
論文 / 著書情報
Article / Book Information

題目(和文)

Title(English) Robust State Estimation of Power Systems under Cyber Attacks:
Decomposition-based Approach

著者(和文) AHMADINAJAFABADINAIME

Author(English) Naime Ahmadinajafabadi

出典(和文)  学位:博士(学術),
 学位授与機関:東京工業大学,
 報告番号:甲第12481号,
 授与年月日:2023年3月26日,
 学位の種別:課程博士,
 審査員:石井 秀明,三宅 美博,DEFAGO  XAVIER,小野 功,小野 峻佑

Citation(English)  Degree:Doctor (Academic),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第12481号,
 Conferred date:2023/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文)  博士論文

Type(English)  Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/


Robust State Estimation of Power Systems

under Cyber Attacks:

Decomposition-based Approach

Naime Ahmadi

Department of Computer Science

Tokyo Institute of Technology

Supervisor

Hideaki Ishii

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

March, 2023



Abstract

Power grids are facing serious cyber-security issues due to the rapid

development of the smart grid and increasingly integrated communi-

cation networks. State Estimation (SE) is one of the essential tasks to

monitor and control the smart power grid. The impact of false data

injection (FDI) attacks on static state estimation of power systems

has been actively studied in the past decade.

This thesis studies the robust static state estimation under false data

injection attacks targeting both the measurement vector and the re-

gressor matrix which result in observation outliers and leverage points.

The objective is to find how decomposing power systems to islands

and implementing robust regression estimators affect the detection of

random and coordinated attacks.

For decomposing the system to generate islands, we propose an algo-

rithm for the on-line implementation of a robust static state estima-

tor on large power systems. This algorithm increases the number of

outliers and cyber-attacks that the estimator can resist while giving

reliable estimates. In particular, the large power system is decom-

posed in several islands or subsystems and a highly robust regression

estimator, namely the least trimmed squares estimator (LTS), is im-

plemented on each island to detect bad data. Further, executing the

estimators in parallel will greatly reduce the computation time of the

robust static state estimator.



The introduced method is compared with two cycle detection graph-

theory approaches, namely depth-first search (DFS) and minimum

spanning tree (MST), which have been adapted here for power state

estimation. Simulations on IEEE 14, 30, 57, 118, 145, and 300 bus

systems show the superior performance of the proposed algorithm over

the adapted DFS and MST. The algorithm could reduce significantly

the number and size of cycles in the system. Furthermore, the number

of detected outliers and attacks is maximized while the observability

of the system is ensured. Attacks or outliers on both measurements

and topology of the grid are detected as well.

We further compare the two methods namely, proposed and MST

method by implementing different robust static state estimators such

as the Huber M-estimation, the least absolute value (LAV), which

are implemented for each island to detect the corrupted data. In

particular, we focus on highly adversarial cases where the attacker

can falsify both the measurement vector and the regressor matrix and

attempts to manipulate the states to targeted values.

Extensive simulations on the IEEE bus systems show the superior

performance of the proposed LTS with the proposed decomposition-

based algorithm over other estimation and decomposition methods.

The simulation results show also the limits of each robust method

especially when the attacks are designed in a coordinated fashion. To

this end, we analyze the structure of the system topology and mea-

surements and perform extensive simulations using the IEEE 14 and

118 bus systems. Furthermore, we investigate robustness improve-

ment when phasor measurement units (PMUs) are available and hy-

brid state estimation can be employed.
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Chapter 1

Introduction

1.1 Background

In recent years, the power grids are undergoing major changes as a result of

rapid increase in variable renewable energy sources. This is strongly motivated

by the world-wide efforts towards decarbonization in response to the serious cli-

mate changes, which is causing more catastrophic weather occurrences. In order

to make the power grid more efficient, reliable, and secure, the next generation

system should turn to the so-called smart grid [66]. To build a fully automated,

resilient, and self-healing smart grid, a number of advanced technologies includ-

ing information and communication technologies (ICTs), automation, distributed

control, wide area monitoring and control (WAMS and WAMC), smart metering,

and so on have been implemented into the current electric grid [36; 62]. As a

result of these changes, the current power grid can be seen as a major example

of cyber-physical system (CPS) [35].

One the other hand, the vulnerability of the smart grid has significantly in-

creased by the adoption of the ICT components, and various incidents of cyber

attacks take place on a daily basis today [76]. As a result, numerous research

1



1.2 Cyber Attacks in the Energy Sector

studies have been carried out to improve the security of the smart grid by first

analyzing the different sources of vulnerability and then offering appropriate and

trustworthy solutions [86].

1.2 Cyber Attacks in the Energy Sector

Throughout the last decade, a number of cyber physical attacks have been re-

ported in the energy sector. The first major attack dates back to 1982. Various

levels of damages were caused by these attacks. While some have not been no-

ticed at all, others brought about serious consequences in the forms of physical

damages and explosions in facilities, economic losses at the order of million dol-

lars, and life losses. The US Energy Department received 362 reports of power

outages between 2011 and 2014 that are assessed to be connected to cyber phys-

ical attacks; 161 were claimed in 2013, compared to 31 in 2011 [82]. According

to a report on the state of industrial cyber security from 2017 [3], 54% of the or-

ganizations polled (359 companies in 21 countries) claimed to have encountered

cyber physical security issues in the previous year, and 21% stated to have had

difficulties at the same time. Table 1.1 illustrates the major incidents reported

in the energy sector [2; 26; 43; 71; 78].

These occurrences and their significant effects prompted governments all over

the world to acknowledge these new dangers. In order to improve the critical

infrastructures’ cybersecurity, in the US, the White House issued Executive Order

13636 in 2013 [37]. The National Institute of Standards and Technology (NIST)

published a three-volume report in 2014 to lay out the fundamental principles for

the cyber security of the smart grid [1].

2



1.2 Cyber Attacks in the Energy Sector

Table 1.1: Timeline of the significant physical and cyber attacks on the energy
sector.

Year Where Attack Type Impact

1982
Russia

(Soviet Union)

CIA manipulated

gas pipeline

control software

Code

manipulation

3 kilotons TNT

equivalent explosion

that could be

seen from the space

1999
Bellingham

(USA)

Slowdown of

SCADA system

of gasoline

pipeline

Code

manipulation

A huge fireball

that killed 3

people and injured

many others

2003
Ohio

(USA)

Slammer Worm

penetrated the

control system of

the nuclear plant

Malware

Injection

Parameter Display

System was off

for 5 hours

2007
Idaho

(USA)

Aurora Attack

manipulated a

circuit breaker

of a diesel

generator

False data

injection

Exploded

generator

2008 Turkey
Attacks on control

system of pipe line

False data

injection

Oil explosion and

30k barrels are

spelled in water

2012
Saudi Arabia

& Qatar

Malware affected

Aramco and RasGas

Malware

Injection

Generation and

delivery of energy

has been affected

2015
Kiev

(Ukraine)

Attack on the

breakers sittings in 3

distribution companies

False data

injection

Blackout affecting

225k customers

for few hours

2017
Kiev

(Ukraine)

Power

grid

Malware

Injection

Substation

shutdowns,

power outages

2019
Utah

(USA)

Electric

distribution

utilities

Denial of

service attack

Interrupted

electrical

systems

2021
Queensland

(Australia)

Energy

generators

Ransomware

attack

Limiting

damage

2022
Nordex

(Germany)

Wind

turbine

farms

Ransomware

attack

IT operational

interruption,

remote control

3



1.3 Classifying of Smart Grid Attacks

1.3 Classifying of Smart Grid Attacks

We can categorize of various cyber-physical attacks into four major classes based

on how they are delivered [29; 58]. Figure 1.1 shows each attack and the details

are addressed below.

Communication-based

Taxonomy of 

cyber-physical 

attacks

Network-basedCyber-based

Physical-based

GPS spoofing

Message replay

False data injection

Message relay

Channel jamming

False data injection

Electromagnetic damage

Physical damage 

Emsec attacks

False data injection

Man in the middle

Denial of service

Fuzzing

Packet sniffing

Rogue node

Black hole/Grey hole

False data injection

Command manipulation

Code manipulation

Malware injection

Password cracking

Sleep deprivation

Supply chain attack

Database manipulantion

Figure 1.1: Classification of cyber-physical attacks based on how they are deliv-
ered.

• Cyber-based attacks: The system’s cyber layer is used only to deliver

cyber-based attacks.

– Code manipulation: The attacker modifies the system’s firmware

or software to suit his or her purposes.

– Command manipulation: The process of altering existing com-

mands in the system without adding any new ones.

– Malware injection: This attack happens frequently and involves

4



1.3 Classifying of Smart Grid Attacks

injecting a virus or worm into the system.

– False data injection attacks (FDIA): Change data without chang-

ing the system’s code.

– Sleep deprivation: Preventing devices from entering the low-power

state and requiring them to continuously perform an action or receive,

process, or transmit data. The sleep deprivation causes the devices to

quickly exhaust themselves.

• Network-based attacks: Network-based attacks are built using virtual

network access, which has no impact on the system’s software, firmware, or

physical communication link.

– Denial of service: A large number of meaningless packets render the

network unusable (main attack in this category).

– Black/grey hole: Adversary completely or selectively discards pack-

ets from the network.

– False data injection attacks (FDIA): The attacker can change the

data contained within the network’s packets.

• Communication-based: Attacks that use communication as their pri-

mary method of delivery and they do not involve any manipulation of the

CPS virtual network; instead, they rely on a real, physical communication

channel. These attacks may be created either by breaking the communi-

cation channel (channel gamming) or by sending messages that were false

(FDIA).

– GPS spoofing: Adversary imitates the GPS signal and inserts false

data into it before sending it to the system.

5



1.4 Smart Grid Security Requirements

– Message replay and relay attack: Well-known attacks based on

communication.

• Physical-based attacks: Physically harming the system.

– Electromagnetic damage: Overvoltage or an electromagnetic pulse.

– FDIA: Input of a particular device could be changed to produce false

readings.

– Emission security (EmSec) attacks: System emissions like heat,

light, sound, or electromagnetic radiation.

When we examine the classification of cyber-physical attacks, we can see that

the FDIA is a common trait among the various categories and it can be applied on

all of the CPS’s layers. Unlike other attack types, the FDIA may go undetected

by the system according to the guidelines of NIST [1]. The numerous ways in

which the smart grid may be exposed to FDIA are shown in Figure 1.2. The

conclusion that can be drawn from these various layer-based FDIA is that as the

technology develops, additional vulnerability spots may be created, which require

further effort to secure the system [52].

1.4 Smart Grid Security Requirements

The National Institute of Standards and Technology (NIST) has defined three cri-

teria for maintaining and protecting information in the smart grid: Confidential-

ity, Integrity, and Availability (CIA) [70]. Another important security criterion,

according to [55], is accountability. Each criterion is described in detail below.

• Confidentiality

6



1.5 False Data Detection Algorithms

The confidentiality criterion requires safeguarding both personal privacy

and proprietary information from unauthorized entities, individuals, or pro-

cesses. For example, information sent between a customer and various en-

tities such as meter control, metering usage, and billing information must

be confidential and protected; otherwise, the customer’s information could

be manipulated, modified, or used for other malicious purposes.

• Availability

The availability of information is defined as ensuring timely and reliable

access to and use of information. It is regarded as the most important

security criterion in smart grid because loss of availability means disruption

of information access in a smart grid. For example, a loss of availability can

disrupt the operation of the control system by preventing information from

flowing through the network and thus denying the network’s availability to

control the system’s operators.

• Integrity

In the smart grid, integrity means safeguarding against unauthorized mod-

ification or destruction of data. Loss of integrity may cause the power

management system to make incorrect decisions.

Table 1.2 lists the attacks that are preventing the CIA from operating in smart

grids.

1.5 False Data Detection Algorithms

In order to detect FDIA in smart grids, several approaches have been devel-

oped [11; 50; 51; 56]. Despite the huge differences between these directions, two

7



1.5 False Data Detection Algorithms

Consumption

Microgrid 

Monitoring & 

control

Prediction & 

Planning

State

 Estimation

Physical Layer

Cyber Layer

Economic

 Dispatch

Demand & 

Response

Energy 

Trading

Distribution 

Monitoring & 

control

Transmission 

Monitoring & 

control

DistributionTransmission

M 

Generation 

Generation 

Monitoring & 

control

P M M M P P P C CCC

Network links

FDI Attack

C Control Devices

M Monitoring Devices

P Protection Devices

Communication Links

Figure 1.2: Vulnerabilities of the smart grid to attacks involving false data injec-
tion [14].
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1.5 False Data Detection Algorithms

Table 1.2: Cyber attacks and the security attack category.

Attack Category Security Requirements

False Data

Injection

Integrity

Availability

Man in the

Middle

Integrity

Confidentiality

Replay
Integrity

Confidentiality

Denial of

Service
Availability

Channel

Jamming
Availability

Spoofing

Integrity

Availability

Confidentiality

main themes are model-based detection algorithms and data-driven detection al-

gorithms.

1.5.1 Model-Based Detection Algorithms

Several FDIA detection techniques have been presented based on the system

model (quasi-static or dynamic nature) [93]. The estimation-based detection could

be categorized into three primary groups.

• Estimation-based detection: State estimate in power systems deter-

mines the states of the grid by using several sets of measurements taken

throughout the entire power grid along with the system model and param-

eters.

– Static estimation methods: Each estimation step in a static esti-

mation is handled independently of the previous stage [65]. The main

static state estimation-based FDIA detection method is based on the

weighted least square.
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– Dynamic estimation methods: However, due to stochastic changes

in demand and generation, real-world power systems do not function

in a steady state [93]. Dynamic state estimators, such the Kalman

filter, were introduced to the power systems applications to address

this issue [60].

– Main detection tests: Following the estimating processes, detection

tests are the tools used to identify the FDIA [48]. These are basically

comparisons of the estimated states with the actual measurements

collected from the grid (Euclidean distance, largest normalized residual

(LNR)).

