
論文 / 著書情報
Article / Book Information

題目(和文)

Title(English) Construction and Analysis of Post-Quantum Key Exchange Protocols
for Secure Messaging

著者(和文) 橋本啓太郎

Author(English) Keitarou Hashimoto

出典(和文) 学位:博士(工学),
 学位授与機関:東京工業大学,
 報告番号:甲第12390号,
 授与年月日:2023年3月26日,
 学位の種別:課程博士,
 審査員:尾形 わかは,植松 友彦,山田 功,松本 隆太郎,田中 圭介,安永 憲司

Citation(English) Degree:Doctor (Engineering),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第12390号,
 Conferred date:2023/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

TOKYO INSTITUTE OF TECHNOLOGY

DOCTORAL DISSERTATION

Construction and Analysis of
Post-Quantum Key Exchange Protocols

for Secure Messaging

Author:
Keitaro Hashimoto

Supervisor:
Professor Wakaha Ogata

Information and Communications Engineering

Tokyo Institute of Technology

March 2023

https://www.titech.ac.jp/
https://kaminomisosiru.github.io/
http://www.crypt.ict.e.titech.ac.jp/users/wakaha/index.html
https://educ.titech.ac.jp/ict/eng/
https://www.titech.ac.jp/

iii

Abstract

Messaging applications such as WhatsApp, LINE, Slack, are widely used for both private and business
communications. On the other hand, some service providers of such applications and governments are
trying to collect information about application users (e.g., messages and social graphs). Such activities
threaten users’ privacy; thus people have become hesitant to use such messaging applications that do
not protect their privacy. To ensure the privacy of users, some messaging apps implement secure group
messaging (SGM) and SGM becomes popular around the world. SGM ensures the confidentiality of
messages by encrypting messages with the shared secret key among conversation partners. That is,
third parties other than conversation partners cannot access messages. In addition, SGM has strong
post-compromise and forward secrecy (PCFS) security, which guarantees the confidentiality of past and
future messages even if the key at a certain period is compromised. The most famous SGM protocol is
Signal, which has been implemented in other SGM apps such as WhatsApp and Facebook Messenger and
is currently used by over 2 billion people. However, since its efficiency deteriorates as the number of group
members increases, it limits the number of group members to 1,000. To solve this problem, industries
such as Google and Meta and academia such as universities and research institutes are collaborating to
develop and standardize Message Layer Security (MLS) protocol. It can operate efficiently even in large
groups of 50,000 members. In addition, from the other perspective, it is necessary to develop a new SGM
secure against quantum computers since currently used cryptographic protocols are known to be broken
by large-scale quantum computers. Thus, the National Institute of Standards and Technology (NIST) is
working on the standardization of post-quantum cryptography. To ensure the privacy of conversations in
the future, we need to start developing post-quantum secure group messaging protocols.

The objective of this work is to realize post-quantum secure group messaging. The contributions of this
work are the following.

1. The first contribution of this work is developing a post-quantum authenticated key exchange protocol
for Signal’s initial key agreement. We formalize the security model for Signal’s initial key agreement
and propose a new generic construction based on key encapsulation mechanisms and signature
schemes. That is, the proposed protocol can be instantiated from various well-studied post-quantum
assumptions. Also, we implement the proposed protocol with the NIST PQC candidates and evaluate
the communication and computation costs of each instantiation. This experimental result confirms
that the proposed protocol works efficiently in a real-world environment. Moreover, we construct
a deniable authenticated key exchange protocol from ring signatures and non-interactive zero-
knowledge arguments. This allows users to deny the fact that they have exchanged session keys with
another user.

2. The second contribution of this work is designing a new post-quantum continuous group key
agreement protocol from multi-recipient public key encryptions. The proposed protocol achieves
the most efficient total communication costs for each user when all group members update their key
materials. We also formulate a new Universal Composability (UC) security model suitable for the
proposed protocol and prove the security of the proposed protocol. In addition, we propose a new

iv

lattice-based multi-recipient public key encryption that contributes to reducing the uploading costs
of the proposed protocol. Moreover, the experimental result confirms that the proposed protocol
works efficiently even for a group of 1000 members.

3. The third contribution of this work is proposing a metadata-hiding continuous group key agreement
protocol. To do so, we formulate a UC security model for metadata-hiding secure group messaging,
and a simple and generic wrapper protocol that converts any non-metadata-hiding continuous
group key agreement into metadata-hiding one with minimum overhead. Then, we rigorously
prove that the modified version of the protocol proposed in the second contribution plus our new
wrapper protocol satisfies the desired metadata-hiding properties. This is the first provably-secure
metadata-hiding SGM protocol. In contrast to existing secure group messaging that only ensures the
confidentiality of messages, our protocol additionally hides the relationship between users. Thus,
our protocol enhances users’ privacy.

v

Acknowledgments

First and foremost, I would like to express my deepest and most sincere gratitude to my adviser, Professor
Wakaha Ogata. I am delighted to have the opportunity to study cryptography under her guidance because,
when I was a high school student, I hoped to study cryptography with her. Throughout the six years in the
laboratory, she gave me a lot of helpful advice not only on my studies but also on my personal problems.
She spent a lot of time discussing my research (and various other miscellaneous topics) and gave me useful
clues when I was stuck in my research.

Shuichi Katsumata is my first co-author during my Ph.D. and was an excellent mentor to me. He has
led me to the world of secure messaging. I am very grateful for his assistance during my Ph.D. My research
could not have been accomplished without discussions with him. He persisted in discussions with me
and helped me grow as a researcher: I learned how to find new research topics, how to write academic
papers (especially how to write an introduction), and how to give presentations. He also introduced me to
Thomas Prest.

Thomas Prest is one of the first foreign researchers I worked with. He noticed the importance of
cryptography in the real-world, and allowed me to meet a variety of researchers working on real-world
cryptography, and I gained more extensive knowledge about real-world cryptography. In addition, he
offered to visit PQShield SAS in Paris. During the visit, I had a more in-depth discussion due to his
multifaceted perspectives on things different from mine. I am sincerely grateful to him for giving me such
a wonderful experience. Also, he provided great diagrams made by Tikz. The diagrams he created are all
helpful in understanding this work.

I would also like to thank my co-authors during my Ph.D., Kris Kwiatkowski, Eamonn W. Postlethwaite,
and Bas Westerbaan, for the great collaborations in the area of secure messaging. Kris Kwiatkowski and Bas
Westerbaan contributed to implementing the proposed protocols and evaluating their concrete efficiency.
Their works made the paper useful not only to cryptographers but also to engineers who are interested in
secure messaging. Eamonn W. Postlethwaite is the profession of lattice-based cryptography. Thanks to
him, I learned how to choose the parameters of lattice-based primitives.

I also appreciate members of Ogata Laboratory. Especially, I would like to thank Toi Tomita. I enjoyed
discussions about cryptography and computer science with him. He gave me a lot of insights to find new
research topics. He also invited me to Shin-Akarui-Angou-Benkyou-Kai, which is a cryptography study
group led by researchers at the National Institute of Advanced Industrial Science and Technology (AIST).
Thanks to this invitation, I obtained the opportunity to work as a research assistant at AIST.

During my Ph.D., I had the pleasure of doing research at AIST. Goichiro Hanaoka and Takahiro
Matsuda have always been extremely generous and sincere to me, and the research environment they
prepared for me at AIST has had a great positive influence on my research. I wish to thank all members of
Shin-Akarui-Angou-Benkyou-Kai. I had a lot of experience in the discussion with them.

I was partially supported by JSPS KAKENHI Grant Number 22J13963. Thanks to their financial support,
I was able to visit PQSheild SAS in Paris for a month.

vi

Finally, I owe my deepest gratitude to my parents, Masao and Izumi, and my younger brother Masafumi.
I am glad that my parents supported me wholeheartedly in my choice to pursue Ph.D. and become a
researcher.

vii

To Keiji Gonda and Keiji Hashimoto, my grandfathers.
To Keitaro Hashimoto, my great-great-grandfather.

ix

Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 Background . 1
1.2 History of Secure Messaging . 2
1.3 Quantum Computers and Their Impact on Cryptographic Protocols 4
1.4 Contributions of Dissertation . 5
1.5 Organization of Dissertation . 7

2 Preliminaries 9
2.1 Notations . 9
2.2 Key Encapsulation Mechanisms . 10
2.3 Secret Key Encryption . 12
2.4 Digital Signatures . 14
2.5 Pseudo-Random Functions and Pseudo-Random Permutations 15
2.6 Strong Randomness Extractors . 15
2.7 Ring Signatures . 15
2.8 Non-Interactive Zero-Knowledge . 17
2.9 Decomposable Multi-Recipient PKE . 17
2.10 Message Authentication Codes . 19
2.11 Key Derivation Functions . 20

3 Post-Quantum Authenticated Key Exchange for Signal Protocol 21
3.1 Introduction . 21
3.2 Security Model for Signal-Conforming AKE Protocols . 27
3.3 Generic Construction of Signal-Conforming AKE . 33
3.4 Post-Quantum Signal Handshake . 47
3.5 Instantiating Post-Quantum Signal Handshake . 50
3.6 Adding Deniability to Basic Signal-Conforming AKE . 55
3.7 Equivalence Between Designated Verifier Signature and Ring Signature 73

4 Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs 79
4.1 Introduction . 79
4.2 Committing Multi-Recipient PKE . 83
4.3 Continuous Group Key Agreement . 93
4.4 Proposed Protocol: Chained CmPKE . 107

x

4.5 More Efficient Lattice-Based mPKEs . 171
4.6 Instantiation and Implementation of Chained CmPKE . 181
4.7 A Variant of GSD Security Tailored to Chained CmPKE . 186

5 MetaData-Hiding Continuous Group Key Agreement 193
5.1 Introduction . 193
5.2 Background about CGKA . 197
5.3 Static Metadata-Hiding CGKA: Define UC Security Model 200
5.4 Static Metadata-Hiding CGKA: Construction and Security Proof 221
5.5 Metadata-Hiding CGKA: Construct Wrapper Protocol Wmh 257
5.6 Metadata-Hiding CGKA: Define UC Security Model . 271
5.7 Instantiation and Efficiency of Proposed Metadata-Hiding CGKA 297
5.8 Limitation of Efficient Metadata-Hiding CGKA . 299

6 Conclusion 303

Bibliography 305

Author’s Publications 325

1

Chapter 1

Introduction

1.1 Background

Online communications through messaging applications, such as WhatsApp, Facebook Messenger, LINE,
Slack, etc., have become popular in both private and business situations. Such messaging apps realize
asynchronous communication through the service provider’s server. Consider the case that Alice and Bob
want to communicate with each other. When Alice sends a message to Bob, Alice uploads the message to
the server and the server stores it until Bob becomes online. When becoming online, he downloads the
message and may upload responses. The responses are stored on the server until Alice becomes online.
Thus, by communicating through the server, users can send and receive messages regardless of the other
user’s connection status.

While these messaging apps are convenient, it has become clear that users’ privacy is being violated by
service providers. Journarists of the Gurdian [GM13] and that of INSIDER [MG19] disclosed that service
providers put on collected users’ information including communicated messages to governments or other
companies. Especially, governments are actively gathering personal information: they use surveillance
systems e.g., PRISM [Wik22]. This invasion of privacy by service providers has led users to seek more
secure communication methods.

Secure messaging (SM) ensures privacy and security by making sure that only the person you are
sending the message to can read the message, a.k.a. end-to-end encryption. With the ever-growing
awareness of mass surveillance of communications, people have become more privacy-aware and the
demand for SM has been steadily increasing. The baseline security notion guaranteed by SM is that no
adversary, including the server, should be able to read the messages sent among the users involved in the
conversation. This security is achieved cryptographically. Roughly, exchanged messages are encrypted
with an encryption key shared with conversation partners: When Alice and Bob start a conversation,
they run a key exchange protocol to share a session key. Then, when they send messages, they encrypt
the messages with the shared session key. Since the session key is known by only Alice and Bob, other
entities, e.g., service providers and governments, cannot read the encrypted messages. Thus, SM ensures
the confidentiality of messages.

SM should have stronger security properties, forward secrecy and post-compromise security, that
strengthen the confidentiality of messages by updating session keys continuously. Forward secrecy (FS)
guarantees the confidentiality of past messages even if the current session key is compromised; Post-
compromise security (PCS) guarantees the confidentiality of future messages even if the current session
key is compromised. In other words, the adversary is limited in accessible messages even if it obtains a
session key. Therefore, SM minimizes messages leaked by key compromise.

All SM ensures the confidentiality of messages, but it is not sufficient to protect users’ privacy from the
server. This is because the server may be able to collect metadata, such as the identities of the sender and

2 Chapter 1. Introduction

of other group members, which can both be leaked from the exchanged encrypted contents. It has been
shown in numerous real-world scenarios [Sav13; Fli15; Ops13; Moh21; Car15] that knowledge of metadata
alone can cause damaging repercussions, sometimes enough to defeat the purpose of using SM. These also
have negative impacts on the activity and safety of some users, e.g., journalists and activists [McG+15;
MRC16]. Recent media articles [Bre22; Kro21] report that, in the United States, metadata collection by
law enforcement agencies on SM applications is a widespread practice, supported by a legal [Kro21] and
technical framework [Bre22] that gives it a wide reach.

1.2 History of Secure Messaging

This section summarizes the history and related works of secure messaging.

1.2.1 Secure Two-Party Messaging

Secure two-party messaging is the one specialized for two-party conversations. While there has been a
range of secure two-party messaging protocols, the Signal protocol [Sig] is widely regarded as the gold
standard. Not only is it used by the Signal app1, the Signal protocol is also used by WhatsApp, Skype, and
Facebook Messenger among many others, where the number of active users is well over 2 billion. One of
the reasons for such popularity is due to the simplicity and the strong security properties it provides, while
simultaneously allowing for the same user experience as any (non-cryptographically secure) messaging
apps.

Signal protocol consists of two sub-protocols: the X3DH protocol [MP16b]2 and the double ratchet
protocol [MP16a]. The former protocol can be viewed as a type of key exchange protocol allowing two
parties to exchange a secure initial session key. The latter protocol is executed after the X3DH protocol, and
it allows two parties to perform a secure back-and-forth message delivery. Each time a message is sent, the
double ratchet protocol internally runs a key exchange to establish a new shared key for encrypting the
next message.
The Double Ratchet Protocol. The first attempt at a full security analysis of the Signal protocol was
made by Cohn-Gordon et al. [Coh+17; Coh+20]. They considered the Signal protocol as one large protocol
and analyzed the security guarantees in its entirety. Since the double ratchet protocol was understood
to be the root of the complexity, many subsequent works aimed at further abstracting and formalizing
(and enhancing in some cases) the security of the double ratchet protocol by viewing it as a stand-alone
protocol. Bellare et al. [Bel+17] partially abstracted the double ratchet protocol as “ratcheted key exchange”
(RKE), and the subsequent works updated the model of RKE to capture a lot of properties [PR18; DV19;
JMM19b; JMM19a; BRV20; CDV21; Dow+22]. Notably, Alwen et al. [ACD19] fully abstracted the complex
Diffie-Hellman-based double ratchet protocol used by Signal as “continuous key agreement” (CKA) and
provided a concrete security model along with a generic construction based on simple building blocks.
Since these blocks are instantiable from versatile assumptions, including post-quantum ones, their work
resulted in the first post-quantum secure double ratchet protocol. Recently, Canettie et al. [Can+22] and
Biestock et al. [Bie+22b] formalized the Universally Composable (UC) security model for the Signal protocol.
Thanks to these works, the double ratchet protocol has been understood well. Here, we elucidate that all
the aforementioned works analyze the double ratchet protocol as a stand-alone primitive, and hence, it is

1The name Signal is used to point to the app and the protocol.
2X3DH stands for Extended Triple Diffie-Hellman.

1.2. History of Secure Messaging 3

assumed that any two parties can securely share an initial session key, for instance, by executing a “secure”
X3DH protocol.
The X3DH Protocol. In contrast, works focusing on the X3DH protocol seem to be limited. Cohn-Gordon
et al. [Coh+17; Coh+20] indirectly considered the X3DH protocol, but they did not provide security models
of it. Brendel et al. [Bre+20] abstract the X3DH protocol and provide the first generic construction based on
a new primitive they call a split key encapsulation mechanism (split KEM). However, so far, instantiations of
split KEMs with strong security guarantees required for the X3DH protocol are limited to Diffie-Hellman
style assumptions. In fact, the recent result of Guo et al. [Guo+20] implies that it would be difficult to
construct them from one of the promising post-quantum candidates: lattice-based assumptions (and
presumably coded-based assumptions). On the other hand, Vatandas et al. [Vat+20] studied one of the
security guarantees widely assumed for the X3DH protocol called (off-line) deniability [MP16b, Section 4.4]
and showed that a strong knowledge-type assumption would be necessary to formally prove it. Unger and
Goldberg [UG15; UG18] construct several protocols that can be used as drop-in replacements of the X3DH
protocol that achieve a strong flavor of (online) deniability from standard assumptions, albeit by making a
noticeable sacrifice in the security against key-compromise attacks: a type of attack that exploits leaked
secret information of a party. For instance, while the X3DH protocol is secure against key-compromise
impersonation (KCI) attacks [BJM97],3 the protocols of Unger and Goldberg are no longer secure against
such attacks.4

Metadata Protection for Two-Party SM. To hide metadata, Signal app implements sender-anonymouse SM
called Sealed Sender [Sig18]. Using it, message senders can hide their information from the server. Martiny
et al. [Mar+21] analyzed its security and proposed an improved version of Sealed Sender which uses blind
signatures [Cha82]. Tyagi et al. [Tya+21] pointed out the drawback of Signal’s Sealed Sender and proposed
a new sender-anonymous SM based on group signatures to overcome the drawback.

1.2.2 Secure Group Messaging

Secure group messaging (SGM) realizes secure conversations among two or more users, i.e., groups.
Signal realizes group messaging with pairwise channels: each member in a group establishes two-party SM
channels with all other group members, and a group member sends messages with each channel. This
protocol is simple, but the sender requires O(N) computation and communication costs where N is the
number of group members. Since messages are sometimes large (e.g., the size of a high-resolution picture
is several Megabytes), this protocol does not scale well due to the large messaging costs. In fact, Signal
limits the maximum number of group members to one thousand.

WhatsApp uses another SGM protocol called Sender Key: Sender Key also uses pairwise channels, but
instead of sending messages via pairwise channels, the seder sneds the encryption key via the channels and
broadcasts messages encrypted with the shared encryption key. Although Sender Key requires O(N) costs
for sharing encryption keys, it achieves O(1) costs for sending messages. Since the size of encryption keys
is much smaller than that of messages, Sender Key reduces the cost of sending messages. However, the
cost of key updates still remains O(N). The cost for key updates should be small since they are important
to achieve strong security (FS and PCS).

To reduce the costs of key updates, Asynchronous Ratcheting Trees (ART) was developed by Cohn-Gordon
et al. [Coh+18]. ART is a group key agreement protocol to share a group session key, which is designed to

3Although [MP16b, Section 4.6] states that the X3DH protocol is susceptible to KCI attacks, this is only because they consider
the scenario where the session-specific secret is compromised. If we consider the standard KCI attack scenario where the long-term
secret is the only information being compromised [BJM97], then the X3DH protocol is secure.

4Being vulnerable against KCI attacks seems to be intrinsic to online deniability [UG15; UG18; MP16b].

4 Chapter 1. Introduction

be able to update session keys with O(log N) costs (in the best case; in the worst case, the costs become
O(N)). ART is based on the specific Diffie-Hellman problem.

Based on the ideas of ART [Coh+18], TreeKEM [BBR18] was constructed. TreeKEM can be seen as a
generalized version of ART based on standard building blocks. It enjoys good efficiency like ART and,
thanks to its generality, can be instantiable from post-quantum assumptions. TreeKEM is used as the core
protocol in Message Layer Security (MLS), which is standardizing in Internet Engineering Task Force (IETF)
working group (WG)5.

To date, TreeKEM discussed in MLS WG has gone through 16 versions, some of which have undergone
formal security analysis. TreeKEM version 7 was analyzed by Alwen et al. [Alw+20a] and Bhargavan et
al. [BBN19a]. The former abstracts TreeKEM as “continuous group key agreement” (CGKA) (i.e., group
version of CKA) and proved its security based on a game-based security model for CGKA. The latter
presented mechanized security proof. TreeKEM version 10, which adopts the ‘parent hash’ and ‘tree-
signing’ mechanisms to enhance security, was analyzed by Alwen et al. [AJM22]. They proved that it
is secure against active and insider adversaries with a newly-defined universally-composable security
model. The key scheduling in MLS version 11 was analyzed by Brzuska et al. [BCK22] via the State
Separating Proofs methotology [Brz+18] proposed by Brzuska et al. In contrast to TreeKEM, the MLS
protocol including message encryption is not well analyzed. Alwen et al. [Alw+21a] proved the security of
the non-metadata-hiding version of MLS (called MLSPlaintext) in version 11.

In addition to the standard TreeKEM discussed in MLS WG, variants of TreeKEM have been proposed.
Re-randomized TreeKEM [Alw+20a] and TreeKEM with active security [Alw+20b] improve the forward
security property against passive and active adversaries, respectively, but require relatively heavy crypto-
graphic primitives. Tainted TreeKEM [Kle+21] enjoys efficiency advantages for large groups maintained by
a small number of ‘administrators.’ Causal TreeKEM [Wei19] is an initial attempt to support concurrent
changes to the group states but it depends on Diffie-Hellman problems and currently has no accompanying
formal security proof. Alwen et al. proposed CoCoA [Alw+22c] and DeCAF [Alw+22a] supporting concur-
rent changes to the group states based on generic primitives. They allow updating keys with O(log N)
costs in all cases. Weidner et al. [Wei+21] proposed decentralized CGKA, which does not require a centralized
server responsible for message delivery, and its security proof. Theoretical analysis for CGKA has also
been conducted. Bienstock et al. investigated the trade-offs and limits on the efficiency of CGKA [BDR20;
Bie+22a].
Metadata Protection for SGM. Signal app considers metadata protection in group messaging. It imple-
ments metadata-hiding SM called Private Groups [Sig19]. It allows group members to exchange messages
anonymously against the server. Its security was analyzed by Chase et al. [CPZ20]. MLS WG is dis-
cussing a metadata-hiding version called MLSCiphertext, but its security has not been analyzed in contrast
MLSPlaintext was analyzed.

1.3 Quantum Computers and Their Impact on Cryptographic Protocols

The existing key exchange protocols deployed in widely used SM apps are based on the hardness of
factoring-related or discrete logarithm-related problems (e.g., RSA or Diffie-Hellman problem). However,
quantum computers can solve these problems in polynomial time [Sho94]. In other words, SM based
on such problems is no longer secure if large-scale quantum computers will be developed. To resist the
threat of quantum computers, post-quantum cryptographic primitives are being prepared. For example,
the U.S. National Institute of Standards and Technology (NIST) is working on the standardization of

5https://datatracker.ietf.org/wg/mls/about/

https://datatracker.ietf.org/wg/mls/about/

1.4. Contributions of Dissertation 5

post-quantum cryptography(PQC)6. However, it is known that post-quantum primitives are less efficient
than pre-quantum primitives based on RSA or Diffie-Hellman problems. For example, the size of the cipher-
text/signature of the NIST selected PQC algorithms Kyber PKE [Sch+22]/Falcon signature [Pre+22] is about
1 Kilobyte. This is about 15 times larger than the Diffie-Hellman-based ElGamal PKE [ElG85]/Schnorr
signature [Sch90], which sizes 64 bytes. To overcome such efficiency-related issues, researchers have pro-
posed new versions of real-world cryptographic protocols suitable to the post-quantum era. The examples
of such considerations are KEMTLS [SSW20], McTiny [BL20] and Post-Quantum WireGuard [Hül+21].

1.4 Contributions of Dissertation

This dissertation proposes practical post-quantum authenticated (group) key exchange protocols, which
are important to construct practical and post-quantum secure (group) messaging. Below, we provide a
brief summary of the contributions.

1.4.1 Post-Quantum Authenticated Key Exchange for Signal Protocol

Although we have a rough understanding of what the X3DH protocol offers [MP16b; Coh+17; Coh+20],
the current state of affairs is unsatisfactory for the following reasons, and making progress on these issues
will be the focus of this work:

- It is difficult to formally understand the security guarantees offered by the X3DH protocol or to make
a meaningful comparison among different protocols achieving the same functionality as the X3DH
protocol without a clearly defined security model.

- The X3DH protocol is so far only instantiable from Diffie-Hellman style assumptions [Bre+20] and it
is unclear whether such assumptions are inherent to the Signal protocol.

- Ideally, similarly to what Alwen et al. [ACD19] did for the double ratchet protocol, we would like to
abstract the X3DH protocol and have a generic construction based on simple building blocks that
can be instantiated from versatile assumptions, including but not limited to post-quantum ones.
However, no such model or generic construction is known.

- No matter how secure the double ratchet protocol is, we cannot completely secure the Signal protocol
if the initial X3DH protocol is the weakest link in the chain (e.g., insecure against state leakage and
only offering security against classical adversaries).

To construct post-quantum replacements of the X3DH protocol, we cast it as a specific type of authenti-
cated key exchange (AKE) protocol, which we call a Signal-conforming AKE protocol, and formally define its
security model based on the vast prior works on AKE protocols. We then provide the first efficient generic
construction of a Signal-conforming AKE protocol based on standard cryptographic primitives such as key
encapsulation mechanisms (KEM) and signature schemes. Specifically, this results in the first post-quantum
secure replacement of the X3DH protocol based on well-established assumptions. Similar to the X3DH pro-
tocol, the proposed Signal-conforming AKE protocol offers a strong (or stronger) flavor of security, where
the exchanged key remains secure even when all the non-trivial combinations of the long-term secrets and
session-specific secrets are compromised. Moreover, we further show how to progressively strengthen

6https://csrc.nist.gov/projects/post-quantum-cryptography

https://csrc.nist.gov/projects/post-quantum-cryptography

6 Chapter 1. Introduction

its deniability using ring signatures and/or non-interactive zero-knowledge proof systems. Finally, we
provide a full-fledged, generic C implementation of the basic (weakly deniable) protocol. We instantiate
it with several Round 3 candidates (finalists and alternates) to the NIST post-quantum standardization
process and compare the resulting bandwidth and computation performances. The implementation of the
basic protocol is publicly available and thus anyone can test its efficiency.

1.4.2 Continuous Group Key Agreement via Post-Quantum Multi-Recipient Public Key
Encryption

Continuous group key agreements (CGKAs) [Alw+20a; Alw+20b] are a class of group key exchange
protocols that provide functionalities and strong security guarantees required for secure group messaging
protocols such as Signal and MLS. Protection against device compromise is provided by commit messages:
at a regular rate, each group member may refresh their key material by uploading a commit message,
which is then downloaded and processed by all the other group members. In practice, propagating commit
messages dominates the bandwidth consumption of existing CGKAs.

We propose Chained CmPKE, a CGKA with an asymmetric bandwidth cost: in a group of N members,
a commit message costs O(N) to upload and O(1) to download, for a total bandwidth cost of O(N). In
contrast, TreeKEM [BBR18; Oma+21; Bar+20] costs Ω(log N) in both directions, for a total cost Ω(N log N).
The proposed protocol relies on generic primitives and is therefore readily post-quantum.

We go one step further and propose post-quantum primitives that are tailored to Chained CmPKE,
which allows us to cut the growth rate of uploaded commit messages by two or three orders of magnitude
compared to naive instantiations. Finally, we realize a software implementation of Chained CmPKE. The
experiments show that even for groups with a size as large as N = 210, commit messages can be computed
and processed in less than 100 ms.

1.4.3 MetaData-Hiding Continuous Group Key Agreement

Although robust techniques have been developed to protect the contents of conversations in this context,
it is in general more challenging to protect metadata (e.g. the identity and social relationships of group
members), since their knowledge is often needed by the server to ensure the proper function of the SGM
protocol.

We provide a simple and generic wrapper protocol that upgrades non-metadata-hiding CGKAs into
metadata-hiding CGKAs. The key insight is to leverage the existence of a unique continuously evolving
group secret key shared among the group members. We use this key to perform a group membership
authentication protocol that convinces the server in an anonymous manner that a user is a legitimate group
member. Our technique only uses a standard signature scheme, and thus, the wrapper protocol can be
instantiated from a wide range of assumptions, including post-quantum ones. It is also very efficient, as it
increases the bandwidth cost of the underlying CGKA operations by at most a factor of two.

To formally prove the security of the proposed protocol, we use the universal composability (UC)
framework [Can01] and model a new ideal functionality Fmh

CGKA capturing the correctness and security
guarantee of metadata-hiding CGKA based on the state-of-the-art UC security model on secure messag-
ing [AJM22; Has+21b]. To capture the above intuition of a “wrapper” protocol, we also define a restricted
ideal functionality F ctxt

CGKA, which roughly captures a non-metadata-hiding CGKA and, as a concrete ex-
ample, proves that the modified version of Chained CmPKE [Has+21b] called Chained CmPKEctxt realizes
F ctxt

CGKA. We then show that our wrapper protocol UC-realizes Fmh
CGKA in the F ctxt

CGKA-hybrid model, which in

1.5. Organization of Dissertation 7

particular formalizes the intuition that any non-metadata-hiding CGKA can be modularly converted into
metadata-hiding CGKA.

1.5 Organization of Dissertation

This dissertation is organized as follows. Chapter 2 introduces basic notations and definitions of cryp-
tographic primitives used in this dissertation. Chapter 3 proposes a new post-quantum authenticated
key exchange protocol that can be used as a drop-in replacement of the Signal’s initial key agreement
protocol. Chapter 4 proposes a continuous group key agreement protocol based on multi-recipient public
key encryption and more efficient lattice-based multi-recipient public key encryption. Chapter 5 considers
metadata protection on secure group messaging and proposes security models and generic constructions
of metadata-hiding continuous group key agreement that can be instantiable from various post-quantum
assumptions. Concluding remarks are given in Chapter 6.

9

Chapter 2

Preliminaries

In this chapter, we prepare notations and cryptographic primitives that will be used throughout the
dissertation.

2.1 Notations

We denote the set of natural numbers (non-negative integers) by N and the security parameter by κ ∈N.
The set of κ-bit strings is denoted by {0, 1}κ. The κ-bit string consisting of only a ∈ {0, 1} is denoted by aκ.

The operator ⊕ denotes bit-wise exclusive-or (“XOR”), and ∥ denotes string concatenation. We denote
by JcondK the bit that is 1 if the boolean statement cond is true, and 0 otherwise.

For n ∈N, we write [n] to denote the set [n] := { 1, . . . , n }. For j ∈ [n], we write [n\j] to denote the set
[n\j] := { 1, . . . , n } \ { j }. For a, b ∈N (a < b), we write [a : b] to denote the set [a : b] := { a, . . . , b }.

We use v ← x and v := x to denote assigning the value x to the variable v, and use v←$ S to denote
sampling an element v uniformly and randomly from a finite set S.

Let A be an algorithm. By y ← A(x), we denote that y is obtained by running A on input x. With
y ∈ A(x), we denote a possible output y of the execution of A on input x. When we want to make
the randomness explicit, we use the notation y ← A(x; r) meaning that the randomized algorithm A is
executed with the explicit randomness r. We use the notation AO, where O = {O1(·), . . . , Ow(·) }, to
denote the algorithm A has access to oracle machines O1, . . . , Ow which will answer queries to it.

Let ϕ be a boolean function. We write

Pr [y1 ← A1(x1), . . . , yt ← At(xt) : ϕ(y1, . . . , yt)]

to denote the probability of the event that ϕ(y1, . . . , yt) is true after the value y1, . . . , yt was obtained by
(orderly) running algorithm A1, . . . ,At on inputs x1, . . . , xt, respectively. See, for example, Definition 2.3.5.

We denote polynomial functions with respect to κ by poly(κ). A non-negative function f (κ) is said to be
negligible with respect to κ if for any positive polynomial poly(κ) and for all sufficiently large κ, we have
f (κ) < 1

poly(κ)
. We write negl(κ) to denote negligible functions with respect to κ. PPT (resp. QPT) stands

for probabilistic (resp. quantum) polynomial time. We say that the algorithm A is efficient if its running
time is polynomial in its input length. For example, the running time of A(1κ) is poly(|1κ|) = poly(κ). By
definition, both PPT and QPT algorithms are efficient.
Data structure. For a set V, we write V +← x and V -← x as shorthand for V ← V ∪ { x } and
V ← V \ { x }, respectively. For another set W, we write V +← W and V -← W as shorthand for
V ← V ∪W and V ← V \W, respectively. For lists (vectors) x := (x1, . . . , xn) and y := (y1, . . . , ym), we
denote the concatenation of x and y by x∥y = (x1, . . . , xn, y1, . . . , ym) and use x ++← v as a shorthand for
x ← x∥(v) for a value v. We further use associative arrays and use A[i]← x and y← A[i] to assign and

10 Chapter 2. Preliminaries

retrieval an element i, respectively. We denote by A[∗] ← v the initialization of the array to the default
value v. For simplicity, we use the wildcard notation when dealing with sets of tuples and multi-argument
associative arrays. For example, for an array with domain I × J , we write A[∗, j] := { A[i, j] | i ∈ I } and
for a set S ⊆ I × J , we write (i, ∗) ∈ S as a shorthand for the condition ∃j ∈ J : (i, j) ∈ S.
Keywords. We use the following keywords in pseudo-codes:

• req cond denotes that if the condition cond is false, then the current function unwinds all state changes
and immediately returns ⊥.

• parse (m1, . . . , mn)← m denotes an attempt to parse a message m as a tuple. If m is not of the correct
format, the current function unwinds all state changes and immediately returns ⊥.

• try y← ∗func(x) is a shorthand notation for calling a helper function ∗func and executing req y ̸= ⊥.

• assert cond is only used to describe ideal functionalities. It denotes that if cond is false, then the
functionality permanently halts, making the real and ideal worlds trivially distinguishable (this is
used to validate inputs of the simulator).

2.2 Key Encapsulation Mechanisms

The syntax and the correctness of key encapsulation mechanism (KEM) schemes are defined as follows.

Definition 2.2.1 (KEM Schemes). A key encapsulation mechanism (KEM) scheme KEM with session key space
KS consists of the following algorithms:

• Setup(1κ)→ pp : The setup algorithm takes the security parameter 1κ as input and outputs a public parameter
pp. In the following, we assume pp is provided to all the algorithms and may omit it for simplicity.

• KeyGen(pp)→ (ek, dk) : The key generation algorithm takes a public parameter pp as input and outputs a
pair of keys (ek, dk).

• Encap(ek) → (K,C) : The encapsulation algorithm takes an encapsulation key ek as input and outputs a
session key K ∈ KS and a ciphertext C.

• Decap(dk,C)→ K/⊥ : The decapsulation algorithm takes a decapsulation key dk and a ciphertext C as input
and outputs either a session key K ∈ KS or ⊥ /∈ KS .

Definition 2.2.2 ((1− δ)-Correctness for KEM). We say a KEM scheme KEM is (1− δ)-correct if for all κ ∈N

and pp ∈ Setup(1κ),

(1− δ) ≤ Pr
[
(ek, dk)← KeyGen(pp),
(K,C)← Encap(ek)

: Decap(dk,C) = K

]
.

We define the min-entropy of KEM encapsulation keys and ciphertexts.

Definition 2.2.3 (Min-Entropy of KEM Encapsulation Key). We say a KEM scheme KEM has ν-high encap-
sulation key min-entropy if for all κ ∈N and pp ∈ Setup(1κ),

ν ≤ − log2

(
max
ek∗

Pr [(ek, dk)← KeyGen(pp) : ek = ek∗]

)
.

2.2. Key Encapsulation Mechanisms 11

GameIND-ATK
KEM,A (κ)

1 : pp← Setup(1κ)

2 : (ek∗, dk∗)← KeyGen(pp)

3 : state← AO1 (pp, ek∗)
4 : b←$ {0, 1}
5 : (K∗0 ,C∗0)← Encap(ek∗)

6 : K∗1 ←$KS
7 : b′ ← AO2 (pp, ek∗, (K∗b ,C∗0), state)

8 : return Jb = b′K

Available oracles

if ATK = CPA : O = ∅
if ATK = CCA : O = { Dec(·) }

Decapsulation Oracle Dec(C)

1 : req C ̸= C∗0
2 : K← Decap(dk∗,C)
3 : return K

FIGURE 2.1: Security games for defining the security notions of KEM.

Definition 2.2.4 (Min-Entropy of KEM Ciphertext). We say a KEM scheme KEM has χ-high ciphertext
min-entropy if for all κ ∈N and pp ∈ Setup(1κ),

χ ≤ − log2

(
E

[
max
C∗

Pr [(K,C)← Encap(ek) : C = C∗]

])
,

where the expectation is taken over the randomness used to sample (ek, dk)← KeyGen(pp).

We recall the standard security notions of KEM schemes: indistinguishability against chosen plaintext
attacks (IND-CPA) and indistinguishability against chosen ciphertext attacks (IND-CCA) [Sho00; CS03]. The
difference between IND-CPA and IND-CCA is the adversary in IND-CCA game can access the decapsulation
oracle.

Definition 2.2.5 (IND-CPA and IND-CCA Security for KEM). Let ATK ∈ {CPA,CCA }. We define the game
GameIND-ATK

KEM,A in Figure 2.1 that an adversary A = (A1,A2) runs in and the advantage of A as

AdvIND-ATK
KEM,A (κ) :=

∣∣∣∣Pr
[
GameIND-ATK

KEM,A (κ) = 1
]
− 1

2

∣∣∣∣ .

We say that KEM is IND-ATK secure if AdvIND-ATK
KEM,A (κ) ≤ negl(κ) for any efficient adversaries A.

We define plaintext-awareness (PA) for KEM schemes [BR95; BP04] where multiple keys are considered
[MSs12].1 We consider strengthening the (already strong) PA security where the efficient extractor EC for
the ciphertext creator C can be constructed efficiently given the description of C. This is required in the
proof of deniability as the simulator must construct such EC given the description of the adversary.

Definition 2.2.6 (Plaintext-Awareness for KEM). Let t = poly(κ) be an integer. We say a KEM scheme KEM
is plaintext-aware (PAt-1) secure if for all κ ∈ N and (non-uniform) PPT ciphertext creator C, there exists a
PPT extractor EC such that for any efficient distinguisher D, the two experiments ExpdecC,D and ExpextC,EC ,D defined in
Figure 2.2 are indistinguishable.

1This property is required to prove the deniability of the proposed authenticated key exchange protocol in Section 3.6. We
observe that the standard PA security defined for a single key does not immediately imply a multi-key variant and that the
original proof of deniability by Di Raimondo et al. [DGK06, Theorem 2 and 3] crucially relies on the multi-key variant.

12 Chapter 2. Preliminaries

ExpdecC,D(κ, t)

1 : pp← Setup(1κ)

2 : foreach i ∈ [t] do
3 : (eki, dki)← KeyGen(pp)

4 : rC ←$RC
5 : v← COdec(pp, (eki)i∈[t]; rC)

6 : b← D(v)
7 : return b

Odec(i,C)

1 : return Decap(dki,C)

ExpextC,EC ,D(κ, t)

1 : pp← Setup(1κ)

2 : foreach i ∈ [t] do
3 : (eki, dki)← KeyGen(pp)

4 : rC ←$RC
5 : Run EC(pp, (eki)i∈[t]; rC)

6 : v← COext(pp, (eki)i∈[t]; rC)

7 : b← D(v)
8 : return b

Oext(i,C)

1 : return EC(query, (i,C), rC)

FIGURE 2.2: Security experiments for defining the plaintext-awareness of KEM.RC denotes
the randomness space of the KEM scheme. We assume the algorithms C and EC are stateful.

Moreover, we say the extractor EC is efficiently constructible if the description of EC can be efficiently computed
from the description of C.

2.3 Secret Key Encryption

The syntax and the correctness of secret key encryption (SKE) schemes are defined as follows.

Definition 2.3.1 (Secret-Key Encryption). A secret-key encryption (SKE) scheme SKE over a key space K and
message spaceM consists of the following algorithms:

• Encs(k,m) → c : The encryption algorithm takes a secret key k ∈ K and a message m ∈ M as input and
outputs a ciphertext c.

• Decs(k, c)→ m/⊥ : The decryption algorithm takesa secret key k and a ciphertext c as input and (determinis-
tically) outputs either m ∈ M or ⊥ ̸∈ M.

Definition 2.3.2 (Correctness for SKE). We say that a SKE is correct if for all m ∈ M and k ∈ K,

Pr [Decs(k,Encs(k,m)) = m] = 1.

We recall the IND-CPA and IND-CCA security for SKE by the left-or-right version of game-based
indistinguishability [BN00].

Definition 2.3.3 (IND-CPA and IND-CCA security for SKE). Let ATK ∈ {CPA,CCA }. We define the game
GameIND-ATK

SKE,A illustrated in Figure 2.3 and the advantage of A as

AdvIND-ATK
SKE,A (κ) :=

∣∣∣∣Pr
[
GameIND-ATK

SKE,A (κ) = 1
]
− 1

2

∣∣∣∣ .

We say that a SKE is IND-ATK secure if AdvIND-ATK
SKE,A (κ) ≤ negl(κ) for any efficient adversaries A.

2.3. Secret Key Encryption 13

GameOT-IND-CCA
SKE,A (κ)

1 : k←$K
2 : b←$ {0, 1}
3 : (m0,m1, state)← A(1κ)

4 : c∗ ← Encs(k,mb)

5 : EL← { c∗ }
6 : b′ ← ADecs(·)(c∗, state)

7 : return Jb = b′K

GameIND-ATK
SKE,A (κ)

1 : EL← ∅
2 : k←$K
3 : b←$ {0, 1}
4 : b′ ← AO(1κ)

5 : return Jb = b′K

Available oracles

if ATK = CPA : O = { LoRs(·, ·) }
if ATK = CCA : O = { LoRs(·, ·), Decs(·) }

Left-or-Right Oracle LoRs(m0,m1)

1 : c← Encs(k,mb)

2 : EL +← c

3 : return c

Decryption Oracle Decs(c)

1 : req c /∈ EL

2 : m← Decs(k, c)
3 : return m

FIGURE 2.3: Security games for defining the security notions of SKE. If the condition following
req does not hold, the game terminates by returning a random bit.

For convenience, we define the one-time IND-CCA security for SKE separately.

Definition 2.3.4 (One-time IND-CCA security for SKE). We define the game GameOT-IND-CCA
SKE,A illustrated in

Figure 2.3 and the advantage of A as

GameOT-IND-CCA
SKE,A (κ) :=

∣∣∣∣Pr
[
GameOT-IND-CCA

SKE,A (κ) = 1
]
− 1

2

∣∣∣∣ .

We say that a SKE is one-time IND-CCA secure if AdvOT-IND-CCA
SKE,A (κ) ≤ negl(κ) for any efficient adversaries A.

We define key-committing property for SKE schemes [FOR17] which roughly states that it is difficult to
find two secret keys that correctly decrypt the same ciphertext (to possibly different messages). As in prior
works [FOR17; GLR17; Dod+18; Alb+22], we define this notion by providing the (non-uniform) adversary
oracle access to Encs and Decs, where we implicitly assume these two algorithms are implemented using
an internal hash function modeled as a random oracle.

Definition 2.3.5 (Key-Committing for SKE). We say that a SKE has key-committing property if for any efficient
adversaries A, we have

Pr

 (k0, k1, c)← A(1κ),
m0 ← Decs(k0, c),
m1 ← Decs(k1, c)

: m0 ̸= ⊥∧m1 ̸= ⊥

 ≤ negl(κ).

Viewing SKE as (a weakened version of) AEAD, we can use [Alb+22, Sec. 5.2.] to generically transform
any IND-CCA secure SKE, regardless of it being one-time secure or not, to one with the key-committing
property. The transform only adds κ bits of overhead to the original ciphertext: to encrypt, the key
committing scheme expands kenc ← Henc(key) and kcom ← Hcom(key), runs Encs(kenc,m) and outputs the

14 Chapter 2. Preliminaries

GameGOAL-CMA
SIG,A (κ)

1 : SL← ∅
2 : pp← Setup(1κ)

3 : (vk∗, sk∗)← KeyGen(pp)

4 : (m∗, σ∗)← ASign(·)(pp, vk∗)
5 : if GOAL = EUF then
6 : return JVerify(vk∗,m∗, σ∗) = 1∧ (m∗, ∗) /∈ SLK
7 : if GOAL = sEUF then
8 : return JVerify(vk∗,m∗, σ∗) = 1∧ (m∗, σ∗) /∈ SLK

Signing Oracle Sign(m)

1 : σ← Sign(sk∗,m)

2 : SL +← (m, σ)

3 : return σ

FIGURE 2.4: Security games for defining the security notions of signature scheme.

ciphertext as (c, kcom). Here Henc and Hcom are modeled as random oracles. Key committing simply follows
from the collision resistance of Hcom.

2.4 Digital Signatures

The syntax and the correctness of signature schemes are defined as follows.

Definition 2.4.1 (Signature Schemes). A signature scheme with message space M consists of the following
algorithms:

• Setup(1κ)→ pp : The setup algorithm takes a security parameter 1κ as input and outputs a public parameter
pp. In the following, we assume pp is provided to all the algorithms and may omit it for simplicity.

• KeyGen(pp)→ (vk, sk) : The key generation algorithm takes a public parameter pp as input and outputs a
pair of verification and singing keys (vk, sk).

• Sign(sk,m)→ σ : The signing algorithm takes a signing key sk and a message m ∈ M as input and outputs
a signature σ.

• Verify(vk,m, σ)→ 1/0 : The verification algorithm takes a verification key vk, a message m and a signature σ
as input and outputs 1 or 0.

Definition 2.4.2 ((1− δ)-Correctness for SIG). We say a signature scheme SIG is (1− δ)-correct if for all κ ∈N,
all messages m ∈ M and all pp ∈ Setup(1κ),

(1− δ) ≤ Pr [(vk, sk)← KeyGen(pp), σ← Sign(sk,m) : Verify(vk,m, σ) = 1] .

We recall the existential unforgeability against chosen message attacks (EUF-CMA) [GMR88] and
strongly existential unforgeability against chosen message attacks (sEUF-CMA) [ADR02].

Definition 2.4.3 (EUF-CMA and sEUF-CMA Security for SIG). Let GOAL ∈ { EUF, sEUF }. We define the
game GameGOAL-CMA

SIG,A in Figure 2.4 that an adversary A runs in and the advantage of A as

AdvGOAL-CMA
SIG,A (κ) :=

∣∣∣Pr
[
GameGOAL-CMA

SIG,A (κ) = 1
]∣∣∣ .

2.5. Pseudo-Random Functions and Pseudo-Random Permutations 15

We say a signature scheme SIG is GOAL-CMA secure if AdvGOAL-CMA
SIG,A (κ) ≤ negl(κ) for any efficient adversaries A.

2.5 Pseudo-Random Functions and Pseudo-Random Permutations

Let F : K × D → R be an efficiently computable function family with key space K, domain D and
finite rangeR. The security notions of pseudo-random functions [GGM84] and pseudo-random permuta-
tions [LR88] are defined as follows. Below, we note that the adversary A is only allowed to make classical
queries to the oracles.

Definition 2.5.1 (Pseudo-Random Function and Permutation Family). Let A be an adversary and FuncD→R
be a set of all functions whose domain and range are D andR, respectively. We define the advantage of A as

AdvPRFF,A (κ) :=
∣∣∣Pr

[
K←$K : 1← AF(K,·)(1κ)

]
− Pr

[
RF←$FuncD→R : 1← ARF(·)(1κ)

]∣∣∣ .

We say that F is a pseudo-random function (PRF) family if AdvPRFF,A (κ) ≤ negl(κ) for any efficient adversaries A.
In particular, when D = R and F is bijective, we say that F is a pseudo-random permutation (PRP) family.

2.6 Strong Randomness Extractors

The statistical distance between random variables X, Y over a finite domain S is defined by

SD(X, Y) :=
1
2 ∑

s∈S
|Pr [X = s]− Pr [Y = s]| .

Strong randomness extractors are defined as follows [DRS04; NZ96].

Definition 2.6.1 (Strong Randomness Extractors). Let Ext : S ×D → R be a family of efficiently computable
functions with set S , domain D and range R, all with finite size. A function family Ext is a strong (λ, εExt)-
extractor if for any random variable X over D with Pr [X = x] ≤ 2−λ (i.e., X has min-entropy at least λ), if s and
R are chosen uniformly at random from S and R, respectively, the two distributions (s,Exts(X)) and (s, R) are
within statistical distance εExt, that is

SD((s,Exts(X)), (s, R)) ≤ εExt.

2.7 Ring Signatures

The syntax of ring signature schemes is defined as follows.

Definition 2.7.1 (Ring Signature Schemes). A ring signature scheme RS consists of the following algorithms:

• Setup(1κ)→ pp : The setup algorithm takes a security parameter 1κ as input and outputs a public parameters
pp used by the scheme. In the following, we assume pp is provided to all the algorithms and may omit it for
simplicity.

• KeyGen(pp)→ (vk, sk) : The key generation algorithm takes the public parameters pp as input and outputs a
pair of verification and signing keys (vk, sk). We denoteRRSby the randomness space of KeyGen algorithm.

16 Chapter 2. Preliminaries

GameRS-Unf
RS,A (κ, N)

1 : SL,CL← ∅
2 : pp← Setup(1κ)

3 : foreach i ∈ [N] do
4 : ri←$RRS

5 : (vki, ski)← KeyGen(pp; ri)
6 : VK := { vki | i ∈ [N] }
7 : (R∗,m∗, σ∗)← ASign(·,·,·),Corr(·)(pp,VK)
8 : b1 ← JR∗ ⊂ VK\CLK
9 : b2 ← J(∗,m∗,R∗) ̸∈ SLK

10 : b3 ← JVerify(R∗,m∗, σ∗) = 1K
11 : return b1 ∧ b2 ∧ b3

Singing Oracle Sign(i,m,R)

1 : if vki ∈ R then
2 : return ⊥
3 : σ← Sign(ski,m,R)
4 : SL +← (i,m,R)
5 : return σ

Corruption Oracle Corr(i)

1 : CL +← vki

2 : return ri

FIGURE 2.5: Security game for defining the unforgeability of ring signature schemes.

• Sign(sk,m,R)→ σ : The signing algorithm takes a signing key sk, a message m, and a list of verification keys,
i.e., a ring, R = {vk1, . . . , vkN} as input and outputs a signature σ.

• Verify(R,m, σ) → 1/0 : The verification algorithm takes a ring R = {vk1, . . . , vkN}, a message m, and a
signature σ as input and outputs either 1 or 0.

We require a ring signature scheme RS to satisfy the following properties: correctness, anonymity, and
unforgeability [BKM06].

Definition 2.7.2 ((1− δ)-Correctness for RS). We say a ring signature scheme RS is (1− δ)-correct if for all
κ ∈N, N = poly(κ), j ∈ [N], and every message m,

(1− δ) ≤ Pr

pp← Setup(1κ),

(vki, ski)← KeyGen(pp) ∀i ∈ [N],
R := (vk1, · · · , vkN),
σ← Sign(skj,m,R)

: Verify(R,m, σ) = 1

 .

Definition 2.7.3 (Anonymity for RS). We say a ring signature scheme RS is anonymous if, for any κ ∈ N,
pp ∈ Setup(1κ), (vk0, sk0), (vk1, sk1) ∈ KeyGen(pp), and message m, the two distributions

D0 := { σ : σ← Sign(sk0,m, { vk0, vk1 }) } and D1 := { σ : σ← Sign(sk1,m, { vk0, vk1 }) }

are indistinguishable for any efficient distinguishers A

Definition 2.7.4 (Unforgeability for RS). Let N = poly(κ) be an integer. We define the game GameRS-Unf
RS,A in

Figure 2.5 that an adversary A runs in and the advantage of A as

AdvRS-Unf
RS,A (κ) := Pr

[
GameRS-Unf

RS,A (κ, N) = 1
]

.

We say a ring signature scheme RS is unforgeable if AdvRS-Unf
RS,A (κ) ≤ negl(κ) for any efficient adversaries A.

2.8. Non-Interactive Zero-Knowledge 17

2.8 Non-Interactive Zero-Knowledge

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial time recognizable binary relation. For (x, w) ∈ R, we call x
the statement and w the witness. Let L be the corresponding NP language L = {x | ∃w s.t. (x, w) ∈ R}.
Below, we define non-interactive zero-knowledge arguments for NP languages.

The syntax of NIZK arguments is defined as follows.

Definition 2.8.1 (NIZK Arguments). A non-interactive zero-knowledge (NIZK) argument NIZK for the relation
R consists of the following algorithms.

• Setup(1κ) → crs : The setup algorithm takes the security parameter 1κ as input and outputs a common
reference string crs.

• Prove(crs, x, w) → π : The prover’s algorithm takes as input a common reference string crs, a statement x,
and a witness w and outputs a proof π.

• Verify(crs, x, π) → 1/0 : The verifier’s algorithm takes as input a common reference string, a statement x,
and a proof π and outputs 1 to indicate acceptance of the proof and 0 otherwise.

We require a NIZK argument NIZK to satisfy the following properties: (perfect) correctness, soundness,
and zero-knowledge [BFM88; FLS90].

Definition 2.8.2 (Correctness for NIZK argument). We say a NIZK argument NIZK is correct if for all pairs
(x, w) ∈ R, if we run crs← Setup(1κ), then we have

Pr[π ← Prove(crs, x, w) : Verify(crs, x, π) = 1] = 1.

Definition 2.8.3 (Soundness for NIZK argument). We say a NIZK argument NIZK is sound if for any efficient
adversaries A, if we run crs← Setup(1κ), then we have

Pr[(x, π)← A(1κ, crs) : x ̸∈ L ∧ Verify(crs, x, π) = 1] = negl(κ).

Definition 2.8.4 (Zero-Knowledge for NIZK argument). We say a NIZK argument NIZK is zero-knowledge if
for any efficient adversariesA, there exists a PPT simulator Sim = (Sim1,Sim2) such that if we run crs← Setup(1κ)
and (crs, τ̄)← Sim1(1κ), then we have∣∣∣Pr

[
AO0(crs,·,·)(1κ, crs) = 1

]
− Pr

[
AO1(¯crs,τ̄,·,·)(1κ, crs) = 1

]∣∣∣ = negl(κ),

whereO0(crs, x, w) outputs Prove(crs, x, w) if (x, w) ∈ R and 0 otherwise, andO1(crs, τ̄, x, w) outputs Sim2(crs, τ̄, x)
if (x, w) ∈ R and 0 otherwise.

2.9 Decomposable Multi-Recipient PKE

Decomposable multi-recipient PKE (mPKE) was introduced in [Kat+20]. Similar to standard mPKEs [Kur02;
Sma05; BF07], a decomposable mPKE allows a user to send a message to multiple recipients more effi-
ciently than naively running a standard PKE to the individual recipients. The main difference between a
decomposable and non-decomposable mPKE is whether the encryption algorithm can be decomposed into
a recipient-dependent and recipient-independent part. In [Kat+20], it was shown that many assumptions

18 Chapter 2. Preliminaries

known to imply PKE (e.g., Decisional Diffie-Hellman (DDH), Learning with Errors (LWE), Supersingular
Isogeny Diffie-Hellman (SIDH)) can naturally be used to construct an IND-CPA secure decomposable
mPKE. In this work, we introduce a stronger security notion than those provided in [Kat+20] where we
allow the adversary to adaptively corrupt users during the IND-CPA security game. Looking ahead, this
notion will be important when we target an adaptively secure CGKA.

Definition 2.9.1 (Decomposable Multi-Recipient Public Key Encryption). A (single-message) decomposable
multi-recipient public key encryption (decomposable mPKE) scheme mPKE over a message spaceM consists of the
following algorithms:

• mSetup(1κ) → pp : The setup algorithm takes the security parameter 1κ as input and outputs a public
parameter pp. In the following, we assume pp is provided to all the algorithms and may omit it for simplicity.

• mGen(pp)→ (ek, dk) : The key generation algorithm takes a public parameter pp as input and outputs a pair
of encryption key and decryption key (ek, dk).

• mEnc((eki)i∈[N],m; r0, (ri)i∈[N]) → c⃗t = (ct0, (ĉti)i∈[N]) : The (decomposable) encryption algorithm run-
ning with randomness (r0, r1, · · · , rN), splits into a pair of algorithms (mEnci,mEncd) :

– mEnci(pp; r0)→ ct0 : On input a public parameter pp and randomness r0, it outputs an (encryption key
independent) ciphertext ct0.

– mEncd(pp, eki,m; r0, ri) → ĉti : On input a public parameter pp, an encryption key eki, a message
m ∈ M, and randomness (r0, ri), it outputs an (encryption key dependent) ciphertext ĉti.

• mDec(dk, cti)→ m or ⊥ : The decryption algorithm takes a decryption key dk and a ciphertext cti = (ct0, ĉti)
as input and outputs either m ∈ M or ⊥ ̸∈ M.

Remark 2.9.2 (decomposable mPKE from standard PKE). Observe that any standard PKE can be used to
construct a decomposable mPKE in the obvious way where mEnci is the null function and mEncd is the
encryption algorithm of the PKE. So naturally, the main motivation for mPKE will be to reuse a large
portion of the encryption randomness r0 for all recipients and to obtain a more efficient scheme compared
to the obvious solution. The asymptotic behavior will be the same as the obvious solution (i.e., the total
ciphertext size is O(N)) but the concrete size can be drastically reduced (see Section 4.5 for more details).

We require the standard notion of correctness and ciphertext-spreadness [FO99], where the latter
roughly states that the probability of generating an identical ciphertext is negligibly small if we use proper
randomness.

Definition 2.9.3 (Correctness for mPKE). We say an mPKE is correct if

1− negl(κ) ≤ E

[
max
m∈M

Pr
[

ct0 ← mEnci(pp),
ĉt← mEncd(pp, ek,m)

: m = mDec(dk, (ct0, ĉt))
]]

, (2.1)

where the expectation is taken over pp← mSetup(1κ) and (ek, dk)← mGen(pp).

Definition 2.9.4 (Ciphertext-Spreadness for mPKE). We say an mPKE is ciphertext-spread if for all pp ∈
mSetup(1κ), and (ek, dk) ∈ mGen(pp),

E

[
max

ct∗,m∈M
Pr
r0,r

[
ct←

(
mEnci(pp; r0),mEncd(pp, ek,m; r0, r)

)
: ct∗ = ct

]]
≤ negl(κ),

where the expectation is taken over pp← mSetup(1κ) and (ek, dk)← mGen(pp).

2.10. Message Authentication Codes 19

GameIND-CPA
mPKE,A (κ, N)

1 : CL← ∅
2 : pp← mSetup(1κ)

3 : foreach i ∈ [N] do
4 : (eki, dki)← mGen(pp)

5 : (m0,m1, S ⊆ [N])← ACorr(·)(pp, (eki)i∈[N])

6 : b←$ {0, 1}
7 : c⃗t

∗ ← mEnc(pp, (eki)i∈S,mb)

8 : b′ ← ACorr(·)(pp, (eki)i∈[N], c⃗t
∗
)

9 : if CL∩ S ̸= ∅ then
10 : return b

11 : return Jb = b′K

Corruption Oracle Corr(i)

1 : CL +← i
2 : return dki

FIGURE 2.6: Security games for defining the IND-CPA with adaptive corruption security of
mPKE.

We also define indistinguishability of chosen plaintext attacks (IND-CPA) with adaptive corruption for a
decomposable mPKE following [Kat+20].

Definition 2.9.5 (IND-CPA security for mPKE). We define the game GameIND-CPA
mPKE,A illustrated in Figure 2.6. A

decomposable mPKE is IND-CPA secure with adaptive corruption if for any efficient adversaries A, we have∣∣∣∣Pr
[
GameIND-CPA

mPKE,A (κ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(κ)

If A is not given access to the corruption oracle Corr, this game corresponds to the standard IND-CPA security.

2.10 Message Authentication Codes

We provide the standard notion of (deterministic) message authentication codes (MACs).

Definition 2.10.1 (Message Authentication Code). A (deterministic) message authentication code MAC over a
key space K and a message spaceM consists of the following algorithms:

• Gen(k,m)→ tag : On input a key k ∈ K and a message m ∈ M, it (deterministically) outputs a tag tag.

• Verify(k,m, tag)→ 1/0 : On input a key k, a message m and a tag tag, it (deterministically) outputs 1 or 0.

Since the Gen algorithm is deterministic, we can simply define Verify to run Gen on (k,m) and check if
the generated tag′ is identical to the provided tag.

Definition 2.10.2 (Correctness for MAC). A MAC is correct if for all keys k ∈ K and all messages m ∈ M,

Pr [Verify(k,m,Gen(k,m)) = 1] = 1.

20 Chapter 2. Preliminaries

We define collision resistance of MAC by providing the (non-uniform) adversary oracle access to Gen
and Verify, where we implicitly assume these two algorithms are implemented using an internal hash
function modeled as a random oracle. We note that natural and practical constructions of a MAC based on
a hash function modeled as a random oracle possess this property.

Definition 2.10.3 (Collision-Resistance for MAC). A MAC is collision-resistant if for any efficient adversaries
A, we have

Pr
[
(k,m, k′,m′, tag)← A(1κ) :

(k,m) ̸= (k′,m′)∧
Verify(k,m, tag) = Verify(k′,m′, tag)

]
≤ negl(κ).

2.11 Key Derivation Functions

A key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys
from a secret seed. In this work, HKDF, a KDF based on HMAC [Kra10], is used. It consists of the
two algorithms HKDF.Extract and HKDF.Expand. The extraction algorithm k ← HKDF.Extract(s0, s1)
outputs an uniform and random key k if either s0 or s1 has high min-entropy. The expansion algorithm
klbl ← HKDF.Expand(k, lbl), on input a key k, outputs a random key klbl for (public) label lbl. In the security
proof, we model both HKDF.Extract and HKDF.Expand as a random oracle.

21

Chapter 3

Post-Quantum Authenticated Key Exchange
for Signal Protocol1

3.1 Introduction

3.1.1 Contribution of This Work

In this work, we cast the X3DH protocol (see Figure 3.1) as a specific type of authenticated key exchange
(AKE) protocol, which we call a Signal-conforming AKE protocol, and define its security model based on
the vast prior work on AKE protocols (see Section 3.2). We then provide an efficient generic construction
of a Signal-conforming AKE protocol based on standard cryptographic primitives: an (IND-CCA secure)
KEM, a signature scheme, and a pseudorandom function (PRF) (see Section 3.3). Similar to the X3DH
protocol, our Signal-conforming AKE protocol offers a strong flavor of key-compromise security. Borrowing
terminologies from AKE-related literature, the proposed protocol is proven secure in the strong Canetti-
Krawczyk (CK) type security models [CK01; Kra05; Fuj+12; LLM07], where the exchanged session key
remains secure even if all the non-trivial combinations of the long-term secrets and session-specific secrets
of the parties are compromised. In fact, the proposed protocol is more secure than the X3DH protocol
since it is even secure against KCI-attacks where the parties’ session-specific secrets are compromised (see
Footnote 3).2 We believe the level of security offered by our Signal-conforming AKE protocol aligns with
the level of security guaranteed by the double ratchet protocol where (a specific notion of) security still
holds even when such secrets are compromised.

We then provide details on how to recast our Signal-conforming AKE protocol into a key agreement
protocol similar to what is used in the Signal protocol. We call this the Signal handshake protocol (see
Section 3.4). Unlike standard AKE protocols, the Signal handshake protocol makes several different design
choices for efficiency reasons. The most prominent difference is that informally, the Signal handshake
protocol reuses the same first message of the AKE protocol for a certain period of time. While this reduces
communication and computation complexity and the storage size required by the server, this negatively
affects the level of forward secrecy of the underlying Signal-conforming AKE protocol. We discuss in detail
the trade-off between security and efficiency incurred when transforming our Signal-conforming AKE
protocol into a Signal handshake protocol in Section 3.4.2.

1The contents of this chapter are based on the work published in the Journal of Cryptology under the title “An Efficient
and Generic Construction for Signal’s Handshake (X3DH): Post-Quantum, State Leakage Secure, and Deniable” [Has+22]. The
preliminary work of [Has+22] was presented at PKC 2021 [Has+21a].

2Although the X3DH protocol can naturally be made secure against leakage of session-specific secrets (including randomness
generated within the session) by using the generic NAXOS trick, e.g., [LLM07; Fuj+12; KF14; YCL18], it typically requires
additional computation. Since this negatively affects efficiency, we target AKE protocols without using the NAXOS trick. See
Section 3.1.3 for more detail.

22 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

In addition, the proposed post-quantum Signal handshake protocol is implemented in C, building on
the open source libraries PQClean and LibTomCrypt (see Section 3.5). The implementation [Kwi20] is fully
generic and can thus be instantiated with a wide range of KEMs and signature schemes. We instantiate
it with several Round 3 candidates (finalists and alternates) to the NIST post-quantum standardization
process and compare the bandwidth and computation costs that result from these choices. The proposed
protocol performs best with “balanced” schemes, for example, most lattice-based schemes. The isogeny-
based scheme SIKE offers good bandwidth performance but entails a significant computation cost. Finally,
schemes with large public keys (Classic McEliece, Rainbow, etc.) do not seem to be a good match for the
proposed protocol, since these keys are transferred at each run of the protocol.

Finally, while our Signal-conforming AKE already provides a weak form of deniability, we show
how to progressively strengthen its deniability by using a ring signature instead of a signature scheme
and adding a non-interactive zero-knowledge proof system (NIZK) (see Section 3.6). We propose one
protocol that only uses ring signatures while only being deniable against semi-honest adversaries. We
then add an NIZK on top of this protocol to make it secure even against malicious adversaries. Although
the construction seemingly offers (off-line) deniability against malicious adversaries similar to the X3DH
protocol [Vat+20], the formal proof relies on a strong knowledge-type assumption. However, relying on
such assumptions seems unavoidable considering that all known deniable AKE protocols secure against
key-compromise attacks, including the X3DH protocol, rely on them [DGK06; YZ10; Vat+20]. We briefly
discuss the efficiency of our Signal-conforming AKE protocol using ring signatures in Remark 3.6.14.

3.1.2 Technical Overview

We first review the X3DH protocol and abstract its required properties by viewing it through the lens of
AKE protocols. We then provide an overview of how to construct a Signal-conforming AKE protocol from
standard assumptions.
Recap on the X3DH Protocol. At a high level, the X3DH protocol allows for an asynchronous key exchange
where two parties, say Alice and Bob, exchange a session key without having to be online at the same
time. Even more, the party, say Bob, that wishes to send a secure message to Alice can do so without
Alice even knowing Bob. For instance, imagine the scenario where you send a friend request and a
message at the same time before being accepted as a friend. At first glance, it seems what we require is a
non-interactive key exchange (NIKE) since Bob needs to exchange a key with Alice who is offline, while
Alice does not yet know that Bob is trying to communicate with her. Unfortunately, solutions based on
NIKEs are undesirable since they either provide weaker guarantees than standard (interactive) AKE or
exhibit inefficient constructions [Ber06; CKS08; Fre+13; PS14].

The X3DH protocol circumvents this issue by considering an untrusted server (e.g., the Signal server) to
sit in the middle between Alice and Bob to serve as a public bulletin board. That is, the parties can store
and retrieve information from the server while the server is not assumed to act honestly. A simplified
description of the X3DH protocol based on the classical Diffie-Hellman (DH) key exchange is provided in
Figure 3.1.3 As the first step, Alice sends her DH component gx ∈ G and its signature σA

4 to the server and
then possibly goes offline. We point out that Alice does not need to know who she will be communicating
with at this point. Bob, who may ad-hocly decide to communicate with Alice, then fetches Alice’s first
message from the server and uploads its DH component gy to the server. As in a typical DH key exchange,

3We assume Alice and Bob know each other’s long-term keys. In practice, this can be enforced by “out-of-bound” authentica-
tions (see [MP16b, Section 4.1]).

4In the actual protocol [MP16b; Per16], XEdDSA is used as the signature scheme, and the same long-term key (a, ga) is used for
both key exchange and signing.

3.1. Introduction 23

Alice Server Bob

(lpkA = (ga, vkA), lskA = (a, skA)) (lpkB = (gb, vkB), lskB = (b, skB))

x←$ Zp

σA ← Sign(skA, gx)

Store x
Upload gx, σA to server

–- go offline –-

gx, σA Store

(Alice, gx, σA)

gx, σA Fetch (Alice, gx, σA)

Verify(vkA, gx, σA)
?
= 1

y←$ Zp

kB := KDF((gx)b, (ga)y, (gx)y)

Upload gy to server

Erase y

–- come online –-

Fetch ((Alice, Bob), gy)

kA := KDF((gb)x, (gy)a, (gy)x)

gy
Store

((Alice, Bob), gy)

gy

FIGURE 3.1: Simplified description of the X3DH Protocol. Alice and Bob have the long-term
key pairs (lpkA, lskA) and (lpkB, lskB), respectively. Alice and Bob agree on a session key
kA = kB, where KDF denotes a key derivation function.

Bob computes the session key kB using the long-term secret exponent b ∈ Zp and session-specific secret
exponent y ∈ Zp. Since Bob can compute the session key kB while Alice is offline, he can begin executing
the subsequent double ratchet protocol without waiting for Alice to come online.5 Whenever Alice comes
online, she can fetch whatever message Bob sent from the server.
Casting the X3DH Protocol as an AKE Protocol. It is not difficult to see that the X3DH protocol can be
cast as a specific type of AKE protocol. In particular, we can think of the server as an adversary that tries
to mount a person-in-the-middle attack in a standard AKE protocol. Viewing the server as a malicious
adversary, rather than some semi-honest entity, has two benefits: the parties do not need to put trust in
the server since the protocol is supposed to be secure even against a malicious server, while the server
or the company providing the app is relieved from having to “prove” that it is behaving honestly. One
distinguishing feature required by the X3DH protocol when viewed as an AKE protocol is that it needs
to be a two-round protocol where the initiator message is generated independently from the responder.
That is, Alice needs to be able to store her first message to the server without knowing whom she will be
communicating. In this work, we define an AKE protocol with such functionality as a Signal-conforming
AKE protocol.

Regarding the security model for a Signal-conforming AKE protocol, we base it on the vast prior works
on AKE protocols. Specifically, we build on the recent formalizations of [GJ18; Coh+19] that study the
tightness of efficient AKE protocols (including a slight variant of the X3DH protocol) and strengthen the
model to also incorporate state leakage compromise; a model where an adversary can obtain session-specific
information called session-state. Since the double ratchet protocol considers a very strong form of state
leakage security, we believe it would be the most rational design choice to discuss the X3DH protocol in a
security model that captures such leakage as well. Informally, we consider our Signal-conforming AKE
protocol in the Canetti-Krawczyk (CK) type security model [CK01; Kra05; Fuj+12; LLM07], which is a

5In practice, Bob may initiate the double ratchet protocol using kB and send his message to Alice along with gy to the server
before Alice responds.

24 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

strengthening of the Bellare-Rogaway security model [BR94] considered by [GJ18; Coh+19]. A detailed
discussion and comparison between the model used in this work and the numerous other security models
of AKE protocols are provided in Section 3.2.
Lack of Signal-Conforming AKE Protocol. The main feature of a Signal-conforming AKE protocol is that
the initiator’s message is independent of the responder. Although this seems like a very natural feature
considering DH-type AKE protocols, it turns out that they are quite unique (see Brendel et al. [Bre+20]
for some discussion). For instance, as far as we are aware, the only other assumption that allows for a
clean analog of the X3DH protocol is based on the gap CSIDH assumption recently introduced by De
Kock et al. [KGV20] and Kawashima et al. [Kaw+20]. Considering the community is still in the process of
assessing the concrete parameter selection for standard CSIDH [BS20b; Pei20], it would be desirable to base
the X3DH protocol on more well-established and versatile assumptions. On the other hand, the known
generic constructions of AKE protocols [Fuj+12; Fuj+13; KF14; YCL18; Xue+18; Höv+20; Xue+20] that can
be instantiated from versatile assumptions, including post-quantum ones, can be observed that they are
either not Signal-conforming or require the NAXOS trick [LLM07] (see Section 3.1.3) to be made secure
against leakage of session-specific secrets.
Proposed Construction. To this end, in this work, we provide a new practical generic construction of a
Signal-conforming AKE protocol from an (IND-CCA secure) KEM and a signature scheme. We believe this
may be of independent interest in other scenarios where we require an AKE protocol that has a flavor of
“receiver obliviousness.”6 The construction is simple: let us assume Alice and Bob’s long-term keys consist
of KEM key pairs (ekA, dkA) and (ekB, dkB) and signature key pairs (vkA, skA) and (vkB, skB), respectively.
The Signal-conforming AKE protocol then starts by Alice (i.e., the initiator) generating a session-specific
KEM key (ekT, dkT), creating a signature σA ← SIG.Sign(skA, ekT), and sending (ekT, σA) to Bob (i.e., the
responder). Here, observe that Alice’s message does not depend on who she will be communicating
with. Bob then verifies the signature and then constructs two ciphertexts: one using Alice’s long-term key
(KA,CA) ← KEM.Encap(ekA) and another using the session-specific key (KT,CT) ← KEM.Encap(ekT). It
then signs these ciphertext m := (CA,CT) as σB ← SIG.Sign(skB,m), where we include other session-specific
components in m in the actual construction. Since sending σB in the clear may serve as public evidence
that Bob communicated with Alice, Bob will hide this. To this end, he derives two keys, a session key
kAKE and a one-time pad key kOTP, by running a key derivation function on input the random KEM keys
(KA,KT). Bob then sends (CA,CT, c := σB ⊕ kOTP) to Alice and sets the session key as kAKE. Here, note that
we do not require Alice to hide her signature σA since this can only reveal that she was using the Signal
app, unlike σB that may reveal who Bob was talking to. Once Alice receives the message from Bob, she
decrypts the ciphertexts (CA,CT), derives the two keys (kAKE, kOPT), and checks if σ := c⊕ kOTP is a valid
signature of Bob’s. If so, she sets the session key as kAKE. We provide a formal proof and show that the
proposed protocol satisfies a strong flavor of security where the shared session key remains pseudorandom
even to an adversary that can obtain any non-trivial combinations of the long-term private keys (i.e.,
dkA, dkB, skA, skB) and session-specific secret keys (i.e., dkT). Notably, the proposed protocol satisfies a
stronger notion of security compared to the X3DH protocol since it prevents an adversary to impersonate
Alice even if her session-specific secret key is compromised [MP16b, Section 4.6].

Finally, our Signal-conforming AKE protocol already satisfies a limited form of deniability where the
publicly exchanged messages do not directly leak the participant of the protocol. However, if Alice at
a later point gets compromised or turns malicious, she can publicize the signature σB sent from Bob to
cryptographically prove that Bob was communicating with Alice. This is in contrast to the X3DH protocol
which does not allow such a deniability attack. We, therefore, show that we can protect Bob from such

6This property has also been called post-specified peers [CK02] in the context of Internet Key Exchange (IKE) protocols.

3.1. Introduction 25

attacks by replacing the signature scheme with a ring signature scheme. In particular, Alice now further
sends a session-specific ring signature verification key vkT, and Bob signs to the ring { vkT, vkB }. Effectively,
when Alice outputs a signature from Bob σB,T, she cannot fully convince third parties whether it originates
from Bob since she could have signed σB,T using her signing key skT corresponding to vkT. Since we
only require a ring of two users, we can use existing efficient post-quantum ring signatures to instantiate
this idea. For example, targeting NIST security level 1, we have 2.5 KiB for Raptor [LAZ19] (based on
NTRU), 4.4 KiB for DualRing [Yue+21] (based on M-LWE/SIS), and 3.5 KiB for Calamari [BKP20] (based
on CSIDH).

Although the intuition is clear, it turns out that turning this into a formal proof is quite difficult and
we observe that for some practical ring signature schemes, this method only provides deniability against
semi-honest adversaries, which are types of adversaries that follow the protocol description honestly. We
provide a concrete attack where a malicious Alice that registers malformed key packages to the server can
later (informally) prove to a third party that Bob was trying to communicate with her even if Bob used a
ring signature to sign. We thus propose another protocol that additionally uses NIZKs to make it secure
even against malicious adversaries. Similar to all previous works on AKE protocols satisfying a strong
flavor of key-compromise security [DGK06; YZ10] (including the X3DH protocol [Vat+20]), the proof of
deniability against malicious adversaries relies on a strong knowledge-type assumption.

3.1.3 Related and Subsequent Work

On the NAXOS trick. The NAXOS trick is a generic/artificial method to boost AKE protocols to be secure
with respect to randomness exposure attacks. At a high level, whenever a party is generating a message
for its peer, it will not simply use fresh randomness but extract randomness by feeding fresh randomness
sampled within that session and its long-term secret key into a randomness extractor. Intuitively, this makes
the protocol secure against randomness exposure attacks since even if the fresh randomness sampled
during the session is completely exposed, the extracted randomness remains random as long as the
long-term secret key is not compromised.

The NAXOS trick was originally proposed by LaMacchia et al. [LLM07] in the random oracle model.
Fujioka et al. [Fuj+12] proposed a new primitive called twisted pseudo-random functions (PRF) in the
standard model to mimic its properties and showed how to construct a twisted PRF from any PRF.
Alawatugoda et al. [ASB14] also showed that we can mimic the NAXOS trick in the standard model by
using a KEM that satisfies a non-standard notion of pair-generation indistinguishability.

In a two-round AKE protocol, the initiator and responder can both use the NAXOS trick but with
different consequences. While the NAXOS trick adds a noticeable overhead in the computation time for
the initiator, it adds almost none for the responder. The reason for this asymmetry is that the initiator
must perform a wasteful recomputation of (part of) the first message it sent in order to process the second
message sent by the responder. For instance, the initiator may generate a public key and a secret key
for a KEM using the derived randomness with the NAXOS trick. In order to be secure even when the
session-specific secret (i.e., the secret key for the KEM) is exposed, the initiator must securely erase the
secret key from its memory after it sends the first message and only store the fresh randomness sampled
within the session. Later, when the initiator receives a message from the responder, it must recompute the
key generation algorithm again using the randomness derived from the NAXOS trick in order to decrypt
the ciphertext included in the message. Since the NAXOS trick assumes that secure erasure of memory is
possible and adds a possibly wasteful recomputation step, we simply aim for a two-round AKE protocol
that does not use this.

26 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

Signal-Conforming AKE Protocol using the NAXOS Trick. Kurosawa and Furukawa [KF14] generalized
the Signed Diffie-Hellman key exchange to work using an IND-CPA secure KEM and a signature scheme.
Since the initiator’s first message does not depend on the responder’s identity, the protocol is Signal-
conforming. Unfortunately, the protocol is insecure against standard KCI attacks and exposure of session-
specific secrets (i.e., KEM secret key). Later, Yang et al. [YCL18] showed how to strengthen the security of
Kurosawa and Furukawa’s protocol by using an IND-CCA secure KEM instead and by further applying
the NAXOS trick developed by Alawatugoda et al. [ASB14]. Their protocol results in a secure Signal-
conforming AKE protocol that uses the NAXOS trick.
Subsequent Work. After the preliminary work [Has+21a] appeared, Brendel et al. [Bre+22] posted on
ePrint a post-quantum key exchange protocol that can be used in place of X3DH similar to the proposed
protocol in [Has+21a]. Dobson and Galbraith [DG22] proposed an X3DH-style protocol tailored to SIDH
(SI-X3DH). Details follow.
Brendel et al. [Bre+22]. We summarize their contributions and compare their protocol with the proposed
protocol.

1. Brendel et al. provide a generic construction of a deniable Signal-conforming AKE protocol based
on a designated verifier signature (DVS) and a KEM. They show that DVS can be instantiated from
a ring signature, in which case, their core AKE protocol illustrated in [Bre+22, Figure 2] becomes
almost identical to the construction in Section 3.6.2, Figure 3.5. The followings are the main minor
differences.

• We additionally encrypt the signature generated by the ring signature by a one-time pad, while
they send it in the clear. This additional layer of encryption offers anonymity with almost no
overhead since the transcript no longer leaks information regarding neither the sender nor the
responder to a passive eavesdropper.7 The same idea can be applied to their protocol as well.

• They use the NAXOS trick to generate the second message sent by the responder. Effectively,
the protocol remains secure even if the randomness sampled by the responder (i.e., Bob in
Figure 3.1) is exposed to the adversary. This trick can be used generically in any AKE protocol,
including the proposed one for the same net effect. Unfortunately, similar to the proposed
protocol, their protocol is insecure when the randomness used to generate the first message is
exposed. As explained above, applying the NAXOS trick on the first message requires secure
erasure of memory and a wasteful recomputation step. Making the proposed protocols secure
against randomness exposure of the initiator without using the NAXOS trick remains open.
We note that both protocols are secure even if the session-specific secrets (i.e., the secret that is
stored by the initiator in order to process the responder’s second message) are exposed.

2. In their work, they show that a DVS is implied by a ring signature (for a ring of two users) and
left the other implication as an open problem. In particular, this left open the possibility that a
generic construction based on DVS may be more general than those based on ring signatures. In
Section 3.7, we show that a DVS can be used to construct a ring signature and thus show that a
generic construction based on DVS and ring signature are theoretically equivalent.8

7To be more precise, we additionally assume that the KEM ciphertext is anonymous (i.e., indistinguishable from random) as
well. This is often the case for standard encryption schemes such as those based on lattices.

8Note that the definition of DVS and ring signature come in various flavors. Thus, this work only shows equivalence under the
security properties that Brendel et al. [Bre+22] required to construct their AKE protocol. Namely, this implication relies on the fact
that their DVS assumes the signature is publicly verifiable.

3.2. Security Model for Signal-Conforming AKE Protocols 27

3. In their work, they depart from prior definitions of simulation-based deniability [DGK06; Dod+09;
YZ10; UG15; UG18; Vat+20] and introduce a new notion of indistinguishability-based deniability.
As the new definition is incomparable to the prior definitions, we provide a detailed comparison
between the two definitions in Remark 3.6.5. Very roughly, their definition considers the setting
where all the users honestly follow the protocol and only register valid keys to the server. The
adversary (i.e., a non-user) then tries to break the deniability of the AKE protocol while giving access
to the secret keys of all the users. The restriction on users behaving honestly in their definition can
loosely be captured by prior definitions of deniability by restricting the adversary to be semi-honest.

4. We provide a concrete attack in Remark 3.6.15 that breaks the deniability of the proposed AKE
protocol in Section 3.6.2, which we show to be secure against semi-honest adversaries. The same
attack works against the protocol by Brendel et al. that is proven secure in their new deniability
definition. The attack exploits the fact that malicious parties (i.e., non-honest users) can register
malicious long-term keys.

5. Finally, we construct an AKE protocol secure even against malicious adversaries in Section 3.6.3
by additionally using NIZKs and strong knowledge-type assumptions, including a variant of the
plaintext-awareness (PA) for the KEM scheme [BR95; Bel+98; BP04]. It is an interesting problem if there
is a reasonable definition of deniability that suffices to use in the real world, which also allows for
constructions based on more natural assumptions.

Dobson and Galbraith [DG22]. Dobson and Galbraith [DG22] proposed an X3DH-style protocol tailored to
SIDH (SI-X3DH). Their construction can be seen as a replacement of the DH key exchange in the X3DH
protocol with the SIDH key exchange. Their main contribution is showing that SIDH key exchanges, which
are in general insecure against adaptive attacks, can be used securely by adding a zero-knowledge proof
that the long-term SIDH public keys are generated honestly. They explained that the SI-X3DH protocol
satisfies the same notions of security as those satisfied by the X3DH protocol. Unlike the proposed protocol
and Brendel et al.’s protocol [Bre+22], their protocol does not require a ring signature to argue deniability.
They require a strong knowledge-type assumption to prove the deniability of the SI-X3DH protocol, which
follows similar arguments by [Vat+20] that establish the deniability of the X3DH protocol. Note that after
their paper was published, the SIDH key exchange is broken by a polynomial time attack [CD22]. Thus,
their protocol needs to be reconsidered against this attack.

3.2 Security Model for Signal-Conforming AKE Protocols

In this section, we define a security model for Signal-conforming authenticated key exchange (AKE) protocols:
AKE protocols that can be used as a drop-in replacement of the X3DH protocol. We first provide in
Sections 3.2.1 to 3.2.3 a game-based security model building on the recent formalization of [GJ18; Coh+19]
targeting general AKE protocols. We then discuss in Section 3.2.4 the modifications needed to make it
Signal-conforming. A detailed comparison and discussion between ours and other various security models
for AKE protocols are provided in Section 3.2.5.

3.2.1 Execution Environment

We consider a system of µ parties P1, . . . , P¯ . Each party Pi is represented by a set of ℓ oracles {π1
i , . . . , πℓ

i },
where each oracle corresponds to a single execution of a protocol, and ℓ ∈N is the maximum number of

28 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

protocol sessions per party. Each oracle is equipped with fixed randomness but is otherwise deterministic.
Each oracle πs

i has access to the long-term key pair (lpki, lski) of Pi and the public keys of all other parties,
and maintains a list of the following local variables:

• rands
i is the randomness hard-wired to πs

i ;

• sids
i (“session identifier”) stores the identity of the session specified by the protocol;

• Pids
i (“peer id”) stores the identity of the intended communication partner;

• results
i ∈ {⊥, accept, reject } indicates whether oracle πs

i has successfully completed the protocol
execution and “accepted” the resulting key;

• ks
i stores the session key computed by πs

i ;

• states
i holds the (secret) session-state values and intermediary results required by the session;

• roles
i ∈ {⊥, init, resp } indicates πs

i ’s role during the protocol execution.

For each oracle πs
i , these variables, except the randomness, are initialized to⊥. An AKE protocol is executed

interactively between two oracles. An oracle that first sends a message is called an initiator (role = init)
and a party that first receives a message is called a responder (role = resp). The computed session key is
assigned to the variable ks

i if and only if πs
i reaches the accept state, that is, ks

i ̸= ⊥ ⇐⇒ results
i = accept.

Partnering. To exclude trivial attacks in the security game, we need to define a notion of “partnering”
between two oracles. Intuitively, this dictates which oracles can be corrupted without trivializing the
security game. We define the notion of partnering via session identifiers following the work of [CK01;
dFW20]. Discussions on other possible choices of the definition for partnering are provided in Section 3.2.5.

Definition 3.2.1 (Partner Oracles). For any (i, j, s, t) ∈ [µ]2 × [ℓ]2 with i ̸= j, we say that oracles πs
i and πt

j are
partners if (1) Pids

i = j and Pidt
j = i; (2) roles

i ̸= rolet
j; and (3) sids

i = sidt
j.

For correctness, we require that two oracles executing the AKE protocol faithfully (i.e., without ad-
versarial interaction) derive identical session identifiers. We also require that two such oracles reach the
accept state and derive identical session keys except with all but a negligible probability. We call a set
S ⊆ ([µ]× [ℓ])2 to have a valid pairing if the following properties hold:

• For all ((i, s), (j, t)) ∈ S, i ≤ j.

• For all (i, s) ∈ [µ]× [ℓ], there exists a unique (j, t) ∈ [µ]× [ℓ] such that i ̸= j and either ((i, s), (j, t)) ∈
S or ((j, t), (i, s)) ∈ S.

In other words, a set with a valid pairing S partners off each oracle πs
i and πt

j in a way that the pairing is
unique and no oracle is left out without a pair. We define the correctness of an AKE protocol as follows.

Definition 3.2.2 ((1− δ)-Correctness). We say an AKE protocol ΠAKE is (1− δ)-correct if for any set with a
valid pairing S ⊆ ([µ]× [ℓ])2, when we execute the AKE protocol faithfully between all the oracle pairs included in
S, it holds that

1− δ ≤ Pr

[
πs

i and πt
j are partners∧ results

i = resultt
j = accept

∧ks
i = kt

j ̸= ⊥ for all ((i, s), (j, t)) ∈ S

]
,

where the probability is taken over the randomness used in the oracles.

3.2. Security Model for Signal-Conforming AKE Protocols 29

3.2.2 Security Game

We define the security of an AKE protocol ΠAKE via a game played between an adversary A and a
challenger C. We consider two slightly different variants, each denoted as GameAKE-FS

ΠAKE
and GameAKE-weakFS

ΠAKE
.

The former and latter capture a weakly and perfect forward secure AKE protocol, respectively. Roughly,
when the long-term secret key is exposed, the former only ensures the security of past sessions where the
adversary did not modify the exchanged messages. In contrast, the latter ensures the security of all past
sessions regardless of the adversary actively modifying the exchanged messages. Further details on the
difference are provided in Section 3.2.3. Looking ahead, the main AKE protocol in Section 3.3 achieves
perfect forward secrecy, and its variants that satisfy deniability in Section 3.6 achieve weak forward secrecy.

More formally, the security game is parameterized by two integers µ = poly(κ) (the number of honest
parties) and ℓ = poly(κ) (the maximum number of protocol executions per party), and proceeds as follows,
where the freshness clauses Item 5a and Item 5b is used to define GameAKE-FS

ΠAKE
(µ, ℓ) and GameAKE-weakFS

ΠAKE
(µ, ℓ),

respectively:

Setup: C first chooses a challenge bit b ∈ {0, 1} at random. C then generates the public parameter
of ΠAKE and µ long-term key pair { (lpki, lski) | i ∈ [µ] }, and initializes the collection of oracles
{πs

i | i ∈ [µ], s ∈ [ℓ] }. C runs A providing the public parameter and all the long-term public keys
{ lpki | i ∈ [µ] } as input.

Phase 1: A adaptively issues the following queries any number of times in an arbitrary order:

• Send(i, s, m): This query allows A to send an arbitrary message m to oracle πs
i . The oracle will

respond according to the protocol specification and its current internal state. To start a new
oracle, the message m takes a special form:
⟨START : role, j⟩; C initializes πs

i in the role role, having party Pj as its peer, that is, C sets Pids
i := j

and roles
i := role. If πs

i is an initiator (i.e., role = init), then C returns the first message of the
protocol.9

• RevLTK(i): For i ∈ [µ], this query allowsA to learn the long-term secret key lski of party Pi. After
this query, Pi is said to be corrupted.

• RegisterLTK(i, lpki): For i ∈N \ [µ], this query allows A to register a new party Pi with public
key lpki. We do not require that the adversary knows the corresponding secret key. After the
query, the pair (i, lpki) is distributed to all other oracles. Parties registered by RegisterLTK are
corrupted by definition.

• RevState(i, s): This query allowsA to learn the session-state states
i of oracle πs

i . After this query,
states

i is said to be revealed.

• RevSessKey(i, s): This query allows A to learn the session key ks
i of oracle πs

i .

Test: Once A decides that Phase 1 is over, it issues the following special Test-query which returns a real
or random key depending on the challenge bit b.

• Test(i, s): If (i, s) /∈ [µ]× [ℓ] or results
i ̸= accept, C returns ⊥. Else, C returns kb, where k0 := ks

i
and k1←$K (where K is the session key space).

After this query, πs
i is said to be tested.

9Looking ahead, when the first message is independent of party Pj (i.e., C can first create the first message without knowledge
of Pj and then set Pids

i := j), we call the scheme receiver oblivious. See Section 3.2.4 for more details.

30 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

Phase 2: A adaptively issues queries as in Phase 1.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. At this point, the tested oracle must be fresh. Here, an oracle
πs

i with Pids
i = j10 is fresh if all the following conditions hold:

1. RevSessKey(i, s) has not been issued;

2. if πs
i has a partner πt

j for some t ∈ [ℓ], then RevSessKey(j, t) has not been issued;

3. Pi is not corrupted or states
i is not revealed;

4. if πs
i has a partner πt

j for some t ∈ [ℓ], then Pj is not corrupted or statet
j is not revealed;

5. if πs
i has no partner, then

(a) in game GameAKE-FS
ΠAKE

, Pj is corrupted only after πs
i finishes the protocol execution.

(b) in game GameAKE-weakFS
ΠAKE

, Pj is not corrupted.

If the tested oracle is not fresh, C aborts the game and outputs a random bit b′ on behalf of A.

Definition 3.2.3 (Security of AKE Protocols). Let xxx ∈ {weakFS,FS }. The advantage of A in the security
game GameAKE-xxx

ΠAKE
(µ, ℓ) is defined as

AdvAKE-xxx
ΠAKE,A (κ) :=

∣∣∣∣Pr
[
b = b′

]
− 1

2

∣∣∣∣ .

We say an AKE protocol ΠAKE is secure with perfect (resp. weak) forward secrecy if AdvAKE-FS
ΠAKE,A(κ) ≤ negl(κ)

(resp. AdvAKE-weakFS
ΠAKE,A (κ) ≤ negl(κ)) for any efficient adversaries A.

3.2.3 Security Properties

In this section, we explain the security properties captured by our security model. Comparison between
other protocols is deferred to Section 3.2.5.

The freshness clauses Items 1 and 2 imply that we only exclude the reveal of session keys for the tested
oracle and its partner oracles. These capture key independence: if the revealed session keys are different
from the tested oracle’s key, then such session keys must not enable computing the session key of the
tested oracle. Note that key independence implies resilience to “no-match attacks” presented by Li and
Schäge [LS17]. This is because revealed keys have no information on the tested oracle’s key. Moreover,
the two items capture implicit authentication between the involved parties. This is because an oracle π that
computes the same session key as the tested oracle but disagrees with the peer would not be a partner of
the tested oracle, and hence, an adversary can obtain the tested oracle’s key by querying the session key
computed by π. Specifically, our model captures resistance to unknown key-share (UKS) attacks [BM99]:
a successful UKS attack is a specific type of attack that breaks implicit authentication where two parties
compute the same session key but have different views on whom they are communicating with.

The freshness clauses Items 3 to 5 indicate that the game allows the adversary to reveal any subset of the
four secret items of information — the long-term secret keys and the session-states of the two parties (where
one party is the party defined by the tested oracle and the other its peer) — except for the combination
where both the long-term secret key and session-state of one of the party is revealed. In particular, Item 5a
captures perfect forward secrecy [DVW92; CK01]: the adversary can obtain the long-term secret keys of

10Note that by definition, the peer id Pids
i of a tested oracle πs

i is always defined.

3.2. Security Model for Signal-Conforming AKE Protocols 31

both parties once the tested oracle finishes the protocol and generates a session key. On the other hand,
Item 5b captures weak forward secrecy [Kra05]: the adversary can obtain the long-term secret keys of both
parties only when it has been passive during the protocol run of the tested oracle. In other words, if an
adversary is active (i.e., inject malicious messages) during the protocol execution and further corrupts both
long-term secret keys after the oracles evaluate some session keys, then the adversary can test the oracle in
GameAKE-FS

ΠAKE
, while it cannot in GameAKE-weakFS

ΠAKE
. Another property captured by our model is resistance to

key-compromise impersonation (KCI) attacks [BJM97]. Recall that KCI attacks are those where the adversary
uses a party Pi’s long-term secret key to impersonate other parties towards Pi. This is captured by our
model because the adversary can learn the long-term secret key of a tested oracle without any restrictions.
Most importantly, our model captures resistance to state leakage [CK01; Kra05; LLM07; Fuj+12] where an
adversary is allowed to obtain session-states of both parties. We point out that our security model is strictly
stronger than the recent models [GJ18; Coh+19] that do not allow the adversary to learn session-states.
More discussion on state leakage is provided in Section 3.2.5.

3.2.4 Property for Signal-Conforming AKE: Receiver Obliviousness

In this work, we care for a specific type of (two-round) AKE protocol that is compatible with the X3DH
protocol [MP16b] used by the Signal protocol [Sig]. As explained in Section 3.1.2, the X3DH protocol can
be viewed as a special type of AKE protocol where the Signal server acts as an (untrusted) bulletin board,
where parties can store and retrieve information. More specifically, the Signal server can be viewed as
an adversary of an AKE protocol that controls the communication channel between the parties. When
casting the X3DH protocol as an AKE protocol, one crucial property is that the first message of the
initiator is generated independently of the communication partner. This is because, in secure messaging,
parties are often offline during the key agreement so if the first message depended on the communication
partner, then we must wait until they come online to complete the key agreement. Since we cannot send
messages without agreeing on a session key, such an AKE protocol where the first message depends on the
communication partner cannot be used as an alternative to the X3DH protocol.

We abstract this crucial yet implicit property achieved by the X3DH protocol as receiver obliviousness.
As noted in Footnote 6, this property has also been called as post-specified peers [CK02] in the context of
Internet Key Exchange (IKE) protocols.

Definition 3.2.4 (Receiver Obliviousness/Signal-Conforming). An AKE protocol is receiver oblivious (or
Signal-conforming) if it is two rounds and the initiator can compute the first message without knowledge of the peer
identity and long-term public key of the communication peer.

Many Diffie-Hellman type AKE protocols (e.g., the X3DH protocol used in Signal and some CSIDH-
based AKE protocols [KGV20; Kaw+20]) can be checked to be receiver oblivious.

3.2.5 Relation to Other Security Models

In the literature of AKE protocols, many security models have been proposed: the Bellare-Rogaway (BR)
model [BR94], the Canetti-Krawczyk (CK) model [CK01], the CK+ model [Kra05; Fuj+12], the extended CK
(eCK) model [LLM07], and variants therein [CF12; Bad+15; GJ18; Coh+19; Höv+20; Jag+21]. Although
many of these security models are built based on similar motivations, there are subtle differences. We point
out the notable similarities and differences between our model and the models listed above.
Long-Term Key Reveal. We first compare the models with respect to the secret information the adversary
is allowed to obtain. All models including ours allow the adversary to obtain the party’s long-term secret

32 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

key { lski | i ∈ [µ] }. In some models such as the BR model [BR94] and its variants (e.g., [Bad+15; GJ18;
Coh+19])11, this will be the only information given to an adversary. Although this may be a restricted
model, it often serves as an initial step in proving the security of an AKE protocol.
Session-State Reveal. We can also consider a stronger and more realistic security model where the
adversary is allowed to obtain the secret session-states of the parties. Unlike a party’s long-term secret key
where the definition is clear from context, the notion of secret session-states is rather unclear, and this is one
of the main reasons for the various incomparable security models. In the original CK model [CK01], the
session-state can depend arbitrarily on the long-term secret and the randomness used by the party. More
formally, using the terminology from Section 3.2.1, an adversary can query an oracle πs

i for a secret session-
state f (lski, rs

i) for an arbitrary function f , where rs
i is the randomness hardwired to the oracle πs

i , and we
say the AKE protocol is secure with respect to the session-state defined by f .12 The eCK model [LLM07]
and the CK+ model [Kra05; Fuj+12] made the CK model more accessible by only considering a specific
but natural set of functions.13 The eCK model defines the secret session-state as the randomness used by
the oracle (i.e., f (lski, rs

i) := rs
i). On the other hand, the CK+ model defines the session-state to be what

we called session-state in Section 3.2.1. More specifically, the model allows the adversary to obtain the
session-state states

i (defined at the implementation level) for all oracles except for the tested oracle and
allows the adversary to only obtain the randomness rs∗

i∗ of the tested oracle. As Cremers [Cre11; Cre09]
points out, depending on how we define the function f , states

i and rs
i , these notions provide incomparable

security guarantees. For instance, we can always artificially modify the scheme so that states
i := rs

i but
this usually results in an unnatural and less efficient implementation. Recent works [Höv+20; Jag+21]
consider an arguably more simple and natural definition compared to the CK+ model where the adversary
can obtain all the session-state states

i including the tested oracle. This seems to align with the type of state
leakage considered by the double ratchet protocol and we choose to follow this formalization in our work.
Partnering. Another point of difference is how to define the partnering of two oracles, where recall that
this is used to capture attacks that trivialize the security game. One popular method to define partnering
of two oracles is by the so-called matching conversations used for instance by [BR94; Kra05; Fuj+12; LLM07;
CF12; Bad+15; Coh+19; Höv+20; Jag+21]. As the name indicates, two oracles are partnered when the
input and output (i.e., the conversation between the two oracles) match. One benefit of using matching
conversations is that they are simple to handle; given a particular instantiation of an AKE protocol, a
matching conversation is uniquely defined. However, it was recently observed by Li and Schäge [LS17]
that some protocols using matching conversations are vulnerable against no-match attacks, where two
oracles compute the same session key but do not have matching conversations. A protocol with a no-match
attack allows the adversary to trivially win the security game since it can query the oracle that is not a
partner of the tested oracle but computes the same session key as the tested oracle. It was noted by Li
and Schäge that this is only a hypothetical attack that takes advantage of the security model and has
no meaningful consequence in the real world. Therefore, in this work, we chose to use a more robust
definition based on session identifiers [CK01; dFW20]. Unlike matching conversations, session identifiers
must be explicitly defined for each AKE protocol and we note that if a session identifier is defined to be the
concatenation of sent and received messages, then defining partnering via session identifiers and matching
conversations become equivalent. Finally, we note that Li and Schäge [LS17] proposed another method

11We note that the subsequent variants differ from the original BR model [BR94] as they also model forward secrecy and KCI
attacks.

12Note that the meaning of the session-state is different from those we defined in Section 3.2.1 (i.e., states
i). In the CK model, a

“session-state” is only defined in the security model and does not capture the states
i specified by the implementation.

13These variants also strengthen the CK model by allowing the adversary to obtain the session-state of the tested oracle and by
further modeling KCI attacks.

3.3. Generic Construction of Signal-Conforming AKE 33

to define partnering called original key partnering. This has been used in [GJ18]. The original key of two
oracles is defined as the session key that is computed when the oracles are executed faithfully. Then, in the
security game (i.e., in the presence of an adversary), if two oracles compute their original key, they are said
to be partners. The original key partnering is conceptually cleaner but arguably harder to handle since we
need to consider two session keys for each oracle: the original key and the actual key, in the security game.
Therefore, in this work, we use partnering based on session identifiers.
Number of Test queries. Finally, we allow the adversary to issue only one Test-query in the security
game. This single-challenge setting has been widely used in the literature. However, recently, in order to
evaluate the tightness of the security proof, [Bad+15; GJ18; Coh+19; Jag+21] consider the multi-challenge
setting, where an adversary is allowed to make multiple Test-queries.

Remark 3.2.5 (Implicit and Explicit Authentication). Our model captures implicit authentication, where each
party is assured that no other party aside from the intended peer can gain access to the session key. Here,
note that implicit authentication does not guarantee that the intended peer holds the same key. What
it guarantees is that although your intended peer may be computing a different key, that peer is the
only possible party that can have information on your computed session key. On the other hand, the
property that also guarantees that the intended peer has computed the same session key is called explicit
authentication. In (mutual) explicit authentication protocols, if both parties reach the accept state, then they
are guaranteed to share the same session key. In practice, the distinction between implicit and explicit
authentication is a minor issue since we can always add a key confirmation step to enhance an implicit
authentication AKE protocol into an explicit one [Yan14; Coh+19; dFW20]. For instance, we can send an
encrypted message or a MAC tag under the established session key to check if the peer computed the same
key without compromising security. In the context of Signal, the double ratchet protocol that comes after
the X3DH protocol can be viewed as adding an explicit authentication step.

3.3 Generic Construction of Signal-Conforming AKE

In this section, we propose our Signal-conforming AKE protocol ΠSC-AKE that can be used to construct a
Signal’s initial key agreement (Signal handshake) protocol such as the X3DH protocol. Unlike the X3DH
protocol, the proposed protocol can be instantiated from post-quantum assumptions, and moreover, it also
provides stronger security against state leakage.

3.3.1 Description of Signal-Conforming AKE ΠSC-AKE

The protocol description is presented in Figure 3.2. We emphasize that our AKE protocol is receiver
oblivious since the first message is independent of the communication partner. Details follow.
Building Blocks. Our Signal-conforming AKE protocol ΠSC-AKE consists of the following building blocks.

• KEM = (KEM.Setup,KEM.KeyGen,KEM.Encap,KEM.Decap) is a KEM scheme that is IND-CCA secure
and assume we have (1− δKEM)-correctness, νKEM-high encapsulation key min-entropy and χKEM-
high ciphertext min-entropy.

• wKEM = (wKEM.Setup,wKEM.KeyGen,wKEM.Encap,wKEM.Decap) is a KEM schemes that is IND-CPA
secure (and not IND-CCA secure) and assume we have (1− δwKEM)-correctness, νwKEM-high encapsula-
tion key min-entropy, and χwKEM-high ciphertext min-entropy. In the following, for simplicity of pre-
sentation and without loss of generality, we assume δwKEM = δKEM, νwKEM = νKEM, χwKEM = χKEM.

34 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

Common public parameters: (s, ppKEM, ppwKEM, ppSIG)

Initiator Pi Responder Pj

lpki = (eki, vki), lski = (dki, ski) lpkj = (ekj, vkj), lskj = (dkj, skj)

(ekT , dkT)← wKEM.KeyGen(ppwKEM)

σi ← SIG.Sign(ski, ekT)

statei := dkT

K← KEM.Decap(dki,C)

KT ← wKEM.Decap(dkT ,CT)

K1 ← Exts(K);K2 ← Exts(KT)

sidi := Pi∥Pj∥lpki∥lpkj∥ekT∥C∥CT

k∥k̃← FK1 (sidi)⊕ FK2 (sidi)

σj ← c⊕ k̃

SIG.Verify(vkj, sidi, σj)
?
= 1

Output the session key k

ekT , σi

C,CT , c

SIG.Verify(vki, ekT , σi)
?
= 1

(K,C)← KEM.Encap(eki)

(KT ,CT)← wKEM.Encap(ekT)

K1 ← Exts(K);K2 ← Exts(KT)

sidj := Pi∥Pj∥lpki∥lpkj∥ekT∥C∥CT

k∥k̃← FK1 (sidj)⊕ FK2 (sidj)

σj ← SIG.Sign(skj, sidj)

c← σj ⊕ k̃

Output the session key k

FIGURE 3.2: Our Signal-conforming AKE protocol ΠSC-AKE.

• SIG = (SIG.Setup,SIG.KeyGen,SIG.Sign,SIG.Verify) is a signature scheme that is EUF-CMA secure and
(1− δSIG)-correctness. We denote d as the bit length of the signature generated by SIG.Sign.

• F : K× {0, 1}∗ → {0, 1}κ+d is a pseudo-random function family with key space K.

• Ext : S ×KS → K is a strong (γKEM, εExt)-extractor.

Public Parameters. All the parties in the system are provided with the following public parameters as input:
(s, ppKEM, ppwKEM, ppSIG). Here, s is a random seed chosen uniformly from S for the strong randomness
extractor, and ppX for X ∈ {KEM,wKEM, SIG } are public parameters generated by X.Setup.
Long-Term Public and Secret Keys. Each party Pi runs (eki, dki)← KEM.KeyGen(ppKEM) and (vki, ski)←
SIG.KeyGen(ppSIG). Party Pi’s long-term public key and secret key are set as lpki = (eki, vki) and lski =
(dki, ski), respectively.
Construction. A key exchange between an initiator Pi in the s-th session (i.e., πs

i) and responder Pj in the
t-th session (i.e., πt

j) is executed as in Figure 3.2. More formally, we have the following.

1. Party Pi sets Pids
i := j and roles

i := init. Pi computes (dkT, ekT) ← wKEM.KeyGen(ppwKEM) and
σi ← SIG.Sign(ski, ekT). Then it sends (ekT, σi) to party Pj. Pi stores the ephemeral decapsulation key
dkT as the session-state, i.e., states

i := dkT.14

2. Party Pj sets Pidt
j := i and rolet

j := resp. Upon receiving (ekT, σi), Pj first checks whether SIG.Verify(vki,
ekT, σi) = 1 holds. If not, Pj sets (resultt

j, k
t
j, state

t
j) := (reject,⊥,⊥) and stops. Otherwise, it

computes (K,C) ← KEM.Encap(eki) and (KT,CT) ← wKEM.Encap(ekT). Then Pj derives two

14Notice the protocol is receiver oblivious since the first message is computed independently of the receiver.

3.3. Generic Construction of Signal-Conforming AKE 35

PRF keys K1 ← Exts(K) and K2 ← Exts(KT). It then defines the session identifier as sidt
j :=

Pi∥Pj∥lpki∥lpkj∥ekT∥C∥CT and computes k∥k̃ ← FK1(sidj) ⊕ FK2(sidj), where k ∈ {0, 1}κ and k̃ ∈
{0, 1}d, and sets the session key as kt

j := k. Pj then signs σ ← SIG.Sign(skj, sidt
j) and encrypts it as

c ← σ⊕ k̃. Finally, it sends (C,CT, c) to Pi and sets resultt
j := accept. Here, note that Pj does not

require to store any session-state, i.e., statet
j = ⊥.

3. Upon receiving (C,CT, c), Pi first decrypts K← KEM.Decap(dki,C) and KT ← wKEM.Decap(dkT,CT),
and derives two PRF keys K1 ← Exts(K) and K2 ← Exts(KT). It then sets the session identifier as
sids

i := Pi∥Pj∥lpki∥lpkj∥ekT∥C∥CT and computes k∥k̃← FK1(sidi)⊕ FK2(sidi), where k ∈ {0, 1}κ and
k̃ ∈ {0, 1}d. Pi then decrypts σ ← c⊕ k̃ and checks whether SIG.Verify(vkj, sids

i , σ) = 1 holds. If
not, Pi sets (results

i , k
s
i , state

s
i) := (reject,⊥,⊥) and stops. Otherwise, it sets (results

i , k
s
i , state

s
i) :=

(accept, k,⊥). Here, note that Pi deletes the session-state states
i = dkT at the end of the key exchange

(i.e., sets states
i := ⊥).

Remark 3.3.1 (A Note on Session-State). The session-state of the initiator Pi contains the ephemeral de-
cryption key dkT, and Pi must store it until the peer responds. Any other information that is computed
after receiving the message from the peer is erased after the session key is established. In contrast, the
responder Pj has no session-state because the responder directly computes the session key after receiving
the initiator’s message and does not need to store any session-specific information. That is, all states can be
erased as soon as the session key is computed.

3.3.2 Security of Signal-Conforming AKE ΠSC-AKE

We first prove the correctness of the proposed protocol ΠSC-AKE.

Theorem 3.3.2 (Correctness of ΠSC-AKE). Assume KEM and wKEM are (1− δKEM)-correct and SIG is (1− δSIG)-
correct. Then, ΠSC-AKE is (1− µℓ(δSIG + 2δKEM)/2)-correct.

Proof. It is clear that an initiator oracle and a responder oracle become partners when they execute the
protocol faithfully. Moreover, if no correctness error occurs in the underlying KEM and signature scheme,
the partner oracles compute an identical session key. Since each oracle is assigned to uniform randomness,
the probability that a correctness error occurs in one of the underlying schemes is bounded by δSIG + 2δKEM.
Since there are at most µℓ/2 responder oracles, the AKE protocol is correct except with probability
µℓ(δSIG + 2δKEM)/2.

We then prove the security of ΠSC-AKE.

Theorem 3.3.3 (Security of ΠSC-AKE). For any QPT adversaries A that plays the game GameAKE-FS
ΠSC-AKE

(µ, ℓ) with µ
parties that establishes at most ℓ sessions per party, there exist QPT algorithms B1 breaking the IND-CPA security
of wKEM, B2 breaking the IND-CCA security of KEM, B3 breaking the EUF-CMA security of SIG, and D1 and D2
breaking the security of PRF F such that

AdvAKE-FS
ΠSC-AKE,A(κ) ≤max

µ2ℓ2 · (2AdvIND-CPA

wKEM,B1
(κ) + AdvPRFF,D1

(κ) + εExt),

µ2ℓ · (2AdvIND-CCA
KEM,B2

(κ) + AdvPRFF,D2
(κ) + εExt) + µℓ2 ·

(
1

22χKEM
+ 1

2νKEM

)
,

µ · AdvEUF-CMA
SIG,B3

(κ),

+

µℓ

2
· (δSIG + 2δKEM)

36 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

TABLE 3.1: The strategy taken by the adversary in the security game when the tested oracle is
fresh. “Yes” means the tested oracle has some (possibly non-unique) partner oracles and “No”
means it has none. “¦” means the adversary can reveal the secret-key/session-state at any
time, “✓” means the adversary can reveal the secret-key after the tested oracle completes its
execution, “p” means the adversary does not reveal secret-key/session-state. “-” means the
session-state is not defined.

Strategy Role of tested oracle Partner oracle lskinit stateinit lskresp stateresp
Type-1 init or resp Yes ¦ p ¦ p
Type-2 init or resp Yes ¦ p p ¦
Type-3 init or resp Yes p ¦ ¦ p
Type-4 init or resp Yes p ¦ p ¦
Type-5 init No ¦ p ✓ -
Type-6 init No p ¦ ✓ -
Type-7 resp No ✓ - ¦ p
Type-8 resp No ✓ - p ¦

where νKEM (resp. χKEM) is the encapsulation key (resp. ciphertext) min-entropy of wKEM and KEM. The running
time of B1, B2, B3, D1, and D2 are about that of A.

We first provide an overview of the proof.

Proof sketch. Let A be an adversary that plays the security game GameAKE-FS
ΠSC-AKE

(µ, ℓ). We distinguish between
all possible strategies that can be taken by A. Specifically, A’s strategy can be divided into the eight
types of strategies listed in Table 3.1. Here, each strategy is mutually independent and covers all possible
(non-trivial) strategies. We point out that for our specific AKE construction we have stateresp := ⊥ since
the responder does not maintain any states (see Remark 3.3.1). Therefore, the Type-1 (resp. Type-3, Type-7)
strategy is strictly stronger than the Type-2 (resp. Type-4, Type-8) strategy. Concretely, for our proof, we
only need to consider the following four cases and to show that A has no advantage in each case: (a) A
uses the Type-1 strategy; (b) A uses the Type-3 strategy; (c) A uses the Type-5 or Type-6 strategy; (d) A
uses the Type-7 strategy.

In cases (a) and (b), the session key is informally protected by the security properties of KEM, PRF, and
randomness extractor Ext. In case (a), since the ephemeral decapsulation key dkT is not revealed, KT is
indistinguishable from a random key due to the IND-CPA security of wKEM. On the other hand, in case
(b), since the initiator’s decapsulation key dkinit is not revealed, K is indistinguishable from a random key
due to the IND-CCA security of KEM. Here, we require IND-CCA security because there are initiator oracles
other than the tested oracle that uses dkinit, which the reduction algorithm needs to simulate. This is in
contrast to case (a) where dkT is only used by the tested oracle. Then, in both cases, since either KT or K
has sufficient high min-entropy from the view of the adversary, Ext on input KT or K outputs a uniformly
random PRF key. Finally, we can invoke the pseudo-randomness of the PRF and argue that the session key
in the tested oracle is indistinguishable from a random key.

In cases (c) and (d), the session key is informally protected by the security property of the signature
scheme. More concretely, in both cases, the peer’s signing key sk of the tested oracle is not revealed when
the tested oracle runs the protocol. Thus, due to the EUF-CMA security of SIG, A cannot forge the signature
for the session identifier of the tested oracle sidtest (in case (c)) or for the ephemeral encapsulation key ekT
(in case (d)). In addition, since the tested oracle has no partner oracles, no oracle ever signs sidtest (in case
(c)) or ekT (in case (d)). Therefore, combining these two facts, we conclude that the tested oracle cannot be

3.3. Generic Construction of Signal-Conforming AKE 37

in the accept state unless A breaks the signature scheme. In other words, when A issues Test-query, the
tested oracle always returns ⊥ even if A corrupts the long-term key of the peer. Thus, the session key of
the tested oracle is hidden from A.

The full proof of Theorem 3.3.3 is as follows.

Proof of Theorem 3.3.3. Let A be an adversary that plays the security game GameAKE-FS
ΠSC-AKE

(µ, ℓ) with the
challenger C with advantage AdvAKE-FS

ΠSC-AKE,A(κ) = ϵ. In order to prove Theorem 3.3.3, we distinguish between
the strategy that can be taken by the A. Specifically, A’s strategy can be divided into the eight types
of strategies listed in Table 3.1. Here, each strategy is mutually independent and covers all possible
(non-trivial) strategies.15 We point out that for our specific AKE construction we have stateresp := ⊥ since
the responder does not maintain any states (see Remark 3.3.1). Therefore, the Type-1 (resp. Type-3, Type-7)
strategy is strictly stronger than the Type-2 (resp. Type-4, Type-8) strategy. We only include the full types
of strategies in Table 3.1 as we believe it would be helpful when proving other AKE protocols and note that
our proof implicitly handles both strategies at the same time.

For each possible strategy taken by A, we construct an algorithm that breaks one of the underlying
assumptions by using such an adversary A as a subroutine. More formally, we construct six algorithms B1,
B2, B3,0, B3,1, D1 and D2 satisfying the following:

1. IfA uses the Type-1 (or Type-2) strategy, then B1 succeeds in breaking the IND-CPA security of wKEM
with advantage ≈ 1

µ2ℓ2 ϵ or D1 succeeds in breaking the security of PRF F with advantage ≈ 1
µ2ℓ2 ϵ.

2. If A uses the Type-3 (or Type-4) strategy, then B2 succeeds in breaking the IND-CCA security of KEM
with advantage ≈ 1

µ2ℓ
ϵ or D2 succeeds in breaking the security of PRF F with advantage ≈ 1

µ2ℓ
ϵ.

3. If A uses the Type-5 or Type-6 strategy, then B3,0 succeeds in breaking the EUF-CMA security of SIG
with advantage ≈ 1

µ ϵ.

4. If A uses the Type-7 (or Type-8) strategy, then B3,1 succeeds in breaking the EUF-CMA security of SIG
with advantage ≈ 1

µ ϵ.

We present a security proof structured as a sequence of games. Without loss of generality, we assume
that A always issues a Test-query. In the following, let Sj denote the event that b = b′ occurs in Game j
and let ϵj :=

∣∣Pr
[
Sj
]
− 1/2

∣∣ denote the advantage of the adversary in Game j. Regardless of the strategy
taken by A, all proofs share the common game sequences Game 0 and Game 1 as described below.
Game 0. This game is identical to the original security game. We thus have

ϵ0 = ϵ.

Game 1. This game is identical to Game 0, except that we add an abort condition. Let Ecorr be the event that
there exist two partner oracles πs

i and πt
j that do not agree on the same session key. If Ecorr occurs, then C

aborts (i.e., sets A’s output to be a random bit) at the end of the game.
There are at most µℓ/2 responder oracles and each oracle is assigned uniform randomness. From

Theorem 3.3.2, the probability of error occurring during the security game is at most µℓ(δSIG + 2δKEM)/2.

15We note that although we can consider an adversary A that makes no reveal queries (i.e., all lsk and state are either p or “-”),
we can exclude them without loss of generality since such A can always be modified into an adversary A′ that follows one of the
strategies listed in Table 3.1.

38 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

Therefore, Ecorr occurs with probability at most µℓ(δSIG + 2δKEM)/2. We thus have

|Pr [S0]− Pr [S1]| ≤
µℓ

2
· (δSIG + 2δKEM).

In the following games we assume no decryption error or signature verification error occurs.
We now divide the game sequence depending on the strategy taken by the adversary A. Regardless of

A’s strategy, we prove that ϵ1 is negligible, which in particular implies that ϵ is also negligible. Formally,
this is shown in Lemmata 3.3.4 to 3.3.7 provided in their respective subsections below. We first complete
the proof of the theorem. Specifically, by combining all the lemmata together and folding adversaries B3,0
and B3,1 into one adversary B3, we obtain the following desired bound:

AdvAKE-FS
ΠSC-AKE,A(κ) ≤max

µ2ℓ2 · (2AdvIND-CPA

wKEM,B1
(κ) + AdvPRFF,D1

(κ) + εExt),

µ2ℓ · (2AdvIND-CCA
KEM,B2

(κ) + AdvPRFF,D2
(κ) + εExt) + µℓ2 ·

(
1

22χKEM
+ 1

2νKEM

)
,

µ · AdvEUF-CMA
SIG,B3

(κ),

+

µℓ

2
· (δSIG + 2δKEM)

Here, the running time of the algorithms B1, B2, B3, D1 and D2 consist essentially the time required to
simulate the security game for A once, plus a minor number of additional operations.

It remains to prove Lemmata 3.3.4 to 3.3.7.
Proof of Lemma 3.3.4: Against Type-1 or Type-2 Adversary.

Lemma 3.3.4. For any QPT adversaries A using the Type-1 or Type-2 strategy, there exist QPT algorithms B1
breaking the IND-CPA security of wKEM and D1 breaking the security of PRF F such that

ϵ1 ≤ µ2ℓ2 ·
(

2AdvIND-CPA
wKEM,B1

(κ) + AdvPRFF,D1
(κ) + εExt

)
.

Proof of Lemma 3.3.4. We present the rest of the sequence of games from Game 1.
Game 2. In this game, at the beginning of the game, C chooses an initiator oracle π ŝ

ı̂ and a responder oracle
π t̂

ȷ̂ uniformly at random from the µℓ oracles. Let EtestO be the event that the tested oracle is neither π ŝ
ı̂ nor

π t̂
ȷ̂ , or π ŝ

ı̂ and π t̂
ȷ̂ are not partner. Since EtestO is an efficiently checkable event, C aborts as soon as it detects

that event EtestO occurs.16 C guesses the choice made by A correctly with probability at least 1/µ2ℓ2, so we
have

ϵ2 ≥
1

µ2ℓ2 ϵ1.

