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Abstract

Internet of Things (1oT) technologies depend on the ability to automatically interpret
various sensor data sources, which usually produce time series. For example, these may
represent the motion, such as acceleration, of a person, animal, vehicle, or other machine
during normal daily life or activity. To perform useful tasks, loT devices need to be able to
classify the recorded time series according to some set of behaviors or situations. Since loT
devices must operate in the real world, many challenges need to be addressed. One chal-
lenge is that collecting data for training artificial intelligence systems, such as neural net-
works, is often very difficult and expensive, because it requires extensive observation and
labeling of the individual behaviors. Another challenge is that. typically, the behaviors are
very unbalanced: some behaviors are more frequent than others, but all of them need to be
classified with high accuracy.

The aim of the thesis is to propose new ways of solving these two problems through
the paradigm of data augmentation, which is still not widely explored from a time series
perspective. Essentially, this involves generating a large amount of new synthetic data, start-
ing from a limited number of measurements and combining the original data with appropri-
ate hypotheses about the features that should be maintained and those that can be changed
for augmentation. Throughout the thesis, different approaches are presented and compared

in a systematic way. Some of these methods are based on specific characteristics of the
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system under consideration, while others are more abstract. The complexity of the mathe-
matics also varies.

To address the matters indicated above, this thesis focuses on cases of automatic clas-
sification of cattle behaviors, such as feeding, resting and walking. The resulting data are
difficult to label and have an imbalanced distribution, therefore, are appropriate as examples
to deal with. In the target application, it is important to accurately quantify the proportions
of these behaviors because subtle changes can be a strong indicator of disease development
that would otherwise be invisible to farmers. This analytical insight enables a form of pre-
cise livestock management, which can help improve economic efficiency and reduce envi-
ronmental emissions, for example by limiting the number of livestock that are wasted. As
with many other applications of the IoT, inference needs to take place at the edge, aiming
for maximum accuracy under limited resources. This paper shows that data augmentation
methods allow training convolutional neural network (CNN) models to achieve extremely
high accuracy that would otherwise be very difficult to attain.

First, based on the specific characteristics of the monitored system, a paradigm in
which the rotation of the sensor around the cow’s neck is simulated is used as a means of
generating new data for augmentation. An initial dataset of 2 cows is used. The results show
that from a baseline starting at 77%, an overall accuracy of 98% can be obtained on a large
dataset from two cows, which is heavily imbalanced over the 5 behaviors under considera-
tion.

Second, a more realistic scenario is considered wherein the amount of data is approxi-
mately 10 times smaller, but gathered from 6 cows. In order to maintain a high level of
accuracy, several augmentation methods are deployed. These are based on assumptions spe-

cific to the system under consideration, i.e., cow behavior. In addition to sensor rotation,
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they include reversing time series, recombining time series between segments, and perform-
ing other time-domain operations. On this basis, the accuracy of 94% is obtained from an
83% starting point.

Third. a more principled approach is developed and applied. Starting from the obser-
vation that some of the previous augmentation methods retain only linear features of the
signal, an implementation using a Fourier surrogates method is created. The method is com-
bined with a sampling technique that is well suited to address data imbalances, while the
surrogates avoid data duplication. Unlike the methods considered in the previous chapters,
this approach 1s not designed for a specific system, because 1t 1s not based on an operation
that only has meaning for a particular scenario, such as rotation. It could therefore, in prin-
ciple, be considered for other applications in time series classification. The highest recog-
nition rate obtained is 96%, and even more important is the fact that the most problematic
behaviors show improved accuracy. In addition, since the method is based on fundamental
principles of signal theory, it is possible to enquire about which ones are specific aspects of
a time series’ content that lead to successful data augmentation. Through a series of data
reduction steps, it is found that autocorrelation, mean and variance convey most of the in-
formation about cow behavior. As a result, it seems that this approach may be also applica-
ble to other systems. This is tentatively confirmed in additional analyses of three datasets
coming from different applications and sensor time series. Furthermore, with a better un-
derstanding of the correlated signal features, it will become possible to design more specific
hardware to extract and analyze these features.

This thesis demonstrates a coherent journey through data augmentation methods, start-
ing with a simple implementation based on system-specific features and ending with an
abstract approach that could perhaps be widely used and helps to identify relevant signal
features. The results obtained have been made possible by this progression of approaches,

because each result inspired an insight for a new, broader approach. The method finally
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proposed is built up in this form, and would not have been possible to guess at the start. In
addition, the multidisciplinary aspect of the research provided the practical basis for under-
standing the importance of the rare behaviors. This provided motivation for seeking better
accuracy in all behaviors, which is different from the usual focus on overall performance.
Specifically, the results given in the published papers open up a variety of applications of
edge inference on the loT that would otherwise be difficult to implement because sufficient
accuracy is very difficult to obtain with realistic dataset sizes. Additional work on very
different dataset types that are representative of other loT applications provided an initial
confirmation of the potentially broader usefulness of the methods. Future work should study
more deeply the properties of the proposed methods in combination with other neural net-
work types, as well as the design of specially-designed hardware architectures based on
time series features determined to be relevant. As for the specific applications under con-
sideration, the results obtained confidently achieve automated livestock monitoring with

high accuracy levels.
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Chapter 1
Introduction: Edge Al, time series and real world

challenges

1.1 From IoT to Edge Al and time series

According to the general understanding of the term, the Internet of Things (IoT) prom-
ises to solve a wide range of contemporary societal problems by improving the connectivity
of devices, cloud servers, and people. Essentially, it aims to enable various forms of distrib-
uted intelligence that allow higher quality, more reliable and sustainable services while min-
imizing resource expenses. Recent reviews argue that this should be intended in the broadest
way, as loT applications aim to reduce waste of energy, land, and materials [1-3]. Because
of the always increasing focus on intelligence, it has also been proposed to rename the field
as Artificial Intelligence of Things (AloT), to put more emphasis on the artificial intelli-
gence aspect [4,5].

For example, one application area is the smart city, where the optimization of large

services such as waste collection and transportation has a big impact on quality of life and



sustainability [6]. Other application areas encompass the industrial loT, which focuses on
equipment maintenance, and agriculture and farming loT [7], which is another promising
domain [8]. In my opinion, it is so because, after all, agriculture and farming have always
been two fundamental activities for human survival. According to accepted international
data, their scale and density make the corresponding emissions not less important than those
of urban living and industrial manufacturing [9]. In fact, I would like to point out that the
field of [oT in agriculture and farming is itself very broad, as it encompasses a wide variety
of use cases, control targets and data sources. As discussed in a recent review, some repre-
sentative cases are about the monitoring of land plots, logistics of raw materials, semi-fin-
ished and finished products [10]. In agriculture and farming, for example, the loT supports
new ways of managing the resources and planning [11,12]. This thesis treats cattle farming
as an application scenario, although the technology being developed, as described below,
appears to be applicable in a broader sense, too.

It is widely understood that one of the main aspects of the modern idea of the loT is
that, even though a large overall amount of information is collected every day (maybe on
the order of gigabytes), very little data (on the order of 10 bytes) is received from each node
at a time [13,14]. In this sense, for this approach to work, the data acquisition process must
be extremely data efficient, so that very small packets of data can contain as much mean-
ingful information as possible for a given application. On the other hand, loT sensor devices
operate under complex conditions of high uncertainty and noise, and, in my opinion, this is
clearly true when considering applications such as monitoring the behavior of free-roaming
animals. For these reasons, one of the main requirements of successful loT projects is that
a significant amount of data compression should be performed on the sensor devices them-
selves [1-4]. This is because issues such as cost, data transmission limitations, and power
availability in general make it difficult sending raw time series to cloud servers for remote

processing [12,13].



It is for this reason that IoT and Al are linked to form the field now known as edge Al,
which is closely similar to the idea of AloT. According to recent reviews, in many loT ap-
plications, sensor nodes should have a degree of intelligence that is at least sufficient to
significantly reduce the data to be sent: for example, after categorizing a time series that is
several kilobytes long into a set of possible behaviors, it should be compressed into a few
bytes [15-17] . It is also clear that there are many sensor types that generate by themselves
small amounts of data, that do not need to be reduced by means of classification: some
examples are energy meters, solar irradiation sensors, air quality sensors, and so on [18].
However, I think it is reasonable to say that a growing number of IoT applications need to
perform significant data reduction very near the sensors, and the emerging way to achieve
this is undoubtedly Edge AI [19-21].

It 1s generally understood that the 10T, as the name implies, is the interface between the
real, physical, social and digital worlds, and belongs to the field sometimes referred to as
cyber-physical systems [22]. By definition, the real world is dynamic, which means that all
the variables describing it change over time. This means that all sensors produce some kind
of time series, ultimately. As mentioned earlier, some of these time series are sampled
slowly enough that each point can be sent directly to the cloud for remote processing, but
many of them need to be analyzed locally. In the application considered in this thesis, where
cattle movement is monitored using accelerometers, | will show that acceptable sampling
rates produce a data stream that is several orders of magnitude higher than what, for exam-
ple, a low-power wide-area (LPWA) loT infrastructure can handle. In fact, there are many
examples of such situations, such as monitoring human behavior, or the vibration of a ve-
hicle or machine. One might also think of completely different parameters that can change
too quickly over time to be sent as raw data, such as water pressure in a pipe, current in a
transformer, etc. To sum up, it is widely agreed that a large part of Edge Al is about dealing

with time series [23]. In practice, this usually means picking a window on a given time



series and classifying the corresponding state of the system under consideration according
to a set of possible behaviors (usually small, meaning, less than ten). Then, only the label
corresponding to this behavior and the associated timestamp need to be transmitted re-
motely [13,18,21,24,25]. This thesis is about techniques to improve the accuracy of the
classification process, which is eventually intended in the way to be as abstract as possible
and, therefore, potentially useful also in other scenarios.

As one can read in any book on this topic, it is possible to quantify many characteristics
of any time series, such as mean and variance, or more complex aspects reflecting frequency
content or irregularity over time [26]. Interestingly, I think it can be said that because com-
pute power, energy and cost are important defining factors in the field of edge Al, the usual
approaches for time series classification that are found in many fields are not always the
best solution. On the one hand, the amount of processing required to compute representative
statistical parameters is usually not small. On the other hand, it is usually necessary to make
assumptions about the characteristics of the particular system to be monitored to select one
feature or another, but a totally generic solution would be preferred, so that the system can
be adapted easily. One consequence of these facts is that, typically, edge Al of time series
data is more and more often achieved by simply feeding the time-windowed data to a clas-
sifier, which is usually a deep neural network, such as a convolutional neural network (CNN)
[24,27]. Contemporary papers state that this shifts the complex and time-consuming task of
identifying and extracting relevant features to the training process itself, allowing develop-
ers to quickly explore various network sizes and configurations without having to rethink
how the feature vectors are created each time [28-32]. However. | think it can be said that
the process of training such networks is by no means trivial. That is the key problem, as
will be explained below. The purpose of this thesis is to provide some techniques and algo-

rithms to help with the related issues, that will be listed in the next subsection.



1.2 The real world vs. network training: conflicting requirements

I think that anyone knowledgeable about training even the simplest Al models can ex-
plain what the desirable features of a good dataset are: large size, homogeneous, high-qual-
ity behavioral labels, and a balanced distribution of the behaviors to be identified. It is also
well-known that acquiring a dataset having such features is very difficult, time-consuming,
and sometimes close to impossible [33,34].

First, it is generally known that acquiring the data itself can be a time-consuming op-
eration. Since training an Al model requires access to entire (usually raw) time series, it is
necessary to organize a data acquisition session in which each system to be monitored (e.g.,
a cow) has a recording system installed with a sufficiently deep memory and a sufficiently
long battery life. This step is not trivial: it implies that the training data for the Al models
cannot usually be simply acquired using the same IoT wireless link provided for the final
application. This is because the required data stream is much higher in terms of the amount
of data to send per minute or hour (for example, WiFi or Bluetooth may be needed instead
of LPWA). As one can imagine, this step results in considerable human, technical, and lo-
gistical costs, including installing the recording devices, checking and operating them, and
retrieving the data. These issues were highlighted in a recent survey of this area [35]. More-
over, 1t 1s also clear that the real world in which Edge Al and IoT systems must operate 1s
far from homogeneous: not every street in a city has the same characteristics, not every
farm has the same environment for raising animals, and not every animal has the same
behavior because of different strains, sexes, ages and temperaments. Therefore, I think it
should be clear that homogeneity is very hard to attain when it comes to acquiring data in

the field. Instead, in order to be useful, these systems have to deal with considerable and



unpredictable variability on a daily basis. If they can't handle it reliably, performance de-
clines and a technology becomes a kind of curiosity rather than an enabler of society [13,36-
38].

Just as 1t can be said it 1s pointless to own a large car if one does not have access to
gasoline, the same is true for time series datasets. The usefulness or not of the datasets used
to train edge Al devices depends not only on the quantity and quality of the sensor data
itself, but also on the associated labels. It is clear that, without labels, data is nearly useless.
In relatively rare cases, unsupervised learning can be used, or self-supervised techniques
can alleviate the problem. In most cases, however, reputable human operators need to pa-
tiently tag a set of possible behaviors on each time point. This operation is not only unap-
pealing to humans, but also very time-consuming and error-prone unless done very care-
fully by experts, often requiring the involvement and cross-checking by multiple operators.
As discussed in several recent works, the result is that labeling a dataset can be as costly as
acquiring it, if not even more; therefore, many automatic and semi-automatic labeling (also
called annotation) approaches have been proposed [39-41]. In the case of cattle behavior, it
is a very important operation for a trained operator to guess the behavior of cattle by their
movements and postures in video frames: any mistake will lower the final system perfor-
mance. It is clear that human experts are necessary and always preferable for creating a
good quality training dataset, however, at the same time, it is not feasible to employ expert
human operators to classify cow behavior in general farming application situations.

Last, but not less important, there is the data imbalance problem. From a mathematical
point of view, nearly all training algorithms compute an overall accuracy: this is a valid and
unbiased classification performance measure, but only in the case when the amount of data
for each behavior is matched. It is evident from everyday experience that such a situation
is a rather special case and, on the contrary, it is normal to have different occurrence rates.

For example, we spend much more time sitting at our desks and walking around than we



do eating or washing up, and this is true for animals as well as other systems such as ma-
chines. However, less frequent behaviors are often not unimportant in terms of the impact
of classification performance on the usefulness of edge Al systems. This raises a dilemma.
Should we adapt the performance metrics used in training to this situation in some way? Or
should one acquire more data than needed and then selectively retain only some data to
balance out the behaviors? A solution is needed that allows all the data to enter the training

process while ensuring that those behaviors that occur the least are not neglected [42-45].
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Figure 1.1: Conceptual diagram of data augmentation in the context of cattle behavior time

series.
1.3 The promise of data augmentation

To be clear, the cost and effort of collecting and labeling datasets can be significantly
higher than the cost of processing them automatically. Then, data augmentation represents

an attempt to trade computational power for human effort. As can be seen in Fig. 1.1, the



idea is to post-process the data in an appropriate manner after labeling. Doing so, the time
series that actually go into the training process are much more numerous, representative and
balanced compared to the time series initially obtained from the recordings. This approach
actually originated in the field of computer vision, where 1t 1s well known that the general-
ization performance of neural networks can be a serious problem. To help model training,
computer vision scientists have proposed a series of artificial operations that are considered
"reasonable" according to human observers, because they do not change the meaning of an
input image (e.g., a road sign) while significantly altering its perceptual-level features.
Some of these operations are linear and trivial, such as changing brightness, contrast, or
size. However, in most cases, the operations are not trivial and include rotating, warping
and distorting the image as much as possible while staying within the bounds of what a
human observer would consider as a recognizable, complete image. In effect, the goal is to
expand the boundaries of the classifier so as to maximize its ability to respond correctly to
unknown inputs. For example, consider a system designed to recognize "stop", "give way"
and "one-way" signs. If only the original images are fed into the training process, one im-
mediately realizes that even small changes irrelevant to a human observer can lead to un-
predictable classification errors with potentially catastrophic consequences — one should
think of self-driving cars. On the other hand, the situation is more reassuring if each image
is presented numerous times after suitable manipulations and network performance is con-
firmed based on this variability [46-49].

By reading up to this point, a reader might already imagine that the success of data
augmentation depends heavily on the validity of the underlying assumptions. To what extent
are specific operations that alter the data allowed to be applied? Which operations truly
represent the real world? These two seemingly simple questions contain many dilemmas,
because one must take care not to corrupt the labeling of the data. When considering road

signs, it may be necessary to rotate them by about 30 degrees. However, if one observes



that including a larger rotation will ultimately have a beneficial effect on overall perfor-
mance, should one do so, keeping in mind that this will likely not be encountered in a real-
world application? Similar arguments apply to warpage and twist, for example. At this point,
it is clear that not only is the data acquisition process fraught with compromises and uncer-
tain decisions, but in fact, data augmentation adds more assumptions. This may sound con-
cerning, however, there is now an extensive literature, outlined below, confirming that its
overall effectiveness is absolutely positive. As a result, it 1s integrated into the training pro-
cess of many image processing neural networks and, in fact, it is quite difficult to train these

neural networks without its help [46-49].

1998 first idea of image warping (LeCun et al.)

2002 first idea of oversampling/augmenting for image  data
imbalance (Chawla et al.)

years

2016: first paper on time-series augmentation
(Le Guennec et al.)

2019: image data augmentation is mature
(review by Shorten et al. onJ Big Data)

2021: review on time-series augmentation: not mature
(review by Ge et al. onJ Front Comp Sci Tech)

L J

Figure 1.2: Simplified time-line on the development of data augmentation (see text for

reference citations).

However, as mentioned above, most loT applications involve time series, not images.
This not only means a much smaller amount of data to start from, but also a much smaller

number of possible operations for augmentation, since the number of data dimensions
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equals 1 instead of 2. Not only, but also choosing what is an acceptable criterion becomes
more complex, as human perceptual plausibility no longer applies, since our visual system
can be used as a reference for images, but not signals. We do not know, how a reasonable
or bad signal “looks like™. Data augmentation has so far been used much less in the field of
time series classification than image processing, though the number of publications address-
ing specific applications is increasing rather quickly [50-52].

To provide further historical perspective, a time-line putting side-by-side the develop-
ment of data augmentation for images and time series is presented in Fig. 1.2. In brief, one
can see that the idea of data augmentation for images was introduced in the year 1998 by
LeCun et al. [53] as regards warping. A few years later, in the year 2002, it was also intro-
duced by Chawla et al. [54] for oversampling with the aim of reducing class imbalance.
About 20 years later, in the year 2019 a review by Shorten et al. [55] said that the field was
essentially mature. By comparison, time series data augmentation was introduced around
the year 2016 by Le Guennec et al. [56], and a recent review in the year 2021 by Ge et al.
[57] indicates that the field is still not mature. The development of data augmentation for
time series is several years delayed compared to image processing.

| think this is quite a practical problem because most sensors used in loT applications
generate time series data. Therefore, improving the accuracy of time series data classifica-
tion when performed by edge Al devices is very important for the society. That is the pur-

pose of this thesis.

1.4 The rationale for and contribution of this work

After having read up to this point, it should be clear that data augmentation is really
not an exact science. On the contrary, it involves many assumptions and compromises that

draw a "gray area". Particularly, one aspect is how much the transformations applied to the
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data should reflect an understanding of the system under consideration, rather than general
issues about signal theory and related topics. Some recent reviews in this area clearly
demonstrate this complex situation, as they show that there is no universally accepted
"right" or "wrong" choice. In fact, improvements in accuracy are often seen as a benchmark
for measuring the effectiveness of data augmentation methods [42,51]. Inevitably, this paper
will follow this approach as well, to some extent. However, as will become clear in the next
sections, unlike most existing work in this area, I will follow a structured approach, gradu-
ally shifting from a very system-specific implementation to a very abstract one.

In the current apphication, the behavior of cattle needs to be classified based on tri-axial
accelerometer data obtained from sensors embedded in the collar, as visible in Fig. 1.3
[58,59]. In fact, the path outlined in the next few chapters starts with a physical problem
that is not in itself related to data augmentation. Rather, the problem is that the collar can
rotate around the cow's neck, so the system should be sufficiently insensitive to these ran-
dom rotations around the sensor axis parallel to the neck [60]. In the process of adding data
to solve this invariance problem, I realized that the imbalance in the data set was a serious
impediment to network training. Then, these two ideas were combined to get the notion that,
in effect, random rotations can be used not only as a method to make classifiers less sensi-
tive to collar rotations. They can also be useful as a means of generating artificial new data
to counteract the initial behavioral imbalance. Early results obtained with this approach are
presented in Chapter 3 of this thesis. Although the concept was new and valuable at the
time, it is clear in hindsight that it is based on system-specific considerations. Such rotations
are not meaningful in the other cases where the time series do not correspond to different
axes of the same sensor, or where the sensor itself cannot be rotated.

As is often the case in loT system development, the development of hardware and soft-
ware, as well as the data collection for training in edge Al systems, took place in parallel.

By the time the first study was nearing its conclusion, more cows had been covered by the
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new data, but the amount of labeled data for each one was smaller. This created a new
challenge, which is very typical for this type of system: the total amount of data used for
training was small, especially compared to the variability between individual recording ses-
sions. Initial attempts to improve performance using random rotation methods were not
completely satisfactory. At this point, since the work had been explicitly focused on data
augmentation, | included a number of additional operations based on assumptions that are
considered reasonable and that do not destroy the underlying labels and behavior of the data
[61]. These include, for example, playing back the time series in reverse, and reassembling
windows by cutting and merging window segments. While consistent with the latest tech-
niques in computer vision, these operations are based on "common sense" considerations
only. They are accepted because of their beneficial effects on accuracy and ease of compu-
tation. In many senses, they represent a middle ground. They are not as system-specific as
random rotations; however, they lack a strong theoretical basis. However, as is often the
case in this field, they can be accepted based on the important performance improvements
obtained on smaller data sets. Therefore, results for this sort of middle ground are given in
Chapter 4.

In the post hoe analysis of these results, one aspect stood out. In fact, the principle of
time reversal may be seen as problematic, because it is almost impossible for the actual cow
behavior to be reversed in time. Nevertheless, there are clear accuracy benefits to be gained
by including this operation among the transformations for data augmentation. From a the-
oretical point of view, it can be seen as altering the nonlinear structure in the signal, which
means that only linear features are preserved. This is because the order of events is changed.
A definition of linear and nonlinear features is introduced in Chapter 5. In turn, this is ex-
actly the operation performed during the generation of the so-called surrogate data using
methods such as phase scrambling. The focus of the investigation therefore shifted to ex-

ploring the use of surrogate data as a basis for data augmentation, particularly as a means
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of avoiding data duplication when resampling multiple times on the same time series to
counteract behavioral imbalances. This approach could achieve higher performance than
previously recorded. At the same time, it makes no assumptions about specific operations
that may or may not be reasonable for a given system, and 1s based on basic properties of

the Fourier transform.

(a)

Edge device

Y

P

Figure 1.3: Position of the monitoring device. (a) Edge device worn on cow’s neck (b)

(b)

Schematic diagram of the coordinate frame of the three-axis acceleration sensor with X-

axis (longitudinal), Y-axis (vertical) and Z-axis (horizontal)
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Therefore, it is clearly a superior approach compared to the previous methods [62].
Furthermore, since the surrogate data generation methods specify which features of the in-
itial experimental recordings should be retained and which should not, at this point it is
possible to gain more insight into the practical aspects of the signal content that support
high classification accuracy. It is clear that it is the mean and variance and autocorrelation
that dominate, while the cross-correlation and nonlinear aspects are less important. By this
point, the data augmentation had evolved into a completely different situation compared to
the beginning of this work. That is, from a technique based on operations that are reasonable
according to common sense understanding, it became a fully principled approach achieving
not only higher performance, but also higher abstraction from the specific features of the
initial application. In addition, a new way of addressing the imbalance problem was intro-
duced, consisting of a window-based sampling, wherein one or more windows are prese-
lected from each time series snippet. The number of windows is chosen with the purpose of
making the amount of data for each behavior approximately equal. As explained below, by
performing this operation in an online way, integrated together with training, the usual is-
sues of data duplication and data loss could be solved. Thus, by combining surrogates with
sampling, Chapter 5 represents the culmination of the journey.

As explained in the conclusion, although this work is about data processing technology
and related algorithms, its impact at the system and application level is far-reaching. The
results given unlock an application that would perhaps otherwise not be feasible based on
the amount of data realistically available. Similarly to the situation for image recognition,
this allows a small CNN to reach otherwise unimaginable levels of accuracy without more
demanding signal decomposition, enabling Edge Al-based low-power, small-scale infer-
ence. In the next chapter, the specific problem of cattle behavior classification and the as-

sociated challenges are described in more detail.



1.5 Overview of the thesis

The organization of the thesis is shown in Fig. 1.4, and consists of the following chap-
ters.

Chapter | “Introduction: Edge Al, time series and real world challenges™ presents the
general situation and need for data augmentation as a means of addressing the issues of
small dataset size and dataset imbalance. It introduces the idea that a large amount of new
synthetic data can be obtained starting from a limited number of measurements together
with appropriate hypotheses regarding which data features should be retained unchanged,
and which ones can be changed, possibly randomly, for generating additional data.

Chapter 2 “From livestock management to neural networks: the need for data augmen-
tation” summarizes in deeply detail the requirements for automated animal behavior clas-
sification, such as feeding, resting and walking. The issues of small dataset size and imbal-
ance are considered in terms of their impact on the available classifiers, followed by an
overview of the state of the art in time series data augmentation.

Chapter 3 “Random rotation-based data augmentation™ presents a first data augmen-
tation method, which is based on the specific characteristics of the monitored system.
Namely, a paradigm is introduced in which the sensor rotation around the cow's neck is
simulated, and is used as a means of generating new data for augmentation. The results
show that from a baseline starting at 77%, an overall accuracy of 98% can be obtained on
a large dataset from 2 cows, which was heavily imbalanced over 5 behaviors under consid-
eration.

