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Abstract

In this paper, we proposed an indirect feature-based real time pose prediction

system and introduced several applications for skill acquisition using the proposed

system.

Different from conventional direct feature-based pose estimation, the proposed

system try to make use of those features which are indirect related with human

posture (e.g. estimate full body pose from feet pressure).

The proposed network consists of two parts: a FuturePoseNet which aims to

extract temporal indirect features from the input video sequences and a Invisible-

PoseNet which finds out the spatial indirect relationship within each image. For

each network, a special indirect feature extraction module is developed to enhance

the learning of an indirect feature. The performance of both networks is quantita-

tively and qualitatively evaluated in the experiment, and the results suggest that

the proposed indirect feature-based prediction can achieve similar accuracy as the

conventional methods, without observing the direct features.

For applications, three types of different skill acquisition are introduced: Skiing,

Piano, and Table Tennis, which aims to study the results from three different per-

spectives. The Skiing is mainly focus on spatial indirect features while the piano

requires temporal one. Table Tennis is the most well-studied application which

includes both temporal and spatial indirect features.

Finally, the contribution and limitation of the current work is discussed. The

proposed framework is compared with other existing methods to provide clues for

future research. To the best of our knowledge, this work is the first real-time 3D

pose prediction using a dual-module indirect feature-based network, which is proved

to be useful in different types of skill training and might open a new way for using

indirect features in training.
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Chapter 1

Introduction

1.1 Background

1.1.1 Motion Tracking in Skill Analysis

Nowadays, Human-Computer Interactions (HCI) technologies are widely used in

analyzing advanced skills such as sports [2, 29, 48, 72], musical instruments [21],

or even medical operations [43]. One of the most essential keys to understand an

advance skill is to analyze its posture, from an overall body posture to a specific

dexterous finger movement. This is to say, the development of motion capture

systems [33, 49, 52, 56] are changing the researches of HCI. These technologies

make it possible to analyze motions of an athlete and giving real-time feedback

for pointing out their mistakes, improving their performances, or differentiate with

other’s motions. More importantly, a correctly recorded motion can be used to

transfer a skill to others with less practice and training.

The methods of commercial motion capture system can be broadly divided into

three categories based on their principles: optical marker-based methods [49], wear-

able sensor-based methods [52], depth camera-based methods [56, 80]. The first two

ways have already been widely studied and therefore is well established, which can

achieve a high precision in high speed. However, both methods requires special

markers or sensors to be wore by the users, these markers are sometimes bulky and

may disturb the users in performance, which is not suitable to be used in many

situations such as real-time sports games. On the other hand, depth camera-based
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Figure 1.1: Examples of motion capture technologies: optical marker-based Op-

titrack [49] (upper), IMU sensor-based Xsens [52] (lower left), and depth camera

based Microsoft Kinect [80].

Figure 1.2: Examples of skill transfer using motion tracking.
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methods are hardware-dependent and limited to environment, e.g. IR cameras can-

not be used in the wild. Therefore, all these motion capture technologies introduce

hardware restrictions which limit the target to profession.

1.1.2 Deep Learning-based Pose Regression

Under these circumstances, human pose estimation methods using deep neural

network [8, 47, 58, 61, 65, 69] has been widely studied. Vision-based pose estima-

tions use convolutional networks to extract visual human features from images or

videos. Among them, regressing 3D posture from a single RGB image is an essential

and challenging task. Single camera-based pose estimation enables markerless and

in-the-wild motion capture, which can be applied to much wider field such as sports

or dexterous skills. Especially for real-time estimations, which can not only be used

in afterwards analysis but also provide real-time feedback or support training.

All of these above mentioned estimation shows the importance of pose under-

standing and motion analysis. However, estimation (which is a direct feature re-

gression) is only the basis behavior of human brain, in terms of more advance-level

Figure 1.3: Deep Learning-based pose estimation [8, 58, 69].
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skill acquisition, such as understanding one’s thoughts or transfer one’s experience,

we need to go one step further to indirect feature regression.

1.1.3 Prediction from Indirect Features

Different from the ability of estimating or recognizing an object, the ability of

prediction is more mandatory in some advance skill. For instance, a recent report

from NTT Research [35, 36] tried to understand and shape a professional baseball

athlete’s brain by comparing his/her motion data with an amateur. The results

showed that a professional batter reacts to a curve ball before the ball starts to

change while an amateur reacts after.

Predictions, which can be also defined as indirect features regressions, which

mean that human brain estimate from some indirect features which are un-

seen/unavailable for the present information. In this paper, we mainly focus on

two types of indirect features: temporal indirect features and spatial indirect fea-

tures.

An estimation using temporal indirect features, which are commonly known as

future prediction, is an ability to predict information using experience from the

past. In the field of deep neural network, recurrent neural networks [53] are trying

to realize the same function. Yagi et al. [74], for example, developed a network to

predict a pedestrian’s future position.

On the other hand, predictions using spatial indirect features make it possible to

let people estimate a whole target with partially information. For example, even if

someone’s body is occluded, our brain can make up the full posture based on our

experience. Nowadays, more networks are developed to study these spatial indirect

relationships, such as graph neural networks [55] and attention networks [68].
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Figure 1.4: Difference between direct and indirect feature-based estimation

1.2 Research Motivation

With all the mentioned technologies, ideally, it should be possible to employ

the data of experienced athletes, musicians, or doctors, and provide an intuitive

instruction to a student who want to learn an advanced skill. However, there are

two major problems of existing works: first, networks for different types of indirect

features are lacking; second, there are currently few well-studied skill acquisition

application using these indirect features.

Therefore, in this paper, we propose a novel indirect feature-based pose estimation

network – IndirectPoseNet, to serve as a strong baseline which can estimate real-

time 3D human posture from both temporal and spatial vision features. Our system

uses a two-stream customized recurrent convolutional network (RCNN) to obtain

the temporal movement of a specific posture and the spatial information for body

regression. To enhance the temporal extraction, we developed a lattice optical flow

algorithm to calculate the joint movement with less computation. On the other

hand, to obtain the indirect spatial feature, we developed a graph-based model

to study the hidden relationship between the extracted spatial features and the

predicted posture.
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1.2.1 Research Target

To the best of our knowledge, our system is the first to realize real-time indirect

feature-based pose forecasting and apply it to skill acquisition. Compared to previ-

ous work, our system does not require users to wear special suits and can be used

outdoors or in large environment since the motions can be captured by a single

RGB camera, which leads to a higher usability and adaptability.

Figure 1.5: Our Target: using indirect spatial and temporal features to support

advance skill acquisition.
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1.3 Organization

The organization of the whole paper is arranged as follows:

1. In this thesis, the author have already introduced the background and inno-

vation of current work in the introduction section.

2. Then, the related works about real-time pose estimations, indirect feature-

based estimations as well as skill acquisition using these forecasting will be

described . After that, the research proposal of this work will be introduced.

3. The next chapter after research proposal will be the introduction of the net-

work architectures used in this paper.

4. Next, we will first explain how the proposed network architectures are used

in predictions of temporal indirect features, which is also considered as future

pose prediction.

5. Following the temporal one, the spatial indirect feature-based algorithm will

also be proposed. Explaining how the proposed network is tuned to predict

spatial features.

6. Detailed studies for the two indirect features will follow on each chapter.

Quantitative evaluations are performed to show the accuracy and significance

of this system.

7. As one of the most important part of this dissertation, several skill acquisi-

tion applications including sports and musical instruments are displayed in

Chapter 7.

8. To proof the concept of training effects, user studies are conducted for all

the applications. The experiments include several performance metrics in the

corresponding skill and a detailed qualitative questionnaire to study user’s

experiences.
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9. In the chapter of discussion, a summary including the result of the evaluations

and the limitations of this system will be shown. And corresponding solutions

to handle these disadvantages as well as the future vision of this project will

be described.

10. Finally, a summary of this research as well as acknowledgement to related

staffs will be given.
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Chapter 2

Related Work

In this chapter, existing works related to this study will be introduced from

5 different perspectives: First, an overall summary of vision-based real-time 2D

and 3D pose estimation is introduced. After that, current researches on temporal

and spatial indirect feature-based estimation are compared. Next, we explain how

current deep learning is related with skill acquisition. Finally, training feedback

methods using VR/AR are shown.

2.1 Pose Estimation

2.1.1 Vision-based Real-time Pose estimation

Many deep learning-based real-time pose estimation from camera images are pro-

posed during the last few years [8, 38, 46, 47, 58, 61, 63, 69, 76]. The OpenPose

[8, 58, 69] represents the first real-time multi-person system to jointly detect human

body, hand, facial, and foot keypoints (in total 135 keypoints) on a single image.

They introduced the Part Affinity Fields (PAFs) to learn to associate body parts

with individuals in the image, and their system is proved to achieve high accuracy

and real-time performance, regardless of the number of people in the image (as

shown in Figure 2.1). Even though their work is already published 3 years, it is

still one of the best 2D pose estimation method.

In terms of 3D joints position, Recent works [8, 38, 47, 63, 76] are trying different

approach to get one step further to reconstruct 3D postures from 2D by image
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Figure 2.1: OpenPose

observations. Among them, Mehta et al.’s VNect [47] and the 3-D Reconstruction

Module of OpenPose by Cao et al. [8, 58, 69] are the current state of the art methods

for real-time 3D human pose estimation. The VNect combines a new convolutional

neural network based pose regressor with kinematic skeleton fitting. Their fully-

convolutional pose formulation regresses 2D and 3D joint positions jointly in real

time and does not require tightly cropped input frames. As a result, their network

provides a better accuracy for the 3D skeleton recognition with less computation

and good real-time ability, even though it cannot be used in multi-person detection.

Conversely, OpenPose learns the body parts associated with individuals and they

can detect multiple people in a single image, while the inference time of it is greater
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Figure 2.2: VNect & XNect

than VNect.

As a follow-up of the VNect, as well as the state-of-the-art real-time 3D pose

estimation, Mehta et al. presented XNect [46], which realize multi-person 3D motion

capture using a single RGB camera. They improved their previous network into a

two-branch architecture, where 2D and 3D joint heatmaps are regressed separately.
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Different from the method mentioned above, Martinez et al. [42] presented an

effective network for 3D Pose Recovery using a simple and deep neural network

with only two linear layers and two residual blocks (six linear layers in total). Their

evaluation demonstrated that a 3D pose could be created from simple 2D joint

positions and their method achieved acceptable results in both accuracy and real-

time ability on the Human3.6M [9, 30] dataset.

Figure 2.3: Martinez et al.

2.1.2 Temporal Indirect Feature-based Estimation

For temporal indirect feature-base estimation (or simply called future pose pre-

diction), Chao et al. [10] proposed the 3D Pose Forecasting Network (3D-PFNet)

as the first study on forecasting human dynamics from single RGB images. Their

method of forecasting 2D skeletal poses and converting them into 3D space was

shown to have quantitative results, with average joint position errors of approxi-

mately 87.6mm. However, 3D-PFNet is an off-line network requiring a large amount

of computation, and is therefore difficult to use in the contents of sports which re-

quire immediate feedbacks.

Horiuchi et al. [28] forecast human body motions 0.5s (15 frames in 30 fps video)

in advance using a five-layered neural network with motion data input taken by

a Microsoft Kinect V2 camara [56, 80]; the maximum difference in the prediction

was 7.9cm which was acceptable for their experiment. However, Kinect is a depth

camera using IR sensors, as previously mentioned: therefore, it is not suitable to

use in an outdoor environment or a large area. A five-layered neural network might
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Figure 2.4: 3DPFNet

be enough for simple jumping actions, which was the case in their experiments,

but not for more complicated athletic movement such as boxing, where temporal

features is of great importance.

Yagi et al. developed a future person localization system [74] for estimating other

pedestrian’s walking trajectory from a first-person-view video using a three stream

encoder-decoder network. Each stream extracts the location-scale, ego-motion, and

the target person’s posture from the past temporal sequences, respectively. Their

final results outperforms some recurrent networks such as LSTM [27] in several

first-person locomotion dataset.

The two above mentioned system can perform real-time future prediction, how-

ever, they either requires depth information or can only do future localization but

not predict future posture, while our final target is to realize real-time future pose

prediction using a single RGB camera.
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Figure 2.5: Computational Foresight

2.1.3 Spatial Indirect Feature-based Pose Estimation

Recent years, the research interest in the field of indirect spatial feature-based

pose estimation is becoming popular. One of the most representative research is the

egocentric pose estimation [64, 78, 79], which regress full body poses only from first-

person-view video, as shown in Figure 2.6. For example, Yuan et al. [79] proposed

the EgoPose Net using a proportional-derivative control based policy, which learns

human motion directly from unsegmented egocentric videos. This kind of indirect

relationship between egocentric videos and human postures are deeply related to

the prediction behavior of human’s brain and are often used for robotics operations.

Speaking of learning the relationship, graph neural networks [55] have being

widely used to extract a feature graph instead of conventional direct regressions.

Reddy et al. [51] proposed the Occlusion-Net which is the first graph networks aims

to estimate keypoint from occluded images. In terms of body posture, Cai et al. [7]
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Figure 2.6: EgoPose
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Figure 2.7: Graph Neural Network Pose
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Figure 2.8: Pressure Bed

used graph convolutional networks (GCN) to realize 3D pose estimation from a

short sequence of 2D joints positions. Similarly, Yang et al. [75] employ deep graph

neural networks for learning dynamics in human motions. Their network fix the

problem of missing occluded person of conventional pose estimation methods, as

shown in Figure 2.7, and beat the current state-of-the-art pose estimation network

in predicting human pose with high occlusion.

One of the most related idea is the pressure bed by Clever et al. [13], they used

a configurable bed for medical healthcare and predict the real-time 3D body pose

from the pressure image, which succeed in estimate the whole body posture even

if part of the body is in the mid-air. Nevertheless, their work consists of a simple

convolutional network and a limited kinematic model, which might be sufficient for

simple motion on bed but not more complicated motion. Also, the bed pressure

image almost cover the whole body, which make the task relatively straightforward,

just like regression from a depth map.

All these works are using indirect spatial features to estimate human posture,
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however, most of them are focusing on improving the precision of the networks or

predicting less related targets. To the best of our knowledge, currently there are

few works trying to apply these indirect spatial features to skill transfer.

2.2 Skill Acquisition

2.2.1 Skill Acquisition using Pose Estimation

In many motor skills such as sports or musical instruments, a correct posture is

the most essential feature. Therefore, the very basic step for most beginners is to

try to mimic a correct (or an ideal) posture and spend plenty of time to master it.

However, during this process, the learner may face several difficulties.