1.5.2 Data-Driven Detection Algorithms

Data-driven detection algorithms are model-free, in contrast to model-based de-

tection algorithms. As a result, neither the system’s parameters nor models are

utilized in the FDIA detection process [13; 19; 34]. Machine learning is one of

these techniques which categorized into supervised learning [12; 44] and unsuper-

vised learning [9]. On the other hand, data mining is the method of discovering

patterns in large data sets and has been used in the context of attack detection

in, e.g., [5; 69]. Also, principal component analysis (PCA) was employed in FDIA

detection in [31].

To differentiate between the various FDIA detection algorithms in smart grid,

Table 1.3 summarizes the benefits and drawbacks of each algorithm category.

For the safe and efficient operation of the power grid, the system is constantly

monitored and operated at the control center. In practice, the operators use a

static state estimator (SE), which provides the state of the grid [4] and permits the

online security analysis. For this reason, we consider the static state estimation

method in this dissertation.
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Table 1.3: Summary of the advantages and disadvantages of FDIA detection
algorithms.

Detection

algorithm
Advantages Disadvantages

Model-based

No training required

No need for historical data set

Reduced memory need

Need for system model

Threshold selection

Extensive computation

Possible divergence

Data-driven

Independent of system and parameters

Fast detection process

Scalable

Need for extensive training

1.6 Static State Estimation and Security Prob-

lem

In order to evaluate the security of power systems, Fred Schweppe originally sug-

gested the concept of the power system state estimation in the late 1960s [4].

State estimation (SE) is a mathematical procedure that processes redundant

measurement data sets to remove measurement errors and estimate the most

probable state of a power system. SE algorithms have been studied and improved

for decades due to their critical role in reliable system monitoring.

The static SE gives the optimal state consisting of bus voltage phasors esti-

mated from redundant measurements commonly provided by supervisory control

and data acquisition (SCADA) units at remote terminal units and intelligent

electronic devices, including active and reactive power flows and injections, and

bus voltage magnitudes. More recently, the availability of phasor measurement

units (PMUs) has enabled hybrid state estimation combining both PMUs and

SCADA measurements in the observation set [42] to improve SE accuracy and

performance. Placing a PMU at a bus can provide the voltage phasor at that

bus, and the phasor currents on several or all lines incident to that bus [22].

Recently, the increase in cyber attack incidents has raised concerns for the
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problem of SE security [57; 77]. Under nominal operations, measurement errors

could be present due to noise, equipment failures, and modeling errors and are

detected by analyzing the residuals of the weighted least squares AC static SE [45;

53; 89; 91]. However, when an attacker launches malicious false data injection

(FDI) attacks in the measurements with the knowledge on the system parameters

and grid topology, the estimated states may be manipulated to targeted values

without being detected as the residuals may remain small or unchanged [16; 49;

52; 87]. Recent works deal with FDI attack strategies which can be generated even

if the attacker has only limited information such as data of a subnetwork [89] and

limited PMU data [33]. In the literature, various FDI attack detection methods

have been proposed; see the survey paper [67] and the references therein.

On the other hand, different FDI attack scenarios against the SE have been

considered. One class of adversarial attacks known to be hard to detect is that

of leverage point attacks, which target the entries in the Jacobian matrix of the

regression model of SE, e.g., [7; 16; 17; 83; 91]. Such attacks can be generated by

introducing changes in the network parameters and topology data stored at the

system operators. Recently, it is shown in [54] that modifying network parameters

can reduce the necessary number of FDI attacks. In the abovementioned works,

it has been established that to obtain accurate state estimates under adversarial

environments, robust estimation techniques (e.g., [61]) can be especially useful,

including the least trimmed squares (LTS) [10; 16; 17; 20; 63; 83] and the robust

Huber M-estimator [91]. Difficulties in SE when the data in the regressor model

may contain uncertainties and the importance of robust methods have been rec-

ognized in the early works of [24; 63; 64] from the 1990s. In [17], it has been

proposed to use multiple robust estimators in parallel to enhance the capability

of attack detections.

In [24], robust estimation is used to detect bad measurements. The authors
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decomposed the IEEE 14-bus system into subsystems, or islands, for increasing

the number of outliers that robust estimators can tolerate, which can be expressed

in terms of breakdown points [61]. This approach enables robust SE algorithms

such as least trimmed squares estimator (LTS) to execute on subsystems while

ensuring the observability of the whole system [17]. To deal with large-scale

systems, decomposition of the grid is found effective in [16; 63], where in each

island the SE can be performed.

1.7 Contributions of the Thesis

For this reason, in our work [7; 8], we have developed a graph-based method to

automatically decompose power systems and updating the decomposition data in

real-time in a computationally efficient manner whenever the topologies change.

We consider an estimation method that first decomposes the system into islands

and then implements robust regression estimators at the island level as well as the

system level. We can highlight the contributions of these thesis in three aspects:

• Finding the cyclic island

The first objective is to extend the robust methods of [16; 24; 63] for their

application to power systems of medium to large sizes. For small-scale sys-

tems, their decomposition is not a particularly challenging task and can be

done manually. Our focus is on developing an algorithm for automatically

finding islands and updating the decomposition data in real-time in a com-

putationally efficient manner whenever the topologies change. This allows

us to implement the detection of cyber-attacks online for real-life static SE.

The main step in the decomposition of a given power network is to find

islands containing loops or cycles. It turns out that for the robust state

estimation techniques such as the LTS to perform well in the presence
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of attacks, it is essential to decompose the system into cyclic islands of

smaller sizes. This is because in general, for smaller islands, the ratio of

measurements that can be tolerated or resisted by the robust methods when

attacked tends to be higher. Moreover, for state estimation, it suffices to

have enough islands to cover the entire system. These aspects clearly de-

pend on the number and the location of the measurements in the system,

and we further discuss these issues in the thesis.

For finding cycles in a given graph, there are various established methods.

These include the search and backtrack method [27; 81], the adjacency

matrix method [72], methods using the minimum spanning trees (MST) [27;

39], and the cycle vector space method [79]. Note, however, that cycles in

general simply refer to paths that are closed. Many of the methods above

do not take account of the sizes of the cycles and hence may not be suitable

for our purpose.

In this thesis, for finding the cyclic islands, we employ an alternative ap-

proach based on methods for detection of faces in planar graphs. In graph

theoretic terms, faces refer to regions bounded by edges for a graph drawn

on a plane. Hence, roughly speaking, faces correspond to islands of the

smallest sizes in a graph while cycles may contain multiple faces. In com-

parison to algorithms for cycle detection, those for face detection require

the additional information regarding the coordinates of the nodes. Such

algorithms include those to detect polygons in a set of lines [38], computing

overlays of two subdivisions [28], and the planar face traversal [73; 75].

However, these methods cannot be directly applied and there is another

issue further adding computational complexity to the problem. Power sys-

tems have complex topologies and, in particular, have many intersections

in their corresponding graphs [73]. Hence, in our proposed algorithm for
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cyclic island detection, we introduce several features to keep its complexity

limited by not exhaustively searching for all faces in the system. Simula-

tions show the effectiveness of the proposed algorithm for the larger IEEE

systems with 118, 145, and 300 buses.

• Decomposition and robust estimation in the presence of random

attacks

We confirm the improvement of cyber-security obtained from the proposed

decomposition and executing multiple LTS estimators with variable break-

down points for the different islands. In particular, we make extensive com-

parisons and with the case applying LTS to the decomposition obtained

by a simpler cycle detection method. It is demonstrated that the number

of measurement outliers detected increases. Different scenarios of measure-

ment redundancy are considered. Moreover, the execution time is reduced

thanks to the possibility of parallelizing the computation for detection on

each island.

• Decomposition and robust estimation in the presence of targeted

coordinated attacks

We also consider the robust SE approach of [7; 16] against adversarial at-

tacks especially when the attacks are more targeted and coordinated. The

robust SE approach is based on two techniques: (i) Decomposition of the

grid into islands and (ii) use of the LTS estimator at the island/subsystem

level. The LTS is known as a particularly robust SE method; it ignores a

fixed number of measurements corresponding to residuals with large mag-

nitudes. In [7], we demonstrated the superiority of our PFT-based decom-

position method1 over other decomposition approaches. Comparisons were

1Throughout this thesis, the term “proposed algorithm” and “PFT-based decomposition”
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made in terms of breakdown points for various IEEE systems with 14, 30,

57, 118, 145, and 300 buses.

Here, we aim to further improve our PFT-based robust SE method and

expose its strength and limitations under FDI cyber-attacks of various de-

grees and placements. First, we analyze the properties of the decomposed

grid from the viewpoint of the local state estimation executed at the islands.

Its advantages are highlighted in comparison to islands obtained by a sim-

pler graph-theoretic cycle detection based on the minimum spanning tree

(MST) method. Then, through simulation studies, we will demonstrate the

difference between the decomposition methods and the robust SE methods.

The following two developments are critical in our study:

1. Three steps SE algorithm

One is the enhanced version of the SE algorithm from [7; 16] consisting

of three steps as follows: It first runs the LTS decentrally at each island

level and then centrally at the entire system level; its robustness is

enhanced by the residual analysis carried out as the third step.

2. Construct adversarial coordinated FDI attacks against cer-

tain targeted buses in the system

Specifically, we attack the power injections at those targeted buses and

their adjacent buses in both their measurements and the corresponding

rows of the regressor matrix. By increasing the number of attack points,

the attacker can eventually manipulate the state values of the targeted

buses. In general, even by robust SE methods, the attacks on the

regressor matrix are hard to resist and detect.

These techniques will be thoroughly tested by simulations on the IEEE 14-

are used interchangeably.
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and 118-bus systems, and the impact of both randomly generated and tar-

geted coordinated FDI attacks will be examined. For comparison reasons,

we equip our algorithm with several robust SE schemes including the LTS,

the Huber M-estimation, and the least absolute value (LAV). Furthermore,

some of them as well as the conventional largest normalized residual (LNR)

with a bad data detection (BDD) module will be implemented in a fully

centralized fashion. Under three classes of attacks, we will demonstrate that

our SE scheme clearly outperforms when equipped with the PFT-based de-

composition in terms of accuracy on SE and attack detection probabilities

especially when the regressor matrix is under coordinated attacks. We will

moreover show that introducing PMUs can increase the SE performance.

1.8 Outline of the Thesis

This thesis is organized as follows.

In Chapter 2, we reviews static state estimation and bad data detection. We

discuss the WLS is not reliable and analyzing its residuals does not guarantee

their detection in the presence of attack. In fact, even one leverage point can go

without detection and thus can greatly affect the estimation performance. Then,

the robust estimation techniques are formulated.

In Chapter 3, our focus is on developing an algorithm for automatically finding

islands and updating the decomposition data in real-time in a computationally

efficient manner whenever the topologies change. We explain the decomposition

criteria and also the decomposition methods of power systems. We develop the de-

composition method which can implemented in the robust least trimmed squares

estimator.

Chapter 4 analysis the random attacks on decomposition-based state estima-
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tion. We examine the effectiveness of the proposed approach through extensive

simulations. For highlighting the advantage of our method, we apply our method

for IEEE bus systems. Then the proposed decomposition method is compared to

conventional algorithms. In the last part of this chapter, we perform state esti-

mation by implementing the decomposition based least trimmed squares in the

presence of FDI attacks.

Chapter 5 studies the targeted coordinated attacks on decomposition-based

SE. We follow the approach of chapter 4 and demonstrate the effectiveness of

the robust estimation method by analyzing it against a class of coordinated at-

tacks targeting certain buses and their adjacent buses in the system. We discuss

strength and limitations of our algorithm under FDI cyber-attacks of various

degrees and placements.

Finally, Chapter 6 gives a summary for the results. Some interesting directions

for the future research are also given in this chapter.
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Chapter 2

Overview on Power System State

Estimation

For the safe and efficient operation of the power grid, the system is constantly

monitored and operated at the control center to keep the operating conditions

normal and secure. In practice, the operators use a static state estimator (SE),

which provides the state of the grid [4] and permits the online security analysis. It

processes redundant measurements to provide an optimal estimate of the current

operating state. The results of the state estimation are also used for contingency

analysis, economic dispatch, optimal power flow, and security enhancement.

We begin this chapter by discussing static state estimation, weighted least

squares, and bad data detection. The attack model is then explained, as well as

why weighted least squares is insufficient for detecting the attack. We provide

robust state estimation in the chapter’s ending.

2.1 Static State Estimation Problem

State estimation uses three kinds of data as inputs:
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Figure 2.1: One-line diagram of 5-bus system

(i) The network topology data, consisting of the on/off status of power network

switches and circuit breakers between buses.

(ii) The measurement data, including voltage magnitudes, power injections and

flows.

(iii) The parameter data, including the branch admittance data and the vari-

ances of measurement noises.

The network topology and measurement data are communicated to the control

center from SCADA units. After receiving the measurements and the topology,

the system’s observability is verified, and the weighted least squares (WLS) AC

state estimator algorithm is executed to obtain the estimates of the state vari-

ables, which are the voltage magnitudes and phase angles at all buses of interest.

2.1.1 Power System Model

In this subsection, we outline the modeling of the power system, which forms the

basis for state estimation. We consider the transmission system, which consists

of N buses. A generator or synchronous condensor may inject power into a bus,

and/or a load may draw power from it (a negative injection). Buses without any

injected power are said to contain zero injection. Figure 2.1 shows a one-line

diagram of a 5-bus system.
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R X
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Figure 2.2: π-equivalent model of a transmission line

Transmission lines are typically represented by a π-equivalent model as shown

in Figure 2.2, where the line connecting buses i and j is referred to as line (i, j).

The impedance of a line, denoted by Zij, is equal to the complex sum of the line

resistance, Rij, and the line reactance, Xij, yielding

Zij = Rij + jXij. (2.1)

The capacitance of the line, Bcap, is divided in half and treated as two discrete

shunt capacitors - one at each end of the line. The inverse of the line impedance

is given by

Yij = Gij + jBij, (2.2)

where Yij is the line admittance. The line conductance, Gij, and the line suscep-

tance, Bij, are written as

Gij =
Rij

R2
ij +X2

ij

Bij =
−Xij

R2
ij +X2

ij

. (2.3)

The voltage at bus i is a complex quantity which can be expressed in polar

form as Vi∠θi, where Vi is the magnitude and θi is the phase of the voltage at

bus i. Both Vi and θi are the state variables of the system. The bus voltage
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magnitude, is often measured directly.

