σ(x0)) and Dscale characterized in Section 4.3 are not
the entire state space and hence we may not be able to construct a Pareto-improving
incentive functions for some initial state x0 with unequal priority. But for a special
situation where the agents have the equal priority in (4.8), i.e., ηi = 1 ∈ R+ for all
i ∈ N , recall from (4.17) that Dscale = Rn holds. In this case, since the scaling factor
is simply obtained from (4.16) as σ(x0) = 1 irrespective of the initial state, it is worth
noting from (4.13) and (4.14) that the incentive functions pi(x), i ∈ N , satisfy∑

i∈N

pi(x) =
∑
i∈N

(σ(x0)ηi − 1)Ji(x) = 0, x ∈ Rn, (4.44)

i.e., the system manager exactly works as a mediator transferring the payoff values
among the n agents, and hence the domain Dbud(σ(x0)) becomes Rn for all x0 ∈ Rn.
Furthermore, the social welfare function (4.9) simply becomes

U(x) =
∑
i∈N

Ji(x). (4.45)

Therefore, in this section, we specialize the incentive mechanism characterized in
Section 4.3 to this special situation and show the fact that the Pareto-improving
incentive mechanism can be constructed for any initial state x0 in Rn.

Theorem 4.2. Consider the n-agent noncooperative system G(J) with the incentive
mechanism (4.1) and the pseudo-gradient dynamics (4.20). Suppose that the agents
have the equal priority in (4.8) with ηi = 1 for all i ∈ N . If the parameters ζi ∈
(0, 1), i ∈ N , and bij = −bji ∈ R, i, j ∈ N , are chosen in such a way that the
socially maximum state x̂∗ belongs to the interior of D1 ∩ · · · ∩ Dn, then the incentive
functions pi(x), i ∈ N , given by (4.18) guarantee that the socially maximum state x̂∗

is asymptotically stable. Furthermore, all the agents are Pareto improving with the
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Figure. 4.6 Level sets of U(x) with the guaranteed region of attraction under the incentive
functions (4.18) with ζ1 = 1− ζ2 = 0.4, b12 = −b21 = 1.9 in Example 4.4.

sustainable (balanced) budget constraint (4.7) holding with equality for any initial
state x0 ∈ D, where D , {x ∈ Rn : V (x) ≤ δ} with the maximum attainable δ ∈ R+

such that D ⊆ D1 ∩ · · · ∩ Dn with V (x) satisfying (4.21)–(4.23).

Proof Consider the Lyapunov function candidate defined by V (x) = −U(x) + U(x̂∗).
Since x̂∗ ∈ int (D1 ∩ · · · ∩ Dn) indicates J̃ ′

i(x)f(x) > 0, i ∈ N , around the socially
maximum state x̂∗, it follows that V ′(x)f(x) = −

∑
i∈N J̃ ′

i(x)f(x) > 0 holds around
x̂∗ and hence x̂∗ is asymptotically stable. Now, recalling that Dbud(σ(x0)) = Rn for
any initial state x0 ∈ Rn, the result is immediate. �

Example 4.4. Consider the two-agent noncooperative system with

J1(x) = − sin(x1x2)− 0.2x1 − 6e−(x1−5)2−(x2−2)2 , (4.46)

J2(x) = −2x21 − 2x22 + 12x1 + 3.8x2 − 24. (4.47)

Let the priority evaluated by the system manager be given by η1 : η2 = 1 : 1.
Note that the socially maximum state is given by x̂∗ = [3.2321, 1.3303]T. Let the
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sensitivity parameters be given by α = (3, 1). In this case, it follows from Theorem 4.2
that the incentive mechanism (4.1) along with the incentive functions (4.18) with
ζ1 = 1 − ζ2 = 0.4 and b12 = −b21 = 1.9 satisfying x̂∗ ∈ int (D1 ∩ D2) (see the white
region representing the domain D1 ∩ D2 in Fig. 4.6) guarantees that the socially
maximum state x̂∗ is asymptotically stable. Furthermore, both of the agents are Pareto
improving with the sustainable budget constraint (4.7) holding with equality for all
x0 ∈ D , {x ∈ Rn : V (x) ≤ δ} with V (x) = −U(x) + U(x̂∗) where the maximum
attainable δ is given by δ = 1.0354.

The following result provides one of the ways to achieve Pareto improvements
without the information of agents’ personal sensitivity parameters α1, . . . , αN . We let

D , {x ∈ Rn : V (x) , −U(x) + U(x̂∗) ≤ δ}, (4.48)

with the maximum attainable δ ∈ R+ such that U ′(x) = 0 holds only at x̂∗ in D.

Corollary 4.3. Consider the n-agent noncooperative system G(J) with the incentive
mechanism (4.1) and the pseudo-gradient dynamics (4.20). Suppose that the agents
have the equal priority in (4.8) with ηi = 1 for all i ∈ N . Then the incentive functions
pi(x), i ∈ N , given by (4.18) with bij = 0, i, j ∈ N , guarantee that the socially
maximum state x̂∗ is asymptotically stable and all the agents are Pareto improving
with the sustainable (balanced) budget constraint (4.7) holding with equality for all x0
in D given by (4.48) for any positive constants αi, i ∈ N .

Proof First, let g(x) , U ′(x). Note that the vector field f(x) of the pseudo-gradient
dynamics (4.20) becomes f(x) = diag[α]Zg(x) and hence

V ′(x)f(x) = −
∑

i∈N
J̃ ′
i(x)f(x) = −

∑
i∈N

ζig
T(x)diag[α]Zg(x) < 0, (4.49)

for all x ∈ Rn except for the state x satisfying g(x) = 0. Furthermore, since Di =

{x ∈ Rn : J̃ ′
i(x)f(x) ≥ 0} = {x ∈ Rn : ζig

T(x)diag[α]Zg(x) ≥ 0} = Rn, i ∈ N , the
result is a direct consequence of Theorem 4.2 using the Lyapunov function candidate
V (x) = −U(x) + U(x̂∗) satisfying (4.21)–(4.23). �

Remark 4.1. The incentive mechanism in Corollary 4.3 (i.e., bij = 0, i, j ∈ N )
potentializes the agents’ payoff functions in G(J), i.e., G(J̃) reduces to a special class
of potential games by noting that each agent’s payoff function is characterized as
J̃i(x) = ζiU(x) + wi by the common function U(x) in (4.45). Furthermore, since the
domain D is understood as an invariant set for arbitrary sensitivity parameters αi,
i ∈ N , they do not have to be known.
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Example 4.5. Consider the two-agent noncooperative system with

J1(x) = − sin(x1x2)− 0.2x1 − 9e−(x1−5)2−(x2−2)2 − 24, (4.50)

J2(x) = −2x21 − 2x22 + 12x1 + 3.8x2 − 4e−(x1−2)2−(x2−5)2 . (4.51)

Let the priority evaluated by the system manager be given by η1 : η2 = 1 : 1.
Note that U ′(x) = 0 holds at the socially maximum state x̂∗ = [3.3524, 1.3187]T,
the state x1 = [4.6971, 2.0236]T, and the locally maximum state x2 = [4.496, 1.715]T.
Figure 4.7 shows the domain D of (4.48) indicated by the grey region with δ = 1.24. It
follows from Corollary 4.3 that the incentive mechanism (4.1) along with the incentive
functions (4.18) with ζ1 = 1− ζ2 = 0.4 and b12 = −b21 = 0 guarantees that the socially
maximum state x̂∗ is asymptotically stable and both of the agents are Pareto improving
with the sustainable budget constraint (4.7) holding with equality for all x0 ∈ D for
any sensitivity parameters α1 and α2. With the sensitivity parameters be given by
α = (2, 1), the vector field of the pseudo-gradient dynamics (4.20) is shown in Fig. 4.7.
It can be seen from the figure that the socially maximum state x̂∗, the state x1, and
the locally maximum state x2 are asymptotically stable, unstable, and asymptotically
stable, respectively. Note that the state x1 is a saddle point of the pseudo-gradient
dynamics and the domain D is an invariant set for arbitrary sensitivity parameters α1

and α2.
Now, we specialize the result of Theorem 4.2 with the quadratic payoff functions

given by (4.28).

Corollary 4.4. Consider the n-agent noncooperative system G(J) with the incentive
mechanism (4.1), the pseudo-gradient dynamics (4.20), and the quadratic payoff
functions (4.28). Suppose that the agents have the equal priority in (4.8) with ηi = 1

for all i ∈ N . Let A , diag[α](ZA + B) ∈ Rn×n and Pi = ζiA + Bi ∈ Rn×n, i ∈ N .
If the parameters ζi ∈ (0, 1), i ∈ N , and bij = −bji ∈ R, i, j ∈ N , are chosen in such
a way that (4.32) holds, then the incentive functions pi(x), i ∈ N , given by (4.18)
guarantee that the socially maximum state x̂∗ is globally asymptotically stable and all
the agents are Pareto improving for any initial state x0 ∈ Rn.

Proof Recalling (4.33)–(4.36), the result is a direct consequence of Theorem 4.2. �

Note that the selection of the parameters ζi, i ∈ N , and bij, i, j ∈ N , may potential-
ize the agents’ payoff functions in the incentivized noncooperative system. For example,
it is straightforward to see that if bij = 0 for all i, j ∈ N , then the agents are all Pateto
improving (because of ATPi + PiA = 2ζiAdiag[α]ZA > 0, i ∈ N ) and the incentivized
noncooperative system G(J̃) is exactly a weighted potential game (see the definitions of
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Figure. 4.7 Level sets of U(x) with the vector field of the pseudo-gradient dynamics (4.20)
under the incentive functions (4.18) with ζ1 = 1− ζ2 = 0.4, b12 = −b21 = 0 in Example 4.5.
The state x1 is a saddle point of the dynamics. The guaranteed region of attraction D (grey
region) is understood as the invariant set for arbitrary α1 and α2.
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various types of potential games in Appendix B). But the connection between Pateto
improvement and potentialization is obscure when bij is nonzero for some i, j ∈ N .
Does Pareto improvement always imply potentialization or potentialization always
indicate Pateto improvement? To clarify the connections between Pareto improvement
and potentialization, we present two numerical examples below. It turns out from
those numerical examples that the Pateto improvement and potentialization do not
have an inclusive relation with each other.

Example 4.6. Consider the two-agent noncooperative system with quadratic payoff
functions J1(x) and J2(x) such that the social welfare function is given by (4.30)

with A =

[
−2 0

0 −4

]
and x̂∗ = [0, 0]T. Now, supposing α = (1, 3) and letting

ζ = ζ1 = 1 − ζ2 ∈ (0, 1), b = b12 = −b21 ∈ R, the feasible ζ-b region satisfying the
condition (4.32) in Corollary 4.4 is shown in Fig. 4.8. It can be seen from the figure
that the feasible ζ-b region is closed and bounded. Figure 4.9 shows the level sets of
{J̃i}i=1,2 and the agents’ trajectories under the values of ζ = 0.6 and b = 0.6 satisfying
the condition (4.32). It is interesting to see that even b ̸= 0 (where agents’ incentivized
payoff functions are not simple proportion of the social welfare function U(x)), the
agents’ state still converges to the socially maximum state with a monotonically
increasing payoff (in other words, agents are driven by a noncooperative way but result
in a cooperative benefit). In fact, in this example, it can be shown that the incentivized
noncooperative system G(J̃) is never an ordinal potential (nor a weighted potential)
game when b is non-zero. Hence, our example numerically shows the fact that Pareto
improvements do not indicate potentialization.

Next, we show an example to reveal that the agents in the incentivized noncoopera-
tive system G(J̃) possessing an ordinal potential may not be Pareto improving.

Example 4.7. Consider the two-agent noncooperative system with quadratic payoff
functions J1(x) and J2(x) such that the social welfare function is given by (4.30)

with A =

[
−2 −2

−2 −4

]
and x̂∗ = [0, 0]T. Now, supposing α = (3, 1) and letting

ζ = ζ1 = 1 − ζ2 ∈ (0, 1), b = b12 = −b21 ∈ R, the feasible ζ-b region satisfying the
condition (4.32) in Corollary 4.4 is shown in Fig. 4.10. Similar to Example 4.6, it can
be seen from the figure that the feasible ζ-b region is bounded and closed. Moreover,
we illustrate the ζ-b region under which the incentivized noncooperative system G(J̃) is
working as an ordinal potential game as the grey region in Fig. 4.10, where we used the
fact that G(J̃) possesses an ordinal potential if and only if (−2ζ+ b)(−2(1− ζ)− b) > 0
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Figure. 4.8 Feasible solutions in ζ-b region for achieving Pareto improvement in Example 4.6.
The overlapped (brown) region of the red and the green regions denotes the region under
which the agents are Pareto improving. In this example, the incentivized noncooperative
system G(J̃) possesses an ordinal potential (or weighted potential) only when b = 0.
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Figure. 4.9 Level sets and trajectories under k = 0.6, b = 0.6 in Example 4.6.
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Figure. 4.10 Feasible solutions in ζ-b domain for achieving Pareto improvement in Example 4.7.
The overlapped (brown) region of the red and the green regions denotes the region under
which the agents are Pareto improving. The grey region denotes the potentialization region
under which the incentivized noncooperative system G(J̃) possesses an ordinal potential.
Obviously, the brown region is not contained in the grey region, and vice versa.
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(see Lemma B.1 in Appendix B below). It can be seen from the figure that the feasible
ζ-b region is not contained in the grey region (the strip bounded by the dashed lines),
and vice versa. Hence, our example numerically shows the fact that the agents in the
incentivized noncooperative system G(J̃) possessing an ordinal potential may not be
Pareto improving.

4.5 Chapter Conclusion

In this chapter, we investigated the social welfare improvement problem for the
noncooperative dynamical systems through a Pareto-improving incentive mechanism
under sustainable budget constraint, where a system manager collects taxes from
some agents and gives some of the collected taxes to other agents as subsidies in
order to remodel agents’ dynamical decision making. Sufficient stability conditions
for our incentive functions were proposed to guarantee that the agents are Pareto
improving under the pseudo-gradient dynamics and their state converges to a Pareto-
efficient Nash equilibrium associated with a weighted social welfare function depending
on the priority ratio of the agents. It was found that the initial state plays an
important role on constructing our incentive mechanism to satisfy the sustainable budget
constraint. Furthermore, we revealed the connection between Pareto improvement and
potentialization with equal priority between the agents. Our numerical examples give
a direct evidence that the Pareto improvement is not the same as potentialization.
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Chapter 5

Stability Analysis of
Loss-Aversion-Based Noncooperative
Switched Systems

5.1 Introduction

In this chapter, we focus on the stability problem for 2-agent noncooperative switched
systems, which are characterized as payoff-driven piecewise linear systems for describ-
ing agents’ dynamic decision making with the quadratic payoffs and loss-aversion
phenomena. Specifically, we assume that each agent adopts lower sensitivity in the
pseudo-gradient dynamics for the case of losing utility than gaining utility and hence
both the systems’ dynamics and the switching instants depend on agents’ payoff
functions. To determine stability property of the loss-aversion-based noncooperative
switched systems, we characterize the domains in which agents’ payoffs are either
increasing or decreasing, and use the normalized radial growth rate for the Nash
equilibrium. By assuming that the agents keep on rotating, we reveal an interesting
property of agents’ decision behaviors in terms of the consistent rotational direction of
the trajectories in the state space. This chapter categorizes the loss-aversion-based non-
cooperative systems to 3 cases in accordance with the location of the Nash equilibrium
relative to the 2 payoff functions and comprehensively analyze the differences between
the 3 cases in terms of mode transition and normalized radial growth rates. Observing
the fact that the Nash equilibrium is always on the boundaries of the aforementioned
domains, by making the approximation for the domains around the Nash equilibrium,
we characterize the partition of the state space and the mode transitions as a piecewise
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linear system. Moreover, we observe an interesting phenomenon that we call a flash
switching instant where a single agents’ sensitivity transition makes the other agent
immediately switch its sensitivity almost at the same time instant, and we characterize
the necessary condition for a switching instant holding such a phenomenon.

5.2 Problem Formulation

5.2.1 Noncooperative Systems with Quadratic Payoffs

Consider the noncooperative system with 2 agents selfishly controlling their individual
state xi ∈ R, i ∈ {1, 2}. Let x = [x1, x2]

T ∈ R2 denote the agents’ state profile. In this
chapter, we consider the situation where each agent i aims to increase its own payoff
function Ji(xi, xj), where Ji : R2 → R and j is the opponent of agent i ̸= j. We denote
the noncooperative system by G(J) with J , {J1, J2}.

In this chapter, we consider the noncooperative system G(J) with quadratic payoff
functions Ji : R2 → R given by

Ji(x) =
1

2
xTAix+ bTi x+ ci, i ∈ {1, 2}, (5.1)

where Ai ,

[
ai11 ai12
ai12 ai22

]
∈ R2×2 with aiii < 0 (indicating that Ji(x) is strictly concave

with respect to xi) and a111a
2
22 ≠ a112a

2
12, bi , [bi1, b

i
2]

T ∈ R2, and ci ∈ R, i ∈ {1, 2}. It
is important to note that there exists a unique Nash equilibrium x∗ in G(J) in the
unbounded state space satisfying

0 =
∂J1(x)

∂x1
= a111x1 + a112x2 + b11, (5.2)

0 =
∂J2(x)

∂x2
= a212x1 + a222x2 + b22, (5.3)

for x = x∗. Specifically, the unique Nash equilibrium is given by

x∗ = −

[
a111 a112
a212 a222

]−1 [
b11
b22

]
, (5.4)

because the condition a111a
2
22 ̸= a112a

2
12 implies the inverse exists. Notice that the

straight lines (5.2) and (5.3) are understood as the best-response lines for agents 1 and
2, respectively.
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5.2.2 Loss-Aversion-Based Pseudo-Gradient Dynamics

In this chapter, we consider the situation where each agent selfishly and continually
changes its state in the noncooperative system G(J). We suppose the state profile x(·) is
available for both the agents. In addition, associated with agents’ payoff functions J1, J2,
the pseudo-gradient dynamics are used to describe agents’ myopic selfish behaviors
given by

ẋi(t) = αi(t)
∂Ji(x(t))

∂xi
, i ∈ {1, 2}, (5.5)

where α1(t), α2(t) ∈ R+ are agents’ personal (private) sensitivity parameters. Note
that the pseudo-gradient dynamics capture the fact that the agents concern their own
payoffs and myopically change their states according to the current information without
any foresight on the future state.

Different from the models in [42, 25], where α1(t), α2(t) are constant, in this chapter
we suppose that each agent directly observes its own payoff level Ji(t) for agent i,
i.e., the payoff level Ji is not calculated by (5.1) through the knowledge of x. As
such, each agent is supposed to be able to evaluate J̇i at infinitesimally small previous
time instant t−. Furthermore, the agents’ sensitivity parameters α1, α2 are piecewise
constant between 2 values following the loss-aversion-based psychological consideration
defined by

αi(t) ,

{
αL
i , if J̇i(t

−) < 0,

αH
i , if J̇i(t

−) > 0,
i ∈ {1, 2}, (5.6)

where αL
i , α

H
i ∈ R+ capture the sensitivity of the change of agent i’s state per unit time

against losing and gaining payoff environment, respectively, for i ∈ {1, 2}. As soon as
agent i reaches the state observing J̇i(t) = 0, it switches its αi(t) to the other value.
An interesting observation that this sensitivity parameter change by one agent may
give rise to the parameter change of the other agent is elaborated in Section 5.4 below.

We connect the phenomenon of loss-aversion in prospect theory [65] with the
noncooperative behaviors in G(J). It is well known that humans are more cautious
to make the decision when they face losing payoff than gaining payoff. As a typical
example, in the stock investment market, investors (agents) have the tendency to hold
losing investments very long and sell winning investments very soon [98]. In light of this
observation, in this chapter we suppose that the sensitivity parameters satisfy αL

i ≤ αH
i ,
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i ∈ {1, 2}, to describe agents’ slower behavior for the case where their corresponding
J̇i(t) is negative.

It is important to note that there are 4 possibly different combinations (modes) of
agents’ sensitivities depending on the signs of J̇1 and J̇2. Henceforth, we let

αLL , diag[αL
1 , α

L
2 ], αHL , diag[αH

1 , α
L
2 ], (5.7)

αLH , diag[αL
1 , α

H
2 ], αHH , diag[αH

1 , α
H
2 ], (5.8)

to denote the entire sensitivity profile of the 2 agents. Consequently, agents’ decision
behaviors (5.5) with the loss-aversion-based sensitivity (5.6) and the quadratic payoff
functions (5.1) under mode k ∈ K , {LL,HL,LH,HH} are described as

ẋ(t) = αk(t)

[
∂J1(x(t))

∂x1
,
∂J2(x(t))

∂x2

]T
= Ak(t)(x(t)− x∗), (5.9)

where Ak , αk

[
a111 a112
a212 a222

]
denotes the system matrix under mode k ∈ K and x∗ is

given by (5.4). As discussed in the following sections, it turns out that which mode is
active can be characterized by some domains in the state space.

5.3 Hyperbolic/Elliptic Domains Characterizing U-
tility Trends

In this section, we characterize the 4 domains associated with the 4 modes in K
depending on the utility trends (increasing or decreasing) of the 2 players. Specifically,
we define the 4 domains in which the signs of J̇1 and J̇2 associated with (5.1) remain
the same to be positive/negative along the system trajectories of (5.5). With a slight
abuse of notation, let the functions J̇k

i :R2 →R represent the time rate of change J̇i of
Ji as a function of the state x for agent i∈{1, 2} with mode k ∈ K given by

J̇k
i (x) ,

[
∂Ji(x)

∂x1
,
∂Ji(x)

∂x2

]
Ak(x− x∗) =

1

2
xTQk

i x+
(
AT

k bi − AiAkx
∗)Tx− bTi Akx

∗

=
1

2
(x− x∗)TQk

i (x− x∗) + βk
i

T
(x− x∗), (5.10)
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with Qk
i , AiAk + AT

kAi ∈ R2×2 and βk
i , AT

k (Aix
∗ + bi) ∈ R2, i ∈ {1, 2}, k ∈ K.

The function J̇k
i (x) is reminiscent of the time rate of change of Ji(·) along the system

trajectories given by J̇i(t) = ∂Ji(x(t))
∂x

ẋ(t) with mode k being active at state x.
We define the domains Dk, k ∈ K, in which each of the agents keeps either the high

sensitivity αH
i or the low sensitivity αL

i as

DLL , {x ∈ R2 : J̇LL
1 (x) ≤ 0, J̇LL

2 (x) ≤ 0}, (5.11)

DHL , {x ∈ R2 : J̇HL
1 (x) ≥ 0, J̇HL

2 (x) ≤ 0}, (5.12)

DLH , {x ∈ R2 : J̇LH
1 (x) ≤ 0, J̇LH

2 (x) ≥ 0}, (5.13)

DHH , {x ∈ R2 : J̇HH
1 (x) ≥ 0, J̇HH

2 (x) ≥ 0}. (5.14)

Note that some of these 4 domains may not exist (as explained in Remark 5.1 below).
Furthermore, the Nash equilibrium x∗ belongs to all the existing domains, since
J̇k
i (x

∗) = 0 for all i ∈ {1, 2} and k ∈ K.
It is important to note that the boundaries of Dk, k ∈ K, may be either straight

lines or quadratic curves depending on whether βk
i in (5.10) vanishes or not. Specifically,

since Ak, k ∈ K, are nonsingular, Aix
∗ + bi ̸= 0 (resp., Aix

∗ + bi = 0) if and only if
βk
i = AT

k (Aix
∗ + bi) ̸= 0 (resp., βk

i = 0), k ∈ K, so that the boundaries associated with
J̇k
i (x) = 0 are quadratic (hyperbolic/elliptic) curves (resp., straight lines intersected at
x∗ when Qk

i is sign-indefinite). Since the domains Dk, k ∈ K, are characterized by the
two equations J̇k

1 (x) = 0 and J̇k
2 (x) = 0, we categorize 3 cases as shown in Fig. 5.1,

that is, Aix
∗ + bi ̸= 0 for i ∈ {1, 2} (Case 1); Aix

∗ + bi = 0 for i ∈ {1, 2} (Case 2); and
A1x

∗ + b1 ̸= 0, A2x
∗ + b2 = 0 (Case 3). In any case, x∗ is always on the cusp of Dk for

mode k that exists (except for the domain where βk
i = 0 and Qk

i is positive definite
(see Remark 5.1 for an example)). Here we note that because Aix

∗ + bi is equal to
∂Ji(x

∗)
∂x

, the above 3 cases are categorized according to whether x∗ coincides with the
maximum (or saddle) point of Ji(x) for agent i (i.e., ∂Ji(x

∗)
∂x

= 0) or not.

