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ABSTRACT

As an important research issue, joint pricing and inventory management with

uncertain demand has received considerable attention. The literature on the joint

pricing and inventory management of a multi-period system with uncertain demand

has mostly focused on the setting with a single distribution channel. In recent years,

however, dual-channel or multi-channel distribution has become a common business

mode due to the rapid advances in e-commerce and the increasingly fierce market

competition. The addition of a distribution channel would bring price competition

and complicate the formulation of the optimal joint pricing and inventory control

policy. Hence, we aim at studying the joint pricing and inventory management

problems of a multi-period dual-channel system with uncertain demand in this thesis.

First, a periodic review, joint dynamic pricing and inventory control problem

of a dual-channel supply chain with one manufacturer and one retailer, where de-

mand is stochastic and price sensitive, is studied. Stochastic dynamic programming

models are built to determine how to adjust the pricing and inventory decisions in

every period so that each member’s total expected discounted profit over the plan-

ning horizon is maximized. Considering the manufacturer is the dominator in the

dual-channel supply chain, the structural properties of the optimal joint dynamic

pricing and inventory control policy under Manufacturer Stackelberg are analyzed.

Moreover, the effects of the dual-channel setting on the optimal policy are clari-

fied by comparing the optimal joint dynamic pricing and inventory control policy of

the manufacturer-retailer dual-channel supply chain with that of the dual-parallel-

channel supply chain. Our main findings include: (i) the optimal joint dynamic

pricing and inventory control policy of a dual-channel supply chain under Manu-

facturer Stackelberg is an inventory-dependent base-stock-list-price policy; (ii) base

stock levels and reduced prices are affected by members’ starting inventory levels;

(iii) the structural properties of the optimal policy are not affected by the dual-

channel setting, while the influence rules of starting inventory levels on the optimal

policy vary in different dual-channel settings.

Second, considering the channel power held by the retailer may be greater than

or equal to that held by the manufacturer in a practical dual-channel supply chain,

the joint dynamic pricing and inventory control problems of a dual-channel supply
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chain under Retailer Stackelberg and Vertical Nash are further studied. The effects

of the channel power structure are analyzed by comparing the optimal joint dynamic

pricing and inventory control policies under different channel power structures. Our

main findings include: (i) the influence rules on reduced prices under different chan-

nel power structures are the same, while the influence rules on base stock levels

vary according to the channel power structure; (ii) optimal pricing and inventory

decisions are affected by the channel power structure, although the structural prop-

erties of the optimal policies under different channel power structures are the same.

Results from numerical examples show that, for the two-period dual-channel supply

chain, manufacturer and retailer prefer Vertical Nash when the wholesale price is

low, while they prefer Manufacturer Stackelberg when the wholesale price is high.

Finally, the dynamic versus static pricing problem of a manufacturer-retailer

dual-channel supply chain where demand is stochastic and price sensitive, and in-

ventory can be replenished periodically is studied. Four different pricing strategies,

i.e., both members take dynamic pricing (DD strategy), retailer takes dynamic pric-

ing while manufacturer takes static pricing (DS strategy), retailer takes static pricing

while manufacturer takes dynamic pricing (SD strategy), and both members take

static pricing (SS strategy), are considered. Under each of the pricing strategies,

stochastic dynamic programming models are developed to determine the optimal

joint pricing and inventory control policy so that each member’s total expected

discounted profit over the planning horizon is maximized. Numerical studies are

conducted to compare the performance of different pricing strategies. Results show

that: (i) the optimal inventory control policies under different pricing strategies

belong to a base-stock type; (ii) under DD strategy, both members should reduce

prices as long as one member’s initial inventory level is above its base stock level;

(iii) under DS and SD strategies, the member adopting dynamic pricing should re-

duce price if its initial inventory level is above its base stock level; (iv) there exists

a Nash equilibrium of the pricing strategy which is affected by market parameters

including demand variety, market size, channel preference, and price sensitivities.
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Chapter 1

Introduction

In an imperfect competitive market, it is widely acknowledged that the selling

price of a product and the quantity to produce or order are two fundamental oper-

ational decisions of a firm, which play an important role in the firm’s performance.

Traditionally, the pricing and inventory decisions are made separately, i.e., the sell-

ing price is determined by the sales department to maximize the net revenue without

consideration of the inventory-related costs, and the inventory decision is made by

the manufacturing or purchasing department to minimize the cost by seeing the sell-

ing price as an exogenous variable. However, from the end of last century, with the

increased emphasis on the integration of different departments decisions, which was

attributed to a certain degree to the success of Japanese firms that commonly possess

a highly integrated organizational structure, academic and industrial circles began

to pay attention to how to make the pricing and inventory decisions jointly with

the goal of maximizing the total profit of a firm (Eliashberg and Steinberg, 1993).

Many studies like Damon and Schramm (1972) and Welam (1977) have theoretically

demonstrated the importance of making the pricing and inventory decisions jointly.

In addition, using the data from a local store of a large US retail chain, Mantrala

and Rao (2001) suggested that making the pricing and inventory decisions jointly

can help a firm obtain the highest profit. As a result, the issue of joint pricing and

inventory management has attracted more and more consideration and has become

an important research topic.

In practice, owing to the incompleteness of demand forecast information and

the existence of uncertain factors or events such as irregular purchase or natural
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disasters, the demand for a firm’s product is inherently uncertain. It is worth not-

ing that, the inherent demand uncertainty is becoming more nonnegligible in the

recent period, because of the increasingly fierce market competition, the shorter

product life cycles, the COVID-19 pandemic, and geopolitical events. Since a firm

typically needs to make pricing and inventory decisions before the demand is re-

alized, the inherent uncertainty over demand usually induces a mismatch between

the supply and demand, which has an adverse impact on a firm’s profitability and

efficiency. Specifically, the understocking, in which the supply falls short of the re-

alized demand, incurs the cost of lost sales or backorder and may result in customer

dissatisfaction even if the product can be backordered. And the overstocking where

the supply exceeds the actual demand brings the inventory holding cost or disposal

cost. A real-world example which vividly demonstrates the adverse impact of de-

mand uncertainty on a firm’s performance is IBM. In 1993 and 1994, due to demand

uncertainty, the ValuePoint product line of IBM was overstocked which incurred 700

million dollars in unsold personal computers, and meanwhile, the understocking of

its new Aptiva home computer line caused tens of millions of dollars to revenue

lost (Fisher et al., 1997). Therefore, considering the growing nonnegligible demand

uncertainty, and its negative, sometimes even deadly, effects on a firm, it is impor-

tant to take demand uncertainty into account in the joint pricing and inventory

management.

In this dissertation, with the wish of providing managerial insights and guid-

ance for the long-term operation of a system, we focus on studying the joint pricing

and inventory management with uncertain demand over multiple periods. There is

a vast literature on the multi-period joint pricing and inventory management with

uncertain demand, which has mostly focused on analyzing the joint pricing and in-

ventory control policy of a system where the firm distributes products via a single

channel. For the details, the reader is referred to the literature review in the next

chapter. With the boom in e-commerce and the rapid development of third-party

logistics, however, a growing number of manufacturers in various industries, who

traditionally sell products through retailers, have engaged in direct sales via the

Internet in order to address a wider range of customers with low operational costs,

enhance competitiveness, and increase profits. For example, many leading manu-
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facturers in the computer industry (like Apple, Hewlett-Packard, Dell, Lenovo, and

Xiaomi) are distributing products through their own online channels alongside the

existing traditional retail channels (Xu et al., 2014; Ding et al., 2016). Adding an

online channel introduces horizontal price competition between the manufacturer

and retailer, which affects the decision-making of supply chain members and com-

plicates the coordination of pricing and inventory decisions. Hence, an important

and interesting issue is to address the joint pricing and inventory control problem

of a multi-period dual-channel supply chain with uncertain demand.

In Chapter 2, considering that dynamic pricing has recently been a focused is-

sue due to its merits and implementability in reality, we aim to study the joint

dynamic pricing and inventory control problem of a multi-period dual-channel sup-

ply chain with one dominant manufacturer and one weak retailer. In each period,

the manufacturer and retailer are faced with uncertain demand which is assumed

to be stochastic and price sensitive. With the goal of maximizing members’ respec-

tive total expected profits over the multiple periods, the problem is formulated as

stochastic dynamic programming models. Then, structural properties of the optimal

joint dynamic pricing and inventory control policy are analyzed with a transforma-

tion technique and game theory. Moreover, the effects of the dual-channel setting on

the structural properties of the optimal joint dynamic pricing and inventory control

policy are investigated. Part of this work is included in Li and Mizuno (2022a).

In Chapter 3, considering that different dual-channel supply chains may have

different channel power structures, and the channel power structure of a dual-channel

supply chain may change over time because of some internal and external factors,

we aim to study the optimal joint dynamic pricing and inventory control policies of

a multi-period dual-channel supply chain under different channel power structures

as well as explore the effects of the channel power structure on the optimal joint

dynamic pricing and inventory control policy. Moreover, as an extension of Chapter

2, the effects of the dual-channel setting on the structural properties of the optimal

joint dynamic pricing and inventory control policies under different channel power

structures are also investigated. This chapter is related to Li and Mizuno (2022a).

In Chapter 4, considering the fact that many firms are still taking a wait-and-see

attitude to dynamic pricing, and one of the critical reasons for this fact is the concern
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about the performance of dynamic pricing in improving the profit, we aim to compare

the performance of dynamic pricing strategy with static pricing strategy in the multi-

period dual-channel supply chain where inventory control policy is implemented to

deal with demand uncertainty. As either of the channels can adopt dynamic or static

pricing, the optimal joint pricing and inventory control policies under four different

pricing strategies are analyzed and compared. Then, the performance of dynamic

pricing and static pricing in a dual-channel supply chain is compared, and the effects

of market parameters including demand variety, market size, channel preference, and

price sensitivities on the comparison results are studied with numerical examples.

This chapter is related to Li and Mizuno (2022b).

The originalities of this thesis mainly lie in exploring the joint pricing and in-

ventory control problem over multiple periods in a dual-channel supply chain with

uncertain demand. Specifically, the original points are as follows. First, compared

with existing literature on the joint dynamic pricing and inventory management

with uncertain demand, this thesis focuses on analyzing the optimal joint dynamic

pricing and inventory control policy of a dual-channel supply chain with horizontal

price competition and supply-demand relationship between members. Second, com-

pared with existing literature on decision-making of a dual-channel supply chain

under different channel power structures, this thesis focuses on analyzing the ef-

fects of channel power structure on the optimal joint dynamic pricing and inventory

control policy. Last, compared with existing literature on comparison of static pric-

ing and dynamic pricing with inventory control, this thesis focuses on studying the

comparison results of static pricing and dynamic pricing with inventory control in

a dual-channel supply chain with horizontal price competition and supply-demand

relationship between members.

The main contributions of this thesis are as follows. First, it can provide a

framework for the joint dynamic pricing and inventory management problem of a

multi-period dual-channel system with uncertain demand. Second, it reveals the

structural properties of the optimal joint dynamic pricing and inventory control

policy of a dual-channel supply chain in Chapter 2, and clarifies the effects of dual-

channel setting and channel power structure on the optimal policy in Chapter 3.

The results of Chapters 2 and 3 can provide managerial implications for the joint
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dynamic pricing and inventory management of dual-channel supply chain members,

and can, to some extent, help the dual-channel supply chain members understand

the effects of the dual-channel setting and channel power structure in the joint

dynamic pricing and inventory management. Third, it shows that dynamic pricing

may underperform static pricing in coping with additive demand uncertainty in a

dual-channel supply chain, and the performance of dynamic pricing is affected by

market parameters in Chapter 4. The results of Chapter 4 can, to a certain extent,

provide dual-channel supply chain members with the guidance in deciding whether

to take dynamic pricing strategy or not.
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Chapter 2

Dynamic Pricing and Inventory

Management of a Dual-channel

Supply Chain

2.1 Introduction

Dynamic pricing is a business strategy that dynamically adjusts prices based

on the factors such as time of sales, inventory availability, and demand conditions

to maximize the total profit. Owing to the cost and effort of changing prices, the

early application of dynamic pricing is centered on the industries where the capacity

over a finite planning horizon is relatively fixed and perishable, such as airline, ho-

tel, and car rental industries (Elmaghraby and Keskinocak, 2003; Chen and Chen,

2015). With numerous successful application stories including American Airlines,

Marriott Hotels and National Car Rental, dynamic pricing has become one of the

most fundamental management tools in the above industries (Netessine and Shum-

sky, 2002; Zhuang et al., 2017; Geraghty and Johnson, 1997). In recent years, with

the boom in e-commerce and the rapid development of information technology like

digital price tags, firms in the retail and manufacturing industries where the ca-

pacity is commonly flexible through inventory replenishment are able to implement

dynamic pricing easily and cheaply (Bitran and Caldentey, 2003). The success of

dynamic pricing in the industries with fixed and perishable capacity and the posses-

sion of capability to adjust prices at low cost and effort have stimulated considerable
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interests in dynamic pricing among firms in the retail and manufacturing industries.

As a result, joint dynamic pricing and inventory control has received considerable

attention.

Existing research in the area of joint dynamic pricing and inventory management

has mostly focused on analyzing the joint dynamic pricing and inventory control

policy of a firm or a supply chain with a single distribution channel. Driven by the

popularity of dual-channel supply chain, in this chapter, we aim to investigate the

optimal joint dynamic pricing and inventory control policy of a dual-channel supply

chain. We consider a dual-channel supply chain where the manufacturer produces

a single type of products and sells them to customers through the traditional retail

channel and its direct online channel over a planning horizon with a finite number

of periods. In every period, demand in each of the two channels is assumed to be

stochastic and price sensitive, the unmet demand is assumed to be backordered, and

the leftover inventory is assumed to be carried over to the next period. With the

goal of maximizing their respective total expected discounted profit over the entire

planning horizon, the manufacturer decides the selling price in the online channel

and production quantity at the beginning of every period, and the retailer decides

the selling price in the retail channel and order quantity at the beginning of every

period. The manufacturer and retailer’s profit-maximizing problems are formulated

with stochastic dynamic programming, respectively. The interaction between the

manufacturer’s problem and the retailer’s problem is formulated as a Stackelberg

game where one player named as the leader moves first, and then the other players

named as the followers move sequentially. In this chapter, we focus on the case,

called as Manufacturer Stackelberg, where manufacturer is the leader and retailer is

the follower. Moreover, we further discuss the effects of the dual-channel setting by

investigating the optimal policy of a dual-channel system where the two channels

are parallel to each other and compete on selling prices.

Results show that, an inventory-dependent base-stock-list-price policy in which

base stock levels and reduced prices are influenced by starting inventory levels, is

optimal for a dual-channel supply chain in the face of demand uncertainty and

horizontal price competition. Specifically, base stock level is the minimum amount

of inventory that should be maintained in operation, and list price is the basic price
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before any adjustment is taken. The manufacturer is optimal to produce when its

starting inventory level is below its base stock level, and the retailer is optimal to

order when its starting inventory level is below its base stock level. List prices

should be charged only when both members’ starting inventory levels are below

their respective base stock levels, and as long as one member’s starting inventory

level is above its base stock level, both members should reduce prices. Moreover,

the higher the initial inventory level exceeds the base stock level, the lower the

reduced prices. Results also reveal that the structural properties of the optimal

policy of the manufacturer-retailer dual-channel supply chain are also suitable for

the dual-channel system with two competing retailers. However, the influence rules

of starting inventory levels on the optimal policy are simpler in the dual-parallel-

channel setting.

The reminder of this chapter is organized as follows. In Section 2.2, we review

the relevant literature. In Section 2.3, we make assumptions and notations for the

joint dynamic pricing and inventory control problem in a dual-channel supply chain

and establish the basic decision model for this problem with stochastic dynamic pro-

gramming. In Section 2.4, the optimal joint dynamic pricing and inventory control

policy of a dual-channel supply chain is explored and analyzed. Section 2.5 provides

the analysis of the optimal joint dynamic pricing and inventory control policy of

a dual-parallel-channel supply chain. Finally, some conclusions are summarized in

Section 2.6.

2.2 Literature review

The work in this chapter is related to the following streams of research literature:

(i) joint dynamic pricing and inventory management with uncertain demand; (ii)

joint pricing and inventory decisions of a dual-channel supply chain.

2.2.1 Joint dynamic pricing and inventory management with

uncertain demand

The literature on joint dynamic pricing and inventory management with uncer-

tain demand can be categorized based on whether the decision-making framework
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is discrete or continuous. In the discrete-time decision-making framework, pricing

and inventory decisions are made periodically at discrete time points, while in the

continuous-time decision-making framework, a firm is allowed to continuously adjust

the selling price and production or replenishment rate over the planning horizon.

Considering it is impractical for a firm to continuously adjust the selling price and

production or replenishment rate at any time due to the operational cost and the risk

of bringing adverse impacts on consumer psychology, this work focuses on studying

the periodic-review joint dynamic pricing and inventory management with uncertain

demand.

Zabel (1972) is the first to consider a monopoly firm makes the pricing and out-

put decisions periodically with the goal of maximizing its discounted expected profit

over a finite planning horizon. By assuming the expected demand follows a concave

function, the unsatisfied demand in each period is lost, and the lead time is zero,

Zabel investigates the questions of existence and characteristics of the joint dynamic

pricing and inventory control policies in the cases of multiplicative and additive de-

mand, respectively. Since the seminal work of Zabel (1972), a number of papers

have studied the periodic-review joint dynamic pricing and inventory management

problem with uncertain demand under different settings.

Specifically, from the aspect of supply, different settings include: with a positive

lead time (see for example, Bernstein et al., 2016; Feng et al., 2021), considering

supply uncertainty (e.g., Amihud and Mendelson, 1983; Li and Zheng, 2006), con-

strained by supply capacity (e.g., Feng, 2010; Feng and Shi, 2012), etc. From the

aspect of demand, different settings include: considering reference price effects (e.g.,

Taudes and Rudloff, 2012; Chen et al., 2016), in the presence of online reviews

(Yang and Zhang, 2022; Vahdani and Sazvar, 2022), general demand function (e.g.,

Federgruen and Heching, 1999; Feng et al., 2020), demand learning (e.g., Katehakis

et al., 2020; Perakis et al., 2022), etc.

Besides the above different settings on the aspects of supply and demand, ex-

isting literature has also extended the work of Zabel (1972) from other directions

including with fixed ordering cost (e.g., Chen and Simchi-Levi, 2004; Gurkan et al.,

2022), in the presence of price adjustment cost (e.g., Aguirregabiria, 1999; Chen et

al., 2011), perishable products (e.g., Chen et al., 2014), considering multiple prod-
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ucts are sold in the system (e.g., Ceryan et al., 2018; Bhatia et al., 2020), oligopolistic

competition (Kirman and Sobel, 1974; Adida and Perakis, 2010), etc. For a detailed

and comprehensive review of research on joint dynamic pricing and inventory man-

agement with uncertain demand, interested readers are referred to Elmaghraby and

Keskinocak (2003), Chen and Simchi-Levi (2012) and Yang and Zhang (2022).

To the best of the author’s knowledge, the setting where a manufacturer uses

its own and third-party channels to distribute products has not been considered.

Driven by the popularity of the dual-channel supply chain in the modern business

world, this chapter tries to analyze the optimal joint dynamic pricing and inventory

control policy of a dual-channel supply chain with uncertain demand.

2.2.2 Joint pricing and inventory decisions of a dual-channel

supply chain

Joint pricing and inventory decisions of a dual-channel supply chain have ob-

tained considerable attention in the marketing and supply chain management lit-

erature in recent years. Most of the studies in this area focus on deciding the

optimal prices and production/order quantities for a dual-channel supply chain in a

single-period setting (see, e.g., Dumrongsiri et al., 2008; Ryan et al., 2013; Modak

and Kelle, 2019; Huang et al., 2021; Sun et al., 2022a) or economic order quantity

(EOQ) models with pricing consideration (e.g., Panda et al., 2015; Batarfi et al.,

2016; Karthick and Uthayakumar, 2022) where the pricing decisions are generally

considered to be fixed during the planning horizon.

To the best of our knowledge, only a little literature on the joint pricing and in-

ventory management of a dual-channel supply chain considers the selling prices can

be adjusted during the planning horizon. Moon et al. (2010) present a continuous-

time optimization model to investigate the joint dynamic pricing and inventory

control problem of a dual-channel supply chain where the pricing and inventory de-

cisions are assumed to be able to change at any time. Huang et al. (2012, 2013)

develop two-period pricing and production decision models for the joint pricing and

inventory problem of a dual-channel supply chain which experiences demand dis-

ruption or production cost disruption in the planning horizon. In the above works,

demand at each channel is assumed to be deterministic. Considering supply chain
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members commonly face demand uncertainty which strongly affects their decisions

and profits, Li and Wang (2023) study the joint dynamic pricing and ordering prob-

lem of a dual-channel retailer which charges identical price in its online and offline

channels under different shipping policies. Differing from Li and Wang (2023), our

work considers a dual-channel supply chain consisting of a manufacturer and a re-

tailer, and the selling prices of products sold in the online and offline channels are

not restricted to be identical.

To summarize, contributions of this study to the literature are that: (i) joint

dynamic pricing and inventory management problem with uncertain demand in a

setting with dual distribution channels is studied; (ii) considering pricing and inven-

tory decisions can be adjusted over time and the demand is stochastic, the optimal

pricing and inventory decisions of a dual-channel supply chain over a finite planning

horizon are studied; (iii) the structural properties of the optimal joint dynamic pric-

ing and inventory control policy of a dual-channel supply chain are revealed; (iv)

the impact of the dual-channel setting on the optimal joint dynamic pricing and

inventory control policy is investigated.

2.3 Model description and assumptions

We consider a dual-channel supply chain where a manufacturer produces a

single type of products and distributes the products to customers through an online

channel opened by himself and a traditional retail channel over a finite planning

horizon with T periods, indexed by t = 1, ..., T .

We now outline the sequence of events in each period t and define the notations

and assumptions.

(1) At the beginning of period t, manufacturer reviews its inventory level Im
t ,

and retailer reviews its inventory level Ir
t . Manufacturer decides the quantity qm

t

to produce with the unit production cost c and the price of products sold in online

channel pm
t , and retailer determines the quantity qr

t to order with the wholesale price

w, w > c, and the retail price pr
t .

It is assumed that, in each period t, the manufacturer and retailer choose to share

their initial inventory levels of this period with each other. Theoretical studies have
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shown that sharing of inventory information can enhance collaborative relationships

between supply chain members, increase competitiveness and improve performance

(Cachon and Fisher, 2000; Yao and Dresner, 2008). In practice, some firms have

implemented information technologies to share inventory information. For example,

Apple and its partners have the visibility of pipeline inventory in different stages

of the entire supply chain with Apple-Fritz’s supplier hub (Lee and Whang, 2000).

It is common that manufacturers in the high-tech, automotive, chemical, and home

appliance industries access their retailers’ inventory levels (Armony and Plambeck,

2005).

Assume w is determined through negotiation between manufacturer and retailer

in advance of the planning horizon and fixed during a planning horizon with T peri-

ods. While the assumption of the exogenous wholesale price is mainly for analytical

tractability, it is realistic in certain settings. For example, when the manufacturer

is operating in a highly competitive environment, the manufacturer is a price taker

and the wholesale price is determined by the market competition (Dong and Rudi,

2004; Dumrongsiri et al., 2008). According to Zhang et al. (2019), under the cir-

cumstances where holding the power of wholesale price-setting may diminish the

incentive to share information and cause information leakage, the manufacturer and

retailer may commit to the exogenous wholesale price. Production time and lead

time are assumed to be negligible.

(2) During period t, customers observe the prices (pm
t , pr

t ) and may choose the

online channel (online store) or retail channel (physical store) to obtain the product.

The orders placed through the online store Dm
t are shipped directly to customers

with the on-hand inventory at the manufacturer warehouse ym
t , while the demand

at the physical store Dr
t is met with the retailer’s on-hand inventory yr

t . Specifically,

ym
t = Im

t + qm
t − qr

t and yr
t = Ir

t + qr
t .

Dm
t and Dr

t are assumed to be stochastic and only dependent on the prices of

the current period. Similar to Chen et al.(2014), stochastic demand Dm
t and Dr

t are

assumed to take the following additive form Dm
t = dm

t + ϵm
t , Dr

t = dr
t + ϵr

t , where dm
t

and dr
t are the mean demand in the online channel and retail channel respectively,

and ϵm
t and ϵr

t are random terms with E(ϵm
t ) = E(ϵr

t ) = 0. It is assumed that the

firm has no control over the random term, that is ϵm
t and ϵr

t are independent of
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decision variables. Moreover, without loss of generality, the means of the random

terms are assumed to be zero.

Following the demand model which are commonly adopted in the dual-channel

literature such as Huang et al. (2012) and Ding et al. (2016), we assume the mean

demand dm
t and dr

t are given by: dm
t = θa−α1p

m
t +β1p

r
t , dr

t = (1−θ)a−α2p
r
t +β2p

m
t ,

where a represents the forecasted potential demand if the products are free of charge.

Moreover, the share of the demand goes to the direct channel is θ, and the rest 1−θ

goes to the retail channel. θ captures customers’ preference for the direct channel

when the products are free of charge. α1 and α2 are the coefficients of self-price

elasticity of dm
t and dr

t respectively. β1 and β2 are the coefficients of cross-price

sensitivity which reflect the degree to which the products sold via the two channels

are substitutes. Assume αi > βi, i = 1, 2, i.e., the coefficients of self-price sensitivity

are greater than that of cross-price sensitivity, which is widely used in the literature

such as Huang et al. (2012), Ryan et al. (2013) and Huang et al. (2021).

(3) At the end of period t, the unmet demand is assumed to be backordered, and

the leftover inventory is assumed to be carried over to the next period. Like Feng

(2010) and Bernstein et al. (2016), the backlogged cost function or the inventory

holding cost function of the manufacturer and retailer, denoted as hm(x) and hr(x)

respectively, are assumed to have the following common form hm(x) = hr(x) =

c1x
+ + c2x

− where x+ = max{0, x}, x− = max{0, −x}, c1 is the unit inventory

holding cost with c1 > 0 and c2 is the unit backorder cost with c2 > 0.

The problem faced by the manufacturer and retailer is to determine their dy-

namic pricing and inventory control policy to maximize their respective total ex-

pected profits over T periods, respectively. This profit maximization problem can

be formulated through stochastic dynamic programming models.

Let V m′
t (Im

t ) denote the manufacturer’s maximum expected discount profit from

period t until the end of the planning horizon with Im
t (the manufacturer’s beginning

inventory level in period t), V r′
t (Ir

t ) denote the retailer’s maximum expected discount

profit from period t until the end of the planning horizon with Ir
t (the retailer’s initial

inventory level in period t). Im
t and Ir

t are state variables, in the sense that their

values depend on the decisions made from period 1 up to period t − 1 (t = 2, ..., T ).

V m′
t (Im

t ) satisfies the following dynamic recursion denoted as model (2.1).
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V m′
t (Im

t ) =



max
pm

t ,ym
t

dm
t pm

t + (w − c)(yr
t − Ir

t ) − c(ym
t − Im

t ) − E[hm(ym
t − dm

t − ϵm
t )]

+ ρE[V m′
t+1(ym

t − dm
t − ϵm

t )]

s. t. ym
t − Im

t + yr
t − Ir

t ≥ 0
(2.1)

where dm
t pm

t is manufacturer’s expected revenue from selling product online in period

t; (w−c)(yr
t −Ir

t ) is manufacturer’s revenue from selling product to retailer in period

t; c(ym
t −Im

t ) is the production cost in period t ; E[hm(ym
t −dm

t −ϵm
t )] is manufacturer’s

expected backlogged cost or inventory holding cost in period t; ρ is the one-period

discount factor of money, with 0 < ρ ≤ 1.

V r′
t (Ir

t ) satisfies the following dynamic recursion denoted as model (2.2).

V r′
t (Ir

t ) =


max
pr

t ,yr
t

dr
t p

r
t − w(yr

t − Ir
t ) − E[hr(yr

t − dr
t − ϵr

t )] + ρE[V r′
t+1(yr

t − dr
t − ϵr

t )]

s. t. yr
t − Ir

t ≥ 0
(2.2)

where dr
t p

r
t is retailer’s expected revenue in period t; w(yr

t − Ir
t ) is the ordering cost

in period t; E[hr(yr
t − dr

t − ϵr
t )] is retailer’s expected backlogged cost or inventory

holding cost in period t.

In addition, we assume the terminal value is given by V m′
T +1 = cmIm

T +1, V r′
T +1 =

crI
r
T +1, which means any backlogged demand incurs with per unit cost cm or cr, or

any leftover inventory incurs with per unit value cm or cr at the end of the planning

horizon.