The real power flow from bus i to bus j on line (i, j) can be expressed as

Pij = V 2
i Gij − ViVj (Gij cos θij +Bij sin θij) , (2.4)

where δij is equal to θi−θj. The reactive power flow on line (i, j) can be expressed

as

Qij = ViVj (Bij cos θij −Gij sin θij)− V 2
i (Bij +Bcap) . (2.5)

The real power injected at bus i is equal to

Pi =
∑
j

Pij. (2.6)

A similar expression for the reactive power injected at a bus i is

Qi =
∑
j

Qij. (2.7)

2.1.2 The Nonlinear and Linear Estimation Problems

Based on the power system model above, we can formulate the state estimation

problem. Here, the system measurements are expressed by the m-dimensional

vector z, and the state variables by the (2N − 1)-dimensional vector x where one

bus is taken as the phase angle reference. The overall system can be presented as

z = h(x) + e, (2.8)

where h(x) represents the set of equations (2.4) to (2.7) and e is an m-dimensional

vector containing the measurement errors, which are assumed to follow the normal
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distribution with zero mean and covariance matrix R, i.e., e ∼ N(0, R). Voltage

magnitude measurements are also typically included in (2.8).

Since the power flow equations are nonlinear, determining the state of the

power system is a nonlinear estimation problem. This is typically solved as a

series of linearized problems by expanding (2.8) using a first-order Taylor series.

Each step of the series is then expressed as

∆z = H(x)∆x, (2.9)

where H(x) is the measurement Jacobian matrix.

A standard simplification to (2.9) is called the decoupled model. The use of

this model will be made in later sections; so it is now briefly described. The

Jacobian matrix associated with the real and reactive power measurements can

be partitioned into four submatrices as follows:

 ∆P

∆Q

 =

 HPθ HPV

HQθ HQV

 ∆θ

∆V

 (2.10)
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2.1.3 The Jacobian Matrix

Now we provide the details of the measurement Jacobian matrix H. Its structure

is given as follows:

H =



∂Pinj

∂θ

∂Pinj

∂V

∂Pflow

∂θ

∂Pflow

∂V

∂Qinj

∂θ

∂Qinj

∂V

∂Qflow

∂θ

∂Qflow

∂V

∂Imag

∂θ

∂Imag

∂V

0 ∂Vmag

∂V


. (2.11)

The expressions for each partition are given below:

1. Elements corresponding to real power injection measurements:

∂Pi
∂θi

=
N∑
j=1

ViVj (−Gij sin θij +Bij cos θij)− V 2
i Bii

∂Pi
∂θj

= ViVj (Gij sin θij −Bij cos θij)

∂Pi
∂Vi

=
N∑
j=1

Vj (Gij cos θij +Bij sin θij) + ViGii

∂Pi
∂Vj

= Vi (Gij cos θij +Bij sin θij)

(2.12)

24



2.2 The Weighted Least Squares Estimator

2. Elements corresponding to reactive power injection measurements:

∂Qi

∂θ
=

N∑
ViVj (Gij cos θij +Bij sin θij)− V 2

i Gii

∂Qi

∂θj
= ViVj (−Gij cos θij −Bij sin θij)

∂Qi

∂Vi
=

N∑
j=1

Vj (Gij sin θij −Bij cos θij)− ViBii

∂Qi

∂Vj
= Vi (Gij sin θij −Bij cos θij)

(2.13)

3. Elements corresponding to real power flow measurements:

∂Vi
∂Vi

= 1,
∂Vi
∂Vj

= 0,
∂Vi
∂θi

= 0,
∂Vi
∂θj

= 0 (2.14)

4. Elements corresponding to current magnitude measurements (ignoring the

shunt admittance of the branch):

∂Iij
∂θi

=
g2
ij + b2

ij

Iij
ViVj sin θij

∂Iij
∂θj

= −
g2
ij + b2

ij

Iij
ViVj sin θij

∂Iij
∂Vi

=
g2
ij + b2

ij

Iij
(Vi − Vj cos θij)

∂Iij
∂Vj

=
g2
ij + b2

ij

Iij
(Vj − Vi cos θij)

(2.15)

2.2 The Weighted Least Squares Estimator

The weighted least squares estimator (WLS) forms the basis for most power sys-

tem state estimator. First utilized for power system state estimation by Schweppe

[74] in 1970, the WLS estimates the system state by minimizing the sum of the
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squared residuals. In matrix form, it is written as

min
x
J(x) = [z − h(x)]T

[
R−1

]
[z − h(x)], (2.16)

where R denotes the (m×m) covariance matrix of measurement errors, assumed

to be independent, and is equal to

R =


σ2

1 0

. . .

0 σ2
m

 . (2.17)

To execute the state estimation in real time, a simplified model based on

linearization is commonly used [4].

The optimal estimate of the state can be computed by the iterations as

x̂k+1 = x̂k + ∆xk, (2.18)

where

∆xk =
[
HTR−1HT

]−1
HTR−1

(
z − h(x̂k)

)
, (2.19)

and k is the index of the iteration. The matrix H is the Jacobian of the mea-

surement function h(·) with respect to the state x. The state increment ∆xk is

obtained by regressing
(
z−h(x̂k)

)
on H. The algorithm terminates once the norm

of ∆xk becomes smaller than a given threshold. Afterwards, bad data detection

(BDD) is applied.
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2.3 Bad Data Detection

The BDD module is essential to protect state estimation from effects of the outlier.

The measurement data is checked to remove any abnormal values. After the state

estimation process converges, the residuals are calculated as

rk = z − h(x̂k). (2.20)

If any entries of rk are large in magnitude, the corresponding measurements are

eliminated, and the SE is re-executed with the remaining data. The estimation

and BDD are re-iterated until such large residuals do not appear.

The largest normalized residual (LNR) is employed in practice to remove bad

measurements [4]. The LNR is based on computing the normalized residuals

obtained from

rNi =
|ri|√
SiiRii

, (2.21)

where ri is the ith element of the residual r and S is the residual sensitivity

matrix given by

S = I −H(HTH)−1HT . (2.22)

If the largest normalized residual is larger than a pre-determined threshold, e.g.,

|rNi | > 3, it is eliminated from the measurements in the next state estimation.

The estimation is re-executed until no outlier is detected.

However, it is emphasized that in the presence of attacks, the WLS is not

reliable, and analyzing its residuals as implemented in classical BDDs such as

LNR does not guarantee their detection. In fact, even one leverage point can go

without detection and thus can greatly affect the estimation performance. The
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LNR was also shown to suffer from smearing effects when multiple gross errors

are present. For more on the vulnerability of the LNR, see, e.g., [90].

2.4 Model of False Data Injection Attacks

The BDD is designed assuming that the outliers occur randomly. It is known to be

vulnerable to outliers that are coordinated, which can be generated by malicious

attackers. Here, we outline the class of attacks considered in this thesis.

The attacker is assumed to be capable of launching FDI attacks on SE inputs

corresponding to a limited number of buses, including the measurement, topol-

ogy, and parameter data. We consider the more adversarial scenario where the

attacker has the information about elements in the regressor matrix H. In such

a case, the following two classes of attacks are particularly effective:

(i) One consists of those against the measurements. The attacker may generate

stealthy attacks of the form

zc = z +Hc, (2.23)

where c is a sparse vector with nonzero values at entries corresponding to the

targeted buses [57]. The attack is stealthy in the sense that the residuals are not

modified, and conventional detection schemes based on analyzing the residuals

cannot detect the attacks.

(ii) The other consists of those against the regressor matrix. Such attacks are

called leverage point attacks [59; 80], and the matrix is modified in the form

Hc = H + δH, (2.24)

where δH contains nonzero columns corresponding to the targeted buses. If a
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column in H is multiplied by a chosen scalar in an attack, the attack will control

the corresponding state, and the residuals will be kept unchanged. The attack

becomes stealthy, and the estimated state will be manipulated and becomes the

corrupted value targeted by the attacker. To generate such attacks, the attacker

needs access to the line connections, parameters, and sensors adjacent to the

targeted buses.

2.5 Robust State Estimation

Robust estimation theory provides a more secure alternative and has been consid-

ered for the detection of FDI attacks in the literature [16; 17; 18; 24; 59; 63; 83;

92]. Robust techniques can generate state estimates that are optimal beyond the

strict assumptions of parametric models [61; 95]. This allows the data to depart

from the exact parametric model while the estimators exploit the certain number

of the measurements and resist a minority of outliers and cyber-attacks. Robust

estimators are designed to reduce the influence of bad data on state estimation.

One key feature of such estimators is to reduce the weights given to bad data.

This is in contrast to the WLS, where large residuals have more influence on the

objective function.

In this section, we summarize three robust estimators that we use in our

simulation studies later. Here, the covariance matrix is taken to be R = I without

loss of generality.

2.5.1 Least Absolute Value (LAV)

This method minimizes the sum of the absolute values of the residuals:

J(x) =
m∑
i=1

|ri|. (2.25)
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In the presence of leverage points (the outliers introduced in the Jacobian matrix

H), however, the bad data rejection capability of the LAV estimator is known to

be ineffective [4]. The state could be calculated using the dual-simplex algorithm

[68].

2.5.2 Huber M-estimation

To reduce the influence of large residuals, the objective function for this method

is chosen as a quadratic function and for small residuals as a linear function, i.e.,

it is quadratic-linear. More specifically, the Huber M-estimation minimizes the

function

J(x) =
m∑
i=1

ρ(ri), (2.26)

where

ρ(ri) =


r2i
2

if |ri| ≤ a,

a
(
|ri| − a

2

)
otherwise.

(2.27)

Note that this estimator is a generalization of WLS and LAV as these two methods

can be obtained by changing the threshold parameter a. The state could be

calculated using the iterative re-weighted least-squares algorithm (IRLS) [61].

2.5.3 Least Trimmed Squares (LTS)

In this thesis, among the robust methods, we mainly focus on the LTS estimator.

It minimizes a trimmed percentage of the regression squared residuals [61]. We

use the notation r to express the sorted version of the residual r in its entries

from the smallest to the largest in magnitude as r2
1 ≤ r2

2 ≤ · · · ≤ r2
m. Then, the
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2.5 Robust State Estimation

LTS finds the estimate x that minimizes the cost function

J(x) =

mT∑
i=1

r2
i , (2.28)

where

mT = b(1− α)mc+ 1, (2.29)

is the number of measurements used after trimming, α corresponds to the trim-

ming fraction, and b·c is the floor function.

For any of these estimators, their capability when FDI attacks are present in

the measurements and topology data can be represented by their (finite-sample)

breakdown points [61]. This is the maximum fraction of outliers in the mea-

surements that the estimator can resist while offering reliable estimates before

breaking down. The LTS is known to be one of the most robust methods and,

specifically, its maximum breakdown point can be expressed as

εmax,m =
1

m

⌊
s∗

2

⌋
, (2.30)

where s∗ is the minimum number of measurements whose removal makes at least

one measurement critical for performing state estimation [24]. The challenging

part for its calculation in the case of power systems is that when the system is

large, the computation of s∗ can be expensive as it involves combinatorial aspects.

One solution to address this is decomposing the system into small islands, which

we explain in the next chapter.
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Chapter 3

Decomposition-Based State

Estimation and Attack Detection

In this chapter, our focus is on developing an algorithm for automatically finding

islands and updating the decomposition data in real-time in a computationally

efficient manner whenever the topologies change. We first propose our criteria

for decomposition, which is suitable for robust state estimation. Then we discuss

how to use LTS with decomposition to improve cyber security. In the last part of

this chapter, we propose our algorithm and introduce a few graph-related notions.

The material of this chapter is based on [7].

3.1 Necessity for Decomposition

Our robust estimation approach is motivated by the study of [17; 24], where

the power system is decomposed into subsystems, or islands, for increasing the

number of outliers that can be tolerated. It is emphasized that decomposition

allows the execution of the least trimmed squares estimator (LTS) on subsystems

while ensuring the observability of the whole system. In particular, there are two
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3.2 Cyber Security Criteria for Decomposing the System

main advantages of this approach as follows:

• Increased outlier identification capability

In the power system, we might encounter buses with a low number of mea-

surements and connections, which would impose a constraint on the break-

down point for the entire system. To keep the influence of such buses lim-

ited, it is effective to decompose the grid into several islands [7; 16; 24; 63].

In particular, finding small cycles is important for raising the cyber-security

level of state estimation [7]. This is because the breakdown points for

smaller islands are in general higher than those for larger islands.

• Decreased computing time

For reducing the computation time, the state estimation in each island could

be done in parallel. In addition, for smaller systems, the computation for

estimation takes shorter time.

3.2 Cyber Security Criteria for Decomposing the

System

Since the grid topology is very sparse in general, there could be a bus with a

low number of measurements and connections. Such measurements with low

redundancy would impose a constraint on the breakdown point for the state

estimation of the entire system. Our approach is to decompose the system into

several subsystems, or islands, and then apply robust estimators, following the

methods proposed in [16; 24]. In this chapter, we provide the procedure of this

approach.

Islands can be distinguished into two types, radial and cyclic. As illustrated

in Fig. 3.1, a radial island is given by a subset of buses and related measure-
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3.3 General Approach: LTS with Decomposition
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Figure 3.1: Radial and cycle islands in a sample power system.

ments between lines such that if one line is cut, the system is disconnected. An

island is cyclic if it is not radial; such an island contains at least one loop. After

decomposition, we can find the breakdown point for each island, and select differ-

ent trimming percentages for the LTS depending on the available measurement

redundancy available at each island.

When decomposing the system, it is important to keep the number of nodes

in each island to be small. Such a decomposition would augment the number of

outliers detected by the estimation, increasing the global breakdown point and

moreover reducing the computation time when the estimators for the islands are

executed in parallel. These advantages will be shown through simulations in

Chapter 4.

3.3 General Approach: LTS with Decomposi-

tion

We first decompose the power system into radial and cyclic islands. Then for

estimating the state at each island, injections at buses connected to adjacent

islands are corrected by subtracting the power flows with neighboring islands.