Remark 5.1. Some of the domains intDk, k ∈ K, may not exist. For example,
consider Case 2 where there exists λ > 0 such that J1(x) = λJ2(x). In this case,
since Qk

1 = λA2α
kdiag[λ, 1]A2 + λA2diag[λ, 1]α

kA2 > 0 and Qk
2 = A2α

kdiag[λ, 1]A2 +

A2diag[λ, 1]α
kA2 > 0 hold for all k ∈ K, it follows that intDLL, intDHL, intDLH = ∅

and DHH = R2. Alternatively, consider the case with the zero-sum payoffs, where
J1(x) = −J2(x). In this case, since J̇k

1 (x) = −J̇k
2 (x) holds for all x ∈ R2 and k ∈ K,

we have intDLL = intDHH = ∅ and DHL

⋃
DLH = R2.

Remark 5.2. There may exist some overlaps between Dk, k ∈ K. Figure 5.2 shows a
typical example of the 4 domains indicated by the orange regions. Note that point A
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c

Figure. 5.1 Examples of the domain DLL. (a): Case 1, (b): Case 2, (c): Case 3.

Figure. 5.2 An example of the 4 domains DLL, DHL, DLH, DHH for Case 1. The figure for the
case of k = LL is the copy of Fig. 5.1(a).
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belongs to the 2 domains DLH and DHH but not DLL nor DHL. In defining the mode of
the system dynamics (5.9) in the overlapped regions, the agents keep mode k at time
t+ if x(t) ∈ intDk, given an active mode k at time t.

Lemma 5.1. Consider the loss-aversion-based noncooperative system G(J) with the
pseudo-gradient dynamics (5.5), (5.6). Then, it follows that⋃

k∈K

Dk = R2, (5.15)

for any αH
i ≥ αL

i , i = 1, 2.

Proof First, by defining

∆1
1(x) , (a111x1 + a112x2 + b11)

2 ≥ 0, (5.16)

∆2
1(x) , (a112x1 + a122x2 + b12)(a

2
12x1 + a222x2 + b22), (5.17)

∆1
2(x) , (a211x1 + a212x2 + b21)(a

1
11x1 + a112x2 + b11), (5.18)

∆2
2(x) , (a212x1 + a222x2 + b22)

2 ≥ 0, (5.19)

the functions in (5.10) can be calculated with (5.4) as

J̇k
i (x) = αk

1∆
1
i (x) + αk

2∆
2
i (x), i ∈ {1, 2}, k ∈ K. (5.20)

Let δi , αH
i − αL

i ≥ 0, i = 1, 2. Now, we suppose DLL ̸= R2 so that there exists
x̄ ∈ R2 such that x̄ ̸∈ DLL. In this case, there are three cases in terms of x̄ that may
happen: J̇LL

1 (x̄) > 0 ∧ J̇LL
2 (x̄) ≤ 0; J̇LL

1 (x̄) ≤ 0 ∧ J̇LL
2 (x̄) > 0; J̇LL

1 (x̄) > 0 ∧ J̇LL
2 (x̄) > 0.

For the case of J̇LL
1 (x̄) > 0 ∧ J̇LL

2 (x̄) ≤ 0, since ∆1
1(x̄) ≥ 0, we have J̇HL

1 (x̄) =

J̇LL
1 (x̄) + δ1∆

1
1(x̄) > 0. Moreover, since J̇LL

2 (x̄) = αL
1∆

1
2(x) + αL

2∆
2
2(x) ≤ 0 and

∆2
2(x̄) ≥ 0 imply ∆1

2(x̄) ≤ 0, we have J̇HL
2 (x̄) = J̇LL

2 (x̄) + δ1∆
1
2(x̄) ≤ 0. Hence, x̄ ∈ DHL.

For the case of J̇LL
1 (x̄) ≤ 0 ∧ J̇LL

2 (x̄) > 0, since J̇LL
1 (x̄) = αL

1∆
1
1(x) + αL

2∆
2
1(x) ≤ 0

and ∆1
1(x̄) ≥ 0 imply ∆2

1(x̄) ≤ 0, we have J̇LH
1 (x̄) = J̇LL

1 (x̄) + δ2∆
2
1(x̄) ≤ 0. Moreover,

since ∆2
2(x̄) ≥ 0, we have J̇LH

2 (x̄) = J̇LL
2 (x̄) + δ2∆

2
2(x̄) > 0. Hence, x̄ ∈ DLH. For

the case of J̇LL
1 (x̄) > 0 ∧ J̇LL

2 (x̄) > 0, note that since ∆1
1(x̄) ≥ 0 and ∆2

2(x̄) ≥ 0, the
inequalities J̇HL

1 (x̄) = J̇LL
1 (x̄) + δ1∆

1
1(x̄) > 0 and J̇LH

2 (x̄) = J̇LL
2 (x̄) + δ2∆

2
2(x̄) > 0 must

hold. Now, we further suppose that x̄ ̸∈ DHL and x̄ ̸∈ DLH hold, i.e., we suppose
that J̇HL

2 (x̄) > 0 ∧ J̇LH
1 (x̄) > 0 holds. Then, since J̇HH

1 (x̄) = J̇LH
1 (x̄) + δ1∆

1
1(x̄) >

0 ∧ J̇HH
2 (x̄) = J̇HL

2 (x̄) + δ2∆
2
2(x̄) > 0, we have x̄ ∈ DHH.

Thus, for any x̄ ∈ R2, there exist k ∈ K s.t. x̄ ∈ Dk, which completes the proof. �
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Remark 5.3. Note that if the agents’ loss-averse behavior is characterized by αH
i < αL

i ,
i = 1, 2, then

⋃
k∈K Dk = R2 may not hold even though (5.11)–(5.14) are a complete

enumeration of all possible cases.

Different from the standard piecewise linear system with conewise partitions [77, 78],
the main problem in investigating stability property in this chapter is to appropriately
deal with the overlaps of the domains (Remark 5.2) and non-conewise domains. In the
following section, we introduce how to appropriately partition the state space depending
on the rotational directions of the system trajectories and how to characterize stability
according to a piecewise linearized system of (5.5), (5.6) whose state is traveling over
the partitioned domains.

5.4 Stability Analysis With Complex Conjugate Eigen-
values

In this section, we characterize stability properties of the Nash equilibrium x∗ for
the loss-aversion-based noncooperative system G(J). Specifically, we first present the
properties of agents’ behavior under (5.5), (5.6) in terms of the rotational direction of
the trajectories. We let x̃ , x− x∗ and consider the polar form (r, θ) of the coordinate
(x̃1, x̃2). Note that the rotational direction of the trajectories at phase θ under mode
k ∈ K can be determined by the sign of

θ̇k =
d

dt
(tan−1 x̃2

x̃1
) =

− ˙̃x1x̃2 + x̃1 ˙̃x2
x̃21 + x̃22

=
1

r2
det

[
x̃1 ˙̃x1

x̃2 ˙̃x2

]
= det[η(θ),Akη(θ)] = ηT(θ)Pkη(θ), (5.21)

where η(θ) = [cos θ, sin θ]T and

Pk ,

[
αk
2a

2
12

−αk
1a

1
11+αk

2a
2
22

2
−αk

1a
1
11+αk

2a
2
22

2
−αk

1a
1
12

]
, k ∈ K, (5.22)

with αXY
1 , αX

1 , αXY
2 , αY

2 , X,Y ∈ {L,H}. In particular, the trajectories under mode
k ∈ K are moving in the counterclockwise (resp., clockwise) direction when θ̇k > 0

(resp., θ̇k < 0).
To focus on the case where there exist infinitely many mode transitions for the

agents, we assume that the eigenvalues of Ak are all complex conjugate in our stability
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analysis. The case where there are finite number of mode transitions can be handled
by simply investigating the stability property of the possible final modes.

Assumption 5.1. The system matrix Ak has a pair of complex conjugate eigenvalues
for all the modes k ∈ K.

Under Assumption 5.1, the eigenvalues of the system matrix Ak are computed as
ψk ±

√
ψ2
k − αk

1α
k
2(a

1
11a

2
22 − a112a

2
12), where ψk , 1

2
(αk

1a
1
11 + αk

2a
2
22) < 0, which implies

that the complex conjugate eigenvalues of Ak have negative real part for all k ∈ K.
Note that the expression in the square root satisfies 0 > ψ2

k − αk
1α

k
2(a

1
11a

2
22 − a112a

2
12) =

1
4
(αk

1a
1
11 − αk

2a
2
22)

2 + αk
1α

k
2a

1
12a

2
12, which implies that a112a212 < 0 (i.e., a112 < 0 ∧ a212 > 0

or a112 > 0 ∧ a212 < 0) and detPk = −1
4
(αk

1a
1
11 − αk

2a
2
22)

2 − αk
1α

k
2a

1
12a

2
12 > 0, k ∈ K.

These facts are used in the following lemma and its proof. Note that the case where
Ak possesses real eigenvalues may also exhibit infinitely many mode transitions. This
complicated case is addressed in Section 5.5 below.

Lemma 5.2. Consider the loss-aversion-based noncooperative system G(J) with the
pseudo-gradient dynamics (5.5), (5.6) under Assumption 5.1. Then, the rotational
directions of the trajectories are consistently the same in the entire state space R2.
Specifically, if a112 < 0 and a212 > 0 (resp., a112 > 0 and a212 < 0), then the trajectory of
(5.5), (5.6), keeps the counterclockwise (resp., clockwise) direction for any αH

i ≥ αL
i ,

i = 1, 2.

Proof Note that a112 < 0 ∧ a212 > 0 and a112 > 0 ∧ a212 < 0 imply that the diagonal
elements of Pk are all positive and negative, respectively, and hence Pk > 0 (resp.,
Pk < 0), k ∈ K, because Assumption 5.1 implies detPk > 0. Thus, the result is
immediate since θ̇k = ηT(θ)Pkη(θ). �

This result is used in the following sections to partition the state space and to
define a piecewise linearized system of (5.5), (5.6).

Case 1: Aix
∗ + bi ̸= 0, i ∈ {1, 2}

In this section, we characterize the local stability property of the Nash equilibrium x∗

for Aix
∗+ bi ̸= 0 for i ∈ {1, 2}. Recall that x∗ is located on the cusp of the domains Dk,

k ∈ K (see Fig. 5.2). In the beginning, we approximate the domain Dk around x∗ to
the convex cone D̂k by linearizing the quadratic curves characterized by J̇k

1 (x) = 0 and
J̇k
2 (x) = 0 around x∗ for all k ∈ K. In particular, since x∗ corresponds to the origin

in the shifted space x̃, we denote the linearized straight lines of the curves J̇k
i (x) = 0,
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Figure. 5.3 Approximated domain where a212(a112x∗1+a122x
∗
2+b12) > 0, a111(a211x∗1+a212x

∗
2+b21) > 0.

(a): DLL, (b): the approximated domains D̂k, k ∈ K, around the neighborhood of Nash
equilibrium. The rotational direction is counterclockwise since γLL1 < 0 ∧ γLL2 > 0 implies
a112 < 0 ∧ a212 > 0.

i ∈ {1, 2}, k ∈ K, at x∗ as

γki x̃1 + x̃2 = 0, i ∈ {1, 2}, k ∈ K, (5.23)

where γki ,
(∂J̇k

i (x)

∂x1

/∂J̇k
i (x)

∂x2

)∣∣
x=x∗∈ R, i ∈ {1, 2}, k ∈ K. For example, Fig. 5.3 shows the

domain DLL and its approximated cone D̂LL in the neighborhood of x∗.
For the statement of the following result, note that a112 ̸= 0 and a212 ̸= 0 since

a112a
2
12 < 0 under Assumption 5.1.

Proposition 5.1. If Aix
∗ + bi ̸= 0 for i = 1 (resp., i = 2), then γk1 =

a212
a222

(resp.,

γk2 =
a111
a112

), k ∈ K, for any αH
1 , α

L
1 , α

H
2 , α

L
2 ∈ R+.

Proof First, recall (5.20). Then, for each mode k ∈ K, we have

∂J̇k
1 (x)

∂x1
=2αk

1a
1
11(a

1
11x1 + a112x2 + b11) + αk

2a
1
12(a

2
12x1 + a222x2 + b22)

+ αk
2a

2
12(a

1
12x1 + a122x2 + b12), (5.24)

∂J̇k
1 (x)

∂x2
=2αk

1a
1
12(a

1
11x1 + a112x2 + b11) + αk

2a
1
22(a

2
12x1 + a222x2 + b22)

+ αk
2a

2
22(a

1
12x1 + a122x2 + b12), (5.25)
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∂J̇k
2 (x)

∂x1
=2αk

2a
2
12(a

2
12x1 + a222x2 + b22) + αk

1a
2
11(a

1
11x1 + a112x2 + b11)

+ αk
1a

1
11(a

2
11x1 + a212x2 + b21), (5.26)

∂J̇k
2 (x)

∂x2
=2αk

2a
2
22(a

2
12x1 + a222x2 + b22) + αk

1a
2
12(a

1
11x1 + a112x2 + b11)

+ αk
1a

1
12(a

2
11x1 + a212x2 + b21). (5.27)

By noting that the Nash equilibrium x∗ satisfies (5.2) and (5.3) and hence a111x∗1 +
a112x

∗
2 + b11 = 0 and a212x∗1 + a222x

∗
2 + b22 = 0, for each mode k ∈ K, we have

∂J̇k
1 (x)

∂x1

∣∣∣∣∣
x=x∗

= αk
2a

2
12(a

1
12x

∗
1 + a122x

∗
2 + b12), (5.28)

∂J̇k
1 (x)

∂x2

∣∣∣∣∣
x=x∗

= αk
2a

2
22(a

1
12x

∗
1 + a122x

∗
2 + b12), (5.29)

∂J̇k
2 (x)

∂x1

∣∣∣∣∣
x=x∗

= αk
1a

1
11(a

2
11x

∗
1 + a212x

∗
2 + b21), (5.30)

∂J̇k
2 (x)

∂x2

∣∣∣∣∣
x=x∗

= αk
1a

1
12(a

2
11x

∗
1 + a212x

∗
2 + b21). (5.31)

Consequently, since A1x
∗ + b1 ̸= 0 and A2x

∗ + b2 ̸= 0 imply a112x∗1 + a122x
∗
2 + b12 ̸= 0 and

a211x
∗
1 + a212x

∗
2 + b21 ̸= 0, respectively, it follows that

γk1 =

∂J̇k
1 (x)

∂x1

∣∣∣
x=x∗

∂J̇k
1 (x)

∂x2

∣∣∣
x=x∗

=
a212
a222

, γk2 =

∂J̇k
2 (x)

∂x1

∣∣∣
x=x∗

∂J̇k
2 (x)

∂x2

∣∣∣
x=x∗

=
a111
a112

, k ∈ K. (5.32)

Thus, the proof is complete.

Remark 5.4. It is interesting to note from Proposition 1 that the linearized line
(5.23) of J̇k

1 (x) = 0 coincides with the best-response line (5.3) for agent 2 (instead of
agent 1). The similar observations hold for the linearized lines of J̇k

2 (x) = 0.

Remark 5.5. Since a111a222 ≠ a112a
2
12 holds in (5.1), it follows that γk1 ≠ γk2 , k ∈ K, and

hence the boundaries of D̂k, k ∈ K, are simply characterized by the two intersected
straight lines (5.2) and (5.3). Consequently, since int D̂k = ∅ holds only for γk1 = γk2 ,
k ∈ K, all of the 4 approximated cones must exist with intDk, k ∈ K, being non-empty.

Lemma 5.3. The approximated domains D̂k, k ∈ K, are identified to be the 4 convex
cones partitioned by the best-response lines (5.2) and (5.3), and satisfy (int D̂i) ∩
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(int D̂j) = ∅ for i, j ∈ K, i ̸= j, int D̂k ≠ ∅, k ∈ K, for any αH
i ≥ αL

i , i = 1, 2. Moreover,
the domain D̂LL (resp., D̂HL) is centrally symmetric about the Nash equilibrium x∗ to
D̂HH (resp., D̂LH).

Proof As the curve J̇k
1 (x) = 0 (resp., J̇k

2 (x) = 0) is linearized by the straight line
(5.3) (resp., (5.2)) for all k ∈ K (Proposition 5.1), the proof is immediate by checking
whether the 4 domains {x ∈ R2 : J̇k

i (x) ≥ 0}, k ∈ K, share exactly the same half plane
in the neighborhood of x∗, which is proved by the fact that

J̇k
1 (x̂) =α

k
1∆

1
1(x̂) + αk

2∆
2
1(x̂) = (αk

1a
1
11a

1
11 + αk

2a
1
12a

2
12)ε

2 + εαk
2a

2
12(a

1
12x

∗
1 + a122x

∗
2 + b12)

≈εαk
2a

2
12(a

1
12x

∗
1 + a122x

∗
2 + b12), k ∈ K, (5.33)

J̇k
2 (x̂) =α

k
1∆

1
2(x̂) + αk

2∆
2
2(x̂) = (αk

2a
2
12a

2
12 + αk

1a
1
11a

2
11)ε

2 + εαk
1a

1
11(a

2
11x

∗
1 + a212x

∗
2 + b21)

≈εαk
1a

1
11(a

2
11x

∗
1 + a212x

∗
2 + b21), k ∈ K. (5.34)

hold for x̂ , [x∗1 + ε, x∗2]
T with an infinitesimal number ε. �

Remark 5.6. Lemma 5.3 implies that the best-response lines (5.2) and (5.3) coincide
with the switching phases (see a typical example of the approximated domains D̂k,
k ∈ K, shown in Fig. 5.3(b)) and hence the switching phases at which agents switch the
modes around the Nash equilibrium x∗ are given by θ = arctan(−a212

a222
), arctan(−a111

a112
),

arctan(−a212
a222

) + π, arctan(−a111
a112

) + π. Recalling the fact shown in Lemma 5.2, the
transition of agents’ modes around x∗ includes only two possibilities depending on the
rotational directions, which are

· · · → HH → LH → LL → HL → HH → · · · , (5.35)

· · · → HH → HL → LL → LH → HH → · · · . (5.36)

The transition sequence of the noncooperative system G(J) used for Fig. 5.3(b) is
depicted in Fig. 5.4, where the sequence is given by the former one since the rotational
direction of the trajectories is counterclockwise.

Now, the local stability property of Nash equilibrium x∗ of the pseudo-gradient
dynamics (5.5), (5.6) is equivalent to the stability property of the piecewise linearized
system given by

ẋ(t) = Ak(x(t)− x∗), x(t) ∈ D̂k. (5.37)

Recalling that D̂k, k ∈ K, satisfy
⋃

k∈K D̂k = R2 (Lemma 5.3) and (int D̂i)∩(int D̂j) = ∅
for i, j ∈ K, i ̸= j, we use the method shown in [78] to determine stability of the



107

A
c
ti

v
e
 m

o
d
e

Figure. 5.4 Mode transition in (5.5), (5.6) around x∗ in the same G(J) as Fig. 5.3 where
Aix

∗ + bi ̸= 0, i ∈ {1, 2}.

piecewise linear system (5.37). Specifically, define the normalized radial growth rate
for each mode k ∈ K by

ρk(θ) ,
1

r

dr

dθ
=

ηT(θ)Akη(θ)

det[η(θ),Akη(θ)]
=
ηT(θ)Akη(θ)

ηT(θ)Pkη(θ)
, (5.38)

where Pk is defined in (5.22). Note that ρk(θ), k ∈ K, are continuous in θ. Then, the
integral of the normalized radial growth rate is given by

γrg ,
∫ θ0+2π

θ0

ρK(θ)(θ)dθ, (5.39)

where θ0 ∈ R and K(θ) ∈ K is a function of the phase θ representing which mode is
active for (5.37) around the Nash equilibrium x∗. Note that γrg in (5.39) is invariant
under θ0 because ρK(θ) is a periodic function of θ of period 2π. The value of γrg is
numerically evaluated once the active mode K(θ) is determined.

Theorem 5.1. Consider the loss-aversion-based noncooperative system G(J) with
the pseudo-gradient dynamics (5.5), (5.6) under Assumption 5.1 for Aix

∗ + bi ̸= 0,
i ∈ {1, 2}. If a112γrg > 0 and a212γrg < 0 (resp., a112γrg < 0 and a212γrg > 0), then the
Nash equilibrium x∗ in (5.5), (5.6) hold, is asymptotically stable (resp., unstable).

Proof First, note that γrg =
∫ θ0+2π

θ0
ρK(θ)(θ)dθ =

∫ θ0+2π

θ0

1
r
dr
dθ
dθ = log

rθ0+2π

rθ0
, where

rθ0+2π

rθ0
represents the ratio of the distances between the Nash equilibrium x∗ and the

states when the state travels for one round from the phase θ0 to θ0 + 2π. For the
counterclockwise case (i.e., a112 < 0 ∧ a212 > 0), γrg < 0 (resp., γrg > 0) implies that the
state is coming closer to (resp., farther from) x∗ under (5.37) after it travels for one
round. For the clockwise case (i.e., a112 > 0 ∧ a212 < 0), the opposite is true. Hence, if
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a112γ > 0 ∧ a212γ < 0 (resp., a112γ < 0 ∧ a212γ > 0), then noting a112a212 < 0, the Nash
equilibrium x∗ is asymptotically stable (resp., unstable). �

Remark 5.7. Even though it follows from Lemma 5.3 that αH
1 , α

L
1 , α

H
2 , αL

2 do not
change the partition of D̂k, k ∈ K, they affect the normalized radial growth rates
ρk, k ∈ K, in (5.38) by altering Pk, Ak, k ∈ K, and hence may change the stability
property.

Remark 5.8. The parameters a122, a211, b12, b21 neither change the normalized radial
growth rates ρk(θ), k ∈ K, nor the switching phases θ = arctan(−a212

a222
), arctan(−a111

a112
),

arctan(−a212
a222

) + π, arctan(−a111
a112

) + π, but they affect the active mode K(θ) due to a

permutation of the locations of D̂k, k ∈ K, among the 4 convex cones partitioned by
(5.2) and (5.3), and hence may change the stability property.

Case 2: Aix
∗ + bi = 0, i ∈ {1, 2}

In this section, we characterize the stability property of the Nash equilibrium x∗ for
Aix

∗ + bi = 0 for i ∈ {1, 2}. In such a case, recall that the domains Dk, k ∈ K, are
convex cones with x∗ being the center since J̇k

i (x) = (x− x∗)TQk
i (x− x∗), i ∈ {1, 2},

k ∈ K, in (5.10).
Note that ifQk

i > 0, i ∈ {1, 2}, k ∈ K, then it follows that intDLL, intDHL, intDLH =

∅, and DHH = R2 (Remark 5.1) so that there is no mode transition. Henceforth, in
this section for Case 2, suppose that the matrices Qk

i = Qk
i
T, i ∈ {1, 2}, k ∈ K, are all

sign-indefinite. Under this condition, each of the domains Dk, k ∈ K, satisfies Dk ̸= R2

and the boundaries of the existing convex cones Dk characterized by J̇k
1 (x) = 0 and/or

J̇k
2 (x) = 0 are given by the 2 lines out of the 4 lines

γ̃k+1 x̃1 + x̃2 = 0, γ̃k−1 x̃1 + x̃2 = 0, (5.40)

γ̃k+2 x̃1 + x̃2 = 0, γ̃k−2 x̃1 + x̃2 = 0, (5.41)

where

γ̃k±i =
Qk

i (1,2) ±
√
Qk

i (1,2)Q
k
i (1,2) −Qk

i (1,1)Q
k
i (2,2)

Qk
i (2,2)

∈ R, (5.42)

and Qk
i (a, b) denotes the (a, b)th entry of Qk

i .
In general, it turns out that there may be overlapped regions between Dk, k ∈ K.