One problem is the motivation. Studies [25] have already proved that repetitive

and similar training may lower learner’s motivation and reduce the learning effect.

Chen et al. [12] visualize user’s posture and provide scoring in tai-chi training, the

results of their study suggested that user can maintain longer concentration when

they can objectively see their growth. Also, Nozawa et al. [48] perform similar study

on a ski simulator using different visual cues.

Another issue is also related with the motivation, the difficulty. Depends on the

target skill, some of the ”basic steps” may still be very difficult for beginners. Esti-

mating a spin serve is such an example, Wu et al. [71] showed that many beginners

can hardly understand the relationship between the spin type of a serve and the

serve motion of the opponent, even after hundreds hours of training. Their study

suggests that showing the server’s posture and the spin ball simultaneously can

support the speed of understanding. The last one is the weak self-understanding,

it is very difficult for people to objectively observe their posture, which can be told

by the study by Susan Higgins [25]. Because when you control your brain to mimic

a pose, your brain is thinking that it’s doing correctly although it looks totally

different from others. That’s why dancer always practice dancing in a mirrored
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Figure 2.9: Skill Acquisition using Pose Estimation
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room which can better compare themselves with others [26]. A feedback is always

needed to objectively notify the learners how to correct their poses, which will be

introduced in the next section.

2.2.2 Training Feedback using VR/AR

Since predicting 3D pose comes true nowadays, one of the best visualization

method to show the 3D contents intuitively is the XR, such as augmented reality

(AR), virtual reality (VR) or mixed reality (MR). Plenty of these types of artificial

reality devices was developed [11, 16, 18]. Hämäläinen et al [22] are the first to

bring artificial reality to martial arts, who introduce a game where the player fights

virtual enemies. The player’s motion was taken by real-time image processing and

visualized on two large displays. However, their system is limited to single person

and does not support person versus person, their virtual environment is pseudo-3D

since the user is treated as a 2D plane within the 3D scene.

Ikeda et al. [29] proposed a method of replaying the motion of sports in mixed

reality for golf training. They recorded the motion of an expert and replay the whole

action on a MR HMD, which also use a special DP matching to tell the difference

between the user and the experts. However, their system still require a recorded

data which means it cannot work in real-time.

On the other hand, plenty of VR sports [20, 37] were developed recently, however,

all of them require both of the players to wear a VR HMD and to take a pair of

controllers, which changes the martial arts only into a game and therefore not

suitable for martial training.
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Figure 2.10: VR Sports
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Chapter 3

Research Proposal

3.1 Problem of previous work

In this paper, we focus on how to benefit the training of skill acquisition. From

the chapter of introduction and related work, it is clear that deep learning-based

pose estimation is uniquely beneficial to skill acquisition. Also, human’s ability

of prediction can also be learned by the network, which can enhance the training.

However, prediction from indirect features is challenging, current researches still

face several problems which limit the use for skill transfer. Hereby we summarize

these issues as follows:

1. Requirement of bulky equipment: Most of the pose estimation systems require

some specific suits or sensors to be placed on user’s whole body. This also

results in some special environmental dependencies and might disturb the

user frequently. Even though some marker-less approaches [8, 46, 47, 58, 69]

have been proposed, most of them requires to be fixed at some place thus not

suitable for many situations (such as outdoor sports).

2. Single type of features: The prediction of human beings are based on different

clues, including temporal and spatial one. However, most of the existing

pose estimation network only focus on one specific type of features. The

recurrent graph convolutional network [50] mentioned before does focus on

both temporal and graph branch, however, the inference time of their network

is relatively heavy and their graph network only focus on self-occlusion but
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not relationship body and other parts. The work from Clever et al. [13] is a

successful example which regress 3D poses from the pressure bed, which we

can refer. Nevertheless, their task is relatively simple because their pressure

map covers the whole body, which is ”less indirect”.

3. Lack of good applications: This might be the most essential and critical point,

which is directly related to the training effect. Even though some works [28,

70, 74] succeeded in predicting or forecasting 3D human pose in real-time,

they don’t have good method to visualize or feedback it to a learner for skill

acquisition. Most of them still use screen or 2D projections to show the result

or error [29], which are not making full use of the 3D information.

Figure 3.1: Problem of previous system

3.2 Research Approach

To solve the limitations of the related work mentioned before, we developed a

novel indirect feature-based pose prediction network, Aligned with the three previ-
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ous mentioned issues, our solution is also divided into three part. The solution are

listed as follows:

3.2.1 Indirect Estimation for Natural Placement

For the issue of bulky equipment, it will be ideal if there is an almighty system

that can estimate real-time 3D poses which is portable and does not disturb the

user. However, such a device is technically not possible, as long as the user need to

wear/carry extra devices, it has the potential to be bulky depends on what activity

the user is doing. Under this situation, the current best solution is to put such

devices At a more natural position that may not disturb the user based on the

application.

For example, it is very difficult to perform real-time motion tracking for skiing.

A fixed camera is out of the question since the position of a skier is changing

rapidly, and fabric-based technologies are also less robust and have the potential to

hurt the user while skiing. The only possible place to put such sensors are inside

the ski boots. Therefore, a more “natural” and optimal solution will be using the

feet pressure. Thanks to the development of tiny and long-lasting pressure sensor,

nowadays there are many high precision feet pressure in-sole sensors. Also, previous

work by Clever et al [13] already showed the possibility of regressing full body pose

from pressure map, it is clear that such pressure value is indirectly related with

human’s posture. Similar approaches can be applied to many other skill transfers

where only part of the body is able to be used for sensing.

3.2.2 Pose Estimation using Multiple Indirect Features

To improve the precision as well as the variety of applications, we want to build

a dual module network which extract both spatial and temporal indirect features

that can be adapted to different types of pose estimation. Puchert et al. [50] has

already succeeded in combining a graph neural network with recurrent network to
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extract two types of direct features, of which the network can be referred.

We propose two networks, FuturePoseNet for temporal feature regression and In-

visiblePoseNet for spatial feature regression, each network consists of normal direct

feature extraction layers with an indirect feature regression module, the details of

these two network will be introduced in Chapter 4.

3.2.3 Comprehensive Studies on Training Applications

To show the effect of different types of indirect features and their combination,

in this paper, we design several training applications for different skill using the

proposed indirect network.

The first advance skill is alpine slalom skiing, which is a fast speed, massive,

and dangerous sports, where common motion capture cannot work. Skiing pose

estimation system using feet pressure mentioned before is developed to make use of

the spatial indirect feature extraction. To better evaluate the performance in skiing,

we also employed a stupendous motor-based skiing simulator which realistically

reproduce the alpine skiing and being used by some national Olympics team. The

simulator is used for both data collection and training performance evaluation to

provide quantitative results on the pose estimation and its training effect.

Next, we focus on a more dexterous motor skill – playing the piano. This time,

instead of the full body posture, we focus on the hand motion. The hand pose

estimation is theoretically very similar to body pose estimation, but the finger hand

less degree of freedom (DOF), therefore a hand poses can be easier represented with

joint angle instead of keypoints. Since it is difficult to place markers directly on

the hand during a performance, we pay attention to the back of the hand to obtain

indirect features. As shown in Figure 3.2, different part of the dorsal part of the

hand is changing when using different fingers. Since piano requires timing-perfect

motion analysis, we also recorded the keystroke of the piano to extract indirect

temporal features to support the prediction.

Last but not the least application in this paper is table tennis. Different from the
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Figure 3.2: Skiing, Piano, and Table Tennis

previous two skill which is either massive or requires dexterous motion, table tennis

is a skill which is relatively easy to begin, but difficult to master. Also, instead

of pose prediction/estimation, in table tennis it is more important to predict the

ball trajectory and its spin type. Therefore, in the last study we focus on how to

return a strong spin serve by providing real-time prediction on the ball. The ball

is predicted from both the temporal indirect features of previous frames, and the

spatial indirect features of the opponent’s motion. To realize a fair comparison,

the users are asked to play against a pingpong robot before and after the training

condition, to study their performances.

In terms of visualization methods, it is proved that the sense of immersive is

helpful to skill acquisition [3], which is related to the concentration of the learner.

Under that situation, XR technologies such as virtual reality (VR), augmented

reality (AR) OR mixed reality (MR) might be a best way for 3D visualization for

skill training. Different visual cues are used for the corresponding skill and are

introduced in Chapter 7.

3.3 System Overview

Fig. 3.3 shows the overview of the proposed system. As mentioned before, the pro-

posed indirect feature-based pose prediction system consists of two sub-network, the
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FuturePoseNet and the InvisiblePoseNet. Different types of features of different skill

are inputted to the two networks, respectively, to support the final body/hand/ball

prediction. The trained model then are used for visualizing feedback for training

beginners/learners in different types of applications.
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Chapter 4

Network Architecture

The network architecture and algorithms of deep learning are developing rapidly.

In this chapter, we will first introduce the two common feature extraction networks

and several common technologies which could be used for temporal and spatial

feature extraction.

4.1 Basic Feature Extraction

4.1.1 Convolutional Neural Network

Convonlutional Neural Networks (CNNs) is a class of deep neural networks, which

is commonly applied to analyzing visual imagery. CNNs are regularized versions of

multilayer perceptrons and are on the lower extreme on the scale of connectedness

and complexity. It is because CNNS used a different approach towards regulariza-

tion: they take advantage of the hierarchical pattern in data and assemble more

complex patterns using smaller and simpler patterns.

The hidden layers of a CNN typically consist of a series of convolutional layers

that convolve with a multiplication or other dot product. The activation function is

commonly a RELU layer, and is subsequently followed by additional convolutions

such as pooling layers, fully connected layers and normalization layers, referred to as

hidden layers because their inputs and outputs are masked by the activation function

and final convolution. The final convolution, in turn, often involves backpropagation

in order to more accurately weight the end product. [1]
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A Convolutional layer is the core building block of a Convolutional Network that

does most of the computational heavy lifting. Although fully connected feedforward

neural networks can be used to learn features as well as classify data, it is not

practical to apply this architecture to images. A very high number of neurons

would be necessary, even in a simple architecture, due to the very large input sizes

associated with images, where each pixel is a relevant variable. For instance, a

image has size of W ×W will has W 2 weights for each neuron in the second layer

of a fully connected network.

In comparison, the convolution operation brings a solution to this problem as

it reduces the number of free parameters, allowing the network to be deeper with

fewer parameters. Regardless of the image size is W×W , if the tilling regions of size

H×H, each with the same shared weights, required only H2 learnable parameters.

An example of convolution an image with size 5 × 5 filtered by a 3 × 3 regions

is shown as Figure 4.1: Next, we will introduce some representative convolutional

neural networks.

VGG

The VGG network proposed by Simonyan et al. [59] also won the ILSVRC 2014

image classification department. The network structure, different from GoogLeNet

which include some special layer, is very simple but deeper. There are two common

types of VGG networks, the VGG-16 and VGG-19, where the number 16 and 19

stand for the number of layers. All convolutional layers are divided into 5 groups

and each group is followed by a max-pooling layer. The only difference between

them is that in the last 3 group of VGG-19 there are one more convolutional layer,

as shown in 4.2. Since the network structure is quite simple, it is often used for

fine-tuning to solve other problem than image classification.
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Figure 4.1: Convolution Computation
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Figure 4.2: Fully Connected Layers

GoogLeNet (Inception)

As the winner of ILSVRC 2014 object detection department, the GooLeNet [62]

increased the mean average precision of object detection to 0.439329, and reduced

classification error to 0.06656, the best result to date. Their network has 22 layers,

and approximately 12 times less parameters than AlexNet. Their inception model

aims to bring deep learning also to some low-end processing unit such as smart-

phone. The idea of the inception layer is to cover a larger area, but also keep a fine

resolution for small information on the images. As a result, their network is able

to convolve in parallel different sizes from the most accurate detailing (1x1) to a

bigger one (5x5).
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Figure 4.3: GoogLeNet (Inception)

ResNet50

ResNet50 [24] is introduced by He et al. from Microsoft Research as a residual

convolutional neural network. It was the winner model of ILSVRC 2015. The

biggest feature of its network is its very deep structure, with the 152 layers. A

special techniques was used to make it possible to compute such a large network

with great quantity of parameters, the residual block (Figure 4.4).

With the help of this special structure, the ResNet succeeded in having a lower

complexity with a 8x deeper network than VGG.The identity mapping is multiplied

by a linear projection W to expand the channels of shortcut to match the residual.

This allows for the input x and F(x) to be combined as input to the next layer.

y = F(x, {Wi}) +Wsx. (4.1)

Equation used when F(x) and x have a different dimensionality such as 32x32 and

30x30. This Ws term can be implemented with 1x1 convolutions, this introduces

additional parameters to the model.
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Figure 4.4: Residual block

4.1.2 Recurrent Neural Network

A recurrent neural network (RNN) is a class of artificial neural networks where

connections between nodes form a directed graph along a temporal sequence. This

allows it to exhibit temporal dynamic behavior. Unlike feedforward neural net-

works, RNNs can use their internal state (memory) to process sequences of inputs.

This makes them applicable to tasks such as unsegmented, connected handwriting

recognition[1] or speech recognition.

The term ”recurrent neural network” is used indiscriminately to refer to two broad

classes of networks with a similar general structure, where one is finite impulse and

the other is infinite impulse. Both classes of networks exhibit temporal dynamic

behavior. A finite impulse recurrent network is a directed acyclic graph that can be

unrolled and replaced with a strictly feedforward neural network, while an infinite

impulse recurrent network is a directed cyclic graph that can not be unrolled.

Basic RNNs are a network of neuron-like nodes organized into successive ”layers.”
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Figure 4.5: ResNet comparing with plane CNN and VGG.
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Each node in a given layer is connected with a directed (one-way) connection to

every other node in the next successive layer. Each node has a time-varying real-

valued activation. Each connection has a modifiable real-valued weight. It can be

thought of as multiple copies of the same network, each passing a message to a

successor, Figure 4.6 shows how the loop is unfolded.

Figure 4.6: Recurrent architecture

As a result of these chain-like structure, output from previous step are fed as input

to the current step. In traditional neural networks, all the inputs and outputs are

independent of each other, which is therefore weak at learning sequential or temporal

features. Thus RNN came into existence, which solved this issue with the help of a

hidden layer. The main and most important feature of RNN is Hidden state, which

remembers some information about a sequence.

Long short-term memory

One of the appeals of RNNs is the idea that they might be able to connect

previous information to the present task. However, it is already proved that basic

RNNs don’t have the ability of learning long-term dependencies. Long short-term

memory networks (LSTMs) are a special RNN architectures which were introduced

by Hochreiter and Schmidhuber [27]. LSTM has feedback connections that make

it a ”general purpose computer” (that is, it can compute anything that a Turing
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machine can) [57]. Unlike standard RNNs, the repeating module of LSTMs is not

a single neural network layer, but 4 layers interacting in a special way (as shown in

Figure 4.7).