Game 3. In this game, we modify the way the initiator oracle π ŝ
ı̂ responds on its second invocation. In

particular, when π ŝ
ı̂ is invoked (on the second time) on input (C,CT, c), it proceeds as in the previous

game except that it uses the key KT that was generated by the responder oracle π t̂
ȷ̂ rather than using

the key obtained through decrypting CT. Here, conditioned on EtestO not occurring, we are guaranteed
that the responder oracle π t̂

ȷ̂ generated CT by running (KT,CT) ← wKEM.Encap(ekT), where ekT is the

16For example, C can efficiently notice if the two oracles π ŝ
ı̂ and π t̂

ȷ̂ become non-partners even before A makes a Test-query by
checking the input-output of each oracles.

3.3. Generic Construction of Signal-Conforming AKE 39

encapsulation key that π ŝ
ı̂ outputs on the first invocation. This is because otherwise, the oracles π ŝ

ı̂ and
π t̂

ȷ̂ will not be partner oracles. Conditioning on event Ecorr (i.e., decryption failure) not occurring, the two
games Game 2 and Game 3 are identical. Hence,

ϵ3 = ϵ2.

Game 4. In this game, we modify the way the responder oracle π t̂
ȷ̂ responds. When the responder oracle π t̂

ȷ̂

is invoked on input ekT, the game samples a random key KT←$KSwKEM instead of computing (KT,CT)←
wKEM.Encap(ekT). Note that when the initiator oracle π ŝ

ı̂ is invoked (on the second time) on input (C,CT, c),
it uses this random key KT. We claim Game 3 and Game 4 are indistinguishable assuming the IND-CPA
security of wKEM. To prove this, we construct an algorithm B1 breaking the IND-CPA security as follows.
B1 receives a public parameter ppwKEM, a public key ek∗, and a challenge (K∗,C∗) from its challenger.

B1 sets up the public parameter of ΠSC-AKE using ppwKEM and computes (lpki, lski) for all i ∈ [µ] by running
the protocol honestly, and samples (ı̂, ȷ̂, ŝ, t̂) uniformly random from [µ]2 × [ℓ]2. It then invokes A on the
public parameter of ΠSC-AKE and { lpki | i ∈ [µ] } and answers queries made by A as follows:

• Send(i, s, ⟨START : role, j⟩): If (i, s, j) = (ı̂, ŝ, ȷ̂), then B1 returns ek∗ to A and implicitly sets states
i :=

dk∗. Otherwise, B1 responds as in Game 4.

• Send(j, t, m = (ekT, σi)): Let i := Pidt
j. Depending on the values of (j, t, i), it performs the following:

– If (j, t) = (ȷ̂, t̂) and i ̸= ı̂, then π ŝ
ı̂ and π t̂

ȷ̂ cannot be partner oracles. Therefore, since event EtestO

is triggered B1 aborts.

– If (j, t, i) = (ȷ̂, t̂, ı̂), then B1 checks if ekT = ek∗. If not, event EtestO is triggered so it aborts.
Otherwise, it proceeds as in Game 4 except that it sets KT = K∗ and CT = C∗ rather than
sampling them on its own. It then returns the message (C,CT, c).

– If (j, t, i) ̸= (ȷ̂, t̂, ı̂), then B1 responds as in Game 4.

• Send(i, s, m = (C,CT, c)): Let j := Pids
i . Depending on the values of (i, s, j), it performs the following:

– If (i, s) = (ı̂, ŝ) and j ̸= ȷ̂, then π ŝ
ı̂ and π t̂

ȷ̂ cannot be partner oracles. Therefore, since event EtestO

is triggered B1 aborts.

– If (i, s, j) = (ı̂, ŝ, ȷ̂), then B1 checks if CT = C∗. If not, event EtestO is triggered so it aborts.
Otherwise, it responds as in Game 4.

– If (i, s, j) ̸= (ı̂, ŝ, ȷ̂), then B1 responds as in Game 4.

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B1 proceeds as in the previous game.
Here, note that since A follows the Type-1 or Type-2 strategy, B1 can answer all the RevState-query.
Namely, A never queries RevState(ı̂, ŝ) (i.e., stateŝ

ı̂ := dk∗) conditioning on EtestO not occurring,
which is the only query that B1 cannot answer.

• Test(i, s): B1 responds as in Game 4. Here, in case (i, s) ̸∈ { (ı̂, ŝ), (ȷ̂, t̂) }, then event EtestO is triggered
so it aborts.

Finally, if A outputs a guess b′, B1 outputs 0 if b′ = b 1 otherwise. It can be checked that B1 perfectly
simulates Game 3 (resp. Game 4) to A when the challenge K∗ is the real key (resp. a random key). Thus we
have

|Pr [S3]− Pr [S4]| ≤ 2AdvIND-CPA
wKEM,B1

(κ).

40 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

Game 5. In this game, we modify how the PRF key K2 is generated by the tested oracle and its partner
oracle. Instead of computing K2 ← Exts(KT), both oracles use the same randomly sampled K2←$K. Due
to the modification we made in the previous game, KT is chosen uniformly at random from KSwKEM so KT
has log2(|KSwKEM|) ≥ γKEM min-entropy. Then, by the definition of the strong (γKEM, εExt)-extractor Ext,
we have

|Pr [S4]− Pr [S5]| ≤ εExt.

Game 6. In this game, we modify how the session key k is generated by the tested oracle. Instead of
computing k∥k̃ ← FK1(sid)⊕ FK2(sid), the tested oracle (which is either π ŝ

ı̂ or π t̂
ȷ̂ conditioned on event

EtestO not occurring) computes the session key as k∥k̃ ← FK1(sid) ⊕ x, where x is chosen uniformly at
random from {0, 1}κ+d. Since K2 is chosen uniformly and hidden from the views of the adversaryA, games
Game 5 and Game 6 are indistinguishable by the security of the PRF.17 In particular, we can construct a PRF
adversary D1 that uses A as a subroutine such that

|Pr [S5]− Pr [S6]| ≤ AdvPRFF,D1
(κ).

In Game 6, the session key in the tested oracle is chosen uniformly at random. Thus, even an unbounded
adversary A cannot have distinguishing advantages. Therefore, Pr [S6] = 1/2. Combining everything
together, we have

ϵ1 ≤ µ2ℓ2 ·
(

2AdvIND-CPA
wKEM,B1

(κ) + AdvPRFF,D1
(κ) + εExt

)
.

Proof of Lemma 3.3.5: Against Type-3 or Type-4 Adversary.

Lemma 3.3.5. For any QPT adversary A using the Type-3 or Type-4 strategy, there exist QPT algorithms B2
breaking the IND-CCA security of KEM and D2 breaking the security of PRF F such that

ϵ1 ≤ µ2ℓ ·
(

2AdvIND-CCA
KEM,B2

(κ) + AdvPRFF,D2
(κ) + εExt

)
+ µℓ2 ·

(
1

22χKEM
+

1
2νKEM

)
.

Proof of Lemma 3.3.5. We present the rest of the sequence of games from Game 1.
Game 2. This game is identical to Game 1, except that we add another abort condition. Let Euniq be the event
that there exists an oracle that has more than one partner oracle. If Euniq occurs, then C aborts. Since Game 1
and Game 2 proceed identically unless Euniq occurs, we have

|ϵ1 − ϵ2| ≤ Pr [Euniq] .

We claim

Pr [Euniq] ≤ µℓ2 ·
(

1
22χKEM

+
1

2νKEM

)
.

Fix j ∈ [µ] and consider the set of oracles Sj = {πs
i | Pid

s
i = j }. For any πs

i ∈ Sj, if there exist two oracles
πt

j and πt′
j with t ̸= t′ ∈ [ℓ] that are partners of πs

i , then sids
i = sidt

j = sidt′
j holds. We distinguish between

the following cases.

17We note that for Lemma 3.3.4 we do not require the full power of the PRF; a pseudorandom generator (PRG) would have
sufficed since the key K2 is used nowhere else in the game.

3.3. Generic Construction of Signal-Conforming AKE 41

Case 1. We first consider the case πs
i is an initiator and πt

j and πt′
j are responders. Let ekT be the ephemeral

encapsulation key generated by πs
i . In this case, Euniq occurs if the responder oracles πt

j and πt′
j generate the

same ciphertext with respect to eki and ekT. Since eki and ekT are independently and honestly generated
by the game and each responder oracle is assigned uniform randomness, the probability of a ciphertext
collision is upper bounded by ℓ2/22χKEM , where recall χKEM is the ciphertext min-entropy of wKEM and
KEM. Taking the union bound over all j ∈ [µ], we conclude that Case 1 occurs with probability at most
µℓ2/22χKEM .
Case 2. We next consider the case πs

i is a responder and πt
j and πt′

j are initiators. In this case, Euniq occurs if

the initiator oracles πt
j and πt′

j generate the same ephemeral encapsulation key. Since each initiator oracle
samples an encapsulation key independently, the probability of an encapsulation key collision is upper
bounded by ℓ2/2νKEM , where recall νKEM is the encapsulation key min-entropy of wKEM. Taking the union
bound over all j ∈ [µ], we conclude that Case 2 occurs with probability at most µℓ2/2νKEM .

The claim can be shown by combining the two probabilities from Case 1 and Case 2. In the following
games, we assume every oracle has a unique partner oracle if it exists.
Game 3. In this game, at the beginning of the game, C chooses a random party Pı̂ from the µ parties and a
random responder oracle π t̂

ȷ̂ from the µℓ oracles. Let EtestO be the event where ¬EtestO denotes the event

that either the tested oracle is π ŝ
ı̂ for some s ∈ [ℓ] and its partner oracle is π t̂

ȷ̂ , or the tested oracle is π t̂
ȷ̂ and

its peer is Pı̂. Since EtestO is an efficiently checkable event, C aborts as soon as it detects that event EtestO

occurs. C guesses the choice made by A correctly with probability 1/µ2ℓ, so we have

ϵ3 =
1

µ2ℓ
ϵ2.

Game 4. In this game, we modify the way the initiator oracle πs
ı̂ for any s ∈ [ℓ] responds on its second

invocation. Let (K,C) be the KEM key-ciphertext pair generated by oracle π t̂
ȷ̂ . Then, when πs

ı̂ is invoked
(on the second time) on input (C′,CT, c), it first checks if C′ = C. If so, it proceeds as in the previous
game except that it uses the key K that was generated by π t̂

ȷ̂ rather than using the key obtained through
decrypting C′. Otherwise, if C′ ̸= C, then it proceeds exactly as in the previous game. Conditioning on
event Ecorr (i.e., decryption failure) not occurring, the two games Game 3 and Game 4 are identical. Hence,

ϵ4 = ϵ3.

Game 5. In this game, we modify the way the responder oracle π t̂
ȷ̂ responds. When the responder ora-

cle π t̂
ȷ̂ is invoked on input ekT, it samples a random key K←$KSKEM instead of computing (K,C) ←

KEM.Encap(ekı̂). Note that due to the modification we made in the previous game, when the initiator
oracle πs

ı̂ for any s ∈ [ℓ] is invoked (on the second time) on input (C′,CT, c) for C′ = C, it uses the random
key K generated by oracle π t̂

ȷ̂ . We claim Game 4 and Game 5 are indistinguishable assuming the IND-CCA
security of KEM. To prove this, we construct an algorithm B2 breaking the IND-CCA security as follows.
B2 receives a public parameter ppKEM, a public key ek∗, and a challenge (K∗,C∗) from its challenger.

B2 then samples a random (ı̂, ȷ̂, t̂)←$ [µ]2 × [ℓ], sets up the public parameter of ΠSC-AKE using ppKEM, and
generates the long-term key pairs as follows. For party Pı̂, B2 runs (vkı̂, skı̂)← SIG.KeyGen(ppSIG) and sets
the long-term public key as lpkı̂ := (ek∗, vkı̂) and implicitly sets the long-term secret key as lskı̂ := (dk∗, skı̂),
where note that B2 does not know dk∗. For all the other parties i ∈ [µ\ı̂], B2 computes the long-term

42 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

key pairs (lpki, lski) as in Game 5. Finally, B2 invokes A on input the public parameter of ΠSC-AKE and
{ lpki | i ∈ [µ] } and answers the queries made by A as follows:

• Send(i, s, ⟨START : role, j⟩): B2 responds as in Game 5.

• Send(j, t, m = (ekT, σi)): Let i := Pidt
j. Depending on the values of (j, t, i), it performs the following:

– If (j, t, i) = (ȷ̂, t̂, ı̂), then B2 responds as in Game 5 except that it sets (K,C) := (K∗,C∗) rather
than generating them on its own. It then returns the message (C∗,CT, c).

– If (j, t, i) ̸= (ȷ̂, t̂, ı̂), then B2 responds as in Game 5.

• Send(i, s, m = (C,CT, c)): Depending on the value of i, it performs the following:

– If i = ı̂, then B2 checks if C = C∗. If so, it responds as in Game 5 except that it sets K := K∗.
Otherwise, if C ̸= C∗, then it queries the decapsulation oracle on C and receives back K′. B2 then
responds as in Game 5 except that it sets K := K′.

– If i ̸= ı̂, then B2 responds as in Game 5.

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B2 responds as in Game 5. Here, note
that since A follows the Type-3 or Type-4 strategy, B2 can answer all the RevLTK-query. Namely, A
never queries RevLTK(ı̂) (i.e., lskı̂ := (dk∗, skı̂)) conditioning on EtestO not occurring, which is the only
query that B2 cannot answer.

• Test(i, s): B2 responds to the query as the definition. Here, in case i ̸= ı̂ or (i, s) ̸= (ȷ̂, t̂), then event
EtestO is triggered so it aborts.

If A outputs a guess b′, B2 outputs 0 if b′ = b 1 otherwise. It can be checked that B2 perfectly simulates
Game 4 (resp. Game 5) to A when the challenge K∗ is the real key (resp. a random key). Thus we have

|Pr [S4]− Pr [S5]| ≤ 2AdvIND-CCA
KEM,B2

(κ).

Game 6. In this game, whenever we need to derive K∗1 ← Exts(K∗), we instead use a uniformly and
randomly chosen PRF key K∗1←$K (fixed once and for all), where K∗ is the KEM key chosen by oracle π t̂

ȷ̂ .
Due to the modification we made in the previous game, K∗ is chosen uniformly at random from KSKEM so
K has log2(|KSKEM|) ≥ γKEM min-entropy. Then, by the definition of the strong (γKEM, εExt)-extractor Ext,
we have

|Pr [S5]− Pr [S6]| ≤ εExt.

Game 7. In this game, we sample a random function RF and whenever we need to compute FK∗1 (sid) for any
sid, we instead compute RF(K∗1 , sid). Due to the modification made in the previous game, K∗1 is sampled
uniformly from K. Therefore, the two games can be easily shown to be indistinguishable assuming the
pseudo-randomness of the PRF. In particular, we can construct a PRF adversary D2 such that

|Pr [S6]− Pr [S7]| ≤ AdvPRFF,D2
(κ).

It remains to show that the session key output by the tested oracle in the game7 is uniformly random
regardless of the challenge bit b ∈ {0, 1} chosen by the game. We consider the case where b = 0 and
prove that the honestly generated session key by the tested oracle is distributed uniformly random. First
conditioning on event EtestO not occurring, it must be the case that the tested oracle (and its partner oracle)

3.3. Generic Construction of Signal-Conforming AKE 43

prepares the session key as k∗∥k̃ ← RF(K∗1 , sid∗) ⊕ FK2(sid
∗) for some sid∗. That is, K∗1 sampled by the

responder oracle π t̂
ȷ̂ is used to compute the session key. Next, conditioning on event Euniq not occurring,

the only oracles that share the same sid∗ must be the tested oracle and its partner oracle since otherwise it
would break the uniqueness of partner oracles. Therefore, we conclude that RF(K∗1 , sid∗) is only used to
compute the session key of the tested oracle and its partner oracle. Since the output of RF is distributed
uniformly random for different inputs, we conclude that Pr [S7] = 1/2. Combining all the arguments
together, we obtain

ϵ1 ≤ µ2ℓ ·
(

2AdvIND-CCA
KEM,B2

(κ) + AdvPRFF,D2
(κ) + εExt

)
+ µℓ2 ·

(
1

22χKEM
+

1
2νKEM

)
.

Proof of Lemma 3.3.6: Against Type-5 or Type-6 Adversary.

Lemma 3.3.6. For any QPT adversary A using the Type-5 or Type-6 strategy, there exists a QPT algorithm B3,0
breaking the EUF-CMA of SIG such that

ϵ1 ≤ µ · AdvEUF-CMA
SIG,B3,0

(κ).

Proof of Lemma 3.3.6. We present the rest of the sequence of games from Game 1.
Game 2. In this game, at the beginning of the game, C chooses a party P ȷ̂ uniformly at random from the µ
parties. Let EtestO be the event that the peer of the tested oracle is not P ȷ̂. If event EtestO occurs, C aborts.
Since C guesses the choice made by A correctly with probability 1/µ, we have

ϵ2 =
1
µ

ϵ1.

Game 3. This game is identical to Game 2, except that we add an abort condition. Let S be a list of message-
signature pairs that P ȷ̂ generated as being a responder oracle. That is, every time πt

ȷ̂ for some t ∈ [ℓ]

is invoked as a responder, it updates the list S by appending the message-signature pair (sidt
ȷ̂, σt

ȷ̂) that
it generates. Then, when an initiator oracle πs

i for any (i, s) ∈ [µ] × [ℓ] is invoked on input (C,CT, c)
from party P ȷ̂ (i.e., Pids

i = ȷ̂), it first computes sids
i and σ as in the previous game, and it checks whether

(sids
i , σ) ∈ S when SIG.Verify(vk ȷ̂, sids

i , σ) = 1 and P ȷ̂ is not corrupted. If this condition does not hold, the
game aborts. Otherwise, it proceeds as in the previous game. We call the event the abort occurs as Esig.
Since the two games are identical until abort, we have

|Pr [S2]− Pr [S3]| ≤ Pr [Esig] .

Before, bounding Pr [Esig], we finish the proof of the lemma. We show that no adversary A following
the Type-5 or Type-6 strategy has winning advantage in Game 3, i.e., Pr[S3] = 1/2. To see this, let us
assume A issued Test(i∗, s∗) and received a key that is not a ⊥. That is πs∗

i∗ is in the accept state. Due
to the modification we made in game2 and by the definition of the Type-5 or Type-6 strategy, πs∗

i∗ has no
partner oracle πt

ȷ̂ for any t ∈ [ℓ] and the peer P ȷ̂ was not corrupted before πs∗
i∗ completes the protocol

execution conditioning on EtestO not occurring. On the other hand, if πs∗
i∗ is in the accept state, then event

Esig must have not triggered. Consequently, there exists some oracle πt
ȷ̂ that output (sids∗

i∗ , σ∗). Parsing

sids∗
i∗ as Pi∗∥P ȷ̂∥lpki∗∥lpk ȷ̂∥ek∗T∥C∗∥C∗T, this implies that πt

ȷ̂ and πs∗
i∗ are partner oracles. Since this forms

44 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

a contradiction, A can only receive ⊥ when it issues Test(i∗, s∗). Hence, since the challenge bit b is
statistically hidden from A, we have Pr[S3] = 1/2.

It remains to bound Pr [Esig]. We do this by constructing an algorithm B3,0 against the EUF-CMA
security of SIG. The description of B3,0 follows: B3,0 receives the public parameter ppSIG and the challenge
verification key vk∗. B3,0 sets up the public parameter of ΠSC-AKE as in Game 2 using ppSIG. B3,0 then
samples ȷ̂ randomly from [µ], runs (dk ȷ̂, ek ȷ̂) ← KEM.KeyGen(ppKEM), and sets the long-term public key
of party P ȷ̂ as lpk ȷ̂ := (ek ȷ̂, vk∗). The long-term secret key is implicitly set as lsk ȷ̂ := (dk ȷ̂, sk∗), where sk∗ is
unknown to B3,0. For the rest of the parties Pi for i ∈ [µ\ ȷ̂], B3,0 generates (lpki, lski) as in Game 2. Finally,
B3,0 invokes A on input the public parameter of ΠSC-AKE and { lpki | i ∈ [µ] } and answers the queries by
A as follows:

• Send(i, s, ⟨START : role, j⟩): B3,0 responds as in Game 2.

• Send(j, t, m = (ekT, σi)): Depending on the value of j, it performs the following:

– If j = ȷ̂, then B3,0 prepares sidt
ȷ̂ as in Game 2, and then sends sidt

ȷ̂ to its signing oracle and receives
back a signature σ′ for message sidt

ȷ̂ under sk∗. B3,0 then responds as in Game 2 except that it sets
σ := σ′.

– If j ̸= ȷ̂, then B3,0 responds as in Game 2.

• Send(i, s, m = (C,CT, c)): B3,0 responds as in Game 2.

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B3,0 responds as in Game 2. Here, note
that since A follows the Type-5 or Type-6 strategy, B3,0 can answer all the RevLTK-query. Namely, A
never queries RevLTK(ȷ̂) (i.e., lsk ȷ̂ := (dk ȷ̂, sk∗)) conditioning on EtestO not occurring, which is the only
query that B3,0 cannot answer.

• Test(i, s): B3,0 responds as in Game 2. Here, in case Pids
i ̸= ȷ̂, then event EtestO is triggered so it aborts.

It is clear that B3,0 perfectly simulates the view of Game 2 to A. Below, we analyze the probability that B3,0
breaks the EUF-CMA security of SIG and relate it to Pr[Esig].

We assume A issues Test(i∗, s∗). Let the message sent by the initiator oracle πs∗
i∗ be (ek∗T, σi∗) and the

message received by πs∗
i∗ be (C∗,C∗T, c∗). Let σ∗ be the signature recovered from c∗. Then, by the definition

of the Type-5 or Type-6 strategy and conditioned on EtestO not occurring, the tested oracle πs∗
i∗ satisfies the

following conditions:

• roles∗
i∗ = init and Pids∗

i∗ = ȷ̂,

• πs∗
i∗ is in the accept state. This implies SIG.Verify(vk∗, Pi∗∥P ȷ̂∥lpki∗∥lpk ȷ̂∥ek∗T∥C∗∥C∗T, σ∗) = 1 holds,

• P ȷ̂ was not corrupted before πs∗
i∗ completes the protocol execution,

• πs∗
i∗ has no partner oracles.

Since πs∗
i∗ has no partner oracles, there exists no responder oracle πt

ȷ̂ that has received ek∗T from Pi∗ and
output (C∗,C∗T). In other words, there is no oracle πt

ȷ̂ that has signed on the message Pi∗∥P ȷ̂∥lpki∗∥lpk ȷ̂∥ek∗T∥C∗∥C∗T.
Notice that this is exactly the event Esig; an initiator oracle πs∗

i∗ receives a signature that was not signed
by an oracle πt

ȷ̂ for any t ∈ [ℓ], and P ȷ̂ was not corrupted when πs∗
i∗ receives the signature. Therefore,

3.3. Generic Construction of Signal-Conforming AKE 45

B3,0 obtains a valid forgery (Pi∗∥P ȷ̂∥lpki∗∥lpk ȷ̂∥ek∗T∥C∗∥C∗T, σ∗), and we have Pr[Esig] = AdvEUF-CMA
SIG (B3,0).

Combining everything together, we conclude

ϵ1 ≤ µ · AdvEUF-CMA
SIG,B3,0

(κ).

Proof of Lemma 3.3.7: Against Type-7 or Type-8 Adversary.

Lemma 3.3.7. For any QPT adversary A using the Type-7 or Type-8 strategy, there exists a QPT algorithm B3,1
breaking the EUF-CMA of SIG such that

ϵ1 ≤ µ · AdvEUF-CMA
SIG,B3,1

(κ).

Proof of Lemma 3.3.7. We present the rest of the sequence of games from Game 1.
Game 2. In this game, at the beginning of the game, C chooses a party Pı̂ uniformly at random from the µ
parties. Let EtestO be the event that the peer of the tested oracle is not Pı̂. If event EtestO occurs, C aborts.
Since C guesses the choice made by A correctly with probability 1/µ, we have

ϵ2 =
1
µ

ϵ1.

Game 3. This game is identical to Game 2, except that we add an abort condition. Let S be a list of message-
signature pairs that Pı̂ generated as being an initiator oracle. That is, every time πs

ı̂ for some s ∈ [ℓ]
is invoked as an initiator, it updates the list S by appending the message-signature pair (eks

ı̂ , σs
ı̂) that it

generates. Then, when a responder oracle πt
j for any (j, t) ∈ [µ]× [ℓ] is invoked on input (ekT, σ) from

party Pı̂ (i.e., Pidt
j = ı̂), it checks if SIG.Verify(vkı̂, ekT, σ) = 1 and Pı̂ is not corrupted, then (ekT, σ) ∈ S. If

not, the game aborts. Otherwise, it proceeds as in the previous game. We call the event this abort occurs as
Esig. Since the two games are identical until abort, we have

|Pr [S2]− Pr [S3]| ≤ Pr [Esig] .

Before, bounding Pr [Esig], we finish the proof of the lemma. We show that no adversary A following
the Type-7 or Type-8 strategy has winning advantage in Game 3, i.e., Pr[S3] = 1/2. To see this, let us
assume A issued Test(j∗, t∗) and received a key that is not a ⊥. That is πt∗

j∗ is in the accept state. Due
to the modification we made in game2 and by the definition of the Type-7 or Type-8 strategy, πt∗

j∗ has no
partner oracle πs

ı̂ for any s ∈ [ℓ] and the peer Pı̂ was not corrupted before πt∗
j∗ completes the protocol

execution conditioning on EtestO not occurring. On the other hand, if πt∗
j∗ is in the accept state, then event

Esig must have not been triggered. Consequently, there exists some oracle πs
ı̂ that output (eks

ı̂ , σs
ı̂) and πt∗

j∗

receives it. This implies that πs
ı̂ and πt∗

j∗ are partner oracles. Since this forms a contradiction, A can only
receive ⊥ when it issues Test(j∗, t∗). Hence, since the challenge bit b is statistically hidden from A, we
have Pr[S3] = 1/2.

It remains to bound Pr [Esig]. We do this by constructing an algorithm B3,1 against the EUF-CMA
security of SIG. The description of B3,1 follows: B3,1 receives the public parameter ppSIG and the challenge
verification key vk∗. B3,1 sets up the public parameter of ΠSC-AKE as in Game 2 using ppSIG. B3,1 then
samples ı̂ randomly from [µ], runs (dkı̂, ekı̂) ← KEM.KeyGen(ppKEM), and sets the long-term public key

46 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

of party Pı̂ as lpkı̂ := (ekı̂, vk∗). The long-term secret key is implicitly set as lskı̂ := (dkı̂, sk∗), where sk∗ is
unknown to B3,1. For the rest of the parties Pi for i ∈ [µ\ı̂], B3,1 generates (lpki, lski) as in Game 2. Finally,
B3,1 invokes A on input the public parameter of ΠSC-AKE and { lpki | i ∈ [µ] } and answers the queries by
A as follows:

• Send(i, s, ⟨START : role, j⟩): Depending on the value of i, it performs the following:

– If i = ı̂, then B3,1 prepares ekT as in Game 2, and then sends ekT to its signing oracle and receives
back a signature σ′ for message ekT under sk∗. B3,1 then responds as in Game 2 except that it sets
σi := σ′.

– If i ̸= ı̂, then B3,1 responds as in Game 2.

• Send(j, t, m = (ekT, σi)): B3,1 responds as in Game 2.

• Send(i, s, m = (C,CT, c)): B3,1 responds as in Game 2.

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B3,1 responds as in Game 2. Here, note
that since A follows the Type-7 or Type-8 strategy, B3,1 can answer all the RevLTK-query. Namely, A
never queries RevLTK(ı̂) (i.e., lskı̂ := (dkı̂, sk∗)) conditioning on EtestO not occurring, which is the only
query that B3,1 cannot answer.

• Test(i, s): B3,1 responds as in Game 2. Here, in case Pids
i ̸= ı̂, then event EtestO is triggered, so it

aborts.

It is clear that B3,1 perfectly simulates the view of Game 2 to A. Below, we analyze the probability that B3,1
breaks the EUF-CMA security of SIG and relate it to Pr[Esig].

We assume A issues Test(j∗, t∗). Let the message received by the responder oracle πt∗
j∗ be (ek∗T, σ∗).

Then, by the definition of the Type-7 or Type-8 strategy and conditioned on EtestO not occurring, the oracle
πt∗

j∗ satisfies the following conditions:

• rolet∗
j∗ = resp and Pidt∗

j∗ = ı̂,

• πt∗
j∗ is in the accept state. This implies SIG.Verify(vk∗, ek∗T, σ∗) = 1 holds,

• Pı̂ was not corrupted before πt∗
j∗ completes the protocol execution,

• πs∗
i∗ has no partner oracles.

Since πt∗
j∗ has no partner oracles, there exists no initiator oracle πs

ı̂ that has output (ek∗T, σ∗). In other
words, there is no oracle πs

ı̂ that has signed the message ek∗T. Notice that this is exactly the event Esig; a
responder oracle πt∗

j∗ receives a signature that was not signed by an oracle πs
ı̂ for any s ∈ [ℓ], and Pı̂ was

not corrupted when πt∗
j∗ receives the signature. Therefore, B3,1 obtains a valid forgery (ek∗T, σ∗), and we

have Pr[Esig] = AdvEUF-CMA
SIG (B3,1)

Combining everything together, we conclude

ϵ1 ≤ µ · AdvEUF-CMA
SIG,B3,1

(κ).

3.4. Post-Quantum Signal Handshake 47

Alice

Bob

Charlie

mA,1

mB

mA,2

mC

(A) AKE protocol

á
Server

mA,1, mA,2

. .

á

mA,1

m′B
mA,2

m′C

. .

á
m′B, m′C

(B) Signal handshake as secure as AKE
protocol but with large overhead (not
used by the Signal app)

á
mA

. .

á

mA

m′′B
mA

m′′C

. .

á
m′′B, m′′C

(C) Signal handshake slightly weaker
compared to AKE protocol but with
small overhead (used by the Signal
app)

FIGURE 3.3: Comparison of the message flow of an AKE protocol (left) and that of a Signal
handshake (center and right). The center protocol is more secure than the right protocol, while
the right protocol is efficient 9n terms of storage and bandwidth compared to the center. The
implemented Signal protocol uses the right protocol.

3.4 Post-Quantum Signal Handshake

In this section, we provide a concrete discussion on how to turn our Signal-conforming AKE protocol
ΠSC-AKE into a post-quantum Signal handshake protocol. The proposed protocol can be used as a simple
drop-in for the current X3DH protocol as a post-quantum secure replacement.

3.4.1 Signal Handshake From Signal-conforming AKE protocol

We first explain how to obtain a Signal handshake (i.e., Signal’s initial key agreement protocol) from a
Signal-conforming AKE protocol. Figure 3.3a depicts the message flow in AKE protocols. If Alice wants to
share session keys with Bob and Charlie respectively, she sends the first message mA,1 (resp. mA,2) to Bob
(resp. Charlie). On receiving the message, Bob and Charlie return the second message mB and mC to Alice
respectively, and she derives the session keys. In AKE protocols, each party communicates synchronously
and the communicating parties are online at the same time.

In contrast, in secure messaging, parties are not always online, and even more, the communicating
partner may be unknown at the time of registration. Therefore, we need a mechanism that allows parties
to start communication even when the partners are offline and undefined. Signal handshake realizes an
asynchronous and anonymous communication by using a possibly untrusted server (see Figure 3.3b). In
its most secure version (which is not used by the Signal app), if Alice anticipates communicating with at
most two parties, she first uploads two first messages mA,1 and mA,2 of the AKE protocol to the server and

48 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

goes offline. She will replenish the first messages on the server periodically so that the server does not
use up all the first messages. Since Alice does not know who will use the first messages in this case, only
Signal-conforming AKE protocols (i.e., two-round and the first message can be generated independently of
the responder) can be used for the Signal handshake. Next, if Bob wants to share a session key with Alice,
he accesses the server and receives the unused mA,1. Then, Bob computes the session key and uploads
the second message m′B. If Charlie also exchanges a session key with Alice, he executes the protocol in
the same way as Bob, using a different unused first message mA,2. Finally, when Alice comes online, she
downloads the second messages m′B and m′C from the server and derives the session keys between Bob and
Charlie. In this way, parties can exchange session keys asynchronously. Moreover, the Signal handshake in
Figure 3.3b can be shown to be as secure as the underlying AKE protocol. This is because we can view the
server as a person-in-the-middle adversary in AKE protocols, and AKE protocols are defined to be secure
against such adversaries.

Although secure, the downside of this approach is that Alice must upload as many first messages
as the number of parties she anticipates communicating with. To reduce storage overhead, the Signal
protocol reuses the first message for multiple key exchange sessions (see Figure 3.3c). Alice uploads one
first message mA to the server, and periodically updates it, e.g., once a week or once a month. Bob and
Charlie exchange session keys with Alice using the same first message mA. Effectively, both the party’s
and server’s storage overheads are reduced. The downside of reusing the first message is that it may make
the protocol less secure compared to the underlying AKE protocol with the cost of better storage size. For
example, if an adversary obtains the randomness used to generate mA, depending on the underlying AKE
protocol, it may expose both session keys exchanged between Bob and Charlie. In contrast, if the first
message was not reused, then the security of the AKE protocol guarantees that an adversary can recover
only the session key that used mA. A more detailed discussion on the side effect of reusing the first message
in our Signal handshake is provided next.

3.4.2 Details of Our Post-Quantum Signal Handshake

We provide the details of our post-quantum Signal handshake based on our Signal-conforming AKE
protocol ΠSC-AKE. Unlike the X3DH protocol, the proposed protocol can be made post-quantum by
choosing appropriate post-quantum building blocks. The protocol description is presented in Figure 3.4.

As explained in the previous section, parties communicate with each other with the help of the server
and reuse the first messages of the AKE protocol for a certain interval (see Figure 3.3c). First, Alice and Bob
generate their long-term keys lpkA and lpkB, respectively, and register them to the server (see the top of
Figure 3.4). Note that parties upload their long-term keys only once. As in the Signal app, we assume the
validity of the long-term keys are checked between the parties by some “out-of-bound” authentication
mechanism (see [MP16b, Section 4.1]). Next, Alice uploads a first message of the AKE protocol: an
encapsulation key ekT (called signed pre-key in the Signal white paper [MP16b]) along with a signature σA
(called pre-key signature in the Signal white paper [MP16b]) to the server (see the center of Figure 3.4)18. The
signed pre-key is reused for multiple key exchange sessions and is updated at some interval (e.g. once a
week or once a month). Finally, when Bob wants to communicate with Alice, he accesses the server and
downloads Alice’s long-term key and signed pre-key (lpkA, ekT, σA). Then, he runs the AKE protocol of
the responder’s part and uploads the response message (C,CT, c) to the server. Finally, when Alice comes
online, she downloads the long-term key and the response message from Bob and derives the shared initial
secret (see the bottom of Figure 3.4). It is clear that if the signed pre-keys are not reused, then the protocol
is secure as the underlying Signal-conforming AKE protocol.

18Unlike in the figure, the signed pre-key and pre-key signature are uploaded by all the parties and not only by Alice.

3.4. Post-Quantum Signal Handshake 49

Common public parameters: (s, ppKEM, ppwKEM, ppSIG)

Alice (Initiator) Server Bob (Responder)

lskA = (dkA, skA),

lpkA = (ekA, vkA)

Upload lpkA to server

lpkA

long-term key

lpkB

long-term key
lskB = (dkB, skB),

lpkB = (ekB, vkB)

Upload lpkB to server

. .

(ekT , dkT)←
wKEM.KeyGen(ppwKEM)

σA ← SIG.Sign(skA, ekT)

Store ekT , dkT

Upload ekT , σA to server

ekT , σA

signed pre-key and
pre-key signature

Store

(Alice,

(lpkA, ekT , σA))

. .

Fetch

((Alice, Bob), (lpkB,C,CT , c))

K← KEM.Decap(dkA,C)

KT ← wKEM.Decap(dkT ,CT)

K1 ← Exts(K);K2 ← Exts(KT)

kA∥k̃← FK1 (sid)⊕ FK2 (sid)

σ← c⊕ k̃

SIG.Verify(vkB, sid, σ)
?
= 1

Output the session key kA

lpkB,C,CT , c Store

((Alice, Bob),

(lpkB,C,CT , c))

lpkA, ekT , σA

C,CT , c

Fetch

(Alice, (lpkA, ekT , σA))

SIG.Verify(vkA, ekT , σA)
?
= 1

(K,C)← KEM.Encap(ekA)

(KT ,CT)← wKEM.Encap(ekT)

K1 ← Exts(K);K2 ← Exts(KT)

kB∥k̃← FK1 (sid)⊕ FK2 (sid)

σ← SIG.Sign(skB, sid)

c← σ⊕ k̃

Upload C,CT , c to server

Output the session key kB

FIGURE 3.4: Post-quantum Signal handshake protocol based on our Signal-conforming AKE
protocol ΠSC-AKE that reuses the same first message (i.e., signed pre-key and pre-key signa-
ture). The session identifier is defined as sid := A∥B∥lpkA∥lpkB∥ekT∥C∥CT . Alice and Bob
only need to upload their long-term (public) keys to the server once, and the signed pre-key
and pre-key signature are reused by multiple responders throughout some interval.

50 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

Let us discuss the security implication of reusing signed pre-keys. It is clear that it seems insecure
to reuse the signed pre-keys compared to not reusing them. The question is, to what extent are they
insecure? In our post-quantum Signal handshake, multiple session keys are exchanged using the same
pair of long-term keys and signed pre-key. We first argue that, if either the long-term key or the signed
pre-key is not leaked, then the exchanged keys remain secure. Our security model (defined in Section 3.2)
guarantees that the session key of oracle π is secure even if an adversary forwards the first message, i.e., a
signed pre-key and pre-key signature, generated by oracle π, to multiple responder oracles and obtains
at most one of the two KEM keys include in the long-term key or the signed pre-key used by π. This
attack captures the scenario where a party sends the same first message to multiple responders, i.e., reuses
its signed pre-key. Therefore, our post-quantum Signal handshake is as secure as a variant that never
reuses a signed pre-key (i.e., our Signal-conforming AKE protocol) as long as one of the long-term keys
or the signed pre-key is not leaked. The distinction between our post-quantum Signal handshake and
our Signal-conforming AKE protocol becomes clear when both the long-term key and the signed pre-key
are leaked. Observe that once both keys are leaked, the adversary can compute all session keys that were
exchanged using them. In other words, the number of session keys that are compromised is the same
as the number of times the signed pre-key was reused. Thus, the Signal handshake is less secure than
the underlying AKE protocol since the number of session keys that are exposed is larger when both the
long-term key and the signed pre-key are leaked. To mitigate the number of exposed session keys, those
parties looking for better security can use signed pre-keys only once or add a so-called one-time pre-key
in the first message (i.e., an additional non-signed one-time KEM key). This is exactly what the Signal
app does. In this case, even if all the KEM keys used in a specific session are leaked, an adversary can not
compute the session keys of the other sessions since a different KEM key is used for each session. Thus, this
mitigation can be used to enhance security in a scenario where the long-term key and the signed pre-key
are both exposed but the one-time pre-key is not.

3.5 Instantiating Post-Quantum Signal Handshake

In this section, we present the implementation details of our post-quantum Signal handshake protocol
presented in Figure 3.4. We take existing implementations of post-quantum KEMs and signature schemes
submitted for the NIST post-quantum cryptography (PQC) standardization. To instantiate our Signal
handshake, we pair variants of KEMs and signature schemes corresponding to the same security level. We
consider security levels 1, 3, and 5 as defined by NIST for the PQC standardization. With more than 20
variants of KEM and 14 variants of signature schemes, we can create at least 93 different instantiations19 of
post-quantum Signal handshake protocols. The provided implementation simulates post-quantum, weakly
deniable authenticated key exchange between two parties. We study the efficiency of our instantiations
through two metrics — the total amount of data exchanged between parties and run-time performance.
Our implementation [Kwi20] is available in the form of open-source software.

3.5.1 Instantiation details

Our implementation is instantiated with the following building blocks:

• s: (pseudo)-randomly generated 32 bytes of data calculated at session initialization phase,

19In Table 3.2, pairing KEMs and signatures schemes with the same NIST security level yields 7× 5 + 7× 4 + 6× 5 = 93 distinct
combinations (some schemes offer multiple instantiations at a given NIST level).

3.5. Instantiating Post-Quantum Signal Handshake 51

TABLE 3.2: Considered KEM and signature schemes under NIST security levels 1, 3, and 5. †:
Use two SPHINCS instantiations with different hash functions. ‡: Use two NTRU instantiations
with different parameter sets.

NIST
security level KEM Signature

1
SABER, CLASSIC-MCELIECE, KYBER, NTRU

HQC, SIKE, FRODOKEM
RAINBOW, FALCON, DILITHIUM

SPHINCS†

3
SABER,NTRU‡, CLASSIC-MCELIECE, KYBER,

HQC, FRODOKEM
DILITHIUM, RAINBOW

SPHINCS†

5
SABER, CLASSIC-MCELIECE, NTRU, KYBER

FRODOKEM, HQC
FALCON, RAINBOW,DILITHIUM

SPHINCS†

• Exts: uses HMAC-SHA256 as a strong randomness extractor. As an input message, we use a key K/KT
prepended with byte 0x02 which works as a domain separator (since we also use HMAC-SHA256 as
a PRF). Security of using HMAC as a strong randomness extractor is studied in [FPZ08],

• PRF: uses HMAC-SHA256 as a PRF. The session-specific sid is used as an input message to HMAC,
prepended with byte 0x01. An output from Exts is used as a key. Security of using HMAC as a PRF is
studied in [Bel06; Bel15],

• b: equals the security level of the underlying post-quantum KEM scheme, where b ∈ {128, 192, 256},

• d: equals the byte length of the signature generated by the post-quantum signature scheme SIG,

• KEM, wKEM, SIG: the implementation uses pairs of KEM and signature schemes. The list of the
schemes used can be found in Table 3.2. We always use the same KEM scheme for KEM and wKEM.

At a high level, the implementation is split into 4 main parts. A setup phase, where both parties
perform long-term key generation and initialization of required during memory benchmarking. The
session establishment phase implements an initiator’s signed pre-key generation (the offer function), the
responder’s session key generation (accept function), and initiator’s session key generation (finalize
function), which finalizes session establishment resulting in session key. To evaluate the cost of our post-
quantum Signal handshake, we instantiate the protocol with KEM and signature schemes from Table 3.2.

The concrete implementation of post-quantum schemes is provided by PQ Crypto Catalog library20,
which is a collection of implementations submitted to the NIST PQC standardization process. We also
use LibTomCrypt library21 which provides an implementation of the building blocks HMAC, HKDF and
SHA-256. We note that we use portable C code implementations of schemes, which do not include platform-
specific optimizations. There are two reasons for such a choice. First, our goal was to show the expected
results on a broad number of platforms. Second, the PQ Crypto Catalog library does not provide hardware-
assisted optimizations for all schemes, hence enabling those optimizations only for some algorithms would
result in unfair comparison.

20https://github.com/kriskwiatkowski/pqc
21https://github.com/libtom/libtomcrypt

52 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

3.5.2 Efficiency Analysis

In this subsection, we provide an assessment of the costs related to running the concrete instantiation of
the post-quantum Signal handshake.

To properly assess the cost, we modeled a scenario according to Figure 3.4. Namely, two parties try to
establish a session key. Alice (the initiator) and Bob (the responder) generate and make their long-term
public keys (lpkA, lpkB) available to others. Alice then generates her signed pre-key ekT and creates her
pre-key signature σA by signing it. The pair (ekT, σA) is also uploaded to the publicly accessible server. Bob
retrieves the pre-key bundle (lpkA, ekT, σA) and uses it to perform his part of the session establishment.
Namely, Bob generates the triple (C,CT, c) and makes it available for Alice to download from the server.
Once Alice comes online, she downloads the session initialization bundle from Bob together with his
long-term key, lpkB. She then finalizes the process by computing the session key on her side. Note that in
the Signal protocol, long-term public keys lpk are fetched from the server. Parties do not store the keys lpk
corresponding to those that they have not communicated with before.22

We provide three metrics:

• Data transfer cost: the amount of data exchanged when two parties establish a session key.

• Storage cost: the amount of data that needs to be stored on the server to allow a session establishment
between parties.

• Computational cost: the number of CPU cycles spent in computation during session establishment
by both parties.

Cost analysis for each metric is provided separately.
Data Transfer Cost. Table 3.3 provides the selected results for Round 3 candidates of the NIST PQC
standardization process.23 The lpk column contains the byte size of a long-term key. The following four
columns contain the byte size of the data exchanged by the initiator, the server, and the responder during
a session key establishment (as per Figure 3.4). Finally, the Total column contains the total size of data
exchanged between Alice and Bob.

From Table 3.3, we can conclude that the transfer cost for Falcon512 paired with SIKEp434 is the order
of magnitude lower than in the case of the other two pairs. Also, the small size of the Falcon public key
and signature size makes it an attractive choice for the signature scheme in the case of that particular
application.

Note that the long-term public keys (lpk) are uploaded to the server only once by each party (initiator
and responder), hence the cost of uploading them is probably negligible for most applications. To further
minimize the transfer cost, some implementations may decide to use caching mechanisms, meaning
long-term keys are downloaded only once and cached locally. In this case, the validity of the key may be
checked by hashing the lpkA at both sides and comparing the hash values. In this case, Bob sends a hash of
cached lpkA when requesting the pre-key bundle, the server compares hashes and depending on the result
of such comparison sends a response either with long-term keys or without.

Remark 3.5.1 (Note on Low-Quality Network Links). We anticipate the Signal handshake to be used with
handheld devices and areas with a poor-quality network connection. In such cases, larger key, ciphertext,

22The X3DH protocol assumes the parties authenticate the long-term public keys through some authenticated channel [MP16b,
Section 4.1].

23The results for all 93 instantiations can be found in the repository containing the implementation [Kwi20].

3.5. Instantiating Post-Quantum Signal Handshake 53

TABLE 3.3: Data transfer cost in bytes of Figure 3.4 instantiated with various post-quantum
schemes. We use the following abbreviations: I = Initiator, S = Server, R = Responder. Note
that:
(a) (S→R) – (I→S) = (S→I) – (R→S) = lpk.
(b) Total := (I→S) + (S→R) + (R→S) + (S→I).

Scheme lpk I→S S→R R→S S→I Total

NIST security level 1

Falcon512/Saber Light 1569 1362 2931 2162 3731 10186
Falcon512/SIKEp434 1227 1020 2247 1382 2609 7258
Dilithium2/NTRU hps2048509 2011 3119 5130 3818 5829 17896
SPHINCS-SHAKE256-128f-s/Saber Light 704 17760 18464 18560 19264 74048

NIST security level 3

Dilithium3/NTRU hps2048677 2882 4223 7105 5153 8035 24516
Dilithium3/Saber 2944 4285 7229 5469 8413 25396
Rainbow III/McEliece460896 1406240 524324 1930564 540 1406780 3862208
SPHINCS-SHAKE256-192f-s/Kyber768 1232 36848 38080 37840 39072 151840

NIST security level 5

Falcon1024/NTRU hps4096821 3023 2560 5583 3790 6813 18746
Falcon1024/Saber Fire 3105 2642 5747 4274 7379 20042
SPHINCS-SHAKE256-256f-s/Saber Fire 1376 51168 52544 52800 54176 210688

and signature sizes generated may negatively impact the quality of the connection. Network packet loss is
an additional factor that should be considered when choosing schemes for concrete instantiation.

Data on the network is exchanged in packets. The maximum transmission unit (MTU) defines the
maximal size of a single packet, usually set to 1500 bytes. Ideally, the size of data sent between participants
in a single pass is less than MTU. Network quality is characterized by a packet loss rate. When a packet is
lost, the TCP protocol ensures that it is retransmitted, where each retransmission causes a delay. A typical
data loss on a high-quality network link is below 1%, while data loss on a mobile network depends on the
strength of the network signal.

Depending on the scheme used, an increased packet loss may negatively impact session establishment
time (see [PST20]). For example, a scheme instantiated with Falcon512 paired with Saber Light requires
an exchange of npacks = 7 packets over the network, where instantiation with SPHINCS-SHAKE256-
128f-simple paired with Saber Light requires 27 packets. Assuming increased packet rate loss of 2%, the
probability of losing a packet in the former case is 1− (1− rate)npacks = 13%, whereas in the latter it
is 42%. In the latter case, at the median, every third session key establishment will experience packet
retransmission and hence a delay.

Storage Cost. The Signal handshake protocol assumes the usage of an intermediate server during session
key establishment. This allows parties to be offline during the establishment. The server stores long-term
keys of each party uploaded during registration, signed pre-keys and pre-key signatures needed to initiate
session establishment, as well as data generated during session establishment. Hence, it is important to
correctly assess the amount of storage required.

The cost can be split into two parts. One part contains storage of the long-term key lpk and signed
pre-key pair (ekT, σA). The latter is updated on regular basis, but the server always stores one signed pre-key,

54 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

TABLE 3.4: Data storage cost in bytes of Figure 3.4 instantiated with various post-quantum
schemes.

Scheme Data per user Data per session

NIST security level 1

Falcon512/Saber Light 2931 2162
Falcon512/SIKEp434 2247 1382
Dilithium2/NTRU hps2048509 2985 2088
SPHINCS-SHAKE256-128f-s/Saber Light 18464 18560

NIST security level 3

Dilithium3/NTRU hps2048677 7105 5153
Dilithium3/Saber 7229 5469
Rainbow III/McEliece460896 1930564 540
SPHINCS-SHAKE256-192f-s/Kyber768 38080 37840

NIST security level 5

Falcon1024/NTRU hps4096821 5583 3790
Falcon1024/Saber Fire 5747 4274
Dilithium5/Kyber1024 10323 7731
SPHINCS-SHAKE256-256f-s/Saber Fire 52544 52800

hence that cost is constant and depends on the number of parties registered. The second part of the cost
is data produced during session establishment, namely triple (C,CT, c) uploaded by the receiver. It is a
variable cost, as data can be deleted from the server as soon as the initiator downloads it to finalize the
session establishment.

Table 3.4 shows the split between both costs for a selected number of post-quantum schemes. We can
see that to reduce the storage cost, it is beneficial to pair Falcon with SIKE for security levels 1 and 5 and
Dilithium with NTRU for security level 3. In some applications, it could be interesting to reduce only the
variable cost. In that case, instantiation can use Rainbow and McEliece pair of algorithms at a higher cost
of long-term key storage.
Computational Cost. The computational cost of the protocol depends on the performance of the crypto-
graphic primitives used. More precisely, the most expensive operations are those done by the post-quantum
schemes. Our post-quantum Signal handshake performs 9 such operations during a session agreement:
the initiator runs a KEM key generation, two KEM decapsulations, one signature generation, and one
signature verification, and the responder performs two KEM encapsulations, one signature generation,
and one signature verification.

It is important that our post-quantum Signal handshake protocol runs efficiently. But as it is an offline
protocol, the performance is less critical when compared to online protocols (e.g., TLS). The most important
difference is that, in the case of Signal handshake, the server does not perform any CPU-heavy operations,
the session establishment happens less often and parties perform session establishment asynchronously
when they are online.

The most performance-critical part of the protocol is the final part of session establishment done by
the initiator. At that stage, it may happen that multiple parties request to establish a session with the
initiator. In that case, the initiator downloads multiple (and unknown) triples of (C,CT, c), which then need
to be efficiently processed. Hence, when optimizing for speed the performance of KEM decapsulation and

3.6. Adding Deniability to Basic Signal-Conforming AKE 55

TABLE 3.5: Computational cost in CPU cycles of Figure 3.4 instantiated with various post-
quantum schemes. Benchmarking run on the Intel Xeon E3-1220v3 @3.1GhZ with Turbo Boost
disabled.

Scheme 3-way handshake Finish

NIST security level 1

Falcon512/Saber Light 3596396 638610
Falcon512/SIKEp434 1803371672 810254556
Dilithium2/NTRU hps2048509 6159630 748797
SPHINCS-SHAKE256-128f-s/Saber Light 256821041 11827077

NIST security level 3

Dilithium3/NTRU hps2048677 11747527 1493656
Dilithium3/Saber 7597588 1476533
Rainbow III/McEliece460896 2798014516 513810164
SPHINCS-SHAKE256-192f-s/Kyber768 710632430 17476256

NIST security level 5

Falcon1024/NTRU hps4096821 12718741 1328866
Falcon1024/Saber Fire 7611706 1417632
Dilithium5/Kyber1024 10576515 1672158
SPHINCS-SHAKE256-256f-s/Saber Fire 1343959982 18091448

signature verification is most important.
Table 3.5 contains the number of CPU cycles spent during session establishment for selected post-

quantum schemes. The 3-way handshake column shows the cost of the whole session establishment, and
the Finish column contains the final part of the handshake, performed by the initiator. The presented
results exclude the cost of long-term key (lpk) generation.

The best performance comes from instantiations that use Saber KEM and either Falcon or Dilithium
signature scheme. We see instantiation with SIKE, SPHINCS, Rainbow, or McEliece schemes negatively
impacts performance, resulting in orders of magnitude slower execution.

We note that the computational cost is far less absolute as it depends on the concrete implementation of
the post-quantum schemes.
In conclusion. Instantiations of our post-quantum Signal handshake protocol that use Saber as a KEM
and either Falcon or Dilithium as signature scheme seem to be the most promising choice for minimizing
transfer and storage cost and maximizing performance.

Lastly, our implementation is based on open-source libraries. In total, we created 93 instantiations
with different post-quantum schemes. We store the results in the repository containing the implementa-
tion [Kwi20]. We note that a variety of fine-tuning can be done, leading to different results. For example,
one could imagine a scenario crafted for IoT devices, in which devices are pre-configured to communicate
only with selected parties. In such a case, the exchange of long-term keys can be done ahead of time.

3.6 Adding Deniability to Basic Signal-Conforming AKE

In this section, we discuss to what extent our Signal-conforming AKE protocol ΠSC-AKE satisfies deniability
and show how to modify the protocol to satisfy a progressively stronger notion of deniability. We first

56 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

motivate what deniability is and then provide an overview of this section.
Difference Between Deniability of an AKE Protocol and The Signal Handshake. Due to the subtle
difference in the model of the standard AKE protocol and the Signal handshake, there is also a subtle
difference in what it means to be deniable. In an AKE protocol, roughly, deniability states that the
exchanged transcript does not leave any trace of the two parties that supposedly communicated with
each other. Namely, both the initiator and responder in Figure 3.2 should be able to deny the fact that
they engaged in a key exchange protocol. In contrast, in the Signal handshake, we mainly care about the
deniability of the responder (i.e, Bob in Figure 3.4). This is because the initiator (i.e., Alice in Figure 3.4)
only uploads materials that are independent of the responder. Specifically, an adversary can at most prove
to a third party that the initiator was using the Signal app by showing the pre-key signature of the initiator,
and nothing more. Therefore, in the Signal handshake, the main focus is to prevent an adversary from
later proving that a certain responder tried to exchange a key with some (possibly malicious) initiator. In
summary, the deniability required by an AKE protocol is arguably stronger than what is required by the
Signal handshake since it also considers the deniability of the initiator.

That being said, in this section, we mainly focus on the deniability of our AKE protocol rather than
the Signal handshake for three reasons. First, we believe our AKE protocol is interesting even outside the
context of Signal, so it is worth investigating what kind of deniability it offers. Second, it is easy to argue
deniability of the Signal handshake once the deniability of the AKE protocol is established since it only
consists of ignoring the deniability of the initiator. Finally, if our AKE protocol (or a variant of it) can be
shown to be deniable, then when viewed as the Signal handshake, we can further show that the initiator
can deny the fact of using the Signal app. Specifically, since the uploaded content of the initiator would
also be deniable, it cannot be used as evidence that the initiator was using the Signal app.
Overview of This Section. We first informally show that our AKE protocol ΠSC-AKE already has a
very weak form of deniability that may be acceptable in some applications. We then show that we can
slightly modify ΠSC-AKE by replacing a standard signature with a ring signature to satisfy a stronger notion
of deniability. Although this satisfies a much stronger notion of deniability compared to our vanilla
ΠSC-AKE, it still assumes the parties follow the protocol description (i.e., honest-but-curious). We discuss
in Remark 3.6.15 why this notion of deniability can still be insufficient in practice. Finally, we show how
to make the protocol even more secure against malicious adversaries that can deviate arbitrarily from
the protocol by additionally relying on NIZKs. As it is common with all deniable AKE protocols24 secure
against key-compromise attacks [DGK06; YZ10; Vat+20], we rely on strong knowledge-type assumptions,
including a variant of the plaintext-awareness (PA) for the KEM scheme [BR95; Bel+98; BP04].

We note that the proposed protocol is deniable against quantum adversaries when they are limited to
be honest-but-curious. However, we were not able to formally prove if the proposed protocol satisfies
deniability against quantum adversaries taking arbitrary strategies. We believe this is an artifact of the
current definition or proof strategy of deniability and leave it as an interesting open problem to formalize
and prove the quantum deniability of the proposed protocol (see Remark 3.6.4 for more discussion).

Weak Deniability of ΠSC-AKE. Our Signal-conforming AKE protocol ΠSC-AKE already satisfies a very weak
notion of deniability, where the communication transcript does not leave a trace of the responder if the two
parties honestly execute the AKE protocol. Note that it clearly leaves a trace of the initiator since a signature
is included. Concretely, an adversary (e.g., the server) that is passively collecting the communication
transcript cannot convince a third party that some responder tried to communicate with some initiator.
Informally, this can be checked by observing that the message sent from the responder can be simulated

24We only consider schemes that are proven secure in the (possibly slight variant of the) deniability framework proposed by the
seminal work of Di Raimondo et al. [DGK06].

3.6. Adding Deniability to Basic Signal-Conforming AKE 57

by the adversary on its own. This notion of weak deniability may suffice for some particular settings:
only the deniability of the responder is required; the two engaging parties fully trust each other for the
correct execution of the protocol; and if they can tolerate the assumption that corruption will not occur. For
instance, this includes the Signal handshake setting where the server is trying to provide proof to a judge
that some responder tried to engage in a conversation with some initiator without the help of either of the
parties. The proposed protocol will guarantee deniability in such a scenario.

However, in other cases, we may want to guarantee deniability even in the case the communicating
peer may be compromised, or even worse, acting maliciously. In the above example, if the server is
colluding with the initiator of the protocol, then they can provide proof that the responder wanted to start
a conversation with the initiator by using knowledge of the session key. This is clear from the fact that
in our ΠSC-AKE protocol, the responder generates a signature that nobody else can. Furthermore, in the
context of an AKE protocol, it is also desirable for the initiator to be able to deny the fact that it was trying
to engage in a key exchange protocol with some responder.

We now discuss how to make the proposed protocol satisfy a stronger notion of deniability where both
the initiator and responder can deny even when the communicating peer may be compromised. To this
end, we first define deniability for AKE protocols.

3.6.1 Definition of Deniability and Tool Preparation

We follow a simplified definition of deniability for AKE protocols introduced in the seminal work by Di
Raimondo et al. [DGK06]. Discussion on the simplification is provided in Remark 3.6.3. At a high level,
if there exists a simulator SIMM that uses only public information that can produce the same view to an
adversaryM that engages in a real AKE protocol with honest parties, then the protocol is deniable. The
intuition is that if such a SIMM exists, then whenM presents a protocol transcript as “proof” that some
party was trying to communicate with it, the party can deny the fact by claiming that the transcript could
have been generated byM running SIMM (that only uses public information).

Let ΠAKE be an AKE protocol and KeyGen be the key generation algorithm. That is, for any integer µ =
poly(κ) representing the number of parties in the system, define KeyGen(1κ, µ)→ (pp, LPK, LSK), where
pp is the public parameter used by the system and LPK := { lpki | i ∈ [µ] } and LSK := { lski | i ∈ [µ] } are
the corresponding long-term public and secret keys of the µ parties, respectively.

LetM denote an adversary that engages in an AKE protocol with µ-honest parties in the system with
long-term public keys LPK, acting as either an initiator or a responder. M may run individual sessions
against an honest party in a concurrent manner and may deviate from the AKE protocol in an arbitrary
fashion. The goal ofM is not to impersonate someone to an honest party P but to collect (cryptographic)
evidence that an honest party P interacted withM. Therefore, whenM interacts with P, it can use a
(possibly maliciously generated) long-term public key lpkM that can be either associated to or not toM’s
identity. We then define the view of the adversaryM as the entire sets of inputs and outputs ofM and
the session keys computed in all the protocols in whichM participated with an honest party. Here, we
assume in case the session is not completed byM, the session key is defined as ⊥. We denote this view as
ViewM(pp, LPK, LSK). Note that if the session key is deniable, then the subsequent communications (that
do not use any long-term keys) are deemed deniable as well. In other words, if the establishment of the
session key is deniable, then any communications only using that session key between the two parties are
deniable as well.

In order to define deniability, we consider a simulator SIM that simulates the view of honest parties
(both initiator and responder) to the adversaryM without knowledge of the corresponding long-term secret
keys LSK of the honest parties. Specifically, SIM takes as input all the input given to the adversaryM (along

58 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

with the description ofM) and simulates the view ofM with the real AKE protocol ΠAKE. We denote
this simulated view as SIMM(pp, LPK). Roughly, if the view simulated by SIMM is indistinguishable from
those generated by ViewM, then we say the AKE protocol is deniable since M could have run SIMM
(which does not take any secret information as input) to generate its view in the real protocol. Here, unlike
the zero-knowledge simulator for NIZKs, the simulator for an AKE protocol must be executable in the real
world [Pas03]. More formally, we have the following.

Definition 3.6.1 (Deniability). We say an AKE protocol ΠAKE with key generation algorithm KeyGen is deniable,
if for any integer µ = poly(κ) and PPT adversaryM, there exist a PPT simulator SIMM such that the following
two distributions are (computationally) indistinguishable for any PPT distinguisher D:

DReal := {pp, LPK,ViewM(pp, LPK, LSK) : (pp, LPK, LSK)← KeyGen(1κ, µ)},
DSim := {pp, LPK,SIMM(pp, LPK) : (pp, LPK, LSK)← KeyGen(1κ, µ)}.

WhenM is semi-honest (i.e., it follows the prescribed protocol), we say ΠAKE is deniable against semi-honest
adversaries. WhenM is malicious (i.e., it takes any efficient strategy), we say ΠAKE is deniable against malicious
adversaries.

In the above definition, a semi-honest adversaryM is equivalent to an adversary that engages in the
protocol honestly but it may try to learn as much as possible from the messages they receive from other
parties. Semi-honest adversaries are also termed passive since they are only allowed to break security by
observing a view of honest protocol execution.

Remark 3.6.2 (Including Public Information and Session Keys). It is crucial that the two distributions DReal

and DSim include the public information (pp, LPK). Otherwise, SIMM can simply create its own set of
(pp′, LPK′, LSK′) and simulate the view toM. However, this does not correctly capture deniability in the
real world sinceM would not be able to convince anybody with such a view using public information that
it cooked up on its own. In addition, it is essential that the value of the session key is part of the output of
SIMM. This guarantees that the exchanged contents of the sessions authenticated by the session key can
also be denied.

Remark 3.6.3 (Comparison Between Prior Definition). Our definition is weaker than the deniability notion
originally proposed by Di Raimondo et al. [DGK06]. In their definition, an adversaryM (and therefore
the simulator SIMM) is also provided as input some auxiliary information aux that can depend non-
trivially on (pp, LPK, LSK). For instance, this allows capturing information thatM may have obtained
by eavesdropping on conversations between honest parties (which is not modeled by ViewM). Since our
goal is to provide a preliminary result on the deniability of the proposed protocol, we only focus on the
weaker definition whereM does not obtain such auxiliary information. We leave it as future work to prove
the proposed protocol deniable in the sense of Di Raimondo et al. [DGK06].25 We also note that stronger
forms of deniability are known and formalized in the universally composable (UC) model [Dod+09; UG15;
UG18], however, AKE protocols satisfying such a strong deniability notion are known to achieve weaker
security guarantees. For instance, as noted in [UG18], an AKE protocol cannot be online deniable while
also being secure against KCI attacks.

25We observe that although in [DGK06, Definition 2], aux is defined as fixed information thatM cannot adaptively choose, their
proof implicitly assumes that aux is sampled adaptively from some distribution dependent on (pp,LPK,LSK). Such adaptivity of
aux is necessary to invoke PA-2 security of the underlying encryption scheme in their security proof. We consider that enhancing
the deniability definition of [DGK06] to capture this adaptivity is an important future work.

3.6. Adding Deniability to Basic Signal-Conforming AKE 59

Remark 3.6.4 (Extending to Malicious Quantum Adversaries). We only consider classical deniability in this
work, where the adversaryM is restricted to be classical. To be precise, although we are able to easily show
deniability against semi-honest quantum adversaries, we are not able to do so against malicious quantum
adversaries. This is mainly due to the fact that to prove deniability against malicious classical adversaries,
we require a strong knowledge-type assumption (i.e., plaintext-awareness for KEM) that assumes the
existence of an extractor that can invoke an adversary multiple times on the same randomness. The notion
of fixing randomness is not well-defined in the quantum setting and rewinding an adversary without
disturbing the adversary’s quantum state is a non-trivial task. We leave it as an interesting problem to
formally define a set of tools that allow showing deniability even against malicious quantum adversaries.

Remark 3.6.5 (A Note on the Deniability Definition of [Bre+22]). After the proceedings version of our
paper [Has+21a] appeared, Brendel et al. [Bre+22] introduced a new definition of deniability for AKE
protocols. Unlike prior definitions for AKE deniability [DGK06; Dod+09; YZ10; UG15; UG18; Vat+20],
Brendel et al. considers an indistinguishability-based definition rather than a simulation-based definition.
They consider a scenario where all the users honestly generate their keys and the adversaryM is given the
secret keys to all of the users. Informally,M can receive a transcript by querying the challenge oracle on
a pair (I, R), representing the Initiator and Receiver. In one mode,M is given an honest transcript of a
real AKE protocol between I and R. In another mode,M is given a transcript simulated by a simulator
SIM who is only given the secret key of R (i.e., the responder) as input. An AKE protocol is then said to be
deniable if no efficient adversaryM can tell apart the two modes.

Other than the fact that their definition is not simulation-based, there are three main differences between
the definition of Brendel et al. and Definition 3.6.1: (1) the users are assumed to generate their keys honestly;
(2) the adversaryM is assumed to remain passive during the execution of the AKE protocol between I
and R; (3)M is given all the secret keys of the users. Regardless ofM being malicious or semi-honest in
Definition 3.6.1, the definition of Brendel et al. is stronger regarding (3) since the secret keys of the users
are not provided toM in Definition 3.6.1. On the other hand, Definition 3.6.1 is always stronger than
Brendel et al. regarding (2) sinceM is allowed to deviate from the AKE protocol. Finally, whenM can act
maliciously in Definition 3.6.1, it is stronger than Brendel et al. regarding (1) sinceM can inject malicious
keys to the system. In general, the two definitions are incomparable.

It is not immediately clear what the real-world impact is of whether or not (1), (2), and (3) are satisfied.
In Remark 3.6.15, we show that ifM can register malicious keys, then it can break deniability, thus showing
that deniability under (1) can be insufficient in some practical applications. Put differently, considering
only a semi-honest adversaryM in Definition 3.6.1 or the definition of Brendel et al. may be insufficient.
We leave the investigation of the impact of (2) and (3) as interesting future work.

Required Tools. To argue deniability in the following sections we rely on the following tools: ring signature,
plaintext-aware (PA-1) secure KEM scheme, and a non-interactive zero-knowledge (NIZK) argument. We
use standard notions of ring signatures and NIZK arguments as provided in Sections 2.7 and 2.8. On the
other hand, we use a slightly stronger variant of PA-1 secure KEM schemes than those originally defined in
[BR95; Bel+98; BP04]. Informally, a KEM scheme is PA-1 secure if for any adversaryM that outputs a valid
ciphertext C, there is an extractor ExtM that outputs the associating plaintext K. In our work, we require
PA-1 security to hold even whenM is given multiple public keys rather than a single public key [MSs12].
We note that although Di Raimondo et al. [DGK06] considered the standard notion of PA-1 security in
their seminal work on deniability of AKE protocols, we observe that their proof only works in the case
where multiple public keys are considered. Finally, we further require the extractor ExtM to be efficiently
computable givenM (which is another subtle restriction omitted in the definition used in [DGK06]). The
formal definition is provided in Section 2.2.

60 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

Common public parameters: (s, ppKEM, ppwKEM, ppRS , crs)

Initiator Pi Responder Pj

lpki = (eki, vki), lski = (dki, ski) lpkj = (ekj, vkj), lskj = (dkj, skj)

(ekT , dkT)← wKEM.KeyGen(ppwKEM)

(vkT , skT)← RS.KeyGen(ppRS; rT)

XT ← (ppRS, vkT);WT ← (skT , rT)

πT ← NIZK.Prove(crs,XT ,WT)

statei := dkT

K← KEM.Decap(dki,C)

KT ← wKEM.Decap(dkT ,CT)

K1 ← Exts(K);K2 ← Exts(KT)

sidi := Pi∥Pj∥lpki∥lpkj∥ekT∥vkT∥C∥CT

k∥k̃← FK1 (sidi)⊕ FK2 (sidi)

σ← c⊕ k̃

RS.Verify({ vkT , vkj } , sidi, σ)
?
= 1

Output the session key k

ekT , vkT , πT

C,CT , c

XT ← (ppRS, vkT)

NIZK.Verify(crs,XT , πT)
?
= 1

(K,C)← KEM.Encap(eki)

(KT ,CT)← wKEM.Encap(ekT)

K1 ← Exts(K);K2 ← Exts(KT)

sidj := Pi∥Pj∥lpki∥lpkj∥ekT∥vkT∥C∥CT

k∥k̃← FK1 (sidj)⊕ FK2 (sidj)

σ← RS.Sign(skj, sidj, { vkT , vkj })

c← σ⊕ k̃

Output the session key k

FIGURE 3.5: Deniable Signal-conforming AKE protocol ΠSC-DAKE and Π′SC-DAKE. The initiator
no longer signs the first message and the other components that differ from the non-deniable
protocol ΠSC-AKE are indicated by (dotted) boxes. The protocol with (resp. without) the
dotted-box components satisfies deniability against malicious (resp. semi-honest) adversaries.

3.6.2 Deniable Signal-Conforming AKE ΠSC-DAKE against Semi-Honest Adversaries

We provide a Signal-conforming AKE protocol ΠSC-DAKE that is deniable against semi-honest adversaries.
The construction of ΠSC-DAKE is a simple modification of ΠSC-AKE where the initiator no longer signs
the first message and a standard signature is replaced by a ring signature. In the context of the Signal
handshake, this means the initiator no longer uploads a pre-key signature. We show that this modification
provides a secure AKE protocol that has weak forward secrecy as in Definition 3.2.3. In Remark 3.6.16, we
provide some discussion on what happens if the initiator signs the first message as in ΠSC-AKE, while the
responder uses a ring signature.

In Section 3.6.3, we show how to further modify ΠSC-DAKE to a protocol that is deniable even against
malicious adversaries by relying on other tools. The high-level idea presented in this section naturally
extends to the malicious setting.

An overview of ΠSC-DAKE and Π′SC-DAKE is provided in Figure 3.5, where the dotted-box components
are only used to obtain deniability against malicious adversaries.

Building Blocks. Our deniable Signal-conforming AKE protocol ΠSC-DAKE against semi-honest adversaries
consists of the following building blocks.

3.6. Adding Deniability to Basic Signal-Conforming AKE 61

• KEM = (KEM.Setup,KEM.KeyGen,KEM.Encap,KEM.Decap) is a KEM scheme that is IND-CCA secure
and assume we have (1− δKEM)-correctness, νKEM-high encapsulation key min-entropy and χKEM-
high ciphertext min-entropy.

• wKEM = (wKEM.Setup,wKEM.KeyGen,wKEM.Encap,wKEM.Decap) is a KEM schemes that is IND-CPA
secure (and not IND-CCA secure) and assume we have (1− δwKEM)-correctness, νwKEM-high encapsula-
tion key min-entropy, and χwKEM-high ciphertext min-entropy. In the following, for simplicity of pre-
sentation and without loss of generality, we assume δwKEM = δKEM, νwKEM = νKEM, χwKEM = χKEM.

• RS = (RS.Setup,RS.KeyGen,RS.Sign,RS.Verify) is a ring signature scheme that is anonymous and
unforgeable and assume we have (1− δRS)-correctness. We denote d as the bit length of the signature
generated by RS.Sign.

• F : K× {0, 1}∗ → {0, 1}κ+d is a pseudo-random function family with key space K.

• Ext : S ×KS → K is a strong (γKEM, εExt)-extractor.

Public Parameters. All the parties in the system are provided the following public parameters as in-
put: (s, ppKEM, ppwKEM, ppRS). Here, s is a random seed chosen uniformly from S , and ppX for X ∈
{KEM,wKEM,RS } are public parameters generated by X.Setup.
Long-Term Public and Secret Keys. Each party Pi runs (eki, dki)← KEM.KeyGen(ppKEM) and (vki, ski)←
RS.KeyGen(ppRS). Party Pi’s long-term public key and secret key are set as lpki = (eki, vki) and lski =
(dki, ski) , respectively.
Construction. A key exchange between an initiator Pi in the s-th session (i.e., πs

i) and responder Pj in the
t-th session (i.e., πt

j) is executed as in Figure 3.2. More formally, we have the following.

1. Party Pi sets Pids
i := j and roles

i := init. Pi computes (dkT, ekT) ← wKEM.KeyGen(ppwKEM) and
(vkT, skT) ← RS.KeyGen(ppRS), and sends (ekT, vkT) to party Pj. Pi erases the signing key skT and
stores the ephemeral decapsulation key dkT as the session-state i.e., states

i := dkT.26

2. Party Pj sets Pidt
j := i and rolet

j := resp. Upon receiving (ekT, vkT), Pj first computes (K,C) ←
KEM.Encap(eki) and (KT,CT)← wKEM.Encap(ekT) and derives two PRF keys K1 ← Exts(K), K2 ←
Exts(KT). It then defines the session identifier as sidt

j := Pi∥Pj∥lpki∥lpkj∥ekT∥vkT∥C∥CT and computes
k∥k̃← FK1(sidj)⊕ FK2(sidj), where k ∈ {0, 1}κ and k̃ ∈ {0, 1}d. Pj sets the session key as kt

j := k. Pj

then signs σ← RS.Sign(skj, sidt
j, { vkT, vkj }) and encrypts it as c← σ⊕ k̃. Finally, it sends (C,CT, c)

to Pi and sets resultt
j := accept. Here, note that Pj does not require to store any session-state, i.e.,

statet
j = ⊥.

3. Upon receiving (C,CT, c), Pi first decrypts K← KEM.Decap(dki,C) and KT ← wKEM.Decap(dkT,CT),
and derives two PRF keys K1 ← Exts(K) and K2 ← Exts(KT). It then sets the session identifier as
sids

i := Pi∥Pj∥lpki∥lpkj∥ekT∥vkT∥C∥CT and computes k∥k̃← FK1(sidi)⊕ FK2(sidi), where k ∈ {0, 1}κ

and k̃ ∈ {0, 1}d. Pi then decrypts σ ← c⊕ k̃ and checks whether RS.Verify({ vkT, vkj } , sids
i , σ) = 1

holds. If not, Pi sets (results
i , k

s
i , state

s
i) := (reject,⊥,⊥) and stops. Otherwise, Pi sets (results

i , k
s
i , state

s
i) :=

(accept, k,⊥). Here, note that Pi deletes the session-state states
i = dkT at the end of the key exchange.

26Notice the protocol is receiver oblivious since the first message is computed independently of the receiver.

62 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

Security. We first check that ΠSC-DAKE is correct and secure as a standard AKE protocol. The main difference
from the security proof of ΠSC-AKE is that we have to make sure that removing the initiator’s signature
only affects forward secrecy, and using a ring signature instead of a standard signature does not allow the
adversary to mount a key-compromise impersonation (KCI) attack (see Section 3.2.3 for the explanation on
KCI attacks).

Theorem 3.6.6 (Correctness of ΠSC-DAKE). Assume KEM and wKEM are (1− δKEM)-correct and RS is (1− δRS)-
correct. Then, the Signal-conforming AKE protocol ΠSC-DAKE is (1− µℓ(δRS + 2δKEM)/2)-correct.

Proof of Theorem 3.6.6. This proof is similar to the proof of Theorem 3.3.2. It is clear that an initiator oracle
and a responder oracle become partners when they execute the protocol faithfully. Moreover, if no
correctness error occurs in the underlying KEM schemes and ring signature scheme, the partner oracles
compute an identical session key. Since each oracle is assigned to uniform randomness, the probability that
a correctness error occurs in one of the underlying schemes is bounded by δRS + 2δKEM. Since there are at
most µℓ/2 responder oracles, the AKE protocol is correct except with probability µℓ · (δRS + 2δKEM)/2.

Theorem 3.6.7 (Security of ΠSC-DAKE). For any QPT adversary A that plays the game GameAKE-weakFS
ΠSC-DAKE

(µ, ℓ)
with µ parties that establishes at most ℓ sessions per party, there exist QPT algorithms B1 breaking the IND-CPA
security of wKEM, B2 and B4 breaking the IND-CCA security of KEM, B3 breaking the unforgeability of RS, and
D1, . . . ,D3 breaking the security of PRF F such that

AdvAKE-weakFS
ΠSC-DAKE,A (κ) ≤max

µ2ℓ2 · (2AdvIND-CPA
wKEM,B1

(κ) + AdvPRFF,D1
(κ) + εExt),

µ2ℓ · (2AdvIND-CCA
KEM,B2

(κ) + AdvPRFF,D2
(κ) + εExt) + µℓ2 ·

(
1

22χKEM
+ 1

2νKEM

)
,

AdvRS-Unf
RS,B3

(κ),

µ2ℓ ·
(

2AdvIND-CCA
KEM,B4

(κ) + AdvPRFF,D3
(κ) + εExt

)
+ µℓ2 · 1

2χKEM

+

µℓ

2
· (δRS + 2δKEM),

where νKEM is the encapsulation key min-entropy of wKEM and KEM, and χKEM is the ciphertext min-entropy of
wKEM and KEM. The running time of B1, . . . ,B4 and D1, . . . ,D3 are about that of A.

Proof of Theorem 3.6.7. Let A be an adversary that plays the security game GameAKE-weakFS
ΠSC-DAKE

(µ, ℓ) with the
challenger C with advantage AdvAKE-weakFS

ΠSC-DAKE,A (κ) = ϵ. The bulk of the proof is identical to the proof of Theo-
rem 3.3.3 for the (non-deniable) protocol ΠSC-AKE. Namely, we divide the strategy that can be taken by A
(listed in Table 3.1) and we construct an algorithm that breaks one of the underlying assumptions by using
such an A as a subroutine. Formally, we construct seven algorithms B1, . . . ,B4 and D1, . . . ,D3 satisfying
the following:

1. IfA uses the Type-1 (or Type-2) strategy, then B1 succeeds in breaking the IND-CPA security of wKEM
with advantage ≈ 1

µ2ℓ2 ϵ or D1 succeeds in breaking the security of PRF F with advantage ≈ 1
µ2ℓ2 ϵ.

2. If A uses the Type-3 (or Type-4) strategy, then B2 succeeds in breaking the IND-CCA security of KEM
with advantage ≈ 1

µ2ℓ
ϵ or D2 succeeds in breaking the security of PRF F with advantage ≈ 1

µ2ℓ
ϵ.

3. If A uses the Type-5 or Type-6 strategy, then B3 succeeds in breaking the unforgeability of RS with
advantage ≈ ϵ.

3.6. Adding Deniability to Basic Signal-Conforming AKE 63

4. If A uses the Type-7 (or Type-8) strategy, then B4 succeeds in breaking the IND-CCA security of KEM
with advantage ≈ 1

µ2ℓ
ϵ or D3 succeeds in breaking the security of PRF F with advantage ≈ 1

µ2ℓ
ϵ.

We present a security proof structured as a sequence of games. Without loss of generality, we assume
thatA always issues a Test-query. In the following, let Sj denote the event that b = b′ occurs in Game j and
let ϵj :=

∣∣Pr
[
Sj
]
− 1/2

∣∣ denote the advantage of the adversary in Game j. Regardless of the strategy taken
by A, all proofs share the common game sequences Game 0 and Game 1 as described below. Although they
are identical to those of Theorem 3.3.3, we provide them for completeness.
Game 0. This game is identical to the original security game. We thus have

ϵ0 = ϵ.

Game 1. This game is identical to Game 0, except that we add an abort condition. Let Ecorr be the event that
there exist two partner oracles πs

i and πt
j that do not agree on the same session key. If Ecorr occurs, then C

aborts (i.e., sets A’s output to be a random bit) at the end of the game.
There are at most µℓ/2 responder oracles and each oracle is assigned uniform randomness. From The-

orem 3.6.6, the probability of error occurring during the security game is at most µℓ(δRS + 2δKEM)/2.
Therefore, Ecorr occurs with probability at most µℓ(δRS + 2δKEM)/2. We thus have

|Pr [S0]− Pr [S1]| ≤
µℓ

2
· (δRS + 2δKEM).

In the following games we assume no decryption error or signature verification error occurs.
We now divide the game sequence depending on the strategy taken by the adversary A. Regardless of

A’s strategy, we prove that ϵ1 is negligible, which in particular implies that ϵ is also negligible. Formally,
this is shown in Lemmata 3.6.8 to 3.6.11 provided below. We first complete the proof of the theorem.
Specifically, by combining all the lemmata together, we obtain the following desired bound:

AdvAKE-weakFS
ΠSC-DAKE,A (κ) ≤max

µ2ℓ2 · (2AdvIND-CPA
wKEM,B1

(κ) + AdvPRFF,D1
(κ) + εExt),

µ2ℓ · (2AdvIND-CCA
KEM,B2

(κ) + AdvPRFF,D2
(κ) + εExt) + µℓ2 ·

(
1

22χKEM
+ 1

2νKEM

)
,

AdvRS-Unf
RS,B3

(κ),

µ2ℓ ·
(

2AdvIND-CCA
KEM,B4

(κ) + AdvPRFF,D3
(κ) + εExt

)
+ µℓ2 · 1

2χKEM

+

µℓ

2
· (δRS + 2δKEM),

Here, the running time of the algorithms B1, . . . ,B4 and D1, . . . ,D3 consist essentially the time required to
simulate the security game for A once, plus a minor number of additional operations.

It remains to prove Lemmata 3.6.8 to 3.6.11. Since the proof of Lemmata 3.6.10 and 3.6.11 is a direct
consequence of the proof of the corresponding Lemmata 3.3.4 and 3.3.5 of Theorem 3.3.3,27 we focus on
proving Lemma 3.6.8 and Lemma 3.6.9 below.

Lemma 3.6.8. For any QPT adversary A using the Type-5 or Type-6 strategy, there exists a QPT algorithm B3
breaking the unforgeability of RS such that

ϵ1 ≤ AdvRS-Unf
RS,B3

(κ).
27Note that Lemma 3.6.10 (resp. Lemma 3.6.11) corresponds to Lemma 3.3.4 (resp. Lemma 3.3.5).

64 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

Proof of Lemma 3.6.8. We present the rest of the sequence of games from Game 1.
Game 2. This game is identical to Game 1, except that we add an abort condition. Let Sj be a list
of message-signature pairs that Pj generated as being a responder oracle. That is, every time πt

j for
some t ∈ [ℓ] is invoked as a responder, it updates the list Sj by appending the message-signature pair
(sidt

j, σt
j) that it generates. Then, when an initiator oracle πs

i for any (i, s) ∈ [µ]× [ℓ] is invoked on input
(C,CT, c) from party Pj (i.e., Pids

i = j), it first computes sids
i and σ as in the previous game and checks if

RS.Verify({ vkT, vkj } , sids
i , σ) = 1 and (sids

i , σ) ∈ Sj. If not, the game aborts. Otherwise, it proceeds as in
the previous game. We call the event this abort occurs as Esig. Since the two games are identical until abort,
we have

|Pr [S2]− Pr [S3]| ≤ Pr [Esig] .

Before, bounding Pr [Esig], we finish the proof of the lemma. We show that no adversary A following
the Type-5 or Type-6 strategy has winning advantage in Game 2, i.e., Pr[S2] = 1/2. To see this, first let us
assume A issued Test(i∗, s∗) and received a key that is not a ⊥. In other words, πs∗

i∗ is in the accept state.
By the definition of the Type-5 or Type-6 strategy, πs∗

i∗ has no partner oracle πt
j for any (j, t) ∈ [µ]× [ℓ]. On

the other hand, if πs∗
i∗ is in the accept state, then event Esig must have not triggered. Consequently, there

exists some oracle πt
j that output (sids∗

i∗ , σ∗). Parsing sids∗
i∗ as Pi∗∥Pj∥lpki∗∥lpkj∥ek∗T∥vk∗T∥C∗∥C∗T, this implies

that πt
j and πs∗

i∗ are partner oracles. Since this forms a contradiction, A can only receive ⊥ when it issues
Test(i∗, s∗). Hence, since the challenge bit b is statistically hidden from A, we have Pr[S2] = 1/2.

It remains to bound Pr [Esig]. We do this by constructing an algorithm B3 against the unforgeability
of RS. The description of B3 follows: B3 receives the public parameter ppRS and µ + µℓ verification keys
vk1, . . . , vkµ and vk1

1, . . . , vkℓµ. B3 sets up the public parameter of ΠSC-DAKE as in Game 2 using ppRS. B3 then
runs (dki, eki) ← KEM.KeyGen(ppKEM) and sets the long-term public key of party Pi as lpki := (eki, vki).
The long-term secret key is implicitly set as lski := (dki, ski), where ski is unknown to B3. Finally, B3
invokes A on input the public parameter of ΠSC-DAKE and { lpki | i ∈ [µ] } and answers the queries by A as
follows:

• Send(i, s, ⟨START : role, j⟩): B3 responds as in Game 1 except that it sets vkT := vks
i .

• Send(j, t, m = (ekT, vkT)): B3 responds as in Game 1 except that rather than constructing the signature
σ on its own, it queries Sign(j, sidt

j, { vkT, vkj }) to its signing oracle and uses the signature σ′ that it
receives.

• Send(i, s, m = (C,CT, c)): B3 responds as in Game 1.

• RevLTK(i): B3 queries Corr(i) to its corruption oracle and receives back a signing key sk′i. B3 then
sets ski := sk′i and returns lski = (dki, ski).

• RevState(i, s), RevSessKey(i, s): B3 responds as in Game 1.

• Test(i, s): B3 responds as in Game 1.

It is clear that B3 perfectly simulates the view of Game 2 to A. Below, we analyze the probability that B3
breaks the unforgeability of RS and relate it to Pr[Esig].

We assume A issues Test(i∗, s∗). Let the message sent by the initiator oracle πs∗
i∗ be (ek∗T, vk∗T) and the

message received by πs∗
i∗ be (C∗,C∗T, c∗). Let σ∗ be the signature recovered from c∗. Then, by the definition

of the Type-5 or Type-6 strategy, the tested oracle πs∗
i∗ satisfies the following conditions:

3.6. Adding Deniability to Basic Signal-Conforming AKE 65

• roles∗
i∗ = init,

• Pj is not corrupted where Pids∗
i∗ = j and j ∈ [µ],

• πs∗
i∗ is in the accept state. This implies RS.Verify({ vk∗T, vkj } , Pi∗∥Pj∥lpki∗∥lpkj∥ek∗T∥vk∗T∥C∗∥C∗T, σ∗) =

1 holds,

• πs∗
i∗ has no partner oracles.

Since Pj is not corrupted, A has never queried RevLTK(j)-query. Moreover, since an honest initiator
discards sk∗T on generation, B3 never uses them for simulation. These two facts imply that Corr(j) and
Corr((i, T)) has never been queried, where Corr((i, T)) is a query regarding the verification key vks∗

i∗ . In
particular, the ring { vk∗T, vkj } consists of non-corrupted verification keys. Moreover, since πs∗

i∗ has no
partner oracles, there exists no responder oracle πt

j that has received (ek∗T, vk∗T) from Pi∗ and sent (C∗,C∗T).
In other words, there is no oracle πt

j that has signed on the message Pi∗∥Pj∥lpki∗∥lpkj∥ek∗T∥vk∗T∥C∗∥C∗T.
Notice that this is exactly the event Esig; an initiator oracle πs∗

i∗ receives a signature that was not signed by
an oracle πt

j for any t ∈ [ℓ]. Therefore, we have Pr[Esig] = AdvRS-Unf
RS (B3).

Combining everything together, we conclude

ϵ1 ≤ AdvRS-Unf
RS,B3

(κ).

Lemma 3.6.9. For any QPT adversary A using the Type-7 or Type-8 strategy, there exist QPT algorithms B4
breaking the IND-CCA security of KEM and D3 breaking the security of PRF F such that

ϵ1 ≤ µ2ℓ ·
(

2AdvIND-CCA
KEM,B4

(κ) + AdvPRFF,D3
(κ) + εExt

)
+ µℓ2 · 1

2χKEM
.

Proof of Lemma 3.6.9. We present the rest of the sequence of games from Game 1.
Game 2. This game is identical to Game 1, except that we add another abort condition. Let Ecoll be the event
that there exists two responder oracles πt

j and πt′
j for any j ∈ [µ] and t ̸= t′ ∈ [ℓ] such that they output

the same KEM ciphertext. That is, there exists two oracles πt
j and πt′

j that output (C,CT, c) and (C′,C′T, c′)

such that C = C′. Here, we only consider the case where Pidt
j and Pidt′

j correspond to parties generated by
the game (and not parties added by the adversary). If Ecoll occurs, then C aborts. Since Game 1 and Game 2
proceed identically unless Ecoll occurs, we have

|ϵ1 − ϵ2| ≤ Pr [Ecoll] .

We claim
Pr [Ecoll] ≤ µℓ2 · 1

2χKEM
.

Since each oracles πt
j are initialized with uniform random and independent randomness and eki is honestly

generated, where i = Pidt
j, each ciphertext C output by oracle πt

j has χKEM-min entropy due to the χKEM-
high ciphertext min-entropy of KEM. Fixing on one j ∈ [µ], the probability of a collision occurring is upper
bounded by µ2/2χKEM . Then, taking the union bound on all the parties, we obtain the claimed bound.

66 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

Game 3. In this game, before starting the game, C chooses a responder oracle π t̂
ȷ̂ and a party Pı̂ uniformly at

random from µℓ oracles and µ parties, respectively. Let EtestO be the event that the tested oracle is not π t̂
ȷ̂ or

the peer of the tested oracle is not Pı̂. Since EtestO is an efficiently checkable event, C aborts as soon as it
detects that event EtestO occurs. C guesses the choice made by A correctly with probability 1/µ2ℓ, so we
have

ϵ3 =
1

µ2ℓ
ϵ2.

Game 4. In this game, we modify the way the initiator oracle πs
ı̂ for any s ∈ [ℓ] responds on its second

invocation. Let (K,C) be the KEM key-ciphertext pair generated by oracle π t̂
ȷ̂ . Then, when πs

ı̂ is invoked
(on the second time) on input (C′,CT, c), it first checks if C′ = C. If so, it proceeds as in the previous
game except that it uses the key K that was generated by π t̂

ȷ̂ rather than using the key obtained through
decrypting C′. Otherwise, if C′ ̸= C, then it proceeds exactly as in the previous game. Conditioning on
event Ecorr (i.e., decryption failure) not occurring, the two games Game 3 and Game 4 are identical. Hence,

ϵ4 = ϵ3.

Game 5. In this game, we modify the way the responder oracle π t̂
ȷ̂ responds. When the responder ora-

cle π t̂
ȷ̂ is invoked on input ekT, it samples a random key K←$KSKEM instead of computing (K,C) ←

KEM.Encap(ekı̂). Note that due to the modification we made in the previous game, when the initiator
oracle πs

ı̂ for any s ∈ [ℓ] is invoked (on the second time) on input (C′,CT, c) for C′ = C, it uses the random
key K generated by oracle π t̂

ȷ̂ . We claim Game 4 and Game 5 are indistinguishable assuming the IND-CCA
security of KEM. To prove this, we construct an algorithm B4 breaking the IND-CCA security as follows.
B4 receives a public parameter ppKEM, a public key ek∗, and a challenge (K∗,C∗) from its challenger.

B4 then samples a random (ı̂, ȷ̂, t̂)←$ [µ]2 × [ℓ], sets up the public parameter of ΠSC-AKE using ppKEM, and
generates the long-term key pairs as follows. For party Pı̂, B4 runs (vkı̂, skı̂)← RS.KeyGen(1κ) and sets the
long-term public key as lpkı̂ := (ek∗, vkı̂) and implicitly sets the long-term secret key as lskı̂ := (dk∗, skı̂),
where note that B3,1 does not know dk∗. For all the other parties i ∈ [µ\ı̂], B4 computes the long-term
key pairs (lpki, lski) as in Game 5. Finally, B4 invokes A on input the public parameter of ΠSC-AKE and
{ lpki | i ∈ [µ] } and answers the queries made by A as follows:

• Send(i, s, ⟨START : role, j⟩): B4 proceeds as in Game 5.

• Send(j, t, m = (ekT, σi)): Let i := Pidt
j. Depending on the values of (j, t, i), it performs the following:

– If (j, t, i) = (ȷ̂, t̂, ı̂), then B4 responds as in Game 5 except that it sets (K,C) := (K∗,C∗) rather
than generating them on its own. It then returns the message (C∗,CT, c).

– If (j, t, i) ̸= (ȷ̂, t̂, ı̂), then B4 responds as in Game 5.

• Send(i, s, m = (C,CT, c)): Depending on the value of i, it performs the following:

– If i = ı̂, then B4 checks if C = C∗. If so, it responds as in Game 5 except that it sets K := K∗.
Otherwise, if C ̸= C∗, then it queries the decapsulation oracle on C and receives back K′. B3,1
then responds as in Game 5 except that it sets K := K′.

– If i ̸= ı̂, then B4 responds as in Game 5.

3.6. Adding Deniability to Basic Signal-Conforming AKE 67

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B4 responds as in Game 5. Here, note
that since A follows the Type-7 or Type-8 strategy, B3,1 can answer all the RevLTK-query. Namely, A
never queries RevLTK(ı̂) (i.e., lskı̂ := (dk∗, skı̂)) conditioning on EtestO not occurring, which is the only
query that B3,1 cannot answer.

• Test(i, s): B4 responds to the query as in the definition. Here, in case (i, s) ̸= (ȷ̂, t̂), then event EtestO

is triggered so it aborts.

If A outputs a guess b′, B4 outputs 0 if b′ = b 1 otherwise. It can be checked that B4 perfectly simulates
Game 4 (resp. Game 5) to A when the challenge K∗ is the real key (resp. a random key). Thus we have

|Pr [S4]− Pr [S5]| ≤ 2AdvIND-CCA
KEM,B4

(κ).

Game 6. In this game, whenever we need to derive K∗1 ← Exts(K∗), we instead use a uniformly and
randomly chosen PRF key K∗1←$K (fixed once and for all), where K∗ is the KEM key chosen by oracle π t̂

ȷ̂ .
Due to the modification we made in the previous game, K∗ is chosen uniformly at random from KSKEM so
K has log2(|KSKEM|) ≥ γKEM min-entropy. Then, by the definition of the strong (γKEM, εExt)-extractor Ext,
we have

|Pr [S5]− Pr [S6]| ≤ εExt.

Game 7. In this game, we sample a random function RF and whenever we need to compute FK∗1 (sid) for any
sid, we instead compute RF(K∗1 , sid). Due to the modification we made in the previous game, K∗1 is sampled
uniformly from K. Therefore, the two games can be easily shown to be indistinguishable assuming the
pseudo-randomness of the PRF. In particular, we can construct a PRF adversary D3 such that

|Pr [S6]− Pr [S7]| ≤ AdvPRFF,D3
(κ).

It remains to show that the session key outputted by the tested oracle in the Game 7 is uniformly
random regardless of the challenge bit b ∈ {0, 1} chosen by the game. We consider the case where b = 0
and prove that the honestly generated session key by the tested oracle is distributed uniformly random.
First conditioning on event EtestO not occurring, it must be the case that the tested oracle π t̂

ȷ̂ prepares
the session key as k∗∥k̃ ← RF(K∗1 , sid∗)⊕ FK2(sid

∗) for some sid∗. Here, recall K∗1 is the random PRF key
sampled by the oracle π t̂

ȷ̂ (see Game 6). Next, since the tested oracle has no partner oracle (by definition of
the Type-7 and Type-8 strategy), there are no oracles πs

i such that i ̸= i that runs RF(K∗1 , ·) on input sid∗.
Moreover, conditioning on event Ecoll not occurring, no oracles πt

ı̂ for t ̸= t̂ run RF(K∗1 , ·) on input sid∗ as
well since (C,CT) output by these oracles must be distinct from what π t̂

ȷ̂ outputs. Therefore, we conclude
that RF(K∗1 , sid∗) is only used to compute the session key of the tested oracle and used nowhere else. Since
the output of RF is distributed uniformly random for different inputs, we conclude that Pr [S7] = 1/2.
Combining all the arguments together, we obtain

ϵ1 ≤ µ2ℓ ·
(

2AdvIND-CCA
KEM,B2

(κ) + AdvPRFF,D2
(κ) + εExt

)
+ µℓ2 · 1

2χKEM
.

For completeness, we state the remaining Lemmata 3.6.10 and 3.6.11 and provide a proof sketch.

68 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

Lemma 3.6.10. For any QPT adversary A using the Type-1 or Type-2 strategy, there exist QPT algorithms B1
breaking the IND-CPA security of wKEM and D1 breaking the security of PRF F such that

ϵ1 ≤ µ2ℓ2 ·
(

2AdvIND-CPA
wKEM,B1

(κ) + AdvPRFF,D1
(κ) + εExt

)
.

Lemma 3.6.11. For any QPT adversary A using the Type-3 or Type-4 strategy, there exist QPT algorithms B2
breaking the IND-CCA security of KEM and D2 breaking the security of PRF F such that

ϵ1 ≤ µ2ℓ ·
(

2AdvIND-CCA
KEM,B2

(κ) + AdvPRFF,D2
(κ) + εExt

)
+ µℓ2 ·

(
1

22χKEM
+

1
2νKEM

)
.

Proof Sketch of Lemmata 3.6.10 and 3.6.11. The difference between ΠSC-DAKE and ΠSC-AKE is that the former
uses a ring signature and the first message sent by the initiator includes the ephemeral verification key vkT;
and the initiator does not sign the first message. In addition, the former considers weak forward secrecy
(A plays GameAKE-weakFS

ΠSC-DAKE
), and the latter considers perfect forward secrecy (A plays GameAKE-FS

ΠSC-AKE
). However,

it can be easily verified that this modification brings no advantage to the adversary following the strategies
in the statement. In particular, when A uses the Type-1, Type-2, Type-3 or Type-4 strategy (i.e., the tested
oracle has a partner oracle), the winning condition (cf. freshness clauses Items 1 to 4) of the two security
game is identical. Specifically, the proofs are identical to the proofs of Lemmata 3.3.4 and 3.3.5.

In slightly more detail, notice the session key derivation step in ΠSC-DAKE is exactly the same as those
in ΠSC-AKE. Namely, the value of the derived session key is independent of the signature conditioning
on the signature being valid. Further, notice the proofs of Lemmata 3.3.4 and 3.3.5 only relies on the
security properties of the KEM, PRF, and extractor. That is, the proof does not hinge on the security
offered by the signature scheme and this holds even if the signature is removed from the first message
and the signature scheme is replaced with a ring signature scheme. Here, we note that the validity of the
ephemeral ring signature verification key never comes into play in the security proof. Therefore, the proofs
of Lemmata 3.3.4 and 3.3.5 follow.

Remark 3.6.12 (Why the Protocol ΠSC-DAKE Does Not Satisfy Full Forward Secrecy). For completeness, we
show that ΠSC-DAKE does not satisfy full forward secrecy by constructing an adversary A that wins the
game GameAKE-FS

ΠSC-DAKE
(µ, ℓ) with overwhelming probability. For simplicity, we consider the game with 2

parties P1 and P2 that establishes one session per party, i.e., µ = 2 and ℓ = 1. A performs the following
attack:

1. C setups the oracles π1
1 and π1

2, and A obtains the public parameter and the long-term public keys
lpk1 and lpk2 from the challenger C.

2. A sends Send(2, 1, m = ⟨START : resp, 1⟩) to C, which initializes the oracle π1
2 as the responder and

sets its partner to P1.

3. A generates the first message (ekT, dkT) and (vkT, skT) according to the protocol description and
sends Send(2, 1, m = (ekT, vkT)) to C and receives (C,CT, c) from C. Note that π1

2 terminates at this
point.

4. A then corrupts P1 by sending RevLTK(1) to C and receives P1’s long-term secret key lsk1 = (dk1, sk1).

5. A decrypts C and CT using dk1 and dkT, respectively. Then it computes the session key k and verifies
the signature according to the protocol description.

3.6. Adding Deniability to Basic Signal-Conforming AKE 69

6. A sends Test(2, 1) and receive k′. If k = k′, A outputs 0 as the guessed bit; otherwise outputs 1.

It is clear that A perfectly impersonates P1 acting as an initiator. The session key k computed by A is the
same session key computed by π1

2, and thus, A can guess the challenge bit with overwhelming probability.
Moreover, the tested oracle π1

2 is fresh because A did not send RevSessKey and RevState queries, and it
corrupted P1 only after π1

2 finished the protocol execution. Therefore, A is a valid adversary against the
full forward secrecy game.

The following guarantees deniability of the proposed protocol ΠSC-DAKE against semi-honest adver-
saries.

Theorem 3.6.13 (Deniability of ΠSC-DAKE Against Semi-Honest Adversaries). Assume RS is anonymous.
Then, the Signal-conforming protocol ΠSC-DAKE is deniable against semi-honest adversaries.28

Proof. Let M be any PPT semi-honest adversary. We explain the behavior of the simulator SIMM by
considering three cases: (a)M initializes an initiator Pi, (b)M queries the initiator Pi on message (C,CT, c),
and (c)M queries the responder Pj on message (ekT, vkT). In case (a), SIMM runs the honest initiator
algorithm and returns (ekT, vkT) as specified by the protocol. In case (b), since M is semi-honest, we
are guaranteed that it runs the honest responder algorithm to generate (C,CT, c). In particular, sinceM
is run on randomness sampled by SIMM, SIMM gets to learn the key K that was generated along with
C. Therefore, SIMM runs the real initiator algorithm except that it uses K extracted fromM rather than
computing K← KEM.Decap(dki,C). Here, note that SIMM cannot run the latter since it does not know the
corresponding dki held by an honest initiator party Pi. In case (c), similarly to case (b), SIMM learns dkT
and skT used byM to generate ekT and vkT. Therefore, SIMM runs the honest responder algorithm except
that it runs σ← RS.Sign(skT, sidj, { vkT, vkj }) instead of running σ← RS.Sign(skj, sidj, { vkT, vkj }) as in the
real protocol. Here, note that SIMM cannot run the latter since it does not know the corresponding skj held
by an honest responder party Pj.

Let us analyze SIMM. First, for case (a), the output by SIMM is distributed exactly as in the real transcript.
Next, for case (b), the only difference between the real distribution and SIMM’s output distribution (which
is the derived session key k) is that SIMM uses the KEM key K output by KEM.Encap to compute the session
key rather than using the KEM key decrypted using KEM.Decap with the initiator party Pi’s decryption key
dki. However, by (1− δKEM)-correctness of KEM, these two KEM keys are identical with the probability at
least (1− δKEM). Hence, the output distribution of SIMM and the real view are indistinguishable. Finally,
for case (c), the only difference between the real distribution and SIMM’s output distribution (which is
the derived session key and the message sent (C,CT, c)) is how the ring signature is generated. While the
real protocol uses the signing key skj of the responder party Pj, the simulator SIMM uses skT. However,
the signatures outputted by these two distributions are computationally indistinguishable assuming the
anonymity of RS. Hence, the output distribution of SIMM and the real view are indistinguishable.

Combining everything together, we conclude the proof.

Remark 3.6.14 (Efficiency of ΠSC-DAKE). We evaluate the message size of ΠSC-DAKE. The first message of
ΠSC-DAKE contains the additional ring signature verification key vkT. Thus, the size of the first message
increases by the amount of vkT compared to ΠSC-AKE.29 The second message of ΠSC-DAKE contains the

28Although we only consider a classical adversaryM, it can be checked that the exact same proof holds even for a quantum
adversary.

29To be fair, we compare ΠSC-DAKE with a variant of ΠSC-AKE who not sign the first message. Presented in [Has+21a], such
variant is as secure as ΠSC-DAKE (modulo the difference between weak and perfect forward secrecy), and the main difference
between the two schemes is deniability.

70 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

ring signature for a ring of two users instead of the standard signature. Examples of post-quantum ring
signatures sizes for a ring of two users at the NIST security level 1 are 2.5 KiB (Raptor [LAZ19], based
on NTRU), 4.4 KiB (DualRing [Yue+21], based on M-LWE/SIS), or 3.5 KiB (Calamari [BKP20], based on
CSIDH). On the other hand, examples of standard signatures sizes at the same security level are 0.6 KiB
(Falcon [Pre+20], based on NTRU), 2.3 KiB (Dilithium [Lyu+20], based on M-LWE/SIS) or 0.26 KiB (CSI-
FiSh [BKV19], based on CSIDH). Therefore, when using ring signature schemes [LAZ19; BKP20; Yue+21],
it is possible to get the size of the second message to be about 2-3 KiB larger than ΠSC-AKE.

Remark 3.6.15 (Why Deniability Against a Semi-Malicious Adversary May Not Suffice). We provide a
concrete attack on ΠSC-DAKE in case the adversary may act maliciously.30 The scenario is as follows:
Alice, the initiator in Figure 3.5, wants to prove that Bob, the responder in Figure 3.5, was engaging
in communication with her. In the context of Signal, this means that Alice who uploads her (possibly
maliciously generated) key package to the server wants to later prove that Bob was trying to communicate
with her.

We consider a specific type of ring signature where for any public parameter ppRS, the language of all
possible verification key vk that can be output by RS.KeyGen(ppRS, ·) is an NP∩ coNP language. That is, if vk
is in the image of RS.KeyGen(ppRS, ·), then the randomness used to generate it will be the NP-witness, and
if vk is not in the image, we assume there is a coNP-witness to prove it. We further assume the NP∩ coNP
language can be sampled efficiently along with an accompanying witness. Although it depends on the
concrete set of parameters, many lattice-based ring signatures such as [BK10; LAZ19; Esg+19a; Esg+19b;
Esg+19c; BKP20] where the verification key includes an LWE or NTRU instance could satisfy this property
since the (approximated) gap closest vector GapCVP problem lies in NP∩ coNP [AR04].

With such a ring signature, the attack is simple. Alice generates her ring signature verification key
vkA with an accompanying coNP-witness wno to prove that vkA does not have a corresponding secret key
skA. This can informally be used as cryptographic evidence that justifies Alice’s incapability of signing
any message using vkA. Now, if Bob generates a ring signature σ ← RS.Sign(skB, sidB, { vkA, vkB }) that
includes Alice’s verification key, then Alice can later claim to a third-party (e.g., a judge) by presenting
(vkA, wno, σ) that Bob engaged in a conversation with her. We note that to make this argument formal in a
theoretical sense, Alice would also need to prove that any adversary that can output a valid σ can forge a
signature using vkB. That is, unless Alice knew Bob’s verification key, she would not have been able to
create σ. As a concrete example, we can consider the Raptor signature scheme [LAZ19]. Alice can set her
verification key to be a zero-polynomial element. Then, the ring signature produced by Bob reduces to a
standard signature created by Bob since the components that depend on Alice’s verification key disappear.

Although informal, we believe there are several other simpler ways Alice may convince a real-world
third-party her incapability of signing the ring signature provided by Bob. For instance, she may create the
verification key using a cryptographically secure hash function, i.e., vkA = H(rand). Even if vkA is not in
NP∩ coNP, this may already be “good enough” evidence in practice to convince a third party that Alice
could not have signed the message. This is because we can safely assume that computing the secret key
from a random vkA is infeasible.

Considering that the extent of cryptographic evidence that can be considered as real-world judicious
evidence is unclear, Bob may want to be able to prove that Alice could have signed the ring signature in a
cryptographically sound manner. We provide one possible way how to achieve this in the next section.

30The attack equally works for the subsequent protocol proposed by Brendel et al. [Bre+22]. We note that this does not contradict
their security proof since the new definition of indistinguishability-based deniability they introduce does not capture malicious
adversaries.

3.6. Adding Deniability to Basic Signal-Conforming AKE 71

Remark 3.6.16 (Taking Advantage of the Asymmetry). As we explained at the beginning of this section,
there is a subtle difference between the level of deniability we can target for a standard AKE protocol and
the Signal handshake. Alice, the initiator in Figure 3.5, may not need to deny the fact that she was using the
Signal app. In this case, Alice may be willing to sign her first message as in our original Signal-conforming
AKE protocol ΠSC-AKE. Such a signature allows us to prove perfect forward secrecy in Theorem 3.6.7 rather
than weak forward secrecy while still providing deniability for the responder.

3.6.3 Deniable Signal-Conforming AKE Π′SC-DAKE against Malicious Adversaries

We provide a Signal-conforming AKE protocol Π′SC-DAKE that is secure even against malicious adversaries.
The construction is provided in Figure 3.5. To achieve deniability against malicious adversaries, we modify
our ΠSC-DAKE protocol so that the initiator party adds a NIZK proof attesting to the fact that it constructed
the verification key of the ring signature vkT honestly. Formally, we require the following additional
building blocks.
Building Blocks. Our deniable Signal-conforming AKE protocol Π′SC-DAKE against malicious adversaries
requires the following primitives in addition to those required by ΠSC-DAKE in the previous section.

• KEM = (KEM.Setup,KEM.KeyGen,KEM.Encap,KEM.Decap) is an IND-CCA secure KEM scheme as
in the previous section that additionally satisfies PA¯-1 security with an efficiently constructible
extractor, where µ is the number of parties in the system.

• NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) is a NIZK argument system for the relationRRS where
(X,W) ∈ RRS if and only if the statement X = (pp, vk) and witness W = (sk, r) satisfy (vk, sk) =
RS.KeyGen(pp; r).

Additional Assumption. We require a knowledge-type assumption to prove deniability against malicious
adversaries. Considering that all of the previous AKE protocols satisfying a strong form of security and
deniability require such knowledge-type assumptions [DGK06; YZ10; Vat+20], this seems unavoidable.
On the other hand, there are protocols achieving a strong form of deniability from standard assump-
tions [Dod+09; UG15; UG18], however, they make a significant compromise in the security such as being
vulnerable to KCI attacks and state leakages.

The following knowledge assumption is defined similarly in spirit to those of Di Raimondo et
al. [DGK06] that assumed that for any adversary M that outputs a valid MAC, then there exists an
extractor algorithm Ext that extracts the corresponding MAC key. Despite it being a strong knowledge-type
assumption in the standard model, we believe it holds in the random oracle model if we further assume
the NIZK comes with an online knowledge extractor31 like those provided by Fischlin’s NIZK [Fis05]. We
leave it to future works to investigate the credibility of the following assumption and those required
to prove deniability of the X3DH protocol [Vat+20]. We also believe defining a more relaxed notion of
deniability that still suffices in practice while also being satisfiable from standard assumptions to be of
great importance.

Assumption 3.6.17 (Key-Awareness Assumption for Π′SC-DAKE). We say that Π′SC-DAKE has the key-awareness
property if for all PPT adversariesM interacting with a real protocol execution in the deniability game as in Defini-
tion 3.6.1, there exists a PPT extractor ExtM such that for any choice of (pp, LPK, LSK) ∈ KeyGen(1κ, µ), whenever
M outputs a ring signature verification key vk and a NIZK proof π for the language LRS, then ExtM taking input

31This guarantees that the witness from a proof can be extracted without rewinding the adversary.

72 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

the same input asM (including its randomness) outputs a signing key sk such that (vk, sk) ∈ RS.KeyGen(ppRS)
for any ppRS ∈ RS.Setup(1κ).

With the added building blocks along with the key-awareness assumption, we prove the following
theorem. The high-level approach is similar to the previous proof against semi-honest adversaries, but
the concrete proof required is rather involved. The main technicality is when invoking the PA¯-1 security:
if we do the reduction naively, the extractor needs the randomness used to sample the ring signature
key pairs of the honest party, but the simulator of the deniability game does not know such randomness.
We circumvent this issue by hard-wiring the verification key of the ring signature of the adversary and
considering PA¯-1 security against a non-uniform adversary.

Theorem 3.6.18 (Deniability of Π′SC-DAKE against Malicious Adversaries). Assume KEM is PA¯-1 secure
with an efficiently constructible extractor, RS is anonymous, NIZK is sound 32, and the key-awareness assumption
in Assumption 3.6.17 holds. Then, the Signal-conforming protocol Π′SC-DAKE with µ parties is deniable against
malicious adversaries.

Proof. The high-level idea of the proof is similar to those of Theorem 3.6.13. Below, we consider a sequence
of simulators SIMM,i where the first and last simulators SIMM,0 and SIMM,3 simulate the real and simulated
protocols, respectively. That is, SIMM,3 is the desired simulator SIMM. We define Fi to be the distribution
of (pp, LPK) along with the output of SIMM,i. Our goal is to prove that F0 and F3 are indistinguishable.

SIMM,0: It is given (pp, LPK, LSK) as input and simulates the interaction with the adversaryM following
the protocol description of the real world. Here, note thatM is invoked by SIMM,0 on input (pp, LPK)
with uniform randomness. By definition DReal := F0.

SIMM,1: This is the same as SIMM,0 except that wheneverM queries an honest responder party Pj on
input (ekT, vkT, πT), SIMM,1 extracts the corresponding secret ring signature signing key skT. More
formally, due to the key-awareness assumption of Π′SC-DAKE, for any PPTM, there exists a PPT
extractor ExtM such that wheneverM outputs a ring signature verification key vkT and a NIZK proof
πT for the language LRS, then ExtM taking input the same input asM (including its randomness)
outputs a signing key skT such that (vkT, skT) ∈ RS.KeyGen(ppRS). Since SIMM,1 knows all the input
and randomness fed toM, it can run ExtM. Namely, wheneverMmakes the above query, SIMM,1
invokes ExtM on input fed toM until that point along with its initial randomness and extracts skT.
Since the output of SIMM,1 is unaltered, the distribution F1 is identical to the previous game. Below,
for simplicity, we assume thatM always outputs skT whenever it queries an honest responder party
Pj on input (ekT, vkT, πT). This is without loss of generality since we can combineM and ExtM and
view it as another adversary against the deniability game.

SIMM,2: This is the same as SIMM,1 except that whenM queries an honest responder party Pj on input
(ekT, vkT, skT, πT), SIMM,2 responds as in the real protocol except that it runs σ← RS.Sign(skT, sidj, {vkT,
vkj}) instead of running σ← RS.Sign(skj, sidj, { vkT, vkj }). Due to the anonymity of the ring signature
RS, the distributions F1 and F2 are indistinguishable.

Before explaining the next simulator, notice that we can view the combined algorithm (SIMM,2,M) as a
ciphertext creator C for the PA¯-1 security of the KEM scheme KEM. Formally, we decompose SIMM,2 into
two algorithms: SIM′M,2 and Odec, where SIM′M,2 is identical to SIMM,2 except that it outsources the decap-
sulation of ciphertexts corresponding to those of honest initiator parties to Odec. That is, SIM′M,2 proceeds as

32We note that this is redundant since it is implicitly implied by the key-awareness assumption. We only include it for clarity.

3.7. Equivalence Between Designated Verifier Signature and Ring Signature 73

SIMM,2 except that whenM queries the honest initiator Pi on message (C,CT, c), it queries (i,C) to Odec to
receive the corresponding KEM key K. Since SIM′M,2 no longer requires the secret KEM keys { dki | i ∈ [µ] }
of the honest initiator parties, we can assume that SIM′M,2 only takes as input (pp, { eki | i ∈ [µ] }). Here,
we also assume it has µ-ring signature verification keys { vki | i ∈ [µ] } hard-wired rather than SIM′M,2
generating it on its own. At this point, it is clear that the combined algorithm (SIM′M,2,M) can be viewed
as a valid ciphertext creator C that outputs the view of M as the string v, where Odec corresponds to
the decapsulation oracle KEM.Decap run by the challenger in ExpdecC,D. Then, by the PA¯-1 security, there
must exist an extractor EC that simulates Odec that only takes as input (pp, (eki)i∈[µ], rC), where rC is the
randomness used by C (i.e., by (SIM′M,2,M)). Moreover, such an extractor EC is efficiently constructible
given the description of C. Here, note that rC does not include the randomness used to generate the µ-ring
signature verification keys since we hard-wire these to the description of SIM′M,2. In particular, EC does not
require randomness used to generate LPK to be executed. We are now ready to define the next simulator.

SIMM,3 := SIMM: This is the same as SIMM,2 except that it constructs the extractor EC and when M
queries the honest initiator Pi on message (C,CT, c) it runs EC(i,C) instead of Odec(dki,C). Notice that
SIMM,3 no longer requires any long-term secret key LSK to simulateM. Due to the PA¯-1 security of
the KEM scheme KEM, the two distributions F2 and F3 := DSim are indistinguishable.

This completes the proof.

Finally, it remains to show that the Π′SC-DAKE is correct and secure as a standard Signal-conforming
AKE protocol. Due to the correctness of ΠNIZK, the correctness of Π′SC-DAKE follows from Theorem 3.6.6.
Moreover, the security of Π′SC-DAKE follows almost immediately from the proof of Theorem 3.6.7. The only
difference is that in the proof of Lemma 3.6.8 (which is a sub-lemma used to prove Theorem 3.6.7), the
reduction algorithm that does not know the corresponding signing key skT of the verification key vkT
invokes the zero-knowledge simulator to simulate the proof πT. The rest of the proof is identical.

3.7 Equivalence Between Designated Verifier Signature and Ring Signature

In a subsequent work, Brendel et al. [Bre+22] showed a generic construction of a deniable Signal-conforming
AKE protocol based on a designated verifier signature (DVS) and a KEM. They showed how to instantiate
DVS from a ring signature (for a ring of two users) but left open the opposite implication and speculated
the possibility of constructing DVS easier than a ring signature.

In this section, we solve this open problem. We show how to instantiate a ring signature (for a ring of
two users) from DVS and show that DVS is a ring signature in disguise. As discussed in Footnote 8, the
security notion of DVS and ring signatures may come in different flavors so it is not always the case that
they are equivalent. We only focus on DVS and ring signatures that Brendel et al. [Bre+22] required to
construct their AKE protocol. Namely, the definition of ring signature we provide in Section 2.7 is strictly
stronger than those considered in [Bre+22]. We make this clear when we provide the security proof of our
ring signature based on DVS.

The following syntax and security definition of DVS is taken almost verbatim from [Bre+22, Section
3]. One thing to keep in mind is that even though it is called designated verifier, the syntax of Brendel et al.
allows the signature to be publicly verifiable. This will be essential when building a ring signature.

Definition 3.7.1. A designated verifier signature (DVS) scheme DVS consists of a tuple of algorithms DVS =
(Setup, SKGen,VKGen, Sign,Vrfy,Sim) along with a message spaceM.

74 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

GameRS-Unf
DVS,A (κ)

1 : Q← ∅
2 : L← ∅
3 : pp← Setup(1κ)

4 : (pkS, skS)← SKGen(pp)

5 : (pkD, skD)← VKGen(pp)

6 : for i ∈ [n] do
7 : (pkD,i, skD,i)← VKGen(pp)

8 : L +← (pkD,i, skD,i)

9 : (m∗, σ∗)← ASign(·,·)(pp, pkS, pkD, L)
10 : d← Vrfy(pkS, pkD,m∗, σ∗)

11 : return Jd = 1∧m∗ /∈ QK

Signing Oracle Sign(pk,m)

1 : if (pk, sk) /∈ L then
2 : return ⊥
3 : if pk = pkD then
4 : Q +← m

5 : σ← Sign(skS, pk,m)

6 : return σ

FIGURE 3.6: Security game for defining the unforgeability of DVS.

• Setup(1κ)→ pp : The setup algorithm takes a security parameter 1κ as input and outputs a public parameter
pp. In the following, we assume pp is provided to all the algorithms and may omit it for simplicity.

• SKGen(pp)→ (pkS, skS) : A probabilistic key generation algorithm that outputs a public-/secret-key pair for
the signer.

• VKGen(pp)→ (pkD, skD) : A probabilistic key generation algorithm that outputs a public-/secret-key pair for
the verifier.

• Sign(skS, pkD,m) → σ : A probabilistic signing algorithm that uses a signer’s secret key skS to produce a
signature σ for a message m ∈ M for a designated verifier with public key pkD.

• Vrfy(pkS, pkD,m, σ)→ 1/0 : A deterministic verification algorithm that checks a message m and a signature
σ against a signer’s public key pkS and a verifier’s public key pkD.