Depending on the rotational direction characterized in Lemma 5.2, we define the
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Figure. 5.5 An example of the partition of D̃k, k ∈ K, from the domains Dk, k ∈ K, for Aix
∗ +

bi = 0, i ∈ {1, 2}. (a): Dk, k ∈ K, (b): effective domains D̃k, k ∈ K, with counterclockwise
trajectories.

effective domains D̃k, k ∈ K, indicating that which mode is active in the overlapped
regions by properly partitioning the state space. Specifically, we assume that the modes
do not change until increasing/decresing property of Ji changes so that agent i switches
its sensitivity parameter αi(·) when agent i reaches the boundary of the current mode
(see the effective domains for a trajectory moving in the counterclockwise direction in
Fig. 5.5(b) yielded from the domains Dk, k ∈ K, given in Fig. 5.5(a)). Note as a direct
consequence of Lemma 5.1 that D̃k, k ∈ K, satisfy

⋃
k∈K D̃k = R2.

Consequently, the stability property of the Nash equilibrium x∗ of the pseudo-
gradient dynamics (5.5), (5.6) is equivalent to the stability property in the piecewise
linear system given by (5.37) with D̂k replaced by D̃k. Similar to the previous section,
we use the integral of the normalized radial growth rate γrg to determine stability of
the Nash equilibrium x∗. Note that since the active mode of (5.37) at phase θ + π

is exactly same as the active mode at phase θ (i.e., K(θ + π) = K(θ)), we have
γrg = 2

∫ θ0+π

θ0
ρK(θ)(θ)dθ.

Theorem 5.2. Consider the loss-aversion-based noncooperative system G(J) with the
pseudo-gradient dynamics (5.5), (5.6) under Assumption 5.1 for Aix

∗+bi = 0, i ∈ {1, 2}.
Then the following statements hold:

1) If a112γrg > 0 and a212γrg < 0, then the Nash equilibrium x∗ in (5.5), (5.6) is
globally asymptotically stable;

2) If γrg = 0, then (5.5), (5.6) are marginally stable and the trajectory of (5.5),
(5.6) constitutes a closed orbit;

3) If a112γrg < 0 and a212γrg > 0, then the Nash equilibrium x∗ in (5.5), (5.6) is
unstable.
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Figure. 5.6 Mode transition sequence in (5.5), (5.6) around the flash switching instants t1 and
t2 in Fig. 5.5. At those flash switching instants, agent 2 first switches its sensitivity parameter
and agent 1 further switches its sensitivity right after agent 2’s switch.

Proof The proof for 1) and 3) is similar to the proof of Theorem 5.1. For both cases
of counterclockwise and clockwise trajectories, γrg = 0 implies that the trajectory goes
back to the same point when it travels for one round from the phase θ0 to θ0 + 2π.
Now, 2) is immediate. �

Next, we present several interesting observations on agents’ behavior in the following
statements. In terms of the mode transition sequence, there may exist some time
instant t at phase θ at which the agents switch the sensitivity parameters such that
the active mode K(θ(t)) experiences

K(θ(t−)) ̸= K(θ(t)) ̸= K(θ(t+)). (5.43)

We call such a switching instant t as a flash switching instant. Figure 5.6 shows an
example of the mode transition around a flash switching instant t1 used for Fig. 5.5(b),
where agents’ state enters into DHL after leaving DLH at time t1. In this example,
when the 2 agents are in the domain DLH and agent 2 reaches its boundary at t1,
agent 2 switches the sensitivity from αH

2 to αL
2 since J̇2(t1) becomes 0 from J̇2(t

−
1 ) > 0.

However, since agent 2’s switching behavior results in J̇1(t1) > 0 from J̇1(t
−
1 ) < 0, agent

1 further switches its sensitivity from αL
1 to αH

1 right after the agent 2’s switch (t+1 ).
After time t+1 , since agents’ state successfully enters into the domain DHL, the agents
keep the mode HL. In the example of Fig. 5.5, the next switching instant t2 (and
all the switching instants) shown to be flash switching instants as well. In short, the
reason why there may exist a flash switching instant is that a single agents’ sensitivity
transition can be a trigger to make the other agent immediately switch its sensitivity
almost at the same time instant.
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Under the following assumption, the next results show that the effective domain
D̃LL can never be adjacent to D̃HH and a flash switching instant t exists only if the
sequence of the active modes satisfies (K(θ(t−)), K(θ(t+))) ∈ {(LH,HL), (HL,LH)}.

Assumption 5.2. The straight lines characterized by J̇k
1 (x) = 0 do not coincide

with the lines characterized by J̇k
2 (x) = 0 for any modes k ∈ K. In other words,

γ̃k+1 , γ̃k−1 , γ̃k+2 , γ̃k−2 are all different in (5.40), (5.41) when k is fixed.

Before we present a theorem, we give the following lemma.

Lemma 5.4. If both A1 and A2 in (5.1) are sign-indefinite under Assumption 5.1
for Aix

∗ + bi = 0, i ∈ {1, 2}, then intDHL and intDLH are non-empty for any
αH
1 , α

L
1 , α

H
2 , α

L
2 ∈ R+. Furthermore, the best response line a111x1 + a112x2 + b11 = 0

for agent 1 (resp., a212x1 + a222x2 + b22 = 0 for agent 2) belongs only to intDLH (resp.,
intDHL).

Proof Note that a112a212 < 0, aiii < 0, i = 1, 2, and since A1 and A2 are sign-indefinite,
detAi = ai11a

i
22 − (ai12)

2 < 0, i = {1, 2}. Furthermore, on the line a111x1 + a112x2 + b11 =

a111x̃1 + a112x̃2 = 0, since ∆1
1(x) = 0,∆1

2(x) = 0 in (5.16) and (5.18), it follows from
(5.20) that

J̇k
1 (x) =α

k
1∆

1
1(x) + αk

2∆
2
1(x) = αk

2∆
2
1(x) = αk

2(a
1
12x̃1 + a122x̃2)(a

2
12x̃1 + a222x̃2)

=αk
2

a112a
2
12 − a111a

2
22

a112a
1
12

(−a111a122 + (a112)
2)x̃21 < 0, (5.44)

J̇k
2 (x) =α

k
1∆

1
2(x) + αk

2∆
2
2(x) = αk

2∆
2
2(x) = αk

2(a
2
12x1 + a222x2 + b22)

2 > 0, (5.45)

hold for all k ∈ K and any αH
1 , α

L
1 , α

H
2 , α

L
2 ∈ R+. Thus, the best response line

a111x1 + a112x2 + b11 = 0 for agent 1 belongs only to intDLH for any αH
1 , α

L
1 , α

H
2 , α

L
2 ∈ R+

and hence intDLH is non-empty.
The proof for the other case can be similarly handled. �

Theorem 5.3. Let t1, t2 be two consecutive switching instants for the noncooperative
system G(J) under Assumption 5.2 for Aix

∗+ bi = 0, i ∈ {1, 2}. If K(θ(t)) = LL or HH
for t1 < t < t2, then neither the switching instant t1 nor t2 is a flash switching instant
and the mode transition satisfies K(θ(t−1 )), K(θ(t+2 )) ∈ {LH,HL} for any αH

i ≥ αL
i ,

i = 1, 2. If, in addition, both A1 and A2 are sign-indefinite with Assumption 5.1, then
(K(θ(t−1 )), K(θ(t+2 ))) ∈ {(LH,HL), (HL,LH)} for any αH

i ≥ αL
i , i = 1, 2.

Proof First, we prove K(θ(t2)) = K(θ(t+2 )) ∈ {LH,HL} (implying that t2 is not a
flash switching instant). To this end, let the state at t2 as x̄ and characterize cases in
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terms of K(θ(t−2 )) and x̄. For example, consider K(θ(t−2 )) = LL (i.e., K(θ(t)) = LL,
t1 < t < t2) and J̇LL

1 (x̄) = 0 ∧ J̇LL
2 (x̄) < 0 (i.e., K(θ(t2)) = HL). In this case,

Since ∆2
2(x̄) ≥ 0 and J̇LL

2 (x̄) = αL
1∆

1
2(x̄) + αL

2∆
2
2(x̄) < 0 imply ∆1

2(x̄) < 0, we have
J̇HL
2 (t+2 ) ≈ J̇HL

2 (x̄) = J̇LL
2 (x̄) + δ1∆

1
2(x̄) < 0. Note that when ∆1

1(x̄) > 0, we have
J̇HL
1 (t+2 ) ≈ J̇HL

1 (x̄) = J̇LL
1 (x̄) + δ1∆

1
1(x̄) > 0. Alternatively, when ∆1

1(x̄) = J̇LL
1 (x̄) =

0, we have ∆2
1(x̄) = J̇HL

1 (x̄) = 0. By neglecting the second-order infinitesimal in
∆1

1(x(t
+
2 )) in (5.20), it follows that J̇k

1 (t
+
2 ) ≈ αk

2∆
2
1(x(t

+
2 )) holds for k ∈ K. Hence, since

J̇LL
1 (t+2 ) > 0, it follows that J̇HL

1 (t+2 ) ≈ αL
2∆

2
1(x(t

+
2 )) ≈ J̇LL

1 (t+2 ) > 0. Consequently,
x(t+2 ) ∈ intDHL holds for both the two cases above in terms of ∆1

1(x̄) and hence
K(θ(t+2 )) = K(θ(t2)) = HL holds. The proof for the other cases can be similarly handled
with the conclusion of K(θ(t2)) = K(θ(t+2 )) ∈ {LH,HL}. Thus, K(θ(t+2 )) = K(θ(t2)) ∈
{LH,HL} for K(θ(t−2 )) ∈ {LL,HH}. Furthermore, since K(θ(t+1 )) ∈ {LL,HH}, it
follows that K(θ(t−1 )) ̸∈ {LL,HH}, i.e., K(θ(t−1 )) ∈ {LH,HL}, which implies that t1 is
not a flash switching instant, either.

Next, we prove K(θ(t−1 )) ̸= K(θ(t+2 )) for sign-indefinite A1, A2. To this end, we show
that DLH, DHL are never composed of 4 convex cones. Suppose, ad absurdum, DLH =

{x ∈ R2 : J̇LH
1 (x) ≤ 0} ∩ {x ∈ R2 : J̇LH

2 (x) ≥ 0} is composed of 4 convex cones in G(J)
with a certain set of sensitivity parameters (αH

1 , α
L
1 , α

H
2 , α

L
2 ) = (α̃H

1 , α̃
L
1 , α̃

H
2 , α̃

L
2 ). In this

case, from a geometric consideration of the domains, it follows that {x ∈ R2 : J̇LH
1 (x) ≤

0} ∪ {x ∈ R2 : J̇LH
2 (x) ≥ 0} = R2. Next, consider a set of sensitivity parameters

(αH
1 , α

L
1 , α

H
2 , α

L
2 ) with αH

1 = α̃L
1 and αL

2 = α̃H
2 . Note that since the sensitivity profile

αHL = diag[α̃L
1 , α̃

H
2 ] for the second set is the same as the value of αLH = diag[α̃L

1 , α̃
H
2 ]

in the first set, the domain
intDHL = {x ∈ R2 : J̇HL

1 (x) > 0} ∩ {x ∈ R2 : J̇HL
2 (x) < 0}

= {x ∈ R2 : J̇LH
1 (x) > 0} ∩ {x ∈ R2 : J̇LH

2 (x) < 0}
= (R2 \ {x ∈ R2 : J̇LH

1 (x) ≤ 0}) ∩ {x ∈ R2 : J̇LH
2 (x) < 0}

= ({x ∈ R2 : J̇LH
2 (x) ≥ 0} \ DLH) ∩ {x ∈ R2 : J̇LH

2 (x) < 0}
is empty, which contradicts with Lemma 5.4. Thus, DLH is never composed of 4 convex
cones. The proof for DHL can be similarly handled. Now, suppose, ad absurdum, that
K(θ(t−1 )) = K(θ(t+2 )) ∈ {LH,HL}. Since the rotational direction of the trajectories are
consistently the same in R2, it follows that D̃LL ∪ D̃LH = R2 or D̃LL ∪ D̃HL = R2 must
hold for K(θ(t)) = LL, t1 < t < t2, which also contradicts with Lemma 5.4. (The case
of K(θ(t)) = HH, t1 < t < t2, can be similarly handled.) Thus, the proof is complete.
�
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Remark 5.9. Theorem 5.3 implies that if D̃LL or D̃HH exists for sign-indefinite A1,
A2, then D̃LH and D̃HL are adjacent to D̃LL and/or D̃HH and hence the mode transition
sequence around D̃LL and D̃HH is respectively given by · · · 
 LH 
 LL 
 HL 
 · · ·
and · · · 
 LH 
 HH 
 HL 
 · · · . Alternatively, in the case where D̃LL = D̃HH = ∅
(as in Fig. 5.5), both D̃LH and D̃HL must exist, since D̃LH∪D̃HL = R2 and D̃LH, D̃HL ≠ R2.
In such a case, the mode transition sequence is given by · · · 
 LH 
 HL 
 · · · . As a
result, the modes LH and HL always exist when A1 and A2 are sign-indefinite.

Remark 5.10. Theorem 5.3 does not imply that there always exists a flash switching
instant when the mode transition LH → HL or HL → LH happens. For instance,
consider the case with zero-sum payoffs. In this case, the overall mode transition
sequence is composed of only modes LH and HL and the agents always simultaneously
switch the sensitivity parameters at the same switching instants since the straight lines
J̇LH
1 (x) = 0 and J̇LH

2 (x) = 0 (or, J̇HL
1 (x) = 0 and J̇HL

2 (x) = 0) coincide with each other.
As a result, the switching instants in such a system are not flash switching instants.

Note that the case where Qk
1, k ∈ K, are positive definite and Qk

2, k ∈ K, are
sign-indefinite can be similarly handled by evaluating the sign of γrg in (5.39) with
possibly fewer number of domains.

Case 3: A1x
∗ + b1 ̸= 0, A2x

∗ + b2 = 0

In this section, we characterize the stability property of the Nash equilibrium x∗ for
A1x

∗ + b1 ̸= 0, A2x
∗ + b2 = 0 with all sign-indefinite matrices Qk

2, k ∈ K, in (5.10). In
such a case, each of the domains Dk, k ∈ K, is understood as the overlap of convex
cones and the regions whose boundaries are characterized by hyperbolic (or elliptic)
functions (see the example shown in Fig. 5.1(c) for k = LL).

Similar to Case 1 in Section 5.4, we approximate the domain Dk around x∗ to the
convex cone D̂k by linearizing the quadratic curve characterized by J̇k

1 (x) = 0 around
x∗ to the straight line (5.3) for all k ∈ K. It can be similarly shown that D̂LL ∪ D̂LH

and D̂HH ∪ D̂HL are the two half planes partitioned by (5.3) (see Fig. 5.7(b)). Then,
considering the overlapped regions, similar to Case 2 (Section 5.4), we define the
effective domains D̃k, k ∈ K, by partitioning the state space according to the rotational
direction (see Fig. 5.7(c)). Different from Case 2 where some of the effective domains
D̃k, k ∈ K, may be empty, none of D̃k, k ∈ K, is empty in Case 3 and hence all of
the 4 modes exist. Then, the stability property of the Nash equilibrium x∗ of the
pseudo-gradient dynamics (5.5), (5.6) is equivalent to the stability property in the
piecewise linearized system given by (5.37) with D̂k replaced by D̃k.
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Figure. 5.7 An example of the partitions of Dk, k ∈ K, D̂k, k ∈ K, and D̃k, k ∈ K, under
Assumption 5.1 for A1x

∗ + b1 ̸= 0, A2x
∗ + b2 = 0. (a): Dk, k ∈ K, (b): approximated domains

D̂k, k ∈ K, (c): effective domains D̃k, k ∈ K, determined from (b) with trajectories moving in
the clockwise direction.

Theorem 5.4. Consider the loss-aversion-based noncooperative system G(J) with
the pseudo-gradient dynamics (5.5), (5.6) under Assumption 5.1 for A1x

∗ + b1 ̸= 0,
A2x

∗ + b2 = 0. If a112γrg > 0 and a212γrg < 0 (resp., a112γrg < 0 and a212γrg > 0), then the
Nash equilibrium x∗ in (5.5), (5.6) is asymptotically stable (resp., unstable), where γrg
is defined in (5.39).

Proof The proof is similar to the proof of Theorems 5.1 and 5.2. �

Proposition 5.2. Assume that x∗ satisfies A1x
∗ + b1 ̸= 0, A2x

∗ + b2 = 0. Then there
is no flash switching instant for any αH

i ≥ αL
i , i = 1, 2, in the neighborhood of x∗.

Proof Let t1, t2 be two consecutive switching instants. Note that if K(θ(t)) = LL or
HH (resp., LH or HL) for t1 < t < t2, then K(θ(t−1 )), K(θ(t+2 )) ∈ {LH,HL} (resp.,
{LL,HH}). Moreover, since J̇k

2 (x) = αk
1∆

1
2(x)+α

k
2∆

2
2(x), k ∈ K, and ∆2

2(x) = 0 on the
best-response line (5.3), the sensitivity change αL

1 → αH
1 or αH

1 → αL
1 does not change

the sign of J̇k
2 (x), k ∈ K, on the best-response line (5.3) and hence agents’ state can

never enter D̃HL after leaving D̃LH. In other words, around the Nash equilibrium x∗, if
K(θ(t)) = LH or HL for t1 < t < t2 where t1, t2 are two consecutive switching instants,
then K(θ(t−1 )), K(θ(t+2 )) ∈ {LL,HH} for any αH

i ≥ αL
i , i = 1, 2. Therefore, there does

not exist any flash switching instant in the loss-aversion-based noncooperative system
around the Nash equilibrium x∗ for A1x

∗ + b1 ̸= 0, A2x
∗ + b2 = 0. �

Note that the case where Qk
2, k ∈ K, are positive definite can be similarly handled

by evaluating the sign of γrg in (5.39) with possibly fewer number of domains. In this
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case, the modes LH and HH always exist. As a result, there exist at least 2 modes in
the loss-aversion-based noncooperative system for A1x

∗ + b1 ̸= 0, A2x
∗ + b2 = 0.

Discussion

In this section, we further compare the Cases 1–3 characterized in the previous sections
in terms of the normalized radial growth rate and extend the proposed framework for
the case where the order of the payoff functions is greater than 2.

The following result shows a special property of the normalized radial growth rates
ρk(θ), k ∈ K, defined in (5.38).

Proposition 5.3. The normalized radial growth rates ρk(θ), k ∈ K, possess the
common values at the 4 phases θ = arctan(−a212

a222
), arctan(−a111

a112
), arctan(−a212

a222
) + π,

arctan(−a111
a112

) + π characterized as the switching phases for Case 1 (Remark 5.6).

Specifically, ρk(arctan(−a212
a222

)) = ρk(arctan(−a212
a222

) + π) =
a222
a212

, ρk(arctan(−a111
a112

)) =

ρk(arctan(−a111
a112

) + π) = −a111
a112

for all k ∈ K with any αH
1 , α

L
1 , α

H
2 , α

L
2 ∈ R+.

Proof The proof is immediate by checking the values of ρk(θ) at the specified phases.
�

Remark 5.11. Proposition 5.3 implies that the normalized radial growth rate ρK(θ)(θ)

in Case 1 is continuous on θ, since ρk(θ), k ∈ K, possess the same values at the 4
switching phases (see Fig. 5.8(a)). However, in Cases 2 and 3, since agents may switch
the sensitivity parameters at a phase θ ̸∈ {arctan(−a212

a222
), arctan(−a111

a112
), arctan(−a212

a222
)+π,

arctan(−a111
a112

) + π}, ρK(θ)(θ) is most likely to be discontinuous at the switching phases
(see Fig. 5.8(b)).

To discuss how a small perturbation on the parameters in A1, A2, b1, b2 affect
the stability of the Nash equilibrium x∗, since from (5.4) the small perturbations on
a111, a

1
12, b

1
1, a

2
12, a

2
22, b

2
2 change the location of the Nash equilibrium in the state space,

we focus only on the parameters a122, a211, b21, b12 which do not affect the value of x∗.
Specifically, consider Case 2 (Aix

∗ + bi = 0, i ∈ {1, 2}). Then even a small change
in a122 or b12 yields A1x

∗ + b1 ≠ 0 so that Case 2 changes to Case 3 however small
the perturbation is. Moreover, if there further exists a small perturbation on a211 or
b21, then A2x

∗ + b2 also becomes nonzero and hence Case 3 changes to Case 1. For
example, it can be seen from Fig. 5.8 that since the small perturbations on b21, b

1
2 for

Aix
∗ + bi = 0, i ∈ {1, 2}, change the noncooperative system G(J) from Case 2 to

Case 1, the active mode K(θ) may drastically change depending on the phase θ and
hence the stability property of the Nash equilibrium x∗ may also be affected.
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Figure. 5.8 Typical normalized radial growth rates ρK(θ)(θ), ρk(θ), k ∈ K, θ ∈ [−π, π], with
the same A1, A2, b

1
1, b

2
2 but different b21, b

1
2. (a): Aix

∗ + bi ̸= 0, i ∈ {1, 2} (Case 1 ), (b):
Aix

∗ + bi = 0, i ∈ {1, 2} (Case 2 ). The parameters b21, b
1
2 in (a) are obtained by giving small

perturbations on b21 and b12 in (b).
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It is worth noting that as long as local stability is concerned around a Nash
equilibrium x∗, the similar results can be drawn for the case of non-quadratic payoff
functions which yield nonlinear pseudo-gradient dynamics. Specifically, for a (not
necessarily quadratic) payoff function Ji(x), it can be expressed in the form of

Ji(x) = Ji(x
∗) +

(
∂Ji(x

∗)
∂x

)T
x̃+ 1

2
x̃TAix̃+ εi(x)

= 1
2
xTAix+ bTi x+ ci + εi(x), (5.46)

where εi(x) includes 3rd- or higher-order terms, Ai ∈ R2×2 is the Hessian matrix of Ji(x)
evaluated at x∗, bi = ∂Ji(x

∗)
∂x

− Aix
∗ ∈ R2, and ci = Ji(x

∗)− (∂Ji(x
∗)

∂x
)Tx∗ + 1

2
x∗TAix

∗ ∈
R. Noting that Ai in (5.46) plays a similar role as the one in (5.1), stability analysis
around the Nash equilibrium can be similarly conducted as in the theorems and the
propositions given in this section.

5.5 Stability Analysis With Real Eigenvalues

In this section, we generalize the stability results in Section 5.4 by relaxing the restriction
on complex conjugate eigenvalues. For simplicity, we suppose that Aix

∗ + bi ̸= 0,
i ∈ {1, 2}, hold with a111a222 ≠ a112a

2
12 ̸= 0. In this case, the approximated domains D̂k,

k ∈ K, of the piecewise linearized system (5.37) are partitioned by the best-response
lines (5.2) and (5.3) (Lemma 5.3). Moreover, since the eigenvalues of Ak are given by

λk1 , ψk −
√
ψ2
k − αk

1α
k
2(a

1
11a

2
22 − a112a

2
12),

λk2 , ψk +
√
ψ2
k − αk

1α
k
2(a

1
11a

2
22 − a112a

2
12), (5.47)

with ψk , 1
2
(αk

1a
1
11 + αk

2a
2
22) < 0, all of the matrices Ak, k ∈ K, are stable (resp.,

unstable) for a111a222 − a112a
2
12 > 0 (resp., < 0). The eigenvectors of the system matrix

Ak (̸= σI for all σ < 0 under a112a212 ̸= 0) are denoted by υk1 and υk2 satisfying

Akυ
k
i = λki υ

k
i , i ∈ {1, 2}. (5.48)

In the following subsections, we first handle the stable subsystems case (a111a222−a112a212 >
0), then we give the results for the unstable subsystems case (a111a222 − a112a

2
12 < 0).