Considering the fact that the appearance of state variables in the objective func-

tions greatly increases the difficulty of solving the models, we use a transformation

technique by letting V m
t (Im

t ) = V m′
t (Im

t ) − cIm
t , V r

t (Ir
t ) = V r′

t (Ir
t ) − wIr

t to facilitate

the analysis.

With the transformation V m
t (Im

t ) = V m′
t (Im

t ) − cIm
t and the dynamic recursion

of the manufacturer’s inventory Im
t+1 = ym

t − dm
t − ϵm

t , we have

V m
t (Im

t ) =


max
pm

t ,ym
t

Jm
t (pm

t , ym
t )

s. t. ym
t − Im

t + yr
t − Ir

t ≥ 0
(2.3)
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where Jm
t (pm

t , ym
t ) = dm

t (pm
t − ρc) + (w − c)(yr

t − Ir
t ) − cym

t (1 − ρ) − E[hm(ym
t − dm

t −

ϵm
t )] + ρE[V m

t+1(ym
t − dm

t − ϵm
t )].

With the transformation V r
t (Ir

t ) = V r′
t (Ir

t ) − wIr
t and the dynamic recursion of

the retailer’s inventory Ir
t+1 = yr

t − dr
t − ϵr

t , we have

V r
t (Ir

t ) =


max
pr

t ,yr
t

Jr
t (pr

t , yr
t )

s. t. yr
t − Ir

t ≥ 0
(2.4)

where Jr
t (pr

t , yr
t ) = dr

t (pr
t −ρw)−yr

t w(1−ρ)−E[hr(yr
t −dr

t −ϵr
t )]+ρE[V r

t+1(yr
t −dr

t −ϵr
t )].

Obviously, with the assumption of exogenous wholesale price w, this transfor-

mation will not alternate the structure of the optimal dynamic pricing and inventory

control policies. Therefore, we will focus on (2.3) and (2.4) instead of (2.1) and (2.2)

to analyze the manufacturer and retailer’s problems.

2.4 Analysis of the optimal joint dynamic pricing

and inventory control policy

Like a lot of studies on supply chain management (e.g., Sajadieh and Jokar,

2009; Li et al., 2018), we consider manufacturer and retailer play a Stackelberg

game under perfect information with manufacturer as the leader and retailer as the

follower in this chapter.

Acting as the leader, manufacturer can perfectly anticipate the retailer’s optimal

response to its decisions and make decisions by taking the retailer’s optimal response

into account. After knowing manufacturer’s decisions, retailer acting as the follower

determines its optimal decisions. We use backward induction method to pursue

manufacturer and retailer’s optimal decisions. That is, retailer’s problem is first

focused to get its optimal response functions for any given manufacturer’s decisions.

Then, with retailer’s optimal response functions, manufacturer’s problem will be

solved to get its optimal decisions. Last, retailer’s optimal decisions can be obtained

with its optimal response functions and manufacturer’s optimal decisions.

According to the backward induction method, (2.4) is solved first to get the

retailer’s optimal response functions with given (pm
t , ym

t ). When pm
t is given, the

mean demand dr
t has an inverse function pr

t (dr
t ) = (1−θ)a+β2pm

t −dr
t

α2
. Therefore, the
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price decision variable pr
t can be replaced by the mean demand variable dr

t in (2.4).

Following the change of variable, (2.4) can be rewritten as follows.

V r
t (Ir

t ) =


max
dr

t ,yr
t

Jr
t (dr

t , yr
t )

s. t. yr
t − Ir

t ≥ 0
(2.5)

where Jr
t (dr

t , yr
t ) = dr

t (pr
t (dr

t ) − ρw) − yr
t w(1 − ρ) − E[hr(yr

t − dr
t − ϵr

t )] + ρE[V r
t+1(yr

t −

dr
t − ϵr

t )].

Lemma 2.1. In each period t, with given (pm
t , ym

t )

(a) V r
t (Ir

t ) is concave and nonincreasing in Ir
t ;

(b) Jr
t (dr

t , yr
t ) is jointly concave in (dr

t , yr
t ).

Based on Lemma 2.1, the optimal joint response functions of (dr
t , yr

t ) can be

derived with the following steps:

Step 1: With any yr
t , define dr′

t (yr
t ) = arg max Jr

t (dr
t , yr

t ). Then, substituting

dr′
t (yr

t ) into pr
t (dr

t ) to get the optimal price function pr′
t (yr

t ).

Step 2: Substitute dr′
t (yr

t ) into (2.5) with relaxing the constraint yr
t ≥ Ir

t , we can

get yr′
t = arg max Jr

t (dr′
t (yr

t ), yr
t ).

Step 3: Get the optimal price pr′
t by substituting yr′

t into the function pr′
t (yr

t ).

Theorem 2.1. In each period t, with given (pm
t , ym

t )

(a) if Ir
t < yr′

t , the optimal response decision of (pr
t , yr

t ) is (pr′
t , yr′

t );

(b) if Ir
t ≥ yr′

t , the optimal response decision of (pr
t , yr

t ) is (pr′
t (Ir

t ), Ir
t ), where

pr′
t (Ir

t ) declines with the rise in Ir
t .

Theorem 2.1 states that, when manufacturer’s pricing and inventory decisions

are given, the optimal policy of retailer is a base-stock-list-price policy. In detail,

retailer should place an order to reach the base stock level and charge a list price if

its initial inventory level is below the base stock level, otherwise it should place no

order and mark down the retail price. Furthermore, in the case of no order should

be placed, the higher the retailer’s initial inventory level, the lower the retail price.

Proposition 2.1. With the retailer’s optimal response decisions, the mean

demand dm
t has an inverse function pm

t (dm
t ) = θa+β1pr

t −dm
t

α1
which is strictly decreasing,

where pr
t = pr′

t when Ir
t < yr′

t and pr
t = pr′

t (Ir
t ) when Ir

t ≥ yr′
t .

With Proposition 2.1, we can get that optimizing the price pm
t in period t is

equivalent to optimizing the mean demand dm
t . Then, the manufacturer’s problem
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can be represented as

V m
t (Im

t ) =


max
dm

t ,ym
t

Jm
t (dm

t , ym
t )

s. t. ym
t − Im

t + yr
t − Ir

t ≥ 0
(2.6)

where Jm
t (dm

t , ym
t ) = dm

t (pm
t (dm

t ) − ρc) + (w − c)(yr
t − Ir

t ) − cym
t (1 − ρ) − E[hm(ym

t −

dm
t −ϵm

t )]+ρE[V m
t+1(ym

t −dm
t −ϵm

t )], pr
t and yr

t are retailer’s optimal response decisions

shown in Theorem 2.1.

Lemma 2.2. In each period t, with retailer’s optimal response decisions,

(a) V m
t (Im

t ) is concave and nonincreasing in Im
t ;

(b) Jm
t (dm

t , ym
t ) is jointly concave in (dm

t , ym
t ) .

Based on Lemma 2.2, the optimal policy of the manufacturer exists and can

be obtained with the same steps as the retailer’s problem. Define dm⋆
t (ym

t ) =

arg max Jm
t (dm

t , ym
t ). Then, define ym⋆

t = arg max Jm
t (dm⋆

t (ym
t ), ym

t ) where (pr
t , yr

t )

is (pr′
t , yr′

t ), and ym⋆
t (Ir

t ) = arg max Jm
t (dm⋆

t (ym
t ), ym

t ) where (pr
t , yr

t ) is (pr′
t (Ir

t ), Ir
t ).

Theorem 2.2. In each period t, manufacturer’s optimal decisions are:

(a) Under the scenario where Ir
t < yr′

t , if Im
t < ym⋆

t + yr′
t − Ir

t , the optimal

solution of (pm
t , ym

t ) is (pm⋆
t , ym⋆

t ); otherwise, the optimal solution of (pm
t , ym

t ) is

(pm(1)⋆
t (Ir

t , Im
t ), Im

t + Ir
t − yr′

t ). Moreover, ym⋆
t and pm⋆

t are independent of Im
t , and

p
m(1)⋆
t (Ir

t , Im
t ) is decreasing with Im

t or Ir
t .

(b) Under the scenario where Ir
t ≥ yr′

t , if Im
t < ym⋆

t (Ir
t ), the optimal solu-

tion of (pm
t , ym

t ) is (pm⋆
t (Ir

t ), ym⋆
t (Ir

t )); otherwise, the optimal solution of (pm
t , ym

t )

is (pm(2)⋆
t (Ir

t , Im
t ), Im

t ). Moreover, pm⋆
t (Ir

t ) and ym⋆
t (Ir

t ) are decreasing with Ir
t , and

p
m(2)⋆
t (Ir

t , Im
t ) is decreasing with Ir

t or Im
t .

Theorem 2.2 indicates that, whether the retailer places an order or not, the

manufacturer’s optimal policy is a base-stock-list-price policy. Specifically, under

the situation where retailer decides to order products, manufacturer should increase

the inventory level to the base stock level ym⋆
t + yr′

t − Ir
t by producing and charge

a list price pm⋆
t if its initial inventory level is below the base stock level, otherwise

it should not produce and mark down the online price. Under the situation where

retailer decides to place no order, manufacturer should produce-up to the base stock

level ym⋆
t (Ir

t ) and charge a list price pm⋆
t (Ir

t ) if its initial inventory level is below the

base stock level, otherwise it should not produce and mark down the online price.
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Besides, in the case of not producing goods, the higher the manufacturer’s initial

inventory level, the lower the online price.

We need to substitute the manufacturer’s optimal decisions into the retailer’s

optimal response decisions to get the retailer’s final optimal policy. The retailer’s

final optimal decisions are denoted with asterisk superscript. The following theorem

is about the structural analysis of the dual-channel supply chain’s optimal joint dy-

namic pricing and inventory control policy when the manufacturer is the Stackelberg

leader.

Theorem 2.3. The optimal joint dynamic pricing and inventory control policy

of a dual-channel supply chain where the manufacturer is the Stackelberg leader is:

(a) if Ir
t < yr⋆

t and Im
t < ym⋆

t + yr⋆
t − Ir

t , the optimal decisions are (pr⋆
t , yr⋆

t ) and

(pm⋆
t , ym⋆

t ), where yr⋆
t , pr⋆

t , ym⋆
t and pm⋆

t are independent of Im
t and Ir

t .

(b) if Ir
t < y

r(1)⋆
t (Ir

t , Im
t ) and Im

t ≥ ym⋆
t + yr⋆

t − Ir
t , the optimal decisions are

(pr(1)⋆
t (Ir

t , Im
t ), y

r(1)⋆
t (Ir

t , Im
t )) and (pm(1)⋆

t (Ir
t , Im

t ), Im
t + Ir

t − y
r(1)⋆
t (Ir

t , Im
t )). Addition-

ally, p
r(1)⋆
t (Ir

t , Im
t ), y

r(1)⋆
t (Ir

t , Im
t ) and p

m(1)⋆
t (Ir

t , Im
t ) decrease as either Ir

t or Im
t in-

creases.

(c) if Ir
t ≥ yr⋆

t (Ir
t ) and Im

t < ym⋆
t (Ir

t ), the optimal decisions are (pr⋆
t (Ir

t ), Ir
t )

and (pm⋆
t (Ir

t ), ym⋆
t (Ir

t )), where yr⋆
t (Ir

t ), pr⋆
t (Ir

t ), ym⋆
t (Ir

t ) and pm⋆
t (Ir

t ) decrease as Ir
t

increases.

(d) if Ir
t ≥ y

r(2)⋆
t (Ir

t , Im
t ) and Im

t ≥ ym⋆
t (Ir

t ), the optimal decisions are (pr(2)⋆
t (Ir

t , Im
t ),

Ir
t ) and (pm(2)⋆

t (Ir
t , Im

t ), Im
t ), where y

r(2)⋆
t (Ir

t , Im
t ), p

r(2)⋆
t (Ir

t , Im
t ) and p

m(2)⋆
t (Ir

t , Im
t ) de-

crease as either Ir
t or Im

t increases.

Theorem 2.3 indicates that, for the dual-channel supply chain where manufac-

turer acts as the leader and retailer acts as the follower, manufacturer and retailer’s

optimal joint dynamic pricing and inventory control policies are inventory-dependent

base-stock-list-price policies. Specifically, one member should increase its inventory

to its base stock level through producing or ordering if its initial inventory level is

below its base stock level, otherwise it should keep its inventory at the initial level.

Moreover, one member’s base stock level may be affected by its initial inventory

level or the other’s initial inventory level. Manufacturer and retailer should charge

list prices if their initial inventory levels are both below their respective base stock

levels, otherwise they should reduce online price and retail price.
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2.5 Modeling and analysis of the optimal policy

for a dual-parallel-channel system

The dual-channel supply chain where the two channels have supply-demand

relationship besides competing on selling prices is studied in Section 2.4. In this

section, we consider the two channels are parallel to each other and compete on

selling prices, and discuss the effect of the dual-channel setting.

Consider two retailers, referred to as retailer i, i = 1, 2, purchase products of

a single type from a manufacturer with the same wholesale price w and sell to

customers over T periods, indexed by t = 1, ..., T .

At the beginning of period t, retailer i, reviews its inventory level I i
t , and decides

the order quantity qi
t and selling price pi

t. During period t, retailer i’s customer

demand Di
t is met with its on-hand inventory level yi

t where yi
t = I i

t + qi
t. At the

end of period t, unmet demand is backordered, and leftover inventory is carried over

to the next period. Retailer i incurs the backlogged cost or inventory holding cost

hi(·). Same as the manufacturer-retailer dual-channel setting, we assume Di
t = di

t+ϵi
t

where E(ϵi
t) = 0, di

t is given by di
t = θia−αip

i
t +βip

3−i
t where 0 < θi < 1, θi +θ3−i = 1

and αi > βi, and hi(·) is convex and continuous derivable.

The problems faced by the two retailers under different channel power structures

are to decide the optimal joint dynamic pricing and inventory policies to maximize

their respective total expected profits. Retailer i’s problem is built as (2.7) by letting

V i′
t (I i

t) be retailer i’s maximum expected discount profit from period t until the end

of period T and doing transformation to V i′
t (I i

t) with V i
t (I i

t) = V i′
t (I i

t) − wI i
t .

V i
t (I i

t) =


max
pi

t,yi
t

J i
t (pi

t, yi
t)

s. t. yi
t − I i

t ≥ 0
(2.7)

where J i
t (pi

t, yi
t) = di

t(pi
t −ρw)−(1−ρ)wyi

t −E[hi(yi
t −di

t −ϵi
t)]+ρE[V i

t+1(yi
t −di

t −ϵi
t)].

Referring to the steps to solve the problems of the manufacturer-retailer dual-

channel supply chain in Section 2.4, the two retailers’ problems under Retailer i

Stackelberg can be solved. Theorems 2.4 describes the structural properties of the

two retailers’ optimal policies.

19



Theorem 2.4. The two retailers’ optimal joint dynamic pricing and inventory

decisions under Retailer i Stackelberg are:

(a) if I3−i
t < y3−i⋆

t and I i
t < yi⋆

t , the optimal decisions are (p3−i⋆
t , y3−i⋆

t ) and

(pi⋆
t , yi⋆

t ), where y3−i⋆
t , p3−i⋆

t , yi⋆
t and pi⋆

t are independent of I i
t and I3−i

t .

(b) if I3−i
t < y3−i⋆

t (I i
t) and I i

t ≥ yi⋆
t , the optimal decisions are (p3−i⋆

t (I i
t), y3−i⋆

t (I i
t))

and (pi⋆
t (I i

t), I i
t), where p3−i⋆

t (I i
t), y3−i⋆

t (I i
t) and pi⋆

t (I i
t) decrease as either I i

t increases.

(c) if I3−i
t ≥ y3−i⋆

t (I3−i
t ) and I i

t < yi⋆
t (I3−i

t ), the optimal decisions are (p3−i⋆
t (I3−i

t ),

I3−i
t ) and (pi⋆

t (I3−i
t ), yi⋆

t (I3−i
t )), where y3−i⋆

t (I3−i
t ), p3−i⋆

t (I3−i
t ), yi⋆

t (I3−i
t ) and pi⋆

t (I3−i
t )

decrease as I3−i
t increases.

(d) if I3−i
t ≥ y3−i⋆

t (I3−i
t , I i

t) and I i
t ≥ yi⋆

t (I3−i
t ), the optimal decisions are (p3−i⋆

t (I3−i
t , I i

t),

I3−i
t ) and (pi⋆

t (I3−i
t , I i

t), I i
t), where p3−i⋆

t (I3−i
t , I i

t), y3−i⋆
t (I3−i

t , I i
t) and pi⋆

t (I3−i
t , I i

t) de-

crease as I3−i
t or I i

t increases.

Theorem 2.4 indicates that, under Retailer i Stackelberg power structure, the

member should order up to its base stock level if its initial inventory level is below

its base stock level, otherwise it places no order and both members should reduce

their selling prices. This means that the structural properties of the optimal policies

under the two different dual-channel settings are the same. Optimal selling prices

are negatively correlated with the initial inventory level of the member whose initial

inventory level is above its base stock level. However, in the manufacturer-retailer

setting, because of the supply-demand relationship between manufacturer and re-

tailer, optimal prices may be negatively affected by retailer’s initial inventory level

though its initial inventory level is below its base stock level.

Theorems 2.3 and 2.4 show that the influence rules of initial inventory levels

on base stock levels are affected by the dual-channel setting. Manufacturer’s base

stock level is affected by retailer’s initial inventory level if retailer’s initial inventory

level is below its base stock level, while retailer i’s base stock level is not affected

by retailer 3 − i’s base stock level if retailer 3 − i’s initial inventory level is below

its base stock level. In addition, retailer’s base stock level is negatively correlated

with its initial inventory level when manufacturer’s initial inventory level is above

its base stock level and retailer’s initial inventory level is below its base stock level,

while retailer i’s base stock level is not affected by retailer 3 − i’s base stock level

if retailer 3 − i’s initial inventory level is above its base stock level and retailer i’s
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initial inventory level is below its base stock level.

2.6 Conclusions

This chapter investigates the joint dynamic pricing and inventory control prob-

lem of a dual-channel supply chain faced by stochastic and price-sensitive demand.

We find that, the optimal joint dynamic pricing and inventory control policy

of a dual-channel supply chain is a base-stock-list-price type, that is, manufacturer

should produce goods only if its starting inventory level is below its base stock level,

retailer should place an order only if its starting inventory level is below its base

stock level, and list prices should be charged only when both members’ starting

inventory levels are below their respective base stock levels. Moreover, as long as

one member’s starting inventory level is above its base stock level, both members

should reduce prices. The higher the initial inventory level exceeds the base stock

level, the lower the reduced prices. The base stock levels of manufacturer and retailer

may be affected by their initial inventory levels.

We also find that the above structural properties are also suitable for the optimal

joint dynamic pricing and inventory control policy of a dual-channel supply chain

with two competing retailers. However, due to the supply-demand relationship

between manufacturer and retailer, the influence rules of starting inventory levels on

the optimal joint dynamic pricing and inventory control policy in the manufacturer-

retailer dual-channel setting are more complex.

2.7 Appendices

Proof of Lemma 2.1

Lemma 2.1 can be proved by induction. Since V r
T +1 = (cr−w)Ir

T +1, it is obviously

concave in Ir
T +1. We assume inductively that V r

t+1(Ir
t+1) is concave in Ir

t+1. In what

follows, we should prove the result also holds for period t.

We first prove that Jr
t (dr

t , yr
t ) is jointly concave in (dr

t , yr
t ). Jr

t (dr
t , yr

t ) consists

of three parts: (1) dr
t (pr

t (dr
t ) − ρw) − yr

t w(1 − ρ), (2) −E[hr(yr
t − dr

t − ϵr
t )], and (3)

ρE[V r
t+1(yr

t − dr
t − ϵr

t )]. Since pr
t (dr

t ) = (1−θ)a+βpm
t −dr

t

α2
, the Hessian matrix of part
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(1), denoted as H, is

−2
α2

0

0 0

. For any vector x, we have xTHx ≤ 0 . Hence,

we can get that dr
t (pr

t − ρw) − yr
t w(1 − ρ) is jointly concave in (dr

t , yr
t ). Note that

hr(yr
t − dr

t − ϵr
t ) = c1(yr

t − dr
t − ϵr

t )+ + c2(yr
t − dr

t − ϵr
t )− is a convex function and

yr
t −dr

t −ϵr
t is a linear combination of (dr

t , yr
t ) for any ϵr

t . Then, we can easily get that

hr(yr
t − dr

t − ϵr
t ) is jointly convex in (dr

t , yr
t ) for any ϵr

t . After taking expectation over

ϵr
t , −E[hr(yr

t − dr
t − ϵr

t )] is also jointly concave in (dr
t , yr

t ). Similarly, since V r
t+1(Ir

t+1)

is concave in Ir
t+1 = yr

t − dr
t − ϵr

t , we can get that E[V r
t+1(yr

t − dr
t − ϵr

t )] is also jointly

concave in (dr
t , yr

t ).

Then, we will prove V r
t (Ir

t ) is concave in Ir
t . The constraint yr

t − Ir
t ≥ 0 implies

that the optimal value of yr
t is greater than Ir

t or equal to Ir
t . If the optimal value

of yr
t is greater than Ir

t , with Jr
t (dr

t , yr
t ) = dr

t (pr
t (dr

t ) − ρw) − yr
t w(1 − ρ) − E[hr(yr

t −

dr
t − ϵr

t )] + ρE[V r
t+1(yr

t − dr
t − ϵr

t )], we get that V r
t (Ir

t ) = max
(dr

t ,yr
t )

Jr
t (dr

t , yr
t ) is unrelated

to Ir
t . Since Jr

t (dr
t , yr

t ) is jointly concave in (dr
t , yr

t ) and concavity is preserved after

maximization, we can get max
dr

t

Jr
t (dr

t , yr
t ) is concave in yr

t . Therefore, if the optimal

value of yr
t is Ir

t , V r
t (Ir

t ) = max
dr

t

Jr
t (dr

t , Ir
t ) is concave in Ir

t .

V r
t (Ir

t ) is nonincreasing in Ir
t , because Jr

t (dr
t , yr

t ) is independent of Ir
t and a

larger Ir
t leads to a more restrictive feasible domain of yr

t and so a smaller maximum

objective function value. Hence, Lemma 2.1 is completely proved.

Proof of Theorem 2.1

If Ir
t < yr′

t , the constraint yr′
t − Ir

t ≥ 0 is satisfied, it is obvious that the optimal

solution of (pr
t , yr

t ) is (pr′
t , yr′

t ). If Ir
t ≥ yr′

t , the optimal yr
t must be in the boundary

line yr′
t −Ir

t = 0. Therefore, if Ir
t ≥ yr′

t , the optimal solution of (pr
t , yr

t ) is (pr′
t (Ir

t ), Ir
t ).

Next, we will prove pr′
t (Ir

t ) is decreasing in Ir
t .

For any yr
t , dr′

t (yr
t ) is obtained with ∂Jr

t (dr
t ,yr

t )
∂dr

t
= 0, where ∂Jr

t (dr
t ,yr

t )
∂dr

t
= (1−θ)a+βpm

t −2dr
t

α2
−

ρw+ ∂E[hr(yr
t −dr

t −ϵr
t )]

∂(yr
t −dr

t ) −ρ
∂E[V r

t+1(yr
t −dr

t −ϵr
t )]

∂(yr
t −dr

t ) = 0. Since −E[hr(yr
t −dr

t −ϵr
t )]+ρE[V r

t+1(yr
t −

dr
t − ϵr

t )] is concave in yr
t − dr

t , which is proved in Lemma 2.1, the coefficient of

yr
t − dr

t in ∂E[hr(yr
t −dr

t −ϵr
t )]

∂(yr
t −dr

t ) − ρ
∂E[V r

t+1(yr
t −dr

t −ϵr
t )]

∂(yr
t −dr

t ) is greater than 0. Then, we can get

0 <
∂dr′

t (yr
t )

∂yr
t

< 1.

When Ir
t ≥ yr′

t , the optimal solution of yr
t is Ir

t . With 0 <
∂dr′

t (yr
t )

∂yr
t

< 1, we can

get dr′
t (Ir

t ) increases as Ir
t increases. With pr

t (dr
t ) = (1−θ)a+βpm

t −dr
t

α2
, we can further get

pr′
t (Ir

t ) decreases with the increase in Ir
t . Hence, pr′

t (Ir
t ) decreases as Ir

t increases is

22



proved. Theorem 2.1 is completely proved.

Proof of Proposition 2.1

For any yr
t , dr′

t (yr
t ) is obtained with ∂Jr

t (dr
t ,yr

t )
∂dr

t
= 0 where ∂Jr

t (dr
t ,yr

t )
∂dr

t
= (1−θ)a+βpm

t −2dr
t

α2
−

ρw + ∂E[hr(yr
t −dr

t −ϵr
t )]

∂(yr
t −dr

t ) − ρ
∂E[V r

t+1(yr
t −dr

t −ϵr
t )]

∂(yr
t −dr

t ) . With dr′
t (yr

t ), we can get ∂Jr
t (dr′

t (yr
t ),yr

t )
∂yr

t
=

−w(1 − ρ) − ∂E[hr(yr
t −dr′

t (yr
t )−ϵr

t )]
∂(yr

t −dr′
t (yr

t )) + ρ
∂E[V r

t+1(yr
t −dr′

t (yr
t )−ϵr

t )]
∂(yr

t −dr′
t (yr

t )) . Then, yr′
t is derived with

∂Jr
t (dr′

t (yr
t ),yr

t )
∂yr

t
= 0.

If Ir
t < yr′

t , we get ∂dr′
t

∂pm
t

= β
2 by combining ∂Jr

t (dr
t ,yr

t )
∂dr

t
= 0 and ∂Jr

t (dr′
t (yr

t ),yr
t )

∂yr
t

=

0. If Ir
t ≥ yr′

t , the optimal value of yr
t is Ir

t . Since the coefficient of yr
t − dr

t in
∂E[hr(yr

t −dr
t −ϵr

t )]
∂(yr

t −dr
t ) −ρ

∂E[V r
t+1(yr

t −dr
t −ϵr

t )]
∂(yr

t −dr
t ) is greater than 0, 0 <

∂dr′
t (Ir

t )
∂Ir

t
< 1 and 0 <

∂dr′
t (Ir

t )
∂pm

t
<

β
2 .

With dm
t = θa − α1p

m
t + βpr

t and dr
t = (1 − θ)a − α2p

r
t + βpm

t , we get pm
t (dm

t ) =
θα2a+(1−θ)βa−βdr

t −α2dm
t

α1α2−β2 , where dr
t = dr′

t when Ir
t < yr′

t and dr
t = dr′

t (Ir
t ) when Ir

t ≥ yr′
t .

Then, with ∂dr′
t

∂pm
t

= β
2 and 0 <

∂dr′
t (Ir

t )
∂pm

t
< β

2 , we can get that ∂pm
t (dm

t )
∂dm

t
≤ −2α2

2α1α2−β2 . With

the assumption α1 > β > 0 and α2 > β > 0, we get −2α2
2α1α2−β2 < 0. Therefore, pm

t (dm
t )

is strictly decreasing dm
t . Proposition 2.1 is completely proved.

Proof of Lemma 2.2

Similar to Lemma 2.1, Lemma 2.2 can be proved by induction. Since V m
T +1 =

(cm − c)Im
T +1, it is obviously concave in Im

T +1. Now, we assume inductively that

V m
t+1(Im

t+1) is concave in Im
t+1. In what follows, we should prove the result also holds

for period t.

We first prove that Jm
t (dm

t , ym
t ) is jointly concave in (dm

t , ym
t ). Jm

t (dm
t , ym

t ) is

divided into three parts: (1) dm
t (pm

t (dm
t ) − ρc) + (w − c)(yr

t − Ir
t ) − cym

t (1 − ρ) ;

(2) −E[hm(ym
t − dm

t − ϵm
t )] ; and (3) ρE[V m

t+1(ym
t − dm

t − ϵm
t )]. The Hessian matrix

of part (1), denoted as H′, is

2∂pm
t (dm

t )
∂dm

t
0

0 0

. Since ∂pm
t (dm

t )
∂dm

t
< 0 which is proved in

Proposition 2.1, we can get that, for any vector x, xTH′x ≤ 0. Hence, part (1) is

jointly concave in (dm
t , ym

t ). Parts (2) and (3) are jointly concave in (dm
t , ym

t ) can be

proved in the same way as Lemma 2.1.