Chapter 4 “Data Augmentation based on combining multiple empirical methods™ con-
siders a more realistic scenario wherein the amount of data was approximately 10 times
smaller but gathered from 6 cows. In order to maintain a high level of accuracy, several

augmentation techniques are deployed. These are based on some assumptions specific to
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the system under consideration, i.e., cow behavior; in addition to sensor rotation, they in-
clude reversing time series, recombining time series between segments, and performing
other time-domain operations. On this basis, the overall accuracy of 92% was obtained from

an 83% starting point.

Chapter 1
Background and introduction on
Edge loT and time series classification

'

Chapter 2
Considerations on animal behavior
monitoring and data augmentation

Chapter 3
Data augmentation based on
random rotation

'

Chapter 4
Data augmentation based on
multiple manipulations

7

Highly system-
specific method

Partly system-
specific method

-------------------------------------------'.I

-
fammmmErrmremrme.

Chapter 5
Data augmentation based on AR Dot
Fourier surrogates
Chapter 6

Conclusions and future work

Figure 1.4: Organization of this thesis.

Chapter 5 “Improving abstraction by combining Fourier swrrogates and sampling

schemes™ develops and applies a more principled approach. Starting from the observation
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that several of the previous augmentation approaches retain only linear features of the signal,
an implementation using a Fourier surrogates-based method is proposed. The method is
combined with a sampling technique that is well suited to address data imbalance, while the
surrogates avoid data duplication. Unlike the methods considered in the previous chapters,
this approach 1s essentially completely independent of the system under consideration and,
therefore, could in principle be considered also for other applications. The higher accuracy
is 96%, and even more important is the fact that the most problematic behavior shows im-
proved accuracy. Since the method is based on general signal theory, it is possible to study
specific aspects of the time series, leading to successful data augmentation. Through a series
of data reduction steps, I found that autocorrelation, mean, and variance convey most of the
information about cow behavior. This approach can easily be applied to other systems. This
is confirmed by analyzing three additional datasets. Using them, it is always found that
combining sampling and surrogates gives an improvement in classification performance.
With a better understanding of the correlated signal features, it becomes possible to design
more specific hardware to extract and analyze these features.

Chapter 6, "Conclusion and Future Work," summarizes these findings and describes
the merits of the proposed method and the avenues for future investigation to enhance the
impact of the technology. especially, as regards future extension to other network types and
other applications. In short, this study demonstrates a coherent journey through data aug-
mentation methods. It starts with a simple implementation based on system-specific fea-
tures and ends with a more abstract approach that can be widely used and helps to identify
relevant signal features. As for the specific applications under consideration, the results

obtained confidently achieve automated livestock monitoring with high accuracy levels.
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Chapter 2

From livestock management to neural networks:

the need for data augmentation

2.1 The need for precision livestock management

A fundamental issue in the modernization of society and human lifestyle revolves
around animal welfare. From the outside, such a statement may seem surprising, given that
there is a wide variation in perceptions about the importance of animal welfare across soci-
eties and geographical locations. In general, the topic remains linked to an impression of
something more important for individual feeling rather than practical common good [1.2].
This viewpoint, however, is incorrect because actually the issue is that, along with greater
and greater urbanization, it has become possible to enclose animals that are used as food
sources (either directly, e.g., for meat, or indirectly, e.g.. for milk and eggs) into environ-
ments that are completely artificial, or otherwise completely human-controlled. While this
allows reducing costs and increasing productivity, it causes a deep deterioration in the living

conditions of livestock. It affects not only their subjective wellbeing but also many factors
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that determine biological sustainability. The latter is the key aspect, and a clear example is
the emergence of the superbug crisis. This point was put forward -among others- by Dr.
Bernard Rollin, an animal science professor at Colorado State University and has triggered
substantial debate in both specialized circles and society at large. The bottom line is that an
even more intensive agricultural development in the future is not sustainable, but every
effort needs to be put to increase sustainability, particularly via better animal welfare [3,4].

It is a well-known fact in economic geography studies that livestock farming 1s essen-
tial for human survival, and in fact is the main component of many societies worldwide,
estimated to be about half of the overall agricultural GDP. Remarkably but also worryingly,
the amount of livestock products per person has doubled over the last 40 years [5]. Accord-
ing to recent data from the United Nations, cattle farming accounts for about 10% of the
overall emissions of carbon dioxide [6]. This is, however, not the only problem, because
greater and greater concentration of animals in poor health conditions also increases other
environmental emissions. [t leads to other problems such as the eutrophication of fresh wa-
ter, and the over-nutrition of soils [7].

It is necessary to understand that the solution is improving the animal welfare. This is
also because it can reduce the wastage of beef and milk, which is unavoidable when disease
occurs. The situation seems all the more urgent when considering that a further doubling of
the demand for livestock products is expected by 2050 [8].

One possible solution to help with this potentially dramatic situation is the usage of
precision livestock farming (PLF), which represents the convergence of new technologies
and a new concept. The new technologies consist of edge Al, miniaturized sensors and
wireless equipment able to transmit health- and behavior-related data at long distance for
extended periods of time. In this aspect, it is an loT application. The new concept is that it
is essential to consider each and every single animal as an individual. This approach is

actually nothing new, as ancient farmers used to know each animal by name, and also would
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be able to point out its parents and offspring. However, with ever increasing density and
reliance on automatic equipment and streamlined processing, the process has been dehu-
manized to the point that livestock are ofien considered a cargo without identity, like would
be the case for agricultural produce such as apple or carrots. It turns out that this 1s not only
unethical, but also dangerous. That is since most diseases are not visible at herd level, until
they have reached the level of being extremely severe. But then a dilemma arises: given
that 1t i1s economically unfeasible to scale down herd size to the levels of decades ago, how
to solve the problem? One cannot individually take care of so many animals. For this pur-
pose, therefore PLF is conceived as a means to attempt doing automatically, at a large scale
and in a consistent manner, what ancient farmers did. The purposes of PLF, actually, are
several and diverse, and encompass detecting subtle signs of disease affecting individual
animals, to charting group-level parameters such as the average weight and so on. PLF 1s,
in fact, often integrated with other highly automated systems for feeding and milking, and
the combination of data that is obtained can be very useful to quantify and optimize the
performance of a farm [9-13].

PLF, therefore. indirectly promises to reduce the environmental impact of farming, be-
cause a healthy herd is a more efficient means of converting cow feed into meat and milk,
and because healthy cows emit less carbon dioxide and methane. Other benefits include
reducing disease, such as mastitis, which lead to widespread usage of antibiotics, resistance,
and a vicious circle of ever-increasing medication. However, to date, the availability of PLF
in the global farming market remains quite low [9-13]. Recent studies indicate that the pre-
sent adoption is limited by factors that are usually associated with products that are not
completely mature. It is said that the technical complexity of installation and usage is often
excessive, and the initial investment costs are rather larger, but most of all, the accuracy is
not always high enough [9,14]. The present thesis intends to provide a useful increase in

behavior classification performance while decreasing as much as possible the system cost,
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starting from limiting the costs associated with data collection and labeling, therefore low-

ering the barriers to PLF adoption.

2.2 The importance of cattle behavior monitoring

Based on the consideration that cattle farming has the biggest impact on greenhouse
gas emissions from farming worldwide, the motivation is strong to focus PLF deployment
towards this direction [6]. Moreover, cows are animals whose behavior is a good indicator
of their health status. Due to their large size, they are easy to fit with recording instruments
without causing annoyance or altering their behavior: these are big advantages that should
be taken as an opportunity [15-17].

As said above, cattle behavior is both a valuable and an easily observable indicator of
livestock well-being and health status. Both of them influence, in several ways, the amount
and the quantity of end-products that can be acquired from a herd. Therefore, monitoring
cattle behavior is highly desirable for understanding the actual situation of livestock welfare,
developing effective decision support systems for managing foraging land and large farms,
and so on. That would lead to generally improving the yield and quality of beef and dairy
products while reducing the environmental impact. At the same time, as introduced above,
it is quite impractical to monitor livestock behavior personally, especially in large herds, at
all times. Identifying and keeping track of all individuals in the herd and accurately deter-
mining their health statuses, would require a very large amount of effort for direct observa-
tion, and high skill. Not only that, but this type of observation is also prone to error since it
depends heavily on individual expertise. This is even more a problem when considering the
large number of human operators that would be required. Automatic behavior monitoring
systems, which are a subset of PLF, attempt to address these limitations by recognizing and

quantifying the frequency, duration and transitions of a predetermined set of behaviors
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through automatic measurements. As in the present thesis, these are often tri-axial accel-
erometer time series, but other data sources are also possible, including high-precision sat-
ellite location monitoring and sound recording. In any case, regardless of the specific type
of data, due to the diversity of behaviors, inter-individual variability, and presence of vari-
ous external noise sources, drawing inferences from these time series is not trivial. That is,
in a sense, what distinguishes farming loT from industrial IoT: animals are not machines,
and they have temperaments and unique features, that need to be considered carefully.

For all the reasons above, a substantial amount of literature has been accumulating
under the purpose of relating measures of individual cow behavior with the level of welfare
and the general performance of farm management [15-17]. As mentioned, cows show sev-
eral behaviors, including walking, resting, grazing, and rumination, some of which in sev-
eral different postures. Changes in all of the overall prevalence and switching between these
behaviors is highly diagnostic. For example, a reputable study from Spain has shown that
deteriorating health conditions, such as mastitis, ketosis and lameness, are associated with
variations in behaviors, which include changes in rumination time [18]. Changes in feeding
behavior due to lameness were also found in other studies and, in general, multiple disease
types are associated with reduced appetite, which seems intuitively reasonable [19].

Before considering in greater detail the methods for cattle behavior monitoring, it is
necessary to clarify in more detail what is the relationship between animal welfare and be-
havior monitoring in particular. First of all, while the term animal welfare may sound intu-
itive, it should be properly defined. Because the topic 1s so broad, there is not one universal
definition, however, a common one is according to the so-called five domains model. It says
that animal welfare requires positive situations in five domains: nutrition, environment,
health, behavior, and mental state. Naturally, there are important elements of biology and
biochemistry in all these domains, but should be noted that actually behavior has a central

importance. Behavior is one of the domains in itself, in addition, it is immediately related
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to mental state and to nutrition, since feeding in itself is one of the key behaviors. According
to a recent systematic review based on this model of animal welfare, the largest proportion
of sensor applications for animal welfare, namely 90%, is within the ‘Behavior’ Domain;
in addition, about two thirds of them are about monitoring location and motion [20]. This
viewpoint is closely reflected in one of the fundamental papers describing the concepts and
purpose of the overall research project of which the work undertaken in this thesis is part
of [21]. In that paper, it is explained that animal welfare is a global trend, is closely reflected
in the five freedoms, that are related to the domains indicated above, and is an important
generator of value because high-welfare products have many advantages in quality and
marketing. It is also explained that cow behavior and posture provide much information
about welfare, in line with the idea that location and motion are essential, as explained in
the previous paper cited above. One aspect on which there i1s emphasis is grazing, because
feeding is an essential behavior, however, freely-grazing cows are different to monitor with
barn-based systems due to the larger distances.

A detailed explanation of animal welfare and the use of sensors in general is the topic
for animal science. However, to get a better picture of the usefulness of this work, it is useful
to consider some papers in the order of publication year. Already in the year 2017, one
review paper indicated that smart sensing and computing for animal welfare is a very broad
and developing field. It explained that many different sensor technologies are possible, and
one key seems to be the wireless technology to gather information from them and built
specific networks [22]. In the same year, another review of precision livestock farming
techniques put forward the importance of biosensors, such as microfluidic analyzers, to-
gether with other techniques such as sound and image analysis, movement analysis, sweat
and salivary sensing, blood-based diagnosis, and others. Already in this paper, it was said

that the movement and behavior of farm animals can provide information about activity and
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well-being, therefore, cattle monitoring system and tracking dairy cow behavior are im-
portant [23]. One year later, another review paper indicated that sensor-based systems for
precision livestock farming were proliferating, and that many sensor types were possibly
suitable including movement, temperature, heart rate, sound and even electronic nose. An
interesting statement was that in the farming of low-value animals like fish, poultry or pig,
systems based on fixed-sensors like cameras would be commonplace, whereas for higher
value animals like cattle, wearable technologies dominate the market [24]. Altogether, it
seems that these early papers revealed a rich field with many ideas and possibilities, already
going in the direction of wearable sensors, and considering accelerometers or other move-
ment sensors as one possibility.

Going forward to year 2020, a definitely clearer focus on accelerometers could be seen.
One specific review paper on the animal welfare assessment using accelerometers explained
that accelerometers can be used for welfare assessment based on the principles of the wel-
fare quality assessment protocol, to monitor behaviors like moving, resting, feeding and
drinking in cows and pigs. This work provided big comparison tables showing that many
systems are available [25]. One year later, another review paper considered in particular the
applications in rangelands, coming to the conclusion that real-time tracking and accelerom-
eter monitoring are useful to remotely detect livestock disease and grazing distribution and
quality [26]. The approach and conclusion of this paper are in good agreement with the
paper cited above describing the overall research project of which the work undertaken in
this thesis is part of [21]. These conclusions were reiterated and expanded in a more recent
paper, from last year, which concluded that precision livestock management in the range-
land can improve sustainable meat production, again with reference to the five freedoms,
through continuous monitoring. In particular, ear or collar mounted accelerometers can de-
tect behavior changes related to the quality of grazing, disease and stress [27]. In my opinion,

the papers considered up to this point show a transition from a first phase, until 5-6 years
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ago, where many sensor types were being actively considered, to a more recent phase,
where accelerometers together with GPS tracking seem to be the predominant approach. It
seems that this transition may have happened because accelerometer monitoring meets sev-
eral criteria. It is usable in the rangeland, where cameras, sound and smell analyzers are
much harder to implement. It is relatively inexpensive because existing commercial sensors
can be used easily, and it is simple because it does not require invasive operations like blood
sampling, which are not well tolerated by the animals [21, 25-27]. Then, the even more
recent works that I survey next provide a clearer picture of the usefulness of these sensors
and the need for data augmentation, that is the topic of this thesis.

One paper published in the year 2021 provided a systematic overview focusing specif-
ically on externally validated and commercially available precision livestock farming tech-
nologies for sensor-based welfare assessment in cattle. Interestingly, this analysis concluded
that the highest validation rate is for accelerometer-based systems, about 30%, much higher
than other sensors such as cameras and chemical analyzers. [t was found that some behav-
iors such as resting and ruminating are easier to classify than others, and said that higher
accuracy and better validation are necessary to increase usefulness [28]. It seems that, by
this point, the focus on accelerometers are the sensor of choice is quite clear. Another more
recent paper provided additional confirmation of the importance of accelerometers attached
to ears, jaws, noses, collars and legs in cattle and sheep to classify their behaviors. This
paper provided some more information about the specific changes expected. The studies
that it reviewed indicated that feeding is a key indicator of animal welfare, because infection
with pathogens causes a very clear and visible reduction in feeding time. On the other hand,
the duration of rumination is an indicator of forage quality, because longer time spent ru-
minating often means poor-quality grass with less nutritious content. Furthermore, reduced
activity in general, that is more time resting, usually accompanies an increase in body tem-

perature caused by inflammation to fight infection, such as mastitis [29]. These ideas are
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key to the paper describing overall research project of which the work undertaken in this
thesis is part of, particularly regarding the importance of precision grazing and measuring
its quality in the rangeland situation [21]. The final two papers that I consider here confirm
the situation and make an explicit link to the need for data augmentation, that is further
described below. In a recent systematic analysis of the literature in this field, it is said that
wearable accelerometer sensors are the most promising way of capturing livestock behav-
iour, however, there are issues with how the data is analyzed that limit usefulness. There
are two problems. One is that the models are usually less accurate in classifying the less
frequently observed behaviors. The other is that many models show poor generalization and
overfitting, limiting real usefulness. This paper advocates using suitable preprocessing to
improve performance on the behaviors being studied [30]. As I will explain below, these
are exactly the issues that this thesis addresses by means of data augmentation. These issues
are repeated almost exactly in another even more recent systematic review of the literature,
that goes even further in saying that monitoring cattle behavior is a fundamental require-
ment for sustainable development and quality control in cattle farming, and collar-mounted
accelerometers are the most common and a highly convenient sensor. However, class im-
balance in the training datasets is a problem limiting the behavior classification accuracy
[31]. Again, as I explain below, this is exactly one of the key issues addressed by this thesis.

Taken altogether, these papers show that over the recent years, precision livestock
farming has moved from considering many sensor types to specifically focusing on accel-
erometers, in particular collar mounted accelerometers, and many independent papers agree
on this. However, there remain issues with model training and data analysis which limit the
accuracy and therefore the usefulness. These are the issues addressed in this thesis. Since
all these papers explain that behavior monitoring is important, even essential, for animal
welfare in cattle farming, it follows that improving the accuracy will positively impact an-

imal welfare in this situation.
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2.3 The existing automatic methods

As said above, automatic methods for behavior monitoring and estimation have been
developed for several species of farmed animals, and commercial products exist. For in-
stance, the gait of sheep has been comprehensively studied by means of tri-axial accelerom-
eters, addressing the issue of automatic detection of subtle lameness [32]. On the other hand,
considering the management of other farmed animals, many works have focused on behav-
ioral modeling at herd level, for example in goats, reindeer as well as in dairy cows [33-35].

For the sake of completeness, it should be considered that, even though the present
thesis focuses on sensor-based methods, another approach that has been experimented with
is based on image recognition. This entails analyzing automatically the video streams com-
ing from one or more cameras picturing the field or barn, then, tracking each specific cow.
From that, one attempts to quantify select aspects of its behavior, such as the frequency of
each behavior and amount of movement. At first, image-based methods seem to be conven-
ient because they do not require attaching a sensor to each animal. However, in practice,
there is a growing consensus that they are not the preferred approach for the future. This
because not only image processing 1s computationally very demanding, for example requir-
ing high-power graphical processing units (GPUs), but also the reliability of this approach
1s questionable. There seem to be three primary reasons for this. Firstly, the complex shape
and coloring of each cow make its automatic identification and extraction from each video
frame relatively difficult, particularly when cows may overlap each other in a video frame.
This means that large classifiers requiring powerful computers have to be applied. Secondly,
when the area is quite large, such as for freely grazing cows, it is quite difficult to ensure
coverage by the cameras at all times. Thirdly, the behavioral identification based on videos
1s not a trivial operation to perform, because many things must be decided regarding what

parts of the body are considered, and so on. By comparison, tri-axial acceleration recordings
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seem to be considerably more informative due to the direct nature of the kinematic meas-
urements, which are taken from a physically attached sensor [36-43]. Probably as a conse-
quence of these issues, to date, the market in this area is prevalently dominated by systems
measuring activity amount changes, based on accelerometers [44-49]. This thesis is there-
fore concerned with time series analyses, with a relevance primarily for sensor data. How-
ever, insofar as time series can be extracted from image data, such as by tracking movement,
the present methods may also be applicable to such camera-based systems, after all.

Within this realm, representative examples of existing systems include apparatuses to
classify the behaviors of sow, horse, sheep and cattle using neck, ear and jaw-mounted ac-
celerometers. A comprehensive review is beyond the scope of this thesis, but it should be
considered that such systems generally classify up to 3 behaviors (although there are ex-
ceptions), and their power consumption is practically not in line with long-term monitoring
requirements [33-35,50-55]. Some possible exceptions are systems based initially on a de-
cision tree and later on a RNN, that were proposed by our laboratory [56,57].

To date, a range of classification models has been considered, including decision trees
and support vector machines, however, aiming to classify relatively small sets of behaviors
[58,59]. As is known, these algorithms perform well when handling small-scale recordings
and few features, however, their relatively simple nature implies that the ability to handle
large variability is limited, Moreover, these basic methods seem not to scale well beyond 3
behaviors, according to the studies cited above, in line with expectations for the known
performance differences between diverse classifier types [60-63].

Unlike these explicit models, convolutional neural networks represent all information
implicitly under the form of large numbers of weights and they do not require features to
be extracted prior to entering the data. Their performance can be outstanding but, as a con-
sequence of the fact that the number of free parameters is much larger, their training poses

heavy requirements on the amount of data. Returning to the issues presented in Chapter 1,
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this requirement is difficult to meet in the case of many, or even most, Edge Al applications
for reasons related to the expensive and demanding nature of the data acquisition process.

The present thesis aims to alleviate this situation.

2.4 The impact of data augmentation

As written, the success of neural network-based classifiers across diverse fields rests
primarily on the availability of large amounts of high-quality data [64]. Accordingly, data
quantity is always associated with model robustness and generalization performance [65].
The process of training suitable classifiers, in fact, encounters some practical issues that
tend to be everywhere in edge-based sensing applications of the internet of things, namely,
limited dataset size and dataset imbalance [66-68]. As previously mentioned, the first arises
because of the human and financial costs of data gathering. In the present case, long-term
video monitoring requires dedicated personnel for footage acquisition and subsequent be-
havioral labeling, in addition to the practical difficulties of filming while attempting not to
disturb the natural cattle behavior. The second problem, dataset imbalance, arises because
a balanced prevalence across behaviors is rare. On the contrary, animals and humans tend
to exhibit some activity patterns more frequently than others because their daily functioning
requires this, for example, because of biological reasons. Similar situations are encountered
when considering wearable systems for livestock activity monitoring [69], human behavior
classification [70], gesture recognition [71], as well as room occupancy and activity detec-
tion [72].

One of the possible ways of addressing these situations is by applying data augmenta-
tion techniques, that is, performing suitable algorithmic manipulations that enlarge the
amount of data entered into the training process, but without overburdening the data acqui-

sition. Essentially, augmenting data can be considered as a preprocessing step that exploits
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prior information regarding the expected invariant features of the time series concerning
certain transforms, such as sensor axis rotations, rescalings, and temporal manipulations.
When appropriately applied, data augmentation generates synthetic patterns that expand the
classifier's decision boundaries [ 73], improving network generalization performance at very
limited cost.

This is the point where data augmentation promises to improve the performance of
automatic methods for cattle monitoring. The majority of existing systems are based on
really simple classifiers, which only support a small number of behaviors, however, are
relatively easy to train on small amounts of data. This considerably cuts the performance of
PLF, since it is not only the quantification of the predominant behaviors but also the careful
observation of the less dominant ones that can impact deeply the amount of information
which may be extracted. In this sense, the usefulness or practical impact of a system can be
seen as increasing drastically when raising the number of behaviors from 3 to 4 and 5 be-
haviors [15-19]. That, however, almost surely requires using neural networks, thus increas-
ing the amount of data needed. Enabling this transition while sustaining high accuracy is
the impact that data augmentation can have, and its pathway to social relevance is drawn as
a diagram in Fig. 2.1. This graphics shows that the societal relevance of data augmentation
is gradually increased by considering its impact on the device performance, which makes
more efficient farming possible, finally improving sustainability,

To be clear, according to the discussion above, the expected impact of data augmenta-
tion is going to be realized eventually because it will make more accurate and more detailed
animal behavioral monitoring possible. In turn, this will make higher the quality and poten-
tial of PLF, enabling it to fulfil, in addition to higher productivity, also and especially its
societal purposes of improving animal welfare and sustainability. However, it is very diffi-
cult to quantify exactly how much an increase in classification accuracy will result in better

animal welfare and sustainability. To do that, some deep quantitative understanding of the
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economics and logistics would be needed, and is not easily available. Nevertheless, 1 think
that it is possible to make the point that the impact is expected to be substantial, based on
considering the most recent reviews of the current situation of PLF. On the one hand, several
recent reviews of PLF point out and confirm that it has a clear potential to improve animal
welfare and sustainability, therefore, this link of the chain is probably strong [74-76]. On
the other hand, there are also several recent papers that criticize the current versions of PLF
and point out its several flaws, showing how the existing limitations can translate actually
into threats for animal welfare [77,78]. Many different issues are pointed out, and for ex-
ample have to do with farming procedures, loss of farmer skill, and economic aspects (such
as more pressure to do intensive farming). Of the issues that are raised, at least two of the
major ones are related in some way to PLF accuracy: one is the threats deriving from equip-
ment malfunction (which could be caused by many factors including misrecognizing some
behaviors), and the other is the threats related from the lack of validation. It seems that
many PLF systems today have a poor level of validation, therefore, the accuracy in the final
application is not sure. In this thesis, an external validation is not conducted, however, the
purpose is to substantially increase the behavior classification accuracy, therefore, this point
is expected to be indirectly improved. Especially, the authors of the review in Ref. [77]
explicitly state that there are many possible causes of low accuracy of classification algo-
rithms, and these have mainly to do with the training data, such as overfitting. Because data
augmentation exactly has the purpose of improving the quality of the training process, by
making the most out of the data available, it seems likely to provide an important positive

contribution to this problem.
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2.5 The state of the art for time series augmentation

In the existing research on time series-based deep learning, many augmentation ap-
proaches are based on random transformations originally inspired by image data augmen-
tation. Examples include scaling (global magnitude changes), window slicing (equivalent
to image cropping), magnitude warping (modulating signal magnitude by a smooth curve),
rotating (flipping for univariate cases; rotating for multivariate cases), and jittering (e.g.,
adding Gaussian noise). Such augmentations have been widely used for various data
sources and applications on time series classification tasks. Three recent reviews, namely,

Iwana et al. [79], Wen et al. [80] and Ge et al. [81], offer a comprehensive survey of this
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field. For instance, Le Guennec et al. [82] proposed a method of window slicing and warp-
ing to generate new samples, by randomly slicing the original time series and speeding
up/slowing down the extracted small-size slices. Um et al. [83] applied a variety of data
augmentation methods, including permutating, cropping, rotating, scaling, jittering, time-
warping, and magnitude-warping methods to wearable sensor data, with focusing on the
application of CNNs to Parkinson's disease monitoring. Frequency warping is also a prom-
inent approach for augmenting time series data, although it is mostly used in audio and
speech recognition and similar.