In Fig. 3.1, for example the sets of buses {5, 6} and {1, 3, 4, 5} are radial
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3.3 General Approach: LTS with Decomposition

and cyclic islands, respectively. For this cyclic island, the measurements are

the power flows P1,3, P3,1, P1,4, P4,1, P4,5, P5,4, P5,3, P3,5 and the power injections

P n
1 , P

n
3 , P

n
4 , P

n
5 . For each island, the corrected power injections are computed

after removing the power flows from cut-lines, i.e, P n
5 = P5 − P5,8 − P5,7 − P5,6

and P n
1 = P1 − P1,2 − P1,9. The covariances are adapted as well, e.g., σ2

5New
=

σ2
5 + σ2

5,8 + σ2
5,7 + σ2

5,6 and σ2
1New

= σ2
1 + σ2

1,2 + σ2
1,9.

The kth iteration state update δxki ∈ Rni is obtained by regressing r̂ki =

z(i)−h(x̂ki ) on the matrix H(i) reflecting the topology of the ith island. It can be

obtained from

δxki = arg min
δx

b(1−αi)mic+1∑
j=1

(
r̃

(i)
j (δx)

)2

(3.1)

where r̃(i)(δx) = r̂ki (j) − H
(i)
j δx, H(i) is the regressor matrix corresponding to

the ith island, H
(i)
j is its jth row, mi is the number of available measurements,

and αi ∈ (0, 1) is the trimming percentage. Note that the notation r̃
(i)
j (δx) in

(3.1) indicates that its entries are the sorted version of r̃
(i)
j (δx) (similarly to r in

(2.29)). Then, the residuals |r̂ki (j)−H
(i)
j δx

k
i | larger than a given threshold τ are

rejected. Finally, we detect the positions of the outliers in the ith island and store

them. Hence, through this procedure, in each iteration, the state is estimated

based on LTS, but among the resulting residuals, only those with large values are

rejected. The number of detected outliers may be smaller than that determined

by the trimming percentage.

The regression is re-evaluated by computing ∆xki to improve the efficiency

after disregarding the detected outliers as

∆xki = arg min
∆x

mclean
i∑
i=1

(
r̂ki,clean(j)−H(i,clean)

j ∆x
)2

, (3.2)
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3.4 Detection of Cyclic Islands

where mclean
i = mi − nkoutlier and nkoutlier is the number of detected outliers at the

kth iteration. Removing the elements corresponding to outliers in r̂ki gives r̂ki,clean.

The state x̂k+1
i and residual r̂k+1

i are updated. The iterations are stopped once

we have
∥∥∆xki

∥∥ < γ with a small γ > 0. The set containing the detected outliers

at the ith island is denoted by Ji = ∪kJki , where Jki contains the flagged outliers

at the kth iteration. Then, the set containing all detected outliers in the system

is obtained by J = ∪iJi.

Finally, the state estimate is performed for the entire system after removing

all entries in the measurement and regressor matrix data corresponding to the

detected outliers in J [16]. In this way, the accuracy level in estimation can

be ensured while the computation load is limited as the WLS is simply run

once. Note however that depending on the number and the specific entries of

the outliers, the estimation at this stage may encounter problems due to lack of

observability.

So far in our approach, the detected outliers by the LTS were removed. An-

other possible approach could be to correct those flagged measurements or lever-

age points which could enhance the observability of the system. The correction

could be achieved by existing estimation algorithms such as an augmented state

estimation for parameter correction [88] or exploiting past measurements and

forecast a correction for isolated attacked measurements [11]. This is an interest-

ing research direction to investigate in the future.

3.4 Detection of Cyclic Islands

In this section, we address the problem to decompose a given power system into

islands and, in particular, to find cyclic islands. For a power system, the topology

representing its power line structure may change over time. This can be due to
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3.4 Detection of Cyclic Islands

opening and closing of lines for maintenance purposes or during the operation

after faults or remedial action schemes. Since such a system may be large scale,

for robust state estimation, it is important to develop automatic algorithms for

decomposing it into islands with certain properties.

Here, we introduce a few graph related notions [30]. We treat the given power

system as the undirected graph G = (V,E) with the set V of nodes corresponding

to buses and the set E of edges corresponding to power lines. An edge {vi, vj} ∈ E

indicates that buses vi and vj are connected by one or more power lines. Next,

a cycle is a sequence of nodes v1, v2, . . . , v` forming a path as {vi, vi+1} ∈ E for

i = 1, 2, . . . , ` − 1, where only the start and the end nodes coincide as v1 = vn,

and otherwise vi 6= vj for i 6= j.

We now draw the graph G on a plane and obtain its planar embedding. The

graph is said to be planar if it can be drawn without any intersections of edges.

A face is a region bounded by edges in the planar embedding. In this context, a

face can be identified as the corresponding cycle whose edges bound the region;

it is clearly the minimal cycle containing the region. Note that faces are cycles,

but the converse does not hold. Faces include the outer, infinitely large region as

well. In a planar graph, the number of faces (including the outer face), denoted

by |F|, can be calculated using Euler’s formula [30]

|F| = 2− |V|+ |E| , (3.3)

where | · | denotes the cardinality of a set.

We treat cycles and faces in a graph as islands. Clearly, there is no need to

identify all cycles though it is desirable to find more faces. Moreover, approaches

to find faces alone are not enough since graphs representing transmission systems

may not be planer [73].

In what follows, we propose a graph decomposition algorithm for finding cycle
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3.4 Detection of Cyclic Islands

islands with features suitable for robust state estimation. To this end, we would

like to find cycles with the following three properties:

(i) Each node/edge in G belongs to one or more islands.

(ii) The number of nodes in each island is small.

(iii) The total number of islands is small.

Finding islands with small numbers of nodes is beneficial for robust state estima-

tion as it increases their breakdown points and, in turn, the numbers of outliers

that they can resist. Hence, to this end, we will later employ a face detection

algorithm. The properties (ii) and (iii) above may appear contradicting since the

total number of nodes is fixed. However, this is not necessarily the case since as

indicated by (i), the islands may be overlapping if the system is not planar and

each node/edge may belong to multiple islands. Hence, the problem is combina-

torial and thus can be computationally intensive.

Typically, algorithms for finding cycles are based on those for finding spanning

trees in a graph. For example, one may employ the depth-first search (DFS)

[27; 81] and the minimum spanning tree (MST) search [27; 39]. While these

methods are simple, they are based on blind search and thus are hard to direct,

e.g., for finding small cycles. We will see later in simulations that these methods

can result in detecting too many islands and include those that tend to be large.

In the MST method, for the given graph G, we first find a set of edges T ⊂ E

forming a spanning tree. Then, by adding an edge that is not part of the spanning

tree, we can find a cycle. A spanning tree has |T| = |V|−1 edges. As an example,

the IEEE 30-bus system has 41 edges, and any spanning tree of this system has

30− 1 = 29 edges. The number of edges that do not participate in the spanning

tree is 41 − 29 = 12. Thus, based on this method, we find that this system has
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3.5 Proposed Cycle Detection Algorithm

12 cycles and, in addition, it has 3 radial islands (in total 15 islands as shown in

Table 5.6).

3.5 Proposed Cycle Detection Algorithm

The proposed algorithm is outlined in the flowchart in Fig. 3.2 and described

more in detail below.

Step 1: Construct the 

planar embedding

Step 2: Find edge

intersections

Step 3: Find

planar subgraphs

Step 4: Generate

embedding sets

Step 5: Find cycles

of planar subgraphs

Is each edge of the original

graph part of detected

cycles? 

Step 6: Remove

 repeated cycles 

Yes

Stop

Start

Get the topology 

of the grid

No

Figure 3.2: Flowchart of the proposed cyclic island detection algorithm.
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3.5 Proposed Cycle Detection Algorithm

As mentioned above, the objective of our approach is to find small islands in

small numbers. It thus is based on algorithms for finding faces for planer graphs

[28; 73; 75]. However, power systems are in general not planar as they may have

intersections in their edges. Hence, our algorithm starts with a preprocessing

stage for finding planar subgraphs of the original graph.

More specifically, the algorithm can be outlined as follows: In Step 1, we

find a planar embedding of the original graph. Then, in Step 2, we identify the

edges intersections. Step 3 is for generating planar subgraphs by eliminating the

intersections. Through Steps 4 and 5, we obtain the faces in the planar subgraphs.

It terminates as soon as a sufficient number of cycles are found.

Proposed cyclic island detection algorithm

Input: Undirected graph G = (V,E)

Output: Cycle islands in G

1. (Construct the planar embedding) Determine the coordinates (xi, yi) of each

node i ∈ V in the X-Y plane.

(a) Use the Steady-State AC Network Visualization (STAC) [40] if G is given

in MATPOWER format.

(b) Remove parallel edges and radial islands.

(c) If a subgraph is connected to the rest of the network by only one edge,

remove the edge and carry out the remaining steps for the subgraphs

individually. (Such an edge is present in the IEEE 300 bus system.)

2. (Find edge intersections) Find intersections of edges in the graph in the X-Y

plane.

(a) Construct the intersection matrix S ∈ {0, 1}ne×ne , where ne is the number

of edges.
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3.5 Proposed Cycle Detection Algorithm

(b) For each edge ei ∈ E, take edge ej ∈ E with i < j having end nodes

different from those of ei. If they intersect, then set S(i, j) = 1 and

otherwise S(i, j) = 0. This matrix is upper triangular and is used for

obtaining planar subgraphs of G.

3. (Find planar subgraphs) From G, generate a set of its planar subgraphs G(k),

k = 1, . . . , np, with G(k) 6= G(j) if k 6= j such that each edge of G is included

in one or more subgraphs. The following steps are for keeping the size of np

small.

(a) Transform the intersection matrix S into a block-diagonal matrix by per-

muting its rows and columns.

(b) Identify the diagonal blocks Si in the intersection matrix S after the trans-

formation.

(c) For each block Si in S, find a set of columns and rows such that removing

them makes the remaining block zero. (By removing the edges correspond-

ing to such columns and rows, we can eliminate all intersections in the

part of the graph corresponding to the block.)

(d) Find all such sets so that each edge remains in at least one of the sets.

Let si be the number of such intersecting edges in block Si.

(e) Take one set per block for all blocks and remove the corresponding edges

from the graph G. This results in one planar subgraph. There are in total

np =
∏

i si such subgraphs.

4. (Generate embedding sets) For the planar subgraph G(k) with k = 1, . . . , np,

generate the embedding sets E
(k)

i for each node i ∈ V in a clockwise manner:

(a) Let E ⊂ V× V be the set consisting of directed edges (i, j), (j, i) for each

edge {i, j} ∈ E.
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3.5 Proposed Cycle Detection Algorithm

(b) For node i, compute the angle of the edge (i, j) ∈ E at node i with respect

to the X-axis for each neighbor j ∈ Ni (Ni is the neighbor set of node i).

(c) Sort the directed edges (i, j) according to their angles in a descending

order and define the ordered edge set E
(k)

i ⊂ E.

5. (Find faces of planar subgraphs) For each planar subgraph G(k), k = 1, . . . , np,

find all faces (by using the planar face traversal algorithm [84]):

(a) Take node i1 ∈ V.

(b) Pick the first edge (ij, ij+1) in the embedding set E
(k)

ij
according to the

order. Then, go to node ij+1 and remove the edge from E
(k)

ij
.

(c) Repeat Step b) until returning to the starting node i1. At this point one

face is found.

(d) Stop if all embedding sets are empty. Otherwise, pick a node i1 ∈ V whose

embedding set is nonempty and go to Step b).

(e) If each edge in the original graph G is included in one or more faces

detected so far, then go to Step 6. Otherwise, go to Step b) and proceed

with the next planar subgraph G(k+1).

6. From all faces found so far, remove any that are repeated.

In what follows, we describe further details of the steps in the algorithm.

3.5.1 Planar Embedding of Power Systems

The first step in the algorithm is to construct a planar embedding of the graph G.

The planer embedding can be expressed by the coordinates (xi, yi) of each node

i ∈ V in the X-Y plane. If a map of the system is available, such coordinates can

easily be obtained. If not, we can employ graph plotting tools.
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3.5 Proposed Cycle Detection Algorithm

Figure 3.3: Planar embedding of the IEEE 118-bus system by the STAC.

For our proposed algorithm, we found that the graph plotting method pro-

vided by the Steady-State AC Network Visualization (STAC) [40] is suitable

(also see, e.g., [85]). This tool is capable to directly take the power grid data

from the MATPOWER [94] and obtain its planar embedding. Also, from the

numerical software MATLAB, we can employ, for example, the plot function for

graph objects, which is for non-planar graphs.

However, in general, the STAC performs better for larger systems in that

the number of intersections is kept much smaller. For comparison, we applied

these methods to the IEEE standard bus systems. For the 118, 145, and 300

bus systems, the STAC generated graphs with 29, 935, and 59 intersections,

respectively; on the other hand, the MATLAB tool resulted in 50, 1205, and

129 intersections, respectively, which are much larger. Fig. 3.3 demonstrates the

IEEE 118-bus system plotted by the STAC, where the red circles indicate the

intersections.
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3.5 Proposed Cycle Detection Algorithm

3.5.2 Planar Subgraphs

In the algorithm, once the coordinates of the nodes in the planar embedding of

the graph G are determined in Step 1, the intersections of the edges can be easily

found as shown in Step 2. Then, in Step 3, we generate subgraphs G(k) = (V,E(k))

of G which are planar with the edge sets satisfying E(k) ⊂ E. These are obtained

by removing some of the edges to eliminate intersections in such a way that the

planar subgraphs differ from each other in their edge sets as E(k) 6= E(j) if k 6= j

and the union of the edge sets form the original edge set as ∪kE(k) = E. Note

that the intersection E(k) ∩ E(j) of two edge sets may be nonempty.

This may be systematically done by introducing the intersection matrix S ∈

{0, 1}ne×ne as follows: Here, ne is the number of edges and S is upper triangular.