Then, we will prove V m
t (Im

t ) is concave in Im
t . Under the situation where Ir

t ≥

yr′
t , the optimal solution of yr

t is Ir
t , then Jm

t (dm
t , ym

t ) = dm
t (pm

t (dm
t )−ρc)−cym

t (1−ρ)−

E[hm(ym
t −dm

t −ϵm
t )]+ρE[V m

t+1(ym
t −dm

t −ϵm
t )], and the constraint ym

t −Im
t +yr

t −Ir
t ≥ 0

can be represented as ym
t ≥ Im

t . If the optimal value of ym
t is greater than Im

t ,
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with Jm
t (dm

t , ym
t ), we get that V m

t (Im
t ) = max

(dm
t ,ym

t )
Jm

t (dm
t , ym

t ) is unrelated to Im
t . If

the optimal value of ym
t is Im

t , similar to Lemma 2.1, we can get that V m
t (Im

t ) =

max
dm

t

Jm
t (dm

t , Im
t ) is concave in Im

t .

Under the situation where Ir
t < yr′

t , the optimal solution of yr
t is yr′

t , then

Jm
t (dm

t , ym
t ) = dm

t (pm
t (dm

t ) − ρc) + (w − c)(yr′
t − Ir

t ) − cym
t (1 − ρ) − E[hm(ym

t − dm
t −

ϵm
t )] + ρE[V m

t+1(ym
t − dm

t − ϵm
t )], and the constraint ym

t − Im
t + yr

t − Ir
t ≥ 0 can

be represented as ym
t ≥ Im

t + Ir
t − yr′

t . In view of ∂Jr
t (dr′

t (yr
t ),yr

t )
∂yr

t
which is displayed

in Proposition 2.1, we get ∂yr′
t

∂pm
t

= ∂dr′
t

∂pm
t

= β
2 . This indicates that yr′

t is related to

dm
t and ∂yr′

t

∂dm
t

= ∂yr′
t

∂pm
t

∂pm
t (dm

t )
∂dm

t
= −α2β

2α1α2−β2 . If the optimal solution of (dm
t , ym

t ) satisfies

ym
t > Im

t + Ir
t − yr′

t , then max
(dm

t ,ym
t )

Jm
t (dm

t , ym
t ) is unrelated to Im

t . If the optimal

solution of (dm
t , ym

t ) satisfies ym
t = Im

t + Ir
t − yr′

t , then max
(dm

t ,ym
t )

Jm
t (dm

t , ym
t ) equals to

max
dm

t

Jm
t (dm

t , Im
t ), where Jm

t (dm
t , Im

t ) = dm
t (pm

t (dm
t ) − ρc) + (w − c)(yr′

t − Ir
t ) − c(1 −

ρ)(Im
t + Ir

t − yr′
t ) − E[hm(Im

t + Ir
t − yr′

t − dm
t − ϵm

t )] + ρE[V m
t+1(Im

t + Ir
t − yr′

t − dm
t −

ϵm
t )]. Since Jm

t (dm
t , ym

t ) is jointly concave in (dm
t , ym

t ) and ∂yr′
t

∂dm
t

= −α2β
2α1α2−β2 , we get

that Jm
t (dm

t , Im
t ) is jointly concave in (dm

t , Im
t ). Since concavity is preserved after

maximization, V m
t (Im

t ) = max
dm

t

Jm
t (dm

t , Im
t ) is concave in Im

t .

V m
t (Im

t ) is nonincreasing in Im
t , because Jm

t (dm
t , ym

t ) is independent of Im
t and

a larger Im
t leads to a more restrictive feasible domain of (dm

t , ym
t ) and so a smaller

maximum objective function value. Hence, Lemma 2.2 is completely proved.

Proof of Theorem 2.2

(a) Under the scenario where Ir
t < yr′

t , Jm
t (dm

t , ym
t ) = dm

t (pm
t (dm

t ) − ρc) + (w −

c)(yr′
t − Ir

t ) − cym
t (1 − ρ) − E[hm(ym

t − dm
t − ϵm

t )] + ρE[V m
t+1(ym

t − dm
t − ϵm

t )], and the

constraint is ym
t − Im

t + yr′
t − Ir

t ≥ 0, where ∂yr′
t

∂dm
t

= −α2β
2α1α2−β2 which is displayed in the

proof of Lemma 2.2. Since (dm(1)⋆
t , y

m(1)⋆
t ) = arg max Jm

t (dm
t , ym

t ), it is obvious that if

Im
t < y

m(1)⋆
t +y

r(1)⋆
t −Ir

t , the optimal solution is (pm(1)⋆
t , y

m(1)⋆
t ) which is independent

of Ir
t and Im

t . If Im
t ≥ y

m(1)⋆
t + y

r(1)⋆
t − Ir

t , d
m(1)⋆
t (Ir

t , Im
t ) = arg max Jm

t (dm
t , Im

t +

Ir
t − yr

t ), which is derived with ∂Jm
t (dm

t )
∂dm

t
= 0, where ∂Jm

t (dm
t )

∂dm
t

= pm
t (dm

t ) + dm
t

∂pm
t (dm

t )
∂dm

t
−

ρc + (w − c) ∂yr′
t

∂dm
t

+ ∂E[hm(ym
t −dm

t −ϵm
t )]

∂(ym
t −dm

t ) (1 − ∂yr′
t

∂dm
t

) − ρ
∂E[V m

t+1(ym
t −dm

t −ϵm
t )]

∂(ym
t −dm

t ) (1 − ∂yr′
t

∂dm
t

). Since
∂pm

t (dm
t )

∂dm
t

= −2α2
2α1α2−β2 < 0, −1 <

∂yr′
t

∂dm
t

= −α2β
2α1α2−β2 < 0, and −E[hm(ym

t − dm
t − ϵm

t )] +

ρE[V m
t+1(ym

t − dm
t − ϵm

t )] is concave in ym
t − dm

t , we get that ∂d
m(1)⋆
t (Ir

t ,Im
t )

∂Ir
t

> 0 and
∂d

m(1)⋆
t (Ir

t ,Im
t )

∂Im
t

> 0. Then, with ∂pm
t (dm

t )
∂dm

t
< 0 and ∂yr′

t

∂dm
t

< 0, we get that p
m(1)⋆
t (Ir

t , Im
t )

and y
r(1)⋆
t (Ir

t , Im
t ) decrease with increase in Ir

t or Im
t .
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(b) Under the scenario where Ir
t ≥ yr′

t , Jm
t (dm

t , ym
t ) = dm

t (pm
t (dm

t )−ρc)−cym
t (1−

ρ)−E[hm(ym
t −dm

t − ϵm
t )]+ρE[V m

t+1(ym
t −dm

t − ϵm
t )], and the constraint is ym

t − Im
t ≥

0. Since (dm(2)⋆
t (Ir

t ), y
m(2)⋆
t (Ir

t )) = arg max Jm
t (dm

t , ym
t ), it is obvious that if Im

t <

y
m(2)⋆
t (Ir

t ), the optimal solution is (pm(2)⋆
t (Ir

t ), y
m(2)⋆
t (Ir

t )). d
m(2)⋆
t (Ir

t ) and y
m(2)⋆
t (Ir

t )

are derived with ∂Jm
t (dm

t ,ym
t )

∂dm
t

= 0 and ∂Jm
t (dm

t ,ym
t )

∂ym
t

= 0, where ∂Jm
t (dm

t ,ym
t )

∂dm
t

= pm
t (dm

t ) +

dm
t

∂pm
t (dm

t )
∂dm

t
−ρc+ ∂E[hm(ym

t −dm
t −ϵm

t )]
∂(ym

t −dm
t ) −ρ

∂E[V m
t+1(ym

t −dm
t −ϵm

t )]
∂(ym

t −dm
t ) and ∂Jm

t (dm
t ,ym

t )
∂ym

t
= −(1−ρ)c−

∂E[hm(ym
t −dm

t −ϵm
t )]

∂(ym
t −dm

t ) + ρ
∂E[V m

t+1(ym
t −dm

t −ϵm
t )]

∂(ym
t −dm

t ) . With pm
t (dm

t ) = θα2a+(1−θ)βa−βdr′
t (Ir

t )−α2dm
t

α1α2−β2 ,

0 <
∂dr′

t (Ir
t )

∂Ir
t

and 0 <
∂dr′

t (Ir
t )

∂pm
t

< β
2 which are proved in Proposition 2.1, we get

that ∂d
m(2)⋆
t (Ir

t )
∂Ir

t
= ∂y

m(2)⋆
t (Ir

t )
∂Ir

t
= −β

2α2

∂dr′
t (Ir

t )
∂Ir

t
< 0. Then, with pm

t (dm
t ), we can further

get that ∂p
m(2)⋆
t (Ir

t )
∂Ir

t
< 0. If Im

t ≥ y
m(2)⋆
t (Ir

t ), d
m(2)⋆
t (Ir

t , Im
t ) = arg max Jm

t (dm
t , Im

t ),

which is derived with ∂Jm
t (dm

t )
∂dm

t
= 0, where ∂Jm

t (dm
t )

∂dm
t

= pm
t (dm

t ) + dm
t

∂pm
t (dm

t )
∂dm

t
− ρc +

∂E[hm(Im
t −dm

t −ϵm
t )]

∂(Im
t −dm

t ) −ρ
∂E[V m

t+1(Im
t −dm

t −ϵm
t )]

∂(Im
t −dm

t ) . Since −E[hm(ym
t −dm

t − ϵm
t )]+ρE[V m

t+1(ym
t −

dm
t − ϵm

t )] is concave in ym
t − dm

t , we can get that −β
2α2

∂dr′
t (Ir

t )
∂Ir

t
<

∂d
m(2)⋆
t (Ir

t ,Im
t )

∂Ir
t

< 0 and

0 <
∂d

m(2)⋆
t (Ir

t ,Im
t )

∂Im
t

. Then, with pm
t (dm

t ), we can further get that ∂p
m(2)⋆
t (Ir

t ,Im
t )

∂Ir
t

< 0 and
∂p

m(2)⋆
t (Ir

t ,Im
t )

∂Im
t

< 0. Hence, Theorem 2.2 is completely proved.

Proof of Theorem 2.3

Since the influence rules of (Ir
t , Im

t ) on the optimal solutions of (pm
t , ym

t ) have

been proved in Theorem 2.2, we only need to prove the influence rules of (Ir
t , Im

t )

on the optimal solutions of (pr
t , yr

t ) which are shown in Theorem 2.3 is true.

(a) It is obvious that, if Ir
t < y

r(1)⋆
t and Im

t < y
m(1)⋆
t + y

r(1)⋆
t − Ir

t , p
r(1)⋆
t and y

r(1)⋆
t

are independent of Im
t and Ir

t .

(b) if Ir
t < y

r(1)⋆
t (Ir

t , Im
t ) and Im

t ≥ y
m(1)⋆
t + y

r(1)⋆
t − Ir

t , p
r(1)⋆
t (Ir

t , Im
t ) and

y
r(1)⋆
t (Ir

t , Im
t ) are obtained by substituting p

m(1)⋆
t (Ir

t , Im
t ) into pr′

t and yr′
t . With

∂yr′
t

∂pm
t

= ∂dr′
t

∂pm
t

= β
2 which is proved in Lemma 2.2, pr

t (dr
t ) = (1−θ)a+βpm

t −dr
t

α2
, and

p
m(1)⋆
t (Ir

t , Im
t ) decreases with increase in Ir

t or Im
t which is proved in Theorem 2.2,

we get that p
r(1)⋆
t (Ir

t , Im
t ) and y

r(1)⋆
t (Ir

t , Im
t ) decrease with increase in Ir

t or Im
t .

(c) if Ir
t ≥ y

r(2)⋆
t (Ir

t ) and Im
t < y

m(2)⋆
t (Ir

t ), p
r(2)⋆
t (Ir

t ) and y
r(2)⋆
t (Ir

t ) are obtained

by substituting p
m(2)⋆
t (Ir

t ) into pr′
t (Ir

t ) and yr′
t . With 0 <

∂dr′
t (Ir

t )
∂Ir

t
which is proved

in Proposition 2.1, pr
t (dr

t ) = (1−θ)a+βpm
t −dr

t

α2
, ∂yr′

t

∂pm
t

= β
2 , and p

m(2)⋆
t (Ir

t ) decreases with

increase in Ir
t which is proved in Theorem 2.2, we get that p

r(2)⋆
t (Ir

t ) and y
r(2)⋆
t (Ir

t )

decrease as Ir
t increases.

(d) if Ir
t ≥ y

r(2)⋆
t (Ir

t , Im
t ) and Im

t ≥ y
m(2)⋆
t (Ir

t ), p
r(2)⋆
t (Ir

t , Im
t ) and y

r(2)⋆
t (Ir

t , Im
t ) are
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obtained by substituting p
m(2)⋆
t (Ir

t , Im
t ) into pr′

t (Ir
t ) and yr′

t . Similar to (c), we can

prove that p
r(2)⋆
t (Ir

t , Im
t ) and y

r(2)⋆
t (Ir

t , Im
t ) decrease as Ir

t or Im
t increases.

Hence, with (a)-(d), Theorem 2.3 is proved.

Proof of Theorem 2.4

Theorem 2.4 can be proved in a similar way to Theorem 2.3.
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Chapter 3

Effects of Channel Power

Structure on Dynamic Pricing and

Inventory Management of a

Dual-channel Supply Chain

3.1 Introduction

Channel power refers to the ability of a particular member to control or affect

the decision making and behavior of another member in a channel. In practical sup-

ply chains, there are three possible channel power structures including Manufacturer

Stackelberg (MS) where the manufacturer has dominated channel power over the

retailer (e.g., Apple is often much powerful than its retailers), Retailer Stackelberg

(RS) where the retailer is the dominant member (retail giants such as Tesco), and

Vertical Nash (VN) in which the manufacturer and the retailer have balanced power

(like P&G and Walmart) (Wu et al., 2012; Huang et al., 2016). Furthermore, in

a practical supply chain, especially the long-running supply chain, the dominant

role in channel power may shift from one member to another member at different

periods according to the developments of members and changes in the environment.

An example is a supply chain consisting of Zhuhai Gree Corporation (an air con-

ditioning manufacturer) and GOME Appliance Co., Ltd. (a home appliances retail

giant in China), which is illustrated in detail in the work of Wang et al. (2011).
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As the member who is dominant in channel power moves first in decision making,

supply chain members’ dynamic pricing and inventory decisions may be affected by

the channel power structure.

Motivated by the above observations, we pursue the following research questions

in this chapter: (1) What are the structural properties of the optimal joint dynamic

pricing and inventory control policies of a dual-channel supply chain under RS and

VN power structures? (2) What impacts the channel power structure might have

on the optimal joint dynamic pricing and inventory control policy of a dual-channel

supply chain? To address these questions, same as Chapter 2 where the optimal

joint dynamic pricing and inventory control policy under MS is analyzed, we con-

sider a dual-channel supply chain where the manufacturer produces a single type

of products and sells them to customers through the traditional retail channel and

its direct online channel over multiple periods. The optimal joint dynamic pricing

and inventory control policies under RS and VN are investigated with stochastic

dynamic programming and game theory. To derive the effects of the channel power

structure, the optimal joint dynamic and inventory control policies under different

channel power structures are compared and numerical experiments are conducted.

Moreover, considering that there are also different channel power structures in a

dual-parallel-channel system, we further explore the effects of the dual-channel set-

ting on the structural properties of the optimal joint dynamic pricing and inventory

control policies under different channel power structures.

Results show that, an inventory-dependent base-stock-list-price policy in which

base stock levels and reduced prices are influenced by starting inventory levels, is

also optimal for a dual-channel supply chain under RS or VN power structure. The

influence rules of starting inventory levels on reduced prices under different channel

power structures are the same, while the influence rules of starting inventory levels on

base stock levels vary with the channel power structure. Results also reveal that, for

a dual-parallel-channel system consisting of two competing retailers, the structural

properties of the optimal policy are also not affected by the channel power structure,

while the influence rules of initial inventory levels on base stock levels under different

channel power structures are partially different. Numerical results show that, for

the two-period dual-channel supply chain, VN is the most profitable channel power

28



structure when the wholesale price is low, and MS is the most profitable channel

power structure when the wholesale price is high.

The reminder of this chapter is organized as follows. In Section 3.2, we review

the relevant literature. In Section 3.3, the optimal pricing and inventory control

policies under RS and VN power structures are explored and analyzed by developing

decentralized game models, and the optimal joint dynamic pricing and inventory

control policies under three different channel power structures are compared. Section

3.4 investigates the impacts of the dual-channel setting on the optimal dynamic

pricing and inventory control policies under differernt power structures. Section 3.5

provides numerical experiments and discusses the management insights that arise.

Finally, some conclusions are summarized in Section 3.6.

3.2 Literature review

This work is closely related to decisions in a dual-channel supply chain under

different channel power structures. Under this stream of work, some literature (e.g.,

Wang et al., 2011; Wu et al., 2012; Huang et al., 2016; Shi et al., 2020; Liu et al.,

2022) studies a dual-channel supply chain in which a manufacturer sells products

through two competing retailers. Chen et al., (2013), Zhao et al. (2017), and Wang

et al. (2017) studies a dual-channel supply chain with two manufacturers and one

common retailer where one of the two manufacturers uses dual channels including

an online channel and a traditional retail channel to sell its product. Yan et al.

(2020) and Chen et al. (2021) consider a dual-channel supply chain in which the

supplier sold products through its own direct offline channel and an online retailer,

while Chai et al. (2021) consider online and offline channels are owned by a single

retailer.

Different from the above literature, this work focuses on a dual-channel supply

chain where a manufacturer distributes products through traditional retail and his

own online channels. For such type of dual-channel supply chains, Yao and Liu

(2005) study the pricing decisions under manufacturer Stackelberg and Nash power

structures. Cai et al. (2009) examine price discount contracts and pricing schemes

under three different channel power structures. Xiao et al. (2014) develop the
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retailer-Stackelberg model and the manufacturer-Stackelberg model to study pricing

decisions and manufacturer’s distribution channel strategy when the indirect channel

sells standard products whereas the direct channel offers custom products. Chen and

Wang (2015) examine the impact of channel power structure on the pricing decision

and channel selection strategy for a smartphone supply chain. Rodŕıguez and AydIn

(2015) study pricing and assortment decisions in the presence of inventory costs.

Zheng et al. (2019) investigate the manufacturer’s distribution channel strategy

and its effects on the performance of a closed-loop supply chain system. Zhou et

al. (2018) and Liu et al. (2020) analyze the impacts of supply disruption and

market fluctuations on the pricing decisions and profits, respectively. Matsui (2022)

studies whether bargaining to determine the wholesale price with a manufacturer

really benefits a retailer. Sun et al. (2022b) study the timing of pricing decisions by

considering the selling price in the direct channel affects the consumers’ reservation

price in both channels. In this paper, we focus on investigating the joint dynamic

pricing and inventory control policies under different channel power structures and

analyzing the impact of the channel power structure on the joint dynamic pricing

and inventory control policy.

To summarize, contributions of this study to the literature are that: (i) the

structural properties of the optimal dynamic pricing and inventory control policy of

a dual-channel supply chain under different channel power structures are revealed;

(ii) the impact of the channel power structure on the dynamic pricing and inventory

control policy of a dual-channel supply chain is investigated; (iii) the effects of the

dual-channel setting on the optimal joint dynamic pricing and inventory control

policies under different channel power structure are investigated.

3.3 Analysis of the optimal joint dynamic pricing

and inventory control policies under different

channel power structures

In this section, the structure of the optimal dynamic pricing and inventory

control policies for the manufacturer and retailer under RS and VN power structures
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is characterized, and a comparison and analysis of the optimal dynamic pricing and

inventory control policies for different channel power structures is performed.

The model description and assumptions under RS and VN power structures are

the same as that under MS power structure. Therefore, we will also focus on the

following models which have already been established in Section 2.3 to analyze the

manufacturer and retailer’s problems under RS or VN power structure.

V m
t (Im

t ) =


max
pm

t ,ym
t

Jm
t (pm

t , ym
t )

s. t. ym
t − Im

t + yr
t − Ir

t ≥ 0
(3.1)

where Jm
t (pm

t , ym
t ) = dm

t (pm
t − ρc) + (w − c)(yr

t − Ir
t ) − cym

t (1 − ρ) − E[hm(ym
t − dm

t −

ϵm
t )] + ρE[V m

t+1(ym
t − dm

t − ϵm
t )].

V r
t (Ir

t ) =


max
pr

t ,yr
t

Jr
t (pr

t , yr
t )

s. t. yr
t − Ir

t ≥ 0
(3.2)

where Jr
t (pr

t , yr
t ) = dr

t (pr
t −ρw)−yr

t w(1−ρ)−E[hr(yr
t −dr

t −ϵr
t )]+ρE[V r

t+1(yr
t −dr

t −ϵr
t )].

3.3.1 Analysis of the optimal joint dynamic pricing and in-

ventory control policy under RS

In the RS dual-channel supply chain, retailer plays the dominant role and de-

cides its optimal policy (pr−r⋆
t , yr−r⋆

t ) first by taking manufacturer’s response func-

tions into account. Then, manufacturer decides its optimal policy (pm−r⋆
t , ym−r⋆

t )

with the consideration of retailer’s optimal policy.

With given (pr
t , yr

t ), manufacturer’s problem (3.1) will be solved first. The mean

demand dm
t has an inverse function pm

t (dm
t ) = θa+β1pr

t −dm
t

α1
when given pr

t is given.

Therefore, optimizing pm
t is equivalent to optimizing dm

t . After replacing the decision

variable pm
t by dm

t , (3.1) under RS is rewritten as (3.3).

V m−r
t (Im

t ) =


max
dm

t ,ym
t

Jm−r
t (dm

t , ym
t )

s. t. ym
t − Im

t + yr
t − Ir

t ≥ 0
(3.3)

where Jm−r
t (dm

t , ym
t ) = dm

t (pm
t (dm

t )−ρc)+(w − c)(yr
t −Ir

t )− cym
t (1−ρ)−E[hm(ym

t −

dm
t − ϵm

t )] + ρE[V m−r
t+1 (ym

t − dm
t − ϵm

t )].
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Lemma 3.1. In each period t, with retailer’s given decisions (pr
t , yr

t ),

(a) V m−r
t (Im

t ) is concave and nonincreasing in Im
t ;

(b) Jm−r
t (dm

t , ym
t ) is jointly concave in (dm

t , ym
t ).

With Lemma 3.1, manufacturer’s optimal response functions in period t exist

and can be obtained with the steps used in Section 2.4. Denote (dm−r′
t , ym−r′

t ) =

arg max Jm−r
t (dm

t , ym
t ) and pm−r′

t = pm
t (dm−r′

t ).

Theorem 3.1. In each period t, manufacturer’s optimal decisions are:

(a) if Im
t < ym−r′

t + yr
t − Ir

t , the optimal solution of (pm
t , ym

t ) is (pm−r′
t , ym−r′

t );

(b) if Im
t ≥ ym−r′

t + yr
t − Ir

t , the optimal solution of (pm
t , ym

t ) is (pm−r′
t (Im

t + Ir
t −

yr
t ), Im

t + Ir
t − yr

t ), where pm−r′
t (Im

t + Ir
t − yr

t ) is decreasing with Im
t + Ir

t − yr
t .

From Theorem 3.1, we can find that, for any given retailer’s decisions, the man-

ufacturer’s optimal policy is a base-stock-list-price policy. If the manufacturer’s

initial inventory is less than the base stock level, it should produce up to this base

stock level and charge a list price, otherwise it should not produce and reduce the

online price. Moreover, the more the initial inventory level exceeds the base stock

level, the more the online price should be reduced.

Proposition 3.1. With manufacturer’s optimal response decisions, the mean

demand dr
t has an inverse function pr

t (dr
t ) = (1−θ)a+β2pm

t −dr
t

α2
which is strictly decreas-

ing, where pm
t = pm−r′

t when Im
t < ym−r′

t + yr
t − Ir

t and pm
t = pm−r′

t (Im
t + Ir

t − yr
t )

when Im
t ≥ ym−r′

t + yr
t − Ir

t .

With Proposition 3.1, optimizing price pr
t in period t is equivalent to optimizing

dr
t . Hence, the retailer’s problem (3.2) can be rewritten as

V r−r
t (Ir

t ) =


max
dr

t ,yr
t

Jr−r
t (dr

t , yr
t )

s. t. yr
t − Ir

t ≥ 0
(3.4)

where Jr−r
t (dr

t , yr
t ) = dr

t (pr
t (dr

t )−ρw)−yr
t w(1−ρ)−E[hr(yr

t −dr
t −ϵr

t )]+ρE[V r−r
t+1 (yr

t −

dr
t − ϵr

t )].

Lemma 3.2. In each period t, with the manufacturer’s optimal response deci-

sions,

(a) V r−r
t (Ir

t ) is concave and nonincreasing in Ir
t ;

(b) Jr−r
t (dr

t , yr
t ) is jointly concave in (dr

t , yr
t ).

Lemma 3.2 indicates that retailer’s optimal decisions exist. Define dr−r⋆
t (yr

t ) =
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arg max Jr−r
t (dr

t , yr
t ). Define yr−r⋆

t = arg max Jr−r
t (dr−r⋆

t (yr
t ), yr

t ) where (pm
t , ym

t ) is

(pm−r′
t , ym−r′

t ), and yr−r⋆
t (Ir

t , Im
t ) = arg max Jr−r

t (dr−r⋆
t (yr

t ), yr
t ) where (pm

t , ym
t ) is

(pm−r′
t (Im

t + Ir
t − yr

t ), Im
t + Ir

t − yr
t ).

Theorem 3.2. In each period t, retailer’s optimal decisions are:

(a) Under the scenario where Im
t < ym−r′

t + yr
t − Ir

t , if Ir
t < yr−r⋆

t , the optimal

solution of (pr
t , yr

t ) is (pr−r⋆
t , yr−r⋆

t ); otherwise, the optimal solution of (pr
t , yr

t ) is

(pr−r⋆
t (Ir

t ), Ir
t ). Moreover, yr−r⋆

t and pr−r⋆
t are independent of Ir

t , and pr−r⋆
t (Ir

t ) is

decreasing with Ir
t .

(b) Under the scenario where Im
t ≥ ym−r′

t + yr
t − Ir

t , if Ir
t < yr−r⋆

t (Ir
t , Im

t ), the

optimal solution of (pr
t , yr

t ) is (pr−r(1)⋆
t (Ir

t , Im
t ), yr−r⋆

t (Ir
t , Im

t )); otherwise, the optimal

solution of (pr
t , yr

t ) is (pr−r(2)⋆
t (Ir

t , Im
t ), Ir

t ). Moreover, yr−r⋆
t (Ir

t , Im
t ), p

r−r(1)⋆
t (Ir

t , Im
t )

and p
r−r(2)⋆
t (Ir

t , Im
t ) are decreasing with Ir

t or Im
t .

To get the manufacturer’s final optimal policy, we need to substitute retailer’s

optimal decisions into the manufacturer’s optimal response decisions which are

shown in Theorem 3.1. Theorem 3.3 describes the structural properties of the dual-

channel supply chain’s optimal dynamic pricing and inventory control policy under

RS.

Theorem 3.3. The optimal pricing and inventory control policies under RS

are:

(a) if Ir
t < yr−r⋆

t and Im
t < ym−r⋆

t + yr−r⋆
t − Ir

t , the optimal decisions are

(pr−r⋆
t , yr−r⋆

t ) and (pm−r⋆
t , ym−r⋆

t ), where yr−r⋆
t , pr−r⋆

t , ym−r⋆
t and pm−r⋆

t are indepen-

dent of Im
t and Ir

t .

(b) if Ir
t < yr−r⋆

t (Ir
t , Im

t ) and Im
t ≥ y

m−r(1)⋆
t (Ir

t , Im
t ) + yr−r⋆

t (Ir
t , Im

t ) − Ir
t , the

optimal decisions are (pr−r(1)⋆
t (Ir

t , Im
t ), yr−r⋆

t (Ir
t , Im

t )) and (pm−r(1)⋆
t (Ir

t , Im
t ), Im

t +Ir
t −

yr−r⋆
t (Ir

t , Im
t )). In addition, yr−r⋆

t (Ir
t , Im

t ), p
r−r(1)⋆
t (Ir

t , Im
t ), y

m−r(1)⋆
t (Ir

t , Im
t ) and p

m−r(1)⋆
t (Ir

t ,

Im
t ) decrease as either Ir

t or Im
t increases.

(c) if Ir
t ≥ yr−r⋆

t and Im
t < ym−r⋆

t (Ir
t ), the optimal decisions are (pr−r⋆

t (Ir
t ), Ir

t )

and (pm−r⋆
t (Ir

t ),

ym−r⋆
t (Ir

t )), where pr−r⋆
t (Ir

t ), ym−r⋆
t (Ir

t ) and pm−r⋆
t (Ir

t ) are independent of Im
t but

decrease as Ir
t increases.