Figure 4.7: LSTM Architecture

A common LSTM unit is composed of a cell, an input gate, an output gate and a

forget gate. The cell remembers values over arbitrary time intervals and the three

gates regulate the flow of information into and out of the cell.
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4.2 Temporal Indirect Feature Extraction

4.2.1 Optical Flow

Lucas-Kanade optical flow method (LK-OF)[40] is the most famous algorithm

for calculating the optical flow between 2 frames. The LK-OF assumes that the

displacement of the image contents between two nearby frames is small and ap-

proximately constant within a neighborhood of the point p under consideration.

Thus the optical flow equation can be assumed to hold for all pixels within a win-

dow centered at p. Namely, the local image flow vector (u, v) must satisfy the

following equation:

where q1, q2, . . . , qn are the pixels inside the window, and Ix(qi), Iy(qi), It(qi) are

the partial derivatives of the image I with respect to position x, y and time t,

evaluated at the point qi and at the current time.

To solve the optical flow constraint equation for u and v, the Lucas-Kanade

method divides the original image into smaller sections and assumes a constant

velocity in each section.

Then, it performs a weighted least-square fit of the optical flow constraint equa-

tion to a constant model for [u v]T in each section Ω. The method achieves this

fit by minimizing the following equation:

∑
x∈Ω

W 2
[
Ixu+ Iyv + It

]
(4.2)

where W is an n×n diagonal matrix which is also a window function that empha-

sizes the constraints at the center of each section. The solution to the minimization

problem is:

u
v

 =


∑
W 2I2x

∑
W 2IxIy∑

W 2IyIx
∑
W 2I2y


−1 −

∑
W 2IxIt

−
∑
W 2IyIt

 (4.3)
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The result of LK-OF can be seen as bellow:

Figure 4.8: Result of Lucas-Kanade method, the upper figure refers to time Tn,

while the lower image refers to time Tn+1.

Ix(q1)u+ Iy(q1)v = −It(q1)

Ix(q2)u+ Iy(q2)v = −It(q2)

...

Ix(qn)u+ Iy(qn)v = −It(qn)

(4.4)
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4.2.2 Motion History Image

Compared to a per-pixel dense motion estimation such as the above mentioned

optical flow, motion history image (MHI) converts the 3D space-time information

in a video sequence into a single 2D intensity image. The process needs first back-

ground subtraction to segment the foreground region in each individual image in

the sequence. A foreground pixel is then assigned with a large fixed intensity value

that represents the duration of an action. It is reduced over time by a small con-

stant value when the pixel becomes a background point. The intensity value in the

MHI thus records the history of temporal changes at each pixel location. The MHI

is formally defined as [6]:

Hτ (x, y, t) =

τ, if D(x, y, t) ∈ foreground

max{0, Hτ (x, y, t− 1) − 1}, otherwise

(4.5)

where D(x, y, t) is a binary image that indicates the presence of moving objects at

time frame t. The parameter τ critically defines the temporal duration of an action.

If the preset τ value is smaller than the actual number of frames of an action, the

prior movement of the action is lost in the MHI. Conversely, the changes of intensity

values in the MHI become indistinct and residuals of previous unrelated motions are

retained when the τ value is overly large. In the MHI representation, all detected

foreground points (i.e., D(x, y, t) = 1) have the same intensity value τ , regardless

of movement durations and moving speeds at individual pixels. It is thus very

sensitive to background noise and cannot well describe local movements of a target

object.

4.3 Spatial Indirect Feature Extraction

4.3.1 Graph Convolutional Network

Recently, generalizing the CNN to the graph convolutional network (GCN), which

can handle arbitrary graph-structured data, has received widespread attention. The
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GCN model has been successfully used in many applications, which also has the

potential to extract indirect relationship in a image. (as shown in Figure 4.9

The GCN model constructs a filter in the Fourier domain, the filter acts on the

nodes of graph and its first-order neighborhood to capture spatial features between

the nodes, and then the GCN model can be built by stacking multiple convolutional

layers. As shown in Figure 4, assuming that node 1 is the central road, the GCN

model can obtain the topological relationship between the central road and its

surrounding roads, encode the topological structure of the road network and the

attributes on the roads, and then obtain spatial dependence. In summary, we use

the GCN model [47] to learn spatial features from traffic data. A 2- layer GCN

model can be expressed as:

Figure 4.9: A Graph Layer

f(X,A) = σ(ÂRelu(ÂXW0)W1) (4.6)

where X represents the feature matrix, A represents the adjacency matrix, Â =

D̃− 1
2 ÃD̃− 1

2 denotes preprocessing step, Ã = A+ IN is a matrix with self-connection

structure, D̃ is a degree matrix, D̃ =
∑

j Ãij. While, W0 and W1 represent the



4.3. SPATIAL INDIRECT FEATURE EXTRACTION 42
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

weight matrix in the first and second layer, and σ(), Relu() represent the activation

function.

4.3.2 Self-Attention

Self-attention network is designed to solve the problem that CNNs cannot pro-

cess long-range relations and grasp high-level semantic information, which not only

receive efficient features in a local region, but also perceive contextual information

over a wide range. Therefore, it can be applied to indirect feature extraction.

As shown in Figure. 4.10, feature maps from the previous hidden layer are first

transformed to three feature spaces (q, k, v). q indicates a query space vector

while k is a key space vector, they are used to calculate weights which represent the

similarity features between feature map. Reweighting the long-term information on

the value space vector v enables the network to capture joint relationships easily.

Figure 4.10: Self Attention Layer
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4.4 Proposed Network Architecture

For the network architecture used in this system, to realize both direct and indi-

rect regressions, we use a two-stream architecture [19, 41] to perform both extrac-

tions simultaneously. As shown in Fig. 4.11.

Both the spatial indirect feature extraction and the temporal one use the same

network structure, the only difference is the algorithm used in the indirect fea-

ture extraction module and the regression layer in the indirect feature-network. In

the next two chapter, a detailed explanation is given to the two types of indirect

network, the FuturePoseNet (temporal indirect feature) and the InvisiblePoseNet

(spatial indirect feature).

Figure 4.11: Proposed Two Stream Network Architecture
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Chapter 5

FuturePoseNet (Temporal Predic-

tion)

5.1 Overview

Based on the previous mentioned network design, we first developed Future-

PoseNet, which focuses on predicting the future posture from the previous informa-

tion, which is a very important ability in some sports. To realize this, we enhance

the temporal indirect feature regression by proposing a new optical flow method

Figure 5.1: Overview of FuturePoseNet.
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and using graph neural networks. The final layer is an LSTM layer to regress 3D

poses from temporal features of the previous frames. The indirect module and the

overview can be seen in Fig 5.1.

5.1.1 Keypoint Lattice-Optical Flow

Figure 5.2: Our method of lattice point optical flow, sparse lattice points on human

body are divided into several groups according to joint positions, while optical flow

of each group of lattice points will be averaged to represent the optical flow of

corresponding joint.

Since the LK-OF method requires a huge computation, we down-sample the image

to 32x32 to make it possible for real-time calculation. From some pilot test, we

noticed that the prediction result was not that good and we found that the motion

feature wasn’t extract totally by observing the optical flow result. It might be
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cause due to the low resolution of the image, however, we found that in some image

where the human body was cropped tightly which almost cover the whole image,

the optical flow can detect the motion clearly.

Therefore, we developed a new type of sparse optical flow called Keypoint Lattice-

Optical Flow (KL-OF), which creates several lattice points and only calculates the

optical flows of those lattice points which are close to a keypoint (in our case, the

human joint). First, we decide the space distance d of each lattice point to have

a sum of 224/d × 224/d lattice points, then we use the Lucas-Kanade algorithm

[40] to calculate the optical flow vector of each point, defining the vector of the

corresponding point (x, y) to be LK(x, y). As a result, the computation of optical

flow was reduced by at least d2 times comparing with normal dense optical flow.

Because the 2D joint estimation works in parallel and is faster (in most cases)

than the optical flow calculation, we can obtain the 2D joint positions and directly

determine the lattice points near the joints from their distance Dj.

In the following equation, (Xj, Yj) stands for the joints position in 2D image. We

can obtain the average optical flow Avgj representing the movement of the joints

as follows:

Avgj = {Σn
i LK(xi, yi)

n
| Dj < dmax} (5.1)

where LK(xi, yi) is the specific optical vector and dmax is the maximum distance

we use to average the optical flow near the joints. The parameters d and dmax

need to be tuned for different applications to obtain higher accuracies; however,

smaller d and larger dmax will lead to heavier computations. In our experiments,

with cropped images of a size 224 × 224 as input, we used d = 8 and dmax = 24,

which means that, at most, 28 lattice optical flow vectors are averaged for one joint,

as shown in Figure 5.2.

The two graphs above show the comparison of applying LK-OF to a original

image in 32x32 scale and applying our method to the same image. It is obvious

that in our case the density of vectors are higher on human’s body. On the other
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Figure 5.3: Comparison of LK-OF with our method.

hand, since the amount of point is in most case even smaller than using normal

optical flow, the computation is faster.
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In conclusion, from the comparison we can know that our method provides more

motion (temporal) information with less computation, which leads to a faster and

precise prediction.

In the next chapter, an evaluation of inference time and accuracy will be per-

formed to proof the effect of our method.

5.1.2 Graph Convolutional Layer

In addition to the LKOF methods, a graph layer is added to the indirect feature

stream instead of conventional direct MLP. With the help of the final LSTM layer

and the LKOF module, it is able to learn both the long-term and the short-term

changes in the temporal sequences. However, the relationship between these indirect

features and the target 3D posture is not well-learned by the network thus might

be over-fitted to other features. Relationship between indirect features and the

target output needs to be correctly learned. (For example, when estimating finger

movement from the back of the hand, it is easy to know that the middle finger is

somehow related with the middle part of the dorsal hand.)

Therefore, we refer to the Graph Convolutional Network [7] and include a graph

convoltional layer in the indirect feature network.

5.1.3 Network Architecture

The whole network architecture can be seen in Figure 5.1.

The 224 × 224-size cropped RGB input image sequences, after a pooling layer,

are divided into a temporal direct feature extraction stream and and an indirect

feature extraction stream. Then the output of the feature extraction are further

passed to an LSTM layer and MLP to enhance the temporal learning. Based on

these feature extractions, the network finally predicts the temporal future posture

of the person in the input images.

For the direct feature regression, we refer to the pose estimation network of
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Dushyant et al. [46, 47]. They use a customized ResNet50 [24] to allow the convo-

lutional layer to regress the 2D joint data and is trained on an annotated 3D human

pose dataset such as the Human3.6M [9, 30] and MPI-INF-3DHP [44] dataset. We

adjust the network to directly estimate the current 2D joints which will be further

passed to the indirect instead of generating location maps for the depth estima-

tion; therefore, the activation layer become a linear regression with dimensions of

the number of joint positions. The residual network structure can be seen in Fig-

ure 4.5.

The indirect feature stream, as mentioned before, is first processed by our optical

flow algorithm to obtain the motion vector for each joint and then further learned

by the graph convolutional layer. The input for the optical flow are the current

RGB image and the current 2D pose extracted by the direct feature stream, and

will output a 17 × 2 2D joint vector which includes the movement information of

each joint. This movement vector is finally passed into the graph neural network

to learn the relationship between the previous joint and the future joint.

The output feature of the direct and indirect stream are stacked for five continuous

frames and passed to the LSTM layer. The network learns both long-term and

short-term relationship between frames and finally output the future 2D posture.

Figure 5.4: Network Architecture
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The latter part of Figure 3 is a residual linear network which recover the 2D

joints position to 3D. We refer the method of Martinez et al. [42], who developed

an effective network for 3D pose recovery. After the forecasted 2D joint positions are

output from the LSTM network, we apply a noise filter to the output coordinates.

Even though we tried to use a Kalman Filter [34] or a Moving Average Filter [54],

the noise was not clearly filtered and some correct joints were incorrectly filtered.

After observing the data, we found out that most of the noise was radical errors

which are completely wrong compared to the correct position. Therefore, we use a

threshold filter, which only filters the joints that are away from the center of body

for more than 70% of height.

The filtered data are then passed to the recovery network for the 3D construction.

The network only consists of two linear layers and two residual blocks, which means

that there are six linear layers in total.

5.2 Experiment on Pose Prediction

We performed our experiments from two different perspectives: quantitative eval-

uation and qualitative user study. In the quantitative evaluation, the real-time abil-

ity and the forecast accuracy was examined comparing with seven different methods

including ours. While the qualitative user study asked some amateurs of martial

arts to experience the system by receiving attack from a martial arts practitioner.

5.2.1 Dataset

For training the model, we used the sports motion from MPI-INF-3D and Hu-

man3.6M [9, 30] datasets for pre-training. Afterwards, for fine-tuning, we took data

from 10 (8 male, 2 female) different subjects of 5 different motion: walking, side

jumping, boxing, knee bending, and tennis swing. Each subjects did 10 sequences

of each motion, while each motion is roughly 10 seconds. Which means, in total, for

each type of motion there are approximately 3000 frames (100s) of video from each
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Figure 5.5: Quantitative Evaluation

subject. All the ground truth of 3D pose were taken by 2 KinectV2 depth camera

in a green screen studio to make sure there is no occlusions or other noise. Also,

to test the effect of our network working with online videos, we took 10 clips video

of dance and penalty kick each of different people from youtube. In that case, the

ground truth was given by the VNect [47].

All the data mentioned above was simply cropped before training, and are also

split into a ratio of 8:1:1 for training, validation, and testing, respectively.

To test the real-time performance, since there is no necessity to differ from the

training data. we simply used all the data from the MPI-INF-3D human pose [44]

dataset. While estimating the accuracy is done by the test split of the data. To

ensure the robust of the test, each estimation was done twice with the split to be

shuffled. And the result will be averaged only when there is not a significant (less
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than 5%) difference between the two times of testing.

5.2.2 Baseline

For a baseline, because there are few prior studies covering real-time pose forecast-

ing on raw RGB frames, we first compared our method to other real-time prediction

methods such as the five-layer neural network from Yuuki Horiuchi et al. [28] and

normal convolutional LSTM [73]. We devised other baselines by changing the pose

estimation module to VNect [24, 47] or Kinect [56, 80]. Further, we added the

offline 3DPF-Net [10] model for comparison.

To evaluate the accuracy, we compared our method to both off-line approaches

and real-time approaches. We also imported the baseline which is also used by

Chao et al. [10] called Nearest Neighbor (NN), which uses the closest former frame

to represent the prediction result of the predicted frame, as shown in Figure 5.10.