Stable Subsystems

In this section, we consider the case with stable subsystems, i.e., a111a222 − a112a
2
12 > 0.
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Figure. 5.9 Examples of the noncooperative system with a strongly transitive mode k ∈ K
where λk

1, λ
k
2 ∈ R, a111a222 > a112a

2
12. Arrows: eigenvectors. (a): λk

1 ≠ λk
2 (two independent

eigenvectors), (b): λk
1 = λk

2 with the improper node x∗. The mode k is strongly transitive
since the rotational direction of the trajectories keeps counterclockwise or clockwise in D̂k.

Definition 5.1. [77] The mode k ∈ K is strongly transitive if there exists a time
instant t such that x(t) ̸∈ D̂k for any x0 satisfying x0 ∈ D̂k \ {x∗}.

Definition 5.2. [77] The mode k ∈ K is weakly transitive if one of the following
statements is true for any x0 satisfying x0 ∈ D̂k \ {x∗}:
1) there exists a time instant t such that x(t) ̸∈ D̂k.
2) x(t) ∈ D̂k for all t ≥ 0 and limt→∞ x(t) = x∗.

To reveal the generalized results on stability property, we use the above notions
for the rest of this paper. Here, we note that every strongly transitive mode is also
a weakly transitive mode [77]; if all of the modes are strongly transitive, then there
exist infinitely many mode transitions in the noncooperative system. Section 5.4 only
handles the simplest case with 4 strongly transitive modes and infinitely many mode
transitions since λk1, λk2 ∈ C hold for all modes k ∈ K. However for the case with some
real eigenvalues, there may still exist 4 strongly transitive modes and infinitely many
mode transitions.

Remark 5.12. Recalling αkA ̸= σI for all σ < 0 under a112a212 ̸= 0, the noncoopera-
tive system traces a straight-line trajectory only when the initial state x0 is on the
eigenvectors. Hence, the mode k ∈ K satisfying λk1, λk2 ∈ R is strongly transitive if and
only if no eigenvectors are containing in D̂k (see Fig. 5.9).
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Now, we begin to identify the transitivity of the 4 modes. In the following results,
we first present a necessary condition for a mode to be strongly transitive, and then
we present the detail conditions to identify the transitivity.

Proposition 5.4. Let KST ⊆ K be the set of strongly transitive modes for Aix
∗+bi ̸= 0,

i ∈ {1, 2}. If KST is non-empty, then a112a212 < 0 holds and the rotational directions of
the system trajectories never change in the domains Dk, k ∈ KST, around the Nash
equilibrium x∗ for any αH

i ≥ αL
i , i = 1, 2. Specifically, if a112 < 0 ∧ a212 > 0 (resp.,

a112 > 0 ∧ a212 < 0) holds, then the rotational directions of the system trajectories are
counterclockwise (resp., clockwise).

Proof : Note that on the best-response lines (5.3) and (5.2), we have
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2a

2
12x̃

2
1 − αk

1a
1
12x̃

2
2 + (−αk

1a
1
11 + αk

2a
2
22)x̃1x̃2

= (αk
2a

2
12 − αk

1

a112(a
2
12)

2

(a222)
2

+
a212(α
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2
22

(a111)
2

x̃22,

(5.50)

respectively, which can be used in (5.21) for determining the rotational direction
at the states on best-response lines. Now, note that the rotation directions of the
trajectories in a strongly transitive domain D̂k (including the boundaries (5.2) and
(5.3)) with k ∈ KST must be the same and hence it follows from (5.49) and (5.50)
that the non-empty set KST indicates a112a212 < 0. Noting that the signs of (5.49) and
(5.50) do not change when αk

1 or αk
2 changes, it follows that the rotational directions of

the system trajectories are the same in the domains D̂k, k ∈ KST. Thus, the result is
immediate since a112 < 0∧ a212 > 0 (resp., a112 > 0∧ a212 < 0) under −a212a112+ a111a222 > 0

indicates that (5.49), (5.50), and θ̇ defined in (5.21) are positive (resp., negative) and
hence the rotational directions of the system trajectories are counterclockwise (resp.,
clockwise). �

Remark 5.13. Note that Proposition 5.4 is a generalized result of Lemma 5.2.
Lemma 5.2 characterizes a special case with KST = K so that the rotational directions
of the trajectories are consistently the same in the entire state space R2.

In general, all modes being strongly transitive is only a sufficient condition for a
piecewise linear system possessing infinitely many mode transitions [77]. For example, a
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sliding mode may exist in the boundary of two convex cones if the rotational directions
of the system trajectories changes are opposite among two strongly transitive modes
(see Example 13 of [77]). However, as the mode transition does not affect the rotational
direction of the trajectories at the boundaries of the domains D̂LL (see (5.49) and (5.50)),
it follows that the sliding mode never happen in the loss-aversion-based noncooperative
system and hence that all modes being strongly transitive is also a necessary condition
for the piecewise linearized system (5.37) possessing infinitely many mode transitions.
Hence, the following result is immediate.

Lemma 5.5. Consider the loss-aversion-based noncooperative system G(J) with the
pseudo-gradient dynamics (5.5), (5.6) for Aix

∗ + bi ̸= 0, i ∈ {1, 2}. Then, there
exists infinitely many transitions around the Nash equilibrium x∗ if and only if all of
the modes are strongly transitive, i.e., KST = K. Moreover, in that case, the active
mode experiences all of the 4 modes and the transition sequence only includes two
possibilities, which are expressed in (5.35) and (5.36).

Next, we present the conditions to identify the transitivity of mode k ∈ K to derive
the set KST.

Proposition 5.5. Consider the loss-aversion-based noncooperative system G(J) with
the pseudo-gradient dynamics (5.5), (5.6) for Aix

∗ + bi ̸= 0, i ∈ {1, 2}. Let k be
a mode satisfying λk1, λ

k
2 ∈ R. If a111a222 > a112a

2
12 ≥ 0 holds, then all of the modes

LL,HL,LH,HH are weakly but not strongly transitive around the Nash equilibrium
x∗ for any αH

i ≥ αL
i , i = 1, 2. If a112a212 < 0 holds and a212(a

1
12x

∗
1 + a122x

∗
2 + b12),

(αk
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1
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2a
2
22)(a

2
11x

∗
1 + a212x

∗
2 + b21) possess different signs for k ∈ {LL,HH} (resp.,

{LH,HL}) (or, same signs for k ∈ {LH,HL} (resp., {LL,HH})), then k is strongly
(resp., weakly but not strongly) transitive around x∗.

Proof : Since a112a212 < 0 is the necessary condition for strongly transitive modes,
the result for the case a112a212 ≥ 0 is a direct consequence of Proposition 5.4. Now,
consider a112a212 < 0 and suppose that η is an infinitesimal real number. In this case,
a state on the eigenvector υki sufficiently close to the Nash equilibrium x∗ can be
expressed by ηvki − x∗. Recalling the definition of eigenvectors in (5.48), it follows from
Ak(ηvki − x∗) = ηλki υ

k
i that
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hold for i = 1, 2. Note from (5.47) that
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for ψ̃k , 1
2
(αk

1a
1
11 − αk

2a
2
22) and hence both the signs of (5.53) and (5.54) depend on the

sign of ψ̃k with a112a212 < 0. Hence, if a212(a112x∗1+a122x∗2+ b12) and (αk
1a

1
11−αk

2a
2
22)(a

2
11x

∗
1+

a212x
∗
2 + b21) have the same sign for k = LL or HH, then there exists η ̸= 0 such that

(5.51), (5.52) possess the same signs for each i = 1, 2, which implies that both the
eigenvectors vk1 , vk2 are containing in D̂k and hence mode k is weakly but not strongly
transitive. Alternatively, if a212(a112x∗1+a122x∗2+b12) and (αk

1a
1
11−αk

2a
2
22)(a

2
11x

∗
1+a

2
12x

∗
2+b

2
1)

have different signs, then there is no η such that (5.51) and (5.52) possess the same
signs and hence none of eigenvectors vk1 , vk2 is containing in D̂k, i.e., mode k is strongly
transitive. The proof for k = HL or LH can be similarly handled. Thus, the proof is
complete. �

Remark 5.14. Noticing that λk1, λk2 are complex conjugate for all the modes when
a112a

2
12 is negatively small enough, it is interesting to observe that as a112a212 increases

from a negatively infinite small value to a positive value a111a222, the transitivity of the
4 modes experiences from full strongly transitive to full non-strongly transitive.

Now, recalling the definition of normalized radial growth rate γrg in (5.39), we are
ready to present the generalized result for stability.

Theorem 5.5. Consider the noncooperative system with dynamics (5.5), (5.6) for
Aix

∗ + bi ̸= 0, i ∈ {1, 2} with stable subsystems (i.e., a111a222 > a112a
2
12). If some of the

modes are weakly but not strongly transitive, i.e., KST ⊂ K, then the Nash equilibrium
x∗ is asymptotically stable. Alternatively, if all the modes are strongly transitive, i.e.,
KST = K, and in addition, if a112γrg > 0 and a212γrg < 0 (resp., a112γrg < 0 and a212γrg > 0)
hold, then the Nash equilibrium x∗ in dynamics (5.5), (5.6) is asymptotically stable
(resp., unstable).

Proof : The result is a direct consequence of Proposition 5.4 and Proposition 5.5. �

We present the robust stability condition for the uncertain loss-averse parameters
αH
i ≥ αL

i as follows.

Corollary 5.1. Consider the noncooperative system with dynamics (5.5), (5.6) for
Aix

∗ + bi ̸= 0, i ∈ {1, 2}. If a111a222 > a112a
2
12 ≥ 0 holds, then the Nash equilibrium x∗ is

asymptotically stable for any αH
i ≥ αL

i , i = 1, 2.



122

Proof : The result is a direct consequence of Theorem 5.5 and Proposition 5.4 by
noting that KST = ∅ under a112a212 ≥ 0. �

Unstable Subsystems

In this section, we consider the case with unstable subsystems, i.e., a111a222 − a112a
2
12 < 0.

In this case, the eigenvalues λk1, λk2 must be real and satisfy λk1 < 0 and λk2 > 0 (see
Proposition 2.3 in Chapter 2) and hence for the subsystem under mode k there exists a
stable manifold and an unstable manifold characterized by the eigenvectors vk1 and vk2
respectively. Here, we notice that the analysis in terms of the approximated domains
in Proposition 5.3 still hold. Similar to the previous section, we present the condition
to determine the transitivity properties of the 4 modes and then show the stability.

Before we present a proposition, we note that the mode k ∈ K is strongly transitive
if no eigenvectors are containing in D̂k; the mode k is weakly but not strongly transitive
if only the stable eigenvector (i.e., vk1) is containing in D̂k; the mode k is non-weakly
transitive if the unstable eigenvector (i.e., vk2) is containing in D̂k.

Proposition 5.6. Consider the loss-aversion-based noncooperative system G(J) with
the pseudo-gradient dynamics (5.5), (5.6) for Aix

∗+bi ̸= 0, i ∈ {1, 2}. If a111a222 < a112a
2
12

holds, then none of the modes LL,HL,LH,HH is strongly transitive around the Nash
equilibrium x∗. If, in addition, a212(a112x∗1 + a122x

∗
2 + b12) and a211x∗1 + a212x

∗
2 + b21 possess

different (resp., same) signs, then the modes LL,HH are weakly transitive but LH,HL

are non-weakly transitive (resp., LH,HL are weakly transitive but LL,HH are non-
weakly transitive).

Proof : First, the result that one of the modes LL,HL,LH,HH is strongly transitive
around the Nash equilibrium x∗ is a direct consequence of Proposition 5.4 since
a112a

2
12 > a111a

2
22 > 0. Next, it follows from λk2 − αk

2a
2
22 > 0, k ∈ K, that the variables

(5.51) and (5.52) with i = 2 possess the same (resp., different) signs for all modes
k ∈ K when a212(a

1
12x

⋆
1 + a122x

⋆
2 + b12) and a211x

⋆
1 + a212x

⋆
2 + b21 have the same (resp.,

different) sign. Thus, when a212(a112x⋆1 + a122x
⋆
2 + b12) and a211x⋆1 + a212x

⋆
2 + b21 possess the

different signs, it follows that the unstable manifold characterized by the unstable
eigenvector vk2 is containing in D̂k only for k = LH,HL and hence the modes LH,HL

(resp., LL,HH) are non-weakly transitive and (resp., weakly transitive). Alternatively,
when a212(a112x⋆1 + a122x

⋆
2 + b12) and a211x⋆1 + a212x

⋆
2 + b21 possess the same signs, it follows

that the unstable manifold characterized by the unstable eigenvector vk2 is containing
in D̂k only for the modes k = LL,HH and hence the modes LL,HH (resp., LH,HL) are
non-weakly transitive and (resp., weakly transitive). �
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Figure. 5.10 A diagram showing the stability change and mode transitivity change along with
the change of a112a212.

Then, the following statement is immediate.

Theorem 5.6. Consider the noncooperative system with dynamics (5.5), (5.6) for
Aix

∗ + bi ≠ 0, i ∈ {1, 2}, with unstable subsystems (i.e., a111a222 < a112a
2
12). Then, the

Nash equilibrium x∗ is unstable for any αH
i ≥ αL

i , i = 1, 2.

Proof : The result is a direct consequence of Proposition 5.6. �

Remark 5.15. Theorem 5.6 reveals the fact that loss-aversion behavior are not able
to stabilize the unstable two-agent noncooperative system.

Discussion

In this subsection, we show a diagram summarizing the stability results derived from
the above 2 subsections in Fig. 5.10, which can be seen as a bifurcation diagram
illustrating the stability change and the mode transitivity change along with the change
of the bifurcation parameter a112a212. It turns out that with the change of the value
a112a

2
12, loss-aversion behavior may or may not destabilize the Nash equilibrium x∗.
First, recall that the eigenvalues λk1, λk2 defined in (5.47) are complex conjugate

and hence all of the 4 modes are strongly transitive for all the modes when a112a
2
12

is negatively small enough. In this case, loss-aversion behavior destabilizes the Nash
equilibrium x∗ when the integral of normalized radial growth rate γrg defined in (5.39)
satisfies a112γ < 0 and a212γ > 0 (see Theorem 5.5). Then, as the value of a112a212
increases, the eigenvalues λk1, λk2 tune to real for some modes k ∈ K and some of the
modes change to be weakly (but not strongly) transitive. In this case, loss-aversion
behavior does not destabilize the Nash equilibrium x∗. When a112a

2
12 increases to a

positive value, i.e., a112a212 > 0, then all of the 4 modes tune to weakly but not strongly
transitive and hence the Nash equilibrium x∗ is robust stability for any loss-averse
parameters αH

i ≥ αL
i (see Corollary 5.1). In this case, loss-aversion behavior never

destabilize the Nash equilibrium x∗ for any loss-averse parameters αH
i ≥ αL

i . Next, as
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a112a
2
12 increases to a positive value larger than a111a222 so that all of the subsystems are

unstable, it turns out that two of the four modes are non-weakly transitive and hence
the Nash equilibrium x∗ in unstable for any αH

i ≥ αL
i (see Theorem 5.6). In this case,

it can be seen from the result that loss-aversion behavior can not bring stabilization.

5.6 Illustrative Numerical Examples

In this section, we provide a couple of numerical examples in order to validate the
results in the paper.

Example 5.1. Consider the noncooperative system G(J) with A1 =
[ −2 −4

−4 −9

]
,

A2 =
[ −6 3

3 −2

]
, b1 = [−10,−5]T, b2 = [30,−25]T, c1 = 162.47, c2 = 0, where the

Nash equilibrium x∗ = [5,−5]T satisfies Aix
∗ + bi ̸= 0, i ∈ {1, 2} (Case 1 ). Letting

αL
1 = αL

2 = 1, αH
1 = 2, αH

2 = 3, Assumption 5.1 is satisfied. Figure 5.11 shows the
curves of J̇k

i (x) = 0, i = 1, 2, for all the modes k ∈ K. In this case, AT
k + Ak < 0 for

all k ∈ K, θ ∈ [0, 2π], and hence the normalized radial growth rates ρk(θ) < 0, k ∈ K,
imply γrg < 0. Hence, it follows from Theorem 5.5 that the Nash equilibrium x∗ is
asymptotically stable, which can be verified by the trajectories of states and payoffs
shown in Figs. 5.12 and 5.13.

Example 5.2. Consider the noncooperative system G(J) with A1 =
[ −2 4

4 −10

]
,

A2 =
[ −10 −4

−4 −2

]
, b1 = b2 = [0, 0]T, c1 = c2 = 0, where the Nash equilibrium

x∗ = [0, 0]T satisfies Aix
∗ + bi = 0, i ∈ {1, 2} (Case 2 ). Suppose that αL

1 = αH
1 = 6,

αL
2 = αH

2 = 9 for representing the case where the agents are not loss-averse. Then, the
eigenvalues of ALL = AHL = ALH = AHH are given by −15.0±29.2i, which imply that the
Nash equilibrium is stable with the identical subsystem dynamics for all the modes. Now,
suppose that both agents are loss-averse and let αL

1 = αL
2 = 1, then the eigenvalues of

Ak, k = LL,HL,LH,HH, are respectively given by −1.0±4.0i, −7.0±8.4i, −10.0±8.9i,
and −15.0± 29.2i so that Ak, k ∈ K, are still all stable matrices. Figure 5.14(a) shows
the domains of D̂k, k ∈ K. Noting that a112 > 0 and a212 < 0, it follows from Lemma 5.2
that the rotational direction is clockwise. Hence, we re-partition the state space from
Dk, k ∈ K, to identify the effective domains D̃k, k ∈ K, as shown in Fig. 5.14(b), and
hence derive the function of K(θ). Note that the integral of the normalized radial
growth rate is γrg =

∫ 2π

0
ρK(θ)(θ)dθ = 2

∫ π

0
ρK(θ)(θ)dθ = −0.3224 < 0. Hence, it follows
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Figure. 5.11 The curves of J̇k
i (x) = 0, i ∈ {1, 2}, k ∈ K, in Example 5.1.

from Theorem 5.2 that the Nash equilibrium is unstable since a112γrg < 0 and a212γrg > 0

even though all the subsystem matrices are stable. The result of Lemma 5.2 and
Theorem 5.2 can be verified from the trajectories of states and payoff values shown in
Figs. 5.15 and 5.16.

Example 5.3. Consider the noncooperative system G(J) with A1 =

[
−2 4

4 14

]T
,

A2 =

[
14 −4

−4 −2

]
, b1 = [0,−20]T, b2 = [0, 0]T, c1 = c2 = 0, where the Nash equilibrium

x∗ = [0, 0]T satisfies A1x
∗ + b1 ̸= 0, A2x

∗ + b2 = 0 (Case 3 ). Letting αL
1 = 2, αL

2 = 1,
αH
1 = 4, αH

2 = 3, the eigenvalues of Ak, k = LL,HL,LH,HH, are respectively given by
−3.0± 5.6i, −5.0± 7.4i, −5.0± 9.4i, and −7.0± 13.8i. The domains Dk, k ∈ K, the
approximated domains D̂k, k ∈ K, and the effective domains D̃k, k ∈ K, are already
shown in Fig. 5.7(a), (b), (c), respectively. Figure 5.17 shows the the normalized radial
growth rate ρK(θ)(θ), θ ∈ [0, 2π]. Note that the integral of the normalized radial growth
rate is

γrg =

∫ 2π

0

ρK(θ)(θ)dθ = 0.9520 > 0. (5.55)

Hence, it follows from Theorem 5.4 that the Nash equilibrium is stable since a112γrg > 0

and a212γrg < 0. The result of Theorem 5.4 can be verified from the trajectories of
states and payoff values shown in Figs. 5.18 and 5.19.
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Figure. 5.12 The approximated domains D̂k, k ∈ K, and an orbit with x̃ = x − x∗, in
Example 5.1.
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Figure. 5.13 Agents’ payoffs versus time in Example 5.1.

Figure. 5.14 The domains of Dk and D̃k, k ∈ K, in Example 5.2. (a): Dk, k ∈ K, (b): D̃k,
k ∈ K (obtained from (a) with clockwise rotational direction) from which K(θ) is determined.
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Figure. 5.15 The effective domains D̃k, k ∈ K, and an orbit in Example 5.2.
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Figure. 5.16 Agents’ payoffs versus time in Example 5.2.
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Figure. 5.17 Normalized radial growth rates ρk(θ), k ∈ K, and ρK(θ)(θ), θ ∈ [0, 2π], in
Example 5.3.
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Figure. 5.18 The effective domains D̃k, k ∈ K, and an orbit in Example 5.3.
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Figure. 5.19 Agents’ payoffs versus time in Example 5.3.

Example 5.4. Consider a noncooperative system with A1 =

[
−4 0.2

0.2 10

]
, A2 =[

−4.2 −0.2

−0.2 −4

]
, b1 = [0, 2005]T, b2 = [2000, 0]T, c1 = c2 = 0, where a111a222 > a112a

2
12

holds and the Nash equilibrium x∗ = [0, 0]T satisfies Aix
∗ + bi ̸= 0, i ∈ {1, 2}.

Let αL
1 = 3, αH

1 = 5, αL
2 = 4, αH

2 = 6 so that λk1, λk2 ∈ R hold for k ∈ K. In this
case, it follows from Proposition 5.4 that at least one of the 4 modes is weakly but not
strongly transitive and the Nash equilibrium x∗ is asymptotically stable. Furthermore,
it follows from Theorem 5.5 that the modes HH,LL,HL are strongly transitive but
mode LH is weakly but not strongly transitive. Figure 5.15 shows the approximated
cones D̂k, k ∈ K. The eigenvectors of the 4 modes are shown as colored lines in Fig. 5.15
where the dashed (resp., solid) lines denote the eigenvectors satisfying vki ̸∈ D̂k (resp.,
vki ∈ D̂k). It can be seen from the figure that only the mode LH is weakly but not
strongly transitive since the eigenvectors vk1 , vk2 are containing in the domain D̂k only
for k = LH. The trajectories of agents’ sensitivity parameters and payoff values under
the initial state x0 = [4, 1]T are shown in Fig. 5.21. It can be seen from the figure that
the mode is changed from LL to HL, HH, LH and never changed after LH, and hence
the modes HH,LL,HL are strongly transitive but mode LH is weakly but not strongly
transitive, which verifies Theorems 5.5, 5.5 and Proposition 5.4.