First, index all edges in E from e1 to ene . We set S(i, j) = 1 if the two edges

ei and ej with i < j intersect with each other, and S(i, j) = 0 otherwise. Now,

we determine the edges to be eliminated from the graph, and then remove the

corresponding rows and columns from the intersection matrix S. We must remove

sufficiently many edges so that after the removal of rows/edges, the remaining

submatrix of S becomes 0. Then, the corresponding subgraph G(k) becomes

planar. To keep the number of subgraphs limited, we need not generate all

possible subgraphs at this stage; the minimum requirement is that each edge

appears at least in one subgraph.

In a)–e) of Step 3 , we outline a procedure to carry this out efficiently by first

transforming the intersection matrix S into a block-diagonal matrix. Then, each

diagonal block corresponds to a subset of edges that intersect with each other,

but are independent of intersecting edges in other blocks. Consequently, we can

systematically remove the edges according to the blocks to keep the number of

islands minimal.
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3.5 Proposed Cycle Detection Algorithm

3.5.3 Face Detection in Planar Graphs

Finally, we must find the faces in each planar graph G(k) of G. In Step 4 of

the algorithm, we first find orders among neighbors for the nodes in G(k). More

specifically, from the coordinates of the network, we obtain the angles between

the edges for each node i. Based on these angles, we sort the edges in the

clockwise order. This information will be stored in an ordered set, referred to as

the embedding set of node i.

We introduce the notation for the embedding sets. For each planar graph

G(k) = (V,E(k)), we define its directional graph version G
(k)

= (V,E
(k)

), where

E
(k) ⊂ V × V is the set of directed edges consisting of two edges (i, j) and (j, i)

for each undirected edge {i, j} in E(k). Now, partition E
(k)

into E
(k)

i with i ∈ V,

where E
(k)

i = {(i,m) : m ∈ Ni} ⊂ E
(k)

with the neighbor set Ni of node i.

That is, we have E
(k)

= ∪i∈V E
(k)

i and E
(k)

i ∩ E
(k)

j = ∅ if i 6= j. With some

abuse of notation, each set E
(k)

i in the partition is defined as an ordered set

E
(k)

i =
(
(i,m1), (i,m2), . . . , (i,m|Ni|)

)
, where the order follows that found from

the coordinates of the buses above.

In our algorithm, after the embedding sets are obtained in Step 4 of algorithm,

the planar face traversal algorithm [84] is applied in Step 5 to each planar graph

G(k). It essentially follows the traversing of the graph as in the DFS where at

each node, the next node is chosen according to the order in the embedding set.

We explain the algorithm through an example graph in Fig. 3.4. As shown

in the top of this figure, the original graph consists of four nodes and has an

intersection between the edges (1,4) and (2,3). After detecting this intersection

in the graph, we can obtain two planar graphs G(1) by removing the edge (2,3) and

G(2) by removing (1,4). Next, we generate the embedding sets for the nodes in the

planar graphs. In Fig. 3.4, the orders are indicated by the red arrows. For G(1),

the embedding sets are given by E
(1)

1 = ((1, 2), (1, 4), (1, 3)), E
(1)

2 = ((2, 4), (2, 1)),
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Figure 3.4: Illustration of the cycle detection algorithm.

E
(1)

3 = ((3, 1), (3, 4)), and E
(1)

4 = ((4, 3), (4, 1), (4, 2)).

Now, the faces in G(1) can be found by traversing the nodes. Starting from

node 1, pick the edge (1, 2) as it is the first entry of E
(1)

1 . Then, at node 2, we

choose (2, 4) from E
(1)

2 . Similarly, we go to node 4 and then node 3. This leads

us back to the starting node 1. At this point, we found the face (1, 2, 4, 3), which

is in fact the outer face. We remove the edges that have been selected from the

nodes’ embedding sets, e.g., E
(1)

1 = ((1, 4), (1, 3)), E
(1)

2 = ((2, 1)), and so on. We

continue this procedure until all embedding sets become empty. The process can

be shown in terms of the chosen edges as follows:

Step 1: (1, 2)→ (2, 4)→ (4, 3)→ (3, 1) ⇒ Face 1: (1, 2, 4, 3)

Step 2: (1, 4)→ (4, 2)→ (2, 1) ⇒ Face 2: (1, 4, 2)

Step 3: (1, 3)→ (3, 4)→ (4, 1) ⇒ Face 3: (1, 3, 4)

We remove the face (1, 2, 4, 3) from the list since it is the union of the remaining

faces, indicating that it is the outer face. Hence, we obtain the two faces (1,4,2)

and (1,3,4). Then, we repeat this procedure for the second planar graph G(2) and

obtain the two faces (1,3,2) and (2,3,4).
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Note that for the LTS to detect outliers in the measurements, it is enough that

each edge appears at least in one cycle. Thus, the traversal procedure explained

above can be terminated, e.g., if all edges which are part of cycles (i.e., not those

in radial islands) are visited once (Steps 6 and 7). However, from the security

viewpoint, there is a tradeoff between the number of islands and the chance of

detecting attacked measurements. We show through simulations that favorable

results can be obtained by looking for faces in subgraphs and then removing the

repeating ones.
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Chapter 4

Analysis of the

Decomposition-Based State

Estimation

In this section, we examine the effectiveness of the proposed approach through

extensive simulations. To highlight the advantages of our proposed method, this

section is divided into three parts. First, the proposed decomposition method is

used to find cycles in the IEEE bus systems. In the second part, the proposed

decomposition algorithm is compared to algorithms based on DFS and MST.

In the last part, using these decompositions, we perform state estimation by

implementing the LTS in the presence of FDI attacks. The material of this

chapter is based on [7].

4.1 Decomposition into Islands

Here, we describe the decomposition procedure for a simple system and then show

the scalability of our method.
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4.1 Decomposition into Islands

Figure 4.1: Decomposition of the IEEE 14-bus system: Original graph.

4.1.1 IEEE 14-Bus System Case

The decomposition procedure is illustrated using the IEEE 14-bus system. To

this end, we first import the MATPOWER bus system from the database [94].

Then, we apply the algorithm in the previous chapter using the STAC [40], we

obtain the coordinate of each bus in the grid (Step 1). Fig. 4.1 displays the result.

Observe that this system has 14 vertices and 20 edges. There is one intersection

marked by a red circle between edges (6,11) and (13,14) (Step 2). From this

graph, we obtain two planar subgraphs G(1) by removing the edge (13,14) and

G(2) by removing (6,11) (Step 3).

The results of cycle detection (Steps 4 and 5) are depicted in Fig. 4.2 for G(1)

and G(2), where the faces corresponding to cycle islands are plotted in different

colors. The dot (labeled 8) indicates the bus not being part of any cycles and

hence composes a radial island. From the results for G(1), the detected cycles are

(1,2,5), (2,4,5), (2,3,4), (4,5,6,11,10,9), (4,9,7), and (6,12,13). Then, from G(2),

we can find the remaining cycle (4,5,6,13,14,9). The IEEE 14-bus system is in

fact planar, which can be numerically checked [41]. The discussion above using

G(1) and G(2) is to illustrate our method. According to Euler’s formula in (3.3),

the number of cycles should be 2 − 14 + 20 = 8. After removing the outer face,
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4.1 Decomposition into Islands

(a) (b)

Figure 4.2: Decomposition of the IEEE 14-bus system faces in the (a) first sub-
graph G(1) (b) second subgraph G(2).

we have seven cycles in total, as we found above.

4.1.2 Numerical Performance and Scalability

To confirm the scalability of the proposed decomposition algorithm for medium-

to large-scale systems, we applied it to various IEEE bus systems with 14, 30, 57,

118, 145, and 300 buses. Moreover, we compared the proposed algorithm with

other techniques such as the DFS- and MST-based methods discussed inprevious

chapter. The results are summarized in Table 4.1. As we propose a decomposition

algorithm for finding cycles with features suitable for robust state estimation, for

each system, we present the following data: (i) simulation time, (ii) the number

of islands, (iii) the average number of buses in each island, and (iv) the number

of buses in the largest island. Moreover, for the results of the proposed approach,

we show (v) the total number of blocks found in planar subgraphs in Step 3 of

the proposed algorithm1.

1All computation for the simulation was carried out using MATLAB on a Windows 10
64-bit operating system with Intel Core i5 processor of 2.6 GHz and 16 GB memory.
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4.1 Decomposition into Islands

Table 4.1: Comparison of three algorithms for system decomposition.
Data in each entry: (i) simulation time, (ii) the number of islands, (iii) the

average number of buses in each island, (iv) the number of buses in the largest
island, and (v) the number of blocks in the block-diagonal version of S.

IEEE bus systems DFS-based MST-based Proposed

14 buses

(i)

(ii)

(iii)

(iv)

0.05 sec

16 islands

7.87 buses

per island

11 buses

0.01 sec

8 islands

4.25 buses

per island

8 buses

0.05 sec

8 islands

3.62 buses

per island

6 buses/1 block

30 buses

(i)

(ii)

(iii)

(iv)

0.18 sec

68 islands

14.61 buses

per island

21 buses

0.02 sec

15 islands

4.26 buses

per island

9 buses

0.13 sec

15 islands

4.13 buses

per island

8 buses/2 blocks

57 buses

(i)

(ii)

(iii)

(iv)

7.29 sec

52584 islands

32.88 buses

per island

53 buses

0.03 sec

23 islands

8.95 buses

per island

23 buses

1.24 sec

23 islands

5.95 buses

per island

15 buses/6 blocks

118 buses

(i)

(ii)

(iii)

(iv)

–

0.06 sec

71 islands

6.49 buses

per island

20 buses

3.72 sec

68 islands

4.41 buses

per island

13 buses/22 blocks

145 buses

(i)

(ii)

(iii)

(iv)

–

0.23 sec

291 islands

4.87 buses

per island

16 buses

63.02 sec

258 islands

4.07 buses

per island

16 buses/278 blocks

300 buses

(i)

(ii)

(iii)

(iv)

–

0.42 sec

197 islands

5.05 buses

per island

32 buses

9.30 sec

195 islands

3.93 buses

per island

25 buses/41 blocks
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4.1 Decomposition into Islands

We observe that among the three methods, the proposed algorithm finds more

cycles of smaller sizes. This can be seen by checking the average number of buses

in each island and the number of buses in the largest island. It must be em-

phasized that this property was achieved by the use of face detection algorithms

applied to the planar subgraphs in our algorithm. Moreover, this property is

critical in the next stage of performing robust state estimation. While the MST-

based [46] approach is the fastest in computation and is sometimes comparable

with the proposed algorithm in other aspects, it was never better than the pro-

posed algorithm in terms of the cycle sizes. On the other hand, the DFS solution

finds many islands as expected, not being suitable for our purpose. However,

we must note that the proposed method shows increase in computation time in

comparison with the MST approach. This is due to its combinatorial nature in

finding planar subgraphs.

For the IEEE bus systems with 14, 30, 57, 118, 145, and 300 buses, we depict

the decomposition results of the proposed algorithm and the MST-based method

in Figs. 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9, respectively.

For the IEEE 118-bus system, from Fig. 4.7 and Table 4.1, we observe that the

largest island found by the proposed approach consists of 13 buses. In comparison,

the largest one found by the MST-based approach is the pink one with 20 buses,

which in fact contains many smaller cycles.

As mentioned earlier, finding small cycles is important for raising the cyber-

security levels of state estimation. This is because in robust state estimation

techniques, breakdown points for smaller islands are in general higher than larger

islands. Consequently, for the system as a whole, more outliers can be tolerated

in the measurements in robustly performing state estimation. In this respect, the

proposed algorithm is advantageous. We will further elaborate on these aspects.

We emphasize that the maximum breakdown points of the proposed algorithm

52



4.1 Decomposition into Islands

(a) (b)

Figure 4.3: Decomposition of the IEEE 14-bus system using the (a) proposed
method (b) MST method.

(a) (b)

Figure 4.4: Decomposition of the IEEE 30-bus system using the (a) proposed
method (b) MST method.
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(a) (b)

Figure 4.5: Decomposition of the IEEE 39-bus system using the (a) proposed
method (b) MST method.

(a) (b)

Figure 4.6: Decomposition of the IEEE 57-bus system using the (a) proposed
method (b) MST method.
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(a) (b)

Figure 4.7: Decomposition of the IEEE 118-bus system using the (a) proposed
method (b) MST method.

(a) (b)

Figure 4.8: Decomposition of the IEEE 145-bus system using the (a) proposed
method (b) MST method.
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4.1 Decomposition into Islands

(a) (b)

Figure 4.9: Decomposition of the IEEE 300-bus system using the (a) proposed
method (b) MST method.
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Figure 4.10: Boxplots of the breakdown points of the proposed method (P) versus
the MST-based method (M) for the IEEE bus systems based on the reduced
measurement configuration (see Table 4.2) for the estimation of phase angles.
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Figure 4.11: Boxplots of the breakdown points of the proposed method (P) versus
the MST-based method (M) for the IEEE bus systems based on the reduced mea-
surement configuration (see Table 4.2) for the estimation of voltage magnitudes.

are in general higher than those of the MST-based results. In Figs. 4.10 and 4.11

the theoretical maximum breakdown points of different IEEE systems are sum-

marized for the reduced redundancy case in their measurements as presented in

Table 4.2.

Here, we have decoupled the computation of the breakdown points corre-

sponding to the estimation of phase angles in Fig. 4.10 and voltage magnitudes

in Fig. 4.11. This helps to reduce the computational burden. The plots are

boxplots based on the maximum breakdown points of all cycle islands for each

case.

Note that real power measurements are related strongly to phase angle states

and weakly to voltage magnitudes. Hence, the plot of Fig. 4.10 depicts the

maximum breakdown points for the phase angle estimation obtained from real

power injections and flows available at each island. Similarly, the plot of Fig. 4.11

shows the results for the voltage magnitude estimation using reactive power and

voltage measurements in each island.

It must be noted that the calculation of maximum breakdown points is com-

putationally expensive if an exhaustive search is executed to find s∗, the minimum
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4.2 LTS Estimators: Simulation Setting

number of measurements whose removal make at least one measurement critical

for performing state estimation [24]. The challenging part for its calculation in

the case of power systems is that when the system is large, the computation of

s∗ can be expensive as it involves combinatorial aspects. To solve this issue, one

can employ the algorithm in [25] for accelerating the computation.

4.2 LTS Estimators: Simulation Setting

Now, we proceed to check the performance of the proposed algorithm using LTS

for state estimation and outlier detection.