We fine-tuned all the network using our practical dataset and used the test split

data for the estimation. The Kinect method [28] was test with the same situation

where the data are taken, a Kinect V2 camera was place to exact the same position

of the RGB camera to perform the evaluation.

For the ground truth, the 2D ground truth are calculated from a 2D heat map

regressed by ResNet100 [24] and the 3D ground truth are using the data from Kinect

as a base architecture for a fair comparison.

5.2.3 Real-time Performance

We used multi-threaded programming for the image preparation (reading and

cropping), pose estimation (including prediction), and visualization, which means

the computing time of our system only depends on the most computational heavy

part, the pose estimation.

To check the real-time ability, we examined the average inference/prediction time

per image in milliseconds of our system compared to other methods which is shown
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Figure 5.6: Human 3.6m
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Figure 5.8: Our dataset
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in Table 5.1. Note that, the input dimension of the neural network of Horiuchi et al.

is 10 frames of data, which is twice that of our system and the LSTM method, and

they also used the center of gravity (COG) as an input of the network. In addition,

even though Kinect and VNect can generate 24 and 21 joints, respectively, we only

used the same 17 joints for input as in our system.

Method AIT(ms)

3DPF-Net (Offline) [10] 2500

Horiuchi et al. (Kinect) [28] 41.7

Horiuchi et al. (Direct) 55.3

Yagi et al. (LSTM) 39.6

Yuan et al. (LSTM+OF) 73.5

Ours (FC+LSTM) 42.1

Ours (GNN+LSTM) 40.0

Table 5.1: Average Inference Time (AIT) from one image being inputted till cor-

responding 2D forecasted pose being outputted of 30 test results (5 times for each

type of motion).

The Table 5.1 shows the result of the evaluation, 4 baseline method and two types

of our method (which is only different in stacking 10 images or 5 images as an input)

was compared. Every method was test 5 times in 6 different type of motions, which

means in total inference time of 30 trials was averaged. The definition of inference

time in this study is the beginning of capturing image till end of getting the 3D

output (shown in Figure 5.9).

From the result it is easy to know that the off-line network 3DPF-Net (which

require more than 2.5 seconds for computing each image) is heavier in computation

by 2 orders of magnitude than the other methods.
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Comparing with other models with low inference time, the methods using Kinect

appear to have the best performance because it uses RGB-D camera for the pose

estimation. Convolutional LSTM is approximately 20ms slower than the neural

network of Horiuchi et al., while our method has an approximately average level

of performance. However, despite Kinect, which has hardware dependencies, our

method did not fall far behind the neural network using VNect for the pose estima-

tion with a frame rate of approximately 17 FPS, which is acceptable on a notebook

without a high-end graphics process unit.

Figure 5.9: Definition of Inference time

5.2.4 Prediction Accuracy

For pose forecasting, we ran experiments predicting different time steps of future

poses using different methods.

Real-time Forecasting Accuracy Result

The Table 5.2 in the next page shows the result of the accuracy test experiments

in practical pose forecasting of 15 frames (0.5s in a 30-fps video) in advance. While

Table 5.3 infers to the result of predicting 30 frames (1s in a 30-fps video) in advance.
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For the evaluation, we used the PCKh@0.05 evaluation [4] measure which calcu-

lates the percentage of correct key point that uses a matching threshold of 50% of

the head segment length. As mentioned before, the 2D ground truth of joint posi-

tions in these videos are calculated from a 2D heat map regressed by ResNet100 [24]

as a base architecture for a fair comparison. The root-mean-squared error (RMSE)

was also calculated to show the deviation of the predicted data.

In the 15-frame-forecasting test, the result of PCKh@0.5 (higher is better) and

RMSE (lower is better) shows that our method performs better in most of the action

(Unit of RMSE is pixel, 1 pixel is approximately 9.1mm in our experiments). Of

which the result almost overcome or at least equal to the result of the 3DPFNet,

which is the offline state-of-the-art.

In the 30-frame-forecasting test, all the result decrease except the nearest neigh-

bor baseline. While the neural network method performs far worse than the LSTM

and Our methods, which can proof the usefulness of the long-term network.

Figure 5.10: Nearest Neighbor
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3D Joints Accuracy Result

The Table 5.4 shows the RMSE of specific joint (head, neck, chest, spine, shoul-

ders, elbow, wrist, hips, knees, ankles, and torso were calculated. ) of the 2D to

3D recovery method. Comparison was only done in the 15-frame-forecasting condi-

tion with the 3DPF-Net off-line method which performed the best in our accuracy

experiments except our method.

For the evaluation, we calculated the difference between the forecasted 3D pose

and the 3D ground truth which is taken by Kinect, and calculate the RMSE (the

unit is pixel, 1 pixel is approximately 9.1mm in our experiments).

From the result, we can know that, even though the 3DPFNet had a smaller

error in predicting 5 parts(Head, Nect, Chest, Shoulder and Hip) of 3D joints, our

method have a better average score and is better in predicting the 3D position of

the limbs such as Wrist or Ankle (of which the error is more than 10% lower).



5.2. EXPERIMENT ON POSE PREDICTION 62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B
ox

in
g

M
et

h
o
d

H
ea

d
N

ec
k

C
h

es
t

S
p

in
e

S
h

ou
ld

er
E

lb
ow

W
ri

st
H

ip
K

n
ee

A
n

k
le

A
v
g

3D
P

F
N

et
(o

ff
)

[1
0]

7
2
.9

6
4
.7

6
2
.8

6
5
.3

6
4
.1

91
.7

13
4.

4
5
7
.9

89
.6

11
2.

7
85

.4

O
u
rs
(S

ta
ck

1
0
)

73
.0

75
.1

68
.7

6
5
.3

65
.4

8
7
.1

9
9
.7

63
.6

8
5
.7

9
8
.4

8
0
.1

T
ab

le
5.

4:
R

o
ot

-s
q
u

ar
e-

m
ea

n
p

er
sp

ec
ifi

c
jo

in
t

p
os

it
io

n
er

ro
rs

(m
m

)
of

ti
m

es
te

p
s

15
.

O
u

r
sy

st
em

ac
h

ie
ve

s
a

lo
w

er
av

er
ag

e

er
ro

r
th

an
th

e
off

-l
in

e
3D

P
F

-N
et

.



5.3. EXPERIMENT ON BALL TRAJECTORY PREDICTION 63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3 Experiment on Ball Trajectory Prediction

Next, to show more potential of temporal indirect estimation, we apply the Fu-

turePoseNet to table tennis. Instead of human posture, we believe there is also

a temporal relationship between the served ball and the previous posture of the

server. Therefore, with some adjustment in the input and output, we tuned the

network to predict the pingpong ball trajectory served by an opponent.

The main difference of the network is that we crop the input video to the upper

body and change the output of the 2D joint position to 10×2 (10 keypoints). Since

the camera is placed in the front of the player (as shown in Fig. 5.11), it cannot

see the lower body, which is covered by the table tennis table. Thus, only the 2D

upper body joints positions (10 joints) are estimated.

The rest of the network are similar, the 10 joint positions are further passed to

the indirect feature extraction and the LSTM to obtain temporal information. Ten

previous poses are stacked as an input, which results in an input size of 10×10×2.

The output of LSTM is then passed to another 2 fully-connected layers, of which

the final output is the 2D landing position (a 2D vector).

An overview of the real-time ball trajectory prediction system is shown in

Fig.5.11.

5.3.1 Dataset

To collect the data for training, we used another 240-fps camera to track the pre-

cise trajectory of the ball for ground truth. However, the data are down-sampled to

30-fps for training to meet the real-time condition. The skeleton data are generated

by the same residual CNN network shown in Fig.5.12.

For data annotation, in order to label the landing point of a serve, we also used

the audio data. Since we performed the data collection in a practically silent en-

vironment, the rebound sound can be simply filtered by a amplitude threshold to

acquire the bouncing frame which result in the landing point.
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Figure 5.11: System Structure Overview

Figure 5.12: Network Architecture

We calibrated the 2D human posture according to the table position, where the

center of the baseline was set as origin. For the ball position, the 2D position related

to the table of the second rebound (obtained from audio data) considered as the

landing point of a serve. Nevertheless, no rotation data are considered in this study.
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Figure 5.13: Result of Curved Serve
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5.3.2 Prediction Accuracy

We performed two types of experiments: (1) a quantitative evaluation on fore-

casting accuracy, and (2) a qualitative study which visualize the result for beginners.

In the accuracy evaluation, the pose estimation network was pre-trained with

MPI-3D [45] and Human3.6M [31] dataset while the LSTM network was pre-trained

with 300 clips of table tennis serve gathered online. These online clips are manually

trimmed from table tennis instruction video where the coach is making different

serves with the camera in the front. After that, we collected data of 8 subjects

(4 amateurs, 4 practitioners, all right-handed) doing 20 successful straight serves,

which results in total of 160 video clips. for each subjects, we use 16 clips (80%)

of the data for fine-tuning and the remaining 4 clips (20%) for testing. The entire

data was shuffled randomly across person and tested in 3 conditions (Only amateurs;

Only Beginners; Mixed) to study the robustness of our system. The data starts from

when the subjects release the ball and ends right before they hit the ball (we call

this part serve motion). Besides the straight serve data used for evaluation, curved

serve from an expert player was also taken for attempting (Fig.5.13).

The results of accuracy tests are shown in Table 5.5. Condition A stands for

amateurs only condition while condition P stands for practitioners only, Mix means

the condition with data of all 8 subjects. The Percentage of Correct Point (PCP)

shows the percentage where the predicted point is within the diameter of a pingpong

ball (40 mm) of the ground truth. The results show the expected difference (12.5%)

between the average PCP accuracy of the amateurs (81.25%) and the practitioners

(68.75%), while the mixed condition is 75.0%. Among all the condition, the max

error is only 8.9 cm.

5.3.3 Qualitative Results

In the qualitative study (Fig.5.14), we invited 6 table tennis amateurs only basic

experience in table tennis to return the serve of an experienced player (with 10-
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Figure 5.14: User Study Camera View
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Cond PCP RMSE Max

A 81.25 2.34 6.5

P 68.75 4.24 8.9

Mix 75.0 3.29 8.9

Table 5.5: Result of Forecasting Accuracy (Error unit: cm), PCP: Percentage of

Correct Point, Max: Max difference.

year experience). The experienced player made 20 serves in each condition with

or without the future visualization. The participants were asked to compare the

experience W/WO the future visualization, and an interview were given to ask the

overall impression of the prediction result.

From the interview afterwards, 5 participants stated that the system predicted

the trajectory precisely and increased their interest in learning table tennis. 3

participants also claimed that the forecast was helpful to train the form of return,

since it allowed more time to think about how to return the ball. However, two

participants claimed that the visualizing was sometime disturbing and attracted

the attention from the ball, a more intuitive feedback is demanded.
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Chapter 6

InvisiblePoseNet (Spatial Predic-

tion)

Our System Camera View 3D Hand Pose

RGB Cam

Motion History

InvisiblePoseNet

tt-1t-2Future
Concept

Figure 6.1: Overview of InvisiblePoseNet.
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6.1 Overview

Spatial prediction is another advanced ability which enables human to under-

stand the whole characteristics only from a part of an object. We propose the

InvisiblePoseNet, which is trying to realize this spatial feature extraction using in-

direct features. Different from the FuturePoseNet, the InvisiblePoseNet focuses on

predicting the whole body/hand posture from another part of the body which is

not directly related with the target posture. To realize this, we enhance the spatial

indirect feature regression by employing an optical flow-based motion history image

and another self-attention neural networks for spatial feature extraction. The final

layer is an graph layer to extract the relationship between specific regions of the

input images and the target posture. The indirect module and the overview of the

InvisiblePoseNet can be seen in Fig 6.1.

6.1.1 Optical Flow-Motion History Image

In the conventional MHI, every detected foreground pixel is assigned with a fixed

intensity value τ .A slow movement and a fast movement of different body parts

will have the same motion strength. Tsai et al. [66] introduced a spatio-temporal

representation, where they combine optical flow and MHI. Similar to their idea,

we also use the optical flow length s(x, y) to represent each individual pixel (x,

y) over time. The resulting intensity value then indicates the historical motion

speeds at that location. It can better describe local movements of a target object.

The optical flow itself is also used for foreground segmentation to extract moving

objects. The motion duration in the conventional MHI is critically determined by

the fixed parameter value of τ . The proposed OF-MHI (optical flow-motion history

image) representation can be defined as:

E(x, y, t) = s(x, y, t) + E(x, y, t− 1) · α (6.1)

where s(x, y, t) represents the optical flow length of pixel (x, y) at time frame t.
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Figure 6.2: Spatial indirect feature extraction of optical flow-based motion history

image.

The parameter α is the update rate, with 0 < α < 1. Note that the motion strength

is adaptively given by the flow length s(x, y, t) for each individual pixel (x, y). If the

optical flow length s(x, y, t) is very small, it indicates pixel (x,y) is a background
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point.

6.1.2 Residual Kalman Filter Layer

In addition to the LKOF methods, a residual Kalman Filter layer is added to the

final LSTM to enhance the feature extractions. This is because human’s motion

are considered to be linear movements in sequential video clips, which could be

regularized by a Kalman filter (KF) [34]. However, KF require a motion model and

measurement model to be specified a priory, which are often only crude approxima-

tions of reality. In the work of Coskun et al. [14], they introduced a LSTM-based

KF to use LSTM to learn the motion and noise model, which shows promising effect

on learning human dynamics. Therefore, this architecture is imported to obtain a

more stable temporal feature sequence ψ1:T . We also add a residual connection to

bypass the Kalman filter for more direct feature learning, so the network will choose

whether to use Kalman filter based on the target motion.

6.1.3 Network Architecture

Here, we use hand poses as an example to explain the network architecture and the

purpose of each component. Figure 6.3 shows the overview of a network extracting

indirect features on the back of the hand to predict full hand 3D finger posture.

For each training sequence of length T (in this paper, we use T=5), the prepro-

cessed data consists of the masked hand images I1:T , the opitical flow-based motion

history images (OF-MHI) X1:T , and the hand pose labels y1:T . Each hand pose yt

includes the joint angles α1
t , α

2
t , α

3
t , α

4
t of the index, middle, ring and little fingers

and the 3D position et of the thumb top. As shown in Fig. 6.4, the joint angle

αi
t of each finger has four elements (M i

v,M
i
h, P

i, Di) where M i
v,M

i
h correspond to

the vertical and horizontal rotation of the first joint and P i, Di correspond to the

rotation angles of the second and third joint respectively. Our goal is to learn a

neural network based regressor ỹ1:T = f(I1:T , X1:T ) that maps the indirect features
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in the input masked images I1:T and OF-MHI X1:T to a sequence of estimated hand

poses ỹ1:T = f(I1:T , X1:T ).