5.7 Chapter Conclusion

In this chapter, we investigated the stability conditions of the noncooperative switched
systems with loss-averse agents, where each agent under pseudo-gradient dynamics
exhibits lower sensitivity for the cases of losing payoffs. We characterized the notion
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Figure. 5.20 Phase portrait with an orbit where −0.2x̃1 − 4x̃2 = 0 and −4x̃1 + 0.2x̃2 = 0 are
the best response lines for agents 2 and 1.

of the flash switching phenomenon and examined stability properties in accordance
with the location of the Nash equilibrium for 3 cases. We revealed how the sensitivity
parameters influence the stability property of the system in terms of the dynamics,
partition of the state space, mode transition, and the normalized radial growth rate
for each of the 3 cases. One of the illustrative examples indicates that loss-aversion
behavior inspired by psychological consideration in prospect theory may result in
changing the stability property of the Nash equilibrium from stable to unstable.
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Figure. 5.21 Agents’ sensitivities and payoff values versus time.
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Chapter 6

Incorporation of Predictions of Other
Agents’ Behavior into
Pseudo-Gradient Dynamics

6.1 Introduction

In this chapter, we we connect cognitive hierarchy theory with the pseudo-gradient
dynamics in noncooperative systems to extend the pseudo-gradient dynamics with
some prediction behaviors under Level-k thinking. In the characterized framework, all
the agents are allowed to base their decisions on the predictions about the likely actions
of other agents with a bounded depth of reasoning. Each agent believes that he/she is
the most sophisticated person in the noncooperative system and makes the decision
according to some strategic reasoning of the other agents’ likely action. Depending
on a knowledge network of payoff functions, the modified pseudo-gradient dynamics
are presented under the assumption that the agents may be able to reasoning the
other agents’ best-response states and use these predicted states in the pseudo-gradient
dynamics. Some sufficient conditions are presented to guarantee stability of a Nash
equilibrium with uncertain sensitivity parameters or uncertain knowledge network.
The transition of the agents’ target state while increasing the depth of reasoning for a
two-agent noncooperative system with quadratic payoff functions is characterized. We
present the applications of our results to optical communication systems, homogeneous
oligopoly markets and differentiated oligopoly markets. Our result indicates that
to ensure asymptotic stability of the differentiated oligopoly markets with Cournot
competition, a larger market with more firms requires more differentiated products.
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6.2 Problem Formulation

6.2.1 Conventional Pseudo-Gradient Dynamics

Consider the noncooperative system G(J) defined in Chapter 2 with n number of
agents, where the set of overall agents is denoted by N = {1, . . . , n} and the agents
are playing noncooperative games. Let x = [x1, . . . , xn]

T = (xi, x−i) ∈ Rn denote the
state profile of all the agents, where xi ∈ R and x−i ∈ Rn−1 denote the state of agent
i and the state profile except agent i, respectively. Recall from Chapter 2 that the
conventional pseudo-gradient dynamics given by

ẋi(t) = αi
∂Ji(x(t))

∂xi
, i ∈ N , (6.1)

with αi ∈ R+, i ∈ N , capture the fact that the agents concern their own payoffs
(without taking into account the other agents’ payoffs) and myopically change their
states without any foresight on the future state. In this case, each agent’s best-response
state BRi(x−i(t)) corresponds to the largest value of Ji given the state profile x−i(t) and
satisfies ∂Ji(BRi(x−i(t)),x−i(t))

∂xi
= 0 under Assumption 2.1. Therefore, the best-response

state BRi(x−i(t)) for agent i, which does not depend on xi(t), is understood as the
target state of agent i at time t. For example, Fig. 6.1(a) shows the case of 2 agents
where the targeted best-response state BR2(x1(t)) for agent 2 is greater than x2(t) so
that agent 2 tries to improve its payoff function J2(x(t)) by moving upward in the
phase space. Under Assumption 2.1, since the Nash equilibrium x∗ satisfies (2.3), it
follows that

∂Ji(x
∗)

∂xi
= 0, i ∈ N , (6.2)

which imply ẋ(t) = 0 at the Nash equilibrium x∗ for the conventional pseudo-gradient
dynamics (6.1).

6.2.2 Prediction-Incorporated Pseudo-Gradient Dynamics

Involving Level -k thinking from cognitive hierarchy theory into the noncooperative
system G(J), we consider a scenario where some of the agents may base their decisions
on the predictions about the likely actions of other agents. To establish predictions of
such likely actions, it is important to notice that the information of the payoff functions
of these agents are essential for the agents. In this paper, we suppose that the agents
know the payoff functions of part of the overall agents so that the agents can predict
the behavior of these agents. Here, we characterize the relation of the possession of
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(a) (b)

Target of agent 1

(predicted by agent 2)

Target of Level-2

agent 2

Figure. 6.1 Moving directions of x2 of a two-agent noncooperative system with red (resp.,
blue) arrow representing the moving direction of agent 1 (resp., agent 2). (a): both agents
are Level-1, (b): agent 1 is Level-1 but agent 2 is Level-2. Agent 2 believes that agent 1 is
targeting on BR1(x2(t)) and hence the moving direction of its state is opposite in comparison
to Case (a).

the payoff information among the agents by defining a directed graph (termed as the
knowledge network) as explained below.

Knowledge network of payoff functions: Let the knowledge network be repre-
sented by a directed graph G(N , E), where E ⊆ {(j, i) ∈ N 2 : i ̸= j} denotes the set
of edges of the graph. The edge (j, i) directed from agent j to i indicates that agent i
can obtain the information of the payoff function Jj(·). The neighbor set of agent i
representing the set of agents whose payoff functions are known to agent i is denoted
by Ni , {j ∈ N : (j, i) ∈ E}. Among these agents in Ni, the set of agents with the
edges also directed from agent i is denoted by Npr1

i , {j ∈ Ni : (i, j) ∈ E}, whereas the
set of the rest of the other neighbor agents is denoted by Npr2

i , {j ∈ Ni : (i, j) ̸∈ E}
satisfying Ni = Npr1

i ∪ Npr2
i . For example, for the knowledge network G(N , E) shown

in Fig. 6.2, N2 = {1, 4} holds with Npr1
2 = {1} and Npr2

2 = {4}. This decomposition
of Ni is necessary when agents become sophisticated as explained later. Furthermore,
the adjacency matrix for G(N , E) is defined as Aad = [aij] ∈ Rn×n, where aij = 1 if
j ∈ Ni, and aij = 0 otherwise.

Assumption 6.1. The knowledge network is not a public information, i.e., only the
connections of (j, i) ∈ E, j ∈ N , and (i, j) ∈ E, j ∈ N , associated with agent i can be
known to agent i.
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1

2 3

45

Figure. 6.2 A knowledge network of payoff functions G(N , E). The arrows represent the fact
that the agent at the destination node knows the payoff function of the agent at the start
node.

For the following statements, we denote the set of Level-k agents that we define
below by Lk ⊆ N , k = 1, 2, . . ..

Level-1 agent: Without any prediction, agent i ∈ L1 who tries to improve
Ji(xi, x−i) by adjusting its state xi towards the targeted best-response state BRi(x−i)

based on the current state of the other agents x−i is referred to as a Level-1 agent.
The dynamic decision process of Level-1 agents is given by

ẋi(t) = αi
∂Ji(xi(t), x−i(t))

∂xi
, i ∈ L1, (6.3)

which is equivalent to the conventional pseudo-gradient dynamics (6.1).
Level-2 agent: A more sophisticated agent i ∈ L2 believes in the hypothesis that

all the other agents j ∈ N \ {i} are Level-1 following the pseudo-gradient dynamics
(6.3) and hence targeting on their own best-response states BRj(x−j) (even though
this hypothesis is not true in reality). Therefore, agent i tries to adjust its state xi
following the pseudo-gradient dynamics as if its neighbor agents j ∈ Ni were already
at their targeted best-response states BRj(x−j) instead of being based on the current
states xj. Those targeted best-response states BRj(x−j), j ∈ Ni, are regarded as
the predicted states of the agents from agent i’s point of view. For the other agents
j ∈ N \ {i,Ni}, since agent i does not possess the knowledge of their payoff functions,
agent i cannot predict their targeted best-response states and hence relies on the
current states xun−i , {xj}j∈N\{i,Ni}. Consequently, the pseudo-gradient dynamics for
Level-2 agents are given by

ẋi(t) = αi

∂Ji(xi(t), x
pr
−i(t), x

un
−i(t))

∂xi
, i ∈ L2, (6.4)

where xpr−i , {BRj(x−j)}j∈Ni
denotes the predicted states of the neighbor agents

calculated by agent i. In the case where agent i ∈ L2 has no access to the information
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of any other agent’s payoff function, i.e., Ni = ∅, it follows that (6.4) reduces to (6.3)
because no prediction can be made. For this reason, agent i can act as a Level-2 agent
only if at least one of the other agents’ payoff functions is known (i.e., Ni ̸= ∅).

An example of the moving direction of the state x(t) with n = 2, L1 = {1},
L2 = {2} and E = {(1, 2), (2, 1)} is elaborated in Fig. 6.1(b), whereas the case with
L1 = {1, 2} (which corresponds to the conventional pseudo-gradient dynamics) is shown
in Fig. 6.1(a).

Predictions under cognitive reasoning: It is important to notice that the
calculation of the predicted states xpr−i of the neighbor agents for agent i ∈ Lk with
k ≥ 3 is not as simple as the one defined in (6.4) because the neighbor agents in
Npr1

i and Npr2
i in Ni should be separately treated with different times of iterations of

cognitive reasoning. Specifically, agent i believes that the neighbor agents in Npr1
i are

making cognitive operations (predictions) about the likely targeted best-response state
of agent i and hence tries to be more sophisticated than these agents with multiple
cognitive operations for calculating the predicted state. However, agent i does not
need to make multiple cognitive operations to the rest of the neighbor agents in Npr2

i

since they are impossible to predict the targeted best-response state of agent i. In this
paper, the predicted state of agent j ∈ Npr2

i calculated by agent i ∈ Lk is defined with
only one iteration of BRj(x−j), which has the same expression as in xpr−i of (6.4).

Denoting the profile of the predicted states of the neighbor agents in Npr1
i and

Npr2
i for agent i ∈ Lk by xpr1−i and xpr2−i = {BRj(x−j)}j∈Npr2

i
, respectively, we emphasize

that the actual targeted best-response state of agent i (following the pseudo-gradient
dynamics as if its neighbor agents were already at the predicted states) is given by
BRi(x

pr1
−i , x

pr2
−i , x

un
−i). Before we give the detailed expression of the predicted states of

the neighbor agents j ∈ Npr1
i for agent i ∈ Lk, we note that the predicted state of agent

j is in general different from the actual targeted best-response state of agent j (even
when j ∈ Lk−1 is true in reality) for noncooperative systems with more than 2 agents.
Recalling the fact from (6.4) that xpr1−j is given by {BRs(x−s)}s∈Npr1

j
for agent j ∈ L2,

it follows that the actual targeted best-response state of agent j ∈ L2 is given by

BRj(x
pr1
−j , x

pr2
−j , x

un
−j) = BRj(x

pr
−j, x

un
−j)

= BRj({BRs(x−s)}s∈Nj
, {xs}s∈N\{j,Nj}), j ∈ L2. (6.5)

However, since Nj is unknown for agent i by Assumption 6.1, agent i ∈ L3 may hardly
predict the actual targeted best-response state of neighbor agent j ∈ L2 with uncertain
Nj \ {i} even with full knowledge of the other agents’ payoff functions when n > 2.
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In this paper, we assume that agent i ∈ Lk evaluates the profile xpr1−i of the targeted
best-response states of the neighbor agents j ∈ Npr1

i under the naive hypothesis that
agent j is aware of the payoff function of only agent i, i.e., Nj = Npr1

j = {i}, Npr2
j = ∅,

because agent i does not have the information of Nj. In this case, it follows from
(6.5) with Nj = {i} that the predicted states of the neighbor agents j ∈ Npr1

i for agent
i ∈ L3 is evaluated as BRj(BRi(x−i), x−(j,i)) with x−(j,i) ∈ Rn−2 denoting the state
profile except agents j and i (i.e., x−(j,i) = {xs}s∈N\{j,i}), and hence the actual targeted
best-response state of agent i ∈ L3 is given by

BRi(x
pr1
−i , x

pr2
−i , x

un
−i) = BRi({ϕi

j}j∈Npr1
i
, {φj}j∈Npr2

i
, xun−i)

= BRi({ϕi
j}j∈Npr1

i
, {φj}j∈Npr2

i
, {xs}s∈N\{j,Nj}), (6.6)

with ϕi
j = BRj(BRi(x−i), x−(j,i)) and φj = BRj(x−j). Likewise, for agent i ∈ L4, with

the hypothesis of Npr1
j = {i}, Npr2

j = ∅, it follows from (6.6) that the predicted states
of the neighbor agents j ∈ Npr1

i are evaluated as

BRj(BRi(BRj(x−j), x−(i,j)), x−(j,i)), (6.7)

which can be further used in characterizing the actual targeted best-response state
(6.6) of agent i ∈ L4 with ϕi

j replaced by the predicted states (6.7). Subsequently, the
above procedure continues for higher-level agents.

Based on the above discussion, we define the functions BRk
j,i(x) to characterize the

profile xpr1−i , {BRk
j,i(x)}j∈Npr1

i
of the predicted states of the neighbor agent j in Npr1

i

evaluated by agent i ∈ Lk given by

BR2
j,i(x) = BRj(x−j), (6.8)

BR3
j,i(x) = BRj(BRi(x−i), x−(j,i)), (6.9)

BR4
j,i(x) = BRj(BRi(BRj(x−j), x−(i,j)), x−(j,i)). (6.10)

For the higher-level agents, BRk
j,i(x) can be recursively expressed by

BRk
j,i(x) = BR3

j,i(BR
k−2
j,i (x), x−j), k ≥ 4. (6.11)

Note that the function BRk
j,i(x) evaluated by agent i is defined as the mapping with

k − 1 times of iterations of BRj(x−j) along with BRi(x−i) itself. The predicted state
BRk

j,i(x) coincides with the actual targeted best-response state of agent j ∈ Lk−1 when
n = 2 as the hypotheses of Nj = Npr1

j = {i}, Npr2
j = ∅ hold in reality. An example
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showing the predicted state and the actual targeted best-response state of agent 2

coincides is shown in Fig. 6.3(b) with L2 = {2} and L3 = {1}.
Level-k agent: The prediction-incorporated pseudo-gradient dynamics for Level-k

agents with k ≥ 3 are given by

ẋi(t) = αi

∂Ji(xi(t), x
pr1
−i (t), x

pr2
−i (t), x

un
−i(t))

∂xi
, i ∈ Lk. (6.12)

recalling xpr1−i = {BRk
j,i(x)}j∈Npr1

i
and xpr2−i = {BRj(x−j)}j∈Npr2

i
. Once again, the essence

of the general form (6.12) is that agent i ∈ Lk tries to adjust its state xi following the
pseudo-gradient dynamics as if its neighbor agents j ∈ Npr1

i (resp., Npr2
i ) were already

at the predicted states BRk
j,i(x) (resp., BRj(x−j)) instead of the current states xj.

Remark 6.1. Note that the dynamics (6.12) for k = 2 is compatible with (6.4) since
(xpr1−i , x

pr2
−i ) reduces to xpr−i for agent i ∈ L2. Moreover, (6.12) for k = 1 is also compatible

with (6.3) for agent i ∈ L1 with Npr1
i = Npr2

i = ∅ since xun−i reduces to x−i in (6.3). In
the case where no agent is the destination of agent i ∈ Lk in G(N , E) with k ≥ 3, i.e.,
Npr1

i = ∅ or Npr2
i = Ni, (6.12) reduces to (6.4). Therefore, agent i can act as a Level-k

agent with k ≥ 3 only if there is at least one edge directed from agent i to its neighbor
Ni, i.e., Npr1

i ̸= ∅ (e.g., agent 4 of the knowledge network shown in Fig. 6.2 is never a
Level-k agent with k ≥ 3).

In this paper, since the agents usually have only a finite depth of reasoning, we
suppose that there is a limit ξ ∈ Z+ to the depth to which the agents can reason
strategically, i.e., k ≤ ξ. Note that the Nash equilibrium x∗ is the equilibrium of the
pseudo-gradient dynamics (6.3), (6.4), and (6.12) for arbitrary set of L1, . . . ,Lξ, because
∂Ji(xi,x−i)

∂xi
= 0, ∂Ji(xi,x

pr
−i,x

un
−i)

∂xi
= 0, and ∂Ji(xi,x

pr1
−i ,x

pr2
−i ,x

un
−i)

∂xi
= 0 at x∗. Henceforth, we focus

on the discussion about this Nash equilibrium under the prediction-incorporated
pseudo-gradient dynamics.

6.2.3 Motivating Example and Problem Statement

In this section, we first show a numerical example where the Level-k thinking sig-
nificantly changes the behavior of the dynamical system, and then present the main
problems of this paper. Specifically, consider a 5-agent noncooperative system with
the knowledge network of payoff functions G(N , E) given by Fig. 6.2, where agent
4 is never a Level-3 agent under Npr1

4 = ∅ and all the other agents are able to be a
Level-k agent with k ≥ 3. In this case, it follows from N3 = {1, 2} with Npr1

3 = {1}
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(a) (b)

Target of Level-2 

agent 1

Target of Level-2

agent 2

Target of Level-2

agent 2

Target of Level-3 

agent 1

Figure. 6.3 Target states of the agents of a two-agent noncooperative system under E =
{(1, 2), (2, 1)} with red (resp., blue) arrow representing the moving direction of agent 1 (resp.,
agent 2). (a): L2 = {1, 2}, (b): L2 = {2}, L3 = {1}. The predicted state BR3

2,1(x) predicted
by agent 1 in (b) is the same as the actual targeted best-response state of agent 2 given by
BR2(BR1(x2(t))).

and Npr2
3 = {2} that the prediction-incorporated pseudo-gradient dynamics (6.12) for

agent 3 being a Level-k agent with k ≥ 2 is given by

ẋ3(t) = α3

∂J3(BR
k−1
1,3 (x(t)),BR2(x−2(t)), x−(1,2)(t))

∂x3
, (6.13)

where the current state x4 and x5 are used because the information of J4(·) and J5(·)
are unknown (i.e., agents 4 and 5 are not included in N3). The trajectories of the agents’
state under the prediction-incorporated pseudo-gradient dynamics with L3 = N \ {4}
and L2 = {4} are shown as dashed lines in Fig. 6.4, whereas the trajectories under the
conventional pseudo-gradient dynamics (6.3) with L1 = N are shown as solid lines. It
can be seen from this example that Level-k thinking may destabilize the noncooperative
dynamical system.

Motivation: The information of the agents’ sensitivity parameters and the knowledge
network of the payoff functions may not be precisely observed by anybody. Assume
that there is a system manager who is authorized to control the amount of incentives
in order to stabilize a Nash equilibrium x∗ by encouraging agents to converge to it. A
fundamental question is how to ensure stability of the Nash equilibrium with those
uncertain information.
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Figure. 6.4 Trajectories of the agents’ state x(t). Solid lines: conventional pseudo-gradient
dynamics with L1 = N = {1, 2, 3, 4, 5}, dashed lines: L3 = {1, 2, 3, 5} and L2 = {4} under
the knowledge network of payoff functions given by Fig. 6.2.

Problem: Consider the noncooperative system G(J) with the pseudo-gradient
dynamics under predictions. Suppose that the agents have only bounded rationality
on reasoning with Level-k ≤ ξ ∈ Z+. Our main objectives are two folds: (i) find the
stability conditions of the Nash equilibrium x∗ with arbitrary sensitivity parameters αi,
i ∈ N , with the knowledge network G(N , E); (ii) develop a framework to guarantee
stability of the Nash equilibrium x∗ under the unknown sensitivity parameters αi,
i ∈ N , with uncertain cognitive hierarchy levels of the agents.

6.3 Stability Analysis of Prediction-
Incorporated Pseudo-Gradient Dynamics

In this section, we characterize stability properties of the Nash equilibrium for the
noncooperative system G(J) with pseudo-gradient dynamics (6.3), (6.4), and (6.12).
Specifically, we first assume that the agents are at Level-k ≤ ξ = 2, and then extend
the results for the cases with ξ = 3 and ξ > 3. The reason why we present the
results for ξ = 2 and ξ = 3 in separate subsections comes from the fact that the
neighbor agents of each agent should be decomposed into 2 groups as we did in
Section 6.2.2 where we characterized the prediction-incorporated pseudo-gradient
dynamics for ξ > 2. For the statement of the following results, let α , (α1, . . . , αn)
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and A(J, α, x) ,


α1

∂2J1(x)

∂x2
1

· · · α1
∂2J1(x)
∂x1∂xn

... . . . ...
αn

∂2JN (x)
∂xn∂x1

· · · αn
∂2Jn(x)
∂x2

n

, which is exactly the Jacobian matrix

of the (conventional) pseudo-gradient dynamics (6.3) for L1 = N (all the agents are at
Level-1). Since this case is addressed in Chapter 2, we consider the case where at least
one agent is in L2, . . . ,Lξ in this paper.

Noncooperative Systems with Mixed Level-1 and Level-2 Agents

In this section, we present the stability conditions of the Nash equilibrium for the
case where the agents have bounded rationality on reasoning with Level-k ≤ 2, i.e.,
L1 ∪ L2 = N with L2 ̸= ∅. First, we present a sufficient condition for determining
stability of the Nash equilibrium x∗ with arbitrary αi, i ∈ N . For the statement of

the following results, we define Λ(x) ,


∂BR1(x−1)

∂x
...

∂BRn(x−n)
∂x

 ∈ Rn×n. Note that the diagonal

terms of Λ(x) are all zero because BRi(x−i) does not depend on xi. The vector fields of
a two-agent noncooperative system are introduced later for comparisons with systems
with higher cognitive hierarchy level agents (see Section 6.3 below).

Proposition 6.1. Consider the noncooperative system G(J) with the agents either at
Level-1 or Level-2 satisfying L1 ∪L2 = N so that the agents follow the pseudo-gradient
dynamics (6.3) and (6.4) depending on their cognitive hierarchy levels. Let

Π2(J, α, x) = [rowi(Π2(J, α, x))]i∈N ∈ Rn×n, (6.14)

with

rowi(Π2(J, α, x)) ,

{
rowi(A(J, α, x)), i ∈ L1;

rowi(R2(J, α, x)), i ∈ L2,
(6.15)

where

R2(J, α, x) ,A(J, α, x) ◦ (1n1Tn − Aad)

+ (A(J, α, x) ◦ Aad)Λ(x) ∈ Rn×n. (6.16)

If there exists α̂ ∈ RN
+ such that

ΠT
2 (J, α̂, x

∗) + Π2(J, α̂, x
∗) < 0, (6.17)
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then the Nash equilibrium x∗ satisfying (2.1) is locally asymptotically stable for any
sensitivity parameters αi ∈ R+, i ∈ N .

Proof First, it follows from

∑
i∈N\Nj

∂2Jj(x
∗)

∂xj∂xi

∂xi
∂x

=
∑
i∈N

(1− aji)
∂2Jj(x

∗)

∂xj∂xi

∂xi
∂x

= rowj(A(J, 1n, x
∗)) ◦ (1Tn − rowj(Aad)) ∈ R1×n, (6.18)∑

i∈Nj

∂2Jj(x
∗)

∂xj∂xi

∂BRi(x
∗
−i)

∂x
=
∑
i∈N

aji
∂2Jj(x

∗)

∂xj∂xi

∂BRi(x
∗
−i)

∂x

=
(
rowj(A(J, 1n, x

∗)) ◦ rowj(Aad)
)
Λ(x∗) ∈ R1×n, (6.19)

for j ∈ N that the Jacobian matrix of the pseudo-gradient dynamics (6.4) at the
equilibrium x∗ with L2 = N is given by

diag[α]


∑

i∈N\N1

∂2J1(x∗)
∂x1∂xi

∂xi

∂x
+
∑
i∈N1

∂2J1(x∗)
∂x1∂xi

∂BRi(x
∗
−i)

∂x

...∑
i∈N\Nn

∂2Jn(x∗)
∂xn∂xi

∂xi

∂x
+
∑
i∈Nn

∂2Jn(x∗)
∂xn∂xi

∂BRi(x
∗
−i)

∂x


= R2(J, α, x

∗). (6.20)

Recalling that A(J, α, x) is the Jacobian matrix of the pseudo-gradient dynamics (6.3)
with L1 = N , it follows that the Jacobian matrix of the pseudo-gradient dynamics
(6.3), (6.4) at x∗ given L1 and L2 is given by Π2(J, α, x). Hence, linearizing the system
dynamics (6.4) with x̃ , x− x∗ around x∗ yields

˙̃x(t) = Π2(J, α, x
∗)x̃(t). (6.21)

Consider the Lyapunov function candidate V (x̃) = x̃TPx̃ with a positive-definite matrix
P , diag[ α̂1

α1
, . . . , α̂N

αN
]. Since

ΠT
2 (J, α, x

∗)P + PΠ2(J, α, x
∗) = ΠT

2 (J, α̂, x
∗) + Π2(J, α̂, x

∗) < 0,

is satisfied, it follows using the linearized dynamics (6.21) that

V̇ (x̃(t)) = x̃T(t)(ΠT
2 (J, α̂, x

∗)+Π2(J, α̂, x
∗))x̃(t)<0, (6.22)
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around x∗ and hence the Nash equilibrium x∗ is asymptotically stable for all αi ∈ R+,
i ∈ N . �

Remark 6.2. Note that Π2(J, α̂, x
∗) is the Jacobian matrix of the prediction-incorporated

pseudo-gradient dynamics consisting of (6.3), (6.4) depending on the adjacency matrix
Aad of the knowledge network G(N , E) of the payoff functions. In the case where none
of the agents has the access to the information of the other agents’ payoff functions,
i.e., Ni = ∅, i ∈ N , the matrices R2(J, α̂, x

∗) and Π2(J, α̂, x
∗) reduce to A(J, α, x∗),

which is exactly the Jacobian matrix of the conventional pseudo-gradient dynamics
(6.1).