(d) if Ir
t ≥ yr−r⋆

t (Ir
t , Im

t ) and Im
t ≥ y

m−r(2)⋆
t (Ir

t , Im
t ), the optimal decisions are

(pr−r(2)⋆
t (Ir

t , Im
t ), Ir

t ) and (pm−r(2)⋆
t (Ir

t , Im
t ), Im

t ), where p
r−r(2)⋆
t (Ir

t , Im
t ), y

m−r(2)⋆
t (Ir

t , Im
t )
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and p
m−r(2)⋆
t (Ir

t , Im
t ) decrease as either Ir

t or Im
t increases.

3.3.2 Analysis of the optimal joint dynamic pricing and in-

ventory control policy under VN

In the VN dual-channel supply chain, manufacturer and retailer make their

decisions simultaneously and independently. The decision sequence in each period

t is: with the initial inventory level information, manufacturer decides online price

and production quantity to maximize its expected discount profit from period t to

the end of period T given retail price and order quantity, and retailer decides retail

price and order quantity to maximize its expected discount profit from period t to

the end of period T given online price and production quantity.

Similar to the problems under MS and RS, price variables (pm
t , pr

t ) are also re-

placed with mean demand variables (dm
t , dr

t ) in the VN case. But, in the VN case, the

change of variables is achieved by simultaneously solving the mean demand functions

instead of supposing pm
t or pr

t is given. With pm
t (dm

t , dr
t ) = θα2a+(1−θ)β1a−α2dm

t −β1dr
t

α1α2−β1β2

and pr
t (dm

t , dr
t ) = (1−θ)α1a+θβ2a−α1dr

t −β2dm
t

α1α2−β1β2
, retailer and manufacturer’s problems are

represented as below.

V m−v
t (Im

t ) =


max
dm

t ,ym
t

Jm−v
t (dm

t , ym
t )

s. t. ym
t − Im

t + yr
t − Ir

t ≥ 0
(3.5)

where Jm−v
t (dm

t , ym
t ) = dm

t (pm
t (dm

t , dr
t )−ρc)+(w−c)(yr

t −Ir
t )−cym

t (1−ρ)−E[hm(ym
t −

dm
t − ϵm

t )] + ρE[V m−v
t+1 (ym

t − dm
t − ϵm

t )].

V r−v
t (Ir

t ) =


max
dr

t ,yr
t

Jr−v
t (dr

t , yr
t )

s. t. yr
t − Ir

t ≥ 0
(3.6)

where Jr−v
t (dr

t , yr
t ) = dr

t (pr
t (dm

t , dr
t ) − ρw) − yr

t w(1 − ρ) − E[hr(yr
t − dr

t − ϵr
t )] +

ρE[V r−v
t+1 (yr

t − dr
t − ϵr

t )] .

Since manufacturer and retailer make decisions independently under VN, we

can easily get that Lemma 2.1 and Lemma 3.1 are also true for retailer’s problem

and manufacturer’s problem under VN. That is, Jr−v
t (dr

t , yr
t ) is jointly concave in

(dr
t , yr

t ) and Jm−v
t (dm

t , ym
t ) is jointly concave in (dm

t , ym
t ). Therefore, manufacturer
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and retailer’s optimal decisions in period t exist. Manufacturer and retailer’s optimal

decisions can be obtained with the following steps.

Step 1: For any (dr
t , yr

t ) and ym
t , define dm−v

t (ym
t ) = arg max Jm−v

t (dm
t , ym

t ). Get

Jm−v
t (ym

t ) by substituting dm−v
t (ym

t ) for dm
t in Jm−v

t (dm
t , ym

t ). For any (dm
t , ym

t ) and

yr
t , define dr−v

t = arg max Jr−v
t (dr

t , yr
t ). Get Jr−v

t (yr
t ) by substituting dr−v

t (yr
t ) for

dr
t in Jr−v

t (dr
t , yr

t ). Obtain optimal response functions of dm
t and dr

t , denoted as

dm−v⋆
t (ym

t , yr
t ) and dr−v⋆

t (ym
t , yr

t ), by simultaneously solving dm−v
t and dr−v

t .

Step 2: Solve (3.7) to derive the optimal decisions of (ym
t , yr

t ).

max
ym

t

Jm−v
t (ym

t ) max
yr

t

Jr−v
t (yr

t )

s. t. ym
t + yr

t ≥ Ir
t + Im

t s. t. yr
t ≥ Ir

t

(3.7)

Since the feasible set of ym
t depends on yr

t , (3.7) is a Generalized Nash game where

each player’s feasible strategy set can depend on the other players’ strategies. To

ensure the domain of (yr
t , ym

t ) is compact, let M1 ≥ yr
t and M2 ≥ ym

t + yr
t where

M1 and M2 are large numbers. Referring to Harker (1991) and Facchinei et al.

(2007), (3.7) has a generalized Nash equilibrium and can be solved as follows: find

(ym−v
t , yr−v

t ) such that −∂Jr−v
t (yr−v

t )
∂yr−v

t

(yr
t −yr−v

t ) ≥ 0 and −∂Jm−v
t (ym−v

t )
∂ym−v

t

(ym
t −ym−v

t ) ≥ 0

for any yr
t ∈ Kr and any ym

t ∈ Km(yr−v
t ), where Kr = {yr

t : M1 ≥ yr
t ≥ Ir

t } and

Km(yr−v
t ) = {ym

t : M2 ≥ ym
t ≥ Ir

t + Im
t − yr−v

t }.

(a) Consider there exist yr
t ∈ Kr such that ∂Jr−v

t (yr
t )

∂yr
t

= 0 and ym
t ∈ Km(yr−v

t )

such that ∂Jm−v
t (ym

t )
∂ym

t
= 0. It is obvious that (ym−v

t , yr−v
t ) can be derived by solving

∂Jm−v
t (ym

t )
∂ym

t
= 0 and ∂Jr−v

t (yr
t )

∂yr
t

= 0 simultaneously. With (ym−v
t , yr−v

t ), dm−v⋆
t (ym

t , yr
t )

and dr−v⋆
t (ym

t , yr
t ), obtain the optimal solutions of (ym

t , yr
t ), denoted as (ym−v⋆

t , yr−v⋆
t ).

Therefore, if Ir
t < yr−v⋆

t and Im
t < ym−v⋆

t + yr−v⋆
t − Ir

t , the optimal decisions are

(ym−v⋆
t , yr−v⋆

t ).

(b) Consider there exists yr
t ∈ Kr such that ∂Jr−v

t (yr
t )

∂yr
t

= 0, and ∂Jm−v
t (ym

t )
∂ym

t
̸= 0 for

any ym
t ∈ Km(yr−v

t ). Since ∂Jm−v
t (ym

t )
∂ym

t
̸= 0 for any ym

t ∈ Km(yr−v
t ) and Jm−v

t (ym
t ) is

concave in ym
t , ∂Jm−v

t (ym
t )

∂ym
t

< 0 for any ym
t ∈ Km(yr−v

t ). Therefore, ym−v
t which ensures

−∂Jm−v
t (ym−v

t )
∂ym−v

t

(ym
t −ym−v

t ) ≥ 0 for any ym
t ∈ Km(yr−v

t ) should be Im
t +Ir

t −yr−v
t . With

ym−v
t = Im

t + Ir
t − yr−v

t and ∂Jr−v
t (yr

t )
∂yr

t
= 0, we can obtain yr−v

t which is a function

of (Ir
t , Im

t ). With (ym−v
t , yr−v

t ), dm−v⋆
t (ym

t , yr
t ) and dr−v⋆

t (ym
t , yr

t ), obtain the optimal

solutions of yr
t , denoted as y

r−v(1)⋆
t (Ir

t , Im
t ). With yr−v⋆

t (Ir
t , Im

t ), obtain the solution
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of ∂Jm−v
t (ym

t )
∂ym

t
= 0, denoted as y

m−v(1)⋆
t (Ir

t , Im
t ). Therefore, if Ir

t < y
r−v(1)⋆
t (Ir

t , Im
t ) and

Im
t ≥ y

m−v(1)⋆
t (Ir

t , Im
t ) + y

r−v(1)⋆
t (Ir

t , Im
t ) − Ir

t , the optimal decisions are (Im
t + Ir

t −

y
r−v(1)⋆
t (Ir

t , Im
t ), y

r−v(1)⋆
t (Ir

t , Im
t )).

(c) Consider ∂Jr−v
t (yr

t )
∂yr

t
̸= 0 for any yr

t ∈ Kr, and there exists ym
t ∈ Km(yr−v

t )

such that ∂Jm−v
t (ym

t )
∂ym

t
= 0. Similar to (b), we get that yr−v

t which should be Ir
t and

ym−v
t which is a function of Ir

t . With (ym−v
t , yr−v

t ), dm−v⋆
t (ym

t , yr
t ) and dr−v⋆

t (ym
t , yr

t ),

obtain the optimal solution of ym
t , denoted as ym−v⋆

t (Ir
t ). Then, obtain the solution

of ∂Jr−v
t (yr

t )
∂yr

t
= 0, denoted as yr−v⋆

t (Ir
t ). Hence, if Ir

t ≥ yr−v⋆
t (Ir

t ) and Im
t < ym−v⋆

t (Ir
t ),

the optimal decisions are (ym−v⋆
t (Ir

t ), Ir
t ).

(d) Consider ∂Jr−v
t (yr

t )
∂yr

t
̸= 0 for any yr

t ∈ Kr and ∂Jm−v
t (ym

t )
∂ym

t
̸= 0 for any ym

t ∈

Km(yr−v
t ). Similar to (b), we get that (ym−v

t , yr−v
t ) should be (Im

t , Ir
t ). Then, with

dm−v⋆
t (Im

t , Ir
t ) and dr−v⋆

t (Im
t , Ir

t ), obtain the solution of ∂Jr−v
t (yr

t )
∂yr

t
= 0, denoted as

y
r−v(2)⋆
t (Ir

t , Im
t ), and the solution of ∂Jm−v

t (ym
t )

∂ym
t

= 0, denoted as y
m−v(2)⋆
t (Ir

t , Im
t ).

Therefore, if Ir
t ≥ y

r−v(2)⋆
t (Ir

t , Im
t ) and Im

t ≥ y
m−v(2)⋆
t (Ir

t , Im
t ), the optimal decisions

are (Ir
t , Im

t ).

Step 3: With results of Step 2, pm
t (dm

t , dr
t ) and pr

t (dm
t , dr

t ), obtain the optimal

decisions of (pm
t , pr

t ).

Theorem 3.4. The optimal pricing and inventory control policies under VN

are:

(a) if Ir
t < yr−v⋆

t and Im
t < ym−v⋆

t + yr−v⋆
t − Ir

t , the optimal decisions are

(pr−v⋆
t , yr−v⋆

t ) and (pm−v⋆
t , ym−v⋆

t ), where yr−v⋆
t , pr−v⋆

t , ym−v⋆
t and pm−v⋆

t are unrelated

to the initial inventory levels Ir
t and Im

t .

(b) if Ir
t < y

r−v(1)⋆
t (Ir

t , Im
t ) and Im

t ≥ y
m−v(1)⋆
t (Ir

t , Im
t ) + y

r−v(1)⋆
t (Ir

t , Im
t ) − Ir

t , the

optimal decisions are (pr−v(1)⋆
t (Ir

t , Im
t ), y

r−v(1)⋆
t (Ir

t , Im
t )) and (pm−v(1)⋆

t (Ir
t , Im

t ), Im
t +

Ir
t − y

r−v(1)⋆
t (Ir

t , Im
t )), where y

m−v(1)⋆
t (Ir

t , Im
t ) increases as either Ir

t or Im
t increases,

while y
r−v(1)⋆
t (Ir

t , Im
t ), p

r−v(1)⋆
t (Ir

t , Im
t ) and p

m−v(1)⋆
t (Ir

t , Im
t ) decrease as either Ir

t or

Im
t increases.

(c) if Ir
t ≥ yr−v⋆

t (Ir
t ) and Im

t < ym−v⋆
t (Ir

t ), the optimal decisions are (pr−v⋆
t (Ir

t ), Ir
t )

and (pm−v⋆
t (Ir

t ), ym−v⋆
t (Ir

t )), where yr−v⋆
t (Ir

t ) increases as Ir
t increases, while ym−v⋆

t (Ir
t ),

pr−v⋆
t (Ir

t ) and pm−v⋆
t (Ir

t ) decrease as Ir
t increases.

(d) if Ir
t ≥ y

r−v(2)⋆
t (Ir

t , Im
t ) and Im

t ≥ y
m−v(2)⋆
t (Ir

t , Im
t ), the optimal decisions are

(pr−v(2)⋆
t (Ir

t , Im
t ), Ir

t ) and (pm−v(2)⋆
t (Ir

t , Im
t ), Im

t ), where y
m−v(2)⋆
t (Ir

t , Im
t ) decreases as
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Ir
t increases but increases as Im

t increases, and y
r−v(2)⋆
t (Ir

t , Im
t ) decreases as Im

t in-

creases but increases as Ir
t increases. Furthermore, p

r−v(2)⋆
t (Ir

t , Im
t ) and p

m−v(2)⋆
t (Ir

t , Im
t )

decrease as either Ir
t or Im

t increases.

3.3.3 Comparison study

There are four possible situations of the relationships between members’ initial

inventory levels and their base stock levels. As shown in Fig. 3.1, the situation,

where retailer’s initial inventory level Ir
t and manufacturer’s initial inventory level

Im
t are both below their respective base stock levels, is represented by case I, and

other situations are represented by cases II, III and IV.

Case  

Case  

Case  

Case  

Retailer's base
stock level

M
an

uf
ac

tu
re

r's
ba

se
 st

oc
k 

le
ve

l

It
r

It
m

Fig. 3.1. The division of cases I, II, III and IV

Corollary 3.1. The structural properties of the optimal dynamic pricing and

inventory control policies of a dual-channel supply chain under different channel

power structures are the same.

(a) In Case I, retailer and manufacturer are optimal to order or produce up to

their respective base stock levels and charge list prices.

(b) In Case II, retailer should reduce the retail price and order up to its base

stock level, while the manufacturer should reduce the online price and not produce.

(c) In Case III, retailer should reduce the retail price and place no order, and

the manufacturer should mark down the online price and produce up to its base

stock level.

(d) In Case IV, retailer should reduce the retail price and place no order, and
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the manufacturer should reduce the online price and not produce.

Corollary 3.1 shows that, no matter what channel power structure, retailer’s

order behavior or manufacturer’s produce behavior only depends on whether its

starting inventory level is below its base stock level. This kind of order or pro-

duce behavior is the same as the results of the study on the joint dynamic pricing

and inventory management in a single distribution channel setting (Federgruen and

Heching, 1999; Elmaghraby and Keskinocak, 2003; Chen and Simchi-Levi, 2012).

However, in a dual-channel supply chain, as long as one member’s initial inventory

level is above its base stock level, both manufacturer and retailer should reduce the

prices. This is caused by the horizontal price competition between the manufacturer

and retailer.

Corollary 3.2. In every period, the optimal pricing and inventory decisions of

a dual-channel supply chain vary in different channel power structures.

From Corollary 3.1 and Corollary 3.2, we can find that the optimal pricing and

inventory decisions in every period are affected by the channel power structure,

although the structural properties of the optimal dynamic pricing and inventory

control policy are the same under different channel power structure.

Corollary 3.3. The influences of members’ starting inventory levels on pricing

decisions under different channel power structures are as follows.

(a) In Case I, retail price and online price are not affected by retailer’s starting

inventory level and manufacturer’s starting inventory level under different channel

power structures.

(b) In Case II and Case IV, retail price and online price are negatively affected

by retailer’s starting inventory level as well as manufacturer’s starting inventory

level under different channel power structures.

(c) In Case III, retail price and online price are negatively affected by retailer’s

starting inventory level but independent of manufacturer’s starting inventory level

under different channel power structures.

Corollary 3.3 indicates that the influence rules of members’ starting inventory

levels on prices are the same under different channel power structures. Moreover,

online and retail prices are fixed and not affected by starting inventory levels if

manufacturer and retailer’s starting inventory levels are below their respective base
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stock levels. Online and retail prices decrease as retailer’s starting inventory level

increases if manufacturer’s starting inventory level is below its base stock level and

retailer’s starting inventory level is above its base stock level. Online and retail

prices decrease as each member’s starting inventory level increase if manufacturer’s

starting inventory level is above its base stock level.

Corollary 3.4. The influences of members’ starting inventory levels on base

stock levels under different channel power structures are shown in Tables 3.1 and

3.2.

Table 3.1
The influences of initial inventory levels on manufacturer’s base stock level

Case I Case II Case III Case IV
MS Im

t (◦), Ir
t (−) Im

t (◦), Ir
t (−) Im

t (◦), Ir
t (−) Im

t (◦), Ir
t (−)

RS Im
t (◦), Ir

t (−) Im
t (−), Ir

t (−) Im
t (◦), Ir

t (−) Im
t (−), Ir

t (−)
VN Im

t (◦), Ir
t (−) Im

t (−), Ir
t (−) Im

t (◦), Ir
t (−) Im

t (+), Ir
t (−)

1 Im
t (◦) or Ir

t (◦) denotes base stock level is independent of Im
t or Ir

t , Im
t (−) or Ir

t (−) denotes
base stock level is negatively correlated with Im

t or Ir
t , and Im

t (+) or Ir
t (+) denotes base stock

level is positively correlated with Im
t or Ir

t .

Table 3.2
The influences of initial inventory levels on retailer’s base stock level

Case I Case II Case III Case IV
MS Im

t (◦), Ir
t (◦) Im

t (−), Ir
t (−) Im

t (◦), Ir
t (−) Im

t (−), Ir
t (−)

RS Im
t (◦), Ir

t (◦) Im
t (−), Ir

t (−) Im
t (◦), Ir

t (◦) Im
t (−), Ir

t (−)
VN Im

t (◦), Ir
t (◦) Im

t (−), Ir
t (−) Im

t (◦), Ir
t (+) Im

t (−), Ir
t (+)

Corollary 3.4 shows that one member’s base stock level may be affected by

not only its starting inventory level but also by the other member’s starting inven-

tory level. This is caused by the interaction between manufacturer and retailer in

decision-making.

Corollary 3.4 also indicates that the influence rules of starting inventory levels

on base stock levels are partially different under different channel power structures.

Different aspects lie in: (i) the influence of members’ initial inventory levels on

manufacturer’s base stock level when manufacturer’s initial inventory level is no less

than its base stock level, (ii) the influence of retailer’s initial inventory level on its

base stock level when retailer’s initial inventory level is no less than its base stock

level. Common aspects are: (i) when manufacturer’s initial inventory level is below

its base stock level, manufacturer’s base stock level is independent of its initial in-
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ventory level but decreases as retailer’s initial inventory level increases, (ii) retailer’s

base stock level is independent of manufacturer’s initial inventory level if manufac-

turer’s initial inventory level is below its base stock level, otherwise it decreases as

manufacturer’s initial inventory level increases, and (iii) when retailer’s initial in-

ventory level is below its base stock level, retailer’s base stock level is independent

of its initial inventory level if manufacturer’s initial inventory level is below its base

stock level, otherwise retailer’s base stock level decreases as its initial inventory level

increases.

3.4 Analysis of the optimal policies for a dual-

parallel-channel system under different chan-

nel power structures

In this section, we analyze the optimal joint dynamic pricing and inventory

control policy of dual-parallel-channel system under Bertrand Nash, and then discuss

the effect of the dual-channel setting under different channel power structures.

The model description and assumptions under Bertrand Nash are the same as

that under Retailer i Stackelberg in Section 2.5. Therefore, we will also focus on the

following model which has already been built in Section 2.5 to analyze the optimal

policy under Bertrand Nash where the two retailers have balanced power and act

simultaneously.

V i
t (I i

t) =


max
pi

t,yi
t

J i
t (pi

t, yi
t)

s. t. yi
t − I i

t ≥ 0
(3.8)

where J i
t (pi

t, yi
t) = di

t(pi
t −ρw)−(1−ρ)wyi

t −E[hi(yi
t −di

t −ϵi
t)]+ρE[V i

t+1(yi
t −di

t −ϵi
t)].

Referring to the steps to solve the problems of the manufacturer-retailer dual-

channel supply chain in Section 3.3, the two retailers’ problems under Retailer i

Stackelberg and Bertrand Nash can be solved. Theorems 3.5 describes the structural

properties of the two retailers’ optimal policies.

Theorem 3.5. The two retailers’ optimal dynamic pricing and inventory deci-

sions under Bertrand Nash are:
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(a) if I1
t < y1⋆

t and I2
t < y2⋆

t , the optimal decisions are (p1⋆
t , y1⋆

t ) and (p2⋆
t , y2⋆

t ),

where y1⋆
t , p1⋆

t , y2⋆
t and p2⋆

t are independent of I1
t and I2

t .

(b) if I1
t < y1⋆

t (I2
t ) and I2

t ≥ y2⋆
t (I2

t ), the optimal decisions are (p1⋆
t (I2

t ), y1⋆
t (I2

t ))

and (p2⋆
t (I2

t ), I2
t ), where y2⋆

t (I2
t ) increases as I2

t increases, while p1⋆
t (I2

t ), y1⋆
t (I2

t ),

p2⋆
t (I2

t ) decrease as I2
t increases.

(c) if I1
t ≥ y1⋆

t (I1
t ) and I2

t < y2⋆
t (I1

t ), the optimal decisions are (p1⋆
t (I1

t ), I1
t ) and

(p2⋆
t (I1

t ), y2⋆
t (I1

t )), where y1⋆
t (I1

t ) increases as I1
t increases, p1⋆

t (I1
t ), p2⋆

t (I1
t ) and y2⋆

t (I1
t )

decrease as I1
t increases.

(d) if I1
t ≥ y1⋆

t (I1
t , I2

t ) and I2
t ≥ y2⋆

t (I1
t , I2

t ), the optimal decision are (p1⋆
t (I1

t , I2
t ), I1

t )

and (p2⋆
t (I1

t , I2
t ), I2

t ), where, i = 1, 2, yi⋆
t (I1

t , I2
t ) increases as I i

t increases but decreases

as I3−i
t increases, and pi⋆

t (I1
t , I2

t ) decrease as either I1
t or I2

t increases.

Theorem 3.5 indicates that, the member should order up to its base stock level

if its initial inventory level is below its base stock level, otherwise it places no

order and both members should reduce their selling prices. This implies that the

sutructural properties of the optimal policies for a dual-parallel-channel system are

also not affected by the channel power structure. Moreover, the same and different

aspects between the optimal policies of the two different dual-channel settings are

not affected by the channel power structure.

Theorems 2.4 and 3.5 also shows that, the influence rules of initial inventory

levels on base stock levels under different channel power structures are partially

different. Specifically, (i) when members’ initial inventory levels are above their

respective base stock levels, retailer i’s base stock level is negatively affected by

the other’s initial inventory level under Retailer i Stackelberg, negatively affected

by both members’ inventory levels under Retailer 3 − i Stackelberg, and positively

affected by its initial inventory level while negatively affected by the other’s initial

inventory level under Bertrand Nash, and (ii) when retailer i’s initial inventory level

is above its base stock level and retailer 3−i’s initial inventory level is below its base

stock level, retailer i’s base stock level is independent of members’ initial inventory

levels under Retailer i Stackelberg, negatively affected by its initial inventory level

under Retailer 3−i Stackelberg, positively affected by its initial inventory level under

Bertrand Nash. Common aspects are: (i) when members’ initial inventory levels are

below their respective base stock levels, retailer i’s base stock level is independent
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of members’ initial inventory levels, and (ii) when retailer i’s initial inventory level

is below its base stock level and retailer 3 − i’s initial inventory level is above its

base stock level, retailer i’s base stock level is negatively correlated with the other’s

initial inventory level.

3.5 Numerical studies

In this section, we provide numerical examples to demonstrate the proposed the-

oretical results and explore the impact of channel power structure on the two-period

dual-channel supply chain by comparing the equilibrium results under different chan-

nel power structures. Referring to the existing numerical studies of dual-channel

supply chain (Li et al., 2016; Huang et al., 2021; Modak and Kelle, 2019) and tak-

ing account of assumptions made in this paper, the initial values of parameters for

the dual-channel supply chain are set as follows: a = 200, θ = 0.4, c = 10, w = 15,

cm = cr = 10, α1 = 4, α2 = 6, β1 = β2 = 2, ρ = 0.9, hm(x) = hr(x) = x+ + 23x−,

ϵm
t ∈ [−20, 20], ϵr

t ∈ [−20, 20].

Based on the proposed structural properties of the optimal pricing and inventory

control policies, we first obtain the optimal pricing and inventory control policies in

period 2 given initial inventory levels (Im
2 , Ir

2). Optimal policies in period 2 given

(Im
2 , Ir

2) under different channel power structures are shown in Tables 3.3 to 3.5.

Table 3.3
Optimal pricing and inventory control policies in period 2 under MS

Case I 1 Case II Case III Case IV
pm

2 21.36 37.7 − 0.17(Im
2 + Ir

2) 22.38 − 0.03Ir
2 31.13 − 0.15Im

2 − 0.05Ir
2

ym
2 53.33 1.17(Im

2 + Ir
2) − 61.04 59.4 − 0.11Ir

2 Im
2

pr
2 21.06 23.78 − 0.03(Im

2 + Ir
2) 26.13 − 0.12Ir

2 28.52 − 0.04Im
2 − 0.12Ir

2
yr

2 44.7 61.04 − 0.17(Im
2 + Ir

2) Ir
2 Ir

2
1 Case I: Ir

2 < 44.7, Im
2 < 98.03 − Ir

2 ; Case II: Ir
2 < 61.04 − 0.17(Im

2 + Ir
2 ), Im

2 ≥ 98.03 − Ir
2 ;

Case III: Ir
2 ≥ 45.71 − 0.03Ir

2 , Im
2 < 59.4 − 0.11Ir

2 ; Case IV: Ir
2 ≥ 54.47 − 0.15Im

2 − 0.05Ir
2 ,

Im
2 ≥ 59.4 − 0.11Ir

2 .

From Tables 3.3 to 3.5, we can see that, under different channel power structures,

as long as one member’s initial inventory level is above its base stock level, both

manufacturer and retailer should reduce their selling prices, and the impacts of

members’ initial inventory levels on base stock levels which are displayed in corollary

4 are further identified. With the optimal policies in period 2, we then get the
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Table 3.4
Optimal pricing and inventory control policies in period 2 under RS

Case I 1 Case II Case III Case IV
pm

2 20.28 38.77 − 0.17(Im
2 + Ir

2) 21.48 − 0.03Ir
2 31.03 − 0.15Im

2 − 0.05Ir
2

ym
2 57.8 1.21(Im

2 + Ir
2) − 72.04 62.57 − 0.11Ir

2 Im
2

pr
2 21.14 23.15 − 0.03(Im

2 + Ir
2) 25.9 − 0.11Ir

2 28.54 − 0.04Im
2 − 0.12Ir

2
yr

2 42.08 72.04 − 0.21(Im
2 + Ir

2) Ir
2 Ir

2
1 Case I: Ir

2 < 42.08, Im
2 < 99.89 − Ir

2 ; Case II: Ir
2 < 72.04 − 0.21(Im

2 + Ir
2 ), Im

2 ≥ 131.86 −
1.23Ir

2 −0.23Im
2 ; Case III: Ir

2 ≥ 42.08, Im
2 < 62.57−0.11Ir

2 ; Case IV: Ir
2 ≥ 72.04−0.21(Im

2 +Ir
2 ),

Im
2 ≥ 65.21 − 0.04Im

2 − 0.12Ir
2 .

Table 3.5
Optimal pricing and inventory control policies in period 2 under VN

Case I 1 Case II Case III Case IV
pm

2 21.35 36.78 − 0.16(Im
2 + Ir

2) 22.61 − 0.03Ir
2 31.19 − 0.15Im

2 − 0.05Ir
2

ym
2 54.49 1.15(Im

2 + Ir
2) − 55.41 58.7 − 0.1Ir

2 Im
2

pr
2 21.61 24.41 − 0.03(Im

2 + Ir
2) 26.24 − 0.11Ir

2 28.61 − 0.04Im
2 − 0.12Ir

2
yr

2 41.38 55.41 − 0.15(Im
2 + Ir

2) Ir
2 Ir

2
1 Case I: Ir

2 < 41.38, Im
2 < 95.87−Ir

2 ; Case II: Ir
2 < 55.41−0.15(Im

2 +Ir
2 ), Im

2 ≥ 107.56−0.12Im
2 −

1.12Ir
2 ; Case III: Ir

2 ≥ 40.32+0.03Ir
2 , Im

2 < 58.7−0.1Ir
2 ; Case IV: Ir

2 ≥ 47.72−0.13Im
2 +0.01Ir

2 ,
Im

2 ≥ 58.21 − 0.1Ir
2 + 0.0084Im

2 .

optimal pricing and inventory decisions in period 1 and period 2 and the total

expected profit of each member under different channel power structures which are

presented in Table 3.6.