• Sim(pkS, skD,m)→ σ : A probabilistic signature simulation algorithm that uses the verifier’s secret key skD
to produce a signature σ on a message m for signer’s public key pkS.

Definition 3.7.2 (Unforgeability). We say that a DVS scheme DVS is unforgeable if for any efficient adversary
A we have Pr

[
GameRS-Unf

DVS,A (κ) = 1
]
≤ negl(κ), where the game GameRS-Unf

DVS,A is defined in Figure 3.6.

Definition 3.7.3 (Source Hiding). We say that a DVS scheme DVS is source hiding if for any efficient adversary
A we have

∣∣∣Pr
[
GameRS-SrcHid

DVS,A (κ) = 1
]
− 1/2

∣∣∣ ≤ negl(κ), where the game GameRS-SrcHid
DVS,A is defined in Figure 3.7.

Using a standard hybrid argument, we can assume without loss of generality that A queries oracle
Chall once.
Construction. We now provide a generic construction of a ring signature from any DVS schemes satisfying
the above syntax and security definitions. We only consider a ring signature for a ring of two users as this
is sufficient to construct an AKE protocol. Moreover, we assume without loss of generality that pkS can be
ordered lexicographically, e.g., pkS < pkS

′.

3.7. Equivalence Between Designated Verifier Signature and Ring Signature 75

GameRS-SrcHid
DVS,A (κ)

1 : pp← Setup(1κ)

2 : (pkS, skS)← SKGen(pp)

3 : (pkD, skD)← VKGen(pp)

4 : b←$ {0, 1}
5 : b′ ← AChall(·)(pp, pkS, skS, pkD, skD)

6 : return Jb = b′K

Challenge Oracle Chall(m)

1 : if b = 0 then
2 : σ← Sign(skS, pkD,m)

3 : else
4 : σ← Sim(pkS, skD,m)

5 : return σ

FIGURE 3.7: Security game for defining the source hiding of DVS.

RS.Setup(1κ) : Run ppDVS ← Setup(1κ) and output ppRS := ppDVS.

RS.KeyGen(ppRS) : Run (pkS, skS)← SKGen(ppDVS) and (pkD, skD)← VKGen(ppDVS), and output (RS.vk :=
(pkS, pkD),RS.sk := (skS, skD)).

RS.Sign(RS.sk,m,R = {RS.vk,RS.vk′ }) : Parse (pkS, pkD) ← RS.vk and (pkS
′, pkD′) ← RS.vk′. If pkS <

pkS
′, then output σ← Sign(skS, pkD′,m). Otherwise, output σ← Sim(pkS

′, skD,m).

RS.Verify(R = {RS.vk,RS.vk′ } ,m, σ) : Parse (pkS, pkD) ← RS.vk and (pkS
′, pkD′) ← RS.vk′. If pkS < pkS

′,
then output Vrfy(pkS, pkD′,m, σ). Otherwise, output Vrfy(pkS′, pkD,m, σ).

Security. We first prove the anonymity of the ring signature. The anonymity definition considered
by Brendel et al. [Bre+22] is almost identical to those in Definition 2.7.3 except that they additionally
consider the verification and signing keys to be generated honestly, rather than being generated by possibly
malicious randomness. This suffices to prove their deniability since the AKE keys are assumed to be
generated honestly.

Lemma 3.7.4. If a DVS scheme DVS satisfies source hiding, then the ring signature scheme is anonymous (with
respect to honestly generated verification and signing keys with rings of size two).

Proof. Assume there exists an adversary B against the anonymity of the ring signature. We construct an
adversary A against the source hiding of DVS as follows.
A is provided (ppDVS, pkS, skS, pkD, skD) from the DVS challenger. It queries m to oracle Chall and

receives σ. It then generates (pkS, skS)← SKGen(ppDVS) and (pkD, skD)← VKGen(ppDVS) conditioned on
pkS < pkS. Note that this is without loss of generality since A can simply regenerate pkS until it succeeds
(and possibly halt after it exceeds some number of trials to make A run in strict polynomial time). It then
samples a random bit d← {0, 1} and sets

(RS.vkd,RS.skd) := ((pkS, pkD), (skS, skD)) and (RS.vk1−d,RS.sk1−d) := ((pkS, pkD), (skS, skD)).

It finally provides B with { (RS.vki,RS.ski) }i∈{0,1} and σ. When B outputs d′ as its guess, A outputs its
guess as b′ := d⊕ d′.

Let us analyze the advantage of A. First of all, since d is information theoretically hidden from B,
the ring signature keys { (RS.vki,RS.ski) }i∈{0,1} are distributed identically to the anonymity game even
conditioned on pkS < pkS. Moreover, if oracle Chall was using b = 0, then σ ← Sign(skS, pkD,m).
Since pkS < pkS, σ is distributed identical to RS.Sign(RS.skd,m,R = {RS.vk0,RS.vk1 }). On the other

76 Chapter 3. Post-Quantum Authenticated Key Exchange for Signal Protocol

GameMod-RS-Unf
RS,A (κ, N)

1 : SL,CL← ∅
2 : pp← Setup(1κ)

3 : foreach i ∈ [N] do
4 : ri←$RRS

5 : (vki, ski)← KeyGen(pp; ri)
6 : VK := { vki | i ∈ [N] }

7 : (i∗0 , i∗1)←$ [N]× [N]

8 : (R∗,m∗, σ∗)← ASign(·,·,·),Corr(·)(pp,VK)

9 : b1 ← JR∗ = {RS.vki∗0
,RS.vki∗1

}K

10 : b2 ← J(∗,m∗,R∗) ̸∈ SLK
11 : b3 ← JVerify(R∗,m∗, σ∗) = 1K
12 : return b1 ∧ b2 ∧ b3

Singing Oracle Sign(i,m,R)

1 : if (vki, vkj) ̸⊆ R then

2 : return ⊥

3 : if i = i∗0 then σ← Sign(skj,m,R)

4 : else σ← Sign(ski,m,R)

5 : SL +← (i,m,R)
6 : return σ

Corruption Oracle Corr(i)

1 : req i /∈ { i∗0 , i∗1 }

2 : CL +← vki

3 : return ri

FIGURE 3.8: Security game for defining unforgeability of ring signature schemes concerning
honestly generated rings of size two. The modifications from the original Definition 2.7.4 are
highlighted in gray. If the condition following req does not hold, the game terminates by
returning 0.

hand, if oracle Chall was using b = 1, then σ ← Sim(pkS, skD,m). Then, this is distributed identical to
RS.Sign(RS.sk1−d,m,R = {RS.vk0,RS.vk1 }). Hence, if B outputs a guess d′ and d = 0, thenA simply needs
to output d′ as its guess. Otherwise, A flips the guess d′ in order not to compute the swap induced by
d = 1. This completes the proof.

The unforgeability definition considered by Brendel et al. [Bre+22] is similar to those in Definition 2.7.4
except that they restrict the adversary to only query the signing oracle on rings consisting of honestly
generated verification keys. This weaker definition suffices for their application since they consider
deniability only against honestly generated long-term keys.

Lemma 3.7.5. If a DVS scheme DVS satisfies source hiding and unforgeability, then the ring signature is unforgeable
(with respect to honestly generated rings of size two).

Proof. Before providing the reduction, we first define the unforgeability game of the ring signature (con-
cerning honestly generated rings of size two) as in Figure 3.8. The modification from the original Def-
inition 2.7.4 is highlighted in gray. The difference is that the challenger samples two random distinct
indices (i∗0 , i∗1) ∈ [N]× [N] and hopes that the adversary outputs a forgery on the ring {RS.vki∗0 ,RS.vki∗1 }.
Moreover, whenever the adversary A queries the signing oracle, the challenger will never use RS.ski∗0 to
sign the message.

It is straightforward to show that this modified unforgeability game is as hard as the original unforge-
ability game assuming that the ring signature is anonymous (which from Lemma 3.7.4 is an implication of
the source hiding of DVS). Concretely, we first modify the original game to a game in which the challenger
simply guesses the non-corrupted indices (i∗0 , i∗1) ∈ [N]× [N] that the adversary will use for its forgery.
Since these indices are information-theoretically hidden from the adversary, this is indistinguishable from

3.7. Equivalence Between Designated Verifier Signature and Ring Signature 77

the original game (except for a loss of 1/N2 in the reduction). Next, assuming Amakes at most Q-queries
to the signing oracle, we can define Q-hybrids, where in the k-th hybrid, the challenger answers as in the
original game up to the (k− 1)-th signing query and as in the modified game from the k-th signing query.
Each adjacent hybrid (k− 1) and k are indistinguishable assuming the anonymity of the ring signature;
the reduction samples a random index j∗ ← [N] and embeds its two verification keys provided by the
anonymity game in the two indices (i∗0 , j∗). It generates all other verification keys as in the unforgeability
game. Note that the reduction knows the signing keys to all parties. It answers all k′-th signing query for
k′ ̸= k as in hybrids (k− 1) and k. If i = i∗0 is used in the k-th query, it further checks if vkj∗ is used. If so, the
reduction simulates the signing oracle by embedding its challenge. If vkj∗ is not used, then aborts the game.
Otherwise, if i ̸= i∗0 , then it answers the signing oracle as in the (k− 1)th and k-th hybrids. This completes
the reduction. In case the signature is created using ski∗0 (resp. skj), it perfectly simulates the (k− 1)-th
(resp. k-th) hybrid (condition on not aborting). Therefore, assuming the ring signature is anonymous, the
two hybrids are indistinguishable.

Now, we are ready to show that this modified unforgeability for the ring signature is hard assuming
the unforgeability of the DVS. Assume there exists an adversary B against the modified unforgeability of
the ring signature. We construct an adversary A against the unforgeability of DVS as follows:
A is given ppDVS, pkS, pkD, and L = { (pkD,i, skD,i) }i∈[n]. It generates (pkD, skD) ← VKGen(ppDVS),

(pkS, skS) ← SKGen(ppDVS), and (pkS,i, skS,i) ← SKGen(ppDVS) for i ∈ [n]. It then creates (n + 2) pairs of
verification key pair for the ring signature (pkS, pkD), (pkS, pkD), and { (pkS,i, pkD,i) }i∈[n] and randomly

permutes them and sets them as (RS.vki)i∈[n+2]. Let i∗0 be the index such that RS.vki∗0 := (pkS, pkD) and i∗1
be the index such that RS.vki∗1 := (pkS, pkD). A finally provides VK := {RS.vki | i ∈ [n + 2] } to B. Notice
A knows the signing keys for indices in [n + 2]\ { i∗0 , i∗1 }, so it can simulate the signing query and corrupt
query for any i /∈ { i∗0 , i∗1 }. Moreover, since A aborts when i ∈ { i∗0 , i∗1 } is queried to the corruption oracle,
it remains to see how A simulates the signing queries when i ∈ { i∗0 , i∗1 }. Due to the modification we made
to the unforgeability game, A never needs to sign using the signing key corresponding to index i∗0 , so it
suffices to check the case i = i∗1 . Now, when i = i∗1 and pkS < pkS,j, then A queries its signing oracle and
obtains a signature using skS. Otherwise, it uses skD to generate σ← Sim(pkS j, skD,m). This completes the
description of A.

Notice the winning condition of the modified unforgeability of the ring signature and the unforgeability
of the DVS is identical. Moreover, since A randomly permutes the indices in [n + 2], A simulates the
distribution of the two indices (i∗0 , i∗1) perfectly. Therefore, A has the same advantage as B. This concludes
the proof.

79

Chapter 4

Continuous Group Key Agreement via
Post-Quantum Multi-Recipient PKEs1

4.1 Introduction

4.1.1 Background

In a secure (group) conversation over e.g., Signal, the session may last years, there may be hundreds of
users, and they may not be online simultaneously. This stands in stark contrast to a TLS session, which is
bounded in time and deals with two online users (server and client). It also raises new security issues. For
a crude example, consider a conversation involving N participants over a span of t units of time. If each
participant has an independent probability ϵ of being compromised over a unit of time, this conversation
will have its contents compromised with probability 1− (1− ϵ)Nt, which becomes significant as soon as
Nt = Ω(1/ϵ). This issue can be resolved by having each participant refresh their key material at a regular
pace, thus limiting the scope of a compromise. This practice, called ratcheting, provides post-compromise
security (PCS) and forward secrecy (FS) [CCG16; Coh+17; ACD19]. It also forms the basis for more
sophisticated techniques [BBR18; Alw+20a; Alw+20b] providing various levels of a stronger notion called
post-compromise forward secrecy (PCFS) [Alw+20a; Alw+20b; AJM22].
Continuous Group Key Agreement. The notions of continuous (group) key agreement (CKA and CGKA)
were put forward [ACD19; Alw+20a; Alw+20b; AJM22; Kle+21] to capture the particular setting that secure
(group) messaging contends with, e.g., asynchrony and large groups, and achieve the security notions
it requires, e.g., PCFS. In addition to representing a clean abstraction, CGKAs also include the complex
cryptographic machinery of secure group messaging, and are therefore convenient objects to reason on.

The most widely academically discussed CGKA is TreeKEM [BBR18]. It underlies the IETF draft
standard for secure messaging, MLS [Oma+21; Bar+20]. TreeKEM derives its name from its use of ratchet
trees (bottom left of Figure 4.1, p. 81), and a significant amount of research and engineering effort has been
undertaken to study the efficiency and security implications of this signature feature [Kle+21; Alw+20a;
Wei19; AJM22; Alw+20b; BBN19a].

The most recent iterations of TreeKEM (i.e., after version 8 on MLS) follow a “propose-and-commit” flow,
in which members of a group may propose to add new members, remove existing ones or update their
own keys, by sending proposal messages. These proposals only take effect when a group member initiates a
new epoch by transmitting a commit message, which simultaneously validates a list of indicated proposals.

1The contents of this chapter are based on the work presented at ACM CCS 2021 under the title “A Concrete Treatment of
Efficient Continuous Group Key Agreement via Multi-Recipient PKEs” [Has+21b]. The full version is available at the IACR
Cryptology ePrint Archive. [Has+21c].

80 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Bandwidth and Commit Messages. In order to realize PCFS, commit messages in TreeKEM include ⌈log N⌉
encryption keys and at least as many ciphertexts2 (see Figure 4.1), where log x denotes the logarithm in
base 2 of x. As group members are arranged as the leaves of a binary tree, these encryption keys and
ciphertexts allow all recipients to derive a fresh common group secret comSecret (commit secret), which is
the root of the tree.

Let us discuss bandwidth consumption through three metrics: the cost of an upload and download,
and the total cost. We focus on the bandwidth cost of the commit messages of TreeKEM, as they are the
dominant term. Indeed, commit messages are the only cryptographically-heavy messages that need to
be uploaded and downloaded at a regular rate, and each of them has a size of Ω(log N). This therefore
represents both the upload and download cost. If each member of a group sends a single commit message in
a given time span, then they each must also download (N − 1) commit messages, for a total bandwidth
cost of Ω(N log N) per user.3 For large groups, this can become significant. Ironically, large groups are also
those that need the PCFS provided by commit messages the most, since their likelihood of compromise
during a time span is higher.

This tension between security and bandwidth efficiency can be amplified by two factors: post-quantum
cryptography, and the fact that secure messaging applications target mobile devices. In general, post-
quantum cryptographic primitives consume more bandwidth than their classical counterparts by at least
an order of magnitude, if not more: for example, all parameter sets of Classic McEliece entail encapsulation
keys of at least 255 kibibytes (KiB). On the other hand, bandwidth can be a scarce resource over mobile
devices, especially for users with limited mobile plans that charge an extra fee or block access to the
network once a data cap has been reached.4 To give a concrete example, instantiating TreeKEM with Classic
McEliece in a group of N = 256 members will deplete a 1 GiB mobile plan once each user has sent two
commit messages. This motivates the need for CGKA protocols and post-quantum primitives that remain
efficient and secure for large groups. We note that mobile plan providers typically calculate data usage
by treating uploaded and downloaded data as equal, and that being temporarily blocked from, or asked
to pay more to continue to access, the mobile infrastructure is perhaps the most significant way in which
bandwidth usage affects user experience. Hence, our bandwidth cost model: downloading one-byte costs as
much as uploading one byte.

One could argue that assigning different weights to uploaded and downloaded data would be more
appropriate, since uploading speed may be lower than downloading speed [Spe21]. We believe this
speed-based distinction is not necessary, for two reasons. First, the bandwidth bottleneck of our CGKA
resides in commit messages, which are uploaded and downloaded in a manner that is invisible to end
users. Second, all our instantiations of the proposed protocol achieve uploaded commit messages of less
than 50KiB for groups of at most 1024 users (see Figure 4.27), which, even in countries with low uploading
speed (as of July 2021, the slowest is Afghanistan, with 2.90 Mbps [Spe21]), can be uploaded in less than 0.2
seconds. Both facts point to a minimal impact of uploading and downloading speeds on user experience.

2A documented property [Kle+21] of TreeKEM is that the number nc of ciphertexts depends on the topology of the ratcheting
tree, which might contain blank nodes. This number is ⌈log N⌉ in the best case but may degrade to N− 1 for heavily blanked trees.

3Downloading and processing commit messages is important for security and functionality: a member refusing to download a
commit message will be unable to decrypt subsequent messages.

4Surveys on mobile data pricing [Cab21] are interesting in that regard. The median cost of 1 GiB of mobile data is on average
(across all countries) $4.07. Mobile plans that cost more than $20.00 / GiB are reported in 89 countries and, in expensive countries,
“People are often buying data packages of just a tens of megabytes at a time” [Cab21]. This illustrates that mobile data can be a limited
and expensive resource.

4.1. Introduction 81

initSecret(t−1) joinerSecret(t) initSecret(t)

confKey(t)appSecret(t) membKey(t)

comSecret(t)

TreeKEM Chained CmPKE

Welcome message

FIGURE 4.1: Initialization of a new epoch t, here with a group of N = 8 members. A
dashed arrow from X to Y means that Y is computed by passing X (and possibly other
values) to a HKDF, a dashed line means that X = Y. Here, the leftmost user in the TreeKEM
(resp. Chained CmPKE) box initiates a new epoch by issuing a commit message, which contains
one encryption key for each node, and one PKE (resp. CmPKE) ciphertext for each node.
Each recipient in the current group is able to compute comSecret(t), which corresponds to the
root . A commit message may include a welcome message, which contains ciphertexts ()
encrypting joinerSecret(t) () under the encryption key of each newly added member.

4.1.2 Contribution of This Work

We propose a new CGKA called Chained CmPKE along with a formal security proof (Section 4.4). The main
technical tools we leverage are the existence of very efficient post-quantum multi-recipient PKEs (mPKE,
Section 4.5), and the notion of a committing mPKE (CmPKE, Section 4.2). We believe these tools may be of
independent interest.

The Chained CmPKE Protocol. At a very high level, the proposed protocol is inspired by the Chained
mKEM protocol [BBN19a; Beu20]. One way of interpreting Chained mKEM is as TreeKEM with a tree of
arity N and depth 1. This makes the size of uploaded commit messages scale as O(N), see the bottom right
of Figure 4.1. The main conceptual difference between our Chained CmPKE5 and variations of TreeKEM
(including Chained mKEM) is that we no longer consider the delivery service as a public bulletin board,
and instead allow it to sanitize commit messages in a straightforward manner by delivering to each group
member the strict amount of data they need while maintaining the same level of (dis)trust. In our case, this
means that a member i may only receive the ciphertext cti that they can decrypt.

Our first line of research realizes this sanitizability by authenticating all ciphertexts with a single
signature. To achieve this we rely on the notion of a CmPKE, essentially a multi-recipient PKE augmented
with a commitment T. (Section 4.1.2). CmPKEs allow us to reduce the size of downloaded commit messages
from O(N) to O(1). Effectively, this also reduces the total bandwidth cost of transmitting a commit message
to O(N), instead of O(N2) for Chained mKEM and Ω(N log N) for TreeKEM. Alternatively, one could

5We consciously use the term Chained CmPKE rather than Chained CmKEM since we believe PKE better reflects the protocol
description.

82 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

use a Merkle tree to authenticate all ciphertexts, as in Certificate Transparency [Lau+21]. However, each
downloaded commit message would need to include a membership proof of size O(log N), in contrast to
our O(1) solution.

In the second line of research, we minimize the concrete cost of uploaded commit messages, which is
O(N) and larger than Ω(log N) as for TreeKEM, by proposing and analyzing new efficient post-quantum
mPKEs. (Section 4.1.2). As we show in Section 4.2, we can generically transform any mPKEs into CmPKEs
with minimal overhead, thus we simply focus on mPKEs.

Compared to a naive instantiation of mPKEs using standard single-recipient PKEs, our mPKEs make
the commit messages asymptotically smaller (in N) by factors of between 16 (Kyber512 vs. Ilum512) and 71
(Frodo640 vs. Bilbo640). In fact, while our uploading cost scales asymptotically as O(N), it still compares
favorably to the Ω(log N) solution of TreeKEM in concrete efficiency, even for groups with hundreds of
users.

Our bandwidth savings are summarized in an asymptotic manner in (Table 4.1, p. 111), and in a concrete
manner in (Figure 4.27, p. 182) and (Figure 4.28, p. 184). While Figure 4.27 illustrates the upload and
download cost, Figure 4.28 illustrates the total bandwidth cost. Compared to TreeKEM-based equivalents,
our instantiations of Chained CmPKE have consistently better upload costs for groups of less than 200 users
indicating that O(N) solutions can be practically efficient. In addition, our download and total costs are
better by factors of Ω(log N) and performs well for any number of users.

Committing mPKEs. We introduce the notion of a committing mPKE, or CmPKE. First, a (decomposable)
multi-recipient PKE (mPKE) [Kat+20] takes as input a message m and a list of N encryption keys, and
outputs a multi-recipient ciphertext (ct0, (ĉti)i∈[N]). Each recipient i ∈ [N] is able to recover m by decrypting
(ct0, ĉti). The syntax of a CmPKE is mostly similar to that of an mPKE, however, it requires one additional
component. The encryption procedure of a CmPKE outputs (T, (cti)i∈[N]), where T is called a commitment.
Decryption then works by taking the commitment-ciphertext pair (T, cti). We require T to (a) have a size
independent of the number of recipients N, and (b) be commitment-binding, which means informally that T
is bound to a unique message. This notion resembles committing AEADs [GLR17], however we operate
in a different setting (multi-user vs. single-user) and with a different motivation (bandwidth efficiency
vs. abuse reporting).

We show how to build a CmPKE from an mPKE [Kat+20] and a key-committing SKE [FOR17; GLR17;
Dod+18; Alb+22], which can itself be built using standard symmetric primitives [Alb+22]. Compared to
the base mPKE, the overhead is minimal: cti = ĉti, and T is formed of ct0 and a term of size 2κ bits, which
is no larger than a hash digest.

In the proposed protocol, after computing a CmPKE ciphertext (T, c⃗t = (cti)i∈[N]), the sender of a
commit message does not authenticate the whole ciphertext, only T. The server sends (T, cti) to each
recipient i, and the commitment-binding property allows i to indirectly verify the authenticity of the
message encrypted in cti. As a result, the download cost of a commit message is O(1) for all recipients.

More Efficient mPKEs. An mPKE allows one to encrypt a common message to N recipients more efficiently
than the naive solution of computing and sending N individual ciphertexts in parallel. Indeed, as each
recipient receives (ct0, ĉti), mPKEs provide asymptotic bandwidth savings if ĉti is smaller than a regular,
single-recipient ciphertext ct would be.

While mPKEs based on classical assumptions [Kur02; BBS03] realize |ĉti|/|ct| = 1/2, existing PKEs
based on the post-quantum problems LWE, LWR, SIDH and CSIDH were recently adapted to the mPKE
setting in [Kat+20]. These mPKEs achieve ratios |ĉti|/|ct| between 1/5 and 1/169, which could potentially
translate into inversely proportional bandwidth savings. The work of [Kat+20] has two shortcomings; (a)

4.2. Committing Multi-Recipient PKE 83

their mPKEs are direct transpositions of existing PKEs, which were not necessarily designed to minimize
|ĉti|, and (b) it does not study the concrete impact of the mPKE setting on cryptanalysis. We address these
two shortcomings via a two-pronged approach.

On the constructive side, we note that minimizing the size of uploaded commit messages gives a
different optimization target to that of PKEs, specifically we wish to minimize |ĉti|, even at the expense
of some controlled growth of |ct0|. We, therefore, attempt to improve upon the efficiency gains already
reported in [Kat+20] by revisiting the designs of the NIST submissions [Nae+20; Sch+20; Ber+20] with our
new optimization target in mind. To achieve this we rely on well-known techniques such as coefficient
dropping and modulus rounding. We arrive at three new parametrizations; a variant of Frodo640 [Nae+20]
called Bilbo640, a variant of Kyber512 [Sch+20] called Ilum512, and a variant of LPRime653 [Ber+20] called
LPRime757. Compared to using the NIST submissions as mPKEs we reduce |ĉti| by 60–80%, which translates
to an identical asymptotic reduction in the size of uploaded commit messages. These parameterizations are
close to optimal in the sense that |ĉti| ∈ (κ, 3κ] bits. Since in the Lindner–Peikert framework, ĉti encodes all
the information about the message (in our case, a κ-bit symmetric key), it seems difficult to beat the κ-bit
threshold without new techniques.

On the cryptanalytic side, we must consider the effect of the mPKE setting on the attack surface.
In [Kat+20] theoretical, reduction-based, assurances for the security of the mPKE construction are given.
However, the concrete security of the mPKEs derived from NIST submissions is assumed to follow from
their concrete security analyses as PKEs. As an example of differences between the two settings, variants
of the Arora–Ge [AG11; Alb+15a] and BKW [BKW00] attacks are typically irrelevant to lattice-based
PKEs, since they require more ‘samples’ than provided by the single ciphertext of the PKE, ct. However,
in the mPKE setting, the per recipient ĉti ciphertext components each provide samples for an adversary.
Therefore the Arora–Ge and BKW attacks should be considered in a concrete security analysis of mPKE
parameters. In Section 4.5.3, we describe these attacks in more detail and provide estimates for the concrete
security of our reparametrizations in a cryptanalytic model tailored to the mPKE setting. This model targets
NIST Security Level I. Schemes satisfying this are conjectured to have comparable security to AES-128
against classical and quantum adversaries. Interestingly, our attempts to improve the efficiency of our
mPKEs via re-parametrizing NIST submissions, specifically our use of heavy modulus rounding on the ĉti,
naturally hardens our parametrizations against these sample-heavy attacks. To display the importance of
an mPKE-focused cryptanalysis, we provide an artificial ‘Kyber like’ parameter set that is almost secure as a
PKE, but insecure in our mPKE cryptanalytic model.

Security of Chained CmPKE. Finally, we provide formal proof establishing that our Chained CmPKE is as
secure as TreeKEM. We adopt the state-of-the-art UC security model presented by Alwen et al. [AJM22]
that was used to analyze the TreeKEM version 10 in MLS, which is itself an extension of [Alw+20b]. In
addition to party corruptions (i.e., compromise party’s secret and group secrets), the model captures
active adversaries who may tamper with or inject messages and deliver messages in an arbitrary order, and
malicious insiders who may interact with the PKI on behalf of the corrupted parties. On a technical front, to
model the sanitizing of the commit messages by the delivery service, we extend the ideal functionality
in [AJM22] and modify how the ideal functionality maintains the so-called history graph. Our security
model is a strict generalization of prior models as it captures them as special cases.

4.2 Committing Multi-Recipient PKE

We consider strengthening of a standard mPKE which we coin a committing mPKE (CmPKE). The motivation
for this is similar in spirit to those of key committing SKEs or AEADs [FOR17; GLR17; Dod+18; Alb+22],

84 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

GameIND-CCA
CmPKE,A(κ)

1 : C ← ∅
2 : pp← CmSetup(1κ)

3 : foreach i ∈ [N] do
4 : (eki, dki)← CmGen(pp)

5 : (m0,m1, S ⊆ [N])← AC(·),D(·)(pp, (eki)i∈[N])

6 : b←$ {0, 1}
7 : (T∗, c⃗t∗ := (ct∗i)i∈S)← CmEnc(pp, (eki)i∈S,mb)

8 : b′ ← ACorr(·),CmDec(·)(pp, (eki)i∈[N], c⃗t
∗
)

9 : if C ∩ S ̸= ∅ then
10 : return b

11 : return Jb = b′K

Decapsulation Oracle CmDec(i,T, ct)

1 : req (T, ct) ̸= (T∗, ct∗i)
2 : m← CmDec(dki,T, ct)
3 : return m

Corruption Oracle Corr(i)

1 : C ← C ∪ { i }
2 : return dki

FIGURE 4.2: Security games for defining the IND-CCA security with adaptive corruption of
CmPKE. If the condition following req does not hold, the game terminates by returning a
random bit.

where we ask a ciphertext to be bound to a unique key and message pair. Although it may sound like
an obscure property at first glance, this property has been shown to be vital for establishing security in
several practical applications such as Facebook Messenger [Dod+18], (see [Alb+22] for more examples). In
a CmPKE, we extend this to the multi-user setting, which requires that if any of the recipients decrypt to
a message m, then the other recipients should also decrypt either to m or to ⊥. Informally, and unlike in
the single-user setting, we allow a ciphertext to be decryptable by many recipients (i.e., many different
keys) but enforce that their decryption values remain consistent if not ⊥. Looking ahead, this is a natural
property to desire when guaranteeing the weak robustness of a CGKA protocol (i.e., if a user receives a
message then it should be consistent with all the other group members, provided that they can process the
message).

4.2.1 Definition

In this section, we define the formal syntax and required properties of committing multi-recipient public-
key encryption.

Definition 4.2.1 (Committing Multi-Recipient Public-Key Encryption). A (single-message) committing
multi-recipient public-key encryption (CmPKE) over a message spaceM consists of the following algorithms:

• CmSetup(1κ) → pp : The setup algorithm takes the security parameter 1κ as input and outputs a public
parameter pp. In the following, we assume pp is provided to all the algorithms and may omit it for simplicity.

• CmGen(pp) → (ek, dk) : The key generation algorithm takes a public parameter pp as input and outputs a
pair of encryption key and decryption key (ek, dk).

• CmEnc((eki)i∈[N],m) → (T, c⃗t = (cti)i∈[N]) : The encryption algorithm takes a public parameter pp, N
encryption keys (eki)i∈[N], and a message m ∈ M as input and outputs a commitment T and N ciphertexts
c⃗t = (cti)i∈[N].

4.2. Committing Multi-Recipient PKE 85

GameCom-Bind
CmPKE,A(κ)

1 : pp← CmSetup(1κ)

2 : (T∗, (dkb, ctb)b∈{0,1})← A(pp)
3 : foreach b ∈ {0, 1} do
4 : mb ← CmDec(dkb,T∗, ctb)

5 : if dk0 = dk1 then
6 : return Jct0 ̸= ct1K∧ Jm0 ̸= ⊥K∧ Jm1 ̸= ⊥K
7 : else
8 : return Jm0 ̸= m1K∧ Jm0 ̸= ⊥K∧ Jm1 ̸= ⊥K

FIGURE 4.3: Security games for defining the commitment binding property of CmPKE.

• CmDec(dk,T, cti)→ m/⊥ : The decapsulation algorithm takes a decryption key dk, a commitment T, and a
ciphertext cti as input and outputs either m ∈ M or ⊥ ̸∈ M.

Definition 4.2.2 (Correctness). We say that a CmPKE is correct if, for all N = poly(κ) and m ∈ M,

1− negl(κ) ≤ Pr[∀i ∈ [N],m = CmDec(dki,T, cti)],

where the probability is taken over pp← CmSetup(1κ), ((eki, dki)← CmGen(pp))i∈[N], and (T, c⃗t = (cti)i∈[N])←
CmEnc(pp, (eki)i∈[N],m).6

Definition 4.2.3 (Succinctness). We say a CmPKE is succinct if in the above Definition 4.2.2, the size of commit-
ment T (and all ciphertext cti) is independent of the number of recipients N.

Definition 4.2.4 (Ciphertext-Spreadness). We say CmPKE is ciphertext-spread if

E

[
max

T∗,ct∗,m∈M,i
Pr
r

[
(T, (cti)i∈[N])← CmEnc(pp, (eki)i∈[N],m; r) : (T∗, ct∗) = (T, cti)

]]
≤ negl(κ)

for all pp ∈ CmSetup(1κ) and (eki, dki) ∈ CmGen(pp) for all i ∈ [N], where the expectation is taken over
pp← CmSetup(1κ) and (eki, dki)← CmGen(pp) for all i ∈ [N].

In this work, we only consider a succinct CmPKE. Thus, we omit it for simplicity. We define indistin-
guishability against chosen ciphertext attacks (IND-CCA) with adaptive corruption for CmPKE.

Definition 4.2.5 (IND-CCA with Adaptive Corruption). The security notion is defined by the game illustrated in
Figure 4.2. We say a CmPKE is IND-CCA secure with adaptive corruption if for any efficient adversaries A, we
have ∣∣∣∣Pr

[
GameIND-CCA

CmPKE,A(κ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(κ).

If A is not given access to the corruption oracle Corr, this game corresponds to standard IND-CCA security.

6In the proof of our CGKA protocol, we require that the adversary cannot find a “bad” randomness that leads to a decryption
error. Since we use a PRG modeled as a random oracle to expand the randomness, standard correctness immediately implies that
no PPT adversary can find such bad randomness.

86 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

CmSetup(1κ)

1 : pp← mSetup(1κ)

2 : return pp

CmGen(pp)

1 : (ek, dk)← mGen(pp)

2 : return (ek, dk)

CmEnc(pp, (eki)i∈[N],m)

1 : m←$M
2 : ct0 := mEnci(pp;G1(m))

3 : foreach i ∈ [N] do

4 : ĉti := mEncd(pp, eki,m;G1(m),G2(eki,m))

5 : k := H(m)

6 : c← Encs(k,m)

7 : return (T := (ct0, c), c⃗t := (ĉti)i∈[N])

CmDec(dk,T, ct)

1 : (ct0, c)← T

2 : m := mDec(dk, (ct0, ct))
3 : if m = ⊥ then return ⊥
4 : ct′0 := mEnci(pp;G1(m))

5 : ĉt
′ := mEncd(pp, ek,m;G1(m),G2(ek,m))

6 : if (ct0, ct) ̸= (ct′0, ĉt′) then return ⊥
7 : return Decs(H(m), c)

FIGURE 4.4: An IND-CCA secure CmPKE from an IND-CPA secure decomposable mPKE and a
one-time IND-CCA secure SKE.

Finally, we define commitment-binding which roughly says that the commitment T is implicitly bound
to a unique message. The notion we consider is strong in the sense that the adversary can use an arbitrary
decryption key rather than a correctly generated one to break commitment-binding property.

Definition 4.2.6 (Commitment-Binding). The security notion is defined by the game illustrated in Figure 4.3. We
say a CmPKE is commitment-binding if for any efficient adversaries A, we have

Pr
[
GameCom-Bind

CmPKE,A(κ) = 1
]
≤ negl(κ).

Note that independently satisfying succinctness and commitment-binding is trivial. If we run a standard
PKE in parallel for all N users and set T := ⊥, then we obtain a succinct scheme but this is clearly not
commitment-binding. On the other hand, if we add a non-interactive zero-knowledge (NIZK) proof π to
further prove that all the PKE ciphertexts encrypt the same message and set T := (π, ct1, · · · , ctN) (as in
the strongly robust TreeKEM variant of [Alw+20b]), then we obtain a commitment-binding scheme but
the commitment is no longer succinct. Therefore, the main non-triviality is making the commitment size
|T| independent of the number of users, while simultaneously allowing the users to be convinced that if
(T, cti) decrypts to a valid message, then any other users’ (T, ctj) will also decrypt to the same message (or
to ⊥).

4.2.2 Construction of CmPKE: IND-CCA without Adaptive Corruption

We provide a simple and efficient generic construction of an IND-CCA secure CmPKE (without adaptive
corruption) from a decomposable IND-CPA secure mPKE and a one-time IND-CCA secure SKE following the
Fujisaki–Okamoto transformation generalized to the multi-recipient setting. This is illustrated in Figure 4.4,
where G1,G2,H are hash functions modeled as random oracles in the security proof. These oracles can
be simulated by a single random oracle by using appropriate domain separation. Here, we assume the
output space of H is identical to the secret key space K of the SKE. The correctness of this CmPKE follows

4.2. Committing Multi-Recipient PKE 87

Game 3 : Decryption Oracle CmDec(i,T, ct)

1 : req (T, ct) ̸= (T∗, ĉt∗i)
2 : parse (ct0, c)← T

3 : if (ct0, ct) = (ct∗0 , ĉt∗i) then
4 : return Decs(H(m

∗), c)
5 : m := mDec(dki, (ct0, ct))

6 : if m /∈ LG ∨m = ⊥ then

7 : return ⊥
8 : ct′0 := mEnci(pp;G1(m))

9 : ĉt
′
i := mEncd(pp, eki,m;G1(m),G2(eki,m))

10 : if (ct0, ct) ̸= (ct′0, ĉt′) then
11 : return ⊥
12 : return Decs(H(m), c)

Game 4 : Decryption Oracle CmDec(i,T, ct)

1 : req (T, ct) ̸= (T∗, ĉt∗i)
2 : parse (ct0, c)← T

3 : if (ct0, ct) = (ct∗0 , ĉt∗i) then
4 : return Decs(H(m

∗), c)
5 : foreach m ∈ LG do

6 : ct′0 := mEnci(pp;G1(m))

7 : ĉt
′
i := mEncd(pp, eki,m;G1(m),G2(eki,m))

8 : if (ct0, ct) = (ct′0, ĉt′i) then
9 : return Decs(H(m), c)

10 : return ⊥

FIGURE 4.5: Procedure of decryption oracles in Game 3 and Game 4. The box indicates the
modification from Game 2 to Game 3.

immediately from the correctness of the decomposable mPKE and SKE. The following theorems assert
the IND-CCA security and commitment-binding of the CmPKE. The proof for Theorem 4.2.7 is a standard
adaptation of the KEM/DEM framework to the multi-user setting. The proof for Theorem 4.2.10 follows
naturally from the key committing property of the underlying SKE.

Theorem 4.2.7. The CmPKE in Figure 4.4 is IND-CCA secure (resp. with adaptive corruption) assuming the SKE
is one-time IND-CCA secure and the decomposable mPKE is IND-CPA secure (resp. with adaptive corruption) and
ciphertext-spread.

Proof of Theorem 4.2.7. Let A be an adversary against the IND-CCA security of CmPKE with advantage ϵ.
Without loss of generality, we make a simplifying argument that A’s random oracle queries to G1 and G2
are answered as (G1(m),G2(ek1,m), · · · ,G2(ekN ,m)), where (eki)i∈[N] are the encryption keys generated by
the security game. It is clear that this modification does not weakenA. Moreover, we can always transform
an adversary A that does not conform to this style to one that does. Below, we evaluate the upper bound
of A’s advantage ϵ by considering a sequence of games. We denote by Si the event b = b′ in Game i.

Game 0: This is the real IND-CCA security game. By definition |Pr[S0]− 1/2| = ϵ. We assume without
loss of generality that the random message m∗ ← M used to generate the challenge ciphertext is
sampled at the beginning of the game.

Game 1: In this game, we modify the random oracle G so that the output is distributed randomly over
the space of randomness for which the decomposable mPKE does not fail decryption. That is, we
require m = mDec(dki, (ct0, ĉti)) for all i ∈ [N] and m ∈ M, where ct0 := mEnci(pp;G1(m)) and
ĉti := mEncd(pp, eki,m;G1(m),G2(eki,m)). Due to correctness of the decomposable mPKE, for any A
making at most polynomial random oracle queries, we have |Pr[S0]− Pr[S1]| ≤ negl(κ).

88 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

(The next Game 2, Game 3 and Game 4 aim to get rid of the secret keys eki to answer A’s decryption oracle
queries.)

Game 2: In this game, the challenger modifies how it answers the decryption oracle query. WhenA queries
(i,T = (ct0, c), ct) such that (ct0, ct) = (ct∗0 , ĉt∗i), the challenger simply returns Decs(H(m∗), c). This
is in contrast to the previous game where the challenger decrypted (ct0, ct) using mDec. Nonetheless,
since the decomposable mPKE is perfectly correct due to the modification we made in Game 1, this
modification does not alter the view of the adversary. In particular, we have Pr[S1] = Pr[S2].

Game 3: In this game, the challenger checks an additional condition when answering the decryption
oracle query. This is illustrated in Figure 4.5, where the box indicates the modification. Here, LG is a
list that stores the random oracle queries made to G1 and G2 by the adversary. We have m ∈ LG if G1
was queried on m and G2 was queried on (ek,m) for any ek. Note that due to our assumption on A, if
one of the oracles G1 or G2 was queried on m, then so would have the other.

The only difference occurs when A queries (i,T = (ct0, c), ct) such that m := mDec(dki, (ct0, ct))
has not been queried to the random oracles G1 and G2 but ct0 = mEnci(pp;G1(m)) and ct =
mEncd(pp, eki,m;G1(m),G2(eki,m)). Notice G1(m) and G2(eki,m) are information theoretically hid-
den from A unless A queries them. Therefore, due to ciphertext-spreadness of the decomposable
mPKE, we must have had (ct0, ct) ̸= (ct′0, ĉt′i) in the previous game as well. Hence, we have
|Pr[S2]− Pr[S3]| ≤ negl(κ).

Game 4: In this game, the challenger further modifies how it answers the decryption-oracle query. This
is illustrated in Figure 4.5, where notice that the challenger no longer requires the secret keys dki to
answer the queries.

We check the output of the decryption oracles in Game 3 and Game 4 are identical. Since the two
oracles run identically in case (ct0, ct) = (ct∗0 , ĉt∗i), we only focus on the case that this does not hold.
Assume the decryption oracle in Game 3 outputs a non-⊥ message m (i.e., m = Decs(H(m), c)). Then
m ∈ LG and (ct0, ct) = (ct′0, ĉt′i) hold, where m := mDec(dki, (ct0, ct)). Therefore, the decryption
oracle in Game 3 outputs the same non-⊥message m. On the other hand, assume the decryption oracle
in Game 4 outputs a non-⊥message m. Then, there exists a m ∈ LG such that ct′0 := mEnci(pp;G1(m))

and ĉt
′
i := mEncd(pp, eki,m;G1(m),G2(eki,m)) such that (ct0, ct) = (ct′0, ĉt′i). Conditioning on no

correctness error occurring, (ct0, ct) decrypts to m. Therefore, this implies that the decryption
oracle in Game 4 outputs the same non-⊥message m. Combining the arguments together, we have
Pr[S3] = Pr[S4].

Game 5: In this game, we undo the change we made in Game 1 and alter the output of the random oracles
G1 and G2 to be over all the randomness space. Due to the same argument, we made before, we have
|Pr[S4]− Pr[S5]| ≤ negl(κ)

(We are now ready to invoke IND-CPA security of the decomposable mPKE and IND-CCA security of the SKE.)

Game 6: Let us define QUERY as the event that A queries the random oracles H(·), G1(·), or G2(⋆, ·) on
input m∗, where ⋆ denotes an arbitrary element. (Recall the change we made in Game 1 for m∗.) In
this game, the challenger aborts the game and forces A to output a random bit when QUERY occurs.
We show in Lemma 4.2.8 that we have |Pr[S5]− Pr[S6]| ≤ negl(κ) assuming the decomposable mPKE
is IND-CPA secure (with adaptive corruption) and the message spaceM is sufficiently large. So as
not to interrupt the main proof, we postpone the proof of Lemma 4.2.8 to the end.

4.2. Committing Multi-Recipient PKE 89

We finally show in Lemma 4.2.9 that assuming the one-time IND-CCA security of the SKE, we have

Pr[S6] =
1
2
+ negl(κ).

Combining all the bounds together, we obtain the statement in Theorem 4.2.7.
It remains to prove Lemmata 4.2.8 and 4.2.9 below.

Lemma 4.2.8. We have |Pr[S5]− Pr[S6]| ≤ negl(κ) assuming the decomposable mPKE is IND-CPA secure (with
adaptive corruption) and the message spaceM is super-polynomially large.

Proof. Since the two games are identical unless QUERY occurs, we have |Pr[S5]− Pr[S6]| ≤ Pr[QUERY]. In
the following, we upper bound Pr[QUERY]. Let us construct an IND-CPA adversary B which runs A as a
subroutine: On input (pp, (eki)i∈[N]), B samples two random messages m∗0 ,m∗1 ←M and a random SKE
key k∗ ← K. It then invokes A on input (pp, (eki)i∈[N]). B can simulate the decryption queries as it no
longer requires knowledge of the secret key. When A corrupts a user, B simply relays the corruption to its
own challenger. Finally, when A submits (m0,m1, S ⊆ [N]) as its challenge, B submits (m∗0 ,m∗1 , S) to its
challenger and receives (ct∗0 , (ĉt∗i)i∈[S])← mEnc(pp, (eki)i∈S,m∗b) for an unknown randomly chosen bit b.
B then samples a random challenge bit b′ ← {0, 1} and generates c∗ ← Encs(k∗,mb′). It finally provides
the challenge ciphertext (T∗ := (ct∗0 , c∗), c⃗t∗ := (ĉt

∗
i)i∈S) to A. B outputs b̂ := 0, if m∗0 is queried to H(·),

G1(·), or G2(⋆, ·) before m∗1 is; outputs b̂ := 1, if m∗1 is queried to H(·), G1(·), or G2(⋆, ·) before m∗0 is; and a
random b̂ when neither m∗0 nor m∗1 are queried. Let us denote GOOD (resp. BAD) the event that A queries
m∗b (resp. m∗1−b) before m∗1−b (resp. m∗b) to H(·), G1(·), or G2(⋆, ·). Moreover, let us denote RAND the event
that neither m∗0 nor m∗1 are queried. Observe that until either GOOD or BAD occurs, B simulates the view
of Game 6 and Game 7 perfectly to A. Since QUERY is the event that m∗b is ever queried throughout the
game, we have Pr[QUERY] ≤ Pr[GOOD] + Pr[BAD]. Moreover, since m∗1−b is completely hidden from A,
we have Pr[BAD] ≤ negl(κ) assuming the message size is super-polynomially large and A only makes
polynomially many random oracle queries.

Using these observations, we can rewrite the advantage of B as follows:∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣ = ∣∣∣∣Pr[b = b′ ∧ GOOD] + Pr[b = b′ ∧ BAD] + Pr[b = b′ ∧ RAND]− 1
2

∣∣∣∣
=

∣∣∣∣Pr[GOOD] +
1
2
· Pr[RAND]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[GOOD] +
1
2
· (1− Pr[GOOD]− Pr[BAD)]− 1

2

∣∣∣∣
=

∣∣∣∣1
2
(Pr[GOOD]− Pr[BAD)]

∣∣∣∣
≥1

2
(Pr[QUERY]− 2 Pr[BAD]) .

Assuming the hardness of the IND-CPA security of the decomposable mPKE, we have |Pr[b = b′]− 1/2| ≤
negl(κ). Thus, rewriting the inequality and plugging in Pr[BAD] ≤ negl(κ), we obtain Pr[QUERY] ≤ negl(κ)
as desired. This concludes the proof.

Lemma 4.2.9. We have Pr[S6] =
1
2 + negl(κ) assuming the SKE is the one-time IND-CCA secure.

Proof. Assume A has an advantage ϵ in Game 6. We construct an adversary B that breaks the one-time
IND-CCA security of the SKE with the same advantage by internally running A as follows:

90 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

B generates (pp, (eki, dki)i∈[N]) and samples a random m∗ ←M used to generate the challenge cipher-
text. B then invokesA on input (pp, (eki)i∈[N]) as in Game 6. WhenA queries any of the random oracles on
input m∗ (i.e., when event QUERY occurs), then abort as specified by the modification we made in Game 5.
When A queries for a challenge ciphertext on input (m0,m1, S ⊆ [N]), B first generates (ct∗0 , (ĉt∗i))i∈[N]. It
then queries its SKE-challenger for a challenge ciphertext on challenge messages (m0,m1) and receives
back c∗. Finally, B returns (T∗ := (ct∗0 , c∗), c⃗t∗ := (ĉt

∗
i)i∈[N]) to A. Here, notice that B implicitly sets

H(m∗) = k∗, where k∗ is the secret key used by the SKE-challenger. When A queries the decryption oracle
on input (i,T, ct), if (ct0, ct) ̸= (ct∗0 , ĉt∗i), then B proceeds exactly as in Game 7. Otherwise, it queries its
own SKE-decryption oracle on input c (which is guaranteed to be different from c∗) and outputs A the
decryption result. Corruption queries made by A can be handled as in the real game since B knows all the
user’s secrets. Finally, when A outputs b′ at the end of the game, B outputs b′ as its guess.

Conditioning on event QUERY not occurring, B perfectly simulates Game 6 to A. Therefore, B has the
same advantage of winning the one-time IND-CCA security game of SKE as A does in winning Game 6.
Hence, assuming the one-time IND-CCA security of SKE, we conclude Pr[S6] =

1
2 + negl(κ).

The proof of Theorem 4.2.7 is completed.

Theorem 4.2.10. The CmPKE in Figure 4.4 has commitment-binding property assuming the SKE has key-committing
property.

Proof of Theorem 4.2.10. Assume by contradiction that A breaks commitment-binding of CmPKE. By as-
sumption A outputs (T∗, (dkb, ctb)i∈b). Let T∗ := (ct∗0 , c∗) and mb ← CmDec(dkb,T∗, ctb) for b ∈ {0, 1}.
Moreover, let mb ← mDec(dkb, ct∗0 , ctb) for b ∈ {0, 1} be the internal random message decrypted while
running CmDec.

We first show that we must have m0 ̸= m1. If this does not hold, then in case dk0 = dk1, we must have
(ct∗0 , ct0) = (ct∗0 , ct1) due to the re-encryption check during decryption.7 However, this does not constitute
a valid attack. On the other hand, in case dk0 ̸= dk1, we have Decs(H(m0), c∗) = Decs(H(m1), c∗) = m.
Therefore, this too does not constitute a valid attack either.

Next, conditioning on m0 ̸= m1, we can further assume H(m0) ̸= H(m1) with making negligible
difference in the advantage of the adversary since H is modeled as a random oracle. This implies that
the adversary implicitly outputs two keys k0 := H(m0) and k1 := H(m1) such that Decs(k0, c∗) = m0 and
Decs(k1, c∗) = m1. However, this contradicts the key commitment property of SKE (regardless of m0 being
the same or different from m1). This concludes the proof.8

Theorem 4.2.11. The CmPKE in Figure 4.4 is ciphertext-spread assuming the decomposable mPKE is ciphertext-
spread.

Proof. The ciphertext of the CmPKE in Figure 4.4 consists of the decomposable mPKE ciphertext (ct0, (ĉti)i∈[N])
and SKE ciphertext c. Since mPKE is ciphertext-spread, we have

E

[
max

ct∗0 ,c∗,ct∗,m∈M,i
Pr
r

[
((ct0, c), (cti)i∈[N])← CmEnc(pp, (eki)i∈[N],m; r) : (ct∗0 , c∗, ct∗) = (ct0, c, cti)

]]
≤ E

[
max

ct∗0 ,c∗,ct∗,m∈M,i
Pr
r

[
((ct0, c), (cti)i∈[N])← CmEnc(pp, (eki)i∈[N],m; r) : (ct∗0 , ct∗) = (ct0, cti)

]]
7Here, we assume that a decryption key dk implicitly includes the encryption key ek required for re-encryption.
8To be precise, we will provide the adversary A against the commitment-binding game oracle access to Encs and Decs, which

are both instantiated using the random oracle to formally invoke the key commitment property of SKE.

4.2. Committing Multi-Recipient PKE 91

mSetup(1κ)

1 : pp← mSetup′(1κ)

2 : return pp

mGen(pp)

1 : foreach b′ ∈ {0, 1} do

2 : (ekb′ , dkb′)← mGen′(pp)

3 : b←$ {0, 1}
4 : ek := (ek0, ek1)

5 : dk := (b, dkb)

6 : return (ek, dk)

mEnc(pp, (eki)i∈[N],m)

1 : ((eki,0, eki,1))i∈[N] ← (eki)i∈[N]

2 : w←$ {0, 1}N

3 : (ct0,0, (ĉti,wi)i∈[N])← mEnc′(pp, (eki,wi)i∈[N],m)

4 : (ct0,1, (ĉti,1−wi)i∈[N])← mEnc′(pp, (eki,1−wi)i∈[N],m)

5 : ct0 := (ct0,0, ct0,1)

6 : ĉti := (ĉti,0, ĉti,1)

7 : return c⃗t := (ct0, (ĉti)i∈[N])

mDec(dk, ct)

1 : (b, dkb)← dk

2 : (ct0, ĉt)← ct

3 : (ct0,0, ct0,1)← ct0

4 : (ĉt0, ĉt1)← ĉt

5 : foreach b′ ∈ {0, 1} do

6 : mb′ := mDec′(dkb, (ct0,b′ , ĉtb′))

7 : if mb′ ̸= ⊥ then return mb′

8 : return ⊥

FIGURE 4.6: An IND-CPA secure with adaptive corruption decomposable mPKE from an
IND-CPA secure (without adaptive corruption) decomposable mPKE′.

≤ E

[
max

ct∗,m′∈M
Pr
r0,r′

[
ct←

(
mEnci(pp; r0),mEncd(pp, eki,m′; r0, r′)

)
: ct∗ = ct

]]
≤ negl(κ).

Thus, CmPKE is also ciphertext-spread.

4.2.3 Construction of CmPKE: IND-CCA with Adaptive Corruption

The construction in Figure 4.4 can be shown to be IND-CCA secure against adaptive corruption by allowing
the reduction algorithm to guess the random choices made by the adversary. However, this results in a
reduction loss as large as 2N log N , where N is the number of recipients. This exponential reduction loss
will then be inherited to the CGKA protocol. Although we are unaware of any concrete attacks that take
advantage of this large reduction loss, it is natural to ask if there is an efficient and provably adaptively
secure CmPKE (and hence CGKA) without incurring such a reduction loss.

Due to Theorem 4.2.7, we only need to focus on an IND-CPA secure with adaptive corruption decomposable
mPKE. Below, we provide a simple generic transformation from any IND-CPA secure decomposable mPKE
that is not secure against adaptive corruptions into one that is. The overhead is simply doubling the
encryption key and ciphertext size, where the transform is a natural adaptation of the Katz–Wang technique
[KW03]. The full detail of the construction is provided in Figure 4.6.

It is clear that the construction satisfies correctness. We provide the proof of Lemma 4.2.12, which
establishes the IND-CPA security with adaptive corruption.

92 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Lemma 4.2.12. The decomposable mPKE in Figure 4.6 is IND-CPA secure with adaptive corruption assuming the
decomposable mPKE′ is IND-CPA secure.

Proof. Let A be an adversary against the IND-CPA security with adaptive corruption. Consider the follow-
ing game sequence where the first and last correspond to the case where the challenger uses b = 0 and 1 as
the challenge, respectively. We denote Si as the event that b = b′ occurs in the game Game i.

Game 0 : This is the real security game where the challenger uses b = 0 as its challenge. That is, the
challenge ciphertext c⃗t∗ encrypts the message m0.

Game 1 : We modify how the challenger creates the challenge ciphertext. Let b ∈ {0, 1}N be the random
string associated with the decryption keys of each user. That is, let user i’s encryption and decryption
keys be eki := (eki,0, eki,1) and dki := (bi, dki,bi). Then, when A outputs (m0,m1, S ⊆ [N]), the
challenger creates the challenge ciphertext as

(ct0,0, (ĉti,bi)i∈[S])← mEnc′(pp, (eki,bi)i∈[N],m0)

(ct0,1, (ĉti,1−bi)i∈[S])← mEnc′(pp, (eki,1−bi)i∈[N],m0).

Recall in the previous game, the challenger sampled a random string w ̸= b to answer the challenge
ciphertext. Due to the winning condition, A never queries a user i ∈ S to the corruption oracle.
Therefore, bi is information-theoretically hidden to A and the challenge ciphertexts are distributed
identically in both games. Therefore, we have Pr[S0] = Pr[S1].

Game 2 : We further modify how the challenger creates the challenge ciphertext. When A outputs
(m0,m1, S ⊆ [N]), the challenger creates the challenge ciphertext as

(ct0,0, (ĉti,bi)i∈[S])← mEnc′(pp, (eki,bi)i∈[N],m0)

(ct0,1, (ĉti,1−bi)i∈[S])← mEnc′(pp, (eki,1−bi)i∈[N],m1).

We have |Pr[S1]− Pr[S2]| ≤ negl(κ) assuming mPKE′ is IND-CPA secure. This can be checked
in a straightforward fashion by observing that the only secret information in Game 2 is (dki :=
(bi, dki,bi))i∈[N], which the reduction can simulate on its own. Namely, the reduction embeds the
given encryption keys into eki,1−bi .

Game 3: We further modify how the challenger creates the challenge ciphertext. When A outputs
(m0,m1, S ⊆ [N]), the challenger creates the challenge ciphertext as

(ct0,0, (ĉti,bi)i∈[S])← mEnc′(pp, (eki,bi)i∈[N],m1)

(ct0,1, (ĉti,1−bi)i∈[S])← mEnc′(pp, (eki,1−bi)i∈[N],m0).

Swapping the message m0 and m1 keeps the distribution of the challenge ciphertext identical following
the same argument we made to jump between Game 0 and Game 1. Hence, Pr[S2] = Pr[S3].

At this point, we simply undo the changes we made. For completeness, we explain the games.

Game 4: We make the same change we made in Game 2 and swap m0 to m1. We have |Pr[S3]− Pr[S4]| ≤
negl(κ) assuming mPKE′ is IND-CPA secure.

Game 5: We make the same change we made in Game 1 and use w instead of b to answer the challenge
ciphertext. We have Pr[S4] = Pr[S5]. This corresponds to the real game where b = 1 is chosen.

4.3. Continuous Group Key Agreement 93

Collecting all the bounds, we conclude |Pr[S0]− Pr[S5]| ≤ negl(κ). This completes the proof.

4.3 Continuous Group Key Agreement

In this section, the syntax and security of continuous group key agreement (CGKA) protocols are defined.
We adopt the state-of-the-art syntax and (UC) security model presented in [AJM22], which was used to
analyze TreeKEM in MLS version 10. The model presented by [AJM22] is an extension of those presented
by [Alw+20b] that further considers insider security.

4.3.1 Syntax

Proposal and Commit Paradigm. As in the TreeKEM discussed by the current MLS group, this work
follows a ‘propose-and-commit’ flow where current group members propose to add new members, remove
existing ones, or update their own keys by sending proposal messages. These proposals only take effect
when a group member initiates a new epoch by issuing a commit message, i.e., a special message that
commits to the (subset of) proposals. Upon receiving such a commit message, a party applies the committed
proposals and transitions to the new epoch.

Akin to the recent specification of TreeKEM and also considered in [AJM22], the proposals must be
ordered. Namely, proposals are structured as a vector where it contains all updates, then all removes,
and finally, all adds in this order. As done in prior work, the buffering of proposals is delegated to the
high-level protocol.
Formal Syntax. We extend the syntax presented in [AJM22] so that the commit and welcome messages can
be divided into two parts. Commit (and welcome) message consists of a party independent message and a
party dependent message. When the server receives a request from a party id, it constructs the necessary
packets for id from the stored commit message (which is initially created for all the group members) and
only sends the portion of the commit message necessary for id. In other words, during a process operation,
each receiving party takes a party-independent message and the party-dependent message.

We consider a stateful protocol for a single group that takes the following inputs. Below, assume the
protocol knows the party’s identity id running the protocol:

Group Creation (Create, svk): It initializes a new group state. Only the party id using the verification key
svk belongs to this group. In our model, Group Creation is only allowed once.

Add Proposals (Propose, ‘add’-idt)→ p : It outputs a message p proposing to add a party idt, or ⊥ if
either id is not in the group or it tries to add an idt that already belongs to the group.

Remove Proposals (Propose, ‘rem’-idt)→ p: It outputs a message p proposing to remove a party idt, or
⊥if either id is not in the group or it tries to remove an idt that is not in the group.

Update proposals (Propose, ‘upd’-svk)→ p: It outputs a message p proposing to update the party id’s key
material, and optionally the signature key svk, or ⊥ if id is not in the group.

Commit (Commit, p⃗, svk)→ (c0 ,⃗ c, w0, w⃗): It commits a vector of proposals p⃗ and outputs a commit message
(c0 ,⃗ c). c0 is a party independent message while c⃗ = (̂cid′)id′ is a vector of party dependent messages
ĉid′ designated to id′. If p⃗ contains at least one add proposal, then it outputs a welcome message
(w0, w⃗). As in a commit message, w0 is a party independent message and w⃗ = (ŵidt)idt is a vector of
party dependent messages. The operation optionally updates the committer’s signature key svk.

94 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Process (Process, c0, ĉid, p⃗)→ (idc, propSem): It processes a message (c0, ĉid) and committed proposals p⃗,
and advances id to the next epoch. It outputs the committer’s identity idc and the semantics of the
applied proposals.

Join (Join, w0, ŵid)→ (idc,mem): It allows id (who is not yet a group member) to join the group using
the welcome message (w0, ŵid). It outputs the committer’s identity idc and mem, the set of a pair of
identities and signature keys of all group members.

Key Key→ k: It outputs the current group key. This can be queried once every epoch by any group
member (otherwise returning ⊥).

We note that the ‘add-only’ mode of commits in MLS is omitted for simplicity. This allows for a special
commit where the proposals p⃗ consist of all add proposals. In such cases, MLS allows permitting skipping
the implicit update performed by the committer. Our construction naturally handles this ‘add-only’ mode
as well.

4.3.2 Security Model

We adopt the universally composable (UC) security model presented in [AJM22] with some modifications.
The model of [AJM22] is an extension of the UC model presented in [Alw+20b] that captures the strong
notion of insider security. Here, a corrupted party can not only send arbitrary network packets but can
further interact with the PKI to inject maliciously generated long-term keys and key packages. In our
model, since we allow the delivery service (i.e., environment) to sanitize commit messages by delivering
to each group member the strict amount of data they need, we further extend [Alw+20b; AJM22] in the
following way:

• We extend the input and output interface of the ideal functionality according to the new format of
commit messages and welcome messages. The commit function outputs a commit and welcome
messages for all the receivers while the process and join functions only take the relevant part of the
commit and welcome messages as input. Accordingly, we modify what to store in the commit node
of the history graph. (In previous works, since the receiver downloads the same content as those
uploaded by the sender, the commit node was simply defined by the uploaded content.) We note that
prior constructions can be handled within our new extended model, thus our model is as general as
the previous ones.

• We separate the inj-allowed predicate into two predicates sig-inj-allowed and mac-inj-allowed.
This is only a conceptual modification but we believe it allows for a more modular proof since we
can differentiate between different types of injected messages, i.e., injected by forging a MAC or a
signature.

Universal Composable Security. The following description in this sub-section is taken almost verbatim
from [AJM22, Sec.2.2 and Sec.3.2]. For further details we refer the readers to [Alw+20b; AJM22].

We formalize security in the generalized universal composability (GUC) framework [Can+07], an
extension to the UC framework [Can01]. We moreover use the modification of responsive environments
introduced by Camenisch et al. [Cam+16] to avoid artifacts arising from seemingly local operations (such
as sampling randomness or producing a ciphertext) to involve the adversary.

4.3. Continuous Group Key Agreement 95

The (G)UC framework requires a real-world execution of the protocol to be indistinguishable from an
ideal world, to an interactive environment. The real-world experiment consists of the group members
executing the protocol (and interacting with the PKI setup). In the ideal world, on the other hand, the
protocol is replaced by dummy instances that just forward all inputs and outputs to an ideal functionality
characterizing the appropriate guarantees. The functionality interacts with a so-called simulator, that
translates the real-world adversary’s actions into corresponding ones in the ideal world. Since the ideal
functionality is secure by definition, this implies that the real-world execution cannot exhibit any attacks
either.
The Corruption Model. We use the — standard for CGKA/SGM but non-standard for UC — corruption
model of continuous state leakage (transient passive corruptions) and adversarially chosen randomness
of [Alw+20b]. This corruption model allows the adversary to repeatedly corrupt parties by sending them
two types of corruption messages: (1) a message Expose causes the party to send its current state to the
adversary (once), (2) a message (CorrRand, b) sets the party’s rand-corrupted flag to b. If b is set, the
party’s randomness-sampling algorithm is replaced by the adversary providing the coins instead. Ideal
functionalities are activated upon corruption and can adjust their behavior accordingly.
Restricted Environments. In order to avoid the so-called commitment problem, caused by adaptive
corruptions in simulation-based frameworks, we restrict the environment not to corrupt parties at certain
times. We consider a weakened variant of UC security that only quantifies over a restricted set of so-
called admissible environments that do not exhibit the commitment problem. Whether an environment is
admissible or not is defined by the ideal functionality F with statements of the form restrict cond and an
environment is called admissible (for F), if it has a negligible probability of violating any such cond when
interacting with F .
Security via Idealized Services. We consider an ideal CGKA functionality that represents an idealized
“CGKA service” agnostic to the usage of the protocol. That is, whenever a party performs a certain group
operation (e.g., creating a proposal or commit) the functionality simply hands back an idealized protocol
message to that party — it is then up to the environment to deliver those protocol messages to the other
group members, thus not making any assumptions on the underlying network or the architecture of the
delivery service. Additionally, this also allows us to consider correctness and robustness guarantees, in
contrast to more “classical” UC treatments that let the adversary deliver the messages. (Such models
typically permit trivial protocols that just reject all messages with the simulator just not delivering them in
the ideal world.)
The real world Experiment. In the real world experiment, the parties execute the protocol that furthermore
interacts with the Authentication Service (AS) and Key Service (KS) PKI functionalities. For instance,
the environment can instruct the Authentication Service (via the party’s protocol) to register a new key
for a party. As a result, the AS generates a new key pair for the party and hands the public key to the
environment, making the secret key available to the party’s protocol upon request. The PKI is defined in
detail in the next section.
The Ideal World. The ideal world formalizes the security guarantees via the ideal functionality FCGKA,
which internally maintains a so-called history graph. The history graph is a labeled directed graph that
acts as a symbolic representation of a group’s evolution. It has two types of nodes: commit and proposal
nodes, representing all executed commit and propose operations, respectively. Note that each commit
node represents an epoch. The nodes’ labels, furthermore, keep track of all the additional information
relevant to defining security. For instance, proposal nodes have a label that stores the proposed action, and
commit nodes have labels that store the epoch’s application secret and the set of parties corrupted in the
given epoch. Security of the application secrets is then formalized by the functionality choosing a random

96 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

and independent key for each commit node whenever security is guaranteed; otherwise, the simulator
gets to choose the key. Whether security is guaranteed in a given node, is determined via an explicit safe
predicate on the node and the history graph. In addition to the secrecy of the keys, the functionality also
formalizes authenticity by appropriately disallowing injections. As the PKI management is exposed to
the environment in the real world, we consider “ideal-world variants” of the AS and KS interacting with
FCGKA. Those variants essentially record which keys have been exposed, which in turn is then used to
define the safe predicate. The actual keys in the ideal world do not convey any particular meaning beyond
serving as identifiers — thus in the ideal world, we can leak all secret keys to the simulator (they are
necessary to simulate signatures on protocol messages). We note that this roughly corresponds to treating
the PKI setup as local rather than global (in the sense of UC versus GUC).

PKI functionality. We model untrusted PKI, where the adversary can register arbitrary signature keys for
any party. This models insider adversary.
Authentication Service (AS). The AS certifies the ownership of a signature key. The functionality FAS
is defined in Figure 4.7. FAS allows a party, identified by id, to register a fresh signature key pair via
register-svk query and verifies whether a verification key svk is registered by another party via certSvks
query. On registration, the new key pair for a party id is generated by FAS using genSSK() algorithm (which
is the parameter of the functionality). If id’s current randomness is corrupted (i.e., Rand[id] = ‘bad’), FAS
asks the adversary to provide the randomness. After registration, the party id receives the new verification
key svk. A party id can retrieve its signing keys via get-ssk query and delete signing keys via del-ssk
query.

The adversary can register arbitrary verification keys in the name of any party. Moreover, when a party
is corrupted, all signing keys except for the deleted ones are leaked to the adversary. Security is modeled by
the ideal-world variant of FAS, called F IW

AS . It marks leaked and adversarially registered keys as exposed
(see boxes in Figure 4.7).
FAS allows the Key Service functionality FKS to signal that a certain ssk is leaked. FKS sends this signal

when the signature key is leaked due to the leakage of key packages.
Finally, F IW

AS always leaks all signing keys to the simulator.
Key Service (KS). The KS allows parties to upload one-time key packages used to add them to groups
while they are offline.

The KS is formalized by the functionality FKS defined in Figure 4.8. Similar to FAS, a party id can
register a key package via register-kp query. Upon receiving register-kp query, FKS generates a new
key package using genKP(id, svk, ssk) algorithm (which is the parameter of the functionality), which takes
on input the party’s identity id and its signature key pair (svk, ssk) and outputs a key package and the
corresponding decryption key. If id’s randomness is corrupted, FKS uses the randomness provided by the
adversary. Moreover, signatures generated with bad randomness may leak the signing key ssk. Hence, FKS
signals to FAS that svk is exposed and sends ssk to the adversary.

Parties can request another party’s key package via get-kp query. The returned key package is specified
by the adversary reflecting that we allow the adversary to maliciously inject key packages that were not
registered by honest parties. Finally, parties can retrieve all their (not yet deleted) decryption keys alongside
the respective key package via get-keypair query. The other queries are analogous to FAS.

History Graph. As in [AJM22], we use the history graph to manage sent or received messages. A history
graph contains proposal nodes and commit nodes. All nodes in the history graph store the following
values:

• orig: the identity of the party who created the node, i.e., the message sender.

4.3. Continuous Group Key Agreement 97

The functionality is parameterized by a key generation algorithm genSSK().

Initialization

1 : RegisteredSvk← ∅; ExposedSvk← ∅

2 : SSK[∗, ∗]← ⊥
3 : Rand[∗]← ‘good’

Inputs from a party id

Input (register-svk)

1 : if Rand[id] = ‘good’ then
2 : (svk, ssk)← genSSK()
3 : else
4 : Send (rnd, id) to S and receive r

5 : (svk, ssk)← genSSK(r)

6 : ExposedSvk +← svk

7 : RegisteredSvk +← (id, svk)
8 : SSK[id, svk]← ssk

9 : Send (register-svk, id, svk, ssk) to the adversary
10 : Send svk to the party id

Input (get-ssk, svk) from id

1 : Send SSK[id, svk] to id

Input (del-ssk, svk)

1 : SSK[id, svk]← ⊥

Input (verify-cert, id′, svk) from id

1 : Send (id′, svk) ∈ RegisteredSvk to id

Inputs from the adversary
Input (register-svk, id, svk)

1 : if (∗, svk) /∈ RegisteredSvk then

2 : ExposedSvk +← svk

3 : RegisteredSvk +← (id, svk)

Input (expose-ssk, id)

1 : ExposedSvk +← { svk | SSK[id, svk] ̸= ⊥}

2 : Send SSK[id, ∗] to the adversary

Input (CorrRand, id, b), b ∈ { ‘good’, ‘bad’ }

1 : Rand[id]← b

Inputs from FCGKA and FKS

Input (exposed, id, svk)

1 : ExposedSvk +← svk

2 : Send SSK[id, svk] to the adversary

Inputs from FCGKA

Input (has-ssk, id, svk)

1 : Send SSK[id, svk] ̸= ⊥ to FCGKA

FIGURE 4.7: The ideal authentication service functionality FAS and its variant F IW
AS used

during the security proof.

98 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

The functionality is parameterized by a key-package generation algorithm genKP(id, svk, ssk).

Initialization

1 : DK[∗, ∗]← ⊥;SVK[∗, ∗]← ⊥
2 : Rand[∗]← ‘good’

Inputs from a party id

Input (register-kp, svk, ssk)

1 : if Rand[id] = ‘good’ then
2 : (kp, dk)← genKP(id, svk, ssk)
3 : if kp = ⊥ then return
4 : else
5 : Send (rnd, id) to S and receive r

6 : (kp, dk)← genKP(id, svk, ssk; r)
7 : if kp = ⊥ then return
8 : Send (exposed, id, svk) to FAS

9 : DK[id, kp]← dk;SVK[id, kp]← svk

10 : Send (register-kp, id, svk, kp, dk) to the adversary
11 : Send kp to the party id

Input (get-dks)

1 : Send { (kp,DK[id, kp]) | DK[id, kp] ̸= ⊥} to id

Input (get-kp, id′)

1 : Send (get-kp, id, id′) to S and
receive kp

2 : Send kp to id

Input (del-kp, kp)

1 : DK[id, kp]← ⊥

Inputs from the adversary
Input (CorrRand, id, b), b ∈ { ‘good’, ‘bad’ }

1 : Rand[id]← b

Inputs from the adversary and FCGKA

Input (exposed, id)

1 : Send DK[id, ∗] to the adversary
2 : foreach svk ∈ SVK[id, ∗] s.t. svk ̸= ⊥ do
3 : Send (exposed, id, svk) to FAS

FIGURE 4.8: The ideal key service functionality FKS and its variant F IW
KS used during the

security proof.

4.3. Continuous Group Key Agreement 99

• par: the parent commit node, representing the sender’s current epoch.

• stat ∈ { ‘good’, ‘bad’, ‘adv’ }: the status flag indicating whether the secrets corresponding to the node
are known to the adversary. ‘good’ means this node is secure, ‘bad’ means this node is created with
adversarial randomness (hence it is well-formed but the adversary knows the secret), and ‘adv’ means
this node is created by the injected message from the adversary.

Proposal nodes further store the following values:

• act ∈ { ‘upd’-svk, ‘add’-idt-svkt, ‘rem’-idt }: the proposal action. The history graph also stores the
signature verification key svk. ‘add’-idt-svkt means idt is added with the verification key svkt.

Commit nodes further store the following values:

• prop: the ordered list of committed proposals.

• mem: the list of a pair of group members’ identities and their signature verification keys.

• vcom: the list of party-specific commitments associated with the node c0.

• key: the group (application) secret key.

• chall: the flag indicating whether the group key is challenged. That is, chall = true if a random group
key was generated for this node, and false if the key was set by the adversary (or not generated).

• exp: the set keeping track of corrupted parties in this node. It includes a flag whether only their secret
state is leaked (the flag is false), or also the current group key is leaked (the flag is true).

For convenience, we define the following helper function.

• indexOf(id): returns the index of id in the list mem.

CGKA Functionality. Using the history graph and the PKI functionality, we introduce the ideal func-
tionality FCGKA, formally defined in Figures 4.9 to 4.11 with the helper functions in Figures 4.12 to 4.14.
FCGKA is parameterized by the predicates safe, sig-inj-allowed and mac-inj-allowed, which specify which
epoch secrets are secure and when authenticity is guaranteed. The predicates are defined in Figure 4.25.
In previous works [Alw+20b; AJM22], sig-inj-allowed and mac-inj-allowed were handled by a single
predicate inj-allowed that checked any injection regardless of it being a forgery of the MAC or signature.
We intentionally divide the inj-allowed predicate into two predicates to make the proof more accessible.
This modification is merely conceptual. Moreover, we add an explicit additional check for sig-inj-allowed
in case id is assigned to a detached root (highlighted in Figure 4.14). This was implicitly checked by the
simulator in previous works and we only made it explicit. Namely, the inclusion of this check is aimed to
improve the readability of the ideal functionality and has no effect on security.

Below, we extend the input and output interface of the functionality according to the new format of
commit messages and welcome messages.
States. FCGKA maintains the history graph. It addresses proposal nodes by (idealized) proposal message p
and non-root commit nodes by (idealized) proposal messages c0. We consider the single main group. The
root node corresponding to the main group is addressed by the special label root0. Moreover, other roots
may be created without a commit message (e.g., when a party uses an injected welcome message to an

100 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

adversarially created epoch, which is not directly related to the main group). Such roots are addressed by
the special labels rootrt for rt ∈N and their tree are called detached.
FCGKA also stores a pointer Ptr[id] for each party id. Ptr[id] indicates id’s current commit node (i.e.,

current epoch). If id currently is not in the group, Ptr[id] = ⊥.
Interfaces. FCGKA offers interfaces for creating a group, creating a proposal, committing a list of proposals,
processing a commit, joining a group, and retrieving the current group key. We assume the main group
is created by the designated party idcreator. Initially, the main group has a single party idcreator, and it can
invite additional members. All interfaces except create and join are for group members only (i.e., parties
for which Ptr[id] ̸= ⊥).
Proposals. When a party id creates a proposal, FCGKA notifies the adversary. Then it returns a flag ack, a
node identifier p (i.e., a message) and a signature verification key svkt. FCGKA allows the adversary to send
ack = false to report that the protocol fails, i.e., the output is p = ⊥. If the protocol succeeds, and if no
node with identifier p exists, FCGKA creates a new proposal node Prop[p]. For add proposals, it extends the
action by the verification key svkt (specified by the adversary) of the added party idt.

In certain situations, FCGKA may not create a new proposal node. For example, id proposes to remove
the same party twice in the same epoch. Another such situation is that a party proposes to update using
the same randomness. In these cases, the adversary can specify the preexisting p. FCGKA enforces that the
states on the existing node are consistent with the expected one using *consistent-prop.

Finally, FCGKA returns the proposal identifier p to the calling party id.
Commits. When id creates a commit message, it specifies a list of proposals p⃗, a (possibly fresh) signature
verification key svk. Then FCGKA forwards all inputs to the adversary and receives a flag ack and identifiers
c0 of commit node with a list c⃗ and w0 of a welcome node with a list ŵ. c⃗ (resp. w⃗) contains the party
dependent information ĉid (resp. ŵid), and it is used when id processes the message c0 (resp. w0). The
adversary sets ack := false to report that the protocol fails. If the commit protocol succeeds, FCGKA first
asks the adversary to interpret the injected proposals, i.e., proposal where no node has been created, by
calling *fill-prop. It then computes the member set resulting from applying p⃗ by calling *next-members
(which returns ⊥ if p⃗ is invalid).

Then FCGKA either creates a new commit node or verifies that the existing node is consistent (cf.
*consistent-com). It may happen that the existing node is the detached root. In such case, FCGKA attaches
it to id’s current node calling *attach. This helper assigns c0 as the proper identifier of the detached
root and deletes the root. Once the detached root is attached, the root’s tree achieves the same security
guarantee as the main group. Since attaching a detached root changes the history graph, FCGKA enforces
two invariants: cons-invariant enforcing the consistency of the graph, and auth-invariant enforcing
the authenticity guarantee.

Finally, when add proposals are committed, FCGKA records the welcome message that leads the new
member to the created commit node. Then FCGKA returns (c0 ,⃗ c, w0, w⃗) to the calling party id.
Processing Commits. When id processes a commit message, it specifies the commit message (c0, ĉ), where
ĉ is the id-dependent message and a list of committed proposals p⃗. Then FCGKA forwards all the inputs to
the adversary and receives the interpreted result from (c0, ĉ).

If the processing succeeds, FCGKA either creates a new commit node or verifies that the existing node is
consistent. If corresponding nodes do not exist, FCGKA checks the validity of p⃗ and creates a new commit
node with the committer identity orig′ and its signature key svk′ which are interpreted by the adversary
from (c0, ĉ). If the node Node[c0] ̸= ⊥ exists, FCGKA enforces that it is a valid successor of id’s current node
(cf. *valid-successor). If c0 matches a detached root, FCGKA attaches them.

4.3. Continuous Group Key Agreement 101

Finally, depending on whether c0 removes id, FCGKA either moves id’s pointer Ptr[id] to the new node or
sets the pointer to ⊥. The calling party receives the committer’s identity and the semantics of the applied
proposals.
Joining. When a party id joins a group, it specifies the welcome message w0 and the id-dependent message
ŵ. Then FCGKA forwards all the inputs to the adversary and receives the interpreted result from (w0, ŵ).
As usual, the adversary sets ack := false to report that the protocol fails.

If the processing succeeds, FCGKA identifies the commit c0 = Wel[w0] corresponding to w0. If this is
the first time FCGKA sees w0, i.e., Wel[w0] = ⊥, the adversary chooses c′0. If the commit node for c′0 does
not exist (i.e., Node[c′0] = ⊥), FCGKA creates a new detached root where all stored values are chosen by the
adversary.

Finally, FCGKA returns the state of the joining group (the committer’s identity and the list of (id, svk)-
pair) to the calling party id.
Group keys and Corruptions. Parties can fetch the current group key via Key query. The Key is random
if the protocol guarantees its secrecy as identified by the safe predicate. Otherwise, the key is set by the
adversary.

The predicate safe uses information that is recorded by FCGKA. When the state of a current group
member id is exposed, FCGKA records leakage of the following information.

• The current group key (if not retrieved yet) and any key materials (e.g., encryption key and signing
key) to process future messages. This is recorded by adding the pair (id,HasKey[id]) to the exposed set
of id’s current node (cf. line 2 in (Expose, id)). The flag HasKey[id] indicates whether id currently stores
the group key (if the group key has not been calculated yet or was already retrieved, HasKey[id] =
false).

• The key material for updates and commits created by id in the current epoch. This is recorded
by setting the status of all child nodes created by id (i.e., nodes with par = Ptr[id]) to ‘bad’ (cf.
*update-stat-after-exp function).

• The current signature signing key ssk. This is recorded by signaling to FAS that svk is exposed and
sends ssk to the adversary (cf. line 5 in (Expose, id)).

In addition, exposure of party id who is not a group member reveals key packages that will be used to
process welcome messages. FCGKA signals to FKS that key packages (including signing key) are exposed
and sends the corresponding decryption keys and signing keys to the adversary (cf. line 6 in (Expose, id)).

Adaptive corruptions become a problem if the adversary reveals a key material that can be used to
compute a group key that has already been outputted as random by FCGKA, i.e., the challenge key. Hence,
we restrict the environment, so as not to corrupt key materials such that it would cause safe switching to
false for some commit nodes with chall = true.

102 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Initialization

1 : Ptr[∗],Node[∗],Prop[∗],Wel[∗]← ⊥
2 : Rand[∗]← ‘good’;HasKey[∗]← false; rootCtr← 0
3 : // Flag is set to true if selective downloading is performed.

4 : flagselDL = true

Inputs from a party idcreator
Input (Create, svk)

1 : req Node[root0] = ⊥
2 : req *valid-svk(idcreator, svk)
3 : mem← { (idcreator, svk) }
4 : Node[root0]

← *create-root(idcreator,mem,Rand[idcreator])
5 : HasKey[idcreator]← true;Ptr[idcreator]← root0

6 : Send (Create, idcreator, svk) to the adversary

Inputs from a party id

Input (Propose, act†)

1 : req Ptr[id] ̸= ⊥
2 : Send (Propose, id, act) to S and

receive (ack, p, svkt)

3 : req ack
4 : if act = ‘upd’-svk then req *valid-svk(id, svk)
5 : if act = ‘add’-idt then act← ‘add’-idt-svkt

6 : if Prop[p] = ⊥ then
7 : Prop[p]← *create-prop(Ptr[id], id, act,Rand[id])
8 : else
9 : *consistent-prop(p, id, act)

10 : if act = ‘upd’-svk∧ Rand[id] = ‘bad’ then
11 : Send (exposed, id, svk) to FAS

12 : return p

Input (Commit, p⃗, svk)

1 : req Ptr[id] ̸= ⊥
2 : Send (Commit, id, p⃗, svk) to S and
3 : receive (ack, rt, c0 ,⃗ c, w0, w⃗)

4 : req *succeed-com(id, p⃗, svk) ∨ ack
5 : *fill-prop(id, p⃗)
6 : req *valid-svk(id, svk)
7 : (mem, ∗)← *next-members(Ptr[id], id, p⃗, svk)
8 : assert mem ̸= ⊥∧ (id, svk) ∈ mem

9 : // If selective downloading is performed,

// then party-specific c⃗ has the same size

// as the current member. Otherwise, c⃗ is ⊥

10 : if flagselDL then
11 : assert |⃗c| = |Node[Ptr[id]].mem|
12 : else
13 : assert c⃗ = ⊥
14 : if Node[c0] = ⊥∧ rt = ⊥ then
15 : Node[c0]

Rid ← Rand[id]

16 : ← *create-child(Ptr[id], id, p⃗,⃗ c,mem,Rid)

17 : if w0 ̸= ⊥ then
18 : assert Wel[w0] = ⊥
19 : Wel[w0]← c0

20 : else
21 : if Node[c0] = ⊥ then c′0 ← rootrt

22 : else c′0 ← c0

23 : *consistent-com(c′0, id, p⃗,mem)

24 : if c′0 = rootrt then *attach(c0, c′0, id, p⃗)
25 : if w0 ̸= ⊥ then
26 : assert Wel[w0] ∈ {⊥, c0 }
27 : Wel[w0]← c0

28 : assert cons-invariant∧ auth-invariant
29 : if Rand[id] = ‘bad’ then
30 : Send (exposed, id, svk) to FAS

31 : return (c0 ,⃗ c, w0, w⃗)

FIGURE 4.9: The ideal CGKA functionality FCGKA: Create, Propose and Commit functions.
†:act ∈ { ‘upd’-svk, ‘add’-idt, ‘rem’-idt }.

4.3. Continuous Group Key Agreement 103

Input (Process, c0, ĉ, p⃗)

1 : req Ptr[id] ̸= ⊥
2 : Send (Process, id, c0, ĉ, p⃗) to S and

receive (ack, rt, orig′, svk′)
3 : req *succeed-proc(id, c0, ĉ, p⃗) ∨ ack
4 : *fill-prop(id, p⃗)
5 : // If selective downloading is performed,

// then only the member-specific commitment ĉ is accepted

// when c0 is honestly generated.

if flagselDL then
6 : if Node[c0].stat = ‘good’ then
7 : indexid ← Node[Ptr[id]].indexOf(id)
8 : req ĉ = Node[c0].vcom[indexid]

9 : else
10 : // Otherwise, ĉ must be ⊥.

11 : assert ĉ = ⊥
12 : if Node[c0] = ⊥∧ rt = ⊥ then
13 : (mem, ∗)← *next-members(Ptr[id], orig′, p⃗, svk′)
14 : assert mem ̸= ⊥
15 : Node[c0]

← *create-child(Ptr[id], orig′, p⃗,mem, ‘adv’)
16 : else
17 : if Node[c0] = ⊥ then c′0 ← rootrt

18 : else c′0 ← c0

19 : idc ← Node[c′0].orig; svkc ← Node[c′0].mem[idc]

20 : (mem, ∗)← *next-members(Ptr[id], idc, p⃗, svkc)

21 : assert mem ̸= ⊥
22 : *valid-successor(c′0, idc, p⃗,mem)

23 : if c′0 = rootrt then *attach(c0, c′0, id, p⃗)
24 : if ∃p ∈ p⃗ : Prop[p].act = ‘rem’-id then
25 : Ptr[id]← ⊥
26 : else
27 : assert (id, ∗) ∈ Node[c0].mem

28 : Ptr[id]← c0;HasKey[id]← true

29 : assert cons-invariant∧ auth-invariant
30 : return *output-proc(c0)

Input (Join, w0, ŵ)

1 : req Ptr[id] = ⊥
2 : Send (Join, id, w0, ŵ) to S and

receive (ack, c′0, orig′,mem′)

3 : req *succeed-wel(id, w0, ŵ) ∨ ack
4 : c0 ← Wel[w0]

5 : if c0 = ⊥ then

6 : if Node[c′0] ̸= ⊥ then c0 ← c′0
7 : else
8 : rootCtr++
9 : // Assume rooti are reserved words

10 : c0 ← rootrootCtr

11 : Node[c0]

← *create-root(orig′,mem′, ‘adv’)
12 : Wel[w0]← c0

13 : assert (id, ∗) ∈ Node[c0].mem

14 : Ptr[id]← c0

15 : HasKey[id]← true

16 : assert cons-invariant∧ auth-invariant
17 : return (Node[c0].orig,Node[c0].mem)

Input Key

1 : req Ptr[id] ̸= ⊥∧HasKey[id]

2 : if Node[Ptr[id]].key = ⊥ then
3 : *set-key(Ptr[id])

4 : HasKey[id]← false

5 : return Node[Ptr[id]].key

FIGURE 4.10: The ideal CGKA functionality FCGKA: Process and Join functions.

104 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Input (Expose, id)

1 : if Ptr[id] ̸= ⊥ then
2 : Node[Ptr[id]].exp +← (id,HasKey[id])
3 : *update-stat-after-exp(id)

4 : svk← Node[Ptr[id]].mem[id]

5 : Send (exposed, id, svk) to FAS

6 : Send (exposed, id) to FKS

7 : restrict :
8 : ∀c0 : if Node[c0].chall = true then safe(c0) = true

Input (CorrRand, id, b), b ∈ { ‘good’, ‘bad’ }

1 : Rand[id]← b

FIGURE 4.11: The CGKA functionality FCGKA: Corruptions from the adversary.

*create-root(id,mem, stat)

1 : return new node with par← ⊥, orig← id,
prop← ⊥,mem← mem, stat← stat.

*create-child(c0, id, p⃗,⃗ c,mem, stat)

1 : return new node with par← c0, orig← id,
prop← p⃗, vcom← c⃗,mem← mem, stat← stat.

*create-prop(c0, id, act, stat)

1 : return new node with par← c0, orig← id,
act← act, stat← stat.

*fill-prop(id, p⃗)

1 : foreach p ∈ p⃗ s.t. Prop[p] = ⊥ do
2 : Send (Propose, p) to S and
3 : receive (orig, act)
4 : Prop[p]← *create-prop(Ptr[id], orig, act, ‘adv’)

*output-proc(c0)

1 : idc ← Node[c0].orig
2 : svkc ← Node[c0].mem[idc]

3 : p← Node[c0].prop
4 : (∗, propSem)← *next-members(c0, idc, p, svkc)

5 : return (Node[c0].orig, propSem)

*valid-svk(id, svk′)

1 : if Ptr[id] ̸= ⊥ then
2 : svk← Node[Ptr[id]].mem[id]

3 : if svk ̸= ⊥∧ svk = svk′ then return true

4 : Send (has-ssk, id, svk′) to FAS and receive ack
5 : return ack

*set-key(c0)

1 : if safe(c0) then
2 : Node[c0].key←$K;Node[c0].chall← true

3 : else
4 : Send (Key, id) to S and receive k
5 : Node[c0].key← k;Node[c0].chall← false

*update-stat-after-exp(id)

1 : foreach p s.t. Prop[p] ̸= ⊥∧ Prop[p].par = Ptr[id]

∧ Prop[p].orig = id∧ Prop[p].act = ‘upd’- ∗ do
2 : Prop[p].stat← ‘bad’
3 : foreach c0 s.t. Node[c] ̸= ⊥∧Node[c].par = Ptr[id]

∧Node[c].orig = id do
4 : Node[c].stat← ‘bad’

FIGURE 4.12: The helper functions for FCGKA: Creating and maintaining the history graph.

4.3. Continuous Group Key Agreement 105

*consistent-prop(p, id, act)

1 : assert Prop[p].par = Ptr[id] ∧ Prop[p].orig = id

∧ Prop[p].act = act

*consistent-com(c0, id, p⃗,mem)

1 : *valid-successor(c0, id, p⃗,mem)

2 : assert Rand[id] = ‘bad’∧Node[c0].orig = id

*valid-successor(c0, id, p⃗,mem)

1 : assert Node[c0] ̸= ⊥∧Node[c0].mem = mem

∧Node[c0].prop ∈ {⊥, p⃗ }
∧Node[c0].par ∈ {⊥,Ptr[id] }

*attach(c0, c′0, id, p⃗)

1 : assert c′0 ̸= root0

2 : Node[c′0].par← Ptr[id];Node[c′0].prop← p⃗

3 : Node[c0]← Node[c′0];Node[c
′
0]← ⊥

4 : foreach p s.t. Prop[p].par = c′0 do
5 : Prop[p].par← Ptr[id]

6 : foreach w0 s.t. Wel[w0] = c′0 do
7 : Wel[w0]← c0

8 : foreach id s.t. Ptr[id] = c′0 do
9 : Ptr[id]← c0

*succeed-com(id, p⃗, svk)

1 : return *next-members(Ptr[id], id, p⃗, svk) ̸= (⊥,⊥)
∧ *valid-svk(id, svk)
∧ ∀p ∈ p⃗ : Prop[p].stat ̸= ‘adv’

*succeed-proc(id, c0, ĉ, p⃗)

1 : indexid ← Node[c0].indexOf(id)
2 : return Node[c0] ̸= ⊥∧Node[c0].par = Ptr[id]

∧Node[c0].prop = p⃗∧Node[c0].stat ̸= ‘adv’
∧ ∀p ∈ p⃗ : Prop[p].stat ̸= ‘adv’
∧Node[c0].vcom[indexid] = ĉ

*succeed-wel(id, w0, ŵ)

1 : c0 ← Wel[w0]

2 : cp ← Node[c0].par

3 : return Ptr[id] = ⊥∧ c0 ̸= ⊥
∧Node[c0] ̸= ⊥∧Node[c0].stat ̸= ‘adv’
∧ (id, ∗) ∈ (Node[c0].mem \Node[cp].mem)

FIGURE 4.13: The helper functions FCGKA: Checking consistency and correctness.

106 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

*next-members(c0, idc, p⃗, svkc)

1 : if Node[c0] ̸= ⊥∧ (idc, ∗) ∈ Node[c0].mem

∧ ∀p ∈ p⃗ : Prop[p] ̸= ⊥∧ Prop[p].par = c0

∧ p⃗ = p⃗‘upd’∥⃗p‘rem’∥⃗p‘add’

for some p⃗‘upd’, p⃗‘rem’, p⃗‘add’

∧ ∀act(∀p ∈ p⃗act : Prop[p].act = act-∗) then
2 : mem← Node[c0].mem

3 : mem -← (idc, ∗);mem +← (idc, svkc)

4 : L← { idc } // set of updated parties

5 : foreach p ∈ p⃗‘upd’ do

6 : (ids, ‘upd’-svk)← (Prop[p].orig,Prop[p].act)
7 : if ¬((ids, ∗) ∈ mem∧ ids /∈ L) then
8 : return (⊥,⊥)
9 : mem -← (ids, ∗);mem +← (ids, svk)

10 : L +← ids

11 : foreach p ∈ p⃗‘rem’ do
12 : (ids, ‘rem’-idt)← (Prop[p].orig,Prop[p].act)
13 : if ¬((ids, ∗) ∈ mem∧ (idt ∈ mem∧ idt /∈ L)) then
14 : return (⊥,⊥)
15 : mem -← (idt, ∗)
16 : foreach p ∈ p⃗‘add’ do
17 : (ids, ‘add’-idt-svkt)← (Prop[p].orig,Prop[p].act)
18 : if ¬((ids, ∗) ∈ mem∧ (idt, ∗) /∈ mem) then
19 : return (⊥,⊥)
20 : mem +← (idt, svkt)

21 : P← ((Prop[p].orig,Prop[p].act) : p ∈ p⃗)
22 : return (mem, P)
23 : else
24 : return (⊥,⊥)

FIGURE 4.14: The helper functions for FCGKA: Determining the group state after applying a
commit.

auth-invariant

return true iff
(a) ∀c0 with cp := Node[c0].par, cp ̸= ⊥ and id := Node[c0].orig,

if Node[c0].stat = ‘adv’ then sig-inj-allowed(cp, id) ∧mac-inj-allowed(cp) and

(b) ∀p with cp := Prop[p].par and id := Prop[p].orig,

if Prop[p].stat = ‘adv’ then sig-inj-allowed(cp, id) ∧mac-inj-allowed(cp) and

(c) ∀rootrt ̸= ⊥ with id := Node[rootrt].orig, sig-inj-allowed(rootrt, id)

cons-invariant

return true iff
(a) ∀c0 s.t. Node[c0].par ̸= ⊥ : (Node[c0].prop ̸= ⊥∧ ∀p ∈ Node[c0].prop : Prop[p].par = Node[c0].par) and
(b) ∀id s.t. Ptr[id] ̸= ⊥ : id ∈ Node[Ptr[id]].mem and
(c) the history graph contains no cycle

FIGURE 4.15: The history graph invariants for FCGKA. We explicitly add the authentication
invariant concerning welcome messages which are highlighted in gray .

4.4. Proposed Protocol: Chained CmPKE 107

4.4 Proposed Protocol: Chained CmPKE

This section presents the proposed protocol. At a conceptual level, there are two core differences with
TreeKEM:

1. Instead of being arranged as the leaves of a (binary) tree, group members are arranged in a set. This
is similar to Chained mKEM [BBN19a]. Alternatively, it can be interpreted as TreeKEM using a tree of
arity N and depth 1.

2. Instead of being a passive bulletin board, the delivery service may edit a commit message uploaded
by a member before forwarding it to any of the (N − 1) other group members.

The impact of the first change on uploading commit messages is illustrated in Figure 4.1. A member
may initiate a new epoch t by encrypting a commit secret comSecret(t) directly to the (N − 1) encryption
keys of the other group members using a CmPKE. There is no tree structure anymore and, as an immediate
consequence, removing a user no longer leads to “blanking” a node.

The second change is implemented via the use of a CmPKE. Instead of signing the whole CmPKE
ciphertext (T, c⃗t = (cti)i∈[N]) embedded in a commit message, the uploader of the message only signs T.
The delivery service is expected to forward (T, cti) to the recipient i. Any tampering on T by the server can
be detected by a recipient by checking the signature, and any tampering on cti can be detected during the
CmPKE decryption procedure. In particular, it achieves the same level of security as provided by TreeKEM.

4.4.1 High-level overview of Chained CmPKE

We first provide a high-level description of the proposed protocol in Figure 4.16. We reuse most of the
terminology and function names used by [Alw+20b; AJM22] and highlight the major algorithmic changes
below. A complete description is given in Section 4.4.2.
Low-Level Primitives. The main changes relate to two classes of low-level primitives.

The first class captures procedures related to (left-balanced binary) trees: simple ones such as computing
the parent or children of a node, determining whether it is the root, an internal node, or a leaf, etc., or more
complex ones such as computing its path, co-path, or resolution. A list of 27 such procedures is given in
[AJM22, Tab. 1 and 3]. Removing binary trees trivializes or removes these procedures.

The second class relates to public-key encryption. As we replace a standard PKE with a CmPKE, the
main effects are that the encryption procedure now takes as input a list of encryption keys (eki)i instead of
a single key, and the presence of a commitment T as an additional output (resp. input) of the encryption
(resp. decryption) procedure.
Ripple Effects on Mid-Level Procedures. More notions and procedures related to trees are heavily
simplified. For example, treeHash becomes memberHash, and its computation now entails hashing a set
in lexicographical order, instead of a binary tree (*set-tree-hash becomes *set-member-hash). As there
is no longer an internal node to authenticate, parentHash and its computation (*set-parent-hash and
*parent-hash) are no longer necessary.
Impact at the Top Level. Since the group is no longer arranged in a binary tree structure but in a set,
each user now possess a single encryption keypair instead of ⌈log N⌉. This simplifies top level procedures
(Commit, Process, Join), which refresh these keypairs.

In TreeKEM, commit messages may contain encryptions of path secrets (to the resolution of the sibling of
each concerned node, via *rekey-path) or a path secret on the least common ancestor node of the sender

108 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Create

(Propose, ‘upd’-svk)

(Propose, ‘rem’-idt)

(Propose, ‘add’-idt)

Commit

Process

Join

*frame-prop

*rekey

*unframe-commit

*apply-rekey

*sign-commit

*apply-props

*frame-commit

*set-conf-
trans-hash

*set-interim-
trans-hash

*init-epoch

*(vrf-)conf-tag

*derive-keys

*vrf-group-state

*fetch-ssk-if-nec

genKP

*validate-kp

*assign-kp

*welcome-msg

*unframe-prop

*derive-epoch-keys

*set-member-hash

*initialize-group

CmPKE

SIG

MAC

HKDF

FIGURE 4.16: Call graph of Chained CmPKE. We use the notations func , func

and func to denote functions that undergo respectively minimal, moderate and strong
changes compared to [Alw+20b; AJM22].

4.4. Proposed Protocol: Chained CmPKE 109

and each new group member (a common joiner secret is also sent to new group members, via *welcome-msg).
Encryption of path secrets produces Ω(log N) ciphertexts, see Figure 4.1 and Footnote 2.

In Chained CmPKE, there is no path secret; instead, a common comSecret is encrypted to all recipients
via a single call to CmEnc, producing one multi-recipient ciphertext (T, c⃗t = (ĉtid′)id′∈receivers), see Figure 4.1.
Similarly, a common joinerSecret may be encrypted to newly added members. In each case, the sender of
the commit message signs data that includes T, but not c⃗t.

As input to Process and Join, receivers of a commit message will not receive the full package. Precisely,
instead of including a full CmPKE ciphertext (T, c⃗t = (ĉtid′)id′∈receivers), the recipient id only downloads
(T, ĉtid) from the server. We call this selective (or designated) downloading as the recipient only needs to
download a part of the commit message it requires. Since the data signed by the sender includes T but not
c⃗t, each recipient can verify the signature. Intuitively, the commitment-binding property (Definition 4.2.6)
then guarantees the authenticity of ĉtid despite it not being directly signed.

Asymptotic Bandwidth Efficiency.
We now discuss the bandwidth efficiency of the proposed protocols. We leave out elements that reflect

logical group operations (e.g., a bitstring encoding “id has been added to G”) or symmetric key cryptography
(e.g., hashes or MAC tags), as they add negligible overheads (compared to public key cryptography) to all
solutions.

The bottleneck of both TreeKEM and our solution resides in commit messages, as these are processed
on a daily basis (as the output of Commit, and the input of Process) and contain a significant amount of
public key material. We recall that we note ek an encryption key, ct0 the (ek-independent) part of an mPKE
ciphertext, ĉti the part of a ciphertext dependent of eki and sig a signature, and note |x| the bytesize of x.
We consider a group of N members, in a epoch with no new member.
TreeKEM. The size of an uploaded commit message is dominated by 2 · |sig|+ ⌈log N⌉ · |ek|+ Ω(log N) ·
(|ct0|+ |ĉti|).9 Since all ciphertexts in the commit message are signed jointly by a single signature, recipients
need to download all ciphertexts to verify the signature.
Chained CmPKE. The size of an uploaded commit message is dominated by 2 · |sig|+ |ek|+ |ct0|+ N ·
|ĉti| + 2κ. The term 2κ stems from our construction of a CmPKE instead of a mPKE (Theorem 4.2.7).
This is no larger than a hash digest, and we henceforth ignore it. Since each user performs a selective
downloading, the size of a downloaded commit message is reduced by a factor O(N), as it is now dominated
by 2 · |sig|+ |ek|+ |ct0|+ |ĉti|.
New Members. In both TreeKEM and the proposed protocol, newly added members use the Join pro-
cedure to process welcome messages. These contain all encryption keys ekid: N in our case (included in
memberPublicInfo), and at most (2N − 1) in TreeKEM due to the use of a binary tree. In both cases, the size
of a welcome message is dominated by these keys and is O(N). Overall, it seems unlikely that joining a
group will be a bandwidth bottleneck, as each member of a group typically performs this operation once,
whereas the number of commit messages may be unbounded.

We note that welcome messages encrypt-then-sign a common joinerSecret to the (public) encryption keys
of all new members. If an epoch contains k new members, this entails an overhead |sig|+ k · (|ct0|+ |ĉti|)
for TreeKEM. In the proposed protocol, this is done via a CmPKE, which entails a smaller overhead
|sig|+ |ct0|+ k · |ĉti|.

9In both TreeKEM and Chained CmPKE, a commit message contains two signatures: one authenticates ciphertexts, and one
signs the committer’s new encryption key(s) (“tree signing” in [AJM22]). A commit message may contain an optional welcome
message, which is then signed by a third signature. Our improvements target the first signature (ciphertexts), and are orthogonal
to the other two.

110 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Two Alternative Protocols. We briefly present two protocols that also achieve a bandwidth complexity
O(N) and O(1) for uploading and downloading commit messages, using only generic primitives.

The first protocol, that we refer to as a Parallel KEM, encrypts the same comSecret to all group members
using (N − 1) parallel (non-committing, single-recipient) PKEs. A distinct signature sigid is computed for
each distinct ctid. The cost of an upload is |ek|+ N(|ct|+ 2 · |sig|) = O(N) and, since each ciphertext is
individually authenticated, the cost of a download is |ek|+ |ct|+ 2 · |sig| = O(1). See P. KEMs in Table 4.1.

Since any PKE is also a decomposable mPKE for ct0 = ⊥, a slightly more involved solution is to build
a CmPKE from any single-recipient PKE as a special case of Theorem 4.2.7. Once we have a CmPKE, the
construction, which we refer to as Committing PKEs, is identical to ours. The cost of an upload is now
|ek| + N · |ct| + 2 · |sig| = O(N), and the cost of a download remains |ek| + |ct| + 2 · |sig| = O(1), see
C. PKE in Table 4.1.
Applying Our Techniques to TreeKEM. We can apply to the TreeKEM protocol the two techniques
leveraged here: selective downloading and mPKEs.

Thanks to the tree-based structure of TreeKEM, each user can perform selective downloading to retrieve
only one ciphertext per commit message. Indeed a similar idea to selective downloading was proposed for
TreeKEM [Bar18], but to the best of our knowledge it has never been implemented or formally analyzed.
One possible reason for this is because unlike in Chained CmPKE, TreeKEM has the added complexity of
maintaining the public keys associated to the internal nodes of the tree. Specifically, a user only needs
to know the public keys associated to the internal nodes along its path to the root in order to process
commit message, however, it may need to know more if it wants to upload commit messages. Notice
the nodes that the user needs to know is not fixed in advance since add/remove/update proposals may
adaptively change the topology of the tree. Consequently, a user may need to download additional key
materials when performing a commit (which we call on-the-fly downloading). Hence, although we believe
it is possible to further lower the download cost for TreeKEM using similar ideas, this would entail more
server-side bookkeeping of the tree structure and the associating public keys for each internal nodes, which
would likely add complexity to the protocol description and security proof. We leave it as an interesting
future research to assess the full benefit of such an approach.

Combining TreeKEM with mPKEs/mKEMs was done in [Kat+20], which considered a variant of
TreeKEM with trees of arity m. This reduces the number of encryption keys per commit message to
⌈logm N⌉ in the best case (unblanked tree), which is still Ω(log N) for any constant value of m. Note
that setting m = N results in a flat tree, which yields a protocol similar to Chained CmPKE. So while it is
possible to apply our techniques to TreeKEM, we found that doing so with the goal of minimizing the total
bandwidth cost leads to a protocol very similar to ours, which a posteriori validates our design choices.
Why Efficient mPKEs Matter. It may not be obvious that our solution represents an improvement upon
Parallel KEMs and Committing PKEs, since all three achieve the same asymptotic bandwidth efficiency:
O(N) in upload, O(1) in download. However, a perk of post-quantum cryptography is its ability to provide
mPKEs for which the eki-dependent part ĉti of ciphertexts are extremely compact, as illustrated in Table 4.8.
The proposed protocol directly benefits from this fact, since the size of uploaded commit messages is
∼ |ĉti| · N. In Section 4.5, we propose lattice-based mPKEs inspired by the (possibly alternative) finalists to
standardization by NIST Kyber [Sch+20], NTRU LPRime [Ber+20] and FrodoKEM [Nae+20]. Our mPKEs
make ĉti as small as {48, 32, 24} bytes. Concretely, this allows the proposed protocol to reduce the upload
bandwidth cost by two to three orders of magnitude compared to Parallel KEMs and Committing PKEs.

4.4.2 Description of Chained CmPKE

In this section, we provide a more in-depth exposition of our Chained CmPKE protocol.

4.4. Proposed Protocol: Chained CmPKE 111

TABLE 4.1: Bandwidth cost of a commit message to a group of N members (with no newly
added member) in terms of public key cryptography. For schemes that use single-recipient
PKEs/KEMs, we assume |ct| = |ct0|+ |cti|. All logarithms are in base 2. The notation ⌈log N⌉
expresses that for the row labelled [AJM22] the best-case complexity is ⌈log N⌉, and the
worst-case is N.

Upload Download (per recipient) Total (1 upload, then (N − 1) downloads)
Scheme |ek| |ct0| |ĉti| |sig| |ek| |ct0| |ĉti| |sig| |ek| |ct0| |ĉti| |sig|
[AJM22] ⌈log N⌉ ⌈log N⌉ ⌈log N⌉ 2 ⌈log N⌉ ⌈log N⌉ ⌈log N⌉ 2 N⌈log N⌉ N⌈log N⌉ N⌈log N⌉ 2N
Ours 1 1 (N − 1) 2 1 1 1 2 N N 2(N − 1) 2N
P. KEMs 1 (N − 1) (N − 1) N 1 1 1 2 N 2(N − 1) 2(N − 1) 3N − 2
C. PKEs 1 (N − 1) (N − 1) 2 1 1 1 2 N 2(N − 1) 2(N − 1) 2N

As already explained in Section 4.4, unlike TreeKEM, we no longer require to maintain a tree structure
since the structure we maintain is a depth-1 tree (which is much like a comb). This makes the description
of the proposed protocol much simpler relative to TreeKEM and relieves us from “blanking” nodes when
updating and removing users from the group. Effectively, the security analysis is also simpler since we no
longer need to keep track of the exposed/unexposed secrets assigned to the internal nodes of the tree.

Moreover, during a commit protocol, the committer does not sign the whole ciphertext but only the
part that binds the message, i.e., the commitment T in CmPKE. The delivery server is expected to parse the
uploaded commit message and forward the relevant parts to the receivers.

Below we describe our Chained CmPKE protocol and provide details on the differences between
TreeKEM version 10 of MLS formalized by [AJM22].

Protocol States. Each user holds a group state G. It consists of the variables listed in Table 4.2. The
G.member array stores the information of the group members. The index of G.member is specified by the
party identities and each entry consists of the variables listed in Table 4.4. The member hash G.memberHash
is the hash of all key packages stored in G.member.

The group state contains three hashes: confirmation transcript hash (confTransHash), confirmation tran-
script hash without committer identifier (confTransHash-w.o-‘idc’) and interim transcript hash (interimTransHash).
Roughly, these hashes maintain the consistency between the previous and current epoch and are used to
enforce a consistent view within the group members.

If a group member issues an update proposal or commit message that did not get confirmed by the
server, the corresponding secrets are stored in G.pendUpd and G.pendCom, respectively. When a member
receives a message which has been created by itself, it retrieves the corresponding secrets from G.pendUpd
or G.pendCom (rather than processing it from scratch).

For readability, we define the useful helper methods corresponding to the group state, listed in Table 4.3.
In the security proof, G additionally stores the variables listed in Table 4.5
Differences from TreeKEM. All variables except for G.member,
G.memberHash and G.confTransHash-w.o-‘idc’ are defined identically to TreeKEM. G.member corresponds to
the left-balanced binary tree τ considered in [AJM22], restricted to arity N and depth 1. Namely, G.member
only maintains a simply array rather than a tree. G.memberHash is a replacement of treeHash in TreeKEM.
We newly define the hash value G.confTransHash-w.o-‘idc’, which is used in the join protocol to confirm the
sender of the welcome message.

112 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

TABLE 4.2: The protocol state of Chained CmPKE.

G.gid The identifier of the group.
G.epoch The current epoch number.

G.confTransHash The confirmed transcript hash.
G.confTransHash-w.o-‘idc’ The confirmed transcript hash without the committer identity.

G.interimTransHash The interim transcript hash for the next epoch.
G.member[∗] A mapping associating party id with its state.

G.memberHash A hash of the public part of G.member[∗].
G.certSvks[∗] A mapping associating the set of validated signature verification keys to

each party.
G.pendUpd[∗] A mapping associating the secret keys for each pending update proposal

issued by id.
G.pendCom[∗] A mapping associating the new group state for each pending commit issued

by id.
G.id The identity of the party.
G.ssk The current signing key.

G.appSecret The current epoch’s shared key.
G.membKey The key used to MAC proposal packages.
G.initSecret The next epoch’s init secret.

TABLE 4.3: The helper methods on the protocol state.

G.clone() Returns (independent) copy of G.
G.memberIDs() Returns the list of party ids sorted by dictionary order.

G.memberIDsvks() Returns the list of party ids and its associating svk sorted by dictionary order
in the ids.

G.memberPublicInfo() Returns the public part of G.member[∗].
G.groupCont() Returns (G.gid, G.epoch, G.memberHash, G.confTransHash).

TABLE 4.4: The party id’s state stored in G.member[id] and helper method.

id The identity of the party.
ek The encryption key of a CmPKE scheme.
dk The corresponding decryption key.
svk The signature verification key of a signature scheme.
sig The signature for (id, ek, svk) under the signature singing key corresponding to svk.
kp() Returns (id, ek, svk, sig) (if G.member[id] ̸= ⊥).

TABLE 4.5: The protocol state maintained only during the security proof.

G.joinerSecret The current epoch’s joiner secret.
G.comSecret The current epoch’s commit secret.
G.confKey The key used to MAC for commit and welcome messages.
G.confTag The MAC tag included either in the commit or welcome message.

G.membTags The set of MAC tags included in the proposal messages.

4.4. Proposed Protocol: Chained CmPKE 113

Protocol Algorithms. The main protocol is depicted in Figures 4.18 to 4.20. The associated helper functions
are depicted in Figures 4.21 to 4.24. His a hash function (modeled as a random oracle). In these figures, the
differences from TreeKEM version 10 in MLS considered by [AJM22] are highlighted in gray .

(0) Key Generation. The algorithms get-ssk and get-kp depicted in Figure 4.17 are used by the Authenti-
cation Service and Key Service functionalities FAS Figure 4.7 and FKS Figure 4.8, respectively.

The algorithm get-ssk generates a fresh signature key pair. The algorithm get-kp generates a fresh
CmPKE key pair and outputs the decryption key and the key package. The key package kp contains the
party’s identity id, the CmPKE encryption key ek, and the verification key svk along id’s signature for them.
Differences from TreeKEM. These key generation algorithms are defined identically to TreeKEM.
(1) Group Creation. The group is created (by the designated party idcreator in our model) using the input
(Create, svk). This input initializes the group state and creates a new group with the single member
idcreator. The group creator fetches the corresponding signing key ssk from FAS using the helper function
*fetch-ssk-if-nec.
Differences from TreeKEM. The group creation protocol is defined identically to TreeKEM except that party
idcreator maintains a simpler group protocol state G compared to TreeKEM. Note that, unlike TreeKEM,
the proposed protocol initializes a random joiner secret and derives the epoch secrets from it. Then, it
computes the confirmation tag confTag for the initial group. This is because confTag is necessary to discuss
the security of the protocol.
(2) Proposals. The protocol first prepares a preliminary proposal message P.

• To create an update proposal, the protocol generates a fresh key package together with the corre-
sponding decryption key dk. The key package kp is included in the proposal and dk is stored in
G.pendUpd. When a new verification key svk is used, the protocol fetches the corresponding signing
key ssk from FAS. (ssk is also stored in G.pendUpd.)

• To create an add proposal, the protocol fetches the key package for the added party from FKS. The
proposal consists of the key package which includes the added party’s identity.

• The remove proposal consists of the identity of a removed party.

All proposals are framed using *frame-prop. It first signs the proposal P together with the string ‘proposal’,
the group context including confTransHash, and the sender’s identity. This signature prevents imperson-
ation by another group member. In addition, to ensure the PCS security and group membership of the
sender, everything including the signature is MACed using the membership key. The MAC tag ties the
proposal to a specific group/epoch since the signature key may be shared across groups and is long-lived.
In summary, to inject or modify messages, the adversary must corrupt both the sender’s signing key and
the current epoch secrets. The actual proposal message p consists of everything except the G.memberHash
and G.confTransHash since the other components can be retrieved from the protocol state of the recipients.
Differences from TreeKEM. The proposed protocol is defined identically to TreeKEM.

(3) Commits. To create a new commit message, a party id runs the protocol on input (Commit, p⃗, svk).
The protocol first initializes the next epoch’s group state by copying the current one. It then applies the
proposals p⃗ using *apply-props. It verifies the validity of the MAC tag and signature in each proposal.
The protocol then derives id’s new CmPKE key pair and a new commit secret using the helper function
*rekey. It outputs a fresh commit secret, a fresh key package kp for the committer, and a CmPKE ciphertext
(T, c⃗t) encrypting the commit secret. Note that the commit secret will be shared among existing users who
are not removed in the next epoch.

114 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

The commit message consists of two parts: a party-independent message c0 and a party-dependent
message ĉ. The protocol first prepares a preliminary commit message C0 including the list of the hash of
all the applied proposals propIDs, the key package kp, and the commitment T. This commit message is
signed alongside the group context using *sign-commit. Afterward, the protocol derives the epoch secrets
using *derive-keys and computes the confirmation tag (see *gen-conf-tag). c0 is constructed from C0,
the signature, and the confirmation tag. Then, the protocol prepares the party-dependent message ĉ. It is
set as (id, ĉtid), or (id,⊥) if the party id is removed in the next epoch. (Here, c⃗ is the list of ĉ.)

If new members are added, the protocol creates a welcome message using the function *welcome-msg.
The welcome message also consists of two parts: a party independent message w0 and a party dependent
message ŵ. It first encrypts the joiner secret (which will be used to derive epoch secrets) with the added
members’ encryption keys, and obtains a CmPKE ciphertext (T, c⃗t = (ĉtidt)idt∈addedMem). Then the protocol
composes a group information groupInfo which contains the public part of the group state, the confirmation
tag, and the sender’s identity. groupInfo and T are signed by the sender’s signing key and w0 is set as
(groupInfo,T, sig). Then, the protocol prepares the party-dependent message ŵ. It is set as (id, kphash, ĉtid)
where kphash is the hash of the used key package. (Here, w⃗ is the list of ŵ.)

Finally, the protocol computes the interim transcript hash for the next epoch by hashing the current
confirmation hash and the newly generated confirmation tag. The next epoch’s state is stored in G.pendCom.
Differences from TreeKEM. The following summarizes the differences between Chained CmPKE and TreeKEM.

1. Our *apply-props simply rewrites entries in G.member: if id is deleted, it sets G.member[id] to ⊥; if
id is added, it stores its key package in a new entry; if id is updated, it replaces the old key package
with the new one. In contrast, TreeKEM additionally runs the ‘blank node’ operation after updating
the leaf nodes. That is, the committer blanks the nodes on the path from the updated or removed leaf
to the root.

2. Our *rekey operation simply encrypts a new comSecret with the recipients’ CmPKE encryption keys.
In contrast, TreeKEM runs a ‘path update’ operation to derive comSecret. It refreshes all PKE keys
along the path from the committer’s leaf to the root. Each path secret is then encrypted to the
resolution of the sibling of the concerned node. Here, the secret on the root is used as comSecret.

3. Chained CmPKE signs only T, rather than T and (ĉtid)id∈receivers. This allows the delivery server to send
only the message needed for each user, and effectively lowers the downloaded package size from
O(N) to O(1). In contrast, in TreeKEM, all the ciphertexts (each encrypting a path secret) are signed.
The size of the downloaded package is therefore O(log N) in the best case (i.e., full non-blanked tree)
and O(N) in the worst case (i.e., heavily blanked tree).

4. Our commit message consists of two parts: c0 is a party-independent message and will be sent to all
the recipients. ĉid is a party-dependent message that contains the identity of a single recipient id and
the ciphertext corresponding ĉtid. This is only sent to the specific party id. In contrast, in TreeKEM, a
commit message is viewed as a monolithic bloc and the commit message is sent to all the recipients
without any modification. This corresponds to setting c0 = ⊥ and ĉtid = ĉtid′ for all id, id′ ∈ receivers
in our new ideal functionality.

5. Our welcome message only encrypts a new joinerSecret with the added members’ CmPKE encryption
keys. There is no need to send the secrets assigned to the internal nodes of a tree as in TreeKEM.
Analogous to the commit message, the welcome message also consists of two parts.

The other process (e.g., generating hash values, re-keying) are identical.

4.4. Proposed Protocol: Chained CmPKE 115

(4) Process. Consider the input (Process, c0, ĉ, p⃗). If the party id is the creator of the received commit
message c0, then the protocol simply retrieves the new epoch state from G.pendCom; otherwise, it proceeds
as follows.

First, the protocol unframes the message, i.e., verifies the signature and checks that it belongs to the
correct group and epoch (cf. *unframe-commit in Figure 4.24). Next, it verifies whether p⃗ matches the
committed proposals in c0. If so, it applies them using *apply-props.

If id is not removed, the protocol derives a new epoch secret. It decrypts the ciphertext using
*apply-rekey (it also applies the committer’s new key package) and computes the epoch secret using
*derive-keys. Finally, it verifies the confirmation tag in c0 and derives a new interim transcript hash.
Differences from TreeKEM. There are two differences. First is the input message. Chained CmPKE allows the
server to sanitize commit messages by delivering to each group member the strict amount of data they
need. Namely, the server only sends (c0, ĉid) to the party id, and hence, party id only receives the ciphertext
it needs to update its protocol state. This reduces the party’s download cost and the server’s bandwidth.