The method proposed in this work attempts, particularly in the final formulation, to be
more principled. As explained in Chapter 5, it involves extracting a fixed-length snippet
from each segment of the time series, wherein a segment is defined as the time interval
between two behavior transitions. Clearly, as such transitions are irregular, some segments
are longer than others, however, a fixed snippet is extracted in each case, starting from a
random time. Within the framework of Iwana et al [79], this resembles an implementation
of the slicing method. According to Wen et al. [80], this method, while not explicitly men-
tioned, would be an instance of cropping. However, it should be underlined that neither
cropping nor slicing, in themselves, provide the homogeneous snippet length that | have
implemented.

Another key aspect of our proposed sampling is that, as clarified below, it is performed
online, that is, fully integrated with the training process. While online data augmentation is
commonplace in computer vision applications, it remains almost unexplored in the context
of time series analysis, as confirmed by three recent reviews [79-81]. In agreement with the
results reported below, the present work shows that even a quite simple method such as
segment sampling can have a significant impact on performance when implemented in an

online form, that is, during training rather than run only once beforehand.
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To be complete, it should also be mentioned that an alternate approach to random trans-
formations is pattern mixing, which combines multiple samples of intraclass data to gener-
ate new ones. An application example is the one put forward by Takahashi et al. [84],
wherein sound recording are summed together. A problem with this approach is that out-of-
phase overlap can occur, and nonperiodic time series data may lead to malformed patterns.
Therefore, it is not suited well at all for situations such as animal behavior recognition.

As regards the issue of dataset imbalance, broadly put, three approaches are possible:
undersampling, that is, artificially reducing the prevalence of the most frequent behaviors,
oversampling, that is, increasing the prevalence of the least frequent behaviors either by
repetitive presentation or by interpolation, and the generation of new data based on some
rules. Well-known reviews of the prevalent approaches can be found in Kaur et al. [85],
Patel et al. [86] and Tanha et al. [8§7], with additional considerations about the impact on
the learning process given by Krawczyk [88] and He et al. [89].

In other words, an integrated approach to dataset imbalance mitigation appears to at-
tenuate the drawback of learning the boundaries between differently-represented classes. It
ensures that eventually, the majority of the available input data variance is still made avail-
able to the training process. It appears noteworthy that, even in the specific survey on
resampling provided by Moniz et al. [90], these aspects are not considered. This seems to
mean that the focus remains on precalculated dataset adjustments, and that the beneficial
impact of integrated preprocessing remains largely to be clarified. An exception is the work
of Cao et al. [91], which, however, is different from the present one: it relies on over-
sampling by interpolation between neighbors in the feature space instead of sampling in the

time domain as in the present case.
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Chapter 3

Random rotation-based data augmentation

As explained in the previous chapters, cow behavior monitoring is critical for under-
standing the current state of cow welfare and developing an effective planning strategy for
pasture management, such as early detection of disease and estrus. It is expected that one
of the most powerful and cost-effective methods that can attain high accuracy and robust-
ness would be a neural-network-based monitoring system that analyzes time series data
from inertial sensors attached to the cows. For this kind of method, however, a significant
challenge is improving the quality and quantity of training data to be used in the develop-
ment of neural network models. This requires one to collect data that can cover various
realistic conditions and assign labels to them. As a result, the cost of data collection is sig-
nificantly high. This Chapter proposes a first version of a data augmentation method aiming
to solve two major quality problems encountered in the process of data collection. One is
the difficulty and random aspect of data acquisition itself, which only samples a small
amount of time compared to a cow’s life span. The other is the sensor position changes
during actual operation. The method proposed in this chapter can simulate different rotation
states of the collar-type sensor device starting from one set of measured acceleration data.

At the same time, it generates additional data for the behaviors that occur less frequently.



The verification results show significantly higher estimation performance reaching an av-
erage accuracy of over 98% for five main behaviors (feeding, walking, drinking, rumination,
and resting) based on learning using long short-term memory (LSTM) network. Compared
with the estimation performance without data augmentation, which was insufficient with a
minimum of 60.48%, the F; score was improved by 2.5%-37.1% for various behaviors. In
addition, comparison of different rotation intervals was investigated, and a 30-degree incre-
ment was selected based on the accuracy performance analysis. The proposed data augmen-
tation method can improve the accuracy of cow behavior estimation by a neural network
model. Moreover, it contributes to a significant reduction of the data collection cost for

machine learning and opens many opportunities for new research.
3.1 Considerations on sensor position and collar rotation

In our application, there are two major bottlenecks related to the data, which map
closely onto the overall state of the field as introduced in Chapter 1. One is the imbalanced
learning problem, i.e., an imbalanced data sample size, which is mainly due to the uncon-
trollable randomicity of animal behavior during data acquisition. The main problem of
learning from imbalanced data is that in the case of underrepresented data and severe cate-
gory distribution skews, data imbalance can significantly compromise the performance of
learning algorithms [1]. Hence, it may seem necessary to measure an enormous amount of
time when collecting data on rare behaviors. Another bottleneck lies in practical, real-life
application. The position of the sensor attached to a cow’s neck may change due to its slid-
ing, caused by body movements, posture changes and interactions with other cows or ob-
jects. When the collar rotates, the position of the recording device with respect to the body
and head changes; as a consequence, the accelerometer raw data readings change and the

accuracy of the algorithm may decreases considerably. This may be considered mostly as a
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measurement issue: even if the underlying activity, i.e., cow behavior, remains the same,
there is a rotation on a plane which 1s determined by being orthogonal to the neck axis. As
a consequence, two components of the signal may change arbitrarily, even in their sign [2].
Such aspects of what 1s called invariance are a common issue in measurement situations,
and arise quite frequently when considering devices that are applied to living beings, such
as wearable devices [3-5]. Although, it may seem possible to fix the position of the device
with a weight, relying on the collar to rotate itself so the weight points downwards, this is
a very imperfect method. It does not entirely prevent rotations, it may not even be able to
apply sufficient torque to rotate the collar back into alignment, and at the same time runs
an actual risk of negatively affecting animal welfare because of the additional weight load.

Attempting to address the difficulties of large-scale data acquisition under various re-
alistic conditions and the extensive man-hour cost of label assignment phases, in this chap-
ter I propose a random rotation-based data augmentation method to overcome the two afore-
mentioned problems, and [ evaluate it using a NN, Before going through the proposed
method, some other data augmentation techniques in the literature are summarized again,
as follows. There are several approaches for generating additional samples. These include,
for example, data warping, which implies distorting the data in time or amplitude [6], and
various sampling methods for imbalanced learning, such as random oversampling and un-
der sampling [7,8]. One concrete example is provided by Le Guennec et al. [9], who com-
bined use window slicing with a warping technique, which extracts multiple slices and ac-
celerates or decelerates in time some of them. Nevertheless, the data generated by scaling
may not maintain the correct label in some domains, e.g., the acceleration data for cow
monitoring, because some labels are differentiated by the motion intensity. As introduced
in the previous chapters, this exemplifies a situation where data augmentation may have a
negative effect, if one is not sure of the assumptions underlying the acceptability of a given

transformation operation. On the other hand, while it is possible to expand the data size by



applying sampling techniques, little attention has been paid to real-life cases. Unlike data
augmentation for images [10] and speech recognition [11], data augmentation for numerical
data from inertial sensors has not been systematically investigated yet to the best of my
knowledge.

This chapter aims to provide a data augmentation method for cow behavior estimation
systems which accurately monitors and assesses multiple cow behaviors while retaining a
low cost data collection process. The specific objectives are two-fold: 1) to extend the data
of minority class samples to mitigate the difference in the amount of data for different be-
haviors, and 2) to solve the problem of the decline of recognition performance due to sensor
position shifting caused by cow movements, which is an important factor in cow monitoring
systems that previous studies have not examined. That is to say, the work reported in this
chapter when it was published represented the first attempt to explicitly address the issue
that the sensor axes may rotate with respect to the cow’s head and body. The main novelty
of this study compared to related studies is the proposed method of data augmentation, i.e.,
data rotation. While this operation by itself is well-known, its application to data augmen-
tation based on a physical reason is new, and the discovery that it can be used for attenuating
the class imbalance has a concrete impact. In fact, with the proposed method, imbalanced
data distribution between classes can also be avoided, the cost of data acquisition and la-
beling phase is decreased, and the potential impact of sensor position changes on classifi-

cation accuracy can be minimized, thereby greatly improving the recognition rate.



3.2 Data acquisition and processing methods

3.2.1 Data acquisition setup

The experiments for sensor data acquisition reported in this chapter were conducted
over multiple sessions at the livestock farm in Shinshu University, Nagano, Japan from the
end of October to the end of November 2018, For the work reported in this Chapter, the
data were collected from two Japanese black cows aged 2 and 10 years. During the experi-
mental work, both cows were healthy as confirmed by veterinary monitoring.

As introduced in Chapter 1, one of the challenges for creating a successful Edge Al
device is the need for a compact, reliable device that is capable of storing a large enough
amount of raw data for later processing. This is unavoidable because, prior to development
of the final application code, it is not possible to compress the data by classification opera-
tions or similar, as the development of the classifier in itself requires the raw data. Here,
Sony’s Spresense was applied as an edge device for the purpose of data collection.
Spresense development board includes the multi-core microcontroller CXD5602 (ARM®
Cortex®-M4F = 6 cores), which is developed by Sony with a high power efficiency. The
clock speed i1s 156 MHz. As a compact development board, it is also supported by the Ar-
duino Integrated Development Environment (IDE) and the more advanced NuttX-based
Software Development Kit (SDK) [12]. Developers can create their applications with these
two development environments in a short time. In addition, since the Global Navigation
Satellite System (GNSS) is integrated in Spresense development board, it supports Quasi-
Zenith Satellite System (QZSS), Global Navigation Satellite System (GLONASS), as well
as the Global Positioning System (GPS). This means Spresense also has the ability to sup-

port applications in which tracking and precise time-stamping are essential.



58

Each experimental cow wore a collar fitted with a sensor device that was powered by
a mobile battery (5V, 3200 mAh). As illustrated in Fig. 3.1, the sensor device consisted of
Sony Spresense main and extension boards, and a 3-axis acceleration sensor add-on board
(SPRESENSE-SENSOR-EVK-701) and Bluetooth add-on board (SPRESENSE-BLE-
EVK-701). Using the Bluetooth module, the sensor device was able to send the raw accel-
erometer data to an Android terminal or a computer. To prevent behavioral data loss when
the signal could not be effectively transmitted (e.g., when the cow was not in the network
coverage area), the acceleration data was stored locally in a microSD card so that the be-
havioral data of the experimental cows could be accessed offline. For this purpose, a spe-
cific firmware running on the Spresense board was developed as a part of the project that
our lab belonged to.

As previously shown in Fig. 1.3b, the position and orientation of the sensor as well as
the coordinate frame of the 3-axis acceleration sensor with the X-axis (longitudinal), Y-axis
(vertical), and Z-axis (horizontal) were determined by the design of the board and its posi-
tion in the plastic case attached to a collar. The device was mounted on the cow’s neck, and
could not be easily interfered with or damaged by the cow. When a cow wears a collar
attached to an acceleration sensor, the movements of the cow during the monitoring process
cause orientation changes in the acceleration sensor, thus leading to changes in the acceler-
ation values, That is to say, that the accelerometer will record changes in both the static and
the dynamic acceleration. The first are due to changes in the body posture, basically, the
orientation of the neck with respect to the Earth’s gravitational field: when there is no move-
ment, these are visible as non-zero base line (average) in the time series. The second are
directly related to the body movement, and represent the second derivative of the trajectory
due to the performance of actions such as ruminating and so forth. It is important to consider

that, in the sensor time series, these are intermixed and inseparable.
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Figure 3.1: Sensor device prototype.

3.2.2 Acceleration data collection

The sensor is KX122-1037 accelerometer by ROHM Co., Itd located in Kyoto, Japan
[13]. This accelerometer is built using micro-electro-mechanical (MEMS) technology and
has 3-axis, with integrated amplification and analog-to-digital conversion. The used accel-
eration range was =4 g. Sensors such as this one support a multitude of ranges, and this
setting represented an optimal compromise. Smaller settings could have resulted in satura-
tion, considering that the gravitational acceleration is by definition about 1 g and that dy-
namical activity overlaps onto it. Larger settings would have reduced the signal-to-noise
ratio and have been unnecessary, also considering that cows, because of their large mass,
generally do not perform quick movements.

As illustrated in Fig. 1.3, the position of the sensor device was initially set to the right
side of the cow’s neck during the monitoring process. In addition, to minimize the effects

of wearing a collar-shaped device on the natural movement pattern of the cows, there was
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a gap between the collar-shaped device and the skin of the monitored cow. Again, this rep-
resents an engineering compromise. A tight fit would be optimal because it enhances fric-
tion and therefore maximizes the coupling between the cow’s body and the accelerometer,
approximating one rigid body. On the other hand, such a situation would be unacceptable
in terms of the discomfort caused to the animal and, besides the welfare implications, it
would alter the behavior considerably. Therefore. the issue of collar rotation arises because
of this unavoidable physical compromise. While it is outside the scope of this work and
therefore will not be discussed, future research may consider the best way to improve the
mechanical attachment between cow and accelerometer.

In this study, the sampling frequency of the acceleration sensor data was set to 25 Hz
(25 samples per second). As for the other data acquisition settings, this does not represent
an exact calculation but a reasonable compromise. In fact. the sensor would support much
higher sampling rates. However, these lead to considerably high power consumption and,
not less important, generate huge amounts of data that need to be processed. A key issue is
that the sampling rate should be at least twice the highest frequency contained in the signal:
this is well known as at Nyquist criterion [14]. With this in mind, one may consider that
rhythmic movements such as ruminating and drinking are unlikely to contain signals at
frequencies beyond a few Hz. At the same time, the Nyquist theorem does not consider the
fact that experimental signals also contain noise, therefore, some amount of oversampling
may be beneficial. I therefore considered the setting of 25 Hz as a reasonable compromise
between a sufficiently fast sampling and not wasting power and data. Other frequency like
200 Hz may also work fine, therefore, this setting is not critical. However, too low frequency
like 5 Hz may miss important information, and too high like 50 Hz probably adds no benefit
for classification. The sampling frequency was selected during the design of the data acqui-
sition hardware and firmware, to find a compromise between recognition performance and

battery life. In this thesis, the effect of this setting is, therefore, not considered in detail.
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3.2.3 Video Analysis

This study developed a long short-term memory (LSTM) deep NN model, which is a
supervised machine learning process, to accurately recognize various states of cows. Video
analysis was performed to generate labeled training and test datasets so that the model could
gradually establish links between the motion data and motion labels by learning the labeled
acceleration data. When new data arrived, the model produced the behavior pattern directly
as trained.

The cow behavior was video-recorded in an undisturbed manner using the hand cam-
eras (Sony HDR-AS300) over the 5-week trial period and the active video were around 32h
long. The timestamp of the data from the accelerometer attached to the cow's neck and the
timestamp of the camera were unified using a procedure that was partly automatic, and
essentially relied on GPS time-stamping. A similar monitoring process has been reported in
other studies [15-17]. The time of day for the video recording varied from morning (11:00)
to the evening (17:00) in an attempt to cover several activities of the cows (feeding, walking,
drinking, ruminating, and resting), which were determined and recorded at each time step
for every cow. This is also important as differences due to the time of day may also be
present, although small, in the individual behaviors. The distinction between the behaviors
in the video analysis was based on the following criteria:

* Feeding 1s the act or process of eating or being fed.

«  Walking signifies that the cow moves on grazing land.

« Drinking signifies that the cow drinks water from a drinking bowl.

*  Rumination or cud-chewing is the process by which the cow regurgitates previously
consumed food and chews it further.

« Resting represents static states, including standing and lying still.

*  (Others: Behaviors other than the five main behaviors mentioned above.
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The final result was a mapping between the time series of the accelerometer readings

and manually labeled action tags on a frame-by-frame basis.

3.2.4 Long Short-term Memory Networks (LSTMs)

As discussed in the previous chapters, the focus of this thesis is on data augmentation
rather than neural networks in themselves, however, it would be impossible to introduce the
augmentation methodology without considering at least in some detail the networks it is
applied to. In this chapter, LSTM networks are considered, and the next chapters focus on
CNN. Concretely speaking, LSTM were initially used because of their widespread use,
however, later they were replaced by CNN to follow the general trend in this direction and
also contribute to reducing model size. Here, a brief introduction of LSTM i1s given.

The activity measured by accelerometers attached to cows, or indeed any other type of
sensor, is in the form of sufficiently long time series. With the movement of cows over time,
the continuously measured data can characterize different behavior patterns. There are sev-
eral types of NNs; however, owing to the characteristics of the data being long time series,
a compatible NN with the ability to learn a time state during processing is generally required.
A recurrent NN (RNN) satisfies this condition; that is. it is theoretically feasible. However,
in practice, an RNN exhibits the vanishing gradient problem through layers when handling
long sequences, making the network eventually untrainable [18]. Compared with a typical
RNN, an LSTM network is characterized by improved memory modules in the network to
counter the vanishing gradient problem for a long sequence. Thus far, a considerable
amount of research has been conducted on the application of LSTM networks in time series
data analysis [19-21].

As said, RNNs work well under appropriate circumstances, such as short sequence

analysis, but there are short-term memory problems [22]. If a sequence is long, it is difficult



to transfer information from an earlier time step to a later time step. In the process of learn-
ing, RNN has the problem of gradient disappearance. Gradient is the value used to update
the weight of neural network. The problem of gradient vanishing is that the gradient will
decline as time goes on. If the gradient becomes very small, the learning process will not
continue. That is, simple RNN is limited by short-term memory. In order to overcome this
problem, in the early 1990s, a Long Short-Term Memory (LSTM) algorithm with “door™
mechanism was designed by Sepp Hochreiter and Jiirgen Schmidhuber [23,24].

The control flow of LSTM is similar to that of RNN, which processes the data of trans-
mitting information in the process of forward propagation. The difference is that the struc-
ture and operation of LSTM unit have changed, where the core concept is the unit state and
various door structures. The unit state is equivalent to a path that can transmit relevant in-
formation and let the information pass down in the sequence chain, which is shown as carry

track in Fig. 3.2,
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Figure 3.2: Adding a carry track to improve simple recurrent neural network



This can be seen as providing the "memory" of the network. In theory, in the process
of sequence processing, the unit state can always carry relevant information. Therefore, the
information obtained in the earlier time step can also be transmitted to the unit in the later
time step, so as to reduce the impact of short-term memory. There are three kinds of gate
structures in LSTM: forgetting gate, input gate and output gate. Forgetting gate can decide
which information needs to be retained in the previous step, input gate decides which im-
portant information needs to be added in the current input, and output gate decides the next
hidden state. In short, the control flow of LSTM network is actually just a few tensor oper-
ations and a for loop. Combined with these mechanisms, LSTM networks can selectively
retain or forget some information during sequence processing. In short, the role of LSTM
cell is to allow the past information to be injected again a while later, thereby fighting the
problem of gradient vanishing. The LSTM neural network model layers in use are shown

in Fig. 3.3, and described in further detail in the next section.
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Figure 3.3: Layers of the neural network model. Generated using Neural Network Con-

sole by Sony Network Communications Inc [25].



In the system under consideration, the time series data from the accelerometer attached
to the cow's neck are analyzed by the LSTM in order to estimate five classes of behavior.
The LSTM model has one LSTM layer with 64 units. The model was trained using Adaptive
Moment Estimation (Adam) [26] optimizer having an initial learming rate of 0.001 and batch
size of 64.

3.2.5 Data processing

As previously explained, the time series data collected from the accelerometer sensor
were labeled by video analysis, performed by expert operators using the SyncPlay software
from ATR-Promotions Inc., part of Advanced Telecommunications Research Institute Inter-
national (ATR), Kyoto. This program is especially designed to show together data from
video and wearable sensors and enable their annotation. However, it should be noted that
after this step the data were still in an irregular data format, because the transitions between
behaviors occur at quite random, unpredictable times. This results in snippets of time series
having very different lengths. To match the input format of the LSTM deep NN model, the
data were cleaned and segmented to separate different behaviors. This was followed by data
augmentation. Then, the acceleration data of each behavior pattern were extracted and seg-
mented according to a certain length of time. For an LSTM deep NN model based on sensor
data, a consistent time interval is indispensable for unified calculation. In this work, behav-
1oral data from every 4 seconds with 25 Hz sampling frequency were used as an input sam-
ple; that is, 100 data rows were set as the length of one segment. These steps were executed
in Python 3.6, which also realized the data augmentation processing using code that is pro-
vided in Appendix B.1. The structure of the data processing from label assignment to model
training and evaluation is illustrated in Fig. 3.4. After obtaining the target sequence index

file, 70% of the data were randomly selected to train the model, while the remaining 30%
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were used as the test dataset. Here 1 first generated rotated data and then randomly separated
the training and test datasets. Then, 1 could evaluate whether the trained model performs
well in rotation angles other than those in the training set, thus reducing the impact of sensor
position changes on accuracy in real-world applications. Notably, unlike rotation in image
recognition, the acceleration data generated because of the change in the sensor placement
may have a completely different relationship. This aspect is clarified in further detail below.
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Figure 3.4: Flow of the proposed data processing used in this study. Blue overlays show
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For this chapter only, and for reasons having to do with experiments deploying the
model to the edge device, which are not part of this thesis, the Neural Network Console was
used to train the model. This is an effective tool developed by Sony to help design neural
networks visually. Through Neural Network Console, the construction, training and evalu-
ation of designed neural networks can be performed with an elegant user interface. In addi-
tion, Sony developed a series of built-in optional open-source neural network units based
on the platform, which can support various types of network structures. This modular neural
network unit style in the Neural Network Libraries and user-defined parameters make deep
learning model building simple and efficient, and corresponding hardware requirement can
also be effectively supported. Importantly, however, there are no conceptual or substantial
algorithmic differences with respect to Python, indicating that the results can be considered

interchangeably.

3.3 Classification performance measures

Although there are many indicators to evaluate the classification model for various
considerations, generally speaking, the widely accepted evaluation metrics include accuracy,
precision and recall [27]. As standard statistical process defined, accuracy, precision and

recall can be obtained as:

Accuracy = e LALL IS (3-1)
TP+TN+FP4+FN
Precision = — (3-2)
TP+FP
Recall = —— (3-3)

TP+FN
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Here, “T™ refers to True and “F” refers to False, corresponding to real situation. “P”
refers to positive and “N” refers to negative, corresponding to our model results. “TP” (True
Positives) is the number of instances in which the algorithm correctly classified the target
behavior patterns after verification by a visual observer through video analysis. “FP” (False
Positives) 1s the number of instances where the algorithm incorrectly classified other be-
havior patterns as the target pattern. “FN” (False Negatives) is the number of instances in
which the algorithm incorrectly classifies the target behavior pattern as other patterns. “TN”
(True Negatives) is the number of instances that other behavior patterns are correctly clas-
sified.

Regarding to the definition of precision and recall, I could gather the ideas expressed
by these two indicators. That is, precision indicates how precise that our designed model
achieves when real situation is true, since some false may be judged as true by the algorithm,
and recall indicates how less misclassification for the true one the model made as the real
situation is true because some true may be judged as negative by the algorithm,

However, the trend of precision and recall are often in tension. This means that if the
precision is improved, recall is probably to decrease. Conversely, if the recall is improved,
precision is typically reduced. In order to have a comprehensive understanding of the model

and fully evaluate the effectiveness, Fg score is introduced as a balanced parameter that

relies on both precision and recall.

Precision:-Recall
FE-pPrecision+Recall

Fg=(1+p%)" (3-4)
where f represents the relative importance of precision and recall. Respectively, in the case

of =1, false negatives are more emphasized so that recall has a higher weight than preci-

sion. In the case of f=1, the weight of recall is the same as that of precision. In the case of
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<1, the effect of false negatives has been attenuated so that the weight of recall is lower
that the weight of precision.
In this study. I give equal importance to precision and recall. In this case, F; score can

be calculated as follows:

. Precision-Recall
FPrecision+Recall

F, =2

(3-5)
3.4 Proposed data augmentation method

Most of the standard algorithms in data science aim at the hypothetical ideal condition,
that is, balanced data. However, unbalanced learning problems are more common in real
life. If one directly uses a standard algorithm, it will cause a series of problems, which are
eventually one cause of insufficient accuracy. This also represents a recurring problem of
high importance with wide influence, which is worth more exploration because, as argued
in Chapter 1, it affects edge Al across a wide span of applications. Here, both the problems
of unbalanced data and insufficient number of data for some behavior classes are present.
Hence, at this point the first data augmentation methodology is introduced to solve these

problems.

3.4.1 Rationale

The problem caused by insufficient data and a severely skewed category distribution
is called the imbalanced learning problem [28]. This problem has high complexity, and in-
stead of a simple application of standard learning algorithms, it requires a deeper under-
standing of the data and algorithm. Therefore, transformation and augmentation of the orig-

inal data are required to match the data distribution of standard categories. In this study, the
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data size of different behavior patterns of cows was imbalanced. Specifically, the size of the
data for the drinking label was much smaller than the size of data for other behaviors, e.g.,
the size of drinking data was only 1/165 the size of feeding data, as illustrated in Fig. 3.5.
Directly applying an NN classification model to such imbalanced data produces insufficient
accuracy, as illustrated in Table 3.1. This table reveals another problem, that is, possible
overfitting. The evaluation indices for drinking are all high; in particular, recall indicates
that all positive judgments are correct, which suggests that overfitting may have occurred
due to the limited drinking data. That is, instead of learning the overall distribution of data,
it is possible that the model may have learned the expected output of each input.

In this study, sensor position changes sometimes occurred due to misalignment of the
device during the monitoring process. It is best to attach the sensor device at exactly the
same position on the cow’s neck in each measurement. However, the sensor displacement
is inevitable in real-world testing. Not only there is a risk of slipping of the sensor device
along the direction of the collar, but after the farm staff detaches the sensor device and
attaches it again, even though we try to attach it at exactly the same position, there may be
some variation. As illustrated in Fig. 3.6, when the position of sensor changes, the displace-
ment in the front-back direction on a cow’s neck does not have a significant impact on the
accelerometer readings, while the rotation of the sensor does have a significant impact.
Therefore, it is desirable that the training data includes the data collected at various rotation
amounts. Fig. 3.7a illustrates three cases for simplicity; however, the rotation could be ran-

dom at any angle from 0 to 360 degrees.
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Figure 3.5: Number of row data points for five different behaviors of cows.