Table 3.6
Optimal pricing and inventory decisions and total expected profits under different channel
power structures

pm
2 ym

2 pr
2 yr

2 pm
1 ym

1 pr
1 yr

1 V m′
1 V r′

1
MS 21.36 53.33 21.06 44.7 21.36 53.33 21.06 52.2 1112.87 284.69
RS 20.28 57.8 21.14 42.08 21.46 53.51 21.34 50.71 1104.95 273.49
VN 21.35 54.49 21.61 41.38 21.35 54.49 21.61 48.88 1105.23 280.87

As shown in Table 3.6, manufacturer and retailer are optimal to charge list

prices and increase their inventory levels to the base stock levels in each period.

Manufacturer’s base stock levels under RS are higher than those under MS, and

retailer’s base stock levels under MS are higher than those under RS, which means

the follower of this two-period dual-channel supply chain is optimal to have a higher

on-hand inventory level. As compared with MS and RS, under VN, retailer’s base

stock levels are the lowest, and manufacturer’s base stock level in the first period is

the highest. The relationship of list prices under different channel power structures

is opposite to the relationship of base stock levels, except manufacturer’s list price
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under MS is lower than that under RS in the first period.

Comparing the profits under different channel power structures in Table 3.6, we

can find that both manufacturer and retailer get the most profits under MS than

under other channel power structures. Manufacturer gets the most profit under MS

can be attributed to its lowest base stock levels and retailer’s highest base stock levels

under MS. Manufacturer’s lowest base stock levels induce the lowest production cost

of selling products to customers, and retailer’s highest base stock levels induce the

highest profit for manufacturer by selling products to retailer. Although retailer’s

base stock levels are the highest under MS, it gets the most profit under MS can

be attributed to the fact that it charges the lowest selling prices under MS which

induces the highest demand and thus the highest revenue.

Considering the wholesale price decided by the negotiation between manufac-

turer and retailer in advance is affected by the channel power structure, we cal-

culate optimal decisions and total expected discounted profits of the two-period

dual-channel supply chain at different wholesale prices, and then explore the effect

of the wholesale price on the most profitable channel power structure. The com-

puted optimal decisions and demand are shown in Table 3.7, and the total expected

discounted profits are shown in Table 3.8.

From Table 3.7 we find that, optimal decisions of manufacturer and retailer in

each period are to charge list prices and increase their inventory levels to the base

stock levels when the wholesale price is low. However, when the wholesale price is

high, manufacturer and retailer may reduce their selling prices, and retailer may not

place an order. Retailer’s on-hand inventory levels are the highest under MS and

the lowest under VN. Manufacturer’s on-hand inventory levels are the lowest under

VN when the wholesale price is low. However, when the wholesale price is high,

manufacturer’s on-hand inventory levels under MS are lower than that under VN.

Table 3.8 shows that MS remains the most profitable channel power structure for

the two-period dual-channel supply chain when the wholesale price is high. However,

when the wholesale price is low, the most profitable channel power structure is VN.

For manufacturer, the change of the most profitable channel power structure is

caused by the fact that the contribution of retailer’s higher on-hand inventory levels

to the increase of manufacturer’s profit is less obvious when the wholesale price is low.
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Table 3.8
Total expected discounted profits under different channel power structures when the whole-
sale price changes

V m′
1 V r′

1
w MS RS VN MS RS VN
10 627 639.4 654.85 722 709.77 737.46
12 861.54 865.16 873.19 528.39 516.32 534.76
14 1042.49 1038.2 1040.61 359.7 348.12 358.81
16 1169.85 1158.52 1157.11 215.91 205.16 209.62
18 1244.23 1220.07 1197.18 96.33 69.94 87.05

Moreover, manufacturer’s on-hand inventory levels are the lowest under VN instead

of MS when the wholesale price is low. As for retailer, this change can be attributed

to the fact that the contribution of higher demand to the increase of retailer’s profit

is less obvious because the selling price is low at a low wholesale price. Table 3.8

also indicates that, under different channel power structures, manufacturer’s profits

increase while retailer’s profits decrease as the wholesale price increases.

To further analyze the profit potential or loss to manufacturer and retailer if

the channel power structure changes, let ηm = V m′−n
1 −V m′−o

1
V m′−o

1
× 100% and ηr =

V r′−n
1 −V r′−o

1
V r′−o

1
× 100%, where V m′−o

1 and V r′−o
1 are the profits of manufacturer and

retailer under the original channel power structure o, and V m′−n
1 and V r′−n

1 are

the profits of manufacturer and retailer under the new channel power structure

n. Let o → n denote the change of the channel power structure, where o, n ∈

{MS, RS, V N} and n ̸= o. ηm and ηr at different wholesale prices for all possibili-

ties of o → n are shown in Table 3.9.

Table 3.9
The magnitude of the profit impact of the channel power structure at different wholesale
prices

(ηm, ηr) (%)
w MS → RS MS → VN RS → VN
10 (1.98, -1.69) (4.44, 2.14) (2.42, 3.9)
12 (0.42, -2.28) (1.35, 1.21) (0.93, 3.57)
14 (-0.43, -3.22) (-0.2, -0.25) (0.23, 3.07)
15 (-0.71, -3.93) (-0.69, -1.34) (0.03, 2.7)
16 (-0.97, -4.98) (-1.09, -2.91) (-0.12, 2.17)
18 (-1.94, -27.4) (-3.78, -9.63) (-1.88, 24.46)

Table 3.9 shows that: (i) when the most profitable channel power structure is

VN, the profit potential or loss to retailer is lower than that to manufacturer if the
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channel power structure changes from MS to VN or from VN to MS, while the profit

potential or loss to retailer is greater than that to manufacturer if the channel power

structure changes from RS to VN or from VN to RS, (ii) when the most profitable

channel power structure is MS, the profit potential or loss to retailer is higher than

that to manufacturer for any change of the channel power structure, (iii) the impact

degree of the change of the channel power structure on manufacturer’s profit first

declines and then increases with the increase in the wholesale price, and (iv) the

impact degree of the change of the channel power structure on retailer’s profit first

declines and then increases as the wholesale price increases if VN is involved in the

change, otherwise the impact degree of the change of the channel power structure

on retailer’s profit increases as the wholesale price increases.

From the numerical analysis we find that, in a two-period dual-channel supply

chain, if the wholesale price is mainly decided by the highly competitive market

and can be hardly influenced by manufacturer and retailer, the Vertical Nash power

structure is the best for manufacturer and retailer when the wholesale price is low,

while the Manufacturer Stackelberg power structure is the best for manufacturer

and retailer when the wholesale price is high. If the exogenous wholesale price

is not completely determined by the market and can be decided by the negotiation

between manufacturer and retailer in advance, although retailer cannot benefit from

its dominant power with a given wholesale price, it can lower the wholesale price

with its dominant power to get more profit. As for manufacturer, it should consider

using its dominant power to achieve a higher wholesale price and then get the highest

profit under its dominant channel power structure.

3.6 Conclusions

This chapter investigates the effects of the channel power structure on the joint

dynamic pricing and inventory management of a dual-channel supply chain under

demand uncertainty.

We find that, the structural properties of the optimal joint dynamic pricing and

inventory control policy of a manufacturer-retailer dual-channel supply chain are not

affected by the channel power structure. This means, under the Retailer Stackelberg
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or Vertical Nash power structure, the optimal policy is also a base-stock-list-price

type. Moreover, the structural properties of the optimal joint dynamic pricing and

inventory control policy of a dual-channel supply chain with two competing retailers

are also not affected by the channel power structure.

We also find that when manufacturer’s initial inventory level is below its base

stock level, there is no need for retailer to know the exact value of manufacturer’s

initial inventory level to make its inventory decision. However, manufacturer should

always pay attention to retailer’s initial inventory level and take it into account to

make its inventory decision. By clarifying the influence rules of starting inventory

levels on reduced prices and base stock levels, we find that the influence rules on

reduced prices under different channel power structures are the same, while the

influence rules on base stock levels under different channel power structures are

partially different.

Through numerical analysis, we can obtain some valuable managerial insights

for the dual-channel supply chain where decisions are made dynamically in two

periods. For the dual-channel supply chain where the products’ wholesale prices

are not dominated by the market, such as the dual-channel supply chain consisting

of Apple and its retailers, it is important for both manufacturer and retailer to

consider enhancing their bargaining power on the wholesale price and then get more

profits. For the dual-channel supply chain where the products’ wholesale prices

are dominated by the competitive market, such as the dual-channel supply chain

consisting of Walmart and some of its suppliers, members benefit from the balanced

channel power structure when the exogenous wholesale price is low. And when the

exogenous wholesale price is high, the most benefitable channel power structure for

them is the manufacturer dominant channel power structure.

3.7 Appendices

Proof of Lemma 3.1.

Lemma 3 can be proved in a similar way to Lemma 2.1.

Proof of Theorem 3.1.

Theorem 3.1 can be proved in a similar way to Theorem 2.1.
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Proof of Proposition 3.1.

We first obtain dm−r′
t (ym

t ) with ∂Jm−r
t (dm

t ,ym
t )

∂dm
t

= 0, where ∂Jm−r
t (dm

t ,ym
t )

∂dm
t

= θa+β1pr
t −2dm

t

α1
−

ρc + ∂E[hm(ym
t −dm

t −ϵm
t )]

∂(ym
t −dm

t ) − ρ
∂E[V m−r

t+1 (ym
t −dm

t −ϵm
t )]

∂(ym
t −dm

t ) . Then, with dm−r′
t (ym

t ), we can get that
∂Jm−r

t (dm−r′
t (ym

t ),ym
t )

∂ym
t

= −(1 − ρ)c − ∂E[hm(ym
t −dm−r′

t (ym
t )−ϵm

t )]
∂(ym

t −dm−r′
t (ym

t )) + ρ
∂E[V m−r

t+1 (ym
t −dm−r′

t (ym
t )−ϵm

t )]
∂(ym

t −dm−r′
t (ym

t ))

and ∂2Jm−r
t (dm−r′

t (ym
t ),ym

t )
∂2ym

t
= [−∂2E[hm(ym

t −dm−r′
t (ym

t )−ϵm
t )]

∂2(ym
t −dm−r′

t (ym
t )) +ρ

∂2E[V m−r
t+1 (ym

t −dm−r′
t (ym

t )−ϵm
t )]

∂2(ym
t −dm−r′

t (ym
t )) ](1−

∂dm−r′
t (ym

t )
∂ym

t
). Since E[hm(ym

t −dm
t −ϵm

t )] is strictly convex and E[V m−r
t+1 (ym

t −dm
t −ϵm

t )]is

concave, the coefficient before ym
t − dm

t in ∂E[hm(ym
t −dm

t −ϵm
t )]

∂(ym
t −dm

t ) − ρ
∂E[V m−r

t+1 (ym
t −dm

t −ϵm
t )]

∂(ym
t −dm

t ) is

greater than zero. Then, we get 0 <
∂dm−r′

t (ym
t )

∂ym
t

< 1 and ∂2Jm−r
t (dm−r′

t (ym
t ),ym

t )
∂2ym

t
< 0.

Therefore, ym−r′
t can be derived with ∂Jm−r

t (dm−r′
t (ym

t ),ym
t )

∂ym
t

= 0.

If Im
t < ym−r′

t + yr
t − Ir

t , we can get ∂dm−r′
t

∂pr
t

= β1
2 by combining ∂Jm−r

t (dm
t ,ym

t )
∂dm

t
and

∂Jm−r
t (dm−r′

t (ym
t ),ym

t )
∂ym

t
. Moreover, it is obvious that ∂ym−r′

t

∂pr
t

= ∂dm−r′
t

∂pr
t

= β1
2 in view of

∂Jm−r
t (dm−r′

t (ym
t ),ym

t )
∂ym

t
. If Im

t ≥ ym−r′
t + yr

t − Ir
t , the optimal value of ym

t is Im
t + Ir

t − yr
t .

Since the coefficient before dm
t in ∂E[hm(ym

t −dm
t −ϵm

t )]
∂(ym

t −dm
t ) −ρ

∂E[V m−r
t+1 (ym

t −dm
t −ϵm

t )]
∂(ym

t −dm
t ) is less than

zero, we can get 0 <
∂dm−r′

t (Im
t +Ir

t −yr
t )

∂pr
t

< β1
2 with ∂Jm−r

t (dm
t ,ym

t )
∂dm

t
= 0. With pm

t (dm
t ) =

θa+β1pr
t −dm

t

α1
, we can further get ∂pm−r′

t

∂pr
t

= β1
2α1

and β1
2α1

<
∂pm−r′

t (Im
t +Ir

t −yr
t )

∂pr
t

< β1
α1

.

With dr
t = (1 − θ)a − α2p

r
t + β2p

m
t , we can get that pr

t (dr
t ) = (1−θ)a+β2pm

t −dr
t

α2
,

where pm
t = pm−r′

t when Im
t < ym−r′

t + yr
t − Ir

t and pm
t = pm−r′

t (Im
t + Ir

t − yr
t ) when

Im
t ≥ ym−r′

t + yr
t − Ir

t . Then, with ∂pm−r′
t

∂pr
t

= β1
2α1

and β1
2α1

<
∂pm−r′

t (Im
t +Ir

t −yr
t )

∂pr
t

< β1
α1

, it

is obvious that ∂pr
t (dr

t )
∂dr

t
≤ −2α1

2α1α2−β1β2
. With the assumption α1 > β1 and α2 > β2, we

can get that −2α1
2α1α2−β1β2

< 0. Therefore, pr
t (dr

t ) is strictly decreasing dr
t .

Proof of Lemma 3.2.

Lemma 3.2 can be proved by induction. It is obvious that V r−r
T +1 is concave

in Ir
T +1. Now, we assume inductively that V r−r

t+1 (Ir
t+1) is concave in Ir

t+1. In what

follows, we should prove the result also holds for period t.

We first prove that Jr−r
t (dr

t , yr
t ) is jointly concave in (dr

t , yr
t ). Jr−r

t (dr
t , yr

t ) is

composed of: (1) dr
t (pr

t (dr
t ) − ρw) − yr

t w(1 − ρ); (2) E[hr(yr
t − dr

t − ϵr
t )] ; and

(3) ρE[V r−r
t+1 (yr

t − dr
t − ϵr

t )]. The Hessian matrix of part (1), denoted as H′, is2∂pr
t (dr

t )
∂dr

t
0

0 0

 when Im
t < ym−r′

t + yr
t − Ir

t , and when Im
t ≥ ym−r′

t + yr
t − Ir

t , H′

is

 2∂pr
t (dr

t )
∂dr

t

β2
α2

∂pm−r′
t (Im

t +Ir
t −yr

t )
∂yr

t

β2
α2

∂pm−r′
t (Im

t +Ir
t −yr

t )
∂yr

t
0

 . Since ∂pr
t (dr

t )
∂dr

t
< 0 which is proved in

Proposition 3.1, for any vector x, we have xTH′x ≤ 0. Hence, we can get that part
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(1) is jointly concave in (dr
t , yr

t ). Parts (2) and (3) are jointly concave in (yr
t , dr

t ) can

be proved in the same way as Lemma 2.1.

With Jr−r
t (dr

t , yr
t ) is jointly concave, concavity is preserved after maximization,

and the feasible set is convex, V r−r
t (Ir

t ) is concave in Ir
t . V r−r

t (Ir
t ) is decreasing in Ir

t ,

because Jr−r
t (dr

t , yr
t ) is independent of Ir

t and a larger Ir
t leads to a more restrictive

feasible domain and so a smaller maximum objective function value.

Proof of Theorem 3.2.

(a) Under the scenario where Im
t < ym−r′

t + yr
t − Ir

t , Jr−r
t (dr

t , yr
t ) = dr

t (pr
t (dr

t ) −

ρw) − wyr
t (1 − ρ) − E[hr(yr

t − dr
t − ϵr

t )] + ρE[V r−r
t+1 (yr

t − dr
t − ϵr

t )] and the constraint

is yr
t − Ir

t ≥ 0. It is obvious that if Ir
t < yr−r⋆

t , the optimal solution is (pr−r⋆
t , yr−r⋆

t )

which is independent of Ir
t . If Ir

t ≥ yr−r⋆
t , dr−r⋆

t (Ir
t ) = arg max Jr−r

t (dr
t , Ir

t ), which is

derived with ∂Jr−r
t (dr

t )
∂dr

t
= 0, where ∂Jr−r

t (dr
t )

∂dr
t

= pr
t (dr

t )+dr
t

∂pr
t (dr

t )
∂dr

t
−ρw+ ∂E[hr(Ir

t −dr
t −ϵr

t )]
∂(Ir

t −dr
t ) −

ρ
∂E[V r−r

t+1 (Ir
t −dr

t −ϵr
t )]

∂(Ir
t −dr

t ) . Since ∂pr
t (dr

t )
∂dr

t
= −2α1

2α1α2−β1β2
< 0 and −E[hr(yr

t − dr
t − ϵr

t )] +

ρE[V r−r
t+1 (yr

t − dr
t − ϵr

t )] is concave in yr
t − dr

t , we can get that ∂dr−r⋆
t (Ir

t )
∂Ir

t
> 0 and

∂pr−r⋆
t (Ir

t )
∂Ir

t
< 0 .

(b) Under the scenario where Im
t ≥ ym−r′

t + yr
t − Ir

t , Jr−r
t (dr

t , yr
t ) = dr

t (pr
t (dr

t ) −

ρw) − wyr
t (1 − ρ) − E[hr(yr

t − dr
t − ϵr

t )] + ρE[V r−r
t+1 (yr

t − dr
t − ϵr

t )] and the constraint is

yr
t − Ir

t ≥ 0. Obtain d
r−r(1)⋆
t (Ir

t , Im
t ) and yr−r⋆

t (Ir
t , Im

t ) with ∂Jr−r
t (dr

t ,yr
t )

∂dr
t

= 0 and
∂Jr−r

t (dr
t ,yr

t )
∂yr

t
= 0, where ∂Jr−r

t (dr
t ,yr

t )
∂dr

t
= pr

t (dr
t ) + dr

t
∂pr

t (dr
t )

∂dr
t

− ρw + ∂E[hr(yr
t −dr

t −ϵr
t )]

∂(yr
t −dr

t ) −

ρ
∂E[V r−r

t+1 (yr
t −dr

t −ϵr
t )]

∂(yr
t −dr

t ) and ∂Jr−r
t (dr

t ,yr
t )

∂yr
t

= −(1 − ρ)w − ∂E[hr(yr
t −dr

t −ϵr
t )]

∂(yr
t −dr

t ) + ρ
∂E[V r−r

t+1 (yr
t −dr

t −ϵr
t )]

∂(yr
t −dr

t ) .

It is obvious that if Ir
t < yr−r⋆

t (Ir
t , Im

t ), the optimal solution is (pr−r(1)⋆
t (Ir

t , Im
t ), yr−r⋆

t

(Ir
t , Im

t )). With pr
t (dr

t ) = (1−θ)α1a+θβ2a−β2dm−r′
t (Im

t +Ir
t −yr

t )−α1dr
t

α1α2−β1β2
and 0 <

∂dm−r′
t (Im

t +Ir
t −yr

t )
∂(Im

t +Ir
t −yr

t ) <

1, we get ∂d
r−r(1)⋆
t (Ir

t ,Im
t )

∂(Im
t +Ir

t −yr
t ) = ∂yr−r⋆

t (Ir
t ,Im

t )
∂(Im

t +Ir
t −yr

t ) = −β2
2α1

∂dm−r′
t (Im

t +Ir
t −yr

t )
∂(Im

t +Ir
t −yr

t ) < 0 and ∂d
r−r(1)⋆
t (Ir

t ,Im
t )

∂(Im
t +Ir

t ) =
∂yr−r⋆

t (Ir
t ,Im

t )
∂(Im

t +Ir
t ) < 0. Then, with pr

t (dr
t ), we can further get that ∂p

r−r(1)⋆
t (Ir

t ,Im
t )

∂(Im
t +Ir

t ) <

0. If Ir
t ≥ yr−r⋆

t (Ir
t , Im

t ), d
r−r(2)⋆
t (Ir

t , Im
t ) = arg max Jr−r

t (dr
t , Ir

t ), which is derived

with ∂Jr−r
t (dr

t )
∂dr

t
= 0, where ∂Jr−r

t (dr
t )

∂dr
t

= pr
t (dr

t ) + dr
t

∂pr
t (dr

t )
∂dr

t
− ρw + ∂E[hr(Ir

t −dr
t −ϵr

t )]
∂(Ir

t −dr
t ) −

ρ
∂E[V r−r

t+1 (Ir
t −dr

t −ϵr
t )]

∂(Ir
t −dr

t ) . Since −E[hr(yr
t − dr

t − ϵr
t )] + ρE[V r−r

t+1 (yr
t − dr

t − ϵr
t )] is concave in

yr
t − dr

t , we can get that −β2
2α1

∂dm−r′
t (Im

t )
∂Im

t
<

∂d
r−r(2)⋆
t (Ir

t ,Im
t )

∂Im
t

< 0 and 0 <
∂d

r−r(2)⋆
t (Ir

t ,Im
t )

∂Ir
t

.

Then, with pr
t (dr

t ), we can further get that ∂p
r−r(2)⋆
t (Ir

t ,Im
t )

∂Ir
t

< 0 and ∂p
r−r(2)⋆
t (Ir

t ,Im
t )

∂Im
t

< 0.

Hence, Theorem 3.2 is completely proved.

Proof of Theorem 3.3.

Theorem 3.3 can be proved in a similar way to Theorem 2.3.
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Proof of Theorem 3.4.

For any ym
t , obtain dm−v

t (ym
t ) with ∂Jm−v

t (dm
t ,ym

t )
∂dm

t
= 0 where ∂Jm−v

t (dm
t ,ym

t )
∂dm

t
=

θα2a+(1−θ)β1a−β1dr
t −2α2dm

t

α1
− ρc + ∂E[hm(ym

t −dm
t −ϵm

t )]
∂(ym

t −dm
t ) − ρ

∂E[V m−v
t+1 (ym

t −dm
t −ϵm

t )]
∂(ym

t −dm
t ) . For any yr

t ,

dr−v
t (yr

t ) is obtained with ∂Jr−v
t (dr

t ,yr
t )

∂dr
t

= (1−θ)α1a+θβ2a−β2dm
t −2α1dr

t

α2
−ρw+∂E[hr(yr

t −dr
t −ϵr

t )]
∂(yr

t −dr
t ) −

ρ
∂E[V r−v

t+1 (yr
t −dr

t −ϵr
t )]

∂(yr
t −dr

t ) . Moreover, ∂Jm−v
t (ym

t )
∂ym

t
= −c(1 − ρ) − ∂E[hm(ym

t −dm−v
t (ym

t )−ϵm
t )]

∂(ym
t −dm−v

t (ym
t )) +

ρ
∂E[V m−v

t+1 (ym
t −dm−v

t (ym
t )−ϵm

t )]
∂(ym

t −dm−v
t (ym

t )) , ∂Jr−v
t (yr

t )
∂yr

t
= ρ

∂E[V r−v
t+1 (yr

t −dr−v
t (yr

t )−ϵr
t )]

∂(yr
t −dr−v

t (yr
t )) − ∂E[hr(yr

t −dr−v
t (yr

t )−ϵr
t )]

∂(yr
t −dr−v

t (yr
t )) −

w(1 − ρ). With ∂Jm−v
t (dm

t ,ym
t )

∂dm
t

= 0, ∂Jr−v
t (dr

t ,yr
t )

∂dr
t

= 0, ∂Jm−v
t (ym

t )
∂ym

t
= 0 and ∂Jr−v

t (yr
t )

∂yr
t

= 0,

it is obvious that (a) is true.

Under the situation of (b), the optimal solution of (dm
t , dr

t ) denoted as (dm−v⋆
t , dr−v⋆

t ).

Then, with ∂Jr−v
t (dr

t ,yr
t )

∂dr
t

= 0 and ∂Jr−v
t (yr

t )
∂yr

t
= 0, we can get that ∂dr−v⋆

t

∂dm
t

= −β2
2α1

< 0 and
∂yr−v⋆

t (Ir
t ,Im

t )
∂dr−v⋆

t

> 0. With ∂dr−v⋆
t

∂dm
t

= −β2
2α1

and ∂Jm−v
t (dm

t ,ym
t )

∂dm
t

, we can get that dm−v⋆
t is

positively correlated with the optimal solution of ym
t which is Im

t +Ir
t −yr−v⋆

t (Ir
t , Im

t )

under (b). Then, we can further get that dr−v⋆
t and yr−v⋆

t (Ir
t , Im

t ) are negatively

correlated with Ir
t or Im

t , and dm−v⋆
t is positively correlated with Ir

t or Im
t . With

∂dr−v⋆
t

∂dm
t

= −β2
2α1

, p
m−v(1)⋆
t (Ir

t , Im
t ) =

θα2a+(1−θ)β1a− 2α1α2−β1β2
2α1

dm−v⋆
t

α1
is negatively correlated

with Ir
t or Im

t . Similarly, p
r−v(1)⋆
t (Ir

t , Im
t ) = (1−θ)α1a+θβ2a− β2

2 dm−v⋆
t

α1α2−β1β2
. Since αi > βi,

i = 1, 2 and dm−v⋆
t is positively correlated with Ir

t or Im
t , we get that p

m−v(1)⋆
t (Ir

t , Im
t )

and p
r−v(1)⋆
t (Ir

t , Im
t ) are negatively correlated with Ir

t or Im
t . With ∂Jm−v

t (ym
t )

∂ym
t

= 0,

we can get that ym−v⋆
t (Ir

t , Im
t ) is positively correlated with dm−v⋆

t . Hence, (b) is

completely proved. Similarly, (c) and (d) can be proved.

Proof of Corollary 2.

If optimal pricing and inventory decisions under different power structures are

the same, then problems max
dm

t

dm
t (pm

t (dm
t ) − ρc) and max

dr
t

dr
t (pr

t (dr
t ) − ρw) un-

der different power structures must have the same optimal solutions, denoted as

(dm⋆
t , dr⋆

t ). By solving max
dm

t

dm
t (pm

t (dm
t ) − ρc) and max

dr
t

dr
t (pr

t (dr
t ) − ρw), we get

that: under MS, dm⋆
t = β1(1−θ)a+2α2θa+β1α2ρw−ρc(2α1α2−β1β2)

4α2
, and dr⋆

t = (1−θ)a−α2ρw
2 +

β2
2

2α2θa+β1(1−θ)a+β1α2ρw+ρc(2α1α2−β1β2)
4α1α2−2β1β2

; dm⋆
t = θa−α1ρc

2 +β1
2

2α1(1−θ)a+β2θa+β2α1ρc+ρw(2α1α2−β1β2)
4α1α2−2β1β2

,

and dr⋆
t = β2θa+2α1(1−θ)a+β2α1ρc−ρw(2α1α2−β1β2)

4α1
under RS; dm⋆

t = 2α1(1−θ)a+β2θa+β2α1ρc+2α1α2ρw
4α1α2−β1β2

β1
2 + θa−α1ρc

2 , and dr⋆
t = β2

2
2α2θa+β1(1−θ)a+β1α2ρw+2α1α2ρc

4α1α2−β1β2
+ (1−θ)a−α2ρw

2 under VN. It is

obvious that (dm⋆
t , dr⋆

t ) under different power structures are different. Therefore, the

optimal pricing and inventory decisions vary in different power structures.

Proof of Theorem 3.5
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Theorem 3.5 can be proved in a similar way to Theorem 3.4.
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Chapter 4

Comparison of Dynamic and

Static Pricing Strategies in a

Dual-channel Supply Chain with

Inventory Control

4.1 Introduction

For retailers and manufacturers, the main motivation to practice dynamic pric-

ing can be mitigating the imbalance between supply and demand caused by demand

uncertainty (e.g., Dell changes prices to promote the sale of products whose inven-

tory was building beyond prescribed levels), capturing the maximum of consumer

surplus (e.g., in September 2000, Amazon charged different prices for the same DVD

products based on customers’ profiles and purchase histories), gaining competitive

advantage in sale (e.g., Nojima, a big electronics retailer in Japan, was introducing

dynamic pricing at its 182 stores across Japan in 2019 to compete with its rivals),

and so on (Byrnes, 2003; Grewal et al., 2004; Yuma, 2019). Regardless of the motiva-

tion for dynamic pricing, one of the critical concerns for retailers and manufacturers

is whether dynamic pricing performs better than traditional static pricing in terms

of profitability. In this study, we concentrate on comparing the performance of dy-

namic pricing motivated by demand uncertainty with static pricing in the retail and

manufacturing industries where inventory control is traditionally used to alleviate
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the adverse impact of the inherent uncertainty in demand on a firm’s profitability.