To this end, the InvisiblePoseNet, a two-stream graph convolution-based network

whose architecture is outlined in Figure 6.3 is proposed. For each timestep t, two

ResNet18 [23] are used to extract visual features from the masked hand image It

and the OF-MHI Xt respectively. The two visual features are then concatenated

together and passed through a fully-connected layer to form a unified visual feature

ϕt.

Previous research [77] already showed that simple two stream CNN is not suffi-

cient for extracting temporal features of the back of hand. Thus, we use an graph

convolutional layer to process the visual feature sequence ϕ1:T into a graph-based

feature sequence, which is proved to be useful in indirect pose estimation [70, 79].

On the other hand, we noticed that most of our finger motions are simple linear

movements, which could be regularized by a Kalman filter (KF). However, KF re-

quire a motion model and measurement model to be specified a priory, which are

often only crude approximations of reality. In the work of Coskun et al. [14], they

introduced a LSTM-based KF to use LSTM to learn the motion and noise model,

which shows promising effect on learning human dynamics. Therefore, this archi-

tecture is imported to obtain a more stable temporal feature sequence ψ1:T . We

also add a residual connection to bypass the Kalman filter for more direct feature

learning, so the network will choose whether to use Kalman filter based on the hand

motion. For each frame t, the temporal feature ψt now includes information from

past frames to help make hand pose predictions. Finally, another fully-connected

layer is added to map the temporal feature ψt to the estimated hand pose ỹt. We

use a single LSTM instead of the three from the previous work [14], because the two

stream CNN architecture is heavy in computation, we focus on light-weighting the

whole networks to achieve a real-time inference time. That is also the reason why

ResNet18 is used but not deeper CNN architecture such as ResNet50 or ResNet101.

As a result, the inference time of the whole network using the mid-range notebook
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PC mentioned in the hardware section is approximately 38ms. To provide supervi-

sion for training the DorsalNet, we define the following loss function:

L(yt, ŷt) = Lfingers + Lthumb , (6.2)

Lfingers =
1

16

4∑
i=1

∥∥αi
t − α̃i

t

∥∥2
, (6.3)

Lthumb =
1

π2
arccos2

(
et · ẽt
|et||ẽt|

)
, (6.4)

where we use symbols with tilde to indicate it is the estimated output of the

network and symbols without tilde to indicate ground truth. We also use different

losses for the fingers and thumb because their pose representations are different.

For the fingers, we use mean squared error (MSE) as the loss for the joint angles as

shown in equation (6.3); for the thumb, we compute the angle between the estimated

thumb top vector and the ground truth one as the loss function (6.4).

6.2 Experiment on Back Hand Pose

First, we examined the InvisiblePoseNet by applying it to predict full 3D hand

poses from images of the back of the hands. The ultimate goal is to extract spatial

indirect features on the dorsum of a hand, such as the deformations of skin, veins, or

tendons, and learn the indirect relationship between these features and the motion

of each finger.

For 3D hand representation, instead of location-based 3D coordinates, we use the

relative joint angle-based representation [32] for the 4 fingers except the thumb,

which is independently estimated by end point position (as shown in Figure 6.4, M,

P, D stand for the MCP, DIP, PIP joints of the specific finger, while the v and h

stand for the vertical and horizontal bending of MCP). For the thumb, it is more

difficult to detect the relevant deformations since they mainly take place on the

side of the arm. After a number of trials, we decided to treat the thumb separately

and to let the network learn to estimate a 3D vector of the thumb top from the
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𝑴𝑴𝒗𝒗
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Figure 6.4: Our 3D hand model representations, the thumb is represented by a

single 3D vector and the other 4 fingers are using joint angle.

edge information of the dorsal hand, and we then recover the thumb joint angles

using inverse kinematics [39]. The joint angle error we use is another commonly

used metric for 3D hand pose estimation which is widely employed [67, 81].

6.2.1 Data Collection

Data was collect from 5 out of the 6 participants who also participated in the

previous segmentation study. For hardware, we use a wide angle RGB camera (as

shown in Figure 6.5), that has less environmental restrictions and is more likely to be

found in smartwatches than IR cameras (used by previous work [77]), which suffers

from stray infrared light from the sun. However, RGB cameras, different from IR

cameras, cannot benefit from the easy segmentation of removing the background.

Therefore, we perform a hand segmentation to reduce noise from the background.

Similar to prior work [77], we collected data of static gestures of American sign
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9𝑚𝑚𝑚𝑚
98°

Camera (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 120 𝑜𝑜 FOV, 2.1 𝑚𝑚𝑚𝑚, 1/3" )

11𝑚𝑚𝑚𝑚

10𝑚𝑚𝑚𝑚

Our Hardware Zeblaze Thor Dual

Figure 6.5: Comparison with commercial smartwatch, (top) the hardware compar-

ison and (bottom) the cropped images from our camera and the raw images from

both Zeblaze.

Figure 6.6: Examples of the data from the 5 subjects.
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language (ASL) digits (0-9), and dynamic gestures of finger tapping. During the

study, the participants were asked to put the right arm on an armrest and to wear

our camera with Velcro tape to perform the action.

The entire collection procedure includes 5 sessions for all 15 gestures (both static

and dynamic). In each session, the user was told to re-wear the camera and start

from a relaxed hand posture to do the specific gesture repeatedly (for static gestures,

the user have to return to relaxed posture every time). We asked the users to

perform the gesture in a normal speed but the frequency is controlled by themselves,

approximately 1 ASL gesture per 3 seconds and 1 tap per second were collected.

An auto-labeling program is written for multi-threading the Leap Motion API

and camera image acquiring, where it is calibrated so that the root of the thumb

becomes the origin, as depicted in Figure 6.4. We also fix the camera frame rate

to 20 FPS to simplify the synchronization and to align with the inference frame

rate. For each session of each gesture, 30 seconds of video at 20 FPS was collected.

As a result, video of 600 frames was collected 5 times for all 15 gestures for each

participant, which resulted in a total of 225,000 frames. These data were used in

the training and evaluation for the hand pose estimation and gesture recognition.

For the grasp recognition, we only use the mentioned data for pretraining, but use

another dataset for fine-tuning and evaluation (which will be described in later

sections). Also, we collect a single-user dataset of different lighting condition which

will be described in the Lighting Condition Study . In all sections, the ratio of the

train and test data split is set to 8:2.

To obtain robustness and usability, we performed several preprocessing steps

including data augmentation, hand segmentation and motion image processing.

Because a wrist-worn device is not always tightly fixed to the arm, the camera

could have some slight rotations around the arm. Therefore, for each input image,

we augment the data by rotating the image clockwise with varying angles from

-10° to 10° with step size 5°, with the same ground truth. This resulted in 5 times

amount of data to enhance robustness across device locations.
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Hand segmentation is undertaken by fine-tuning an encoder-decoder network [5]

to generate hand masks. In our setup, as the camera is fixed on the arm and looks

directly at the dorsum of hand, the bottom half of the image is mostly occupied

by the hand. Thus, it is relatively easy to mask the hand from background. As

a first step, data for segmentation was collected from 6 participants (one female,

aged between 25-30) across races of East Asian, Mediterranean, and European. All

participants are students from the computer science department of two universities

from different countries. They were told to wear our device and walk naturally inside

a laboratory for about 2 minutes which results in 9,600 images being collected.

All images are then masked by color range and contour using OpenCV. After-

wards, the brightness and hand color of these images are changed for data augmen-

tation. For each image, in the HSV color model, the H value is increased/decreased

by a random value which generated 10 different color image including the original,

and the brightness (v) value is also changed to -20%, -10%, 10%, and 20% for each

image. As a result, we train the auto-encoder to create the hand mask of 480,000

images (50 times the amount of the original data). We randomly split the dataset

into training (80%) and testing (20%), and the mean precision of the test result of

generated hand mask is 98.9% in pixel scale.

As mentioned before, temporal motion images are required for training the two-

stream network, which should be generated using pairs of adjacent frames. We

explored the common Dense Optical flow (OF) (KV-L1), Lattice OF [70], PWC-Net

[60] used in Ego-Pose [79], and motion history images (MHI) [6] used by Opisthenar

[77]. Since the deformations need to be captured in a pixel-perfect way in real-

time, it turns out that a refined version of the MHI shown in Figure 6.2 is the best

solution, which provides great accuracy with fast computation speed. Different from

the Opisthenar [77], our tweaked version use the parameter α = 0.2 which means it

is observing the weighted sum of 5 past frames. Another problem that might occur

is that the network might focus on the hand contour movement instead of the skin

deformations, which will harm the network’s generalizability. Therefore, an erosion
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operation is added to the hand masks to filter the outer-edge, and the intensity

inside the hand is increased to let the network focus on inner motions on the back

of the hand.

6.2.2 3D Hand Pose Accuracy

Procedure

The evaluation of hand pose estimation consists of three separate studies. We

first trained our network on an individual user’s data to evaluate the personalized

model. This aims to study the precision of each specific joint and finger, which

could be helpful for future improvement. For comparison, since our work is the first

real-time hand pose estimation system using egocentric wrist-worn camera, some

similar state-of-the-art networks dealing with direct/indirect pose estimation were

used as baselines. Nevertheless, we also carried out a lighting condition study to

study the robustness of our network and an ablation study of different network

architectures and different inputs on the basis of the proposed method.

Baselines

As mentioned in the Procedure section, since there is no identical work for com-

parison, we used some typical standards or similar networks as baselines. The

Direct (ResNet18) is the condition that directly regresses raw camera images to

the 3D representations frame-by-frame, which can be considered as a base condi-

tion. Also, we included the Nearest Neighbour Search [15], also known as k-nearest

neighbour (k=1), because it is a typical standard for pose estimation. Since the

CNN-LSTM architecture we used is similar to the work of Yuan et al. [79], we also

include them as baselines, even though they used bi-directional LSTM which means

their networks are offline. Another baseline is the work by Yeo et al. [77] which we

followed-up. Although their system is not designed for full hand pose regression,

we changed the output of their network and fine-tuned with our dataset. Instead
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of using a Leap Motion camera, we used a monochrome masked hand as the input.

Zhou et al. [82] is the state-of-the-art real-time 3D hand capture methods using a

single monocular camera. Their network used a location map to extract positional

features and regress the 3D joint location of the hand. They also used an IK-Net

for learning inverse kinematics to recover the joint location to joint angle and match

the output with the MANO hand model. To compare with this work, we fine-tuned

their network by changing the input to our raw egocentrics dorsal hand images.

Together with the 5 baselines above, our method with/without Kalman filter are

analyzed. All results are using joint angle-based representations while the baseline

of Zhou et al. [82] also outputs the full thumb joint rotation since they use the

MANO hand model. Therefore, we re-calculate the thumb vector from their output

which might cause inaccuracy. However, we believe the overall performances are

still comparable.

Finger and Joint Error Study

We first trained our network on individual subjects to study the precision of

each finger and joint. Five personalized models were trained and evaluated on each

specific user’s data, 20% (9000 frames) of the user’s data was randomly kept for

this test. Table 6.1 shows the average result of 5 individual models, all results are

recovered to angle unit for a better visibility, where the unit is degree. The first 4

rows show the mean absolute error (MAE) and its standard deviation (SD) of each

joint of the 4 fingers, respectively, together with an average result of each joint. The

columns stand for each finger joint rotation and the last row is vector angle error

of the thumb.

Comparison Study

Next, to show the effect of our network compared with baseline conditions. In

this study, we trained both the 5 individual models and a general model for each

network. Here, we used a session-split of leaving one specific session (9000 frames for
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Method Individual General Leave-1-user

Nearest N.[15] 18.44° 21.78° 20.89°

Direct(ResNet18) 18.39° 22.09° 29.11°

Yuan et al. [79] 12.48° 14.40 ° 14.53°

Yeo et al. [77] 16.67° 18.52° 20.24°

Zhou et al. [82] 15.95° 20.06° 21.06°

Ours (w/o KF) 9.28° 10.33° 10.71°

Ours (w/ KF) 8.81° 9.77° 9.72°

Table 6.2: Comparison with baseline methods, Our methods are divided into

with/without Kalman filter (KF).

one subject, 45000 frames for general model) for the Individual and General model

to study the cross-session generalization of our system. As well as a user-split of

leaving one user out, to perform a cross-user validation.

6.2.3 Ablation Study

Starting from the very basic two CNN networks (VGG16 and ResNet18), we

analyze the effect of the network by gradually adding other model parts. This

ablation study is mainly comparing how different input and different temporal fea-

ture extraction will affect the precision of the hand tracking, and the same data

were used as the comparison study. Three different types of input together with

a with/without data augmentation condition were compared, while the network is

changed by with/without LSTM or Kalman filters. In total, seven conditions are

compared as shown in Table 6.3, the inference time (ms) using the laptop is also

recorded for comparison. To notice, the ResNet18 (RGB) method here is different

from the Direct (ResNet) in the former study for it uses the masked hand images

preprocessed by our system instead of raw images.
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6.2.4 Lighting Condition Study

Our study is mostly done in an indoor with fluorescent lamp lighting condition.

To show the performance of our network in different lighting, we also conduct a

comparison of angle MAE in different conditions shown in Figure 6.7. We asked

one of the participants to take data under 4 other lighting conditions besides the

base condition (In-Light), which are:

• Outdoor Day: Natural day light on a cloudy day outside.

• Outdoor Sun: Strong sunlight on a fine-weather sunny day.

• Indoor Dark: The lamp is turned off with only stray light from a PC monitor.

• Outdoor Night: Only light from street lamp at night.

In all condition, we take the same quantity of data as the former studies from the

participant, which results in 45000 frames for each lighting. However, in the Out-

Sun condition, we cannot use Leap Motion to capture the ground truth due to high

Architecture (Input)
Angle Error Inference

Individ. General Time (ms)

VGG16 (RGB) 16.07 18.19 54

ResN18 (RGB) 16.11 18.70 17

ResN18+LSTM (RGB) 11.95 14.01 35

ResN18+LSTM (Motion) 9.29 10.69 33

ResN18+LSTM (TS) 9.28 10.13 40

Ours (w/o Data Aug.) 9.35 11.11 40

Ours (TS) 8.81 9.77 41

Table 6.3: Results of ablation study of different network architecture and input

data. The metrics of Angle Error is MAE (degree), TS stands for two-stream

input, ’Ours’ stands for ResN18+LSTM+KF (TS).
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Out-Day

Out-Night

Out-Sun

In-Dark

Base (In-Light)

Figure 6.7: Images of camera under different lighting conditions.

intensity infared light so only the other 4 conditions are evaluated. Qualitative

performance of Out-Sun is shown in our video.