Second is the *apply-rekey function. To obtain comSecret, Chained CmPKE simply decrypts the cipher-
text. In contrast, TreeKEM decrypts the ciphertext, which contains the secret on the least common ancestor
of the committer and the recipient, and then runs the ‘path update’ operation to recover comSecret (i.e.,
root secret).
(5) Join. Upon receiving an input (w0, ŵ), the protocol initializes a new group state and copies the public
group information from w0. Then it checks the validity of the confirmation hash and interim transcript
hash by recomputing these hashes from the received information. It also verifies the signature and the
validity of the member list and each group member’s key package. If the information is valid, the protocol
decrypts the joiner secret. To this end, it fetches all its key package and decryption key pairs from FKS and
determines the one that has been used for the welcome message by checking the hash of the key package.

Finally, it derives the epoch secrets from the joiner secret and verifies the confirmation tag.
Differences from TreeKEM. As for the commit message, new member receives the sanitized message (w0, ŵid).
Chained CmPKE simply decrypts the ciphertext and derives the epoch secret from the decrypted joinerSecret.
In contrast, in TreeKEM, the welcome message contains the secret of the least common ancestor of the
committer and the recipient. The receiver then runs the ‘path update’ operation in order to derive the
decryption keys of its parents. This process does not appear in Chained CmPKE.

Chained CmPKE checks the validity of the confirmation hash in the welcome message by using
confTransHash-w.o-‘idc’ and idc. This allows the recipient of the welcome message to verify that idc has
computed the confirmation hash.
(6) Key. Upon input (Key), the protocol outputs the application secret of the current epoch and deletes it
from the local state.
Differences from TreeKEM. This key protocol is the same as TreeKEM.

116 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

genSSK()

1 : (svk, ssk)← SIG.KeyGen(ppSIG)
2 : return (svk, ssk)

genKP(id, svk, ssk)

1 : s←$ {0, 1}κ

2 : (ek, dk)← CmGen(ppCmPKE;H(s))
3 : sig← SIG.Sign(ppSIG, ssk, (id, ek, svk))
4 : kp← (id, ek, svk, sig)
5 : return (kp, dk)

FIGURE 4.17: Key generation algorithms of Chained CmPKE.

Input (Create, svk)

1 : req G = ⊥∧ id = idcreator

2 : G.gid←$ {0, 1}κ ; G.joinerSecret←$ {0, 1}κ

3 : G.epoch← 0
4 : G.member[∗]← ⊥; G.memberHash← ⊥
5 : G.confTransHash-w.o-‘idc’← ⊥
6 : G.confTransHash← ⊥
7 : G.certSvks[∗]← ∅
8 : G.pendUpd[∗]← ⊥; G.pendCom[∗]← ⊥
9 : G.id← id

10 : try ssk← *fetch-ssk-if-nec(G, svk)
11 : (kp, dk)← genKP(id, svk, ssk)
12 : G← *assign-kp(G, id, kp)
13 : G.ssk← ssk

14 : G.member[id].dk← dk

15 : G.memberHash← *derive-member-hash(G)

16 : (G, confKey)
← *derive-epoch-keys(G, G.joinerSecret)

17 : confTag← *gen-conf-tag(G, confKey)
18 : G← *set-interim-trans-hash(G, confTag)

Input (Propose, ‘upd’-svk)

1 : req G ̸= ⊥
2 : try ssk← *fetch-ssk-if-nec(G, svk)
3 : (kp, dk)← genKP(id, svk, ssk)
4 : P← (‘upd’, kp)
5 : p← *frame-prop(G, P)
6 : G.pendUpd[p]← (ssk, dk)
7 : return p

Input (Propose, ‘add’-idt)

1 : req G ̸= ⊥∧ idt /∈ G.memberIDs()

2 : Send (get-kp, idt) to FKS and receive kpt

3 : req kpt ̸= ⊥
4 : try G← *validate-kp(G, kpt, idt)

5 : P← (‘add’, kpt)

6 : p← *frame-prop(G, P)
7 : return p

Input (Propose, ‘rem’-idt)

1 : req G ̸= ⊥∧ idt ∈ G.memberIDs()

2 : P← (‘rem’, idt)

3 : p← *frame-prop(G, P)
4 : return p

FIGURE 4.18: Main protocol of Chained CmPKE: Create and Propose. The major changes
from [AJM22] are highlighted in gray .

4.4. Proposed Protocol: Chained CmPKE 117

Input (Commit, p⃗, svk)

1 : req G ̸= ⊥
2 : G′ ← *init-epoch(G)

3 : try (G′, upd, rem, add)← *apply-props(G, G′, p⃗)
4 : req (∗, ‘rem’-id) /∈ rem∧ (id, ∗) /∈ upd
5 : // Recipients of the welcome message

6 : addedMem← { idt | (∗, ‘add’-idt-∗) ∈ add }

7 : // Recipients of the new commit secret

8 : receivers← G′.memberIDs() \ addedMem

9 : try (G′, comSecret, kp,T, c⃗t = (ĉtid)id∈receivers)← *rekey(G′, receivers, id, svk)

10 : G′ ← *set-member-hash(G′)

11 : propIDs← ()

12 : foreach p ∈ p⃗ do propIDs ++← H(p)
13 : C0 ← (propIDs, kp,T)
14 : sig← *sign-commit(G, C0)

15 : G′ ← *set-conf-trans-hash(G, G′, id, C0, sig)

16 : (G′, confKey, joinerSecret)← *derive-keys(G, G′, comSecret)

17 : confTag← *gen-conf-tag(G′, confKey)
18 : c0 ← *frame-commit(G, C0, sig, confTag)

19 : G′ ← *set-interim-trans-hash(G′, confTag)

20 : c⃗← ∅

21 : foreach id ∈ G.memberIDs() do

22 : if id ∈ receivers then c⃗ +← ĉid = (id, ĉtid)

23 : else c⃗ +← ĉid = (id,⊥)

24 : if add ̸= () then

25 : (G′, w0, w⃗)← *welcome-msg(G′, addedMem, joinerSecret, confTag)

26 : else
27 : w0 ← ⊥; w⃗← ∅

28 : G.pendCom[c0]← (G′, p⃗, upd, rem, add)
29 : return (c0 ,⃗ c, w0, w⃗)

Input Key

1 : req G ̸= ⊥
2 : k← G.appSecret
3 : G.appSecret← ⊥
4 : return k

FIGURE 4.19: Main protocol of Chained CmPKE: Commit and Key. The major changes
from [AJM22] are highlighted in gray .

118 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Input (Process, c0, ĉ, p⃗)

1 : req G ̸= ⊥
2 : (idc, C0, sig, confTag)← *unframe-commit(G, c0)

3 : if idc = id then

4 : parse (G′, p⃗′, upd, rem, add)← G.pendCom[c0]

5 : req p⃗ = p⃗′

6 : return (idc, upd∥rem∥add)
7 : parse (propIDs, kpc,T)← C0

8 : parse (id′, ĉtid′)← ĉ

9 : req id = id′

10 : for i ∈ 1, . . . , |⃗p| do
11 : req H(⃗p[i]) = propIDs[i]

12 : G′ ← *init-epoch(G)

13 : try (G′, upd, rem, add)← *apply-props(G, G′, p⃗)
14 : req (∗, idc) /∈ rem∧ (idc, ∗) /∈ upd
15 : if (∗, ‘rem’-id) ∈ rem then

16 : G′ ← ⊥
17 : else

18 : G′ ← *set-conf-trans-hash(G, G′, idc, C0, sig)

19 : (G′, comSecret)

← *apply-rekey(G′, idc, kpc,T, ĉtid)

20 : G′ ← *set-member-hash(G′)

21 : (G′, confKey, joinerSecret)

← *derive-keys(G, G′, comSecret)

22 : req *vrf-conf-tag(G′, confKey, confTag)

23 : G′ ← *set-interim-trans-hash(G′, confTag)
24 : return (idc, upd∥rem∥add)

Input (Join, w0, ŵ)

1 : req G = ⊥
2 : parse (groupInfo,T, sig)← w0

3 : parse (id′, kphash, ĉtid′)← ŵ

4 : req id = id′

5 : try (G, confTag, idc)

← *initialize-group(G, id, groupInfo)

6 : CTHash = H(G.confTransHash-w.o-‘idc’, idc)

7 : ITHash = H(G.confTransHash, confTag)

8 : req G.confTransHash = CTHash

9 : req G.interimTransHash = ITHash

10 : svk← G.member[idc].svk
11 : req SIG.Verify(svk, sig, (groupInfo, ct0))

12 : try G← *vrf-group-state(G)

13 : svk← G.member[id].svk
14 : Send (get-ssk, svk) to FAS and receive ssk

15 : G.ssk← ssk

16 : Send get-dks to FKS and receive kbs
17 : joinerSecret← ⊥
18 : foreach (kp, dk) ∈ kbs do
19 : if H(kp) = kphash then
20 : req G.member[id].kp() = kp

21 : G.member[id].dk← dk

22 : joinerSecret← CmDec(dk,T, ĉtid)
23 : req joinerSecret ̸= ⊥
24 : (G, confKey)

← *derive-epoch-keys(G, joinerSecret)
25 : req *vrf-conf-tag(G, confKey, confTag)
26 : return (idc, G.memberIDsvks())

FIGURE 4.20: Main protocol of Chained CmPKE: Process and Join. The major changes
from [AJM22] are highlighted in gray . The boxed components are missing from prior
works, which we believe are required to satisfy the UC functionality. Please see the proof for
more detail.

4.4. Proposed Protocol: Chained CmPKE 119

*init-epoch(G)

1 : G′ ← G.clone()

2 : G′.epoch← G.epoch+ 1

3 : G′.pendUpd[∗]← ⊥; G′.pendCom[∗]← ⊥
4 : return G′

*rekey(G′, receivers, id, svk)

1 : try ssk← *fetch-ssk-if-nec(G′, svk)
2 : (kp, dk)← genKP(id, svk, ssk)
3 : G′ ← *assign-kp(G′, kp)
4 : G′.ssk← ssk; G′.member[id].dk← dk

5 : comSecret←$ {0, 1}κ

6 : // Note that receivers is non-empty

7 : e⃗k← (G.member[id′].ek)id′∈receivers
8 : (T, c⃗t = (ĉtid′)id′∈receivers)← CmEnc(e⃗k, comSecret)

9 : return (G′, comSecret, kp,T, c⃗t)

*apply-rekey(G′, idc, kpc,T, ct)

1 : dk← G′.member[G′.id].dk
2 : comSecret← CmDec(dk,T, ct)

3 : try G′ ← *validate-kp(G′, kpc, idc)

4 : G′ ← *assign-kp(G′, kpc)

5 : return (G′, comSecret)

*apply-props(G, G′, p⃗)

1 : upd, rem, add← ()

2 : foreach p ∈ p⃗ do
3 : try (ids, P)← *unframe-prop(G, p)
4 : parse (type, val)← P
5 : if type = ‘upd’ then
6 : req ids ∈ G.memberIDs()

7 : req (ids, ∗) /∈ upd∧ rem = () ∧ add = ()

8 : try G′ ← *validate-kp(G′, val, ids)

9 : G′ ← *assign-kp(G′, val)
10 : if ids = G.id then
11 : parse (ssk, dk)← G.pendUpd[p]

12 : G′.ssk← ssk

13 : G′.member[G.id].dk← dk

14 : svk← G′.member[ids].svk
15 : upd ++← (ids, ‘upd’-svk)
16 : elseif type = ‘rem’ then
17 : parse idt ← val

18 : req idt ̸= ids ∧ idt ∈ G′.memberIDs()

19 : req (idt, ∗) /∈ upd∧ add = ()

20 : G′.member[idt]← ⊥
21 : rem ++← (ids, ‘rem’-idt)

22 : elseif type = ‘add’ then
23 : parse (idt, ∗, svkt, ∗, ∗)← val

24 : req idt /∈ G′.memberIDs()

25 : try G′ ← *validate-kp(G′, val, idt)

26 : G′ ← *assign-kp(G′, val)
27 : add ++← (ids, ‘add’-idt-svkt)

28 : else
29 : return ⊥
30 : return (G′, upd, rem, add)

FIGURE 4.21: Helper functions of Chained CmPKE: Commit and Process. The major changes
from [AJM22] are highlighted in gray .

120 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

*welcome-msg(G′, addedMem, joinerSecret, confTag)

1 : e⃗k← (G′.member[idt].ek)idt∈addedMem

2 : (T, c⃗t = (ĉtidt)idt∈addedMem)

← CmEnc(ppCmPKE, e⃗k, joinerSecret)

3 : groupInfo← (G′.gid, G′.epoch,

G′.memberPublicInfo(), G′.memberHash,

G′.confTransHash-w.o-‘idc’ ,

G′.confTransHash,

G′.interimTransHash, confTag, G′.id)

4 : sig← SIG.Sign(ppSIG, G′.ssk, (groupInfo,T))
5 : w0 ← (groupInfo,T, sig)
6 : w⃗← ∅
7 : foreach idt ∈ addedMem do

8 : kphasht ← H(G′.member[idt].kp())
9 : w⃗ +← ŵidt = (idt, kphasht, ĉtidt)

10 : return (G′, w0, w⃗)

*initialize-group(G, id, groupInfo)

1 : parse (gid, epoch,member,memberHash,

confTransHash-w.o-‘idc’ ,

confTransHash, interimTransHash,
confTag, idc)← groupInfo

2 : (G.gid, G.epoch, G.member, G.memberHash,

G.confTransHash-w.o-‘idc’ ,

G.confTransHash, G.interimTransHash)

← (gid, epoch,member,memberHash,

confTransHash-w.o-‘idc’ ,

confTransHash, interimTransHash)

3 : G.certSvks[∗]← ∅
4 : G.pendUpd[∗]← ⊥
5 : G.pendCom[∗]← ⊥
6 : G.id← id

7 : return (G, confTag, idc)

*vrf-group-state(G)

1 : req G.memberHash = *derive-member-hash(G)

2 : mem← G.memberIDs()

3 : foreach id ∈ mem do
4 : kp← G.member[id].kp()
5 : try G← *validate-kp(G, kp, id)
6 : return G

*fetch-ssk-if-nec(G, svk)

1 : svkid ← G.member[G.id].svk
2 : if svkid ̸= svk then
3 : Send (get-ssk, svk) to FAS and

receive ssk

4 : else
5 : ssk← G.ssk
6 : return ssk

*validate-kp(G, kp, id)

1 : parse (id′, ek, svk, sig)← kp

2 : req id = id′

3 : if svk /∈ G.certSvks[id] then

4 : Send (verify-cert, id′, svk)
to FAS and receive succ

5 : req succ
6 : G.certSvks[id] +← svk

7 : req SIG.Verify(svk, sig, (id, ek, svk))
8 : return G

*assign-kp(G, kp)

1 : parse (id, ek, svk, sig)← kp

2 : G.member[id].ek← ek

3 : G.member[id].svk← svk

4 : G.member[id].sig← sig

5 : return G

FIGURE 4.22: Helper functions of Chained CmPKE: Join and key material related. The major
changes from [AJM22] are highlighted in gray . The boxed components are missing from
prior works, which we believe are required to satisfy the UC functionality. Please see the proof
for more detail.

4.4. Proposed Protocol: Chained CmPKE 121

*gen-conf-tag(G, confKey)

1 : confTag← MAC.Gen(confKey, G.confTransHash)
2 : return confTag

*vrf-conf-tag(G, confKey, confTag)

1 : succ← MAC.Verify(confKey, confTag, G.confTransHash)
2 : return succ

*set-member-hash(G)

1 : G.memberHash← *derive-member-hash(G)

2 : return G

*derive-member-hash(G)

1 : // mem is sorted by dictionary order

2 : KP← ();mem← G.memberIDs()

3 : foreach id ∈ mem do
4 : KP ++← G.member[id].kp()
5 : return H(KP)

*set-conf-trans-hash(G, G′, idc, C0, sig)

1 : comCont← (G.gid, G.epoch, ‘commit’, C0, sig)

2 : G′.confTransHash-w.o-‘idc’← H(G.interimTransHash, comCont)

3 : G′.confTransHash← H(G′.confTransHash-w.o-‘idc’, idc)

4 : return G′

*set-interim-trans-hash(G′, confTag)

1 : G′.interimTransHash← H(G′.confTransHash, confTag)

2 : return G′

*derive-keys(G, G′, comSecret)

1 : s← HKDF.Extract(G.initSecret, comSecret)

2 : joinerSecret← HKDF.Expand(s, ‘joi’)

3 : (G′, confKey)← *derive-epoch-keys(G′, joinerSecret)

4 : return (G′, confKey, joinerSecret)

*derive-epoch-keys(G′, joinerSecret)

1 : GC← G′.groupCont()
2 : confKey← HKDF.Expand(joinerSecret,GC∥‘conf’)
3 : G′.appSecret← HKDF.Expand(joinerSecret,GC∥‘app’)

4 : G′.membKey← HKDF.Expand(joinerSecret,GC∥‘memb’)

5 : G′.initSecret← HKDF.Expand(joinerSecret,GC∥‘init’)
6 : return (G′, confKey)

FIGURE 4.23: Helper functions of Chained CmPKE: computing tags, hash values, group
secrets and framing and unframing packets. The major changes from [AJM22] are
highlighted in gray . The boxed components are missing from prior works, which we

believe are required to satisfy the UC functionality. Please see the proof for more detail.

122 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

*frame-prop(G, P)

1 : propCont← (G.groupCont(), G.id, ‘proposal’, P)
2 : sig← SIG.Sign(ppSIG, G.ssk, propCont)
3 : membTag← MAC.Gen(G.membKey, (propCont, sig))
4 : return (G.gid, G.epoch, G.id, ‘proposal’, P, sig,membTag)

*unframe-prop(G, p)

1 : parse (gid, epoch, ids, contType, P, sig,membTag)← p
2 : req contType = ‘proposal’∧ gid = G.gid

∧ epoch = G.epoch
3 : propCont← (G.groupCont(), ids, ‘proposal’, P)
4 : req G.member[ids] ̸= ⊥

∧ SIG.Verify(G.member[ids].svk, sig, propCont)
∧MAC.Verify(G.membKey,membTag, (propCont, sig))

5 : return (ids, P)

*sign-commit(G, C0)

1 : comCont← (G.groupCont(), G.id, ‘commit’, C0)

2 : sig← SIG.Sign(ppSIG, G.ssk, comCont)
3 : return sig

*frame-commit(G, C0, sig, confTag)

1 : return (G.gid, G.epoch, G.id, ‘commit’, C0, sig, confTag)

*unframe-commit(G, c0)

1 : parse (gid, epoch, idc, contType, C0, sig, confTag)← c0

2 : req contType = ‘commit’∧ gid = G.gid
∧ epoch = G.epoch

3 : comCont← (G.groupCont(), idc, ‘commit’, C0)

4 : svkc ← G.member[idc].svk
5 : req G.member[idc] ̸= ⊥

∧ SIG.Verify(svkc, sig, comCont)
6 : return (idc, C0, sig, confTag)

FIGURE 4.24: Helper functions of Chained CmPKE: computing tags, hash values, group secrets
and framing and unframing packets.

4.4. Proposed Protocol: Chained CmPKE 123

4.4.3 Security of Chained CmPKE

In this section, we provide the full security proof of our proposed protocol Chained CmPKE described in
Section 4.4.2. We first explain the safe predicate used within the ideal functionality FCGKA to exclude
trivial attacks. The full security proof is provided subsequently.

Safety Predicates. Whether security is guaranteed in a given node (i.e, epoch) is determined via an explicit
safe predicate on the node and the state of the history graph. This is the same approach taken by prior
works [Alw+20b; AJM22]. Here, in addition to the secrecy of the keys, the functionality also implicitly
formalizes authenticity by appropriately disallowing injections.

The safety predicate, depicted in Figure 4.25, is defined using recursive deducing rules know(c, id) and
know(c, ‘epoch’).

know(c, id): It indicates that the adversary knows id’s key materials (e.g., decryption key) at epoch c. It
consists of four conditions. Conditions (a) or (b) is true if id’s key materials at epoch c are known
to the adversary because they are exposed at c (Condition (a)) or injected by the adversary at c
(Condition (b)). Conditions (c) and (d) reflect the fact that id’s key materials will not change unless id
commits, updates, is added, or is removed. If c does not change id’s key materials, know(c, id) implies
know(Node[c].par, id) (Condition (c)). If a child c′ does not change id’s key materials, know(c, id)
implies know(c′, id) (Condition (d)).

know(c, ‘epoch’): It indicates that the adversary knows the epoch secrets (e.g., confirmation key) except
for the application secret at epoch c. The adversary knows the epoch secrets if it corrupts a party at c,
or if it computes them from the corrupted information. The latter is formalized by the *can-traverse
predicate, which consists of three conditions. The first three conditions of *can-traverse reflect the
fact that the epoch secrets (or the joiner secret to be more precise) can be computed from welcome
messages: Condition (a) is true if a committer processes an injecting add proposals at c; Condition
(b) is true if the adversary corrupts the decryption key in the key package used at c, and Condition
(c) reflects the fact that the joiner secret is leaked if its ciphertext is generated with bad randomness.
The last Condition (d) reflects the fact that the epoch secrets are derived from the initial secret at c’s
parent node and the commit secret.

The safe predicate indicates whether the adversary knows the application secret at epoch c. Since the
application secret is leaked via a corruption query only if HasKey[id] = true (i.e., a party did not output
the application secret via Key query), safe checks whether (∗, true) ∈ Node[c].exp. On the other hand, the
other epoch secrets are always leaked when a party at c is corrupted. Thus, know(c, ‘epoch’) simply checks
Node[c].exp ̸= ∅.

The sig-inj-allowed and mac-inj-allowed predicates concern the authenticity of the signature and
MAC, respectively. Since MAC keys (i.e., membership key and confirmation key) are a part of the epoch
secrets, mac-inj-allowed is implied by know(c, ‘epoch’). These two predicates are used in auth-invariant
(see Figure 4.14). Condition (a) and (b) of auth-invariant reflect the fact that injecting commit or proposal
messages needs both a signing key of the sender and the MAC key. Condition (c) of auth-invariant,
which was previously missing in [AJM22], reflects the fact that injecting welcome messages needs a signing
key of the sender. Condition (c) was implicitly handled by the simulator within the security proof in
[AJM22], but we believe explicitly including this condition makes the intuition of disallowing injection
clear in the ideal functionality.

Security Statement. We prove our main theorem Theorem 4.4.1 that establishes the security of Chained
CmPKE. Below, if we assume the CmPKE to be only IND-CCA secure, then it satisfies adaptive security

124 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Knowledge of party’s secrets.

know(c, id) ⇐⇒
(a) (id, ∗) ∈ Node[c].exp∨
(b) *secrets-injected(c, id)∨
(c) (Node[c].par ̸= ⊥∧ know(Node[c].par, id)) ∧ ¬*secrets-replaced(c, id)∨
(d) ∃c′ : (Node[c′].par = c∧ know(c′, id)) ∧ ¬*secrets-replaced(c′, id)

*secrets-injected(c, id) ⇐⇒
(a) (Node[c].orig = id∧Node[c].stat ̸= ‘good’)∨
(b) ∃p ∈ Node[c].prop : (Prop[p].act = ‘upd’- ∗ ∧Prop[p].orig = id∧ Prop[p].stat ̸= ‘good’)∨
(c) ∃p ∈ Node[c].prop : (Prop[p].act = ‘add’-id-svk∧ svk ∈ ExposedSvk)

*secrets-replaced(c, id) ⇐⇒
Node[c].orig = id∨
∃p ∈ Node[c].prop : Prop[p].act ∈ { ‘add’-id-∗, ‘rem’-id } ∨
∃p ∈ Node[c].prop : (Prop[p].act = ‘upd’- ∗ ∧Prop[p].orig = id)

Knowledge of epoch secrets.

know(c, ‘epoch’) ⇐⇒ Node[c].exp ̸= ∅ ∨ *can-traverse(c)
*can-traverse(c) ⇐⇒
(a) ∃p ∈ Node[c].prop : (Prop[p].act = ‘add’-id-svk∧ svk ∈ ExposedSvk)∨
(b) *reused-welcome-key-leaks(c)∨
(c) Node[c].stat = ‘bad’∧ ∃p ∈ Node[c].prop : Prop[p].act = ‘add’- ∗ ∨
(d) (c = root∗ ∨ know(Node[c].par, ‘epoch’)) ∧ ∃(id, ∗) ∈ Node[c].mem : know(c, id)

*reused-welcome-key-leaks(c) ⇐⇒
∃id, p ∈ Node[c].prop : Prop[p].act = ‘add’-id- ∗ ∧
∃cd : cd is a descendant of c∧ (id, ∗) ∈ Node[cd].exp∧

no node ch exists on c–cd path s.t. *secrets-replaced(ch, id) = true

Safe and can-inject.

safe(c) ⇐⇒ ¬ ((∗, true) ∈ Node[c].exp∨ *can-traverse(c))
sig-inj-allowed(c, id) ⇐⇒ Node[c].mem[id] ∈ ExposedSvk

mac-inj-allowed(c) ⇐⇒ know(c, ‘epoch’)

FIGURE 4.25: The safety predicate for Chained CmPKE.

4.4. Proposed Protocol: Chained CmPKE 125

with an exponential security loss, while if we assume the CmPKE to be IND-CCA secure with adaptive
corruption, then it satisfies adaptive security with only a polynomial security loss.

Theorem 4.4.1. Assuming that CmPKE is IND-CCA secure (resp. with adaptive corruption) and has commitment-
binding property, and SIG is sEUF-CMA secure, the Chained CmPKE protocol selectively (resp. adaptively) se-
curely realizes the ideal functionality FCGKA, where FCGKA uses the safety predicate from Figure 4.25, in the
(FAS,FKS,GRO)-hybrid model, where calls to the hash function H, HKDF, and MAC are replaced by a call to the
global random oracle GRO.

Remark 4.4.2 (Modeling HKDF and MAC as Random Oracle). Our proof relies on a variant of the generalized
selective decryption (GSD) security as in the prior works [Kle+21; Alw+20b; AJM22], and it requires that
HKDF.Expand and HKDF.Extract are modeled as a random oracle. More precisely, the reduction is expected
to be able to extract a valid MAC secret key from the signature. To this end, we also model MAC as a
random oracle to incorporate the MAC function into the GSD security.10 We consider that the MAC tag is
the hash value of the MAC key k and the message m, that is, tag := RO(k,m) where RO is a random oracle.

We first provide an overview of the proof before diving into the formal proof.

Proof Overview. The high level structure of the proof is similar to [Alw+20b; AJM22] who considered the
UC security of TreeKEM. The main difference is due to the new safe predicate we introduce in order to
differentiate between two types of injection attacks: one using signature schemes (see sig-inj-allowed in
Figure 4.14) and the other using MAC (see mac-inj-allowed in Figure 4.14). Previously, these two types
of injection attacks were handled within one hybrid but we differentiate them in hope to make the proof
more clear.

Below, we provide an overview of the six hybrids we consider to establish security. We first consider
the real world, denoted as Hybrid 1, where the environment Z is interacting with the real parties and the
adversary A. (To be more precise, Z is interacting with a simulator that internally runs all the real parties
and adversary as in the real world).

In Hybrid 2, we swap the ideal authentication and key service (FAS,FKS) to their “ideal world” variant
(F IW

AS ,F IW
KS), which provides all the secret keys (i.e., secret keys of the signature scheme and CmPKE scheme)

to the simulator. Since these functionalities are not accessible from Z , one can think of these functions as
being simulated by S . In particular, this modification is only conceptual.

In Hybrid 3, we plug in a variant of the ideal functionalityFCGKA in betweenZ and the simulator, where
the secrets are always set by the simulator and injections are always allowed (i.e., whether auth-invariant
hold is never checked). This modification concerns the consistency between the protocol states of each
user id and the history graph generated by the ideal functionality FCGKA. For instance, if id1 and id2 are
assigned to the same node in the history graph, that is Ptr[id1] = Ptr[id2], then we want their views in the
real protocol to be identical, e.g., they agree on the same group member and group secret. Moreover, this
hybrid establishes the correctness of the protocol.

In Hybrid 4, we modify the sig-inj-allowed predicate to be those used by the actual ideal functionality
FCGKA. This establishes that an adversary cannot inject a malicious message that amounts to breaking the
security of the signature scheme.

In Hybrid 5, we modify the mac-inj-allowed predicate to be consistent with those used by the actual
ideal functionality FCGKA. This establishes that an adversary cannot inject a malicious message without
knowing the MAC keys. As in most previous proofs [Kle+21; Alw+20b; AJM22], we rely on a variant

10Previous work [AJM22] assumes the standard EUF-CMA security of MAC, but did not provide a concrete proof. It seems it
would be difficult to prove UC security by only assuming the standard EUF-CMA security of MAC.

126 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

of the generalized selective decryption (GSD) security, which we formally introduce as the Chained CmPKE
conforming GSD security in Section 4.7. At a high level, the GSD security extracts the essence of the secrecy
guarantee of the group secret and simplifies the proof. In this part, we first prove that if Z can distinguish
between Hybrids 4 and 5, then it can be used to break the Chained CmPKE conforming GSD security. We
then show in Section 4.7 that no efficient adversary can break the Chained CmPKE conforming GSD security
assuming the security of CmPKE, which proves that Hybrids 4 and 5 remain the same in the view of Z . We
note that the variant of GSD security we introduce in this work is much more tailored to the CGKA setting
than those previously considered and allows for a much simpler proof.

In Hybrid 6, we use the original safe predicate to be those used by the actual ideal functionality FCGKA.
This establishes that the application secret looks random as long as safe is true for the epoch. We prove that
if Z can distinguish between Hybrids 5 and 6, then it can be used to break the Chained CmPKE conforming
GSD security of CmPKE. At this point, the functionality that sits between Z and the simulator is exactly
FCGKA, thus we complete the proof.

We then provide the full proof of Theorem 4.4.1.

Proof. We now provide a more formal proof of the above overview. Below, we use a sequence of hybrids
explained above. We gradually modify the behavior of the simulator and denote the simulator in Hybrid i
as Si. The first (resp. last) hybrid provides the environment Z the view of the real (resp. ideal) world.
Below, when we say “the simulator aborts”, we mean that the simulator terminates the simulation and
does not respond to further queries made by the environment Z .

Hybrid 1. This is the real world, where we make a syntactic change. We consider a simulator S1 that
interacts with a dummy functionality Fdummy and (FAS,FKS). Fdummy sits between the environment
Z and S1, and simply routs all messages without any modification. S1 internally runs the real world
parties and adversary A by routing all messages sent from Fdummy, which corresponds to those from
Z .

Hybrid 2. This change concerns the authentication and key service. In this world, (FAS,FKS) is replaced
with (F IW

AS ,F IW
KS). Since these functions are not accessible by Z , this modification is undetectable

from Z . Hence, the view of Z in Hybrid 1 and Hybrid 2 are identical.11

Hybrid 3. This change concerns consistency guarantees. We replace Fdummy with a variant of FCGKA,
denoted as FCGKA,3, where safe (resp. sig-inj-allowed and mac-inj-allowed) always returns false
(resp. true). In other words, all application secrets are set by the simulator and injections are always
allowed. The simulator S3 sets all messages and keys according to the protocol.

Hybrid 4. This change concerns the security of the signature scheme. We further modify FCGKA,3 to use
the original sig-inj-allowed predicate, denoted as FCGKA,4. FCGKA,4 halts if a message is injected
even if the sender’s signing key is not exposed. The simulator S4 is identical to S3.

Hybrid 5. This change concerns the security of the MAC. We further modify FCGKA,4 to use the original
mac-inj-allowed predicate, denoted as FCGKA,5. FCGKA,5 halts if a proposal or commit message is
injected even if the corresponding MAC key is not exposed. The simulator S5 is identical to S4.

11Since (FAS,FKS) are local functions, we can instead simply assume that the simulator simulates these functionalities rather
than replacing them. We use (F IW

AS ,F IW
KS) to be consistent with the presentation provided in [AJM22].

4.4. Proposed Protocol: Chained CmPKE 127

Hybrid 6. This change concerns the confidentiality of application secrets. We further modify FCGKA,5
where it uses the original safe predicate, denoted as FCGKA,6. The simulator S6 is identical to S5
except that it sets only those application secrets for which safe is false. This functionality corresponds
to the ideal functionality FCGKA.

We show indistinguishability of Hybrids 2 to 6 in Lemmata 4.4.3, 4.4.19, 4.4.23 and 4.4.33. This completes
the proof of the main theorem.

From Hybrid 2 to 3: Lemma 4.4.3. To show Lemma 4.4.3, we first consider additional hybrids (Hybrids 2-1
to 2-7) in between Hybrids 2 and 3 and show that each adjacent hybrids are indistinguishable. The most
technically involved proof is showing the indistinguishability of Hybrids 2-4 and 2-5. All other hybrids
are simply provided to make the proof between Hybrids 2-4 and 2-5 readable by taking care of subtleties
such as decryption error, collisions in random oracles, and so on. Namely, for those interested readers,
we believe it would be informative to check the proof between Hybrids 2-4 and 2-5 (Lemma 4.4.6) before
checking the other hybrids.

Intermediate Hybrids. Here, we first provide the additional hybrids.

Hybrid 2-0 := Hybrid 2. This is identical to Hybrid 2.

Hybrid 2-1. [No collision in RO] This change concerns the collision resistance of the random oracle. Re-
call that all queries regarding the hash function H is simulated using the (global) random oracle. In
this hybrid, we consider a simulator S2-1 that aborts when a collision ever occurs in the random
oracle. Since Z only makes at most polynomially many queries, this makes negligible change to the
view of Z . Hence, the view of Z in Hybrid 2-0 and Hybrid 2-1 are negligibly different.

Hybrid 2-2. [Unique confTag/membTag in Lprop/Lcom/Lwel] This concerns the uniqueness of membTag in-
cluded in a proposal message and the uniqueness of confTag included in commit and welcome
messages. We consider a simulator S2-2 defined exactly as S2-1 except that it maintains three lists
Lprop, Lcom, and Lwel all initially set to ∅ and performs the following additional checks.

Checks regarding Lprop. Let G be the protocol state of party id before being invoked by S2-2. There
are three checks S2-2 performs. First, when S2-2 invokes party id on input (Propose, act), if id
outputs a proposal message p, then S2-2 extracts membTag included in p (which is guaranteed to
exist) and checks if there exists an entry (p′,membKey,membTag) ∈ Lprop such that (p′,membKey) ̸=
(p, G.membKey). If so S2-2 aborts. Otherwise it updates the list Lprop +← (p, G.membKey,membTag).
Second, when S2-2 invokes party id on input (Commit, p⃗, svk), if id outputs non-⊥, then S2-2 extracts
membTag included in each p ∈ p⃗ (which is guaranteed to exist) and performs the same procedure
above for each p. Finally, when S2-2 invokes party id on input (Propose, c0, ĉ, p⃗), if id outputs non-⊥,
then S2-2 extracts membTag included in each p ∈ p⃗ (which is guaranteed to exist) and performs the
same procedure above for each p.

Checks regarding Lcom. Let G be the protocol state of party id after being invoked by S2-2. There
are two checks S2-2 performs. First, when S2-2 invokes party id on input (Commit, p⃗, svk), if id out-
puts (c0 ,⃗ c, w0, w⃗), then S2-2 extracts confTag included in c0 (which is guaranteed to exist). More-
over, let G′ = G.pendCom[c0]. Then, S2-2 checks if there exists an entry (c′0, confKey, confTransHash,
confTag) ∈ Lcom where we have (c′0, confKey, confTransHash) ̸= (c0, G′.confKey, G′.confTransHash). If
so S2-2 aborts, and otherwise it updates the list Lcom +← (c0, G′.confKey, G′.confTransHash, confTag).

128 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Second, when S2-2 invokes party id on input (Propose, c0, ĉ, p⃗), if id outputs non-⊥, then S2-2 ex-
tracts confTag included in c0 (which is guaranteed to exist) and checks if there exists an entry
(c′0, confKey, confTransHash, confTag) ∈ Lcom where (c′0, confKey, confTransHash) ̸= (c0, G.confKey, G.
confTransHash). If so S2-2 aborts. Otherwise it updates Lcom +← (c0, G.confKey, G.confTransHash,
confTag).

Checks regarding Lwel. Let G be the protocol state of party id after being invoked by S2-2. There
are two checks S2-2 performs. First, when S2-2 invokes party id on input (Commit, p⃗, svk), if id
outputs (c0 ,⃗ c, w0, w⃗), then S2-2 parses w0 as (groupInfo,T, sig) and extracts confTag included in
groupInfo (which is guaranteed to exist). Moreover, let G′ = G.pendCom[c0]. It then checks if
there exists an entry (groupInfo, confKey, confTransHash, confTag) ∈ Lwel where (groupInfo′, confKey,
confTransHash) ̸= (groupInfo, G′.confKey, G′.confTransHash). If so S2-2 aborts and otherwise it up-
dates the list Lwel +← (groupInfo, G′.confKey, G′.confTransHash, confTag). Second, when S2-2 in-
vokes party id on input (Join, w0, ŵ), if id outputs non-⊥, then S2-2 parses w0 as (groupInfo,T, sig)
and extracts confTag included in groupInfo and checks if there exists an entry (groupInfo, confKey,
confTransHash, confTag) ∈ Lwel where (groupInfo′, confKey, confTransHash) ̸= (groupInfo, G.confKey,
G.confTransHash). If so S2-2 aborts. Otherwise it updates Lwel +← (groupInfo, G.confKey, G.confTransHash,
confTag).

Checks regarding Lcom and Lwel. Every time S2-2 updates Lcom or Lwel, it checks if there exists (c0,
confKey, confTransHash, confTag) ∈ Lcom and (groupInfo, confKey′, confTransHash′, confTag′) ∈ Lwel

such that confTag = confTag′ but (idc, confKey, confTransHash) ̸= (id′c, confKey
′, confTransHash′),

where idc and id′c are the (purported) user identity included in c0 and groupInfo, respectively. If
so, S2-2 aborts.

We show in Lemma 4.4.4 that Hybrid 2-1 and Hybrid 2-2 are indistinguishable toZ assuming collision
resistance of MAC.

Hybrid 2-3. [Unique c0 with good randomness] This concerns the uniqueness of a commit message with
good randomness. Assume party id outputs (c0 ,⃗ c, w0, ŵ) (where possibly (w0, ŵ) = (⊥,⊥)) on
input (Commit, p⃗, svk), where Rand[id] = ‘good’. Let G′ = G.pendCom[c0] and G be the protocol state
after being invoked by S2-2. We consider a simulator S2-3 that aborts if the same (c0, G′.confKey,
G′.confTransHash) is already included in Lcom. Recall that in the previous hybrid, we did not abort in
case the same entry was found. S2-3 is otherwise defined identically to S2-2.

Now, in case Rand[id] = ‘good’, due to the ciphertext-spreadness of CmPKE (see Definition 4.2.4),
c0 has high min-entropy. Therefore, the probability of c0 already being in Lcom is negligibly small.
Hence, Hybrid 2-2 and Hybrid 2-3 are indistinguishable to Z .

Hybrid 2-4. [Consistency of no-join] This concerns the consistency of confTag included in commit and
welcome messages. Assume party id outputs (c0 ,⃗ c,⊥,⊥) on input (Commit, p⃗, svk). That is, there are
no newly added members to the group. If any party id′ ever correctly processes (Join, w0, ŵ) (i.e.,
id′ outputs (idc,mem)) and w0 includes the same confTag as the one included in c0, then S2-4 aborts.
Otherwise, S2-4 is identical to the previous simulator. Informally, this implies that confTag implicitly
commits to the information of the group members and if confTag was generated as a result of no new
additions, then confTag cannot be used as a welcome message. We show in Lemma 4.4.5 that Hybrid
2-3 and Hybrid 2-4 are indistinguishable to Z assuming collision resistance of MAC.

Hybrid 2-5. [Adding consistency checks] This change concerns consistency guarantees. We replaceFdummy
with a variant ofFCGKA, denoted asFCGKA,2-5, where safe (resp. sig-inj-allowed and mac-inj-allowed)

4.4. Proposed Protocol: Chained CmPKE 129

always returns false (resp. true), and the correctness conditions *succeed-com, *succeed-proc, and
*succeed-wel always output false. In other words, all application secrets are set by the simulator,
injections are always allowed, and the protocol does not need to satisfy correctness. However, the
simulator S2-5 does set all messages and keys according to the protocol. We show in Lemma 4.4.6
that Hybrid 2-4 and Hybrid 2-5 are identical.

Hybrid 2-6. [No correctness error] This change concerns the correctness of the signature scheme and
encryption scheme. We replace FCGKA,2-5 with FCGKA,2-6, where the only difference is that the
correctness conditions *succeed-com, *succeed-proc, and *succeed-wel defined as those in the
ideal functionality FCGKA. At a high level, these correctness conditions guarantee that if the real
protocol is run as expected, then there should be no correctness error. Moreover, this should hold
true even if bad randomness is used.12 We show in Lemma 4.4.17 that Hybrid 2-5 and Hybrid 2-6 are
identical.

Hybrid 2-7. [Unique ĉ for each c0 and id] This change concerns the uniqueness of party-dependent com-
mitments ĉ. We replace FCGKA,2-6 with FCGKA,2-7, where the only difference is that FCGKA,2-7 always
outputs ⊥ when ĉ ̸= Node[c0].vcom[indexid] in Process protocol. This condition says, for each c0 and
id, the designated ĉ in Commit is the only party-dependent commitment that id accepts. We show in
Lemma 4.4.18 that Hybrid 2-6 and Hybrid 2-7 are identical.

Hybrid 2-8 := Hybrid 3. [Removing abort conditions] This is identical to Hybrid 3. The only difference
between Hybrid 2-7 is that the simulator S2-8 = S3 no longer aborts the simulation. Specifically, we
remove all the abort conditions checked by the simulator that was introduced from moving to Hybrid
2-0 to 2-5. Using the same arguments to move through Hybrid 2-0 to Hybrid 2-5, Hybrid 2-7 and
Hybrid 2-8 remain indistinguishable.

The following is the main lemma of this section which proves indistinguishability between Hybrid
2 and 3. The proof is a direct consequence of the argument made in Section 4.4.3 and the subsequent
Lemmata 4.4.4 to 4.4.6.

Lemma 4.4.3. Hybrid 2 and Hybrid 3 are indistinguishable assuming the collision resistance of MAC, the correctness
of CmPKE and SIG, and the ciphertext-spreadness of CmPKE.

From Hybrid 2-1 to 2-2: Lemma 4.4.4.

Lemma 4.4.4. Hybrid 2-1 and Hybrid 2-2 are indistinguishable assuming MAC is collision-resistant.

Proof. We first consider the case S2-2 aborts while checking the list Lprop. S2-2 checks the list during either a
propose, commit, or process query. Assume S2-2 was invoking party id on a propose query. By correctness
of the propose protocol, if id outputs p = (gid, epoch, id, ‘proposal’, P, sig,membTag), then we have the
following

• G.gid = gid;

12Unlike classical schemes (e.g., ElGamal encryption), there are correctness errors in post-quantum schemes such as those
based on lattices. Looking ahead, we argue that no adversary can find a bad randomness that leads to a correctness error by
requiring the underlying cryptographic primitives to expand the randomness through a hash function model as a random oracle.
Concretely, the adversary can only control the random seed, which is then expanded via a hash function (or more precisely a PRG)
modeled as a random oracle.

130 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

• G.epoch = epoch;

• G.groupCont() = (G.gid, G.epoch, G.memberHash, G.confTransHash);

• membTag = MAC.Gen(G.membKey, (G.groupCont(), id, ‘proposal’, P, sig)),

where recall G is the protocol state of id. Notice that the entire description of p is included as a message
of membTag. Then if there exists (p′,membKey′) ̸= (p, G.membKey) then it can be used to break collision
resistance of MAC. The proof for the other cases where S2-2 was invoking party id on a commit or process
query is identical to the above. Therefore, assuming collision resistance of MAC, the abort condition
regarding Lprop cannot occur.

We next consider the case S2-2 aborts while checking the list Lcom. S2-2 checks the list during either a
commit or process query. Assume S2-2 was invoking party id on a commit query. By correctness of the
commit protocol, if id outputs c0 = (gid, epoch, idc, ‘commit’, C0 = (propIDs, kp,T), sig, confTag), then we
have the following

• G′.gid = G.gid = gid;

• G′.epoch = G.epoch+ 1 = epoch+ 1;

• G′.confTransHash-w.o-‘idc’ = H(G.interimTransHash, (G.gid, epoch, ‘commit’, C0, sig));

• G′.confTransHash = H(G′.confTransHash-w.o-‘idc’, idc);

• G′.groupCont() = (G′.gid, G′.epoch, G′.memberHash, G′.confTransHash);

• G′.confKey = H(G′.joinerSecret, G′.groupCont(), ‘conf’);

• confTag = MAC.Gen(G′.confKey, G′.confTransHash);

where recall G′ is the pending protocol state of id included in G.pendCom[c0]. Due to the modification we
made in Hybrid 2-1 [No collision in RO], c0 is the unique commitment that leads to G′.confKey. Namely,
for any (c′0, confKey, confTransHash, confTag) ∈ Lcom, we have confKey ̸= G′.confKey if c′0 ̸= c0. Then,
regardless of c′0 ̸= c0 or c′0 = c0, we would have (confKey, confTransHash) ̸= (G′.confKey, G′.confTransHash).
Hence, the abort condition in Lcom does not occur. The proof for the other case where S2-2 was invoking
party id on a process query is identical to the above, where the only difference is that G′ is the updated
protocol state of id rather then the pending protocol state. Therefore, assuming collision resistance of MAC,
the abort condition regarding Lcom cannot occur.

We next consider the case S2-2 aborts while checking the list Lwel. S2-2 checks the list during either a
commit or join query. Assume S2-2 was invoking party id on a commit query. Then, by correctness of the
commit protocol, if id outputs w0 = (groupInfo = (gid, epoch,memberPublicInfo,memberHash, confTransHash
-w.o.-‘idc’, confTransHash, interimTransHash, confTag, idc),T, sig) then we have the above listed relations con-
sidered during Lcom. Notice due to the modification we made in Hybrid 2-1 [No collision in RO], (gid,
epoch,memberHash, confTransHash-w.o-‘idc’, idc) is the unique pair that leads to a valid memberPublicInfo
and interimTransHash13, where recall memberHash is set via the helper function *derive-member-hash
(see Figure 4.23). This in particular implies for any (groupInfo′, confKey, confTransHash, confTag) ∈ Lwel,
we have confKey ̸= G′.confKey if groupInfo′ ̸= groupInfo. Then, regardless of groupInfo′ ̸= groupInfo or
groupInfo′ = groupInfo, we have (confKey, confTransHash) ̸= (G′.confKey, G′.confTransHash). Hence, the

13Here, we explicitly rely on the new confTransHash-w.o-‘idc’ satisfying confTransHash = H(confTransHash-w.o-‘idc’, idc).

4.4. Proposed Protocol: Chained CmPKE 131

abort condition in Lwel does not occur. The proof for the other case where S2-2 was invoking party id on a
join query is identical to the above. Therefore, assuming collision resistance of MAC, the abort condition
regarding Lwel cannot occur.

We finally consider the case S2-2 aborts while checking both of the lists Lcom and Lwel. It is clear that
we cannot have confTag = confTag′ while (confKey, confTransHash) ̸= (confKey′, confTransHash′) since
this can be directly used to break collision resistance of MAC. However, recall confTransHash is created
by hashing confTransHash-w.o-‘idc’ and idc. Therefore, due to the modification we made in Hybrid 2-
1 [No collision in RO], idc and id′c must be the same as well. This establishes (idc, confKey, confTransHash)
= (id′c, confKey

′, confTransHash′).
This completes the proof.

From Hybrid 2-3 to 2-4: Lemma 4.4.5.

Lemma 4.4.5. Hybrid 2-3 and Hybrid 2-4 are indistinguishable assuming MAC is collision-resistant.

Proof. Let Gid and G′
id′

be the protocol states of id and id′ after they execute the commit and join query,
respectively. Moreover, let G′id be the pending protocol state stored in Gid.pendCom[c0]. Then, by the
correctness of the protocol, since the commit c0 created by id does not include new parties, we must have
G′id.memberIDsvks() ̸= G′

id′
.memberIDsvks(). Then, due to the modification we made in Hybrid 2-1 [No

collision in RO] and taking into consideration of how confKey is generated, we must have G′id.confKey ̸=
G′

id′
.confKey. However, this cannot happen since otherwise S2-4 can break collision resistance of MAC by

outputting (G′id.confKey, G′id.confTransHash, G′
id′

.confKey, G′
id′

.confTransHash, confTag).
This completes the proof.

From Hybrid 2-4 to 2-5: Lemma 4.4.6. This is the technically most involved lemma which checks the
consistency between the real protocol and the ideal protocol. The proof consists of three parts: we first
formally define the behavior of simulator S2-5 in Hybrid 2-5 (see Part 1); we then provide supporting
propositions that establish consistencies between the protocol states and the history graph (see Part 2);
finally, using the supporting propositions, we analyze the simulation provided by S2-5 provides an identical
view to Z as in Hybrid 2-4 (see Part 3).

Part 1. Description of the Simulator S2-5. Throughout the hybrid, S2-5 creates the same history graph created
within FCGKA,2-5. That is, it initializes Ptr[∗], Node[∗], Prop[∗], and so on and maintains the same view as
FCGKA,2-5. Moreover, throughout this hybrid, we augment the protocol state G of party id to also maintain
the values presented in Table 4.5. Although these values are deleted once the protocol state is updated in
the real protocol, e.g., after processing a process query, we can keep these without loss of generality as they
are never provided to the environment Z or the adversary A. In particular, they will simply be helpful
objects to discuss the consistency of the simulation.

The description of S2-5 consists of how it answers each queries made by the ideal functionalityFCGKA,2-5.
Here, note that any queries made by Z to S2-5 will be simply relayed to the internally simulated A.
Moreover, S2-5 aborts the simulation whenever any of the checks we included in Hybrids 2-1 to 2-5 are
triggered.
(1) Create query from idcreator. This concerns the case when Z queries (Create, svk) to FCGKA,2-5. If
FCGKA,2-5 outputs (Create, idcreator, svk) to S2-5, S2-5 simply runs the simulated party idcreator on input
(Create, svk).

132 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

(2) Propose query from id. This concerns the case when Z queries (Propose, act) for some act ∈
{ ‘upd’-svk, ‘add’-idt, ‘rem’-idt } to FCGKA,2-5. If Ptr[id] ̸= ⊥, then FCGKA,2-5 outputs (Propose, id, act) to
S2-5. S2-5 then runs the simulated party id on input (Propose, act), where it asks A to provide the ran-
domness to run party id if Rand[id] = ‘bad’ and act = ‘upd’-svk. Here, recall randomness is only used
to generate a new key package (kp, dk).14 If party id returns ⊥, then S2-5 returns (ack := false,⊥,⊥)
to FCGKA,2-5. Otherwise, if id returns p, then S2-5 returns (ack := true, p, svkt), where a long-term key
svkt ̸= ⊥ is extracted from p only when act = ‘add’-idt.
(3) Commit query from id. This concerns the case when Z queries (Commit, p⃗, svk) to FCGKA,2-5. If
Ptr[id] ̸= ⊥, then FCGKA,2-5 outputs (Commit, id, p⃗, svk) to S2-5. S2-5 then runs the simulated party id
on input (Commit, p⃗, svk), where it asks A to provide the randomness to run party id if Rand[id] = ‘bad’.
If party id returns ⊥, then S2-5 returns (ack := false,⊥,⊥,⊥,⊥,⊥) to FCGKA,2-5. Otherwise, if party id
returns (c0 ,⃗ c, w0, w⃗), then it checks if Node[c0] = ⊥, w0 ̸= ⊥, and if there exists some rt′ ∈N and w′0 such
that Wel[w′0] = rootrt′ and w′0 includes the same confTag as w0. If so, S2-5 chooses any such (w′0, rt′) and
returns (ack := true, rt := rt′, c0 ,⃗ c, w0, w⃗) to FCGKA,2-5. As we show in Proposition 4.4.7 below, such for any
such pair, the value of rt′ is unique. Otherwise, if either Node[c0] ̸= ⊥; or w0 = ⊥; or there does not exist
w′0 such that Wel[w′0] = rootrt′ for some rt′ ∈N and w′0 includes the same confTag as w0, then S2-5 returns
(ack := true, rt := ⊥, c0 ,⃗ c, w0, w⃗) to FCGKA,2-5. Finally, when FCGKA,2-5 queries (Propose, p) to S2-5 during
the *fill-prop check, S2-5 extracts the unique orig = id and act included in p (which are guaranteed to
exist when commit succeeds in the real protocol) and returns them to FCGKA,2-5.
(4) Process query from id. This concerns the case when Z queries (Process, c0, ĉ, p⃗) to FCGKA,2-5. If
Ptr[id] ̸= ⊥, then FCGKA,2-5 outputs (Process, id, c0, ĉ, p⃗) to S2-5. S2-5 then (deterministically) runs the
simulated party id on input (Process, c0, ĉ, p⃗). If party id returns⊥, then S2-5 returns (ack := false,⊥,⊥,⊥)
to FCGKA,2-5. Otherwise, if party id returns (idc, upd∥rem∥add), then S2-5 checks if Node[c0] = ⊥ and if there
exists w0 that includes the same confTag as c0 such that Wel[w0] = rootrt′ for some rt′ ∈N. If so, S2-5 chooses
any such (w0, rt′) and returns (ack := true, rt := rt′,⊥,⊥) to FCGKA,2-5. As we show in Proposition 4.4.7
below, such for any such pair, the value of rt′ is unique. If Node[c0] = ⊥ and no such w0 exists, then
S2-5 retrieves the associating long-term public key svkc of idc (which is guaranteed to exist when process
succeeds in the real protocol) and returns (ack := true,⊥, orig′ := idc, svk′ := svkc). Finally, if Node[c0] ̸= ⊥,
then S2-5 simply returns (ack := true,⊥,⊥,⊥). *fill-prop queries from FCGKA,2-5 to S2-5 are answered
exactly as in commit queries described above.
(5) Join query from id. This concerns the case when Z queries (Join, w0, ŵ) to FCGKA,2-5. If Ptr[id] = ⊥,
then FCGKA,2-5 outputs (Join, id, w0, ŵ) to S2-5. S2-5 then (deterministically) runs the simulated party id on
input (Join, w0, ŵ). If party id returns ⊥, then S2-5 returns (ack := false,⊥,⊥,⊥) to FCGKA,2-5. Otherwise,
if party id returns (idc,mem), where mem is a list of (id, svk)-tuples, then S2-5 checks if Wel[w0] ̸= ⊥. If
so, S2-5 returns (ack := true,⊥,⊥,⊥) to FCGKA,2-5. Otherwise, it checks if there exists a non-root c0 such
that Node[c0] ̸= ⊥ and c0 includes the same confTag as the one included in w0. Due to the modification
we made in Hybrid 2-2 [Unique confTag in Lcom] and by how S2-5 simulates the commit and process
query (see above (4) and (5)), such c0 is unique if it exists. Now, if such c0 exists, then S2-5 returns
(ack := true, c′0 := c0,⊥,⊥). Otherwise, if no such c0 exists, then S2-5 further checks if there exists w′0 such
that Wel[w′0] ̸= ⊥ that includes the same confTag as the one included in w0. If so, S2-5 chooses any such
w′0 and returns (ack := true, c′0 := Wel[w′0],⊥,⊥). As we show in Proposition 4.4.7 below, the value of
Wel[w′0] (which can either be a non-root or a detached root) is the same for all such w′0. Finally, if no such

14As in prior works, note that A is only allowed to control the output of party id via randomness corruption. This is to capture
post-compromise security in a meaningful way. We impose the same restriction when id is invoked on a commit query. See [Alw+20b;
AJM22] for more details.

4.4. Proposed Protocol: Chained CmPKE 133

c0 or w′0 exist, then S2-5 returns (ack := true,⊥, orig′ := idc,mem′ := mem). This corresponds to the case
Wel[w0] is initialized by rootrt for a new rt ∈N.
(6) Key query from id. This concerns the case when Z queries Key to FCGKA,2-5. If Ptr[id] = c0 ̸= ⊥,
HasKey[id] = true, and Node[Ptr[id]].key = ⊥, then FCGKA,2-5 outputs (Key, id) to S2-5. (Recall that safe is
always set to false in this hybrid.) If HasKey[id] = true, S2-5 must have invoked party id on input either a
valid (c0, ĉ, p⃗) corresponding to a process query or (w0, ŵ) corresponding to a join query. In either case, the
simulated party id is guaranteed to have computed a valid appSecret which is stored in its protocol state G
(i.e., G.appSecret). Thus, S2-5 returns key := G.appSecret to FCGKA,2-5.

With the simulator S2-5 formally defined, we are now ready to prove the following lemma.

Lemma 4.4.6. Hybrid 2-4 and Hybrid 2-5 are identical.

Proof. Part 2. Supporting Propositions. Directly proving that the simulation provided by S2-5 creates an
identical view to Z as in the previous hybrid is quite complex and possibly unreadable. To this end, we
provide several supporting propositions that check the consistency within and between the history graph
and protocol states maintained by S2-5 (and the ideal functionality FCGKA,2-5). The interested readers may
first skim through Part 3 to check how the supporting propositions are used. Looking ahead, we are able to
prove that cons-invariant in Figure 4.14 as a simple corollary of the propositions we prove in Part 2.
Part 2-1. Basic checks within/between history graphs and protocol states. The following shows that informally,
if two w0 and w′0 share the same confTag, then their corresponding nodes Wel[w0] and Wel[w′0] must be
assigned to the same non-root or a detached root. This shows that the confTag included in the welcome
message w0 commits the added users to be in the same group state (or equivalently to the same node in the
history graph). Roughly, if this does not hold, then the environment can distinguish between the previous
hybrid by causing an inconsistency in the history graph between parties that should belong to the same
node Node[c0].

Proposition 4.4.7 (Uniqueness of confTag in welcome message). If two distinct w0 and w′0 that include the
same confTag satisfy Wel[w0] ̸= ⊥ and Wel[w′0] ̸= ⊥, then we must have Wel[w0] = Wel[w′0].

Proof. Let us prove by contradiction. Assume we have two distinct w0 and w′0 that include the same
confTag but either of the following four cases hold:

1. (Wel[w0],Wel[w′0]) = (rootrt, rootrt′) for some distinct rt and rt′ ∈N;

2. (Wel[w0],Wel[w′0]) = (c0, rootrt′) for some rt′ ∈N and non-root c0;

3. (Wel[w0],Wel[w′0]) = (rootrt, c′0) for some rt ∈N and non-root c′0;

4. (Wel[w0],Wel[w′0]) = (c0, c′0) for some distinct non-roots c0 and c′0.

Note that by construction Wel[w0] or Wel[w′0] is never attached to the main root root0 so we can safely
discard this case. Below we assume Wel[w′0] is set before Wel[w0] and further assume that all other w′′0 with
the same confTag as w′0 satisfies Wel[w′0] = Wel[w′′0] and are set after Wel[w′0] is set. Namely, we assume
without loss of generality that Wel[w′0] is the first to be created and w0 to be the first welcome message that
forms the contradiction.
Case (1) and (2): Wel[w′0] = rootrt′ . Observe Wel[w′0] is only set to a detached root rootrt′ during a join query.
Moreover, by how S2-5 simulates the join query, at the point when Wel[w′0] is set, there does not exist a

134 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

non-root c0 such that Node[c0] ̸= ⊥ and c0 includes the same confTag as w′0. Below we consider the timing
that Wel[w0] is set, which can be either during a commit or a join query.

Let us consider the former case. Notice Wel[w0] cannot be set to a detached root during a commit query
due to the *attach function in the ideal commit protocol. Hence, since Case (1) cannot occur, we only
consider Case (2), that is, Wel[w0] = c0. We have two cases, Node[c0] = ⊥ or not right before Wel[w0] = c0
is set. In the former case, due to how S2-5 simulates the commit query, Wel[w0] and Wel[w′0] are assigned
to the same node c0. Hence, Case (2) cannot occur. In the latter case, if Node[c0] was already set, then due
to the modification we made in Hybrid 2-2 [Unique confTag in Lcom], Node[c0] must have been set during
a process query. However, due to *attach function in the ideal process protocol, if this happends, then
Wel[w′0] will be reattached to c0. Hence, Case (2) cannot occur either. Summarizing so far, Wel[w0] cannot be
set during a commit query.

Let us consider the latter case. We first consider Case (1), where Wel[w0] is set to rootrt. By observing
how S2-5 simulates the join query and by our assumption, Wel[w0] must be set to Wel[w′0]. Hence, Case (1)
cannot occur. Next, consider Case (2), where Wel[w0] is set to c0. By how S2-5 simulates the join query, c0
must contain the same confTag as w′0 and satisfy Node[c0] ̸= ⊥. However, considering that Node[c0] is set
only during a commit or a process query, it is clear that *attach function in the ideal commit or process
protocols assigns Wel[w′0] to c0, thus contradicting Wel[w′0] = rootrt′ . Hence, Case (2) cannot occur either.
Case (3). Observe Wel[w0] is only set to a detached root rootrt during a join query. Due to how S2-5 simulates
the join query and considering that Wel[w0] is not set to a non-root, we must have Wel[w0] = Wel[w′0].
However, this is a contradiction. Hence, Case (3) cannot occur.
Case (4). Due to how S2-5 simulates the commit, process, and join queries and by the definition of the
*attach function in the ideal commit or process protocols, the confTag included in w0, c0, w′0, c′0 are identical,
where we also use the fact that w0 and w′0 include the same confTag. Moreover, due to the modification we
made in Hybrid 2-2 [Unique confTag in Lcom], we must have c0 = c′0 if they include the same confTag (and if
S2-5 does not abort). However, this is a contradiction. Hence, Case (4) cannot occur.

This completes the proof.

Remark 4.4.8 (Different welcome messages for the same group). Ideally, we might want a commit message
c0 to be uniquely bound to a single welcome message w0 (i.e., if Wel[w0] ̸= ⊥, then no other w′0 with the
same confTag satisfies Wel[w′0] ̸= ⊥). However, due to the following concrete attack, Proposition 4.4.7 is
the best we can hope for. Namely, users can be added to the same group by different welcome messages.
However, Proposition 4.4.7 does guarantee that any different welcome messages provide a consistent view
of the group to the invited users (i.e., Wel[w0] = Wel[w′0]).

1. The adversary A corrupts party id to obtain all secret information and state. It then runs id “in the
head” using randomness rand it generated to obtain (c′0, w′0).

2. A modifies the signature sig′ attached to w′0 and creates another valid signature sig′ on the same
message, and creates a modified but valid welcome message w′0. (Note that unforgeability does not
say anything when the secret signing key ssk is leaked).

3. A queries (Join, w0, ∗) on some valid party id′. This sets Wel[w0] = rootrt for some rt ∈N.

4. A queries (Process, c′0, ∗) on some valid party id′′. This sets attaches Wel[w0] to c′0. That is, we now
have Node[c′0] ̸= ⊥ and Wel[w0] = c′0.

5. Finally,A queries party id by setting Rand[id] = ‘bad’ and using randomness rand. Since Node[c′0] ̸= ⊥,
Wel[w′0] is newly created and set to c′0. Namely, we now have Wel[w′0] = c′0.

4.4. Proposed Protocol: Chained CmPKE 135

Next, we provide a proposition that informally states that if some party id used w0 to join a group and
Wel[w0] is assigned to a detached root, then a Node[c0] with the same confTag as w0 cannot yet exist in
the history graph. In other words, if such Node[c0] exists, then any w0 with the same confTag should be
assigned to c0, i.e., Wel[w0] = c0.

Proposition 4.4.9 (Consistency of confTag in commit and welcome messages). If Wel[w0] = rootrt for some
rt ∈N, then any non-root c0 such that Node[c0] ̸= ⊥ does not include the same confTag as w0.

Proof. The statement can be equally stated as, if Node[c0] ̸= ⊥, then any w0 such that Wel[w0] = rootrt for
some rt ∈N does not include the same confTag as c0. Observe that the only place Node[c0] for a non-root
c0 is set is either during a commit or process query. We provide the proof considering these two cases
individually.

First, assume Node[c0] for a non-root c0 is set during a commit query. This means that some party id
was invoked by S2-5 and output some (c0 ,⃗ c, w′0, w⃗′). There are two cases to consider: w′0 = ⊥ or w′0 ̸= ⊥. In
the former case, due to the modification we made in Hybrid 2-5 [Consistency of no-join], there cannot exist
any w0 that includes the same confTag as c0 but Wel[w0] ̸= ⊥. Therefore, the statement holds as desired. In
the latter case, we consider two more cases: Wel[w0] = rootrt was set before or after S2-5 invoked party id.
If Wel[w0] = rootrt was set before S2-5 invoked party id, then due to how S2-5 simulates the commit query,
any Wel[w0] attached to a detached root must have been reattached to c0 via the *attach function in the
ideal commit protocol. Namely, there will not exist a Wel[w0] that is attached to a detached root so the
statement holds as desired. On the other hand, Wel[w0] cannot be set to a detached root after S2-5 invoked
party id either. This is because due to how S2-5 simulates the join query (which is the only place Wel[w0]
can potentially be set to a detached root), if w0 and c0 include the same confTag, then Wel[w0] is attached to
c0. Therefore, the statement holds in case Node[c0] is set during a commit query.

Next, assume Node[c0] for a non-root c0 is set during a process query. This means that some party id was
invoked by S2-5 on input (Process, c0, ĉ, p⃗). Again, we consider two cases: Wel[w0] = rootrt was set before
or after S2-5 invoked party id. If Wel[w0] = rootrt was already set before S2-5 invoked party id, then due to
how S2-5 simulates the process query, any Wel[w0] attached to a detached root must have been reattached
to c0 via the *attach function in the ideal process protocol. Hence, the statement holds as desired. The
other case when Wel[w0] was not set to a detached root before S2-5 invoked party id is also identical to the
above case. Therefore, the statement holds in case Node[c0] is set during a process query as well.

This concludes the proof.

The following provides some useful equivalence relationships between the protocol states and nodes
maintained by the history graph. Most of the relations are a simple consequence of the correctness of the
real protocol and we provide them mainly for reference. Note that some relationships are not included in
the following since we either do not require them or because we need to prove them. Specifically, Case C
is missing many desirable consistency relation checks such as Node[c0].orig = idc and Node[c0].mem =
G.memberIDsvks(). These relations are not simple consequence of the real protocol and will be handled
separately below.

Fact 1 (Existence of id in history graph). Let G ̸= ⊥ and Gprev (possibly ⊥) be the current and previous
protocol states15 of party id that is internally simulated by S2-5, respectively. Then, if Ptr[id] = c0, then one
of the following three cases hold:

Case A: [c0 is the main root root0]
15We assume the state is incremented (i.e., move from Gprev to G) when processing either a commitment or a welcome message.

Therefore, even though the state is updated after a commit in a strict sense, we view them as the same “current” state for simplicity.

136 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

• id = idcreator;

• Gprev = ⊥;

• Node[root0].orig = idcreator;

• Node[root0].par = ⊥;

• Node[root0].prop = ⊥;

• Node[root0].mem = G.memberIDsvks()

• G.epoch = 0;

• G.confTransHash-w.o-‘idc’ = ⊥;

• G.confTransHash = ⊥;

• G.groupCont() = (G.gid, G.epoch, G.memberHash, G.confTransHash);

• G.confKey = H(G.joinerSecret, G.groupCont(), ‘conf’);

• G.membKey = H(G.joinerSecret, G.groupCont(), ‘memb’);

• G.appSecret = H(G.joinerSecret, G.groupCont(), ‘app’);

• G.interimTransHash = H(G.confTransHash, confTag).

Case B: [c0 is a detached root (i.e., c0 = rootrt for some rt ∈N)] There exists a w0 of the form ((gid, epoch,
memberPublicInfo,memberHash, confTransHash-w.o-‘idc’, confTransHash,
interimTransHash, confTag, idc),T, sig) such that

• Wel[w0] = rootrt;

• Gprev = ⊥;

• Node[rootrt].orig = idc;

• Node[rootrt].par = ⊥;

• Node[rootrt].prop = ⊥;

• Node[rootrt].mem = G.memberIDsvks();

• G.gid = gid;

• G.epoch = epoch;

• G.memberPublicInfo() = memberPublicInfo;

• G.memberHash = *derive-member-hash(G);

• G.memberHash = memberHash;

• G.confTransHash-w.o-‘idc’ = confTransHash-w.o-‘idc’;

4.4. Proposed Protocol: Chained CmPKE 137

• G.confTransHash = confTransHash;

• G.confTransHash = H(G.confTransHash-w.o-‘idc’, idc);

• G.interimTransHash = interimTransHash;

• G.groupCont() = (G.gid, G.epoch, G.memberHash, G.confTransHash);

• G.confKey = H(G.joinerSecret, G.groupCont(), ‘conf’);

• G.membKey = H(G.joinerSecret, G.groupCont(), ‘memb’);

• G.appSecret = H(G.joinerSecret, G.groupCont(), ‘app’);

• confTag = MAC.Gen(G.confKey, G.confTransHash);

• G.confTag = confTag;

• G.interimTransHash = H(G.confTransHash, confTag).

Moreover, all such w0 agrees on every entry expect for (T, sig). In particular, all such w0 include the same
confTag.
Case C: [c0 is a non-root (i.e., c0 = (gid, epoch, idc, ‘commit’, C0 = (propIDs, kp,T), sig, confTag))]

• for all p ∈ p⃗ = Node[c0].prop, p is of the form (gid, epoch, ids, ‘proposal’, P, sig′,membTag) and satisfies

– G.gid = gid;

– Gprev.epoch = epoch;

– membTag = MAC.Gen(Gprev.membKey, (Gprev.groupCont(), ids, ‘proposal’, P, sig′));

– G.membTags = (membTag)membTag included in p ∈ p⃗ ;

– propIDs = (H(p))p∈⃗p.

• G.gid = Gprev.gid;

• G.epoch = Gprev.epoch+ 1 = epoch+ 1;

• G.memberHash = *derive-member-hash(G);

• G.confTransHash-w.o-‘idc’ = H(Gprev.interimTransHash, (gid, epoch, ‘commit’, C0, sig));

• G.confTransHash = H(G.confTransHash-w.o-‘idc’, idc);

• G.joinerSecret = H(Gprev.initSecret, G.comSecret);

• G.groupCont() = (G.gid, G.epoch, G.memberHash, G.confTransHash);

• G.confKey = H(G.joinerSecret, G.groupCont(), ‘conf’);

• G.membKey = H(G.joinerSecret, G.groupCont(), ‘memb’);

• G.appSecret = H(G.joinerSecret, G.groupCont(), ‘app’);

• confTag = MAC.Gen(G.confKey, G.confTransHash);

138 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

• G.confTag = confTag;

• G.interimTransHash = H(G.confTransHash, confTag).

Proof. All the relations in Case A and Case C are a consequence of the correctness of the real protocol. For
the latter case, observe that Node[c0].prop is only set during a commit or a process query. All the relations
in Case B that do not concern Node[∗] is also a consequence of the correctness of the real protocol.

We check the remaining conditions for Case B. First, observe that the only place Node[rootrt] for some
rt ∈ N is set is during a join query when S2-5 returns (ack := true,⊥, orig′ := idc,mem′ := mem) to
FCGKA,2-5. Here, idc is those included in w0. Then by the *create-root function in the ideal join protocol,
we have Node[rootrt] = idc as desired. Moreover, observing that every entry expect for (T, sig) in the
welcome message w0 is used to derive interimTransHash, the uniqueness of the remaining entries are
guaranteed due to the modification we made in Hybrid 2-1 [No collision in RO].

The following is the main proposition of Part 2-1. It shows that two parties are assigned to the same
node in the history graph if and only if they agree on the same group secrets. This allows us to relate the
consistency of history graph and protocol states.

Proposition 4.4.10 (Consistency of protocol secrets and history graph). Let id and id′ be two parties such that
Ptr[id] ̸= ⊥ and Ptr[id′] ̸= ⊥, and let Gid and Gid′ be their protocol states. Here, id and id′ may be the same party
from different epochs. Then, we have Ptr[id] = Ptr[id′] if and only if either one of the following conditions hold:

• Gid.confKey = Gid′ .confKey;

• Gid.membKey = Gid′ .membKey;

• Gid.appSecret = Gid′ .appSecret.

Proof. Let us first show the “if” direction of the statement. We only show the case Gid.confKey = Gid′ .confKey
as the other cases can be proven identically. The proof heavily relies on the equality relations provided
in Fact 1. First, since we can assume there is no collision in the hash function H due to the modification
we made in Hybrid 2-1 [No collision in RO], we have Gid.confTransHash = Gid′ .confTransHash (which are
included in groupCont()). Then, this implies that Gid.confTag = Gid′ .confTag. In case Ptr[id] and Ptr[id′] are
both non-roots, then this implies that Ptr[id] and Ptr[id′] both include the same confTag. Hence, by the
modification we made in Hybrid 2-2 [Unique confTag in Lcom and Lwel], we have Ptr[id] = Ptr[id′].

Now, let us consider the case Ptr[id] = rootrt for some rt ∈ N. Then, since Ptr[id] is assigned to a
detached root only during a join query, there must exist w0 such that Wel[w0] = rootrt, where w0 includes
Gid.confTag by the correctness of the protocol. Due to Proposition 4.4.9, there does not exist a non-root
c0 such that Node[c0] ̸= ⊥ but c0 includes Gid.confTag = Gid′ .confTag. This implies that we must have
Ptr[id′] = rootrt′ for some rt′ ∈ N. Then, by Proposition 4.4.7, we have rt = rt′ since there cannot exist
two w0 and w′0 such that Wel[w0] = rootrt, Wel[w′0] = rootrt′ , and rt ̸= rt′ that include the same confTag.
Therefore, we also have Ptr[id] = Ptr[id′] when they are assigned to detached roots.

It remains to show the “only if” direction of the statement. Again, we only show the case Gid.confKey =
Gid′ .confKey as the other cases can be proven identically. Assume Ptr[id] = Ptr[id′]. In case Ptr[id] = root0,
then id = id′ = idcreator. Therefore, the statement holds trivially. The case Ptr[id] = c0 for some non-root c0
holds as a direct consequence of Fact 1. Finally, in case Ptr[id] = rootrt for some rt ∈N, then by Fact 1, any
w0 that satisfy the relations provide in Case B produce the same confTag. Then due to the modification we
made in Hybrid 2-2 [Unique confTag in Lwel], we must have Gid.confKey = Gid′ .confKey. The case Ptr[id] = c0
for some non-root c0 can be checked similarly to the case Ptr[id] = rootrt.

This completes the proof.

4.4. Proposed Protocol: Chained CmPKE 139

Remark 4.4.11 (Implication of Ptr[id] = Ptr[id′]). Proposition 4.4.10 only focuses on the group secrets since
we wanted an “if and only if” statement. However, if we only cared about the “only if” direction, there is
much more we can deduce from Ptr[id] = Ptr[id′]. Namely, following the “only if” direction of the proof
of Proposition 4.4.10 and the proof of Lemma 4.4.4 to move from Hybrid 2-1 to 2-2, we can conclude that
if two parties id and id′ satisfy Ptr[id] = Ptr[id′], then they agree on the same view of the group such as
Gid.gid = G.id′ .gid and Gid.memberIDsvks() = Gid′ .memberIDsvks() as expected. We use this implication in
Proposition 4.4.14.

Part 2-2. Consistency of proposal messages. The following proposition establishes that if a party outputs or
receives a proposal p that already exists in the history graph (i.e., Prop[p] ̸= ⊥), then it satisfies all the
intuitive consistency checks.

Proposition 4.4.12 (Consistency of existing proposal node). Assume party id such that Ptr[id] ̸= ⊥ outputs
p on input (Propose, act) from S2-5, where p is of the form (gid, epoch, id, ‘proposal’, P, sig,membTag). Then, if
Prop[p] ̸= ⊥, we have the following (after S2-5 receives an output from id but before it provides input to FCGKA,2-5):

• Prop[p].par = Ptr[id];

• Prop[p].orig = id;

• Prop[p].act = ‘upd’-svk if P = (‘upd’, kp); Prop[p].act = ‘add’-idt-svkt if P = (‘add’, kpt); or Prop[p].act =
‘rem’-idt if P = (‘rem’, idt), where svk and svkt are included in kp and kpt, respectively.

Additionally, consider the following two cases:

• id outputs (c0 ,⃗ c, w0, w⃗) on input (Commit, p⃗, svk) from S2-5; or

• id outputs (idc, upd∥rem∥add) on input (Process, c0, ĉ, p⃗) from S2-5.

For these two cases, we have the following (after S2-5 receives an output from id but before it provides input to
FCGKA,2-5):

• for all p ∈ p⃗, p is of the form (gid, epoch, ids, ‘proposal’, P, sig,membTag) and we have the following if
Prop[p] ̸= ⊥:

– Prop[p].par = Ptr[id];

– Prop[p].orig = ids;

– Prop[p].act = ‘upd’-svk if P = (‘upd’, kp); Prop[p].act = ‘add’-idt-svkt if P = (‘add’, kpt); or
Prop[p].act = ‘rem’-idt if P = (‘rem’, idt), where svk and svkt are included in kp and kpt, respectively.

Proof. We first consider the former case where id executes a propose protocol. Let Gid be the protocol state
of id. There are two places where Prop[p] can be set. One is during a propose query and the other is during
*fill-prop which is invoked during a commit or process query. Assume Prop[p] is set during a propose
query. Then, there exists some party id′ that was invoked by S2-5 for a propose query that output p. Since p
includes id, we have id′ = id and the condition regarding Prop[p].act holds by the correctness of the real
propose protocol. Moreover, due to modification we made in Hybrid 2-2 [Unique membTag in Lprop], the
protocol state G′id of id when it outputs p the first time must satisfy Gid.membKey = G′id.membKey. Then due
to Proposition 4.4.10, we have Prop[p].par = Ptr[id] as desired. On the other hand, assume Prop[p] is set
during *fill-prop which is invoked during a commit or process query. Let the party being invoked be id′.
By how S2-5 responds to *fill-prop it is clear that Prop[p].orig = id and the condition regarding Prop[p].act

140 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

hold. Moreover, due to modification we made in Hybrid 2-2 [Unique membTag in Lprop], the protocol state
Gid′ of party id′ that accepts p must satisfy Gid.membKey = Gid′ .membKey. Then due to Proposition 4.4.10,
we have Ptr[id] = Ptr[id′]. Therefore, by the definition of *create-prop run within *fill-prop, we have
Prop[p].par = Ptr[id] as desired.

The latter cases where id executes either a commit of process query consist of the same argument as
above. Therefore, this completes the proof.

Part 2-3. Consistency of commit messages. This is the final and most important part of the basic consistency
checks. Unlike proposal messages, consistency of commit messages is proven by induction. Informally,
this is because to conclude the current commit node is consistent, we must rely on the fact that the previous
commit node is also consistent. We first show that if the current commit node id is assigned to agree with
the group member as those included in the protocol state (i.e., G.memberIDsvks() = Node[c0].mem), then
the next commit node and the updated protocol state agrees on the group member of the next epoch.

Proposition 4.4.13 (Consistency of commit and process protocol). Assume party id and c′0 such that Ptr[id] =
c′0 and Node[c′0] ̸= ⊥. Let G be id’s protocol state and assume we have G.memberIDsvks() = Node[c′0].mem.
Consider the following two cases:

• id outputs (c0 ,⃗ c, w0, w⃗) on input (Commit, p⃗, svk) from S2-5; or

• id outputs (idc, upd∥rem∥add) on input (Process, c0, ĉ, p⃗) from S2-5.

After receiving the output from id, S2-5 continues the simulation by providing input to FCGKA,2-5. If the ideal
commit or process protocols terminate without halting or outputting ⊥, then we have G′.memberIDsvks() =
Node[c0].mem in both cases, where G′ is the new group state included in G.pendCom[c0] in case of a commit query
or the updated group state in case of a process query.

Proof. Let us first consider the case id is invoked on a commit query. Condition on the ideal functionality
not halting or outputting ⊥, we are guaranteed that the function *next-members on line 7 of the ideal
commit protocol terminates as expected. In particular, since *next-members runs syntactically the same
procedure as *apply-props on line 3 of the real commit protocol, we have G′.memberIDsvks() = mem
if G.memberIDsvks() = Node[c′0].mem, where mem is the outputs of *next-members. Now, if Node[c0] is
created via *create-child (i.e., Node[c0] = ⊥ ∧ rt = ⊥), then we have Node[c0].mem = mem as desired.
Otherwise, if *consistent-com and *attach do not halt nor output ⊥, we have Node[c0].mem = mem as
desired in case Node[c0] ̸= ⊥ or Node[c0] = ⊥∧ rt ̸= ⊥. This completes the proof in case of a commit query.

Let us now consider the case id is invoked on a process query. Following the same argument as above, in
case Node[c0] is created via *create-child (i.e., Node[c0] = ⊥∧ rt = ⊥), we have Node[c0].mem = mem as
desired conditioned on the ideal functionality not halting or outputting⊥. Otherwise, if *valid-successor
and *attach do not halt nor output ⊥, we have Node[c0].mem = mem as desired in case Node[c0] ̸= ⊥ or
Node[c0] = ⊥∧ rt ̸= ⊥. This completes the proof in case of a join query.

We next show that if a party id is assigned to some commit node in the history graph, then the group
member stored on that commit node should be consistent with the members stored in the protocol state. The
proof is by induction where the base case is guaranteed by Fact 1 and we use the previous Proposition 4.4.13
to move up the epoch. Specifically, any party is first assigned to a root in the beginning (Case A or B
in Fact 1), and in this case, the commit node and protocol state are guaranteed to store the same group
members.

4.4. Proposed Protocol: Chained CmPKE 141

Proposition 4.4.14 (Consistency of current commit node). Assume party id and a non-root c0 of the form
(gid, epoch, idc, ‘commit’, C0 = (propIDs, kp,T), sig, confTag) such that Ptr[id] = c0 and Node[c0] ̸= ⊥. Let G be
the protocol state of id. Then we have the following:

• Node[c0].orig = idc;

• Node[c0].mem = G.memberIDsvks().

Proof. We first prove the relation Node[c0].orig = idc. Observe Node[c0] is set either during a commit or
a process query. Below, we only consider the case Node[c0] is set during a commit query since the case
for a process query is almost identical. There are further two cases to consider: Node[c0] was initially ⊥
and S2-5 outputs rt = ⊥ or Node[c0] was initially ⊥ and S2-5 outputs rt ∈ N. In the former case, due to
the *create-child function in the ideal commit protocol, we have Node[c0].orig = idc as desired. In the
latter case, there exists a detached root rootrt and a welcome message w0 that includes the same confTag as
c0 such that Wel[w0] = rootrt. First, by how S2-5 simulates the join query, we have Node[rootrt].orig = id′c,
where id′c is included in groupInfo of the welcome message w0. Next, due to the *attach function in the
ideal commit protocol, we have Node[c0].orig = Node[rootrt].orig = id′c. Finally, due to Hybrid 2-2 [Unique
confTag in Lcom and Lwel], we have id′c = idc. Therefore, if Node[c0] is set during a commit query, then we
have Node[c0].orig = idc as desired.

So far we established the first part of the statement: Node[c0].orig = idc. It remains to prove the second
part of the statement: Node[c0].mem = G.memberIDsvks(). Below, we prove this by contradiction. Assume
we have Ptr[id] = c0 and Node[c0] ̸= ⊥ for a non-root c0 but Node[c0].mem ̸= G.memberIDsvks(). Observe
that Ptr[id] is assigned to a new value only during a process or a join query; Ptr[id] remains the same during
a process or a commit query. Let us consider the latter case where Ptr[id] = c0 is assigned during join query,
that is, id is invoked by S2-5 on input (w0, ŵ). We show that this case boils down to checking the former
case. Since c0 is a non-detached root by the assumption in the statement and by how S2-5 simulates the join
query, Node[c0] ̸= ⊥ and c0 includes the same confTag as w0. Since Node[c0] is set only during a commit or
a process query, this implies that there is some party id′ that outputs (resp. inputs) c0 during a commit (resp.
process) query. In case id′ is invoked on a process query, then Ptr[id′] = c0 due to the ideal process function.
Then, due to Remark 4.4.11, if G.memberIDsvks() = G′.memberIDsvks(), where G and G′ are the protocol
states of id and id′, respectively. Specifically, it suffices to check that Node[c0].mem ̸= G′.memberIDsvks()
cannot happen during a process query. The case id′ is invoked on a commit query is handled in the same
way.

It remains to consider the former case where Ptr[id] = c0 is assigned during process query. Then,
taking the contrapositive of Proposition 4.4.13, since Node[c0].mem ̸= G.memberIDsvks(), we must have
Node[c′0].mem ̸= G′.memberIDsvks(). We can iteratively apply this argument till we reach a point that
Ptr[id] = rootrt for some rt ∈ { 0 } ∪N. This is because any party is initially assigned to either a root
or non-root via the join query (or to root0 by default if id = idcreator), and in case we arrive at a non-
root, then by the above argument, we can focus on the commit or process query that generated the
non-root and repeat the same argument till we reach a root. Finally, if G′′ is the protocol state of id when
Ptr[id] = rootrt, then we have Node[rootrt].mem ̸= G′′.memberIDsvks(). However, by Fact 1, we must have
Node[rootrt].mem = G′′.memberIDsvks(). Therefore, this is a contradiction. This establishes the second part
of the statement.

This completes the proof.

Finally, the following proposition is an analog of Proposition 4.4.12 regarding the consistency check of
existing proposal nodes. Specifically, the following establishes that if a party outputs or receives a commit
c0 that already exists in the history graph (i.e., Node[c0] ̸= ⊥), then it satisfies intuitive consistency checks.

142 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Proposition 4.4.15 (Consistency of existing commit node). Let party id satisfy Ptr[id] ̸= ⊥ and consider the
following two cases:

• id outputs (c0 ,⃗ c, w0, w⃗) on input (Commit, p⃗, svk) from S2-5; or

• id outputs (idc, upd∥rem∥add) on input (Process, c0, ĉ, p⃗) from S2-5.

Let G′ be either the protocol state included in G.pendCom[c0] of id after executing a commit protocol or the updated
protocol state of id after executing the process protocol Then, we have the following (after S2-5 receives an output from
id but before it provides input to FCGKA,2-5):

• if Node[c0] ̸= ⊥, then

– Node[c0].orig = id (resp. idc) if id executed a commit (resp. process) protocol;

– Node[c0].par = Ptr[id];

– Node[c0].prop = p⃗;

– Node[c0].mem = G′.memberIDsvks().

• if c0 is attached to a detached root rootrt (i.e., either Node[c0] = ⊥ and S2-5 outputs (ack := true, rt ̸=
⊥, c0 ,⃗ c, w0, w⃗) if id executed a commit protocol; or Node[c0] = ⊥ and S2-5 outputs (ack := true, rt ̸=
⊥,⊥,⊥) if id executed a process protocol), then

– Node[rootrt].orig = id (resp. idc) if id executed a commit (resp. process) protocol;

– Node[rootrt].par = ⊥;

– Node[rootrt].prop = ⊥;

– Node[rootrt].mem = G′.memberIDsvks().

Proof. We first prove the simpler second case where Node[c0] = ⊥ and c0 is assigned to a detached root.
Notice that Node[rootrt] is only created during a join query. Let w′0 be the associating welcome message that
is used to create Node[rootrt] and assume party id′ was invoked by this join query. Let Gid′ be the protocol
state after id′ processes the welcome message. Then, by Case (B) of Fact 1, we have Node[rootrt].orig = id′c
and Node[rootrt].mem = Gid′ .memberIDsvks(), where id′c is those included in w′0. By how S2-5 simulates the
commit and process queries, if id was invoked on a commit or a process query, then c0 includes the same
confTag as w′0. Then, due to the modification we made in Hybrid 2-2 [Unique confTag in Lcom and Lwel], we
have G′.confKey = Gid′ .confKey and G′.confTransHash = Gid′ .confTransHash. Then, by Fact 1 and due to the
modification we made in Hybrid 2-1 [No collision in RO], we also have G′.memberHash = Gid′ .memberHash
and id = id′c (resp. idc = id′c) if id is invoked on a commit (resp. process) query. Finally, by the definition
of *derive-member-hash (see Figure 4.23), we have G′.memberIDsvks() = Gid′ .memberIDsvks(). Since we
have Node[rootrt].par = Node[rootrt].prop = ⊥ by definition, this concludes the proof for the second case
where c0 is assigned to a detached root.

It remains to prove the first case where Node[c0] ̸= ⊥. There are four cases where Node[c0] can be
created when c0 is a non-root.

(1) Some party id′ output (c0 ,⃗ c′0, w′0, w⃗′0) on input (Commit, p⃗′, svk′) from S2-5 and there does not exist
any w0 such that Wel[w0] = rootrt′ for any rt′ ∈ N that includes the same confTag as c0 (before S2-5
provides input to FCGKA,2-5);

4.4. Proposed Protocol: Chained CmPKE 143

(2) Some party id′ output (c0 ,⃗ c′0, w′0, w⃗′0) on input (Commit, p⃗′, svk′) from S2-5 and there exists a w0 such
that Wel[w0] = rootrt′ for some rt′ ∈ N that includes the same confTag as c0 (before S2-5 provides
input to FCGKA,2-5);

(3) Some party id′ output (id′c, upd′∥rem′∥add′) on input (Process, c0, ĉ′, p⃗′) from S2-5 and there does not
exist any w0 such that Wel[w0] = rootrt′ for any rt′ ∈N that includes the same confTag as c0 (before
S2-5 provides input to FCGKA,2-5);

(4) Some party id′ output (id′c, upd′∥rem′∥add′) on input (Process, c0, ĉ′, p⃗′) from S2-5 and there exists a
w0 such that Wel[w0] = rootrt′ for some rt′ ∈ N that includes the same confTag as c0 (before S2-5
provides input to FCGKA,2-5).

Since the proof for the latter two cases are almost identical to the former two cases we only prove Cases (1)
and (2).

For both cases, let G′
id′

be the pending protocol state included in Gid′ .pendCom[c0] of the protocol state
Gid′ of id′ after executing the commit query. Then, by the correctness of the ideal commit protocol, we have
Node[c0].orig = id′, Node[c0].par = Ptr[id′], Node[c0].prop = p⃗′, and Node[c0].mem = Gid′ .memberIDsvks(),
where the last condition holds due to Proposition 4.4.13. Note that we have Node[c0].par and Node[c0].prop
in Case (2) due to the *consistent-com and *attach functions in the ideal commit protocol.

Now, since id′ and id output the same c0, and c0 includes id, we have id = id′. Hence, Node[c0].orig =
id. Moreover, by the modification in Hybrid 2-2 [Unique confTag in Lcom], we have (G′

id′
.confKey, G′

id′
.

confTransHash) = (G′.confKey, G′.confTransHash). Then, by Proposition 4.4.10, since both confKey are
the same we have Ptr[id] = Ptr[id′]. Hence, Node[c0].par = Ptr[id]. Also, due to the modification we
made in Hybrid 2-1 [No collision in RO] and by the definition of *derive-member-hash (see Figure 4.23),
we also have p⃗′ = p⃗ and G′.memberIDsvks() = G′

id′
.memberIDsvks(). Therefore, Node[c0].prop = p⃗ and

Node[c0].mem = Gid.memberIDsvks(). This completes the proof for Cases (1) and (2).
This concludes the proof.

Combining the propositions in Part 2, we obtain the following corollary.

Corollary 4.4.16 (Invariant cons-invariant). cons-invariant in Figure 4.14 always outputs true (condition
on S2-5 not aborting).

Proof. The first two conditions (a) and (b) hold due to Fact 1 and Propositions 4.4.12, 4.4.14 and 4.4.15.
Moreover, Condition (c) holds due to the modification we made in Hybrid 2-2 [Unique confTag in Lcom] and
the fact that attaching detached roots to an existing non-root can not cause a cycle in the history graph.

Part 3. Analysis of the simulation. We are finally ready to analyze that S2-5 provides the same view to Z as
in the previous Hybrid 2-4. Below, we only focus on the case S2-5 receives a non-⊥ from the simulated
parties. Otherwise, S2-5 can perfectly simulate the previous hybrid by simply setting ack = false.
(1) Analysis of Create. It is clear that FCGKA,2-5 outputs ⊥ to Z if and only if S2-4 returned ⊥ to Z (or to
FCGKA,2-5 to be more precise) in Hybrid 2-4. Therefore, the view of Z remains identical in both hybrids.
(2) Analysis of Proposal. If party id returns p to S2-5, we need to check that FCGKA,2-5 also returns p to Z as
in the previous hybrid. We only focus on act = ‘upd’-svk since the other cases are just a simplification
of this check. We first check that the *valid-svk check made by FCGKA,2-5 on line 4 of (Process, act) in
Figure 4.10 succeeds. For id to have output p, we need *fetch-ssk-if-nec(G, svk) = ssk ̸= ⊥ in the
real protocol (see Figure 4.22). Within *fetch-ssk-if-nec(G, svk), if G.member[G.id].svk ̸= svk, then we
must have SSK[id, svk] ̸= ⊥ due to the check made by FAS. This implies that FAS run within *valid-svk

144 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

in FCGKA,2-5 outputs true on input (has-ssk, id, svk), and hence, *valid-svk(id, svk) also outputs true.
On the other hand, since we have Node[c0].mem = G.memberIDsvks() due to Proposition 4.4.14, if G.
member[G.id].svk = svk, then we have Node[Ptr[id]].mem[id] = svk. Therefore, *valid-svk(id, svk) also
outputs true in this case as well. Therefore, *valid-svk(id, svk) outputs true if id did not return ⊥ in the
real protocol.

Finally, due to Proposition 4.4.12, the assert condition checked within *consistent-prop on line 9 of
(Propose, act) is not triggered when Prop[p] ̸= ⊥. Therefore, if party id returns p to S2-5, then FCGKA,2-5
also returns p to Z as specified.
(3) Analysis of Commit. Assume Ptr[id] = c′0 and let G ̸= ⊥ be the protocol state of the simulated party id
before it executes the commit. The check made by *valid-svk is the same check we covered in the analysis
of proposal (see above (2)). We therefore first check the assert condition on line 8 is never triggered. To do
so, we first establish that the set mem output by *next-members is identical to G′.memberIDs (but possibly
ordered differently), where G′ is the protocol state generated on line 3 in the real commit protocol. This
consists of three checks. First, by Proposition 4.4.14 we have Node[c′0].mem = G.memberIDsvks(). Therefore,
if commit succeeds in the real protocol, then we have (id, ∗) ∈ Node[c′0].mem. Next, due to how S2-5 answers
to *fill-prop and by Proposition 4.4.12, we have Prop[p] ̸= ⊥ and Prop[p].par = c′0 for all p ∈ p⃗ and the
contents of Prop[p] (i.e., Prop[p].orig and Prop[p].act) are consistent with p. Combining the three checks, we
are guaranteed that *next-members outputs mem is identical to those created in *apply-props in the real
protocol. Therefore, this establishes that the assert condition mem ̸= ⊥ and (id, svk) ∈ mem are satisfied.

To finish the remaining analysis, we consider three cases: Node[c0] = ⊥∧ rt = ⊥, Node[c0] = ⊥∧ rt ∈N,
and Node[c0] ̸= ⊥. Here, recall that the assert condition cons-invariant ∧ auth-invariant in line 28 of
commit is never triggered as they are always set to true. This follows from the fact that sig-inj-allowed
and mac-inj-allowed are always set to true in this hybrid and cons-invariant is always set to true due
to Corollary 4.4.16.
[Case 1: Node[c0] = ⊥ and rt = ⊥] It suffices to show that Wel[w0] = ⊥ when w0 ̸= ⊥ (see line 18 in ideal
commit protocol). Let us prove by contradiction and assume Wel[w0] ̸= ⊥. First, by how S2-5 simulates
the commit query (see (3) of Part 1), there does not exist w′0 such that Wel[w′0] = rootrt′ for some rt′ ∈ N

and w′0 includes the same confTag as w0. This means, Wel[w0] = c′′0 for some non-root c′′0 ̸= c0 such that
Node[c′′0] ̸= ⊥. Since Wel[w0] is assigned a non-root value only during a commit query, we must have that
some id′ (possibly id) was invoked by S2-5 and output c′′0 and w0. Due to correctness of the protocol, c′′0
and w0 must include the same confTag. Similarly, c0 and w0 must also include the same confTag. However,
due to the modification we made in Hybrid 2-2 [Unique confTag in Lcom], the simulator S2-5 aborts the
simulation as in the prior hybrid. Therefore, S2-5 provides the same view to Z as in the prior hybrid.
[Case 2: Node[c0] = ⊥ and rt ̸= ⊥] It suffices to verify that the checks run within *consistent-com are
satisfied and Wel[w0] ∈ {⊥, c0 } when w0 ̸= ⊥ (see line 18 in ideal commit protocol). Let us consider the
former check. Due to Proposition 4.4.15, the only check within *consistent-com that we need to verify is
whether we have Rand[id] = ‘bad’. Here, note that the condition Node[c0].mem = mem is satisfied since we
established mem = G′.memberIDsvks() above. Now, due to the modification we made in Hybrid 2-4 [Unique
c0 with good randomness] , unless S2-5 runs party id on the same randomness, we must have Node[c0] = ⊥
since every c0 output by the parties include a unique confTag. Hence, we must have Rand[id] = ‘bad’ as
desired and all the checks run within *consistent-com are satisfied. Finally, it is clear that *attach on
line 24 of the commit procedure assigns c0 to Wel[w0]. Therefore, the latter check on Wel[w0] = c0 is also
satisfied.
[Case 3: Node[c0] ̸= ⊥] It suffices to verify that the checks run within *consistent-com are satisfied
and Wel[w0] ∈ {⊥, c0 } when w0 ̸= ⊥ (see line 18 in ideal commit protocol). Since the check regarding

4.4. Proposed Protocol: Chained CmPKE 145

*consistent-com is identical to the above Case 2, we only consider the latter check. Assume for the sake of
contradiction that Wel[w0] = c′′0 ̸= c0 for c′′0 ̸= ⊥ and Node[c′′0] ̸= ⊥. Observe the only situation the value
of Wel[w0] is set is either during a commit query or a join query. We first consider the case Wel[w0] is set
during a commit query. If this case occurs, then this implies that some id′ output (c′′0 , w0) as otherwise the
assert condition regarding Wel[w0] in the commit procedure is triggered. Due to the correctness of the real
protocol, all c0, c′′0 , and w0 include the same confTag. However, due to the modification we made in Hybrid
2-2 [Unique confTag in Lcom], we must have c′′0 = c0 or otherwise the simulator S2-5 aborts the simulation as
in the previous hybrid. Hence, we have Wel[w0] = c0 as desired.

Let us consider the other case where Wel[w0] is set during a join query, which implies that some id′

output c′′0 . We have two cases to consider: c′′0 is a non-root or a detached root. If c′′0 is a non-root, then due
to how S2-5 simulates the join query (see (5) of Part 1), this implies that c′′0 includes the same confTag as the
one included in w0 and we have Node[c′′0] ̸= ⊥ when answering the join query. Recall that when c′′0 is a
non-root, Node[c′′0] is set only during a commit or process query. Then, due to the modification we made in
Hybrid 2-2 [Unique confTag in Lcom], since c′′0 and c0 include the same confTag, we must have c′′0 = c0 as
desired or otherwise the simulator S2-5 aborts the simulation as in the previous hybrid. On the other hand,
if c′′0 is a detached root, then *attach on line 24 of the commit procedure assigns c0 to Wel[w0].

Collecting all the checks, we have either Wel[w0] = ⊥ or Wel[w0] = c0 as desired. Therefore, S2-5
provides the same view to Z as in the prior hybrid.
(4) Analysis of Process. Let G ̸= ⊥ be the protocol state of the simulated party id after it executes the process
protocol. Moreover, assume id outputs (idc, upd∥rem∥add) on input (Process, c0, ĉ, p⃗). There are three cases
that can occur while S2-5 answers the process query (see (4) of Part 1): Case 1: Node[c0] = ⊥ and rt = ⊥;
Case 2: Node[c0] = ⊥ and rt ̸= ⊥; and Case 3: Node[c0] ̸= ⊥. We analyze each cases separately.
[Case 1: Node[c0] = ⊥ and rt = ⊥] Following the same argument we made for analyzing the commit query
(see (3) above), *next-members on line 13 of the ideal process protocol outputs (mem, propSem), where mem
is identical to those created in *apply-props in the real protocol and propSem is identical to upd∥rem∥add
output by id. This implies that the assert conditions on line 14 and line 27 of the ideal process protocol are
never triggered. Finally, in Case 1, S2-5 sets orig′ = idc, where idc is those output by id, so we conclude that
*output-proc(c0) outputs (idc, propSem) as in the previous hybrid.
[Case 2: Node[c0] = ⊥ and rt ̸= ⊥] Identically to Case 1, *next-members on line 13 of the ideal pro-
cess protocol outputs (mem, propSem), where mem is identical to those created in *apply-props in the
real protocol and propSem is identical to upd∥rem∥add output by id. Moreover, by Proposition 4.4.15,
we have Node[rootrt].orig = idc, Node[rootrt].par = ⊥, Node[rootrt].prop = ⊥, and Node[rootrt].mem =
G.memberIDsvks(). Therefore, the check within the *valid-successor and *attach functions on line 22
and line 23, respectively, all passes. Hence, *output-proc(c0) outputs (idc, propSem) as in the previous
hybrid.
[Case 3: Node[c0] ̸= ⊥] This is almost identical to Case 2. The only difference is that by Proposition 4.4.15, we
have Node[c0].orig = idc, Node[c0].par = Ptr[id], Node[c0].prop = p⃗, and Node[c0].mem = G.memberIDsvks().
Observe the check within the *valid-successor function on line 22 all passes. Hence, *output-proc(c0)
outputs (idc, propSem) as in the previous hybrid.
(5) Analysis of Join. Let G ̸= ⊥ be the protocol state of the simulated party id after it executes the join
protocol. Assume id outputs (idc, G.memberIDsvks()) on input (Join, w0, ŵ). There are four cases that can
occur while S2-5 answers the join query (see (5) of Part 1): Case 1: Wel[w0] ̸= ⊥; Case 2: Wel[w0] = ⊥ but
there exists a unique c0 including the same confTag as w0 satisfying Node[c0] ̸= ⊥; Case 3: Wel[w0] = ⊥ and
no such c0 exists but there exists a (possibly non-unique) w′0 including the same confTag as w0 satisfying
Wel[w0] ̸= ⊥; and Case 4: Wel[w0] = ⊥ and no such c0 or w′0 exist. We analyze each cases separately.

146 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

[Case 1:] In case Wel[w0] = c0 already exists, it suffices to consider the case it was initially set. Namely, it
suffices to check that S2-5 simulates the previous hybrid in the below Cases 2, 3, and 4.
[Case 2:] Node[c0] can be set only during a commit or process query. Due to Propositions 4.4.14 and 4.4.15
and correctness of the real protocol, we have (id, ∗) ∈ Node[c0].mem. Therefore, the assert condition on
line 13 if the ideal join protocol is never triggered. Moreover, due to the same reason, the output of the
ideal join protocol (Node[c0].orig,Node[c0].mem) is identical to those from the previous hybrid (i.e., those
output by id).
[Case 3:] Since w′0 includes the same confTag as w0, we have Wel[w0] is assigned to Wel[w′0] due to Proposi-
tion 4.4.7. Note that there may exist many w′0 but all Wel[w′0] are identical, so this is well-defined. Moreover,
since there is no c0 that includes the same confTag as w0 and w′0, we must have Wel[w′0] = rootrt for some
rt ∈N. Hence, it suffices to check that S2-5 simulates the previous hybrid in case Wel[w′0] was initially set
to rootrt, which we provide in the final Cases 4.
[Case 4:] Since S2-5 sets orig′ := idc and mem′ := G.memberIDsvks(), it is clear that the assert condition
on line 13 of the ideal join protocol is not triggered. Moreover, since the ideal join protocol outputs
(Node[c0].orig = orig′,Node[c0].mem = mem′), S2-5 simulates the previous hybrid perfectly.
(6) Analysis of Key Query. Due to Proposition 4.4.10, every id and id′ such that Ptr[id] = Ptr[id] contain the
same appSecret. Therefore, S2-5 provides an identical view to Z of the previous hybrid.

From Hybrid 2-5 to 2-6: Lemma 4.4.17.

Lemma 4.4.17. Hybrid 2-5 and Hybrid 2-6 are indistinguishable assuming CmPKE and SIG are correct with
overwhelming probability.

Proof. The only difference between the previous hybrid occurs when id outputs ⊥ when invoked on a
commit, process, or join query by S2-5 but *succeed-com, *succeed-proc, or *succeed-wel output true,
respectively. Notice the ideal succeed-∗ functionalities only care for commit and proposal messages that
are not adversarially generated (i.e., Node[c0].stat ̸= ‘adv’ and Prop[p].stat ̸= ‘adv’). Therefore, as long as
CmPKE and SIG are do not produce ciphertexts or signatures that do not correctly decrypt or verify, then
the statement holds. Here, note that this must hold even the ciphertexts and signatures are created with
maliciously generated randomness since the ideal functionality allows for Rand[id] = ‘bad’. However, since
we use the global random oracle to expand the randomness, no adversary can find an input that maps
to a bad randomness assuming CmPKE and SIG are correct with overwhelming probability (on honestly
generated randomness). This completes the proof.

From Hybrid 2-6 to 2-7: Lemma 4.4.18.

Lemma 4.4.18. Hybrid 2-6 and Hybrid 2-7 are indistinguishable assuming CmPKE has commitment-binding
property.

Proof. The only difference from the previous hybrid occurs when id outputs non-⊥ when invoked on
a process query with (c0, ĉ′, p⃗) such that Node[c0].stat = ‘good’ and ĉ′ ̸= Node[c0].vcom[indexid], where
indexid ← Node[c0].indexOf(id). This implies there exist two CmPKE ciphertexts (T, ĉt) and (T, ĉt′) that
satisfy

ĉt ̸= ĉt
′ ∧ CmDec(dkid,T, ĉt) ̸= ⊥∧ CmDec(dkid,T, ĉt′) ̸= ⊥,

where dkid is id’s current CmPKE decryption key. It is clear that this contradicts the commitment-binding
property of CmPKE. Thus, Hybrid 2-6 and Hybrid 2-7 are indistinguishable assuming CmPKE has
commitment-binding property.

4.4. Proposed Protocol: Chained CmPKE 147

From Hybrid 3 to 4: Lemma 4.4.19. Hybrid 4 concerns the authenticity of the signature scheme. The
functionalityFCGKA,4 halts if the sig-inj-allowed predicate returns false, i.e.,Z succeeds to forge a signature
without knowing signing keys. To prove Lemma 4.4.19 (i.e., the probability FCGKA,4 halts is negligible), we
show that, if Z can inject a message for which sig-inj-allowed predicate returns false, it can be used to
break the sEUF-CMA security of SIG. In other words, if SIG is sEUF-CMA secure, the simulator receives only
messages which the sig-inj-allowed predicate returns true. Thus, FCGKA,4 never halts, and we conclude
that Hybrid 3 and Hybrid 4 are indistinguishable. We below provide formal proof of the above overview.

Lemma 4.4.19. Hybrid 3 and Hybrid 4 are indistinguishable assuming SIG is sEUF-CMA secure.

Proof. To show Lemma 4.4.19, we consider the following sub-hybrids between Hybrid 3 and Hybrid 4.

Hybrid 3-0 := Hybrid 3. This is identical to Hybrid 3. We use the functionality FCGKA,3 and the simulator
S3-0 := S3. In this hybrid, the sig-inj-allowed predicate always returns true.

Hybrid 3-1. This concerns injections of commit messages. The simulator S3-1 is defined exactly as S3-0
except that it aborts if the following condition holds (the simulator checks the condition whenever it
updates the history graph).

Condition (A): There exists a non-root node c0 such that Node[c0].stat = ‘adv’ and Node[cp].mem[idc] /∈
ExposedSvk, where cp := Node[c0].par is the parent of c0 and idc := Node[c0].orig is the committer
of c0.

Condition (A) relates to Condition (a) of auth-invariant: If a non-root node c0 satisfying Condition
(A) exists, Condition (a) of auth-invariant returns false. We show in Lemma 4.4.20 that Hybrid 3-0
and Hybrid 3-1 are indistinguishable.

Hybrid 3-2. This concerns injections of proposal messages. The simulator S3-2 is defined exactly as S3-1
except that it aborts if the following condition holds (the simulator checks the condition whenever it
updates the history graph).

Condition (B): There exists a proposal node p such that Prop[p].stat = ‘adv’ and Node[cp].mem[ids] /∈
ExposedSvk, where cp := Prop[p].par is the parent commit node of p and ids := Prop[p].orig is the
sender of p.

Condition (B) relates to Condition (b) of auth-invariant: If a node p satisfying Condition (B) exists,
Condition (b) of auth-invariant returns false. We show in Lemma 4.4.21 that Hybrid 3-1 and Hybrid
3-2 are indistinguishable.

Hybrid 3-3. This concerns injections of welcome messages. The simulator S3-3 is defined exactly as S3-2
except that it aborts if the following condition holds (the simulator checks the condition whenever it
updates the history graph).

Condition (C): There exists a detached root rootrt such that Node[rootrt].mem[idc] /∈ ExposedSvk,
where idc := Node[rootrt].orig is the committer of the corresponding welcome message.

Condition (C) relates to Condition (c) of auth-invariant: If a root node rootrt satisfying Condition
(C) exists, Condition (c) of auth-invariant returns false. We show in Lemma 4.4.22 that Hybrid 3-2
and Hybrid 3-3 are indistinguishable.

148 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Hybrid 3-4 := Hybrid 4. This is identical to Hybrid 4. We replace the functionality FCGKA,3 with FCGKA,4,
that is, we use the original sig-inj-allowed predicate. The simulator S3-4 is defined exactly as S3-3
except that it no longer abort. Since S3-3 aborts if and only if FCGKA,4 halts, Hybrid 3-3 and Hybrid
3-4 are identical.

From Lemmata 4.4.20 to 4.4.22 provided below, Hybrid 3-0 and Hybrid 3-3 are indistinguishable.
Moreover, Hybrid 3-3 and Hybrid 3-4 are identical. Therefore, we conclude that Hybrid 3 and Hybrid 4 are
indistinguishable.

From Hybrid 3-0 to 3-1: Lemma 4.4.20.

Lemma 4.4.20. Hybrid 3-0 and Hybrid 3-1 are indistinguishable assuming SIG is sEUF-CMA secure.

Proof. The only difference between S3-0 and S3-1 is that S3-1 aborts if Condition (A) holds. We show that, if
Z can distinguish the two hybrids, then there exists an adversary B that breaks the sEUF-CMA security of
SIG. We first explain the description of B and how B extracts a valid signature forgery using Z ; we then
show the validity of the forged signature, and finally evaluate B’s advantage.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution of each party as in S3-1

except for signature generation. Observer that honest signing keys are generated through register-svk
queries to F IW

AS . Let svk∗ be the challenge signing key received from the sEUF-CMA game. At the beginning
of the game, B chooses an index i ∈ [Q] at random, where Q is the largest total number of register-svk
queries from Z . B embeds the challenge key svk∗ in the i-th register-svk query (if the i-th signature key
is generated with bad randomness, B aborts). For the other register-svk queries, B generates signature
keys as in the previous hybrid. We assume svk∗ is embedded in id∗’s signature key. Whenever id∗ creates
key packages, proposals, or commit/welcome messages using svk∗, B uses the signing oracle to generate
signatures. If id∗ is corrupted or it generates a signature using bad randomness while it holds svk∗, B
aborts.
B extracts a forgery as follows: Whenever B creates a node c0, B checks whether c0 satisfies Condition

(A). If a node c0 satisfies the condition, B retrieves the signature sig and the signed message m := comCont
from c0. If the sender of c0 is id∗, and the corresponding signature key is svk∗, B submits (m, sig) to the
challenger. Note that (m, sig) is a valid message-signature pair because the node is created only if (m, sig)
is valid.

We argue (m, sig) is a valid forgery. Since c0 satisfies Condition (A) and c0 is sent from id∗ using svk∗,
the following holds:

Fact (1): Node[c0].stat = ‘adv’;

Fact (2): Node[c0].orig = idc = id∗;

Fact (3): Node[cp].mem[idc] = svk∗, where cp := Node[c0].par; and

Fact (4): Node[cp].mem[idc] /∈ ExposedSvk.

Fact (1) implies (m, sig) has not been generated by B. Therefore, the signing oracle has not output (m, sig).
Facts (2)-(4) imply svk∗ has not been exposed. Therefore, (m, sig) is a valid forgery on svk∗, and B wins the
sEUF-CMA game.

We finally evaluate the success probability of B. The probability that B correctly guesses the signature
key used to forge is 1/Q. Therefore, if Z distinguishes the two hybrids with non-negligible probability ϵ, B

4.4. Proposed Protocol: Chained CmPKE 149

wins the game with probability at least ϵ/Q, which is also non-negligible. This contradicts the assumption
that SIG is sEUF-CMA secure. Therefore, ϵ must be negligible, and we conclude that Hybrid 3-0 and
Hybrid 3-1 are indistinguishable for Z .

From Hybrid 3-1 to 3-2: Lemma 4.4.21.

Lemma 4.4.21. Hybrid 3-1 and Hybrid 3-2 are indistinguishable assuming SIG is sEUF-CMA secure.

Proof. The only difference between S3-1 and S3-2 is S3-2 aborts if Condition (B) holds. We show that, if Z
can distinguish the two hybrids, then there exists an adversary B that breaks the sEUF-CMA security of SIG.
We first explain the description of B and how B extracts a valid signature forgery using Z ; we then show
the validity of the forged signature, and finally evaluate B’s advantage.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution of each party as shown

in Lemma 4.4.20, and extracts the forgery as follows: Whenever B creates a node p, B checks whether p
satisfies Condition (B). If some node p satisfies the condition, B retrieves the signature sig and the signed
message m := propCont from p. If the sender of p is id∗ and the corresponding signature key is svk∗, B
submits (m, sig) as the forgery.

We argue (m, sig) is a valid forgery. Since p satisfies Condition (B) and p is sent from id∗ with svk∗, the
following holds:

Fact (1): Prop[p].stat = ‘adv’;

Fact (2): Prop[p].orig = idc = id∗;

Fact (3): Node[cp].mem[idc] = svk∗, where cp := Node[c0].par; and

Fact (4): Node[cp].mem[idc] /∈ ExposedSvk.

Note that cp := Prop[p].par is the parent of p. Fact (1) implies (m, sig) has not been generated by B. Therefore,
the signing oracle has not output (m, sig). Facts (2)-(4) imply svk∗ has not been exposed. Therefore, (m, sig)
is a valid forgery on svk∗, and B wins the sEUF-CMA game.

We evaluate the success probability of B. The probability that B correctly guesses the signature key used
to forge is 1/Q. Therefore, if Z distinguishes the two hybrids with non-negligible probability ϵ, B wins the
game with probability at least ϵ/Q, which is also non-negligible. This contradicts the assumption that SIG
is sEUF-CMA secure. Therefore, ϵ must be negligible, and we conclude that Hybrid 3-1 and Hybrid 3-2 are
indistinguishable for Z .

From Hybrid 3-2 to 3-3: Lemma 4.4.22.

Lemma 4.4.22. Hybrid 3-2 and Hybrid 3-3 are indistinguishable assuming SIG is sEUF-CMA secure.

Proof. The only difference between S3-2 and S3-3 is S3-3 aborts if Condition (C) holds. We show that, if Z
can distinguish the two hybrids, then there exists an adversary B that breaks the sEUF-CMA security of SIG.
We first explain the description of B and how B extracts a valid signature forgery using Z ; we then show
the validity of the forged signature, and finally evaluate B’s advantage.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution of each party as shown

in Lemma 4.4.20, and extracts the forgery as follows: Whenever B creates a node rootrt, B checks whether
rootrt satisfies Condition (C). If some node rootrt satisfies the condition, B retrieves the signature sig and

150 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

the signed message m := (groupInfo,T) from w0. If the sender of w0 is id∗ and the corresponding signature
key is svk∗, B submits (m, sig) as the forgery.

We argue (m, sig) is a valid forgery. Since rootrt satisfies Condition (C) and w0 is valid on (id∗, svk∗), the
following facts hold:

Fact (1): Node[rootrt].stat = ‘adv’;

Fact (2): Node[rootrt].orig = idc = id∗;

Fact (3): Node[rootrt].mem[idc] = svk∗; and

Fact (4): Node[rootrt].mem[idc] /∈ ExposedSvk.

Fact (1) implies (m, sig) has not been generated by B. Therefore, the signing oracle has not output (m, sig).
Facts (2)-(4) imply svk∗ has not been exposed. Therefore, (m, sig) is a valid forgery on svk∗, and B wins the
sEUF-CMA game.

We evaluate the success probability of B. The probability that B correctly guesses the signature key used
to forge is 1/Q. Therefore, if Z distinguishes the two hybrids with non-negligible probability ϵ, B wins the
game with probability at least ϵ/Q, which is also non-negligible. This contradicts the assumption that SIG
is sEUF-CMA secure. Therefore, ϵ must be negligible, and we conclude that Hybrid 3-2 and Hybrid 3-3 are
indistinguishable for Z .

From Hybrid 4 to 5: Lemma 4.4.23. Hybrid 5 concerns the authenticity of MAC. The functionality FCGKA,5
halts if the mac-inj-allowed predicate returns false, i.e., Z succeeds to forge a MAC tag without knowing
the MAC key. To show Lemma 4.4.23 (i.e., the probability FCGKA,5 halts is negligible), we show that, if Z
can distinguish the two hybrids, we can break the Chained CmPKE conforming GSD security of CmPKE.
To this end, we consider that the simulator creates the GSD graph based on epoch secrets and MAC tags.
The GSD graph represents the relationship of epoch secrets and MAC tags and indicates which MAC
key is exposed (Note that to discuss which MAC key is exposed, we will use the sEUF-CMA security of
SIG.). We show that, if Z injects a message for which the mac-inj-allowed predicate returns false, it can be
used to break the Chained CmPKE conforming GSD security. In other words, if CmPKE is Chained CmPKE
conforming GSD secure, the simulator receives only messages for which the mac-inj-allowed predicate
returns true. Thus, FCGKA,5 never halts, and we conclude that Hybrid 4 and Hybrid 5 are indistinguishable.
We below provide formal proof of the above overview.

Lemma 4.4.23. Hybrid 4 and Hybrid 5 are indistinguishable assuming SIG is sEUF-CMA secure and CmPKE is
Chained CmPKE conforming GSD secure.

Proof. To prove the lemma, we consider the following sub-hybrids between Hybrids 4 and 5:

Hybrid 4-0 := Hybrid 4. This is identical to Hybrid 4. We use the functionality FCGKA,4 and the simulator
S4-0 := S4. In this hybrid, the mac-inj-allowed predicate always returns true.16

Hybrid 4-1. This concerns injections of key packages. The simulator S4-1 is defined exactly as S4-0 except
that it aborts if the following condition holds.

16Since the sig-inj-allowed predicate always returns true (cf. Lemma 4.4.19), the truth value of auth-invariant and the truth
value of mac-inj-allowed are the same.

4.4. Proposed Protocol: Chained CmPKE 151

Condition (KP): There exists a proposal node p such that Prop[p].act = ‘add’-idt-svkt, svkt /∈ ExposedSvk
and DK[idt, kpt] = ⊥, where kpt is the key package in p.

We show in Lemma 4.4.24 that Hybrid 4-0 and Hybrid 4-1 are indistinguishable assuming SIG is
sEUF-CMA secure. In the following hybrids, if a valid key package is injected, the corresponding
signing key is always exposed. We will use this fact to discuss which secret is exposed in the GSD
graph.

Hybrid 4-2. We modify the simulator S4-1 so that it creates the GSD graph based on CmPKE keys, epoch
secrets, and MAC tags. Roughly speaking, the GSD graph represents the relationship of CmPKE
keys, epoch secrets, and MAC tags, and it indicates which secret is exposed. The simulator S4-2
internally runs two simulators SGSD and S ′4-2: SGSD simulates the GSD oracles and creates the GSD
graph as shown in Figure 4.30; S ′4-2 simulates the interaction for the environment Z , the functionality,
and the adversary A by using the GSD oracles provided by SGSD. In addition, S ′4-2 always rejects
injected commit/proposal messages if the corresponding MAC key is not exposed, and aborts if a
commit node is attached to a detached root although the corresponding initial secret is not exposed.17

So as not to interrupt the proof, we formally explain how SGSD and S ′4-2 are defined. We show in
Lemma 4.4.25 that Hybrid 4-1 and Hybrid 4-2 are indistinguishable assuming CmPKE is Chained
CmPKE conforming GSD secure.

Hybrid 4-3. We undo the changes made between Hybrid 4-0 and Hybrid 4-2. That is, the simulator S4-3
no longer aborts the simulation. Using the same arguments to move through Hybrid 4-0 to Hybrid
4-2, Hybrid 4-2 and Hybrid 4-3 remain indistinguishable.