For this part, we use the IEEE 118-bus system and compare the results for

two sets of measurements: one is the full redundancy case with 1098 measure-

ments and the other is the more realistic case with 696 measurements taken from

[15]. Here, we are considering adversarial environments where attackers may be

targeting the power system, but the protection level of the measurements for

security is assumed minimal in the sense that most of them are subject to false

data injection; only those at radial subsystems are exceptional and are assumed

to be safe from such attacks. Hence, the approach is to have higher redundancy

in the number of measurements. It is clearly desirable to study the case with

lower redundancy, and we plan to address such cases in our future works. The

measurement configurations for the two cases are summarized in Table 4.2. The

numbers of voltage measurements, active and reactive power injection measure-

ments, and active and reactive power flow measurements are shown for the six

IEEE bus system configurations. For the full measurement case, each bus of the

system is assumed to have measurements for voltage magnitude and both active

and reactive power injections; each line has measurements for two active and two

reactive power flows at its ends. In these tables, we also provide the redundancy
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4.2 LTS Estimators: Simulation Setting

ratio, indicating the number of measurements divided by the number of state

variables, as well as the number of branches in each system.

The state estimation program available in MATPOWER [94] was used and

modified to introduce the LTS to the proposed approach. An algorithm for multi-

variate LTS estimator is provided in [6]. The program was adapted to the power

systems context where the regressor matrix is sparse. High-performance comput-

ing may be applied to accelerate SSE for large power systems [23; 47] and could

constitute a promising tool to speed up the execution of the proposed approach.

The slack bus was considered at bus 69 where voltage magnitude was fixed to 1

p.u. and phase angle to zero. The system has been decomposed to 68 islands.

To compare the state estimation accuracy, the error in both voltage angles

and magnitudes can be evaluated as follows:

xMI =
1

nMc

Mc∑
k=1

∥∥x̂[k] − xT
∥∥ , (4.1)

where n and Mc are the numbers of buses and Monte Carlo runs, respectively.

Here, we took Mc = 100. The state x̂[k] is the estimate from the kth run, and xT

is the true state (i.e., the power flow solution).

Through simulations, we analyze the detection performance of three robust

methods to randomly generated outliers. Two of the robust methods are based

on the LTS using graph decomposition by the proposed method and by the MST

as discussed in the previous subsection. The third one is the conventional largest

normalized residual method (LNR) [4], which is applied to the system without

any decomposition. The outliers are introduced in the regressor matrix H (lever-

age points) and observation vector (observation outliers). For all the estimators

including the LNR, if a residual is flagged as an outlier both its correspond-
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4.2 LTS Estimators: Simulation Setting

Table 4.2: Measurement configuration for the IEEE bus systems.
Results are shown in the format (reduced measurement case) / (full

measurement case).

Type of measurements 14 bus 30 bus 57 bus

Vi
Pi
Qi

Pij
Pji
Qij

Qji

14 / 14

13 / 14

13 / 14

19 / 20

0 / 20

19 / 20

0 / 20

30 / 30

28 / 30

28 / 30

39 / 41

0 / 41

39 / 41

0 / 41

57 / 57

54 / 57

54 / 57

77 / 80

0 / 80

77 / 80

0 / 80

Total number 78 / 122 164 / 254 319 / 491

Redundancy ratio 2.89 / 4.52 2.78 / 4.31 2.82 / 4.35

Number of branches 20 41 80

Type of measurements 118 bus 145 bus 300 bus

Vi
Pi
Qi

Pij
Pji
Qij

Qji

118 / 118

110 / 118

110 / 118

179 / 186

0 / 186

179 / 186

0 / 186

145 / 145

130 / 145

130 / 145

441 / 453

0 / 453

441 / 453

0 / 453

300 / 300

290 / 300

290 / 300

400 / 411

0 / 411

400 / 411

0 / 411

Total number 696 / 1098 1287 / 2247 1680 / 2544

Redundancy ratio 2.96 / 4.67 4.45 / 7.78 2.80 / 4.25

Number of branches 186 453 411
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4.2 LTS Estimators: Simulation Setting

ing measurement and row in the regressor matrix are rejected and considered as

observation outlier or leverage point.

We now introduce some notations related to the performance indices. The

numbers of the introduced leverage points and observation outliers are denoted

by nl and nz, respectively; these numbers will be constant for all runs. For

each run k, the number of detected leverage points truly present in the attack is

denoted by nlT,k. Let nzT,k be its observation outliers counterpart. The number

of outliers detected which are neither generated leverage points nor observation

outliers is nF,k. The estimated probabilities of detection for leverage points and

observation outliers are as follows:

Pl =
1

Mc

Mc∑
k=1

nlT,k
nlT,k + nF,k

, Pz =
1

Mc

Mc∑
k=1

nzT,k
nzT,k + nF,k

. (4.2)

The detection indices are also given by

dl =
1

Mc

Mc∑
k=1

nlT,k
nl

, dz =
1

Mc

Mc∑
k=1

nzT,k
nz

. (4.3)

The estimated probability of false detection is defined by

Pf =
1

Mc

Mc∑
k=1

nF,k
nzT,k + nlT,k + nF,k

. (4.4)

At each of the Mc runs, a set of quantities is randomly generated. Those are

for the observation noise, the locations and magnitudes of leverage points and

observation outliers. The IEEE 118-bus system has 9 radial islands, for which

only 10 measurements are present; as the number is very limited, we assumed

them to be free from attacks. Different scenarios of measurement redundancy are

considered.

More in detail, each observation outlier is generated for a randomly chosen
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4.3 LTS Estimators: Results and Comparisons

measurement i following a Gaussian N(8σi, σ
2
i ), where σi is the standard deviation

of the clean observation zi. On the other hand, each leverage point is introduced

by adding random elements generated from αU(2, 12) to a randomly chosen row

of H, where U is the uniform distribution and α is uniformly chosen as 1 or −1.

The standard deviations of the SCADA measurements are 0.66% of the measured

value plus a fixed value of 0.0017. The threshold τ for detecting outliers is set as

10 after some trials.

4.3 LTS Estimators: Results and Comparisons

We now present the simulation results for the three methods, where their per-

formances are compared in terms of robust state estimation and detection of

leverage points and observation outliers. In each Monte Carlo run, attacks were

first determined for the entire system, affecting all islands containing the attacked

portions in the measurement vectors and the regressor matrices.

We first examined the 118-bus system of moderate redundancy with 696 mea-

surements and generated random attacks as explained above for 100 Monte Carlo

simulations with 5 leverage points and 5 outlier measurements. The results for

the three methods are displayed in Table 4.3 (a). In this case, all three methods

remained observable. The proposed method and the MST-based method, which

use LTS, performed well with relatively close values in their performance indices

for detection probabilities and error norm averages. As expected, the conven-

tional LNR, however, performed very poorly. The detection accuracy is low and

the average number of measurements removed is very high. These indices show

that LNR is unreliable. It is, however, interesting that the LNR performs well

in the state estimation errors even under these conditions especially for voltage

magnitude estimation. This could be because of to the high redundancy due to
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Table 4.3: Monte Carlo SE detection probabilities and error norm averages with
the proposed method, the MST-based method, and the largest normalized resid-
ual method for the IEEE 118-bus system.

(a) The more realistic case with 696 measurements under 5 leverage points and
5 output outliers.

Method LTS Proposed LTS MST LNR

Pl 0.819 0.825 0.013

Pz 0.344 0.348 0.220

Pf 0.153 0.134 0.772

dl 0.700 0.548 0.046

dz 0.158 0.136 0.902

xMI (pu) 1.42× 10−3 1.53× 10−3 5.17× 10−4

xMI (deg) 0.754 0.995 1.067

# removed measurements 5.07 4.16 21.9

(b) The high redundancy case with 1098 measurements under 7 leverage points
and 7 output outliers.

Method LTS Proposed LTS MST LNR

Pl 0.958 0.754 0.011

Pz 0.795 0.588 0.234

Pf 0.036 0.224 0.770

dl 0.769 0.717 0.033

dz 0.261 0.213 0.979

xMI (pu) 2.15× 10−3 2.92× 10−3 4.75× 10−4

xMI (deg) 0.719 0.786 1.088

# removed measurements 9.53 11.1 31.4
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the presence of voltage magnitudes at all buses of the system. Voltage magnitude

measurements are not subject to leverage points since their entries are ones in

the regressor matrix.

The difference between the two LTS-based methods became more evident as

we increased the number of attacking points to 12 leverage points and 12 outlier

measurements: In the MST-based method, LTS lost observability in some of

the Monte Carlo runs and was unable to compute reliable state estimates. As

discussed earlier, this occurred because the MST algorithm finds large-size islands

in comparison with the proposed one. Such islands tend to have lower breakdown

points, making them vulnerable to attacks, and hence become the weak points in

the system. Issues with observability also occurred with the LNR. In contrast,

the proposed algorithm stayed observable even under these numbers of attacks.

Next, we examined the same IEEE 118-bus system with full redundancy in

the measurements. The results are shown in Table 4.3 (b). It is clear that the

conventional robust technique (LNR) behaves badly. Overall, we can conclude

from these results that the LTS with the proposed decomposition method provides

the best detection for both outlier and leverage points. It is clearly demonstrated

that the Monte Carlo average absolute errors in SE for voltage magnitudes and

voltage phase angles remain smaller than the other two methods.

For comparison purpose, we ran the simulation using two conventional robust

estimation methods, the M-estimator and the least absolute deviation (LAD).

These methods were applied to the whole system for obtaining the estimates of

voltage magnitudes and phases. Note that different from the three approaches

using LTS and LNR considered so far, these methods do not detect the attacked

measurements.

The average estimation performance (i.e., xMI ) after running the simulations

under the same Monte Carlo settings is the following. For the reduced measure-
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Figure 4.12: Average parallel computation times for SE: The proposed method
(P) versus the MST-based method (M) for the IEEE bus systems based on the
reduced measurement configuration (see Table 4.2).

ment case, the M-estimator resulted in 4.81 ×10−4 pu and 1.12 deg whereas the

LAD yielded 1.91×10−3 pu and 1.06 deg. On the other hand, for the full mea-

surement case, the M-estimator resulted in 6.19 ×10−4 pu and 1.04 deg whereas

the LAD yielded 3.44 ×10−3 pu and 0.97 deg. In view of Table 4.3 (a) and (b),

we observe that the estimation levels are similar to those from LNR or worse.

This is due to the fact that both the M- and the LAD estimators are vulnerable

to leverage points; this aspect is known in the literature [61].

Finally, we examined the average time of state estimation executed in parallel

for the proposed decomposition method and the MST-based approach with LTS.

Fig. 4.12 shows the average values in 100 Monte Carlo runs for the IEEE bus

systems. For reducing the computation time, the state estimation in each island

could be done in parallel. This figure shows the running times for the largest

islands in the systems (plotted in blue) and the times for the whole state esti-

mation after removing outliers (plotted in orange). The results indicate that the

proposed decomposition algorithm is faster than the MST-based method. As the

MST finds large size islands, the LTS-based state estimation takes time for those
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islands.

In the following chapter, we consider different FDI attack scenarios against

the SE that manipulate states to a targeted value. We construct adversarial

coordinated attacks against certain targeted buses in the system.
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Chapter 5

Targeted Coordinated Attacks on

Decomposition-Based State

Estimation

In this chapter, we follow the approach of [7] and decompose the system into

islands. We demonstrate the effectiveness of the robust estimation method by

analyzing it against a class of coordinated attacks targeting certain buses and

their adjacent buses in the system. Later, we extend our analysis to a larger-

scale case with the IEEE 118-bus system. The material of this chapter is based

on [8].

5.1 Three-Step SE Algorithm

To enhance robustness in static SE based on islanding and robust techniques in

Chapters 3 and 4 (see also [7; 16]), we provide a modified version of the procedure.

Specifically, we follow the three-step algorithm outlined as follows:

(i) As the first step, robust estimation is performed at each island. After its
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5.2 Targeted Coordinated Attacks on Decomposition-Based SE

convergence, normalized residuals are calculated for the estimates. Then, the

residuals larger than a specified threshold will be chosen as outliers and leverage

points in each island.

(ii) In the second step, the corresponding outlier entries are removed from the

measurement vector z and the regressor matrix H of the entire system. The SE for

the entire system is then performed based on the WLS. Afterwards, the outliers

and leverage points detected in the first step are put back, and we calculate the

normalized residuals for the second time. The normalized residuals larger than a

threshold are chosen as the final outliers and leverage points.

(iii) The third step is for ensuring the accuracy level of estimation and reducing

unobservability. After removing detected outliers from the second step, we make

the state estimate for the last time.

The difference from the original approach in Chapter 4 and [7; 16] lies in the

second round of outlier detection and state estimate for the entire system in the

second and third steps. This takes account of the chances that the residual-based

outlier detections at the island level can be erroneous. To keep the number of false

detections low, the choices of thresholds in these steps are important especially

when the attacks are adversarial.

5.2 Targeted Coordinated Attacks on Decomposition-

Based SE

5.2.1 IEEE 14-Bus System: Decomposition and Its Re-

siliency

In the power system, each bus is assumed to have measurements for voltage mag-

nitude and both active and reactive power injections; each line has measurements
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Figure 5.1: IEEE 14-bus system and the placement of measurements and attacks.

for one active and one reactive power flows at its ends. For the case of the IEEE

14-bus system, there are 27 states (excluding the phase angle of the slack bus)

and 82 measurements in total.

First, we decompose the system based on the PFT-based and the MST-based

methods. Table 5.1 gives the summary of the numbers of islands, the average

number of buses in each island, the numbers of buses in the largest islands,

and the computation times. We notice that the PFT-based method is capa-

ble to find islands of smaller sizes. The details of the decomposition are pre-

sented in Tables 5.2, 5.3, and 5.41. The islands are denoted as Ii, i = 1, . . . , 10.