Table 3.1: Performance of classification without data augmentation.

Precision Recall F,-score

Feeding 78.25% 79.14% 78.69%
Walking 75.91% 70.75% 73.24%
Drinking 95.04% 100.00% 97 46%
Rumination 73.62% 78.46% 75.96%
Resting 76.10% 78.68% 77.37%
Others 63.66% 57.60% 60.48%

Therefore, different rotation states of the sensor device were simulated to cover addi-
tional data possibilities. Through sufficiently fine rotations at random angles of minority
class samples, a balanced class distribution could be achieved. Instead of simply duplicating
samples of the minority class, this method considers the actual rotation of the device and
contains significantly more data possibilities. It is important to note that this is an augmen-
tation of data considering real-life conditions, it is not the generation of the same data rows

within the dataset itself. It is equally important to keep in mind that, from an information
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theory viewpoint, no new information is generated, because the original time series could
be easily recovered from the rotated ones. However, in practice, because of the rotation, the
new time series are entirely different in terms of their value distribution from the initial
ones, and this is enough for augmentation to be helpful [29]. The situation is very similar
in other works on data augmentation, particularly for image processing, in which no new
information is generated but the way the image is presented to the network is altered [30-
32].
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Figure 3.6: Impact of sensor position displacement. (a) Original data. (b) The sensor is

moved to the front. (¢) Rotating the sensor 90 degrees.
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Figure 3.7: Schematic diagram of rotations of sensor device. (a) Coordinate diagram direc-

tion during the monitoring process. (b) Diagram for rotation of two-dimensional vectors.

3.4.2 Theoretical Basis and Practical Consideration

Having asserted that data augmentation by simulated rotation is helpful, it is now nec-
essary to clarify the underlying mathematics. Because the measuring device was embedded
in a collar worn on the cow’s neck, the unknown rotation of the sensor is on the plane
perpendicular to the neck, that is, the plane over which the collar lies. Therefore, the vector

in the vertical ring direction can be ignored, and the two-dimensional vector of the cross-
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section of the collar is used for the theoretical deduction. This helps by reducing the dimen-
sions of the problem [33,34]. In other words, as shown in Fig. 3.7a, the problem is a two-
dimensional rotation, with only one free variable.

For the purpose of explaining, let us assume that a two-dimensional vector rotates
counterclockwise at angle B, as illustrated in Fig. 3.7b. The trigonometric relationships
between the situation before (lefi-hand side illustration with the angle 4) and after the rota-

tion (right-hand side illustration with the angle 4+B) are as follows:

= E' A cosd === =
Ifu_ Roloosd_ 1© W -
Zp = |Rn151ﬁﬁl SINA = W = m
and
¥y, = |ﬁ;|c05{A‘ +B)= |ﬁ|(cns,4‘ - cosB — sind - sinB) (3-7)
z = |Ry|sin(4 + B) = |R|(sind - cosB + cosA - sinB)
Substituting (3-6) into (3-7) yields:
»= | (;'ﬁ%’lmsﬂ - %sinﬂ) = ¥,C08B — zsinB
} L, (3-8)
z1 = |R| (l%’icnsﬁ + ﬁsinﬂ) = zgcosB + y, sinB
That is,
Y11 _ [cosB  -smB] [} n
[-3’1] [sinB cosh [-Tn] 39
The two-dimensional rotation matrix is therefore
cosB -sinB
LinB cosB =10



As expected, a rotation matrix on a two-dimensional plane is obtained. Then, assuming
that the acceleration value of the x-axis remains unchanged during the rotation process be-
cause it is along the cow’s neck, a three-dimensional rotation matrix combined with the x

direction can be obtained.

| () (1]
[D cosB -sinB (3-11)
0 sinB cosB
Finally,
RS | {0 0 X
[.Vj = \ﬂ cosB  -sinB Ifﬂl (3-12)
Z) 0 sinB cosB 150

The above formula can extend the data of the three-axis sensor at an arbitrary angle at
a specific time step or over a period of time. An example of 45-degree rotation of the accel-
erations is shown in Fig. 3.8 to provide an easy understanding of the original data and the
data rotated using the proposed augmentation method. The point that should be appreciated
here is that the individual time series are in a general sense uncorrelated, that is, their tem-
poral features are not trivially similar, That’s because, for example, the large transient
around 2.5 s initially appears only on the y-axis (lefi-side panel), but after the rotation is
also clearly visible, with reverse sign, on the z-axis plot (right-side panel).

Finally, there is one more practical consideration that is important for why only rotation
around the x-axis is done and we preferred to keep the x-axis accelerations unchanged. It is
not only because of collar rotation around the neck, but also because of the cow behavior
in itself. In general, like other animals, cows usually keep their head more or less straight,
which means, they do not roll it sideways very much during normal life. The situation for
the x-axis is different because, in their behaviors, cows more often change the pitch, mean-

ing the vertical orientation pointing their nose downwards or upwards, of their head. Their
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head is almost facing the ground when feeding or grazing, however, it is less so when walk-
ing, for example. To confirm this, a brief additional analysis was performed, calculating the
mean and standard deviation for the x, v and z axes separately across the behaviors. The
results are shown in Fig. 3.9a. It can be seen that, considering the mean values for the
behaviors, there is more variability in the values of the x-axis: the standard deviation of the
averages is 0.14 g for the x-axis, and 0.08 g and 0.05 g for the y-axis and z-axis. For the x-
axis, the difference between the minimum and maximum mean values due to the behaviors
is 0.39 g, but for the y-axis and z-axis, it is just 0.20 g and 0.14 g. More specifically, the
head was pointing downwards the most during feeding, with x-axis 0.48+0.14 g, followed
by rumination, with x-axis 0.22+0.18 g, then similar values for resting and others, with x-
axis 0.1540.22 g and 0.14+0.31 g, slightly lower for walking, with x-axis 0.12+0.22 g_ and
smallest for drinking, with x-axis 0.10+0.25 g. A diagram of the cow head pitch is made in
Fig. 3.9b, and it can be seen that these differences make sense. Because x-axis rotation

would destroy them, it was preferred to focus on collar rotation instead.
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Figure 3.8: Accelerations augmentation example. (a) Original data. (b) Rotated (augmented)

data using the proposed rotation method. The rotation amount is 45 degrees.
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Figure 3.9: Average acceleration values. (a) Comparison of the x, y and z axes
(mean+standard deviation), (b) Qualitative illustration of the differences in head pitch pos-

tures across the behaviors, based on the order of average x-axis values.

3.5 Experimental results

This section presents the results of estimating cow behavior patterns. A total of 70% of
the prepared dataset was randomly selected as the training dataset, while the remaining 30%
was used as the test dataset. The LSTM deep NN model was trained with the training dataset,
and the effectiveness of the trained model was then examined with the test dataset. This
examination is done by comparing the percent agreement between the activity value pre-
dicted by the LSTM model in the test dataset and the manually observed activity from the

video.
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The prepared expanded data was generated by multiplying original accelerations by a
rotation matrix. A practical difficulty involves selecting the interval degree of rotation with
respect to the original accelerometer data (i.e., extent of expansion). The magnitude differ-
ence of the original data is fixed: however, the interval degree of rotation is a variable that
must be considered. In this study, the actual variable in data processing was the expansion
multiple (i.e., number of parts 360 degrees is divided into); thus, the rotation interval should
be a divisor of 360 degrees (e.g., 30 degrees, 36 degrees, 40 degrees, 45 degrees). With a
finer rotation interval of less than 30 degrees. the drinking data would have to be further
expanded and repeated to match the level of the sample size with the risk of other learning
problems, such as overfitting. Conversely, an expansion that was too rough, for instance,
60 degrees or 90 degrees, may not have resulted in high recognition performance for non-
rotational angles. Verifying all possible rotation angles requires a long time, which is not
feasible.

Fig. 3.10 shows the comparison of precision for five different behaviors in total with
several angle intervals of rotation. The precision test is done for every interval with a 5-
degree dataset (72-fold expanded version of the original dataset). Finally, 30- degree rota-
tion interval (i.e., 12-fold expansion) was selected as the final interval under the constraint
of our predetermined accuracy goal (over 90% for each behavior). Specifically, the rotated
data of labels other than drinking were generated in 30-degree increments with respect to
the original motion data; that is, 12 sets of rotated data were generated from one set. On the
other hand, the data of drinking behavior was expanded 360 times through finer rotation at
random angles to achieve a more similar order of magnitude in terms of number of data
samples. Thus, a more balanced class distribution was achieved for the model. Table 3.2

lists the processed results.
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Figure 3.10: Comparison of precision values for each behavior pattern at different rotation
intervals. The model was trained with 30-, 36-, 40-, and 45-degree datasets and tested with

a 5-degree dataset. The precision result without rotation is also provided.

Table 3.2: Data rows and size without rotation and after rotation.

. Number of data segments
Label Number of original
data rows Without rotation After rotation
Feeding 944833 B635 103608
Walking 296482 1612 19344
Drinking 5699 49 17640
Rumination 820775 6702 80424
Resting 560634 5129 61548

Others 307148 2332 27984
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The test results and performance statistics with the updated 30-degree rotation interval
expanded dataset are provided in Table 3.3. The specific result of cow behavior estimation
is generated as a confusion matrix, and is presented in Table 3.3a. In a confusion matrix,
rows represent actual behaviors while columns represent predicted behaviors. The classifi-
cation performance is presented in Table 3.3b. It can be seen that the recognition rates are
all over 97% in both precision and recall. The balanced indicator F, score is also satisfactory,
which signifies that the deep NN model can be effectively used. Compared with the esti-
mation performance without data rotation, which was insufficient with a minimum of 60.48%
(see Table 3.1), the recognition rate was improved by 2.5%-37.1%. In Chapter 5, it is ex-
plained that the behaviors are different in the time series properties, such as autocorrelation.
This variance is probably consequence of that, because how difficult it is to improve is not
always the same. The methods explained in the next chapters have lower variance in im-
provement,

Tables 3.4 and 3.5 are presented to further evaluate the reliability of the selected angle
of 30-degrees. Table 3.4 presents the performance statistics of the estimation results with a
45-degree dataset and the evaluation indices for six behavior patterns were all over 90%,
while Table 3.5 displays an accuracy comparison of 30-degree and 45-degree rotation in-
tervals. From Table 3.5b, it can be seen that when training model with a 45-degree dataset
and testing with a 30-degree dataset, the precision was 87.41% in walking and 85.44% in
other behaviors. In contrast, the model trained with 30-degrees maintained high estimation
performance with the evaluation indices of all over 90% for different behaviors (see Table

3.5a), which also proves 30-degrees rotation interval is a satisfactory rotation parameter.
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Table 3.3: Classification results for a test dataset using long short-term memory model with

a 30-degree rotation interval expanded dataset. (a) Confusion matrix. (b) Classification per-

formance.
(a)
Feeding Walking Drinking ~ Rumination  Resting  Others
Feeding 5170 50 2 12 13 45
Walking 2 5286 0 0 4 0
Drinking 0 0 5292 0 0 0
Rumination 5 10 0 5152 79 46
Resting 7 5 0 54 5139 04
Others 0 1 0 4 67 5213
(b)
Precision Recall F, score
Feeding 99.73% 97.69% 98.70%
Walking 08.77% 099.89% 99.32%
Drinking 99.96% 100.00% 99.98%
Rumination 98.66% 97.35% 98.00%
Resting 06.93% o97.11% 97.02%
Others 96.57% 98.51% 97.53%

Table 3.4: Performance of classification on test dataset using long short-term memory

model with a 45-degree rotation interval expanded dataset.

Precision Recall F, score
Feeding 099.23% 95.01% 97.09%
Walking 96.47% 99.86% 98.13%
Drinking 100.00% 100.00% 100.00%
Rumination 96.37% 94.90% 95.63%
Resting 093.58% 02.91% 03.24%
Uther:_; 92_.93 o 95.§9% 94,2_‘3*%
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Table 3.5: Performance of angle verification on a test dataset. (a) Training model with a
30-degree dataset and testing with a 45-degree dataset. (b) Training model with a 45-degree

dataset and testing with a 30-degree dataset.

(a)
Precision Becal] 74 scars
Feeding 99.93% 97.89% 98.90%
Walking 94.76% 99.94% 97.28%
Drinking 96.08% 100.00% 98.00%
Rumination 98.99% Q7.87% 98.42%
Resting 97.61% 97.33% 97.47%
Others 91.87% 98.84% 95.23%
(b)
Precision Recall F, score
Feeding 99.72% 05.69% 97.67%
Walking 87.41% 99.94% 03.26%
Drinking 94.23% 100.00% 97.03%
Rumination 98.09% 05.02% 96.53%
Resting 93.84% 04.46% 094.15%
Others 85.44% 96.10% 90.45%

The results obtained in this study can be used as reference for future applications in
which feedback must be collected and potential problems during the field tests must be
solved. It should be noted that in this experiment, the training data originated from two
sample cows, which may be insufficient for the trained model to ignore individual differ-
ences. Hence, with the LSTM deep NN model can then be improved to obtain better results

with more data obtained from more cows in future work.



Table 3.6: Comparison of average classification accuracy obtained by machine learning

presented in literature.

Recognition Classified  Data augmentation Average
method classes technique accuracy (%)
Ref, [35] Decision tree 3 No 88.33
Ref. [36] Decision tree 3 No 82.24
Ref. [37]  LSTM network 8 No 88.65
This work  LSTM network 6 Yes 98.43

Although problems may remain in real-life application, the proposed data augmenta-
tion method opens up the way for improvements on the results obtained in other studies
mentioned in Section 1, as demonstrated in Table 3.6. It should be noted that in [37], eight
main behaviors (feeding, lying, lying rumination, standing rumination, licking salt, moving,
social licking and head butt) of cattle were successfully classified using an LSTM NN
model, with an average accuracy of over 88%. This 1s mainly because, although 1t did not
perform data augmentation, a large amount of teaching data was collected. For each eight
behavioral pattern, 45568 data rows were used for the model, developing a balanced data
set. However, in this study, there are only 5699 data rows for “drinking”™ behavior without
data augmentation, which is far less than the case for [37], and the data set presented in here
is unbalanced. As such, the proposed data augmentation method can generate data for ac-
tions that occur less frequently and improve the accuracy of multi-states estimation. Based
on the successful recognition of fundamental behaviors in this study, larger number of be-
havior pattern analysis can become possible. This can help analyze complex situations. For
example, the social behavior of cows can also be considered in behavior pattern recognition,
such as head-butting, chasing-up, and social licking, which can lead to a more comprehen-
sive understanding. In addition, in [37], the sensor data used were from a 3-axis accelerom-

eter, 3-axis gyroscope, and 3-axis magnetometer. However, this study only uses a 3-axis



accelerometer to reduce the hardware cost and operation energy of the sensor device. Thus,
applying the data augmentation method presented here enables us to implement more ef-
fective animal behavior monitoring systems at lower cost, both in terms of device and man-

ufacturing costs, and power consumption and battery costs.

3.6 Conclusion

Focusing on changes in activity levels, previous studies used data from an acceleration
sensor. Nevertheless, none implemented the method of data rotation as a means of reducing
the behavior distribution imbalance. This study proposed a rotation-based data augmenta-
tion method for cow behavior estimation systems based on 3-axis acceleration data and
evaluated it using NN, The LSTM deep NN model achieved high estimation performance
with an average estimation accuracy of over 98% for five main behaviors (feeding, walking,
drinking, rumination, and resting). The proposed data augmentation method improved the
recognition rates by 2.5%-37.1% compared to the situation without data augmentation. The
feasibility and efficiency of the proposed solution to existing problems in data collection
were verified in this study. It is considered that these results can reduce the cost of data
collection and contribute to the promotion of the use of NN technology in livestock farming.

In summary, this chapter presents a first attempt at realizing the promise of data aug-
mentation put forward in Chapters 1 and 2. The results provided in here demonstrate that
random data rotation is sufficient to lead to significantly better classification results com-
pared to using the experimental recordings on their own. At the same time, it should be
considered that the variability contained in the dataset was small at this stage, because the
research project had just begun. In the next chapter, the results obtained considering a more
realistic situation, with more cows but less data per cow, shall be considered. The approach

presented in this chapter, while system-specific, provides an initial reference. When there



are other similar situations where a sensor may be misaligned, rotated or otherwise decou-

pled from the underlying process, it is meaningful to resort to data augmentation by means

of a transformation that considers the possible free parameters. In this work, the free pa-

rameter was just one, meaning, rotation angle around the neck, but in other situations a

spherical rotation may need to be considered, for example.
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Chapter 4

Data Augmentation based on combining multiple

empirical methods

After having introduced random rotation as a means of data augmentation in the pre-
vious chapter, in this chapter the concept will be extended to other manipulations. Moreover,
in terms of the properties of the dataset of experimental recordings that is taken as a starting
point, this chapter considers a more realistic scenario. Also, as discussed below, convolu-
tional neural networks (CNN) are becoming more and more popular, because of several
factors including the simplicity of their implementation. For this reason, from this chapter
onwards, the LSTM network is replaced with a CNN network aiming. The aim, again, is to
obtain results that, in the future, may be applicable across different types of Edge Al devices
and application scenarios.

Briefly saying. the additional sensor data augmentation methods introduced here fit the
characteristics of cattle behavioral data, however, they are less limited to it compared with

the assumption of planar rotation around the neck’s axis. Using the methods proposed in
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this chapter, the classification performance increases from 83.07 to 94.43% with appropri-
ate augmentation steps. In conclusion, the data augmentation approaches presented here can
help deep learning performance regarding cattle behavior classification and decrease the
overall system cost stemming from data acquisition and labeling. For this reason, these re-

sults expand and augment those of the previous chapter.

4.1 Data acquisition and preparation

A dataset containing 6 different cows under normal living conditions was collected
using an acceleration sensor without human disturbance, in the same settings as the preced-
ing chapter. As detailed below, there are some important differences, however, that should
be considered. Rather than a limitation or an inconsistency, these should be considered care-
fully in light of the fact that they are rather representative of the development process for
an Edge Al device [1,2] . As mentioned in Chapter 1, it is almost an unavoidable fact that
concept refinement, data acquisition, hardware and software development are proceded in
parallel: if one assumes differently, then the situation is a hypothetically ideal one but not
representative of the real world situation. Therefore, the development and improvement of
classifiers almost always proceeds at the same time as the acquisition of data, under settings
that may change due to refinements and improved experience, especially towards the be-
ginning of a project. In this case, the key difference is that it was realized that recording for
a long time a small number of cows is poorly effective. That is because it is the inter-indi-
vidual variability between cows that fuels the complexity of a project such as this one. Re-
alizing these factors, it was decided to increase the number of cows by a factor of three;
however, because the overall resources for data acquisition could not be unlimited, the re-

cording duration for each cow was reduced. Basically, in Chapter 3, 2 cows were recorded
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for approximately 979 min each, whereas here, 6 cows were recorded for approximately 59
min each.

Unavoidably, the above results in a situation which is much more challenging for net-
work training, because the variability in the dataset 1s larger, and the amount of data 1s
smaller. As previously explained, in addition to the difficulties of obtaining a vast amount
and many varieties of behavioral data, creating a high-quality dataset necessitates the man-
ual classification and annotation of the collected data, which is time-consuming and labo-
rious [3,4]. Thus, to fully exploit the potential of deep learning and enable it to work effec-
tively on small-scale datasets, accurate and effective augmentation approaches for behav-
ioral data are urgently needed [5]. On the other hand, the behavioral complexity of animals
introduces challenges in real-world applications because different activities may generate
similar sensor data, e.g., acceleration data. The reason for this phenomenon is that various
activities involve similar gestures, for example, standing rumination and standing resting.
Additionally, individual differences increase interclass variability. As a result, cattle activity
classification is highly challenging, especially when the amount of input data is relatively
small [6-8].

The data collection settings, in terms of hardware setup, were kept the same as the
previous chapter. Notably, the dataset used in this chapter has been made publicly available
at https://doi.org/10.5281/zenodo.5399259 (accessed on 24 September 2021). Another as-
pect of note is that, in this chapter, the dataset is randomly split into three parts. First, the
dataset is divided into learning and independent test sets at an 80/20 guidance ratio, and
then 10% of the learning set (8% of the whole dataset) is used as a validation dataset, as
shown in Fig. 4.1. The training dataset is used to establish an initial behavioral model, the
validation dataset is used to tune the model parameters during the training process, and the

independent test dataset is used to evaluate the performance of the trained model.
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As shown in Fig. 4.1, the same specific firmware running on the Spresense board was
used to collect the acceleration data, as described in Chapter 3.2.1. Video labeling was also
performed in the same way using the SyncPlay software from ATR-Promotions Inc., as
described in Chapter 3.2.5. Data separation and splitting were performed using Python, fol-
lowed by data augmentation and model training. Core function code for augmentation was

given in Appendix B.2.
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Figure 4.1: Flow of data preparation process in this study. Blue overlays show the software

platforms used for implementation.



4.2 The CNN architecture

At this point throughout the thesis, it becomes relevant to consider in some additional
detail the type of neural network used for time series classification. The issue of time series
classification and anomaly detection is an old and well-known one in Al, having been stud-
ied since the early days of the field, several decades ago [9.10]. Historically, the first ap-
proach to be considered was the calculation of a feature vector. This means that the time
series would be preprocessed using a set of feature-extraction algorithms, each one designed
to pick up one or more aspects of the signal content deemed to be relevant. One key aspect
of these features is that they should be invariant to irrelevant transformations: for example,
translating over time, phase shifting and in some cases even amplitude changes should not
affect the features. In the early days of Al, feature selection and extraction was extremely
important, with many experiments and reviews dedicated to the topic. I would like to point
out that they drew from many areas of signal processing and information theory. For exam-
ple. the Fourier amplitudes of a signal are a common basis on which to calculate features
for classification, since they are time- and phase-insensitive. Otherwise measures such as
the entropy are also relevant [11,12].

The approach based on feature extraction has the advantage of keeping the classifier as
simple as possible, because the size of the input vector is considerably reduced compared
to the raw time series, and because, if proper features are selected, the separability is also
much better. For this reason, multi-layer perceptron (MLP) networks with even a small
number of layers usually perform well in this kind of context. However, there are two seri-
ous drawbacks. The first is that there are no rigorous guidelines for feature selection: as a
consequence, human skill and experience play a key role in determining the final accuracy.
For example, if a certain problem has one or more features that would be very important in

classifying the behaviors, but the human operator does not know about them, they will not
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be included in the feature vector and the performance will be poor. The second is that, often,
the process of calculating the feature values and assembling them into the feature vector
may be computationally demanding, even more computationally demanding than executing
the classifier itself [12-14].

Considering the evolution of the field, the next aspect to be considered throughout the
field’s development was the fact that time series, by definition, unfold over time. That is to
say, the vector entries are not in an arbitrary order, but there is a clear inter-dependence
from one to the next. In a neural network such as a CNN or an MLP, there is no time-
memory or sensitivity to the flow of time, because there are no re-entrant connections. For
this reason, RNN networks were introduced and, as detailed in the previous chapter, they
lend themselves well to time series classification. In the previous chapter, an LSTM network
was found to give good performance, and i1t was found that data augmentation improves
this performance. However, the network was relatively large and, in general, the field of
Edge Al seems to be moving towards CNN rather than RNN, because RNN can be more
difficult to train and may even suffer stability problems. The rest of this thesis therefore
focuses on CNN, leaving the exploration of data augmentation in the context of RNN for
future work.

Continuing with explaining the historical trajectory of this field, CNNs are among the
most recent type of network introduced. In summary, they effectively also include an MLP,
but the feature extraction process, instead of being left outside the training and dependent
on the operator, is included in the training itself. That 1s to say, the network 1s fed the vectors
corresponding to the entire time series, and it is left to the network itself to find the best
features to extract and submit to the MLP. The main advantage of this approach is that it is
fully automatic, and as such usually finds high-quality solutions. The drawback, however,

is that it makes the process sensitive to many sources of variability that an external feature
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extractor would deal with, and representative examples include, as said above, time-trans-
lation and phase shifting [15,16]. This aspect makes data augmentation very important. One
can say, at this point, that the process of data augmentation is meant to aid with dataset size
and imbalance. However, it also helps to deal with the sensitivity to irrelevant aspects that
originates from the fact that the actual time-vectors enter the training process. With this, |
mean that data augmentation can make a CNN less sensitive to the specific point in time
that its input data are taken from, because it expands the classifier boundaries. As previously
mentioned, in general, the aspects that data augmentation helps to be insensitive to include
time translation, phase shifts, changes in sensor axis rotation and so on. This means that the
manipulations used for data augmentation should also include the transformations, such as
translation, that one wants the classifier to be insensitive to [5]. This aspect will be further
expanded below.

Throughout this chapter and the next one, CNNs are utilized for the task of cattle be-
havior classification starting from limited available labeled data. CNNs are widely used to
detect features with filters sliding over time series data and have the advantage of automatic
feature extraction with only limited computational complexity [16]. A depth of 8 layers is
adopted for the CNN in this chapter to grasp the high variability of the small-scale behav-
ioral data.

To be precise, as detailed for example in Refs. [15] and [16] the architecture of a CNN
differs from an MLP is that it contains a deep stack of layers that are used for feature ex-
traction. These contain convolutional, pooling and feature layers. Convolutional layers ap-
ply filters that aim to emphasize particular features of the data, such as fluctuations on a
particular time-scale, or similar. Further, they also apply a non-linear transformation, which
leads to the enhancement of variance of interest and suppression of irrelevant features. Pool-
ing layers, effectively, are necessary to avoid an explosion in the amount of information

throughout the network layers. These layers compress the feature maps by operations such
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as maximum or averaging. After a sufficient alternation of these two layer types, a feature
layer encodes the final set of values that are fed to the classifier: effectively this is an MLP
network, which is usually referred to as the “head™ of the network.