Hybrid 4-4 := Hybrid 5. This is identical to Hybrid 5. We replace the functionality FCGKA,4 with FCGKA,5,
that is, we use the original mac-inj-allowed predicate. The simulator S4-4 is defined exactly as S4-3.
We show in Lemma 4.4.32 that Hybrid 4-3 and Hybrid 4-4 are identical.

From Lemmata 4.4.24, 4.4.25 and 4.4.32 provided below, Hybrid 4-0 and Hybrid 4-4 are indistinguish-
able. Therefore, we conclude that Hybrid 4 and Hybrid 5 are indistinguishable.

From Hybrid 4-0 to 4-1: Lemma 4.4.24.

Lemma 4.4.24. Hybrid 4-0 and Hybrid 4-1 are indistinguishable assuming SIG is sEUF-CMA secure.

Proof. The only difference between S4-0 and S4-1 is S4-1 aborts Condition (KP) holds. We show that, if Z
can distinguish the two hybrids, then there exists an adversary B that breaks the sEUF-CMA security of SIG.
We first explain the description of B and how B extracts a valid signature forgery using Z ; we then show
the validity of the forged signature and finally evaluate B’s advantage.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution of each party as in S4-1

except for the signature generation. Let svk∗ be the challenge signature key provided by the sEUF-CMA
game. Observer that honest signing keys are generated on register-svk queries to F IW

AS . We assume
Z issues at most Q register-svk queries. At the beginning of the game, B chooses an index i ∈ [Q] at
random, and embeds the challenge key svk∗ in the i-th register-svk query (if the i-th signature key is
generated with bad randomness, B aborts). For other register-svk queries, B generates signature keys

17We define S ′4-2 so that it never creates history graph nodes for which mac-inj-allowed returns false.

152 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

following the description of F IW
AS . Assume svk∗ is embedded in id∗’s signing key. Whenever id∗ creates

key packages, proposals, or commit/welcome messages using svk∗, B uses the signing oracle to generate
signatures. If id∗ is corrupted or it generates a signature using bad randomness while it holds svk∗, B
aborts.
B extracts the forgery as follows: Whenever B creates a node p, B checks whether p satisfies Condition

(KP). If a node p satisfies the condition, B retrieves the signature sig and the signed message m := (id, ek, svk)
from p. If (id, svk) = (id∗, svk∗), B submits (m, sig) as the forgery. (Note that the proposal node is created
only if (m, sig) is valid.)

We argue (m, sig) is a valid forgery. Since p satisfies Condition (KP) and p contains the key package on
(id∗, svk∗), the following facts hold:

Fact (1): Prop[p].act = ‘add’-id∗-svk∗;

Fact (2): DK[id∗, kp∗] = ⊥, where kp∗ is the key package in p; and

Fact (3): svk∗ /∈ ExposedSvk.

Fact (1) implies the adversary outputs the valid signature on svk∗ because history graph nodes are created
when messages are valid. Fact (2) implies (m, sig) has not been generated by Key Service via register-kp
query; Specifically, the signing oracle has not output (m, sig). Fact (3) implies svk∗ has not been exposed
when B obtains (m, sig). Therefore, (m, sig) is a valid forgery on svk∗, and B wins the game.

We evaluate the success probability of B. The probability that B correctly guesses the signature key used
to forge is 1/Q. If Z can distinguish the hybrids with probability ϵ, B wins the game within probability
ϵ/Q. If ϵ is non-negligible, B wins sEUF-CMA game with non-negligible probability. This contradicts the
assumption that SIG is sEUF-CMA secure. Therefore, ϵ must be negligible, and Hybrid 4-0 and Hybrid 4-1
are indistinguishable for Z .

From Hybrid 4-1 to 4-2: Lemma 4.4.25. The proof consists of two parts: We first explain how simulator
S4-2 simulates Hybrid 4-2 while creating the GSD graph based on secrets and MAC tags. (see Part 1); we
then show S4-2 provides an indistinguishable view to Z (see Part 2).
Part 1: Description of the Simulator S4-2. We consider that S4-2 internally runs two simulators SGSD and S ′4-2:
SGSD simulates the GSD oracles and creates the GSD graph following the procedures shown in Figure 4.30,
and S ′4-2 simulates the interaction for the environment Z , the functionality, and the adversary A by using
the GSD oracles provided by SGSD. Looking ahead, we use the GSD game to show several hybrids remain
indistinguishable. We allow the reduction to simulate S4-2 by running S ′4-2 on its own while using the
challenger provided by the GSD game as a replacement of SGSD.
S ′4-2 creates the GSD graph based on secrets (CmPKE decryption keys and epoch secrets) and MAC tags

created by simulated parties. S ′4-2 keeps a counter ctr (it is initialized with 1), denoting the smallest unused
GSD node. Whenever deriving a new encryption key, epoch secret, or MAC tag, S ′4-2 assigns a GSD node to
the secret/tag. For example, when S ′4-2 generates a random secret, it sends an unused GSD node to the GSD
oracle and the oracle chooses the value. When S ′4-2 uses a specific value as the secret, it assigns the value to
an unused GSD node by using Set-Secret oracle. When S ′4-2 computes an epoch secret or MAC tag using
the random oracle, it calls Join-Hash/Hash oracle to assign the derived secret/tag to an unused GSD node.
Throughout the proof, we denote the secret (decryption keys and epoch secrets) by (s, u), the pair of the
secret s and the assigned GSD node u. When the node is assigned to the secret, if S ′4-2 knows the secret
s ̸= ⊥, the secret is set to (s, u), otherwise set to (⊥, u). The value of each secret will be updated adaptively
during the simulation: As soon as S ′4-2 corrupts some GSD node v (i.e., query Corr(u)), for each node u

4.4. Proposed Protocol: Chained CmPKE 153

such that gsd-exp(u) becomes true, S ′4-2 computes the secret su from previously obtained ciphertexts and
corrupted secrets, and replaces all occurrence of (⊥, u) with (su, u). Hence, if gsd-exp(u) = true, then S ′4-2
knows the secret s assigned to the node u. The special case is that the encryption key is generated by A
(this case occurs when an injected add/update proposal or commit message is received). In this case, since
S ′4-2 does not know the corresponding decryption key, it sets the decryption key to (⊥,⊥).
S ′4-2 maintains the following lists for the simulation:

• L‘memb’: It contains tuple (u‘memb’, m,membTag) where u‘memb’ is a GSD node assigned to the mem-
bership key, m is a MACed message under the key u‘memb’ and membTag is a corresponding a
membership tag generated by SGSD.

• L‘epoch’: It contains tuple (upar-init, comSecret, joinerSecret, confTransHash, confTag) where upar-init is a
GSD node assigned to the parent initial secret, comSecret is a commit secret, joinerSecret is a joiner
secret, confTransHash is a confirmation hash and confTag is a confirmation tag (i.e., epoch secrets and
MAC tag of each epoch).

• L‘enc’: It contains tuple ((s, u), uid, (T, ctuid
)) where (s, u) is a encrypted secret (comSecret or joinerSecret),

uid is a GSD node assigned to the encryption key of party id and (T, ctuid
) is a corresponding CmPKE

ciphertext.

The first two lists are used when S ′4-2 needs to recompute the same epoch secrets or MAC tags. In particular,
due to the modification we made in Hybrid 2-2, confTag is unique for each joinerSecret and confTransHash
(and joinerSecret is unique for each initSecret and comSecret (cf. Hybrid 2-1)). The third L‘enc’ is used to
check whether the received ciphertext can be sent to CmDec oracle.

Now we explain how S ′4-2 simulates the protocol using the GSD oracles. Other procedures not described
are identical to the previous hybrid. Note that to make the proof of Proposition 4.4.31 easier to read, oracle
calls corresponding to the corruption of a GSD node are highlighted with underlines.
Key package creation for id. When S ′4-2 creates a key package, it generates a CmPKE’s encryption key for
the key package with the help of the GSD oracle.

• If Rand[id] = ‘good’, S ′4-2 generates a CmPKE key pair as (ek, dk) := (*get-ek(uctr), (⊥, uctr)) (and ctr
is incremented as ctr← ctr+ 1). Here, ek← *get-ek(u) denotes that S ′4-2 obtains the encryption key
ek on a node u by calling the oracle CmEnc({ u } , 0) (the special node 0 is only used here). S ′4-2 creates
a key package based on the encryption key.

• Else, key packages are generated as in the previous hybrid. After generating the key package, S ′4-2
assigns the seed s of the CmPKE key to an unused GSD node uid := uctr (ctr is incremented) by
querying Set-Full-Secret(s, uid). It sets dk := (dkid, uid).

Simulation of idcreator on input (Create, svk). S ′4-2 creates a new group following the protocol, except for
the initialization of epoch secrets and the confirmation tag. (The initial key package is created following
the procedure in Key package creation for id above.)
S ′4-2 generates the initial epoch secrets as follows: S ′4-2 first prepares new GSD nodes u‘joi’, u‘conf’, u‘app’,

u‘memb’, and u‘init’ (their values are set to uctr, uctr+1, . . . , uctr+4 and ctr is incremented as ctr← ctr+ 5).

• If Rand[idcreator] = ‘good’, S ′4-2 queries Hash(u‘joi’, ulbl, (G.groupCont(), lbl)) for each lbl ∈ {‘conf’,
‘app’, ‘memb’, ‘init’}.18 It sets G.joinerSecret := (⊥, u‘joi’), G.confKey := (⊥, u‘conf’), G.appSecret :=

18G.groupCont() returns the group information defined in Table 4.3. It is determined before the party computes the epoch secret.

154 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

(⊥, u‘app’), G.membKey := (⊥, u‘memb’), G.initSecret := (⊥, u‘init’). Note that the value assigned to u‘joi’
is set to random during the first call of Hash.

• Else, S ′4-2 generates the joiner secret s‘joi’ using the randomness provided from A, and computes
slbl := RO(s‘joi’, (G.groupCont(), lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’}. Then, S ′4-2 assigns the
epoch secrets to GSD oracles: It queries Set-Secret(u‘joi’, s‘joi’) and Hash(u‘joi’, ulbl, (G.groupCont(),
lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’}. S ′4-2 sets G.joinerSecret := (s‘joi’, u‘joi’), G.confKey :=
(s‘conf’, u‘conf’), G.appSecret := (s‘app’, u‘app’), G.membKey := (s‘memb’, u‘memb’), G.initSecret := (s‘init’, u‘init’).

S ′4-2 generates the confirmation tag as follows:

• If Rand[idcreator] = ‘good’, S ′4-2 prepares a new GSD node uctag := uctr (and sets ctr← ctr+ 1). Then,
it queries Hash(u‘conf’, uctag, G.confTransHash) and G.confTag := Corr(uctag). (See Remark 4.4.2.)

• Else, S ′4-2 computes G.confTag := RO(s‘conf’, G.confTransHash) as in the previous hybrid.

Finally, S ′4-2 stores L‘epoch’ +← (⊥, (⊥,⊥), G.joinerSecret, G.confTransHash, G.confTag).
Simulation of id on input (Propose, act). S ′4-2 generates a proposal message p as in the previous hybrid,
except for the generation of key packages and membership tags.

When S ′4-2 generates an update proposal, it creates a key package following the procedure in Key package
creation for id above. Then, S ′4-2 keeps the generated decryption key dk for p (dk will be used when S ′4-2
receives p in the commit or process protocol).
S ′4-2 generates the membership tag as follows, by using the membership key G.membKey = (s‘memb’, u‘memb’)

at epoch Ptr[id].

• If gsd-exp(u‘memb’) = true (i.e., s‘memb’ ̸= ⊥)19, S ′4-2 computes membTag := RO(s‘memb’, (propCont,
sig)) as in the previous hybrid.

• Else if (u‘memb’, (propCont, sig),membTag) ∈ L‘memb’ exists for some membTag, it is used as the mem-
bership tag. Note that this case occurs when the same p is generated multiple times.

• Else, S ′4-2 prepares a new GSD node umtag := uctr (and sets ctr ← ctr+ 1) and queries Hash(u‘memb’,
umtag, (propCont, sig)) and membTag := Corr(umtag). S ′4-2 stores L‘memb’ +← (u‘memb’, (propCont, sig),
membTag).

Simulation of id on input (Commit, p⃗, svk). S ′4-2 generates a commit message as in the previous hybrid,
except for the differences shown below:

In *unframe-prop, S ′4-2 verifies the membership tag membTag in p as follows, by using the membership
key G.membKey = (s‘memb’, u‘memb’) at epoch Ptr[id]:

• If gsd-exp(u‘memb’) = true (i.e., s‘memb’ ̸= ⊥), S ′4-2 computes membTag′ = RO(s‘memb’, (propCont, sig))
and checks whether membTag = membTag′ holds.

• Else if (u‘memb’, (propCont, sig),membTag′) ∈ L‘memb’ exists for some membTag′, S ′4-2 checks whether
membTag = membTag′ holds.

• Else, S ′4-2 outputs⊥. We call this event Einj-p and in Proposition 4.4.26 we will prove that the simulator
in the previous hybrid also outputs ⊥ when Einj-p occurs. Thus, it does not alter the view of Z

19Recall that if gsd-exp(u) = true for the node u, then S ′4-2 knows the secret s ̸= ⊥ assigned to u. This is because if
gsd-exp(u) = true , S ′4-2 can compute the secret s from the known information (e.g., previously generated ciphertexts).

4.4. Proposed Protocol: Chained CmPKE 155

In *apply-props, S ′4-2 updates the membership list as follows:

• If p is an update proposal sent from ids ̸= id, S ′4-2 stores the decryption key corresponding to p to
G′.member[ids].dk. Namely, if p has been generated by S ′4-2, it knows the decryption key. Otherwise
(i.e., S ′4-2 does not know the decryption key), S ′4-2 sets G′.member[ids].dk := (⊥,⊥).

• If p is an add proposal that contains idt and kpt, S ′4-2 copies the decryption key stored in DK[idt, kpt]
to G′.member[idt].dk. If kpt is not registered to Key Service F IW

KS (i.e.,DK[idt, kpt] = ⊥), S ′4-2 sets G′.
member[idt].dk := (⊥,⊥).

After the execution of *apply-props, S ′4-2 obtains the new membership list and the decryption key of each
member. In other words, for all members id, G.member[id].dk is of the form (∗, uid) or (⊥,⊥), where ∗ is
either ⊥ or sid ̸= ⊥.

S ′4-2 runs *rekey as follows: It first creates a key package following the procedure in Key package creation
for id above. Then S ′4-2 generates a new commit secret:

• If Rand[id] = ‘good’, S ′4-2 first prepares a GSD node ucom := uctr (and sets ctr← ctr+ 1) and generates
a random commit secret as follows. Let G′.member be the new membership list and receivers be the
set of the identity of the existing parties.

– If G′.member[id].dk ̸= (⊥,⊥) for all id ∈ receivers, each G′.member[id].dk is of the form (∗, uid).
S ′4-2 composes the set Sreceivers := { uid }id∈receivers and queries CmEnc(Sreceivers, ucom) to compute
the ciphertext (T, c⃗t = (ctu)u∈Sreceivers

). Note that the commit secret is chosen at random by the
CmEnc oracle.

* If gsd-exp(uid) = true for some uid ∈ Sreceivers, S ′4-2 decrypts (T, ctuid
) using the secret sid

of uid, and obtains scom. Then, S ′4-2 sets G′.comSecret := (scom, ucom) and stores L‘enc’ +←
((scom, ucom), uid, (T, ctuid

)) for each uid ∈ Sreceivers.

* Else, S ′4-2 sets G′.comSecret := (⊥, ucom) and stores L‘enc’ +← ((⊥, ucom), uid, (T, ctuid
)) for

each uid ∈ Sreceivers.

– Else (i.e., G′.member[id].dk = (⊥,⊥) for some id ∈ receivers), S ′4-2 generates and encrypts the
commit secret scom as in the previous hybrid. Then, S ′4-2 queries Set-Secret(ucom, scom) and sets
G′.comSecret := (scom, ucom).

• If Rand[id] = ‘bad’, S ′4-2 generates and encrypts the commit secret scom as in the previous hybrid. In
this case, S ′4-2 may have generated or received the same commit message. Thus, S ′4-2 checks if the
same commit message has been generated or received earlier, and if not, it assigns a GSD node to the
commit secret scom. This check is done when S ′4-2 derives the epoch secret in *derive-keys function
(see below).

To compute the epoch secrets and confirmation tag, S ′4-2 runs *derive-keys and *gen-conf-tag as fol-
lows: Let (spar-init, upar-init) be the initial secret at epoch (spar-init can be ⊥). Note that G′.groupCont() (includ-
ing the confirmation hash G′.confTransHash) for the new epoch is computed before running *derive-keys
function.

• If Rand[id] = ‘good’, S ′4-2 prepares new GSD nodes u‘joi’, u‘conf’, u‘app’, u‘memb’, and u‘init’ (their values
are set to uctr, uctr+1, . . . , uctr+4 and ctr is incremented as ctr← ctr+ 5) and queries Join-Hash(upar-init,
ucom, u‘joi’, ‘joi’) and Hash(u‘joi’, ulbl, (G′.groupCont(), lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’}.

156 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

– If gsd-exp(upar-init) = false ∨ gsd-exp(ucom) = false, S ′4-2 sets G′.joinerSecret := (⊥, u‘joi’),
G′.confKey := (⊥, u‘conf’), G′.appSecret := (⊥, u‘app’), G′.membKey := (⊥, u‘memb’) and G′.initSecret :=
(⊥, u‘init’). Then, S ′4-2 prepares a new GSD node uctag := uctr (and sets ctr← ctr+ 1), and queries
Hash(u‘conf’, uctag, G′.confTransHash) and G′.confTag := Corr(uctag).

– Else, (i.e., gsd-exp(upar-init) = true∧ gsd-exp(ucom) = true), S ′4-2 knows both spar-init and scom.
It computes s‘joi’ := RO(spar-init, scom, ‘joi’) and slbl := RO(s‘joi’, (G′.groupCont(), lbl)) for each lbl ∈
{‘conf’, ‘app’, ‘memb’, ‘init’}, and sets G′.joinerSecret := (s‘joi’, u‘joi’), G′.confKey := (s‘conf’, u‘conf’),
G′.appSecret := (s‘app’, u‘app’), G′.membKey := (s‘memb’, u‘memb’) and G′.initSecret := (s‘init’, u‘init’).
S ′4-2 generates the confirmation tag as G′.confTag := RO(s‘conf’, G′.confTransHash).

Finally, S ′4-2 stores L‘epoch’ +← (upar-init, G′.comSecret, G′.joinerSecret, G′.confTransHash, G′.confTag).

• If Rand[id] = ‘bad’, S ′4-2 knows scom ̸= ⊥. S ′4-2 does as follows.

– If (upar-init, (scom, ∗), ∗, G′.confTransHash, confTag′) ∈ L‘epoch’ exists for some unique confTag′,20

S ′4-2 uses confTag′ as the confirmation tag. Note that this case occurs if some party has derived
the same epoch secrets in the commit or process protocol.

– Else, S ′4-2 prepares new GSD nodes ucom, u‘joi’, u‘conf’, u‘app’, u‘memb’, and u‘init’ (their values are set
to uctr, uctr+1, . . ., uctr+5 and ctr is incremented as ctr← ctr+ 6) and queries Set-Secret(ucom, scom),
Join-Hash(upar-init, ucom, u‘joi’, ‘joi’) and Hash(u‘joi’, ulbl, (G′.groupCont(), lbl)) for each lbl ∈ {‘conf’,
‘app’, ‘memb’, ‘init’}.

* If gsd-exp(upar-init) = false, S ′4-2 prepares a new node uctag := uctr (and sets ctr← ctr+ 1)
and computes the confirmation tag by querying Hash(u‘conf’, uctag, G′.confTransHash) and
G′.confTag := Corr(uctag). Then it checks the following.

· If (⊥, (⊥,⊥), ∗, G′.confTransHash, confTag′) ∈ L‘epoch’ exists for some confTag′ such
that G′.confTag = confTag′, S ′4-2 aborts. We call this event abortattach, and in Proposi-
tion 4.4.30 we will prove that the probability the simulator aborts due to this event is
negligible.21

· Else, the simulator S ′4-2 sets G′.comSecret := (scom, ucom), G′.joinerSecret := (⊥, u‘joi’),
G′.confKey := (⊥, u‘conf’), G′.appSecret := (⊥, u‘app’), G′.membKey := (⊥, u‘memb’) and
G′.initSecret := (⊥, u‘init’). Finally, S ′4-2 stores L‘epoch’ +← (upar-init, G′.comSecret, G′.joinerSecret,
G′.confTransHash, G′.confTag).

* If gsd-exp(upar-init) = true (i.e., S ′4-2 knows spar-init ̸= ⊥), then S ′4-2 computes the joiner
secret s‘joi’ := RO(spar-init, scom, ‘joi’) and the epoch secrets slbl := RO(s‘joi’, (G′.groupCont(),
lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’}. S ′4-2 sets G′.comSecret := (scom, ucom),
G′.joinerSecret := (s‘joi’, u‘joi’), G′.confKey := (s‘conf’, u‘conf’), G′.appSecret := (s‘app’, u‘app’),
G′.membKey := (s‘memb’, u‘memb’) and G′.initSecret := (s‘init’, u‘init’). It also computes the
confirmation tag G′.confTag := RO(s‘conf’, G′.confTransHash). Finally, S ′4-2 stores L‘epoch’ +←
(upar-init, G′.comSecret, G′.joinerSecret, G′.confTransHash, G′.confTag).

If a new member exists, S ′4-2 runs *welcome-msg following the protocol description except that S ′4-2
encrypts the joiner secret G′.joinerSecret as follows:

20Due to the argument we made in Hybrid 2-2, confTag is unique for each initSecret, comSecret and confTransHash.
21abortattach occurs if the created commit node by the commit protocol is attached to an existing detached root even if the

corresponding initial secret is not leaked. If such a node is created, the mac-inj-allowed predicate returns false. Namely, we prove
in Proposition 4.4.30 that the probability of such a node is created is negligible.

4.4. Proposed Protocol: Chained CmPKE 157

• If Rand[id] = ‘good’, S ′4-2 does as follows. Let G′.member be the new membership list and addedMem
be the set of new party’s identities.

– If G′.member[id].dk ̸= (⊥,⊥) for all id ∈ addedMem, each G′.member[id].dk is of the form (∗, uid).
S ′4-2 composes the set SaddedMem := { uid }id∈addedMem, and queries CmEnc(SaddedMem, u‘joi’) to
compute the ciphertext (T, c⃗t = (ctu)u∈SaddedMem

).

* If gsd-exp(uid) = true for some uid ∈ SaddedMem, it decrypts (T, ctuid
) using the secret sid of

uid, and obtains s‘joi’. S ′4-2 stores L‘enc’ +← ((s‘joi’, u‘joi’), uid, (T, ctuid
)) for each uid ∈ SaddedMem.

Then, S ′4-2 computes slbl := RO(s‘joi’, (G′.groupCont(), lbl)) for each lbl ∈ {‘conf’, ‘app’,
‘memb’, ‘init’} and updates the epoch secrets as G′.joinerSecret := (s‘joi’, u‘joi’), G′.confKey :=
(s‘conf’, u‘conf’), G′.appSecret := (s‘app’, u‘app’), G′.membKey := (s‘memb’, u‘memb’) and G′.initSecret
:= (s‘init’, u‘init’). (L‘epoch’ is also updated accordingly.)

* Else, S ′4-2 stores L‘enc’ +← (G′.joinerSecret, uid, (T, ctuid
)) for each uid ∈ SaddedMem.

– Else (i.e., G′.member[id].dk = (⊥,⊥) for some id ∈ addedMem), S ′4-2 queries s‘joi’ := Corr(u‘joi’)

and encrypts s‘joi’ as in the previous hybrid. Then, S ′4-2 computes slbl := RO(s‘joi’, (G′.groupCont(),
lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’} and updates the epoch secrets as G′.joinerSecret :=
(s‘joi’, u‘joi’), G′.confKey := (s‘conf’, u‘conf’), G′.appSecret := (s‘app’, u‘app’), G′.membKey := (s‘memb’,
u‘memb’) and G′.initSecret := (s‘init’, u‘init’). (L‘epoch’ is also updated accordingly.)

• If Rand[id] = ‘bad’, S ′4-2 queries s‘joi’ := Corr(u‘joi’) and encrypts s‘joi’ as in the previous hybrid. Then,
S ′4-2 computes slbl := RO(s‘joi’, (G′.groupCont(), lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’} and
updates the epoch secrets as G′.joinerSecret := (s‘joi’, u‘joi’), G′.confKey := (s‘conf’, u‘conf’), G′.appSecret
:= (s‘app’, u‘app’), G′.membKey := (s‘memb’, u‘memb’) and G′.initSecret := (s‘init’, u‘init’). (L‘epoch’ is also
updated accordingly.)

Simulation of id on input (Process, c0, ĉ, p⃗). S ′4-2 simulates the process protocol as in the previous hybrid,
except for the differences shown below:

Firstly, S ′4-2 simulates *unframe-prop and *apply-props identically when simulating the Commit proto-
col. After the execution of *apply-props, S ′4-2 obtains the new membership list and the decryption key of
each party. In other words, for all members id, G.member[id].dk is of the form (∗, uid) or (⊥,⊥).

During execution of *apply-rekey, S ′4-2 decrypts the ciphertext ct = (T, ĉt) in (c0, ĉ) as follows, by
using id’s current decryption key (sid, uid) = G.member[id].dk22. Let (∗, upar-init) be the initial secret at epoch
Ptr[id] and let confTag be the confirmation tag in c0. Note that the confirmation hash G′.confTransHash for
the new epoch is computed before running *apply-rekey function.

Case (1): If sid ̸= ⊥, S ′4-2 simply decrypts ct by itself to obtain the commit secret scom.

Case (2): Else, if (∗, uid, ct) /∈ L‘enc’ (i.e., ct can be sent to CmDec oracle), S ′4-2 sends (uid, ct) to CmDec oracle
to obtain the commit secret scom.

Case (3): Else, if ((s′, u′), uid, ct) ∈ L‘enc’ for some (s′ ̸= ⊥, u′), s′ is used as the commit secret scom (i.e.,
scom := s′). S ′4-2 retrieves such scom.

22uid is always non-⊥ because id uses the decryption key generated by itself: When it joins the group, it fetches the CmPKE key
registered by itself (cf. get-dks queries to FKS (line 16 in the join protocol)); When it updates its state, it replaces the old CmPKE
key with a new CmPKE key generated by itself which stored in pendUpd (cf. line 11 in *apply-props function) or pendCom array
(cf. line 4 in the process protocol).

158 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Case (4)23: Else, if ((⊥, u′), uid, ct) ∈ L‘enc’ and (upar-init, (⊥, u′), ∗, G′.confTransHash, confTag′) ∈ L‘epoch’
exist for some u′ and confTag′, then S ′4-2 skips running *derive-keys, and verifies the confirmation
tag confTag in c0 by checking confTag = confTag′.

Case (5)24: Else, if ((⊥, u′), uid, ct) ∈ L‘enc’ for some u′, S ′4-2 outputs ⊥. We call this event Einj-c-1. In
Proposition 4.4.27, we will prove that the simulator in the previous hybrid also outputs ⊥ when
Einj-c-1 occurs. Thus, Z ’s view is indistinguishable.

It remains to explain what S ′4-2 does with the commit secret scom for Cases (1)-(3). The simulator finishes
by funning *derive-keys and *vrf-conf-tag as follows.

• If (upar-init, (scom, ∗), ∗, G′.confTransHash, confTag′) ∈ L‘epoch’ exists for some confTag′, S ′4-2 verifies the
confirmation tag by checking confTag = confTag′ and skips *derive-keys and *vrf-conf-tag. Note
that this case occurs if S ′4-2 derived the epoch secret corresponding to the received commit message
c0.

• Else if gsd-exp(upar-init) = false, S ′4-2 outputs ⊥. We call this event Einj-c-2. In Proposition 4.4.28
below, we will prove that the simulator in the previous hybrid also outputs ⊥ when Einj-c-2 occurs,
i.e., Z ’s view is not changed.

• Else (i.e., gsd-exp(upar-init) = true), S ′4-2 knows both spar-init and scom. It computes the joiner se-
cret s‘joi’ := RO(spar-init, scom, ‘joi’) and the epoch secrets slbl := RO(s‘joi’, (G′.groupCont(), lbl)) for
each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’}. Then, S ′4-2 recomputes the confirmation tag confTag′ :=
RO(s‘conf’, G′.confTransHash) and checks whether confTag = confTag′ holds. If true, S ′4-2 prepares new
GSD nodes ucom, u‘joi’, u‘conf’, u‘app’, u‘memb’, and u‘init’ (their values are set to uctr, uctr+1, . . . , uctr+5
and ctr is incremented as ctr ← ctr + 6) and queries Set-Secret(ucom, scom), Join-Hash(upar-init,
ucom, u‘joi’, ‘joi’) and Hash(u‘joi’, ulbl, (G′.groupCont(), lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’}.
S ′4-2 sets G′.comSecret := (scom, ucom), G′.joinerSecret := (s‘joi’, u‘joi’), G′.confKey := (s‘conf’, u‘conf’),
G′.appSecret := (s‘app’, u‘app’), G′.membKey := (s‘memb’, u‘memb’) and G′.initSecret := (s‘init’, u‘init’). Fi-
nally, S ′4-2 stores L‘epoch’ +← (upar-init, G′.comSecret, G′.joinerSecret, G′.confTransHash, confTag).

Simulation of id on input (Join, w0, ŵ). S ′4-2 simulates the join protocol as in the previous hybrid, except
for the differences shown below:

When initializing the group membership list, for each encryption key in G.member, if S ′4-2 knows the
corresponding decryption key, S ′4-2 copies it to G.member. Otherwise, the decryption key is set to (⊥,⊥).
S ′4-2 decrypts the ciphertext ct = (T, ĉt) in (w0, ŵ) using id’s decryption key (sid, uid) = G.member[id].dk25

as follows. Let G.confTransHash be the confirmation hash and confTag be the confirmation tag included in
w0.

Case (1): If sid ̸= ⊥, S ′4-2 simply decrypts ct by itself to obtain the joiner secret s‘joi’.

Case (2): Else, if (∗, uid, ct) /∈ L‘enc’ (i.e., ct can be sent to CmDec oracle), S ′4-2 sends (uid, ct) to obtain the
joiner secret s‘joi’.

23This case occurs if the received commit message is generated by the commit protocol with good randomness, and the
encrypted commit secret has not been leaked.

24This case occurs when the ciphertext was generated by CmEnc oracle, but the simulator did not derive the corresponding
epoch secret. Put differently, this occurs when Z generates a malicious welcome message using an honestly generated ciphertext.

25uid is always non-⊥ because when a party id joins the group, id uses the decryption key generated by itself (cf. get-dks
queries to FKS (line 16 in the join protocol)).

4.4. Proposed Protocol: Chained CmPKE 159

Case (3): Else, if ((s′, u′), uid, ct) ∈ L‘enc’ for some (s′ ̸= ⊥, u′), s′ is used as the joiner secret s‘joi’ (i.e.,
s‘joi’ := s′). S ′4-2 retrieves such s‘joi’.

Case (4)26: Else, if ((⊥, u′), uid, ct) ∈ L‘enc’ and (∗, ∗, (⊥, u′), G.confTransHash, confTag′) ∈ L‘epoch’ exist for
some u′ and confTag′, then S ′4-2 skips the derivation of the epoch secrets, and verifies the confirmation
tag confTag in w0 by checking confTag = confTag′.

Case (5)27: If ((⊥, u′), uid, ct) ∈ L‘enc’ for some u′, S ′4-2 outputs ⊥. We call this event Einj-w. In Proposi-
tion 4.4.29, we will prove that the simulator in the previous hybrid also outputs ⊥ when Einj-w occurs,
i.e., Z ’s view is indistinguishable.

It remains to explain what S ′4-2 does with the commit secret s‘joi’ for Cases (1)-(3). The simulator verifies
confTag in w0 as follows.

• If (∗, ∗, (s‘joi’, ∗), G.confTransHash, confTag′) ∈ L‘epoch’ exists for some confTag′, S ′4-2 verifies the confir-
mation tag by checking confTag = confTag′.

• Else, S ′4-2 computes slbl := RO(s‘joi’, (G.groupCont(), lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’},
and verifies the confirmation tag by checking confTag = RO(s‘conf’, G.confTransHash). If the tag is
valid, S ′4-2 prepares new GSD nodes u‘joi’, u‘conf’, u‘app’, u‘memb’, and u‘init’ (their values are set to
uctr, uctr+1, . . . , uctr+4 and ctr is incremented as ctr ← ctr + 5) and queries Set-Secret(u‘joi’, s‘joi’)

and Hash(u‘joi’, ulbl, (G.groupCont(), lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’}. Then, S ′4-2 sets
G.joinerSecret := (s‘joi’, u‘joi’), G.confKey := (s‘conf’, u‘conf’), G.appSecret := (s‘app’, u‘app’), G.membKey :=
(s‘memb’, u‘memb’) and G.initSecret := (s‘init’, u‘init’). Finally, S ′4-2 stores L‘epoch’ +← (⊥, (⊥,⊥), G.joinerSecret,
G.confTransHash, confTag).

Simulation of id on input Key. Let G.appSecret be the application secret at epoch Ptr[id]. If it is of the from
(s‘app’ ̸= ⊥, u‘app’), S ′4-2 returns s‘app’. Else, S ′4-2 queries s‘app’ := Corr(u‘app’) and returns s‘app’; Then S ′4-2
replaces (⊥, u‘app’) with (s‘app’, u‘app’)

Corruption query for id. id’s state at epoch Ptr[id] contains the following secrets:

• The decryption key stored in G.member[id].dk and G.pendUpd array;

• The decryption keys of the key packages registered to Key Service. They are stored in DK[id, ∗]; and

• The current epoch secrets confKey, membKey, appSecret, and initSecret. Note that id holds appSecret
only if Key query has not been queried to Ptr[id].

• The epoch secrets stored in G.pendCom array;

For each of the above secrets, if the secret is of the form (⊥, u), S ′4-2 queries s := Corr(u) and replaces (⊥, u)
with (s, u). Then, for each node v such that gsd-exp(v) becomes true due to the corruption, S ′4-2 computes
the secret sv from previously obtained ciphertexts and corrupted secrets, and replaces all occurrence of
(⊥, v) with (sv, v). Finally, S ′4-2 returns id’s secrets listed above to the adversary A.

Part 2: Indistinguishability of the Two Hybrid. We next prove indistinguishability between Hybrid 4-1 and
Hybrid 4-2.

26This case occurs if the received welcome message is generated by the commit protocol with good randomness, and the
encrypted joiner secret has not been leaked.

27This case occurs when the ciphertext was generated by CmEnc oracle, but the simulator did not derive the corresponding
epoch secret. Put differently, it occurs when Z generates a malicious commit message using an honestly generated ciphertext.

160 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Lemma 4.4.25. Hybrid 4-1 and Hybrid 4-2 are indistinguishable assuming CmPKE is Chained CmPKE conforming
GSD secure.

Proof. The difference from the previous hybrid is that the simulator S ′4-2 always outputs ⊥ when events
Einj-p, Einj-c-1, Einj-c-2, and Einj-w occur, and it aborts when event abortattach occurs. In the following, we show
that, if Z can distinguish the two hybrids (i.e., S ′4-2 provides a different view to Z when the events occur),
then there exists an adversary B that can win the Chained CmPKE conforming GSD game.

We first show that Z ’s view is not changed when Einj-p occurs. In other words, Z cannot inject a
proposal message without knowing the membership key.

Proposition 4.4.26. Z ’s view when Einj-p occurs is indistinguishable between the two hybrids if CmPKE is Chained
CmPKE conforming GSD secure.

Proof. The difference from the previous hybrid is that S ′4-2 outputs ⊥ when event Einj-p occurs. We show
that, if Z can distinguish the two hybrids, then there exists an adversary B that can win the Chained CmPKE
conforming GSD game. We first explain the description of B and how B embeds the GSD challenge. We
then show the validity of the GSD challenge and finally evaluate B’s advantage.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution of each party as in

S ′4-2, except that B interacts with its GSD challenger instead of SGSD. We assume B receives at most N
distinct proposal messages as input to the commit and process protocol. At the beginning of the game, B
chooses i ∈ [N] at random and hopes that the i-th proposal message triggers Einj-p, and the simulator in the
previous hybrid outputs non-⊥ when it receives the message. (B succeeds to guess with probability 1/N.)
When B receives the i-th proposal message p, B embeds the GSD challenge and determines the challenge
bit as follows. We assume p is processed by id without loss of generality, and let u‘memb’ be the GSD node
assigned to the membership key at epoch Ptr[id]. Also, let membTag be the membership tag in p.

1. B prepares a new GSD node umtag := uctr and queries Hash(u‘memb’, umtag, (propCont, sig)), where
(propCont, sig) is taken from p.

2. B queries membTag′ := Chall(umtag)

3. If membTag = membTag′, B submits 0 to the GSD challenger; otherwise submits 1.

Note that B can send (propCont, sig) to Hash oracle (that is, B has not queries (propCont, sig) to Hash oracle
before) because (u‘memb’, (propCont, sig), ∗) /∈ L‘memb’ when Einj-p occurs. If B succeeds the guess, membTag
in p is valid, i.e., it satisfies membTag = RO(s‘memb’, (propCont, sig)) for the membership key s‘memb’ assigned
to u‘memb’. Moreover, B assigns RO(s‘memb’, (propCont, sig)) to umtag. Thus, if the challenge oracle returns
the real value (i.e., the challenge bit is 0), membTag = membTag′ holds with probability 1; otherwise with
negligible probability. Therefore, B can output the correct challenge bit with overwhelming probability.

We then check the validity of the GSD challenge. Observe that the GSD graph is acyclic and umtag is a
sink node. In addition, by the structure of the GSD graph, we have

gsd-exp(umtag) =
(
umtag ∈ Corr

)
∨ gsd-exp(u‘memb’)

= false.

This is because umtag is not sent to Corr or Set-Secret oracle, and gsd-exp(u‘memb’) = false when Einj-p
occurs. Hence, umtag is a valid challenge node, and B wins the GSD game.

We finally evaluate the advantage of B. B wins the GSD game if Z distinguishes the hybrids and B
succeeds to guess the proposal message. If Z distinguishes the two hybrids with non-negligible probability

4.4. Proposed Protocol: Chained CmPKE 161

ϵ, B wins the game with probability ϵ/Q, which is also non-negligible. This contradicts the assumption
that CmPKE is Chained CmPKE conforming GSD secure. Therefore, ϵ must be negligible, and we conclude
that Z ’s view when Einj-p occurs is indistinguishable between Hybrid 4-1 and Hybrid 4-2.

We then prove that Z ’s view is not changed when Einj-c-1 occurs. In other words, Z cannot inject a
commit message without knowing the encrypted commit secret.

Proposition 4.4.27. Z ’s view when Einj-c-1 occurs is indistinguishable between the two hybrids if CmPKE is Chained
CmPKE conforming GSD secure.

Proof. The difference from the previous hybrid is that S ′4-2 outputs ⊥ when event Einj-c-1 occurs. We show
that, if Z can distinguish the two hybrids, then there exists an adversary B that can win the Chained CmPKE
conforming GSD game. We first explain the description of B and how B embeds the GSD challenge. We
then show the validity of the GSD challenge and finally evaluate B’s advantage.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution of each party as in S ′4-2,

except that B interacts with its GSD challenger instead of SGSD. We assume B receives at most Q distinct
commit messages as input to the process protocol. At the beginning of the game, B chooses i ∈ [Q] at
random and hopes that the i-th commit message triggers Einj-c-1, and the simulator in the previous hybrid
outputs non-⊥ when it receives the message. (B succeeds to guess with probability 1/Q.) When B receives
the i-th commit message c0, B embeds the GSD challenge and determines the challenge bit as follows. We
assume c0 is processed by id without loss of generality and let upar-init be the GSD node assigned to the
initial secret at epoch Ptr[id]. Let confTag be the confirmation tag in c0. In addition, when Einj-c-1 occurs,
there exists a node u′ such that ((⊥, u′), uid, ct) ∈ L‘enc’, where uid is the GSD node corresponding to id’s
current CmPKE key and ct is the ciphertext in c0

1. B prepares new GSD nodes u‘joi’ and u‘conf’ (their values are set to uctr and uctr+1, and ctr is in-
cremented as ctr ← ctr+ 2) and queries Join-Hash(upar-init, u′, u‘joi’, ‘joi’) and Hash(u‘joi’, u‘conf’, (G′.
groupCont(), ‘conf’)).

2. B prepares a new GSD node uctag := uctr and queries Hash(u‘conf’, uctag, G′.confTransHash).

3. B queries confTag′ := Chall(uctag).

4. If confTag = confTag′, B submits 0 to the GSD challenger; otherwise submits 1.

Note that B can issue the above queries to oracles Hash and Join-Hash because the inputs are new GSD
nodes. Note also that the confirmation key derived from the current initial secret and c0 is correctly
computed to u‘conf’ because the commit secret encrypted in ct is assigned to u′. If B succeeds the guess,
confTag in c0 is valid, i.e., it satisfies confTag = RO(s‘conf’, G′.confTransHash) for the confirmation key
s‘conf’ assigned to u‘conf’. Moreover, B assigns RO(s‘conf’, G′.confTransHash) to uctag. Thus, if the challenge
oracle returns the real value (i.e., the challenge bit is 0), confTag = confTag′ holds with probability 1;
otherwise with negligible probability. Therefore, B can output the correct challenge bit with overwhelming
probability.

We check the validity of the GSD challenge. Observe that the GSD graph is acyclic and uctag is a sink
node. In addition, by the structure of the GSD graph, we have

gsd-exp(uctag) =
(
uctag ∈ Corr

)
∨ gsd-exp(u‘conf’)

=
(
uctag ∈ Corr

)
∨
(
u‘conf’ ∈ Corr

)
∨ gsd-exp(u‘joi’)

=
(
uctag ∈ Corr

)
∨
(
u‘conf’ ∈ Corr

)
∨
(
u‘joi’ ∈ Corr

)
∨

162 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

(gsd-exp(upar-init) ∧ gsd-exp(u′))
= false.

This is because uctag, u‘conf’, and u‘joi’ are not sent to Corr or Set-Secret oracle, and gsd-exp(u′) = false

when Einj-c-1 occurs. Hence, uctag is a valid challenge node, and B wins the GSD game.
We finally evaluate the advantage of B. B can win the GSD game if Z distinguishes the hybrids and B

succeeds to guess the message. If Z distinguishes the two hybrids with non-negligible probability ϵ, B
wins the game with probability ϵ/Q, which is also non-negligible. This contradicts the assumption that
CmPKE is Chained CmPKE conforming GSD secure. Therefore, ϵ must be negligible, and we conclude that
Z ’s view when Einj-c-1 occurs is indistinguishable between Hybrid 4-1 and Hybrid 4-2.

We also prove that that Z ’s view is not changed when Einj-c-2 occurs. In other words, Z cannot inject a
commit message without knowing the initial secret of the parent node.

Proposition 4.4.28. Z ’s view when Einj-c-2 occurs is indistinguishable between the two hybrids if CmPKE is Chained
CmPKE conforming GSD secure.

Proof. The difference from the previous hybrid is that S ′4-2 outputs ⊥ when event Einj-c-2 occurs. We show
that, if Z can distinguish the two hybrids, then there exists an adversary B that can win the Chained CmPKE
conforming GSD game. We first explain the description of B and how B embeds the GSD challenge. We
then show the validity of the GSD challenge and finally evaluate B’s advantage.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution of each party as in S ′4-2,

except that B interacts with its GSD challenger instead of SGSD. We assume B receives at most Q distinct
commit messages as input to the process protocol. At the beginning of the game, B chooses i ∈ [Q] at
random and hopes that the i-th commit message triggers Einj-c-2, and the simulator in the previous hybrid
outputs non-⊥ when it receives the message. (B succeeds to guess with probability 1/Q.) When B receives
the i-th commit message c0, B embeds the GSD challenge and determines the challenge bit as follows. We
assume c0 is processed by id without loss of generality and let upar-init be the GSD node assigned to the
initial secret at epoch Ptr[id]. Let confTag be the confirmation tag in c0. Note that when Einj-c-2 occurs, B
succeeds to decrypt the commit secret scom.

1. B prepares new GSD nodes ucom, u‘joi’ and u‘conf’ (their values are set to uctr, uctr+1 and uctr+2. ctr
is incremented as ctr ← ctr+ 3) and queries Set-Secret(ucom, scom), Join-Hash(upar-init, ucom, u‘joi’,
‘joi’) and Hash(u‘joi’, u‘conf’, (G′.groupCont(), ‘conf’)).

2. B prepares a new GSD node uctag := uctr and queries Hash(u‘conf’, uctag, G′.confTransHash).

3. B queries confTag′ := Chall(uctag).

4. If confTag = confTag′, B submits 0 to the GSD challenger; otherwise submits 1.

Note that B can issue the above queries because B prepares new GSD nodes. Note also that the confirmation
key derived from the current initial secret and c0 is correctly computed to u‘conf’. If B succeeds to guess,
confTag in c0 is valid, i.e., it satisfies confTag = RO(s‘conf’, G′.confTransHash) for the confirmation key
s‘conf’ assigned to u‘conf’. Moreover, B assigns RO(s‘conf’, G′.confTransHash) to uctag. Thus, if the challenge
oracle returns the real value (i.e., the challenge bit is 0), confTag = confTag′ holds with probability 1;
otherwise with negligible probability. Therefore, B can output the correct challenge bit with overwhelming
probability.

4.4. Proposed Protocol: Chained CmPKE 163

We check the validity of the GSD challenge. Observe that the GSD graph is acyclic and uctag is a sink
node. In addition, by the structure of the GSD graph, we have

gsd-exp(uctag) =
(
uctag ∈ Corr

)
∨ gsd-exp(u‘conf’)

=
(
uctag ∈ Corr

)
∨
(
u‘conf’ ∈ Corr

)
∨ gsd-exp(u‘joi’)

=
(
uctag ∈ Corr

)
∨
(
u‘conf’ ∈ Corr

)
∨
(
u‘joi’ ∈ Corr

)
∨

(gsd-exp(upar-init) ∧ gsd-exp(ucom))

= false.

This is because uctag, u‘conf’, u‘joi’ are not sent to Corr or Set-Secret oracle, and gsd-exp(upar-init) = false

when Einj-c occurs. Hence, uctag is a valid challenge node, and B wins the GSD game.
We finally evaluate the advantage of B. B can win the GSD game if Z distinguishes the hybrids and B

succeeds to guess the message. If Z distinguishes the two hybrids with non-negligible probability ϵ, B
wins the game with probability ϵ/Q, which is also non-negligible. This contradicts the assumption that
CmPKE is Chained CmPKE conforming GSD secure. Therefore, ϵ must be negligible, and we conclude that
Z ’s view when Einj-c-2 occurs is indistinguishable between Hybrid 4-1 and Hybrid 4-2.

We then prove that Z ’s view is not changed when Einj-w occurs. In other words, Z cannot inject a
welcome message without knowing the encrypted joiner secret.

Proposition 4.4.29. Z ’s view when Einj-w occurs is indistinguishable between the two hybrids if CmPKE is Chained
CmPKE conforming GSD secure.

Proof. The difference from the previous hybrid is that S ′4-2 outputs ⊥ when event Einj-w occurs. We show
that, if Z can distinguish the two hybrids, then there exists an adversary B that can win the Chained CmPKE
conforming GSD game. We first explain the description of B and how B embeds the GSD challenge. We
then show the validity of the GSD challenge and finally evaluate B’s advantage.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution of each party as in

S ′4-2, except that B interacts with its GSD challenger instead of SGSD. We assume B receives at most W
distinct welcome messages as input to the join protocol. At the beginning of the game, B chooses i ∈ [W]
at random, and hopes that the i-th welcome message triggers Einj-w, and the simulator in the previous
hybrid outputs non-⊥ when it receives the message (i.e., the message is valid). (B succeeds to guess
with probability 1/W.) When B receives the i-th welcome message w0, B embeds the GSD challenge and
determines the challenge bit as follows. We assume w0 is processed by id without loss of generality and
let confTag be the confirmation tag in w0. In addition, when Einj-w occurs, there exists a node u′ such that
((⊥, u′), uid, ct) ∈ L‘enc’, where uid is the GSD node corresponding to id’s current CmPKE key and ct is the
ciphertext in w0

1. B prepares new GSD nodes u‘conf’ := uctr (ctr is incremented) and queries Hash(u′, u‘conf’, (G.groupCont(),
‘conf’).

2. B prepares a new GSD node uctag := uctr and queries Hash(u‘conf’, uctag, G′.confTransHash).

3. B queries confTag′ := Chall(uctag).

4. If confTag = confTag′, B submits 0; otherwise submits 1.

164 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Note that B can issue the above queries because B prepares new GSD nodes. Note also that the confirmation
key derived from w0 is correctly computed to u‘conf’ because the joiner secret encrypted in ct is assigned
to u′. If B succeeds the guess, confTag in w0 is valid, i.e., it satisfies confTag = RO(s‘conf’, G.confTransHash)
for the confirmation key s‘conf’ assigned to u‘conf’. Moreover, B assigns RO(s‘conf’, G.confTransHash) to uctag.
Thus, if the challenge oracle returns the real value (i.e., the challenge bit is 0), confTag = confTag′ holds
with probability 1; otherwise with negligible probability. Therefore, B can output the correct challenge bit
with overwhelming probability.

We check the validity of the GSD challenge. Observe that the GSD graph is acyclic and uctag is a sink
node. In addition, we have

gsd-exp(uctag) =
(
uctag ∈ Corr

)
∨ gsd-exp(u‘conf’)

=
(
uctag ∈ Corr

)
∨
(
u‘conf’ ∈ Corr

)
∨ gsd-exp(u′)

= false.

This is because uctag and u‘conf’ are not sent to Corr or Set-Secret oracle, and gsd-exp(u′) = false when
Einj-w occurs. Hence, uctag is a valid challenge node, and B wins the GSD game.

We finally evaluate the advantage of B. B can win the GSD game if Z distinguishes the hybrids and B
succeeds in the guess. If Z distinguishes the two hybrids with non-negligible probability ϵ, B wins the
game with probability ϵ/Q, which is also non-negligible. This contradicts the assumption that CmPKE is
Chained CmPKE conforming GSD secure. Therefore, ϵ must be negligible, and we conclude that Z ’s view
when Einj-w occurs is indistinguishable between Hybrid 4-1 and Hybrid 4-2.

We finally prove that the probability the simulator aborts due to abortattach is negligible.

Proposition 4.4.30. The probability abortattach occurs is negligible if CmPKE is Chained CmPKE conforming GSD
secure.

Proof. The difference from the previous hybrid is S ′4-2 aborts when event abortattach occurs. We show that,
if Z can distinguish the two hybrids, then there exists an adversary B that can win the Chained CmPKE
conforming GSD game. We first explain the description of B and how B embeds the GSD challenge. We
then show the validity of the GSD challenge and finally evaluate B’s advantage.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution of each party as in

S ′4-2, except that B interacts with its GSD challenger instead of SGSD. We assume Z generates at most Q
commit message by invoking the commit protocol. At the beginning of the game, B chooses i ∈ [Q] at
random, and hopes that abortattach occurs while B generates the i-th commit message. (B succeeds to guess
such a message with probability 1/Q.) When B generates the i-th commit message c0, B embeds the GSD
challenge and determines the challenge bit as follows. We assume c0 is generated by id without loss of
generality. Let upar-init be the GSD node assigned to the initial secret at epoch Ptr[id] and let ucom be the
GSD node assigned to the commit secret. Note that the confirmation hash G′.confTransHash of the new
epoch is computed before deriving the epoch secret.

1. B prepares new GSD nodes u‘joi’ and u‘conf’ (their values are set to uctr and uctr+1. ctr is incremented.)
and queries Join-Hash(upar-init, ucom, u‘joi’, ‘joi’) and Hash(u‘joi’, u‘conf’, (G′.groupCont(), ‘conf’)).

2. B prepares a new GSD node uctag := uctr and queries Hash(u‘conf’, uctag, G′.confTransHash).

3. B queries confTag := Chall(uctag) instead of Corr(uctag).

4.4. Proposed Protocol: Chained CmPKE 165

4. If (⊥, (⊥,⊥), ∗, G′.confTransHash, confTag′) ∈ L‘epoch’ exists for some confTag′ such that confTag =
confTag′, B submits 0 to the GSD challenger; otherwise submits 1.

Note that B can issue the above queries to oracles Hash and Join-Hash because the inputs are new GSD
nodes. Note also that the confirmation key derived from the current initial secret and ucom is correctly
computed to u‘conf’. B assigns RO(s‘conf’, G′.confTransHash) to uctag. If abortattach occurs, B has obtained
confTag′ (stored in L‘epoch’) that satisfies confTag′ = RO(s‘conf’, G′.confTransHash). Thus, if the challenge
oracle returns the real value (i.e., the challenge bit is 0), confTag = confTag′ holds with probability 1;
otherwise with negligible probability. Therefore, B can output the correct challenge bit with overwhelming
probability.

We check the validity of the GSD challenge. Observe that GSD graph is acyclic and uctag is a sink node.
In addition, by the structure of the GSD graph, we have

gsd-exp(uctag) =
(
uctag ∈ Corr

)
∨ gsd-exp(u‘conf’)

=
(
uctag ∈ Corr

)
∨
(
u‘conf’ ∈ Corr

)
∨ gsd-exp(u‘joi’)

=
(
uctag ∈ Corr

)
∨
(
u‘conf’ ∈ Corr

)
∨
(
u‘joi’ ∈ Corr

)
∨

(gsd-exp(upar-init) ∧ gsd-exp(ucom))

= false.

This is because uctag, u‘conf’, u‘joi’ are not sent to Corr or Set-Secret oracle, and gsd-exp(upar-init) = false

when abortattach occurs. Hence, uctag is a valid challenge node, and B wins the GSD game.
We finally evaluate the advantage of B. B can win the GSD game if Z distinguishes the hybrids and B

succeeds in the guess. If Z distinguishes the two hybrids with non-negligible probability ϵ, B wins the
game with probability ϵ/Q, which is also non-negligible. However, This contradicts the assumption that
CmPKE is Chained CmPKE conforming GSD secure. Therefore, ϵ must be negligible, and we conclude that
the probability abortattach occurs is negligible, i.e., the two hybrids are indistinguishable for Z .

From the above propositions, we conclude that Hybrid 4-1 and Hybrid 4-2 are indistinguishable for
Z .

From Hybrid 4-3 to 4-4: Lemma 4.4.32. Before proving Lemma 4.4.32, we provide the key proposition that
establishes the relationship between the safety predicate (safe and know shown in Figure 4.25) and the
gsd-exp predicate. It will be used in the proof of Lemmata 4.4.32 and 4.4.34.

Proposition 4.4.31. Let u‘app’, u‘memb’, u‘conf’, u‘init’ be the GSD node assigned to each epoch secret at epoch c0. The
following statements hold.

• If know(c0, ‘epoch’) = false, then gsd-exp(u) = false for u ∈ { u‘memb’, u‘conf’, u‘init’ }.

• If safe(c0) = true, then gsd-exp(u‘app’) = false.

Proof. We show the contraposition of the statements. That is, we prove

• If gsd-exp(u) = true for u ∈ { u‘memb’, u‘conf’, u‘init’ }, then know(c0, ‘epoch’) = true, and

• If gsd-exp(u‘app’) = true, then safe(c0) = false.

166 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Recalling the definition of gsd-exp and the GSD graph created by S ′4-2, for each û ∈ { u‘memb’, u‘conf’, u‘init’, u‘app’ },
we have

gsd-exp(û) ⇐⇒
(
û ∈ Corr

)
∨ gsd-exp(u‘joi’)

⇐⇒
(
û ∈ Corr

)
∨
(
u‘joi’ ∈ Corr

)
∨ gsd-exp(uid,‘joi’) ∨

(
gsd-exp(ucom) ∧ gsd-exp(upar-init)

)
⇐⇒

(
û ∈ Corr

)
∨
(
u‘joi’ ∈ Corr

)
∨
(
uid,‘joi’ ∈ Corr

)
∨
(
((ucom ∈ Corr) ∨ gsd-exp(uid,‘com’)) ∧ gsd-exp(upar-init)

)
⇐⇒ û ∈ Corr· · · Case (A)

∨
(
u‘joi’ ∈ Corr

)
∨
(
uid,‘joi’ ∈ Corr

)
· · · Case (B)

∨
(
(ucom ∈ Corr) ∨ (uid,‘com’ ∈ Corr)

)
∧ gsd-exp(upar-init), · · · Case (C)

where u‘joi’ (resp. ucom) is the GSD node assigned to the joiner (resp. commit) secret at epoch c0, uid,‘joi’ (resp.
uid,‘com’) is the GSD node assigned to an encryption key used to encrypt u‘joi’ (resp. ucom) at c0, and upar-init
is the GSD node assigned to the initial secret at the parent node of c0. Note that Case (C) is evaluated when
c0 is a non-root node because otherwise, the GSD graph starts from u‘joi’. In the following, we analyze Case
(A), Case (B), and Case (C) in order.
[Case (A):

(
û ∈ Corr

)
= true]. û ∈ Corr becomes true when S ′4-2 queries Corr(û). (Note that S ′4-2 never

queries Set-Secret(û, ∗).) By the description of S ′4-2, it queries Corr(û) if (1) a party at c0 is corrupted via
Corruption query; or (2) the committer of c0 is corrupted via Corruption query while it is at the parent
node of c0 (this corresponds to the fact that the committer stores pending commits in pendCom array).

Case (A-1): It immediately implies know(c0, ‘epoch’) = true because Node[c0].exp ̸= ∅ becomes true
when a party at c0 is corrupted. In particular, if the party is corrupted before Key query is issued to
the epoch c0, (∗, true) ∈ Node[c0].exp becomes true. This implies safe(c0) = false.

Case (A-2): When the committer is corrupted while it is at the parent node of c0, the status of the node c0
is set to ‘bad’ (cf. *update-stat-after-exp). This implies know(c0, ‘epoch’) = true and safe(c0) =
false due to Condition (a) of *secrets-injected.

[Case (B):
(
u‘joi’ ∈ Corr

)
∨
(
uid,‘joi’ ∈ Corr

)
= true]. First, u‘joi’ ∈ Corr becomes true when S ′4-2 queries

Corr(u‘joi’) or Set-Secret(u‘joi’, ∗).
Recalling the description of S ′4-2, it issues Corr(u‘joi’) if (1) in the commit protocol, a new member is

added with a malicious key package generated by A; or (2) in the commit protocol, the committer encrypts
the joiner secret at c0 using bad randomness.

Case (B-1): When the adversary succeeds to inject a malicious key package, the signing key used to
generate the key package must be exposed due to the modification we made in Hybrid 4-1. Thus,
due to Condition (a) of *can-traverse, *can-traverse(c0) = true.

Case (B-2): If the committer encrypts the joiner secret, Node[c0].prop contains at least one add proposal. In
addition, the status of c0 is set to ‘bad’ because the committer uses bad randomness. Thus, due to
Condition (c) of *can-traverse, *can-traverse(c0) = true.

It issues Set-Secret(u‘joi’, ∗) if (3) in the create protocol, the group creator initializes the group using bad
randomness; or (4) in the join protocol, a party joins a group that S ′4-2 has not created (i.e., the party assigns
to a detached root).

4.4. Proposed Protocol: Chained CmPKE 167

Case (B-3): When the group creator initialize c0 (= root0) using bad randomness, the status of c0 is set to
‘bad’. Thus, due to Condition (a) of *secrets-injected, know(c0, idcreator) = true. Since c0 is a root
node, due to Condition (d) of *can-traverse, we have *can-traverse(c0) = true.

Case (B-4): When a party joins a group that the adversary creates, the party is assigned to a detached root,
and its status is ‘adv’. Thus, due to Condition (a) of *secrets-injected, know(c0, idc) = true, where
idc is the sender of the welcome message. Moreover, c0 is a root node. Thus, due to Condition (d) of
*can-traverse, *can-traverse(c0) = true.

Next, uid,‘joi’ ∈ Corr becomes true when S ′4-2 queries Corr(uid,‘joi’) or Set-Full-Secret(uid,‘joi’, ∗). Recall-
ing the description of S ′4-2, it issues Corr(uid,‘joi’) if (5) the adversary corrupts the new member idt before
it joins a group; or (6) the encryption key of a new member idt used to encrypt the joiner secret at c0 is
corrupted after epoch c0.

Case (B-5): When the adversary corrupts a member idt before idt joins a group, the signing key used to
generate the key package is marked as exposed (cf. (exposed, idt) query to F IW

KS). Thus, due to
Condition (a) of *can-traverse, *can-traverse(c0) = true.

Case (B-6): This case happens if a party idt holds the same encryption key at both c0 and c′0, where c′0 is a
descendant node of c0, and idt is corrupted at c′0. Since idt is corrupted at c′0, (idt, ∗) ∈ Node[c′0].exp
becomes true, and we have know(c′0, idt) = true. In addition, since idt holds the same encryption
key at both c0 and c′0, idt did not perform any actions that replace idt’s encryption key between c0 and
c′0. Thus, ¬*secrets-replaced(c′′0 , idt) = true for each c′′0 on c0–c′0. Therefore, due to Condition (b) of
*can-traverse, *can-traverse(c0) = true (cf. *reused-welcome-key-leaks).

It issues Set-Full-Secret(uid,‘joi’, ∗) if (7) the key package in the add proposal is generated using bad
randomness.

Case (B-7): When the key package for add proposals is generated using bad randomness, F IW
KS marks that

the signing key is exposed (cf. register-kp query with bad randomness). Thus, due to Condition (a)
of *can-traverse, *can-traverse(c0) = true.

In all cases, if Case (B) is true, then *can-traverse(c0) = true; It implies know(c0, ‘epoch’) = true and
safe(c0) = false.

[Case (C):
(
(ucom ∈ Corr) ∨ (uid,‘com’ ∈ Corr)

)
∧ gsd-exp(upar-init) = true]. We below show that ucom ∈

Corr∨ uid,‘com’ ∈ Corr (i.e., gsd-exp(ucom) = true) implies know(c0, id) = true for some id ∈ Node[c0].mem.
By applying Proposition 4.4.31 to the parent node of c0 (i.e., Node[c0].par), we can show that gsd-exp(upar-init) =
true implies know(Node[c0].par, ‘epoch’) = true. As a result, due to Condition (d) of *can-traverse, if
Case (C) is true, then *can-traverse(c0) = true, which implies know(c0, ‘epoch’) = true and safe(c0) =
false.

First, ucom ∈ Corr becomes true when S ′4-2 queries Set-Secret(ucom, ∗).28 Recalling the description of
S ′4-2, it issues Set-Secret(ucom, ∗) if (1) in the commit protocol, a malicious encryption key generated by A
is used to encrypt the commit secret at c0; (2) in the commit protocol, the committer generates c0 using bad
randomness; or (3) in the process protocol, a party processes an injected commit message.

Case (C-1): This case occurs if the committer of c0 has applied (I) an injected update proposal that contains
a malicious encryption key or (II) an add proposal that contains a malicious key package generated
by A at a previous epoch, and the committer uses the same encryption key to generate c0.

28By definition, S ′4-2 never queries Corr(ucom).

168 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Case (C-1-I): Assume the committer has applied the injected update proposal sent from id at the
node c′0, which is an ancestor of c0 (including the case c′0 = c0). When the adversary suc-
ceeds to inject an update proposal that contains the encryption key generated by the adver-
sary, the corresponding proposal node has the states ‘adv’. Hence, due to Condition (b) of
*secrets-injected, we have know(c′0, id) = true. In addition, if id uses the same encryption key
at both c′0 and c0, id did not perform any actions that replace id’s encryption key between c′0 and
c0. Thus, ¬*secrets-replaced(c′′0 , id) is true for each c′′0 on c′0–c0 path. Therefore, Condition (c) of
know(c0, id) returns true.

Case (C-1-II): Assume the committer has applied the add proposal from id at the node c′0, which
is an ancestor of c0. When the adversary succeeds to inject a key package that contains a
malicious encryption key, the signing key used to generate the key package must be exposed
due to the modification we made in Hybrid 4-1 (or Hybrid 5-1). Hence, due to Condition (c) of
*secrets-injected, we have know(c′0, id) = true. In addition, since id uses the same encryption
key at both c′0 and c0, id did not perform any actions that replace id’s encryption key between c′0
and c0. Thus, ¬*secrets-replaced(c′′0 , id) is true for each c′′0 on c′0–c0 path. Therefore, Condition
(c) of know(c0, id) returns true.

Case (C-2): If the committer generates c0 using bad randomness, the status of c0 is set to ‘bad’. Thus, due
to Condition (a) of *secrets-injected, know(c0, idc) = true.

Case (C-3): Due to the modification we made in Hybrid 4-2 (cf. Einj-c-2), if the node c0 is created by the
process protocol, both gsd-exp(upar-init) = true and gsd-exp(ucom) = true hold. Moreover, the
status of c0 is set to ‘adv’. Thus, due to Condition (a) of *secrets-injected and Condition (d) of
*can-traverse, know(c0, ‘epoch’) = true and safe(c0) = false always hols in this case.

Next, uid,‘com’ ∈ Corr becomes true if S ′4-2 queries Corr(uid,‘com’) or Set-Full-Secret(uid,‘com’, ∗). S ′4-2
issues Corr(uid,‘com’) if (4) a party id is corrupted via Corruption query while it holes the encryption key
uid,‘com’; or (5) id issues an update proposal at the parent node of c0 and id is corrupted before processing
the commit message c0 (this corresponds to the fact that id stores the pending update proposals including
encryption keys in pendUpd array).

Case (C-4): Assume id is corrupted at epoch c′0. That is, (id, ∗) ∈ Node[c′0].exp is true. In addition, since
party id uses the same encryption key uid,‘com’ at c0, id does not perform any actions that replace id’s
encryption key between c0 and c′0. Thus, ¬*secrets-replaced(c′′0 , id) is true for each c′′0 on c′0–c0 or
c0–c′0 path. Due to Condition (c) or (d) of know(c0, id), we have know(c0, id) = true.

Case (C-5): If id is corrupted at the parent node of c0, the status of the corresponding proposal nodes
stored in pendUpd array is set to ‘bad’ (cf. *update-stat-after-exp). Thus, due to Condition (b) of
*secrets-injected, we have know(c0, id) = true.

Set-Full-Secret(uid,‘com’, ∗) was queried to uid,‘com’ if (6) the committer of c0 applied an update pro-
posal from id generated with bad randomness and uses the same encryption key at c0 or (7) the committer
applied an add proposal from id generated with bad randomness and uses the same encryption key at c0.

Case (C-6): Assume id issues an update proposal using bad randomness and the committer applies it at
epoch c′0. At the epoch, S ′4-2 issues Set-Full-Secret(uid,‘com’, ∗) during key package generation, and
due to Condition (b) of *secrets-injected, know(c′0, id) is true. In addition, since party id uses the
encryption key uid,‘com’ at c0, id does not perform any actions that replace id’s encryption key between

4.4. Proposed Protocol: Chained CmPKE 169

c0 and c′0. Thus, ¬*secrets-replaced(c′′0 , id) is true for each c′′0 on c′0–c0 path. Due to Condition (d) of
know(c0, id), we have know(c0, id) = true.

Case (C-7): Assume id added a group at epoch c′0 using an add proposal generated with bad randomness.
When the key package was generated, S ′4-2 issues Set-Full-Secret(uid,‘com’, ∗), and due to Condition
(c) of *secrets-injected, know(c′0, id) is true. In addition, since party id uses the encryption key uid,‘com’
at c0, id does not perform any actions that replace id’s encryption key between c0 and c′0. Thus,
¬*secrets-replaced(c′′0 , id) is true for each c′′0 on c′0–c0 path. Due to Condition (d) of know(c0, id), we
have know(c0, id) = true.

In all cases, know(c0, id) = true for some id ∈ Node[c0].mem. Therefore, if gsd-exp(upar-init) = true

holds additionally, Case (C) implies know(c0, ‘epoch’) = true and safe(c0) = false.

From the above discussion, we obtain the following statements.

• If know(c0, ‘epoch’) = false, then gsd-exp(u) = false for u ∈ { u‘memb’, u‘conf’, u‘init’ }.

• If safe(c0) = true, then gsd-exp(u‘app’) = false.

Now we ready to prove Lemma 4.4.32.

Lemma 4.4.32. Hybrid 4-3 and Hybrid 4-4 are identical.

Proof. The difference between Hybrid 4-3 and Hybrid 4-4 is that in Hybrid 4-4 we use the original
auth-invariant predicate and the functionally FCGKA,4 halts if auth-invariant returns false. We show
that the simulator S4-4 never creates history graph nodes such that auth-invariant returns false, that is,
FCGKA,4 never halts. We consider Condition (a) and Condition (b) of auth-invariant in order.
Condition (a) of auth-invariant. We first show that, for all non-root node c0 in the history graph created
by S4-4, if Node[c0].stat = ‘adv’, then mac-inj-allowed(cp) = true, where cp := Node[c0].par (non-root
implies cp ̸= ⊥). By the definition of the functionality, a non-root commit node c0 with status ‘adv’ is
created when (1) an existing detached root is attached to a commit node generated by the commit protocol
using bad randomness; or (2) the commit node is created by the process protocol. On the other hand,
(1) S4-4 aborts when an existing detached root will be attached to a commit node generated using bad
randomness if gsd-exp(upar-init) = false (cf. abortattach); and (2) S4-4 always rejects the injected commit
message c0 in the process protocol if gsd-exp(upar-init) = false (cf. Einj-c-1). Here, upar-init is the GSD
node assigned to the initial secret at the parent epoch of c0. Thus, commit nodes with status ‘adv’ are
created only if gsd-exp(upar-init) = true. Moreover, due to Proposition 4.4.31, if gsd-exp(upar-init) = true,
then know(cp, ‘epoch’) = true, i.e., mac-inj-allowed(cp) = true. Therefore, commit nodes with status
‘adv’ are created only if mac-inj-allowed(cp) = true. In other words, there exists no node c0 such that
Node[c0].stat = ‘adv’ and mac-inj-allowed(cp) = false in the history graph created by S4-4.
Condition (b) of auth-invariant. We next show that, for all proposal node p in the history graph, if
Prop[p].stat = ‘adv’, then mac-inj-allowed(cp) = true, where cp := Prop[p].par (by definition, cp al-
ways non-⊥). By the definition of the functionality, a proposal node with status ‘adv’ is created if
a proposal message is not generated by the propose protocol. On the other hand, if a received pro-
posal is not generated by the propose protocol and gsd-exp(u‘memb’) = false, the commit and pro-
cess protocol always outputs ⊥ (i.e., rejects the message), where u‘memb’ is the GSD node assigned to
the corresponding membership key at cp. In other words, proposal nodes with status ‘adv’ is created

170 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

only if gsd-exp(u‘memb’) = true. Moreover, due to Proposition 4.4.31, if gsd-exp(u‘memb’) = true, then
know(cp, ‘epoch’) = true, i.e., mac-inj-allowed(cp) = true. Therefore, proposal nodes with status ‘adv’
are created only if mac-inj-allowed(cp) = true. In other words, there exists no proposal node p such that
Prop[p].stat = ‘adv’ and mac-inj-allowed(cp) = true in the history graph created by S4-4.

From the above discussion, S4-4 never creates history graph nodes such that auth-invariant returns
false, i.e., the functionality never halts. Thus, Hybrid 4-3 and Hybrid 4-4 are identical.

From Hybrid 5 to 6: Lemma 4.4.33. In Hybrid 6, receiving Key query, the functionality FCGKA returns a
random application secret if safe is true for the queried epoch. To prove the indistinguishability of the two
hybrids, we gradually replace each application secret with a random value instead of the real value if safe
is true. We show that, if Z can distinguish whether the application secret is real or random, it can be used
to break the Chained CmPKE conforming GSD security of CmPKE. In other words, if CmPKE is Chained
CmPKE conforming GSD secure, Hybrid 5 and Hybrid 6 are indistinguishable. We below provide formal
proof of the above overview.

Lemma 4.4.33. Hybrid 5 and Hybrid 6 are indistinguishable assuming CmPKE is Chained CmPKE conforming
GSD secure.

Proof. We assume Z creates at most Q epochs (i.e., commit nodes). To show Lemma 4.4.33, we consider the
following sub-hybrids between Hybrid 5 and Hybrid 6.

Hybrid 5-0. This is identical to Hybrid 5. We use the functionality FCGKA,5, and all application secrets are
set to the real value by the simulator S5-0 := S5.

Hybrid 5-i. i runs through [Q]. The simulator S5-i is defined exactly as S5-(i−1) except that it sets the i-th
application secret to random if safe is true. Note that we count application secrets in the order
in which Key query is issued. We show in Lemma 4.4.34 that Hybrid 5-(i− 1) and Hybrid 5-i are
indistinguishable.

Hybrid 6. We replace the functionality FCGKA,5 with the original functionality FCGKA. In this hybrid, all
application secrets such that safe is true are set to random by FCGKA. From Z ’s point of view, Hybrid
5-Q and Hybrid 6 are identical because the only difference is who sets application secrets to random.

The indistinguishability between Hybrid 5-0 and Hybrid 5-Q is derived by applying Lemma 4.4.34 for
all i ∈ [Q]. Therefore, we conclude that Hybrid 5 and Hybrid 6 are indistinguishable.

Lemma 4.4.34. Hybrid 5-(i − 1) and Hybrid 5-i are indistinguishable assuming CmPKE is Chained CmPKE
conforming GSD secure.

Proof. The difference between Hybrid 5-(i − 1) and Hybrid 5-i is whether the i-th application secret is
real or random if safe is true. We show if Z can distinguish the two hybrids, there exists an adversary B
against the Chained CmPKE conforming GSD game. We first explain the description of B. We then show
the validity of the GSD challenge and finally evaluate B’s advantage.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution of each party as in S ′4-2,

except that B interacts with its GSD challenger instead of SGSD. B embeds the GSD challenge in the i-th
application secret as follows: Assume Z issues Key query to id and c0 = Ptr[id] is the j-th to be queried Key.

• If safe(c0) = true and j < i, B returns the random value.

4.5. More Efficient Lattice-Based mPKEs 171

TABLE 4.6: Bandwidth costs of mPKEs derived from existing parametrizations
(gray background) and new ones (white background), for κ = 128 bits of classical secu-
rity. Standard (single-recipient) PKE instantiations of existing schemes may include a seed in
the encryption key or a confirmation hash in the ciphertext (in parentheses).

Scheme Reference |ek| |ct0| |ĉti|
Kyber512 [Sch+20] 768 (+32) 640 128
Ilum512 Section 4.5 768 704 48
LPRime653 [Ber+20] 865 (+32) 865 (+32) 128
LPRime757 Section 4.5 1076 1076 32
Frodo640 [Nae+20] 9600 (+16) 9600 120
Bilbo640 Section 4.5 10240 10240 24
SIKEp434 [Jao+20] 330 330 16

• Else if safe(c0) = true and j = i, B queries s‘app’ := Chall(u‘app’) and returns the challenge value
s‘app’, where u‘app’ is the GSD node corresponding to the application secret of c0.

• Else, B returns the real application secret (if necessary, B corrupts the corresponding GSD node
u‘app’).

Observe that, if safe(c0) = false for the i-th application secret, the challenge is not embedded. In this case,
the two hybrids proceed exactly the same.

We consider the case B embedded the GSD challenge. We argue the GSD challenge is valid. Observe that
the GSD graph is acyclic and the challenge node u‘app’ is a sink node. In addition, due to Proposition 4.4.31,
safe(c0) = true implies gsd-exp(u‘app’) = false. Thus, u‘app’ is a valid challenge node.

We finally analyze B’s advantage. If the challenge oracle returns the real value, Z ’s view is identical to
Hybrid 5-(i− 1); else, i.e., the challenge oracle returns a random value, Z ’s view is identical to Hybrid 5-
i. Hence, if Z distinguishes Hybrid 5-(i − 1) and Hybrid 5-i with non-negligible probability, B wins
the GSD game with non-negligible probability by using Z ’s output. This contradicts the assumption
that CmPKE is Chained CmPKE conforming GSD secure. Therefore, Hybrid 5-(i− 1) and Hybrid 5-i are
indistinguishable.

4.5 More Efficient Lattice-Based mPKEs

To maximize the bandwidth savings of Chained CmPKE we must reduce |ĉti| as much as possible. Indeed,
see Table 4.1, where the “Ours” row is only less performant than another in one column, namely Upload
|ĉti|. Therefore, in this section we outline the methods employed to achieve this. We adapt several PKEs
from the literature to mPKEs, specifically PKEs which underly KEMs that are either finalists or alternative
finalists of the final round of the NIST PQC process [Ala+20]. Throughout this section we only consider
IND-CPA mPKEs, and use the notation of Definition 2.9.1. For the needs of the protocol in Section 4.4, these
can be converted into IND-CCA CmPKEs with a small overhead using Theorem 4.2.7.

We start from the construction of [Kat+20], reproduced in Figure 4.26, which adapts the Lindner–
Peikert framework [LP11] to the mPKE setting. As observed by [Kat+20], Figure 4.26 can be readily applied

172 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

mSetup(1κ)

1 : A←$ Rn×n
q

2 : return pp := A

mGen(pp)

1 : S←$ Dn×n̄
s

2 : E←$ Dn×n̄
e

3 : B← AS + E
4 : return ek := B, dk := S

mEnc(pp, (eki)i∈[N],m)

1 : r0 := (R, E′)←$ Dm̄×n
s × Dm̄×n

e′

2 : ct0 := mEnci(pp; r0)
3 : foreach i ∈ [N] do

4 : ri := E′′i ←$ Dm̄×n̄
e′′

5 : ĉti := mEncd(pp, eki,m; r0, ri)
6 : return c⃗t := (ct0, ĉt1, . . . , ĉtN)

mDec(sk, ct)

1 : return m := Decode(V−US)

mEnci(pp; r0)

1 : U← RA + E′

2 : return ct0 := U

mEncd(pp, eki,m; r0, ri)

1 : Vi ← RBi + E′′i + Encode(m)

2 : return ĉti := Vi

FIGURE 4.26: Lattice-based mPKE construction of [Kat+20]. R is the base ring, Ds, De, De′ , De′′

are distributions over R.

to the (possibly alternative) finalists FrodoKEM [Nae+20], Kyber [Sch+20], NTRU LPRime [Ber+20] and
Saber [DAn+20]. We take this one step further and propose new parametrizations of [Nae+20; Sch+20;
Ber+20] that are tailored to the mPKE setting. At the cost of less than a 20% increase in |ek|+ |ct0|, we
reduce |ĉti| by 60–80%. Since the size of an uploaded package is asymptotically ∼ |ĉti| · N, we view this
trade-off as favorable.

This section is arranged as follows. In Section 4.5.1, we review the techniques that one can leverage
to minimize |ĉti|. Then in Section 4.5.2 we provide new parametrizations of [Nae+20; Sch+20; Ber+20].
Finally, Section 4.5.3 details our cryptanalytic model, and provides security estimates for our parameter
sets in this model.

4.5.1 Our Toolkit for Improving Efficiency

We review the known techniques at our disposal to minimize the size of the (ĉti)i while increasing as
little as possible the sizes of ek and ct0, and maintaining security against known attacks. The coefficient
dropping and modulus rounding techniques are already present in [Ber+20] and [Sch+20] respectively.
Concretely, for modulus rounding we will focus on the Compress and Decompress functions of [Sch+20]. By
more or less rounding, we mean a smaller or larger d in the definition of those functions, respectively. We
note that modulus rounding techniques can be applied to the original parametrizations of [Nae+20], but
save little in the |ek|+ |ct0|+ |ĉti| (i.e., single recipient) metric. We revisit these techniques in light of the
new constraints imposed by the mPKE setting, which in turn leads to new parameter sets. Throughout we
reference Figure 4.26.

We note that the ciphertexts of some PKEs and mPKEs based on lattices have a small probability of
decrypting to a different message than was initially encrypted. The probability of this occuring is called the
decryption failure rate, or DFR. Keeping the DFR low, specifically O(2−κ), is important for both correctness
and security; we discuss it more in Section 4.5.3.
Coefficient Dropping. When trying to decode a message m from (U, Vi) using S, not all of Vi may be
necessary. Indeed let R = Z[x]/(f), d = deg(f), I < d, and n̄ = m̄ = 1. If Encode(m) = αI−1xI−1 + · · ·+ α0
then only the I lower order coefficients of Vi are useful for decoding. In general, if f is any degree d
polynomial and one requires I < d coefficients to encode any m, then Vi may consist of only low degree

4.5. More Efficient Lattice-Based mPKEs 173

coefficients of a single v ∈ Rq. This technique does not affect the DFR, improves efficiency, and cannot be
worse for security.
Modulus Rounding. Rounding away the least significant bits of B, U, and Vi provides more compact
ek, ct0 and ĉti (respectively), but mechanically raises the DFR. Our goal is to minimize the size of ĉti, so
we will maximize the rounding on Vi, while upper bounding the DFR. To do so we may round fewer bits
from B or U to give us more DFR headroom. Thankfully, all else being equal, rounding Vi incurs a milder
increase in the DFR than on B or U. It also makes the numerous samples introduced by the (Vi)i noisy
enough to nullify Arora–Ge and BKW attacks, see Section 4.5.3.
Increasing the Modulus. All else being equal, increasing the modulus q reduces the DFR and therefore
allows one to perform more rounding. If this extra rounding is concentrated on the (Vi)i, the net effect on
the size of each ĉti is to decrease it. On the other hand, it slightly increases the size of ct0 and ek and, more
importantly, decreases the error rate, making lattice attacks more efficient.
Error-Correcting Codes (ECCs). Whenever in Figure 4.26 we want to encrypt κ bits, for κ < |m|, we can
use an ECC, i.e. Encode(m) = Encode(ECC(κ)), and lower the DFR. However, this method can lead to
attacks when improperly implemented [DAn+19] or analyzed [GJY19; DVV19]. In addition, if the goal is to
minimize |ĉti|, then coefficient dropping seems to always be a safer and more efficient alternative. Hence
we will not employ ECCs.

4.5.2 New Parametrizations

Given the methods outlined in Section 4.5.1, we make a number of alterations to the NIST Level I parameters
of FrodoKEM, Kyber, and NTRU LPRime. In each case we maintain the spirit of the original design by
e.g. keeping unique features. In all cases the new schemes satisfy the cryptanalytic model specified
in Section 4.5.3, see also Table 4.10 for concrete security estimates against a number of attacks.

Note that the number of bits of shared secret encoded in V differs in these KEMs; Frodo640 encodes 128,
whereas all parameter sets of Kyber and NTRU LPRime encode 256. For the purpose of fair comparison, in
all cases we encode 128 bits. We note that in the case of Ilum512 and LPRime757, encoding 128 bits rather
than 256 automatically reduces |ĉti| from 128 bytes to 64. Reductions below this size are a result of the
techniques outlined in Section 4.5.1.

More subtle changes are discussed in Section 4.5.3, we briefly present them in this paragraph. For each
scheme we give a table comparing (in the notation of the original scheme) the old and new parameter sets.
We also give a dictionary of the form {Figure: value}, where Figure is a parameter from Figure 4.26
and value either comes from the relevant table or is defined in prose. The tables and descriptions of De′

and De′′ in this section do not reflect wider error distributions implied by modulus rounding. We also
discuss the effect of modulus rounding on security and decryption failures in Section 4.5.3. The savings
achieved by our new parametrizations are given in Table 4.6.
Kyber. We introduce a new parameter set, Ilum512. We apply one less bit of rounding to U, and one more
to V. We also drop coefficients from V, see Table 4.7. Although altering q allowed other parametrizations,
ring arithmetic over Rq consistently represents a significant fraction of the effort involved in providing
embedded implementations of Kyber [Alk+20; XL21]. Keeping the same ring Rq as Kyber helps make
Ilum512 fast and easy to deploy. Letting Bη be the binomial distribution over R defined in [Sch+20], we
have {R : Z[x]/(x256 + 1), n : k, q : q, n̄ = m̄ : 1, Ds = De : Bη1 , De′ = De′′ : Bη2}.
FrodoKEM. We introduce a new parameter set, Bilbo640. Compared to Frodo640, Bilbo640 introduces
aggressive rounding on V, which has a positive effect on both the bandwidth cost and the security. To
mitigate the effect on the DFR, we increase q to 216. We use a slightly larger new error distribution, χBilbo640,

174 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

TABLE 4.7: Parameter sets of Kyber512 and Ilum512, using the notation of [Sch+20], we drop
n− I coefficients.

Scheme n k q η1 η2 du dv I

Kyber512 256 2 3329 3 2 10 4 256
Ilum512 256 2 3329 3 2 11 3 128

TABLE 4.8: Parameter sets of Frodo640 and Bilbo640, using the notation of [Nae+20], plus
b/s to denote the random bits needed to sample an integer coefficient, and {DB,DU,DV} to
denote the bits/coefficient in {B, U, V} (instead of a common D in [Nae+20]).

Scheme n DB DU DV σ B I m̄ n̄ b/s

Frodo640 640 15 15 15 2.8 2 128 8 8 16
Bilbo640 640 16 16 3 2.9 2 128 8 8 32

which requires 32 bits of randomness per sample, see Table 4.8. We have {R : Z, n : n, q : 216, n̄ : n̄, m̄ :
m̄, Ds = De = De′ = De′′ = χBilbo640}.
NTRU LPRime. We introduce a new parameter set, LPRime757. We reduce the number of bits per entry of
V from 4 to 2, and must increase the modulus, and decrease the weight, to account for this, see Table 4.9.
The authors of NTRU LPRime [Ber+20] place a great emphasis on having (xp − x− 1) irreducible in Zq and
a DFR equal to zero. This is also the case for LPRime757.

We slightly alter the rounding function Top to Top′ which maintains perfect correctness while allowing
us a larger weight than otherwise, see Section 4.5.3. We keep the original Right. As NTRU LPRime uses
rounding for its errors the syntax of Figure 4.26 is not strictly correct, and we will report the errors induced
by rounding. Let Short define the distribution that samples uniformly from the set Short of [Ber+20], let X
assign probability (q− 1)/3q to ±1 and (q + 2)/3q to 0, and let Y denote the probability mass function for
a particular error value Right(Top′(C))− C over all C ∈ Zq. We have {R : Z[x]/(xp − x− 1), n = n̄ = m̄ :
1, q : q, Ds : Short, De = De′ : X, De′′ : Y}.
A Note on Isogeny-Based mPKEs. One of our instantiations of Chained CmPKE uses a mPKE variant of
SIKE proposed in [Kat+20]. Bandwidth-wise, it seems asymptotically optimal, as ĉti is κ bits. Security-wise,
[Kat+20] provides a security reduction to the SSDDH problem [FJP14], with a loss of 1/N in the advantage.
This security loss is minimal: concretely, it means that using mPKE-SIKE with N recipient loses at most

TABLE 4.9: Parameter sets of LPRime653 and LPRime757, using the notation of [Ber+20]. We
drop p− I coefficients from V.

Scheme p q w δ τ I

LPRime653 653 4621 252 289 16 256
LPRime757 757 7879 242 2001 4 128

4.5. More Efficient Lattice-Based mPKEs 175

⌈log N⌉ bits of security compared to one recipient, which is small even for large groups. A downside of
using SIKE is its slower running time, see Figure 4.29.

4.5.3 Cryptanalysis in the mPKE setting

In this section, we describe our cryptanalytic model, how it differs from a more standard cryptanalytic
model for PKEs, and how we incorporate parts of the cryptanalysis of the schemes for which we have
provided alternative parametrizations in Section 4.5.2. At a high level, the main difference is the availability
in the mPKE setting of many additional ‘samples’ (see below) to an adversary from the N − 1 ciphertexts
ĉti.

In the PKE setting N = 2, whereas we consider up to N = 216 in the mPKE setting. The number
of extra available samples becomes considerable when taking N = 216. For example, an adversary
attacking Frodo640 has 640 + 8 = 648 samples available for a row of R in the PKE case. This becomes
640 + 8 · (N − 1) ≈ 219 in the N = 216 Bilbo640 case, though these extra samples have different properties
to the original 640 in our new parametrization. In particular, they have much larger errors, due to the
modulus rounding.

Nonetheless, these extra samples require us to consider two attacks that are usually absent from concrete
security analyses of lattice PKEs, namely the sample-heavy Arora–Ge and BKW style attacks.

We first describe the number of samples available to an adversary in more detail, and the error
these samples have. We then describe the three attacks we are considering, following broadly from the
cryptanalysis present in several NIST final round lattice candidates, but adding Arora–Ge and BKW style
attacks. After this, in Section 4.5.3 we describe our cryptanalytic model, which targets NIST Security Level
I. A scheme satisfying this definition of security should have security comparable to AES-128, both against
classical and quantum adversaries. Finally, we discuss in more depth the following aspects of our new
parametrizations; any subtle algorithmic changes beyond the reparametrizations, any ways in which our
cryptanalysis significantly differs from what is present in their respective submission documents, and
where we have opted to incorporate parts of their individual cryptanalyses. We reference Figure 4.26
throughout, and in particular let R = Z[x]/(f) and d = deg(f), noting that we can recover Bilbo640 by
setting f (x) = x.

Samples and Attacks

Samples. We talk of two distinct types of samples, a sample for S or a sample for R. (See Figure 4.26).
The number of samples given for (a single column of) S is d · n, and they come from B. Only Bilbo640 has
n̄ > 1, and these extra columns of S can be accounted for by a hybrid argument. We can similarly count the
samples for R. The number of samples given for (a single row of) R is d · n from U and d · n̄− C from V.
Here C represents the number of coefficients dropped, so in particular d · n̄− C is 128 for LPRime757 and
Ilum512, and 8 for Bilbo640. Again it is only Bilbo640 for which m̄ > 1, and a similar hybrid argument can
account for these extra rows of R. The error for a sample is given by the appropriate choice from De, De′

and De′′ , for samples from B, U and V respectively, plus any modulus rounding that may be applied to U
or V. Note that, for NTRU LPRime, all errors come from rounding, so there is no ‘extra’ modulus rounding.

We consider up to N = 216 users and reevaluate the following attacks; primal lattice, Arora–Ge with
Gröbner bases, and Coded BKW. This value of N comes from [Oma+21, §2.4], i.e. we have chosen the
smallest power of 2 such that N ≥ 50000. For all three of these attacks, the standard deviations of the
distributions from which errors and secrets are sampled play an important role, and we summarize them
in Table 4.11. Our scripts to estimate the complexity of these attacks, along with various other tasks, are

176 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

available at https://anonymous.4open.science/r/chained-cmpke-2C20/README.md. These scripts make
use of the lwe-estimator,29 an automated estimator based on [APS15], for the Arora–Ge and BKW style
attacks. For the primal lattice attack, we make use of the leaky-LWE-estimator,30 see the Primal Attack
paragraph below. We do not consider the dual lattice attack for the same reasons as argued in [Sch+20,
§5.2.1], that is, the assumptions that make it competitive with the primal lattice attack in the core-SVP model
are not compatible with recent advances in lattice sieving, i.e. the dimensions for free techniques [Duc18],
used in the ‘Beyond core-SVP hardness’ model. We use this latter model in our primal lattice attack
estimation. We also do not, beyond their inclusion in the NTRU LPRime estimation script,31 consider
hybrid attacks. In particular, we do not consider them against either Bilbo640 or Ilum512, as [Nae+20;
Sch+20] do not consider them against either FrodoKEM or Kyber. A common theme throughout will be,
though an adversary against mPKEs is granted a large number of extra samples, these extra samples
are less useful than the majority of samples an adversary against an ordinary PKE would also receive,
namely the d · n from either B or U. Indeed, by a serendipitous turn of events, our desire to minimize |ĉti|
also minimizes the usefulness of these extra ciphertexts from a cryptanalytic perspective. For example,
performing more rounding on these ciphertexts increases their error, and performing as much coefficient
dropping as possible reduces their number; the hope is that the potential new avenues for cryptanalysis
are nullified by these facts.
Primal Attack. The primal attack embeds [Kan87; BG14] a vector containing the error, and possibly also the
secret, of an LWE or NTRU instance as a unique short vector in a lattice. It then applies lattice reduction to
retrieve this vector. The primal attack requires a small number of samples and can therefore be used against
either S or R. In particular the optimal primal attack requires some linear multiple cp · d · n of samples, and
typically cp ∈ [1, 2]. We will use the methodology espoused in [Nae+20; Sch+20] for the primal attack. This
uses the NIST-round3 branch of the leaky-LWE-estimator, an implementation of [Dac+20] which studies
the probabilistic behavior of the primal attack. In the case of attacking S we have d · n samples from B,
i.e. cp = 1. In the case of attacking R we have d · n samples from U and numerous samples from the Vi.
Due to our heavy rounding on the Vi, the errors are far larger than those on U after rounding, see σr(e′)
and σr(e′′) in Table 4.11 for their respective standard deviations. To be conservative while using the above
primal attack methodology we use the smaller σr(e′) for all ciphertext errors when attacking R. We increase
the number of samples available until the complexity estimate converges, which always occurs for cp < 2,
and take the ‘Attack Estimation via simulation + probabilistic model’ estimate. If we fix cp = 1, that is, use
only the samples from U, then our estimates increase by less than a factor of two; in short the primal attack
makes effectively no use of the extra samples afforded to it in our setting, even if we artificially assume
they have much narrower errors. Our adaptation of the NIST-round3 branch outputs both classical and
quantum gate counts using the estimated values for lattice sieves given in [Alb+20].
Coded BKW. The BKW style of attacks against LWE originates from the first subexponential time algorithm
against the LPN problem [BKW00]. They add samples together in such a way that the dimension of
the instance is iteratively decreased, while keeping the error small enough to solve the final instance,
for a practical explanation in the LWE case see [Alb+15b]. The BKW style attacks are sample-heavy,
requiring super-polynomially many samples in d · n. There are methods [Bud+20, §3.3] in the literature
used to form new samples from already known samples, and some experimental evidence on small
dimensional instances suggesting the increase in the number of samples required is small when these
‘sample amplification’ techniques are used [GMW21, p. VI]. We note that these results say that the number

29https://bitbucket.org/malb/lwe-estimator/src/master/.
30https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3.
31https://ntruprime.cr.yp.to/estimate-20200927.sage.

https://anonymous.4open.science/r/chained-cmpke-2C20/README.md
https://bitbucket.org/malb/lwe-estimator/src/master/
https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3
https://ntruprime.cr.yp.to/estimate-20200927.sage

4.5. More Efficient Lattice-Based mPKEs 177

of samples required does not grow too much when sample amplification techniques are used, not that
the complexity of the attack remains the same. This is discussed more below. In any case, it is standard
not to consider BKW style attacks when attacking S. In the case of attacking R in an mPKE the picture
becomes somewhat more mixed. We have d · n samples from U with error standard deviation σr(e′) and
(N − 1) · (d · n̄− C) samples from the Vi with a larger error standard deviation σr(e′′). Again, in the PKE
case where N = 2, it is standard to assume that this is not enough samples to perform a BKW style attack.
However, for larger N this number of samples may be sufficient, and as such a BKW adversary may use
some combination of these samples with different errors. We, therefore, report the estimates given by the
lwe-estimator for the cost of the Coded-BKW [GJS15] attack assuming first that the adversary has access to
unlimited samples ‘from U’, and second that the adversary has access to unlimited samples ‘from the Vi’,
and assume that the cost for Coded-BKW lies somewhere between these estimates.

In general, there is limited experimental data on the performance of the numerous BKW variants
against LWE, especially on medium-sized instances. Theoretical works focus on parametrizations that use
standard deviations well above what is seen in practical schemes and assume infinitely many fresh samples,
although BKW does perform favorably to lattice attacks in asymptotic settings [HKM18; Guo+19]. We also
note that there have been some improvements to BKW style attacks since Coded-BKW. In particular, there
has been Coded-BKW with sieving [Guo+17], which also allows quantum speedups to be incorporated
during the sieving subroutine and a number of other improvements [Bud+20]. The above and the lack of
publicly accessible estimation scripts for these new approaches make it difficult to precisely cost this attack
against the parametrizations we suggest. We will appeal to the limited simulated and experimental results
of the most recent practical study [Bud+20], namely Table 2 and Table 3, respectively. In Table 2 we see
the primal attack remaining the most efficient for all simulated parameters in the low error rate setting, in
particular for α = σ/q = 0.005. If we restrict the primal attack to using only the samples from U then the
highest error rate of our three parametrizations is 1.18/3329, more than an order of magnitude smaller. We
recall that the primal attack makes effectively no use of samples from the Vi. We also note that the BKW
complexities estimated here assume access to an unlimited amount of samples. Looking at experimental
data, the required number of samples from [Bud+20, Tab. 3] suggests that significant sample amplification
would be required, e.g. for the (n, α) = (40, 0.005) case with 40 available samples from U, one is required
to combine 6-tuples of samples as in [Bud+20, §3.3] to receive the required 45000000 samples. When
assuming an unbounded number of fresh samples [Bud+20, Tab. 3] reports that attacking these parameters
takes 12 minutes. The same work reports on solving the same instance, but is limited to 1600 samples.32

They therefore only need to take triples of samples to receive the required number and report on some
subtle difficulties encountered when creating enough triples of the correct form. This attack using triples
for their sample amplification is reported to take over 3 hours. This increase in time complexity can be
explained by an increase in the error standard deviation by a factor of

√
3 due to the sample amplification.

We note the experiments of [GMW21, p. VI] mentioned earlier lowered the error standard deviation by this
factor before performing sample amplification to examine the effect on the required number of samples in
isolation. In the more realistic setting of an adversary receiving d · n samples from U, and therefore having
to perform more sample amplification, we assume the complexity increase will be greater still.

In conclusion, depending on the relative sizes of σr(e′) and σr(e′′) an adversary will choose to perform a
certain amount of sample amplification on the samples from U, and potentially subsequently use samples
from the Vi. In either case, we expect the estimate we produce for an adversary given unlimited samples
‘from U’ will be an underestimate of the complexity of a BKW-style attack. In general, more experimental

32This value is n2 and comes from https://www.latticechallenge.org/lwe_challenge/challenge.php. It does not repre-
sent a lattice scheme.

https://www.latticechallenge.org/lwe_challenge/challenge.php

178 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

work is needed to understand the performance of BKW variants in medium-sized instances, using limited
numbers of samples. We also note that the practical implications of sample amplification techniques in the
ring setting [Sta20], or whether the rounding we apply affects the algebraic structure they use, have not
been investigated.
Arora–Ge with Gröbner Bases. The Arora–Ge attack [AG11] is a linearization attack that, by knowing the
support of the error distribution, is able to create a linear system such that part of the solution encodes the
secret. It then attempts to solve this linear system, in the original work by matrix inversion, and in the
work that followed [Alb+15a] by using Gröbner bases. The best known Arora–Ge style attacks require a
superlinear number of samples [Alb+15a] in d · n, even in the case of the bounded error, and therefore can
only be used against R. The complexity of the linear system to be solved is very sensitive to the support
size of the error distributions being considered, intuitively explaining why our heavily rounded extra
samples do not give us a practical attack. We again use the lwe-estimator and can take into account the
differences between the errors of ct0 and the ĉti. If an adversary uses M of its available samples with error
from some distribution D, we calculate the expected number e of distinct elements of Supp(D) that are
sampled in these M samples. We assume the adversary can guess with probability one which e elements
of Supp(D) have been sampled, and restrict the support of the error distribution to have size e for this
estimate, making the attack cheaper. We always assume the adversary will use all the samples from B and
U, and then increase the number of samples used from the Vi, reporting the lowest complexity. For our
parametrizations the most efficient Arora–Ge adversary uses very few of the samples available from the Vi,
in particular never more than those given in N = 3 users case. In the case of Frodo640, where there is no
rounding on the Vi, the most efficient Arora–Ge attack makes use of all the samples available from N = 216

users. While it is still secure against the attack (the estimated complexity is 23193), it shows the positive
effect that rounding the modulus, and therefore increasing the size of the error support, has against the
Arora–Ge attack. To make this effect more extreme we give an artificial ‘Kyber like’ parameter set which
is Kyber512 except Ds = De = B2, De′ = De′′ = B1 and somehow the implementer forgets to include any
modulus rounding. We of course stress that these are not parameters suggested in [Nae+20], and even if
they were, they would not have been suggested for the mPKE setting. Even so, these parameters are almost
secure under our primal attack estimation methodology, at an estimated 2133 classical gates. It might be
that hybrid attacks are relevant for these parameters, but assuming they are in a similar ballpark, then our
Arora–Ge estimate, which suggests a complexity of 262, is far cheaper. Again, it uses all possible samples
from the Vi as they have no modulus rounding, and shows in theory the necessity of a cryptanalytic model
tailored to the mPKE setting.

The Cryptanalytic Model

Here we introduce the requirements we make for an mPKE scheme to be called secure. It is effectively the
same model that NIST laid out in their call for proposals [NIS17] but we take into account sample-heavy
attacks, and the impact of having many more samples than usual, as described above.
Cost of Attacks. We require an mPKE to be parametrized such that none of the attacks listed above give
costs (whether in gate count, or in the ‘ring operations’ reported by the lwe-estimator) of less than 2143

classically, and 2117 quantumly (where appropriate).
These gate counts are from [NIS17] and [Jaq+20]. Indeed, for Security Level I, [NIS17] requires 2143

classical gates, and, using the updated values of [Jaq+20, Tab. 12] requires 2117 quantum gates. We note
the strange phenomenon that the lower the MAXDEPTH allowed to a quantum computer, the harder
the quantum gate count requirement becomes to satisfy. This follows from the poor parallelizability of
quantum search, and therefore the more constrained the depth of quantum computation, the more it must

4.5. More Efficient Lattice-Based mPKEs 179

TABLE 4.10: Security estimations of each scheme against well-known attacks. All values are
given as log base 2. The columns P-S-c, P-S-q, P-R-c, and P-R-q represent the classical primal
attack against S, the quantum primal attack against S, the classical primal attack against R,
and the quantum primal attack against R, respectively. The columns BKW-U and BKW-V
represent the Coded-BKW attack assuming unlimited samples ‘from U’ and ‘from the Vi’,
respectively. The column AG represents the Arora–Ge with Gröbner bases attack.

Scheme P-S-c P-S-q P-R-c P-R-q BKW-U BKW-V AG DFR

Bilbo640 164 154 163 154 224 334 4601 -129
Ilum512 151 143 150 142 157 224 2227 -125
LPRime757 177 166 177 166 184 259 1493 -∞

rely on parallelization, and the less efficient it becomes. In our case, this means that as the MAXDEPTH
decreases, breaking AES-128 becomes harder, see [Jaq+20] for detailed exposition. One could therefore
argue that taking a smaller MAXDEPTH could render our parametrizations insecure with respect to
quantum gate count, however, we follow [NIS17] in setting the minimum considered MAXDEPTH as 240.
See the discussion [Sch+20, §5.3] for the potential impact of refinements to the primal attack on our gate
count estimates.
Decryption Failure Rate. We require an mPKE to be such that the DFR remains below 2−120, the largest
of a final round lattice KEM [DAn+20, Tab. 1]. The largest DFR of any of our parametrizations is 2−125

for Ilum512. We note that for classical PKEs the DFR is often 0, that is, they exhibit perfect correctness.
This is also the case for NTRU LPRime and our reparametrization thereof. The DFR is formally defined
as the amount the expectation in Definition 2.9.3 differs from 1. In the lattice PKEs with non zero DFR, a
decryption failure can be used within reaction attacks [HGS99; GJS16; DRV20] to learn information about the
secret. Decryption failures also make future decryption failures easier to trigger [DRV20]. Even successful
decryptions can be used to inform the search for decryption failures [BS20a]. Therefore, PKEs which are
not parametrized to have perfect correctness instead aim to minimize their DFR. The concrete effect of the
DFR in the mKEM setting is described by [Kat+20, Thm. 4.1]. We leave as an open research problem the
concrete importance of the DFR in the CmPKE setting.

The results of our security estimation are given in Table 4.10. In all cases, it is the primal lattice attack
that remains the most efficient. We do not cost quantum variants of Coded-BKW or Arora–Ge with Gröbner
bases, and leave this as future work. Below we discuss each of the new parametrizations in turn. In
particular, we discuss any subtle algorithmic changes and any differences (beyond the newly considered
attacks) with their original cryptanalyses. We also mention that any elements of their original cryptanalyses
that we are able to incorporate are not required to satisfy our cryptanalytic model for mPKEs.
Ilum512. We make one substantive change in our cryptanalysis of Ilum512 compared to Kyber512. It comes
from the different amounts of rounding on U and the Vi, which firstly increases the DFR to 2−125. More
importantly, though, we no longer satisfy the arguments of [Sch+20, §4.4] regarding estimating the primal
attack on R with equal standard deviation for the secret and error distributions. That is, as we have
reduced the amount of rounding on U, we have σr(e′) < σs ≈ 1.22, where the latter standard deviation is
of the distribution used to generate R. Using the reduction of [App+09] which allows one to sample the
secret of an LWE instance from the same distribution as the error (and ignoring the samples this costs), we
must therefore assume the elements of R are also drawn from the distribution with the smaller standard

180 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

TABLE 4.11: Standard deviations for the various secret and error distributions, see Figure 4.26.
The values σr(e′) and σr(e′′) denote the standard deviation of errors after rounding U and V
respectively. As LPRime757 uses rounding for all errors, we report these errors as σe, σe′ , and
σe′′ .

Scheme σs σe σe′ σe′′ σr(e′) σr(e′′)

Bilbo640 2.91 2.91 2.91 2.91 2.91 2364
Ilum512

√
3/2

√
3/2 1 1 1.18 120

LPRime757
√

242/757
√

2/3
√

2/3 568 σe′ σe′′

deviation σr(e′). This must be taken into account for all three attacks we consider.
Bilbo640. Other than increasing the number of bits of randomness required to sample from Ds, De, De′ ,
and De′′ (see below for an explanation why) and performing modulus rounding on the Vi, we make no
substantive changes to the algorithms of FrodoKEM to attain Bilbo640. Nor, other than including Arora–Ge
and BKW style attacks, do we make any changes to our cryptanalysis. We may however reuse part of the
security methodology of FrodoKEM. For example, we may wish to appeal to [Nae+20, Thm. 5.9], which
relates the IND-CPA security of the PKE to the LWE problem, for up to our N = 216 users. As in [Kat+20,
Lem. 5.1], modulo notational differences, we can adapt this to the mPKE setting as follows

AdvIND-CPA
mPKE,N (A) ≤ N · n̄ · AdvLWE

n,n (B1) + m̄ · AdvLWE
n,n+Nm̄(B2).33 (4.1)

Intuitively we have a hybrid over N · n̄ columns of S, each having n samples, and a hybrid over m̄ rows of
R, each having n+ N · n̄ samples. For both S and R the columns and rows, respectively, are secrets of length
n. Conservatively, therefore, in our setting, we may take the larger of the two advantages and multiply by
Nn̄ + m̄ to upper bound the advantage against the mPKE . From Table 4.10 we assume a uniform t gate
classical adversary has an advantage no more than 2−163 · t against either of the LWE problems, noting
that we have gone from a Core-SVP estimate for this quantity in [Nae+20] to a gate count estimate here.
Therefore a t gate IND-CPA A has an advantage of no more than 2−144 · t, and this mPKE is then a starting
point for the constructions of Section 4.2.2. Another facet of FrodoKEM’s security analysis we may wish to
reuse is their Rényi divergence argument. The main security theorem of FrodoKEM [Nae+20, Thm. 5.1]
regarding the IND-CCA security of the KEM, while not applicable here, accounts for the Rényi divergence
between the actually sampled distribution χFrodo and the rounded Gaussian Ψs, as well as the number
of samples drawn from χFrodo. The number of samples drawn from χFrodo is 2nn̄ + 2m̄n + m̄n̄ = 20554,
which increases to 2m̄n + N · (2nn̄ + m̄n̄) ≤ 675293184 for χBilbo640 in the mPKE setting with N ≤ 216.
As Theorem 4.2.7, the respective theorem for CmPKEs, does not proceed via a search problem, i.e. the
OW-PCA problem of FrodoKEM, similar Rényi divergence arguments are not made. However, we give here
a distribution to show the plausibility of efficiently sampling sufficiently close distributions in the CmPKE
setting. Using the methods of [How+20, §5.2] we produce the following distribution χBilbo640, which has a
Rényi divergence of 2.144× 10−10 from Ψ2.9

√
2π

34 at order 200. It is symmetric around 0 and described in
the following figure as {±x : p(±x) · 232},

33The notation of the advantage is borrowed from [Kat+20].
34We have the relation s = σ

√
2π for Ψs.

4.6. Instantiation and Implementation of Chained CmPKE 181

• 0 : 587928496

• ±1 : 554318271

• ±2 : 464582536

• ±3 : 346126223

• ±4 : 229230439

• ±5 : 134950272

• ±6 : 70621314

• ±7 : 32851452

• ±8 : 13583937

• ±9 : 4992798

• ±10 : 1631188

• ±11 : 473696

• ±12 : 122271

• ±13 : 28052

• ±14 : 5720

• ±15 : 1037

• ±16 : 167

• ±17 : 24

• ±18 : 3

This means that by using exactly twice as much randomness to sample an element of χBilbo640 we can
keep the exp(s ·Dα(P∥Q))1−1/α term of [Nae+20, Thm. 5.1] below its value in the Frodo640 case, even in
the presence of these extra samples.
LPRime757. We make a small algorithmic change in LPRime757 compared to NTRU LPRime to reduce the
size of the Vi and allow slightly larger weights w than otherwise. To reduce the size of V in LPRime757 we
must ensure the rounding procedure Top has codomain {0, . . . , τ − 1} for τ < 16. In particular we define
Top′ which achieves this for τ = 4 as follows

Top′(C) = (τ1(C + τ0) + 215)/216, (τ0, τ1, τ2, τ3) = (3011, 33, 1995, 1978).

We note that the powers of 2 have each increased by one, compared to [Ber+20, §3.3]. This allows us a
slightly larger weight w than otherwise. We do not alter Right. For our cryptanalysis, we calculate a ‘per
coefficient’ variance for secret polynomials of NTRU LPRime. The secret polynomials of NTRU LPRime are
degree d and have exactly w non-zero coefficients. These w positions are chosen uniformly and the value
for each of them is independently and uniformly sampled from {−1, 1}, i.e. they are fixed weight, but not
fixed sum. Given (w, d) and a fixed coefficient in an NTRU LPRime secret polynomial, its probability taken
over all possible secret polynomials of being 0 is 1− w/d. Similarly, its probability of being either 1 or −1
is w/2d. We therefore calculate the variance using p(±1) = w/2d and p(0) = 1− w/d. We reuse part of
the security methodology of [Ber+20]. In particular we choose a weight w such that 1/4 ≤ w/d ≤ 1/2,
and parameters that satisfy both ‘bulletproof’ definitions for Level I security.35 We also note that by the
necessary alterations to Equation (4.1) in the LPRime757 mPKE case we can absorb the hybrid loss factor of
N + 1.

4.6 Instantiation and Implementation of Chained CmPKE

We instantiate Chained CmPKE as follows:

• One-time IND-CCA SKE. Since the message to be encrypted has κ = 128 bits, we may take plain AES-
128 without a need for a mode. If we model plain AES as a pseudorandom permutation (PRP), then
it satisfies one-time IND-CCA security Definition 2.3.4. We then obtain key-commitment property by
applying [Alb+22, Sec. 5.2.].

• Signature scheme. We choose Dilithium for two reasons: (a) its performances are well-balanced, (b) it
claims sEUF-CMA security from standard lattice assumptions [Lyu+20].

35https://ntruprime.cr.yp.to/estimate-20200927.sage using run(757, 7879, 242, ’product’).

https://ntruprime.cr.yp.to/estimate-20200927.sage

182 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

0 5,000 10,000

50

100

150

200

250

300

(A) Bilbo640 vs. Frodo640

0 50 100 150 200 250

5

10

15

(B) Ilum512 vs. Kyber512

0 100 200 300 400 500

5

10

15

20

(C) LPRime757 vs. LPRime653

0 50 100 150 200 250 300

1

2

3

4

5

6

(D) SIKEp434 vs. SIKEp434

FIGURE 4.27: The graphs “X vs Y” give the bandwidth overhead (in term of encryption
keys and ciphertexts) of commit messages when using Chained CmPKE with the CmPKE X
(Section 4.6 when uploaded, Section 4.6 when downloaded), compared to TreeKEM with the
KEM Y (Section 4.6 both when uploaded and downloaded). The x-axis is the group size N, the
y-axis is the overhead in KiB.

4.6. Instantiation and Implementation of Chained CmPKE 183

• mPKE. If we choose to rely on isogeny-based assumptions, we may use the SIKE mPKE from
[Kat+20]. If we rely on lattice-based assumptions, we may use one of our three lattice-based mPKEs
from Section 4.5: Bilbo640, Ilum512, LPRime757.

The mKEMs which are at the core of the mPKEs are implemented in C, starting from the optimized
public platform-independent implementations of [Jao+20; Ber+20; Nae+20; Sch+20]. For Ilum512 and
SIKEp434, the changes are straightforward. The modifications for Bilbo640 are only slightly more involved
due to the new distribution and the Kyber-style compression. Finally, LPRime757 required most work: all
encoding/decoding routines, rounding, Top and Barrett reduction had to be modified. We also improved
polynomial multiplication performance, by computing them in the larger ring GF(q′)[x]/⟨2p′+1⟩, with q′ =
1907713 > w(q− 1) and p′ = 1536 = 3 · 29, which admits fast NTT-based multiplication as 3 · 28 | q′ − 1.
We do not use a full NTT, but leave out the layer corresponding to the factor 3 and multiply degree 2
polynomials in the NTT-domain, which is slightly more efficient than a full NTT. Chained CmPKE and the
mPKEs are implemented in Go, using C bindings for the mKEMs.
Bandwidth Consumption. In Figure 4.28, we compare the total bandwidth overheads of TreeKEM and
Chained CmPKE in terms of ciphertexts and encryption keys. For a better comparison, terms that are
identical between both protocols, such as signatures, MACs, etc, are ignored. For readability, the bandwidth
cost of each graph is normalized by the group size N. As predicted by the theory, the proposed protocol
performs better than TreeKEM by factors Ω(log N) for similar instantiations. In addition, while the size
of our uploaded commit messages is asymptotically worse compared to TreeKEM (O(N) vs Ω(log N)), in
practice we compare favourably against comparable post-quantum instantiations of TreeKEM, even for
groups of hundreds of users, see Figure 4.27.36

Computational Efficiency. In Figure 4.29, we provide timings for what we expect to be the two compu-
tational bottlenecks of the proposed protocol: Commit (Figure 4.29b) and Process (Figure 4.29c). We also
provide timings for CmEnc (Figure 4.29a).

Even for group of 210 members, lattice-based CmPKEs perform a multi-recipient encryption in less
than 100 ms. This operation – and by extension, Commit– may take significantly longer when instantiating
Chained CmPKE with SIKEp434 (about 7.5 s for 210 recipients). Note however that Commit is a transparent
operation for end users, and can be performed even when the end device is locked. We conclude from our
measurements that the computational efficiency of Chained CmPKE is likely to have a minimal impact on
the user experience.

Note that large groups also provide an amortization effect on the computational efficiency of CmPKEs.
For example, encrypting a message to 210 recipients with Bilbo640 (resp. Ilum512, LPRime757, SIKEp434)
is about 29 (resp. 4, 3, 2) times faster than to perform 210 encryptions. Finally, even though Process
only entails a constant number of public-key operations, its running time eventually gets linear in N
(Figure 4.29c), due to the hashing of N encryption keys when verifying the group state. This is also the
case in TreeKEM, and can be mitigated to some extent by storing the hashes of the encryption keys.
Code. Our code is available at the following repository:

https://github.com/PQShield/chained-cmpke
36In the absence of post-quantum parameter sets for TreeKEM in MLS, we came up with our own parameter sets relying on

NIST PQC KEMs (finalists or alternate).

https://github.com/PQShield/chained-cmpke

184 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

2 29 210

50

100

150

200

(A) Bilbo640 vs. Frodo640

2 29 210

5

10

15

(B) Ilum512 vs. Kyber512

2 29 210

5

10

15

20

(C) LPRime757 vs. LPRime653

2 29 210

2

4

6

(D) SIKEp434 vs. SIKEp434

FIGURE 4.28: The graphs “X vs. Y” (Figures 4.28a to 4.28d) give the normalized total bandwidth
overhead (in term of encryption keys and ciphertexts) of a commit message with Chained
CmPKE using the CmPKE X (Section 4.6), compared to TreeKEM using the KEM Y (Section 4.6).
The x-axis is the group size N, the y-axis is the total bandwidth cost in KiB normalized by N.
Graphs are computed using Tables 4.1 and 4.6.

4.6. Instantiation and Implementation of Chained CmPKE 185

20 21 22 23 24 25 26 27 28 29 210
104

105

106

107

108

109

1010

(A) CmEnc

22 24 26 28 210
105

106

107

108

109

1010

(B) Commit

22 24 26 28 210
105

106

107

108

(C) Process

FIGURE 4.29: Running time in nanoseconds of some procedures as functions of the group size
N, for Ilum512 (), Bilbo640 (), LPRime757 () and SIKEp434 (). All measurements
were obtained on an Apple M1 CPU @3.2 GHz (single-threaded).

186 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

4.7 A Variant of GSD Security Tailored to Chained CmPKE

We introduce a variant of the generalized selective decryption (GSD) security notion for public-key
encryption tailored to our Chained CmPKE security proof, which we coin as a Chained CmPKE conforming
GSD security. We then show that such variant is secure in the random oracle model assuming the hardness
of the CmPKE. The formalization of our Chained CmPKE conforming GSD security is inspired by [Kle+21;
Alw+20b; AJM22] but differs in the following way: we consider a (committing) multi-recipient encryption
oracle rather than a single-recipient oracle; we restrict the hash oracles to not take as input the secrets used
to generate the keys for CmPKE; the proof is simplified.37 The restriction on the hash oracle is new to this
work and effectively, this simplifies the proof while still being sufficient for proving our Chained CmPKE
protocol.

In more detail, our Chained CmPKE conforming GSD is defined in Figure 4.30. The game maintains
a graph with M-vertices, where each node u stores a seed su initially set to ⊥. If u is a source node,
then su is further used to generate a key pair (eku, dku) for CmPKE (see *gen-full-key-if-nec). An
edge corresponds to dependencies between seeds, where there are three types of edges. One edge is a
(multi-recipient) encryption edge created by CmEnc: if there is an edge from a source node u leading into
v, then sv is encrypted using eku. The second edge is a hash edge created by Hash: if there is an edge
from a non-source node u leading into v, then sv is (informally) the output of a hash function H on input
su. The final type of edge is a join hash edge created by Join-Hash: if there is an edge from non-source
nodes u and u′ leading into v, then sv is (informally) the output of a hash function H on input su and su′ .
See Figure 4.1 for what these edges mean in the context of the CGKA protocol. In Figure 4.1, the solid
edge corresponds to encryption edges and the dashed edges correspond to either hash or join hash edges.
Observe that Hash does not take as input an encryption node (i.e., EncSource) and CmEnc does not take as
input a (non-join) hashed input (i.e., sv = ⊥ or v ∈ WelcomeNode). This restriction is sufficient to prove
security of our Chained CmPKE protocol, while also having the benefit that the GSD security proof will be
simplified.

The GSD adversary can adaptively create the edges of the graph and also adaptively corrupt the nodes
to obtain the stored secret seed. The gsd-exp function determines if the secret seed in node v is trivially
exposed to the adversary. Specifically, u is exposed if it is corrupted or can be traversed from any corrupted
nodes. Then, the security of GSD states that as long as node u does not satisfy gsd-exp (i.e., does not
trivially expose the secret), then the secret seed su remains hidden.

More formally, we define the security notion as follows.

Definition 4.7.1 (Chained CmPKE Conforming GSD Security). The security notion is defined by a game
illustrated in Figure 4.30, where M = poly(κ) is an integer. We say a CmPKE is Chained CmPKE conforming
GSD secure if for any efficient adversaries A, we have∣∣∣∣Pr

[
GameGSDCmPKE,A(κ, M) = 1

]
− 1

2

∣∣∣∣ ≤ negl(κ).

We say it is selectively Chained CmPKE conforming GSD secure if A is required to commit to all of its oracle
queries at the outset of the game.

The following is the main theorem of this section.

Theorem 4.7.2. A CmPKE is Chained CmPKE conforming GSD secure if CmPKE is IND-CCA secure with adaptive
corruption. Additionally, it is selectively secure if CmPKE is only IND-CCA secure.

37We also noticed that we would require oracles Set-Secret and Set-Full-Secret in the security proof.