Existing research on comparing dynamic and static pricing in a system with

inventory control has focused on the situation where products are distributed by a

single selling channel. Compared with the single-channel supply chain, since either

of the channels can adopt dynamic or static pricing, four different pricing strategies

exist in a dual-channel supply chain. That is, both the traditional retail and direct

online channels adopt dynamic pricing strategy (DD strategy); the traditional retail

channel adopts dynamic pricing strategy while the online direct channel adopts

static pricing strategy (DS strategy); the traditional retail channel adopts static

pricing strategy while the direct online channel adopts dynamic pricing strategy

(SD strategy); and both the traditional retail and direct online channels adopt static

pricing strategy (SS strategy). Moreover, horizontal price competition is introduced

in the dual-channel supply chain which may affect the performance of dynamic or

static pricing.

Motivated by the above observations, we have the following question: Does

dynamic pricing perform better than static pricing in a dual-channel supply chain

which is equipped with inventory control policy to deal with demand uncertainty? To

answer this question, we consider a dual-channel supply chain where a manufacturer

sells a single type of products with its own online channel and a traditional retail

channel over a short selling season consisting of two periods. An important reason

of studying a two-period dual-channel supply chain is that, in this era of rapidly

changing technology, the life-cycles of products such as PCs, digital cameras, mobile

phones, etc., have become shorter (Kuo and Huang, 2012; Maiti and Giri, 2017).

Another important reason is for analytical tractability. In each period, demand

at both channels is stochastic and sensitive to selling prices. The manufacturer

and retailer play a Stackelberg game where the manufacturer acting as the leader

decides the production quantity and online price, and the retailer acting as the

follower decides the order quantity and retail price. As the optimal joint pricing

and inventory control policy under DD strategy has been investigated in Chapter

2, in this chapter, models are developed with stochastic dynamic programming to

derive the optimal joint pricing and inventory control policies under the left three

pricing strategies (i.e., DS strategy, SD strategy, and SS strategy) with the goal of
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maximizing manufacturer and retailer’s respective total expected discounted profits

over two periods. The optimal pricing and inventory policies under different pricing

strategies are analyzed and compared. Finally, the performance of dynamic pricing

and static pricing is studied with numerical examples.

Our results provide several insights into the joint pricing and inventory man-

agement for members in a dual-channel supply chain. First, integrating dynamic

pricing strategy into inventory management may underperform the traditional in-

ventory control policy with static pricing strategy in coping with additive demand

uncertainty. The performance of dynamic pricing strategy is affected by market pa-

rameters including the degree of demand uncertainty, market size, customers’ chan-

nel preference, price sensitivity to demand in a channel, and the cross-channel price

sensitivity. This illustrates that dual-channel supply chain members should think

carefully about implementing dynamic pricing in dealing with demand uncertainty,

and it is necessary to take market parameters into account when deciding whether

to adopt dynamic pricing strategy. Specifically, (i) if the degree of demand uncer-

tainty in the retail channel is low, it would be better for retailer to take dynamic or

static pricing strategy and manufacturer to take static pricing strategy, otherwise it

would be better for retailer to take dynamic pricing strategy and manufacturer to

use static pricing strategy; (ii) if customers’ preference for the direct channel is not

particularly high, it would be better for retailer to take dynamic pricing strategy

and manufacturer to adopt static pricing strategy when the market size is small, and

it would be better for retailer to take dynamic pricing strategy and manufacturer to

adopt dynamic or static pricing strategy when the market size is large; (iii) if cus-

tomers’ preference for the direct channel is particularly high, it would be better for

both members to take the same dynamic or static pricing strategy when the market

size is small, and it would be better for retailer to take dynamic pricing strategy

and manufacturer to use dynamic or static pricing strategy when the market size is

large; (iv) retailer should adopt dynamic pricing strategy if the price sensitivity to

demand in a channel is low or the cross-channel price sensitivity is high, and manu-

facturer should adopt static pricing strategy if the price sensitivity to demand in a

channel is high or the cross-channel price sensitivity is low. Second, if both channel

members choose to take dynamic pricing strategy, one channel member should pay
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close attention to its inventory level as well as the changes in the selling price of

the other channel member to decide whether to charge a list price or reduced price.

This is caused by the horizontal price competition between the channel members.

Moreover, no matter what pricing strategy the member adopts, the manufacturer

should concern itself with the retailer’s inventory information in addition to its own

inventory information. However, the retailer only needs to focus on its own inven-

tory information under the pricing strategies where the manufacturer takes static

pricing strategy.

The rest of this chapter is organized as follows: literature review is presented in

Section 4.2. In Section 4.3, we make notations for the joint pricing and inventory

control problems of a dual-channel supply chain under different pricing strategies

and establish models for these problems. Section 4.4 presents the optimal joint

pricing and inventory control policies under different pricing strategies and the com-

parisons of these optimal policies. Numerical examples are carried out to illustrate

the theoretical results and compare the performance of different pricing strategies

in Section 4.5. Finally in Section 4.6, we summarize the main findings and point

out future research directions.

4.2 Literature review

The related literature to our work mainly includes the following streams: (i)

comparison of static pricing and dynamic pricing with inventory control; (ii) dynamic

versus static pricing in a duopoly system or a dual-channel supply chain.

4.2.1 Comparison of static pricing and dynamic pricing with

inventory control

Research on comparing inventory-based dynamic pricing strategy with static

pricing strategy has received considerable attention. Some works (e.g., Chen et al.,

2010; Li et al., 2015; Herbon and Khmelnitsky, 2017; Duan et al., 2018) have centered

on the continuous-review systems where price can be adjusted and inventory can be

replenished at any time or EOQ setting where firms are allowed to vary the selling

prices continuously (Transchel and Minner, 2009; Chen et al., 2015; Stamatopoulos
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et al., 2019; Bray and Stamatopoulos, 2022).

Our research is related to the studies of the periodic-review systems where pric-

ing and inventory decisions are made periodically. Federgruen and Heching (1999)

is one of earlier works of studying the joint dynamic pricing and inventory control

policy of a periodic-review system where the demand is stochastic and price sen-

sitive and exploring the benefits of the proposed inventory-based dynamic pricing

policy. Through an extensive numerical study, they find that a firm can benefit

from implementing the inventory-based dynamic pricing policy, and the benefits in-

crease as the degree of demand uncertainty increases. Recently, Gayon and Dallery

(2007) consider a capacitated production system where the replenishment process

is partially controlled. With the help of a numerical study, they demonstrate that

dynamic pricing might be much more beneficial when the production is not totally

controlled. Yin and Rajaram (2007) investigate the benefits of dynamic pricing in

a system where demand fluctuates and depends on exogenous factors. Their results

show that it is more beneficial to take dynamic pricing in a Markovian demand

environment with a high fixed ordering cost or with high demand variability. Feng

(2010) compares the performance of dynamic pricing with that of static pricing in

the cases where supply is uncertain or limited, and finds that in these cases, firms

may obtain significant profit improvements by using dynamic pricing. Yang and

Zhang (2014) demonstrate that the value of dynamic pricing is significant for a firm

which replenishes and sells a product under the scarcity effect of inventory. Bern-

stein et al. (2016) focus on a firm with a positive lead time and show that the value

of inventory-based dynamic pricing increases with lead time and can be substan-

tial when the lead time is long. Gong et al. (2022) find that dynamic pricing is

very valuable for a firm constrained by a total minimum commitment contract with

numerical studies when the committed quantity is moderate or large.

All of the above works consider the products are distributed with a single chan-

nel. In this work, we aim to explore the benefit of inventory-based dynamic pricing

strategy in a dual-channel setting. A related problem was considered by Lamas and

Chevalier (2018), who study the optimal dynamic pricing and inventory problem of

two firms which compete with each other on selling prices and compare dynamic

pricing with static pricing under the competitive environment. The relationship
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between the two firms corresponds to a Bertrand competition, and each firm is as-

sumed to select prices from a discrete set in every period. Differs from the work

of Lamas and Chevalier (2018), we focus on a manufacturer-retailer dual-channel

system where supply-demand relationship and competition relationship coexist be-

tween the two firms. Considering, in many cases, the manufacturer is more powerful

than the retailer in a dual-channel supply chain, we formulate the competition rela-

tionship between the manufacturer and retailer as Stackelberg game models where

the manufacturer is the leader and the retailer is the follower.

4.2.2 Dynamic versus static pricing in a duopoly system or

a dual-channel supply chain

In the second stream of research, the works mainly focus on a duopoly system

where firms cannot replenish the product during the planning horizon (Xu and

Hopp, 2006; Liu and Zhang, 2013; Sato and Sawaki, 2013; Sun et al., 2020) or a

dual-channel supply chain where the demand is deterministic (Zhang et al., 2017;

Wang and Sun, 2019).

For a duopoly system with fixed capacity, Xu and Hopp (2006) consider the

customer arrival rate follows a geometric Brownian motion and find that, compared

with static pricing, dynamic pricing is beneficial when competition is not too intense.

In the recent works of this stream, Liu and Zhang (2013) consider dynamic versus

pricing problem between two competing firms when customers are strategic. Their

results show that, compared with dynamic pricing competition, a unilateral price

commitment game in which one firm commits to static pricing and the other firm

dynamically changes prices benefits both firms. Sato and Sawaki (2013) consider

a firm adopts continuous-time dynamic pricing, and its competitor adopts static

pricing. They find that dynamic pricing is not always effective. Sun et al. (2020)

examine the performance of static and dynamic pricing strategies in the presence

of social influence over two periods. Their results show that firms prefer dynamic

pricing when the social influence is either relatively weak or sufficiently strong.

For a dual-channel supply chain, Zhang et al. (2017) consider the manufacturer

sells products through an online retailer and an exogenous distribution channel under

different pricing modes (static wholesale price and retail price, static wholesale price
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and dynamic retail price, dynamic wholesale price and retail price) and compare the

performance of these pricing mode combinations with numerical studies. They find

that the supply chain efficiency is the lowest when both members set static retail

prices while the highest when only the online retailer charges a fixed price, and

the manufacturer will be better off if it adjusts wholesale price dynamically. Wang

and Sun (2019) compare the performance of dynamic wholesale pricing with static

wholesale pricing in a dual-channel green supply chain where one manufacturer

produces a green product and sells it through the traditional retail channel and its

direct online channel. Their results show that the manufacturer prefers to adopt the

dynamic wholesale pricing strategy in most cases and prefers the static one only when

the consumers in both channels have relatively high energy efficiency perceptions.

In the works of Zhang et al. (2017) and Wang and Sun (2019), the demand is

deterministic, and the changes in pricing decisions are caused by the evolution of

goodwill and the evolution of energy efficiency level, respectively. In this study, we

consider the manufacturer and retailer face demand uncertainty which affects their

decisions and profits, and they can replenish products during the planning horizon.

The main contributions of this chapter are summarized as follows. First, existing

literature on the performance comparison of dynamic pricing and static pricing in a

system where inventory control policy is designed to deal with demand uncertainty

has mostly focused on the setting where products are distributed through a single

channel. To the best of our knowledge, we are the first to compare the profit perfor-

mance of dynamic pricing and static pricing in a two-stage system where products

are distributed via the manufacturer’s direct online channel as well as the traditional

retail channel. Second, this chapter explores the effects of market parameters includ-

ing market size, customers’ channel preference, price sensitivities and demand variety

on the results of performance comparison of dynamic pricing and static pricing in a

multi-period dual-channel supply chain. Third, we analyze and compare the prop-

erties of optimal joint pricing and inventory policies for a multi-period dual-channel

supply chain under different pricing strategies. By considering demand uncertainty

and different pricing strategies in a multi-period setting, this study complements

existing research on the joint pricing and inventory management where most of the

works are conducted on single-period pricing and inventory models.
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4.3 Models

The model description and assumptions under DD strategy are referred to Sec-

tion 2.3 of Chapter 2. The difference between the model description and assumptions

under the other three pricing strategies and those under DD strategy only lies in

the point where the member who takes dynamic pricing strategy decides its selling

price, and the member who takes static pricing strategy decides its fixed price only

at the beginning of the planning horizon. Denote pm
t as the dynamic online price,

pr
t as the dynamic retail price, pm as the fixed online price and pr as the fixed retail

price, t = 1, 2.

Therefore, similar to the problem under DD strategy in Chapter 2, the problem

under DS strategy where retailer takes dynamic pricing strategy while manufacturer

takes static pricing strategy can be formulated as (4.1) and (4.2), the problem under

DS strategy where retailer takes static pricing strategy while manufacturer takes

dynamic pricing strategy can be formulated as (4.3) and (4.4), and the problem

under DS strategy where both manufacturer and retailer take static pricing strategy

can be formulated as (4.5) and (4.6).

V m−DS
t (Im

t ) =


max

(pm,ym
t ) when t=1; ym

t when t>1
Jm−DS

t (pm, ym
t )

s. t. ym
t − Im

t + yr
t − Ir

t ≥ 0
(4.1)

where Jm−DS
t (pm, ym

t ) = dm
t (pm − ρc) + (w − c)(yr

t − Ir
t ) − cym

t (1 − ρ) − E[hm(ym
t −

dm
t − ϵm

t )] + ρE[V m−DS
t+1 (ym

t − dm
t − ϵm

t )].

V r−DS
t (Ir

t ) =


max
pr

t ,yr
t

Jr−DS
t (pr

t , yr
t )

s. t. yr
t − Ir

t ≥ 0
(4.2)

where Jr−DS
t (pr

t , yr
t ) = dr

t (pr
t −ρw)−yr

t w(1−ρ)−E[hr(yr
t −dr

t −ϵr
t )]+ρE[V r−DS

t+1 (yr
t −

dr
t − ϵr

t )].

V m−SD
t (Im

t ) =


max
pm

t ,ym
t

Jm−SD
t (pm

t , ym
t )

s. t. ym
t − Im

t + yr
t − Ir

t ≥ 0
(4.3)

where Jm−SD
t (pm

t , ym
t ) = dm

t (pm
t − ρc) + (w − c)(yr

t − Ir
t ) − cym

t (1 − ρ) − E[hm(ym
t −
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dm
t − ϵm

t )] + ρE[V m−DS
t+1 (ym

t − dm
t − ϵm

t )].

V r−SD
t (Ir

t ) =


max

(pr,yr
t ) when t=1; yr

t when t>1
Jr−SD

t (pr, yr
t )

s. t. yr
t − Ir

t > 0
(4.4)

where Jr−SD
t (pr, yr

t ) = dr
t (pr −ρw)−yr

t w(1−ρ)−E[hr(yr
t −dr

t −ϵr
t )]+ρE[V r−SD

t+1 (yr
t −

dr
t − ϵr

t )].

V m−SS
t (Im

t ) =


max

(pm,ym
t ) when t=1; ym

t when t>1
Jm−SS

t (pm, ym
t )

s. t. ym
t − Im

t + yr
t − Ir

t ≥ 0
(4.5)

where Jm−SS
t (pm, ym

t ) = dm(pm − ρc) + (w − c)(yr
t − Ir

t ) − cym
t (1 − ρ) − E[hm(ym

t −

dm − ϵm
t )] + ρE[V m−SS

t+1 (ym
t − dm − ϵm

t )].

V r−SS
t (Ir

t ) =


max

(pr,yr
t ) when t=1; yr

t when t>1
Jr−SS

t (pr, yr
t )

s. t. yr
t − Ir

t ≥ 0
(4.6)

where Jr−SS
t (pr, yr

t ) = dr(pr −ρw)−yr
t w(1−ρ)−E[hr(yr

t −dr −ϵr
t )]+ρE[V r−SS

t+1 (yr
t −

dr − ϵr
t )].

4.4 Analysis of the optimal joint pricing and in-

ventory control policies under different pric-

ing strategies

4.4.1 Analysis of the optimal joint pricing and inventory

control policy under DS strategy

Since Lemma 2.1, Theorem 2.1 and Proposition 2.1 of the retailer’s problem

under DD strategy are true for any given manufacturer’s decisions (pm
t , ym

t ), they

are undoubtedly true for the retailer’s problem under DS strategy where pm
t =

pm. This implies that no matter what pricing strategy the manufacturer takes,

retailer’s optimal response policy is a base-stock-list-price policy. Therefore, for

any given (pm, ym
t ), retailer’s optimal response decisions can be defined as follows:
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(dr−DS′
t , yr−DS′

t ) = arg max Jr−DS
t (dr

t , yr
t ), dr−DS′

t (Ir
t ) = arg max

dr
t

Jr−DS
t (dr

t , Ir
t ). The

manufacturer’s problem formulation under DS strategy, can be represented as the

following model.

V m−DS
t (Im

t ) =


max

(dm
t ,ym

t ) when t=1; ym
t when t>1

Jm−DS
t (dm

t , ym
t )

s. t. ym
t − Im

t + yr
t − Ir

t ≥ 0
(4.7)

where Jm−DS
t (dm

t , ym
t ) = dm

t (pm(dm
t )−ρc)+(w−c)(yr

t −Ir
t )−cym

t (1−ρ)−E[hm(ym
t −

dm
t − ϵm

t )] + ρE[V m−DS
t+1 (ym

t − dm
t − ϵm

t )], dr
t and yr

t are retailer’s optimal response

decisions. Specifically, dm
t is a variable in each period t because dm

t = θa−α1p
m+βpr

t

where pm is decided in period 1 and (4.7) is solved with the sequence t = 2, 1.

Lemma 4.1. Jm−DS
t (dm

t , ym
t ) is jointly concave in (dm

t , ym
t ).

Based on Lemma 4.1, the manufacturer’s optimal pricing and inventory control

policy under DS strategy exists and can be derived as follows.

Step 1: For t = 2, with any given pm, define ym−DS′
2 = arg max

ym
2

Jm−DS
2 (dm

2 , ym
2 )

where (dr
2, yr

2) is (dr−DS′
2 , yr−DS′

2 ), and ym−DS′
2 (Ir

2) = arg max
ym

2
Jm−DS

2 (dm
2 , ym

2 ) where

(dr
2, yr

2) is (dr−DS′
2 (Ir

2), Ir
2).

Step 2: For t = 1, since Im
1 and Ir

1 are assumed to be zero, ym
1 −Im

1 +yr−DS′
1 −Ir

1 ≥

0 and yr−DS′
1 − Ir

1 ≥ 0. Define (dm−DS⋆
1 , ym−DS⋆

1 ) = arg max Jm−DS
1 (dm

1 , ym
1 ) where

(dr
1, yr

1) is (dr−DS′
1 , yr−DS′

1 ).

Step 3: Get the optimal pricing decision pm−DS⋆ by substituting dm−DS⋆
1 into

pm
1 (dm

1 ). Get ym−DS⋆
2 and ym−DS⋆

2 (Ir
2) by substituting pm−DS⋆ into ym−DS′

2 and

ym−DS′
2 (Ir

2), respectively.

With the manufacturer’s optimal decisions and the retailer’s optimal response

decisions, we can make the structural analysis of the dual-channel supply chain’s

optimal policy under DS strategy which is demonstrated in the following theorem.

Theorem 4.1. The dual-channel supply chain’s optimal pricing and inventory

control policy under DS strategy is:

(a) if Ir
t < yr−DS⋆

t and Im
t < ym−DS⋆

t + yr−DS⋆
t − Ir

t , the optimal decisions of the

retailer and manufacturer are (pr−DS⋆
t , yr−DS⋆

t ) and (pm−DS⋆, ym−DS⋆
t ), where yr−DS⋆

t ,

pr−DS⋆
t , ym−DS⋆

t and pm−DS⋆ are independent of Im
t and Ir

t .

(b) if Ir
t < yr−DS⋆

t and Im
t ≥ ym−DS⋆

t + yr−DS⋆
t − Ir

t , the optimal decisions of the

retailer and manufacturer are (pr−DS⋆
t , yr−DS⋆

t ) and (pm−DS⋆, Im
t + Ir

t − yr−DS⋆
t ).
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(c) if Ir
t ≥ yr−DS⋆

t and Im
t < ym−DS⋆

t (Ir
t ), the optimal decisions of the retailer

and manufacturer are (pr−DS⋆
t (Ir

t ), Ir
t ) and (pm−DS⋆, ym−DS⋆

t (Ir
t )), where pr−DS⋆

t (Ir
t )

and ym−DS⋆
t (Ir

t ) decrease as Ir
t increases.

(d) if Ir
t ≥ yr−DS⋆

t and Im
t ≥ ym−DS⋆

t (Ir
t ), the optimal decisions of the retailer

and manufacturer are (pr−DS⋆
t (Ir

t ), Ir
t ) and (pm−DS⋆, Im

t ).

Theorem 4.1 indicates that, under DS strategy, one member should increase

its inventory level to its base stock level through producing or placing an order if

its initial inventory level is below its base stock level, otherwise it should keep its

inventory at the initial level. Moreover, manufacturer’s base stock level is affected

by the retailer’s initial inventory level, while retailer’s base stock level is independent

of its initial inventory level. Retailer should charge a list price if its initial inventory

level is below its base stock level, otherwise it should reduce the retail price.

4.4.2 Analysis of the optimal joint pricing and inventory

control policy under SD strategy

Under SD strategy, for any manufacturer’s decisions (pm
t , ym

t ), retailer’s problem

is solved to get the optimal response functions. Since dr
t has an inverse function

pr(dr
t ) = (1−θ)a+βpm

t −dr
t

α2
when pm

t is given, the retailer’s problem can be rewritten as

the following model.

V r−SD
t (Ir

t ) =


max

(dr
t ,yr

t ) when t=1; yr
t when t>1

Jr−SD
t (dr

t , yr
t )

s. t. yr
t − Ir

t ≥ 0
(4.8)

where Jr−SD
t (dr

t , yr
t ) = dr

t (pr(dr
t )−ρw)−yr

t w(1−ρ)−E[hr(yr
t −dr

t −ϵr
t )]+ρE[V r−SD

t+1 (yr
t −

dr
t − ϵr

t )]. Specifically, dr
t is a variable in each period t because dr

t = (1− θ)a−α2p
r +

βpm
t where pr is decided in period 1 and (4.8) is solved with the sequence t = 2, 1.

Lemma 4.2. For any manufacturer’s decisions (pm
t , ym

t ), Jr−SD
t (dr

t , yr
t ) is jointly

concave in (dr
t , yr

t ).

Based on Lemma 4.2, the retailer’s optimal response pricing and inventory de-

cisions exist and can be obtained with the following steps.

Step 1: For t = 2, with any given pr and (pm
2 , ym

2 ), define yr−SD′
2 = arg max

yr
2

Jr−SD
2

(dr
2, yr

2). The optimal response decision of yr
2 is yr−SD′

2 if Ir
2 < yr−SD′

2 , otherwise Ir
2
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is optimal.

Step 2: For t = 1, since Ir
1 is assumed to be zero, yr

1 − Ir
1 ≥ 0. With any given

(pm
1 , ym

1 ), define (dr−SD′
1 , yr−SD′

1 ) = arg max Jr−SD
1 (dr

1, yr
1). Get retailer’s optimal

price response decision pr−SD′ by substituting dr−SD′
1 into pr(dr

t ).

Proposition 4.1. The mean demand dm
t has an inverse function pm

t (dm
t ) =

θa+βpr−SD′−dm
t

α1
, which is strictly decreasing.

Proposition 4.1 indicates that optimizing the price pm
t in period t is equivalent

to optimizing the mean demand dm
t . Hence, the manufacturer’s problem under SD

strategy can be represented as (4.9).

V m−SD
t (Im

t ) =


max
dm

t ,ym
t

Jm−SD
t (dm

t , ym
t )

s. t. ym
t − Im

t + yr
t − Ir

t ≥ 0
(4.9)

where Jm−SD
t (dm

t , ym
t ) = dm

t (pm
t (dm

t )−ρc)+(w−c)(yr
t −Ir

t )−cym
t (1−ρ)−E[hm(ym

t −

dm
t − ϵm

t )] + ρE[V m−SD
t+1 (ym

t − dm
t − ϵm

t )], pr and yr
t are retailer’s optimal response

decisions.

Similar to DD strategy, the manufacturer’s optimal decisions under SD strat-

egy exist and can be obtained as follows. Under the scenario where Ir
t < yr−SD′

t ,

define (dm−SD(1)⋆
t , y

m−SD(1)⋆
t ) = arg max Jm−SD

t (dm
t , ym

t ) and d
m−SD(1)⋆
t (Ir

t , Im
t ) =

arg max
dm

t

Jm−SD
t (dm

t , Im
t + Ir

t − yr
t ). Get p

m−SD(1)⋆
t and p

m−SD(1)⋆
t (Ir

t , Im
t ) by respec-

tively substituting d
m−SD(1)⋆
t and d

m−SD(1)⋆
t (Ir

t , Im
t ) into pm

t (dm
t ). Under the sce-

nario where Ir
t ≥ yr−SD′

t , define (dm−SD(2)⋆
t , y

m−SD(2)⋆
t ) = arg max Jm−SD

t (dm
t , ym

t )

and d
m−SD(2)⋆
t (Im

t ) = arg max Jm−SD
t (dm

t , Im
t ). Get p

m−SD(2)⋆
t and p

m−SD(2)⋆
t (Im

t ) by

respectively substituting d
m−SD(2)⋆
t and d

m−SD(2)⋆
t (Im

t ) into pm
t (dm

t ).

With the manufacturer’s optimal decisions and the retailer’s optimal response

decisions, we can make the structural analysis of the dual-channel supply chain’s

optimal policy under SD strategy which is shown in Theorem 4.2.

Theorem 4.2. The dual-channel supply chain’s optimal pricing and inventory

control policy under SD strategy is:

(a) if Ir
t < y

r−SD(1)⋆
t and Im

t < y
m−SD(1)⋆
t +y

r−SD(1)⋆
t −Ir

t , the optimal decisions of

the retailer and manufacturer are (pr−SD(1)⋆, y
r−SD(1)⋆
t ) and (pm−SD(1)⋆

t , y
m−SD(1)⋆
t ),

where y
r−SD(1)⋆
t , pr−SD(1)⋆, y

m−SD(1)⋆
t and p

m−SD(1)⋆
t are independent of Ir

t and Im
t .

(b) if Ir
t < y

r−SD(1)⋆
t (Ir

t , Im
t ) and Im

t ≥ y
m−SD(1)⋆
t + y

r−SD(1)⋆
t − Ir

t , the op-
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timal decisions of the retailer and manufacturer are (pr−SD(1)⋆, y
r−SD(1)⋆
t (Ir

t , Im
t ))

and (pm−SD(1)⋆
t (Ir

t , Im
t ), Im

t + Ir
t − y

r−SD(1)⋆
t (Ir

t , Im
t )), where y

r−SD(1)⋆
t (Ir

t , Im
t ) and

p
m−SD(1)⋆
t (Ir

t , Im
t ) decrease as either Ir

t or Im
t increases.

(c) if Ir
t ≥ y

r−SD(2)⋆
t and Im

t < y
m−SD(2)⋆
t , the optimal decisions of the retailer

and manufacturer are (pr−SD(1)⋆, Ir
t ) and (pm−SD(2)⋆

t , y
m−SD(2)⋆
t ), where p

m−SD(2)⋆
t and

y
m−SD(2)⋆
t are independent of Ir

t and Im
t .

(d) if Ir
t ≥ y

r−SD(2)⋆
t (Im

t ) and Im
t ≥ y

m−SD(2)⋆
t , the optimal decisions of the re-

tailer and manufacturer are (pr−SD(1)⋆, Ir
t ) and (pm−SD(2)⋆

t (Im
t ), Im

t ), where y
r−SD(2)⋆
t (Im

t )

and p
m−SD(2)⋆
t (Im

t ) decrease as Im
t increases.

Theorem 4.2 indicates that, under SD strategy, one member should increase

its inventory level to its base stock level through producing or placing an order if

its initial inventory level is below its base stock level, otherwise it should keep its

inventory at the initial level. Moreover, manufacturer’s base stock level and retailer’s

base stock level may be affected by members’ initial inventory levels. Manufacturer

should charge a list price if its initial inventory level is below its base stock level,

otherwise it should reduce the online price.

4.4.3 Analysis of the optimal joint pricing and inventory

control policy under SS strategy

Similar to SD strategy, with any given (pm, ym
t ), retailer’s optimal response

decisions under SS strategy can be obtained as follows:

Step 1: For t = 2, with any given pr and (pm, ym
2 ), define yr−SS′

2 = arg max
yr

2
Jr−SS

2

(dr
2, yr

2). The optimal response decision of yr
2 is yr−SS′

2 if Ir
2 < yr−SS′

2 , otherwise Ir
2 is

optimal.

Step 2: For t = 1, since Ir
1 is assumed to be zero, yr

1 − Ir
1 ≥ 0. With any given

(pm, ym
1 ), define (dr−SS′

1 , yr−SS′
1 ) = arg max Jr−SS

1 (dr
1, yr

1). Get retailer’s optimal price

response decision pr−SS′ by substituting dr−SS′
1 into pr(dr

t ).