The design and sizing of the network layers is a task that requires assumptions and
compromises between computational load, generalization ability and granularity of the ex-
tracted features. Usually, once reasonable values are found for the number of layers and
their size, then the network is not significantly sensitive to these settings; this is one of the
advantages of CNN networks. For this reason, to avoid an excessive number of tests,
throughout this thesis | keep the network size fixed.

The following network configuration was chosen. Firstly, the input of the network is a
time series of 125 points each of which actually corresponds to a [x,y,z] triplet. Then, a 1D
convolution layer increases the dimensionality to 125x6. This is followed by a rectified
linear unit (ReLU) layer, representing the only type of non-linearity used in this network.
Then, a further 1D convolution layer brings the dimensionality to 125%12, after whicha 1D
MaxPooling layer reduces it to 62x12. Then, another 1D convolution layer increases it to
62x18, after which a further 1D MaxPooling reduces it to 31=18. This alternation is con-
tinued, leading to 3124, then 15%24, 15%30 and finally 1%30 via average pooling to create
the Feature layer. The aspect that is worth pointing out here is that there is a gradual shift
from a representation which is quite elongated over time (125) but shallow in terms of num-
ber of features per time point (initially, 3), towards one that eventually has even more fea-
tures than time points. This shift corresponds to digging deeply into the signal features, that
are represented in a higher-dimensional space compared to the initial time series. It is pre-
cisely this operation which confers CNN networks their power, but at the same time, re-
quires large amounts of data to determine all parameters. Finally, a dense layer having size

130 is fully connected to a 1x5 output layer, which encodes the output classes in terms of
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probabilities, with a winner-take-all approach. The detailed layers structure is visible in Fig.
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Figure 4.2: Architecture of the convolutional neural network (CNN)
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4.3 Implementation aspects of the CNN network

While a detailed analysis of the aspects of implementing the network on an edge device
was not conducted in this thesis, in this section, some basic information is provided to show
that it can be possible to implement the network on a suitable microcontroller, so that anal-
ysis can be performed at the edge in real time.

First of all, the same CNN topology shown in Fig. 4.2 was implemented using the
SONY Neural Network console program, because it provides a reliable means of estimating
the occupancy and computation load of the network, which are independent of the imple-
mentation platform [17]. The resulting calculations, shown in Table 4.1, were checked and
confirmed independently with Python scripts developed by others [18,19]. As further dis-
cussed below, I am assuming that the network is implemented using single-precision float-
ing point numbers (each occupying 4 bytes). It can be seen that, to store the outputs of all
layers, a total of 21,203 values are needed, giving 21,203 = 4 bytes = §2.8 Kbytes. Consid-
ering the network parameters (it means, the outputs of training that are fixed during edge
device operation), a total of 9,431 values are needed, giving 9,431 * 4 bytes = 36.8 Kbytes.
Therefore, it can be said that the memory occupation of this model is 82.8 Kbytes + 36.8
Kbytes = 119.6 Kbytes. Then, considering that the network outputs are evaluated once each
time a new time window is acquired, it is possible to calculate how many operations per
second are needed on average, with (249,629 operations + 9,576 operations) * 25 Hz / 125
points = 51,841 operations / second. In most cases, one operation such as multiply or accu-
mulate takes one clock cycle, therefore, on the average and rounding for excess, the clock
frequency needed is about 60 kHz, or 0.06 MHz (this is a theoretical minimum).

For showing that the CNN model could be implemented on an edge device and does
not need a full desktop or server computer or even a single board system like Raspberry P,

I selected three representative target microcontroller platforms. One is Spresense from Sony
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Group Corporation, another is STM32F469 from STMicroelectronics NV, and another is
ESP32-PICO-MINI-02U from Espressif Inc. The corresponding data about the clock fre-
quency, available on-chip memory, size of an evaluation module board and power consump-
tion were taken from the corresponding specifications; in the case of Spresense, power con-
sumption was taken from additional measurements published by users [20-23]. These val-

ues are shown as a summary in Table 4.2.

Table 4.1: Memory occupation and calculation load for the CNN network

Layer Outputs Parameters MAC Ops, IF Ops.
Input 125 % 3=1375 0 ] 0
Transpose Ix125=375 0 0 0
Convolution 6% 125="750 6l 7300 0
RelLU 6= 125="750 0 ] 750
BatchNormalization 6% 125="T50 24 1500 0
Convolution 2 12 = 125 = 1500 228 28500 0
RelLU 2 12 = 125 = 1500 0 ] 1500
BatchMNormalization 2 12 % 125 = 1500 48 3000 0
MaxPooling 12 % 62 = 744 0 ] 1488
Convolution 3 12 % 62 = T44 A4 27528 0
RelLU 3 12 = 62 =744 0 0 T44
BatchNormalization_3 12 % 62 =T44 48 1488 0
Convolution 4 1B=62=1116 Hio6 41292 ]
RelLU 4 18x62=1116 0 ] 1116
BatchMormalization 4 18=x62=1116 72 2232 ]
MaxPooling 2 I8 = 31 =558 0 ] 116
Convolution_5 18 % 31 =558 990 30690 0
ReLU 5 18 = 31 = 558 0 ] 558
BatchNormalization 35 I8 % 3] =558 72 1116 0
Convolution_6 24 =31 =744 1320 40920 ]

ReLU 6 24x=31=744 0 0 744
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than necessary, target 2) has 384 Kbytes / 119.6 Kbytes
necessary, and target 3) has 520 Kbytes / 119.6 Kbytes

BatchNormalization 6 24 =31 =744 G 1488 0
MaxPooling 3 24 = 15 =360 0 ] 720
Convolution_7 24 x 15 =360 1752 26280 0

ReLU 7 24 % 15 =360 0 ] 360

BatchNormalization 7 24 % 15 =360 a6 720 0

Convolution 8 30 = 15 =450 2190 32850 ]

ReLU 8 30 = 15 =450 0 ] 430
BatchMormalization 8§ 30 = 15 =450 120 Q00 0
GlobalAveragePooling 30x1=x1=30 ] 480 0
Affine 30 930 930 0

ReLU 9 30 0 ] 30
BatchNormalization 9 30 120 60 0
Affine 2 5 155 155 ]

Total 21,203 9431 249,629 9,576

Table 4.2: Main characteristics of three possible implementation targets

1} SONY 2) ST Mucleo 3) Espressif
Target platform
Spresense STM32F469 ESP32-PICO-MINI-02U
Processor type  Arm® Cortex®-M4  Arm® Cortex®-M4 Miensa dual-core 32-bit LX6
Clock rate 156 or 33 MHz Up to 180 MHz Up to 240 MHz
SRAM 1536 Khytes 384 Kbytes 520 Kbytes
Module size S0 = 20 mm S0 = 20 mm 13 % 1] mm
Power =1480 uW / MHz =920 uW / MHz =000 pW /| MHz

It can be seen that target 1) has 1536 Kbytes / 119.6 Kbytes = 12.8 times more memory

3.3 times more memory than

4.3 times more memory than

necessary. Then, the model size is not a problem for fitting inside these devices. For all

three of them, the physical module size, 50 x 20 mm or 13 x 11 mm, fits easily inside a
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collar box. For all three of them, the maximum clock frequency is a lot higher than needed
for real-time operating, therefore, this is not a problem. On average, it can be said that the
power consumption is (1480 pW / MHz + 920 yW / MHz + 900 uW / MHz) /3 = 1100 uW
/ MHz. Then, assuming as a simplification that power scales linearly with clock frequency,
0.06 MHz = 1100 pyW / MHz = 66 uW. Actually, this 1s a very rough approximation as it
may be difficult that such low value can be really achieved with these processors, as they
are designed to run at higher frequency and this simple calculation ignores many factors.
For example, previous works in our lab show the issue of static current consumption and
which specified integrated circuits are needed for truly achieving low power in real world
[24]. However, this result shows that implementation of the CNN model on a low-power
microcontroller is clearly possible.

As discussed in Chapter 6, future work is needed to actually test the model implement-
ing it on microcontrollers like these ones, and measuring the power experimentally. It is
important to point out that, in any case, data augmentation influences the training process
and therefore changes the numerical values of the trained parameters, however, it has no
direct consequence on the number of parameters or number of calculations necessary. In the
calculations reported above, it is assumed that single-precision floating point numbers are
used (4 bytes) because these are usually precise sufficiently, and half the size of double-
precision (8 bytes): that is also because hardware floating point unit present in the target
platforms and many edge devices only works for single-precision, not double [25,26].
Quantization into integer values is also a possible way to further reduce the model size and,
as a consequence, also reach lower memory requirements and power consumptions, as
shown by other works in our lab [24]. In the future, its application to the CNN network
should be checked, however, these results already indicate that edge application is possible.

Because this thesis focuses on data augmentation, as explained in Chapter 3.2.2, the

data processing for the time being was performed off-line. However, some information is
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provided here about the entire system developed by the project that our lab was part of,, also
referred as “Listening to Silent Voices of Cows with Edge Al Technology”. As explained in
Ref. [27] and shown in Fig. 4.3, according to this project, improved animal welfare man-
agement is realized using a solution that uses both edge devices and software running on
the cloud. On the edge, each cow to be monitored is fitted with a collar including an accel-
erometer sensor, GPS receiver, microcontroller and low-power wide area (LPWA) wireless
radio. Information about the current behavior, the prevalence of the behaviors, as well as
the GPS coordinates of each freely grazing cow can be sent to the cloud by the edge devices.
On the cloud, named PETER, the data are stored and processed at higher level, and the
available functions can include real-time data, history data, animal welfare index calcula-
tions, release of open data, tools to calculate the economic value of each cow, as well as
company asset data. These data are made available to the farmer or other user with need to
know about animal welfare, and shared with other service providers. Because the develop-
ment of the PETER cloud is not part of this thesis, more information can be found in Ref.
[27]. According to the project, the PETER Edge (Edge Al) could be connected to the cloud
using two technologies, that is, SigFox and ELTRES. SigFox is developed by SigFox SA
in France, and uses the Industrial, Scientific and Medical radio band to provide long-range
communication based on a service provider [28]. ELTRES is developed by SONY Semi-
conductor Solutions Corporation in Japan, and uses a similar radio band, it is upload-only
and can provide extremely long distances of up to 100 km [29].

In the case of SigFox, the packet size is maximum |2 bytes. In the case of ELTRES, it
is 128 bits. To support low power operation and meet other requirements of band use, a
packet can normally be sent once every 10 to 30 minutes; during such period. 25 Hz x 2
bytes * 3 channels = 600 or 1800 s = 88 to 264 Kbytes of time series data are produced by

the accelerometer, so, sending the raw time series is totally impossible. What is sent, instead,
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is the information about the prevalence of each behavior. This means that a counter is pro-
vided for each classified behavior type. and, every time a time window is analyzed, it is
incremented according to the recognized behavior. For example, considering 30 minutes,
there are 1800 s = 25 Hz / 125 samples/window = 360 classifications. Because 1t must be
possible to count always the same behavior, this means that log:(360) = 8.5 bits, that is 9
bits, are needed for the counter of each behavior. Then, for 5 behaviors, this corresponds to
a pay load of 9 bits * 5 behaviors = 45 bits. This shows an example of how the classifier
can be used to reduce a lot the amount of data to be sent to the cloud, realizing the data
reduction necessary for many loT devices and introduced and discussed in Chapter 1 [30-
32]. In general, for PLF, it is not needed to send each window’s classification output sepa-
rately, because the information useful to animal welfare management is contained in the
frequencies of the behaviors [33.34]. However, it must be considered that with LPWA,
packet delivery is not guaranteed, and data loss happens frequently. Therefore, to reduce
the risk of big gaps in the recordings, each time not only the data from the corresponding
time period should be sent, but also a moving average of the previous time windows can be
sent. Alternatively, the data from the previous time window can be also sent again. In both
cases, the amount of data actually transmitted would be twice, so, 45 bits x 2 = 90 bits,
which is still below the limit of 128 bits for ELTRES or 12 bytes, that is, 96 bits for SigFox.
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Figure 4.3: Overview of the cow monitoring system. Depending on the realization, LPWA

in practice means ELTRES, SigFox or can even be a combination of both.

4.4 Challenges in the behavioral data

As in the previous chapter, | consider five frequent cattle behaviors. These are the same
as the previous chapter, however, with one difference. In the remainder of this thesis, the
behaviors under consideration are feeding, walking, salting, ruminating, and resting. That
is, drinking was dropped, while salting was added. The principal motivation for this change
is related to pragmatic considerations: in the experimental settings that were reasonably
accessible, drinking was too rare to be meaningfully represented. On the other hand, salting,
which was previously considered less relevant, was more easily observable. In the dataset
considered for this and the next chapter, the number of data rows for drinking was approx-
imately 75% smaller compared to salting. This difference was due to several factors together,
mostly related to the recording arrangements and situations, which kept evolving as the
overall research project progressed. Therefore, the total number of behaviors was kept the

same, while replacing one for the other. There should be no misunderstanding that both
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behaviors are important and have physiological implications, including drinking. However,
it can be said that out of all behaviors probably feeding is the most important one, because
when cows develop disease, the eating habits change easily [6,7.8]. The situation represents
a compromise under the circumstances, which is quite typical for the development process
of systems such as the present one. The results provided in this and the in next chapter
would, probably, equally well apply to drinking.

Altogether, the datasets collected contain 530,485 data rows sampled at a rate of 25 Hz,
i.e., the data are approximately 5.89 h long: this is, actually, relatively tiny compared to
other situation of the same kind. By comparison, in Ref. [35], approximately 63 h in total
were captured, and a CNN model with long short-term memory (CNN-LSTM) was used to
detect five basic behaviors (drinking, ruminating, walking, standing, and lying). In Ref. [36],
the active video was approximately 68 h long and applied to an LSTM model. In Ref. [37].
the video was approximately 32 h long, and random rotation (ROT)-based augmentation
was proposed to augment the data and address the imbalanced learning problem. By com-
parison, the dataset considered in the previous chapter [37] contained 2,935,571 data rows;
however, these originated from two cows only.

It is important to underline that, while less than optimal, the situation considered in this

chapter is representative of the developments in this field.

4.5 Proposed data augmentation methods

As discussed in Chapters 1 to 3. data augmentation can be conceived as an injection of
prior information about data attributes that are invariant against certain transformations.
Augmented data attempt to cover the unknown and unfamiliar spaces of input patterns,
thereby alleviating the effect of the overfitting problem and improving the generalization

ability of trained NN models. Minor changes in image data, such as scaling and rotating,
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are known to have negligible impacts on data labels because such changes are likely to
occur in real-world observations [38,39]. However, for inertial sensor data, label-preserving
transformations are not immediately apparent and intuitively recognizable. This situation,
however, must be considered together with the fact that the time-domain signals are iput
to the CNN. The implication is that some aspects such as shifting and various basic time-
domain alterations should have no impact on the classification. This is the basis on which
the developments put forward in this chapter are based.

As was already explained in Chapter 3, one aspect that may introduce label-invariant
variability into inertial sensor data involves sensor position differences during monitoring.
Therefore, different sensor device rotation states are simulated, and this type of rotation is
considered an augmentation approach to cover additional data possibilities while maintain-
ing the correct labels [40]. After the theoretical description provided in Chapter 3, given an
original time series x, the transformation formula for rotation (ROT) is shown in the fol-

lowing equations

X = X{, X5, 00, Xpy ooy Xy (4-1)
x' = Rx,,Rx;, ..., Rxy, ..., Rxy, (4-2)
1 DO 0
R=|0 cosf -sind (4-3)
0 sinf cosH

where x, = [axr, ay,, HZJT. indicating a 3-axis data point at each time step t, T is the total
number of time steps, and R is a 3-dimensional ROT matrix [4]]. While the mathematics is
the same as the previous chapter, here, unlike the 30-degree ROT interval, a random angle
8 distributed uniformly in the range of () to 360 degrees is applied. It was found that for the
dataset considered in this chapter, the discretization limited the effectiveness of this aug-

mentation step. Probably, this difference is down to the fact that the amount of data per cow
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was smaller, and therefore the variance already contained in the initial data was more lim-
ited by comparison with Chapter 3.

For the reasons introduced above, perturbing the time position of the activity in the
imput window 1s also considered another approach that can introduce label-invariant varia-
bility. Considering that cow movements, e.g., rumination, resting, and lying, are mostly
repetitive, as well as the fact that window segmentation is arbitrary, the time positions of
the activities in the input window may not convey useful information. Therefore, we may
augment data by perturbing the time positions in the window. At this point, two remarks
appear useful. One 1s that this situation arises because the time-domain data are entered in
the CNN directly. Considering the more traditional MLP-based approaches, features would
be extracted using parameters that are based on the Fourier amplitudes, for example, which
are by themselves invariant to time and phase shifts. With this remark, one should feel that,
as always, there is a compromise in choosing to give up a feature extraction based on known
principles and letting the CNN do it. Fewer assumptions are needed, the result may be better,
but also more fragile because of possibly limited generalization [15]. That is one of the
reasons why data augmentation is so important. Another remark is that, as will become
clearer in the next chapter, actually this operation has a deeper meaning from a theoretical
standpoint, because it effectively means that the classifier should learn primarily features
that are related to the autocorrelation and cross-correlation and variance of the signals, as
observed in other applications [42]. The temporal content in itself becomes irrelevant.
While for situations such as cow behavior monitoring this is obvious, since the timings do
not have any form of synchronization to the behavior, it is important to recognize that it is
not always so. One may think of time-locked averaging, such as event-related potential in
brain activity, wherein the actual time of occurrence of signal change actually has an im-

portant meaning [43].
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On another level, recombining two sequences at a random position (REC) is a simple
method to randomly perturb the time positions of two or more sequences. To perturb the
time positions of the data between windows, we first randomly select two samples, slice the
data with a ratio of N: (1-N), with N ranging from 0 to 1, and recombine (that is, concatenate)
the segments to create a new sample. This operation is rather simple and crude, and is in-
spired by the situation using genetics data for example, wherein two sequences may be cut
and recombined in a random way [44]. Regarding time series, this operation actually is
unphysical, because it introduces a sharp discontinuity, therefore, in principle, it may seem
undesirable. That’s because in a real-world movement, a point where the first derivative
becomes infinitely large cannot exist [45]. However, on a more practical level, this method
actually ends up to be useful. The reason is that, because of the filtering action of the con-
volution layers in the CNN, the effect of the discontinuities is actually negligible [15]. This
operation brings into the data a situation of non-stationarity, which means, a situation
wherein the properties of a time series change over time. However, that is the norm with
animal behavior, particularly because animals often alternate two or more behaviors, even
with relatively high frequency: one may consider, for example, feeding and ruminating. It
is necessary to make sure that, when a given time window (125 points, or 5 seconds in this
study) covers the transition between two behaviors, the classifier will output, ideally, their
relative prevalences. If not, it should select the most prevalent behavior, or at least one of
those two behaviors that got mixed. But in the absence of a sufficiently representative set
of these transitions, it is possible that the classifier may completely misinterpret the data:
examples of this situation are well known in the area of computer vision [38,39]. Therefore,
creating these artificial recombinations, even though not natural, can be very helpful to en-
sure that the classifier at least behaves in a sane manner, that is, avoids misclassification

into a class that is unrelated to the behaviors that got mixed.
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Time reversal (REV) is another method used to perturb the time positions. Assuming
that the network learns data features that are time-invariant, a potential strategy is to reverse
the samples along the time axes and generate new time series. REV can be defined as fol-
lows:

. S N, SRR (4-4)
Time does not flow backwards, and so cows do not walk or feed backwards. Nevertheless,
the important aspect is that practically all of the behaviors of interest show important peri-
odicity. That is, the actions that cause accelerations are repeated several times, at a charac-
teristic and more or less regular pace. As will be made clearer in the next chapter, however,
there is an important aspect to consider. If the element of the movement carrying infor-
mation is just the period, or the pace, then reversing time will have no effect, by definition.
On the other hand, if there are more complex relationships, which are not linear and are
corrupted by the reversal of time, then the operation may corrupt the results [46]. One way
of thinking about this is playing backwards a short movie of a person walking backwards:
will it look the same as a person walking forward? Probably not exactly the same, however,
enough similar for the action to be recognizable. In other words, insofar as what matters are
the period and pace as represented by the auto- and the cross-correlation, then time-reversal
can produce time series that are close enough to realistic ones to be useful, while being
different in their numerical content.

Finally, there is a practical aspect which leads to another useful manipulation. Because
the transitions between behaviors occur at unpredictable times, the lengths of the time series
snippets are irregular. Here, snippet means a segment of time series that is comprised be-
tween two behavioral transitions. This implies that many of them may not meet the imposed
window size requirement, leading to the wastage of a considerable amount of data. This
may occur either because a snippet length is shorter than the window length, so the entire

snippet is rejected, or because a snippet length is not an integer multiple of the window
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length, leading to rejection of some data towards the end. Even if one sample is missing, all
data is lost. In a situation where the dataset size is rather small to start with, it is easy to see
that such an approach is not optimal [47]. Under the assumption of repetitive cattle move-
ments, a method to compensate for information loss (CIL) is proposed to fill the insufficient
part and augment data by looping the existing period until the length requirement is reached.
When looped twice, the augmented time series x' becomes:

X =W iy K o Xk iy X oy X (4-5)
where £ is the number of data points in an insufficient sequence; this can be easily repeated
for more loops. It can be said that, out of the proposed methods, this is the one for which
the theoretical rationale is less strong, because the location at which the repetition takes
place is arbitrary. Theretore, it has no relationship to the period of the cattle behavior, Nev-
ertheless, as the results reported in the next subsection show, also this method could help
considerably to improve the performance.

In summary, rotating, reversal, recombining two sequences at a random ratio, and the
compensatory approach (Fig. 4.4) are applied to augment inertial sensor data. The perfor-
mance of cattle behavior classification achieved when using CNNs in conjunction with the

proposed data augmentation approaches is evaluated in the next section.
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Figure 4.4: Examples of time series generated in a 5 s window with the proposed data

augmentation methods: rotating, reversal, compensation for loss, and the recombination of
two sequences. Note that the proposed compensatory approach compensates for data loss
by looping the existing period. A combination of multiple augmentation methods can also

be applied.

4.6 Experimental results

4.6.1 Workflow

As detailed above, cattle behavior classification was performed using a CNN-based
behavioral model combined with various data augmentation approaches. All numerical ex-
periments were conducted using 10-second random sliding windows for 1500 epochs. The

number of training instances in every scenario shown in Fig. 4.5 is the same to avoid any
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potential source of bias. For the baseline result, the CNN is applied directly to the raw ac-
celeration data without augmentation.

Different random parameter values were applied in the experiment. For ROT, a random
ROT matrix was created for every input sequence. For REV, whether to apply or not the
method to a given instance was decided randomly with a 50% probability. For the recom-
bination of mixed patterns (REC, Fig. 4.6). the recombination ratio was determined as a
random number uniformly distributed within the range from 0 to 1. For the compensatory
method, only the input sequences with a window possessing a size less than 10 seconds
were treated. Notably, the compensatory method augments data by complementing the orig-
inal data that would otherwise be discarded, while ROT, REV, and REC generate new data
by transforming the original training data.

Because the augmentation operations are based on different assumptions and ideas,
there is no reason for which they could not be combined. Therefore, in this work, I not only
review the accuracy changes induced by every data augmentation approach but | also eval-
uate the combined augmentation results of the other three data augmentation methods after
compensating for the loss. The workflow is shown in Fig. 4.5. In such a situation, the danger
is to deviate excessively from the real-world data and end up lowering the final performance

rather than enhancing it. As the results shown below indicate, this was surely not the case.
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Figure 4.6: Flow of proposed REC augmentation used in this study.

4.6.2 Results

The main results are presented in Fig. 4.7, where the numbers in the figure show the
average F; score value for each scenario. Because of the presence of multiple forms of data
manipulations and their combinations, to avoid an excessive number of results, making

them difficult to interpret, here I focus only on the F; score. Furthermore, the average across
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classes is considered: the rationale for this choice is that there is no trivial correspondence
between how frequently a behavior is present, and its importance. Weighting more heavily
the most frequent behaviors corresponds to assuming that their importance is greater than
the least frequent ones, but it is not necessarily so. Therefore, in the absence of other criteria,
I argue that the preferred approach is simply to take the average.

Considering the results in Fig. 4.7, it is immediately evident that even a single manip-
ulation can substantially increase the average F, score. All of the observed single increases
across REC, ROT, REV and CIL were significant in terms of application impact, ranging
from 4.5% to >6%. It is noteworthy that the relative differences between the behaviors were
only partly preserved, and, for example, CIL led to a significant drop in the recognition of
feeding behavior.

The results were even more promising when combining two approaches, ranging from
89% for CIL with REC, to 94% for CIL with REV. The corresponding performance increase,
more than 10%, is by any standard markable when considered with respect to previous
studies in this area. It needs to be pointed out that, for this combination, the performance
was evidently higher than the baseline for all behaviors. In other words, the detrimental
effect of applying CIL alone for the recognition of feeding was more than compensated by
combining it with REV. The numerical values of the performance are also given in Table
4.3. The slightly lower F; score for Ruminating may be related to the fact that it can occur
in different postures, such as standing and laying down. So, it can be said that it in part

overlaps Walking and Resting.
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Figure 4.7: The results of cattle activity classification obtained with various data augmen-
tation methods; the top and bottom panels correspond, respectively, to single- and double-
data augmentation. The numbers in the figure show the average F; score value for each

scenario.

Table 4.3: Classification performance on the test dataset with CIL + REV.

Precision Recall Fj score

Feeding 100.00% 100.00% 100.00%
Walking 87.50% 94.23% 90.74%
Ruminating 98.77% 76.92% 86.49%
Resting 90.86% 99.38% 94.93%

Salting 100.00% 100.00% 100.00%
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Table 4.4: Comparison of study parameters and accuracy. Superscript * next to the year

indicated an as-yet unpublished study.