4.7. A Variant of GSD Security Tailored to Chained CmPKE 187

GameGSDCmPKE,A(κ, M)

1 : (V, E)← ([M], ∅)

2 : Corr,Ctxt← ∅
3 : EncSource← ∅
4 : WelcomeNode← ∅
5 : foreach u ∈ [M] do
6 : su, eku, dku ← ⊥
7 : // challenge node

8 : u∗ ← ⊥
9 : b←$ {0, 1}

10 : s∗←$ {0, 1}κ

11 : pp← CmSetup(1κ)

12 : b′ ← AO(pp)
13 : req (V, E) is acyclic

∧ u∗ is a sink
∧ gsd-exp(u∗) = 0

14 : return Jb = b′K

Oracle Chall(u)

1 : req u∗ = ⊥
2 : u∗ ← u
3 : if b = 0 then
4 : return su

5 : else
6 : return s∗

Oracle Corr(u)

1 : req su ̸= ⊥
2 : Corr +← u
3 : if dku = ⊥ then
4 : return su

5 : else
6 : return dku

Oracle Set-Secret(u, s)

1 : req su = ⊥
2 : su ← s
3 : Corr +← u

Oracle Set-Full-Secret(u, s)

1 : req su = ⊥
2 : su ← s
3 : (eku, dku)← CmGen(pp;H(su))

4 : Corr +← u

*gen-full-key-if-nec(u)

1 : if (su, eku, dku) = (⊥,⊥,⊥) then
2 : su←$ {0, 1}κ

3 : (eku, dku)← CmGen(pp;H(su))

*gen-key-if-nec(u)

1 : if su = ⊥ then
2 : su←$ {0, 1}κ

gsd-exp(v)

1 : return [v ∈ Corr]

∨ ∃(u, v, ∗, ∗) ∈ E : gsd-exp(u)

∨ ∃((u, u′), v, ∗, ∗) ∈ E : gsd-exp(u) ∧ gsd-exp(u′)

Oracle CmEnc(S, v)

1 : foreach u ∈ S ⊆ [M] do
2 : req su = ⊥∨ u ∈ EncSource

3 : req sv = ⊥∨ v ∈ WelcomeNode
4 : *gen-key-if-nec(v)
5 : foreach u ∈ S do
6 : *gen-full-key-if-nec(u)
7 : E +← (u, v, ‘enc’,⊥)
8 : (T, c⃗t)← CmEnc((eku)u∈S, sv)

// c⃗t = (ctu)u∈SCtxt +← (S,T, c⃗t)
9 : EncSource +← S

10 : return ((eku)u∈S,T, c⃗t)

Oracle CmDec(u,T, ct)

1 : req u ∈ EncSource

2 : foreach (S,T′, c⃗t) ∈ Ctxt do
3 : // c⃗t = (ctu′)u′∈S

4 : if u ∈ S ∧ (T, ct) = (T′, ctu) then
5 : return ⊥
6 : return CmDec(dku,T, ct)

Oracle Hash(u, v, lbl)

1 : req u ̸∈ EncSource∧ sv = ⊥
2 : *gen-key-if-nec(u)
3 : req (u, ∗, ‘hash’, lbl) /∈ E
4 : sv ← H(su, lbl)
5 : E +← (u, v, ‘hash’, lbl)

Oracle Join-Hash(u, u′, v, lbl)

1 : req u, u′ ̸∈ EncSource∧ sv = ⊥
2 : *gen-key-if-nec(u)

3 : *gen-key-if-nec(u′)

4 : req ((u, u′), ∗, ‘join-hash’, lbl) /∈ E
5 : sv ← H(su, su′ , lbl)
6 : WelcomeNode +← v

7 : E +← ((u, u′), v, ‘join-hash’, lbl)

FIGURE 4.30: Chained CmPKE conforming GSD game. The adversary A can access the list of
oracles O := { Chall, CmEnc, CmDec, Corr, Hash, Join-Hash, Set-Secret, Set-Full-Secret }
and the random oracle H.

188 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

SecurePaths(u, L)

1 : L ++← u
2 : if ∃v s.t. (v, u, ‘hash’, ∗) ∈ E then // u is connected only from a ‘hash’ edge

3 : if gsd-exp(v) = 0 then // Such a v is unique if it exists

4 : SecurePaths(v, L)
5 : elseif u is not a source then
6 : (v1, flag1, v2, flag2, S, flag3)← (⊥,⊥,⊥,⊥, ∅,⊥)
7 : if ∃(v, v′) s.t. ((v, v′), u, ‘join-hash’, ∗) ∈ E then
8 : (v1, v2)← (v, v′) // Such (v, v′) is unique if it exists

9 : if gsd-exp(v1) = 0 then
10 : flag1 ← ⊤
11 : if gsd-exp(v2) = 0 then
12 : flag2 ← ⊤
13 : if ∃v s.t. (v, u, ‘enc’, ∗) ∈ E then
14 : flag3 ← ⊤ // Remains ⊤ if all recipients are uncorrupted

15 : foreach v s.t. (v, u, ‘enc’, ∗) ∈ E do
16 : S +← v
17 : if gsd-exp(v) = 1 then
18 : flag3 ← ⊥ // v is a corrupted (encryption) source

19 : if
(
flag1 = ⊤∨ flag2 = ⊤

)
∧ flag3 = ⊤ then

20 : if flag1 = ⊤ then // u is connected from ‘join-hash’ and ‘enc’ edges

21 : SecurePaths(v1, L)
22 : if flag2 = ⊤ then
23 : SecurePaths(v2, L)
24 : L ++← S
25 : return L
26 : elseif

(
flag1 = ⊤∨ flag2 = ⊤

)
∧ S = ∅

27 : if flag1 = ⊤ then // u is connected only from a ‘join-hash’ edge

28 : SecurePaths(v1, L)
29 : if flag2 = ⊤ then
30 : SecurePaths(v2, L)
31 : elseif v1 = ⊥∧ flag3 = ⊤ then // u is connected only from ‘enc’ edges

32 : L ++← S
33 : return L
34 : elseif gsd-exp(u) = 0 then // u is a non-corrupted source

35 : return L

FIGURE 4.31: Helper function that outputs all the secure paths leading to the input node u,
where L = ∅ by default.

4.7. A Variant of GSD Security Tailored to Chained CmPKE 189

Proof. We only consider the adaptive setting since downgrading the proof to the selective setting is
straightforward. Our proof is in the non-programmable random oracle model.

To aid the proof, we define a helper function SecurePaths in Figure 4.31 which takes as input a node
u ∈ [M] and a list L. At the end of the game, if an adversary A had chosen a valid challenge node
u∗, then SecurePaths(u∗, L := ∅) outputs all the “secure paths” that leads to u∗. To be more concrete,
SecurePaths(u∗, L := ∅) outputs a set of lists D = { Lk }k∈[K], where K ≤ M − 1 and each Lk is either
of the form Lk = (u1 := u∗, u2, · · · , uIk) or Lk = (u1 := u∗, u2, · · · , uIk−1 , S) for some integer Ik, nodes
ui ∈ [M] such that gsd-exp(ui) = 0, uIk is a source node, and a set of nodes S ⊂ [M] such that ∀u ∈ S,
u ∈ EncSource and u ̸∈ Corr (which in particular implies gsd-exp(u) = 0). Intuitively, Lk is a path
that consists of uncorrupt nodes (and possibly a set of nodes) that do not trivially leak the secret s∗

associated to u∗. Note that it is not enough to simply check if a node is uncorrupted; even if v and
v′ such that ((v, v′), u, ‘join-hash’, ∗) ∈ E are uncorrupted, we must also check that all v′′ such that
(v′′, u, ‘enc’, ∗) ∈ E are uncorrupted as well, since otherwise, u’s secret su may trivially leak.

Stating the above more formally, we obtain the following lemma.

Lemma 4.7.3. The challenge sink u∗ output by A is a valid challenge (i.e., gsd-exp(u∗) = 0) if and only if
SecurePaths(u∗) ̸= ∅.

Proof. The proof simply consists of checking the conditions. The “only if” part of the proof is trivial since
any path that satisfies gsd-exp(u∗) = 0 is also a path that will be output by SecurePaths. Therefore, let us
focus on the “if” part of the proof. Let us assume SecurePaths(u∗) → D = { Lk }k∈[K]. Consider any Lk

of the form Lk = (u1 := u∗, · · · , uIk). (The case Lk = (u1 := u∗, · · · , uIk−1 , S) follows the same argument).
By the definition of SecurePaths, it is clear that there is an edge between each adjacent nodes ui and ui+1.
Moreover, we have gsd-exp(ui) = 0 for every i ∈ [Ik]. This can be verified by checking the nodes in
reverse order; The final output uIk is a source node that satisfies gsd-exp(uIk) = 0. For uIk to be output,
SecurePaths(uIk , L′k = (ui)i∈[Ik−1]) must have been invoked within SecurePaths(uIk−1, L′′k = (ui)i∈[Ik−2]).
If (uIk , uIk−1) is connected by a ‘hash’ edge, then gsd-exp(uIk−1) = 0 and we have that uIk is the only
node connected to uIk−1. If (uIk , uIk−1) is connected by an ‘enc’ edge or by a ‘join-hash’ edge (i.e., ∃
u such that ((uIk , u), uIk−1, ‘join-hash’, ∗) ∈ E), then all other ‘enc’ edges leading to uIk−1 come from
uncorrupted nodes. Therefore, this establishes gsd-exp(uIk−1) = 0. We can repeat this argument until
we reach SecurePaths(u1 = u∗, L := ∅) to establish gsd-exp(ui) = 0 for every i ∈ [Ik]. This completes the
lemma.

Let D = { Lk }k∈[K] ← SecurePaths(u∗). There are two cases:

Case 1: ∃Lk = (u1 := u∗, · · · , uIk) ∈ D such that for all i ∈ [Ik], there does not exist v satisfying
(v, ui, ‘enc’, ∗) ∈ E.

Case 2: ∀Lk ∈ D, either Lk = (u1 := u∗, · · · , uIk) such that there exists i ∈ [Ik] and v satisfying
(v, ui, ‘enc’, ∗) ∈ E or Lk = (u1 := u∗, · · · , uIk−1, S).

Note that when Lk = (u1 := u∗, · · · , uIk−1, S), we have S ⊆ EncSource in Figure 4.30; that is, S is the set of
nodes that were used to encrypt the secret suIk−1 associated to node uIk−1. The following Lemmata 4.7.4
and 4.7.5, each corresponding to Case 1 and Case 2, respectively, completes the proof of the theorem. Note
that although the lemma assumes either Case 1 or Case 2 always hold, this is without loss of generality
since the reduction can always guess which case we end up in.

Lemma 4.7.4. If Case 1 occurs, then any adversaryAmaking at most polynomially many oracle queries has negligible
advantage against the Chained CmPKE conforming GSD security.

190 Chapter 4. Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKEs

Proof. When Case 1 occurs, there are no encryption edges coming into any of the nodes along the path
Lk = (u1 := u∗, · · · , uIk). Therefore, since gsd-exp(ui) = 0 for all i ∈ [Ik], this means all the associated
secrets (sui)i∈[Ik] are information theoretically hidden from the adversary A until they are queried to the
random oracle. This can be argued more formally as follow by induction: Since uIk is a (non-encryption)
source node, suIk

is information theoretically hidden. In case (ui, ui+1) is connected by a ‘hash’ edge, then
if sui is hidden, so is sui+1 in the random oracle model. On the other hand, in case (ui, ui+1) is connected by a
‘join-hash’ edge, then even if the other node u such that ((ui, u), ui+1, ‘join-hash’, ∗) ∈ E is corrupted,
sui+1 is hidden as long as sui is. Finally, since Ik and the number of random oracle queries A makes is
polynomial, the probability of A obtaining any information on (sui)i∈[Ik] is negligible. This in particular
implies that su1 := s∗ is uniform random in the view of A. This concludes the lemma, where we note that
the adaptivity of A is irrelevant.

Lemma 4.7.5. If Case 2 occurs, then any PPT adversary A has negligible advantage against the Chained CmPKE
conforming GSD security assuming the hardness of the IND-CCA security with adaptive corruption of CmPKE.

Proof. Let A be an adversary against the Chained CmPKE conforming GSD security game that triggers
Case 2. Consider the following three games where the first game corresponds to the real game depicted
in Figure 4.30 and the last game is where no (possibly inefficient) adversary has a winning advantage.
We denote Si as the event that b = b′ occurs in the game Game i and show that each adjacent game is
indistinguishable, thus establishing the hardness of the real game.
Game 0. This is the real game depicted in Figure 4.30.
Game 1. The challenger guesses a random challenge sink u∗←$ [M] and a challenge source v∗←$ [M]
conditioned on u∗ ̸= v∗. It then proceeds exactly as in the previous game except that it outputs a random
bit on behalf ofA if either u∗ was not the nodeA queries to the challenge oracle or if there does not exist a list
Lk ∈ D ← SecurePaths(u∗) such that either Lk = (u1 = u∗, · · · , uIk = v∗) or Lk = (u1 = u∗, · · · , uIk−1, S),
where v∗ ∈ S. Without loss of generality, we assume there is always an incoming edge to u∗. Then, by
Lemma 4.7.3, it is clear that Pr[S1] ≥ Pr[S0]/M2.
Game 2. This is the same as the previous game except that the challenger answers to oracle CmEnc differently
for those nodes connected to the challenge source node v∗. More concretely, whenA queries (S, v) to oracle
CmEnc, the challenger checks whether the following conditions (denoted as SetRand) hold:

• Is sv = ⊥ and v∗ ∈ S?

• Is v ∈ WelcomeNode and does there exist a set of edges in E that connects v∗ to v?

If so, the challenger proceeds as in the previous game except that it samples a random message rv and runs
CmEnc(pp, (eku)u∈S, rv) instead of CmEnc(pp, (eku)u∈S, sv) on line 8. Otherwise, it is defined exactly as in
the previous game. Intuitively, the challenger modifies all the incoming encryption edges to the secure path
Lk to encrypt random values. Note that due to the way oracles Hash, Join-Hash, and CmEnc are defined, an
input (S, v) that did not satisfy condition SetRand will remain unsatisfied since such a node v cannot be
later connected to the secure path Lk.

Observe that Game 2 now boils down to the argument we made for Case 1 in Lemma 4.7.4 since all
the incoming encryption edges to the secure path Lk to encrypt random values. Specifically, there either
exists a list Lk = (u1 = u∗, · · · , uIk = v∗) or a list Lk = (u1 = u∗, · · · , uIk−1, S), where v∗ ∈ S. In the
former case, since all the incoming encryption edges into the nodes in the list Lk are encrypting random
values, we can simply ignore them. This is the same for the latter case, where we additionally observe that

4.7. A Variant of GSD Security Tailored to Chained CmPKE 191

CmEnc(S, uIk−1) provides an encryption of a random value. Therefore, following the same argument made
in Case 1, Pr[S2] = negl(κ) even for a possible inefficient A that makes at most polynomially many queries.

To conclude the lemma, it remains to establish the bound between Pr[S1] and Pr[S2]. We construct
an adversary B against the IND-CCA security with adaptive corruption game of CmPKE that internally
runs A. Without loss of generality, we assume the “multi-challenge-ciphertext” variant where B can
query polynomially-many challenge ciphertexts. By a basic hybrid argument, this variant is secure if the
single-challenge version is secure. The description of B follows:

BC(·)(pp, (eki)i∈[M]): Whenever B needs to generate a new encryption and decryption key pair (eku, dku),
it simply uses an unused eku provided by its challenge. When A queries a corruption oracle on u,
if dku is set, then B queries u to its corruption oracle and returns the received dku. Otherwise, su
is generated on its own so it simply outputs su. When (S, v) queried to oracle CmEnc by A satisfies
condition SetRand, then it samples a random message rv and queries (sv, rv) as its challenge ciphertext.
It then uses the provided challenge ciphertext to simulate CmEnc. Moreover, all oracle queries to
CmDec can be answered by using its decryption oracle. Finally, when A makes a random oracle
query, B simply relays this to its own random oracle.38 B answers all other oracle queries, i.e.,
Set-Secret, Set-Full-Secret, Hash, Join-Hash on its own.

It can be checked that when B receives challenge ciphertexts for random messages, then the game it
simulates is identical to Game 2. Otherwise, it is identical to Game 1. Therefore, assuming the hardness of
the IND-CCA security with adaptive corruption of CmPKE, we have |Pr[S1]− Pr[S2]| ≤ negl(κ).

Combining all the bounds, we have Pr[S0] = negl(κ) as desired. This completes the lemma.

Remark 4.7.6 (Adaptive security from CmPKE with no adaptive corruption). In the above proof, if we want
to base adaptive security of the Chained CmPKE conforming GSD security from a CmPKE that is only
IND-CCA secure (i.e., without adaptive corruption security), then we will incur an exponential reduction
loss during the game transition of Game 1 to Game 2. This is because we need to guess correctly all the
encryption keys that will not get corrupted from the set [M] in order to simulate the corruption queries. In
the worst case, we will lose a factor of O(2M).

38To be precise, we assume the IND-CCA security with adaptive corruption game is defined in the random oracle model. This is
without loss of generality.

193

Chapter 5

MetaData-Hiding Continuous Group Key
Agreement1

5.1 Introduction

Metadata in SGM. In secure group messaging (SGM) protocols, we can informally divide sensitive
information into the following three layers: 1st layer: group secret keys & messages

2nd layer: static, explicit metadata
3rd layer: dynamic, implicit metadata

}
=: “metadata”

Securing the 1st layer is the default goal of any SGM protocol; exchanging messages in an E2EE fashion is
only possible if secure group secret keys2 are shared among the group. Since the server is not considered
an endpoint of the conversation, state-of-the-art SGM protocols aim at protecting the 1st layer from the
server.

The 2nd and 3rd layers together constitute the metadata. Since they help the server to ensure the
functionality of the SGM protocol, they are often only encrypted using a transport layer encryption protocol
(like TLS or Noise [Per18]) between the server and the participants. In this case, the server has access to
this information and may expose it if legally compelled, as discussed earlier.

The 2nd layer captures any static metadata that is explicitly leaked from the content transmitted over
the channel. For instance, the exchanged content may explicitly include the identity of the sender in the
clear or the identity of a member being added, as in e.g. vanilla Signal [MP16a] and MLSPlaintext [Bar+22].
Static metadata are also defined as a collection of sender information and handshake messages in the MLS
standard draft [Bar+22, Sec. 10.1].

The 3rd layer captures any dynamic metadata that is implicitly leaked from the access pattern between
group members and the server via the communication channel. For example, in MLSCiphertext that hides
up to the 2nd layer, users connect to the server using a non-anonymous protocol such as TLS. Then, since
the user implicitly identifies itself to the server via the channel, the server learns the group member’s
identities (and how many times each member accessed) by observing the users accessing the same group
identity. In particular, this happens regardless of protecting the 2nd layer metadata. To hide the user

1The contents of this chapter are based on the work presented at ACM CCS 2022 under the title “How to Hide MetaData in
MLS-Like Secure Group Messaging: Simple, Modular, and Post-Quantum” [HKP22a]. The full version is available at the IACR
Cryptology ePrint Archive. [HKP22b].

2There could either be a unique group secret key shared among the entire group as in MLS or multiple group secret keys, where
different segments of the keys are shared among different members of the group as in Signal to perform pairwise communications.

194 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

TABLE 5.1: SGM protocols and the corresponding layers they protect. “¦” (resp. “p”)
indicates that there is a (resp. are no) security proof. “✓” indicates that there is a proof
capturing the security of the 2nd & 3rd layers but not of the 1st layer.

Layer 1st 1st & 2nd 1st, 2nd & 3rd

Signal Vanilla Signal ⊥ Private Groups
Security proof p ⊥ ✓ [CPZ20]

MLS MLSPlaintext MLSCiphertext ⊥
Security proof ¦ E.g., [AJM22; Alw+21a] p ⊥

identity on the channel, users can use anonymous protocols (e.g., Tor [DMS04; Gua]) instead. However,
even if an anonymous protocol is used when a user fetches information about a group they belong to,
the exact subset of accessed information may be correlated to this user’s identity. This may for example
be the case for SGM protocols that arrange group members in complex data structures such as trees.
Specifically, hiding the metadata only at the 2nd layer while using anonymous channels is insufficient
since similar information may be inferred from the 3rd layer, which incorporates all implicit leakages of
dynamic metadata.

In this work, only when all three layers are secured do we say that an SGM protocol is metadata-hiding.3

Existing metadata-hiding SGM. Existing SGM protocols and the level of layers they protect are depicted
in Table 5.1. Signal recently proposed a metadata-hiding SGM protocol that we call Private Groups [Sig19].
This is an extension of Sealed Sender [Sig18] — a metadata-hiding two-user secure messaging protocol.
The main building block of Private Groups is an efficient MAC-based keyed-verification anonymous credential
(KVAC) [CMZ14] that leverages the specific properties of tools from classical group-based cryptography,
such as the ElGamal PKE and Schnorr PoK. While there is no formal security proof for Signal’s vanilla
SGM, recently Chase, Perrin, and Zaverucha [CPZ20] proposed a new security model to capture exactly
the metadata layers (2nd & 3rd layers) and provided a partial security proof of Private Groups.

MLS [Bar+22] comes in two variants: MLSPlaintext and MLSCiphertext, each corresponding to protocols
protecting the 1st and 1st & 2nd layers, respectively. The security of MLSPlaintext has been scrutinized over
the past few years [BBN19b; AJM22; Alw+20a; Alw+21a; BCK22] and we now have a good understanding of
it. However, no formal security proof for MLSCiphertext is known. Moreover, unlike Signal’s Private Groups,
constructing any variant of MLS that further hides the dynamic metadata is unanswered. Considering that
dynamic metadata leaks part of, if not all, static metadata, MLSCiphertext may be leaking more metadata in
practice than ideally expected.

5.1.1 Goal of This Work

In this work, we focus on continuous group key agreement (CGKA) — an abstraction that captures the
core protocol underlying the MLS protocol, i.e., TreeKEM [BBR18], and many other MLS-inspired SGM
protocols [Coh+18; Kle+21; Alw+20a; AJM22; Alw+21a; Has+21b; Alw+20b; Alw+22c; Alw+22d].4 In brief,
CGKA allows an evolving group of users to agree on a continuous sequence of group secret keys. Other
than the simple function of sharing a group secret key, CGKA further models the strong notions of forward
secrecy (FS) and post-compromise security (PCS) [CCG16; Coh+17; ACD19], which allow to greatly limit the
scope of a compromise.

3Note that there are other types of metadata we can consider such as access timing [Mar+21] and geolocation of users.
4To be accurate, MLS was inspired by asynchronous ratchet trees (ART) [Coh+18].

5.1. Introduction 195

p =
(
gid, epoch, idp, act, · · ·

)
c =

(
gid, epoch, idc, · · · , ctkey

) Sv

id1 id2

p1

p⃗

c2

FIGURE 5.1: (Left) p and c are proposals and commits. (Right) id1 uploads a proposal p1 to the server
Sv; id2 downloads all the stored proposals p⃗ and uploads a commit c2 for the next epoch. The single
(resp. double, triple) bordered box indicates the 1st (resp. 2nd, 3rd) layer information.

In a nutshell, a CGKA works as follows (see also Figure 5.1):5 A group member may either (a) add a
new member, (b) remove a member, and/or (c) update its keys by sending a proposal p. In an arbitrary
interval, a group member may download the list of proposals p⃗ = { pi }i from the server and take them into
effect by transmitting a commit c — this creates a new epoch where the group state is updated according to
p⃗. Importantly, a commit also updates the group secret key to achieve PCS.

A proposal p consists of five elements: (i) a string gid identifying the group; (ii) a counter epoch that
specifies the current group state; (iii) the identity idp of the member creating p; (iv) a string act specifying
whether p corresponds to (a), (b), or (c); and (v) other information typically required for authentication. A
commit c has a similar structure, where idc denotes the committer and ctkey is a ciphertext encrypting a key
used to update the group secret.

As depicted in Figure 5.1, key is the 1st layer information, and any other static information included
in p and c other than (gid, epoch) belong to the 2nd layer. Here, (gid, epoch) needs to be clear so that
the receiver can download the appropriate p and c from the server. In the past few years, we have seen
several increasingly stronger or different types (e.g., game-based, simulation-based) of security models for
CGKA [Alw+20b; AJM22; Alw+20a; Alw+21a; BCK22; Kle+21; Alw+22d; Has+21b; Wei+21; Alw+22c],
however these models only capture security at the 1st layer. Although it is straightforward to construct a
CGKA that intuitively secures the 2nd layer once a group secret key is established, it is not clear whether
this intuition is correct. Indeed, MLSPlaintext has undergone 13 iterations, and formal security analyses of
the 1st layer [Alw+20a; AJM22] uncovered some subtle bugs. Thus, our first goal is the following:

(G1) Propose a security model capturing the security of the 1st & 2nd layers and prove the security of existing
CGKAs.

As discussed above, securing the 2nd layer alone is insufficient. At first glance, it is tempting to replace the
use of TLS for client-server communication with a client-anonymized authenticated channel (e.g., VPN
or an anonymized proxy such as Tor [DMS04; Gua]) in order to hide the 3rd layer. Unfortunately, this
introduces another issue since, without any authentication on the client side, any adversary who knows
(gid, epoch) can upload arbitrary garbage proposals and commits to the server, causing a denial of service
(DoS) against the group. It could be possible to rely on the efficient MAC-based KVAC used by Signal’s
Private Groups [Sig19], however, their construction is highly limited to a classical, pre-quantum setting, and
the security proof is in the generic group model [Sho97]. Considering the modularity of the vanilla Signal
and the MLS protocol, having a generic construction that can be efficiently instantiated from versatile
assumptions, including but not limited to post-quantum assumptions, is highly desirable. Of independent
interest, we note that in the face of a compromise or removal of a group member, Private Groups must
restart a new group [CPZ20]. It remains an interesting problem to construct a protocol that offers any
(non-trivial) PCS. This brings us to our second goal:

5We base the explanation on the most recent iterations of TreeKEM (i.e., after version 8 on MLS) following a “propose-and-commit”
flow.

196 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

(G2) Propose an efficient and generic metadata-hiding CGKA achieving the same level of FS and PCS offered
by existing non-metadata-hiding CGKAs.

Finally, Chase, Perrin, and Zaverucha [CPZ20] proposed a security model capturing the 2nd & 3rd layers of
Signal. However, it does not capture the 1st layer of security, i.e., confidentiality and integrity of exchanged
messages, nor the notion of PCS. Moreover, this model is tailored to the specific construction of Signal’s
Private Groups [Sig19] and seems unfit for CGKA. Thus, we arrive at our final goal:

(G3) Propose a security model for metadata-hiding CGKA.

5.1.2 Contribution of This Work

UC model for the 2nd layer. We propose the first security model of CGKA capturing the security of the
2nd layer, i.e., static metadata. Our security model extends the state-of-the-art universal composability
(UC) security model used by Alwen et al. [AJM22] and Hashimoto et al. [Has+21b] to analyze TreeKEM
version 10 in MLS and Chained CmPKE, respectively — we denote the ideal functionality as F ctxt

CGKA.6 The
main new ingredients we introduce are leakage functions that allow us to formally model the leaked static
metadata (e.g., sender’s identity) from the proposals and commits. Similar to the state-of-the-art ideal
functionalities, ours captures a strong model where active adversaries can tamper with or inject messages,
and malicious insiders can invite malicious members to the group and arbitrarily fork the group state. With
this formalization effort, we answer the first half of (G1), see Section 5.3 for details.
Chained CmPKEctxt UC-realizesF ctxt

CGKA. We prove that a ciphertext variant of Chained CmPKE by Hashimoto
et al. [Has+21b], coined as Chained CmPKEctxt, UC-realizes the ideal functionality F ctxt

CGKA.7 Considering the
similarity between Chained CmPKE and TreeKEM, we believe the ciphertext variant of TreeKEM can also
be proven secure following a similar proof. The reason why we focused on the former is that it is in some
sense a generalization of the latter — it allows members to selectively download updates from the server,
also known as filtered CGKA [Alw+22d]. This generalization allows obtaining a concretely efficient CGKA
even in the post-quantum regime, which otherwise could be quite inefficient [Has+21b]. This security proof
addresses the second half of (G1), see Section 5.4 for details.
UC model for the 3rd layer. We propose the first UC security model of CGKA capturing the security of the
3rd layer, i.e., group access pattern — we denote the ideal functionality as Fmh

CGKA. Any CGKA that UC-
realizes Fmh

CGKA is a metadata-hiding CGKA. The model captures the fact that a group member performing an
upload or download remains anonymous and unlinkable from the server, while also restricting non-group
members from accessing the group contents. To formalize the latter property, our ideal functionality Fmh

CGKA
captures an honest-but-curious server for the first time. All prior models only considered malicious servers
so it was not possible to define a “correct” behavior of the server, i.e., shutting out non-group members.
Fmh

CGKA allows the adversary to corrupt the server, in which case it becomes identical to F ctxt
CGKA defined

above. This answers (G3), see Section 5.6 for details.
A generic and efficient protocol UC-realizing Fmh

CGKA. We provide a simple and generic wrapper protocol
Wmh that UC-realizes Fmh

CGKA in the F ctxt
CGKA-hybrid model. Specifically, given an arbitrary CGKA Πctxt that

UC-realizes F ctxt
CGKA, Wmh in composition with Πctxt UC-realizes Fmh

CGKA. Unlike Signal’s Private Groups, we
do not rely on complex tools such as a MAC-based KVAC, whose known efficient instantiations require
classical group-based assumptions. Our key insight is to leverage the unique group secret key shared

6The subscript “ctxt” is inspired by the protocol name MLSCiphertext
7This variation mirrors what MLSCiphertext does to MLSPlaintext, in the sense that it encrypts the static metadata by applying

a layer of encryption.

5.2. Background about CGKA 197

among the members (which is non-existing in Signal) to perform a proof of membership to the server. The
concrete construction of our wrapper protocol only requires a standard signature scheme, which can be
efficiently instantiated using either classical or post-quantum assumptions. Our metadata-hiding CGKA
inherits all the FS and PCS properties satisfied by the underlying CGKA satisfying F ctxt

CGKA. For instance,
using MLSCiphertext as the underlying CGKA, the upload cost of a key update of our metadata-hiding
CGKA can be O(log N), as opposed to O(N) for Private Groups. This provides a theoretic answer to (G2),
see Section 5.5 for details.
Instantiation and efficiency analysis. We provide concrete instantiations of the proposed protocols under
either classical or post-quantum assumptions. We then study the bandwidth impact of Wmh when applied
to Chained CmPKEctxt. The impact of Wmh is moderate, as it never increases the bandwidth cost of the
principal operations (“update”, “add” and “remove” proposals, as well as commit or application messages)
by more than a factor of two. In practice, the concrete overhead may be even lower. This illustrates that
our notion of metadata-hiding CGKA can be realized at a moderate cost. This covers the efficiency aspects
of (G2), see Section 5.7.2 for details.
Statistical leakage from metadata-hiding CGKA. Our security model allows us to prove that a CGKA
UC-realizes an ideal functionality Fmh

CGKA with respect to a specific leakage function, which defines any inherent
metadata leakage that cannot be hidden. What the adversary can learn from this leakage function is another
question.

We initiate a discussion on the nature and extent of the information that can be inferred from this
leakage. We study several CGKAs [AJM22; Kle+21; Has+21b; Alw+22d; Alw+22c] and find that all of them
leak information through the size of protocol messages (welcome, proposal and/or commit), sometimes
in surprising and indirect ways. At this point, we emphasize that the authors of these protocols never
claimed them to be metadata-hiding, so this leakage does not reflect the shortcomings of the designs. We
believe that a systematic study of this leakage, as well as proposing countermeasures to provably mitigate
it, constitutes a valuable and exciting research direction. For now, this discussion explores the limitations
of (G3), see Section 5.8 for details.

We would like to clarify the limitations of this work. First, we only consider the CGKA aspect of SGMs.
While it is believed that CGKA captures the essence of SGMs — which is supported by the vast amount
of research focusing solely on CGKA [Alw+20b; AJM22; Alw+21a; Alw+20a; BCK22; Kle+21; Alw+22d;
Alw+22c; Has+21b; Wei+21] — to argue a provably secure metadata-hiding SGM, we would need to extend
our security model to cover the message exchanging layer as well. It was only recently that a security
model that captures the entire SGM at the 1st layer was proposed [Alw+21a]. Second, our security model
and protocol do not prevent an adversary from anonymously registering numerous fake groups on the
server. We only prevent an outsider from accessing an existing group. Technically, this seems efficiently
solvable using standard anonymous credentials [Cha82] and we leave it as future work to incorporate these
into our security model. Finally, metadata outside the scope of our models, such as access timing [Mar+21]
and device fingerprinting, may circumvent the privacy guarantees provided by a metadata-hiding CGKA.

5.2 Background about CGKA

We now provide some background on the existing definition of CGKA that models the default security of
the 1st layer, i.e., group secret key.8 In this work, we focus on CGKA defined in the UC framework. With the

8As mentioned in Section 5.1.2, CGKA only captures the security of the group secret key k. The message, also included in the
1st layer, is handled by a different protocol. Roughly, the messages are sent through E2EE using the established k.

198 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

nice composability property, we will be able to construct a metadata-hiding CGKA in a modular manner.
Due to page limitation, we refer the readers to Section 5.3 for some background on the UC framework

and a formal definition of the ideal functionality FCGKA capturing the UC security of the 1st layer.

5.2.1 Syntax of CGKA

All the group members internally store the group identifier gid, the current epoch of the group, the current
group secret key, and information to identify the current members. Moreover, each member (roughly)
stores a public key whose associated secret key is known only to themselves. This is called the key material.

Members can upload proposals p to the server, which can take on three types: addition or removal of
some members, and update of key materials. Members can download any subset of these proposals p⃗ at an
arbitrary interval to create a commit c. Any members can then process this commit to update their group
state to the next epoch according to the content of the proposals that were committed. The group secret
key is always updated after a process — if every group member’s key material was uncompromised at
that epoch, then this effectively heals the group and offers PCS.

In this work, we follow the syntax of Hashimoto et al. [Has+21b] (which extends the syntax of Alwen
et al. [AJM22]) that models selective downloading. This allows the members to only download part of the
commit required to move to the next epoch. Specifically, a commit c is divided into (c0 ,⃗ c), where c0 is the
member-independent commit and c⃗ = (̂cid)id is the list of member-dependent commit. Member id only needs
to download (c0, ĉid) from the server to advance its epoch. Here, we assume there is a canonical ordering of
the group members, and member id requests its index in the list c⃗ to the server to download c⃗[index] = ĉid.
Such selective downloading can bring great efficiency gain — especially in the post-quantum regime where
asymmetric ciphertexts tend to be much larger than classical ones (see [Has+21b] for further motivations).
This formalization was later coined as filtered CGKA [Alw+22d].

Informally, CGKA is defined by the following algorithms, where we assume id is the executing party
and omit it from the input.

Group Creation (Create): It initializes a new group state with party id as the only member.9

Proposals (Propose, act)→ p : It outputs a proposal p for the action act that can take on the value ‘add’-idt,
‘rem’-idt, or ‘upd’. The first two actions dictate the adding or removal of idt. The last updates id’s key
material.

Commit (Commit, p⃗)→ (c0 ,⃗ c, w⃗): It commits a vector of proposals p⃗ and outputs a commit (c0 ,⃗ c). c0 is a
member-independent commit while c⃗ = (̂cid′)id′ is a list of member-dependent commits, where |⃗c| is
equal to the current group size. If p⃗ contains an add proposal, then it outputs a welcome message
w⃗ = (ŵidt)idt , where idt denotes the added members.10

Process (Process, c0, ĉid, p⃗): It processes a commit (c0, ĉid) with the associated proposals p⃗, and advances
id’s internal group state to the next epoch.

Join (Join, ŵid): It allows id to join the group using the welcome message ŵid. id’s group state is synced
with any member who processes the commit made at the same epoch.

Key (Key)→ k: It outputs the current group secret key k.
9Following prior definitions [AJM22; Alw+20b; Has+21b], we assume Group Creation is run only once.

10Although we can also structure w⃗ to have a party independent w0 and dependent part, we chose not to do so since it leads to
a less secure metadata-hiding protocol. Roughly, by looking at w0, the server can infer who will be added to the same group.

5.2. Background about CGKA 199

𝒜

𝒵

#id

ℱ!"#$

("Propose", act)

("Propose", gid,
epoch, id, act)

𝑝

𝑝

(A) Propose

𝒜

𝒵

#id

ℱ!"#$

("Commit", gid,
epoch, id, �⃗�)

("Commit", �⃗�)(𝑐%, 𝑐, 𝑤)

(𝑐%, 𝑐, 𝑤)

(B) Commit

FIGURE 5.2: Group operations in the UC security model. Z invokes the dummy party ĩd, and
FCGKA informs the adversary A of this invocation. A simulates the corresponding proposal
or commit and sends it to FCGKA. W.l.o.g., we assume A sends the same information to Z ,
denoted by a dashed line. The shaded region denotes the history graph maintained by FCGKA.

5.2.2 Default UC Security Model of CGKA

All prior works on CGKA capture the rough security notion that the group secret key should remain
hidden from the adversary. We follow the state-of-the-art UC security model of [AJM22; Has+21b]. In
this model, the malicious server is modeled as an active adversary that can tamper with or inject messages.
Moreover, a rogue group member is modeled as a malicious insider that can invite other malicious members
(e.g., server) to the group and arbitrarily fork the group state. The UC security model captures the fact that
even in face of such strong adversaries, the group secret key remains indistinguishable from random under
certain conditions. Below, we explain the high-level description of the ideal functionality FCGKA.
History graphs and the safe predicate. The core concept underlying the definition is the so-called history
graph [AJM22; Alw+21a] maintained by FCGKA. A history graph is a symbolic representation of the group’s
evolution, where each node on a graph roughly corresponds to a group state at a particular epoch.11 It
tracks all the generated commits and proposals, and group members’ positions on the history graph. To
define the security of the group secret key, FCGKA is parameterized by a predicate safe, which takes the
history graph and a node as input, and assigns a random group secret key k← K to a node where safe is
true. This formalization allows modeling FS and PCS naturally. For example, an adversary A can corrupt a
member at some epoch, thus making safe false at epoch. If the member is healed at a later epoch′ > epoch,
then safe becomes true again at epoch′. Importantly, safe is a scheme-specific predicate that can be defined
arbitrarily to capture different levels of FS and PCS.
Example: Ideal propose and commit. We depict the ideal Propose and Commit functions in Figure 5.2,
where Z denotes the environment. For example, Z can invoke the (dummy) party ĩd to execute a commit
on an arbitrary list of proposals p⃗. FCGKA then provides to A the proposals p⃗ along with all the static
metadata (gid, epoch, id) included in a commit, where id denotes the identity of the committer. A interprets
the proposals p⃗ and simulates the commit (c0 ,⃗ c), where it further simulates the welcome message w⃗ if p⃗
includes an add proposal. The commit and welcome messages are sent to FCGKA and are registered in the

11The formal definition is made with more care since in case an adversary forks the group state, two different nodes with the
same epoch can be created.

200 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

history graph as a new node indicating that a new epoch has been created. Here, if p⃗ was generated by a
group member, then FCGKA mandates correctness by checking if the commit output by A was consistent
with the actions included in p⃗. Otherwise, in case some p ∈ p⃗ was not generated by a group member, then
this implies that the server or some rogue insider injected a malicious proposal.

5.3 Static Metadata-Hiding CGKA: Define UC Security Model

As a first step, we propose a UC security model capturing the security of the 1st & 2nd layers (i.e., group
secret keys and static metadata) by defining a new ideal functionality F ctxt

CGKA. This is an extension of the
ideal functionality FCGKA [Alw+20b; AJM22; Has+21b] that captures the security of the 1st layer. Similarly
to the safe predicate used in FCGKA to control the levels of FS and PCS, F ctxt

CGKA comes with five leakage
functions allowing to control the amount of static metadata leaked from create group, proposal, commit,
process, and join. By defining the leakage functions to leak all the static metadata, then F ctxt

CGKA (essentially)
recovers the prior ideal functionality FCGKA.

5.3.1 Difference between New Model and Previous Model

F ctxt
CGKA has the same user interface (or syntax) as FCGKA. The main difference is how the internals of the

ideal functionalities are defined. Below, we explain the three main points at which F ctxt
CGKA differs from

FCGKA. The full details on F ctxt
CGKA is provided in Section 5.3.

Modeling static metadata leakage. Recall how FCGKA defined the ideal proposal function (see Figure 5.2).
When a party id is invoked on (Propose, act) from the environment Z , FCGKA informs the adversary A
with (Propose, gid, epoch, id, act). A then simulates a proposal p. This models the fact that p in the real
world is allowed to leak information on (gid, epoch), the party id creating p, and the type of proposal
act ∈ { ‘add’-idt, ‘rem’-idt, ‘upd’ } included in p.

We control the amount of such leakage from p by a leakage function *leak-prop. Informally, *leak-prop
takes as input the identity id of the member creating the proposal and the current epoch. In case safe is
false at epoch, *leak-prop outputs all the static metadata since the group secret key is compromised at
that epoch. Otherwise, it only outputs the static metadata the CGKA is allowed to leak. For example, to
model MLSCiphertext, we define *leak-prop(id, epoch) to only output (gid, epoch, |id| , |act|) when safe is
true, where |act| leaks the size of the action included in p. In case every member identity idt is encoded
in the same bit-length, then this implies for instance that p does not leak who created the p and who was
added and removed.

Similarly to *leak-prop, we define four more leakage functions *leak-create, *leak-proc, *leak-com,
and *leak-wel. For instance, the last two controls the amount of static metadata leaked from commits
and welcome messages, respectively. Unlike proposals, the static metadata that is inherently leaked
from commits and welcome messages differs between CGKAs. Thus, care is required when formally
defining them. For instance, in MLSCiphertext, a welcome message for member idt includes a hash of idt’s
key package kpidt (i.e., key materials used by idt). To model this fact, *leak-wel must also output kpidt

to the adversary (see Section 5.4.3 for more discussion). Another subtlety is that the size of a commit
in MLSCiphertext is dictated by how many blank nodes exist in the tree. In Section 5.8, we discuss the
real-world consequences of these inherent leakages of static metadata.
Using semantics for nodes in history graphs. In this work, we update the prior definition of history
graphs to use the semantics of a transcript to identify the nodes in a history graph. That is, we identify a
node by a counter that informally counts the number of group operations leading to the node. In previous

5.3. Static Metadata-Hiding CGKA: Define UC Security Model 201

works [AJM22; Has+21b] (which did not capture the security of the static metadata), each node was
identified by the value of the non-encrypted member-independent commit c0. Since c0 uniquely defined an
epoch and group state, it made intuitive sense to identify each node by c0.

Unfortunately, this intuition is lost when we try to further secure the static metadata. This is because c0
is now an encryption of the actual commit content. Namely, there can be two distinct c0 and c′0 that decrypt
to the same commit content. While we would like to assign different members processing c0 and c′0 to the
same node in the history graph, it is not clear which c0 and c′0 to use to identify the node. Such an issue
disappears by using the semantics since the group operation defined inside c0 and c′0 are identical.

Independently, Alwen et al. [Alw+22d] also uses the semantics to define nodes in their security model.
This was crucial to capture a more advanced form of (non-metadata-hiding) CGKA coined as server-aided
CGKA.
Restricted adversary due to commitment problem. In the UC framework, it is typical to restrict the
adversary A from performing corruptions that would cause the so-called commitment problem. Informally,
this is a type of attack whereA can adaptively choose to corrupt some states after being provided with some
challenges with respect to the state. While this attack is prohibited by default in any natural game-based
definition (e.g., the adversary cannot obtain a secret key after being provided the challenge ciphertext), we
need to make this restriction explicit in the UC-based definition.

Compared to prior works in the UC framework [Alw+20b; AJM22; Has+21b], the description of the
restriction we require is more strict. Previously, when a new node was created due to a commit, the
predicate safe was undefined for that node. Roughly, this is because the group secret key inside that
node was never explicitly used during the real protocol and A was given the freedom to adaptively
decide whether to corrupt that node at an arbitrary moment of the security game. However, in the static
metadata-hiding setting, this freedom of the adversary needs to be restricted. This is because when a new
node is created, the group secret key inside this node is explicitly used to encrypt the static metadata of the
commit content. When safe is true at this node, the ideal functionality F ctxt

CGKA (roughly) wants to assign a
random ciphertext to model the fact that the commit does not leak any information. Since A is explicitly
given the ciphertext, it cannot later decide to corrupt the node (i.e., safe remains true), as otherwise, it
could trivially distinguish a valid ciphertext from a random one.

5.3.2 Background

Universal Composable Security. We briefly recall the UC framework. We refer to [Can01; Can+07] for
the full descriptions. The UC security is formalized by the indistinguishability of real and ideal protocols.
In the real protocol, parties execute a protocol Π, where an adversary Amay corrupt some of the parties.
In the ideal protocol, the parties are replaced by dummy parties that interact with an ideal functionality
F , where a simulator S may corrupt some of the dummy parties. The dummy parties are defined to be
the identity function that simply outputs whatever is fed as input. In addition, there is another entity
called the environment Z that tries to distinguish the two protocols. In the real (resp. ideal) protocol, Z can
interact arbitrary with A (resp. S), and it can also invoke any non-corrupted parties (resp. dummy parties)
to honestly run the protocol Π (resp. the ideal functionality F), where the output is always reported
back to Z . The goal of UC-security is then, given any adversary A, to construct a simulator S such that
any environment Z cannot distinguish between the real and ideal protocols. We say the real protocol Π
UC-realizes the ideal functionality F if such S can be constructed. Put differently, whatever A can learn
from the real protocol Π can be simulated using the information provided by the ideal functionality F ,
which is secure by definition.

202 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

We often construct a protocol in a setting where a copy of an ideal functionality G is available. We
call such a model G-hybrid model. If a real protocol Π UC-realizes F while providing access to an
ideal functionality G, then we say Π UC-realizes F in the G-hybrid model. For a real protocol Π in the
G-hybrid model, and a real protocol Π′ that realizes G (in the standard model), we can naturally define a
composed protocol ΠΠ′ in the standard model, in which calls for G from Π are answered by Π′ instead of
G. Canetti [Can01] proved a universal composition theorem stating that, if Π UC-realizes F in the G-hybrid
model and Π′ UC-realizes G, then ΠΠ′ UC realizes F .
The Corruption Model. We define what we mean by “corrupting” a party. In this work, we use the
corruption model of continuous state leakage (transient passive corruptions) and adversarially chosen
randomness of [Alw+20b]. This is a standard in CGKA literature, but this is non-standard for typically
UC-security. This corruption model allows the adversary to repeatedly corrupt parties by sending them
two types of corruption messages: (1) a message Expose causes the party to send its current state to the
adversary (once), (2) a message (CorrRand, b) sets the party’s rand-corrupted flag to b. If b is set, the
party’s randomness-sampling algorithm is replaced by the adversary providing the coins instead. Ideal
functionalities are activated upon corruptions and can adjust their behavior accordingly.
Restricted Environments and Adversaries. To avoid the so-called commitment problem, caused by
adaptive corruptions in simulation-based frameworks, we restrict the environment (and thus the adversary)
not to corrupt parties at certain times. This roughly corresponds to ruling out “trivial attacks” in game-
based definitions, e.g., the adversary cannot compromise the secret key after being provided with the
challenge ciphertext. In simulation-based frameworks, such attacks are no longer trivial, but security
against them requires relatively strong and inefficient cryptographic tools, e.g., non-committing encryption,
and is not achieved by most protocols. We follow prior works [JMM19a; Alw+20b; AJM22; Has+21b] and
consider a weakened variant of UC-security that only quantifies over a restricted set of so-called admissible
environments that do not exhibit the commitment problem. Whether an environment is admissible or not
is defined by the ideal functionality F with statements of the form restrict cond and an environment is
called admissible (for F), if it has negligible probability of violating any such cond when interacting with
F .

PKI functionality. As in [AJM22; Has+21b], we define our CGKA in a hybrid model where parties
can access an ideal functionality that models an (untrusted) PKI. In the real protocol, the parties can
interact with the Authentication Service (AS) and Key Service (KS) PKI functionalities. For instance, the
environment can instruct the AS (via the party’s protocol) to register a new key for a party. As a result,
the AS generates a new key pair for the party and hands the public key to the environment, making the
secret key available to the party’s protocol upon request. We note that the adversary can register arbitrary
signature keys for any party to capture an insider adversary.
Authentication Service (AS). The authentication service (AS) certifies the ownership of a signature key.
The AS is formalized by the functionality FAS defined in Figure 5.3. The definition is identical to that used
in [Has+21c]. FAS allows parties to register fresh signature key pairs via register-svk query and to check
whether a verification key svk is registered by a party id′ via the verify-cert query. On registration, the
new key pair for a party id is generated by FAS using a genSSK algorithm (whose concrete specification
depends on the CGKA). If id’s current randomness source is corrupted (i.e., Rand[id] = ‘bad’), FAS asks the
adversary to provide the randomness. After registration, id receives the new verification key svk. Also,
parties can retrieve their signing keys via get-ssk query and delete registered signing keys via del-ssk
query. The adversary can register arbitrary verification keys in the name of any party. When a party is
corrupted, all signing keys except for the deleted ones are leaked to the adversary. Security is modeled by
the ideal-world variant of FAS, called F IW

AS . It marks leaked signing keys by storing them in the ExposedSvk

5.3. Static Metadata-Hiding CGKA: Define UC Security Model 203

array (see boxes in Figure 5.3). FAS allows the Key Service functionality FKS (see below) to signal that a
certain ssk is leaked. FKS sends this signal when the signature key is leaked due to a compromise of a key
package. Finally, F IW

AS always leaks all registered signing keys to the simulator.
Key Service (KS). The Key Service (KS) allows parties to upload one-time key packages used to add
them to groups while they are offline. The KS is formalized by the functionality FKS defined in Figure 5.4.
The functionality is identical to that used in [Has+21c] except that KS checks the validity of maliciously
registered key packages and parties can check whether the key package is registered to KS. In our definition,
when the adversary registers a key package to FKS, FKS checks whether the registering key packages are
valid by the *validate-kp function. Thus, FKS ensures the registered key packages are valid in the sense
that the *validate-kp function returns true. In addition, parties also check the key package is registered
to FKS via a has-kp query. This allows parties to check the validity of a key package via the has-kp query
since FKS ensures the validity of registered key packages. We introduce these functions to make the syntax
of an add and update proposal to look more similar. When a party id adds a party idt, it first fetches an idt’s
key package from KS and invokes a CGKA protocol (or FCGKA) on input (Propose, ‘add’-idt-kpt). The party
(and FCGKA) can check the validity of kpt through the has-kp query to FKS. This is syntactically similar to
an update proposal where, the updated signing key svk is validated via the verify-cert query.

Other functionalities are identical to that used in [Has+21c]. Similar to FAS, parties can register
key packages via the register-kp query. Upon receiving the register-kp query, FAS generates a new
key package using a genKP(id, svk, ssk) algorithm (whose concrete specification depends on the CGKA),
which takes a party’s identity id and a signature key pair (svk, ssk) and outputs a key package and the
corresponding decryption key. Parties can request another party’s key package via get-kp query. The
returned key package is specified by the adversary. This reflects that the adversary can maliciously inject
key packages that were not registered by honest parties. Finally, the ideal-world KS functionality F IW

KS
always leaks all decryption keys to the simulator.

History Graph. We use a so-called history graph [Alw+20b; AJM22; Has+21b; Alw+21a] to define the ideal
functionality F ctxt

CGKA.
Overview. A history graph is a labeled directed graph that acts as a symbolic representation of a group’s
evolution. It has two types of nodes: commit and proposal nodes, representing all executed commit and
propose operations, respectively. Each party is uniquely assigned to a commit node indicating that a party
is in a group of members that processed the commit assigned to that specific commit node. The nodes’
labels, furthermore, keep track of all the additional information relevant for defining security. For instance,
proposal nodes have a label that stores the proposed action, and commit nodes to have labels that store the
epoch’s application secret and the set of parties corrupted in the given epoch. Security of the application
secrets is then formalized by the functionality of choosing a random and independent key for each commit
node whenever security is guaranteed; otherwise, the simulator gets to choose the key. Whether security
is guaranteed in a given node, is determined via an explicit safe predicate on the node and the history
graph. In addition to the secrecy of the keys, the functionality also formalizes authenticity by appropriately
disallowing injections.
Formal Definition. As explained in Section 5.3.1, we deviate from the definition of prior history graphs
used to define CGKA in the UC framework. Each node in the history graph is identified by node
pointers: prop-id ∈ N for proposal nodes and node-id ∈ { 0 } ∪N for commit nodes. In contrast, prior
works [Alw+21a; Alw+22d] used concrete (non-encrypted) proposals and commits to identify each node.
This formalization was well-defined in prior works since each proposal and commit identified a unique
group operation in the real protocol. However, when considering static metadata-hiding, two distinct
(encrypted) proposals or commits may encrypt the same group operation, in which case, we would like

204 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

The functionality is parameterized by a key generation algorithm genSSK().

Initialization

1 : RegisteredSvk← ∅; ExposedSvk← ∅

2 : SSK[∗, ∗]← ⊥
3 : Rand[∗]← ‘good’

Inputs from a party id

Input (register-svk)

1 : if Rand[id] = ‘good’ then
2 : (svk, ssk)← genSSK()
3 : else
4 : Send (rnd, id) to the adversary and receive r

5 : (svk, ssk)← genSSK(r)

6 : ExposedSvk +← svk

7 : RegisteredSvk +← (id, svk)
8 : SSK[id, svk]← ssk

9 : Send (register-svk, id, svk, ssk) to the adversary
10 : Send svk to the party id

Input (get-ssk, svk)

1 : Send SSK[id, svk] to id

Input (del-ssk, svk)

1 : SSK[id, svk]← ⊥

Input (verify-cert, id′, svk)

1 : Send (id′, svk) ∈ RegisteredSvk to id

Inputs from the adversary
Input (register-svk, id, svk)

1 : if (∗, svk) /∈ RegisteredSvk then

2 : ExposedSvk +← svk

3 : RegisteredSvk +← (id, svk)

Input (expose-ssk, id)

1 : ExposedSvk +← { svk | SSK[id, svk] ̸= ⊥}

2 : Send SSK[id, ∗] to the adversary

Input (CorrRand, id, b), b ∈ { ‘good’, ‘bad’ }

1 : Rand[id]← b

Inputs from F ctxt
CGKA and FKS

Input (exposed, id, svk)

1 : ExposedSvk +← svk

2 : Send SSK[id, svk] to the adversary

Inputs from F ctxt
CGKA and FKS

Input (has-ssk, id, svk)

1 : Send SSK[id, svk] ̸= ⊥ to F ctxt
CGKA

FIGURE 5.3: The ideal authentication service functionality FAS and its variant F IW
AS used

during the security proof.

5.3. Static Metadata-Hiding CGKA: Define UC Security Model 205

The functionality is parameterized by a key-package generation algorithm genKP(id, svk, ssk) and a key
package validation function *validate-kp(kp, id).

Initialization

1 : RegisteredKp← ∅
2 : DK[∗, ∗]← ⊥;SVK[∗, ∗]← ⊥
3 : Rand[∗]← ‘good’

Inputs from a party id

Input (register-kp, svk, ssk)

1 : if Rand[id] = ‘good’ then
2 : (kp, dk)← genKP(id, svk, ssk)
3 : if kp = ⊥ then return
4 : else
5 : Send (rnd, id) to the adversary and receive r

6 : (kp, dk)← genKP(id, svk, ssk; r)
7 : if kp = ⊥ then return
8 : Send (exposed, id, svk) to FAS

9 : RegisteredKp +← (id, kp)
10 : DK[id, kp]← dk;SVK[id, kp]← svk

11 : Send (register-kp, id, svk, kp, dk) to the adversary
12 : Send kp to the party id

Input (get-dks)

1 : Send { (kp,DK[id, kp]) | DK[id, kp] ̸= ⊥} to id

Input (get-kp, id′)

1 : Send (get-kp, id, id′) to the adversary and

receive kp′

2 : try *validate-kp(kp, id)

3 : RegisteredKp +← (id′, kp′)

4 : Send kp′ to id

Input (del-kp, kp)

1 : DK[id, kp],SVK[id, kp]← ⊥

Inputs from id and F ctxt
CGKA

Input (has-kp, id, kp)

1 : Send (id, kp) ∈ RegisteredKp

Inputs from the adversary
Input (CorrRand, id, b), b ∈ { ‘good’, ‘bad’ }

1 : Rand[id]← b

Inputs from the adversary and F ctxt
CGKA

Input (exposed, id)

1 : Send DK[id, ∗] to the adversary
2 : foreach svk ∈ SVK[id, ∗] s.t. svk ̸= ⊥ do
3 : Send (exposed, id, svk) to FAS

FIGURE 5.4: The ideal key service functionality FKS and its variant F IW
KS used during the

security proof.

206 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

to assign these distinct proposals and commits to the same node. Otherwise, two parties can be in the
same group in the real protocol, while they are included in a different commit node in the history graph.
Roughly, pointers prop-id and node-id define the semantics of a group operation and allow us to assign
semantically equivalent proposals and commits to the same node. The pointer values of a proposal or a
commit will be arbitrarily assigned by the simulator, and the ideal functionality checks whether the created
history graph maintains consistency, authenticity, and confidentiality.

All nodes in the history graph store the following values:

• orig: the identity of the party who created the node, i.e., the message sender.

• par: the parent commit node, representing the sender’s current epoch.

• stat ∈ { ‘good’, ‘bad’, ‘adv’ }: the flag indicating whether the secrets corresponding to the node are
known to the adversary. ‘good’ means this node is secure, ‘bad’ means this node is created with
adversarial randomness (hence it is well-formed but the adversary knows the secret), and ‘adv’ means
this node is created by the injected message from the adversary.

Proposal nodes further store the following values:

• act ∈ { ‘upd’-kp, ‘add’-idt-kpt, ‘rem’-idt }: the proposal action. ‘upd’-kp means the corresponding party
updates its key package to kp. ‘add’-idt-kpt means idt is added with the key package kpt

12.

Commit nodes further store the following values. In this work, history graphs keep gid, epoch, and new
variable conthide in addition to the values used in the previous work [AJM22; Has+21c]:

• gid: the group identifier.

• epoch: the current epoch number.

• prop: the ordered list of committed proposals.

• mem: the list of a pair of group member’s identity and its key package, which is sorted by dictionary
order in identities.

• vcom: the list of party-dependent commitments associated with this node.

• key: the group (application) secret.

• exp: the set keeping track of corrupted parties in this node.

• chall: the flag indicating whether the group secret is challenged. That is, chall = true if a random
group key was generated for this node, and false if the key was set by the adversary (or not
generated).

• conthide: the flag indicating whether the static metadata protection is assured at this epoch. That is,
conthide = true means the messages issued with this epoch’s group secret hide metadata, and false

means the metadata is leaked. This value is initialized when one of proposal/commit/welcome
messages is first created at this epoch.

For convenience, we define the following helper function.

• indexOf(id): returns the index of id in the list mem.
12The previous models only kept signature keys in kp. To capture metadata-hiding property, we need to manage which key

packages are being added/updated.

5.3. Static Metadata-Hiding CGKA: Define UC Security Model 207

5.3.3 UC Security Model F ctxt
CGKA

We propose a new ideal functionality F ctxt
CGKA capturing the static metadata-hiding property of CGKAs.

F ctxt
CGKA is based on the prior ideal functionality FCGKA [Has+21b; Has+21c] that only captured the security

of group secret keys. The ideal functionality F ctxt
CGKA is formally defined in Figures 5.5 to 5.10, along with

several helper functions in Figures 5.12 and 5.14 to 5.17 to aid the readability. By setting the flag flagcontHide

to false and flagselDL to false (resp. true) in the “Initialization,” F ctxt
CGKA becomes identical to FCGKA used

in [Has+21c] (resp. [Has+21b] capturing selective downloading).
To specify the ideal functionality F ctxt

CGKA, we also need to define the following:

Safety Predicates: safe, sig-inj-allowed, and mac-inj-allowed specify which epoch secrets are secure and
when authenticity is guaranteed,

Leakage Functions: *leak-create, *leak-prop, *leak-com, *leak-wel, and *leak-proc specify information
leaked from protocol messages.

The safety predicates and leakage functions are protocol specific. For instance, some CGKA may leak the
type of proposal, while others may not. Put differently, a specific CGKA UC-realizes the ideal functionality
F ctxt

CGKA with respect to a particular choice of safety predicates and leakage functions. By tuning the choice,
F ctxt

CGKA allows modeling a wide variety of CGKAs. A concrete choice of such safety predicates and leakage
functions is provided in Section 5.4.3, where we prove UC-security of our CGKA Chained CmPKEctxt.

Below, we provide an overview of the ideal functionality F ctxt
CGKA.

States. F ctxt
CGKA maintains the history graph. As explained in Section 5.3.2, it identifies proposal nodes by a

pointer prop-id ∈ { 0 } ∪N and commit nodes by a pointer node-id ∈ { 0 } ∪N. We assume one group is
created by an honest party (see Create in Figure 5.5). This creates a root (commit) node called the main
root identified by the pointer node-id = 0. We call the group starting from the main root as the main group.
Moreover, other roots may be created without a commit message (e.g., when a party processes an injected
welcome message that is not directly related to the main group). Such roots are called detached root. F ctxt

CGKA
also stores a pointer Ptr[id] for each party id. Ptr[id] identifies id’s current commit node (i.e., current epoch).
If id is not in the group, Ptr[id] = ⊥. F ctxt

CGKA switches its functionality according to the flag flagselDLand
flagcontHide: flagselDLis set to trueif it performs selective downloading, and flagcontHideis set to trueif it
offers static metadata-hiding. To keep track of party-specific secrets (e.g., CmPKE decryption key), F ctxt

CGKA
manages the PendDK array (which stores pending secrets of the key package kp) and the CurrDK array
(which stores the current secrets of id).
Interface. F ctxt

CGKA offers interfaces to create a group, create a proposal, commit to a list of proposals, process
a commit, join a group, and retrieve the group secret key. All interfaces except create and join are for group
members only (i.e., parties for which Ptr[id] ̸= ⊥). We explain each interface in more detail below.
Group creation (See Figure 5.5) F ctxt

CGKA allows one main group to be created by a designated party idcreator.
Initially, the main group has a single party idcreator, and it can invite additional members by issuing add
proposals and committing to them. F ctxt

CGKA checks the validity of idcreator’s signature key by *valid-svk.
Then, F ctxt

CGKA informs the adversary S13 of the creation of a new group by sending the message (Create)
to S . (This models the fact that a server knows when a group is created.) If flagcontHide = false, the
adversary also receives the identity and signature key of the group creator. Otherwise, the adversary
receives *leak-create(id, svk). The adversary returns the new group’s identity gid. Then, F ctxt

CGKA generates
the initial key package by the *update-kp function. The *update-kp function generates a new key package

13In the UC framework, it is conventional to call S appearing in the ideal functionality as the “adversary.” We use the term
“simulator” during the security proof.

208 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

by itself if both flagcontHideand safe are true; otherwise asks the key package to the adversary S . This
models, in the ideal metadata-hiding CGKA protocol, an honest party generates a new key package, but it
is hidden from the adversary.14 Then, F ctxt

CGKA initializes the root node. Note that the epoch of an initial
group is set to 0.
Creating proposals (See Figure 5.6) A party id can be invoked by the environment Z to create a proposal
with a specific action act. F ctxt

CGKA informs the adversary S that a proposal message is being created. S
receives *leak-prop(id, act) and returns a flag ack, an ideal proposal p and a node pointer prop-id. If
flagcontHide = false, then S obtains all the information (Ptr[id], id, act) = *leak-prop(id, act) that can be
inferred from a non-encrypted proposal. F ctxt

CGKA allows S to send ack = false to report that the protocol
fails. If act = ‘upd’, F ctxt

CGKA updates act with the new updated key package returned from *update-kp
function. The *update-kp function generates a new key package by itself if both flagcontHideand safe are
true; otherwise asks the key package to the adversary S . This models, in the ideal metadata-hiding CGKA
protocol, an honest party generates a new key package, but the proposal message hides the key package
from the adversary.15 If the protocol succeeds, and if no node associated with p exists, F ctxt

CGKA creates a new
proposal node Prop[propCtr] and assigns propCtr to p (setting PropID[p]← propCtr). In certain situations,
F ctxt

CGKA may not create a new proposal node. For example, id proposes to remove the same party twice in
the same epoch. Another example is when the adversary S controls the party’s randomness (via setting
Rand = ‘bad’) and the party proposes to update using the same randomness twice. In these cases, S can
specify to attach the created proposal p to an existing proposal node prop-id. F ctxt

CGKA then enforces that the
states on the existing proposal node are consistent with the expected one using *consistent-prop. F ctxt

CGKA
marks whether the current epoch is secure or not using *mark-content-hiden-epoch. This information is
used to determine epochs the adversary is allowed to corrupt (see the restrict check run within Expose
in Figure 5.11). Finally, if all check passes, F ctxt

CGKA returns the proposal message p to the calling (dummy)
party id, which simply relays it to the environment Z .
Committing to proposals (See Figure 5.7) A party id can be invoked by the environment Z to create a commit
with a list of proposals p⃗, along with a (possibly fresh) signature verification key svk. F ctxt

CGKA informs the
adversary S that a commit message is sent and provides *leak-com(id, p⃗, svk). If flagcontHide = false,
then S obtains all the information (Ptr[id], id, p⃗, svk,mem) = *leak-com(id, p⃗, svk) that can be inferred from
a non-encrypted commit. F ctxt

CGKA receives a flag ack, a commit node node-id, and a commit message (c0 ,⃗ c).
Here, c⃗ is a list of party dependent messages (̂cid)id; if selective downloading is performed (i.e., flagselDL

is true), then party id only needs to retrieve (c0, ĉid) from the server. The adversary S sets ack := false

to report that the protocol fails. F ctxt
CGKA then obtains the new updated key package via the *update-kp

function. This models, in the ideal metadata-hiding CGKA protocol, an honest committer generates a new
key package, and it is hidden from the adversary. If the commit protocol succeeds, F ctxt

CGKA first asks S to
interpret the injected proposals, i.e., proposals where no node has been created, by calling *fill-prop.
It then computes the new member set resulting from applying p⃗ to the current member set by calling
*next-members (which returns ⊥if p⃗ contains invalid proposals).
F ctxt

CGKA then checks the format of c⃗ specified by S . If flagselDLis true, F ctxt
CGKA requires that c⃗ contains the

same number of party-dependent messages as the number of the current members. Else, c⃗ must be ⊥.
F ctxt

CGKA then either creates a new commit node or verifies that the existing node is consistent by
*consistent-com. The adversary S can specify an existing node-id. This case may happen for example

14If the flag flagcontHideis false, the key package is asked to the adversary S ; this means the key package is known to the
adversary because the group creator is known.

15If the flag flagcontHideis false, the key package is asked to the adversary S ; this means the key package is known to the
adversary.

5.3. Static Metadata-Hiding CGKA: Define UC Security Model 209

when the adversary makes a party process an injected commit message c0 and then makes another party
commit the same c0 by controlling its randomness. If the specified node Node[node-id] is a detached root,
F ctxt

CGKA attaches it to id’s current node by calling *attach. Once the detached root is attached to the main
group, the root’s tree achieves the same security guarantee as the main tree. Since attaching a detached
root changes the topology of the history graph, F ctxt

CGKA enforces two invariants: cons-invariant enforces
the consistency of the graph, and auth-invariant enforces the authenticity guarantee.

When add proposals are committed (i.e., addedMem ̸= ⊥), F ctxt
CGKA informs the adversary S that a

welcome message is sent and provides *leak-wel on input the id’s current epoch Ptr[id], the new epoch
Node[c0] and the receiver’s identity idt. If flagcontHide = false, then S obtains all the information that
can be inferred from a non-encrypted welcome message. S returns a simulated welcome message ŵ to
F ctxt

CGKA. We note that in prior definitions [Has+21b; Has+21c], the commit and welcome messages were
simultaneously simulated by S . We consciously divide this process into two. This allows us to model the
fact that a welcome message does not necessarily leak information about the group. That is, the server
can observe that a party id is invited to some group but will not know which group.16. F ctxt

CGKA assigns the
welcome message to the commit node created above. Finally, F ctxt

CGKA marks whether the current epoch
is secure or not using *mark-content-hiden-epoch and returns (c0 ,⃗ c, w⃗) to the calling (dummy) party id,
which simply relays it to the environment Z
Processing commits (See Figure 5.8) A party id can be invoked by the environment Z to process a commit
message with an associating list of proposals (c0, ĉ, p⃗). We explain the case where selective downloading is
performed (i.e., flagselDLis true). F ctxt

CGKA first checks that ĉ is the correct id-dependent message associated
with c0, and outputs ⊥if it is incorrect. (In case flagselDL is false, ĉ must be ⊥.) F ctxt

CGKA then calls S on
input *leak-prop(id) and (c0, ĉ, p⃗). S sets ack := false to report that the protocol failed. If the process
succeeds, F ctxt

CGKA first asks the adversary to interpret the injected proposals by calling *fill-prop. F ctxt
CGKA

then either creates a new commit node or verifies that the existing node is consistent. The adversary
can specify the existing node-id. If the node corresponding to c0 does not exist and the adversary does
not specify any existing node, F ctxt

CGKA checks the validity of p⃗ and creates a new commit node with the
committer identity orig′ and its signature key svk′ which are S interprets from (c0 ,⃗ c, p⃗). Note that the new
node holds the same group identity as id’s current node and the epoch is incremented. If the commit
message was assigned a node (i.e., Node[c0] ̸= ⊥) or the adversary S specifies an existing node, F ctxt

CGKA
checks the validity of the group identity and epoch and enforces that it is a valid successor of id’s current
node by calling *valid-successor. If c0 is assigned to a detached root, F ctxt

CGKA attaches the root to id’s
current node. If c0 is not assigned a node, F ctxt

CGKA assigns the adversary-specified node-id to c0.
Finally, if c0 removes id, F ctxt

CGKA sets Ptr[id] = ⊥. Otherwise, F ctxt
CGKA updates id’s secrets if necessary and

moves Ptr[id] to the new commit node. The calling party receives the committer’s identity, the semantics of
the applied proposals, and the list of (id, svk)-pair.
Joining a group (See Figure 5.9) A party id can be invoked by the environment Z to join a group using
the welcome message ŵ. F ctxt

CGKA forwards (id, ŵ) to the adversary S and receives the interpreted result.
As usual, the adversary sets ack := false to report that the protocol failed. If the process succeeds,
F ctxt

CGKA identifies the commit node node-id = Wel[id, ŵ] corresponding to ŵ. If this is the first time F ctxt
CGKA

sees ŵ, i.e., Wel[id, ŵ] = ⊥, S can specify node-id′. If the commit node for node-id′ does not exist (i.e.,
Node[node-id′] = ⊥), F ctxt

CGKA creates a new detached root where all the stored values are chosen by S .
Finally, F ctxt

CGKA updates id’s secrets (registered in the key service FKS) and returns the state of the joining

16Note that we can capture the situation where a welcome message leaks the group by defining *leak-wel to output the node
pointer of the commit message.

210 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

group (the committer’s identity, the group identity, the epoch, and the list of (id, kp)-pair) to the calling
(dummy) party id.
Group keys (See Figure 5.10) Parties can fetch the current group secret via the Key query. The returned group
secret k is random if the protocol guarantees its confidentiality (identified by the safe predicate). Otherwise,
k is set by the adversary. Unlike prior definitions [Has+21b; Has+21c], we also prepare two extra group
secret keys: the metadata key kmh that can be obtained using Keymh, and the next metadata key kmh

′ that
can be obtained using NextKeymh. While Keymh is defined identically to Key, NextKeymh is a function that
allows obtaining the metadata key at the next epoch. These keys are explicitly used to hide the dynamic
metadata. That is, if we only care about hiding static metadata, these two group secret keys can be safely
omitted from the definition.
Corruptions (See Figure 5.11) The adversary S can corrupt a party id using the Expose query. When the
adversary S inputs (Expose, id) to F ctxt

CGKA, the ideal functionality records the following leaked information:

• The current group secret keys and id’s key materials (e.g., encryption key and signing key). This is
recorded by adding id to the exposed set of id’s current node (cf. Line 2 in (Expose, id) query).

• The key materials created by id during an update or a commit at the current epoch. This is recorded
by setting the status of all the child commit nodes created by id (i.e., nodes with par = Ptr[id]) to ‘bad’
(cf. *update-stat-after-exp function).

• The current signature signing key ssk. This is recorded by signaling to FAS that svk is exposed and
sends ssk to the adversary (cf. Line 5 in (Expose, id) query).

Then, the ideal functionality gives id’s current epoch Ptr[id], the associated information Node[Ptr[id]],
and id’s current secret keys stored in the CurrDK array. Also, the adversary is allowed to corrupt a non-
group member id as well. In such a case, the key packages that id registered to the key service FKS are
leaked. F ctxt

CGKA signals to FKS that key packages (including the signing key) are exposed and send the
corresponding decryption keys and signing keys to the adversary (cf. Line 8 in (Expose, id) query).

If an adversary is allowed to compromise key materials that can be used to compute a group secret
key, which F ctxt

CGKA has already assigned random values, then Z trivially distinguishes a real protocol
from an ideal protocol. For instance, if Z queries Key for a commit node where the predicate safe is
true, then F ctxt

CGKA assigns a random value to the group secret key k. Then, if the adversary at some later
point compromises a party id via an (Expose, id) and can compute the real group secret key k′ from the
compromised key materials, Z can distinguish the two protocols by checking if k = k′.

To avoid such trivial attacks, we restrict the environment to not be able to corrupt key materials for
those commit nodes with chall = true or conthide = true. The former is identical to those used in prior
works [Has+21b; Has+21c]; if a random group secret key was set, then Z cannot corrupt a party that allows
recovering of the real group secret key. The latter is new to this work. For static metadata-hiding, recall
that we must encrypt the proposal and commits. This is modeled in F ctxt

CGKA by requiring the adversary S to
create the (encrypted) proposal and commits without knowing the message when the predicate safe is true.
If Z were to compromise a party that allows recovering the real group secret key, it can try to decrypt the
encrypted proposal or commit to trivially distinguish between a real and ideal protocol. conthide = true

indicates that a commit node created random encryption and restricts Z from later corrupting it. Note that
this implies that the predicate safe for honestly generated commit nodes cannot be switched from true to
false once created. This is in sharp contrast to previous definitions since the group secret key was never
implicitly used as part of the real protocol. We note that this is not a weakness of our security model but
rather a natural consequence of considering CGKAs in a larger system.

5.3. Static Metadata-Hiding CGKA: Define UC Security Model 211

Initialization

1 : Ptr[∗],Prop[∗],Node[∗],Wel[∗]← ⊥
2 : propCtr, nodeCtr← 1
3 : // Flag is set to true if selective downloading is performed.

4 : flagselDL = true

5 : // Flag is set to true if propose and commit contents are hidden

6 : flagcontHide = true

7 : PropID[∗],NodeID[∗]← ⊥

8 : PendDK[∗],CurrDK[∗]← ⊥

9 : Rand[∗]← ‘good’

Inputs from a party idcreator
Input (Create, svk)

1 : req Ptr[idcreator] = ⊥
2 : Send (Create, *leak-create(idcreator, svk)) to S and receive gid

3 : req *valid-svk(idcreator, svk)

4 : (kp, dk)← *update-kp(id, svk)

5 : mem← { (idcreator, kp) } ; CurrDK[id]← dk

6 : Node[0]← *create-root(gid, 0, idcreator,mem,Rand[id])
7 : Ptr[idcreator]← 0

FIGURE 5.5: The ideal static metadata-hiding CGKA functionality F ctxt
CGKA: Initialization and

Create function. The modifications for the functionality to keep track of key packages are
highlighted in gray .

212 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Inputs from a party id

Input (Propose, act), act ∈ { ‘upd’-svk, ‘add’-idt-kpt, ‘rem’-idt }

1 : req Ptr[id] ̸= ⊥
2 : Send (Propose, *leak-prop(id, act)) to S and receive (ack, prop-id, p)
3 : req ack
4 : if act = ‘upd’-svk then
5 : req *valid-svk(id, svk)

6 : (kp, dk)← *update-kp(id, svk)

7 : act← ‘upd’-kp

8 : PendDK[kp]← dk

9 : if act = ‘add’-idt-kpt then req *valid-kp(idt, kpt)

10 : if PropID[p] = ⊥∧ prop-id = ⊥ then
11 : Prop[propCtr]← *create-prop(Ptr[id], id, act,Rand[id])
12 : PropID[p]← propCtr; propCtr++
13 : else

14 : if PropID[p] = ⊥ then (prop-id′,PropID[p])← (prop-id, prop-id)

15 : else prop-id′ ← PropID[p]

16 : *consistent-prop(prop-id′, id, act)
17 : if act = ‘upd’-svk∧ Rand[id] = ‘bad’ then
18 : Send (exposed, id, svk) to FAS

19 : // Mark whether generated messages hide contents (static metadata)

20 : *mark-content-hiden-epoch(Ptr[id])

21 : return p

FIGURE 5.6: The ideal static metadata-hiding CGKA functionality F ctxt
CGKA: Propose func-

tion. The modifications in order for the functionality to keep track of key packages are
highlighted in gray .

5.3. Static Metadata-Hiding CGKA: Define UC Security Model 213

Input (Commit, p⃗, svk)

1 : req Ptr[id] ̸= ⊥
2 : Send (Commit, *leak-com(id, p⃗, svk)) to S and receive (ack, node-id, c0 ,⃗ c)
3 : req *valid-svk(id, svk)

4 : (kpnew, dknew)← *update-kp(id, svk) ; PendDK[kpnew]← dknew

5 : req *succeed-com(id, p⃗, kpnew) ∨ ack
6 : *fill-prop(⃗p)

7 : (mem′, ∗)← *next-members(Ptr[id], id, p⃗, kpnew)

8 : assert mem′ ̸= ⊥∧ (id, kpnew) ∈ mem′

9 : // If selective downloading is performed, then member specific c⃗ has the same size as the current member. Otherwise, c⃗ is ⊥

10 : if flagselDL then
11 : assert |⃗c| = |Node[Ptr[id]].mem|
12 : else
13 : assert c⃗ = ⊥
14 : if NodeID[c0] = ⊥∧ node-id = ⊥ then
15 : Node[nodeCtr]← *create-child(Ptr[id], id, p⃗,⃗ c,mem′,Rand[id])
16 : NodeID[c0]← nodeCtr; nodeCtr++
17 : else
18 : if NodeID[c0] = ⊥ then (node-id′,NodeID[c0])← (node-id, node-id)
19 : else node-id′ ← NodeID[c0]

20 : *consistent-com(node-id′, id, p⃗,mem)

21 : if Node[node-id′].par = ⊥ then
22 : *attach(node-id′, id, p⃗)// Create welcome message for added members

23 : addedMem← Node[NodeID[c0]].mem \Node[Ptr[id]].mem

24 : w⃗← ∅
25 : foreach (idt, ∗) ∈ addedMem do
26 : Send (Welcome, *leak-wel(Ptr[id],NodeID[c0], idt)) to S and receive (ack, ŵ)

27 : req ack
28 : parse (idt, ∗)← ŵ
29 : assert Wel[idt, ŵ] ∈ {⊥,NodeID[c0] }
30 : Wel[idt, ŵ]← NodeID[c0]

31 : w⃗ +← ŵ
32 : assert cons-invariant∧ auth-invariant
33 : if Rand[id] = ‘bad’ then
34 : Send (exposed, id, svk) to FAS

35 : *mark-content-hiden-epoch(Ptr[id]) // Mark whether generated messages hide contents (static metadata)

36 : if w⃗ ̸= ∅ then (NodeID[c0])

37 : return (c0 ,⃗ c, w⃗)

FIGURE 5.7: The ideal static metadata-hiding CGKA functionality F ctxt
CGKA: Commit func-

tion. The modifications in order for the functionality to keep track of key packages are
indicated by the box .

214 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Input (Process, c0, ĉ, p⃗)

1 : req Ptr[id] ̸= ⊥
2 : // If c0 and p⃗ were generated honestly, then use the existing node-id ̸= ⊥.

// Otherwise, the group secret must be exposed and S decides where to attach Ptr[id].

3 : Send (Process, *leak-proc(id), c0, ĉ, p⃗) to S and receive (ack, node-id, orig′, kp′)

4 : req *succeed-proc(id, c0, ĉ, p⃗) ∨ ack
5 : *fill-prop(⃗p)
6 : // If selective downloading is performed, then only the member-specific commitment ĉ is accepted when c0 is honestly generated.

if flagselDL then
7 : node-id← NodeID[c0]

8 : if node-id ̸= ⊥∧Node[node-id].stat = ‘good’ then
9 : indexid ← Node[Ptr[id]].indexOf(id)

10 : req ĉ = Node[node-id].vcom[indexid]

11 : else assert ĉ = ⊥ // Otherwise, ĉ is ⊥.

12 : if NodeID[c0] = ⊥∧ node-id = ⊥ then // If node-id = ⊥, create a new node

13 : try (mem′, ∗)← *next-members(Ptr[id], orig′, p⃗, kp′)

14 : assert mem′ ̸= ⊥
15 : Node[nodeCtr]← *create-child(Ptr[id], orig′, p⃗,mem′, ‘adv’)
16 : (NodeID[c0], node-id)← (nodeCtr, nodeCtr)
17 : nodeCtr++
18 : else // If node-id ̸= ⊥, check consistency with existing node.

19 : if NodeID[c0] = ⊥ then (node-id′,NodeID[c0])← (node-id, node-id)
20 : else node-id′ ← NodeID[c0]

21 : // After processing, require gid to remain the same and epoch to be incremented by 1.

22 : assert Node[Ptr[id]].gid = Node[node-id′].gid
23 : assert Node[Ptr[id]].epoch = Node[node-id′].epoch+ 1
24 : idc ← Node[node-id′].orig; kpc ← Node[node-id′].mem[idc]

25 : (mem′, ∗)← *next-members(Ptr[id], idc, p⃗, kpc)

26 : assert mem′ ̸= ⊥
27 : *valid-successor(node-id′, idc, p⃗,mem′)

28 : // Mark whether generated messages hide contents (static metadata)

29 : if Node[node-id′].par = ⊥ then *attach(node-id′, id, p⃗)*mark-content-hiden-epoch(Ptr[id])
30 : if ∃p ∈ p⃗ : Prop[p].act = ‘rem’-id then Ptr[id]← ⊥
31 : else
32 : assert (id, ∗) ∈ Node[NodeID[c0]].mem

33 : if Node[Ptr[id]].mem[id] ̸= Node[NodeID[c0]].mem[id] then // Fetch new dk if key package is updated

34 : kp← Node[NodeID[c0]].mem[id] ; CurrDK[id]← PendDK[kp]

35 : Ptr[id]← NodeID[c0]

36 : assert cons-invariant∧ auth-invariant
37 : return *output-proc(node-id′)

FIGURE 5.8: The ideal static metadata-hiding CGKA functionality F ctxt
CGKA: Process func-

tion. The modifications in order for the functionality to keep track of key packages are
indicated by the box .

5.3. Static Metadata-Hiding CGKA: Define UC Security Model 215

Input (Join, id, ŵ)

1 : req Ptr[id] = ⊥
2 : // If ŵ was generated honestly, then use the existing node-id ̸= ⊥.

3 : Send (Join, id, ŵ) to S and receive (ack, node-id′, gid′, epoch′, orig′,mem′)

4 : req *succeed-wel(id, ŵ) ∨ ack
5 : node-id← Wel[id, ŵ]

6 : if node-id = ⊥ then

7 : if Node[node-id′] ̸= ⊥ then node-id← node-id′

8 : else

9 : Node[nodeCtr]← *create-root(gid′, epoch′, orig′,mem′, ‘adv’)
10 : node-id← nodeCtr

11 : nodeCtr++
12 : Wel[id, ŵ]← node-id
13 : kp← Node[node-id].mem[id]

14 : CurrDK[id]← DK[id, kp] // Fetch the registered dk used to join

15 : Ptr[id]← node-id
16 : assert (id, ∗) ∈ Node[node-id].mem

17 : assert cons-invariant∧ auth-invariant
18 : return *output-join(node-id)

FIGURE 5.9: The ideal static metadata-hiding CGKA functionality F ctxt
CGKA: Join func-

tion. The modifications in order for the functionality to keep track of key packages are
indicated by the box .

Input (Key)

1 : req Ptr[id] ̸= ⊥
2 : if Node[Ptr[id]].key = ⊥ then
3 : *set-key(Ptr[id])

4 : return Node[Ptr[id]].key

Input (Keymh)

1 : req Ptr[id] ̸= ⊥
2 : if Node[Ptr[id]].kmh = ⊥ then
3 : *set-key(Ptr[id])

4 : return Node[Ptr[id]].kmh

Input (NextKeymh, c0)

1 : req Ptr[id] ̸= ⊥∧NodeID[c0] ̸= ⊥
2 : req Node[NodeID[c0]].par = Ptr[id] ∧Node[NodeID[c0]].orig = id

3 : if Node[NodeID[c0]].kmh = ⊥ then
4 : *set-key(NodeID[c0])

5 : return Node[NodeID[c0]].kmh

FIGURE 5.10: The ideal static metadata-hiding CGKA functionality F ctxt
CGKA: Key, Keymh, and

NextKeymh functions. The last two Keymh and NextKeymh are to be used in a higher layer
protocol. The modifications in order for the functionality to keep track of key packages are
indicated by the box .

216 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Input (Expose, id)

1 : if Ptr[id] ̸= ⊥ then
2 : Node[Ptr[id]].exp +← id

3 : *update-stat-after-exp(id) // Pending secrets are marked as exposed.

4 : svk← Node[Ptr[id]].mem[id].svk // Take svk from id’s key package

5 : Send (exposed, id, svk) to FAS

6 : Send (Ptr[id],Node[Ptr[id]]) to S // All information stored in Node[Ptr[id]] is sent to S .

7 : Send CurrDK[id] to S // id’s secret key is sent to S .

8 : Send (exposed, id) to FKS

9 : restrict ∀node-id :
10 : if Node[node-id].chall = true then safe(node-id) = true

11 : if Node[node-id].conthide = true then safe(node-id) = true

Input (CorrRand, id, b), b ∈ { ‘good’, ‘bad’ }

1 : Rand[id]← b

FIGURE 5.11: The static metadata-hiding CGKA functionality F ctxt
CGKA: Corruptions from the

adversary S . The difference between those of FCGKA [Has+21c] is highlighted in gray .
The modifications in order for the functionality to keep track of key packages are
indicated by the box .

5.3. Static Metadata-Hiding CGKA: Define UC Security Model 217

*create-root(gid, epoch, id,mem, stat)

1 : return new node with par← ⊥, orig← id, gid← gid

epoch← epoch, prop← ⊥,mem← mem, stat← stat.

*create-child(node-id, id, p⃗,⃗ c,mem, stat)

1 : (gid, epoch)← (Node[Ptr[id]].gid,Node[Ptr[id]].epoch)
2 : // Create a new node with an incremented epoch.

3 : return new node with par← node-id, orig← id,
epoch← epoch+ 1, prop← p⃗, vcom← c⃗,
mem← mem, stat← stat.

*create-prop(node-id, id, act, stat)

1 : return new node with par← node-id, orig← id,
act← act, stat← stat.

*fill-prop(⃗p)

1 : foreach p ∈ p⃗ s.t. PropID[p] = ⊥ do
2 : Send (Propose,Ptr[id], p) to S and

receive (prop-id, orig, act)
3 : if prop-id = ⊥ then
4 : Prop[propCtr]← *create-prop(Ptr[id], orig, act, ‘adv’)
5 : PropID[p]← propCtr

6 : propCtr++
7 : // If flagcontHide = true and p includes the same plain content,

8 : // then S outputs prop-id ̸= ⊥.

// In this case, check consistency with the exiting node.

9 : else
10 : *consistent-prop(prop-id, orig, act)
11 : PropID[p]← prop-id

*set-key(node-id)

1 : if safe(node-id) then
2 : Node[node-id].key←$K
3 : Node[node-id].chall← true

4 : else
5 : Send (Key, id) to S and

receive k
6 : Node[node-id].key← k
7 : Node[node-id].chall← false

*mark-content-hiden-epoch(node-id)

1 : if safe(node-id) then
2 : Node[node-id].conthide← true

3 : else
4 : Node[node-id].conthide← false

*update-stat-after-exp(id)

1 : foreach prop-id s.t. Prop[prop-id] ̸= ⊥
∧ Prop[prop-id].par = Ptr[id]

∧ Prop[prop-id].orig = id

∧ Prop[prop-id].act = ‘upd’- ∗ do
2 : Prop[prop-id].stat← ‘bad’
3 : foreach node-id s.t. Node[node-id] ̸= ⊥

∧Node[node-id].par = Ptr[id]

∧Node[node-id].orig = id do
4 : Node[node-id].stat← ‘bad’

FIGURE 5.12: The helper functions for F ctxt
CGKA: Creating and maintaining the history graph.

218 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

*valid-kp(id, kp)

1 : ack← query (has-kp, id, kp) to FKS

2 : return ack

*valid-svk(id, svk′)

1 : if Ptr[id] ̸= ⊥ then
2 : svk← Node[Ptr[id]].mem[id]

3 : if svk′ ̸= ⊥∧ svk = svk′ then
4 : return true

5 : ack← query (has-ssk, id, svk′) to FAS

6 : return ack

*update-kp (id, svk)

1 : if flagcontHide ∧ safe(Ptr[id]) then
2 : ssk← query (get-ssk, svk) to FAS on behalf of id
3 : if Rand[id] = ‘good’ then
4 : (kp, dk)← genKP(id, svk, ssk)
5 : else
6 : Send (rnd, id) to the adversary and receive r

7 : (kp, dk)← genKP(id, svk, ssk; r)
8 : else
9 : Receive (kp, dk) from S

10 : return (kp, dk)

FIGURE 5.13: The helper functions for F ctxt
CGKA: Related to keys. The *update-kp function

highlighted by the box is newly introduced to manage key packages in the functionality.

*output-proc(node-id)

1 : idc ← Node[node-id].orig
2 : kpc ← Node[node-id].mem[idc]

3 : (∗, propSem)← *next-members(node-id, idc,Node[node-id].prop, kpc)

4 : return (Node[node-id].orig, propSem,Node[node-id].mem)

*output-join(node-id)

1 : gid← Node[node-id].gid
2 : epoch← Node[node-id].epoch
3 : mem← Node[node-id].mem

4 : idc ← Node[node-id].orig
5 : return (idc, gid, epoch,mem)

FIGURE 5.14: The helper functions for F ctxt
CGKA: Defining output of process and join protocols.

5.3. Static Metadata-Hiding CGKA: Define UC Security Model 219

*next-members(node-id, idc, p⃗, kpc)

1 : if Node[node-id] ̸= ⊥∧ (idc, ∗) ∈ Node[node-id].mem

∧ ∀p ∈ p⃗ : Prop[p] ̸= ⊥∧ Prop[p].par = node-id then
2 : p⃗‘upd’∥⃗p‘rem’∥⃗p‘add’ ← *sort-proposals(⃗p)

3 : mem← Node[node-id].mem

4 : mem -← (idc, ∗);mem +← (idc, kpc)

5 : L← { idc } // set of updated parties

6 : foreach p ∈ p⃗‘upd’ do

7 : (ids, ‘upd’-kp)← (Prop[p].orig,Prop[p].act)
8 : if ¬((ids, ∗) ∈ mem∧ ids /∈ L)
9 : then return (⊥,⊥)

10 : mem -← (ids, ∗);mem +← (ids, kp)
11 : L +← ids

12 : foreach p ∈ p⃗‘rem’ do
13 : (ids, ‘rem’-idt)← (Prop[p].orig,Prop[p].act)
14 : if ¬((ids, ∗) ∈ mem∧ (idt ∈ mem∧ idt /∈ L))
15 : then return (⊥,⊥)
16 : mem -← (idt, ∗)
17 : foreach p ∈ p⃗‘add’ do
18 : (ids, ‘add’-idt-kpt)← (Prop[p].orig,Prop[p].act)
19 : if ¬((ids, ∗) ∈ mem∧ (idt, ∗) /∈ mem)

20 : then return (⊥,⊥)
21 : mem +← (idt, kpt)

22 : P← ()

23 : foreach p ∈ p⃗‘upd’∥⃗p‘rem’∥⃗p‘add’ do

24 : P ++← (Prop[PropID[p]].orig,Prop[PropID[p]].act)
25 : return (mem, P)
26 : else
27 : return (⊥,⊥)

*sort-proposals(⃗p)

1 : p⃗‘upd’, p⃗‘rem’, p⃗‘add’ ← ()

2 : foreach p ∈ p⃗ do
3 : actp ← Prop[PropID[p]].act
4 : if actp = ‘upd’- ∗ then
5 : p⃗‘upd’ ++← p

6 : elseif actp = ‘rem’- ∗ then
7 : p⃗‘rem’ ++← p
8 : if actp = ‘add’- ∗ then
9 : p⃗‘add’ ++← p

10 : return p⃗‘upd’∥⃗p‘rem’∥⃗p‘add’

FIGURE 5.15: The helper functions for F ctxt
CGKA: Determining the group state after applying a

commit. *sort-proposals(⃗p) orders applying proposals.

220 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

*consistent-prop(prop-id, id, act)

1 : assert Prop[prop-id].par = Ptr[id]

∧ Prop[prop-id].orig = id

∧ Prop[prop-id].act = act

*consistent-com(node-id, id, p⃗,mem)

1 : *valid-successor(node-id, id, p⃗,mem)

2 : assert Rand[id] = ‘bad’∧Node[node-id].orig = id

*valid-successor(node-id, id, p⃗,mem)

1 : assert Node[node-id] ̸= ⊥
∧Node[node-id].mem = mem

∧Node[node-id].prop ∈ {⊥, p⃗ }
∧Node[node-id].par ∈ {⊥,Ptr[id] }

*attach(node-id, id, p⃗)

1 : // Cannot attach to the original honest root node-id = 0

2 : assert node-id ̸= 0
3 : Node[node-id].par← Ptr[id]

4 : Node[node-id].prop← p⃗

*succeed-com(id, p⃗, kp)

1 : return *next-members(Ptr[id], id, p⃗, kp) ̸= (⊥,⊥)
∀p ∈ p⃗ :
prop-id := PropID[p] ̸= ⊥
∧ Prop[prop-id].stat ̸= ‘adv’

*succeed-proc(id, c0, ĉ, p⃗)

1 : node-id← NodeID[c0]

2 : indexid ← Node[node-id].indexOf(id)
3 : return node-id ̸= ⊥∧Node[node-id] ̸= ⊥

∧Node[node-id].par = Ptr[id]

∧Node[node-id].prop = p⃗
∧Node[node-id].stat ̸= ‘adv’
∧ ∀p ∈ p⃗ : Prop[PropID[p]].stat ̸= ‘adv’
∧Node[node-id].vcom[indexid] = ĉ

*succeed-wel(id, ŵ)

1 : node-id← Wel[id, ŵ]

2 : c← Node[node-id]
3 : addedMem← (c.mem \Node[c.par].mem)

4 : return node-id ̸= ⊥
∧ c ̸= ⊥∧ c.stat ̸= ‘adv’
∧ (id, ∗) ∈ addedMem

FIGURE 5.16: The helper functions for F ctxt
CGKA: Checking consistency and correctness.

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 221

auth-invariant

return true iff
(a) ∀node-id with node-idp := Node[node-id].par, node-idp ̸= ⊥ and id := Node[node-id].orig :

if Node[node-id].stat = ‘adv’ then sig-inj-allowed(node-idp, id) ∧mac-inj-allowed(node-idp) and

(b) ∀p with node-idp := Prop[p].par and id := Prop[p].orig :

if Prop[p].stat = ‘adv’ then sig-inj-allowed(node-idp, id) ∧mac-inj-allowed(node-idp) and

(c) ∀node-id with Node[node-id].par = ⊥ and id := Node[node-id].orig : sig-inj-allowed(node-id, id)

cons-invariant

return true iff
(a) ∀node-id s.t. Node[node-id].par ̸= ⊥ : Node[node-id].prop ̸= ⊥∧
∀p ∈ Node[node-id].prop : Prop[PropID[p]].par = Node[node-id].par and

(b) ∀id s.t. Ptr[id] ̸= ⊥ : (id, ∗) ∈ Node[Ptr[id]].mem and
(c) the history graph contains no cycle

FIGURE 5.17: The history graph invariants for F ctxt
CGKA.

5.4 Static Metadata-Hiding CGKA: Construction and Security Proof

In this section, we provide a static-metadata CGKA protocol. To do so, we modify Chained CmPKE of
Hashimoto et al. [Has+21b] into a protocol, which we call Chained CmPKEctxt, that further secures the static
metadata. We then prove that Chained CmPKEctxt UC-realizes the ideal functionality F ctxt

CGKA, where the
leakage functions are defined to only leak the minimal static metadata matching our intuition. This results
in the first CGKA that provably secures the 2nd layer.

5.4.1 Construction of Static Metadata-Hiding CGKA Chained CmPKEctxt

We provide the description of Chained CmPKEctxt. The protocol state and the related helper method are
shown in Tables 5.2 to 5.5. The main protocol is depicted in Figures 5.19 to 5.23 and 5.27, and the associated
helper functions are depicted in Figures 5.24 to 5.26 and 5.28 to 5.30.

Chained CmPKEctxt is almost identical to Chained CmPKE [Has+21c]. The main differences are explained
below and highlighted in gray in the figures. For a detailed description of the common parts of the
protocols, we refer the readers to [Has+21c].

• Chained CmPKEctxt additionally generates an encryption secret encSecret and a welcome secret welcomeSecret
from the joiner secret.17 encSecret is used to encrypt the contents in the proposal and commit mes-
sages, excluding the group identifier gid, epoch, and the message type, which are necessary for
message delivery (cf. *enc-prop and *enc-commit functions in Figure 5.29). welcomeSecret is used to
encrypt the group information and the signature in the welcome message (cf. *enc-welcome function
in Figure 5.30).

• Chained CmPKEctxt creates a separate welcome message for each new member. In contrast, Chained
CmPKE included a member-independent welcome message w0 that is transmitted to every new

17An encryption secret and welcome secret are also generated in MLS [Bar+22, Table 3] used to secure the static metadata.

222 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

group member (see Footnote 10). However, this will allow the server to infer that the recipients with
the same w0 will join a (possibly unknown) group.

• In Chained CmPKEctxt, parties explicitly sort received proposals. In contrast, Chained CmPKE and
MLS’s TreeKEM implicitly assume that when parties fetch the proposals, the server sorts the pro-
posals according to predetermined rules18. However, since proposals are encrypted in Chained
CmPKEctxt, the server can no longer sort them. Therefore, we make parties sort fetched proposals via
*dec-and-sort-proposals shown in Figure 5.29 before they commit or process the proposals.

• (Optional for hiding the dynamic metadata) Chained CmPKEctxt additionally generates an metadata
secret metaKey from the joiner secret. This is used when hiding the dynamic metadata (see Section 5.5
for more detail).

TABLE 5.2: The protocol state of Chained CmPKEctxt. The additional component
from [Has+21c] are highlighted in gray .

G.gid The identifier of the group.
G.epoch The current epoch number.

G.confTransHash The confirmed transcript hash.
G.confTransHash-w.o-‘idc’ The confirmed transcript hash without the committer identity.

G.interimTransHash The interim transcript hash for the next epoch.
G.member[∗] A mapping associating party id with its state.

G.memberHash A hash of the public part of G.member[∗].
G.certSvks[∗] A mapping associating the set of validated signature verification keys to

each party.
G.pendUpd[∗] A mapping associating the secret keys for each pending update proposal

issued by id.
G.pendCom[∗] A mapping associating the new group state for each pending commit issued

by id.
G.id The identity of the party.
G.ssk The current signing key.

G.appSecret The current epoch’s shared key.
G.membKey The key used to MAC proposal packages.
G.encSecret The key used to encrypt proposal and commit messages.
G.metaKey The key used to hide the dynamic metadata in a higher level protocol.
G.initSecret The next epoch’s init secret.

18MLS stipulates that proposals are to be applied in the order Update, Remove, Add [Bar+22, Sec. 13.2.2].

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 223

TABLE 5.3: The party id’s state stored in G.member[id] and helper method.

id The identity of the party.
ek The encryption key of a CmPKE scheme.
dk The corresponding decryption key.
svk The signature verification key of a signature scheme.
sig The signature for (id, ek, svk) under the signature singing key corresponding to svk.
kp() Returns (id, ek, svk, sig) (if G.member[id] ̸= ⊥).

TABLE 5.4: The helper methods on the protocol state. The additional method from [Has+21c]
are highlighted in gray .

G.clone() Returns (independent) copy of G.
G.memberIDs() Returns the list of party ids sorted by dictionary order.

G.memberIDsvks() Returns the list of party ids and its associating svk sorted by dictionary order
in the ids.

G.memberPublicInfo() Returns the public part of G.member[∗].
G.groupCont() Returns (G.gid, G.epoch, G.memberHash, G.confTransHash).
G.indexOf(id) Returns the index of id in the sorted member list returned by G.memberIDs().

TABLE 5.5: The protocol state maintained only during the proof. The additional component
from [Has+21c] are highlighted in gray .

G.joinerSecret The current epoch’s joiner secret.
G.comSecret The current epoch’s commit secret.
G.confKey The key used to MAC for commit and welcome messages.

G.welcomeSecret The key used to encrypt welcome messages.
G.confTag The MAC tag included either in the commit or welcome message.

G.membTags The set of MAC tags included in the proposal messages.

genSSK()

1 : (svk, ssk)← SIG.KeyGen(ppSIG)
2 : return (svk, ssk)

genKP(id, svk, ssk)

1 : (ek, dk)← CmGen(ppCmPKE)

2 : sig← SIG.Sign(ppSIG, ssk, (id, ek, svk))
3 : kp← (id, ek, svk, sig)
4 : return (kp, dk)

FIGURE 5.18: Key generation algorithms of Chained CmPKEctxt.

224 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Input (Create, svk)

1 : req G = ⊥∧ id = idcreator

2 : G.gid←$ {0, 1}κ ; G.joinerSecret←$ {0, 1}κ

3 : G.epoch← 0
4 : G.member[∗]← ⊥; G.memberHash← ⊥
5 : G.confTransHash-w.o-‘idc’← ⊥
6 : G.confTransHash← ⊥
7 : G.certSvks[∗]← ∅
8 : G.pendUpd[∗]← ⊥; G.pendCom[∗]← ⊥
9 : G.id← id

10 : try ssk← *fetch-ssk-if-nec(G, svk)
11 : (kp, dk)← genKP(id, svk, ssk)
12 : G← *assign-kp(G, id, kp)
13 : G.member[id].dk← dk

14 : G.ssk← ssk

15 : G.memberHash← *derive-member-hash(G)

16 : (G, confKey)← *derive-epoch-keys(G, G.joinerSecret)
17 : confTag← *gen-conf-tag(G, confKey)
18 : G← *set-interim-trans-hash(G, confTag)

Input (Propose, ‘upd’-svk)

1 : req G ̸= ⊥
2 : try ssk← *fetch-ssk-if-nec(G, svk)
3 : (kp, dk)← genKP(id, svk, ssk)
4 : P← (‘upd’, kp)
5 : p← *frame-prop(G, P)
6 : G.pendUpd[p]← (ssk, dk)

7 : pctxt ← *enc-prop(G.encSecret, p)

8 : return pctxt

Input (Propose, ‘add’-idt-kpt)

1 : req G ̸= ⊥∧ idt /∈ G.memberIDs()

2 : req kpt ̸= ⊥
3 : Send (has-kp, idt, kpt) to FKS and

receive ack
4 : // ack = true implies *validate-kp(kpt, idt) = true

5 : req ack
6 : P← (‘add’, kpt)

7 : p← *frame-prop(G, P)

8 : pctxt ← *enc-prop(G.encSecret, p)

9 : return pctxt

Input (Propose, ‘rem’-idt)

1 : req G ̸= ⊥∧ idt ∈ G.memberIDs()

2 : P← (‘rem’, idt)

3 : p← *frame-prop(G, P)

4 : pctxt ← *enc-prop(G.encSecret, p)

5 : return pctxt

FIGURE 5.19: Static metadata-hiding CGKA protocol Chained CmPKEctxt: Create and
Propose. The major changes from [Has+21c] are highlighted in gray .

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 225

Input (Commit, p⃗ctxt, svk)

1 : req G ̸= ⊥

2 : try p⃗← *dec-and-sort-proposals(G.encSecret, p⃗ctxt)

3 : G′ ← *init-epoch(G)

4 : try (G′, upd, rem, add)← *apply-props(G, G′, p⃗)
5 : req (∗, ‘rem’-id) /∈ rem∧ (id, ∗) /∈ upd
6 : addedMem← { idt | (∗, ‘add’-idt-∗) ∈ add } // Recipients of the welcome message

7 : receivers← G′.memberIDs() \ addedMem // Recipients of the new commit secret

8 : try (G′, comSecret, kp, ct0, c⃗t = (ĉtid)id∈receivers)← *rekey(G′, receivers, id, svk)

9 : G′ ← *set-member-hash(G′)
10 : propIDs← ()

11 : foreach p ∈ p⃗ do propIDs ++← H(p)
12 : C0 ← (propIDs, kp, ct0)
13 : sig← *sign-commit(G, C0)

14 : G′ ← *set-conf-trans-hash(G, G′, id, C0, sig)

15 : (G′, confKey, joinerSecret)← *derive-keys(G, G′, comSecret)

16 : confTag← *gen-conf-tag(G′, confKey)
17 : c0 ← *frame-commit(G, C0, sig, confTag)

18 : G′ ← *set-interim-trans-hash(G′, confTag)
19 : c⃗← ∅
20 : foreach id ∈ G.memberIDs() do
21 : if id ∈ receivers then c⃗ +← (id, ĉtid))
22 : else c⃗ +← ĉid := (id,⊥))
23 : if add ̸= () then

24 : (G′, w0, w⃗)← *welcome-msg(G′, addedMem, joinerSecret, confTag)
25 : else
26 : w0 ← ⊥; w⃗← ∅

27 : G.pendCom[c0]← (G′, p⃗, upd, rem, add)
28 : // Encrypt messages

29 : (cctxt0 ,⃗ cctxt)← *enc-commit(G.c0 ,⃗ c)

30 : w⃗ctxt ← ∅

31 : welcomeSecret← HKDF.Expand(joinerSecret, ‘wel’)

32 : foreach ŵ ∈ w⃗ then

33 : ŵctxt ← *enc-welcome(welcomeSecret, w0, ŵ)

34 : w⃗ctxt +← ŵctxt

35 : return (cctxt0 ,⃗ cctxt, w⃗ctxt)

FIGURE 5.20: Static metadata-hiding CGKA protocol Chained CmPKEctxt: Commit. The major
changes from [Has+21c] are highlighted in gray .

226 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Input (Process, cctxt0 , ĉctxt, p⃗ctxt)

1 : req G ̸= ⊥

2 : try (c0, ĉ)← *dec-commit(G.encSecret, cctxt0 , ĉctxt)

3 : try p⃗← *dec-and-sort-proposals(G.encSecret, p⃗ctxt)

4 : (idc, C0, sig, confTag)← *unframe-commit(G, c0)

5 : if idc = id then

6 : parse (G′, p⃗′, upd, rem, add)← G.pendCom[c0]

7 : req p⃗ = p⃗′

8 : return (idc, upd∥rem∥add, G′.memberIDsvks())

9 : parse (propIDs, kpc, ct0)← C0

10 : parse (id′, ĉtid′)← ĉ′

11 : req G.id = id′

12 : for i ∈ 1, . . . , |⃗p| do
13 : req H(⃗p[i]) = propIDs[i]

14 : G′ ← *init-epoch(G)

15 : try (G′, upd, rem, add)← *apply-props(G, G′, p⃗)
16 : req (∗, idc) /∈ rem∧ (idc, ∗) /∈ upd
17 : if (∗, ‘rem’-id) ∈ rem then

18 : G′ ← ⊥
19 : return (idc, upd∥rem∥add,⊥)
20 : else

21 : G′ ← *set-conf-trans-hash(G, G′, idc, C0, sig)

22 : (G′, comSecret)← *apply-rekey(G′, idc, kpc, ct0, ĉtid)

23 : G′ ← *set-member-hash(G′)

24 : (G′, confKey, joinerSecret)← *derive-keys(G, G′, comSecret)

25 : req *vrf-conf-tag(G′, confKey, confTag)

26 : G′ ← *set-interim-trans-hash(G′, confTag)

27 : return (idc, upd∥rem∥add, G′.memberIDsvks())

FIGURE 5.21: Static metadata-hiding CGKA protocol Chained CmPKEctxt: Process. The major
changes from [Has+21c] are highlighted in gray .

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 227

Input (Join, ŵctxt)

1 : req G = ⊥

2 : (w0, ŵ)← *dec-welcome(ŵctxt)

3 : parse (ct0, groupInfo, sig)← w0

4 : parse (id′, kphash, ĉtid′)← ŵ

5 : req id = id′

6 : try (G, confTag, idc)← *initialize-group(G, id, groupInfo)
7 : req G.confTransHash = H(G.confTransHash-w.o-‘idc’, idc)

8 : req G.interimTransHash = H(G.confTransHash, confTag)
9 : req SIG.Verify(G.member[idc].svk, sig, (ct0, ĉt, groupInfo))

10 : try G← *vrf-group-state(G)

11 : G.id← id

12 : svk← G.member[id].svk
13 : Send (get-ssk, svk) to FAS and receive ssk

14 : G.ssk← ssk

15 : Send (get-dks) to FKS and receive kbs
16 : joinerSecret← ⊥
17 : foreach (kp, dk) ∈ kbs do
18 : if H(kp) = kphash then
19 : req G.member[id].kp() = kp

20 : G.member[id].dk← dk

21 : joinerSecret← CmDec(dk, ct0, ĉt)
22 : req joinerSecret ̸= ⊥
23 : (G, confKey)← *derive-epoch-keys(G, joinerSecret)
24 : req *vrf-conf-tag(G, confKey, confTag)
25 : return (idc, G.memberIDsvks())

FIGURE 5.22: Static metadata-hiding CGKA protocol Chained CmPKEctxt: Join. The major
changes from [Has+21c] are highlighted in gray .

Input (Key)

1 : req G ̸= ⊥
2 : k← G.appSecret
3 : return k

Input (Keymh, c0)

1 : req G ̸= ⊥
2 : kmh ← G.metaKey

3 : return kmh

Input (NextKeymh, c0)

1 : // Returns the pending kmh
′

2 : // for the next epoch

3 : parse (G′, ∗)← G.pendCom[c0]

4 : kmh
′ ← G′.metaKey

5 : return kmh
′

FIGURE 5.23: Static metadata-hiding CGKA protocol Chained CmPKEctxt: Retrieve group
secret key. The major changes from [Has+21c] are highlighted in gray . Note that Keymh and
NextKeymh are used in the higher-level metadata-hiding protocol.

228 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

*fetch-ssk-if-nec(G, svk′)

1 : svk← G.member[G.id].svk

2 : if svk ̸= svk′ then
3 : Send (get-ssk, svk) to FAS and
4 : receive ssk

5 : else
6 : ssk← G.ssk
7 : return ssk

*validate-kp(G, kp, id)

1 : parse (id′, ek, svk, sig)← kp

2 : req id = id′

3 : if svk /∈ G.certSvks[id] then

4 : Send (verify-cert, id′, svk) to FAS

and receive succ
5 : req succ
6 : G.certSvks[id] +← svk

7 : req SIG.Verify(svk, sig, (id, ek, svk))
8 : return G

*assign-kp(G, kp)

1 : parse (id, ek, svk, sig)← kp

2 : G.member[id].ek← ek

3 : G.member[id].svk← svk

4 : G.member[id].sig← sig

5 : return G

FIGURE 5.24: Helper functions of Chained CmPKEctxt: Key material related.

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 229

*init-epoch(G)

1 : G′ ← G.clone()

2 : G′.epoch← G.epoch+ 1

3 : G′.pendUpd[∗], G′.pendCom[∗]← ⊥
4 : return G′

*rekey(G′, receivers, id, svk)

1 : try ssk← *fetch-ssk-if-nec(G′, svk)
2 : (kp, dk)← genKP(id, svk, ssk)

3 : G′ ← *assign-kp(G′, kp)

4 : G′.ssk← ssk

5 : G′.member[id].dk← dk

6 : comSecret←$ {0, 1}κ

7 : e⃗k← (G.member[id′].ek)id′∈receivers
8 : (ct0, c⃗t)← CmEnc(ppCmPKE, e⃗k, comSecret)

9 : return (G′, comSecret, kp, ct0, c⃗t)

*apply-rekey(G′, idc, kpc, ct0, ĉt)

1 : dk← G′.member[G′.id].dk
2 : comSecret← CmDec(dk, ct0, ĉt)

3 : try G′ ← *validate-kp(G′, kpc, idc)

4 : G′ ← *assign-kp(G′, kpc)

5 : return (G′, comSecret)

*apply-props(G, G′, p⃗)

1 : upd, rem, add← ()

2 : foreach p ∈ p⃗ do
3 : try (ids, P)← *unframe-prop(G, p)
4 : parse (type, val)← P
5 : if type = ‘upd’ then
6 : req ids ∈ G.memberIDs()

7 : req (ids, ∗) /∈ upd∧ rem = () ∧ add = ()

8 : try G′ ← *validate-kp(G′, val, ids)

9 : G′ ← *assign-kp(G′, val)
10 : if ids = G.id then
11 : parse (ssk, dk)← G.pendUpd[p]

12 : G′.ssk← ssk

13 : G′.member[G.id].dk← dk

14 : svk← G′.member[ids].svk
15 : upd ++← (ids, ‘upd’-svk)
16 : elseif type = ‘rem’ then
17 : parse idt ← val
18 : req idt ̸= ids ∧ idt ∈ G.memberIDs()

19 : req (idt, ∗) /∈ upd∧ add = ()

20 : G′.member[idt]← ⊥
21 : rem ++← (ids, ‘rem’-idt)

22 : elseif type = ‘add’ then
23 : (idt, ∗, ∗, ∗)← val
24 : req idt /∈ G.memberIDs()

25 : try G′ ← *validate-kp(G′, val, idt)

26 : G′ ← *assign-kp(G′, val)
27 : add ++← (ids, ‘add’-val)
28 : else
29 : return ⊥
30 : return (G′, upd, rem, add)

FIGURE 5.25: Helper functions of Chained CmPKEctxt: Commit and Process related.

230 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

*welcome-msg(G′, addedMem, joinerSecret, confTag)

1 : e⃗k← (G′.member[idt].ek)idt∈addedMem do

2 : (ct0, c⃗t = (ĉtidt)idt∈addedMem)← CmEnc(ppCmPKE, e⃗k, joinerSecret)

3 : groupInfo← (G′.gid, G′.epoch, G′.memberPublicInfo(), G′.memberHash, G′.confTransHash-w.o-‘idc’,

G′.confTransHash, G′.interimTransHash, confTag, G′.id)

4 : sig← SIG.Sign(ppSIG, G′.ssk, (ct0, groupInfo))
5 : w0 ← (ct0, groupInfo, sig)
6 : w⃗← ∅
7 : foreach idt ∈ addedMem do

8 : kphasht ← H(G′.member[idt].kp())
9 : w⃗ +← ŵidt = (idt, kphasht, ĉtidt)

10 : return (G′, w0, w⃗)

*initialize-group(G, id, groupInfo)

1 : parse (gid, epoch,member,memberHash, confTransHash-w.o-‘idc’, confTransHash, interimTransHash, confTag, idc)

← groupInfo
2 : (G.gid, G.epoch, G.member, G.memberHash, G.confTransHash-w.o-‘idc’, G.confTransHash, G.interimTransHash)

← (gid, epoch,member,memberHash, confTransHash-w.o-‘idc’, confTransHash, interimTransHash)

3 : G.certSvks[∗]← ∅
4 : G.pendUpd[∗]← ⊥; G.pendCom[∗]← ⊥
5 : G.id← id

6 : return (G, confTag, idc)

*vrf-group-state(G)

1 : req G.memberHash = *derive-member-hash(G)

2 : mem← G.memberIDs()

3 : foreach id ∈ mem do
4 : kp← G.member[id].kp()
5 : try G← *validate-kp(G, kp, id)
6 : return G

FIGURE 5.26: Helper functions of Chained CmPKEctxt: Join related.

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 231

*gen-conf-tag(G, confKey)

1 : confTag← MAC.Gen(confKey, G.confTransHash)
2 : return confTag

*vrf-conf-tag(G, confKey, confTag)

1 : ≻← MAC.Verify(confKey, confTag, G.confTransHash)
2 : return ≻

*set-member-hash (G)

1 : G.memberHash← *derive-member-hash(G)

2 : return G

*derive-member-hash (G)

1 : // mem is sorted by dictionary order

2 : KP← ();mem← G.memberIDs()

3 : foreach id ∈ mem do
4 : KP ++← G.member[id].kp()
5 : return H(KP)

*set-conf-trans-hash(G, G′, idc, C0, sig)

1 : comCont← (G.gid, G.epoch, ‘commit’, C0, sig)

2 : G′.confTransHash-w.o-‘idc’← H(G.interimTransHash, comCont)

3 : G′.confTransHash← H(G′.confTransHash-w.o-‘idc’, idc)

4 : return G′

*set-interim-trans-hash(G′, confTag)

1 : G′.interimTransHash← H(G′.confTransHash, confTag)

2 : return G′

*derive-keys(G, G′, comSecret)

1 : s← HKDF.Extract(G.initSecret, comSecret)

2 : joinerSecret← HKDF.Expand(s, ‘joi’)

3 : (G′, confKey)← *derive-epoch-keys(G′, joinerSecret)

4 : return (G′, confKey, joinerSecret)

*derive-epoch-keys(G′, joinerSecret)

1 : confKey← HKDF.Expand(joinerSecret, G′.groupCont()∥‘conf’)
2 : G′.appSecret← HKDF.Expand(joinerSecret, G′.groupCont()∥‘app’)

3 : G′.membKey← HKDF.Expand(joinerSecret, G′.groupCont()∥‘memb’)

4 : G′.encSecret← HKDF.Expand(joinerSecret, G′.groupCont()∥‘enc’)

5 : G′.metaKey← HKDF.Expand(joinerSecret, G′.groupCont()∥‘meta’)

6 : G′.initSecret← HKDF.Expand(joinerSecret, G′.groupCont()∥‘init’)
7 : return (G′, confKey)

FIGURE 5.27: Helper functions of Chained CmPKEctxt: computing tags, hash values, group
secrets and framing and unframing packets. The major changes from [Has+21c] are
highlighted in gray .

232 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

*frame-prop(G, P)

1 : propCont← (G.groupCont(), G.id, ‘proposal’, P)
2 : sig← SIG.Sign(ppSIG, G.ssk, propCont)
3 : membTag← MAC.Gen(G.membKey, (propCont, sig))
4 : p← (G.id, P, sig,membTag)

5 : return (G.gid, G.epoch, ‘proposal’, p)

*unframe-prop(G, p)

1 : parse (gid, epoch, contType, p)← p
2 : parse (ids, P, sig,membTag)← p
3 : req contType = ‘proposal’

∧ gid = G.gid∧ epoch = G.epoch
4 : propCont← (G.groupCont(), ids, ‘proposal’, P)
5 : svk← G.member[ids].svk
6 : req G.member[ids] ̸= ⊥

∧ SIG.Verify(svk, sig, propCont)
∧MAC.Verify(G.membKey,membTag, (propCont, sig))

7 : return (ids, P)

*sign-commit(G, C0)

1 : comCont← (G.groupCont(), G.id, ‘commit’, C0)

2 : sig← SIG.Sign(ppSIG, G.ssk, comCont)
3 : return sig

*frame-commit(G, C0, sig, confTag)

1 : c0 ← (G.id, C0, sig, confTag)
2 : return (G.gid, G.epoch, ‘commit’, c0)

*unframe-commit(G, c0)

1 : parse (G.gid, G.epoch, ‘commit’,CTc0)← c0

2 : parse (idc, C0, sig, confTag)← c0

3 : req contType = ‘commit’
∧ gid = G.gid∧ epoch = G.epoch

4 : comCont← (G.groupCont(), idc, ‘commit’, C0)

5 : svkc ← G.member[idc].svk
6 : req G.member[idc] ̸= ⊥

∧ SIG.Verify(svkc, sig, comCont)
7 : return (idc, C0, sig, confTag)

FIGURE 5.28: Helper functions of Chained CmPKEctxt: Frame and unframe packets.