6.2.5 Results

Finger and Joint Error Study: The result (Table 6.1) shows that the index,

middle, and ring fingers achieve higher precision (MAE around 7) since the de-

formations occur in the middle of image, while the pinky finger performs worst

(MAE=9.40). For the joints, it is a bit surprising that the MCPhs also do not

perform well (MAE=8.14), worse than the DIPs (MAE=7.55), while the PIPs are

the worst (MAE=8.77).

Comparison Study: When compared with other baseline methods (Table 6.2),

Base(In-Light) Out-Day In-Dark Out-Night

MAE 7.93° 7.77° 8.46° 8.21°

Table 6.4: Comparing the accuracy of our method in different lighting condition

(Out-Sun removed due to lack of ground truth).
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the proposed method with KF outperforms the baseline with a large advantage.

(MAE: Individual =8.81), General=9.77, Leave-1-user=9.72). Even the proposed

method w/o KF leads the baseline with an average of approximately 4-degree error.

In the baseline methods, the work from Yuan et al. performs the best (MAE:

Individual=12.48, General=14.40, Leave-1-user=14.53). Also, different from other

methods, the proposed method does not show a great difference between the general,

leavel-1-user, and individual model, which could be a proof of the generality of our

network.

Ablation Study: Observing the results (Table 6.3), in the first and second row,

the VGG16 and the ResNet18 show similar results, yet the ResNet18 is much faster

in inference time. Comparing different inputs of row 3-5, the motion input (MAE:

Individual=9.29, General=10.69) obtains a much higher accuracy with less infer-

ence time than the RGB input (MAE: Individual=11.95, General=14.01), while

two-stream input obtains a higher accuracy in the general model (Motion: Gen-

eral=10.69; TS: General MAE=10.33) with a slightly greater inference time. For

the network architecture, comparing row 2 with row 3, we can notice there is a

4-degree difference with/without LSTM. Also, comparing row 5 and 7, it is evident

that the LSTM-based KF outperforms normal LSTM with the highest accuracy.

Overall, it is clear that with two streams of input and more complex networks, the

accuracy becomes higher. Lastly, the difference from row 6 and row 7 indicates that,

using data augmentation will greatly increase the general accuracy (from 11.11 to

9.77, 12% increase).

Lighting Condition Study: From Table 6.4, we can tell that the performance

becomes worse when the lighting gets darker. However, the difference is relatively

small between the best (Out-Day, MAE=7.77) and the worst (In-Dark, MAE=8.46).
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6.3 Experiment on Feet Pose in Skiing

Similar to the BackHandPose, we also apply the InvisiblePoseNet to full body

posture by using pressure map of the feet. In some motor skills such as skiing, it

is difficult to place sensors on the body where the only place that can be captured

might be the feet. In addition, in most specific motor skills, our posture is closely

related with our feet motion, so feet pressure is a good indirect clue for regressing

whole body posture.

The only difference from the back hand pose is the indirect feature extraction

module. Since the feet pressure already represents the intensity of strength (change

in speed), the conventional MHI is used instead of the OF-MHI for a lighter com-

putation. The network architecture can be seen in Figure 6.8.

6.3.1 Data Collection

The data is collected by motion capture system and feet pressure sensor, as

shown in Figure 6.9, performed on a motor-based ski simulator. This SkyTech Pro

simulator is sufficiently realistic while the national ski team of the US and Canada

also employ it in the training. The user’s feet has a 5 degree of freedom (DOF)

while the distance between the skis are fixed.

For the motion capture, we employ a reflective marker-based Optical motion

capture OptiTrack, with 8 IR camera and an RGB camera for reference. The feet

pressure is taken by two Moticon OpenGO insole pressure sensors which can be

synchronized to the mocap system, under a 1000Hz refresh rate.

In total, data from four subjects are taken (4 males, 1 females, two is profes-

sional in skiing and three is intermediate) to serve as the training and testing data.

The third-person-view RGB reference images are also collected for the vision-based

baseline network for comparison. As a result, about 20K frames of data in a 240-fps

setup is recorded.
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Figure 6.9: Skiing FeetPose data collection.

6.3.2 3D Body Pose Accuracy

Baseline

Since few previous work focus on the same topic, the baseline we used here is a

direct CNN regression, which simply regress the 3D posture from the feet presure

map. The CNN used here is the ResNet18, which is the same one used for feature

extraction in the proposed InvisiblePoseNet.

Also, to study whether the proposed model is practically useful, we also trained

the state-of-the-art vision-based method by Mehta et al. [46] as another baseline for

comparison. To note that, the model here is finetuned from the pre-trained model

using our reference RGB data, while

Procedure

A cross-validation is performed to study the precision and the robustness of the

feetpose network. For the two baselines and the proposed method, we divide the

training and testing data in three different ways:

• Individual Model: All the training data and the testing data are from the
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Methods
Skiing Pose MPJPE ↓ (mm)

Individ. General Leave-1-user

Direct CNN Regression 91.8 90.7 127.3

Mehta et al. (Vision Based) [46] 55.4 57.4 63.4

Ours (FeetPose) 55.4 61.8 74.5

Table 6.5: Precision of feet pose estimation in skiing (MPJPE).

Methods
Skiing Pose 3D PCK ↑ (%)

Individ. General Leave-1-user

Direct CNN Regression 51.0 50.4 39.8

Mehta et al. (Vision Based) [46] 85.2 84.0 78.4

Ours (FeetPose) 85.4 80.1 67.6

Table 6.6: Precision of feet pose estimation in skiing (3D PCK).

same person. 80% on the data are used for training and 20% are used for

testing. For each subject, an individual model is trained and tested, while the

final result of all models are averaged.

• General Model: All the training data are mixed together, while 80% of all

data are randomly picked out for training and the remaining are used for

testing. Only one general model is trained using all data.

• Leave-1-user Model: From the 5 subjects, the data of 1 subject is left for

testing while the others are used for training. This is the cross-validation test

for checking the robustness of the model.
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6.3.3 Results

The results (Table 6.5 and Table 6.6) shows the Mean Per Joint Position Error

(MPJPE) and the 3D Percentage of Correct Keypoints (PCK) of the testing result.

From both table, we can observe that the proposed indirect feature-based network

greatly outperforms the direct CNN regression. Even compared with the state-

of-the-art vision-based real-time 3D pose estimation XNect by Mehta et al. [46],

the proposed method does not fall much behind in the general model (MPJPE:

Ours 61.8mm v.s. XNect 57.4mm, PCK: Ours 80.1% v.s. XNect 84.0% ) and even

outperform the vision-based method in the individual model (PCK: 55.4mm v.s.

XNect 55.6mm, PCK: Ours 85.4% v.s. XNect 85.2%.

However, when it comes to the leave-1-user out result, the proposed method

performs worse with an approx. 11mm mean error (MPJPE: Ours 74.5mm v.s.

XNect 63.4mm) compared to the vision-based method. This result suggests that

the proposed indirect-feature based method is weak in generalization, which might

be the reason of the not normalized feet pressure data.
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Chapter 7

Application on Skill Acquisition

In this chapter, we will introduce three training application for three different

types of skills using the proposed indirect feature-based network.

The first is the ski training system using the spatial indirect feet pose motion

tracking for real-time feedback.

Next is a VR table tennis training system which is based on the previous tempo-

ral ball trajectory prediction system. The system uses VR to visualize 3D future

trajectory to provide intuitive visualizations.

Lastly, is the Piano training, which make use of the spatial BackHandPose and

the temporal indirect keystroke features to estimate precise hand poses for piano

playing analysis.

7.1 Alpine Skiing

7.1.1 Implementation

Our training system consists of an indoor ski simulator, a VR system (HTC Vive

Pro1), which includes a head mounted display, two base stations, a pair of trackers

for tracking the skis, and the proposed motion tracking system. Since real skiing

also requires a helmet and goggles, which narrow the field of view, the use of a head

mounted display does not greatly disturb the skiing experience.

For the training in VR, we created a virtual ski slope environments in Unity 3D.

1https://www.vive.com/eu/product/vive-pro/



7.1. ALPINE SKIING 93
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 7.1: Four Visualizations: Graph Feedback (top left), Pose Breakdown (top

right),Ground Shadow (bottom left), and Color Trail (bottom right)

As its main purpose is to serve as a test environment for different visualization, we

designed a plain, smooth, down hill ski slope with a steadily increasing grade, and

the course is designed as the slalom skiing.

Next, for the training, to study the use of feet pose motion tracking, we develop

different feedback based on the difference between a coach’s motion and user’s

motion.

Graph Feedback

To provide the users with direct feedback on the difference between their own and

the expert’s movement, we visualize two graphs on the HMD to show the average

body angle of the user and the expert. The data is captured from the VR tracker’s

rotation, and plotted as 2D coordinates in a graph of which the horizontal axis
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represents the time sequence. The two graphs in Figure 7.1 (top left) are showing

the right and left foot leg angle of the user (the red line) and the expert (the yellow

line), respectively. Since the angles are position-related, the user can know how the

expert move his/her feet in the same position and notice the difference. In our pilot

tests we noticed that professional skiers continuously output periodic curves while

a beginner’s graph is less periodic.

Pose Breakdown

To better visualize both the temporal and spatial information of the expert’s

motion, we implemented a visualization that shows the sequential poses of the

professional along the trajectory. This is done by rendering static copies of the

expert avatar in even intervals so that the users can match the motion and position.

This function is designed to support users with following the expert’s trajectory

correctly, which can be difficult without any visual cues. When a successful ”mimic”

is performed by the user, the coach model shall perfectly collide with user’s which

is very intuitive to observe.

Ground Shadow

Another idea is to place the shadows of the coach’s and user’s avatars rendered

in the Pose Breakdown on the ground. From this initial idea we finally use a

single shadow that continuously shows the posture of the user (see Figure 7.1,

bottom right). Using shadows for learning movements from experts has already

been explored successfully in other sports, such as golf [29] and might also be

beneficial in skiing. Also, observing the posture of oneself from the shadow is the

most natural behavior of human being, since it is not possible to bring a mirror to

the ski slope.
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Color Trail

The graph feedback might be quite overwhelming from our pilot study. Hence, we

searched for simpler ways to provide feedback. Our observation was that it is hard

to adapt to a single value that is constantly changing and that the feedback should

rather help to quickly judge the current performance. Thus, we looked at ways to

summarize the user’s performance so that it can be perceived in one glimpse. This

led to the use of color as a performance indicator (green = good, red = bad). After

experimenting with various individual UI elements we decided to paint the feedback

into the texture of a trail. The trails, which consist in pairs, one for each foot, do

not only show lateral movement but also rotation by being rendered as a ribbon to

indicate the ankle rotation of the expert (see Figure 7.1, bottom right) .

7.1.2 User Study

Participants

We recruited 12 participants (4 females) with an average age of 23.5 (SD = 3.2)

from a computer science department students at a local university. Five of them

had hardly any skiing experience, five have skied before but do not do it regularly,

while two can be considered more experienced. Participants are divided into two

groups to experience vive tracker-based motion capture and the proposed insole-

based motion capture.

Procedure

After an initial briefing in which we introduced the different conditions and the

goal of the study, the participants were asked to put on ski boots and step on the

simulator. They could familiarize themselves with the movement on the simulator

before they put on the HMD. We then put on the corresponding motion capture and

started the simulation which presented the different conditions to them. Besides the

four visualization introduced before, a baseline condition is added for comparison,
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where no feedback but only the coach is running in front of the user. The order

was randomized using Latin square. Each condition consisted of 1 training trial to

get familiar with the visualization and 2 test trials. Each trial started with an 8 s

countdown, to pick up the movement pattern and was then followed by a 30 s trial

period.

After performing all 4 conditions, the participants were asked to qualitatively

rate their experience on the accuracy of the motion capture and the comfortability

of using the system, also a semi-structured interview was conducted. The entire

process took approximately 45 min. per participant (10 min. briefing, 20 min.

Figure 7.2: Quantitative results for the Ankle Rotation. The colors categorize

the conditions into baseline (blue) and the proposed visualizations (yellow). The

brackets on the top indicate the significance between the conditions: * (p < 0.05)
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study, 15 min. interview).

7.1.3 Results

For the quantitative experiment result (as shown in Figure 7.2), we obtained the

ankle angle difference between the user and the coach and conducted a repeated-

measures ANOVA (α = .05) on the ankle rotation. A significant difference between

the conditions could be detected ( F6,162 = 15.837, p < 0.001).Tukey’s range tests

as post-hoc unveiled several significant differences between conditions.

The performances in the Ground Shadow (M = 25.25, SD = 5.58) and Color

Trail condition (M = 24.68, SD = 5.05) were considerably better, with the Trail

leading to a significantly better result than the Baseline and the Graph condition

(t21 = −3.355, p < 0.05) regarding ankle rotation.

For the preference of the motion capture, the results was more controversial. In

terms of the accuracy of motion capture, no significant difference can be detected

between the vive tracker-based and insole-based condition, which indicates a close

performance on the proposed system. For the comfortability of the motion capture,

the results show a clear difference between the tracker-based method and the pro-

posed method (Z = −2.153, p < .05). Overall, the insole condition was perceived

quite positively as it was ”natural to wear on” (P4), and ”not disturbing at all”

(P13). This results suggest that when applied to alpine skiing, the users cares more

about usability and comfortability of the system instead of accuracy, especially for

these beginner participants.
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Figure 7.3: Qualitative results of users’ preference in 6-point Likert scale.
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7.2 Piano

7.2.1 Implementation

In piano, it is difficult to collect precise hand pose data because it is too bulky

to have gloves or markers being worn by pianist’s hands. Our spatial indirect

feature-based wrist-worn back hand pose system is suitable for a natural motion

capture. However, piano estimation requires degree-perfect high precision analysing

and accurate timing, which is difficult to realize using the current system. Therefore,

we combined the spatial and temporal indirect features and developed a PiaSim to

realize precise and natural hand pose estimation.