Those common in both PFT- and MST-based methods are I1 = {1, 2, 5}, I2 =

{2, 3, 4}, I3 = {4, 9, 7}, and I4 = {6, 12, 13} (Table 5.2). The additional is-

lands for the PFT-based method are I5 = {2, 4, 5}, I6 = {4, 5, 6, 11, 10, 9}, and

I7 = {4, 5, 6, 9, 13, 14} (Table 5.3) while those for the MST-based method are

I8 = {1, 2, 4, 5}, I9 = {1, 2, 4, 5, 6, 9, 10, 11}, and I10 = {1, 2, 4, 5, 6, 9, 13, 14} (Ta-

1Note that there is one radial island, {7, 8}. This island is vulnerable to attacks due to the
small number of measurements. Hence, it is assumed to be equipped with secure measurements
and is not subject to attacks.
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Table 5.1: Decomposition of the IEEE 14- and 118-bus system by two methods

14-bus

Decomposition method PFT-based MST-based

Number of islands

Average number of buses in each island

Number of buses in the largest island

Computation time (sec)

8

3.62

6

0.516

8

4.25

8

0.212

118-bus

Decomposition method PFT-based MST-based

Number of islands

Average number of buses in each island

Number of buses in the largest island

Computation time (sec)

68

4.41

13

4.36

71

6.49

20

0.09

ble 5.4). For these islands, their breakdown points for the LTS were calculated as

shown in 5.2, 5.3, and 5.4. It was found that for this measurement configuration,

each island can tolerate up to 2 attacks regardless of its size. This means that

smaller islands have larger breakdown points, indicating the advantages of the

PFT-based islands. In calculating the breakdown points, we took a decoupled

approach to reduce the burden of computation. In particular, we considered only

active power measurements for the phase angle estimation. It is known that reac-

tive power and voltage magnitude measurements are only weakly linked to phase

angles [4].

5.2.2 Two Classes of FDI Attacks Against the LTS

In our simulations using the LTS, in every island, we set the number of measure-

ments discarded to be 2 in estimation against attacks. Under this setting, the

LTS may produce false state estimations depending on the number of attacks and

there are two scenarios:

(i) In an island, when the number of attacks is greater than the number of
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Table 5.2: Islands in both methods and active power measurements linked to
buses 2 and 6 in each island

Islands in both methods

Island indices I1 I2 I3 I4

Buses 1,2,5 2,3,4 4,7,9 6,12,13

Breakdown

point
1/3 1/3 1/3 1/3

# all active

power meas.
6 6 6 6

# attacks to produce

masked attacks
3 3 3 3

# attacks to produce

targeted attacks
4 4 4 4

Active power measurements linked to bus 2

P1−2

P2−3

P2−4

P2−5

P1

P2

P3

P4

P5

1

0

0

1

1

1

0

0

1

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

Active power measurements linked to bus 6

P5−6

P6−11

P6−12

P6−13

P5

P6

P11

P12

P13

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

0

1

1
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Table 5.3: Islands obtained from PFT-based method and active power measure-
ments linked to buses 2 and 6 in each island

Islands in PFT-based method

Island indices I5 I6 I7

Buses 2,4,5
4,5,6,

9,10,11

4,5,6,

9,13,14

Breakdown

point
1/3 1/6 1/6

# all active

power meas.
6 12 12

# attacks to produce

masked attacks
3 3 3

# attacks to produce

targeted attacks
4 10 10

Active power measurements linked to bus 2

P1−2

P2−3

P2−4

P2−5

P1

P2

P3

P4

P5

0

0

1

1

0

1

0

1

1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

1

1

Active power measurements linked to bus 6

P5−6

P6−11

P6−12

P6−13

P5

P6

P11

P12

P13

0

0

0

0

1

0

0

0

0

1

1

0

0

1

1

1

0

0

1

0

0

1

1

1

0

0

1
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Table 5.4: Islands in MST-based method and active power measurements linked
to buses 2 and 6 in each island

Islands in MST-based method

Island indices I8 I9 I10

Buses 1,2,4,5
1,2,4,5,

6,9,10,11

1,2,4,5,

6,9,13,14

Breakdown

point
1/4 1/8 1/8

# all active

power meas.
8 16 16

# attacks to produce

masked attacks
3 3 3

# attacks to produce

targeted attacks
6 14 14

Active power measurements linked to bus 2

P1−2

P2−3

P2−4

P2−5

P1

P2

P3

P4

P5

1

0

1

0

1

1

0

1

1

1

0

1

0

1

1

0

1

1

1

0

1

0

1

1

0

1

1

Active power measurements linked to bus 6

P5−6

P6−11

P6−12

P6−13

P5

P6

P11

P12

P13

0

0

0

0

1

0

0

0

0

1

1

0

0

1

1

1

0

0

1

0

0

1

1

1

0

0

1
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trimmed measurements (i.e., 2 in all islands), the local state estimate in that

island may become inaccurate; such attacks are called masked attacks.

(ii) In an island, when the number of coordinated attacks is greater than

or equal to the total number of measurements minus the number of trimmed

measurements (given as mT in (2.29)), the LTS might detect the remaining clean

data as outlying. Such attacks can result in estimates at values chosen by the

attacker, and hence can be much more harmful to the system. Such attacks are

referred to as targeted attacks [16].

Tables 5.2, 5.3, and 5.4 indicates the number of FDIs necessary to create such

attacks for each island.

5.2.3 Resilience Analysis of the Two Decomposition Meth-

ods

In the scenario considered here, the attacker aims to modify the phases of the

target buses 2 and 6. Here, the attacks will be limited to FDIs against the active

power injections at these buses and their neighboring buses. To this end, the

attacker attempts to gain access to the active power measurements linked to these

buses and then to inject false data there. In our experiment, we demonstrate the

effects of attacks by gradually increasing the number of attack points, denoted

by Ns, from 1 to 8. In particular, the order of the attacked buses (in their active

power injections) is shown in Table 5.5. Note that when we say Ns attacks are

made, measurements shown under 1 to Ns in the second row of this table will be

under falsification. The attacker falsifies the measurements as well as the rows of

the Jacobian matrix related to these attacked buses. By increasing the number

of attacks, islands failing to generate accurate estimation will increase even by

using the LTS.

At this point, we would like to discuss that when FDI attacks are launched
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Table 5.5: Attacked measurements in the IEEE 14-bus system simulations

Number of

attacks Ns
1 2 3 4 5 6 7 8

Measurements

under falsification
P2 P6 P1 P4 P11 P13 P12 P5

Islands unable to

estimate phase 2
– – – I8,I9,I10 I8,I9,I10 I8,I9,I10 I8,I9,I10

I1,I5,I8,

I9,I10
Islands unable to

estimate phase 6
– – – – – – I4 I4

on buses 2 and 6 and their neighbors, the islands from the PFT-based method

have advantages over those from the MST-based method. To this end, we make

a more careful inspection of the islands obtained from both methods. By the

topology of the system shown in Fig. 5.1, we see that the two target buses have

multiple neighboring buses. The neighbors of bus 2 are buses 1, 3, 4, and 5 while

those of bus 6 are buses 5, 11, 12, and 13.

First, we notice that more MST-based islands contain bus 2 than the PFT-

based ones, which may already indicate that attacking bus 2 can have more

impact on MST-based state estimation. In fact, as shown in Tables 5.2, 5.3,

and 5.4, among the seven PFT-based islands, only three of them contain bus 2.

In contrast, among the seven MST-based islands, five of them have bus 2. On the

other hand, the number of islands containing bus 6 are six for both decomposition

cases; the attack impact for this case needs further analysis.

Second, there is a certain inclusion relation among the islands from the two

methods. For example, the PFT-based island I5 = {2, 4, 5} is fully contained in

the MST-based island I8 = {1, 2, 4, 5} as I5 ⊂ I8. Similarly, it holds I6 ⊂ I9 and

I7 ⊂ I10. These relations indicate that in general, the impact of attacks can be

greater on the MST-based islands than that on the PFT-based islands as they

form a superset.

Third, among the PFT-based islands I5, I6, and I7, the common buses can be
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found to be I5∩I6∩I7 = {4, 5} whereas among the MST-based islands I8, I9, and

I10, the common buses are I8∩I9∩I10 = {1, 2, 4, 5}. This indicates that targeting

not only bus 2 but also bus 1 can be problematic in the local SE at MST-based

islands. Having overlaps in the islands can create vulnerabilities because when

buses contained in many islands are attacked, all of those islands can be affected

in the SE performance.

Finally, among the PFT-based islands, bus 6 is contained in two islands,

namely, I6 and I7. However, these islands do not contain bus 2. Hence, for PFT-

based SE, the FDI attacks on the two target buses may have more independent

effects. This is clearly different for MST-based SE, since the two islands I9 and

I10 contain both of the target buses 2 and 6; hence, attacking these buses may

have more combined effects.

To make a more detailed analysis, from the attack pattern shown in Table 5.5,

we can generate the lower part of Tables 5.2, 5.3, and 5.4, where the relations

between active power measurements and their connections to islands are shown

with entries 1 (linked) and 0 (not linked). Now, let’s consider the case when the

attacker attacks four measurements with N4 and manipulates P1, P2, P4, and

P6. From the table, we confirm that at least three of these measurements are

linked to all three islands given by the MST-based method, i.e., I8, I9, and I10.

Consequently, the LTS may not be capable to make precise estimates of states

or to correctly find the outliers because the number of trimmed measurements is

set to 2. In Table 5.5, the third and fourth rows show the indices of the islands

for which the numbers of attacks Ns exceed their breakdown points.

On the other hand, in all remaining islands, at most two measurements are

linked. Islands I1, I2, and I5 have three measurements linked to bus 2 which are

not attacked and thus the chance of producing correct results is higher. We note

that in our robust scheme, each state is estimated in multiple islands; even if some
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islands fail to make accurate estimation of some states, they may be recovered

by other islands. This is the reason for adding the third step in our robust SE

algorithm discussed in Section 5.1.

In conclusion, from the analysis and discussion so far, it is evident that the

PFT-based islands should be more resilient compared to the MST-based ones in

general but especially under attacks targeting certain buses. We will confirm this

aspect through simulations in the next section.

5.2.4 Discussion on Detection of Random Errors and At-

tacks

How to distinguish between real events and FDI attacks is an important question

in the context of ensuring a reliable and secure grid monitoring. Real events

that can be potentially detected through our method include sensor failures,

sensor noises, topology errors such as wrong states of circuit breakers and lines

(open/close), and parameter errors. Sensor failures and noises occur sporadically

in a limited number of sensors, mostly without much correlation. Such events

can be detected by our method but may be difficult to be distinguished from

attacks. If attack/failure detection continues over time at some sensors, they

must be checked.

Opening lines in the system is a much more serious real event regardless

of whether they are caused by faults and resulting protection actions, operator

controls, or physical attacks. If one line is made open, measurements near this

line will change at once. If it is a normal topology change or a fault, then the

measurement changes will be consistent in the system, and this can be detected

or known to the operator by other means. The proposed approach may not

detect such changes by making one estimate run, partly because the least trimmed

squares estimation depends on the majority of data. Moreover, under coordinated
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cyber-physical attacks that open a line and change all the measurements linked to

this line in a consistent manner, detection would be difficult by any method using

a single time snapshot. These attacks require extensive access and knowledge by

the attacker and are known as stealthy attacks. These stealthy attacks could

be detected, for example, by monitoring the time series in the measurements

and state estimates or by securing specific sensors. For more on the subject of

detection of random errors and attacks, we refer to the survey paper [67] and the

references therein.

5.3 Simulation

In the simulations, we compare the performance of state estimation as well as

detection of outliers in the measurement data for seven different schemes. First

of all, as estimation algorithms, we employ the following four: The conventional

LNR and the robust estimators using LTS, Huber M, and LAV. Four schemes

are based on the robust algorithms applied to the decomposed islands obtained

from the PFT- and MST-based methods; these are denoted LTSPFT, LTSMST,

MPFT, and LAVPST. Further, for comparison purposes, three schemes apply the

LNR, Huber M, and LAV to the entire system in a centralized fashion, without

decomposition; these are denoted with the subscript C as LNRC, MC, and LAVC.

5.3.1 Simulation Setup for the IEEE 14-Bus System

For the IEEE 14-bus system, we import the MATPOWER data from [94]. The

slack bus is taken to be bus 1, whose voltage angle is fixed to zero. The error in

each SCADA measurement follows the normal distribution with zero mean and

standard deviation of 0.66% of the original value plus a fixed value of 0.0017. The

LTS algorithm proposed in [6] is adapted to handle the sparsity in the AC SE.
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For the Huber M-estimator, the threshold parameter was taken as 1.345. For the

detection of attacks, several thresholds are used. For the conventional LNRC, the

threshold is chosen to be 3 while for MC and LAVC, we have chosen the threshold

to be 7. In the robust estimation schemes LTSPFT, LTSMST, MPFT, and LAVPFT,

at each island, the threshold of 5 is used in the first step; then, in the second

step, where we apply additional post-estimation processing to the whole system,

we use the threshold of 7. These values were chosen after some trial runs so as

to minimize the false alarm detection rates in the clean case (without attacks).

For each attack case, we make Monte Carlo simulations of 100 times (Mc =

100). To compare the estimation accuracy of the different schemes, we evaluate

the average estimation error for voltage angles as xe = 1
nbMc

∑Mc

k=1

∥∥x̂k − xT∥∥,

where nb is the number of buses, x̂k is the estimate from the kth Monte Carlo

run, and xT is the true state (i.e., the power flow solution). As the base case

under the described conditions, without any attacks, the LNR for the centralized

scheme results in the average error 0.1142.

5.3.2 Attacks on Measurements

In this part, we apply two types of attacks on the measurements and compare

the seven estimation schemes.

(a) First, we generate random attacks according to Table 5.5, where each

attacked measurement is falsified by adding a uniformly random number between

20 to 60 percent of the original measurement value. Specifically, in the case when

Ns points are attacked, the attack values are set as δzi = bizi with bi ∼ U(0.2, 0.6)

for i = i1, ..., iNs , where ij is the index of the jth attacked measurement in
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Figure 5.2: Average estimation errors under random attacks on measurements.

Table 5.5. Then, the attacked measurement vector zc is generated as

zc,i =

zi + δzi if i = i1, ..., iNs ,

zi otherwise.