Sampling Window Model CNN

rate (Hz)  size type  layers Augm. Accuracy

Ref. Year Behaviors Data size

[48] 2016 2 862.500 10 60  CNN I No  84.0%
[49] 2018 3 530,000  Unknown Unknown CNN Unknown No  91.0%
[36] 2019 8 364,544 20 64  CNN 2 No  84.6%

3 83.3%

=

[50] 2021* 3or4 187,937 50 160 CNN : N oo
[51] 2021 3 124.560.000 10 900  CNN 4 No  83.0%
[52] 2022* 5 211.720 5 50  CNN 3 No  94.0%
[53] 2022% 3 72,810,000 25 2250 CNN 2 Yes  93.0%
[54] 2022* 5 124,560,000 10 900  CNN 4 Yes  73.0%
[55] 2022* 5 15,300,000 50 150  CNN 3 No  92.8%
[56] 2022 5 80,319 4 20 CNN 5 No  90.0%
[57] 2023 7 140,000 10 128  CNN 3 No  83.8%
Iﬂli 2022 5 530,485 25 125  CNN 8 Yes  94.4%

Prior to ending this chapter, it is useful to present a systematic overview of the present
literature and attempt some comparison with it. Table 4.4 shows the relevant works that
were identified during a literature search performed in January 2023. Only studies based on
CNN networks are included. Results obtained using simpler classifiers such as multi-layer
perceptrons and decision trees, or other deep networks like LSTM, are not reported: those
classifiers are so different that a fair comparison would be difficult. To be specific, all works
on CNN that I could find were included, regardless of whether they were already published
as journal papers, or still preprints or theses. First of all, it can be seen that most CNN works
are very recent: | is from 2023, 5 are from 2022, 2 are from 2021 and 3 before that year.
There is a great variability in all aspects. The number of behaviors to be classified ranges
from 2 to 8; the median is 5, which is the same as in this chapter. The data size, intended as

the number of data rows, ranges from about 80,000 to more than 100 million; the median is
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about 530,000, which is almost exactly the same as in this chapter. The sampling rate goes
from 4 Hz to 50 Hz, median 10 Hz, which is 2.5 times lower than in my research. The
window size is minimum 20 and maximum 2,250 points, median 139, which is similar to
here. The number of convolutional layers spans from 1 to 9, median 3, which is less than
half of the network proposed. It should be stated that the parameters in this table were de-
rived as accurately as possible from the references, however, not all data are always given
clearly. It can be said that the wide variability in all aspects, together with the fact that most
papers were published last year, indicates that this is a field that is still emerging.

Because of all these differences, making a comparison of accuracy is difficult to be
done fairly. Attempting to always calculate the overall accuracy from the papers, some ap-
proximate comparisons could anyway be attempted. It can be seen that the accuracy re-
ported goes from 73% to 94%, and the median is 84.5%, which is considerably lower than
the best case of 94.4% obtained in this Chapter. In fact, the present results are better than
all other 11 references in the table. Even considering the possible risk of unfair comparison,
for example due to different dataset quality, it can be said that, overall, the present methods
seem to allow a good position with respect to the other existing works, including the very
recent ones. In addition, the situation is even more positive for the results given in the next
chapter, reaching 96%. To be precise, with respect to the 11 references cited, one difference
is also the network depth, meaning, the number of convolutional layers: here, it was 8,
which is higher than the median 3 in the existing papers. Therefore, the better performance
may partially be due to this. However, it is important to clarify that there is a sure effect of
data augmentation. The deeper CNN used in this and the next chapter, when trained without
augmentation, reached a best accuracy of 83% and 90%, respectively, depending on the

labelling. Applying data augmentation to the same network enabled increasing 83% to 94%
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in this chapter, and 90% to 96% in the next chapter. Therefore, it is clear that data augmen-
tation in this and the next chapter was essential to exceed the performances of the 11 cited
references.

Nevertheless, there remains the general question of why such a large variability in the
achieved accuracy is observed between the studies in Table 4.4. One possibility to try and
understand the variability in terms of the other study parameters is using a correlation ap-
proach, that is, search for correlation between each parameter and the achieved accuracy
[58]. To avoid an unfair situation, the two studies with data augmentation, Refs. [53] and
[54], need to be excluded from this analysis. Because the parameter values are quite scat-
tered, and some of them are integer numbers such as the number of behaviors, a rank-order
calculation known as Spearman correlation should be applied [58]. Then, first of all con-
sidering the number of behaviors, the correlation coefficient obtained is r = 0.30. The p-
value is p = 0.4, therefore, the correlation is not statistically significant because p = 0.05,
so no final conclusions can be drawn, However, because the correlation coefficient is posi-
tive anyway, it seems that a large number of behaviors to classify does not decrease the
accuracy. On the contrary, a positive correlation may be present. This is surprising, but one
hypothesis is that it could be because the studies with more behaviors generally tend to be
of higher quality. Next, the data size can be considered, which gives r=0and p = 1. In this
case, there is totally absent correlation, and therefore, data size also cannot explain the var-
iability, which is also quite surprising considering the importance of data for neural network
training, as explained in Chapters 1 and 2. However, also in this case, the determining fac-
tors are likely to be hidden behind the numbers, meaning, data quality rather than quantity
may be the key. For example, the huge dataset used in Refs. [51] and [54] was not obtained
with careful labelling by human experts. Because of the importance of data quality, in the
course of the present research, between Chapter 3 and Chapters 4 and 5 it was decided to

switch from a larger data to a smaller but higher-quality one. As it is impossible to judge
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the labelling quality without inspecting the raw data, this hypothesis can only remain a
speculation. Then, considering the sampling rate next, r = -0.21 and p = 0.6 are obtained.
The effect is not significant, but there seems to be a weak trend that higher sampling rate
leads to worse accuracy. One possibility is that this 15 because above the median value of
10 Hz, since most power is found < | Hz, for faster sampling the data do not contain mean-
ingful additional information but actually complicate the training process because the input
sequence to the CNN network is bigger. A surprisingly strong effect is observed for window
size, because r = -0.66 and p = 0.06, therefore the effect is almost statistically significant.
The negative correlation seems to again imply that more data points in each window reduce
the accuracy. To attempt understanding the reason, it is useful to consider the number of
points divided by sampling rate, giving the window length in seconds, which is median 5
seconds. In that case, still r = -0.39, which is a moderately large value. One explanation
could also be because longer windows have a higher probability of including a mixture of
different behaviors. While this should not be relevant if labelling is done properly, one won-
ders about the possible influence in situations of lower quality labelling. Last, the effect of
the number of layers should be considered, giving r =-0.03, p = 0.9, which means there is
not any relationship. Therefore, in the end, unfortunately these analyses do not provide a
clear explanation for the variability. The most likely answer is that there are other factors,
hidden behind these parameters, which have an impact. These factors may be related to the
quality of the data acquisition and the quality of the labelling, which are difficult to quantify.
There is also the possibility that different settings in the network training parameters which
are not consistently reported in these studies, such as batch size, learning rate and so on,
have an influence. For example, Ref. [54] and Ref. [56] both aim to classify 5 behaviors,
the data size is about ~1500 times larger for Ref. [54], but the accuracy, 73%, is much lower
than 90% in Ref. [56]. It should be considered that Ref. [54] is a master’s thesis, so, there

15 a possibility that the methods are not applied with the same skill and care as a published
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paper. In the same line of thinking, for example, Ref. [52] achieves 94%, Ref. [53] achieves
93% and Ref. [55] achieves 92.8% accuracy. While these values are very similar, the num-
ber of behaviors, data size, sampling rate and window size are quite different between these
studies. It is clear that unaccounted factors are happening,

Besides the above, it is meaningful to discuss in further detail the only two other studies
that have used data augmentation. One of them, Ref. [54], uses an extremely large public
dataset of more than 100 million data rows, but reaches a very modest test set accuracy of
73%, the lowest of all. A paper published from the same dataset but with several differences
such as the number of behaviors, Ref. [51], attained 83% without data augmentation. The
data augmentation techniques used were based on a generic library (Tsaug li-
brary:https://tsaug.readthedocs.io/en/stable/references.html) including randomly permut-
ing the axes, adding noise, quantizing, scaling, time wrapping and other similar operations.
In Chapter 2, it was indicated that operations such as these ones, especially scaling, may
corrupt the labels. Therefore, it cannot be excluded that data augmentation not only did not
improve but may even have lowered the accuracy in this study. However, this is impossible
to establish since the accuracy without data augmentation is not reported. Furthermore, be-
cause it is a master’s thesis, it was not peer reviewed and the possibility of mistakes cannot
be excluded. The other paper using data augmentation, Ref. [53], attained a much higher
accuracy, close to the present report, that is, 93%. In fact, the data augmentation technique
used in that work is exactly the random rotation introduced in my paper associated with this
chapter, which the authors clearly cite and indicate. Importantly, the original dataset size,
about 73 million points, is very much higher than the present dataset, which indirectly sug-
gests that the method is probably also helpful on different and bigger datasets. In addition
to the above, it should be noted that some studies have attained high accuracy without data
augmentation despite a small data size, for example, Ref. [56]. As discussed, it seems not

possible at this stage to find a conclusive answer to individual differences such as this one,
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but factors related in data acquisition and labeling and not captured by the numerical pa-
rameters are likely to be the key. From this view point, having an internal comparison be-
tween with and without data augmentation on the same datasets and classifiers as done in
all chapters of the present thesis, appears very important to allow properly demonstrating
the actual influence of data augmentation. As said above, the most relevant conclusion that
can be drawn from the table is at the overall level, based on the median: the parameters of
the present study are close to the median, so it is quite “typical”. Without data augmentation,
the accuracy attained in this chapter is 83%, which is very close to the median across the
studies 84.5%, however, introducing data augmentation, it is considerably higher, 94%.

It should be underlined again that one problem with the field is that most papers provide
very limited details about the classifier and the dataset is generally not freely available.
Therefore, accurate and reliable comparisons are still difficult to do as of today. In the future,
as the field become mature, some standard datasets and classifiers are likely to appear as
was the case for some other challenging areas such as computer vision. For the time being,
given these results, it seems possible to state that, at a general level, the methods introduced
in this chapter compare positively with the literature. That is also suggested by the fact that

the present work has already been cited and used by another research group independently.

4.7 Conclusion

This chapter introduced a number of advancements with respect to Chapter 3. First, the
application scenario was made to be a more representative one of developments in this area,
with a large number of cows and fewer data per cow, leading to a more variable and there-
fore challenging dataset. Second, the LSTM network was replaced with a more compact
CNN network, more in line with current trends towards this type of classifier, owing to its

compactness and ease of training. Third, the rotation operation was improved by removing
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the discretization in large steps and allowing a continuous random angle. Fourth, and most
importantly, the rotation operation was complemented by three others, namely recombina-
tion, reversal and compensation for information loss, substantially boosting the advantage
of data augmentation.

Two additional considerations are useful at this point. One 1s that rotation was actually
not the best performing manipulation for augmentation, since reversal and compensation
for information loss performed better. The other is that compensation for information loss
combined with reversal performed best. These findings remark the empirical nature of data
augmentation. The operation that was physically best motivated, meaning rotation, could
eventually be disregarded, while the one that had the weakest theoretical underpinning,
meaning compensation for information loss, performed the best. One aspect of interest, in
this sense, is that recombination, reversal and compensation for information loss are not in
any way system-specific. This last statement leads towards the next chapter, where it will
be shown that the best performance in data augmentation can actually be obtained via the
methods that are the most abstract and free from any system-specific considerations, such

as rotation around the cow’s neck.
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Chapter 5

Improving abstraction by combining Fourier sur-

rogates and sampling schemes

In the previous chapters, it was shown that considerable accuracy improvement can be
obtained by augmenting the dataset via considering a system-specific feature such as collar
rotation state, or through combining empirical manipulations like recombination. In this
chapter, a final step is taken towards a method that aims to more abstract and supported by
theory. As | show below, the idea is to combine three aspects. One is surrogate data gener-
ation. Another is a sampling scheme that allows adjusting the distribution. And the final
aspect 1s performing all operations in an integrated way. This ensures that new data are
available for each step of the training process. The improvement is maximized when the
dataset is balanced via the application of a suitable sampling scheme and the negative in-
fluence of data duplication is reduced via using Fourier surrogates. With the proposed ap-
proach, the overall accuracy is improved from 90% to 96%, while the classification accu-

racy of an under-represented behavior, namely grazing, is elevated from 45% to 91%.
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In Chapter 4, the idea of time reversal was introduced. Basically, it was shown that
considering a time series backwards can help the classifier training. By definition, this op-
eration keeps perfectly the distribution of acceleration values, and the amplitudes of the
Fourier spectra. However, the phases are changed, because the time goes backwards. It 1s
known that time reversal can be used as a very basic way to check if a time series contains
non-linear properties: scientists studying non-linear behaviors have for long time used this
simple manipulation. From the literature on non-linear systems, it can be seen that this ap-
proach was made more general by finding other ways to change the phases while keeping
the value distribution and amplitude spectrum [1]. Those are usually known as methods to
generate surrogate data. A well-known software package in which time reversal was used,
and then replaced with surrogates methods is TISEAN (TIme SEries ANalysis), that was
introduced in the year 2000 [2]. Then, from reading such literature, the idea comes naturally
that those methods could also be applied in this application, to replace and extend time
reversal that was introduced in Chapter 4. As explained and justified below, the key differ-
ence and advantage is that, because the phases using such methods are random, a potentially
unlimited number of time series can be generated, in contrast with time reversal, which can

only be applied once.

5.1 Concept and generation of surrogate time series

In the same way that rotation and warping were initially meant for use in the domain
of image processing, also the notion of surrogate data comes from another area. The under-
lying idea is to take a time series and generate a new one that preserves some of its features,
but not all of them. The concept originates in the field of non-linear science, where the
purpose is deciding if a time series is from a non-linear system, or not [1]. Surrogate data

usually aim to keep all linear aspects of a signal while destroying the non-linear ones. In a
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practical sense this means keeping the same frequency spectrum and distribution of values,
but taken from an underlying random system. Then, there can be no fixed causal relation-
ships across time [3]. In the case of time series classification, the neural network may learn
several aspects of the signal, but it is impossible to tell which ones from the start, if feature
extraction is done by the CNN itself. In general way, the frequencies of the spectrum, the
mean and the variance are all important aspects to keep: as [ will show below, this is also
the case for this study. Then, the idea of surrogate data becomes relevant to generate a pos-
sibly unlimited number of new time series, all uncorrelated to each other in time, but keep-
ing some of the underlying features. It should be seen that, if one chooses the approach of
surrogate data, then the need for system-specific assumptions such as rotation in Chapter 3,
or empirical considerations as in Chapter 4, may be reduced. These assumptions may be
replaced by the surrogates generation procedure.

From the review by Schreiber, it can be seen that all surrogate data are random, but not
all random data are acceptable as surrogates [4]. When taking just random values for each
time point, one has white noise. This is not good, because the autocorrelations in the original
signal normally carry important information. Then, one can filter the random signal so that
it has the same frequency content as the start. Another way is to keep the initial signal’s
Fourier amplitudes, but replace the phases with random numbers. It can be seen that by
using the inverse Fourier transform the result is a signal uncorrelated in the time domain to
the initial one, but having properties similar to it. However, its mean, variance and so on
can be different. Another possibility is to randomly shuttle the initial signal: this keeps the
distribution of values, but it effectively generates white noise. The purpose of surrogate
generation algorithms is to find a balance between the two situations, keeping as carefully
as possible the frequency content as well as the distribution of values. The procedure is
explained below. It is important to point out that, even in the presence of many signals that

are considered together, multivariate generalizations of the technique can be used.
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In this section, 1 will give the theoretical derivation of the multivariate integrated Am-
plitude Adjusted Fourier Transform (AAFT) [4,5] and propose the use of it as a time series
augmentation method for wearable sensor data and how it can be used for data augmenta-
tion in the task of cattle behavior classification. The motivation for surrogate data tech-
nique-based augmentation initially stems from the observation that time reversal performs
well in Chapter 4. Because this operation destroys the original non-linear content of a signal
but keeps its linear features, a natural extension of the idea is to use surrogate data. The
important benefit is that, while time reversal can only be performed once (otherwise it gives
back the initial input), surrogate data provide an unlimited number of time series that could
be used for network training.

So, following the steps by Schreiber and Schmitz [4,5], assume that the acceleration
time series x can be expressed as a linear autoregressive time series. For x;, i.e., the data at
sample ¢, it can be described as follows:

X = ¢+ Ele Pix,_; + & (1)

where ¢y, ..., ¢, are coefficients associated with prior values of x,: & is an independ-

ent and identically distributed noise sequence with zero mean, i.e., &~N(0, %) where

N(0,0?) denotes Gaussian normal distribution with the mean 0 and variance ¢?; p indi-
cates the order of the regression.

In the Fourier domain, the amplitude of the Fourier transform of x, and from there, the
power spectrum, could be obtained by the equation (1) according to the Wiener-Khinchin
theorem. Since the phase is not specified in the above equation, there are many possible
realizations that preserve the power spectrum. This is the reason why surrogate data are a
source of endless time series. Because of the key role of the Fourier transform, surrogates

generated using this approach are also informally called “Fourier surrogates™.
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As mentioned above, the techniques of surrogate data generation were originally de-
signed for a different analytical purpose, that is, testing whether there is nonlinearity in
irregular fluctuations of a time series. The basic idea of the surrogate techniques is that the
time series we want to examine shows irregular fluctuations. One possible reason for this
is the presence of nonlinear dynamics. Surrogate data can eliminate or destroy the nonline-
arities in data while preserving various linear statistical properties. Detecting nonlinearity
using surrogate techniques have its statistical basis where the null hypothesis we set is that
the time series data observed is resulted from a stationary stochastic linear process with
random inputs [1,3]. If there is no nonlinearity in the original data, there should not be a
large (significant) difference between the surrogate data and the original one in any possible
signal statistics, because the surrogate data do not have nonlinearity but have the same linear
characteristic as the original one. Conversely, if there is a large difference in some statistics,
the null hypothesis will be rejected, meaning there is probably nonlinearity in the original
data. One example is a time series showing a period-3 behavior, that is, for example, the
repetition of a large-amplitude cycle, an intermediate one, and a small one as 123123123, ..
and so on. This kind of property is destroyed by surrogate generation, but we can guess it
is not very relevant to animal behavior. Then, if linear features are most important, then
surrogate time series can be a good source of training data.

As introduced by Schreiber and Schmitz [5] and summarized by Lee et al. [6], give a
time series X = {x;,x, ..., Xy}. The specific mathematical processing of surrogate data
generation can be outlined as follows:

1. Sort x in ascending order, with s the sorted data and i, the index in x. Here the [*"

element of s is the i, element of x, i.e., 5, = X,
2. Generate a random array ry = {1} = {n, 71, ..., ™v}, 1~ U(0, 1), where U(0,1)

is the uniform distribution on [0, 1].
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. Sort r in ascending order, withr = {'-'":q} the sorted data.

. Order r by i; to get a reordered time series y = {y;}.

tn N Lad

. Apply Discrete Fourier Transform to y, i.e., [Y(w)} = F(y)

6. Use a random angle ¢ € U[0, 2m) and obtain Y'(w) = Y (w)e/? .

7. Apply Inverse Discrete Fourier Transform to Y'(w), obtain y' = {y'} =
FHY'W)D.

8. Sort ¥ in ascending order, with ¥* the sorted data and i;" the index in y’. Reorder
time series s by i;" and obtain a surrogate time series data x' = {x;'}

The above steps describe the Amplitude Adjusted Fourier Transform (AAFT). It can
be seen that both the distribution of values and the Fourier amplitudes are considered, how-
ever, at different times, meaning, steps 1-4 and 5-7. This means that only an approximate
similarity is kept to the original time series. The lterated AAFT (IAAFT) indicated in Fig.
5.1a will iterate the surrogate process until there is a close match in both the autocorrela-
tions and distribution with respect to the original signal [1,2-5]. Specifically, the amplitude
distribution and spectrum of surrogate time series are iteratively corrected in an alternative
manner, targeting a close overlap to the original time series as the goal. The distribution
adjustment procedure is done by rank ordering, and the Fourier power spectrum adjustment
is done by taking the Fourier transform, replacing the squared amplitudes |4, ”'| where i
indicates i th iteration, by the desired one |A,| while the phase ), ,,, is kept the same, and
then transforming back. Because the process may need to iterate several times, the compu-
tational load 1s higher compared to rotation or the empirical manipulations considered be-
fore.

Further, as again summarized by Schreiber [5], considering the sensor data we col-
lected from cows have multi-variables, in addition to matching their individual spectra and

distributions exactly, we preserve their cross-correlation function as good as possible. In
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the cases of multivariate signals, as shown in Fig. 5.1b, the amplitude distribution could be
easily applied by rank re-order for each channel individually. For the spectrum, some
changes of the processing procedure in Fourier domain are needed. The phases i, ,,, have
to be replaced with new ones suitable for all the three axes together, that means, trying to

keep their cross-correlations. Specifically, the replacement should be minimal in the least-

‘ i iw 5 2 2
squares sense, i.c., it should minimize hy, = E§n=1|exp[1¢klm] — exp [“ﬁ’k,m]l , where
¢ym donates the phase applied to x-. y-, and z-axis in the spectrum adjustment procedure,
1 m donate the phase used in univariate cases. In addition, to preserve the cross-spectrum,

the phase differences in x-y, y-z, and x-z should be kept the same, i.e., Exp[i (Diemz —

qﬁk.ml}] = exp [i1(Px.mz — Pr.m1). With this, the amplitude distribution and spectrum are
kept and there is also close match in the cross-spectrum of x-, y- and z-axis.

Because the process of surrogate time series generation involves a random aspect, it
can be repeated as many times as the user wants. Basically, it is like endless source of data
with certain features. Therefore, one may choose how much surrogate data is necessary in
cach case, depending on initial size, computation time and so on.

For completeness, it should be added that other methods to realize surrogate time series
also exist, For example, a well-known alternative to the Fourier transform is the Wavelet
transform: instead of representing the data as amplitudes and phases of sine waves, it de-
composes them according to kernels having different width, such as the so-called “Mexican
hat”. The Wavelet transform is powerful because it can show in a clear way different levels
of detail, and because it can represent how certain features of the frequency content change
over time, For this reason, it is often used to analyze non-stationary signals like speech [7].
Recently, it has been proposed that the Wavelet transform could replace the Fourier trans-
form in surrogate generation, and that this could allow an even better keeping of the original

signal features. For example, it seems that methods based on the Wavelet transform are
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used in earth science, when the purpose is checking the presence of non-linear behaviors in
very complicated time series [8.9]. Such methods keep more features than the value distri-
bution and autocorrelation. Interestingly, it has even been proposed to mix Fourier and
Wavelet transforms for surrogate generation [10]. Because in this research the purpose 1s
simply generating more data that are useful, the Fourier transform is preferred, also because
it is easier to understand, and its calculation time is much lower. However, future work on

data augmentation could consider Wavelet-based surrogates.

Beginwith {7 | | [ 6% =60 |y ) ()
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An approximately fixed point is always reached after a finite number of iterations
(b)
Figure 5.1: The principle of iteratively refined surrogates . (a) Univariate IAAFT (b) Mul-
tivariate IAAFT. Provided the original data {a,}, {|S;|} denotes the Fourier amplitudes in
the initial data and {c, } sorting the same according to ascending order. At the i th iteration
stage, sequence {ﬁf”} has the correct value distribution, while {S‘EIH] has the correct Fou-

rier amplitudes.
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5.2 Considerations on integrated data augmentation

Besides the replacement of empirical operations with surrogates, and the sampling
scheme described below, one new aspect of this chapter is the integrated augmentation. In
recent years, data augmentation in the image domain has become a common practice and
has been well explored. For example, many well-established deep learning architectures for
image classification, such as AlexNet [11] and residual networks (ResNets) [12], and very
deep convolutional networks (VGGs) [13], use data augmentation approaches as a standard
practice in the process of model training. By contrast, even recent reviews of time series
data augmentation did not report any study using integrated augmentation [14-16]. There-
fore, in this chapter | will present the first results.

In particular, this chapter introduces new ideas and their application as integrated aug-
mentation methods. Namely, to tackle the task of accurately classifying cattle behavior
while faced with limited data availability, this chapter suggests the integrated and synergis-
tic use of multiple approaches, which deliver a substantial increase in classification perfor-
mance. It combines three key ideas having a possibly broader usefulness:

e First, | propose to use random selection of time series snippets during each training
epoch to provide a built-in source of variability that aids the determination of clas-
sifier boundaries yielding a high generalization ability.

e Second, I propose to apply a form of biased sampling which aims to offset the
dataset imbalance problem, further aiding the training process in determining the
boundaries between the most and least represented behaviors. Also in this case, the
sampling is performed for each training epoch, making sure that different data are

always selected insofar as possible.
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e Third, I propose to combine the above with the generation of Fourier transform-
based surrogates to alleviate the issue of data duplication encountered when repeat-
edly sampling over the least represented behaviors. This is especially important for

the behaviors with limited recorded data available.

5.3 Data and proposed processing methods

5.3.1 Data Acquisition

The dataset considered in this chapter is the same as Chapter 4. However, as a part of
the ongoing development of the system and improvement of researcher skills, the labeling
operations were repeated. Therefore, the distribution of behaviors was not identical, and 1s
shown in Fig. 5.2, which depicts the relative prevalence of data samples across the activities.

Some examples of the time series are shown in Fig. 5.3. In can be seen that in the case
of Resting, the activity level is low. In all other cases it’s higher, with the biggest accelera-
tions observed for Grazing. All signals are clearly irregular, which is an indication for using
surrogate data that attempt to preserve all the linear signal features as closely as possible. It
can also be easily seen that the x, y, z components contain frequencies which are very dif-
ferent depending on the activity. Then, the idea of keeping the frequency content while

generating surrogate data appears immediately relevant,
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Figure 5.3: Representative time series excerpts for the behavior classes. Mean subtracted

for visualization purposes. Units of g.