PiaSim Spatio-Temporal Network

In a piano performance, the timing of sound (when a key is pressed) is considered

to be the most essential factor. Accordingly, the fingertip position (also the PIP

rotation) needs to be accurate. To enhance the training to be more specific towards

piano hand motions, a PiaSim network is developed to output keystroke based

on an input hand sequence. The network consists of a Long-short Term Memory

(LSTM) [27] layer to extract time series motions and a fully-connected layer to

Figure 7.4: PiaSim Spatio-Temporal Network
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reproduce the keystroke. The input stacks the last 5 frames of 3D hand postures,

which are the 3D positions relative to the piano (same as the taken data), resulting

in an input size of 5×21×3. The output is an 1D array with a size n = 12 (for the

12 keys in one scale) showing the key-depth ki of the i-th key (ranged from 0-10

mm, normalized to 0-1). Due to the fact that not all the keys are always pressed,

using an L2 loss is not suitable for such a sparse vector. Assume that the ground

truth is k∗, and the number of value greater than zero in k∗ is N(k∗>0), the loss

function for the keystroke results are as follows:

Lkey =
n∑

i=1

∥ki − k∗
i ∥2/N(k∗>0) (7.1)

The output size is set to 12, so an octave (a note and the same higher note is played,

for example C4 and C5) is considered to be pressing the same key in the prediction.

For training, given that the keystroke information is not obtained for the EG group,

we developed a keystroke simulator to simulate keystroke information from either

MIDI or ground truth hand poses.

Finally, the overall loss function for the training procedure is as follows, where

λ1, λ2and λ3 are the weights for the joint position loss, heat map loss, and keystroke

loss, respectively:

L = λ1∥P−P∗∥2 + λ2∥H−H∗∥2 + λ3Lkey (7.2)

Training Conditions

As a prototype, we collect test data from experienced pianists using marker-

based motion capture. To solve the problem of unmatched playing speeds, we use

the previously mentioned TCC network [17] and a dynamic time warping algorithm

to synchronize the data. The main idea is to visualize the hand differences between

two plays (student and teacher, they can also be different plays from the same per-

son), after some interviews with pianists, we build two different approaches. Both

methods have some common features such as a scroll-bar to adjust play speeds, and

a controllable camera to observe the hand movements from multiple perspectives.
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Motion Overlay: The first visualization is the motion overlay, which is a

straightforward approach to simply displaying both the teacher’s and the aligned

student’s hands on the same piano keyboard.

In this condition (middle left in Fig.1), the student’s and teacher’s hand skeletons

are in different colors for a better visualization, where the teacher’s hands are semi-

transparent. To provide intuitive feedback on the error between a student and a

teacher, the distance between the corresponding joints is connected by a line. The

colors of the distance lines, as well as each bone, are changed from green to red

based on the magnitude of the error, as shown in Fig.1.

Virtual Harpsichord: On the other hand, some pianists suggest that instead of

a “noisy” overlaid visualization, they demand a side-by-side option to compare each

play individually. Therefore, we implement a second visualization which displays

the four hands on two separate keyboards, inspired by a harpsichord (piano with

up and down keyboards, as shown in the middle right in Fig.1). It allows the user

to better see where the differences between the hands occur.

Besides the location of the error, we also hope the user can realize the timing of

the error more intuitively. Therefore, an interactive timeline is added to visualize

which segment of the entire clip the differences are happening. Based on error

thresholds, the fault part will gradually turn from green to red. Also, to avoid

Figure 7.5: Overview of Piano Training System.
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too informative visualization, the errors are divided into three types: joint distance

error, corresponding bone angle, and adjacent bone angle, which a user can choose

from the bottom right checkbox (shown in Fig.1).

7.2.2 User Study

The motion overlay is a straightforward and intuitive visualization, while the

virtual harpsichord provides side-by-side comparison and clear error feedback. We

run a pilot study to compare them with two baselines. The first baseline (B1) is

the most conventional way which simply plays the two original videos of the stu-

dent and teacher, and since the videos are not synchronized, users cannot compare

them simultaneously. Another baseline (B2) is the synchronized videos where the

student’s play speed is aligned with the teacher’s, and users can have side-by-side

comparison. Our proposed methods are labeled as V1 (Motion Overlay) and V2

(Virtual Harpsichord).

7.2.3 Results

Seven experienced pianists (6 female, 1 male, with experience ranging from 15

to 39 years.) are invited as participants. They are told to try each condition for

5 min and provide their overall preference for that condition in a 7-point Likert

scale. Figure 7.6 shows the result of mean scores for each condition. An ANOVA

statistical test suggests significant differences in the results so we conduct a Tukey’s

HSD post-hoc test. The result suggests that both the motion overlay and the virtual

harpsichord are significantly better than the baseline of the two original videos. (V1-

B1: p=0.004, V2-B1: p=0.001). When compared to the condition of two aligned

videos, the virtual harpsichord are significantly better. (V2-B2: p=0.033).
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Figure 7.6: Quantitative results of the questionnaire. *(p < .05), **(p < .01).
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7.3 Table Tennis

7.3.1 Implementation

A spin serve in table tennis is very difficult to return. In this application, we

focus more on how visualizing future visual cues could affect the understanding of

the spin for beginners.

A baseline condition is firstly developed with a real person serving a strong spin

ball in virtual reality, as shown in Figure 7.7, a guidance condition using the pre-

dicted ball trajectory is build on top of the baseline condition. We also include

another two common visualizations for comparison.

Future Guidance (Cond. G)

This is the condition which make use of our prediction system. A translucent ball

trajectory (obtained from the prediction system) is visualized in this condition as

shown in the 4th figure in Fig.7.7. A racket is shown in this condition to guide the

user to a correct way to return the ball in advance, while the virtual instruction is

started from the front of the user’s body and completes a return based on different

serves. This correct form is taken from an experienced player by recording their

Figure 7.7: The 3 VR conditions along with the base condition.
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racket position. This condition is designed to show a direct way of teaching with

less freedom for the user.

Spin Arrow (Cond. S)

Next, the Spin Arrow condition is a simple way of visualizing the spinning infor-

mation for the user. As shown in the second figure of Fig. 7.7 two green arrows are

constantly rotating around the served ball to show the spin direction of the shot.

This condition is developed to satisfy the most basic requirement of viewing the

spin direction, but is also less informative which does not not disturb the user.

Bullet Time (Cond. B)

Next, inspired by some action movies and games, where there is super slow motion

for the character to avoid bullets (called ”Bullet Time”), we build a function with

the same name that extremely slows down the time to 0.05x after the first bounce

on the opponent’s table. It lasts for 0.25s to match the total time of the other

conditions and during this time the user can see a zoomed window above the ball

showing a zebra texture on the ball (as shown in the 3rd figure of Fig. 7.7) for a

better visualization of spin. This condition is designed to show another possibility of

temporal distortion, where users have more time to observe the spin and trajectory

of the ball.

7.3.2 User Study

We want to study the detailed effect of prediction functions compared with other

visualization and prove the usability of the training system. Therefore, we intro-

duce new performance metrics to evaluate the performance of the user. Also, a

questionnaire in 6-point Likert scale is performed instead of an oral interview to

quantify the user’s feeling. Through the two types of detailed experiments, we want

to answer the following research questions:
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• RQ1: Which is the best virtual condition that improves the skill most?

• RQ2: Which condition can motivate the user the most?

• RQ3: Which condition can help the user to understand spin?

• RQ4: Is the new haptic device noticeable by the user?

• RQ5: Is the VR training effective in the long-term?

Participants

For this experiment, we invite 12 healthy participants (2 female) with an average

age of 27.5 (SD = 10.3) to perform a within-subjects study. All the participants

are still right-handed with less table tennis experience. The participants in this

study were gathered from a computer science department of a university, and all

the participants were paid for the one-hour study. This study as well as the previous

initial pilot study are approved by the local ethics committee.

Performance Metrics

Another issue we found in the initial study were the performance metrics. A

simple success rate is too discrete to evaluate the user’s skill, because a close return

that flies barely pass the table’s edge should be more valuable than a return flying

1 meter away from the table. In this experiment, along with the previous success

rate (S.R.), we also introduce another 3 metrics to enhance the evaluation:

• Table Distance (T.D): Normally, a much more precise distance of a specified

target should be used in high-level table tennis training. Since the partici-

pants are all beginners, here we used a simplified table distance metric for

evaluation. Because the ball trajectory both in the real world and virtual

world can be precisely tracked, it is possible to calculate the closest distance

when a returned ball reaches the table level (as shown in Fig 7.8). The dis-

tance of a successful return is 0 while the maximum distance here is set to 1
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Figure 7.8: The 4 Performance Metrics for the study.

meter because of our room size. A return where the distance is greater than

1m or never reaches the table level (i.e. a ball is returned below the table and

never reaches the table height) will be counted as ”super failure” (which is

mentioned later) and the distance is counted as 1. Finally, the values of T.D.

are averaged in each condition, which result in the Mean T.D. (0~1 m).

• Super Failure Rate (S.F.R): As mentioned above, most of the returns by the

user fly far away from the table, we count these returns where the distance is

greater than 1 m as ”super failure” and this allows them to be differentiated

from some close failures. Here, a return below the table as well as a missed

return is also counted as a super failure.

• Normal Failure Rate (N.F.R): The rest of the failed returns are counted as a

normal failure, which includes those returns within 1-meter off the table when

reaching the table height, and those directly hit on the net. This is treated

as a quite “close” return which can reflect the user’s performance to some

extent. Of course, the sum of S.R., S.F.R, and N.F.R. should be 100%.
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Procedure

An overview of the experiment procedure is summarized as follows:

1. Five-minutes free training versus the robot with no-spin serve for understand-

ing table tennis.

2. Cond. R: Train with the real robot system for 60 shots of the 3 types of spin

ball (20x each, random order).

3. Cond. V: Train with the base VR system for 60 shots of the 3 types of spin

ball (20x each, random order).

4. Shuffled order of the following 3 conditions, same shots as above:

Cond. S: The Spin Arrow

Cond. B: The Bullet Time

Cond. G: The Future Guidance

5. A questionnaire after each condition and an interview at the end.

6. Cond. RL (3 weeks later): A follow-up real world training which was per-

formed 3 weeks after the above training.

This time, before we started the study, a simple introduction was given to the

participants to let them acquire basic knowledge of table tennis such as the rules and

the types of spin. Also, an additional free training time was provided to the partic-

ipants before starting the experiment. Since our main target is to study the effect

of different visual cues and time distortion, we let all the participants experience

all the conditions to obtain more data. However, this will lead to a learning-rate

problem which means the user will perform better in the latter conditions. To fix

this problem, we shuffled the latter three conditions (The cond. R and cond. V are

treated as baseline in this experiment) to counterbalance the learning rate. Three

conditions resulting in 6 permutations were done twice by the 12 participants, while

each participants have to return 300 spin balls in total.
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The only difference is that we asked the participants to use the same haptic racket

in Cond. R which would be used in VR later, which could provide a smoother

transfer to VR. In addition, a later real world training (Cond. RL) is done to show

the training effect versus robot. However, since the participants might be tired after

returning 300 shots, this condition is performed on another day 3 weeks later. Here,

we decide to wait for 3 weeks to also study the long-term training effect.

The 3 questions that were asked for each condition were analyzed similarly to

the first evaluation. To study the statistical significance here, we use the Wilcoxon

Signed Rank tests to study the difference between each condition in each question.

The qualitative evaluation is obtained by a 6-point Likert scale questionnaire

asking 3 questions to study the previous RQ1~4:

• Q1: “Did you have fun in this condition?” This is designed to evaluate the

motivation of the user, which is related to RQ2.

• Q2: “Did this condition improve your understanding of spinning shots?” This

question is related to RQ3 of understanding of spin.

• Q3: “Do you think your skill improved in this condition?” This question

qualitatively answers the RQ1, together with the result from the performance

evaluation.

The questionnaire is given to the users right after each condition to obtain timely

feedback from them. After the whole study, similar to the initial study, an oral

interview was given to the users to ask about their overall impression of all the

conditions. There was also an independent yes-no question in order to find out

whether the user noticed the difference of the haptic feedback after entering the VR

world without being told in advance, which is for RQ4.
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Condition S. R. N. F. R. S. F. R. M. T. D. (m)

Cond. R 11.25% 9.58% 79.17% 0.81

Cond. V 8.89% 9.03% 82.08% 0.83

Cond. S 22.78% 15.56% 61.67% 0.62

Cond. B 14.86% 19.03% 66.11% 0.68

Cond. G 25.83% 15.14% 59.03% 0.59

Table 7.1: The mean performance using the 4 metrics of each condition, M.T.D.:

Mean Table Distance.

7.3.3 Results

In this evaluation, we want to answer the RQ1, RQ3 and RQ5 using several

quantitative numbers, which means we compare the 3 new conditions with the 2

baselines and also compare within the 3 conditions. The 2 baseline conditions are

not compared with each other. First, by logging the ball trajectory in VR as well as

tracking the ball using cameras in the real world, we calculated the distance from

the raw data as described in the performance metrics section. The result is then

averaged by each condition which is shown in Table 7.1.

On the other hand, the absolute percentage cannot fully represent the improve-

ment in the specific condition since the order might infect the result. Therefore, to

also obtain the relative improvement in each condition, we calculate the difference

of each metric between before and after each condition, which is stated as ∆S.R.,

∆N.F.R., ∆S.F.R., and ∆M.T.D. in Table 7.2. Hereby only the latter 3 conditions,

which are shuffled for counterbalance, are compared.

We also conducted a one-way repeated-measures ANOVA (α = .05) on all the

metrics and a post-hoc Tukey’s range test was performed on the Success Rate and

the M.T.D. metrics, which are the two most representative metrics for the user’s

performances.
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Figure 7.9: Quantitative results for the M.T.D (top) and the S.R (bottom, blue

bar), The brackets on the top indicate the significance between the conditions:

*(p < .05), **(p < .01).

Quantitative Results

From Table 1, it is very obvious that the success rate greatly improved in the

3 new conditions compared to the 2 baseline condition, among them the Future
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Guidance Condition (Cond. G) almost performs the best for all metrics except for

N.F.R., while Table 2 also shows a similar result that the performance improved

most in Cond. G. Also, when taking the Later Real-world condition (Cond. RL)

into account, we surprisingly found that the users performs even better after 3 weeks

in the real-world, with a 22.5% increase in success rate comparing with the initial

Cond. R.

By analyzing the data of Table 1, the result of ANOVA indicates that a significant

difference between the conditions could be detected in all metrics (S.R.: F4,55 =

9.232, p < 0.00001; S.F.R.: F4,55 = 11.949, p < 0.00001; N.F.R.: F4,55 = 5.731,

p < 0.001); M.T.D.: F4,55 = 15.94, p < 0.00001). However, for Table 2, ANOVA

suggests that the data is not significantly different for p < 0.05.

Next, Fig. 7.9 shows a detailed chart of the M.T.D. and the S.R. metrics for

each condition. In the M.T.D., the Tukey HSD Test suggests that both Spin Arrow

and the Future Guidance are significantly better than the two base conditions.