Obviously, dm has an inverse function pm(dm) = θa+βpr−SD′−dm

α1
, which is strictly

decreasing. Therefore, the decision variable pm of the manufacturer’s problem under

SS strategy can be replaced by dm. Then, the manufacturer’s optimal pricing and in-

ventory decisions can be derived as follows. Define ym−SS⋆
2 = arg max

ym
2

Jm−SS
2 (dm, ym

2 ).

Define (dm−SS⋆
1 , ym−SS⋆

1 ) = arg max Jm−SS
1 (dr

m, yr
m). Get manufacturer’s optimal
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price decision pm−SS⋆ by substituting dm−SS⋆
1 into pm(dm).

After substituting the manufacturer’s optimal decisions into the retailer’s op-

timal response decisions, we can make the structural analysis of the dual-channel

supply chain’s optimal policy under SS strategy.

Theorem 4.3. The dual-channel supply chain’s optimal pricing and inventory

control policy under SS strategy is:

(a) if Ir
t < yr−SS⋆

t and Im
t < ym−SS⋆

t + yr−SS⋆
t − Ir

t , the optimal decisions of the

retailer and manufacturer are (pr−SS⋆, yr−SS⋆
t ) and (pm−SS⋆, ym−SS⋆

t ), where yr−SS⋆
t ,

pr−SS⋆, ym−SS⋆
t and pm−SS⋆ are independent of Ir

t and Im
t .

(b) if Ir
t < yr−SS⋆

t and Im
t ≥ ym−SS⋆

t + yr−SS⋆
t − Ir

t , the optimal decisions of the

retailer and manufacturer are (pr−SS⋆, yr−SS⋆
t ) and (pm−SS⋆, Im

t + Ir
t − yr−SS⋆

t ).

(c) if Ir
t ≥ yr−SS⋆

t and Im
t < ym−SS⋆

t , the optimal decisions of the retailer and

manufacturer are (pr−SS⋆, Ir
t ) and (pm−SS⋆, ym−SS⋆

t ).

(d) if Ir
t ≥ yr−SS⋆

t and Im
t ≥ ym−SS⋆

t , the optimal decisions of the retailer and

manufacturer are (pr−SS⋆, Ir
t ) and (pm−SS⋆, Im

t ).

Theorem 4.3 indicates that, under SS strategy, one member should increase

its inventory level to its base stock level through producing or placing an order if

its initial inventory level is below its base stock level, otherwise it should keep its

inventory at the initial level. Moreover, manufacturer’s base stock level is affected

by the retailer’s initial inventory level when the retailer’s initial inventory level is

below its base stock level.

4.4.4 Comparison study

By comparing and analyzing optimal pricing and inventory policies under dif-

ferent pricing strategies, we have the following corollaries.

Corollary 4.1. The structural properties of the optimal inventory policies

under different pricing strategies are the same. Specifically, a member is optimal to

produce or order up to its base stock level if its starting inventory level is below its

base stock level, otherwise it should not produce or order.

Corollary 4.2. The structural properties of the optimal pricing policies under

different pricing strategies vary.

In detail, under DD strategy, manufacturer and retailer are optimal to charge
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list prices if their initial inventory levels are both below their respective base stock

levels, otherwise they should reduce the selling prices. This is caused by the price

competition between the manufacturer and retailer. For example, if the manufac-

turer’s initial inventory level is above its base stock level, it is optimal to lower its

selling price to stimulate the demand and reduce the stock. Since customers are sen-

sitive to the prices, if the retailer doesn’t reduce the retail price, the reduced selling

price of the manufacturer would less customers’ demand for the products sold by the

retailer, and as a result the retailer’s profit would be reduced. Therefore, to compete

with the manufacturer and counter the negative effect of the manufacturer’s reduced

price on its profit, the retailer would choose to reduce the retail price at the same

time. Under the left pricing strategies, the member who adopts dynamic pricing is

optimal to charge a list price if its initial inventory level is below its base stock level,

otherwise it should reduce its selling price.

Corollary 4.2 indicates that in the manufacturer-retailer dual-channel system, if

both of the channel members take dynamic pricing strategy, one channel member

should pay close attention to its inventory level as well as the changes in the selling

price of the other channel member to decide whether to charge a list price or reduced

price.

Corollary 4.3. Under different pricing strategies, dynamic prices may be af-

fected by members’ initial inventory levels. The influence rules of initial inventory

levels on dynamic prices are shown in Table 4.1.

Table 4.1
The influence rules of members’ initial inventory levels on dynamic prices

Pricing strategy Case a1 Case b Case c Case d
DD Im

t (◦), Ir
t (◦)2 Im

t (−), Ir
t (−) Im

t (◦), Ir
t (−) Im

t (−), Ir
t (−)

DS Im
t (◦), Ir

t (◦) Im
t (◦), Ir

t (◦) Im
t (◦), Ir

t (−) Im
t (◦), Ir

t (−)
SD Im

t (◦), Ir
t (◦) Im

t (−), Ir
t (−) Im

t (◦), Ir
t (◦) Im

t (−), Ir
t (◦)

1 Case a is the situation where members’ initial inventory levels, Im
t and Ir

t , are both below
their own base stock levels; Case b is the situation where Ir

t is below retailer’s base stock level
while Im

t is above manufacturer’s base stock level; Case c is the situation where Ir
t is above

retailer’s base stock level while Im
t is below manufacturer’s base stock level; Case d is the

situation where Im
t and Ir

t are both above members’ own base stock levels. Representations
of Cases a to d in Tables 4.2 and 4.3 are the same.

2 Im
t (◦) or Ir

t (◦) denotes dynamic price is independent of Im
t or Ir

t . Im
t (−) or Ir

t (−) denotes
dynamic price is negatively correlated with Im

t or Ir
t .

Corollary 4.3 shows that dynamic prices are independent of or negatively affected

by members’ initial inventory levels. For either of the members in a dual-channel
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supply chain who adopts dynamic pricing strategy, when its initial inventory level

is above its base stock level, it should charge a reduced price by taking its initial

inventory level into account. The higher the initial inventory level, the lower the

selling price. This property is also possessed by the optimal joint pricing and inven-

tory control policy of a system with a single distribution channel (Federgruen and

Heching, 1999; Elmaghraby and Keskinocak, 2003; Chen and Simchi-Levi, 2012).

It is interesting to find that in a dual-channel system, when both channel members

adopt dynamic pricing strategy, higher initial inventory level of the manufacturer

or retailer results in lower selling prices of the manufacturer and retailer. Moreover,

when manufacturer takes dynamic pricing strategy, dynamic prices are negatively

affected by the manufacturer’s initial inventory level as well as the retailer’s initial

inventory level if the manufacturer’s initial inventory level is above its base stock

level and the retailer’s initial inventory level is below its base stock level. This is

caused by the supply-demand relationship between the manufacturer and the re-

tailer.

Corollary 4.4. Under different pricing strategies, base stock levels may be

affected by members’ initial inventory levels. The influence rules of initial inventory

levels on base stock levels are shown in Table 4.2 and Table 4.3.

Table 4.2
The influence rules of members’ initial inventory levels on manufacturer’s base stock level

Pricing strategy Case a Case b Case c Case d
DD Im

t (◦), Ir
t (−)1 Im

t (◦), Ir
t (−) Im

t (◦), Ir
t (−) Im

t (◦), Ir
t (−)

DS Im
t (◦), Ir

t (−) Im
t (◦), Ir

t (−) Im
t (◦), Ir

t (−) Im
t (◦), Ir

t (−)
SD Im

t (◦), Ir
t (−) Im

t (◦), Ir
t (−) Im

t (◦), Ir
t (◦) Im

t (◦), Ir
t (◦)

SS Im
t (◦), Ir

t (−) Im
t (◦), Ir

t (−) Im
t (◦), Ir

t (◦) Im
t (◦), Ir

t (◦)
1 Im

t (◦) or Ir
t (◦) denotes manufacturer’s base stock level is independent of Im

t or Ir
t . Im

t (−) or
Ir

t (−) denotes manufacturer’s base stock level is negatively correlated with Im
t or Ir

t .

Table 4.3
The influence rules of members’ initial inventory levels on retailer’s base stock level

Pricing strategy Case a Case b Case c Case d
DD Im

t (◦), Ir
t (◦)1 Im

t (−), Ir
t (−) Im

t (◦), Ir
t (−) Im

t (−), Ir
t (−)

DS Im
t (◦), Ir

t (◦) Im
t (◦), Ir

t (◦) Im
t (◦), Ir

t (◦) Im
t (◦), Ir

t (◦)
SD Im

t (◦), Ir
t (◦) Im

t (−), Ir
t (−) Im

t (◦), Ir
t (◦) Im

t (−), Ir
t (◦)

SS Im
t (◦), Ir

t (◦) Im
t (◦), Ir

t (◦) Im
t (◦), Ir

t (◦) Im
t (◦), Ir

t (◦)
1 Im

t (◦) or Ir
t (◦) denotes retailer’s base stock level is independent of Im

t or Ir
t . Im

t (−) or Ir
t (−)

denotes retailer’s base stock level is negatively correlated with Im
t or Ir

t .
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Corollary 4.4 shows that under different pricing strategies, members’ base stock

levels may be independent of or negatively affected by their initial inventory levels.

Particularly, manufacturer’s base stock level is independent of its initial inventory

level under different pricing strategies, and retailer’s base stock level is indepen-

dent of members’ initial inventory levels when manufacturer takes static pricing.

Moreover, the influence rules on manufacturer’s base stock level are not affected by

manufacturer’s pricing strategy behavior.

Corollaries 4.3 and 4.4 also indicate that, under different pricing strategies, the

information on retailer’s initial inventory level is necessary for the manufacturer to

obtain its base stock levels and make its production and pricing decisions. Under

the pricing strategies where the manufacturer takes static pricing strategy, the in-

formation on manufacturer’s initial inventory level is not required for the retailer to

obtain its base stock levels as well as make the ordering and pricing decisions. There-

fore, in the joint pricing and inventory management of the dual-channel system, the

manufacturer should concern itself with the retailer’s inventory information in addi-

tion to its own inventory information regardless of the pricing strategies. However,

the retailer only needs to focus on its own inventory information under the pricing

strategies where the manufacturer takes static pricing strategy.

4.5 Numerical studies

In this section, we use numerical experiments to illustrate the proposed the-

oretical results and compare members expected discounted profits under different

pricing strategies. The initial values of parameters for the dual-channel supply chain

are set as follows: c = cm = 10, w = cr = 15, a = 200, θ = 0.4, α1 = 4, α2 = 6,

β = 2, ρ = 0.9, hm(x) = hr(x) = x+ + 23x−, ϵm
t ∈ [−20, 20], ϵr

t ∈ [−20, 20].

We first analyze the optimal pricing and inventory decisions of period 2 under

different pricing strategies to demonstrate the characterized structural properties of

the optimal joint pricing and inventory polices of a dual-channel supply chain. Then,

with the calculated policies of period 2, we calculate the optimal decisions of period

1 and members’ expected discounted profits under different pricing strategies to get

some managerial insights. The optimal pricing and inventory policies of period 2
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under different pricing strategies are shown in Tables 4.4 to 4.7.

Table 4.4
Optimal pricing and inventory policy of period 2 under DD strategy

Case a 1 Case b Case c Case d
pm

2 21.36 35.92 − 0.14(Im
2 + Ir

2) 22.61 − 0.03Ir
2 31.48 − 0.15Im

2 − 0.05Ir
2

ym
2 53.33 1.14(Im

2 + Ir
2) − 66.75 60.21 − 0.11Ir

2 Im
2

pr
2 21.06 23.49 − 0.02(Im

2 + Ir
2) 26.99 − 0.12Ir

2 29.42 − 0.04Im
2 − 0.12Ir

2
yr

2 52.2 66.75 − 0.14(Im
2 + Ir

2) Ir
2 Ir

2
1 Case a: Ir

2 < 52.2, Im
2 < 105.53 − Ir

2 ; Case b: Ir
2 < 66.75 − 0.14(Im

2 + Ir
2 ), Im

2 ≥ 105.53 − Ir
2 ;

Case c: Ir
2 ≥ 53.45 − 0.03Ir

2 , Im
2 < 60.21 − 0.11Ir

2 ; Case d: Ir
2 ≥ 62.32 − 0.15Im

2 − 0.05Ir
2 ,

Im
2 ≥ 60.21 − 0.11Ir

2 .

Table 4.5
Optimal pricing and inventory policy of period 2 for any pm under DS strategy

Case a1 Case b Case c Case d
ym

2 131.67 − 3.67pm Im
2 + Ir

2 − pm − 30.83 138.27 − 3.45pm −
0.21Ir

2

Im
2

pr
2 17.5 + 0.17pm 17.5 + 0.17pm 20.8 + 0.27pm −

0.11Ir
2

20.8 + 0.27pm −
0.11Ir

2
yr

2 30.83 + pm 30.83 + pm Ir
2 Ir

2
1 Case a: Ir

2 < 30.83 + pm, Im
2 < 162.5 − 2.67pm − Ir

2 ; Case b: Ir
2 < 30.83 + pm, Im

2 ≥
162.5 − 2.67pm − Ir

2 ; Case c: Ir
2 ≥ 30.83 + pm, Im

2 < 138.27 − 3.45pm − 0.21Ir
2 ; Case d:

Ir
2 ≥ 30.83 + pm, Im

2 ≥ 138.27 − 3.45pm − 0.21Ir
2 .

Table 4.6
Optimal pricing and inventory policy of period 2 for any pr under SD strategy

Case a1 Case b Case c Case d
pm

2 16.25 + 0.25pr 39.33 − 0.12pr − 0.27(Im
2 + Ir

2) 15 + 0.25pr 20 + 0.39pr −
0.14Im

2
ym

2 31.67 + pr 1.23(Im
2 + Ir

2) + 6.54pr − 214.49 36.67 + pr Im
2

yr
2 168.33 − 5.5pr 214.49 − 6.54pr − 0.23(Im

2 + Ir
2) d Ir

2 Ir
2

1 Case a: Ir
2 < 168.33−5.5pr, Im

2 < 200−4.5pr −Ir
2 ; Case b: Ir

2 < 214.49−6.54pr −0.23(Im
2 +Ir

2 ),
Im

2 ≥ 200 − 4.5pr − Ir
2 ; Case c: Ir

2 ≥ 165.83 − 5.5pr, Im
2 < 36.67 + pr; Case d: Ir

2 ≥ 175.83 −
5.23pr − 0.27Im

2 , Im
2 ≥ 36.67 + pr.

Tables 4.4 to 4.7 further identify that: (i) under DD strategy, higher members’

initial inventory levels would lead to lower selling prices of dual channels when

manufacturer’s initial inventory level is above its base stock level, (ii) under DS

strategy, higher retailer’s initial inventory level would cause lower retail price when

retailer’s initial inventory level is above its base stock level, and (iii) under SD

strategy, higher manufacturer’s initial inventory level would lead to lower online

price when manufacturer’s initial inventory level is above its base stock level.
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Table 4.7
Optimal inventory decisions of period 2 under SS strategy

Case a 1 Case b Case c Case d
ym

2 96.67 − 4pm + 2pr Im
2 + Ir

2 + 6pr − 2pm − 135.83 96.67 − 4pm + 2pr Im
2

yr
2 135.83 − 6pr + 2pm 135.83 − 6pr + 2pm Ir

2 Ir
2

1 Case a: Ir
2 < 135.83−6pr +2pm, Im

2 < 232.5−4pr −2pm −Ir
2 ; Case b: Ir

2 < 135.83−6pr +2pm,
Im

2 ≥ 232.5 − 4pr − 2pm − Ir
2 ; Case c: Ir

2 ≥ 135.83 − 6pr + 2pm, Im
2 < 96.67 − 4pm + 2pr; Case

d: Ir
2 ≥ 135.83 − 6pr + 2pm, Im

2 ≥ 96.67 − 4pm + 2pr.

The optimal prices and inventory decisions of period 1 and members’ expected

discounted profits under different pricing strategies are shown in Table 4.8. From

Table 4.8, we can find that, for the four different pricing strategies, members’ opti-

mal decisions of period 2 are under case a when ϵm
t ∈ [−20, 20] and ϵr

t ∈ [−20, 20].

Moreover, manufacturer’s expected discounted profits under different pricing strate-

gies have the following order E[V m−DD
1 ] = E[V m−DS

1 ] = E[V m−SS
1 ] > E[V m−SD

1 ],

and retailer’s expected discounted profits under different pricing strategies have the

following order E[V r−SD
1 ] > E[V r−DD

1 ] = E[V r−SS
1 ] = E[V r−SD

1 ].

Table 4.8
Optimal prices, inventory decisions and expected discounted profits under different pricing
strategies

pm
2 ym

2 pr
2 yr

2 pm
1 ym

1 pr
1 yr

1 E[V m
1 ] E[V r

1 ]
DD 21.36 53.33 21.06 52.2 21.36 53.33 21.06 52.2 1146.62 333.63
DS 21.36 53.33 21.06 52.2 21.36 53.33 21.06 52.2 1146.62 333.63
SD 21.55 52.87 21.2 51.73 21.4 53.48 21.2 51.42 1144.86 335.9
SS 21.36 53.33 21.06 52.2 21.36 53.33 21.06 52.2 1146.62 333.63

To better understand the relationship of members’ expected discounted profits

under different pricing strategies, we further calculate members’ expected discounted

profits with different values of market parameters including demand uncertainties

(ϵm
t and ϵr

t ), market size a, customers’ preference for the direct online channel θ,

and price sensitivities (α1, α2, and β). The effects of demand uncertainties, market

size and channel preference, and price sensitivities on the relationship of members’

profits under different pricing strategies are displayed in Section 4.5.1, Section 4.5.2,

and Section 4.5.3 respectively.
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4.5.1 Effects of demand varieties

We calculate members’ expected discounted profits with different demand vari-

eties including ϵm
t ∈ [−40, 40] and ϵr

t ∈ [−20, 20]; ϵm
t ∈ [−20, 20] and ϵr

t ∈ [−40, 40];

and ϵm
t ∈ [−40, 40] and ϵr

t ∈ [−40, 40]. The calculated results of members’ expected

discounted profits with different demand varieties are shown in Table 4.9.

Table 4.9
Members’ expected discounted profits with different uncertainty degrees of the demand

ϵm
t ∈ [−40, 40], ϵr

t ∈ [−20, 20] ϵm
t ∈ [−20, 20], ϵr

t ∈ [−40, 40] ϵm
t , ϵr

t ∈ [−40, 40]
E[V m

1 ] E[V r
1 ] E[V m

1 ] E[V r
1 ] E[V m

1 ] E[V r
1 ]

DD 1076.95 333.63 1225.88 248.27 1154.55 248.27
DS 1076.95 333.63 1226 248.3 1155.07 243.65
SD 1075.19 335.9 1224.93 250.08 1153.03 250.25
SS 1076.95 333.63 1226.18 248.11 1155.26 243.48

Tables 4.8 and 4.9 show that, the relationship of members’ profits under different

pricing strategies is affected by the degree of demand uncertainty. Moreover, for the

situations of ϵr
t ∈ [−20, 20], if the manufacturer takes dynamic pricing strategy (DD

or SD), it is optimal for the retailer to choose static pricing strategy (SD) because of

E[V r−SD
1 ] > E[V r−DD

1 ], and if the manufacturer uses static pricing strategy (DS or

SS), the retailer’s optimal strategy is dynamic or static pricing strategy (DS or SS)

because of E[V r−SS
1 ] = E[V r−DS

1 ]. As for the manufacturer, if the retailer uses dy-

namic pricing strategy (DD or DS), it is optimal to choose dynamic or static pricing

strategy (DD or DS) because of E[V m−DD
1 ] = E[V m−DS

1 ], and if the retailer takes

static pricing strategy (SD or SS), its optimal strategy is static pricing strategy (SS)

because of E[V m−SS
1 ] > E[V m−SD

1 ]. For the situations of ϵr
t ∈ [−40, 40], if the man-

ufacturer takes dynamic pricing strategy (DD or SD), it is optimal for the retailer

to choose static pricing strategy (SD) because of E[V r−SD
1 ] > E[V r−DD

1 ], and if the

manufacturer uses static pricing strategy (DS or SS), the retailer’s optimal strategy

is dynamic pricing strategy (DS) because of E[V r−DS
1 ] > E[V r−SS

1 ]. As for the man-

ufacturer, if the retailer takes dynamic pricing strategy (DD or DS), it is optimal to

choose static pricing strategy (DS) because of E[V m−DS
1 ] > E[V m−DD

1 ], and if the

retailer takes static pricing strategy (SD or SS), it is optimal to choose static pricing

strategy (SS) because of E[V m−SS
1 ] > E[V m−SD

1 ]. Considering manufacturer and

retailer are rational and independent in deciding which pricing strategy to take, the
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strategic interaction of the manufacturer and retailer in choosing pricing strategy

is a two-player strategic game where the manufacturer and retailer are the players,

{dynamic pricing strategy, static pricing strategy} is the set of pure strategies of the

manufacturer or retailer, and the expected discounted profits under four different

pricing strategies (DD, DS, SD and SS) are the players’ payoffs. Therefore, from the

above interpretation of results in Tables 4.8 and 4.9, we can find that, DS strategy

and SS strategy are the Nash equilibriums of the two-player strategic game when

ϵr
t ∈ [−20, 20], and DS strategy is the Nash equilibrium of the two-player strategic

game when ϵr
t ∈ [−40, 40]. This implies that DS or SS strategy is a Nash equilib-

rium for the dual-channel supply chain when the degree of demand uncertainty in

the retail channel is low, and DS strategy is a Nash equilibrium for the dual-channel

supply chain when the degree of demand uncertainty in the retail channel is high.

We can also find, if the manufacturer has the power to control the pricing strat-

egy choice of the other member and only focuses on its own performances under

different pricing strategies, it will think SS strategy is the best while SD is the

worst. And if the retailer has the power to control the pricing strategy choice of

the other member and only focuses on its own performances under different pricing

strategies, it will think SD strategy is the best while SS is the worst. Therefore, if

the manufacturer and retailer are self-interested and dependent in choosing pricing

strategy, the manufacturer would prefer static pricing strategy and hope the retailer

also takes static pricing strategy, and the retailer would prefer static pricing strategy

and hope the manufacturer takes dynamic pricing strategy. This causes confliction

between the manufacturer and retailer. To solve this confliction, the manufacturer

can take a portion of its profit to compensate the retailer for choosing static pricing

strategy if the relative benefit for manufacturer from SS is higher than the relative

benefit for retailer from SD, otherwise the retailer can take a portion of its profit to

compensate the manufacturer for choosing dynamic pricing strategy.

4.5.2 Effects of market size and channel preference

In this subsection, for convenience, we use percentage change in members’

profits from one pricing strategy to another pricing strategy to quantify the re-

lationship of members’ profits under different pricing strategies. We let γr−x =
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E[V r−DD
1 ]−E[V r−x

1 ]
E[V r−x

1 ] × 100% and γm−x = E[V m−DD
1 ]−E[V m−x

1 ]
E[V m−x

1 ] × 100% denote percentage

change in retailer’s profit and manufacturer’s profit from x strategy to DD strat-

egy, where x ∈ {DS, SD, SS}; let ηr−x = E[V r−DS
1 ]−E[V r−x

1 ]
E[V r−x

1 ] × 100% and ηm−x =
E[V m−DS

1 ]−E[V m−x
1 ]

E[V m−x
1 ] × 100% denote the percentage change in retailer’s profit and man-

ufacturer’s profit from x strategy to DS strategy, where x ∈ {SD, SS}; and let

λr−x = E[V r−SD
1 ]−E[V r−x

1 ]
E[V r−x

1 ] × 100% and λm−x = E[V m−SD
1 ]−E[V m−x

1 ]
E[V m−x

1 ] × 100% denote the

percentage change in retailer’s profit and manufacturer’s profit from x strategy to

SD strategy, where x ∈ {SS}.

Through calculating the optimal pricing and inventory decisions at different

values of market size and channel preference, we find that, for any value of chan-

nel preference, when the market size is larger than a specified value, the optimal

decisions of each period under different pricing strategies belong to case a where

members should charge list prices and replenish inventories. Therefore, we first in-

vestigate the effects of market size and channel preference θ on percentage change

in profits under case a, which are shown in Fig.4.1 and Fig.4.2.

The results shown in Fig.4.1 and Fig.4.2 reveal that, when members are optimal

to charge list prices and replenish inventory in each period, DD, DS, and SS strategies

have the same performance in terms of profitability. However, the performance of

DD, DS, and SS strategies differs from that of SD strategy. Specifically, as shown

in Fig.4.1(a)-(e), when customers’ preference for the direct channel θ is relatively

low, with the increase in market size, the percentage change in manufacturer’s profit

from SD strategy to DD strategy decreases from positive to negative values, while

the percentage change in retailer’s profit from SD strategy to DD strategy increases

from negative to positive values. Moreover, there exists a situation where both

of them are negative values. These imply that, when customers’ preference for

the direct channel is relatively low, as the market size increases, SD strategy first

underperforms other strategies for manufacturer but outperforms other strategies for

retailer, then it performs better than other strategies for both members, and lastly

it outperforms other strategies for manufacturer but underperforms other strategies

for retailer. Fig.4.1(f) shows that there exist situations where SD strategy first

performs better than other strategies for both members, and then it outperforms

other strategies for manufacturer but underperforms other strategies for retailer as
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(b) θ = 0.3
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(c) θ = 0.4
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(d) θ = 0.5
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(e) θ = 0.55
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Fig. 4.1. Effects of market size and channel preference on percentage change in profits
under case a

the market size increases. Fig.4.2(a)-(c) indicate that, when customers’ preference

for the direct channel is relatively high, for any market size under case a, SD strategy

outperforms other strategies for manufacturer but underperforms other strategies for

retailer.

Similar to the analysis in Section 4.5.1, from Fig.4.1 and Fig.4.2, we can also get

that if customers’ preference for the direct channel θ is low, DS or SS strategy is a

Nash equilibrium for the dual-channel supply chain when the market size is small,
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(a) θ = 0.6

200 250 300 350 400 450 500 550 600

market size

-0.5

0

0.5

1

1.5

2

2.5

3

pe
rc

en
ta

ge
 c

ha
ng

e 
in

 p
ro

fit
s

r-SD

m-SD

r-DS/ m-DS/ r-SS/ m-SS

(b) θ = 0.7
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(c) θ = 0.8

Fig. 4.2. Effects of market size and channel preference on percentage change in profits
under case a

DS or DD strategy is a Nash equilibrium for the dual-channel supply chain when the

market size is large, and SD strategy is the optimal strategy for the dual-channel

supply chain within a certain range of market size. Moreover, DS or DD strategy

is a Nash equilibrium for the dual-channel supply chain if customers’ preference for

the direct channel θ is high.

Next, we analyze the effects of market size and channel preference θ when market

size is below the value that ensures pricing and inventory decisions under case a are

optimal. After observing the patterns of percentage change in profits at different

channel preferences θ in Fig.4.1 and Fig.4.2, we select four channel preferences (θ =

0.4, θ = 0.59, θ = 0.6, and θ = 0.8) as representative samples for analysis. Effects

of market size and channel preference on percentage change in profits at the four

different channel preferences are shown in Fig.4.3.

From Fig.4.3, we see that values of percentage change in profits from DD strategy

to DS strategy (γr−DS and γm−DS) are close to zero, which is also indirectly reflected
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(a) Change in retailer profit with θ = 0.4
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(b) Change in manufacturer profit with
θ = 0.4
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(c) Change in retailer profit with θ =
0.59
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(d) Change in manufacturer profit with
θ = 0.59
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(e) Change in retailer profit with θ = 0.6
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(f) Change in manufacturer profit with
θ = 0.6
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(g) Change in retailer profit with θ = 0.8
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(h) Change in manufacturer profit with
θ = 0.8

Fig. 4.3. Effects of market size and channel preference on percentage change in profits
when market size is below the value that ensures decisions under case a are optimal
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by the observation that the line of percentage change in profits from DD strategy to

SS or SD strategy is relatively close to the line of percentage change in profits from

DS strategy to SS or SD strategy (see, e.g., lines of γr−SS and ηr−SS). Besides, as

shown in Fig.4.3, γr−DS is less than zero, and γm−DS is also less than zero except

the case of θ = 0.8. This indicates that the performance of DS strategy is nearly

equal to or even better than that of DD strategy for manufacturer and retailer.