Remark 6.3. Note that the (i, j)th element of Λ(x∗) is given by

∂BRi(x
∗
−i)

∂xj
= −∂

2Ji(x
∗)

∂xi∂xj
/
∂2Ji(x

∗)

∂x2i
, j ̸= i, (6.23)

where we used the fact that

∂g(x)

∂x
= −∂

2f(x, g(x))

∂x∂y
/
∂2f(x, g(x))

∂y2
, (6.24)

holds for g(x) = argmaxy f(x, y) with a continuous function f : R×R → R [99]. Thus,
the matrix Λ(x∗) can be written as

Λ(x∗) = −diag[ψ]A(J, 1n, x
∗) + I, (6.25)

with ψ = [1/∂2J1(x∗)
∂x2

1
, . . . , 1/∂2Jn(x∗)

∂x2
n

], which implies that

R2(J, α, x
∗) = A(J, α, x∗) + (A(J, α, x∗) ◦Aad)(Λ(x

∗)− I)

= diag[α]Â− diag[α](Â ◦ Aad)diag[ψ]Â, (6.26)

with Â = A(J, 1n, x
∗). For example, supposing that G(N , E) is a complete graph, it

follows from Â◦Aad = Â−diag−1[ψ] that R2(J, α, x
∗) = 2diag[α]Â−diag[α]Âdiag[ψ]Â.

Remark 6.4. For the noncooperative system satisfying [Π2]ij ≥ 0, i, j ∈ N , i ̸=
j, it follows from the properties of Metzler matrices that the condition (6.17) in
Proposition 6.1 is also a necessary condition for the Nash equilibrium x∗ to be locally
asymptotically stable for arbitrary α. Note that the typical numerical examples
satisfying [Π2]ij = [R2]ij ≥ 0, i, j ∈ N , i ≠ j, can be found in oligopoly markets given
in Section 6.5 below with L1 = ∅ and L2 = N .
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Now, we characterize the stability conditions for arbitrary cognitive hierarchy levels
of the agents. In this case, Π2(J, α, x) cannot be constructed to determine stability as
in Proposition 6.1. The following result provides some sufficient conditions to guarantee
stability with arbitrary L1 and L2.

Proposition 6.2. Consider the noncooperative system G(J) with the agents either at
Level-1 or Level-2 satisfying L1 ∪L2 = N so that the agents follow the pseudo-gradient
dynamics (6.3) and (6.4) depending on their cognitive hierarchy levels. If the payoff
functions Ji(x), i ∈ N , satisfy

∂2Ji(x
∗)

∂x2i
< δi, i ∈ N , (6.27)

with δi , min(δ1i , δ
2
i ), δ1i , −

∑
j ̸=i |

∂2Ji(x
∗)

∂xi∂xj
|, and

δ2i ,−
∑
j ̸=i

∣∣∣(1− aij)
∂2Ji(x

∗)

∂xi∂xj
+
∑
s∈Ni

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x
∗
−s)

∂xj

∣∣∣
−
∑
s∈Ni

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x
∗
−s)

∂xi
, (6.28)

then the Nash equilibrium x∗ satisfying (2.1) is locally asymptotically stable for any
cognitive level sets L1 and L2 and any sensitivity parameters αi ∈ R+, i ∈ N . If, in
addition, (6.27) holds with

δi = δ2i , −
∑
j ̸=i

∣∣∣∂2Ji(x∗)
∂xi∂xj

∣∣∣−∑
j ̸=s

∑
s ̸=i

∣∣∣∂2Ji(x∗)
∂xi∂xs

∂BRs(x
∗
−s)

∂xj

∣∣∣, (6.29)

then the Nash equilibrium x∗ is locally asymptotically stable for any knowledge network
G(N , E) of the payoff functions.

Proof First, note from the expression (6.20) that the (i, i)th element of R2(J, 1n, x
∗)

is given by
∂2Ji(x

∗)

∂x2i
+
∑
s∈Ni

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x
∗
−s)

∂xi
, i ∈ N , (6.30)

whereas the (i, j)th element is given by

(1− aij)
∂2Ji(x

∗)

∂xi∂xj
+
∑
s∈Ni

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x
∗
−s)

∂xj
, j ̸= i,
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recalling that aij = 1 if j ∈ Ni, and aij = 0 otherwise. Then, the condition (6.27) with
δi , min(δ1i , δ

2
i ) indicates that the matrix Π2(J, 1n, x

∗) (or, equivalently, Π2(J, α, x
∗))

is strictly diagonally dominant because the matrices R2(J, α, x
∗) and A(J, α, x∗) are all

strictly diagonally dominant. Now, it follows from Gershgorin’s circle theorem [95] that
the matrix Π(J, α, x∗) is Hurwitz and hence the Nash equilibrium x∗ is asymptotically
stable for any L1 and L2 and any αi, i ∈ N . Next, it follows from

δ2i ≤−
∑
j ̸=i

∣∣∣∂2Ji(x∗)
∂xi∂xj

∣∣∣−∑
j∈N

∑
s∈Ni

∣∣∣∂2Ji(x∗)
∂xi∂xs

∂BRs(x
∗
−s)

∂xj

∣∣∣
=−

∑
j ̸=i

∣∣∣∂2Ji(x∗)
∂xi∂xj

∣∣∣−∑
j ̸=i

∑
s∈Ni

∣∣∣∂2Ji(x∗)
∂xi∂xs

∂BRs(x
∗
−s)

∂xj

∣∣∣
−
∑
s∈Ni

∣∣∣∂2Ji(x∗)
∂xi∂xs

∂BRs(x
∗
−s)

∂xi

∣∣∣
≤−

∑
j ̸=i

∣∣∣(1− aij)
∂2Ji(x

∗)

∂xi∂xj
+
∑
s∈Ni

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x
∗
−s)

∂xj

∣∣∣
−
∑
s∈Ni

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x
∗
−s)

∂xi
= δ2i , i ∈ N , (6.31)

and δ2i ≤ δ1i , i ∈ N , that δ2i ≤ min(δ1i , δ
2
i ) holds for i ∈ N , i.e., the conditions (6.27)

along with (6.29) indicate that (6.27) holds with δi = min(δ1i , δ
2
i ), i ∈ N . The proof is

complete. �

Remark 6.5. The sufficient conditions in Propositions 6.1 and 6.2 have an inclusive
relation since a strictly diagonally dominant matrix Π2(J, α̂, x

∗) [100, Theorem 3] in
Proposition 6.2 indicates that there must exists α̂ ∈ RN

+ satisfying the condition (6.17)
in Proposition 6.1. This is consistent with common sense that guaranteeing stability
for some arbitrary parameters may may require stringent stability conditions.

Noncooperative Systems with Mixed Level-1, Level-2, and Level-3 Agents

In this section, we present the stability conditions of the Nash equilibrium for the
case where the agents have bounded rationality on reasoning with Level-k ≤ 3, i.e.,
L1 ∪ L2 ∪ L3 = N . For the statement of the following results, we decompose the
knowledge network G(N , E) into an undirected network Gud(N , Eud) and a directed
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network Gd(N , Ed) with

Eud , {(j, i) ∈ E : (i, j) ∈ E}, (6.32)

Ed , {(j, i) ∈ E : (i, j) ̸∈ E}. (6.33)

It is immediate that E = Eud ∪ Ed and Eud ∩ Ed = ∅. Let the adjacency matrices of
Gud(N , Eud) and Gd(N , Ed) be denoted by Bud = [budij ] ∈ Rn×n and Bd = [bdij ] ∈ Rn×n,
respectively. Here, note that Bud is symmetric and satisfies

Bud +Bd = Aad. (6.34)

Depending on the adjacency matrix B1, we define a matrix

W3(J, α, x) =

 (row1(A(J, α, x)) ◦ row1(Bud))F
3
1 (x)

...
(rown(A(J, α, x)) ◦ rown(Bud))F

3
n(x)

 , (6.35)

with F 3
i (x) ,


∂BR1(BRi(x−i),x−(1,i))

∂x
...

∂BRn(BRi(x−i),x−(n,i))

∂x

 ∈ Rn×n, i ∈ N , where ∂BRi(BRi(x−i),x−(i,i))

∂x
is

defined as 0.
Now, a sufficient condition is provided in the following theorem to determine the

stability of the Nash equilibrium x∗ with arbitrary αi, i ∈ N .

Proposition 6.3. Consider the noncooperative system G(J) with the agents at Level-
k ≤ 3 satisfying L1 ∪ L2 ∪ L3 = N so that the agents follow the pseudo-gradient
dynamics (6.3), (6.4), and (6.12) depending on their cognitive hierarchy levels. Let

Π3(J, α, x) = [rowi(Π3(J, α, x))]i∈N ∈ Rn×n, (6.36)

with

rowi(Π3(J, α, x)) ,


rowi(A(J, α, x)), i ∈ L1;

rowi(R2(J, α, x)), i ∈ L2;

rowi(R3(J, α, x)), i ∈ L3,

(6.37)

where R2(J, α, x) ∈ Rn×n is defined in (6.16) and

R3(J, α, x) ,A(J, α, x) ◦ (1n1Tn − Aad) +W3(J, α, x)

+ (A(J, α, x) ◦Bd)Λ(x) ∈ Rn×n. (6.38)
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If there exists α̂ ∈ RN
+ such that

ΠT
3 (J, α̂, x

∗) + Π3(J, α̂, x
∗) < 0, (6.39)

then the Nash equilibrium x∗ satisfying (2.1) is locally asymptotically stable for any
sensitivity parameters αi ∈ R+, i ∈ N .

Proof First, it follows from (6.18) and

∑
i∈Npr1

j

∂2Jj(x
∗)

∂xj∂xi

∂BRi(BRj(x−j), x−(i,j))

∂x

=
∑
i∈N

budji
∂2Jj(x

∗)

∂xj∂xi

∂BRi(BRj(x
∗
−j), x−(i,j))

∂x

=
(
rowj(A(J, 1n, x

∗)) ◦ rowj(Bud)
)
F 3
j (x

∗) ∈ R1×n,∑
i∈Npr2

j

∂2Jj(x
∗)

∂xj∂xi

∂BRi(x
∗
−i)

∂x
=
∑
i∈N

bdji
∂2Jj(x

∗)

∂xj∂xi

∂BRi(x
∗
−i)

∂x

=
(
rowj(A(J, 1n, x

∗)) ◦ rowj(Bd)
)
Λ(x∗) ∈ R1×n, (6.40)

hold for j ∈ N that the Jacobian matrix of the pseudo-gradient dynamics (6.12) at x∗

with L3 = N is given by

diag[α]


∑

i∈N\N1

∂2J1(x∗)
∂x1∂xi

∂xi

∂x
+
∑

i∈Npr2
1

∂2J1(x∗)
∂x1∂xi

∂BRi(x
∗
−i)

∂x
+
∑

i∈Npr1
1

∂2J1(x∗)
∂x1∂xi

∂BRi(BR1(x∗
−1),x

∗
−(i,1)

)

∂x

...∑
i∈N\Nn

∂2Jn(x∗)
∂xn∂xi

∂xi

∂x
+
∑

i∈Npr2
n

∂2Jn(x∗)
∂xn∂xi

∂BRi(x
∗
−i)

∂x
+
∑

i∈Npr1
n

∂2Jn(x∗)
∂xn∂xi

∂BRi(BRn(x∗
−n),x

∗
−(i,n)

)

∂x


= A(J, α, x∗) ◦ (1n1Tn − Aad) + (A(J, α, x∗) ◦Bd)Λ(x

∗) +W3(J, α, x
∗) = R3(J, α, x

∗).

(6.41)

Recalling that A(J, α, x) (resp., R2(J, α, x)) is the Jacobian matrix of the pseudo-
gradient dynamics (6.3), (6.4) with L1 = N (resp., L2 = N ), it follows that the
Jacobian matrix of the pseudo-gradient dynamics (6.3), (6.4), and (6.12) at x∗ given
L1, L2, and L3 is given by Π3(J, α, x). The rest of the proof can be similarly obtained
as in the proof of Proposition 6.1. �

Now, we characterize the stability conditions for arbitrary cognitive hierarchy levels
of the agents. In this case, Π3(J, α, x) cannot be constructed to determine stability as
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in Proposition 6.3. The following result provides some sufficient conditions to guarantee
stability with arbitrary L1, L2, and L3.

Proposition 6.4. Consider the noncooperative system G(J) with the agents at Level-
k ≤ 3 satisfying L1 ∪ L2 ∪ L3 = N so that the agents follow the pseudo-gradient
dynamics (6.3), (6.4), and (6.12) depending on their cognitive hierarchy levels. If the
payoff functions Ji(x), i ∈ N , satisfy (6.27) with δi , min(δ1i , δ

2
i , δ

3
i ) for

δ3i ,−
∑
j ̸=i

∣∣∣(1− aij)
∂2Ji(x

∗)

∂xi∂xj
+
∑
s∈Ni

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x
∗
−s)

∂xj

+
∑

s∈Npr1
i

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x
∗
−s)

∂xi

∂BRi(x
∗
−i)

∂xj

∣∣∣
−
∑

s∈Npr2
i

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x
∗
−s)

∂xi
, (6.42)

then the Nash equilibrium x∗ is locally asymptotically stable for any cognitive level
sets L1, L2, and L3 and any sensitivity parameters αi ∈ R+, i ∈ N . If, in addition,
(6.27) holds with

δi = δ3i , δ2i −
∑
j ̸=i

∑
s ̸=i

∣∣∣∣∂2Ji(x∗)∂xi∂xs

∂BRs(x
∗
−s)

∂xi

∂BRi(x
∗
−i)

∂xj

∣∣∣∣ , (6.43)

then the Nash equilibrium x∗ is locally asymptotically stable for any knowledge network
G(N , E) of the payoff functions.

Proof First, it is worth noting that
∂BRs(BRi(x

∗
−i),x

∗
−(s,i)

)

∂xj
=

∂BRs(x∗
−s)

∂xi

∂BRi(x
∗
−i)

∂xj
+

∂BRs(x∗
−s)

∂xj

for j ̸= i, s ≠ i, whereas
∂BRs(BRi(x

∗
−i),x

∗
−(s,i)

)

∂xj
= 0 for j = i, s ̸= i. Now, note from

(6.41) that the (i, j)th element of R3(J, 1n, x
∗) is given by [R3]ij = (1− aij)

∂2Ji(x
∗)

∂xi∂xj
+∑

s∈Ni

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x∗
−s)

∂xj
+
∑

s∈Npr1
i

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x∗
−s)

∂xi

∂BRi(x
∗
−i)

∂xj
, whereas [R3]ii =

∂2Ji(x
∗)

∂x2
i

+∑
s∈Npr2

i

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x∗
−s)

∂xi
recalling that aij = 1 if j ∈ Ni, and aij = 0 otherwise. Then,

the condition (6.27) with δi , min(δ1i , δ
2
i , δ

3
i ) indicates that the matrix Π3(J, 1n, x

∗)

(or, equivalently, Π3(J, α, x
∗)) is strictly diagonally dominant because R3(J, α, x

∗),
R2(J, α, x

∗), and A(J, α, x∗) are strictly diagonally dominant. Then, it follows from
Gershgorin’s circle theorem [95] that the matrix Π3(J, α, x

∗) is Hurwitz and hence the
Nash equilibrium x∗ is asymptotically stable for any L1, L2, L3, and any αi, i ∈ N .
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Next it follows from

δ3i ≤−
∑
j ̸=i

∣∣∣∂2Ji(x∗)
∂xi∂xj

∣∣∣−∑
j∈N

∑
s∈Ni

∣∣∣∂2Ji(x∗)
∂xi∂xs

∂BRs(x
∗
−s)

∂xj

∣∣∣
−
∑
j ̸=i

∑
s∈Npr1

i

∣∣∣∂2Ji(x∗)
∂xi∂xs

∂BRs(x
∗
−s)

∂xi

∂BRi(x
∗
−i)

∂xj

∣∣∣
≤−

∑
j ̸=i

∣∣∣∂2Ji(x∗)
∂xi∂xj

∣∣∣−∑
j ̸=i

∑
s∈Ni

∣∣∣∂2Ji(x∗)
∂xi∂xs

∂BRs(x
∗
−s)

∂xj

∣∣∣
−
∑
j ̸=i

∑
s∈Npr1

i

∣∣∣∂2Ji(x∗)
∂xi∂xs

∂BRs(x
∗
−s)

∂xi

∂BRi(x
∗
−i)

∂xj

∣∣∣
−
∑

s∈Npr2
i

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x
∗
−s)

∂xi

≤−
∑
j ̸=i

∣∣∣[R3]ij

∣∣∣−∑
s∈Npr2

i

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x
∗
−s)

∂xi
= δ3i , (6.44)

and δ3i ≤ δ2i ≤ min(δ1i , δ
2
i ), i ∈ N , that δ3i ≤ min(δ1i , δ

2
i , δ

3
i ) holds for i ∈ N , i.e., the

conditions (6.27) along with (6.43) imply that (6.27) holds with δi = min(δ1i , δ
2
i , δ

3
i ),

i ∈ N . Thus, the proof is complete. �

Noncooperative Systems with Higher Cognitive Hierarchy Level Agents

In this section, we generalize the results in Sections 6.3 and 6.3 to the case where
the agents have bounded rationality on reasoning with Level-k ≤ ξ with ξ ≥ 3,
i.e., L1 ∪ · · · ∪ Lξ = N . For the statement of following results, we define a matrix

Wk(J, α, x) =

 (row1(A(J, α, x)) ◦ row1(Bud))F
k
1 (x)

...
(rown(A(J, α, x)) ◦ rown(Bud))F

k
n (x)

 with F k
i (x) ,


∂BRk

1,i(x)

∂x
...

∂BRk
n,i(x)

∂x

 ∈

Rn×n, i ∈ N , where BRk
j,i(·) is defined in (6.11). Now, a sufficient condition is provided

in the following theorem to guarantee stability without knowing αi, i ∈ N .

Theorem 6.1. Consider the noncooperative system G(J) with the agents at Level-
k ≤ ξ with ξ ≥ 3 satisfying L1 ∪ · · · ∪ Lξ = N so that the agents follow the pseudo-
gradient dynamics (6.3), (6.4), and (6.12) depending on their cognitive hierarchy levels.
Let

Πξ(J, α, x) = [rowi(Πξ(J, α, x))]i∈N ∈ Rn×n, (6.45)
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with

rowi(Πξ(J, α, x)) ,


rowi(A(J, α, x)), i ∈ L1;

rowi(R2(J, α, x)), i ∈ L2;
...

...
rowi(Rξ(J, α, x)), i ∈ Lξ,

(6.46)

where R2(J, α, x) ∈ Rn×n is defined in (6.16) and

Rk(J, α, x) , A(J, α, x) ◦ (1n1Tn −Aad) +Wk(J, α, x) + (A(J, α, x) ◦Bd)Λ(x), k ≥ 3.

(6.47)
If there exists α̂ ∈ RN

+ such that

ΠT
ξ (J, α̂, x

∗) + Πξ(J, α̂, x
∗) < 0, (6.48)

then the Nash equilibrium x∗ satisfying (2.1) is locally asymptotically stable for any
sensitivity parameters αi ∈ R+, i ∈ N .

Proof The proof is similar to the proof of Theorem 6.3. �

Now, we characterize the stability conditions for arbitrary cognitive hierarchy levels
of the agents L1, · · · ,Lξ.

Theorem 6.2. Consider the noncooperative system G(J) with the agents at Level-
k ≤ ξ with ξ > 3 satisfying L1 ∪ · · · ∪ Lξ = N so that the agents follow the pseudo-
gradient dynamics (6.3), (6.4), and (6.12) depending on their cognitive hierarchy levels.
Let Ψα

si = ϵ0si + · · ·+ ϵαsi and ψα
si = |ϵsi|0 + · · ·+ |ϵsi|α with ϵsi =

∂BRs(x∗
−s)

∂xi

∂BRi(x
∗
−i)

∂xs
and

α ∈ Z+. If the payoff functions Ji(x), i ∈ N , satisfy (6.27) with δi = min(δ1i , δ
2
i , . . . δ

ξ
i )

and

δki ,−
∑

s∈Npr1
i

∂2Ji(x
∗)

∂xi∂xs
mik

si −
∑

s∈Npr2
i

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x
∗
−s)

∂xi

−
∑
j ̸=i

∣∣∣(1− aij)
∂2Ji(x

∗)

∂xi∂xj
+
∑

s∈Npr1
i

∂2Ji(x
∗)

∂xi∂xs
mjk

si +
∑

s∈Npr2
i

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x
∗
−s)

∂xj

∣∣∣
(6.49)
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for 3 < k ≤ ξ with

mjk
si ,

∂BRk
s,i(x

∗)

∂xj
=



∂BRs(x∗
−s)

∂xi

∂BRi(x
∗
−i)

∂xj
Ψ

k−3
2

si +
∂BRs(x∗

−s)

∂xj
Ψ

k−3
2

si , k ∈ Zo, j ̸= i, j ̸= s;
∂BRs(x∗

−s)

∂xi

∂BRi(x
∗
−i)

∂xj
Ψ

k−4
2

si +
∂BRs(x∗

−s)

∂xj
Ψ

k−2
2

si , k ∈ Ze, j ̸= i, j ̸= s;

0, k ∈ Zo, j = i;
∂BRs(x∗

−s)

∂xi
ϵ
k−2
2

si , k ∈ Ze, j = i;

ϵ
k−1
2

si , k ∈ Zo, j = s;

0, k ∈ Ze, j = s,

,

(6.50)

then the Nash equilibrium x∗ satisfying (2.1) is locally asymptotically stable for any
cognitive level sets L1, · · · ,Lξ and any sensitivity parameters αi ∈ R+, i ∈ N . If, in
addition, (6.27) holds with δi = δξi with

δki =



−
∑
j ̸=i

∣∣∣∂2Ji(x
∗)

∂xi∂xj

∣∣∣−∑
j ̸=s

∑
s ̸=i

∣∣∂2Ji(x
∗)

∂xi∂xs

∂BRs(x∗
−s)

∂xj

∣∣ψ k−3
2

si

−
∑
j ̸=i

∑
s ̸=i

∣∣∂2Ji(x
∗)

∂xi∂xs

∂BRs(x∗
−s)

∂xi

∂BRi(x
∗
−i)

∂xj

∣∣ψ k−3
2

si , k ∈ Zo;

−
∑
j ̸=i

∣∣∣∂2Ji(x
∗)

∂xi∂xj

∣∣∣−∑
j ̸=s

∑
s ̸=i

∣∣∂2Ji(x
∗)

∂xi∂xs

∂BRs(x∗
−s)

∂xj

∣∣ψ k−2
2

si

−
∑
j ̸=i

∑
s ̸=i

∣∣∂2Ji(x
∗)

∂xi∂xs

∂BRs(x∗
−s)

∂xi

∂BRi(x
∗
−i)

∂xj

∣∣ψ k−4
2

si , k ∈ Ze,

(6.51)

then the Nash equilibrium x∗ is locally asymptotically stable for any knowledge network
G(N , E) of the payoff functions.