(S-R:t = 0.035, p < 0.05, S-V:t = 0.021, p < 0.05, G-R:t = 0.011, p < 0.05, G-

V:t = 0.007, p < 0.01). The performance in the S.R. metric is slightly different,

even though the 3 new conditions all achieve twice as high values as the 2 base

conditions, the Tukey test suggests there is only one significant difference between

the Guidance condition and the Base condition. When we include the later real

world training (Cond. RL), the new differences are significant as well, according to

the ANOVA (S.R.: F5,66 = 4.4268, p < 0.01; M.T.D.: F5,66 = 4.6854, p ≤ 0.001)

as well as the Tukey HSD Test (S.R: RL-R:t = 0.007, p < 0.01, V-R:t = 0.002,

p < 0.01, M.T.D.: R-RL:tt = 0.033, p < 0.05, V-RL:t = 0.02, p < 0.05). In the

discussion section, we will discuss how these results answer our research questions

in detail.

Qualitative Results

The result of the 6 point Likert-scale questionnaire is shown in Fig. 7.10. The

side brackets indicate the significance between each condition. By observing the
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Condition ∆ S.R. ∆ N.F.R. ∆ S.F.R. ∆ M.T.D. (m)

Cond. S 9.03% -0.56% -8.47% -0.08

Cond. B 5.97% 2.78% -3.19% -0.02

Cond. G 10.42% 0.28% -10.69% -0.11

Table 7.2: The differences between before and after each VR condition.

overall result, the 3 new conditions all achieved over 80% positive answers, which

is much better than the two base conditions. Especially in Q2, which is about the

understanding of spin, the two base conditions have half of the negative responses

while the 3 new visualizations did not get a score lower than Slightly Disagree.

The Wilcoxon test also shows a lot of significant differences between the new

conditions and the base ones. In particular, in Q2, all the new conditions are highly

significantly better than the two base conditions. The Bullet Time condition is the

only condition which doesn’t show significant results in Q1 and Q3.

The results of the oral interview are also very interesting. The participants were

asked about their overall favorite condition and the least liked condition. The result

of the first question was controversial, the 12 participants perfectly divided into 3

groups for the 3 new conditions (4 for each), respectively. On the other hand, the

trend of the most dislike one was quite clear, 6 out of 12 participants chose the Real

Robot condition while another 3 participants chose the basic VR condition, the two

base conditions shared 75% of the negative votes. However, it was surprising to see

that the remaining 3 participants all voted for the Bullet Time condition as their

least preferred condition. Lastly, all participants claimed that they didn’t notice

the haptic feedback on the racket was fake before we mentioned it in the interview.
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Figure 7.10: Questionnaire results for each study condition in a 6-Likert Chart from

Strongly Disagree to Strongly Agree. The brackets indicate the significance between

conditions: * (p < .05), ** (p < .01), *** (p < .005).
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Chapter 8

Discussion

In this chapter, we will conclude the result of both the quantitative evaluation

and the qualitative evaluation and discuss the findings from the result.

8.1 Discussion on FuturePoseNet

To conclude, in both the real-time test and the accuracy test, our method is

proved to have the most balanced performance. In the accuracy of 3D recovery,

the specific joint position of our system also has a lower average error than the

3DPF-Net. Especially, the positions of wrists and ankles are far more accurate

than 3DPF-Net, which are more important in some specific sports such as martial

arts. In the real-time test, our method(stack 5) has an equal performance to the

Kinect Depth camera + neural network method, which is a hardware-based method

and has severe environment dependencies.

From the quantitative evaluation experiments, it can be seen that our system

did not fall behind other state-of-the-art real-time methods in inference time and

had an equal or even better accuracy comparing to offline methods such as 3DPF-

Net. The user study also shows that the user did not notice the difference of pose

estimation accuracy between our RGB-based method and Kinect depth camera

based method, which means our RGB-based method is possible to replace Kinect-

based pose forecasting method for its wide usability.

In the condition of forecasting 0.5s future pose (15 frames in 30-fps video), it’s

obvious that our method greatly outperformed other real-time method in PCK eval-
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uation as well as the 3DPF-Net off-line method, with a average of 60% PCK and

especially in boxing with a accuracy of 70.6%. In the other condition of forecast-

ing 1s future pose (30frames in 30-fps video), while the accuracy of other method

decrease apparently, our method still out-perform the Nearest Neighbor baseline in

most type of action, in which the boxing still have a 65% accuracy which is the

state-of-the-art of 30-frame prediction.

8.2 Discussion on InvisiblePoseNet

From the results of the four studies in hand pose estimation, we could imagine

a clear picture about the performance, with an almost half the angle-error than

the other baseline. To notice, here we only compared with vision-based techniques

because the main focus of this study is system that could be naturally embedded

in wearable devices. The result of each joint shows that the index, middle, and

ring finger gain a relatively high accuracy estimated by back of the hand features.

And, the result of an average angle error of 8.81° for individual and 9.77° in general

even outperforms some methods using TPV camera [81] where the fingers can be

clearly seen. Also, the result of lighting condition study and the ablation study

could provide information which might be helpful in developing robust networks for

extracting temporal deformations.

For the hand segmentation, we augmented the data by changing the color or

brightness of the dorsal hand and achieved a high accuracy, but it is not sufficient

to claim our network is robust to different types of hand, without testing on di-

verse users. There are multiple factors that might affect the result, such as skin

color, skin thickness, hair volume, hand shape, etc. However, to note that, from

the ablation study, we can observe that the motion-only input performs very close

to the two-stream input, and surpasses the RGB-only input. From which we can

tell the network is more looking at the overall deformations than the color infor-

mation of the hand. Also, one of our participants had hairy skin and the features
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are still successfully extracted (which is not enough to claim this generalizability).

Nevertheless, in the use case of wearing a personal smartwatch, the system is not

necessary to be generalized but can be initially calibrated to the user by collecting

a small amount of data and fine-tuning the model, this will result in a personalized

model with higher accuracy and might also work as a security identification using

the dorsal hand.

Lastly, in the feet pose estimation, even though the system and the study is

relatively prototype, the results suggests that the current feet pressure-based system

has the potential to achieve similar precision as vision-based methods. Especially in

the case of skiing, it is more acceptable to equip an insole sensor instead of a third-

person-view camera. However, the results also indicates that the current system

is less robust across different users. The feet pressure needs to be normalized to

people with different feet size, shape, and different boots. Also, more data across

different types of skier need to be collected for a more comprehensive study.

8.3 Discussion on Three Applications

8.3.1 Skiing

Performing studies on visualizing expert ski motion provided us with a number

of interesting insights and surprising results.

One surprise was that the performance measures of the Pose Breakdown condition

showed a much clearer picture than the controversial discussions about it in the first

evaluation. Its performance is considerably worse than comparable conditions, such

as Color Trail and Ground Shadow, which shows that our developments went into

the right direction. We assumed that the Color Trail would do well regarding lateral

movement, but we were positively surprised that users still had a good performance

regarding ankle rotation.

Another surprise was for the Graph Feedback condition, which address both as-
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Figure 8.1: Conventional way of piano hand motion capture.

pects of providing feedback and providing motion information. However, its com-

plexity makes it hard for users to effectively use the feedback. We assumed that

participants might be more positive when they had some time to get familiar with

the visualization in a training session as we ourselves got used to it during develop-

ment, however, this was not the case.

In summary, we can conclude that using a Color Trail to provide motion feed-

back is the best option in our designed conditions. Based on the current results

implementing feedback does not necessarily provide benefits and therefore needs to

be carefully considered. Even though not tested directly, a combination with the

Shadow condition might be interesting and could be considered.

8.3.2 Piano

From the pilot study, we can observe a trend that using temporally aligned videos

is better than just viewing the original videos. Also, both proposed methods outper-

form the two baselines which suggests the effectiveness of the proposed 3D visual-

ization. Between the two proposed methods, the majority of participants prefer the

virtual harpsichord. From the later interview, we assume that this is because the

side-by-side visualization and the error timeline provide better feedback on “when”

and “where” the differences happen. On the other hand, one participant prefers



8.3. DISCUSSION ON THREE APPLICATIONS 119
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the motion overlay and comments that it is a novel way to overlay two hands and

is not possible in real training, which is more intuitive.

However, this system is still a prototype and has its shortcomings. The cur-

rent system relies on marker-based motion capture and cannot be used for online

videos. Recent deep learning-based methods can perform 3D pose estimation from

2D videos which can be applied to our system in the future. Also, motion cap-

ture has some noises which cause independent errors on the timeline. This may be

overcome by adding a filter to preprocess the data.

8.3.3 Table Tennis

Overall, our improved version of a VR training system does show a great improve-

ment in both quantitative performance and qualitative evaluation. The three new

functions all outperform the two baseline conditions with a significant statistical

difference. Among them, the Future Guidance condition which employs our pro-

posed prediction system performs the best. The qualitative user study also shows a

similar result, the popularity of Future Guidance is among the highest on average,

with a significant difference compared to the base V and R conditions.

In order to better understand the reason why the future trajectory improve the

training, we interviewed most participants about their feelings in detail. According

to our assumption and interview results, showing the future trajectory together with

Figure 8.2: Comparison of the Procedure of returning a serve.
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the serve motion makes it easier for learner to understand how opponent’s posture

is related with specific spin types. As shown in Figure 8.2, A normal procedure

(for a beginner) of returning a serve is that the receivers need to observe the pose,

judge the spin, and decide their way of return at the moment when the ball is

served, which is technically difficult. When using the prediction system, as shown

in the procedure below, the learner can observe the pose and judge before the ball

is served, thus they have enough time to decide the racket pose and return the ball.

Therefore, we assume that providing a future and current side-by-side training is

effective for skill acquisition.
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Chapter 9

Future Vision

9.1 Future Improvements

• In this paper, we studied different indirect feature-based human pose prediction,

and apply the proposed method to different skill acquisition including sports and

musical instruments to study its training effect. However, currently we decide the

way of using pose prediction for each application arbitrarily. A detailed study on

how pose prediction shall be applied to different types of skill need to be further

studied.

• For the participants of training, except the piano training which is a collabora-

tion with industry, other skill acquisition applications are only studied on beginner

which are mainly students within the University. Although it is difficult to collect

dataset and invite professional athletes from all types of sports, we will try to ex-

Figure 9.1: Interactive skill also depends on opponent’s pose and position.



9.1. FUTURE IMPROVEMENTS 122
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pand the dataset to more area of sports and perform study as much as possible in

future work.

• In the quantitative evaluation, we mainly focus on inference time and accuracy

on different algorithms. It would be better if we can analyze some hyper-parameter

like d for the lattice point optical flow and threshold for the motion history images.

• The proposed system uses dual-modal networks for temporal and spatial in-

direct features, which enhance some indirect pose regression which benefits from

both type of features. However, in case of some activity which mainly requires

a single type of feature, the network might be bulky for it. We aim to design a

non-supervised classification network to decide which kind of feature is needed for

a specific input and output in the future.

• Currently, our system is only single person oriented. Designing the network to

be multi-person oriented is possible but will lead to heavier computation. We can

also place two cameras between them and estimate their pose separately, however,

in that case, the system cannot learn interactions between people, which is quite

important in some interactive or competitive skill. Therefore, we are trying to use

Figure 9.2: Predict the ”Next Next” movement from the prediction of both players.
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an omni-directional camera to capture human pose from all directions and change

the network to parallel computing to make it possible to estimate multiple-people

with multiple GPUs, and we also believe that with the development of graphic

units, faster hardware could also solve this problem.

9.2 Future Applications

During the developing and study, we found that this technology cannot only be

used in skill acquisition, but also in many artificial intelligence-related area. The

behavior of prediction is not only used in motor skills such as sports, but also in

our daily life.

For example, when we are stumbled and falling down, our hand will involuntarily

support us from being hurt. This is because our brain predict the danger from those

indirect features such as the shock to your shoes. If this mechanism can be imitated

by neural network, there will be a wide field of application in many industries, such

as robotics, medical care, human augmentation, etc.

Currently, we have also already started some new projects in distracted walk-

ing/driving where using indirect feature-based prediction can be helpful in estimat-

ing a risk degree of the user’s surroundings. Different from simple direct detection,

an indirect feature-based method can be more context-aware because it also extracts

less related features such as user’s attention or the characteristics of a potential ob-

stacle.

Furthermore, the idea of applying the system to support distracted walking has

already being awarded the 7th AIP Network Director Award, while the prediction

system itself has being awarded an honorable mention in the international confer-

ence of VRST. It is obvious that the research is attracting attention by researchers

and we believe it has the potential to change the AI industry after being improved

more robust and accurate.
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Figure 9.3: A future composition for risk prediction application.
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Chapter 10

Conclusion

Figure 10.1: Summary of our approach.

10.1 Contribution of this Work

Hereby, from all the work mentioned in this paper, we can summarize the contri-

bution of this work as follows:

1. We proposed a novel architecture for indirect feature-based prediction.

2. Our work is the first to realize real-time pose prediction based on two types

of indirect features.

3. The proposed architecture has a good generality and modification ability.
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4. Numbers of different networks using indirect spatial-/temporal features are

introduced in this dissertation.

5. Quantitative and qualitative experiments are conducted to study the effect of

the proposed network.

6. Three different types of training application for skill acquisition are developed

using our system.

7. Comprehensive studies are also performed for the training application to prove

the concept.

10.2 Summary

In this paper, we presented an indirect feature-based pose estimation system

using a dual-module two stream deep neural network. The proposed system is also

applied to skill acquisition and enables some new possibility for AI-based motor

skill training.

Different from conventional direct feature-based pose estimation, the proposed

system try to make use of those features which are indirect related with human

posture (e.g. estimate full body pose from feet pressure).

The proposed network consists of twp parts: a FuturePoseNet which aims to

extract temporal indirect features from the input video sequences and a Invisible-

PoseNet which finds out the spatial indirect relationship within each images. For

each network, a special indirect feature extraction module is developed to enhance

the learning of an indirect feature. The performance of both networks are quanti-

tatively and qualitatively evaluated in the experiment, and the results suggest that

the proposed indirect feature-based prediction can achieve similar accuracy as the

conventional methods, without observing the direct features.

For applications, three types of different skill are introduced: Skiing, Piano, and

Table Tennis, which aims to study the results from three perspectives. The Skiing
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is mainly focus on spatial indirect features while the piano requires temporal one.

Table Tennis is the most well-studied application which includes both temporal and

spatial indirect features.

To the best of our knowledge, this work is the first real-time 3D pose prediction

using a dual-module indirect feature-based network, which is proved to be useful in

different types of skill training.

Figure 10.2: Comparison between the proposed framework and existing methods.
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