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 233

*enc-prop(encSecret, p)

1 : parse (gid, epoch, ‘proposal’, p)← p
2 : CTp ← SKE.Enc(encSecret, p)

3 : return pctxt := (gid, epoch, ‘proposal’,CTp)

*dec-prop(encSecret, pctxt)

1 : parse (gid, epoch, ‘proposal’,CTp)← pctxt

2 : p← SKE.Dec(encSecret,CTp)

3 : return p := (gid, epoch, ‘proposal’, p)

*enc-commit(encSecret, c0 ,⃗ c)

1 : parse (gid, epoch, ‘commit’, c0)← c0

2 : CTc0 ← SKE.Enc(encSecret, c0)

3 : c⃗ctxt ← ∅
4 : foreach ĉ ∈ c⃗ do

5 : c⃗ctxt +← SKE.Enc(encSecret, ĉ)

6 : cctxt0 ← (G.gid, G.epoch, ‘commit’,CTc0)

7 : return (cctxt0 ,⃗ cctxt)

*dec-commit(encSecret, cctxt0 , ĉctxt)

1 : parse (gid, epoch, ‘commit’,CTc0)← cctxt0

2 : c0 ← SKE.Dec(encSecret,CTc0)

3 : ĉ← SKE.Dec(encSecret, ĉctxt)
4 : c0 ← (gid, epoch, ‘commit’, c0)

5 : return (c0, ĉ)

*dec-and-sort-proposals(encSecret, p⃗ctxt)

1 : p⃗, p⃗‘rem’, p⃗‘upd’, p⃗‘add’ ← ()

2 : foreach pctxt ∈ p⃗ctxt do

3 : try p← *dec-prop(encSecret, pctxt)
4 : try type← *extract-proposal-type(p)
5 : if type = ‘upd’ then
6 : p⃗‘upd’ ++← p

7 : elseif type = ‘rem’ then
8 : p⃗‘rem’ ++← p
9 : elseif type = ‘add’ then

10 : p⃗‘add’ ++← p
11 : else return ⊥
12 : // Return sorted proposal list

13 : return p⃗‘upd’∥⃗p‘rem’∥⃗p‘add’

*extract-proposal-type(p)

1 : parse (gid, epoch, contType, p)← p
2 : parse (ids, P, sig,membTag)← p
3 : parse (type, val)← P
4 : return type

FIGURE 5.29: Helper functions unique to Chained CmPKEctxt: Encrypt and decrypt proposals
and commits. The major changes from [Has+21c] are highlighted in gray . *sort-proposals
decrypts proposals and sort them following the order of MLS specification [Bar+22, Sec.
13.2.2].

234 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

*enc-welcome(welcomeSecret, w0, ŵ)

1 : parse (idt, kphasht, ĉt)← w0

2 : parse (ct0, groupInfo, sig)← ŵ
3 : welcomeSecretidt

← HKDF.Expand(welcomeSecret, idt)

4 : CT← SKE.Enc(welcomeSecretidt , (groupInfo, sig))

5 : return ŵctxt := (idt, (kphasht, ct0, ĉt),CT)

*dec-welcome(ŵctxt)

1 : parse (idt, (kphash, ct0, ĉt),CT)← ŵctxt

2 : Send (get-dks) to FKS and receive kbs
3 : joinerSecret, kpid, dkid ← ⊥
4 : foreach (kp, dk) ∈ kbs do
5 : if H(kp) = kphash then
6 : (kpid, dkid)← (kp, dk)
7 : joinerSecret← CmDec(dk, ct0, ĉt)
8 : break
9 : req joinerSecret ̸= ⊥

10 : welcomeSecret

← HKDF.Expand(joinerSecret, ‘wel’)
11 : welcomeSecretidt

← HKDF.Expand(welcomeSecret, idt)

12 : (groupInfo, sig)
← SKE.Dec(welcomeSecretidt ,CT)

13 : w0 ← (ct0, groupInfo, sig)
14 : ŵ← (idt, kphasht, ĉt)
15 : return (w0, ŵ)

FIGURE 5.30: Helper functions unique to Chained CmPKEctxt: Encrypt and decrypt welcome
messages. The major changes from [Has+21c] are highlighted in gray .

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 235

5.4.2 Security Proof of Static Metadata-Hiding CGKA

Hashimoto et al. [Has+21b] proposed Chained CmPKE and showed that it UC-realizes FCGKA. We show
that the ciphertext variant of Chained CmPKE, which we call Chained CmPKEctxt, UC-realizes F ctxt

CGKA. The
construction itself is a variation mirroring what MLSCiphertext does to MLSPlaintext. Thus, the technical
novelty of this section is the first formal security proof that models static metadata-hiding. Considering
that the overall structure of Chained CmPKE is similar to TreeKEM, except that the former further supports
selective downloading, we expect our proof techniques to naturally translate to the ciphertext variant of
TreeKEM. We leave it as an important future work to formally validate this. Below, we provide the core
insights of our security proof. The full detail of the proof is provided in Section 5.4.4.
Recycling previous proofs. As explained earlier, the ideal functionality F ctxt

CGKA almost degenerates to
FCGKA when the leakage functions are defined to leak all static metadata. Our proof takes advantage of
this fact. Recall that to prove security in the UC framework, we informally need to construct a simulator
S that simulates the real world adversary A. We thus try to construct a simulator Sctxt for F ctxt

CGKA that
internally executes S for FCGKA. Using the description of S provided in Hashimoto et al. [Has+21b], the
hope is to recycle all the proofs provided by them (which spanned 30 pages!). At a high level, during
the hybrids where the leakage functions do not hide any static metadata, Sctxt can use knowledge of the
group encryption key to encrypt whatever non-encrypted proposals and commits S outputs, and decrypt
whatever S inputs to perform a process. This allows us to recycle all the proofs that ignore the security of
the static metadata. We then gradually modify the definition of the leakage functions to arrive at our ideal
functionality F ctxt

CGKA. In the final hybrid, Sctxt no longer knows the group encryption key for those epochs
where safe is true, and F ctxt

CGKA (roughly) takes care of generating random encryption of a proposal and
commit.

While the high-level idea of recycling the proof of Hashimoto et al. [Has+21b] sounds straightforward,
it turns out to be easier said than done. The non-triviality comes from the fact that the history graph created
by F ctxt

CGKA while using the null-leakage function is not identical to those created by FCGKA — it is only
almost identical. As explained earlier, our new history graph uses the semantics to identify the nodes and
captures settings unique to F ctxt

CGKA. Since all the security arguments boil down to how the predicate safe
is defined over the history graph constructed during the security proof, it is not clear how to relate the
proof of Hashimoto et al. to ours. To this end, we define the notion of isomorphisms of history graphs so
that a security proof translates within the same class of history graphs. At a high level, two history graphs
are isomorphism if the symbolic representation of the group evolution is identical. We prove that the two
history graphs created in F ctxt

CGKA and FCGKA are isomorphic.
Polynomial security loss. We like to point out that our security proof only admits a polynomial security
loss. This is in contrast to Hashimoto et al. [Has+21b] that admitted an exponential security loss.19

The main reason for this disparity is because Chained CmPKEctxt captures a larger part of a CGKA
compared to Chained CmPKE. As explained earlier, Chained CmPKE does not use the group secret key to
encrypt proposals and commits, while Chained CmPKEctxt does. Effectively, in the former, an adversary
was able to adaptively corrupt the group secret key while not trivially winning the security game. However,
once the group secret key is used in a higher-level protocol as in Chained CmPKEctxt, this is no longer the
case. An adversary capable of corrupting the group secret key after seeing the ciphertext can trivially
win the security game.20 Since the exponential security loss in Hashimoto et al. [Has+21b] was due to

19We note that they were able to achieve a polynomial security loss relying on a stronger form of multi-recipient PKE secure
against adaptive corruptions.

20We note that this problem may theoretically be solved using non-committing encryptions [Can+96], but we did not consider
them as a viable option as it will add a noticeable overhead in efficiency.

236 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

the adaptivity of the adversary, we can remove this loss by naturally restricting such adversaries in our
UC-security model.

Remark 5.4.1 (Adversary-controlled randomness). In case of corruption, [AJM22; Has+21b] allow the
adversary A in FCGKA to set the randomness to be used by the corrupted member id by altering the
value Rand[id]. While our ideal functionality F ctxt

CGKA models such strong adversaries, we restrict the
adversary in our security proof to never alter the randomness for simplicity and better readability. Recent
definitions [Alw+22d; Alw+21a] also intentionally disregard this type of attack.21 We leave it as future
work to incorporate adversary-controlled randomness into the proof.

5.4.3 Safety Predicates and Leakage Functions for Chained CmPKEctxt

As explained in Section 5.3.3, to formally prove that Chained CmPKEctxt UC-realizes the ideal functionality
F ctxt

CGKA, we must first specify the safety predicates safe, mac-inj-allowed, and sig-inj-allowed, and the
leakage functions *leak-create, *leak-prop, *leak-com, *leak-wel, and *leak-proc.

These are formally defined in Figures 5.31 and 5.32. The definition of the safety predicates safe,
mac-inj-allowed and sig-inj-allowed is identical to those considered by Chained CmPKE [Has+21c, Fig.
28], modulo the syntactical difference in the definition of node pointers (see Section 5.3.1).

The leakage functions *leak-create, *leak-prop, *leak-com, *leak-wel, and *leak-proc are new to the
definition of F ctxt

CGKA and dictate the amount of static metadata leaked to the server. Since the concrete leak-
age information depends on the concrete choice of CGKA, our choice only captures the leakage of Chained
CmPKEctxt. Namely, other protocols such as the ciphertext variant of TreeKEM used in MLSCiphertext may
require a slightly more complex leakage function. We provide some discussion in Section 5.8. Below, we
explain the specific choice of our leakage functions in more detail.
*leak-create(id, svk): This defines the information leaked when a new group is created. In the previous
(non-metadata-hiding) Chained CmPKE, the simulator was given the identity of the party id creating the
group and its corresponding signature verification key svk to simulate the group identifier gid. In other
words, gid leaked information on (id, svk). In Chained CmPKEctxt, the simulator is asked to simulate gid
without giving any other information. This models the fact that when a new group is created, the server
cannot guess who created it. As mentioned in the introduction, this could potentially open the door to a
DoS attack on the server. One way to solve this would be to use standard anonymous credentials [Cha82].
We leave such direction of research as an important future work.
*leak-prop(id, act): This defines the information that is leaked from proposals p. In Chained CmPKE, the
simulator was given the identity of the party id creating the proposal, the commit node Ptr[id] that locates
id in the history graph, and the action act of the proposal to simulate the proposal p. Here, when there is no
fork in the main group, then Ptr[id] essentially pinpoints the specific epoch of the group. In case there is a
fork, then epoch alone is not sufficient to identify where party id is located, in which case we need the exact
proposal node Ptr[id]. In other words, proposal p leaked the proposing party id and the action act, where
note that p must always include Ptr[id] (which is (gid, epoch) essentially) for the server to deliver p to the
appropriate member in a specific epoch.

In Chained CmPKEctxt, we define *leak-prop(id, act) to only output Ptr[id] and the length of |id| and
|act|. This models the fact that proposals p only leak the specific group by which p is supposed to be
processed. Moreover, in case the size of each action act is different, this leaks the action type. However,
considering that the addition or removal of a group member is noticeable from the server (since it changes
the size of commit messages), hiding the type of action may not add as much security as one expects.

21Alwen et al.[Alw+21a] does not allow adversaries to manipulate randomness used for symmetric key encryption.

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 237

*leak-com(id, p⃗, svk): This defines the information that is leaked from commits (c0 ,⃗ c = (̂cid′)id′). In Chained

CmPKE, the simulator was given the identity of the party id creating the commit; the commit node Ptr[id]
that locates id in the history graph; the list of proposals p⃗ that is going to be committed; the new signing
key svk of id; and the list of current members mem in the group to simulate the commit (c0 ,⃗ c). In other
words, a commit leaks the committer identity id, its signing key svk, and the current list of members mem.

In Chained CmPKEctxt, we define *leak-com(id, p⃗, svk) to only output (Ptr[id], |id|, p⃗, |svk|, |mem|). Note
that similarly to proposals, Ptr[id] cannot be hidden. Moreover, p⃗ is guaranteed to hide the static metadata
from above, we can provide this to the simulator. Finally, the size of the current member |mem| would
necessarily leak from commit messages when using Chained CmPKE since c⃗ scales linearly with the group
size. While we could apply some padding to hide the group size from the commit, the server can infer
the group size when selective downloading is performed; if N distinct ĉ were downloaded out of M ≥ N
commits (that includes the padded garbage commits), then the server can guess that the group size was N.
*leak-wel(node-idcur, node-idnext, idt): This defines the information that is leaked from welcome messages
ŵ. In Chained CmPKE, the simulator was given the key package kpt of the added member idt; the commit
node of the next epoch node-idnext; and all the information stored on the commit node Node[node-idnext] to
simulate the welcome message ŵ. In other words, welcome messages leak the group identifier gid, the next
epoch, the identity id of the party who created the welcome message, the size of the member of the next
epoch, and so on.

In Chained CmPKEctxt, we define *leak-wel(node-idcur, node-idnext, idt) to only output (kpt, |gid| , |epoch| ,
|id| , |mem|). Here, we include kpt in clear since Chained CmPKEctxt (and MLSCiphertext) includes the hash
of the key package of idt in the welcome message in the clear. Namely, in case idt creates many key packages,
the simulator must know which kpt is used to simulate the welcome message.

We note that the reason why the proposed protocol and MLSCiphertext includes a hash kphasht of kpt in
the welcome message is for efficiency. The added party, which may have created many key packages for
different groups, can check which key package to use by simply finding the key package that equals the
hash value kphasht. Otherwise, the party must go through all the decryption keys associated with each key
package it has and try to see whether the welcome message can be decrypted correctly. We also note that
idt is always leaked from the welcome message since otherwise, the server will not know the destination of
the welcome message, i.e., it cannot deliver it.
*leak-proc(id): This defines the information that is leaked from a party-dependent commit (c0, ĉ) and a
list of proposals p⃗. In Chained CmPKE, the simulator was given the identity of the party id processing the
commit and the commit node Ptr[id] that locates id in the history graph to decide whether (c0, ĉ, p⃗) should
be processed correctly by a party id.

In Chained CmPKEctxt, we define *leak-proc(id) to only output (Ptr[id], indexid). As explained above,
Ptr[id] cannot be hidden since this information is required for id to retrieve the uploaded commit and
proposals from the server. Moreover, since selective downloading is performed, ĉ must leak the position of
the party id in the group (assuming that id can process (c0, ĉ) correctly).

5.4.4 Security of Chained CmPKEctxt

The following theorem establishes that Chained CmPKEctxt UC-realizes the ideal functionality F ctxt
CGKA.

Theorem 5.4.2. Assuming that CmPKE is IND-CCA secure, SIG is sEUF-CMA secure, and SKE is IND-CCA
secure, our CGKA protocol Chained CmPKEctxt adaptively and securely realizes the ideal functionality F ctxt

CGKA in
the (FAS,FKS,GRO)-hybrid model.

238 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Knowledge of party’s secrets.

know(node-id, id) ⇐⇒
(a) id ∈ Node[node-id].exp∨
(b) *secrets-injected(node-id, id)∨
(c) (Node[node-id].par ̸= ⊥∧ know(Node[node-id].par, id)) ∧ ¬*secrets-replaced(node-id, id)∨
(d) ∃node-id′ : (Node[node-id′].par = node-id∧ know(node-id′, id) ∧ ¬*secrets-replaced(node-id′, id))
*secrets-injected(node-id, id) ⇐⇒
(a) (Node[node-id].orig = id∧Node[node-id].stat ̸= ‘good’)∨
(b) ∃p ∈ Node[node-id].prop with prop-id := PropID[p] :
(Prop[prop-id].act = ‘upd’- ∗ ∧Prop[prop-id].orig = id∧ Prop[prop-id].stat ̸= ‘good’)∨

(c) ∃p ∈ Node[node-id].prop with prop-id := PropID[p] : (Prop[prop-id].act = ‘add’-id- ∗ -svk- ∗ ∧svk ∈ ExposedSvk)

*secrets-replaced(node-id, id) ⇐⇒
Node[node-id].orig = id∨
∃p ∈ Node[node-id].prop with prop-id := PropID[p] : Prop[prop-id].act ∈ { ‘add’-id-∗, ‘rem’-id } ∨
∃p ∈ Node[node-id].prop with prop-id := PropID[p] : (Prop[prop-id].act = ‘upd’- ∗ ∧Prop[prop-id].orig = id)

Knowledge of epoch secrets.

know(node-id, ‘epoch’) ⇐⇒ Node[node-id].exp ̸= ∅ ∨ *can-traverse(node-id)
*can-traverse(node-id) ⇐⇒
(a) ∃p ∈ Node[node-id].prop : (Prop[PropID[p]].act = ‘add’-id- ∗ -svk- ∗ ∧svk ∈ ExposedSvk)

(b) *reused-welcome-key-leaks(node-id)∨
(c) Node[node-id].stat = ‘bad’∧ ∃p ∈ Node[node-id].prop : Prop[PropID[p]].act = ‘add’- ∗ ∨
(d) (Node[node-id].par = ⊥∨ know(Node[node-id].par, ‘epoch’))∧
∃(id, ∗) ∈ Node[node-id].mem : know(node-id, id)

*reused-welcome-key-leaks(node-id) ⇐⇒
∃id, p ∈ Node[node-id].prop : Prop[p].act = ‘add’-id- ∗ ∧
∃node-idd : node-idd is a descendant of node-id∧ id ∈ Node[node-idd].exp∧

no node node-idh exists on node-id–node-idd path s.t. *secrets-replaced(node-idh, id) = true

Safe and can-inject.

safe(node-id) ⇐⇒ know(node-id, ‘epoch’)
sig-inj-allowed(node-id, id) ⇐⇒ Node[node-id].mem[id] ∈ ExposedSvk

mac-inj-allowed(node-id) ⇐⇒ know(node-id, ‘epoch’)

FIGURE 5.31: The safety predicate for Chained CmPKEctxt. This is identical to [Has+21c, Fig.
28] modulo the syntactical difference in the definition of node pointers.

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 239

*leak-create(id, svk)

1 : if flagcontHide then
2 : return ⊥
3 : else
4 : return (id, svk)

*leak-prop(id, act)

1 : if flagcontHide ∧ safe(Ptr[id]) then
2 : return (Ptr[id], |id| , |act|)
3 : else
4 : return (Ptr[id], id, act)

*leak-com(id, p⃗, svk)

1 : mem← Node[Ptr[id]].mem

2 : if flagcontHide ∧ safe(Ptr[id]) then
3 : return (Ptr[id], |id| , p⃗, |svk| , |mem|)
4 : else
5 : return (Ptr[id], id, p⃗, svk,mem)

*leak-proc(id)

1 : indexid ← Node[Ptr[id]].indexOf(id)
2 : if flagcontHide ∧ safe(Ptr[id]) then
3 : return (Ptr[id], indexid)
4 : else
5 : return (Ptr[id], id)

*leak-wel(node-idcur, node-idnext, idt)

1 : gid← Node[node-idnext].gid
2 : epoch← Node[node-idnext].epoch
3 : idc ← Node[node-idnext].orig
4 : mem← Node[node-idnext].mem

5 : if flagcontHide ∧ safe(node-idnext) then
6 : return (kpt, |gid| , |epoch| , |idc| , |mem|)
7 : else
8 : return (kpt, node-idnext,Node[node-idnext])

FIGURE 5.32: Leakage functions for Chained CmPKEctxt.

240 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Here, F ctxt
CGKA is defined with respect to the safety predicates and leakage functions in Figures 5.31 and 5.32.

Moreover, calls to the hash function H, HKDF, and MAC are replaced by calls to the global random oracle GRO.

Proof Overview. The proof consists of a sequence of hybrids where we gradually modify the protocol
Chained CmPKEctxt into the ideal functionality F ctxt

CGKA. As explained in Section 5.4.2, with some work, we
can reuse a great part of the proof by Hashimoto et al. [Has+21b].

The key observation is that when the leakage functions *leak-create, *leak-prop, *leak-com, *leak-wel
and *leak-proc are defined to leak all the static metadata (i.e., flagcontHide = false), then F ctxt

CGKA is almost
identical to the ideal functionality FCGKA that does not hide the static metadata. The only difference is that
the proposals and commits in FCGKA leak the static metadata, while F ctxt

CGKA encrypts them. To this end,
using the fact that the simulator S knows the encryption key (which follows from flagcontHide = false), the
simulator S forF ctxt

CGKA will internally run the simulator S̃ forFCGKA defined by Hashimoto et al. [Has+21b].
In a bit more detail, our proof goes through the same Hybrids 1 to 6 as in [Has+21b, Theorem E.1].

At Hybrid 6, the application keys for the nodes with safe = true will become indistinguishable from
random — this is the place where [Has+21b, Theorem E.1] ends. We then continue to complete the proof by
further adding a new Hybrid 7, where flagcontHide is switched to true. This hybrid is part of our security
proof that takes care of the static metadata. In each Hybrid i for i ∈ [6], we define the simulator Si that
internally runs S̃i defined in [Has+21b, Theorem E.1]. Informally, whenever S̃i takes as input a (non-static
metadata-hiding) proposal, commit, or a welcome message, Si first decrypts the (static metadata-hiding)
proposal, commit, and welcome message before feeding it into S̃i. On the other hand, if S̃i outputs a
(non-static metadata-hiding) content, then Si encrypts them before outputting them to F ctxt

CGKA or the
environment Z . Here, since flagcontHide = false, we can assume Si knows all the encryption/decryption
key to perform the above procedure.

While the high-level idea of piggybacking on the prior proof of Hashimoto et al. [Has+21b] sounds
straightforward, several technical issues make the above non-trivial. This non-triviality is caused by the
difference of the semantics of the nodes in the history graph in our new ideal functionality F ctxt

CGKA and the
prior ideal functionality FCGKA. For instance, when the environment Z invokes id on input (Commit, p⃗, svk),
the simulator in [Has+21b] (roughly) outputs (ack, rt, c0 ,⃗ c), where rt ∈N. Our simulator must reinterpret
this and output an appropriate node-id such that the history graph defined with respect to c0 remains
consistent with the history graph defined with respect to node-id. In particular, the most non-trivial part of
reusing the proof by Hashimoto et al. [Has+21b] is to check that the proof moves from Hybrid 2 to 3 in
[Has+21b, Theorem E.1], which concerns the consistency of the history graph, translates to our setting.

We also note that while the proof of Hashimoto et al. [Has+21b] required an CmPKE that is IND-CCA
secure with adaptive corruptions, we only require a standard CmPKE. As explained in Section 5.4.2, this is
due to the added restriction on the adversary (see Figure 5.11 and Section 5.3.3), which is necessary for
any natural static metadata-hiding CGKA in order not to trivially win the security game. Specifically, the
exponential loss appearing in the proof of moving from Hybrid 5 to Hybrid 6 in [Has+21b] disappears by
considering the restricted adversary defined in F ctxt

CGKA.
Finally, we prove the indistinguishability of the real and ideal protocols assuming that the adversary

cannot inject bad randomness. That is, Rand is always set to ‘good’ in the ideal functionality F ctxt
CGKA. To be

more precise, our proof up till Hybrid 6 allows the adversary to inject bad randomness. We only restrict
the adversary when moving to Hybrid 7 — this is where we explicitly use the group secret to perform
symmetric key encryption to hide the static metadata. This restriction is also done in recent work by Alwen
et al. [Alw+21a], where they disallow the adversary to manipulate the randomness used for the symmetric
key encryption. We leave security analysis of such types of attacks as future work.

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 241

Proof of Theorem 5.4.2. We now provide the full proof of Theorem 5.4.2.

Proof. We consider the following sequence of hybrids. While the environment Z interacts with Chained
CmPKEctxt in Hybrid 1, it interacts with the ideal functionality F ctxt

CGKA in Hybrid 7. As explained above,
Hybrids 1 to 6 are defined identically to [Has+21b], where the only difference is in the definition of the
simulator S in each hybrid. Below, we first define all the hybrids and then explain how the simulators are
defined.

Hybrid 1. This is the real world, where we make a syntactic change. We consider a simulator S1 that
interacts with a dummy functionality Fdummy. Fdummy sits between the environment Z and S1, and
relays any message from Z to S1 without modifying them. S1 internally simulates the real-world
parties and adversary A by using the messages sent from Fdummy. From A’s point of view, S1 is the
environment Z .

Hybrid 2. This hybrid concerns the authentication service and key service. We replace (FAS,FKS) with
these ideal version (F IW

AS ,F IW
KS). Since these functions are not accessible by Z , this modification is

undetectable by Z . Thus, the view of Z in Hybrid 1 and Hybrid 2 are identical.

Hybrid 3. This hybrid concerns the correctness and consistency guarantees. We replace Fdummy with
a variant of F ctxt

CGKA, denoted as F ctxt
CGKA,3, where safe (resp. sig-inj-allowed and mac-inj-allowed)

always returns false (resp. true) and flagcontHide is set to false. In other words, all application secrets
are set by the simulator, injections are always allowed, and the confidentiality of messages is not
considered. The simulator S3 is identical to S2.

Hybrid 4. This hybrid concerns the security of the signature scheme. We modify F ctxt
CGKA,3 to use the

original sig-inj-allowed predicate, denoted as F ctxt
CGKA,4. F ctxt

CGKA,4 halts if a proposal, a commit, or
a welcome message is injected when the sender’s signing key is not exposed. The simulator S4 is
identical to S3.

Hybrid 5. This hybrid concerns the security of the MAC scheme. We modify F ctxt
CGKA,4 to use the original

mac-inj-allowed predicate, denoted as F ctxt
CGKA,5. F ctxt

CGKA,5 halts if a proposal or a commit are injected
when the corresponding MAC key is not exposed. The simulator S5 is identical to S4.

Hybrid 6. This hybrid concerns the confidentiality of the application secrets. We modify F ctxt
CGKA,5 where it

uses the original safe predicate, denoted as F ctxt
CGKA,6. The simulator S6 is identical to S5 except that

it sets only those application secrets for which safe is false. (Note that this functionality roughly
corresponds to the previous ideal functionality FCGKA where the security of the static metadata is
not considered.)

Hybrid 7. This hybrid concerns the confidentiality of proposal, commit and welcome messages. We modify
F ctxt

CGKA,6 so that flagcontHide is set to true, denoted as F ctxt
CGKA,7. The simulator S7 is identical to S6

except that it simulates the protocol executions with the leakage information defined by *leak-create,
*leak-prop, *leak-com, *leak-wel, and *leak-proc. The functionality F ctxt

CGKA,7 corresponds to the
ideal functionality F ctxt

CGKA.

We show the indistinguishability of Hybrids 2 to 7 in Lemmata 5.4.3 and 5.4.8. This completes the proof
of the main theorem.

From Hybrid 2 to 6: Lemma 5.4.3. We first prove the indistinguishability of hybrid 2 to Hybrid 6.

242 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Lemma 5.4.3. Hybrid 2 and Hybrid 6 are indistinguishable assuming the IND-CCA security of CmPKE, sEUF-CMA
security of SIG, and the key-committing property of SKE.

Moreover, we assume the adversary can inject bad randomness throughout these hybrids, i.e., Rand can be set to
‘bad’.

Proof. The proof consists of five parts. We first explain how the simulator simulates the protocols with
the simulator defined in [Has+21b]; second, we explain how to prove the correspondence of the history
graphs maintained by FCGKA,i and F ctxt

CGKA,i, which is the goal of this proof; third, we explain the detailed
description of the simulator; fourth, we prove the correspondence between the two history graphs; finally,
we prove the supporting propositions to finish the proof of this lemma.

Part 1: Preparation. As explained in the overview, Si internally executes the simulator S̃i presented in
the proof by Hashimoto et al. [Has+21b]. To be more precise, Si outsources the simulation of Chained
CmPKEctxt to S̃i that simulates Chained CmPKE by appropriately modifying the inputs and outputs of S̃i.

To formalize the description of Si, we make one modification to S̃i. Without loss of generality, while
S̃i is internally simulating Chained CmPKE, we assume it executes and stores the following two secrets
whenever the parties are invoked on a Commit or a Join:

• G.encSecret← HKDF.Expand(joinerSecret, G.groupCont()∥‘enc’), and

• welcomeSecret← HKDF.Expand(joinerSecret, ‘wel’).

Here, the inputs to HKDF are states of the parties simulated by S̃i. S̃i then outputs these stored secrets to
Si. Si uses these secrets to either encrypt proposal and commit messages output by S̃i or decrypt proposal,
commit, and welcome messages sent by F ctxt

CGKA,i. Note that these secret keys are never used in the original
Chained CmPKE — these are encryption keys used only to secure the static metadata included in proposal,
commit, and welcome messages of Chained CmPKEctxt. It can be checked that the proof in [Has+21b] still
holds even if we consider this slightly modified simulator S̃i as above since encSecret and welcomeSecret

leak no information on joinerSecret in the global random oracle model. We also modify S̃i so that it outputs
commit query (Commit, . . .) and welcome query (Welcome, . . .) separately like Si. That is, S̃i first receives
(Commit, id, ˜⃗p, svk) and simulates the commit c̃0; then it receives (Welcome, kpt,Ptr[id], c̃0) and simulates the
welcome message, where kpt is the receiver’s key package, Ptr[id] is the committer’s current node, and c̃0 is
the new epoch associated with the welcome message. The above modification in the proof in [Has+21b] is
without loss of generality since the information S̃i receives to simulate the welcome message corresponds
exactly to the information required to invoke the simulated party id to output a welcome message.

Part 2: Goal of Proof. We are now ready to explain the description of Si that internally executes S̃i. Looking
ahead, the main goal of the proof is to relate the history graph created within S̃i to those maintained by
F ctxt

CGKA,i. Then, since [Has+21b] proved that the history graph made within S̃i and those maintained by the
ideal functionality FCGKA in Hybrid i (i.e., FCGKA,i) are identical, we will be able to indirectly prove that
the history graph made within Si and those maintained by the ideal functionality F ctxt

CGKA,i are identical
as well. Indistinguishability between each adjacent hybrid then follows straightforwardly from the prior
proof and the correspondence of the history graphs maintained by FCGKA,i and F ctxt

CGKA,i.

Below, we put tilde on top, e.g., P̃tr[∗], Ñode[∗], W̃el[∗], to denote the components created by the history
graph within S̃i (which is also known to Si). As explained above, the history graphs created within S̃i and
maintained by F ctxt

CGKA,i are identical so we may use them interchangeably. We put tilde on proposals p̃ and
commits c̃0 to denote that they are non-encrypted variants used by S̃i.

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 243

Using these terminologies, we can restate our goal as to create a one-to-one correspondence between the
nodes Ñode[̃c], P̃rop[p̃], and W̃el[˜̂w] maintained by the history graph in FCGKA,i and the nodes Node[node-id],
Prop[prop-id], and Wel[node-id] maintained by the history graph in F ctxt

CGKA,i. We will make the meaning of
“one-to-one correspondence” more clear later, but we informally mean that the graph topology and the
syntactical information stored in each node are consistent with each other. We assume Si maintains lists Lp
and Lc that (roughly) assign unique counters to proposal and commit nodes created within Si, respectively.
This allows us to relate which node in F ctxt

CGKA,i relates to FCGKA,i.

Part 3: Description of Simulator Si. For a detailed motivation and description of S̃i, we refer the readers to
the original proof by Hashimoto et al. [Has+21b]. We only use their result proving that the history graphs
created within S̃i and maintained by F ctxt

CGKA,i are identical.
Below, we explain how Si answers each queries made by the ideal functionality F ctxt

CGKA,i for i ∈ [3 : 6],
where we omit the case i = 2 since it is already defined (see the definiton of Hybrids 1 and 2). Here, keep in
mind that for i ∈ [3 : 6] we have flagcontHide = false, i.e., the leakage functions leak all the static metadata.
Since the description of S̃i in [Has+21b] is identical for each i ∈ [3 : 6], we omit the subscript i below
for simplicity. In other words, we only need to check that the history graph maintained by F ctxt

CGKA,3 has
a one-to-one correspondence with FCGKA,3. As a result, the indistinguishability of Hybrids 2 to 6 then
inherits from [Has+21b].
(1) Create query from idcreator. This concerns the case when Z queries (Create, svk) to F ctxt

CGKA. If F ctxt
CGKA

outputs (Create, idcreator, svk) to S , S invokes S̃ on the same input. From S̃ ’s point of view, S acts identically
to the ideal functionality FCGKA. S̃ simply runs the simulated party idcreator on input (Create, svk).22 S
then samples a random group identifier gid←$ {0, 1}κ and outputs it to F ctxt

CGKA. This creates the node
Node[0] within the history graph maintained by F ctxt

CGKA. Finally, since S̃ creates a root node Ñode[root0], S
records Lc[root0]← 0.
(2) Propose query from id. This concerns the case when Z queries (Propose, act) for some act ∈
{ ‘upd’-svk, ‘add’-idt-kpt, ‘rem’-idt } to F ctxt

CGKA. If Ptr[id] ̸= ⊥, then F ctxt
CGKA outputs (Propose, node-id :=

Ptr[id], id, act) to S , and S invokes S̃ on the same input. From S̃ ’s point of view, S acts identically to the
ideal functionality FCGKA. S̃ then runs the simulated party id on input (Propose, act). If Rand[id] = ‘bad’
and act = ‘upd’-svk, it asks S to provide the randomness to run party id. S then queries this request to its
own adversary A to receive the adversarially chosen randomness. Here, recall that randomness is only
used by S̃ to generate an update key package kp. If party id, internally simulated by S̃ , returns ⊥, then S̃
returns (ack := false,⊥) to S . S then outputs (ack := false,⊥,⊥) to F ctxt

CGKA.23

Otherwise, if id returns p̃, then S̃ returns (ack := true, p̃). S encrypts p̃ as pctxt ← *enc-prop(G.encSecret,
p̃) using G.encSecret of id (provided by S̃ , see Part 1). It runs the encryption on the adversarially controlled
randomness if Rand[id] = ‘bad’. There are two cases to consider.

Case 1. If P̃rop[p̃] = ⊥, i.e., it did not exist in the history graph maintained by S̃ , then S outputs (ack :=
true,⊥, pctxt).

Case 2. If P̃rop[p̃] ̸= ⊥, i.e., it exists in the history graph maintained by S̃ , then S searches for any pctxt′

such that p̃ ← *dec-prop(G.encSecret, pctxt′) and prop-id = PropID[pctxt′] ̸= ⊥. It then chooses any
such pctxt′ and outputs (ack := true, prop-id, pctxt). By Proposition 5.4.6, Item 1, which we prove later,
such pctxt′ exists and prop-id is unique regardless of the choice of pctxt′.

22We note that in the previous definition of FCGKA, the group identifies gid was omitted. However, this can be amended to
FCGKA without loss of generality.

23Recall that due to our modification in the definition of the key service, S̃ does not need to output svkt (see Section 5.3.2).

244 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

If act = ‘upd’, S̃ outputs the updated key package kp24. S passes it to F ctxt
CGKA.

(3) Commit query from id. This concerns the case when Z queries (Commit, p⃗ctxt, svk) to F ctxt
CGKA. If

Ptr[id] ̸= ⊥, then F ctxt
CGKA outputs (Commit, node-id := Ptr[id], id, p⃗ctxt, svk) to S . S then decrypts the

proposals ˜⃗p := *dec-and-sort-proposals(G.encSecret, p⃗ctxt) using G.encSecret of id. If decryption fails,
S outputs (ack := false,⊥,⊥,⊥). Otherwise, S invokes S̃ on input (Commit, id, ˜⃗p, svk). S̃ then runs
the simulated party id on input (Commit, ˜⃗p, svk), where it asks S to provide the randomness to run party
id if Rand[id] = ‘bad’. S then queries this request to its own adversary A to receive the adversarially
chosen randomness. If party id returns ⊥, then S̃ outputs (ack := false,⊥,⊥⊥) to S , and S outputs
(ack := false,⊥,⊥,⊥) to F ctxt

CGKA.
Otherwise, if party id returns (̃c0, ˜⃗c, w̃0, ˜⃗w), S̃ decides what to output depending on the following checks

(which are identical to the checks in [Has+21b]). We also explain what S does when given the output of S̃ .

Case 1. If Ñode[̃c0] = ⊥, w0 ̸= ⊥, and if there exists some rt′ ∈ N and w̃′0 such that W̃el[w′0] = rootrt′

and w̃′0 includes the same confTag as w̃0, then S̃ chooses any such (w̃′0, rt′) (guaranteed to exist
uniquely from [Has+21b, Proposition E.6]) and returns (ack := true, rt := rt′ ̸= ⊥, c̃0, ˜⃗c) to S . S then
encrypts the (non-encrypted) commit message as (cctxt0 ,⃗ cctxt)← *enc-commit(G.encSecret, c̃0, ˜⃗c) using
G.encSecret of id (provided by S̃ , see Part 1). By Proposition 5.4.7, Item 3 (which we prove later), there
exists a unique node-id such that Node[node-id] = Ñode[rootrt]. That is, the syntactical information
stored on the node, e.g., gid, epoch, prop, orig, and so on, are identical. S then outputs (ack := true,
node-id, cctxt0 ,⃗ cctxt) to F ctxt

CGKA. Afterwards, when S is invoked on (Welcome, kpt, node-id := Ptr[id], c̃0)

by F ctxt
CGKA, it invokes S̃ on the same input. S̃ then returns (ack := true, w̃0, ˜̂w) to S , where ˜̂w is the

welcome message for added member idt ∈ mem with kpt. Finally, S encrypts (w̃0, ˜̂w) as ŵctxt using
G.welcomeSecret of id and returns (ack := true, ŵctxt) to F ctxt

CGKA.

Case 2. Otherwise, if Ñode[̃c0] = ⊥ and either w̃0 = ⊥ or there does not exist w̃′0 such that W̃el[w̃′0] = rootrt′

for some rt′ ∈N and w̃′0 includes the same confTag as w̃0, then S̃ returns (ack := true, rt := ⊥, c̃0, ˜⃗c)
to S . S then encrypts the commit as above and returns (ack := true,⊥, cctxt0 ,⃗ cctxt) to F ctxt

CGKA. The
welcome message is handled similarly to Case 1.

Case 3. Finally, if Ñode[̃c0] ̸= ⊥, then S̃ returns (ack := true, rt := ⊥, c̃0, ˜⃗c) to S . S then searches for
any cctxt0

′ such that c̃0 ← *dec-commit0(G.encSecret, cctxt0
′) and node-id = NodeID[cctxt0

′] ̸= ⊥ (see
Proposition 5.4.7 for the definition of *dec-commit0). It then chooses any such cctxt0

′ and outputs
(ack := true, node-id, cctxt ,⃗ cctxt). By Proposition 5.4.7, Item 1 (which we prove later), such cctxt0

′ exists
and node-id is unique regardless of the choice of cctxt0

′.

If act = ‘upd’, S̃ outputs the committer’s updated key package kp, and S passes it to F ctxt
CGKA accordingly.

Finally, when FCGKA queries (Propose,Ptr[id], pctxt) to S during the *fill-prop check, it must first
decrypt pctxt to obtain the (non-encrypted) proposal p̃. We use [Has+21b, Proposition E.8] that establishes
that any member at the same node P̃tr[id] stores the same secret key G.encSecret. Namely, S retrieves the
unique G.encSecret assigned to the node P̃tr[id] to decrypt pctxt. If P̃rop[p̃] = ⊥, then S invokes S̃ on input
(Propose, p̃) and receives (orig, act)25. It then outputs (⊥, orig, act) to F ctxt

CGKA. Otherwise, if P̃rop[p̃] ̸= ⊥,

24Recall that due to our modification in the definition of F ctxt
CGKA, S̃ needs to output kp if act = ‘upd’. However, this can be

amended to S̃ without loss of generality.
25Without loss of generality, we assume S̃ returns act ∈ { ‘upd’-kp, ‘add’-idt-kpt, ‘rem’-idt }

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 245

then S searches for any pctxt′ such that p̃← *dec-prop(G.encSecret, pctxt′) and prop-id = PropID[pctxt′] ̸= ⊥.
It then choses any such pctxt′ and outputs (ack := true, prop-id, pctxt). By Proposition 5.4.6, Item 1, such
pctxt′ exists and prop-id is unique regardless of the choice of pctxt′. It retrieves (orig, act) ← (P̃rop[p̃].orig,
P̃rop[p̃].act) and returns (prop-id, orig, act) to F ctxt

CGKA.
(4) Process query from id. This concerns the case when Z queries (Process, cctxt0 , ĉctxt, p⃗ctxt) to F ctxt

CGKA. If
Ptr[id] ̸= ⊥, then F ctxt

CGKA outputs (Process, node-id, id, cctxt0 , ĉctxt, p⃗ctxt) to S . S then decrypts the input mes-
sages as (̃c0, ˜̂c) := *dec-commit(G.encSecret, cctxt0 , ĉctxt) and ˜⃗p := *dec-and-sort-proposals(G.encSecret, p⃗ctxt)
as in the real protocol. If decryption fails, S outputs (ack := false,⊥,⊥,⊥). Otherwise, S invokes S̃ on
input (Process, c̃0, ˜̂c, ˜⃗p). S̃ then (deterministically) runs the simulated party id on input (Process, id, c̃0, ˜̂c, ˜⃗p).
If party id returns ⊥, then S̃ outputs (ack := false,⊥,⊥,⊥) to S . S then outputs (ack := false,⊥,⊥,⊥)
to F ctxt

CGKA.
Otherwise, if party id returns (idc, upd∥rem∥add), S̃ decides what to output depending on the following

checks (which are the checks identical to [Has+21b]). We also explain what S does when given the output
of S̃ . Note that *fill-prop queries from F ctxt

CGKA to S are answered exactly as in commit queries described
above.

Case 1. If Ñode[̃c0] = ⊥ and if there exists w̃0 that includes the same confTag as c̃0 such that W̃el[w̃0] = rootrt′

for some rt′ ∈ N, then S̃ chooses any such (w̃0, rt′) (guaranteed to exist uniquely from [Has+21b,
Proposition E.6]) and returns (ack := true, rt := rt′,⊥,⊥) to S . By Proposition 5.4.7, Item 3,
there exists a unique node-id such that Node[node-id] = Ñode[rootrt]. S then outputs (ack :=
true, node-id,⊥,⊥) to F ctxt

CGKA.

Case 2. If Ñode[̃c0] = ⊥ and no such w̃0 exists, then S̃ retrieves the associating long-term public key
svkc of idc (which is guaranteed to exist when process succeeds in the real protocol) and returns
(ack := true,⊥, orig′ := idc, svk′ := svkc) to S . S then outputs (ack := true,⊥, orig′, svk′) to F ctxt

CGKA.

Case 3. Finally, if Ñode[̃c0] ̸= ⊥, then S̃ simply returns (ack := true,⊥,⊥,⊥) to S . S then searches for
any cctxt0

′ such that c̃0 ← *dec-commit0(G.encSecret, cctxt0
′) and node-id = NodeID[cctxt0

′] ̸= ⊥ (see
Proposition 5.4.7 for the definition of *dec-commit0). It then choses any such cctxt0

′ and outputs
(ack := true,⊥,⊥,⊥). By Proposition 5.4.7, Item 1, such cctxt0

′ exists and node-id is unique regardless
of the choice of cctxt0

′.

(5) Join query from id. This concerns the case when Z queries (Join, ŵctxt) to F ctxt
CGKA. If Ptr[id] = ⊥, then

F ctxt
CGKA outputs (Join, id, ŵctxt) to S . S then decrypts the input messages as (w̃0, ˜̂w) := *dec-welcome(ŵctxt)

as in the real protocol. If decryption fails, S outputs (ack := false,⊥,⊥,⊥,⊥,⊥). Otherwise, S
invokes S̃ on input (Join, id, w̃0, ˜̂w). S̃ then (deterministically) runs the simulated party id on input
(Join, w̃0, ˜̂w). If party id returns ⊥, then S̃ outputs (ack := false,⊥,⊥,⊥) to S . S then outputs
(ack := false,⊥,⊥,⊥,⊥,⊥) to F ctxt

CGKA.
Otherwise, if party id returns (idc,mem), S̃ decides what to output depending on the following checks

(which are the checks identical to [Has+21b]). We also explain what S does when given the output of S̃ .

Case 1. If W̃el[w̃0] ̸= ⊥, S̃ returns (ack := true,⊥,⊥,⊥) to S . S then returns (ack := true,⊥,⊥,⊥,⊥,⊥)
to F ctxt

CGKA.

Case 2. Otherwise, S̃ checks if there exists a non-root c̃0 such that Ñode[̃c0] ̸= ⊥ and c̃0 includes the
same confTag as the one included in w0. If such c̃0 exists (guaranteed to be unique by [Has+21b]),

246 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

then S̃ returns (ack := true, c̃′0 := c̃0,⊥,⊥) to S . S then retrieves G.encSecret stored on the node
Ñode[̃c0] and searches for any cctxt0

′ such that c̃0 ← *dec-commit0(G.encSecret, cctxt0
′) and node-id =

NodeID[cctxt0
′] ̸= ⊥ (see Proposition 5.4.7 for the definition of *dec-commit0). It then choses any such

cctxt0
′ and outputs (ack := true, node-id,⊥,⊥,⊥,⊥) to F ctxt

CGKA.

Case 3. Otherwise, if no such c̃0 exists, then S̃ further checks if there exists w̃′0 such that W̃el[w̃′0] ̸= ⊥
that includes the same confTag as the one included in w̃0. If so, S̃ chooses any such w̃′0 and returns
(ack := true, c̃′0 := W̃el[w̃′0],⊥,⊥). Here, [Has+21b, Proposition E.6] establishes that the value of
W̃el[w̃′0] is guaranteed to be the same root value, i.e., rootrt for some rt ∈N, for all such w̃′0. Then, by
Proposition 5.4.7, Item 3, there exists a unique node-id such that Node[node-id] = Ñode[rootrt]. S then
outputs (ack := true, node-id,⊥,⊥,⊥,⊥) to F ctxt

CGKA.

Case 4. Finally, if no such c̃0 or w̃′0 exist, then S̃ returns (ack := true,⊥, orig′ := idc,mem′ := mem) to S .
This corresponds to the case W̃el[w̃0] is initialized by rootrt for a new rt ∈N, whose value is known
to S̃ . S then outputs (ack := true,⊥, gid′, epoch′, orig′,mem′) to F ctxt

CGKA, where gid′ and epoch′ are
included in w̃′0 in the clear.

(6) Key query from id. This concerns the case when Z queries Key to F ctxt
CGKA. If Ptr[id] ̸= ⊥ and

Node[Ptr[id]].key = ⊥, then F ctxt
CGKA outputs (Key, id) to S . (Recall that safe is always set to false in

this hybrid.) S invokes S̃ on input (Key, id) and receives the group secret key k. S returns k to F ctxt
CGKA.

Part 4: Correspondence Between the Two History Graphs. Before proving the supporting Propositions 5.4.6
and 5.4.7, we prove that the history graph created within S̃ (and hence the ideal functionality FCGKA) has
a “one-to-one” correspondence between the history graph maintained by F ctxt

CGKA. To formalize this, we
first define what it means for the two history graphs to be isomorphic.

Definition 5.4.4. Let HG and H̃G be the history graphs maintained by FCGKA and F ctxt
CGKA, respectively. We say the

two history graphs are isomorphic if the following holds:

• Let Sp := { prop-id }prop-id and S̃p := { p }p be the sets of all proposal nodes in HG and H̃G, respectively.

Then, there is a bijection fp between these two sets such that Prop[prop-id] and P̃rop[fp(prop-id)] store the
same values (modulo the syntactical difference that .par stores node-id or c0/rootrt).

• Let Sc := { node-id }node-id and S̃c := { c0 }c0
∪ { rootrt }rt be the sets of all commit nodes in HG and H̃G,

respectively. Then, there is a bijection fc between these two sets such that Node[node-id] and Ñode[fc(node-id)]
store the same values (modulo the syntactical difference that .par stores node-id or c0/rootrt and .prop stores
the encrypted or non-encrypted proposal).

The following lemma is the key lemma to prove Lemma 5.4.3. Since isomorphic graphs agree on the
same syntactical information, this also implies that the nodes for which the predicate safe is true are
identical. Notably, all the proofs used to move from Hybrids 2 to 6 in Hashimoto et al. [Has+21b] with
respect to FCGKA carryovers to those of F ctxt

CGKA.

Lemma 5.4.5. The history graph HG maintained by FCGKA and H̃G maintained by F ctxt
CGKA are isomorphic.

Proof of Lemma 5.4.5. We prove by induction. When the history graphs are both empty, then they are
isomorphic with the two bijections fp and fc defined to be the zero function. Now, assume the history

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 247

graphs HG and H̃G are currently isomorphic, i.e., there exists bijections fp and fc between the propose and
commit nodes. We check that the isomorphism is maintained even after a Propose, a Commit, a Process, or
a Join query is performed. We omit queries to Create and key as they trivially maintain the isomorphism.

Consistency of isomorphism after Propose. Let us consider Case 1 in (2), i.e., P̃rop[p̃] = ⊥. By Propo-
sition 5.4.6, Item 2, we have PropID[pctxt] = ⊥. Thus, both FCGKA and F ctxt

CGKA creates a new proposal
node. By assumption on the induction and how *create-prop is defined, we have isomorphism even after
Propose. In particular, letting propCtr be the current stored by F ctxt

CGKA, the new bijection f ′p extends the
domain and range of fp by adding f ′p(propCtr) = p̃.

Next, let us consider Case 2 in (2), i.e., P̃rop[p̃] ̸= ⊥. In this case FCGKA and F ctxt
CGKA performs a

consistency check *consistent-prop. Since no new proposal node is created, we only need to show
that the output of this consistency check is identical for both ideal functionalities. There are two cases:
PropID[pctxt] = ⊥ or PropID[pctxt] = prop-id′ for some prop-id′ ̸= ⊥. In the former case, by Proposi-
tion 5.4.6, Item 1, S finds pctxt′ ̸= pctxt and outputs prop-id = PropID[pctxt′]. F ctxt

CGKA performs the consistency
check using this prop-id. In the latter case, F ctxt

CGKA uses the existing prop-id′ = PropID[pctxt] and ignores
prop-id output by S . By Proposition 5.4.6, Item 1, the values of prop-id and prop-id′ are identical. We thus
only need to focus on prop-id′.

Recall prop-id′ = PropID[pctxt] is created either during Propose or *fill-prop. Due to the key-
committing property of SKE, it must be created by a node P̃tr[id′] that has the same G.encSecret as P̃tr[id].
Using [Has+21b, Proposition E.8], we must have P̃tr[id′] = P̃tr[id]. In other words, prop-id′ was created by
the node Ptr[id]. Thus, by the assumption on the induction, the consistency check by FCGKA using p̃ and
those by F ctxt

CGKA using prop-id′ are identical.
Consistency of isomorphism after Commit. Let us consider Case 1 in (3). This is the case where S
assigns a detached root to cctxt0 . By Proposition 5.4.7, Item 3, there exists a unique node-id such that
Node[node-id] = Ñode[rootrt]. Thus, both FCGKA and F ctxt

CGKA perform the same consistency check and the
attach procedure. At the end of Commit, the new bijection f ′c is identical to fc except that f ′c(node-id) = c̃0
rather than fc(node-id) = rootrt.

Next, let us consider Case 2 in (3). This is the case where S assigns cctxt0 to a new node. By Proposi-
tion 5.4.6, Item 2, we have PropID[pctxt] = ⊥. Thus, both FCGKA and F ctxt

CGKA create a new commit node. By
assumption on the induction and how *create-child is defined, we have isomorphism even after Commit.
In particular, letting nodeCtr be the current stored by F ctxt

CGKA, the new bijection f ′c extends the domain and
range of fc by adding f ′c(nodeCtr) = c̃0.

Finally, let us consider Case 3 in (3). In this case FCGKA and F ctxt
CGKA performs a consistency check

*consistent-com. Since no new commit node is created, we only need to show that the output of this
consistency check is identical for both ideal functionalities. Similarly to the argument made in Propose,
there are two cases to consider: NodeID[cctxt0] = ⊥ or NodeID[cctxt0] = node-id′ for some node-id′ ̸= ⊥. In
the former case, by Proposition 5.4.7, Item 1, S finds cctxt0

′ ̸= cctxt and outputs node-id = NodeID[cctxt0
′].

F ctxt
CGKA performs the consistency check using this node-id. In the latter case, F ctxt

CGKA uses the existing
node-id′ = NodeID[cctxt0] and ignores node-id output by S . By Proposition 5.4.7, Item 1, the values of node-id
and node-id′ are identical. We thus only need to focus on node-id′.

Recall node-id′ = NodeID[cctxt0] is created either during Commit or Process. Following an almost exact
argument made for PropID above, we can show node-id′ was created by the node Ptr[id]. Thus, by the
assumption on the induction, the consistency check by FCGKA using c̃ and those by F ctxt

CGKA using node-id′

are identical.

248 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Consistency of isomorphism after Process. All three cases considered in Process are covered by the cases
considered in Commit. Namely, S chooses to either attach a detached root to cctxt0 , create a new commit
node, or attach the commit to an already existing node.

Isomorphism after Join. First, we show that if W̃el[w̃0] = ⊥, then Wel[id, ŵ] = ⊥. Assume Wel[id, ŵ] ̸= ⊥.
Since Wel[id, ŵ] is only created during a Commit, this implies that there exists w̃′0 ̸= w̃0 such that W̃el[w̃′0] ̸=
⊥. This further implies that ŵ decrypts to two different values w̃′0 and w̃0, which contradicts the committing
property of the SKE. Therefore, we have Wel[id, ŵ] = ⊥ when W̃el[w̃0] = ⊥.

With this in mind, Cases 1 and 2 in (5) do not alter the propose or commit nodes of the history
graphs maintained by both FCGKA and F ctxt

CGKA. These cases correspond to attaching a welcome message
to an existing node on the history graph. Moreover, in Case 3 in (5), as we already established that
Node[node-id] = Ñode[rootrt] ̸= ⊥. Therefor, this also does not alter the history graph.

The final Case 4 in (5) corresponds to the case where a new detached root is created within FCGKA. By
Proposition 5.4.7, Item 2, F ctxt

CGKA also creates a new detached root. Since *create-root is called on the
same input, it is clear that the newly created history graphs remain isomorphic. Namely, the new bijection
f ′c extends the domain and range of fc by adding f ′c(nodeCtr) = rt, where rt and nodeCtr are the counters
used to add a new commit node in FCGKA and F ctxt

CGKA, respectively.

Part 5: Proving the Supporting Propositions. To finish the proof of Lemma 5.4.3, we finally prove Proposi-
tions 5.4.6 and 5.4.7. Below, we rely on [Has+21b, Proposition E.8] that establishes that any member at the
same node P̃tr[id] stores the same secret key G.encSecret.

Proposition 5.4.6. We have the following:

1. If P̃rop[p̃] ̸= ⊥, then there exists some pctxt such that p̃← *dec-prop(G.encSecret, pctxt) and PropID[pctxt] ̸=
⊥, where G.encSecret is the secret key maintained in the node P̃rop[p̃]. Moreover, for all such pctxt, the value
of PropID[pctxt] is identical.

2. If P̃rop[p̃] = ⊥, then does not exist any pctxt and encSecret such that p̃← *dec-prop(encSecret, pctxt) and
PropID[pctxt] ̸= ⊥.

Proof. Let us first consider Item 1. P̃rop[p̃] is only created during a Propose or a *fill-prop. If it was
created during a Propose, then by definition such pctxt exists. If it was created during a *fill-prop, then
S was given pctxt such that p̃ ← *dec-prop(G.encSecret, pctxt). At the end of *fill-prop, PropID[pctxt] is
created. Moreover, due to the key-committing property of the SKE, the proposal node assigned to such
proposals pctxt are identical.

Next, let us consider Item 2. Due to the key-committing property of the SKE, if such a pctxt existed, then
we must have P̃rop[p̃] ̸= ⊥. Thus, Item 2 follows by taking the contrapositive.

Proposition 5.4.7. Let us define the function *dec-commit0 such that given cctxt0 and encSecret, it parses (gid,
epoch, ‘commit’,CTc0) ← cctxt0 , runs c0 ← SKE.Dec(encSecret,CTc0), and outputs c̃0 := (gid, epoch, ‘commit’,
c0).

Then, we have the following:

1. If Ñode[̃c0] ̸= ⊥, then there exists some cctxt0 such that c̃0 ← *dec-commit0(G.encSecret, cctxt0) and
NodeID[cctxt0] ̸= ⊥, where G.encSecret is the secret key maintained in the node Ñode[̃c0]. Moreover, for
all such cctxt, the value of NodeID[cctxt0] is identical.

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 249

2. If Ñode[̃c0] = ⊥, then there does not exist any cctxt0 and encSecret such that c̃0 ← *dec-commit0(encSecret, cctxt0)
and NodeID[cctxt0] ̸= ⊥.

3. If Ñode[̃c0] = ⊥ and there exists w̃0 that includes the same confTag as c̃0 such that W̃el[w̃0] = rootrt for some
rt ∈N, then there exists a unique node-id such that Node[node-id] = Ñode[rootrt]. That is, the syntactical
information stored on the node, e.g., gid, epoch, prop, orig, and so on, are identical.

Proof. Let us first consider Item 1. Ñode[̃c] is only created during a Commit or a Process. More concretely,
Ñode[̃c0] is only created if S̃ assigns a detached root to c̃0 or a new commit node during a Commit or a
Process. In either cases, a corresponding cctxt0 is output by S and NodeID[cctxt0] is generated within F ctxt

CGKA.
Moreover, due to the key-committing property of the SKE, the commit node assigned to such commits cctxt0
are identical.

Next, let us consider Item 2. Due to the key-committing property of the SKE, if such a cctxt existed, then
we must have Ñode[̃c0] ̸= ⊥. Thus, Item 2 follows by taking the contrapositive.

Finally, let us consider Item 3. Such w̃0 is generated when S̃ creates a new root detached root during
a Join (corresponding to Case 4 in (5)). Since S creates a new commit node with the same syntactical
information that S̃ used, Item 3 follows.

This concludes the proof of Lemma 5.4.3.

From Hybrid 6 to 7: Lemma 5.4.8. In this section, we prove the indistinguishability of remaining hybrid 6
and hybrid 7. As explained in the overview, we assume the adversary cannot inject bad randomness
throughout these hybrids, i.e., Rand is always ‘good’.

Also, we slightly modify the description of S6. We assume S6 executes the code of S̃6 by itself instead
of invoking S̃6.

To prove Lemma 5.4.8, we first formally define the behavior of simulator S7 in Hybrid 7; then we
analyze the simulation provided by S7 provides an indistinguishable view to Z as in Hybrid 6.
Part 1: Description of the Simulator S7. We first explain the description of S7. For simulation, S7 stores group
encryption key encSecret for epoch node-id in the list LencSecret.
S7 simulates group states G (which includes e.g., membership list and group secret keys) of node-id

depending on the status of the parent epoch of node-id denoted by node-idp.
Case (1). If safe(node-idp) = false when node-id is created, S7 knows the group state of node-idp. Thus, S7
generates the group state of node-id from it following the protocol as in S6.
Case (2). If safe(node-idp) = true when node-id is created, S7 defers the generation of group state of
node-id to the following timing. Note that due to the restricted environment, these are the only subcase of
Case (2), and only one of the following cases occurs for each node-id.

Case (2-1) safe(node-id) = true when proposal/commit messages are generated/processed at node-id:
S7 sets G.gid← Node[node-id].gid and G.epoch← Node[node-id].epoch+ 1. Also, it chooses a random
encSecret and stores LencSecret[node-id]← encSecret. In this case, it does not generate the other group
state.

Case (2-2) Party id at node-id is corrupted (i.e., safe(node-id) becomes false) before proposal/commit
messages are generated/processed at node-id: WhenA corrupts id at node-id, S7 receives the following
information from the functionality.

250 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

• id’s current CmPKE secret key dk (stored in CurrDK array)
• id’s current signature signing key ssk (stored in SSK array)
• The epoch pointer node-id = Ptr[id] (i.e., id’s current node in the history graph)
• The information stored in Node[node-id]

Using this information, S7 simulates the group states. It first initializes the group state G as follows:

• G.gid← Node[node-id].gid
• G.epoch← Node[node-id].epoch
• G.member← Node[node-id].mem

• G.joinerSecret←$ {0, 1}κ

• G.confTransHash-w.o-‘idc’←$ {0, 1}κ

• G.confTransHash← H(G.confTransHash-w.o-‘idc’, idc), where idc := Node[node-id].orig
• G.certSvks[∗], G.pendUpd[∗], G.pendCom[∗]← ∅
• G.id← id

• G.ssk← ssk

• G.member[id].dk← dk

Then, S7 executes the following functions in order to generate group secrets and hash values.

1. G.memberHash← *derive-member-hash(G)

2. (G, confKey)← *derive-epoch-keys(G, G.joinerSecret)
3. confTag← *gen-conf-tag(G, confKey)
4. G← *set-interim-trans-hash(G, confTag)

Since the previous epoch is secure and due to the restricted environment, A cannot corrupt the
past secure epochs (cf. lines 9-10 in Figure 5.11). Thus, A cannot distinguish the simulated group
state from a real one since A cannot check whether the simulated group states are consistent for the
previous epoch. Finally, S7 stores LencSecret[node-id]← G.encSecret.

S7 answers each query made by the ideal functionality F ctxt
CGKA,7 as in S6 except for the differences

shown below. We only describe S7 when safe is true for the epoch Z queries. This is because if safe is false,
S7 knows the corresponding group state (see above) and obtains the same information S6 receives from
F ctxt

CGKA,7; thus S7 can simulate the protocol messages as S6 does.
Simulation on input (Create). S7 chooses gid at random and returns it to the functionality. Note
that S7 does not generate other group information in this timing (see above for when and how group
state is generated). h(1− δ)-correct Simulation on input (Propose, node-id, |id| , |act|). Let encSecret :=
LencSecret[node-id]. S7 computes CTp ← SKE.Enc(encSecret, 0ℓp) and sets pctxt := (gid, epoch, ‘proposal’,
CTp), where gid and epoch is the group identity and the current epoch number of node-id.26 It returns
(ack := true, prop-id := ⊥, pctxt) to the functionality Note that ℓp, the length of p, can be computed from
the received information and public parameters (which determine the length of the hash value, CmPKE
ciphertext, signature, etc.).
Simulation on input (Commit, node-id, |id| , p⃗ctxt, |svk| , |mem|). For each pctxt ∈ p⃗ctxt, S7 checks whether it
satisfies the following conditions.

26The simulator always knows gid and epoch for each node-id.

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 251

• PropID[pctxt] ̸= node-id, i.e., the received proposal was issued at a different epoch. We call the event
Erej-1.

• PropID[pctxt] = ⊥, i.e., the received proposal was generated by the adversary. We call the event Erej-2.

If one of the above condition holds for some pctxt ∈ p⃗ctxt, S7 outputs ack := false.
Otherwise27, S7 generates CTc0 ← SKE.Enc(encSecret, 0ℓc0) and ĉctxti ← SKE.Enc(encSecret, 0ℓĉ) for

encSecret := LencSecret[node-id] and each i ∈ [|mem|]. Then, it sets cctxt0 := (gid, epoch, ‘commit’,CTc0) and
c⃗ctxt := { ĉctxti }i∈[|mem|], and returns (ack := true, node-id := ⊥, cctxt0 ,⃗ cctxt) to the functionality, where gid

and epoch is the group information of the epoch node-id. S7 stores Lĉctxt [node-id]← c⃗ctxt. Note that both the
length of c0 and ĉ (ℓc0 and ℓĉ) can be computed from the received information and public parameters.
Simulation on input (Welcome, kpt, |gid| , |epoch| , |id| , |mem|). S7 receives this message if safe is true for
the next epoch, where new members will join. Let ekt be the CmPKE encryption key in kpt. S7 computes
the following:

• ct← CmEnc(ekt, 0)

• welcomeSecretidt ←$ {0, 1}κ

• CT← SKE.Enc(welcomeSecretidt , 0ℓ(groupInfo,sig)).

Note that ℓ(groupInfo,sig) can be computed from the received leakage information and public system param-
eters. S7 sets ŵctxt := (idt, (H(kpt), ct),CT) and returns (ack := true, ŵctxt) to the functionality. S7 also
stores Lŵctxt +← (idt,H(kpt), ct,CT).
Simulation on input (Process, node-id, index, cctxt0 , ĉctxt, p⃗ctxt). S7 first checks the following conditions and
outputs ack := false if one of the conditions holds.

• PropID[pctxt] = node-id′, NodeID[cctxt0] = node-id′ or ĉctxt ∈ Node[node-id′].vcom such that node-id′ ̸=
node-id, i.e., the received proposal/commit message was generated at a different epoch. We call the
event Erej-1.

• PropID[pctxt] = ⊥, NodeID[cctxt0] = ⊥ or ĉctxt /∈ Node[node-id′].vcom for all node-id′, i.e., the received
proposal/commit was generated by the adversary. We call the event Erej-2.

Otherwise28, S7 returns (ack := true,⊥,⊥,⊥).
Simulation on input (Join, id, ŵctxt). Let (idt, kphasht, ctt,CTt) := ŵctxt. (In the following, we assume
idt = id and id succeeds to fetch kpt such that kphasht = h(kpt); otherwise both S6 and S7 return ack :=
false.) If ŵctxt is generated by an honest committer (i.e., *succeed-wel returns true), S7 returns (ack :=
true,⊥,⊥,⊥,⊥,⊥). Else, S7 processes the welcome message as in S6 (i.e., following protocol description).

Part 2: Indistinguishability of Two Hybrids. We then prove the following lemma.

Lemma 5.4.8. Hybrid 6 and Hybrid 7 are indistinguishable assuming the INDCCA security of CmPKE and the
IND-CCA security of SKE.

Proof. To show Lemma 5.4.8, we consider the following sub-hybrids between Hybrid 6 and Hybrid 7.

27This implies p⃗ctxt only contains proposals such that PropID[pctxt] = node-id and thus *succeed-com returns true.
28This implies (cctxt0 , ĉctxt, p⃗ctxt) is honestly issued at node-id and thus *succeed-proc returns true

252 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Hybrid 6-0 := Hybrid 6. This is identical to Hybrid 6. We use the functionality F ctxt
CGKA,6, and the simulator

S6-0 := S6.

Hybrid 6-1 In this hybrid, the simulator S6-1 is defined exactly as S6-0 except that it always outputs
ack := false to the functionality when the event Erej-1 occurs.

Hybrid 6-2 In this hybrid, the simulator S6-2 is defined exactly as S6-1 except that it replaces encSecret and
welcomeSecretidt with a random value if safe is true.

Hybrid 6-3. In this hybrid, the simulator S6-3 is defined exactly as S6-2 except that it always outputs
ack := false when the event Erej-2 occurs.

Hybrid 6-4. In this hybrid, the simulator S6-4 is defined exactly as S6-3 except that it replaces a CmPKE
ciphertext in welcome messages with a ciphertext of 0 if safe is true for the next epoch where new
members join with the welcome messages.

Hybrid 6-5. In this hybrid, the simulator S6-5 is defined exactly as S6-4 except that it replaces SKE cipher-
texts in welcome messages with encryption of zero-string if safe is true for the epoch where new
members join with the welcome messages.

Hybrid 6-6. In this hybrid, the simulator S6-6 is defined exactly as S6-5 except that it replaces SKE cipher-
texts in proposal and commit messages with encryption of zero-string if safe is true for the epoch
where these messages are issued. Note that S6-6 is identical to S7.

Hybrid 6-7 = Hybrid 7. We replace the functionalityF ctxt
CGKA,6 with the functionalityF ctxt

CGKA,7. The simulator
S7 is defined by the above description. Since S7 has simulated the protocol with the information
given from F ctxt

CGKA,7, Hybrid 6-6 and Hybrid 6-7 are identical.

From Lemmata 5.4.9 to 5.4.12, 5.4.14 and 5.4.16 provided below, Hybrid 6-0 and Hybrid 6-6 are
indistinguishable. Therefore, we conclude that Hybrid 6 and Hybrid 7 are indistinguishable.

From Hybrid 6-0 to 6-1: Lemma 5.4.9.

Lemma 5.4.9. Hybrid 6-0 and Hybrid 6-1 are indistinguishable assuming the key-committing property of SKE.

Proof. The difference between S6-0 and S6-1 is S6-1 always outputs ack := false when the event Erej-1 occurs.
In other words, if S6-0 outputs ack := true when Erej-1 occurs, Z can distinguish the two hybrids. We show
that, if Z can distinguish the two hybrids, then there exists an adversary B that breaks the key-committing
property of SKE.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution of each party as in

S6-0. Assume Erej-1 occurs for some SKE ciphertext CT and Z distinguish the two hybrids when CT is
processed. By the condition of Erej-1, there exists the encryption key k (encSecret or welcomeSecretidt) used
to generate CT and the other encryption key k′ ̸= k that correctly decrypts CT. This means CT can be
correctly decrypted with both k and k′, which implies B can break the key-committing property of SKE.
This contradicts the assumption that SKE has key-committing property. Therefore, both S6-0 and S6-1
always outputs ack := false when Erej-1 occurs.

From Hybrid 6-1 to 6-2: Lemma 5.4.10.

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 253

Lemma 5.4.10. Hybrid 6-1 and Hybrid 6-2 are indistinguishable assuming CmPKE is Chained CmPKE conforming
GSD secure.

Proof. The proof is identical to the proof in [Has+21c, Lemma E.29]. To prove the indistinguishability of
the two hybrids, we gradually replace each encSecret and welcomeSecretidt with a random value if safe
is true when a propose/commit/welcome message is created. Similar to the proof of randomness of
appSecret provided in [Has+21c, Lemma E.29], we can show that, if Z can distinguish whether encSecret or
welcomeSecretid are real or random, it can be used to break the Chained CmPKE conforming GSD security
of CmPKE. Note that the value of safe is fixed when a propose/commit/welcome message is created
at the epoch (cf. *mark-content-hiden-epoch), and the adversary is restricted from colluding to change
this value (cf. line 11 in Figure 5.11). Thus, we can construct a reduction B as in [Has+21c, Lemma
E.29]. Therefore, if CmPKE is Chained CmPKE conforming GSD secure, Hybrid 6-1 and Hybrid 6-2 are
indistinguishable.

From Hybrid 6-2 to 6-3: Lemma 5.4.11.

Lemma 5.4.11. Hybrid 6-2 and Hybrid 6-3 are indistinguishable assuming SKE is the IND-CCA secure.

Proof. The difference between S6-2 and S6-3 is S6-3 always outputs ack := false when the event Erej-2
occurs29. In other words, Z distinguishes the two hybrids if the adversary produces malicious ciphertexts
that can be decrypted correctly. Such a malicious ciphertext may contain (1) a malicious plain message
(i.e., the message generated by the adversary) or (2) an honest plain message (i.e., the message generated
by an honest party at the same epoch). For the former case, we already proved that the adversary cannot
produce acceptable messages without knowing MAC key (cf. Hybrid 5). Thus, the previous simulator also
outputs ack := false in the former case. Therefore, we care about the latter case. We show that, if Z can
distinguish the two hybrids when the adversary produces a malicious ciphertext that contains an honestly
generated plain message, then we can construct an adversary B that breaks the IND-CCA security of SKE.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution of each party as in

S6-2 except for encrypting messages. At the beginning of the game, B chooses i ∈ [Q] at random (where Q
is the total number of honestly generated epochs) and hopes that Z distinguishes the hybrids when the
event occurs in the i-th honest epoch. That is, we assume that, when a party processes some ciphertext CT
with the i-th honest encryption key, S6-2 outputs ack := true, but S6-3 outputs ack := false. (B succeeds to
guess such an epoch with probability 1/Q.) B embed the challenge SKE key of the IND-CCA game to the
i-th encSecret. Note that if safe is true for the corresponding epoch, the encryption key is chosen at random
due to the modification we made in Hybrid 6-2; thus the challenge key can be embedded. In addition,
the adversary cannot corrupt the challenge key after the key is used for encryption since the adversary’s
corruption is restricted (cf. *mark-content-hiden-epoch function). When B encrypts messages with the
i-th encSecret (i.e., the challenge key), it uses the encryption oracle LR by setting m0 as the actual message
and m1 as a random message with the same length. B uses its decryption oracle when it wants to decrypt a
ciphertext30. If the decryption result is identical to the message mb, B outputs the bit b to the challenger of
the IND-CCA game. Else, the decryption result is different from the messages sent to the encryption oracle,
it outputs ack := false. Note that for other keys, B simulates protocol as in the previous hybrid.

We can verify that B wins the IND-CCA game if the adversary can produce a ciphertext that contains an
honestly generated message. Note that the messages m1−b are information-theoretically hidden from the

29The event Erej-2 only occurs in epochs where safe is true.
30By definition of the simulator, B only sends ciphertexts that are not produced by the encryption oracle.

254 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

adversary (and Z). Hence, if Z can distinguish the two hybrids, B can break the IND-CCA security of SKE.
This contradicts the assumption that SKE is the IND-CCA secure. Therefore, Z cannot distinguish the two
hybrids. In other words, both S6-2 and S6-3 outputs ack = false when Erej-2 occurs.

From Hybrid 6-3 to 6-4: Lemma 5.4.12.

Lemma 5.4.12. Hybrid 6-3 and Hybrid 6-4 are indistinguishable assuming CmPKE is IND-CCA secure.

Proof. We assume Z creates at most W welcome messages by Commit query. To show Lemma 5.4.12, we
consider the following sub-hybrids between Hybrid 6-3 and Hybrid 6-4.

Hybrid 6-3-0 := Hybrid 6-3. This is identical to Hybrid 6-3. The simulator S6-3-0 = S6-3 generates protocol
messages following the protocol procedures.

Hybrid 6-3-i. i runs through [W]. The simulator S6-3-i is defined exactly as S6-3-(i−1) except that, when it
simulates the i-th welcome message, if the safe predicates is true for the next epoch the welcome
message is associated with, it encrypts zero-strings instead of the joiner secret with the new member’s
CmPKE encryption key. Note that we count welcome messages in the order the simulator creates. We
show in Lemma 5.4.13 that Hybrid 6-3-(i− 1) and Hybrid 6-3-i are indistinguishable.

Hybrid 6-4. This is identical to Hybrid 6-3-W. In this hybrid, CmPKE ciphertexts in welcome messages
issued for secure epochs (i.e., safe is true) are replaced with the encryption of zero-string.

The indistinguishability between Hybrid 6-3-0 and Hybrid 6-3-Q is derived by applying Lemma 5.4.13
for all i ∈ [W]. Therefore, we conclude that Hybrid 6-3 and Hybrid 6-4 are indistinguishable.

The indistinguishability of Hybrid 6-3 and Hybrid 6-4 follows from Lemma 5.4.13 below.

Lemma 5.4.13. Hybrid 6-3-(i− 1) and Hybrid 6-3-i are indistinguishable assuming CmPKE is IND-CCA secure31.

Proof. The difference between S6-3-(i−1) and S6-3-i is, when generating the i-th welcome message, if the next
epoch is secure (i.e., safe is true for the next epoch), S6-3-i replaces the CmPKE ciphertext in the i-th welcome
message with a ciphertext of 0 encrypted with the new member’s CmPKE encryption key (the simulator
receives the new member’s key package from the functionality). We show that, if Z can distinguish the
two hybrids, then there exists an adversary B that breaks IND-CCA security of CmPKE. We first explain the
description of B and then evaluate B’s advantage.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution as in S6-3-(i−1) except

for generating the i-th welcome message. Let ek∗ be the challenge CmPKE encryption key provided by
the IND-CCA game. Observer that honest key packages are generated on register-kp queries to F IW

KS .
We assume Z issues at most Q register-kp queries. At the beginning of the game, B chooses an index
J ∈ [Q] at random, embeds the challenge key in the J-th register-kp query, and hopes that the J-th key
package will be used to add the i-th welcome message. (B succeeds to guess with probability 1/Q.) For
other register-kp queries, B generates key packages following the description of F IW

KS . If B decrypts a
ciphertext with the challenge decryption key, B uses the decryption oracle provided by the IND-CCA game.

Assume the i-th welcome message is created with the J-th key package and safe is true for the new
epoch where the i-th welcome message is created. Let joinerSecret be the corresponding joiner secret. B
outputs m0 := joinerSecret and m1 := 0 to IND-CCA game challenger and receives the challenge ciphertext

31We use the IND-CCA game with N = 1.

5.4. Static Metadata-Hiding CGKA: Construction and Security Proof 255

(ct∗0 , ĉt∗). B uses it as the CmPKE ciphertext in the i-th welcome message. Note that, since safe is true, the
adversary has not corrupted the challenge key, and it is restricted from colluding to compute the challenge
key (cf. *mark-content-hiden-epoch function). Thus, B never corrupts the challenge key.

We finally analyze B’s advantage. If the challenger returns the ciphertext of the joiner secret, Z ’s
view is identical to Hybrid 6-3-(i − 1); else, i.e., the challenger returns the ciphertext of 0, Z ’s view is
identical to Hybrid 6-3-i. Hence, if Z distinguishes Hybrid 6-3-(i − 1) and Hybrid Hybrid 6-3-i with
non-negligible probability, B wins the IND-CCA game with non-negligible probability by using Z ’s output.
This contradicts the assumption that CmPKE is IND-CCA secure. Therefore, Hybrid 6-3-(i− 1) and Hybrid
Hybrid 6-3-i are indistinguishable.

From Hybrid 6-4 to 6-5: Lemma 5.4.14.

Lemma 5.4.14. Hybrid 6-4 and Hybrid 6-5 are indistinguishable assuming SKE is the IND-CCA secure.

Proof. We assume Z creates at most W welcome messages by Commit query. To show Lemma 5.4.14, we
consider the following sub-hybrids between Hybrid 6-4 and Hybrid 6-5.

Hybrid 6-4-0 := Hybrid 6-4. This is identical to Hybrid 6-4. The simulator S6-4-0 = S6-4 generates protocol
messages following the protocol procedures.

Hybrid 6-4-i. i runs through [W]. The simulator S6-4-i is defined exactly as S6-4-(i−1) except that, when
it simulates the i-th welcome message, if safe is true for the next epoch the welcome message is
associated with, it generates a ciphertext as CT← SKE.Enc(welcomeSecretidt , 0ℓ(groupInfo,sig)). Note that
we count welcome messages in the order the simulator creates. We show in Lemma 5.4.15 that Hybrid
6-4-(i− 1) and Hybrid 6-4-i are indistinguishable.

Hybrid 6-5. This is identical to Hybrid 6-4-W. In this hybrid, SKE ciphertext in welcome messages issued
for secure epochs (i.e., safe is true) is replaced with a random string.

The indistinguishability between Hybrid 6-4-0 and Hybrid 6-4-Q is derived by applying Lemma 5.4.15
for all i ∈ [W]. Therefore, we conclude that Hybrid 6-4 and Hybrid 6-5 are indistinguishable.

The indistinguishability of Hybrid 6-4 and Hybrid 6-5 follows from Lemma 5.4.15 below.

Lemma 5.4.15. Hybrid 6-4-(i− 1) and Hybrid 6-4-i are indistinguishable assuming SKE is the IND-CCA secure.

Proof. The difference between S6-4-(i−1) and S6-4-i is, when generating the i-th welcome message, if the next
epoch is secure (i.e., safe is true for the next epoch), S6-4-i replaces the SKE ciphertext in the i-th welcome
message with an encryption of zero-string. We show that, if Z can distinguish the two hybrids, then there
exists an adversary B that breaks the IND-CCA security of SKE. We first explain the description of B and
then evaluate B’s advantage.
B simulates forZ the interaction withF IW

AS andF IW
KS , and the protocol execution as in S6-4-(i−1) except for

generation of SKE ciphertext in the i-th welcome message if safe is true for the new epoch corresponding to
the i-th welcome message. B embed the challenge SKE key of the IND-CCA game to welcomeSecretidt , which
is used to encrypt the i-th welcome message. If safe is true for the corresponding epoch, welcomeSecret is
chosen at random due to the modification we made in Hybrid 6-1; thus the challenge key can be embedded.
In addition, the adversary cannot corrupt the challenge key after messages are encrypted with the key
since the adversary’s corruption is restricted (cf. *mark-content-hiden-epoch function).

256 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

When B encrypts the contents m in the i-th welcome message, it queries CT := LR(m0 := (groupInfo,
sig),m1 := 0ℓ(groupInfo,sig)) and uses the challenge ciphertext CT as the ciphertext in the i-th welcome message.
When B decrypts ciphertexts different from challenge ciphertexts with the challenge key, it uses its
decryption oracle.

We finally analyze B’s advantage. If the oracle LR returns a ciphertext of the real contents m0, Z ’s
view is identical to Hybrid 6-4-(i− 1); else, i.e., the oracle LR returns a ciphertext of zero-string, Z ’s view
is identical to Hybrid 6-4-i. Hence, if Z distinguishes Hybrid 6-4-(i− 1) and Hybrid Hybrid 6-4-i with
non-negligible probability, B breaks the IND-CCA security of SKE with non-negligible probability by using
Z ’s output. This contradicts the assumption that SKE is IND-CCA secure. Therefore, Hybrid 6-4-(i− 1) and
Hybrid Hybrid 6-4-i are indistinguishable.

From Hybrid 6-5 to 6-6: Lemma 5.4.16.

Lemma 5.4.16. Hybrid 6-5 and Hybrid 6-6 are indistinguishable assuming SKE is IND-CCA secure.

Proof. We assume Z creates at most Q epochs (i.e., commit nodes). To show Lemma 5.4.16, we consider the
following sub-hybrids between Hybrid 6-5 and Hybrid 6-6.

Hybrid 6-5-0 := Hybrid 6-5. This is identical to Hybrid 6-5. We use the functionality F ctxt
CGKA,6, and the

simulator S6-5 = S6-5-0.

Hybrid 6-5-i. i runs through [Q]. The simulator S6-5-i is defined exactly as S6-5-(i−1) except that, when a
party issues proposal or commit messages at the i-th epoch, if safe is true for the epoch, it encrypts a
zero-string instead of the real contents in the non-encrypted proposal/commit message. Note that
we count epochs in the order in which Propose or Commit is called. We show in Lemma 5.4.17 that
Hybrid 6-5-(i− 1) and Hybrid 6-5-i are indistinguishable.

Hybrid 6-6. This is identical to Hybrid 6-5-Q. In this hybrid, ciphertexts in proposal and commit messages
issued at secure epochs (epochs such that safe is true) are replaced with random bit-strings.

The indistinguishability between Hybrid 6-5-0 and Hybrid 6-5-Q is derived by applying Lemma 5.4.17
for all i ∈ [Q]. Therefore, we conclude that Hybrid 6-5 and Hybrid 6-6 are indistinguishable.

The indistinguishability of Hybrid 6-5 and Hybrid 6-6 follows from Lemma 5.4.17 below.

Lemma 5.4.17. Hybrid 6-5-(i− 1) and Hybrid 6-5-i are indistinguishable assuming SKE is IND-CCA secure.

Proof. The difference between S6-5-(i−1) and S6-5-i is, when generating proposal or commit messages at the
i-th epoch such that safe is true, S6-5-i encrypts a zero-string instead of the real contents. We show that, if
Z can distinguish the two hybrids, then there exists an adversary B that breaks the IND-CCA security of
SKE. We first explain the description of B. Then we evaluate B’s advantage.
B simulates for Z the interaction with F IW

AS and F IW
KS , and the protocol execution of each party as in

S6-5-(i−1) except for encryption of proposal and commit messages generated at the i-th epoch if safe is true.
B embed the challenge SKE key of the IND-CCA game to encSecret of the i-th epoch (if safe is true for the
i-th epoch, encSecret is chosen at random due to the modification we made in Hybrid 6-2; thus the challenge
key can be embedded). In addition, the adversary cannot corrupt the challenge key after messages are
encrypted with the key since the adversary’s corruption is restricted (cf. *mark-content-hiden-epoch
function). When B encrypts contents m in a proposal or commit message at the i-th epoch, it queries

5.5. Metadata-Hiding CGKA: Construct Wrapper Protocol Wmh 257

CT := LR(m0 := m,m1 := 0|m|). Note that due to the modification we made in Hybrid 6-3, B can reject
any messages which do not generate with the i-th encryption key or generated by the adversary. Thus it
does not need to use the decryption oracle.

We finally analyze B’s advantage. If the encryption oracle LR returns ciphertexts of m, Z ’s view
is identical to Hybrid 6-5-(i− 1); else, i.e., the LR oracle returns ciphertexts of zero-string, Z ’s view is
identical to Hybrid 6-5-i. In addition, the i-th encryption secret is hidden from the adversary. Hence, if
Z distinguishes Hybrid 6-5-(i− 1) and Hybrid Hybrid 6-5-i with non-negligible probability, B wins the
IND-CCA game with non-negligible probability by using Z ’s output. This contradicts the assumption that
SKE is IND-CCA secure. Therefore, Hybrid 6-5-(i− 1) and Hybrid Hybrid 6-5-i are indistinguishable.

5.5 Metadata-Hiding CGKA: Construct Wrapper Protocol Wmh

We now construct a simple and modular CGKA construction that enables us to secure the 3rd layer (i.e.,
dynamic metadata). This results in the first metadata-hiding CGKA. Technically, we construct a wrapper
protocol Wmh specifically taking care of the 3rd layer security in the F ctxt

CGKA-hybrid model. Specifically, Wmh

can be wrapped around any CGKA Πctxt that UC-realizes F ctxt
CGKA and bootstraps Πctxt into a metadata-

hiding CGKA.
Below, we provide an overview of the proposed protocol. We then provide the full detail on the

construction of Wmh in Section 5.5.3. The formal security proof of our metadata-hiding CGKA is deferred
to Section 5.6, where we propose a new UC security model capturing the 3rd layer.

5.5.1 Goal of the Wrapper Protocol Wmh

To claim that CGKA secures the 3rd layer, our goal is to informally construct a wrapper protocol Wmh with
the following properties:

(1) Anonymous upload. A group member id can anonymously upload a proposal p or a commit (c0 ,⃗ c)
to the server.

(2) Anonymous download. A group member id can anonymously download a commit (c0 ,⃗ c) from the
server.

(3) Unlinkability. A member performing multiple uploads and downloads remains unlinkable from the
server.

(4) Group authentication. Only members of the group — excluding the honest server — can upload to
and download from the server.

Here, unlinkability (Item (3)) is a strictly stronger notion compared to anonymity (Item (1)). Even if the
member remains anonymous, some protocol may allow the server to link whether two uploads came from
the same member. We also note that Item (4) is only relevant when the server is honest — a malicious server
can always allow a non-member to perform an upload or a download on behalf of the group.

A wrapper protocol Wmh satisfying the above conditions is sufficient to bootstrap any CGKA that
UC-realizes F ctxt

CGKA into a metadata-hiding CGKA. However, if the underlying CGKA supports selective
downloading, such as Chained CmPKE, Item (2) fails to provide the same efficiency offered by the underlying
selective downloading CGKA. We thus strengthen Item (2) as follows.

258 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

(2+) Anonymous selective download. A group member id can anonymously and selectively download a
partial commit (c0, ĉid) from the server.

Specifically, the wrapper protocol Wmh allows the download cost to remain independent of the group
member size in case a selective downloading CGKA is internally used.

Finally, even if the group secret key becomes compromised, we want all the above properties to hold
again once the group state is healed. Namely, we seek a protocol with the following property.

(5) Compromise Resilience. Wmh inherits the FS+PCS guarantees offered by the underlying CGKA
UC-realizing F ctxt

CGKA.

Insufficiency of client-anonymized authenticated channel. One natural idea is to use a client-anonymized
authenticated channel such as a VPN or an anonymized proxy like Tor [DMS04; Gua]. While such a
channel solves Item (1) (and Item (2)), this alone cannot solve Items (2+) to (5). For instance, when selective
downloading is performed, member id needs to specify its index in the group to retrieve the partial commit
(c0, ĉid). Even if index may not directly leak id, the second time id performs a download on the same
index, it will break linkability (Item (3)). Moreover, since the client-side is unauthenticated, it does not
prevent external adversaries to perform a denial of service (DoS) attack on the group by uploading garbage
contents, thus contradicting Item (4). Recall here that the server can no longer explicitly check if the
uploaded contents come from genuine group members since the static metadata including the identity of
the uploading member is hidden.

In summary, a client-anonymized authenticated channel alone is not enough to hide dynamic metadata.

5.5.2 High Level Description of the Wrapper Protocol Wmh

We provide an overview of our wrapper protocol Wmh. The main idea is to use the unique group secret
key k exchanged among the group to perform an efficient proof of membership to the server. To make the
presentation simple, we deliberately provide an informal description of the proposed protocol.

Below, we assume all parties have access to the ideal functionality F ctxt
CGKA. Moreover, we assume the

party communicates with the server via a client-anonymized authenticated channel, except when a new
member is retrieving a welcome message from the server.
Figure 5.33a: Group registration. Assume party id0 wishes to create a group of three members (id0, id1, id2).
id0 first registers a new empty group to the server. Informally, id0 invokes F ctxt

CGKA on input (Create) and
initializes a new group identifier gid and a group secret key k0 for epoch = 0. It then deterministically creates
a group specific signature key (gvk0, gsk0)← KeyGen(1κ;PRF(k0, ‘auth’)) from the group secret key k0. We
call this verification key gvk0 as the group statement for epoch = 0. Party id0 then uploads the pair (gid, gvk0)
to the server.32 Finally, the server creates a new database for the group gid.
Figure 5.33b: Initial proposal to add members. With the database for gid set up on the server, id0 next
adds id1 and id2 to the group. Specifically, id0 invokes F ctxt

CGKA on input (Propose, ‘add’-idi) and generates
an add proposal pi for i ∈ [2] . To upload pi on the server, id0 proves that it is a member of the group gid
by essentially executing an identification protocol with the server. The server sends a random challenge
chi ← {0, 1}κ and id0 creates a signature σi ← Sign(gsk0, chi). The server verifies that σi is a valid signature
with respect to the group statement gvk0 at epoch = 0. If so, it adds pi to the database. Due to the
unforgeability of the signature scheme, no party without the group signing key gsk0 can impersonate a
group member.

32The proposed protocol Wmh does not prevent a malicious id0 from registering multiple groups. As explained in Section 5.1.2,
one possible way to thwart such a DoS attack would be to use anonymous credentials [Cha82].

5.5. Metadata-Hiding CGKA: Construct Wrapper Protocol Wmh 259

(gid, 0)

gvk0

Propose

⊥
Commit
⊥

id0

gid,
gvk0

(A) Group registration

(gid, 0)

gvk0

Propose

p1
p2

Commit
⊥

id0

chi
pi, σi

(B) Initial proposals from id0

FIGURE 5.33: Creation of a group by a party id0. The three-part box represents the group state
at a given epoch, as stored on the server. The top box stores in the clear the group identifier
gid, epoch and group statement gvk0. The middle box stores the (encrypted) proposals created
during the epoch. The bottom box stores the (encrypted) commit message which concluded
this epoch, if it exists.
To prove membership, the server sends a challenge chi and id0 responds with a signature σi
(Figure 5.33b). The contents are exchanged over a client-anonymized authenticated channel.

(gid, 0)

gvk0

Propose

p1
p2

Commit
⊥

(gid, 0)

gvk0

Propose

p1
p2

Commit

c0 ĉ1

(gid, 1)

gvk1

Propose

⊥
Commit
⊥

id0

ch
gvk1,
(c0, ĉ1),

σ

Commit

Next epoch

FIGURE 5.34: An initial commit made by the group creator id0. The server freezes the state of
the current epoch = 0, and initializes a new epoch in the database.

Figure 5.34: Initial commit to execute initial proposals. To create a new group with members id1 and
id2, id0 must commit the proposals p⃗ = (pi)i∈[2]. It first invokes F ctxt

CGKA on input (Commit, p⃗) and generates
(c0, ĉ0, w⃗ = (ŵi)i∈[2])

33 and (roughly) updates the group secret key k1 for the next epoch = 1. Similar to the
group registration phase, id0 creates a group statement gvk1 for epoch = 1. To upload the commit (c0, ĉ0),
id0 performs the same identification protocol as in Figure 5.33b to prove that he is indeed a member of the

33Note that id0 must process the commit (c0, ĉ1) to move to the next epoch = 1.

260 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

group gid. If the identification protocol succeeds, the server stores the commit on the database and further
creates a new column for the next epoch = 1.

Finally, id0 uploads the welcome messages w⃗ to the server. The welcome messages are stored on a
party-dependent database and work identically to F ctxt

CGKA. In particular, id1 and id2 can retrieve ŵ1 and ŵ2,
respectively, from the server and execute F ctxt

CGKA on input (Join, ŵi) to have the same group state as id0.
Effectively, they become a member of the group gid at epoch = 1.

(gid, 1)

gvk1

Propose
p3

Commit
⊥

(gid, 1)

gvk1

Propose
p3

Commit

ĉ1
c0 ĉ2

ĉ3

id1

gvk2,
(c0 ,⃗ cperm),

σ

id2

index,
σ

(c0, ĉindex),
p3

Commit

FIGURE 5.35: Left: a commit sent by id1. Right: a subsequent process made by id2. Member-
dependent commits c⃗perm := (̂c1, ĉ2, ĉ3) are randomly permuted and id2 specifies an index to
fetch the commit from the server. Challenges sent by the server are omitted for readability.

Commits without selective downloading. Now that id1 and id2 joined the group gid at epoch = 1 (i.e.,
share the same group secret key k1), they can upload proposals and commits to the database defined with
respect to the group statement gvk1.

We now explain the structure of a commit message when the group has more than one member. Assume
some member made an update proposal p3, and id1 wishes to commit this proposal (left half of Figure 5.35).
Then, following the same procedure as the initial commit, id1 invokes F ctxt

CGKA on input (Commit, p3) and
generates (c0 ,⃗ c = (̂ci)i∈[3]), along with an updated group statement gvk2 for the next epoch = 2. If selective
downloading is not performed, then id1 can simply upload (c0 ,⃗ c) to the server. The server then initiates a
new column for epoch = 2 and the other members can anonymously download the entire commit from the
server (by performing the aforementioned identification protocol).
Issues with naive selective downloading. Unfortunately, if selective downloading is naively applied, the
above method leaks the access pattern of group members.

Recall that when selective downloading is performed in F ctxt
CGKA, a member sends an index and receives

the corresponding member-dependent commit ĉindex from the server. When a member selectively down-
loads commit messages relative to two distinct epochs, they send the same index for both epochs. The
server can infer that both requests were made by the same party, contradicting Item (3).

Even worse, suppose that the group secret key, and thus, the group member list is compromised.
Although the group secret key may heal after PCS of F ctxt

CGKA kicks in, the access pattern will never heal; the
server who learned the member-index correspondence can permanently break anonymity when selective
downloading is performed by simply looking at the same index used at every epoch, contradicting Items (2+)
and (5).

5.5. Metadata-Hiding CGKA: Construct Wrapper Protocol Wmh 261

Commits with oblivious selective downloading. While the problem exposed above is known to be
solvable using relatively complex tools such as private information retrieval (PIR) [Cho+95], we provide
a much simpler solution using a pseudorandom permutation PRP by taking advantage of the fact that
selective downloading is performed by each group member once per epoch. Continuing with our above
example, when id1 generates a commit (c0 ,⃗ c = (̂ci)i∈[3]), it further deterministically generates a PRP key
permKey← PRF(k1, ‘perm’) which defines a permutation over the group size, which is [3] = { 1, 2, 3 } for
our example. It then creates a permuted member dependent commit c⃗perm so that ĉi is placed at entry
PRP(permKey, i) ∈ [3]. Finally, id1 uploads (gvk2, (c0 ,⃗ cperm)) to the server by performing the identification
protocol using gsk1.

When id2 performs a selective download to retrieve the proposal and (partial) commit from the server,
it computes its permuted index = PRP(permKey, 2), where id2 generates an identical permKey as id1. It
performs an identification protocol using gsk1, sends index, and retrieves (c0, ĉindex) and the proposal p3
from the server. This is illustrated in the right half of Figure 5.35. id1 can then invoke F ctxt

CGKA on input
(Process, (c0, ĉindex), p3) and move to the next epoch = 2.

Observe that a member never performs a selective download more than once per epoch. This is the
main reason why a PRP suffices — the access would have been linkable if selective downloading was
performed more than twice per epoch using the same PRP key. Moreover, since the group secret key is
updated at each epoch, the PRP key is also updated, thus satisfying FS and PCS (Item (5)).

Remark 5.5.1 (Non-Interactive Membership Identification). We provided a challenge-response type inter-
active identification protocol to prove group membership. By allowing the server to perform additional
checks on the database and further reasonably weakening the security guarantee (i.e., Item (4) is guaranteed
only for uploads), we are able to make the protocol completely non-interactive. At a high level, the party
simply needs to sign the proposal or commit (rather than a challenge message) to upload, and perform no
membership identification to download. The full detail is provided in Section 5.5.4.

5.5.3 Full Description of the Wrapper Protocol Wmh

In this section, we propose a metadata CGKA Wmh and prove that it UC-realizes Fmh
CGKA in the F ctxt

CGKA-
hybrid model. We call Wmh as a wrapper protocol since it works as a wrapper around any static metadata-
hiding CGKA that UC-realizes F ctxt

CGKA, and turns it into full metadata-hiding CGKA. In particular, the sole
functionality of Wmh is to take care of how the proposals, commits, and welcome messages are uploaded
and downloaded from the server in a dynamic metadata-hiding manner. The construction is very simple
and can be implemented only from a standard signature scheme.

G.gid The identifier of the group.
G.epoch The current epoch number.
G.mem A list of (id, svk)-pair. The list is sorted in lexicographic order by ids.

(G.gsk, G.gvk) The group signature key used to authenticate group membership to the
server.

G.permKey The PRP key used to permute member index in membership list.
G.indexOf(id) Returns the index of id in the list G.mem.

TABLE 5.6: The party’s protocol state and helper method of Wmh.

262 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

PropDB[∗, ∗] It stores a list of proposal message p issued at (gid, epoch).
ComDB[∗, ∗] It stores a group signature key gvk used to authenticate membership on

(gid, epoch) and possibly a commit message (c0 ,⃗ c) to move to (gid, epoch).
WelDB[∗] It stores a welcome message ŵ for id.

TABLE 5.7: The server’s protocol state.

Protocol States. Each party holds a group state G. It consists of the variables listed in Table 5.6. The G.mem
list stores the group member’s identity and its signature key. The list is sorted in lexicographic order by the
party’s identity. Parties can fetch the index of their identities in G.mem via the method G.indexOf(∗).

The server keeps three databases: PropDB[∗, ∗], ComDB[∗, ∗], and WelDB[∗]. PropDB[∗, ∗] and ComDB[∗, ∗]
both use (gid, epoch) as indices to store proposals and commits, respectively. We refer the readers to Sec-
tion 5.5.2 for a pictorial example, where we merge the PropDB and ComDB into one database in the
figures.

• PropDB[gid, epoch] = p⃗: The proposal database stores the list of proposals p⃗ created at (gid, epoch).
These proposals, once committed, are used to move any party at epoch to the next epoch′ = epoch+ 1,
where the group state is updated accordingly to the proposals.

• ComDB[gid, epoch] = (gvk, c0 ,⃗ c) or (gvk,⊥,⊥): The commit database stores a group signing key
(also called a group statement) gvk. This will be used by a group member at epoch to anonymously
prove that they are indeed a group member. ComDB[gid, epoch] is initialized with (gvk,⊥,⊥) and
is later updated to (gvk, c0 ,⃗ c) when some party creates a commit (c0 ,⃗ c) with the proposals stored
in PropDB[gid, epoch]. Once ComDB[gid, epoch] has a commit stored, then no other commits can be
made at this epoch.

• WelDB[id] = ŵ: It stores a welcome message for id. We assume WelDB[id] stores only one welcome
message for id. This is due to the fact that previous CGKA UC-security models assume a party can
join at most one group (i.e., Ptr[id] identifies the unique group that id is a member of). In the proposed
protocol, when the server receives a new welcome message (id, ŵ), it overwrites it as WelDB[id] := ŵ.
We emphasize that this restriction is required only to prove UC-security, and functionality-wise,
WelDB[id] can store as many welcome messages as it needs.

Protocol Algorithms. The main interface and the associated helper functions are depicted in Figure 5.36.
The protocol Wmh is defined in the F ctxt

CGKA-hybrid model and internally calls F ctxt
CGKA to create a group,

generate and process protocol messages. To register groups and publish or fetch protocol messages, it uses
the subroutines depicted in Figures 5.37 to 5.40.
Group Creation. A group can be created by the group creator idcreator by invokingFmh

CGKA on input (Create, svk).
The group creator first invokes F ctxt

CGKA with the same input. Then, it runs the helper function *init-states
to initialize the group state of the wrapper protocol. Note that *init-states internally queries (Keymh)
to F ctxt

CGKA to use the group secret kmh. Finally, it executes the group registration protocol RegisterGroup
shown in Figure 5.37. The group creator sends the new group’s group identity gid, epoch counter epoch,
and group signature key gvk via a client-anonymous authenticated channel. Upon receiving the group
creation message, the server checks that a group with the same identity does not exist and the epoch
counter is equal to 0. If the check passes, the server stores (gvk,⊥,⊥) in ComDB[gid, 0]. Finally, the server
notifies the party of the success or failure of the group creation. The group creator checks the protocol
result. If group creation fails, it unwinds all state changes and outputs ⊥.

5.5. Metadata-Hiding CGKA: Construct Wrapper Protocol Wmh 263

Proposal. A party located at (gid, epoch) can generate a proposal message p by invoking Fmh
CGKA on input

(Propose, act). Then, it executes the publish proposal protocol PublishProposal shown in Figure 5.38,
where party accesses the server via a client-anonymous authenticated channel. The party and the server
perform a challenge-response type membership authentication protocol, that allows a party to anonymously
prove that it is a valid group member for (gid, epoch). In more detail, upon receiving the PublishProposal
proposal message, the server chooses a random challenge message ch← {0, 1}κ and sends it to the party.
The party then signs the challenge with its group signing key G.ssk and sends the signature σ along with
the destination (gid, epoch) and the proposal p. The server checks that ComDB[gid, epoch] = (gvk,⊥,⊥)
and the signature σ is valid with respect to gvk. If the check passes, the server stores the proposal p in
PropDB[gid, epoch]. Note that the server rejects the proposal if ComDB[gid, epoch] contains a commit since
this indicates that a new epoch has been created. We later show in Section 5.5.4 that the above membership
authentication protocol can be made non-interactive if we allow the server to perform an additional simple
check on the database.
Commit. A party located at (gid, epoch) can perform a commit by invoking Fmh

CGKA on input (Commit, svk).
The party first executes the subroutine FetchProposals shown in Figure 5.38 to download the list of
proposals created in (gid, epoch). FetchProposals consists of a challenge-response type membership
authentication protocol almost identical to PublishProposal explained above. Once the server accepts, it
is convinced that the calling anonymous party is indeed a valid group member at epoch so it sends the list
of proposals p⃗ stored in the database PropDB[gid, epoch].

Once the party succeeds in fetching the proposals p⃗, it generates a commit and welcome messages
(c0 ,⃗ c, w⃗) by invoking F ctxt

CGKA on input (Commit, svk, p⃗). The list c⃗ is then randomly permuted to c⃗perm
by *permute-commit. This procedure allows for a shuffle of the order of the member for each new
epoch and makes the selective downloading performed during FetchCommit unlinkable between different
epochs. The party then publishes (c0 ,⃗ cperm, w⃗) by performing two different uploads. It first executes
PublishCommit in Figure 5.39 to publish the commit (c0 ,⃗ cperm). The party accesses the server via a client-
anonymous authenticated channel and performs the authentication protocol with the server similar to
PublishProposal. After generating the response signature σ, the party further generates a group signature
key (gvk′, gsk′) for the next epoch. This is generated from the group secret kmh

′ at the next epoch, which
can be obtained by querying (NextKeymh, c0) to F ctxt

CGKA. The party finally sends (σ, gid, epoch, c0 ,⃗ cperm, gvk′)
to the server. If the signature σ is a valid signature with respect to the group signing key stored in
ComDB[gid, epoch] = (gvk,⊥,⊥), then it updates the database by ComDB[gid, epoch]← (gvk, c0 ,⃗ cperm). In
case a commit was already stored, the server rejects the commit. Moreover, the server initializes a new
entry in the database as ComDB[gid, epoch+ 1] ← (gvk′,⊥,⊥). This creates a new epoch to which the
parties can upload new proposals. The server returns whether it succeeded or not to the party.

If the party succeeds to publish the commit and welcome messages exit (i.e., w⃗ ̸= ∅), it then further
executes PublishWelcome shown in Figure 5.40 for each ŵ ∈ w⃗. The party accesses the server via a client-
anonymized authenticated channel and uploads (idt, ŵ), where idt is extracted from ŵ. The server stores ŵ
in WelDB[idt]. Here, there is no membership authentication protocol.
Process. A party located at (gid, epoch) can try to process the current commit and proposals by invoking
Fmh

CGKA on input (Process). The party first executes the FetchCommit subroutine shown in Figure 5.39
to download a commit and their associating proposals. The FetchCommit protocol is similar to the
FetchProposals protocol. The party and server engage in the membership authentication protocol ex-
plained above. Notably, the party sends an index that specifies the index of the party-dependent commit the
party wants to download. Since the party sends an epoch-dependent permuted index using the function
*permuted-commit-index, the index from different epochs remain unlinkable. If the server accepts the

264 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

party, it returns the list of proposals p⃗ stored on the database PropDB[gid, epoch], the party independent
commit c0, and the party dependent commit ĉ := c⃗perm[index] stored on the database ComDB[gid, epoch].

Upon fetching the content (c0, ĉ, p⃗), the party processes them by invoking F ctxt
CGKA on input (c0, ĉ, p⃗).

Finally, it also updates the internal state by calling *update-states function.
Join. A party can join a group by invokingFmh

CGKA on input (Join). The party first executes the FetchWelcome
subroutine shown in Figure 5.40 to download a welcome message. The party accesses the server via a
standard authenticated channel (i.e., the party discloses its identity id). This is necessary for the server to
identify which welcome message to provide. The server either returns the welcome message ŵ designated
to id or notifies that there is no welcome message. Once the party receives the welcome message ŵ ̸=
⊥, it processes ŵ by invoking F ctxt

CGKA on input (Join, ŵ). Finally, it setups the initial state by calling
*init-states function.

5.5.4 Making Membership Authentication Protocol Non-Interactive

We discuss two simple ways to make the membership authentication protocol ran to publish and fetch the
contents from the server non-interactive.

Recall that when the group member tries to access the server, they always engage in a membership
authentication protocol to prove anonymously to the server that they are indeed a valid group member.
Our Wmh protocol realized this membership authentication protocol in an interactive challenge-response
type manner using a digital signature scheme. The server sends a challenge and asks the group member
to sign the challenge. Assuming that the same challenge is never reused, this allowed the server to be
convinced that the communicating party indeed has a group signing key.

We can remove this interaction between the server in some scenarios by asking the server to perform
an extra check on the database. Namely, during the membership authentication protocol run during
the protocols PublishProposal and PublishCommit, we allow the parties to sign on to the content they
wish to upload to the server, rather than being provided a challenge from the server. For instance, in the
protocol PublishProposal, the party id signs the message (gid, epoch, p). The server checks if the signature
is valid with respect to the group signing key at (gid, epoch), and additionally checks if such p is included
in the proposal database PropDB[gid, epoch]. If all check passes, it updates the database with p. Notice
that the server did not need to check if p was in the database in the previous interactive protocol. This
non-interactive variant securely realizes the desired functionality since due to the EUF-CMA security of the
signature scheme, a non-group member cannot upload any proposals that haven’t been signed. The only
possible attack would be to resend the observed signature-proposal pair to the server. However, since the
server is modified to never accept the same proposal, this attack fails. The same idea can be used to make
the protocol PublishCommit non-interactive.

Unfortunately, it is not clear how to make the protocols FetchProposals and FetchCommit non-
interactive using the above idea. This is because the party does not have any contents to sign when it is
performing a fetch/download. A potential idea is to weaken our UC-security model to allow non-group
members to fetch/download the contents from the server, while still disallowing them to publish/upload
any contents on the server. In particular, the protocols FetchProposals and FetchCommit will simply
consist of a party querying the server (gid, epoch), and the server responding with the proposals and
commits on the database without checking membership. This seems like a reasonable compromise consid-
ering that the contents uploaded on the server can be provided to an adversary without compromising
the security of the group — this follows since the contents are commits and proposals generated from
F ctxt

CGKA, which by definition secures the group secret key and static metadata. One possible issue is that
without any authentication on the fetch/download, it will allow an adversary to learn if a group with the

5.5. Metadata-Hiding CGKA: Construct Wrapper Protocol Wmh 265

group identifier gid exists. Our interactive protocol does not leak such information since it will output
accept = false when authentication fails.

In summary, by reasonably weakening the ideal functionality Fmh
CGKA in a meaningful way, we can

make the wrapper protocol Wmh fully non-interactive. It remains an interesting future work to investigate
whether this weakening has any practical impact on the protocol.

266 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Input (Create, svk)

1 : req G = ⊥
2 : try query (Create, svk) to F ctxt

CGKA

3 : G← *init-states(gid, 0, { (idcreator, svk) })
4 : req RegisterGroup(gid, 0)

Input (Propose, act†)

1 : req G ̸= ⊥
2 : try p← query (Propose, act) to F ctxt

CGKA

3 : req PublishProposal(G.gid, G.epoch, p)
4 : return p

Input (Commit, svk)

1 : req G ̸= ⊥
2 : (accept, p⃗)← FetchProposals(G.gid, G.epoch)
3 : req accept

4 : try (c0 ,⃗ c, w⃗)← query (Commit, svk, p⃗) to F ctxt
CGKA

5 : c⃗perm ← *permute-commit(G,⃗ c)
6 : try PublishCommit(G.gid, G.epoch, c0 ,⃗ cperm)
7 : foreach ŵ ∈ w⃗ do
8 : parse (idt, ∗)← ŵ
9 : try PublishWelcome(idt, ŵ)

10 : return (c0 ,⃗ cperm, w⃗)

Input Process

1 : req G ̸= ⊥
2 : indexĉ ← *permuted-commit-index(G, id)
3 : try (c0, ĉ, p⃗)← FetchCommit(G.gid, G.epoch, indexĉ)

4 : try (idc, propSem,mem)

← query (Process, c0, ĉ, p⃗) to F ctxt
CGKA

5 : G′ ← *update-states(G,mem)

6 : return (idc, propSem,mem)

Input (Key)

1 : req G ̸= ⊥
2 : try k← query (Key) to F ctxt

CGKA

3 : return k

Input Join

1 : req G = ⊥
2 : try ŵ← FetchWelcome(id)

3 : try (idc, gid, epoch,mem)

← query (Join, ŵ) to F ctxt
CGKA

4 : G← *init-states(gid, epoch,mem)

5 : return (idc, gid, epoch,mem)

*init-states(gid, epoch,mem)

1 : G.gid← gid; G.epoch← epoch; G.mem← mem

2 : kmh ← query Keymh to F ctxt
CGKA

3 : G.permKey← PRF(kmh, ‘perm’)
4 : authKey← PRF(kmh, ‘auth’)

5 : (G.gvk, G.gsk)← SIG′.KeyGen(ppSIG′ ; authKey)
6 : return G

*update-states(G,mem)

1 : G′.gid← G.gid; G′.epoch← G.epoch+ 1

2 : G′.mem← mem

3 : kmh ← query Keymh to F ctxt
CGKA

4 : G′.permKey← PRF(kmh, ‘perm’)
5 : authKey← PRF(kmh, ‘auth’)

6 : (G′.gvk, G′.gsk)← SIG′.KeyGen(ppSIG′ ; authKey)

7 : return G′

*permute-commit(G,⃗ c)

1 : c⃗perm ← ()

2 : for index = 1, . . . , |⃗c| do
3 : c⃗perm ++← c⃗[PRP(G.permKey, index)]
4 : return c⃗perm

*permuted-commit-index(G, id)

1 : index← G.indexOf(id)
2 : return PRP(G.permKey, index)

FIGURE 5.36: Metadata-hiding CGKA protocol Wmh in the F ctxt
CGKA-hybrid model:

Create, Propose, Commit, Process, Join, Key, and some helper functions. †: act ∈
{ ‘upd’-svk, ‘add’-idt-kpt, ‘rem’-idt }.

5.5. Metadata-Hiding CGKA: Construct Wrapper Protocol Wmh 267

Subroutine RegisterGroup(gid, 0)

Party id Server Sv

gvk← G.gvk (‘anon’,⊥,Sv), RegisterGroup, gid, 0, gvk if ComDB[gid, ∗] = ⊥ then

ComDB[gid, 0]← (gvk,⊥,⊥)
accept← true

else

accept← false

return (accept, gid, 0)

return accept accept

FIGURE 5.37: Subroutines for metadata-hiding CGKA protocol Wmh in the F ctxt
CGKA-hybrid

model: Register a new group and initialize group states for the current epoch. Party id and
the server Sv are connected via a client-anonymized authenticated channel.

268 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Subroutine PublishProposal(gid, epoch, p)

Party id Server Sv

(‘anon’,⊥,Sv), PublishProposal

ch ch←$ {0, 1}κ

(gid, epoch)← (G.gid, G.epoch)

σ← SIG′.Sign(ppSIG′ , G.gsk, ch)

σ, gid, epoch, p if ComDB[gid, epoch] = (gvk,⊥,⊥)
∧ SIG′.Verify(gvk, σ, ch) then

PropDB[gid, epoch] ++← p
accept← true

else

accept← false

return (accept, gid, epoch, p)

return accept accept

Subroutine FetchProposals(gid, epoch)

Party id Server Sv

(‘anon’,⊥,Sv), FetchProposals

ch ch←$ {0, 1}κ

σ← SIG′.Sign(ppSIG, G.gsk, ch) σ, gid, epoch if ComDB[gid, epoch] = (gvk,⊥,⊥)
∧ SIG′.Verify(gvk, σ, ch) = ⊤ then

(accept, p⃗)← (true,PropDB[gid, epoch])

else

(accept, p⃗)← (false,⊥)
return (accept, gid, epoch)

return (accept, p⃗) accept, p⃗

FIGURE 5.38: Subroutines for metadata-hiding CGKA protocol Wmh in the F ctxt
CGKA-hybrid

model: Publish and fetch proposal messages. Party id and the server Sv are connected via a
client-anonymized authenticated channel.

5.5. Metadata-Hiding CGKA: Construct Wrapper Protocol Wmh 269

Subroutine PublishCommit(gid, epoch, c0 ,⃗ c)

Party id Server Sv

(‘anon’,⊥,Sv), PublishCommit

ch ch←$ {0, 1}κ

(gid, epoch)← (G.gid, G.epoch)

σ← SIG′.Sign(ppSIG′ , G.gsk, ch)

// Generate the next epoch’s group statement.

kmh
′ ← query (NextKeymh, c0) to F ctxt

CGKA

authKey′ ← PRF(kmh
′, ‘auth’)

(gvk′, gsk′)← SIG′.KeyGen(ppSIG′ ; authKey
′)

σ, gid, epoch, gvk′, c0 ,⃗ cperm if ComDB[gid, epoch] = (gvk,⊥,⊥)
∧ SIG′.Verify(gvk, σ, ch) = ⊤ then

ComDB[gid, epoch]← (gvk, c0 ,⃗ cperm)

ComDB[gid, epoch+ 1]← (gvk′,⊥,⊥)
accept← true

else

accept← false

return (accept, gid, epoch, c0 ,⃗ cperm)

return accept accept

Subroutine FetchCommit(gid, epoch, index)

Party id Server Sv

(‘anon’,⊥,Sv), FetchCommit

ch ch←$ {0, 1}κ

σ← SIG′.Sign(ppSIG′ , G.gsk, ch) σ, gid, epoch, index if ComDB[gid, epoch] = (gvk, c0 ,⃗ cperm)

∧ SIG′.Verify(gvk, σ, ch) = ⊤ then

(accept, p⃗)← (true,PropDB[gid, epoch])

ĉ← c⃗perm[index]
else

(accept, c0, ĉ, p⃗)← (false,⊥,⊥,⊥)
return (accept, gid, epoch, index)

return (accept, c0, ĉ, p⃗) accept, c0, ĉ, p⃗

FIGURE 5.39: Subroutines for metadata-hiding CGKA protocol Wmh in the F ctxt
CGKA-hybrid

model: Publish and fetch commit messages. Party id and the server Sv are connected via a
client-anonymized authenticated channel.

270 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Subroutine PublishWelcome(idt, ŵ)

Party id Server Sv

(‘anon’,⊥,Sv), PublishWelcome, idt, ŵ WelDB[idt]← ŵ
accept← true

return (accept, idt, ŵ)

return accept accept

Subroutine FetchWelcome(id)

Party id Server Sv

(‘auth’, id,Sv), FetchWelcome if WelDB[id] = ⊥ then

(accept, ŵ)← (false,⊥)
else

(accept, ŵ)← (true,WelDB[id])

return (accept, id)

return (accept, ŵ) accept, ŵ

FIGURE 5.40: Subroutines for metadata-hiding CGKA protocol Wmh in the F ctxt
CGKA-hybrid

model: Publish and fetch welcome messages. Party id and the server Sv are connected via a
client-anonymized authenticated channel.

Random index and group authentication.

random-index(c) ⇐⇒ safe(c)
adv-access-allowed(c) ⇐⇒ ¬safe(c)

FIGURE 5.41: Additional safety predicates unique to the wrapper protocol Wmh. The other
safety predicates used to implicitly define the underlying ideal functionality F ctxt

CGKA are
identical to those provided in Section 5.4.3.

5.6. Metadata-Hiding CGKA: Define UC Security Model 271

𝒜

𝒵

id!

ℱ"#$%

Sv id&…

Wrapper 𝑊!"

ℱ"#$%'(

𝒜

𝒵

id!

ℱ"#$%

Sv id&…

Wrapper 𝑊!"

ℱ"#$%'(

𝒜′

FIGURE 5.42: (Left) metadata-hiding CGKA Πmh
CGKA when the server Sv is honest and (Right)

when Sv is malicious. The red dotted box denotes the entire protocol Πmh
CGKA, where it is

further decomposed as a combination of the wrapper protocol Wmh and ideal functionality
F ctxt

CGKA. The red shaded region denotes that Sv is corrupted and that (A,Sv) are viewed as a
single adversary A′. In this case, Wmh is ignored and Πmh

CGKA degenerates to a UC-realization
of F ctxt

CGKA.

5.6 Metadata-Hiding CGKA: Define UC Security Model

We define a UC security model capturing the security of the entire 1st, 2nd & 3rd layers (i.e., group secret
keys, static and dynamic metadata) by defining a new ideal functionality Fmh

CGKA. Any CGKA UC-realizing
Fmh

CGKA is provably a metadata-hiding CGKA.
Reusing most of the description of F ctxt

CGKA handling the 1st and 2nd layers, the description of Fmh
CGKA

can focus mainly on the 3rd layer. Our model succinctly captures all the properties explained in Sec-
tion 5.5.1, Items (1) to (5). We then show that the wrapper protocol Wmh presented in the previous section
UC-realizes Fmh

CGKA in the F ctxt
CGKA-hybrid model. The full details of this section is provided in Section 5.6.2.

Below, we provide an overview of our idea.

5.6.1 Overview of the Proposed Ideal Functionality

Modeling an Honest but Curious Sever.
In previous constructions of CGKA, the server was assumed to be always malicious. This is for instance

captured in the ideal functionalities FCGKA and F ctxt
CGKA by observing that the Commit and Process take as

input arbitrary proposals and commits — not just those created by the honest group members.
While assuming the server to be always malicious allows to capture a strong level of security against

group secret keys and static metadata, this is far too inflexible for our use case. Recall Section 5.5.1, Item (4).
To properly model that any non-member cannot upload and download from the server on behalf of the
group, we must model an honest but curious server — a server that honestly follows the protocol but tries to
learn as much metadata as possible.

To this end, we explicitly incorporate a server into our model as depicted in Figure 5.42. We allow the
server to be in two states: honest34 or corrupt. When the server is honest, we are able to properly model

34We drop “but curious” for simplicity.

272 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Section 5.5.1, Item (4). Otherwise, since a malicious server can arbitrarily choose to accept or reject the
identification protocol executed by the wrapper protocol Wmh, Wmh does not provide any meaningful
functionality. In particular, our metadata-hiding CGKA Πctxt

CGKA degenerates to offer the same functionality
as F ctxt

CGKA.
UC Security Model for Dynamic Metadata. As already mentioned, the new ideal functionality Fmh

CGKA
inherits all functionalities offered by F ctxt

CGKA. Fmh
CGKA comes with seven additional functionalities:

• RegisterGroup,

• PublishProposal, FetchProposals,

• PublishCommit, FetchCommit,

• PublishWelcome, FetchWelcome.

As the name indicates, Publish-∗ (resp. Fetch-∗) is invoked to upload (resp. download) a proposal,
commit, or welcome message from the server. These functions are mainly invoked during an execution of
Create, Propose, Commit, Process, and Join. For instance, when Commit is invoked, the member first runs
FetchProposals to retrieve the proposals p⃗ from the server and invokes F ctxt

CGKA on input (Commit, p⃗). It
then uploads the commit and welcome message output by F ctxt

CGKA using PublishCommit.
These functions are defined differently depending on (i) whether the calling party is an honest group

member or an adversary,35 and (ii) whether the server is honest or malicious. As explained above, if
the server is malicious, then we let the adversary A (i.e., server) decide whether Publish-∗ or Fetch-∗
succeeds. In this case, Fmh

CGKA becomes functionally identical to F ctxt
CGKA, modulo some syntactical difference

due to the inclusion of the server into the model.
Otherwise, if the server is honest, then Fmh

CGKA captures the correctness and security guarantees. For
correctness, if the calling party is a group member and the group statement for the next epoch was honestly
generated, then the functionality demands the server to accept the upload or download. On the other hand,
for security, if the calling party is the adversary, then we require the server to reject the upload or download
as long as the predicate safe at that epoch is true. That is, if the group secret key is not compromised, then
the adversary should not be able to upload and download on behalf of the group.