Proof First, note from (6.8)–(6.11) that ∂BRk
s,i(x

∗)

∂xj
is understood as 0 when j = i (resp.,

j = s) for an odd (resp., even) number k ∈ Z+. Furthermore, ∂BRk
s,i(x

∗)

∂xj
is understood by

∂BRs(x∗
−s)

∂xi
ϵ
k−2
2

si (resp., ϵ
k−1
2

si ) when j = i (resp., j = s) for an even (resp., odd) k ∈ Z+. For

the other cases (i.e., j ̸= i, j ̸= s), ∂BRk
s,i(x

∗)

∂xj
=

∂BRs(BRi(BRk−2
s,i (x∗),x∗

−(i,s)
),x∗

−(s,i)
)

∂xj
is given by

∂BRs(x∗
−s)

∂xi
(
∂BRi(x

∗
−i)

∂xs

∂BRk−2
s,i (x∗)

∂xj
+

∂BRi(x
∗
−i)

∂xj
)+

∂BRs(x∗
−s)

∂xj
= ϵsi

∂BRk−2
s,i (x∗)

∂xj
+

∂BRs(x∗
−s)

∂xi

∂BRi(x
∗
−i)

∂xj
)+

∂BRs(x∗
−s)

∂xj
. Now, it follows from ∂BR2

s,i(x
∗)

∂xj
=

∂BRs(x∗
−s)

∂xj
and ∂BR3

s,i(x
∗)

∂xj
=

∂BRs(x∗
−s)

∂xi

∂BRi(x
∗
−i)

∂xj
+

∂BRs(x∗
−s)

∂xj
for j ̸= i and j ≠ s that ∂BRk

s,i(x
∗)

∂xj
can be recursively expressed by (6.50). It

follows that the (i, j)th element of Rk(J, 1n, x
∗) given by [Rk]ij = (1 − aij)

∂2Ji(x
∗)

∂xi∂xj
+∑

s∈Npr2
i

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x∗
−s)

∂xj
+
∑

s∈Npr1
i

∂2Ji(x
∗)

∂xi∂xs
mjk

si , j ̸= i, whereas [Rk]ii = ∂2Ji(x
∗)

∂x2
i

+∑
s∈Npr2

i

∂2Ji(x
∗)

∂xi∂xs

∂BRs(x∗
−s)

∂xi
+
∑

s∈Npr1
i

∂2Ji(x
∗)

∂xi∂xs
mik

si . Hence, the condition (6.27) with δi =
min(δ1i , . . . , δ

ξ
i ) indicates that the matrices Πξ(J, 1n, x

∗) (or, equivalently Πξ(J, α, x
∗))
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is strictly diagonally dominant because Rξ(J, α, x
∗), . . . , R2(J, α, x

∗), A(J, α, x∗) are
strictly diagonally dominant. Now, it follows from Gershgorin’s circle theorem [95]
that the matrix Πξ(J, α, x

∗) is Hurwitz and hence the Nash equilibrium x∗ is locally
asymptotically stable for any L1, . . . ,Lξ, and any αi, i ∈ N . Next, using mik

si = 0 and

msk
si = ϵ

k−1
2

si for an odd k and using mik
si =

∂BRs(x∗
−s)

∂xi
ϵ
k−2
2

si and msk
si = 0 for an even k, it

follows from the inequalities (B.6) and (B.7) in Appendix B that δki ≤ δki holds for any
k ≥ 3. Recalling δ3i ≤ min(δ1i , δ

2
i , δ

3
i ) and noting from (6.51) that δk+1

i ≤ δki holds for
any k ≥ 3, it follows that δξi ≤ min(δ1i , . . . δ

ξ
i ), i.e., the conditions (6.27) along with

δi = δξi imply that (6.27) holds with δi = min(δ1i , . . . , δ
ξ
i ), i ∈ N . The proof is complete.

�

Remark 6.6. Note that the accumulation ψα
si or Ψα

si = 0 for α < 0 and α = 0 can
be understood as 0 and 1, respectively. In this case, the expression (6.51) for δki is
compatible with (6.29) and (6.43) for k = 2 and k = 3, respectively. Furthermore, the
expression (6.49) for δki is compatible with δ2i and δ3i defined in (6.28) and (6.28) for
k = 2 and k = 3, respectively. Therefore, the results in Theorem 6.2 are understood as
a synthesis of the ones in Propositions 6.2 and 6.4.

Remark 6.7. Consider the noncooperative systems with the quadratic payoff functions
Ji(x), i ∈ N , given by

Ji(x) =
1

2
xTAix+ bTi x+ ci, i ∈ N , (6.52)

where Ai ,

a
i
11 · · · ai1n
... . . . ...
ain1 · · · ainn

 ∈ Rn×n with aiii < 0 (indicating that Ji(x) is strictly

concave with respect to xi) and aiij = aiji, bi , [bi1, . . . , b
i
n]

T ∈ Rn, and ci ∈ R, i ∈ N .
In this case, the best-response state BRi(x−i) is given by

BRi(x−i) = −
∑

j ̸=i a
i
ijxj + bii
aiii

, i ∈ N , (6.53)

so that ∂BRi(x
∗
−i)

∂xj
= −aiij

aiii
holds for i ̸= j. Supposing that Â =

 row1(A1)
...

rown(An)

 is

nonsingular, it follows that there exists a unique Nash equilibrium x∗ given by x∗ =
−Â−1b ∈ Rn for b = [b11, . . . , b

n
n]

T. In this case, the conditions in Theorems 6.1 and
6.2 can further guarantee globally asymptotic stability of x∗. Moreover, the condition
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(6.51) can be explicitly expressed by

δki =−
∑
j ̸=i

∣∣∣aiij∣∣∣−∑
j ̸=i

∑
s ̸=i

∣∣∣aiis assiasss

aiij
aiii

∣∣∣(σ0
si + . . .+ σ

k−3
2

si )

−
∑
j ̸=s

∑
s ̸=i

∣∣∣aiisassjasss
∣∣∣(σ0

si + . . .+ σ
k−3
2

si ), k ∈ Zo; (6.54)

δki =−
∑
j ̸=i

∣∣∣aiij∣∣∣−∑
j ̸=i

∑
s ̸=i

∣∣∣aiis assiasss

aiij
aiii

∣∣∣(σ0
si + . . .+ σ

k−4
2

si )

−
∑
j ̸=s

∑
s ̸=i

∣∣∣aiisassjasss
∣∣∣(σ0 + . . .+ σ

k−2
2 ), k ∈ Ze. (6.55)

with σsi = |ϵsi| = | a
s
si

asss

aiis
aiii
| ≥ 0. In the case where the payoff functions are nonquadratic,

it follows from (6.23) that δki can also be explicitly expressed by (6.54) and (6.55) with
aiij replaced by ∂2Ji(x

∗)
∂xi∂xj

, i, j ∈ N .

Remark 6.8. It follows from Chapter 2 that the condition (6.27) with δi = δ1i , δ1i
guarantees asymptotic stability of the Nash equilibrium for the conventional pseudo-
gradient dynamics for any sensitivity parameters. Furthermore, note that δk+1

i ≤ δki
holds for any k ∈ Z+, which implies that the condition δi = δξi in Theorem 6.2 requires
a smaller δξi for a noncooperative system with higher cognitive hierarchy levels.

The following proposition reveals the fact that, compared to the conventional
pseudo-gradient dynamics, Level-ξ thinking may destabilize the Nash equilibrium x∗

for a two-agent noncooperative system with ξ = 4, 8, 12, . . ., but never change the
stability of x∗ for other cases. An example showing the destabilized vector fields when
ξ = 4 are illustrated in Fig. 6.5, which also indicates that agents’ Level-k thinking may
bring more equilibria in the pseudo-gradient dynamics. In such a case, even though the
Nash equilibria are still the equilibria of the prediction-incorporated pseudo-gradient
dynamics, the trajectory of the agents’ state may be attracted to other equilibria when
we change ξ.

Proposition 6.5. Consider the two-agent noncooperative system G({J1, J2}) with
both the agents at Level-ξ following either the pseudo-gradient dynamics (6.3), (6.4),
or (6.12) under the complete knowledge network G(N , E) with Lξ = {1, 2} and
E = {(1, 2), (2, 1)}. If the payoff functions J1(x) and J2(x) satisfy detA(J, 12, x

∗) > 0

(resp., detA(J, 12, x
∗) < 0) for ξ ∈ Z+ satisfying ξ ̸= 4m for any m ∈ Z+, then the

Nash equilibrium x∗ satisfying (2.1) is locally asymptotically stable (resp., unstable) for
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Level-1 agents Level-2 agents

Level-3 agents Level-4 agents

Figure. 6.5 Vector fields of the prediction-incorporated pseudo-gradient dynamics of a two-agent
noncooperative system with a unique Nash equilibrium x∗ = [0, 0]T and Level-ξ agents for ξ =
1, 2, 3, 4. The red solid lines: x1 = BR1(x2); blue solid lines: x2 = BR2(x1); red dash-doted
lines: x1 = BR1(BR2(BR1(x2))); blue dash-doted lines: x2 = BR2(BR1(BR2(x1))). When
ξ = 4, there exists 9 equilibria in the pseudo-gradient dynamics with x∗ being destabilized.

any sensitivity parameters α1, α2 ∈ R+. Alternatively, if the payoff functions J1(x) and
J2(x) satisfy

∣∣∣∂2J1(x∗)
∂x1∂x2

∂2J2(x∗)
∂x2∂x1

∣∣∣ − ∂2J1(x∗)
∂x2

1

∂2J2(x∗)
∂x2

2
< 0 (resp., > 0) for ξ ∈ Z+ satisfying

ξ = 4m with some m ∈ Z+, then the Nash equilibrium x∗ is locally asymptotically
stable (resp., unstable) for any sensitivity parameters α1, α2 ∈ R+.
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Proof Note that when ξ is even (i.e., ξ = 2m for some m ∈ Z+), it follows that
Πξ(J, α, x

∗) = diag[α1τ1, α2τ2] with

τ1 =
(∂

2J1(x∗)
∂x2

1

∂2J2(x∗)
∂x2

2

)ξ/2 − (∂2J1(x∗)
∂x1∂x2

∂2J2(x∗)
∂x2∂x1

)ξ/2
∂2J2(x∗)

∂x2
2

(∂2J1(x∗)
∂x2

1

∂2J2(x∗)
∂x2

2

)ξ/2−1
, (6.56)

τ2 =
(∂

2J1(x∗)
∂x2

1

∂2J2(x∗)
∂x2

2

)ξ/2 − (∂2J1(x∗)
∂x1∂x2

∂2J2(x∗)
∂x2∂x1

)ξ/2
∂2J1(x∗)

∂x2
1

(∂2J1(x∗)
∂x2

1

∂2J2(x∗)
∂x2

2

)ξ/2−1
. (6.57)

In this case, when ξ/2 is odd (i.e., ξ = 4m+ 2 for some m ∈ Z0), it follows from the
monotonically increasing function f(x) = xξ/2 that detA(J, 12, x

∗) = ∂2J1(x∗)
∂x2

1

∂2J2(x∗)
∂x2

2
−

∂2J1(x∗)
∂x1∂x2

∂2J2(x∗)
∂x2∂x1

> 0 (resp., < 0) indicates τ1, τ2 < 0 (resp., > 0). Alternatively,

when ξ/2 is even (i.e., ξ = 4m for some m ∈ Z+), it follows that
∣∣∣∂2J1(x∗)

∂x1∂x2

∂2J2(x∗)
∂x2∂x1

∣∣∣ −
∂2J1(x∗)

∂x2
1

∂2J2(x∗)
∂x2

2
< 0 (resp., > 0) indicates τ1, τ2 < 0 (resp., > 0). Therefore, the

results for the case where ξ is even is immediate since τ1, τ2 < 0 (resp., > 0) implies
the Jacobian matrix Πξ(J, α, x

∗) = diag[α1τ1, α2τ2] of the system dynamics (6.12)
is stable (resp., unstable). Next, consider the case with odd ξ (i.e., ξ = 2m + 1

for a m ∈ Z0). In this case, Πξ(J, α, x
∗) =

[
α1

∂2J1(x∗)
∂x2

1
α1

∂2J1(x∗)
∂x1∂x2

τ

α2
∂2J2(x∗)
∂x2∂x1

τ α2
∂2J2(x∗)

∂x2
2

]
where τ =

(∂2J1(x∗)
∂x1∂x2

∂2J2(x∗)
∂x2∂x1

) ξ−1
2 /
(∂2J1(x∗)

∂x2
1

∂2J2(x∗)
∂x2

2

) ξ−1
2 . Furthermore, detΠξ(J, α, x

∗) is given by

α1α2

[
(∂

2J1(x∗)
∂x2

1

∂2J2(x∗)
∂x2

2
)ξ − (∂

2J1(x∗)
∂x1∂x2

∂2J2(x∗)
∂x2∂x1

)ξ
]

(∂
2J1(x∗)
∂x2∂x1

∂2J2(x∗)
∂x2

2
)ξ−1

, (6.58)

which possesses the opposite sign as detA(J, 12, x
∗) for an odd number ξ. Therefore,

the results are immediate since detA(J, 12, x
∗) > 0 (resp., < 0) implies the Jacobian

matrix Πξ(J, α, x
∗) of the system dynamics (6.12) is stable (resp., unstable) with

negative diagonal terms. �

Next, we characterize the transition of the agents’ targeted best-response state
with respect to the cognitive level ξ ∈ Z+ in a two-agent noncooperative system
with Lξ = {1, 2} and quadratic payoff functions (6.52). Specifically, denote the
targeted best-response state of agents Lξ = {1, 2} for ξ ∈ Z+ at time t as xξtgt(t) =
[xξtgt1(t), x

ξ
tgt2(t)]

T ∈ R2, where xξtgti(t) is the targeted best-response state of agent
i ∈ {1, 2}. Recalling that the predicted state BRξ

j,i(x) evaluated by agent i ∈ Lξ

coincides with the targeted best-response state of agent j ∈ Lξ−1 for n = 2 (i.e.,
BRξ

j,i(x(t)) = xξ−1
tgtj(t), i, j ∈ {1, 2}, i ̸= j), it follows that the targeted best-response
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state xξtgt(t) with ξ ≥ 2 is given by

xξtgt(t) =

[
BR1(BR

ξ
2,1(x(t)))

BR2(BR
ξ
1,2(x(t)))

]
=

[
BR1(x

ξ−1
tgt2(t))

BR2(x
ξ−1
tgt1(t))

]
,

whereas x1tgt(t) = [BR1(x2(t)),BR2(x1(t))]
T is understood as the targeted best-response

state state in the conventional pseudo-gradient dynamics. Now, it follows from the
best-response mapping (6.53) that the transition of the targeted best-response state
with respect to the cognitive level follows the recursive relation given by

xξ+1
tgt (t) = Bxξtgt(t) + C, ξ = 1, 2, 3, . . . , (6.59)

with x1tgt(t) = Bx(t) + C, where

B , Λ(·) =

[
0 −a112

a111

−a212
a222

0

]
, C =

[
− b11

a111

− b22
a222

]
. (6.60)

Noticing that the recursive relation (6.59) possesses a similar expression as the best-
response dynamics [16] given with slight abuse of notation by

x(t+ 1) = Bx(t) + C, t = 0, 1, 2, . . . , (6.61)

where Bx∗ + C = x∗ holds and hence the Nash equilibrium x∗ is the fixed point of
(6.61). Here, since both of the eigenvalues λ1, λ2 of B satisfy λ21 = λ22 = a112a

2
12/a

1
11a

2
22,

it follows from the property of discrete-time linear systems that the agents’ targeted
best-response state xξtgt(t) converges to the Nash equilibrium x∗ as ξ → ∞ for any
x(t) ∈ R2 when

∣∣a112a212/a111a222∣∣ < 1. An example showing Level-ξ agents’ targeted
best-response state xξtgt(t) with ξ = 1, . . . , 8 is illustrated in Fig. 6.6(b) where the
agents’ targeted best-response state xξtgt(t) converges to the Nash equilibrium x∗ as
ξ → ∞.

6.4 Incentive-Based Stabilization by a System Man-
ager

In this section, assuming the existence of the system manager who has all the information
of the payoff functions Ji(x), i ∈ N , and is authorized to design an incentive rule, we
generalize the stabilization method via zero-sum tax/subsidy approach in Chapter 2



158

(a) (b)

Target of Level-3

agent 2

Target of Level-3

agent 1

Figure. 6.6 Target states of the agents of a two-agent noncooperative system with the agents
at different hierarchy levels. (a): both agents are Level 3; (b): both the agents are Level-
ξ with ξ = 1, 2, 3, 4, . . .. The knowledge network of payoff functions are considered with
E = {(1, 2), (2, 1)}.

to ensure stability of a Nash equilibrium for the agents at Level-k ≤ ξ with ξ > 1.
Consider the incentivized payoff functions

J̃i(x) , Ji(x) + pKi (x), i ∈ N , (6.62)

with the quadratic incentive functions

pKi (x) ,
1

2
kii(xi − x∗i )

2 − 1

2

∑
j ̸=i

kjj(xj − x∗j)
2/(n− 1)

+
∑

j ̸=i
kij(xi − x∗i )(xj − x∗j), i ∈ N , (6.63)

where K = {kij}i,j∈N ∈ K , {K ∈ Rn×n : kii ≤ 0, i ∈ N , kij = −kji, i, j ∈ N , i ≠ j}.
In this case, the sum of all the incentive functions satisfy

∑
i∈N pKi (x) = 0 for all x ∈ Rn

and hence the system manager serves merely as a mediator in the noncooeprative
system to assure that every subsidy is financed by taxes taken from the others, i.e.,∑

i∈N J̃i(x) =
∑

i∈N Ji(x). Furthermore, the Nash equilibrium x∗ of G(J) remains the
Nash equilibrium of G(J̃) (see Chapter 2).

Assuming that the cognitive hierarchy levels for each of the agents are known, we
present a sufficient condition to ensure stabilization for the Nash equilibrium x∗.

Corollary 6.1. Consider the incentivized noncooperative system G(J̃) with the agents
at Level-k ≤ ξ with ξ ≥ 3 satisfying L1 ∪ · · · ∪ Lξ = N so that the agents follow the
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pseudo-gradient dynamics (6.3), (6.4), and (6.12) with Ji(x) replaced by incentivized
J̃i(x), depending on their cognitive hierarchy levels. If there exists α̂ ∈ RN

+ such that

ΠT
ξ (J̃ , α̂, x

∗) + Πξ(J̃ , α̂, x
∗) < 0, (6.64)

then the incentive functions (6.63) guarantees that the Nash equilibrium x∗ is asymp-
totically stabilized for any sensitivity parameters αi ∈ R+, i ∈ N .

Proof The result is a direct consequence of Theorem 6.1. �

Now, supposing that the cognitive hierarchy levels for each of the agents are
uncertain, the following result provides some sufficient conditions to guarantee stability
without knowing L1, · · · ,Lξ.

Corollary 6.2. Consider the incentivized noncooperative system G(J̃) with the agents
at Level-k ≤ ξ with ξ ≥ 3 satisfying L1 ∪ · · · ∪ Lξ = N so that the agents follow the
pseudo-gradient dynamics (6.3), (6.4), and (6.12) with Ji(x) replaced by incentivized
J̃i(x), depending on their cognitive hierarchy levels. If the matrix K ∈ K in (6.63)
satisfies

kii < δi −
∂2Ji(x

∗)

∂xi2
, i ∈ N , (6.65)

with δi = min(δ1i , . . . , δ
ξ
i ) for δki , k = 1, . . . , ξ, defined in (6.28) and (6.49) with ∂2Ji(x

∗)
∂xi∂xj

replaced by ∂2Ji(x
∗)

∂xi∂xj
+ kij, and ∂BRi(x

∗
−i)

∂xj
replaced by −(∂

2Ji(x
∗)

∂xi∂xj
+ kij)/(

∂2Ji(x
∗)

∂xi∂xi
+ kii),

i, j ∈ N , then the incentive functions (6.63) guarantees that the Nash equilibrium x∗

is asymptotically stabilized for any cognitive level sets L1, · · · ,Lξ and any sensitivity
parameters αi ∈ R+, i ∈ N . If, in addition, (6.65) holds with δi = δξi defined in
(6.54), (6.55) with aiij replaced by ∂2Ji(x

∗)
∂xi∂xj

+ kij, i, j ∈ N , then the Nash equilibrium
x∗ is locally asymptotically stable for any knowledge network G(N , E) of the payoff
functions.

Proof The result is a direct consequence of Theorem 6.2 by noting from (6.23) that
∂B̃Ri(x

∗
−i)

∂xj
= −(∂

2Ji(x
∗)

∂xi∂xj
+ kij)/(

∂2Ji(x
∗)

∂x2
i

+ kii) for j ̸= i. �

It can be easily found that n number of inequalities characterized by (6.65) are
always solvable for K ∈ K, because kii, i ∈ N , can be taken to be sufficiently small
so that each agent’s own payoff is dominant compared to the effect by the other
agents. Different from Corollary 6.1, Corollary 6.2 gives contribution to find the
explicit lower boundary for kii, i ∈ N , guaranteeing asymptotic stabilization without
knowing G(N , E).
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6.5 Applications With Numerical Examples

In this section, a couple of numerical examples are presented for illustrating the results
and the conditions concerning the proposed stabilization method by incentive functions.

6.5.1 Application to Optical Communication System

Consider a power control problem in optical communication system with n channels
who compete with each other on quality of service characterized by channel optical
signal-to-noise ratio (OSNR). Each channel adjusts its input power xi ∈ R+ to maximize
its profit [101] given by

Ji(x) = βi ln(1 +
aixi∑

j ̸=i Γijxj + σ
)− γixi, i ∈ N , (6.66)

where βi ∈ R+ is the earning rate for optical communication quality, σ ∈ R+ is the
constant noise power, ai ∈ R+ is a channel specific parameter, Γij ∈ R+, j ̸= i,
are the channel gains, and γi ∈ R+, i ∈ N , denote the price per unit power. It
follows from ∂Ji(x)/∂xi =

aiβi∑
j ̸=i Γijxj+σ+aixi

− γi that the Nash equilibrium x∗ satisfying

aix
∗
i +

∑
j ̸=i Γijx

∗
j = aiβi

γi
− σ, i ∈ N , is unique and given by Γ̃−1b̃ where Γ̃ij = Γij,

j ̸= i, Γ̃ii = ai, i ∈ N , and b̃i =
aiβi

γi
− σ, i ∈ N , when the matrix Γ̃ is non-singular.

Furthermore, it is obtained that

∂2Ji(x)

∂xi∂xj
=


−aiβiΓij

(
∑

j ̸=i Γijxj+σ+aixi)2
, j ̸= i;

−a2i βi

(
∑

j ̸=i Γijxj+σ+aixi)2
, j = i.

(6.67)

Example 6.1. Consider n = 3 for the optical communication system and let a1 = 0.74,
a2 = 0.79, a3 = 0.52, β1 = 3.656, β2 = 4.28, β3 = 7, Γ12 = 2.5, Γ13 = 1.4, Γ21 = 1.8,
Γ23 = 1.8, Γ31 = 3.7, Γ32 = 1.0, γ1 = 4, γ2 = 4, γ3 = 1, and σ = 0.0043, so that
there exists a unique Nash equilibrium given by x∗ = [1.7568, 2.7188, 4.2384]T. In
this example, since AT(J, 13, x

∗) + A(J, 13, x
∗) < 0 holds, it follows that the Nash

equilibrium x∗ is asymptotically stable in the conventional pseudo-gradient dynamics
for any sensitivity parameters. Figure 6.7 shows the trajectories of agents’ states under
the pseudo-gradient dynamics (6.3), (6.4), (6.12) with L3 = {1, 2} and agent 3 at
Level-k ≤ 3 under 8 different knowledge graphs satisfying {(2, 1), (1, 2), (3, 1)} ⊆ E,
where agent 3 is understood as a Level-1 agent if {(1, 3)} ̸⊂ E and {(2, 3)} ̸⊂ E, a
Level-2 agent if {(2, 3)} ⊂ E but {(1, 3), (3, 2)} ̸⊂ E, and a Level-3 agent otherwise.
In the simulation, the initial state is set to x(0) = [1, 4, 2]T with random α satisfying
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Figure. 6.7 Trajectories of x(t) under the incentive function (6.63) with 8 different knowledge
graphs satisfying {(2, 1), (1, 2), (3, 1)} ⊆ E. All the agents are Level-3, i.e., L3 = {1, 2, 3}.
The diverged dashed lines in (a) are simulated under E = {(2, 1), (1, 2), (3, 1), (3, 2)}.