From Fig.4.3, we get the comparison results of members profits under different

pricing strategies when market size is below the value that ensures pricing and

inventory decisions under case a are optimal. For convince, the results are presented

in Table 4.10, where x < y denotes a member’s expected discounted profit under

x strategy is lower than that under y strategy, x, y ∈ {DD, DS, SD, SS}, and

U ; V means the relationship of members’ profits first is U and then becomes V

as the market size increases. Specifically, (i) in the case of θ = 0.4, SD strategy

performs better than other strategies for retailer, SS strategy performs better than

other strategies for manufacturer, and SD strategy performs better than DD and DS

strategies for both manufacturer and retailer; (ii) in the case of θ = 0.59, DS strategy

outperforms other strategies for retailer when the market size is relatively low, SD

strategy outperforms other strategies for retailer when the market size is relatively

high, and SS strategy outperforms other strategies for manufacturer; (iii) in the

case of θ = 0.6, DS strategy outperforms other strategies for retailer, SS strategy

outperforms other strategies for manufacturer, and SS strategy outperforms SD

strategy for both members; (iv) in the case of θ = 0.8, SS strategy outperforms other

strategies for retailer, DD strategy outperforms other strategies for manufacturer,

and SS strategy outperforms better than SD strategy for both members. Table 11

also shows that DS strategy is the Nash equilibrium for the dual-channel supply

chain when θ = 0.4, θ = 0.59, and θ = 0.6, and DD or SS strategy is the Nash

equilibrium for the dual-channel supply chain when θ = 0.8.

Table 4.10
Relationship of manufacturer’s profits under different pricing strategies

θ Relationship of manufacturer’s profits
0.4 DD < DS < SD < SS; SD < DD < DS < SS
0.59 DD < DS < SD < SS; SD < DD < DS < SS
0.6 DD < DS < SD < SS; SD < DD < DS < SS
0.8 SD < SS < DS < DD
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Table 4.11
Relationship of retailer’s profits under different pricing strategies

θ Relationship of retailer’s profits
0.4 SS < DD < DS < SD
0.59 SD < SS < DD < DS; SS < DD < DS < SD
0.6 SD < SS < DD < DS
0.8 SD < DD < DS < SS

Fig.4.1, Fig.4.2, and Fig.4.3 show that the Nash equilibrium of manufacturer and

retailer in choosing pricing strategy is affected by market size and customers’ channel

preference. If customers’ preference for the direct channel is low, with the increase in

market size, the Nash equilibrium for the dual-channel supply chain has the following

order: DS strategy, DS/SS strategy, SD strategy, DS/DD strategy. If customers’

preference for the direct channel is high, with the increase in market size, the Nash

equilibrium changes from DS strategy into DS/DD strategy. And if customers’

preference for the direct channel is particularly high, the Nash equilibrium changes

from DD/SS strategy into DS/DD strategy as the market size increases.

From Fig.4.1, Fig.4.2, and Fig.4.3, we can also find that, the value of percentage

change in retailer’s profit is always larger than that of percentage change in man-

ufacturer’s profit. This implies that, the effect of changing pricing strategy on the

follower’s profit is larger than that on the leader’s profit in a dual-channel supply

chain. This is contributed to the fact that the follower needs to make decisions after

the leader.

4.5.3 Effects of price sensitivities

In this subsection, we examine how the price sensitivity to demand in online

channel α1, the price sensitivity to demand in retail channel α2, and the cross-

channel price sensitivity β affect the relationship of members profits under different

pricing strategies, respectively.

As shown in Fig.4.4, the best pricing strategy for manufacturer or retailer may

change as any of the price sensitivities (α1, α2, and β) changes. Specifically, with

the increase in α1 or α2, the best pricing strategy for the manufacturer may change

from SD strategy into DD/DS/SS strategy, while the best pricing strategy for the

retailer may change from DD/DS/SS strategy into SD strategy. With the increase
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Fig. 4.4. Effects of price sensitivities on percentage change in profits

in β, the best pricing strategy for the manufacturer may change from DD/DS/SS

strategy into SD strategy, while the best pricing strategy for the retailer may change

from SD strategy into DD/DS/SS strategy. Moreover, SD strategy can be the best

pricing strategy for both manufacturer and retailer.

Fig.4.4 demonstrates that, DS or DD strategy is the Nash equilibrium for the

dual-channel supply chain with low price sensitivity to demand in a channel or with

high cross-channel price sensitivity, DS or SS strategy is the Nash equilibrium for

the dual-channel supply chain with high price sensitivity to demand in a channel or

with low cross-channel price sensitivity, and SD strategy may be the best pricing

strategy for the dual-channel supply chain when the price sensitivities change in a

certain range.
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4.6 Conclusions

This chapter considers a dual-channel supply chain with one manufacturer and

one retailer where demand is stochastic and price sensitive, and both members can

take dynamic or static pricing strategy. The main purpose of this chapter is to

investigate and compare the optimal joint pricing and inventory control policies of a

dual-channel supply chain under four different pricing strategies (i.e., DD strategy,

DS strategy, SD strategy and SS strategy).

We find that, under each of the four different pricing strategies, the optimal

inventory control policy of a dual-channel supply chain is a base-stock type, that

is, the member is optimal to replenish its inventory up to its base stock level if

its starting inventory level is below its base stock level, otherwise it should not re-

plenish. The structural properties of the optimal pricing policy under DD strategy

are different from that under the other pricing strategies. Specifically, under DD

strategy, members are optimal to charge list prices if their initial inventory levels are

both below their respective base stock levels, otherwise they should reduce selling

prices. Under the other pricing strategies, the member who adopts dynamic pricing

is optimal to charge a list price if its initial inventory level is below its base stock

level, otherwise it should reduce its selling price. Moreover, members’ optimal dy-

namic prices and base stock levels are independent of or negatively correlated with

members’ starting inventory levels. From the numerical analysis, we find that, the

performance comparison results of different pricing strategies are affected by the

degree of demand uncertainty in the retail channel, customers’ channel preference,

market size, and price sensitivities. For the situation where the manufacturer and

retailer are rational and independent in choosing dynamic or static pricing strategy,

DS or SS strategy is a Nash equilibrium for the dual-channel supply chain if the

degree of demand uncertainty in the retail channel is low, otherwise DS strategy

is a Nash equilibrium. If customers’ preference for the direct channel is low, the

Nash equilibrium changes as the market size increases in the following sequence: DS

strategy, DS or SS strategy, SD strategy, DS or DD strategy. With the increase

in the market size, the Nash equilibrium changes from DS strategy into DS or DD

strategy if customers’ preference for the direct channel is high and changes from DD
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or SS strategy into DS or DD strategy if customers’ preference for the direct channel

is particularly high. DS or DD strategy is a Nash equilibrium if the price sensitivity

to demand in a channel is low or the cross-channel price sensitivity is high, and DS

or SS strategy is a Nash equilibrium if the price sensitivity to demand in a channel

is high or the cross-channel price sensitivity is low. For the situation where supply

chain members are rational and dependent in choosing pricing strategy, the manu-

facturer should take a portion of its profit to compensate the retailer for choosing

static pricing strategy if the relative benefit for manufacturer from SS is higher than

the relative benefit for retailer from SD, otherwise the retailer can take a portion

of its profit to compensate the manufacturer for choosing dynamic pricing strategy.

The amount of compensation depends on the negotiation between the manufacturer

and retailer.

4.7 Appendices

Proof of Lemma 4.1

Since V m−DS
3 = (cm−c)Im

3 is concave in Im
3 , similar to Lemma 2.1, Jm−DS

2 (dm
2 , ym

2 )

is jointly concave in (dm
2 , ym

2 ) can be proved. Next, we will prove Jm−DS
1 (dm

1 , ym
1 ) is

jointly concave in (dm
1 , ym

1 ).

Jm−DS
1 (dm

1 , ym
1 ) consists of three parts: (1) dm

1 (pm(dm
1 ) − ρc) + (w − c)(yr

1 − Ir
1) −

cym
1 (1 − ρ); (2) −E[hm(ym

1 − dm
1 − ϵm

1 )]; and (3) ρE[V m−DS
2 (ym

1 − dm
1 − ϵm

1 )]. Similar

to Lemma 2.1, we can get that parts (1) and (2) are jointly concave in (dm
1 , ym

1 ).

For (3), V m−DS
2 (ym

1 − dm
1 − ϵm

1 ) = max
ym

2
Jm−DS

2 (dm
2 , ym

2 ), where Jm−DS
2 (dm

2 , ym
2 ) =

dm
2 (pm(dm

2 )−ρc)+(w−c)(yr
2−Ir

2)−cym
2 (1−ρ)−E[hm(ym

2 −dm
2 −ϵm

2 )]+ρE[V m−DS
3 (ym

2 −

dm
2 − ϵm

2 )] and ym
2 − Im

2 + yr
2 − Ir

2 ≥ 0. It is obvious that the optimal solution

of ym
2 should be Im

2 + Ir
2 − yr

2 or be derived with ∂Jm−DS
2 (dm

2 ,ym
2 )

∂ym
2

= −c(1 − ρ) −
∂E[hm(ym

2 −dm
2 −ϵm

2 )]
∂(ym

2 −dm
2 ) + ρ

∂E[V m−DS
3 (ym

2 −dm
2 −ϵm

2 )]
∂(ym

2 −dm
2 ) = 0. As Proposition 2.1 is also true under

DS strategy, that is both of dm
2 and dm

1 are negatively correlated with pm, we can

get that dm
2 in Jm−DS

2 (dm
2 , ym

2 ) is positively correlated with dm
1 . Therefore, when

the optimal solution of ym
2 is derived with ∂Jm−DS

2 (dm
2 ,ym

2 )
∂ym

2
= 0, we can get that

V m−DS
2 (ym

1 − dm
1 − ϵm

1 ) is concave in dm
1 . When the optimal solution of ym

2 is Im
2 +

Ir
2 − yr

2, we can get that V m−DS
2 (ym

1 − dm
1 − ϵm

1 ) is concave in ym
1 and dm

1 . Since
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expectation preserves concavity, we get ρE[V m−DS
2 (ym

1 −dm
1 − ϵm

1 )] is jointly concave

in (dm
1 , ym

1 ). Hence, Lemma 4.1 is completely proved.

Proof of Theorem 4.1

It is obvious that Theorem 4.1 is true for t = 1. Since Jr−DS
2 (dr

2, yr
2) is jointly

concave in (dr
2, yr

2) and Jm−DS
2 (dm

2 , ym
2 ) is jointly concave in (dm

2 , ym
2 ), similar to

Theorem 2.3, Theorem 4.1 for t = 2 in which pm is given can be easily proved.

Proof of Lemma 4.2

Since V r−SD
3 = (cr − w)Ir

3 is concave in Ir
3 , similar to Lemma 4.2, Jr−SD

2 (dr
2, yr

2)

is jointly concave in (dr
2, yr

2) can be proved. Next, we will prove Jr−SD
1 (dr

1, yr
1) is

jointly concave in (dr
1, yr

1) for any given (pm
1 , ym

1 ).

Jr−SD
1 (dr

1, yr
1) consists of three parts: (1) dr

1(pr(dr
1) − ρw) − yr

1w(1 − ρ), (2)

−E[hr(yr
1 −dr

1 − ϵr
1)], and (3) ρE[V r−SD

2 (yr
1 −dr

1 − ϵr
1)]. Similar to Lemma 2.1, we can

get that parts (1) and (2) are jointly concave in (dr
1, yr

1). For (3), V r−SD
2 (yr

1−dr
1−ϵr

1) =

max
yr

2
Jr−SD

2 (dr
2, yr

2), where Jr−SD
2 (dr

2, yr
2) = dr

2(pr(dr
2)−ρw)−yr

2w(1−ρ)−E[hr(yr
2−dr

2−

ϵr
2)]+ρE[V r−SD

3 (yr
2 −dr

2 −ϵr
2)] and yr

2 −Ir
2 ≥ 0. It is obvious that the optimal solution

of yr
2 should be Ir

2 or be derived with ∂Jr−SD
2 (dr

2,yr
2)

∂yr
2

= −w(1 − ρ) − ∂E[hr(yr
2−dr

2−ϵr
2)]

∂(yr
2−dr

2) +

ρ
∂E[V r−SD

3 (yr
2−dr

2−ϵr
2)]

∂(yr
2−dr

2) = 0. As both of dr
2 and dr

1 are negatively correlated with pr,

we can get that dr
2 in Jr−SD

2 (dr
2, yr

2) is positively correlated with dr
1. Therefore,

when the optimal solution of yr
2 is derived with ∂Jr−SD

2 (dr
2,yr

2)
∂yr

2
= 0, we can get that

V r−SD
2 (yr

1 − dr
1 − ϵr

1) is concave in dr
1. When the optimal solution of yr

2 is Ir
2 , we can

get that V r−SD
2 (yr

1 − dr
1 − ϵr

1) is concave in yr
1 and dr

1. Since expectation preserves

concavity, we get ρE[V r−SD
2 (yr

1 − dr
1 − ϵr

1)] is jointly concave in (dr
1, yr

1). Hence,

Lemma 4.2 is completely proved.

Proof of Proposition 4.1

For t = 2, with any given pr, it is obvious that pm
2 (dm

2 ) = θa+βpr−dm
2

α1
is strictly de-

creasing in dm
2 . The decision variable pm

2 can be replaced with dm
2 . For any (pm

2 , ym
2 ),

yr−SD′
2 is derived with ∂Jr−SD

2 (dr
2,yr

2)
∂yr

2
= −w(1−ρ)−∂E[hr(yr

2−dr
2−ϵr

2)]
∂(yr

2−dr
2) +ρ

∂E[V r−SD
3 (yr

2−dr
2−ϵr

2)]
∂(yr

2−dr
2) =

0. In view of ∂Jr−SD
2 (dr

2,yr
2)

∂yr
2

and dr
t = (1 − θ)a − α2p

r + βpm
t , we get that ∂yr−SD′

2
∂pm

2
=

∂dr
2

∂pm
2

= β.

(1) Under the scenario where Ir
2 < yr−SD′

2 , Jm−SD
2 (dm

2 , ym
2 ) = dm

2 (pm
2 (dm

2 ) − ρc) +

(w−c)(yr−SD′
2 −Ir

2)−cym
2 (1−ρ)−E[hm(ym

2 −dm
2 −ϵm

2 )]+ρE[V m−SD
3 (ym

2 −dm
2 −ϵm

2 )].

Get (dm−SD(1)′
2 , y

m−SD(1)′
2 ) with ∂Jm−SD

2 (dm
2 ,ym

2 )
∂dm

2
= 0 and ∂Jm−SD

2 (dm
2 ,ym

2 )
∂ym

2
= 0, where
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∂Jm−SD
2 (dm

2 ,ym
2 )

∂dm
2

= θa+βpr−2dm
2

α1
−ρc−(w−c) β

α1
+ ∂E[hm(ym

2 −dm
2 −ϵm

2 )]
∂(ym

2 −dm
2 ) −ρ

∂E[V m−SD
3 (ym

2 −dm
2 −ϵm

2 )]
∂(ym

2 −dm
2 )

and ∂Jm−SD
2 (dm

2 ,ym
2 )

∂ym
2

= −(1 − ρ)c − ∂E[hm(ym
2 −dm

2 −ϵm
2 )]

∂(ym
2 −dm

2 ) + ρ
∂E[V m−SD

3 (ym
2 −dm

2 −ϵm
2 )]

∂(ym
2 −dm

2 ) . If Im
2 <

y
m−SD(1)′
2 + yr−SD′

2 − Ir
2 , (dm−SD(1)′

2 , y
m−SD(1)′
2 ) is the optimal solution. Obviously,

∂d
m−SD(1)′
2

∂pr = β
2 .

Then, with dr
2 = (1 − θ)a − α2p

r + β
α1

pm
2 (dm

2 ), we get ∂d
r−SD(1)′
2

∂pr = β2−2α1α2
2α1

< 0. If

Im
2 ≥ y

m−SD(1)′
2 + yr−SD′

2 − Ir
2 , the optimal solution is (dm−SD(1)′

2 (Ir
2 , Im

2 ), Ir
2 + Im

2 −

yr−SD′
2 ). With ∂yr−SD′

2
∂pm

2
= β, we get 0 <

∂d
m−SD(1)′
2 (Ir

2 ,Im
2 )

∂pr < β
2 . Similarly, we can get

β2−2α1α2
2α1

<
∂d

r−SD(1)′
2 (Ir

2 ,Im
2 )

∂pr < β2−α1α2
α1

< 0.

(2) Under the scenario where Ir
2 ≥ yr−SD′

2 , Jm−SD
2 (dm

2 , ym
2 ) = dm

2 (pm
2 (dm

2 ) − ρc) −

cym
2 (1 − ρ) − E[hm(ym

2 − dm
2 − ϵm

2 )] + ρE[V m−SD
3 (ym

2 − dm
2 − ϵm

2 )]. ∂Jm−SD
2 (dm

2 ,ym
2 )

∂dm
2

=
θa+βpr−2dm

2
α1

− ρc + ∂E[hm(ym
2 −dm

2 −ϵm
2 )]

∂(ym
2 −dm

2 ) − ρ
∂E[V m−SD

3 (ym
2 −dm

2 −ϵm
2 )]

∂(ym
2 −dm

2 ) and ∂Jm−SD
2 (dm

2 ,ym
2 )

∂ym
2

=

−(1 − ρ)c − ∂E[hm(ym
2 −dm

2 −ϵm
2 )]

∂(ym
2 −dm

2 ) + ρ
∂E[V m−SD

3 (ym
2 −dm

2 −ϵm
2 )]

∂(ym
2 −dm

2 ) . Get (dm−SD(2)′
2 , y

m−SD(2)′
2 )

with ∂Jm−SD
2 (dm

2 ,ym
2 )

∂dm
2

= 0 and ∂Jm−SD
2 (dm

2 ,ym
2 )

∂ym
2

= 0. If Im
2 < y

m−SD(2)′
2 , the optimal solu-

tion of (dm
2 , ym

2 ) is (dm−SD(2)′
2 , y

m−SD(2)′
2 ). If Im

2 ≥ y
m−SD(2)′
2 , the optimal solution of

(dm
2 , ym

2 ) is (dm−SD(2)′
2 (Im

2 ), Im
2 ). Similar to (1), we get ∂d

r−SD(2)′
2

∂pr = β2−2α1α2
2α1

< 0 and
β2−2α1α2

2α1
<

∂d
r−SD(2)′
2 (Im

2 )
∂pr < β2−α1α2

α1
< 0.

With (1) and (2) which show that the optimal solution of dr
2 is negatively cor-

related with pr, we can get that V r−SD
2 (Ir

2) is concave in pr.

For t = 1, Jr−SD
1 (dr

1, yr
1) = dr

1(pr(dr
1) − ρw) − yr

1w(1 − ρ) − E[hr(yr
1 − dr

1 − ϵr
1)] +

ρE[V r−SD
2 (yr

1 −dr
1 − ϵr

1)]. For any (pm
1 , ym

1 ), get (dr−SD′
1 , yr−SD′

1 ) with ∂Jr−SD
1 (dr

1,yr
1)

∂dr
1

= 0

and ∂Jr−SD
1 (dr

1,yr
1)

∂yr
1

= 0, where ∂Jr−SD
1 (dr

1,yr
1)

∂dr
1

= (1−θ)a+βpm
1 −2dr

1
α2

− ρw + ∂E[hr(yr
1−dr

1−ϵr
1)]

∂(yr
1−dr

1) −

ρ
∂E[V r−SD

2 (yr
1−dr

1−ϵr
1)]

∂(yr
1−dr

1) + ρ
∂E[V r−SD

2 (yr
1−dr

1−ϵr
1)]

∂pr
∂pr

∂dr
1

and ∂Jr−SD
1 (dr

1,yr
1)

∂dr
1

= −∂E[hr(yr
1−dr

1−ϵr
1)]

∂(yr
1−dr

1) −

(1 − ρ)w + ρ
∂E[V r−SD

2 (yr
1−dr

1−ϵr
1)]

∂(yr
1−dr

1) . Then, with V r−SD
2 (Ir

2) is concave in pr and ∂pr

∂dr
1

=

− 1
α2

, we can get that 0 <
∂dr−SD′

1
∂pm

1
< β

2 . Then, with pr
t (dr

t ) = (1−θ)a+βpm
1 −2dr

1
α2

and

pm
t (dm

t ) = θa+βpr−SD′−dm
t

α1
, we can further get that pm

1 (dm
1 )

dm
1

< 0. Hence, Proposition 4.1

is completely proved.

Proof of Theorem 4.2

It is obvious that Theorem 4.2 is true for t = 1. For t = 2 in which pr is given,

with any given (pm
2 , ym

2 ), ∂yr−SD′
2
∂pm

2
= β which has been proved in Proposition 4.1.

(1) If Ir
2 < yr−SD′

2 , (dm−SD(1)⋆
2 , y

m−SD(1)⋆
2 ) is obtained with ∂Jm−SD

2 (dm
2 ,ym

2 )
∂dm

2
= 0

and ∂Jm−SD
2 (dm

2 ,ym
2 )

∂ym
2

= 0, where ∂Jm−SD
2 (dm

2 ,ym
2 )

∂dm
2

= θa+βpr−2dm
2

α1
− ρc − (w − c) β

α1
+

∂E[hm(ym
2 −dm

2 −ϵm
2 )]

∂(ym
2 −dm

2 ) − ρ
∂E[V m−SD

3 (ym
2 −dm

2 −ϵm
2 )]

∂(ym
2 −dm

2 ) and ∂Jm−SD
2 (dm

2 ,ym
2 )

∂ym
2

= −∂E[hm(ym
2 −dm

2 −ϵm
2 )]

∂(ym
2 −dm

2 ) −
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(1 − ρ)c + ρ
∂E[V m−SD

3 (ym
2 −dm

2 −ϵm
2 )]

∂(ym
2 −dm

2 ) .

It is obvious that, if Im
2 < y

m−SD(1)⋆
2 +yr−SD′

2 −Ir
2 , the optimal solution (pm−SD(1)⋆

2 ,

y
m−SD(1)⋆
2 ) is independent of Ir

2 and Im
2 . If Im

2 ≥ y
m−SD(1)⋆
2 +yr−SD′

2 −Ir
2 , the optimal

solution of ym
2 is Ir

2 + Im
2 − yr−SD′

2 . Since −E[hm(ym
2 − dm

2 − ϵm
2 )] + ρE[V m−SD

3 (ym
2 −

dm
2 − ϵm

2 )] is concave in ym
2 − dm

2 and ∂yr−SD′
2
∂pm

2
= β, we get that the optimal solution

d
m−SD(1)⋆
2 (Ir

2 , Im
2 ) is positively correlated with Ir

2 and Im
2 . Then, with pm

2 (dm
2 ) =

θa+βpr−dm
2

α1
and ∂yr−SD′

2
∂pm

2
= β, Theorem 4.2-(a) and 4.2-(b) are proved.

(2) If Ir
2 ≥ yr−SD′

2 , (dm−SD(2)⋆
2 , y

m−SD(2)⋆
2 ) is obtained with ∂Jm−SD

2 (dm
2 ,ym

2 )
∂dm

2
= 0

and ∂Jm−SD
2 (dm

2 ,ym
2 )

∂ym
2

= 0, where ∂Jm−SD
2 (dm

2 ,ym
2 )

∂dm
2

= θa+βpr−2dm
2

α1
− ρc + ∂E[hm(ym

2 −dm
2 −ϵm

2 )]
∂(ym

2 −dm
2 ) −

ρ
∂E[V m−SD

3 (ym
2 −dm

2 −ϵm
2 )]

∂(ym
2 −dm

2 ) and ∂Jm−SD
2 (dm

2 ,ym
2 )

∂ym
2

= −∂E[hm(ym
2 −dm

2 −ϵm
2 )]

∂(ym
2 −dm

2 ) +ρ
∂E[V m−SD

3 (ym
2 −dm

2 −ϵm
2 )]

∂(ym
2 −dm

2 ) −

(1 − ρ)c.

It is obvious that, if Im
2 < y

m−SD(2)⋆
2 , the optimal solution (pm−SD(2)⋆

2 , y
m−SD(2)⋆
2 )

is independent of Ir
2 and Im

2 . If Im
2 ≥ y

m−SD(2)⋆
2 , the optimal solution d

m−SD(2)′
2 (Im

2 )

is positively correlated with Im
2 due to the concavity of −E[hm(ym

2 − dm
2 − ϵm

2 )] +

ρE[V m−SD
3 (ym

2 − dm
2 − ϵm

2 )]. Then, with pm
2 (dm

2 ) = θa+βpr−dm
2

α1
and ∂yr−SD′

2
∂pm

2
= β,

Theorem 4.2-(c) and 4.2-(d) are proved.

Proof of Theorem 4.3

Similar to Theorem 4.2, Theorem 4.3 can be easily proved.
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Chapter 5

Conclusions

This dissertation focuses on the joint pricing and inventory control problems of a

multi-period dual-channel supply chain with stochastic and price-sensitive demand.

The problem faced by either of the members in the dual-channel supply chain is to

determine their joint pricing and inventory control policy to maximize their respec-

tive total expected profits over the finite planning horizon with multiple periods. To

analyze the structural properties of the optimal joint pricing and inventory control

policies, we establish mathematical models for the problem faced by either of the

members with stochastic dynamic programming, introduce a transformation tech-

nique to facilitate the analysis, and formulate the interaction relationship between

the two dual-channel members with game theory. Moreover, numerical studies are

conducted to get some managerial insights. In Chapters 2 and 3, the optimal joint

dynamic pricing and inventory control policies of a dual-channel supply chain under

different channel power structures are analyzed and compared. The effects of the

dual-channel setting and the channel power structure on the optimal joint dynamic

pricing and inventory control policy are clarified. In Chapter 4, the optimal joint

pricing and inventory control policies of a dual-channel supply chain under differ-

ent pricing strategies are analyzed and compared. Moreover, the performance of

dynamic pricing and static pricing in the dual-channel supply chain with inventory

control is compared, and the effects of market parameters on the comparison results

are clarified.

Results of this dissertation can provide several insights into the joint pricing

and inventory management for a dual-channel supply chain where the demand is
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stochastic with additive form. First, the optimal joint dynamic pricing and inven-

tory control policy belongs to a base-stock-list-price type, that is, a member should

produce or order goods only if its starting inventory level is below its base stock

level, and list prices should be charged only when both members’ starting inven-

tory levels are below their respective base stock levels. Moreover, as long as one

member’s starting inventory level is above its base stock level, both members should

reduce prices. The higher the initial inventory level exceeds the base stock level,

the lower the reduced prices. The base stock levels of manufacturer and retailer are

independent of or correlated with their initial inventory levels. Second, the above

described structural properties of the optimal joint dynamic pricing and inventory

control policy are not affected by the channel power structure as well as the dual-

channel setting. Third, whether the member takes dynamic pricing strategy or not,

the optimal inventory control policy of a dual-channel supply chain is a base-stock

type, that is, the member is optimal to replenish its inventory up to its base stock

level if its starting inventory level is below its base stock level, otherwise it should

not replenish. When only one member chooses to take dynamic pricing strategy, the

member who adopts dynamic pricing is optimal to charge a list price if its initial

inventory level is below its base stock level, otherwise it should reduce its selling

price. Last, integrating dynamic pricing strategy into inventory management may

underperform the traditional inventory control policy with static pricing strategy in

coping with additive demand uncertainty. In addition, the performance of dynamic

pricing strategy is affected by market parameters including the degree of demand

uncertainty, market size, customers’ channel preference, price sensitivity to demand

in a channel, and the cross-channel price sensitivity.

In this dissertation, the demand is assumed to be only dependent on the cur-

rent selling prices. However, it has been empirically observed in some industries

and recognized in the psychological and behavioral studies that the demand may

be affected by the past selling prices or the presented inventory levels. Therefore,

an interesting research direction can be the joint pricing and inventory manage-

ment of a dual-channel supply chain with the effect of historical prices or inventory

level on demand. Moreover, we consider the price-demand relationship and the ran-

dom demand distribution are given before the decision-making. However, in many
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situations such as the period of the introduction of a new product, the demand

information may be unknown when the decisions are made. Hence, it would be

interesting to study the joint pricing and inventory management of a dual-channel

supply chain with demand learning.

There are two types of price competition in a dual-channel supply chain, one is

the horizontal price competition, and the other is the vertical price competition. In

this dissertation, we only consider the horizontal price competition by assuming the

wholesale price is determined in advance and fixed during the planning horizon. It

would be interesting to investigate the joint pricing and inventory management of

a multi-period dual-channel supply chain when considering the wholesale price as a

decision variable.

Moreover, this dissertation considers the joint pricing and inventory management

of a dual-channel supply chain with durable products. An interesting future research

direction can be the joint pricing and inventory management of a dual-channel sup-

ply chain where perishable products with fixed shelf lives are sold. Compared with

the dual-channel supply chain with durable products, the joint pricing and inven-

tory control problem of a dual-channel supply chain with perishable products is

more complicated, because perishable products can be differentiated by their ages

which leads to the competition between the new and old products. Other future

research directions based on this study can be considering the uncertainty in the

supply side, considering the fixed ordering cost, and so on.
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