5.3.2 Machine Learning Model

The network type and configuration was also kept identical as in Chapter 4. However,

because of the integrated biased sampling scheme in model training and evaluation, there

were some changes in implementation. All these steps were performed using custom-devel-

oped source code in Python language using Keras with the backend of TensorFlow (version

2.4.0) [17]. An initial behavior classifier model was established using the training set, then

the network parameters were heuristically tuned with the validation set in the process of

model training. Afier learning was completed, the effectiveness of the classifier model was
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examined based on the remaining data, which was viewed as an independent test set. The
performance measure in term of overall accuracy was the agreement of the behaviors pre-
dicted by the classifier using a winner-take-all approach with the manually labeled tags
from video analysis. As regards the accuracy for the individual behavioral classes, it was

assessed by means of the F; score.
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plementation,
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The detailed data processing flow is shown in Fig. 5.4. As in Chapters 3 and 4, a spe-
cific firmware running on the Spresense board described in Chapter 3.2.1 was used to col-
lect the acceleration data, and video labelling was done using the SyncPlay software from
ATR-Promotions Inc., as described in Chapter 3.2.5. Data separation and splitting for this
Chapter were performed using Python code, followed by the model training with integrated
augmentation. The core function code for surrogate data generation was provided in Ap-

pending B.3.

5.3.3 Data Augmentation procedure

Fig. 5.5 shows the data flow supporting the experimental design. Following data seg-
mentation according to contiguous behavior labels, stratified splitting was performed, re-
taining 72% of the overall data for training and the remaining 20% and 8% for test and
validation, respectively. Thereafter, the analysis split into three analogous branches: a first
one involving only original data, a second one involving only surrogates, and a third one
involving an even mixture of the two (identified, respectively, with “0”, *S” and “M"). This
branching pertained to the training data only, and only original data were used for validation
and testing. Within each branch and as shown in Fig. 5.6, a further split into three sampling
approaches was present, namely, considering adjacent windows (all data entered during
each training epoch, retaining the original class distribution), considering one window per
data segment (extracting one snippet per segment starting from a different random location
for each epoch, retaining the original class distribution), and considering n windows per
data segment so as to approximately balance the distribution (identified, respectively, with
“AY, "1 and *n"). In other words, the study was a 3-by-3 design according to surrogate

usage and windowing/sampling approach.
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Figure 5.5: Study design for the comparisons, showing the 3-by-3 split according to surro-

gate usage and sampling scheme.

All aspects of the data augmentation were seamlessly integrated with the training pro-
cess; in other words, no precalculation was performed, with the surrogate and sampling
performed independently for each training epoch. Surrogate time series were generated
through the IAAFT method, separately for each segment of original data, to ensure no labels
were mixed. The method is described in detail Chapter 5.1, and in brief, consists of the
iterative adjustment of amplitude distributions and Fourier spectra, starting from a shuffle
of the initial data points. The Fourier transform is calculated at each iteration, retaining the
phases but replacing the amplitudes with those of the original time series. Then, the values
of the iterated time series are replaced with those from the original time series, according
to their ranks. The process is iterated until both the initial signal's value distribution and
autocorrelation are sufficiently preserved. The obtained time series is entirely uncorrelated

in the time domain, which prevents data duplication. Because, for tri-axial data, significant
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information may be contained in the crosscorrelations, I applied a multivariate extension of
this method which also preserves crosscorrelations.
The exact modality of using surrogates for data augmentation varies across studies, and the
literature remains scant. For example, Lee et al. [18] have used surrogate data intermixed
with original accelerometric and neurophysiological recordings, drawing the training and
test data from the resulting pool. Schwabedal et al. [19] adopted a similar approach, how-
ever applying surrogates only to training data alongside crossvalidation. On the other hand,
in a later study, Lee et al. [6] proposed using surrogates as the exclusive basis for training
and validation, reserving the entirety of experimental recordings for testing. In this chapter,
I more systematically consider three possibilities: training only on original data, training
only on surrogates, and training on an evenly mixed pool. In all cases, validation and testing
are performed exclusively on original data, which is motivated by the fact that these vectors
need to remain unchanged throughout the training process. As a consequence, it is possible
to address explicitly the effect of surrogate data inclusion,

Finally, while previous works have used surrogate time series purely based on empiri-
cal evidence that they can aid the training process, as shown in Fig. 5.7, here [ adopted a
deductive approach to understanding precisely which retained features render the surrogate

time series usable for training. Starting from the original data, the non-linear structure
is firstly destroyed by the IAAFT method itself, Thereafter, I switched from a multivariate
approach to a univariate one, thereby ceasing to retain the crosscorrelations. Next, I relin-
quished the IAAFT iterative approach and simply randomized the Fourier phases, leading
to time series that retains the autocorrelation but not the value distribution. Finally, I also
subtracted the average and normalized the variance to unity: this aspect is important since
significant information about the behavior can be conveyed by the average and variance,
which are in part represented within the Fourier amplitudes, even when the value distribu-

tion is not adjusted.
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Figure 5.6: Sampling schemes used in deriving snippets (fixed length 4 s time-intervals

submitted to the CNN) from segments (variable length 8-48 s time-intervals of homogene-

ous behavior).
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Figure 5.7: Deductive steps used to determine the elements of surrogate data supporting

high training performance.

5.4 Experimental results

5.4.1 Classification performance across the sampling and surrogate schemes

The classification accuracy values, aggregated and separate for each behavior class,
are given in Table 5.1, and the corresponding confusion matrices are shown in Fig. 5.8.
Considering the original data only and dividing up all segments into adjacent windows (case
OA), an overall accuracy of 90% was obtained. With respect to this, the most significant
improvement. to 95%., was obtained by introducing random sampling (case O1), so that one

window is extracted starting from a different random time-point at each training epoch: this



improvement was particularly notable considering the least-represented behaviors, namely
Grazing and Salting, which improved from 45% to 83% and from 83% to 98% respectively.

Introducing a biased sampling so that the number of windows entered in the training
process is rendered approximately even across behaviors (case On), a further improvement
to 96% was recorded: even though it was quantitatively smaller, it was consistent across all
classes.

Considering next the training performed exclusively on the surrogates, the principal
finding was that the accuracy levels across the three sampling schemes were closely com-
parable to those obtained when using the original data, namely 90% for both cases OA and
SA, 95% and 94% for cases Ol and S1 respectively, and 96% for both cases On and Sn.
When considering the accuracy for the Grazing class, the performance was actually better
when training using the surrogates rather than the original data, namely, with 45% vs. 52%
for cases OA and SA, 83% vs. 85% for cases Ol and S1, and 86% vs 89% for cases On and
Sn. This could plausibly be ascribed to statistical aspects such as improved stationarity.

The most favorable performance was obtained via mixing the original data and surro-
gates, randomly chosen during each epoch. At the level of overall classification accuracy,
the scores of case Mn were comparable to those obtained using only original data or only
surrogates, namely, with 96% (case On) and 96% (case Sn). However, considering the in-
dividual behaviors, the score for Grazing was maximized, reaching 91% for case Mn as
opposed to 86% for case On. Due to a saturation effect, this was not evident for Salting.
The advantage of mixing surrogates and original data plausibly stems from their different

statistical properties in terms of which features are retained and data variability.
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Table 5.1: Performance of the classification results on a test dataset

Case OA (0]} On SA S1 Sn MA MI Mn
Grazing 45%  83%  R6%  52%  B5%  89%  68%  BT%  91%
Walking B9%  95%  96%  BE%  95%  98%  B5%  96%  97%

Ruminating 8% 92% 95% 89% 91% 93% 83 91% 92%
Resting 95%  96%  97%  94%  95%  97%  90%  96%  97%
Salting 83%  98% 100%  79%  93% 100% T78%  93%  100%

Overall accuracy 90%  95%  96%  90%  94%  96%  B6%  95%  96%
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Figure 5.8: Confusion matrices for a selection of sampling and surrogate schemes (test

data).
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5.4.2 Analysis of the relevance of surrogate time series

Considering the ability of surrogates to sustain high training performance, the follow-
ing results were noted (see Table 5.2); for brevity, they are presented concerning case Sn,
but similar considerations apply to cases SA and S1. Starting from the attained score of
96%, switching to a univariate approach not retaining the crosscorrelation had a small effect
on performance, which remained high at 95%. Removing the iterative process in the IAAFT
algorithms and retaining the Fourier amplitudes without the value distribution did not fur-
ther reduce the performance.

On the other hand, removing outright the average by means of subtracting it from the
data had a more complex effect. The overall accuracy for case Sn remained similar, down
to 94%, however, for case SA, the accuracy for the grazing class collapsed to 4%. Overall,
removing the variance information by normalization had a stronger and more generalized

detrimental effect, reducing the overall accuracy down to 80%.

Table 5.2: Performance of the classification results on a test dataset

SA- 51- Sn- SA-  Sl- Sn- SA- 51- Sn- SA- S51- Sn-
XC xC Xc VD VD VD  AVG AVG AVG VAR VAR VAR

Case

Grazing 7%  B0% B4% S0%  BT% B4% 4% TR% B3 5% 49% 64%
Walking R7%  95%  96% BB 96%  96%  B4%  94%  94%  63%  TR%W TO%

Ruminating  85%  8B9%  91%  BI1% 89%  91% 7T8% 94% 93% 60%  82% B2%
Resting 93 96% 96%  90%  95%  97% 92%  96%  96%  B4% Bo% BS%
Salting T9% 93%  100% 95% 95% 100% 67% 95% 98% 83% 92% 98%
Overall

B9%  94%  95%  B7%  94%  95%  B4% 95%  94% T3% B2% B0
accuracy




153

Altogether, these results suggest that the bulk of relevant information was contained in
the autocorrelation, which was the only feature retained after this cascade, and in the vari-
ance. Therefore, to further characterize the dynamical features retained by the IAAFT sur-
rogate generation process which support the use of the surrogates, the value distribution,
autocorrelation and crosscorrelation were considered in detail across the behavior classes.

Firstly, I note that, as shown in Fig. 5.9, the five behaviors were characterized by mark-
edly different distributions of acceleration values; for convenience, they are illustrated here
after detrending. For Resting, a narrow Lorentz-like distribution was observed, with near-
complete overlap between the three axes (standard deviations 0.03 g, 0.03 g, and 0.02 g for
X, Y, and Z, respectively). For Ruminating, the distributions were marginally broader, and
less peaked around zero, albeit retaining a comparable standard deviation (0.02 for all three
axes). By contrast, for Walking, the acceleration distributions for all the three axes were
markedly broader and more Gaussian-like (standard deviations 0.10 g, 0.13 g, and 0.11 g).
For Grazing, the situation was comparable, albeit with greater noise due to the smaller
amount of data (standard deviations 0.11 g, 0.10 g, and 0.08 g). For Salting, the variability
was intermediate, and there was an evident difference between a Lorentz-like distribution
for the X axis and Gaussian-like distributions for the Y and Z axes (standard deviations (.03
g, 0.04 g, and 0.05 g). In summary, the Resting and Ruminating behaviors appeared closely
comparable and well-separated from Walking and Grazing, which were similar to each other,
whereas Salting represented an intermediate condition. Therefore, the relevant information
contained in the value distribution consisted mainly of different variances. supporting the
distinction between these classes.

Secondly, I note that, as shown in Fig. 5.10, across the three axes, the five behaviors
were characterized by visibly different autocorrelation and crosscorrelation profiles,
wherein the latter tended to be smaller. On the whole, Resting was associated with a rela-

tively slow and monotonic autocorrelation decay, which was comparable for the three axes;
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its crosscorrelation dwelled around zero, except for the YZ combination, which was
strongly anti-correlated. These features plausibly stem from the absence of regular move-
ments alongside occasional rotations of the head during Resting. By comparison, the auto-
correlation envelope for Ruminating showed a faster decay, which was additionally associ-
ated with a prominent periodic oscillation peaking at a lag around 10 samples, particularly
for the Y axis: this periodicity could also be appreciated for the crosscorrelation. Ruminat-
ing knowingly involves prolonged chewing and associated rhythmic neck movements,
which may explain the observed pattern. Conversely, Walking was associated with the fast-
est autocorrelation decay, alongside minimal periodicity and weakest crosscorrelation.
These features plausibly reflect the fact that, regardless of leg movements, the head move-
ments are minimized in this condition due to staring forward. Grazing exhibited properties
intermediate between Ruminating and Walking, as regards to both the autocorrelation decay
and the strength of crosscorrelation; compared to Ruminating, this behavior was associated
with a somewhat slower periodicity, peaking at a lag around 15 samples, again in line with
behavioral expectations of slower chewing in this condition. Finally, Salting was markedly
different from all other behaviors, in that it was hallmarked by a very strong periodicity at
an intermediate frequency, again peaking at a lag around 15 samples, which was visible on
all three axes for autocorrelation and all three axis combinations for crosscorrelation. Since
Salting involves large repetitive “sliding” movements associated with licking, this pattern
was expected. Therefore, the most important distinguishing feature appeared to be autocor-
relation, followed by the value distribution. Notably, the separability of the behaviors was
different and complementary between them, since Resting and Ruminating, Walking and

Grazing had similar value distributions but markedly different autocorrelation profiles.
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Figure 5.10: Autocorrelation and crosscorrelation across the behavior classes.

5.5 Additional datasets for confirmation

5.5.1 Purpose and data sources

Throughout this thesis, | have stated several times that the augmentation method be-
comes more abstract from Chapter 3 to Chapters 4 and 5. In this section, I provide some

initial indication that the final method obtained, the one which [ state 1s most abstract, seems



works effectively also on other datasets and therefore could, potentially, in the future be
used widely in loT and Edge Al. The main motivation for undertaking these analyses was
to confirm that the efficacy of sampling and surrogates is not because of some specific
feature of the cow data or other unexpected issue with the data. However, it is necessary to
say that the analyses in this section are not enough to be considered an actual proof of
generality. To claim general usefulness on any type of sensor time series, much additional
work will have to be done in the future considering sensors other than accelerometers, and
the influence of many application aspects. More humbly, these results intend to give some
initial confirmation that such general use might actually be possible and, therefore, should
be investigated in the future.

Three datasets are considered. The first one is a dataset of human behaviors recorded
using a tri-axial accelerometer located in a mobile phone [20,21]. The behaviors consist of
walking, jogging, going upstairs, going downstairs, sitting and standing. This dataset is re-
lated to the cow data, because the data are also accelerations, however, the behaviors are
human, so, entirely different. The second dataset, on the contrary, is entirely different and
consists of 3 electroencephalography signals, recorded from the back of the brain while the
eyes are open or closed. These conditions are linked to changes in the frequency content
[22,23]. The third dataset is also completely different and consists of recordings from an
electrical motor and mechanical gears, obtained using accelerometers, a tachometer and a
microphone. In this case, the conditions correspond to possible faults, and the accelerome-
ters record vibrations rather than behaviors [24].

As presented in Chapter 1, the field of the loT and Edge Al is so broad, because it
includes applications in agriculture, farming, industrial manufacturing, transport, medicine,
environment monitoring and so on. All these applications use many types of different sensor,
then, it would be difficult to cover them all without testing a large number of datasets [25-

27]. Therefore, the three datasets considered in this section should be considered only as an
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initial step towards demonstrating general usefulness. The first one shows another type of
behavioral classification, using similar type of data as the cow recordings, that is, human
accelerometer recordings. The second one uses a totally different type of signal, that is,
electrical recordings of brain activity. The third one 1s based on multiple signals together,
mainly acceleration, however, used to monitor vibration instead of behavior. While this se-
lection is not complete, it can be said that these three datasets cover several typical appli-
cations related to consumer, biomedical and industrial loT. In the future, more work 1s
needed to prove if the methods proposed can be used generally or not.

For these three datasets, the model settings are kept the same as for the cow data, since
the purpose is to evaluate the improvement due to sampling and surrogates, not to optimize
a model itself. This seems acceptable because, as indicated below, good performance is

eventually achieved in all cases.

5.5.2 First additional dataset

The first dataset, as | wrote, is about human behaviors recorded using a tri-axial accel-
erometer located in a mobile phone. It is known as the WISDM: Wlreless Sensor Data
Mining dataset and considered the most popular and represented in its kind [20,21]. This
application is common for fitness tracking and other wearable devices [28,29]. In total, it
contains 1095199 data rows, acquired at 20 Hz over a period of =15.2 h for 6 classes. It can
be seen in Fig. 5.11 that the classes are heavily imbalanced. which is similar to the situation
for the cow data. Walking and jogging are most common, with 39% and 31%, followed by
going upstairs and downstairs at 11% and 9%, while sitting and standing are rarer, with 5%
and 4%. For this dataset, the window size is set to 100 points and 80% of data are used for

training and validation, 20% for testing.
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After applying the same procedures indicated in Fig. 5.5, the F; scores and over-
all accuracy reported in Table 5.3 are obtained. For this, only four cases are consid-
ered, to reduce the amount of data and focus on evaluations to the key questions.

Initially, the comparison between the original data (case OA) and 1-window sam-
pling (case O1) can be considered, and it can be seen that the overall accuracy in-
creases from 48.6% to 81.7%. Also, the F, scores of all behaviors increase markedly,
especially for sitting, standing and going up and down the stairs. Then, the compari-
son between | (case O1) and n windows (case On) can be made. It can be seen that
the overall accuracy increases very weakly, from 81.7% to 81.8%. Moreover, the F,
scores increase only slightly or decrease, and the only notable increase is for going
upstairs. Finally, the comparison between n windows while using only the original
data (case On) and the same while also using surrogates can be made. It can be seen
that the overall accuracy increases again substantially, from 81.7% to 88.7%. Besides
weak drops for going downstairs and standing, the F, scores generally increase, par-
ticularly for walking, jogging and going upstairs, reaching an improvement of about
10% in the case of jogging.

The initial confusion matrix, shown in Fig. 5.12a, is clearly unusable, but the
final one, shown in Fig. 5.12b, indicates a system that performs improved classifica-
tion. As the best result is obtained combining surrogate and sampling, the conclusions

are exactly the same as the cow data.
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Figure 5.11: Relative prevalence (normalized) in the human behavior dataset.
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Table 5.3: F, scores and overall accuracy in the human behavior dataset

OA 01 On Mn

Walking 65.0% 84.4% 82.7% 90.7%
Jogging 66.7% 84.8% 84.9% 94.6%
Upstairs 5.6% 62.3% 70.7% 76.4%
Downstairs 29.6% 77.6% 70.8% 69.0%
Sitting N/A 100.0% 96.3% 100.0%
Standing 37.8% 98.4% 98.0% 95.5%
Overall 48.6% 81.7% 81.8% 88.7%
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Figure 5.12: Confusion matrices for the original data (a), case OA, and the augmented
data (b), case Mn.

5.5.3 Second additional dataset

The second dataset is about brain electrical activity recorded using the electroenceph-
alography (EEG), which is sensitive to voltage changes on the head surface. It 1s known as
the BCI2000 EEG Motor Movement/Imagery Dataset and also considered the most popular
in its area [22,23]. This dataset contains mainly signals recorded while a person is moving
or imagining to move. However, because these are extremely difficult to analyze, I focus
instead on the comparison between eyes open and closed. It is known that when a person
closes their eyes, activity around 10 Hz, known as alpha band, increases towards the back
of the head, known as occipital pole [30]. One minute of eyes open and one minute of eyes
closed data were taken for 20 subjects, for three electrodes known as O1, Oz and O2, giving
a total of 234,336 data rows acquired at 160 Hz over =24.4 min. In this case, the window
size was set to 640 points, and 80% of data were used for training and validation, 20% for

testing. To test the suggested data augmentation approach, as seen in Fig. 5.13, the data
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were made imbalanced by keeping only about 20% of the eyes open condition. As suggested
for this data, a band-pass filter between 2 Hz and 40 Hz was applied, and the mean signal
was subtracted [22,23,30].

Initially, the comparison between the original data (case OA) and |-window sampling
(case O1) was considered, and it can be seen that the overall accuracy increases from 56.3%
to 91.7%. This is similar to the first additional dataset, even though in this case there are
only two classes. Also, the F; scores of both conditions, especially eyes open, increase
markedly. Then, the comparison between | (case O1) and n windows (case On) can be made.
It can be seen that the overall accuracy increases more weakly, from 91.7% to 93.1%. The
F, scores increase slightly. Also in this aspect the situation is similar to the previous dataset.
Finally, the comparison between n windows while using only the original data (case On)
and the same while also using surrogates can be made. It can be seen that the overall accu-
racy increases again, from 93.1% to 95.8%. The F1-scores also increase, especially for eyes

open.
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Figure 5.13: Relative prevalence (normalized) in the EEG dataset.
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The initial confusion matrix, shown in Fig. 5.14a. indicates more misclassifications
that the final one, shown in Fig. 5.14b. Also in this case, it is concluded that combining
surrogate and sampling is best, in agreement with the cow data and the first additional da-
laset.

In addition, because inter-individual differences are an important topic in human stud-
ies, training and evaluation were repeated, completely separately, for each individual par-
ticipant [22,23]. On average, the overall accuracy across individuals was 53.7+9.4% for
case OA, 97.7+4.7% for case O1, 98.2+3.3% for case On, 98.0+3.8% for case Mn. Then,
the percentage of cases in which the best performance was attained for a given case was
calculated (it should be considered that the same best value can be attained in several cases,
s0, it is counted for all of them). This was 0% for case OA, 80% for cases Ol and On, and
75% for case Mn. These results show that, when considering each person separately, the
biggest difference in accuracy was due to reducing the dataset imbalance using sampling.
Because already very high accuracies were obtained using |- and n-window sampling (cases
O1 and On), there was a ceiling effect, so the addition of surrogates did not bring additional
advantage. When training and evaluating the model on all participants together, the accura-

cies were lower, so there was room for surrogates to provide an additional improvement.

Table 5.4: F, scores and overall accuracy in the EEG dataset

OA 01 On Mn
Closed 69.6% 95.0% 95.9% 97.6%
Open 22.2% 75.0% 76.2% 85.7%
Overall 56.3% 91.7% 93.1% 95.8%
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Figure 5.14: Confusion matrices for the original data (a), case OA, and the augmented

data (b), case Mn.

5.5.4 Third additional dataset

The third dataset, instead, is related to industrial applications of loT and was recorded
using a machinery that simulates different types of mechanical fault of a large electric motor.
It is known as the MAFAULDA Machinery Fault Database and considered a key reference
in its field [24]. This dataset contains time series recorded from two triaxial accelerometers
placed on different points of the mechanical device, a tachometer and a time series from the
sound as receive by a microphone. It contains more than 97 million data rows, sampled at
25 kHz, therefore it is much bigger than the cow dataset and the first and second additional
datasets. It contains seven operating conditions, one is normal, and the other represent var-
ious types of mechanical faults such as horizontal or vertical misalignment obtained by
moving the motor, imbalance of the load weight, and so-called overhang and underhang,
which indicate failure of the ball bearings. Compared to the cow and human behavior da-
tasets, in this dataset the classes are different because they represent failures that generate

strong vibrations. These vibrations do not change over time like natural behavior but remain
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present, still, they have to be classified to support maintenance [31]. As can be seen in Fig.
5.15, the distribution of classes is also very imbalanced, with 26% and 29% for overhang
and underhang, 17% for imbalance, 15% and 10% for horizontal and vertical misalignment,
and only 3% for normal operation. This is because the authors of the dataset were interested
in capturing each possible failure extensively even though, in real life, normal operation
actually takes place most of the time.

After applying the same procedures indicated in Fig. 5.5, the F; scores and overall ac-
curacy reported in Table 5.5 are obtained. Also here, only four cases are considered, to
reduce the amount of analyses to the key questions.

Initially, the comparison between the original data (case OA) and |-window sampling
(case O1) can be considered, and it can be seen that the overall accuracy increases from
91.9% to 92.6%, which is less than the previous two additional datasets. The F; score of the
rarest behavior, normal operation, increases markedly, while the other only have small
changes. Then, the comparison between 1 (case O1) and n windows (case On) can be made.
It can be seen that the overall accuracy increases similarly, from 92.6% to 94.6%. Some F,
scores decrease only a little, while the scores for normal, horizontal and vertical increase
by up to about 10%. Finally, the comparison between n windows while using only the orig-
inal data (case On) and the same while also using surrogates can be made. It can be seen
that the overall accuracy increases again substantially, from 94.6% to 99.7%. No F; scores
decrease, while particularly large increases are found for normal and horizontal, and all
values approach 100%.

The initial confusion matrix, shown in Fig. 5.16a, indicates a not perfect classification,
but the final one, shown in Fig. 5.16b, indicates a system that performs near-perfect classi-
fication. Finally, also in this case the same way as the previous ones, the best result is ob-

tained combining surrogate and sampling.
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Figure 5.15: Relative prevalence (normalized) in the motor failure dataset. UND: Under-
hang, OVE: Overhang, IMB: Imbalance, VER: Vertical, HOR: Horizontal, NOR: Normal.

Table 5.5: F, scores and overall accuracy in the motor failure dataset

OA 01 On Mn
Normal 11.0% 58.2% 68.7% 97.1%
Horizontal 75.1% 76.0% 87.5% 99.8%
Vertical 89.3% 87.9% 97.1% 99.6%
Imbalance 95.1% 96.8% 92.3% 99.5%
Overhang 99.3% 98.5% 97.9% 100.0%
Underhang 95.6% 95.0% 97.4% 99 8%
Overall 91.9% 92.6% 94.6% 99.7%
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Figure 5.16: Confusion matrices for the original data (a), case OA, and the augmented

data (b), case Mn.