α1, α2 ∈ [2, 4] and α3 ∈ [4, 6]. It can be seen from Fig. 6.7(a) that the Nash equilibrium
x∗ may be unstable under Level-3 thinking for some knowledge graphs (see the diverged
dashed lines which correspond to the case where L3 = {1, 2} and L1 = {3} under
E = {(2, 1), (1, 2), (3, 1), (3, 2)}).

Now, it follows from Corollary 6.2 that the incentive mechanism (6.62) along with
the incentive function (6.63) with k11 = k22 = −0.12 and k33 = −0.262 satisfying
(6.65) with δi = δξi defined in (6.54) for ξ = 3 guarantees that the Nash equilibrium
x∗ is asymptotically stabilized for any cognitive level sets L1, L2,L3, any sensitivity
parameters αi ∈ R+, i ∈ N , and any knowledge network G(N , E). This result can be
verified by the trajectories of the agents’ state shown in Fig. 6.7(b).
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6.5.2 Application to Cournot Games in Homogeneous Oligopoly

Consider a market being composed of n firms selling homogeneous products produced
by themselves, where the market price (inverse demand) function [97] is given by

λ = λ0 −
∑n

i=1
βixi, (6.68)

where xi ∈ R+ denotes the quantity of the produced products, βi ∈ R+ denotes the
market power of the firm-i, and λ0 ∈ R+ is a market specific parameter representing
the cap price. In this market, firms compete in quantities rather than prices according
to the payoff functions given by

Ji(x) = λxi − Ci(xi), i ∈ N , (6.69)

where C(·) denotes the production cost of firm-i given by

Ci(xi) = aix
2
i + bixi, i ∈ N , (6.70)

with ai ≥ 0 and bi > 0. Here, it is straightforward to see that increasing the production
quantity xi may result in decreasing the market price λ significantly for a large market
power βi. Therefore, the market powers βi, i ∈ N , are understood as the parameters
representing the sensitivity of the market in terms of the influence of individual
firms by manipulating the supply of the product. It follows from ∂Ji(x)/∂xi =

−2(ai + βi)xi −
∑

j ̸=i αjxj + λ0 − bi that the Nash equilibrium x∗ satisfying −2(ai +

βi)x
∗
i −
∑

j ̸=i βjx
∗
j + λ0 − bi = 0, i ∈ N , is unique and given by −Â−1b with Âij = −βj ,

j ̸= i, Âii = −2(ai + βi), i ∈ N , and bi = λ0 − bi, i ∈ N , when the matrix Â is
non-singular. Moreover, since ∂2Ji(x

∗)
∂xi∂xj

= Âij < 0, it follows from the properties of
Metzler matrices that the Nash equilibrium is asymptotically stable (for arbitrary α)
under the conventional pseudo-gradient dynamics if and only if there exists α̂ ∈ RN

+

such that AT(J, α̂, x∗) +A(J, α̂, x∗) = ÂTdiag[α̂] + diag[α̂]Â < 0. Supposing that the
knowledge network is a complete graph, the following result is immediate.

Theorem 6.3. Suppose that the knowledge network is a complete graph. Then,
it follows that the Nash equilibrium x∗ of the Cournot game (6.68)–(6.70) under
the pseudo-gradient dynamics (6.4) with L2 = N is asymptotically stable for any
sensitivity parameters αi ∈ R+, i ∈ N , if and only if there exists α̂ ∈ RN

+ such that
R̂Tdiag[α̂] + diag[α̂]R̂ < 0 for R̂ = [R̂ij] defined with R̂ij =

∑
s ̸∈{i,j}

βjβs

2as+2βs
> 0, j ̸= i,

R̂ii = −2ai − 2βi +
∑

s ̸=i
βiβs

2as+2βs
, i ∈ N .
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Proof First, recall the fact from Remark 6.3 that R(J, 1n, x∗) = 2Â − Âdiag[ψ]Â

for the knowledge network being a complete graph, where P = [Pij] = satisfies
Pij = −2βj −

∑
s ̸∈{i,j}

βjβs

2as+2βs
, j ̸= i, Pii = −2ai − 2βi −

∑
s ̸=i

βiβs

2as+2βs
, i ∈ N . Recalling

Âij = −βj, j ̸= i, Âii = −2(ai + βi), it follows that R̂ = R2(J, 1n, x
∗) = Π2(J, 1n, x

∗)

and hence the sufficiency result is a direct consequence of Proposition 6.1. Furthermore,
since Π2(J, α, x

∗) = R2(J, α, x
∗) = diag[α]R̂ is a Metzler matrix, it follows that

Π2(J, α, x
∗) is Hurwitz only if there exists α̂ ∈ RN

+ such that R̂Tdiag[α̂] + diag[α̂]R̂ < 0.
Thus, the necessity is immediate. �

Example 6.2. Consider n = 5 for Cournot game (market) and let a1 = 0.23, a2 = 0.35,
a3 = 0.46, a4 = 0.18, a5 = 0.05, β1 = 1.09, β2 = 1.42, β3 = 1.99, β4 = 1.19, β5 = 1.54,
b1 = 5.2, b2 = 3.6, b3 = 6.6, b4 = 3.2, b5 = 5.2, and λ0 = 15, so that there exists
a unique Nash equilibrium given by x∗ = [1.1038, 1.5618, 0.1068, 2.3941, 1.0432]T. In
this example, since AT(J, 15, x

∗) + A(J, 15, x
∗) < 0 holds, it follows that the Nash

equilibrium x∗ is asymptotically stable in the conventional pseudo-gradient dynamics
for any sensitivity parameters. However, since there is no feasible α̂ in the linear
matrix inequality (LMI) feasibility problem R̂Tdiag[α̂] + diag[α̂]R̂ < 0, it follows from
Theorem 6.3 that the Nash equilibrium is unstable under the pseudo-gradient dynamics
(6.4) with L2 = N for any sensitivity parameters. This result can be verified by
the dashed trajectories of agents’ state shown in Fig. 6.8(a), where the sensitivity
parameter α are set to α1, α3, α4 ∈ [0.5, 2.5], α2, α5 ∈ [1, 3], and the initial state is
x(0) = [2, 1, 1, 1, 1]T.

Now it follows from Corollary 6.1 that the incentive mechanism (6.62) along with
the incentive function (6.63) with k11 = k22 = −3, k33 = k44 = −2, and k44 = −4

satisfying (6.64) with α̂ = 1n guarantees that the Nash equilibrium x∗ is asymptotically
stabilized under the pseudo-gradient dynamics (6.4) with L2 = N for any sensitivity
parameters αi ∈ R+, i ∈ N . This result can be verified by the trajectories of the
agents’ state shown in Fig. 6.8(b).

6.5.3 Application to Differentiated Oligopoly

Consider a market being composed of n firms selling different products, where the
market price (inverse demand) function [102] is given by

pi = λ0 − βqi − βδ
∑

j ̸=i
qj, i ∈ N , (6.71)

where pi ∈ R+ denotes the price of the produced products, λ0 ∈ R+ denotes the cap
price, qi ∈ R+ denotes the quantity of the produced products, β ∈ R+ denotes a market
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Figure. 6.8 Trajectories of x(t) under the pseudo-gradient dynamic with Level-1 and Level-2
agents. In (a), solid line: L1 = N ; dashed: L2 = N . In (b), L2 = N . In both (a) and (b),
blue: x1(t), orange: x2(t), yellow: x3(t), green: x4(t), purple: x5(t).
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power, and δ ∈ [0, 1) denotes the degree of product differentiation. In this market,
firms compete in either quantities or prices according to the payoff functions given by

Πi = (pi − ci)qi, i ∈ N , (6.72)

where ci ∈ R+ denotes the marginal cost of firm-i satisfying ci < λ0. Here, it is worth
noting that a lager δ indicates a smaller differentiation among the products. That is
to say, if δ is extremely close to 1, then it is understood that the n firms are selling
almost homogeneous products in the market, whereas the n firms are selling almost
totally different types of products in the market if δ = 0. This is because the price of
firm’s product is closely related to existing of replaceable products. In terms of the
(dynamic) strategy of the firms, there are two different competitions named Cournot
and Bertrand competition for the case when the firms compete in quantities and prices
respectively.

Cournot competition

Consider the quantities as the decision variables of the firms (i.e., xi = qi) so that the
payoff functions from (6.72) are given by

Ji(x) = (λ0 − βxi −
∑

j ̸=i
βδxj − ci)xi, i ∈ N . (6.73)

In this case, it follows from ∂Ji(x)/∂xi = −2βxi − βδ
∑

j ̸=i xj + λ0 − ci that the Nash
equilibrium x∗ satisfying −2βx∗i −βδ

∑
j ̸=i x

∗
j +λ0− ci = 0, i ∈ N , is unique and given

by −Â−1b with Âij = −βδ < 0, j ̸= i, Âii = −2β < 0, i ∈ N , and bi = λ0 − ci, i ∈ N .

Lemma 6.1. The Nash equilibrium x∗ of the n-firms differentiated oligopoly market
(6.71), (6.72) with Cournot competition is asymptotically stable under the conventional
pseudo-gradient dynamics (6.1) for any sensitivity parameters αi ∈ R+, i ∈ N .

Proof First, recall that A(J, 1n, x
∗) = Â is symmetric matrix. The result is immediate

since the eigenvalues of 1
2
(ÂT + Â) = Â given by λ1 = · · · = λn−1 = −β(2 − δ) < 0,

λn = −β(2 + (n− 1)δ) < 0, imply ÂT + Â < 0. �

Proposition 6.6. Suppose that the knowledge network is a complete graph. Then,
the Nash equilibrium x∗ of the n-firms differentiated oligopoly market (6.71), (6.72)
with Cournot competition is asymptotically stable under the pseudo-gradient dynamics
(6.4) with L2 = N for any sensitivity parameters αi ∈ R+, i ∈ N , if and only if
the degree of product differentiation δ ∈ [0, 1) of the market satisfies δ < 2/(n− 1).
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Furthermore, if the degree of product differentiation δ ∈ [0, 1) satisfies δ = 2/(n− 1),
then the Nash equilibrium x∗ is Lyapunov stable under the pseudo-gradient dynamics
(6.4) with L2 = N for any sensitivity parameters αi ∈ R+, i ∈ N .

Proof First, recall the fact from Remark 6.3 that R2(J, 1n, x
∗) = 2Â − Âdiag[ψ]Â

for the knowledge network being a complete graph, where P = [Pij] = Âdiag[ψ]Â

satisfies Pij = −2βδ − (n− 2)βδ2/2, j ̸= i, Pii = −2β − (n− 1)βδ2/2, i ∈ N . Thus,
it follows from R̂ = R2(J, 1n, x

∗) = 2Â − P that R̂ij = (n − 2)βδ2/2 ≥ 0, j ̸= i,

R̂ii = −2β + (n− 1)βδ2/2 ,i ∈ N , which imply R̂ and diag[α]R̂ to be Metzler matrices.
Thus, diag[α]R̂ is Hurwitz for any αi ∈ R+, i ∈ N , if and only if the symmetric matrix
R̂ is Hurwitz. Now, note that the eigenvalues of R̂ is given by

λ1 = · · · = λn−1 = −2β + (n− 1)βδ2/2− (n− 2)βδ2/2 = β(−2 + δ2/2) < 0, (6.74)

λn = −2β + (n− 1)βδ2/2 + (n− 1)(n− 2)βδ2/2 = β(−2 + (n− 1)2δ2/2). (6.75)

Thus, the Nash equilibrium x∗ is asymptotically stable if and only if −2 + (n −
1)2δ2/2 < 0. For the case δ = 2/(n− 1), consider the Lyapunov function candidate
V (x̃) = x̃TPx̃ with the positive-definite matrix P , diag[ 1

α1
, · · · , 1

αN
] > 0. Since

R̂Tdiag[α]P + Pdiag[α]R̂ = R̂T + R̂ = 2R̂ ≤ 0 is satisfied, it follows that the Nash
equilibrium x∗ is Lyapunov stable for any αi ∈ R+, i ∈ N . �

Theorem 6.6 indicates an interesting observation that to ensure asymptotic stability,
a larger market (with bigger n) requires more differentiated products (i.e., with smaller
δ) when firms compete in product quantities instead of product prices (see the curve
in Fig. 6.9). When n = 2, the Nash equilibrium is always asymptotically stable for any
degree of product differentiation δ ∈ [0, 1). Moreover, the market power β ∈ R+ does
not give any contribution on affecting the stability of the Nash equilibrium.

Bertrand competition

Consider the prices as the decision variables of the firms (i.e., xi = pi). It follows from
the demand function of (6.71) given by [102]

qi =
λ0(1− δ)− (1 + δ(n− 1))pi + δ

∑
j ̸=i pj

β(1− δ)(1 + nδ)
, (6.76)

that the payoff functions from (6.72) are given by

Ji(x) = (xi − ci)
λ0(1− δ)− (1 + δ(n− 1))xi + δ

∑
j ̸=i xj

β(1− δ)(1 + nδ)
. (6.77)
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Figure. 6.9 The n-δ region of the n-firms differentiated oligopoly market with Cournot
competition and Level-2 thinking. The nodes on the solid curve are understood the case
where the Nash equilibrum is Lyapunov stable.

In this case, it follows from

∂Ji(x)

∂xi
= −2βxi − βδ

∑
j ̸=i

xj + λ0 − ci (6.78)

that the Nash equilibrium x∗ satisfying −2βx∗i − βδ
∑

j ̸=i x
∗
j + λ0 − ci = 0, i ∈ N , is

unique and given by −Â−1b with Âij =
δ

β(1−δ)(1+nδ)
> 0, j ̸= i, Âii = − 2+2δ(n−1)

β(1−δ)(1+nδ)
< 0,

i ∈ N , and bi = λ0(1−δ)+ci(1+δ(n−1))
β(1−δ)(1+nδ)

, i ∈ N .

Corollary 6.3. Consider the the n-firms differentiated oligopoly market (6.71), (6.72)
with the firms at Level-k ≤ ξ satisfying L1 ∪ · · · ∪ Lξ = N so that the firms follow the
pseudo-gradient dynamics (6.3), (6.4), (6.12) depending on their cognitive hierarchy
levels. If the firms follow Bertrand competition, then the Nash equilibrium x∗ is
asymptotically stable for any degree of product differentiation δ, any cognitive level
sets L1, . . . ,Lξ, any sensitivity parameters αi ∈ R+, i ∈ N , and any knowledge network
G(N , E) of payoff functions.

Proof First, note that aiij = Âij = δ
β(1−δ)(1+nδ)

, aiii = Âii = − 2+2δ(n−1)
β(1−δ)(1+nδ)

, σsi =

| a
s
si

asss

aiis
aiii
| = δ2

(2+2δ(n−1))2
< 1 imply that

y = σ0
si + . . .+ σ∞

si =
1

1− δ2

(2+2δ(n−1))2

. (6.79)

Hence, it follows from (6.54) and (6.55) that

φδ∞i =− (n− 1)δ − (n− 1)2δ3y

(2 + 2δ(n− 1))2
− (n− 1)2δ2y

2 + 2δ(n− 1)
, (6.80)
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with φ = 1
β(1−δ)(1+nδ)

> 0, which implies that that

φ(aiii − δ∞i ) = −(2 + 2δ(n− 1))− φδ∞i < 0. (6.81)

Then, the result is a direct consequence of Theorem 6.2 as (6.27) holds with δi = δξi for
ξ = ∞. �

It is interesting to observe that the cognitive operations of Level-2 agents never
destabilize the Nash equilibrium of the n-firms differentiated oligopoly market with
Bertrand competition for any degree of product differentiation, but may destabilize
the Nash equilibrium with Cournot competition for a too large degree of product
differentiation when the number of firms is larger than 3 (see Fig. 6.9). Recalling that
the matrix Â is given by Âij = −βδ, j ̸= i, Âii = −2β, i ∈ N , in Cournot competition,
and Âij = δ

β(1−δ)(1+nδ)
, j ≠ i, Âii = − 2+2δ(n−1)

β(1−δ)(1+nδ)
, i ∈ N , in Bertrand competition,

both of the matrices Â in Cournot and Bertrand competitions belong to the same class
of matrices where all the off-diagonal terms are the same and all the diagonal terms
are the same. Noticing that the condition (6.27) in Theorem 6.2 requires sufficiently
small Âii to ensure stability, the reason why the difference in terms of stability comes
between Cournot and Bertrand competitions is because the absolute value of the ratio
Âii/Âij given by 2/δ in Cournot competition is not big enough as the one given by
2/δ + 2(n− 1) in Bertrand competition for any j ̸= i.

6.6 Chapter Conclusion

We investigated the stability problem for noncooperative dynamical systems with Level-
k thinking under bounded depth of reasoning. In the characterized noncooperative
system, the agents are allowed to base their decisions on the predictions about the likely
actions of other agents. Depending on a knowledge network of the payoff functions, the
prediction-incorporated pseudo-gradient dynamics are proposed. We presented sufficient
conditions to guarantee stability of a Nash equilibrium with uncertain sensitivity
parameters and uncertain knowledge network of the payoff functions in order to
characterize a stabilization method with incentives. The applications of our results
in optical communication systems, homogeneous oligopoly markets and differentiated
oligopoly markets were considered. We observed that to ensure asymptotic stability of
the differentiated oligopoly markets with Cournot competition, larger market requires
more differentiated products. But this phenomena does not happen in Bertrand
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competition because the cognitive operations in Level-k thinking never destabilize the
n-firms differentiated oligopoly market with Bertrand competition.
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Chapter 7

Concluding Remarks and Future
Research Recommendations

7.1 Conclusion

In this thesis, we provided a line of work on control problems of self-interested agents
in pseudo-gradient-based noncooperative dynamical systems.

First, in Chapter 2, we investigated the Nash equilibrium stabilization problem for
noncooperative dynamical systems through a tax/subsidy approach. In the proposed
tax/subsidy approach, the system manager defines the utility-transfer structure dividing
the agents into subgroups so that the utility transfers are completed within the
subgroups in a zero-sum and distributed manner. To deal with the uncertainty, we first
characterized the stability of the Nash equilibrium for arbitrary values of sensitivity and
then investigated the zero-sum tax/subsidy framework without knowing the sensitivity
parameters.

In Chapter 3, we developed a hierarchical incentive framework for large-scale
noncooperative dynamical systems to achieve social welfare improvement. In the
proposed framework, the agents in the noncooperative system are divided into several
groups and are influenced by the corresponding group managers via some intra-group
incentives. We explored the stability of group Nash equilibrium of the hierarchical
noncooperative systems and derive conditions where the trajectory of agents’ states
converges to the group Nash equilibrium under group managers’ intra-group incentives.
Furthermore, the inter-group incentive mechanism for a system governor is proposed
to reconstruct the group utility functions at the group managers level to move the
group Nash equilibrium so that the social (entire) welfare is improved. To deal with
the situation where the system governor may not know all the agents’ individual payoff
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functions and all the agents’ states, we presented sufficient conditions to guarantee the
convergence of agents’ states towards a target (suboptimal but not optimal due to the
lack of enough information) equilibrium using some macroscopic data.

In Chapter 4, we investigated the social welfare improvement problem for the
noncooperative dynamical systems through a Pareto-improving incentive mechanism
under sustainable budget constraint, where a system manager collects taxes from
some agents and gives some of the collected taxes to other agents as subsidies in
order to remodel agents’ dynamical decision making. We presented sufficient stability
conditions for our incentive functions were proposed to guarantee that the agents are
Pareto improving under the pseudo-gradient dynamics and their state converges to a
Pareto-efficient Nash equilibrium associated with a weighted social welfare function
depending on the priority ratio of the agents.

In Chapter 5, we investigated the stability conditions of the noncooperative switched
systems with loss-averse agents, where each agent under pseudo-gradient dynamics
exhibits lower sensitivity for the cases of losing payoffs. We characterized the notion
of the flash switching phenomenon and examined stability properties in accordance
with the location of the Nash equilibrium for 3 cases. We revealed how the sensitivity
parameters influence the stability property of the system in terms of the dynamics,
partition of the state space, mode transition, and the normalized radial growth rate
for each of the 3 cases.

In Chapter 6, we investigated the stability problem for noncooperative dynamical
systems with Level-k thinking under bounded depth of reasoning. We characterized the
transition of the agents’ target state while increasing the depth of reasoning for a two-
agent noncooperative system with quadratic payoff functions. We presented sufficient
conditions to guarantee stability of a Nash equilibrium with uncertain sensitivity
parameters and uncertain knowledge network of the payoff functions in order to
characterize a stabilization method with incentives. The applications of our results
in optical communication systems, homogeneous oligopoly markets and differentiated
oligopoly markets were considered.

7.2 Future Research Recommendations

There still remain several open problems on the analysis and stabilization of agent’s
selfish behaviors in the noncooperative dynamical systems. For the hierarchical non-
cooperative system in Chapter 3, allowing the agents to switch the membership may
be an interesting future direction. In real society, many cities construct some special
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subsidies to attract young people, talents, and potential firms to move to their city so
that the vitality and development prospects of the city can be guaranteed. Therefore,
with the switching of the agents, the social welfare may be significatively influenced
with the changing of the group topology. It is nature to ask what is the best grouping
topology for the hierarchical noncooperative system. Moreover, Chapter 6 showed an
example where the cognitive hierarchy levels may destabilize the Nash equilibrium of
the noncooperative system and generate some new equilibria in the dynamical system.
From the system manager’s point of view, letting the agents change their cognitive
hierarchy levels can be a essential method to improve the social welfare. The future
research direction may includes the investigation of cognitive hierarchy level switching
framework.

The emerging problems in intelligent transportation system and smart grid market
with game theoretic approach are expected in the future research directions. The
security problems in engineering systems with game theoretic approach are also expected.
Furthermore, the payoff-value based learning dynamics is important in the future
research direction. The agents’ behavioral dynamics in the most of the literature
require the exact payoff function. However, the agents may not really know the explicit
form of their payoff functions but the value of payoff functions. In such a case, how
to construct the behavioral dynamics for the agents is an important question in the
future research.
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Appendix B

Supplemental Information

Several classes of potential games are found in the literature [103]. Specifically, a
noncooperative game with the payoff functions Ji(x), i ∈ N , is called an (exact)
potential game if there exists a function f : Rn → R such that

Ji(xi, x−i)− Ji(x̂i, x−i) = f(xi, x−i)− f(x̂i, x−i), (B.1)

for any i ∈ N , xi ∈ R, x̂i ∈ R, and x−i ∈ Rn−1. This notion can be generalized to the
notion of weighted potential game when there exists a positive weight vector (wi)i∈N

such that Ji(xi, x−i)− Ji(x̂i, x−i) = wi(f(xi, x−i)− f(x̂i, x−i)) for any i ∈ N , xi ∈ R,
x̂i ∈ R, and x−i ∈ Rn−1. Furthermore, the notion of weighted potential game can be
generalized to the notion of ordinal potential game when

Ji(xi, x−i) > Ji(x̂i, x−i) ⇔ f(xi, x−i) > f(x̂i, x−i), (B.2)

for any i ∈ N , xi ∈ R, x̂i ∈ R, and x−i ∈ Rn−1. The weighted potential game (and
hence the exact potential game) is a special class of ordinal potential game.

Lemma B.1. Consider the two-agent noncooperative system G with quadratic payoff
functions (2.30) satisfying a111 < 0 and a222 < 0. Then, the game G admits a ordinal
potential if and only if a112a212 > 0.
Proof : The necessity is proved by Theorem 1 of [103]. For sufficiency, when a112a212 > 0,
the function given by

f(x) =
1

2
(x− x∗)T

[
a111a

2
12 a112a

2
12

a112a
2
12 a112a

2
22

]
(x− x∗), (B.3)
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Figure. B.1 Graphic abstract of two-agent loss-aversion-based noncooperative system with
zero-sum payoff functions.

is an ordinal potential for G because the function f(x) satisfies argmaxxi∈R Ji(xi, x−i) =

argmaxxi∈R f(xi, x−i), i = 1, 2, and hence (B.2) holds. �
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Figure. B.2 Trajectories of the agents’ state, predicted state, and targeted best-response state
in a two-agent noncooperative system with prediction-incorporated pseudo-gradient dynamics.
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