(5.1)

The results of the average estimation errors are shown in Fig. 5.2 in heatmap

format. We observe that all schemes are capable to achieve good estimation at

least up to seven attacks. It is notable that the centralized schemes perform quite

well.

(b) As a more adversarial case, we consider measurement attacks in a more

coordinated fashion. Specifically, the attack vector is set as δz = Hc, where c is a

sparse vector with ci = 0.12 rad for the entries corresponding to the phases of the

targeted buses 2 and 6 and zero otherwise. Then, in the case when Ns points are

attacked, the falsified measurements are generated by (5.1). The results of the

average estimation errors are shown in Fig. 5.3. In this case, the two LTS-based

schemes demonstrate to be the most robust, tolerating up to seven attacks. Other
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Figure 5.3: Average estimation errors under coordinated attacks on measure-
ments.

methods quickly become unreliable. The Huber M and LAV for both centralized

and decomposition-based schemes can handle only up to two attacks while the

conventional centralized LNR manages up to three attacks.

5.3.3 Attacks on the Jacobian Matrix

Next, we examine the effects of attacks on the Jacobian matrix, resulting in

leverage points. Here, we also follow the attack strategy in Table 5.5 and gradually

increase the number Ns. To this end, the attack values on H are generated by

first setting the matrix δH ∈ Rm×n as

[δH]i,j =


(η − 1)[H]i,j

if j corresponds to phase

angle of bus 2 or 6,

0 otherwise,
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Figure 5.4: Average estimation errors under attacks on the Jacobian matrix.

for i = 1, . . . ,m with η = −3. Then, the attacked Jacobian matrix Hc is set as

[Hc]i,j =

[H]i,j + [δH]i,j if i = i1, . . . , iNs ,

[H]i,j otherwise,

for j = 1, . . . , n. Under this attack, the estimated phases of the targeted buses 2

and 6 will become one third of the true estimate values. In the current setting,

the true phase of bus 2 is −6.48 deg, and hence, after the modification by the

intruder, it becomes −6.48/η = 2.16 deg.

Fig. 5.4 shows the average estimation errors for the seven estimation schemes.

Under this attack scenario, we clearly see the advantage of LTS based on the

PFT decomposition method. In particular, the difference from the LTS-MST

method becomes more evident as we increase the number of attacks to more than

four points. Figs. 5.5 and 5.6 show the phase angle estimations of all buses for

LTS-PFT and LTS-MST in detail in box plots obtained from the Monte Carlo

simulations. The green asterisks in the plots are the (true) power flow values.

82



5.3 Simulation

1 2 3 4 5 6 7 8 9 10 11 12 13 14
-20

-15

-10

-5

0

5

V
o
lt
a
g
e
 a

n
g
le

 a
t 
a
ll 

b
u
s
e
s

N
s
= 4, LTS

PFT

True value

1 2 3 4 5 6 7 8 9 10 11 12 13 14
-20

-15

-10

-5

0

5

N
s
= 5, LTS

PFT

True value

1 2 3 4 5 6 7 8 9 10 11 12 13 14
-20

-15

-10

-5

0

5

V
o
lt
a
g
e
 a

n
g
le

 a
t 
a
ll 

b
u
s
e
s

N
s
= 4, LTS

MST

True value

1 2 3 4 5 6 7 8 9 10 11 12 13 14
-20

-15

-10

-5

0

5

N
s
= 5, LTS

MST

True value

Figure 5.5: Estimated phase angles of 14 buses by LTS-PFT (top) and LTS-MST
(bottom) under attacks on the Jacobian matrix for Ns = 4, 5.
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Figure 5.6: Estimated phase angles of 14 buses by LTS-PFT (top) and LTS-MST
(bottom) under attacks on the Jacobian matrix for Ns = 6, 8.
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When the number of attacks is Ns = 4, the difference between the two meth-

ods can be found in erroneous estimations in the MST-based results, indicated

by the red pluses; this difference is not visible from the average estimation er-

ror data in Fig. 5.4. Here the attack points are P1, P2, P4, and P6, and these

make the estimation of the large-sized islands I8, I9, and I10 for the MST-based

method vulnerable as it goes beyond the breakdown points in these islands (see

Table 5.4). As a consequence, the estimation in these islands fails to properly

detect the attack points. In contrast, under the PFT-based method, all islands

remain functional in estimation. Moreover, when we increase the attacks to five

points, the MST-based method totally breaks down as shown in both Fig. 5.4 and

Figs. 5.5. Finally, by increasing the attacks up to eight points for the PFT-based

method, the phase angle at bus 2 moves to the targeted value of 2.16 deg (shown

with a magenta circle in Fig. 5.6 for LTSPFT with Ns = 8). This occurs even

though for some islands, the number of attacks may not be enough for realiz-

ing targeted attacks (as shown in Tables 5.2, 5.3, and 5.4). This is because the

Jacobian matrix is sparse.

As demonstrated above, the LTS based on the PFT method well outperforms

other estimation schemes, especially in comparison to the conventional LNRC,

which is popular in practice. We would like to highlight now that even when the

estimation accuracy starts to degrade after the number of attacks goes beyond 4

or so, our approach can provide good performance in terms of detection of the

attacked measurements. To show this, we introduce three performance measures

as follows: (a) The estimated probability of leverage point detection given by

Pl = 1
Mc

∑Mc

k=1

nl
T,k

nl
T,k+nF,k

, where nlT,k is the number of detected leverage points

truly present in the attack for each run k and nF,k is the number of falsely

detected leverage points. (b) The estimated probability of false detection given

by Pf = 1
Mc

∑Mc

k=1
nF,k

nl
T,k+nF,k

. (c) The true probability of leverage point detection
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Figure 5.7: The estimated probability of detection leverage point.

dl = 1
Mc

∑Mc

k=1

nl
T,k

nl
, where nl is the number of the leverage points introduced.

The results for these three measures (a)–(c) are shown in Figs. 5.7, 5.8, and 5.9.

In general, we observe that the LTS-PFT outperforms all other schemes in all

three detection measures. In particular, the difference from the LTS-MST method

becomes evident after Ns becomes larger than 5. Moreover, the measures for

LTS-PFT indicate its high reliability in attack detection up to Ns = 7. Other

schemes may be considered reliable in detecting only 1 leverage point except for

MC, which exhibits good performance when Ns = 2 also. In the robust statistics

literature, it is known that the Huber M, LAV, and LNR are vulnerable to leverage

points [32; 61; 90].

5.3.4 Hybrid Estimation under Attacks on the Jacobian

In this last part, we would like to see the effectiveness of introducing more mea-

surements to the system and in particular use PMUs under attacks on the Jaco-

bian as in the previous subsection. Following [21], we place PMUs at buses 2, 6,
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Figure 5.8: The estimated probability of false detection.
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Figure 5.9: The true probability of detection of leverage points.
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Figure 5.10: Average estimation errors with PMUs at bus 2 under coordinated
attacks on the Jacobian matrix.

and 9 for phasor measurements. We use the errors from MATPOWER with the

normal distribution of zero mean and standard deviation of 0.2 deg [94]. Here,

PMUs are considered to be secure and will not be affected by FDI attacks.

It turns out that by increasing the number of PMUs, performance enhance-

ment can be observed especially for the decomposition-based estimations. The

average estimation errors in voltage angles are summarized in Figs. 5.10, 5.11,

and 5.12 for three cases: (a) PMU at bus 2, (b) PMUs at buses 2 and 9, and (c)

PMUs at buses 2, 6, and 9. Without any FDI attacks, the average errors are 0.108

for (a), 0.081 for (b), and 0.064 for (c). In comparison with the results in Fig. 5.4

without any PMU, we see that adding PMUs has immediate effects for all schemes

except for the conventional LNR and LAV under centralized computation. Here,

again, the LTS-PFT method performs best: While without PMU, it tolerated 4

attacks, adding one PMU does show a clear difference in the estimation accuracy.

Moreover, with two PMUs, it increases the number of tolerable attack points

to 7. It takes three PMUs for the performance of LTS-MST to become similar
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Figure 5.11: Average estimation errors with PMUs at buses 2 and 9 under coor-
dinated attacks on the Jacobian matrix.
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Figure 5.12: Average estimation errors with PMUs at buses 2, 6, and 9 under
coordinated attacks on the Jacobian matrix.
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to that of LTS-PFT. We also computed the detection probabilities for the case

with PMUs. Though we do not show the results, performance enhancement was

evident as well.

5.3.5 IEEE 118-Bus system and Attacks on Its Jacobian

We now extend our study to the IEEE 118-bus system. Compared to the small-

scale 14-bus case, the two decomposition methods result in quite different sets of

islands. Some details about the island sizes and so on are shown in Table 5.1. In

Figs. 5.13 and 5.14, the islands obtained by the PFT- and MST-based methods

are, respectively, shown by different colors. Even at a glance, we see that in

general, PFT-based islands are smaller in their sizes, which should help their

robustness according to our discussion so far. The MST-based decomposition in

Fig. 5.14 has a particularly large island indicated in pink. The attack scenario

studied here centers around this island. Note that the measurement configuration

is as explained in Section 5.2.1, and the total number of measurements is 726 for

this system.

To this end, four target buses are selected to be buses 5, 19, 46, and 80. In

Fig. 5.13, these buses are indicated by the red dots. They are far from each other

and are clearly contained in different islands. However, notice in Fig. 5.14 that

these buses are in fact all part of the largest island (in pink color). Attacks will

be generated on these buses first and then on neighboring buses indicated by

the yellow dots in Figs. 5.13 and 5.14. We demonstrate the effects of attacks by

increasing the number Ns of attack points from 4 to 11 and following the order

shown in Table 5.6.

The slack bus is taken to be bus 69, whose voltage angle is fixed to zero. For

the detection of attacks, the thresholds are set to 10 for all steps and methods.

These values were chosen after some trial runs so that in the clean case (without
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Figure 5.13: IEEE 118-bus system decomposed by PFT-based method and at-
tacked buses.
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Figure 5.14: IEEE 118-bus system decomposed by MST-based method and at-
tacked buses.
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Table 5.6: Attacked measurements in the IEEE 118-bus system simulations

Number of attacks Ns 4 5 6 7 8 9 10 11

Measurements

under falsification
P5, P19, P46, P80 P3 P20 P47 P77 P8 P34 P45

Figure 5.15: Estimated phase angles of 118 buses by LTS-PFT (top) and LTS-
MST (bottom) under attacks on the Jacobian matrix for Ns = 10.
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Figure 5.16: Average estimation errors under attacks on the Jacobian matrix for
the IEEE 118-bus system.

attacks), the false alarm detection rates are minimized. For each attack case, we

make Monte Carlo simulations of 40 times (Mc = 40). Without any attacks, the

LNR for the centralized scheme results in the average error 0.0241.

Fig. 5.15 shows the phase angle estimations of all buses for LTS-PFT (top) and

LTS-MST (bottom) in box plots when Ns = 10 obtained from the Monte Carlo

simulations. Obviously, the MST-based estimations vary more in their values

and the error propagates much faster in the system (especially in the largest

island). Fig. 5.16 shows the average estimation errors for the seven estimation

schemes. We clearly see the advantage of the LTS-PFT method, especially over

the LTS-MST method for Ns = 9, 10.

The results for estimated probabilities are shown in Figs. 5.17, 5.18, and 5.18.

In general, we have the same pattern as that for the 14-bus system. We observe

that the LTS-PFT outperforms all other schemes in all three detection measures.

In particular, the difference from the LTS-MST method becomes evident after

Ns = 6. Moreover, the measures for LTS-PFT indicate its high reliability up to
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Figure 5.17: The estimated probability of detection leverage points for the IEEE
118-bus system.

Ns = 10. Other schemes may be considered unreliable after Ns = 3. Finally, we

examined the average times of state estimation. For the LTS-PFT and LTS-MST

methods, the running times for the SE at the largest islands (step 1 of Section 5.1,

based on LTS executed in parallel) became 1.12 and 7.84 sec, respectively, whereas

those for the SE of the whole system after removing outliers (steps 2 and 3, based

on the common WLS) were 0.24 and 0.17 sec, respectively. The LTS-PFT method

is faster since the islands are overall smaller than those of the LTS-MST.
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Figure 5.18: The estimated probability of false detection for the IEEE 118-bus
system.
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Figure 5.19: The true probability of detection of leverage points for the IEEE
118-bus system.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, first we have considered an approach to enhance the cyber security

of SSE for power systems. The proposed method systematically decomposes the

system in a limited number of small islands. The main advantage of our approach

lies in increasing the number of outliers that the state estimator can resist and

detect. The implementation state estimation based on LTS on each island can

be performed by computation in parallel. The effectiveness of the approach has

been demonstrated via simulations using IEEE bus systems in comparison with

other methods.

Second, we have considered robust techniques for static SE of power systems in

the presence of FDI cyber-attacks on the measurement vectors and the Jacobian

matrix. Our approach is to first apply the LTS at islands obtained from PFT-

based decomposition and then execute state estimation for the entire system

to verify the islands’ detection results. We analyzed the PFT-based and MST-

based decomposition methods and demonstrated the superior performance of the

proposed method with the PFT-based method through extensive simulations on
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6.2 Future Directions

the IEEE 14- and 118-bus systems. Under coordinated attacks in the Jacobian

matrix, the difference between the two decomposition methods has been shown

in both state estimation and attack detection accuracies. For comparison, we

have implemented other robust SE schemes and have further introduced PMUs

providing more secure and accurate measurements.

6.2 Future Directions

The following is a list of some potential directions for future research based on

the studies in this thesis:

1. Consider more malicious attack

The type of attack considered in this study is a cyber attack. A new research

focus would be on cyber physical attacks. It means that the attacker not

only manipulates the physical system by opening or closing the targeted

line’s circuit breaker, but also penetrates the cyber layer and changes the

neighboring measurement of the targeted line. Then, we use our algorithm

to see if the mentioned attack is detectable. (manipulating measurement to

see how far the attack can be detected.)

2. Improve the robustness of the state estimation by taking account

of the number of measurements and their locations in the time of

cycle detections

In our research, we look at how to find islands in a given topology. Instead,

we should consider islands base on where the measurements are placed. The

challenge is to deal with additional layer of complexity in the computation.
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