5.6 Conclusion

This Chapter proposed using a new combination of time series augmentation methods
especially suitable for short, low-dimensional sensor time series, aiming to address the chal-
lenges stemming from small dataset size and dataset imbalance. The case of cattle behavior
recognition using a CNN-based classifier was considered, however, the results were shown
to be relevant beyond the specific example under consideration. The key finding is that
performance is maximized when combining a suitable random sampling scheme with sur-
rogate data and integrating it within the training process to realize so-called online augmen-
tation. These results especially demonstrate that dynamically sampling time series snippets
during each epoch can facilitate the training process by expanding the classifier boundaries.
Furthermore, introducing a biased coverage that compensates for the imbalanced original
distribution also enhances the performance, not only for the least represented behavior clas-

ses. The issue of limited dataset size is effectively addressed through Fourier surrogates,
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which support high training performance while ensuring the absence of any duplication in
the time-domain data submitted to the training algorithm. Extending previous works
wherein this technique was used empirically, I show how a deductive approach can be used
to dissect and identify explicitly which properties retained from the original time series are
most relevant. On the whole, using the proposed method improved the average performance
from 90% to 96%, and the classification accuracy of grazing from 45% to 91%, without
requiring any modification to the classifier architecture. In addition, it was found that the
combination of surrogates with sampling gave the best result always also in other datasets

of human behavior, EEG and machine failure.
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Chapter 6

Conclusion and Future Work

6.1 Overview of contributions

This thesis aimed to provide a significant and concrete improvement to the accuracy of
classifying cattle behaviors based on tri-axial accelerometer time series. The specific ob-
jectives were two: (1) improve the overall classification accuracy, and (2) improve the clas-
sification accuracy of the least frequent behaviors, providing a system which is not biased
towards better recognizing the more frequent behaviors. At a more general level, this thesis
represents a comprehensive journey through the development of a data augmentation
method tailored for a specific application in farming loT but potentially, in the future more
broadly useful. The developments presented in this work are also representative of the evo-
lution of these techniques during a phase of rapid expansion of data augmentation from the
domain of computer vision to other applications.

This thesis considered three related but distinct approaches:

e A basic one, based on system-specific considerations about what physical transfor-

mations the classification should be invariant to, i.e., collar rotation.
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e An intermediate one, combining this approach with other empirical arguments re-
garding the recombination of data from different time points and other alterations
considered not to alter the recognizability of a behavior.

e A more abstract one, removing any empirical or system-specific considerations and
replacing them with methods based on theoretical considerations about signal con-

tent.

The novelty is summarized in Table 6.1. It can be seen that there are several different
aspects of novelty. As regards the sensor rotation, the algorithm is new in its application to
data augmentation and class imbalance mitigation. As regards the recombination and rever-
sal, the novelty consists of important improvements, specifically, the usage of multiple win-
dows to exact greater variability from the data, and the usage of reversal in time instead of
amplitude. By contrast, the idea of compensating for data loss is entirely new. About the
usage of IAAFT surrogates (also referred to as Fourier surrogates), the previous work is
extremely limited, and this study 1s the first using a multivaniate approach. Finally, both 1-
and n-window sampling and integrated augmentation are entirely new ideas in time series
augmentation, It can be seen that these aspects of novelty complement each other at differ-
ent levels.

They are. however, distinguished by a progression at the levels of both abstraction and
complexity. Facing the challenges posed by realizing data augmentation methods that are
both powerful in boosting accuracy and practically applicable, this thesis provides a diver-
sified toolkit which can, in the future, be applied to similar problems in animal behavior
classification and beyond. At a more general level, this thesis demonstrates that multiple,
conceptually different approaches can be combined usefully for the purpose of data aug-
mentation: on the one hand with system-specific operations such as axis rotation, and on

the other with generic manipulations that make no particular assumptions about the signal
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content. In these senses, it arguably represents the most systematic examination of these

approaches to date.

Table 6.1: Summary of the aspects of novelty.

Algorithm or concept Novelty status

Sensor rotation New when applied towards data augmentation and compen-

sating for imbalanced dataset.

Recombination Improvement over a known method (multiple windows)
Reversal Improvement over a known method (time not magnitude)
Compensate data loss Entirely new 1dea

IAAFT surrogates Very limited previous work not applying them coherently,

this is first systematic study, also substantial improvement

because of multivariate approach.

1- and n-window sampling Entirely new idea

Integrated augmentation  Entirely new for time series data

Considering the several possible application scenarios, it is possible to ask the question:
which data augmentation approach should be chosen? A try to answer this question is pro-
vided by the flow chart shown in Fig. 6.1. It can be seen that there are two steps. The first
step asks if it is necessary, besides addressing class imbalance, to achieve invariance to a
physical parameter. In this case, the answer was a yes and the parameter was collar rotation.
In such cases, it may be better to simulate variation of that parameter, Approach 1. If this is

not necessary, one may decide based on computational load and dataset size, because the
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surrogate plus sampling approach can be computationally very loading. Then, in the pres-
ence of a large dataset one may prefer the simpler empirical methods, in Approach 2, oth-
erwise Approach 3 should be preferred. This flow chart is only an attempt to organize the
results, but it is difficult to give final indications. In the present case, for example, even
though collar rotation was present, the best results were obtained using the Fourier surro-

gates. So, it may always be useful to try more than one approach.

@ich algorithm to |1|'uﬁ-r'.’>

Approach 1

. . : Yes Simulate changes in
3 Is it necessary to have invariance to a | f¢5 _
Step 1 el naiietE? that parameter, e.g.,
i g : sensor rotation
No
Approach 2
i 4
Is the dataset large or has many Yes Use several empirical
Step 2 dimensions? methods
LN ’
e Approach 3
~ =
Use surrogates, ¢.g.,
IAAFT

Figure 6.1: Conceptual flow chart for the selection of the most suitable data augmentation

approach.

In practice, for the application that I focus on, the first method provided an accuracy
improvement of 2.5 - 37.1% for various behaviors, starting from a baseline of the overall
accuracy of 77% and reaching 98%; however, it was based on a relatively big LSTM net-
work and trained only on 2 cows. The second method provided an improvement of overall
accuracy from 83% to 92%; it was based on a more compact CNN network and trained on

6 cows. The third method provided a further improvement and reached an overall accuracy
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of 96%; importantly, for the most problematic behavior, namely grazing, the accuracy in-
creased from 45% to 91% and there was not any change in layer number and size from the
second method.

From the perspective of the specific engineering challenge being handled, the present
thesis offers solutions reaching a classification accuracy that would otherwise not be acces-
sible. Because precision livestock farming requires observing as early as possible some
subtle changes in the frequency of the cattle behaviors, the increased accuracy has a major
impact on the viability of the system in concrete applications. As the efforts in this field
progress, the data augmentation techniques proposed in this work have an important poten-
tial to offer in predicting the high level status of cattle. This study focused on the most
prevalent behaviors, which are also those for which deviations from normality is most sen-
sitive. Extending this to a large multitude of classes, also including postures for example,
should be a straightforward extension of this work. The eventual goal is attaining the earliest
possible disease detection, and the best sensitivity to calving, estrus, or abnormal behavior
under stress. Not less importantly, the high quality behavior classification supported by the
techniques introduced in this thesis will also allow the generation of high quality sets. Then,
this will enable a much better understanding of the complex relationships between behav-

ioral alterations and disease states [1-5].

6.2 Discussion of future work

6.2.1 Testing for other applications

As the additional datasets have initially shown, the methods presented in this thesis
seem, on various levels, perhaps applicable also to many other scenarios in edge devices.

On the one hand, tri-axial accelerometers have become nearly used everywhere and are
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commonly found in wearable devices such as smartwatches and ear buds [6]. Moreover,
they are widely used across a range of systems for animal behavior monitoring, extending
beyond cattle for example to pigs and horses, and beyond farming itself, encompassing even
pet animals such as dogs [7-9]. For such sensors, all the methods developed in this thesis
are in principle applicable. The results obtained using the human behavior dataset confirm
that the surrogates and sampling methods might also be useful for other datasets, as they
consistently give improved accuracy. In fact, the notion of random sensor rotation can in
some cases be extended from rotation around an axis to an arbitrary spherical angle. The
present methods should be deployed and tested in such applications, where a substantial
performance improvement is expected with a minimum or no adaptation required to the
technology.

On the other hand, set aside for the axis rotation, all the other methods might be appli-
cable also for other time series that are not related to movement but still record some be-
havior that should be recognized. This was initially confirmed by the analyses performed
using the surrogates and sampling on the electroencephalography and machine failure ad-
ditional datasets. One additional example may include the identification of electrical loads
based on their current absorption, or the classification of vehicles based on their weight or
metal mass moving over a sensor [10,11]. For all these applications, methods such as time
series reversal and recombination might be usable, and the surrogate-based approach has
immediate relevance because it is the most abstract one. Importantly, even though the re-
sults in this thesis indicate that autocorrelation may be more important than cross-correla-
tion, the situation could be different for other datasets, and the method fully caters for this
possibility.

It should be pointed out that several types of cow breeds exist, and can be quite different

in their weight as well as temperament, for example, more or less aggressive and active.
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While the basic behaviors overall are the same, of course, it is possible that physical differ-
ences between the breeds, for instance due to weight, as well as subtle or big differences in
how the behaviors are played out, are present. The detailed investigation of these aspects is
a topic for veterinary science, and several analyses have been published [12-14]. It appears
likely that the classifier may need to be retrained when moving from one breed to another.
On another hand, the proposed techniques could also be useful for monitoring the behaviors
of other species, such as sheep or dogs [15-17]. In this case, it needs to be considered that
the types of behaviors can be different, for example, rumination and salting may not exist
and feeding can look quite different. Clearly, in such cases the systems needs a specific
dataset for training. Overall, because the techniques proposed especially in Chapter 5, are
quite abstract and work on other datasets (including human behavior), there is no reason to
expect they could not be applied beyond cattle monitoring. This, actually, also applies to
Chapter 3 and 4 insofar as the sensor is mounted on a collar, which remains the most com-
mon approach not only for cattle, because collar rotation is not only a specific problem for
cows [18]. One interesting aspect is the possibility of transfer learning, that has been pro-
posed by another paper in this area [19,20]. That means, the models trained for one or more
cow types of interest could be used as a starting point to train specifically towards other
cow breeds; in this case, the starting point information greatly helps to reach high perfor-
mance even on a different dataset. To a more limited extent, transfer learning could also be
applicable between species, even though the output layer of the classifier would in many
cases be different due to the presence/absence of other behaviors.

To completely express the capability of the methods presented in this thesis in impact-
ing the usefulness of Edge Al technologies and therefore society, future works should com-
prehensively chart the performance of these methods across diverse applications, including
monitoring other cattle breeds and/or other animal species. There is the need to analyze in

the future in a systematic and extensive way whether the results proposed in this thesis are
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also helpful more in general for other applications, where many aspects can be different,

including the type of sensor, content of the signal and behaviors, and so on.

6.2.2 Further advancements in surrogate generation

Throughout this thesis, simple trigonometric or algebraic manipulations were applied
at first, followed by Fourier surrogates. As discussed in the previous chapter, this transition
is due to going from an approach starting from considerations about the system, to an ap-
proach based on the abstract aspects of signal content. Of course, there is a very large num-
ber of other approaches to the generation of new time series for data augmentation that
could be considered. In this sense, the present thesis should be taken as laying a track to-
wards future work, not as an exhaustive examination of all possible time series augmenta-
tion techniques.

For example, surrogate generation by means of Fourier transformation, although con-
venient, was initially developed for a different application. Other approaches may be supe-
rior in terms of capturing particular signal features, such as situations in which two behav-
iors alternate within the same time window [21]. An example would be generative adver-
sarial networks, which, however, are complex in themselves to train [22]. Other possibilities
to generate additional time series could be vector autoregressive models, or dynamical sys-
tems [23]. There is the possibility of merging together approaches such as Fourier surro-
gates with time-domain manipulations such as recombination, and so on.

Even through the performance attained in this thesis by means of Fourier surrogates
was satisfactory, future work should consider a wide range of generation approaches and
systematically compare them. In this sense, the development of a software framework could

be very helpful to allow easy integration with the network training process.
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6.2.3 Consideration of other classifiers

The numerical experiments presented in this thesis mainly considered a convolutional
neural network (CNN), which is increasingly prevalent in time series classification prob-
lems owing to the fact that it does not require a separate feature extraction step, simplifying
edge implementation in both hardware and software compared to feature based approaches
such as multi-layer perceptrons (MLP) [24]. However, the initial analysis was based on a
long short-term memory (LSTM) network, another popular classifier for time series prob-
lems. These are only two examples among the many possible classifiers usable for this type
of applications [25]. Others include multi-layer perceptron (MLP) networks, which are con-
siderably smaller than CNNs but require feature extraction and feature vector construction,
recurrent neural networks (RNN), which may offer among the most compact models possi-
ble, and spiking neural networks (SNN), which have particular advantages for low-power
implementation [26-28].

Of course the benefits of data augmentation are not unavoidably tied to CNN-based
classifiers. There is actually no specific connection. Then, there is a need for future work to
explore in a more systematic manner the benefits and issues of all the proposed techniques
across these network types. One may actually imagine an exploration plane for future work,
having on one axis the data augmentation type, and on the other axis the classifier type.
This is, in fact, a largely unexplored field. On the one hand, there remains the open question
whether data augmentation helps more or less depending on the network size. One could
expect that it is more important for large networks with many trainable parameters, because
their training is more difficult but they are more able to get high accuracy in principle.
However. this has not been proven and was not studied in this thesis. On the other hand,
there is the question of the classifier type. That means, different types of neural networks

such as MLP, RNN and SNN in addition to CNN, but also other types of classifiers that are
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not neural networks, such as support vector machines (SVM) and decision trees (DT). Right
now, it is unknown whether data augmentation is more suitable for some of them or not,
and this needs to be addressed. This is also important because some classifiers tend to be
larger to implement than others, and this has implications for the hardware realization on
an edge device

In fact, because CNN, MLP, RNN and SNN classifiers have different strong points,
they are likely to all remain in wide use for the foreseeable future, with particular applica-
tions leveraging the strong aspect of one or the other depending on the circumstance. There-
fore, evaluating and confirming the actual generality or otherwise of the proposed data aug-
mentation algorithms is priority. It should be reminded that a key aspect was found to be
the integration of data augmentation with network training, therefore, there is a need to
create a software framework to facilitate this. In future work, such a framework should
allow combining in a seamless way any combination of network type and data augmentation
type.

Another aspect is the topology of the network to consider. In this thesis, the best net-
work type was selected at each stage, and its topology was then kept fixed. That’s because
otherwise the number of possible combinations of setting would be not manageable. The
deep learning network used in Chapter 5 was very robust because it could also give high
performance on totally different data sets. However, future work should still examine if the
best topology changes after data augmentation. Because the data augmentation gives new
data but not change the features of the behaviors, probably a significant change will not be

seen.
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6.2.4 Hardware and system-level implications

The remarkable results obtained for accuracy throughout this thesis confirm that the
technology of data augmentation 1s a key enabler of high performance levels in time series
classification. However, surely there are many other aspects that should be considered at
the level of designing an edge Al system. Future work should address the impact of data
augmentation on power consumption, in terms of the possibility of attaining similar perfor-
mance with smaller networks [29]. Further, as mentioned above, future work should check
the impact of data augmentation on the performance of different network types. For exam-
ple, if data augmentation allows replacing a CNN network with a typical RNN or SNN
network, the impact on power consumption could be considerable.

On a practical note, in Chapter 4, it was proposed that the CNN network can be imple-
mented on three popular microcontroller platforms. Moving forward, it will be useful to
perform those implementations and conduct comparisons in terms of measured power con-
sumption and other aspects.

Not less important, this thesis has demonstrated that data augmentation, when imple-
mented in a rigorous way founded on theoretical principles, is also an effective way of
understanding exactly which aspects of a signal contain the information necessary for good
classification. It was found that, in the present case, mean, variance and autocorrelation are
the key aspects. Therefore, future work should use this approach as a way of driving which
features are extracted for hardware-based classification. While this may be unnecessary for
CNN, RNN and SNN networks, the extraction of a compact and robust set of features is
extremely important for MLP networks and other, small-size classifiers such as decision

trees.
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Appendix B Data Augmentation Processing Core

Function Code Flow

B.1 Random rotation-based data augmentation

def get_rotation_matrix(rad):
rot = np.array([
[1,0,0],
[0, np.cos(rad), -np.sin(rad)],
[0, np.sin(rad), np.cos(rad)],
D

return rot

def rotation_interval(division num):
for state in each status row count.keys():
current_dir = data_path + "/" + state
files = os.listdir(current_dir)
files_file = [f for f in files if os.path.isfile(os.path join(current_dir, ))]

output_states dir path = base path +"/../data/dst/rotated/" + state
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os.makedirs(output_states dir_path, exist ok=True)
print("")
current_file num = |
for file name in files file:
print("\r\033[K----- 12y {0y files -—-- " format(str(current_file num),
len(files_file), state), end="")
current_file num = current file num + |
file_path = current_dir + "/" + file_name
target data = pandas.read csv(file path, encoding="shift jis")
accs = target_data[['5', '6', '7"]].values
for i in range(division _num):
degree = 1*360/division_num
rotation_matrix = get_rotation_matrix(np.pi*degree/180)
rotated_accs = []
for ace in aces:
rotated accs.append(list(np.dot(rotation_matrix, acc)))
pd.DataFrame(rotated accs).to csv(output states dir path + "/" + file name +

' '+ str(degree) + ".csv")

def rotation_random(times):
rand list = np.random.choice(list(range(360)), size= times, replace=True)
print(rand list)
state = “Drinking”
data_path = base path + "/../data/dst/states"
current_dir = data_path + "/" + state

files = os.listdir(current_dir)
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files file = [f for fin files if os.path.isfile(os.path.join(current_dir, 1))]
output_states dir path = base path + "/../data/dst/rotated/" + state
os.makedirs(output_states dir_path, exist_ok=True)
print(" success finding drinking for random rotation")
current_file num =1
for file_name in files _file:
print("\r\033[K----- {2} {0y 41}y files  -——-- " format(str{current_file num),
len(files_file), state), end="")
current_file num = current_file num + |
file path = current dir+"/" + file name
target data = pandas.read csv(file path, encoding="shift_jis')
accs = target _data[['5', '6', '7']].values
for i in range(len(rand _list)):
degree = rand list[i]
rotation_matrix = get_rotation_matrix(np.pi*degree/180)
rotated accs =[]
for acc in accs:
rotated accs.append(list(np.dot(rotation_matrix, acc)))
pd.DataFrame(rotated accs).to_csv(output_states dir path +"/" + file name + "' '
+ 'R' + str(degree) +' '+ str(i) + ".csv")

print("drinking ‘n\nComplete!")
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B.2 Data processing with multiple empirical methods

def compensate data loss(specified length):
df _pairs = [extract_and_split(df, label)
for label in range(5)]
df valid concat = pd.concat([df valid
for df valid, df train in df_pairs],
ignore_index=True)
df train_concat = pd.concat([df train
for df valid, df train in df pairs],
ignore index=True)
df train concat s =df train_concat.sample(frac=1)
df valid concat s=df valid concat.sample(frac=1)
train_x_all =[]
tran_y all =[]
for i in range(df train_concat_s.shape[0]):
train_x_all.append(np.load(df train concat s.iloc[i,0]))
train_y all.append(df train_concat_s.iloc[i,1])
vahd x all=[]
valid_y all =[]
for i in range(df valid concat_s.shape[0]):
valid x all.append(np.load(df valid concat s.iloc[1,0]))
valid_y all.append(df valid concat_s.iloc[i,1])
filtered x y pairs = [(x, y)
for x,y in zip(train_x_all, train_y_all)
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train_x_filtered temple = [x
for x,y in filtered x y pairs]
train_y_filtered = [y
for x,y in filtered x vy pairs]
train_x_filtered = []
for x,y in zip(train_x_filtered temple.train_y _filtered):
if len(x) < specified length:
train_x_filtered.append(np.tile(x.(int(specified length/len(x))+1, 1)))
else:
train_x_filtered.append(x)

return train_x_filtered, train_y_filtered

def pickup_data_recombination(arr):
r_count fir = random.randint(0, (len(arr)-length))
arr_split_fir = arr[r_count_fir:r_count_fir+length:1]
r_count_sec = random.randint(0, (len(arr)-length))
arr split sec = arr[r count sec:r count sectlength:l]
if random.random()= 0.5:
r = random.random()
lenl, len2 = int(length * r), length - int(length * r)
ranl, ran2 = random.randint(0, len(arr split fir)-lenl),random.randint(0,
len(arr split sec)-len2)
arr_split = np.vstack((arr_split_fir[ranl:ranl+lenl],arr_split_sec[ran2:ran2+len2]))
else:
arr_split = arr_split_fir

return arr_split
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def pickup_data_rotation(arr):
r_count = random.randint(0, (len(arr)-length))
rotation_interval = 1
degree = random.randint(0, (360/rotation_interval)-1)*rotation_interval
def get_rotation matrix(rad):
rot = np.array([[1,0,0],
[0.np.cos(rad), -np.sin{rad)],
[0.np.sin(rad), np.cos(rad)]])
return rot
rotation_matrix = get_rotation_matrix(degree)
arr_split = arr{r_count:r_count+length:1]

return [np.dot(rotation matrix, acc) for acc in arr_split]

def pickup data reversal(arr):
r_count = random.randint(0, (len(arr)-length))
arr_split = arr{r_count:r_count+length:1]
arr_split_flip = np.flip(arr_split, axis = 0)
if random.random()= 0.5:
return arr_split
else:

return arr_split_flip
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B.3 Fourier surrogates-based data generation

def iaaft multi_augm(train_x):
train X augm = []
def 1aaft multi(X):
max_it = 500
pp = X.shape[0]
dim = X.shape[1]
if dim =1:
Y = np.fit.ffi( X,axis=0)
Yamp = np.abs(Y)
Porig = np.angle(Y)
rm = np.zeros((pp.,dim))
E = np.array([])
for k in range(0.dim):
index = [i for i in range(pp)]
np.random.shuffle(index)
rn[:,k]= X[index. k]
Xsorted = np.sort(X, axis =0)
prev_err = 1000000
err = prev_err -1
¢ =]
Pcurr = Porig
while (prev_err >err) & (c<max _it):
Prn =np.angle(np.fft.ffi(m, axis =0))

goal = Pm-Porig
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AUXI = (np.sum(np.cos(goal),axis=1 keepdims=True))

alpha =(np.int64(AUX1!=0)) ¥
(np.arctan((np.sum(np.sin(goal).axis=1 keepdims=True)) / (np.sum(AUX1 + (AUX] =
0),axis=1,keepdims=True))))

alpha = np.matlib.repmat(alpha, 1, dim)

alpha = alpha +  np.matlib.repmat(math.pi*(np.sum(np.cos(alpha-
goal),axis=1,keepdims=True)<0),1, dim)

Pcurr = Porig + alpha

|_a = np.array(-1, dtype = complex)

sn = np.real(np. fit.iff( Yamp*(np.cos(Pcurr)+np.sqri(l_a)*np.sin(Pcurr)),axis =0))

sns = np.sort(sn, axis =0)

INDs = np.argsort(sn. axis =()

for k in range(0,dim):

m[INDs[: k].k] = Xsorted|: k]

prev_err = err

A2 = np.abs(np.fit.fft(rm,axis =0))

err = np.mean({np.mean(np.abs(A2 - Yamp)))

E =np.append(E, err)

¢=ctl

Xs=m
return Xs
for x in train x:
train_x_augm.append(iaaft_multi(x))

return train_X_augm
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def 1aaft uni_augm(train_x):
tran_x augm = ||
defiaaft_uni(X):
max_it = 500
pp = X.shape[0]
dim = X.shape[1]

if dim==1;
X=X[]
pp = len(X)

index = [i for i in range(pp)]

np.random.shuffle(index)

rm = X[index]

Yamp = np.abs(np.fit.ffi(X, axis = 0))

Xsorted = np.sort(X, axis = 0)

prev_err =10

E = np.zeros ((1, max _it))

c=1

prev_err = 1000000

err = prev_err -1

while(prev_err > err) & (¢ < max_it):
Ym = np.fii.fit(m, axis=0)
Yang = np.angle(Yrn)
| a = np.array(-1, dtype = complex)
sn = np.real(np.fit.ifft( Yamp*(np.cos(Yang)+np.sqrt(l_a)*np.sin(Yang)).axis=0))
sns = np.sort(sn, axis = 0)

INDs = np.argsort(sn, axis = 0)
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m[INDs[:.0],0] = Xsorted|:.0]
prev_err = err
A2 = np.abs(Yrn)
err = np.mean(np.abs(A2 - Yamp))
E[0][c-1]=err
¢c=ctl
E = E[:,0:c-1]
Xs=m
return Xs
for x in train_x:
Xs x =iaaft_uni(x[:,0].reshape(-1.1))
Xs y=iaaft uni(x[:,1].reshape(-1.1))
Xs z=iaaft_uni(x[:.2].reshape(-1.1))
Xs u=np.hstack((Xs x,Xs y.Xs 7))
train_x_augm.append(Xs_u)

return train_x_augm

def aaft uni_augm(train_x):
train_x_augm = []
def aaft_uni(X):
max_it= 500
pp = X.shape[0]
dim = X.shape[1]
if dim=1:
X=X[]
pp = len(X)
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index = [i for i in range(pp)]
np.random.shuffle(index)
rn = X[index]
Yamp = np.abs(np.fit.fit(X, axis = 0))
Xsorted = np.sort(X, axis = 0)
E = np.zeros ((1, max _it))
c=1
prev_err = 1000000
err = prev_err -1
Yrm = np.fit.fft(rn, axis=0)
Yang = np.angle(Yrn)
| a=np.array(-1, dtype = complex)
sn = np.real(np.fiLifft(Yamp™(np.cos(Yang)-rnp.sqrt(l_a)*np.sin(Yang)),axis=0))
E = E[:,0:c-1]
Xs=sn
return Xs
for x in train x:
Xs_ x =aaft_uni(x[:,0]).reshape(-1.1))
Xs vy =aaft uni(x[:,1].reshape(-1,1))
Xs z=aaft_uni(x[:,2].reshape(-1.1))
Xs u=np.hstack((Xs x,Xs y.Xs 7))
train x augm.append(Xs u)

return train_X_augm
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