Additionally, the database stored by the server (see Figures 5.33 to 5.35) is modeled in Fmh
CGKA by two

lists PropDB and ComDB, each maintaining the proposals and commit for group gid at epoch. Fmh
CGKA

also models the permutation-based selective downloading explained in Section 5.5.2 by an ideal (helper)
function *permute-commit. Finally, due to the already complex nature of the metadata-hiding CGKA, we
did not model adversarially controlled randomness in Fmh

CGKA. We leave this as an important future work.
Proof of Dynamic Metadata-Hiding CGKA. We prove that the wrapper protocol Wmh UC-realizes the
metadata-hiding ideal functionality Fmh

CGKA in the F ctxt
CGKA-hybrid model. The full proof is provided in Sec-

tion 5.6.3.
The proof is relatively simple and modular since we defined Wmh in the F ctxt

CGKA-hybrid model. We can
in essence ignore all the description of Fmh

CGKA that relates to the 1st and 2nd layers’ correctness and security
since the same checks can be handled by the simulator S internally simulating F ctxt

CGKA. Specifically, our
proof only needs to focus on the 3rd layer of correctness and security. The proof is standard and consists of
invoking the security of the pseudorandom permutation and signature scheme.

35In our security definition (in Section 5.6.2), we use Publish-∗-Adv and Fetch-∗-Adv to indicate that the calling party is the
adversary.

5.6. Metadata-Hiding CGKA: Define UC Security Model 273

5.6.2 UC Security Model Fmh
CGKA

In this section, we propose a UC security model capturing the security of the 1st, 2nd, and 3rd layers (i.e.,
group secret keys, static and dynamic metadata) by defining a new ideal functionality Fmh

CGKA.

Overview of Fmh
CGKA. The ideal functionality Fmh

CGKA is formally defined in Figures 5.43 to 5.47 and 5.49
to 5.51, along with the helper functions in Figure 5.48 to aid the readability. As it can be checked, Fmh

CGKA
shares a large portion of its code with F ctxt

CGKA. This is because Fmh
CGKA by definition also models an ideal

functionality of a CGKA securing the 1st & 2nd layers. For better readability, we outsourced the description
of Fmh

CGKA that is non-essential to the dynamic metadata to F ctxt
CGKA. This should not be misunderstood as

Fmh
CGKA making oracle calls to F ctxt

CGKA — the former simply reuses the codes of F ctxt
CGKA.

While Fmh
CGKA allows the adversary to corrupt the parties (and the server) as in F ctxt

CGKA, we do not model
adversarial controlled randomness (i.e., Rand is always set to ‘good’). As the first work to formally capture
the dynamic metadata layer, we opted for simplicity and better readability. We leave it as future work to
allow such types of attacks. We now explain the ideal functionality Fmh

CGKA in more detail.
States. Similarly to F ctxt

CGKA, Fmh
CGKA maintains a history graph. As a custom, we assume one honest group is

created by the designated party idcreator. Such group is assigned to the main root node-id = 0. Since Fmh
CGKA

does not allow the adversary to manipulate the party’s randomness, Rand[id] cannot be switched to ‘bad’.
Other than the history graph, Fmh

CGKA also maintains three databases: PropDB[∗, ∗], ComDB[∗, ∗], and
WelDB[∗]. The proposal database PropDB[gid, epoch] stores proposals issued at (gid, epoch). The welcome
database WelDB[id] stores a welcome message sent to id. Since Fmh

CGKA processes a join query only when
Ptr[id] = ⊥ (i.e., a party id is not assigned to any group), WelDB[id] stores only one welcome message
for each id, and overwrites the old one if a new welcome message is published to id. Finally, the commit
database ComDB[gid, epoch] stores the status of the group gid at epoch. Depending on the status of the
group, it takes one of the following five values:

• ComDB[gid, epoch] = ⊥: It indicates that the epoch has not been initialized yet.

• ComDB[gid, epoch] = (⊤, node-id): It indicates that the epochhas been initialized by an honest party
located at the commit node node-id (of the history graph), and no commit has been issued at epoch.

• ComDB[gid, epoch] = ((c0 ,⃗ c), node-id): It indicates that the epoch has been initialized by an honest
party located at the commit node node-id, and a commit (c0 ,⃗ c) has been issued at epoch.

• ComDB[gid, epoch] = (⊤, ‘adv’): It indicates that the epoch has been initialized by an adversary, and
no commit has been issued at epoch.

• ComDB[gid, epoch] = ((c0 ,⃗ c), ‘adv’):It indicates that the epoch has been initialized by an adversary,
and a commit (c0 ,⃗ c) has been issued at epoch.

Looking ahead, (assuming the server Sv is honest) ComDB[gid, epoch] is initialized with⊥. If some party
at epoch− 1 creates a commit, ComDB[gid, epoch] is initialized to (⊤, ∗), where ∗ depends on whether the
party was honest or corrupt. Once the proposals in at epoch, i.e., PropDB[gid, epoch], are committed, then
ComDB[gid, epoch] stores that commit and this freezes the epoch, and initializes a new ComDB[gid, epoch+
1] = ⊥. This models the fact that a commit is generated only once per epoch when the server is honest. We
refer the readers to see Section 5.5.2 for a pictorial example.
Interfaces. Fmh

CGKA offers similar interfaces to the parties as F ctxt
CGKA. A party can create a group, create

proposal, commit, or welcome messages, process these messages, and obtain group secret keys. In addition

274 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

to these functionalities, it also offers the functionalities of publishing and fetching messages, which models
the message delivery between a (possibly malicious) party and the server. To formally capture this, Fmh

CGKA
makes the existence of the server explicit — recall that the server was implicit in F ctxt

CGKA and abstracted
away as a malicious network that injects arbitrary message. Specifically Fmh

CGKA models an honest-but-curious
server. When the server is corrupted by the adversary, we end up with the same functionality as F ctxt

CGKA.
In the following, we explain each of the functionalities in mode detail.

Functions Used by Legitimate Parties. Create and register group (See Figure 5.44). The designated party

idcreator first creates the group as in F ctxt
CGKA (cf. Group creation in Section 5.3.3). idcreator then registers the

group to the server via the subroutine RegisterGroup. F ctxt
CGKA first checks that the party idcreator is located

at epoch = 0 (i.e., Ptr[idcreator] = 0). Then, Fmh
CGKA informs the adversary that a new group with (gid, 0) is

being registered.

• If the server is honest (i.e., ServerStat = ‘good’), the ideal server checks that the group with gid
has not been registered yet. If so, the server initializes the group as ComDB[gid, epoch] ← (⊤, 0)36

and returns accept = true to the party. Else, the registration is rejected and the party receives
accept = false. The ideal server outputs (accept, gid, epoch = 0) (to the environment Z). Since
parties are assumed to access the server via a client-anonymous authenticated channel, the server
never outputs the accessing party’s identity.

• If the server is malicious, the adversary specifies the protocol result accept′, and it is outputted to id.
This means the malicious server can decide the protocol result arbitrarily.

Create and publish proposals (See Figure 5.44). When a party id create a proposal, Z invokes Fmh
CGKA on input

(Propose, act). Fmh
CGKA first creates a proposal message p as in F ctxt

CGKA (cf. Creating proposals in Section 5.3.3).
Then, id publishes p to the server via the subroutine PublishProposal.

• If the server is honest (i.e., ServerStat = ‘good’), Fmh
CGKA gives (gid, epoch, p) to the adversary, where

(gid, epoch) is the destination group identity and epoch. The party accesses the server via the client-
anonymous authenticated channel, and therefore, the adversary does not receive the party’s identity.
The adversary reports whether the protocol succeeds or not by setting accept′ to true or false. Fmh

CGKA
then determines the party and server’s output as follows.

– If ComDB[gid, epoch] = (⊤, node-id) and node-id = Ptr[id], the ideal party always outputs
accept := true. This models correctness: if a party holds the same group state used to initialize
node-id, the server must accept the published proposal.

– If ComDB[gid, epoch] = (⊤, ‘adv’) and accept′ = true, the ideal party outputs accept := true.
This models the fact that when the destination (gid, epoch) is initialized by the adversary, we let
the adversary decide if the ideal server should accept the published proposal or not. Looking at
the example from Section 5.5.2, if ComDB[gid, epoch] was initialized with a fake group statement
gvk, then the adversary can deliberately make the publish proposal fail.

– Otherwise, the ideal party outputs accept := false. This case occurs if accept′ = false

(i.e., the adversary decides to reject), ComDB[gid, epoch] ̸= (⊤, ∗) (i.e., the destination has
not been initialized or a commit has been issued), or ComDB[gid, epoch] = (⊤, node-id) but
node-id ̸= Ptr[id] (i.e., the party is located in a different commit node).

36The RegisterGroup subroutine only occurs when the main group (which is assigned to node-id = 0) is registered.

5.6. Metadata-Hiding CGKA: Define UC Security Model 275

The ideal server outputs the destination (gid, epoch) and the published proposal p to Z . Since
parties access the server via a client-anonymous authenticated channel, the server never outputs the
accessing party’s identity.

• If the server is malicious, Fmh
CGKA gives Ptr[id] to the adversary, where Ptr[id] = node-id is the current

commit node on the history graph, which id is located at. The reason why we don’t give (gid, epoch) as
above is that when the server is malicious, it can arbitrary fork the group. In such a case, (gid, epoch)
is not enough to identify the location of the party. Note that in the real protocol, the malicious server
gets to learn which fork a party is in since the party will try to access the server using the group
state. Hence, Ptr[id] correctly models what the malicious server learns in the real world. Finally, the
adversary specifies the protocol result accept′, and it is outputted to id. This means the malicious
server can decide the protocol result arbitrarily.

Create and publish commits (See Figure 5.44). When a party id wants to issue a commit message, Z invokes
Fmh

CGKA on input (Commit, svk). The description composes of two parts.

Fetch proposals id must first fetch the list of proposals from the server via the subroutine FetchProposals.

• If the server is honest (i.e., ServerStat = ‘good’), Fmh
CGKA gives (gid, epoch) to the adversary, where

(gid, epoch) is the destination. Since the party accesses to the server via a client-anonymous authenti-
cated channel, and therefore the server does not receive the party’s identity. The adversary reports
whether the protocol succeeds or not by setting accept′ to true or false, and specifies the proposals
p⃗′. Fmh

CGKA then determines the party and server’s output as follows.

– If ComDB[gid, epoch] = (⊤, node-id) and node-id = Ptr[id], the ideal party always outputs
accept := true and p⃗ := PropDB[gid, epoch]. This models correctnes: if a party holds the same
group state used to initialize node-id, the server must accept and returns the proposals stored on
the database.

– If ComDB[gid, epoch] = (⊤, ‘adv’) and accept′ = true, the ideal party outputs accept := true

and p⃗ := PropDB[gid, epoch]. This models the fact that when the destination (gid, epoch) is
initialized by the adversary, we let the adversary decide if the ideal server should return the
stored proposals or not.

– Otherwise, the ideal party outputs accept := false. This case occurs if accept′ = false (i.e.,
the adversary decides to reject) or ComDB[gid, epoch] = ⊥ (i.e., the destination has not been
initialized).

In all three cases, the ideal server outputs the destination (gid, epoch) to Z . Since parties access the
server via a client-anonymous authenticated channel, the server never outputs the accessing party’s
identity.

• If the server is malicious, Fmh
CGKA gives Ptr[id] to the adversary. The adversary specifies the protocol

result accept′ and the proposals p⃗′, and they ate outputted to id. This means the malicious server can
return an arbitrary message to the parties. This is consistent with F ctxt

CGKA which allows an adversary
to inject malicious proposals.

If id successfully fetches the proposals (i.e., id receives accept = true), then id creates a corresponding
commit (c0 ,⃗ c) and welcome messages w⃗ = { ŵ } as in F ctxt

CGKA (cf. Committing to proposals in Section 5.3.3).

276 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Publish commit and welcome messages id finally publishes the commit and welcome messages to the
server. We first describe how it publishes a commit. Before publishing the commit message, the party
permutes c⃗ to c⃗perm using the function *permute-commit. This effectively makes the party’s identity and
index of c⃗ unlikable. Note that the *permute-commit function uses a random permutation (if safe is true
for the id’s current epoch) or a permutation the adversary chooses (if safe is false). This means if safe is
true the permuted index will look random from the adversary.

• If the server is honest (i.e., ServerStat = ‘good’), Fmh
CGKA gives (gid, epoch, c0 ,⃗ cperm) to the adversary.

The party accesses the server via a client-anonymous authenticated channel, and therefore, the
adversary does not receive the party’s identity. The adversary reports whether the protocol succeeds
or not by setting accept′ to true or false. Fmh

CGKA then determines the party and server’s output as
follows.

– If ComDB[gid, epoch] = (⊤, node-id) and node-id = Ptr[id], the ideal party always outputs
accept := true. This models correctness: if a party holds the same group state used to initialize
node-id, the server must accept the published commit message.

– If ComDB[gid, epoch] = (⊤, ‘adv’) and accept′ = true, the ideal party outputs accept := true.
This models the fact that if the destination (gid, epoch) is initialized by the adversary, we let the
adversary decide if the ideal server accepts the published commit.

– Otherwise, the ideal party outputs accept := false. This case occurs if accept′ = false

(i.e., the adversary decides to reject), ComDB[gid, epoch] ̸= (⊤, ∗) (i.e., the destination has not
been initialized or a commit message has been issued), or ComDB[gid, epoch] = (⊤, node-id) but
node-id ̸= Ptr[id] (i.e., the party is located in a different commit node).

In all three cases, the ideal server outputs the destination (gid, epoch) and the published commit
(c0 ,⃗ cperm) to Z . Since parties access the server via a client-anonymous authenticated channel, the
server never outputs the accessing party’s identity.

• If the server is malicious, Fmh
CGKA gives (Ptr[id], c0 ,⃗ cperm) to the adversary. The adversary specifies

the protocol result accept′, and it is outputted to id. This means the malicious server can decide the
protocol result arbitrarily.

Finally, id publishes the welcome messages ŵ ∈ w⃗ via the subroutine PublishWelcome. To hide the
relationship among welcome messages, id publish ŵ separately. Fmh

CGKA informs the adversary of publishing
a welcome message by giving (idt, ŵ), where idt is the intended recipient of ŵ. Note that the party accesses
the server via a client-anonymous authenticated channel, and therefore the adversary does not receive the
party’s identity. The adversary reports whether the protocol succeeds or not by setting accept′ to true or
false. Fmh

CGKA then determines the party and server’s output as follows.

• If the server is honest (i.e., ServerStat = ‘good’), Fmh
CGKA stores WelDB[idt] ← ŵ and outputs

accept := true to id. The ideal server outputs (idt, ŵ). This models correctness: the honest server
always accepts the welcome message and does not know who sent it.

• If the server is malicious,Fmh
CGKA outputs accept′ specified by the adversary. This means the malicious

server can decide the protocol result arbitrarily.

Fetch and process commits (See Figure 5.44) To process, party id needs to fetch the commit and proposals from
the server via the subroutine FetchCommit. Before fetching a commit and proposals, the party permutes

5.6. Metadata-Hiding CGKA: Define UC Security Model 277

its index to indexĉ by the function *permuted-commit-index to make the party’s identity and index of c⃗
unlikable. Here, the function uses a random permutation (if safe is true for the id’s current epoch) or
a permutation the adversary chooses (if safe is false). This models the fact that if safe is true, then the
permuted index seems random to the adversary.

• If the server is honest (i.e., ServerStat = ‘good’), Fmh
CGKA gives (gid, epoch, indexĉ) to the adversary,

where indexĉ is the permuted id’s index. Note that the party accesses to the server via a client-
anonymous authenticated channel, and therefore, the adversary does not receive the party’s identity.
The adversary reports whether the protocol succeeds or not by setting accept′ to true or false, and
specifies the commit message (c′0, ĉ′, p⃗′). Fmh

CGKA then determines the party and server’s output as
follows.

– If ComDB[gid, epoch] = ((c′0 ,⃗ c′), node-id) and node-id = Ptr[id], the ideal party always outputs
accept := true and the commit message (c0, ĉ, p⃗) := (c′0 ,⃗ c′[indexĉ],PropDB[gid, epoch]). This
models correctness: if a party holds the same group state used to initialize node-id, the server
must accept and returns the stored commit (which was received during protocol PublishCommit)

– If ComDB[gid, epoch] = ((c′0 ,⃗ c′), ‘adv’) and accept′ = true, the ideal party outputs accept :=
true and the commit (c0, ĉ, p⃗) := (c′0 ,⃗ c′[indexĉ],PropDB[gid, epoch]). This models the fact that if
the destination (gid, epoch) was initialized by the adversary, the adversary gets to decide if the
ideal server accepts.

– Otherwise, the ideal party outputs accept := false. This case occurs if accept′ = false (i.e.,
the adversary decides to reject), ComDB[gid, epoch] ̸= ((c′0 ,⃗ c′), ∗) (i.e., the destination has not
been initialized or a commit message has not been issued), or ComDB[gid, epoch] = (⊤, node-id)
but node-id ̸= Ptr[id] (i.e., the party is located in a different commit node).

In all three cases, the ideal server outputs (gid, epoch, indexĉ) to Z .

• If the server is malicious, Fmh
CGKA gives (Ptr[id], indexĉ) to the adversary. The adversary specifies the

protocol result accept′ and the commit (c′0, ĉ′, p⃗′), and it is outputted to id. This means the malicious
server can return an arbitrary message to the parties. This is consistent with F ctxt

CGKA which allows an
adversary to inject malicious commits and proposals.

Finally, if id successfully fetches a commit and a list of proposals (i.e., id receives accept = true), id
then processes them as in F ctxt

CGKA (cf. Processing commits in Section 5.3.3).
Join a group (See Figure 5.44). To join a group, party id fetches a welcome message from the server via the
subroutine FetchWelcome. Fmh

CGKA first informs the adversary that id fetches a welcome message. In this
case, the server and the adversary lean who is accessing. The adversary reports whether the protocol
succeeds or not by setting accept′ to true or false, and specifies the welcome message ŵ′. Fmh

CGKA then
determines the party and server’s output as follows.

• If the server is honest (i.e., ServerStat = ‘good’), Fmh
CGKA returns to id the welcome message ŵ :=

WelDB[id] stored in its database or accept = false if WelDB[id] = ⊥. This models correctness: the
honest server must return the message received during the subroutine PublishWelcome. The ideal
server outputs the accessing party’s identity id, which models the fact that any concrete protocol
allows the server to know who was fetching the welcome message.

• If the server is malicious, the specified welcome message ŵ′ is outputted to id. This models that the
malicious server can send an arbitrary message to parties.

278 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Finally, if id successfully fetches a welcome message (i.e., id receives accept = true), Fmh
CGKA then

processes the welcome message as in F ctxt
CGKA (cf. Joining a group in Section 5.3.3).

Group keys (See Figure 5.44). Parties can fetch the current group secret via the Key query. The returned group
secret k is random if the protocol guarantees its confidentiality (identified by the safe predicate). Otherwise,
k is set by the adversary. Unlike F ctxt

CGKA, Fmh
CGKA only provides an interface to retrieve one group secret k.

That is, it does not have the interface to retrieve the group metadata secret kmh and the next key function.
This is because, those were special keys only used to secure the dynamic metadata (see Section 5.4.1), and
in particular, Fmh

CGKA only requires one group secret k that will be used to exchange the actual message.
Corruption. Similar to F ctxt

CGKA, the adversary can obtain party id’s internal states via the (exposed, id) query.
To prevent the so-called commitment problem, Fmh

CGKA fixes the value of the safety predicate safe when a
new group or epoch is initialized. This is controlled by the function *mark-next-db-initialized-epoch
in Create and Commit. This is because the group secret generated at a specific commit node is explicitly
used in the real protocol and we must restrict the adversary to not corrupting these nodes in order not to
trivially win the security game. In addition, the adversary can corrupt the server via the CorruptServer
query, and take over the role of the server. For simplicity, we assume once the server becomes malicious,
it remains malicious and will never become honest. Finally, as mentioned in the overview, we do not
consider adversary-controlled randomness in the current model.

Functions Used by the Adversary. Fmh
CGKA offers the publish and fetch message interfaces to the adversary

so that it can impersonate an honest party to a server. Similar to the case an honest party accesses the sever,
Fmh

CGKA defines the ideal function when the adversary (malicious party) accesses the server. Since the party
is malicious, Fmh

CGKA never requires correctness. In contrast, Fmh
CGKA defines the security requirements: It

defines the conditions under which the adversary can access the server. In case the conditions do not hold,
the functionality models the fact that the adversary cannot access the server. Note that when both party
and server are malicious, Fmh

CGKA does nothing since the adversary can perform all the protocols by itself.
Publish or fetch proposal or commit messages by the adversary. To publish a proposal or commit, the adversary
sends PublishProposalAdv or PublishCommitAdv to Fmh

CGKA. F ctxt
CGKA determines the server’s output as

follows.

• If ComDB[gid, epoch] = (⊤, node-id) and accept′ = true, Fmh
CGKA checks whether authenticity is guar-

anteed for the honestly generated epoch node-id by the safety predicate adv-access-allowed(node-id).
If the predicate returns false, then Fmh

CGKA halts. This models the fact that the adversary can publish
messages for an honestly initialized epoch only when adversarial access is allowed. If access is
allowed, the server stores the published message from the adversary in its database.

• If ComDB[gid, epoch] = (⊤, ‘adv’) and accept′ = true, the ideal server outputs accept := true. This
models the fact that if the destination (gid, epoch) was initialized by the adversary, the adversary gets
to decide whether the ideal server accepts.

• Otherwise, the ideal server outputs accept := false. This case occurs if accept′ = false (i.e.,
the adversary decides to reject) or ComDB[gid, epoch] ̸= (⊤, ∗) (i.e., the destination has not been
initialized or a commit message has been issued).

To fetch proposals, the adversary sends FetchProposalsAdv to Fmh
CGKA. Fmh

CGKA determines the server’s
output as follows.

• If ComDB[gid, epoch] = (∗, node-id) and accept′ = true, Fmh
CGKA checks whether authenticity is guar-

anteed for the honestly generated epoch node-id by the safety predicate adv-access-allowed(node-id).If

5.6. Metadata-Hiding CGKA: Define UC Security Model 279

the predicate returns false, then Fmh
CGKA halts. This models the fact that the adversary can fetch

proposals from an honestly initialized epoch only when adversarial access is allowed. If the access is
allowed, the adversary obtains p⃗ := PropDB[gid, epoch].

• If ComDB[gid, epoch] = (∗, ‘adv’) and accept′ = true, the ideal server outputs accept := true. This
models the fact that if the destination (gid, epoch) was initialized by the adversary, the adversary can
decide to accept.

• Otherwise, the ideal party outputs accept := false. This case occurs if accept′ = false (i.e., the
adversary decides to reject) or ComDB[gid, epoch] = ⊥ (i.e., the destination has not been initialized).

Finally, to publish a proposal or a commit the adversary sends (FetchCommitAdv, gid, epoch, index) to
Fmh

CGKA. Fmh
CGKA determines the server’s output as follows.

• If ComDB[gid, epoch] = ((c′0 ,⃗ c′), node-id) and accept′ = true, Fmh
CGKA checks whether authenticity is

guaranteed for the honestly generated epoch node-id by the safety predicate adv-access-allowed(node-id).
If If the predicate returns false, then Fmh

CGKA halts. This models the fact that the adversary can fetch
messages for an honestly initialized epoch only when adversarial access is allowed. If access is
allowed, the adversary obtains the stored (c0, ĉ, p⃗) := (c′0 ,⃗ c′[indexĉ],PropDB[gid, epoch]).

• If ComDB[gid, epoch] = ((c′0 ,⃗ c′), ‘adv’) and accept′ = true, the adversary obtains the stored (c0, ĉ,
p⃗) := (c′0 ,⃗ c′[indexĉ],PropDB[gid, epoch]). This models the fact that if the destination (gid, epoch) was
initialized by the adversary, the adversary can decide to accept.

• Otherwise, the ideal party outputs accept := false. This case occurs if accept′ = false (i.e., the
adversary decides to reject) or ComDB[gid, epoch] ̸= ((c′0 ,⃗ c′), ∗) (i.e., the destination has not been
initialized or a commit message has not been issued).

Publish or fetch welcome messages by the adversary. To publish or fetch messages, the adversary sends PublishWelcome
or FetchWelcome to Fmh

CGKA. In this case, Fmh
CGKA determines the server’s output as in the case an honest

party accesses the server. The protocol succession means the adversary succeeds to publish or fetch a
welcome message.

280 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Initialization

1 : // Line 1-7 below are identical to selective downloading F ctxt
CGKA

2 : Ptr[∗],Prop[∗],Node[∗],Wel[∗]← ⊥
3 : propCtr, nodeCtr← 1
4 : flagselDL = true,DesignatedCom[∗]← ⊥
5 : flagcontHide = true

6 : PropID[∗],NodeID[∗]← ⊥
7 : Rand[∗]← ‘good’
8 : // Initialize below for dynamic metadata-hiding

9 : flagdbinit = true

10 : PropDB[∗, ∗],ComDB[∗, ∗],WelDB← ⊥
11 : ServerStat← ‘good’

Input from the party idcreator
Input (Create, svk)

1 : req Ptr[idcreator] = ⊥
2 : // Run identical code as Input (Create, svk) of F ctxt

CGKA,

3 : // excluding the final return (gid, 0,mem) line

4 : ⟨⟨Insert (Create, svk) of F ctxt
CGKA⟩⟩

5 : req RegisterGroup(gid, 0)
6 : *mark-next-db-initialized-epoch(Ptr[idcreator])

Subroutine RegisterGroup(gid, epoch)

1 : channelType← (‘anon’,⊥, Sv)
2 : req Ptr[id] = 0
3 : Send (channelType, RegisterGroup, gid, 0) to S and

receive accept′

4 : // If Sv is good, then accept if ComDB[gid, ∗] is empty

5 : if ServerStat = ‘good’ then
6 : if ComDB[gid, ∗] = ⊥ then
7 : accept← true

8 : // Main group is assigned to node-id = 0.

9 : ComDB[gid, 0]← (⊤, 0)
10 : else
11 : accept← false

12 : Send (channelType, RegisterGroup, (accept, gid, 0)) to Sv

13 : // If Sv is corrupt, then let S decide if Sv accepts

14 : else
15 : accept← accept′

16 : return accept

FIGURE 5.43: The ideal MH-CGKA functionality Fmh
CGKA: Create function for honest parties.

For better readability, we outsource the lines identical to F ctxt
CGKA to Figure 5.5. Note that the

Create function is invoked only once by the previously designated party idcreator. (Only one
idcreator exists.)

5.6. Metadata-Hiding CGKA: Define UC Security Model 281

Inputs from a party id

Input (Propose, act†)

1 : req Ptr[id] ̸= ⊥
2 : gid← Node[Ptr[id]].gid
3 : epoch← Node[Ptr[id]].epoch
4 : // Run identical code as Input (Propose, act) of F ctxt

CGKA,

5 : // excluding the final return p line

6 : ⟨⟨Insert (Propose, act) of F ctxt
CGKA⟩⟩

7 : req PublishProposal(gid, epoch, p)
8 : return p

Input (Commit, svk)

1 : req Ptr[id] ̸= ⊥
2 : gid← Node[Ptr[id]].gid
3 : epoch← Node[Ptr[id]].epoch
4 : (accept, p⃗)← FetchProposals(gid, epoch)
5 : req accept

6 : // Run identical code as Input (Commit, p⃗, svk) of F ctxt
CGKA,

7 : // excluding the final return (c0 ,⃗ c, w⃗ = { ŵ }) line

8 : ⟨⟨Insert (Commit, p⃗, svk) of F ctxt
CGKA⟩⟩

9 : // Permute the order of party sensitive commitment c⃗

10 : c⃗perm ← *permute-commit(Ptr[id],⃗ c)
11 : try PublishCommit(gid, epoch, c0 ,⃗ cperm)
12 : foreach ŵ ∈ w⃗ do
13 : parse (idt, ∗)← ŵ
14 : try PublishWelcome(idt, ŵ)

15 : *mark-next-db-initialized-epoch(NodeID[c0])

16 : return (c0 ,⃗ cperm, w⃗)

Input Process

1 : req Ptr[id] ̸= ⊥
2 : gid← Node[Ptr[id]].gid
3 : epoch← Node[Ptr[id]].epoch
4 : // Permute index of party id for selective downloading.

5 : indexĉ ← *permuted-commit-index(Ptr[id], id)
6 : (accept, c0, ĉ, p⃗)← FetchCommit(gid, epoch, indexĉ)

7 : req accept

8 : // Run identical code as Input (Process, c0, ĉ, p⃗) of F ctxt
CGKA,

9 : // including the final return *output-proc(node-id′) line

10 : ⟨⟨Insert (Process, c0, ĉ, p⃗) of F ctxt
CGKA⟩⟩

Input Join

1 : req Ptr[id] = ⊥
2 : (accept, ŵ)← FetchWelcome(id)

3 : req accept

4 : // Run identical code as Input (Join, ŵ) of F ctxt
CGKA,

5 : // including the final return *output-join(node-id) line

6 : ⟨⟨Insert (Join, ŵ) of F ctxt
CGKA⟩⟩

Input Key

1 : // Run identical code as Input (Key) of F ctxt
CGKA,

2 : // including the final return Node[Ptr[id]].key line

3 : ⟨⟨Inset (Key) of F ctxt
CGKA⟩⟩

FIGURE 5.44: The ideal MH-CGKA functionality Fmh
CGKA: Propose, Commit, Process, and

Join functions for honest parties. For better readability, we outsource the lines identical to
F ctxt

CGKA to Figures 5.6, 5.7 and 5.9. †: act ∈ { ‘upd’-svk, ‘add’-idt, ‘rem’-idt }

282 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Subroutine PublishProposal(gid, epoch, p)

1 : channelType← (‘anon’,⊥,Sv) // Connect to the server via anonymous channel.

2 : if ServerStat = ‘good’ then

3 : Send (channelType, PublishProposal, gid, epoch, p) to S and receive accept′

4 : // If the party assigned to gid-epoch accesses, the server must accept.

5 : if ComDB[gid, epoch] = (⊤, node-id) ∧ node-id = Ptr[id] then
6 : PropDB[gid, epoch] ++← p
7 : accept← true

8 : // If gid-epoch was initialized by the adversary, S decide to accept or reject.

9 : elseif ComDB[gid, epoch] = (⊤, ‘adv’) ∧ accept′ then
10 : PropDB[gid, epoch] ++← p
11 : accept← true

12 : // Otherwise, the server must reject.

13 : else accept← false

14 : Send (channelType, PublishProposal, (accept, gid, epoch, p)) to Sv

15 : // If Sv is corrupt, then S decides if Sv accepts.

16 : else
17 : Send (channelType, PublishProposal,Ptr[id], p) to S and receive accept′

18 : accept← accept′

19 : return accept

Subroutine FetchProposals(gid, epoch)

1 : channelType← (‘anon’,⊥,Sv) // Connect to the server via anonymous channel.

2 : if ServerStat = ‘good’ then

3 : Send (channelType, FetchProposals, gid, epoch) to S and receive accept′

4 : // If the party assigned to gid-epoch accesses, the server must accept.

5 : if ComDB[gid, epoch] = (∗, node-id) ∧ node-id = Ptr[id] then
6 : (accept, p⃗)← (true,PropDB[gid, epoch])
7 : // If gid-epoch was initialized by the adversary, S decide to accept or reject.

8 : elseif ComDB[gid, epoch] = (∗, ‘adv’) ∧ accept′ then
9 : (accept, p⃗)← (true,PropDB[gid, epoch])

10 : // Otherwise, the server must reject.

11 : else (accept, p⃗)← (false,⊥)
12 : Send (channelType, FetchProposals, (accept, gid, epoch)) to Sv

13 : // If Sv is corrupt, then S decides what Sv returns to id.

14 : else
15 : Send (channelType, FetchProposals,Ptr[id]) to S and receive (accept′, p⃗′)

16 : (accept, p⃗)← (accept′, p⃗′)
17 : return (accept, p⃗)

FIGURE 5.45: The ideal metadata-hiding CGKA functionality Fmh
CGKA: subroutines for publish

and fetch proposal messages. They are used in Propose and Commit interface shown in
Figure 5.44.

5.6. Metadata-Hiding CGKA: Define UC Security Model 283

Subroutine PublishCommit(gid, epoch, c0 ,⃗ cperm)

1 : channelType← (‘anon’,⊥,Sv) // Connect to the server via anonymous channel.

2 : if ServerStat = ‘good’ then

3 : Send (channelType, PublishCommit, gid, epoch, c0 ,⃗ cperm) to S and receive accept′

4 : // If the party uses the state assigned to gid-epoch, the server must accept.

5 : if ComDB[gid, epoch] = (⊤, node-id) ∧ node-id = Ptr[id] then
6 : ComDB[gid, epoch]← ((c0 ,⃗ cperm), node-id)
7 : // If an honest party initialize the next epoch, the corresponding node is marked.

8 : ComDB[gid, epoch+ 1]← (⊤,NodeID[c0])

9 : accept← true

10 : // If gid-epoch was initialized by the adversary, S decide to accept or reject.

11 : elseif ComDB[gid, epoch] = (⊤, ‘adv’) ∧ accept′ then
12 : ComDB[gid, epoch]← ((c0 ,⃗ cperm), ‘adv’)
13 : // If an honest party initialize the next epoch, the corresponding node is marked.

14 : ComDB[gid, epoch+ 1]← (⊤,NodeID[c0])

15 : accept← true

16 : // Otherwise, the server must reject.

17 : else accept← false

18 : Send (channelType, PublishCommit, (accept, gid, epoch, c0 ,⃗ cperm)) to Sv

19 : else // If Sv is corrupt, then S decides if Sv accepts.

20 : Send (channelType, PublishCommit, gid, epoch, c0 ,⃗ cperm) to S and receive accept′

21 : accept← accept′

22 : return accept

Subroutine FetchCommit(gid, epoch, indexĉ)

1 : channelType← (‘anon’,⊥,Sv) // Connect to the server via anonymous channel.

2 : if ServerStat = ‘good’ then

3 : Send (channelType, FetchCommit, gid, epoch, indexĉ) to S and receive accept′

4 : // If the party assigned to gid-epoch accesses, the server must accept.

5 : if ComDB[gid, epoch] = ((c′0 ,⃗ c′), node-id) ∧ node-id = Ptr[id] then

6 : (accept, c0, ĉ, p⃗)← (true, c′0 ,⃗ c′[indexĉ],PropDB[gid, epoch])
7 : // If gid-epoch was initialized by the adversary, S decide to accept or reject.

8 : elseif ComDB[gid, epoch] = ((c′0 ,⃗ c′), ‘adv’) ∧ accept′ then
9 : (accept, c0, ĉ, p⃗)← (true, c′0 ,⃗ c′[indexĉ],PropDB[gid, epoch])

10 : // Otherwise, the server must reject.

11 : else (accept, c0, ĉ, p⃗)← (false,⊥,⊥,⊥)
12 : Send (channelType, FetchCommit, (accept, gid, epoch, indexĉ)) to Sv

13 : else

14 : Send (channelType, FetchCommit,Ptr[id], indexĉ) to S and receive (accept′, c′0, ĉ′, p⃗′)

15 : (accept, c0, ĉ, p⃗)← (accept′, c′0, ĉ′, p⃗′)
16 : return (accept, c0, ĉ, p⃗)

FIGURE 5.46: The ideal metadata-hiding CGKA functionality Fmh
CGKA: subroutines for publish

and fetch commit messages. They are used in Commit and Process interface shown in Fig-
ure 5.44. If c⃗ = ⊥, we define c⃗[index] = ⊥ for any index index.

284 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Input from a party id or adversary S
Input PublishWelcome(idt, ŵ)

1 : // Connect to the server via anonymous channel.

2 : channelType← (‘anon’,⊥,Sv)

3 : Send (channelType, PublishWelcome, idt, ŵ) to S and receive accept′

4 : // If Sv is honest, then store ŵ in WelDB

5 : if ServerStat = ‘good’ then
6 : accept← true

7 : WelDB[idt]← ŵ
8 : Send (channelType, PublishWelcome, (accept, idt, ŵ)) to Sv

9 : // If Sv is corrupt, then S decides if Sv accepts.

10 : else
11 : accept← accept′

12 : // If invoked by S , then no output is required

13 : if ServerStat = ‘good’∨ invoked by party id then
14 : return accept

Input FetchWelcome(id)

1 : // Connect to the server via authenticated channel.

2 : channelType← (‘auth’, id,Sv)

3 : Send (channelType, FetchWelcome) to S and receive (accept′, ŵ′)
4 : if ServerStat = ‘good’ then
5 : if WelDB[id] ̸= ⊥ then
6 : (accept, ŵ)← (true,WelDB[id])

7 : else
8 : (accept, ŵ)← (false,⊥)
9 : Send (channelType, FetchWelcome, (accept, id)) to Sv

10 : // If Sv is corrupt, then let S decide Sv’s output

11 : else
12 : (accept, ŵ)← (accept′, ŵ′)
13 : // If invoked by S , then no output is required

14 : if ServerStat = ‘good’∨ invoked by party id

15 : return (accept, ŵ)

FIGURE 5.47: The ideal metadata-hiding CGKA functionality Fmh
CGKA: Subroutines for publish

and fetch welcome messages. They are used in Commit and Join interface shown in Figure 5.44.

5.6. Metadata-Hiding CGKA: Define UC Security Model 285

*permuted-commit-index(node-id, id)

1 : assert Node[node-id] ̸= ⊥
2 : // If flagselDL is false, there is no need to permute index.

3 : if ¬flagselDL then
4 : return ⊥
5 : mem← Node[node-id].mem

6 : assert id ∈ mem

7 : index← Node[node-id].index(id)
8 : if Node[node-id].perm = ⊥ then
9 : *set-index-permutation(node-id)

10 : ϕ← Node[node-id].perm
11 : return ϕ(index)

*permute-commit(node-id,⃗ c)

1 : assert Node[node-id] ̸= ⊥
2 : // If flagselDL is false, no party-depend commitment can exist.

3 : if ¬flagselDL then
4 : assert c⃗ = ⊥
5 : return ⊥
6 : if Node[node-id].perm = ⊥ then
7 : *set-index-permutation(node-id)
8 : ϕ← Node[node-id].perm
9 : c⃗perm ← ()

10 : for index = 1, . . . , |⃗c| do
11 : c⃗perm ++← c⃗[ϕ(index)]
12 : return c⃗perm

*set-index-permutation(node-id)

1 : mem← Node[node-id].mem

2 : // If the input node is not corrupted,

// sample a random permutation over S|mem|.

3 : if random-index(node-id) then
4 : ϕ←$ S|mem|

5 : Node[node-id].perm← ϕ

6 : else
7 : Send (Permutation, node-id) to S and

receive ϕ

8 : assert ϕ ∈ S|mem|

9 : Node[node-id].perm← ϕ

FIGURE 5.48: Helper functions for Fmh
CGKA: Permute indices. S|mem| is the set of permutations

on the range [|mem|].

286 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Input from the adversary S
Input (PublishProposalAdv, gid, epoch, p)

1 : channelType← (‘anon’,⊥,Sv)

2 : Send (channelType, PublishProposalAdv, gid, epoch, p) to S and receive accept′

3 : // The honest server accepts if S decides to accept and ComDB[gid, epoch] = (⊤, ∗).

4 : if ServerStat = ‘good’ then
5 : if ComDB[gid, epoch] = (⊤, node-id) ∧ accept′ then
6 : // If gid-epoch was initialized by an honest party, Fmh

CGKA checks authenticity is guaranteed.

7 : assert adv-access-allowed(node-id)
8 : PropDB[gid, epoch] ++← p
9 : accept← true

10 : elseif ComDB[gid, epoch] = (⊤, ‘adv’) ∧ accept′ then
11 : PropDB[gid, epoch] ++← p
12 : accept← true

13 : else
14 : accept← false

15 : Send (channelType, PublishProposal, (accept, gid, epoch, p)) to Sv

16 : return accept

Input (FetchProposalsAdv, gid, epoch)

1 : channelType← (‘anon’,⊥,Sv)
2 : Send (channelType, FetchProposalsAdv, gid, epoch) to S and

receive accept′

3 : // The honest server accepts if S decides to accept and ComDB[gid, epoch] ̸= ⊥.

4 : if ServerStat = ‘good’ then
5 : elseif ComDB[gid, epoch] = (∗, node-id) ∧ accept′ then
6 : // If gid-epoch was initialized by an honest party, Fmh

CGKA checks authenticity is guaranteed.

7 : assert adv-access-allowed(node-id)
8 : (accept, p⃗)← (true,PropDB[gid, epoch])
9 : elseif ComDB[gid, epoch] = (∗, ‘adv’) ∧ accept′ then

10 : (accept, p⃗)← (true,PropDB[gid, epoch])
11 : else
12 : (accept, p⃗)← (false,⊥)
13 : Send (channelType, FetchProposals, (accept, gid, epoch) to Sv

14 : return (accept, p⃗)

FIGURE 5.49: The ideal metadata-hiding CGKA functionality Fmh
CGKA: functions for the

adversary S . If c⃗ = ⊥, c⃗[index] is defined to be ⊥ for any index.

5.6. Metadata-Hiding CGKA: Define UC Security Model 287

Input from the adversary S
Input (PublishCommitAdv, gid, epoch, c0 ,⃗ c)

1 : channelType← (‘anon’,⊥, Sv)
2 : Send (channelType, PublishCommitAdv, gid, epoch, c0 ,⃗ c) to S and receive accept’
3 : // The honest server accepts if S decides to accept and ComDB[gid, epoch] = (⊤, ∗).

4 : if ServerStat = ‘good’ then
5 : ComDB[gid, epoch]
6 : elseif ComDB[gid, epoch] = (⊤, node-id) ∧ accept′ then
7 : // If gid-epoch was initialized by an honest party, Fmh

CGKA checks authenticity is guaranteed.

8 : assert adv-access-allowed(node-id)
9 : ComDB[gid, epoch]← ((c0 ,⃗ c), node-id)

10 : // If injection succeeds, the next epoch is marked as adversarial initialized.

11 : ComDB[gid, epoch+ 1]← (⊤, ‘adv’)
12 : elseif ComDB[gid, epoch] = (⊤, ‘adv’) ∧ accept′ then
13 : ComDB[gid, epoch]← ((c0 ,⃗ c), ‘adv’)
14 : // If injection succeeds, the next epoch is marked as adversarial initialized.

15 : ComDB[gid, epoch+ 1]← (⊤, ‘adv’)
16 : else
17 : accept← false

18 : Send (channelType, PublishCommit, (accept, gid, epoch, c0 ,⃗ c)) to Sv

19 : return accept

Input (FetchCommitAdv, gid, epoch, index)

1 : channelType← (‘anon’,⊥, Sv)

2 : Send (channelType, FetchCommitAdv, gid, epoch, index) to S and receive accept′

3 : // The honest server accepts if S decides to accept and ComDB[gid, epoch] = ((c′0 ,⃗ c′), ∗).

4 : if ServerStat = ‘good’ then
5 : if ComDB[gid, epoch] = ((c′0 ,⃗ c′), node-id) ∧ accept′ then
6 : // If gid-epoch was initialized by an honest party, Fmh

CGKA checks authenticity is guaranteed.

7 : assert adv-access-allowed(node-id)
8 : (accept, c0, ĉ, p⃗)← (true, c′0 ,⃗ c′[index],PropDB[gid, epoch])
9 : if ComDB[gid, epoch] = ((c′0 ,⃗ c′), ‘adv’) ∧ accept′ then

10 : (accept, c0, ĉ, p⃗)← (true, c′0 ,⃗ c′[index],PropDB[gid, epoch])
11 : else
12 : (accept, c0, ĉ, p⃗)← (false,⊥,⊥,⊥)
13 : Send (channelType, PublishProposal, (accept, gid, epoch, index) to Sv

14 : return (accept, c0, ĉ, p⃗)

FIGURE 5.50: The ideal metadata-hiding CGKA functionality Fmh
CGKA: functions for the

adversary S . If c⃗ = ⊥, c⃗[index] is defined to be ⊥ for any index.

288 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Input (Expose, id)

1 : if Ptr[id] ̸= ⊥ then
2 : Node[Ptr[id]].exp +← id

3 : *update-stat-after-exp(id) // Pending secrets are marked as exposed.

4 : svk← Node[Ptr[id]].mem[id]

5 : Send (exposed, id, svk) to FAS

6 : Send (Ptr[id],Node[Ptr[id]]) to S // All information stored in Node[Ptr[id]] is sent to S .

7 : Send (exposed, id) to FKS

8 : restrict ∀node-id :
9 : if Node[node-id].chall = true then safe(node-id) = true

10 : if Node[node-id].conthide = true then safe(node-id) = true

11 : if Node[node-id].dbinit = true then safe(node-id) = true

Input CorruptServer

1 : // Once corrupted, the server remains corrupted.

2 : ServerStat← ‘adv’

*mark-next-db-initialized-epoch(node-id)

1 : if safe(node-id) then
2 : Node[node-id].dbinit← true

3 : else
4 : Node[node-id].dbinit← false

FIGURE 5.51: The metadata-hiding CGKA functionality Fmh
CGKA: Corruptions from the

adversary S . The difference between those of F ctxt
CGKA is highlighted in gray. S can call

CorruptServer only once.

5.6. Metadata-Hiding CGKA: Define UC Security Model 289

5.6.3 Security of the Wrapper Protocol Wmh

The following theorem proves that the wrapper protocol Wmh UC-realizes the ideal functionality Fmh
CGKA in

the F ctxt
CGKA-hybrid model.

Theorem 5.6.1. Assuming that SIG′ is EUF-CMA secure, PRF is a secure pseudorandom function, and PRP is a
secure pseudorandom permutation, the protocol Wmh UC-realizes the ideal functionality Fmh

CGKA in the F ctxt
CGKA-hybrid

model, where the safety predicates and leakage functions for Fmh
CGKA are defined in Figures 5.31, 5.32 and 5.41.

Proof. We consider the following sequence of hybrids. While the environment Z interacts with Wmh in
Hybrid 1, it interacts with the ideal functionality Fmh

CGKA in Hybrid 6. Below, we first define all the hybrids
and then explain how the simulators are defined.

Hybrid 1. This is the real-world execution of the protocol, where we make a syntactic change. We
consider a simulator S1 that interacts with a dummy functionality Fdummy. Fdummy sits between
the environment Z and S1, and simply routs all messages without any modification. S1 internally
simulates the real-world parties and adversary A by routing all the messages sent from Fdummy; from
A’s point of view, S1 is the environment Z .

Hybrid 2. In this hybrid, we replace the dummy functionality Fdummy by the ideal functionality Fmh
CGKA

except that we replace the functions used within Create, Propose, Commit, Process, and Join by
those defined in Figures 5.52 to 5.56. We call this modified ideal functionality Fmh

CGKA,2. In words,
Fmh

CGKA,2 includes all the descriptions of the ideal functionality F ctxt
CGKA for static metadata-hiding

CGKA and outsources any other checks performed by the wrapper protocol Wmh to the simulator S2.
Namely, these correspond to the party-server interaction. In this hybrid, all consistency and security
regarding the static metadata are guaranteed. The description of S2 is provided in Lemma 5.6.2.

Hybrid 3. In this hybrid, we add all the missing consistency checks regarding the wrapper protocol Wmh

of the ideal functionality Fmh
CGKA into Fmh

CGKA,2. We cal this ideal functionality Fmh
CGKA,3. More precisely,

Fmh
CGKA,3 is identical to Fmh

CGKA except that random-index (resp. adv-access-allowed) always returns
false (resp. true). It only takes care of the correctness guarantees and does not guarantee any security
properties regarding the dynamic metadata. Simulator S3 is defined identically to S2.

Hybrid 4. In this hybrid, we change how the randomness used to derive the permutation key and group
signature key are generated. The simulator S4 is identical to S3 except that, rather than generating
permKey ← PRF(kmh, ‘perm’) and authKey ← PRF(kmh, ‘auth’) (which occurs during Create or
Commit), if safe is true for that epoch, then it samples a random permKey and authKey. In this hybrid,
we use FCGKA,4 := FCGKA,3.

Hybrid 5. In this hybrid, we add the missing security guarantee on the randomness of the party’s index.
Namely, we modify Fmh

CGKA,4 to use the original random-index predicate, denoted as Fmh
CGKA,5. Fmh

CGKA,5
permutes the indices with a random permutation if predicate random-index is true. Simulator S5 is
identical to S4.

Hybrid 6. In this hybrid, we add the missing security guarantee when an adversary tries to access the
honest server. Namely, we modify Fmh

CGKA,5 to use the original predicate adv-access-allowed, denoted
as Fmh

CGKA,6. Fmh
CGKA,6 halts if an adversary succeeds to fetch or publish a proposal or commit message

without knowing the corresponding group secret key. Simulator S6 is identical to S5. At this point,
Fmh

CGKA,6 is identical to the ideal functionality Fmh
CGKA.

290 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

We show indistinguishability of Hybrids 1 to 6 in Lemmata 5.6.2 to 5.6.4, 5.6.6 and 5.6.8. This completes
the proof of the main theorem.

From Hybrid 1 to 2: Lemma 5.6.2.

Lemma 5.6.2. Hybrid 1 and Hybrid 2 are perfectly indistinguishable.

Proof. We first provide the description of S2. Whenever S2 is invoked on an input from F ctxt
CGKA called

within Fmh
CGKA,2,37 it simply relays the same input to the adversary A. Since Wmh is constructed in the

F ctxt
CGKA-hybrid model, these inputs are exactly what A was provided in Hybrid 1. S2 returns to F ctxt

CGKA
whatever provided by A. It remains to describe how S2 answers RegisterGroup, and publish and fetch
queries sent from Fmh

CGKA,2. To this end, we first make a detour and explain how kmh is set in Hybrids 1 and 2.
In Hybrid 1, kmh for a commit node node-id is created when S1 invokes some party id with Ptr[id] =

node-id on a Create or a Commit. When id queries Create, id performs a query Keymh to F ctxt
CGKA within

*init-states; when id queries Commit, id performs a query NextKeymh within PublishCommit. If safe(node-id) =
true, then F ctxt

CGKA samples a random key kmh. Otherwise, F ctxt
CGKA asks A to provide the key. These are the

only two places where a new kmh is set — Keymh and NextKeymh are also queried during Propose, Process,
and Join but kmh will already be defined.

In Hybrid 2, however, S2 can no longer directly invoke a party id when the static metadata is hidden.
For example, when Z invokes party idcreator on a Create while *leak-create is activated (i.e., the predicate
safe is true), then S2 is only provided with (|idcreator|, |svk|) from Fmh

CGKA,2. Without knowing idcreator, S2
cannot invoke idcreator to execute *init-states. This in particular means that it cannot set kmh like S1 did
above by invoking Keymh or NextKeymh of F ctxt

CGKA.
With this in mind, we now finish the description of S2. S2 maintains a list Lkmh

to store the key kmh

generated at node node-id, i.e., Lkmh
[node-id] = kmh. Notice that when S2 needs to simulate a RegisterGroup,

or a fetch or publish query, it is given either (gid, epoch) if the server Sv is honest and Ptr[id] if Sv is malicious.
Since there is no fork in the group when Sv is honest, (gid, epoch) uniquely defines node-id. Notably, even
if S2 does not know who the calling party id is, it knows which group and epoch (or Ptr[id] in case of a
fork) id is included in, and thus, knows which kmh = Lkmh

[node-id] to use if it exists.
As explained above, when Z invokes some party to perform Propose, Process, or Join, kmh is already

defined. Thus, S2 simply uses kmh = Lkmh
[node-id] to perform the same simulation as S1, where recall id is

not used during a publish or fetch protocol. When the environment Z invokes idcreator on (Create, svk),
this is when a new kmh is generated, i.e., Lkmh

[Ptr[idcreator]] is still undefined. S2 checks if safe(0) = false

— which it can do since it can simulate an identical semantics of the history graph maintained within
Fmh

CGKA,2 — and asks A for kmh. This is identical to what S1 did. Otherwise, S2 samples a random kmh on
its own. In either case, S2 stores Lkmh

[0]← kmh and uses kmh to perform the RegisterGroup protocol. The
only difference between the previous hybrid is that S2 samples kmh when safe(0) = true, rather than
letting F ctxt

CGKA sampling it. However, since *mark-next-db-initialized-epoch(0) is called and due to the
restriction on A, A cannot compromise kmh after Create was invoked. Therefore, from the view of Z , kmh

is distributed identically in both hybrids. Thus, the simulation of Create is perfectly indistinguishable
from Hybrid 1. The case when the environment Z invokes id on (Commit, svk) is proven analogously to
(Create, svk). This completes the proof.

From Hybrid 2 to 3: Lemma 5.6.3.
37Note that this is not strictly true since F ctxt

CGKA is not defined within Fmh
CGKA,2. Fmh

CGKA,2 merely has most of the codes included
in F ctxt

CGKA. We use this informal wording for simplicity.

5.6. Metadata-Hiding CGKA: Define UC Security Model 291

Subroutine RegisterGroup(gid, epoch)

1 : channelType← (‘anon’,⊥,Sv) // Connect to the server via anonymous channel

2 : req epoch = 0
3 : Send (channelType, RegisterGroup, gid, 0) to S and receive accept

4 : if ServerStat = ‘good’ then
5 : Send (accept, gid, 0) to Sv

6 : return accept

Subroutine PublishProposal(gid, epoch, p)

1 : channelType← (‘anon’,⊥,Sv) // Connect to the server via anonymous channel

2 : if ServerStat = ‘good’ then
3 : Send (channelType, PublishProposal, gid, epoch, p) to S and receive accept

4 : Send (accept, gid, epoch, p) to Sv

5 : else
6 : Send (channelType, PublishProposal,Ptr[id], p) to S and receive accept

7 : return accept

Subroutine FetchProposals(gid, epoch)

1 : channelType← (‘anon’,⊥,Sv) // Connect to the server via anonymous channel

2 : if ServerStat = ‘good’ then
3 : Send (channelType, FetchProposals, gid, epoch) to S and receive (accept, p⃗)
4 : Send (accept, gid, epoch) to Sv

5 : else
6 : Send (channelType, FetchProposals,Ptr[id]) to S and
7 : receive (accept, p⃗)
8 : return (accept, p⃗)
9 :

FIGURE 5.52: Subroutines for publishing and fetching proposal messages used in Hybrid 2.

292 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Subroutine PublishCommit(gid, epoch, c0 ,⃗ cperm)

1 : channelType← (‘anon’,⊥,Sv) // Connect to the server via anonymous channel

2 : if ServerStat = ‘good’ then
3 : Send (channelType, PublishCommit, gid, epoch, c0 ,⃗ cperm) to S and receive accept

4 : Send (accept, gid, epoch, c0 ,⃗ cperm) to Sv

5 : else
6 : Send (channelType, PublishCommit,Ptr[id], c0 ,⃗ cperm) to S and receive accept

7 : return accept

Subroutine FetchCommit(gid, epoch, indexĉ)

1 : channelType← (‘anon’,⊥,Sv) // Connect to the server via anonymous channel

2 : if ServerStat = ‘good’ then
3 : Send (channelType, FetchCommit, gid, epoch, indexĉ) to S and receive (accept, c0, ĉ, p⃗)
4 : Send (accept, gid, epoch, indexĉ) to Sv

5 : else
6 : Send (channelType, FetchCommit,Ptr[id], indexĉ) to S and receive (accept, c0, ĉ, p⃗)
7 : return (accept, c0, ĉ, p⃗)

FIGURE 5.53: Subroutines for publishing and fetching commit messages used in Hybrid 2.

Input from a party id or adversary S
Input PublishWelcome(idt, ŵ)

1 : // Connect to the server via anonymous channel

2 : channelType← (‘anon’,⊥,Sv)
3 : Send (channelType, PublishWelcome, idt, ŵ) to S and receive accept

4 : if ServerStat = ‘good’ then
5 : Send (accept, idt, ŵ) to Sv

6 : return accept

Input FetchWelcome(id)

1 : // Connect to the server via authenticated channel

2 : channelType← (‘auth’, id,Sv)
3 : Send (channelType, FetchWelcome) to S and receive (accept, ŵ)

4 : if ServerStat = ‘good’ then
5 : Send (accept, id) to Sv

6 : return (accept, ŵ)

FIGURE 5.54: Subroutines for publish and fetch welcome messages used in Hybrid 2.

5.6. Metadata-Hiding CGKA: Define UC Security Model 293

*permuted-commit-index(node-id, id)

1 : assert Node[node-id] ̸= ⊥
2 : // If flagselDL is false, there is no need to permute indexes.

3 : if ¬flagselDL then
4 : return ⊥
5 : mem← Node[node-id].mem

6 : assert id ∈ mem

7 : Send (*permuted-commit-index,Ptr[id], id) to S and
receive indexĉ

8 : return indexĉ

*permute-commit(node-id,⃗ c)

1 : assert Node[node-id] ̸= ⊥
2 : // If flagselDL is false,

3 : // no party-dependent commitment can exist.

4 : if ¬flagselDL then
5 : assert c⃗ = ⊥
6 : return ⊥
7 : Send (*permute-commit,Ptr[id],⃗ c) to S and

receive c⃗perm
8 : return c⃗perm

FIGURE 5.55: Helper functions: permute functions used in Hybrid 2.

Input from the adversary S
Input (PublishProposalAdv, gid, epoch, p)

1 : channelType← (‘anon’,⊥,Sv)
2 : Send (channelType, PublishProposalAdv, gid, epoch, p) to S and receive accept

3 : if ServerStat = ‘good’ then
4 : Send (channelType, PublishProposal, (accept, gid, epoch, p)) to Sv

5 : return accept

Input (FetchProposalsAdv, gid, epoch)

1 : channelType← (‘anon’,⊥,Sv)
2 : Send (channelType, FetchProposalsAdv, gid, epoch) to S and receive (accept, p⃗)
3 : if ServerStat = ‘good’ then
4 : return (accept, p⃗)

Input (PublishCommitAdv, gid, epoch, c0 ,⃗ c)

1 : channelType← (‘anon’,⊥,Sv)
2 : Send (channelType, PublishCommitAdv, gid, epoch, c0 ,⃗ c) to S and receive accept

3 : if ServerStat = ‘good’ then
4 : return accept

Input (FetchCommitAdv, gid, epoch, index)

1 : channelType← (‘anon’,⊥,Sv)
2 : Send (channelType, FetchCommitAdv, gid, epoch, index) to S and receive (accept, c0, ĉ, p⃗)
3 : if ServerStat = ‘good’ then
4 : return (accept, c0, ĉ, p⃗)

FIGURE 5.56: Publish functions used by the adversary in Hybrid 2.

294 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Lemma 5.6.3. Hybrid 2 and Hybrid 3 are indistinguishable assuming the correctness of SIG′.

Proof. The only difference between Hybrids 2 and 3 is that Fmh
CGKA,3 in Hybrid 3 mandates correctness of the

RegisterGroup, and publish and fetch protocols when the server Sv is honest. For instance, in Hybrid 2,
during the PublishProposal protocol, S2 simulated the interaction between the party id and the honest
Sv using the key kmh stored in the list Lkmh

. S2 then returned accept′ output by Sv to Fmh
CGKA,2, and in

particular, this notified the environment Z that S output accept′. In particular, Fmh
CGKA,2 did not model any

notion of correctness of the PublishProposal protocol.
On the other hand, in Hybrid 3, if ComDB[gid, epoch] = (⊤, node-id) and node-id = Ptr[id] (i.e., the

group statement gvk is created honestly and id holds the corresponding signing key gsk), then Fmh
CGKA,3

always sends accept = true to Z . This models the fact that if the new epoch (node-id) is initialized by
an honest party, then any member assigned on the same commit node (i.e., node-id = Ptr[id]) can upload
a proposal. It is clear that this holds assuming that SIG′ is correct, i.e., a properly generated signature
is always accepted. Fmh

CGKA,3 always sends accept = false to Z if (1) ComDB[gid, epoch] ̸= (⊤, node-id)
or (2) ComDB[gid, epoch] = (⊤, node-id) and node-id ̸= Ptr[id]. For case (1), we can verify that the real
server performs the same check as ComDB[gid, epoch] is equal to (gvk,⊥,⊥) or not, and thus S2 returned
accept′ = false. For case (2), if S2 returned accept′ = true in case (2), we can construct an adversary
that breaks the EUF-CMA security of SIG′ by using such S2. Thus S2 returned accept′ = false assuming
the EUF-CMA security of SIG′. Therefore, the view to Z remain identical.

All other RegisterGroup, and publish and fetch protocols in Hybrid 3 can be checked to behave
identically to those of Hybrid 2 conditioned on SIG′ being correct and EUF-CMA secure.

From Hybrid 3 to 4: Lemma 5.6.4.

Lemma 5.6.4. Hybrid 3 and Hybrid 4 are indistinguishable assuming PRF is a secure pseudorandom function.

Proof. We assume Z creates at most Q epochs (i.e., commit nodes node-id in the history graph). To show
Lemma 5.6.4, we consider the following sub-hybrids between Hybrid 3 and Hybrid 4.

Hybrid 3-0 := Hybrid 3. This is identical to Hybrid 3. We use the functionality FCGKA,3, and the simulator
S3-0 := S3. When simulating protocol, S3-0 uses the group key kmh stored in the list Lkmh

as PRF key.

Hybrid 3-i. i runs through [Q]. The simulator S3-i is defined exactly as S3-(i−1) except that when S3-(i−1)
generates a random kmh for the i-th epoch where safe is true, it chooses a random authKey and
permKey instead of deriving them from PRF and kmh. Note that we count epochs (i.e., node-id) in
the order in which Create or Commit is invoked. We show in Lemma 5.6.5 that Hybrid 3-(i− 1) and
Hybrid 3-i are indistinguishable.

Hybrid 3-Q := Hybrid 4. In this hybrid, all authKey and permKey generated at epochs such that safe is
true are chosen at random.

The indistinguishability between Hybrid 3 and Hybrid 4 is established by applying the following Lemma 5.6.5
for all i ∈ [Q].

Lemma 5.6.5. Hybrid 3-(i− 1) and Hybrid 3-i are indistinguishable assuming PRF is a secure pseudo-random
function.

5.6. Metadata-Hiding CGKA: Define UC Security Model 295

Proof. The difference between Hybrid 3-(i− 1) and Hybrid 3-i is whether authKey and permKey at the i-th
epoch (i.e., node-id) are chosen uniformly at random if safe is true. (If safe is false for the i-th epoch, two
hybrids proceed identically.) Due to the modification we made in Hybrid 2, the group key kmh is chosen
uniformly at random. Moreover, due to the restriction on the adversary, kmh generated when safe was
true cannot be corrupted by the adversary. Thus, by the pseudorandomness of the PRF, the output of the
PRF is indistinguishable from a random string for the input labels ‘perm’ and ‘auth’. This implies Hybrid
3-(i− 1) and Hybrid 3-i are indistinguishable. More formally, if Z can distinguish the two hybrids, then
there exists an adversary B that breaks the pseudorandomness of the PRF. We first explain the description
of B; then we evaluate B’s advantage.
B simulates for Z the protocol executions between a party and the server as in S3-(i−1), except for the

evaluation of the PRF. To generate authKey and permKey, B queries authKey := F (‘auth’) and permKey :=
F (‘perm’) to its oracle F .

We evaluate the success probability of B. If the oracle F evaluates a pseudo-random function, then Z ’s
view is identical to Hybrid 3-(i− 1). If F evaluates a truly random function, then Z ’s view is identical to
Hybrid 3-i. Hence, if Z distinguishes Hybrid 3-(i− 1) and Hybrid 3-i with non-negligible probability, B
breaks the pseudorandomness of the PRF with non-negligible probability. This contradicts the assumption
that PRF is secure. Therefore, Hybrid 3-(i− 1) and Hybrid 3-i are indistinguishable.

From Hybrid 4 to 5: Lemma 5.6.6. Hybrid 5 concerns the randomness of the access indix of group members.
If random-index is true, then the ideal functionality Fmh

CGKA,5 randomizes the commit vector c⃗ and the index
of each party in the group on behalf of the simulator. We prove in Lemma 5.6.6 that assuming that PRP is
secure, Hybrid 4 and Hybrid 5 are indistinguishable.

Lemma 5.6.6. Hybrid 4 and Hybrid 5 are indistinguishable assuming PRP is a secure pseudorandom permutation.

Proof. We assume Z creates at most Q epochs (i.e., commit nodes node-id in the history graph). To show
Lemma 5.6.6, we consider the following sub-hybrids between Hybrid 4 and Hybrid 5.

Hybrid 4-0 := Hybrid 4. This is identical to Hybrid 4. We use the functionality FCGKA,4, and the simulator
S4-0 := S4. In this hybrid, FCGKA,4 permutes the indices index and commit vectors c⃗ with a permu-
tation chosen by S4-0, and S4-0 simulates the PublishCommit and FetchCommit protocols using the
indices and commit messages provided from FCGKA,4-i.

Hybrid 4-i. i runs through [Q]. We use the functionality FCGKA,4-i which is defined exactly as FCGKA,4-(i−1)
except that the indices index and commit vectors c⃗ are permutated with a truly random permutation
if random-index is true for the i-th epoch. The simulator S4-i is defined exactly as S4-(i−1). Note
that we count epochs (i.e., node-id) in the order in which Create or Commit is invoked. We show in
Lemma 5.6.7 that Hybrid 4-(i− 1) and Hybrid 4-i are indistinguishable.

Hybrid 4-Q := Hybrid 5. We use the functionality FCGKA,4-Q which permutes the indices index and commit
vectors c⃗ with a random permutation for all epochs where random-index is true. FCGKA,4-Q is identical
to FCGKA,5.

Indistinguishability between Hybrid 4 and Hybrid 5 is established by applying the following Lemma 5.6.7
for all i ∈ [Q].

296 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

Lemma 5.6.7. Hybrid 4-(i − 1) and Hybrid 4-i are indistinguishable assuming PRP is a secure pseudorandom
permutation.

Proof. The difference between Hybrid 4-(i− 1) and Hybrid 4-i is whether index and c⃗ issued at the i-th
epoch where random-index is true are permuted by a truly random permutation. (If random-index is
false for the i-th epoch, two hybrids proceed identically.) Due to the modification we made in Hybrid 4, the
i-th permutation key permKey is chosen uniformly at random if random-index (=safe) is true. Thus, by
the pseudorandomness of the PRP, the output of the PRP is indistinguishable from that of a truly random
permutation. This implies Hybrid 4-(i− 1) and Hybrid 4-i are indistinguishable. More formally, if Z can
distinguish the two hybrids, then we can construct an adversary B that breaks the pseudorandomness of
the PRP. We first explain the description of B; then we evaluate B’s advantage.
B simulates for Z the protocol executions between a party and the server as in S4-(i−1), except for the

evaluation of PRP at the i-th epoch. Rather than sampling a permutation key permKey for the i-th epoch to
evaluate the permutation, B queries its challenge oracle to compute index′ ← P(index).

We evaluate the success probability of B. If the oracle P evaluates a pseudorandom permutation,
then Z ’s view is identical to Hybrid 4-(i − 1). Otherwise, if P evaluates a truly random permutation,
then Z ’s view is identical to Hybrid 4-i. Hence, if Z distinguishes Hybrid 4-(i− 1) and Hybrid 4-i with
non-negligible probability, B breaks the pseudorandomness of the PRP with non-negligible probability.
This contradicts the assumption that PRP is secure. Therefore, Hybrid 4-(i − 1) and Hybrid 4-i are
indistinguishable.

From Hybrid 5 to 6: Lemma 5.6.8. Hybrid 6 concerns the group membership check performed by the
honest server. When the server is honest (i.e., ServerStat = ‘good’) and adv-access-allowed is false (i.e.,
group secrets are not compromised), the functionality Fmh

CGKA,6 halts if an adversary succeeds to publish or
fetch a proposal or commit messages. That is an adversary that does not know the group secret should
not be able to publish or fetch contents from the honest server. We prove in Lemma 5.6.8 that if Z can
distinguish the two hybrids, then we can construct an adversary that breaks the EUF-CMA security of
SIG′. In other words, assuming that SIG’ is EUF-CMA secure, Hybrid 5 and Hybrid 6 are indistinguishable.
Concretely, we show the following.

Lemma 5.6.8. Hybrid 5 and Hybrid 6 are indistinguishable assuming SIG′ is EUF-CMA secure.

Proof. We show that, if Z can distinguish the two hybrids, then there exists an adversary B that breaks
the EUF-CMA security of SIG′. We first explain the description of B and how B extracts a valid signature
forgery using Z ; we then show the validity of the forged signature and finally evaluate B’s advantage.
B simulates for Z the protocol executions between a party and the server as in S6, except for the

signature generation during the publish and fetch protocols. At the beginning of the game, B chooses an
index i ∈ [Q] at random, where Q is the total number of epochs (i.e., commit nodes node-id) that Z creates.
B aborts if adv-access-allowed is true for the i-th epoch, and otherwise embeds the challenge signing
key svk∗ in the i-th group signing key gvk. Here, if adv-access-allowed is false (i.e, safe is true) for the
i-th epoch, the group signing key is generated with a uniformly random authKey due to the modification
we made in Hybrid 4. Therefore, B perfectly simulates svk∗ as in Hybrid 5. Moreover, note that once
safe is true, the restricted adversary cannot compromise the i-th group signing key. Whenever an honest
party at the i-th epoch publishes or fetches proposal/commit messages, B uses the signing oracle to sign
the challenge message sent from the server. For the other epochs, B generates gvk and signs as in the

5.7. Instantiation and Efficiency of Proposed Metadata-Hiding CGKA 297

previous hybrid. If the adversary succeeds in making the server accept at execution of a publish and
fetch proposal/commit protocols in the i-th epoch, B retrieves the pair of challenge message and response
signature (ch, σ) from the successful transcript, and submits (ch, σ) as the forgery.

Let us analyze the success probability of B. First, by noticing the only way that Z can distinguish the
two hybrids is by triggering the assert condition on adv-access-allowed, there must exist at least one
epoch for which the adversary succeeds in the protocol PublishProposalAdv, where adv-access-allowed
is false. Since the choice i←$ [Q] of B is information-theoretically hidden from Z and the adversary, the
guess made by B is correct with probability at least 1/Q. Conditioning on the guess being correct, (ch, σ)
is a valid message and signature pair for gvk. Moreover, since the server is honest and the challenge
message space is exponentially large, the server never picks the same challenge message ch. Therefore,
(ch, σ) is a pair of message and signature that B did not query to the signing oracle and constitutes a valid
forgery. In summary, if Z distinguishes the two hybrids with non-negligible probability ϵ, B wins the
game with probability at least ϵ/Q, which is also non-negligible. This contradicts the assumption that SIG′

is EUF-CMA secure. Thus, Hybrid 5 and Hybrid 6 are indistinguishable.

5.7 Instantiation and Efficiency of Proposed Metadata-Hiding CGKA

We now discuss how to instantiate Wmh and Chained CmPKEctxt. We target the so-called “NIST Level I”38,
which informally states that breaking the protocol is no easier than key-recovery on a block cipher with
a 128-bit key (e.g. AES128). This provides a meaningful baseline to discuss post-quantum security and
ignoring quantum attacks corresponds to a classical security level of 128 bits. Given a cryptographic object
x, we note |x| its size in bytes.

5.7.1 Instantiation

The main cryptographic primitives used in the proposed protocols are: (a) two signature schemes SIG and
SIG′, (b) a multi-recipient PKE mPKE, and finally (c) symmetric primitives: a pseudo-random function
PRF, a symmetric encryption scheme SKE and a pseudo-random permutation PRP.
Multi-recipient PKE. For pre-quantum security, one may combine Kurosawa’s multi-recipient variant
[Kur02] of ElGamal with the transform of [Kat+20], whose decomposability property makes it amenable
to the selective downloading performed by Chained CmPKEctxt. For post-quantum security, one may
readily use one of the mPKEs proposed in [Has+21b]: Ilum512, Bilbo640 or a SIKEp434-based mPKE. Their
performance profiles can be found in Table 4.6.
Signature schemes. We choose signature schemes that complement our chosen mPKEs nicely, either by
having similar performances, being based on similar assumptions, or both:

• The ECDSA standard is based on similar assumptions as of the ElGamal-based mPKE, and it has a
similar performance profile as well.

• The NIST PQC finalist Falcon [Pre+20] complements our SIKEp434-based mPKE, as they both have
small communication costs.

• The NIST PQC finalist Dilithium [Lyu+20] is based on Module-LWE (plus Module-SIS), just like
Ilum512.

38https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/
evaluation-criteria/security-(evaluation-criteria)

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)

298 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

• SPHINCS+ [Hul+20] and Bilbo640 are both based on assumptions perceived as conservative (hash-
based assumptions and unstructured LWE), and they both have comparatively larger communication
costs than other schemes.

For simplicity, we consider that SIG and SIG′ use the same scheme, but using distinct schemes may lead to
interesting trade-offs.
Pseudo-random permutation. We require a PRP in order to permute the set of [N] group members. There
are at least two viable approaches:

• Shuffling. One may use a shuffling algorithm whose randomness is provided by passing permKey
into a PRF. If cache attacks on group members’ devices are not a concern, the Fisher-Yates shuffle is
a good choice since it is simple, performs N − 1 swaps, and its entropy consumption is optimal. If
cache attacks are a concern, one may need to use so-called oblivious algorithms. For example, with
the Thorp shuffle [MRS18], each member may compute their permuted index in time O(log N).

• Sorting. This approach assigns to each member id a pseudo-random value rid = H(permKey, id), then
sorts the id’s according to the rid’s. The sorting step can be done obliviously in time O(N log2 N) using
sorting networks, for example, Batcher networks. Assuming H is collision-resistant, this provides a
PRP over [N].

While the solutions proposed above are not optimal when used in *permuted-commit-index (each group
member needs to shuffle/sort all indices before finding their position), we expect them to be significantly
less costly than public-key cryptographic operations, even for concretely large groups.

5.7.2 Efficiency

We now study the impact of Wmh on bandwidth efficiency, by applying it to Chained CmPKEctxt. The results
are summarized in Table 5.8, with the overhead of Wmh represented in bold red font (+X).

TABLE 5.8: Bandwidth overhead of our wrapper Wmh applied to Chained CmPKEctxt, for a
group of N members in terms of public key cryptography elements. The nominal bandwidth
cost of Chained CmPKEctxt is written in normal font (X). The overhead of Wmh is written in
bold red (+X). U (resp. A, R) stands for the number of ‘upd’ (resp. ‘add’, ‘rem’) proposals
published during the last epoch.

Upload Download
Procedure |ek| |ct0| |ĉtid| |sig| |svk| |ek| |ct0| |ĉtid| |sig| |svk|

Propose-‘upd’ 1 2 (+1)
Propose-‘add’ 1 1 (+1) 1
Propose-‘rem’ 1 (+1)

Commit 1 1 N 2 (+2) (+1) U+A 2U+A+R A
Process (+1) U+A+1 1 1 2U+A+R+2 A

Applications messages 1 (+1)

Let us make two observations. First, Wmh adds the same overhead to any CGKA protocol realizing
the ideal functionality F ctxt

CGKA (e.g., our Chained CmPKEctxt and MLSCiphertext39). Second, as is obvious in

39Although no formal proof exists, it is believed that MLSCiphertext realizes F ctxt
CGKA.

5.8. Limitation of Efficient Metadata-Hiding CGKA 299

TABLE 5.9: Concrete overhead of Wmh in terms of public key cryptography elements, when
instantiated with: (a) ElGamal-mPKE + ECDSA (E+E), (b) SIKEp434-mPKE + Falcon (S+F), (c)
Ilum512 + Dilithium (I+D), (d) Bilbo640 + SPHINCS+ (B+S). We assume a group of N = 256
members, and numbers for Commit and Process assume no proposal was made during the
last epoch. The nominal bandwidth cost of Chained CmPKEctxt is written in normal font (X),
and the overhead of Wmh is written in bold red (+X). All sizes are in bytes.

Procedure E+E S+F I+D B+S

Propose-‘upd’ 160 +64 1 662 +666 5 608 +2 420 44 416 +17 088
Propose-‘add’ 128 +64 1 893 +666 4 500 +2 420 27 360 +17 088
Propose-‘rem’ 64 +64 666 +666 2 420 +2 420 17 088 +17 088

Commit 8 384 +160 6 088 +2 229 18 600 +6 152 60 800 +34 208
Process 224 +64 2 008 +666 6 360 +2 420 54 680 +17 088

Applications messages 64 +64 666 +666 2 420 +2 420 17 088 +17 088

Table 5.8, the bandwidth overhead is added only in the upload direction, since the additional signatures
serve to convince the server that a user is a legitimate group member.

For a more concrete perspective on the numbers provided in Table 5.8, we study the impact of applying
Wmh over Chained CmPKEctxt, when these protocols are instantiated with the four mPKE-signature pairs
selected in Section 5.7.1. The results are given in Table 5.9. For our examples, Wmh increases the bandwidth
cost of Propose-‘upd’, Propose-‘add’, Propose-‘rem’, Commit, Process and application messages by at most
44%, 63%, 100%, 57%, 39% and 100%, respectively.40 We believe this to be a very reasonable overhead if
protecting metadata is considered important.

5.8 Limitation of Efficient Metadata-Hiding CGKA

We conclude this work by discussing some inherent limitations of metadata-hiding CGKAs. Our model
and solution hide metadata from messages but allow leaking message size. This may reveal information
about the structure and activity of the group. While remaining informal, our discussion highlights that the
nature and extent of this information depend on the inner workings of the CGKA, as well as the precise
topology of the group at a given time (especially for tree-based CGKAs).

5.8.1 Chained CmPKE and TreeKEM

We first discuss Chained CmPKE [Has+21b], as well as variants of TreeKEM without server assistance [Bar+22;
Alw+20a; Alw+21a; AJM22; Kle+21], meaning that the server forwards messages to group members
without editing them.
Leakage from proposal messages. When the size of proposal messages depends on their type, these
messages leak the proposal type (i.e., ‘upd’, ‘add’, ‘rem’). For Chained CmPKE, this is evident from Table 5.9.
Even though this can be fixed by padding, we note that at least for Chained CmPKE, commit messages
subsequent to a successful ‘add’ (resp. ‘rem’) will increase (resp. decrease) by |ĉtid| bytes. For TreeKEM, a

40For simplicity, numbers for Commit and Process in Table 5.9 consider an idealized setting where no proposal was made
during the last epoch. In practice, this is not the case and the bandwidth overhead of Wmh for Commit and Process will be even
lower in percentage.

300 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

less obvious yet similar correlation exists. On the bright side, the size of proposals is independent of the
group size and the sender’s identity.
Leakage from commit messages.
Chained CmPKE [Has+21b]. The size of an uploaded commit message is affine in the group size N. Thus,
the server can infer N from commit messages. Chained CmPKE allows selective downloading but the
wrapper Wmh hides the index of each party-dependent message by randomizing indices via per-epoch
random permutation. Thus, from the server’s point of view, indices look random.
TreeKEM [Bar+22; Alw+20a; Alw+21a; AJM22]. The number of PKE ciphertexts in a commit message de-
pends on the topology of the ratchet tree and the sender’s position in this tree, therefore the size of a
commit message can leak information about both elements. We provide two examples.

First, suppose that the tree is full (i.e., no blank node) but the group size is not a power of two. Since
TreeKEM uses left-balanced binary trees, parties assigned to leaves “at the left” of the tree will send longer
commit messages than the ones “on the right”. Hence the server can easily partition the set of parties into
two groups depending on the length of commit messages.

Second, we consider the tree in Figure 5.57, which has some blank nodes. In this tree, the number
of cryptographic materials sent by each party is as follows: parties 1 and 2 (resp. 3 and 4, resp. 5 and 6,
resp. 7) send 3 encryption keys + 5 ciphertexts (resp. 3 + 4, resp. 3 + 3, resp. 2 + 2 encryption keys and
ciphertexts).
Tainted TreeKEM [Kle+21]. In this variant of TreeKEM, commit messages contain cryptographic materials
related to tainted nodes, nodes managed by a party other than on the direct path. Message size becomes
larger if the sender manages more tainted nodes.

(A) The ratchet tree

7
654321

(B) Elements sent by User 1

7
654321

(C) Elements sent by User 4

7
654321

(D) Elements sent by User 7

7
654321

FIGURE 5.57: Example of the TreeKEM ratchet tree with blank nodes. The numbers indicate
party identities. Figures 5.57b to 5.57d: sending encryption keys and ciphertexts when
party 1, 4 or 7 commits, respectively.

Leakage from welcome messages. In both protocols, welcome messages leak the receiver’s identity, the
key package’s hash, and the group size. Note that the receiver’s identity must be in the clear for the server
to deliver welcome messages. Key package hashes are used by the receivers to identify which decryption
key is necessary to process the welcome message.

First of all, the server always gets to know when a welcome message was fetched. In addition, if the
welcome message did not hide the dynamic metadata (i.e., uploader’s identity), then the server can infer

5.8. Limitation of Efficient Metadata-Hiding CGKA 301

that the party creating the welcome message and the party fetching it belong to the same group. Since
groups are created by adding new members through a welcome message, this minor leakage of metadata
can be used to trace the entire group member.

However, even if the welcome message hides the dynamic metadata, the server may still be able
to link welcome messages to a specific group in some scenarios. For example, assume a party at an
insecure epochcur commits an add proposal and moves to a secure epochnext. Using a client-anonymized
authenticated channel to upload the welcome message, the party uploading the welcome message remains
anonymous, thus protecting against the above attack. However, since the server gets to see the key package
included in the add proposal issued at the insecure epochcur, the server can link this key package to the key
package hash included in the welcome message to infer that the new member joins the group related to
epochcur. In particular, while the key package hash included in the welcome message is good for efficiency,
it may have non-trivial side effects.

A simple way to prevent such information leakage is to remove key package hashes from welcome
messages. However, this would require recipients to try decrypting with all their registered decryption
keys since they no longer can determine which decryption key can be used to decrypt the received welcome
message. Finally, we note that welcome messages will always leak the size of the group to which the party
was newly added. This is because a welcome message in essence sends all the current group states to the
newly added party.

5.8.2 Server-Aided Variants of TreeKEM

We discuss recent efficient variations of TreeKEM [Alw+22d; Alw+22c]41. These allow the server to perform
special tasks, e.g., editing signatures or ratchet trees in addition to delivering messages. They improve
efficiency by revealing metadata to the server. Devising metadata-hiding variants of these schemes would
likely require devising ways to perform these editing operations in an oblivious way, similarly to the
PRP-based solution, we proposed for Chained CmPKEctxt.
SAIK42 [Alw+22d]. This TreeKEM variant uses reducible signatures, a variant of redactable signatures, to
allow parties to selectively download parts of commit messages while still guaranteeing their validity with
the same signature that was initially uploaded by the sender. This improves the overall communication
cost. However, the server needs to know the identities of both the sender and receiver in order to reduce the
commit message before forwarding it to the receiving party. In SAIK, this reduction is more involved than
the selective downloading of Chained CmPKE. Even assuming that the reduction itself can be performed
obliviously, the size of the reduced message depends on the positions of both the sender and receiver, so it
would still leak information about both parties.
CoCoA43 [Alw+22c]. This variant allows the server to merge multiple commit messages for the purpose of
reducing communication costs. The server keeps the public part of the group state and creates the next
group state by merging concurrently issued commit messages. Then, it forwards to each group member
the part of the new state they need. This results in O(log N) upload and download costs, and a O(log2 N)
total cost. However, the server needs to know the public part of group states, which in particular includes
the group member list.

41This work analyzes the initial ePrint versions [Alw+21b; Alw+22b].
42SAIK stands for Server-Aided Insider-Secure TreeKEM.
43CoCoA stands for COncurrent COntinuous group key Agreement.

302 Chapter 5. MetaData-Hiding Continuous Group Key Agreement

One can say that these schemes improve efficiency by giving more information to the server. In other
words, there is a trade-off between efficiency and privacy. We view it as an interesting research direction to
construct more efficient (and practical) CGKA protocols while still protecting metadata.

303

Chapter 6

Conclusion

This work constructed post-quantum key exchange protocols for secure group messaging and analyze
their efficiency and security. Below is the summary of the contributions.
Post-Quantum Authenticated Key Exchange for Signal Protocol. We focus on the Signal protocol and
proposed new generic construction of authenticated key exchange that can be used as a replacement for
the X3DH protocol. We cast the X3DH protocol as an AKE protocol and formalized its security model
based on the vast prior work on AKE protocols. Then, we proposed a generic construction based on
key encapsulation mechanisms (KEM) and signature schemes. Since such primitives can be instantiated
from well-established post-quantum assumptions, we obtain the first post-quantum secure replacement of
the X3DH protocol. Moreover, we evaluated the communication and computation costs of our protocol
instantiated from the NIST PQC standardization candidates and showed that it is sufficiently efficient in
the real world. This result implies that the first post-quantum Signal protocol is realized from our proposal
and the already proposed post-quantum double ratchet protocol. This post-quantum Signal protocol
ensures the confidentiality of messages even if large-scale quantum computers will be realized.
Continuous Group Key Agreement via Post-Quantum Multi-Recipient PKE. We design a new post-
quantum continuous group key agreement (CGKA) protocol, called Chained CmPKE, from multi-recipient
public key encryption (mPKE). Compared with MLS’s TreeKEM, Chained CmPKE offers small total commu-
nication costs for each user when all users update their key materials. In addition, to reduce the uploading
costs of Chained CmPKE, we proposed new lattice-based mPKE schemes. Thanks to this new mPKE, the
concrete uploading costs of Chained CmPKE become smaller than TreeKEM’s costs if the group size is about
hundreds, despite our costs scaling linearly in the group size and TreeKEM’s costs scaling logarithmically
in the group size. Since Chained CmPKE offers small communication costs, it can efficiently update keys
even for mobile phones that may have an upper limit on available data or slow communication speeds
(e.g., 3G network).
MetaData-Hiding Continuous Group Key Agreement. We proposed a metadata-hiding CGKA protocol
that allows users to continuously key exchange while hiding metadata such as receiver information. We
proposed a simple and generic wrapper protocol that converts any non-metadata-hiding CGKA protocol
into a metadata-hiding one with minimum overhead. Also, we proved the modified version of Chained
CmPKE called Chained CmPKEctxt plus the wrapper protocol is the desirable metadata-hiding CGKA
protocol. The proposed protocol enhances users’ privacy in secure messaging. This protocol allows users
to perform cryptographically secure communications that both messages and conversational partners
are kept secret against third parties. That is, even if governments obtain the communication transcripts
stored on the server, it is not possible to know who the user was conversing with and the content of the
conversation.

305

Bibliography

[AR04] Dorit Aharonov and Oded Regev. “Lattice Problems in NP cap coNP”. In: 45th FOCS. IEEE
Computer Society Press, Oct. 2004, pp. 362–371. DOI: 10.1109/FOCS.2004.35 (cit. on p. 70).

[Ala+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John Kelsey,
Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, and
Daniel Smith-Tone. NISTIR 8309 - Status Report on the Secind Round of the NIST Post-Quantum
Cryptography Standardization Process. 2020. URL: https://csrc.nist.gov/publications/
detail/nistir/8309/final (cit. on p. 171).

[ASB14] Janaka Alawatugoda, Douglas Stebila, and Colin Boyd. “Modelling after-the-fact leakage for
key exchange”. In: ASIACCS 14. Ed. by Shiho Moriai, Trent Jaeger, and Kouichi Sakurai. ACM
Press, June 2014, pp. 207–216 (cit. on pp. 25, 26).

[Alb+22] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and Sophie Schmieg.
“How to Abuse and Fix Authenticated Encryption Without Key Commitment”. In: 31st
USENIX Security Symposium (USENIX Security 22). Boston, MA: USENIX Association, Aug.
2022, pp. 3291–3308. URL: https://www.usenix.org/conference/usenixsecurity22/
presentation/albertini (cit. on pp. 13, 82–84, 181).

[Alb+15a] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic Perret.
“Algebraic Algorithms for LWE Problems”. In: ACM Commun. Comput. Algebra 49.2 (Aug.
2015), p. 62. DOI: 10.1145/2815111.2815158 (cit. on pp. 83, 178).

[Alb+15b] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic Perret.
“On the complexity of the BKW algorithm on LWE”. In: Designs, Codes and Cryptography 74.2
(Feb. 2015), pp. 325–354. DOI: 10.1007/s10623-013-9864-x (cit. on p. 176).

[Alb+20] Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and John M. Schanck. “Esti-
mating Quantum Speedups for Lattice Sieves”. In: ASIACRYPT 2020, Part II. Ed. by Shiho
Moriai and Huaxiong Wang. Vol. 12492. LNCS. Springer, Heidelberg, Dec. 2020, pp. 583–613.
DOI: 10.1007/978-3-030-64834-3_20 (cit. on p. 176).

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. “On the concrete hardness of Learning with
Errors”. In: Journal of Mathematical Cryptology 9.3 (2015), pp. 169–203. DOI: doi:10.1515/jmc-
2015-0016 (cit. on p. 176).

[Alk+20] Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen, and Richard Petri. “ISA
Extensions for Finite Field Arithmetic”. In: IACR TCHES 2020.3 (2020). https://tches.iacr.
org/index.php/TCHES/article/view/8589, pp. 219–242. DOI: 10.13154/tches.v2020.i3.
219-242 (cit. on p. 173).

[Alw+22a] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-Perez,
and Krzysztof Pietrzak. DeCAF: Decentralizable Continuous Group Key Agreement with Fast
Healing. Cryptology ePrint Archive, Report 2022/559. https://eprint.iacr.org/2022/559.
2022 (cit. on p. 4).

https://doi.org/10.1109/FOCS.2004.35
https://csrc.nist.gov/publications/detail/nistir/8309/final
https://csrc.nist.gov/publications/detail/nistir/8309/final
https://www.usenix.org/conference/usenixsecurity22/presentation/albertini
https://www.usenix.org/conference/usenixsecurity22/presentation/albertini
https://doi.org/10.1145/2815111.2815158
https://doi.org/10.1007/s10623-013-9864-x
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/doi:10.1515/jmc-2015-0016
https://tches.iacr.org/index.php/TCHES/article/view/8589
https://tches.iacr.org/index.php/TCHES/article/view/8589
https://doi.org/10.13154/tches.v2020.i3.219-242
https://doi.org/10.13154/tches.v2020.i3.219-242
https://eprint.iacr.org/2022/559

306 Bibliography

[Alw+22b] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-Perez,
Krzysztof Pietrzak, and Michael Walter. CoCoA: Concurrent Continuous Group Key Agreement.
Cryptology ePrint Archive, Report 2022/251. https://eprint.iacr.org/2022/251. 2022
(cit. on p. 301).

[Alw+22c] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-Perez,
Krzysztof Pietrzak, and Michael Walter. “CoCoA: Concurrent Continuous Group Key Agree-
ment”. In: EUROCRYPT 2022, Part II. Ed. by Orr Dunkelman and Stefan Dziembowski.
Vol. 13276. LNCS. Springer, Heidelberg, May 2022, pp. 815–844. DOI: 10.1007/978-3-031-
07085-3_28 (cit. on pp. 4, 194, 195, 197, 301).

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. “The Double Ratchet: Security Notions,
Proofs, and Modularization for the Signal Protocol”. In: EUROCRYPT 2019, Part I. Ed. by
Yuval Ishai and Vincent Rijmen. Vol. 11476. LNCS. Springer, Heidelberg, May 2019, pp. 129–
158. DOI: 10.1007/978-3-030-17653-2_5 (cit. on pp. 2, 5, 79, 194).

[Alw+20a] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. “Security Analysis and
Improvements for the IETF MLS Standard for Group Messaging”. In: CRYPTO 2020, Part I.
Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12170. LNCS. Springer, Heidelberg,
Aug. 2020, pp. 248–277. DOI: 10.1007/978-3-030-56784-2_9 (cit. on pp. 4, 6, 79, 194, 195,
197, 299, 300).

[Alw+21a] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. “Modular Design of
Secure Group Messaging Protocols and the Security of MLS”. In: ACM CCS 2021. Ed. by
Giovanni Vigna and Elaine Shi. ACM Press, Nov. 2021, pp. 1463–1483. DOI: 10.1145/3460120.
3484820 (cit. on pp. 4, 194, 195, 197, 199, 203, 236, 240, 299, 300).

[Alw+20b] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. “Continuous Group Key
Agreement with Active Security”. In: TCC 2020, Part II. Ed. by Rafael Pass and Krzysztof
Pietrzak. Vol. 12551. LNCS. Springer, Heidelberg, Nov. 2020, pp. 261–290. DOI: 10.1007/978-
3-030-64378-2_10 (cit. on pp. 4, 6, 79, 83, 86, 93–95, 99, 107, 108, 123, 125, 132, 186, 194, 195,
197, 198, 200–203).

[Alw+21b] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk. Server-Aided Continuous
Group Key Agreement. Cryptology ePrint Archive, Report 2021/1456. https://eprint.iacr.
org/2021/1456. 2021 (cit. on p. 301).

[Alw+22d] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk. “Server-Aided Continuous
Group Key Agreement”. In: ACM CCS 2022. Ed. by Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi. ACM Press, Nov. 2022, pp. 69–82. DOI: 10.1145/3548606.3560632 (cit. on
pp. 194–198, 201, 203, 236, 301).

[AJM22] Joël Alwen, Daniel Jost, and Marta Mularczyk. “On the Insider Security of MLS”. In: CRYPTO 2022,
Part II. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13508. LNCS. Springer, Heidel-
berg, Aug. 2022, pp. 34–68. DOI: 10.1007/978-3-031-15979-4_2 (cit. on pp. 4, 6, 79, 83, 93,
94, 96, 99, 107–109, 111, 113, 116–121, 123, 125, 126, 132, 186, 194–203, 206, 236, 299, 300).

[ADR02] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. “On the Security of Joint Signature and Encryp-
tion”. In: EUROCRYPT 2002. Ed. by Lars R. Knudsen. Vol. 2332. LNCS. Springer, Heidelberg,
Apr. 2002, pp. 83–107. DOI: 10.1007/3-540-46035-7_6 (cit. on p. 14).

https://eprint.iacr.org/2022/251
https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://eprint.iacr.org/2021/1456
https://eprint.iacr.org/2021/1456
https://doi.org/10.1145/3548606.3560632
https://doi.org/10.1007/978-3-031-15979-4_2
https://doi.org/10.1007/3-540-46035-7_6

Bibliography 307

[App+09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. “Fast Cryptographic Primi-
tives and Circular-Secure Encryption Based on Hard Learning Problems”. In: CRYPTO 2009.
Ed. by Shai Halevi. Vol. 5677. LNCS. Springer, Heidelberg, Aug. 2009, pp. 595–618. DOI:
10.1007/978-3-642-03356-8_35 (cit. on p. 179).

[AG11] Sanjeev Arora and Rong Ge. “New Algorithms for Learning in Presence of Errors”. In: ICALP
2011, Part I. Ed. by Luca Aceto, Monika Henzinger, and Jiri Sgall. Vol. 6755. LNCS. Springer,
Heidelberg, July 2011, pp. 403–415. DOI: 10.1007/978-3-642-22006-7_34 (cit. on pp. 83,
178).

[Bad+15] Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and Yong Li. “Tightly-Secure
Authenticated Key Exchange”. In: TCC 2015, Part I. Ed. by Yevgeniy Dodis and Jesper Buus
Nielsen. Vol. 9014. LNCS. Springer, Heidelberg, Mar. 2015, pp. 629–658. DOI: 10.1007/978-3-
662-46494-6_26 (cit. on pp. 31–33).

[BG14] Shi Bai and Steven D. Galbraith. “Lattice Decoding Attacks on Binary LWE”. In: ACISP 14.
Ed. by Willy Susilo and Yi Mu. Vol. 8544. LNCS. Springer, Heidelberg, July 2014, pp. 322–337.
DOI: 10.1007/978-3-319-08344-5_21 (cit. on p. 176).

[BRV20] Fatih Balli, Paul Rösler, and Serge Vaudenay. “Determining the Core Primitive for Optimally
Secure Ratcheting”. In: ASIACRYPT 2020, Part III. Ed. by Shiho Moriai and Huaxiong Wang.
Vol. 12493. LNCS. Springer, Heidelberg, Dec. 2020, pp. 621–650. DOI: 10.1007/978-3-030-
64840-4_21 (cit. on p. 2).

[BF07] Manuel Barbosa and Pooya Farshim. “Randomness Reuse: Extensions and Improvements”.
In: 11th IMA International Conference on Cryptography and Coding. Ed. by Steven D. Galbraith.
Vol. 4887. LNCS. Springer, Heidelberg, Dec. 2007, pp. 257–276 (cit. on p. 17).

[Bar18] Richard Barnes. [MLS] Efficiency and "Ampelmann trees". IETF Mail Archive. 2018. URL: https:
//mailarchive.ietf.org/arch/msg/mls/INcV28Jth25m_l__NMmQIYp13Po/ (cit. on p. 110).

[Bar+20] Richard Barnes, Benjamin Beurdouche, Jon Millican, Emad Omara, Katriel Cohn-Gordon,
and Raphael Robert. The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-
mls-protocol-11. Work in Progress. Internet Engineering Task Force, Dec. 2020. 88 pp. URL:
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-11 (cit. on pp. 6,
79).

[Bar+22] Richard Barnes, Benjamin Beurdouche, Jon Millican, Emad Omara, Katriel Cohn-Gordon,
and Raphael Robert. The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-
protocol-13. Work in Progress. Internet Engineering Task Force, 2022. 124 pp. URL: https:
//datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-13 (cit. on pp. 193, 194,
221, 222, 233, 299, 300).

[Bel06] Mihir Bellare. “New Proofs for NMAC and HMAC: Security without Collision-Resistance”.
In: CRYPTO 2006. Ed. by Cynthia Dwork. Vol. 4117. LNCS. Springer, Heidelberg, Aug. 2006,
pp. 602–619. DOI: 10.1007/11818175_36 (cit. on p. 51).

[Bel15] Mihir Bellare. “New Proofs for NMAC and HMAC: Security without Collision Resistance”. In:
Journal of Cryptology 28.4 (Oct. 2015), pp. 844–878. DOI: 10.1007/s00145-014-9185-x (cit. on
p. 51).

[BBS03] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. “Randomness Re-use in Multi-
recipient Encryption Schemeas”. In: PKC 2003. Ed. by Yvo Desmedt. Vol. 2567. LNCS. Springer,
Heidelberg, Jan. 2003, pp. 85–99. DOI: 10.1007/3-540-36288-6_7 (cit. on p. 82).

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-030-64840-4_21
https://doi.org/10.1007/978-3-030-64840-4_21
https://mailarchive.ietf.org/arch/msg/mls/INcV28Jth25m_l__NMmQIYp13Po/
https://mailarchive.ietf.org/arch/msg/mls/INcV28Jth25m_l__NMmQIYp13Po/
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-11
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-13
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-13
https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/s00145-014-9185-x
https://doi.org/10.1007/3-540-36288-6_7

308 Bibliography

[Bel+98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. “Relations Among
Notions of Security for Public-Key Encryption Schemes”. In: CRYPTO’98. Ed. by Hugo
Krawczyk. Vol. 1462. LNCS. Springer, Heidelberg, Aug. 1998, pp. 26–45. DOI: 10.1007/
BFb0055718 (cit. on pp. 27, 56, 59).

[BN00] Mihir Bellare and Chanathip Namprempre. “Authenticated Encryption: Relations among
notions and analysis of the generic composition paradigm”. In: ASIACRYPT 2000. Ed. by
Tatsuaki Okamoto. Vol. 1976. LNCS. Springer, Heidelberg, Dec. 2000, pp. 531–545. DOI:
10.1007/3-540-44448-3_41 (cit. on p. 12).

[BP04] Mihir Bellare and Adriana Palacio. “Towards Plaintext-Aware Public-Key Encryption without
Random Oracles”. In: ASIACRYPT 2004. Ed. by Pil Joong Lee. Vol. 3329. LNCS. Springer,
Heidelberg, Dec. 2004, pp. 48–62. DOI: 10.1007/978-3-540-30539-2_4 (cit. on pp. 11, 27, 56,
59).

[BR94] Mihir Bellare and Phillip Rogaway. “Entity Authentication and Key Distribution”. In: CRYPTO’93.
Ed. by Douglas R. Stinson. Vol. 773. LNCS. Springer, Heidelberg, Aug. 1994, pp. 232–249. DOI:
10.1007/3-540-48329-2_21 (cit. on pp. 24, 31, 32).

[BR95] Mihir Bellare and Phillip Rogaway. “Optimal Asymmetric Encryption”. In: EUROCRYPT’94.
Ed. by Alfredo De Santis. Vol. 950. LNCS. Springer, Heidelberg, May 1995, pp. 92–111. DOI:
10.1007/BFb0053428 (cit. on pp. 11, 27, 56, 59).

[Bel+17] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors Stepanovs.
“Ratcheted Encryption and Key Exchange: The Security of Messaging”. In: CRYPTO 2017,
Part III. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10403. LNCS. Springer, Heidelberg,
Aug. 2017, pp. 619–650. DOI: 10.1007/978-3-319-63697-9_21 (cit. on p. 2).

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. “Ring Signatures: Stronger Definitions,
and Constructions Without Random Oracles”. In: TCC 2006. Ed. by Shai Halevi and Tal Rabin.
Vol. 3876. LNCS. Springer, Heidelberg, Mar. 2006, pp. 60–79. DOI: 10.1007/11681878_4 (cit. on
p. 16).

[Ber06] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”. In: PKC 2006. Ed. by
Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin. Vol. 3958. LNCS. Springer,
Heidelberg, Apr. 2006, pp. 207–228. DOI: 10.1007/11745853_14 (cit. on p. 22).

[Ber+20] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok Chuengsatiansup, Tanja
Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola Tuveri, Christine van Vredendaal, and Bo-Yin
Yang. NTRU Prime. Tech. rep. available at https://csrc.nist.gov/projects/post-quantum-
cryptography/post- quantum- cryptography- standardization/round- 3- submissions.
National Institute of Standards and Technology, 2020 (cit. on pp. 83, 110, 171, 172, 174, 181,
183).

[BL20] Daniel J. Bernstein and Tanja Lange. “McTiny: Fast High-Confidence Post-Quantum Key
Erasure for Tiny Network Servers”. In: USENIX Security 2020. Ed. by Srdjan Capkun and
Franziska Roesner. USENIX Association, Aug. 2020, pp. 1731–1748 (cit. on p. 5).

[BKP20] Ward Beullens, Shuichi Katsumata, and Federico Pintore. “Calamari and Falafl: Logarithmic
(Linkable) Ring Signatures from Isogenies and Lattices”. In: ASIACRYPT 2020, Part II. Ed.
by Shiho Moriai and Huaxiong Wang. Vol. 12492. LNCS. Springer, Heidelberg, Dec. 2020,
pp. 464–492. DOI: 10.1007/978-3-030-64834-3_16 (cit. on pp. 25, 70).

https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-540-30539-2_4
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-319-63697-9_21
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11745853_14
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-030-64834-3_16

Bibliography 309

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. “CSI-FiSh: Efficient Isogeny
Based Signatures Through Class Group Computations”. In: ASIACRYPT 2019, Part I. Ed. by
Steven D. Galbraith and Shiho Moriai. Vol. 11921. LNCS. Springer, Heidelberg, Dec. 2019,
pp. 227–247. DOI: 10.1007/978-3-030-34578-5_9 (cit. on p. 70).

[Beu20] Benjamin Beurdouche. “Formal Verification for High Assurance Security Software in F*”.
English. PhD thesis. 2020 (cit. on p. 81).

[BBR18] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM: Asynchronous Decentral-
ized Key Management for Large Dynamic Groups A protocol proposal for Messaging Layer Security
(MLS). Research Report. Inria Paris, May 2018. URL: https://hal.inria.fr/hal-02425247
(cit. on pp. 4, 6, 79, 194).

[BBN19a] Karthikeyan Bhargavan, Benjamin Beurdouche, and Prasad Naldurg. Formal Models and
Verified Protocols for Group Messaging: Attacks and Proofs for IETF MLS. Research Report. Inria
Paris, Dec. 2019. URL: https://hal.inria.fr/hal-02425229 (cit. on pp. 4, 79, 81, 107).

[BBN19b] Karthikeyan Bhargavan, Benjamin Beurdouche, and Prasad Naldurg. Formal Models and
Verified Protocols for Group Messaging: Attacks and Proofs for IETF MLS. Research Report. Inria
Paris, Dec. 2019. URL: https://hal.inria.fr/hal-02425229 (cit. on p. 194).

[Bie+22a] Alexander Bienstock, Yevgeniy Dodis, Sanjam Garg, Garrison Grogan, Mohammad Hajiabadi,
and Paul Rösler. On the Worst-Case Inefficiency of CGKA. Cryptology ePrint Archive, Report
2022/1237. https://eprint.iacr.org/2022/1237. 2022 (cit. on p. 4).

[BDR20] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. “On the Price of Concurrency in
Group Ratcheting Protocols”. In: TCC 2020, Part II. Ed. by Rafael Pass and Krzysztof Pietrzak.
Vol. 12551. LNCS. Springer, Heidelberg, Nov. 2020, pp. 198–228. DOI: 10.1007/978-3-030-
64378-2_8 (cit. on p. 4).

[Bie+22b] Alexander Bienstock, Jaiden Fairoze, Sanjam Garg, Pratyay Mukherjee, and Srinivasan
Raghuraman. “A More Complete Analysis of the Signal Double Ratchet Algorithm”. In:
CRYPTO 2022, Part I. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13507. LNCS.
Springer, Heidelberg, Aug. 2022, pp. 784–813. DOI: 10.1007/978-3-031-15802-5_27 (cit. on
p. 2).

[BS20a] Nina Bindel and John M. Schanck. “Decryption Failure Is More Likely After Success”. In:
Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020. Ed. by Jintai Ding
and Jean-Pierre Tillich. Springer, Heidelberg, 2020, pp. 206–225. DOI: 10.1007/978-3-030-
44223-1_12 (cit. on p. 179).

[BJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. “Key Agreement Protocols and Their
Security Analysis”. In: 6th IMA International Conference on Cryptography and Coding. Ed. by
Michael Darnell. Vol. 1355. LNCS. Springer, Heidelberg, Dec. 1997, pp. 30–45 (cit. on pp. 3,
31).

[BM99] Simon Blake-Wilson and Alfred Menezes. “Unknown Key-Share Attacks on the Station-to-
Station (STS) Protocol”. In: PKC’99. Ed. by Hideki Imai and Yuliang Zheng. Vol. 1560. LNCS.
Springer, Heidelberg, Mar. 1999, pp. 154–170. DOI: 10.1007/3-540-49162-7_12 (cit. on p. 30).

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasserman. “Noise-tolerant learning, the parity problem,
and the statistical query model”. In: 32nd ACM STOC. ACM Press, May 2000, pp. 435–440.
DOI: 10.1145/335305.335355 (cit. on pp. 83, 176).

https://doi.org/10.1007/978-3-030-34578-5_9
https://hal.inria.fr/hal-02425247
https://hal.inria.fr/hal-02425229
https://hal.inria.fr/hal-02425229
https://eprint.iacr.org/2022/1237
https://doi.org/10.1007/978-3-030-64378-2_8
https://doi.org/10.1007/978-3-030-64378-2_8
https://doi.org/10.1007/978-3-031-15802-5_27
https://doi.org/10.1007/978-3-030-44223-1_12
https://doi.org/10.1007/978-3-030-44223-1_12
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1145/335305.335355

310 Bibliography

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. “Non-Interactive Zero-Knowledge and Its
Applications (Extended Abstract)”. In: 20th ACM STOC. ACM Press, May 1988, pp. 103–112.
DOI: 10.1145/62212.62222 (cit. on p. 17).

[BS20b] Xavier Bonnetain and André Schrottenloher. “Quantum Security Analysis of CSIDH”. In:
EUROCRYPT 2020, Part II. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12106. LNCS. Springer,
Heidelberg, May 2020, pp. 493–522. DOI: 10.1007/978-3-030-45724-2_17 (cit. on p. 24).

[BK10] Zvika Brakerski and Yael Tauman Kalai. A Framework for Efficient Signatures, Ring Signatures
and Identity Based Encryption in the Standard Model. Cryptology ePrint Archive, Report 2010/086.
https://eprint.iacr.org/2010/086. 2010 (cit. on p. 70).

[Bre+22] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas Stebila. “Post-
quantum Asynchronous Deniable Key Exchange and the Signal Handshake”. In: Public-Key
Cryptography – PKC 2022. Ed. by Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe. Cham:
Springer International Publishing, 2022, pp. 3–34. DOI: 10.1007/978-3-030-97131-1_1
(cit. on pp. 26, 27, 59, 70, 73, 75, 76).

[Bre+20] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas Stebila.
“Towards Post-Quantum Security for Signal’s X3DH Handshake”. In: SAC 2020. Ed. by
Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn. Vol. 12804. LNCS. Springer,
Heidelberg, Oct. 2020, pp. 404–430. DOI: 10.1007/978-3-030-81652-0_16 (cit. on pp. 3, 5,
24).

[Bre22] Thomas Brewster. Meet The Secretive Surveillance Wizards Helping The FBI And ICE Wiretap Face-
book And Google Users. Forbes. 2022. URL: https://www.forbes.com/sites/thomasbrewster/
2022/02/23/meet-the-secretive-surveillance-wizards-helping-the-fbi-and-ice-
wiretap-facebook-and-google-users/ (cit. on p. 2).

[BCK22] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. “Security Analysis of the MLS Key
Derivation”. In: 2022 IEEE Symposium on Security and Privacy (S&P). 2022, pp. 2535–2553. DOI:
10.1109/SP46214.2022.9833678 (cit. on pp. 4, 194, 195, 197).

[Brz+18] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok, and Markulf
Kohlweiss. “State Separation for Code-Based Game-Playing Proofs”. In: ASIACRYPT 2018,
Part III. Ed. by Thomas Peyrin and Steven Galbraith. Vol. 11274. LNCS. Springer, Heidelberg,
Dec. 2018, pp. 222–249. DOI: 10.1007/978-3-030-03332-3_9 (cit. on p. 4).

[Bud+20] Alessandro Budroni, Qian Guo, Thomas Johansson, Erik Mårtensson, and Paul Stankovski
Wagner. “Making the BKW Algorithm Practical for LWE”. In: INDOCRYPT 2020. Ed. by
Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran. Vol. 12578. LNCS.
Springer, Heidelberg, Dec. 2020, pp. 417–439. DOI: 10.1007/978- 3- 030- 65277- 7_19
(cit. on pp. 176, 177).

[Cab21] Cable.co.uk. Worldwide Mobile Data Pricing 2021 | 1GB Cost in 230 Countries. 2021. URL:
https://www.cable.co.uk/mobiles/worldwide-data-pricing/ (cit. on p. 80).

[CDV21] Andrea Caforio, F. Betül Durak, and Serge Vaudenay. “Beyond Security and Efficiency: On-
Demand Ratcheting with Security Awareness”. In: PKC 2021, Part II. Ed. by Juan Garay.
Vol. 12711. LNCS. Springer, Heidelberg, May 2021, pp. 649–677. DOI: 10.1007/978-3-030-
75248-4_23 (cit. on p. 2).

https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/978-3-030-45724-2_17
https://eprint.iacr.org/2010/086
https://doi.org/10.1007/978-3-030-97131-1_1
https://doi.org/10.1007/978-3-030-81652-0_16
https://www.forbes.com/sites/thomasbrewster/2022/02/23/meet-the-secretive-surveillance-wizards-helping-the-fbi-and-ice-wiretap-facebook-and-google-users/
https://www.forbes.com/sites/thomasbrewster/2022/02/23/meet-the-secretive-surveillance-wizards-helping-the-fbi-and-ice-wiretap-facebook-and-google-users/
https://www.forbes.com/sites/thomasbrewster/2022/02/23/meet-the-secretive-surveillance-wizards-helping-the-fbi-and-ice-wiretap-facebook-and-google-users/
https://doi.org/10.1109/SP46214.2022.9833678
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-65277-7_19
https://www.cable.co.uk/mobiles/worldwide-data-pricing/
https://doi.org/10.1007/978-3-030-75248-4_23
https://doi.org/10.1007/978-3-030-75248-4_23

Bibliography 311

[Cam+16] Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and Daniel Rausch. “Uni-
versal Composition with Responsive Environments”. In: ASIACRYPT 2016, Part II. Ed. by
Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10032. LNCS. Springer, Heidelberg, Dec. 2016,
pp. 807–840. DOI: 10.1007/978-3-662-53890-6_27 (cit. on p. 94).

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for Cryptographic Pro-
tocols”. In: 42nd FOCS. IEEE Computer Society Press, Oct. 2001, pp. 136–145. DOI: 10.1109/
SFCS.2001.959888 (cit. on pp. 6, 94, 201, 202).

[Can+07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. “Universally Composable
Security with Global Setup”. In: TCC 2007. Ed. by Salil P. Vadhan. Vol. 4392. LNCS. Springer,
Heidelberg, Feb. 2007, pp. 61–85. DOI: 10.1007/978-3-540-70936-7_4 (cit. on pp. 94, 201).

[Can+96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. “Adaptively Secure Multi-Party
Computation”. In: 28th ACM STOC. ACM Press, May 1996, pp. 639–648. DOI: 10.1145/
237814.238015 (cit. on p. 235).

[Can+22] Ran Canetti, Palak Jain, Marika Swanberg, and Mayank Varia. “Universally Composable
End-to-End Secure Messaging”. In: CRYPTO 2022, Part II. Ed. by Yevgeniy Dodis and Thomas
Shrimpton. Vol. 13508. LNCS. Springer, Heidelberg, Aug. 2022, pp. 3–33. DOI: 10.1007/978-
3-031-15979-4_1 (cit. on p. 2).

[CK01] Ran Canetti and Hugo Krawczyk. “Analysis of Key-Exchange Protocols and Their Use for
Building Secure Channels”. In: EUROCRYPT 2001. Ed. by Birgit Pfitzmann. Vol. 2045. LNCS.
Springer, Heidelberg, May 2001, pp. 453–474. DOI: 10.1007/3-540-44987-6_28 (cit. on pp. 21,
23, 28, 30–32).

[CK02] Ran Canetti and Hugo Krawczyk. “Security Analysis of IKE’s Signature-based Key-Exchange
Protocol”. In: CRYPTO 2002. Ed. by Moti Yung. Vol. 2442. LNCS. https://eprint.iacr.org/
2002/120/. Springer, Heidelberg, Aug. 2002, pp. 143–161. DOI: 10.1007/3-540-45708-9_10
(cit. on pp. 24, 31).

[Car15] Bjorn Carey. Stanford computer scientists show telephone metadata can reveal surprisingly sen-
sitive personal information. May 2015. URL: https://news.stanford.edu/2016/05/16/
stanford-computer-scientists-show-telephone-metadata-can-reveal-surprisingly-
sensitive-personal-information/ (cit. on p. 2).

[CKS08] David Cash, Eike Kiltz, and Victor Shoup. “The Twin Diffie-Hellman Problem and Applica-
tions”. In: EUROCRYPT 2008. Ed. by Nigel P. Smart. Vol. 4965. LNCS. Springer, Heidelberg,
Apr. 2008, pp. 127–145. DOI: 10.1007/978-3-540-78967-3_8 (cit. on p. 22).

[CD22] Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH (preliminary
version). Cryptology ePrint Archive, Report 2022/975. https://eprint.iacr.org/2022/975.
2022 (cit. on p. 27).

[CMZ14] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. “Algebraic MACs and Keyed-Verification
Anonymous Credentials”. In: ACM CCS 2014. Ed. by Gail-Joon Ahn, Moti Yung, and Ninghui
Li. ACM Press, Nov. 2014, pp. 1205–1216. DOI: 10.1145/2660267.2660328 (cit. on p. 194).

[CPZ20] Melissa Chase, Trevor Perrin, and Greg Zaverucha. “The Signal Private Group System and
Anonymous Credentials Supporting Efficient Verifiable Encryption”. In: ACM CCS 2020.
Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna. ACM Press, Nov. 2020,
pp. 1445–1459. DOI: 10.1145/3372297.3417887 (cit. on pp. 4, 194–196).

https://doi.org/10.1007/978-3-662-53890-6_27
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1145/237814.238015
https://doi.org/10.1145/237814.238015
https://doi.org/10.1007/978-3-031-15979-4_1
https://doi.org/10.1007/978-3-031-15979-4_1
https://doi.org/10.1007/3-540-44987-6_28
https://eprint.iacr.org/2002/120/
https://eprint.iacr.org/2002/120/
https://doi.org/10.1007/3-540-45708-9_10
https://news.stanford.edu/2016/05/16/stanford-computer-scientists-show-telephone-metadata-can-reveal-surprisingly-sensitive-personal-information/
https://news.stanford.edu/2016/05/16/stanford-computer-scientists-show-telephone-metadata-can-reveal-surprisingly-sensitive-personal-information/
https://news.stanford.edu/2016/05/16/stanford-computer-scientists-show-telephone-metadata-can-reveal-surprisingly-sensitive-personal-information/
https://doi.org/10.1007/978-3-540-78967-3_8
https://eprint.iacr.org/2022/975
https://doi.org/10.1145/2660267.2660328
https://doi.org/10.1145/3372297.3417887

312 Bibliography

[Cha82] David Chaum. “Blind Signatures for Untraceable Payments”. In: CRYPTO’82. Ed. by David
Chaum, Ronald L. Rivest, and Alan T. Sherman. Plenum Press, New York, USA, 1982, pp. 199–
203 (cit. on pp. 3, 197, 236, 258).

[Cho+95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. “Private Information
Retrieval”. In: 36th FOCS. IEEE Computer Society Press, Oct. 1995, pp. 41–50. DOI: 10.1109/
SFCS.1995.492461 (cit. on p. 261).

[Coh+17] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila.
“A Formal Security Analysis of the Signal Messaging Protocol”. In: IEEE European Symposium
on Security and Privacy (EuroS&P). 2017, pp. 451–466. DOI: 10.1109/EuroSP.2017.27 (cit. on
pp. 2, 3, 5, 79, 194).

[Coh+20] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila.
“A Formal Security Analysis of the Signal Messaging Protocol”. In: Journal of Cryptology 33.4
(Oct. 2020), pp. 1914–1983. DOI: 10.1007/s00145-020-09360-1 (cit. on pp. 2, 3, 5).

[CCG16] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. “On Post-compromise Security”.
In: 2016 IEEE 29th Computer Security Foundations Symposium (CSF). 2016, pp. 164–178. DOI:
10.1109/CSF.2016.19 (cit. on pp. 79, 194).

[Coh+18] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner. “On Ends-
to-Ends Encryption: Asynchronous Group Messaging with Strong Security Guarantees”. In:
ACM CCS 2018. Ed. by David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang.
ACM Press, Oct. 2018, pp. 1802–1819. DOI: 10.1145/3243734.3243747 (cit. on pp. 3, 4, 194).

[Coh+19] Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, Håkon Jacobsen, and Tibor Jager.
“Highly Efficient Key Exchange Protocols with Optimal Tightness”. In: CRYPTO 2019, Part III.
Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11694. LNCS. Springer, Heidelberg,
Aug. 2019, pp. 767–797. DOI: 10.1007/978-3-030-26954-8_25 (cit. on pp. 23, 24, 27, 31–33).

[CS03] Ronald Cramer and Victor Shoup. “Design and Analysis of Practical Public-Key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack”. In: SIAM Journal on Computing
33.1 (2003), pp. 167–226 (cit. on p. 11).

[Cre11] Cas Cremers. “Examining indistinguishability-based security models for key exchange proto-
cols: the case of CK, CK-HMQV, and eCK”. In: ASIACCS 11. Ed. by Bruce S. N. Cheung, Lucas
Chi Kwong Hui, Ravi S. Sandhu, and Duncan S. Wong. ACM Press, Mar. 2011, pp. 80–91
(cit. on p. 32).

[Cre09] Cas J. F. Cremers. “Session-state Reveal Is Stronger Than Ephemeral Key Reveal: Attacking
the NAXOS Authenticated Key Exchange Protocol”. In: ACNS 09. Ed. by Michel Abdalla,
David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud. Vol. 5536. LNCS. Springer,
Heidelberg, June 2009, pp. 20–33. DOI: 10.1007/978-3-642-01957-9_2 (cit. on p. 32).

[CF12] Cas J. F. Cremers and Michele Feltz. “Beyond eCK: Perfect Forward Secrecy under Actor
Compromise and Ephemeral-Key Reveal”. In: ESORICS 2012. Ed. by Sara Foresti, Moti Yung,
and Fabio Martinelli. Vol. 7459. LNCS. Springer, Heidelberg, Sept. 2012, pp. 734–751. DOI:
10.1007/978-3-642-33167-1_42 (cit. on pp. 31, 32).

https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/978-3-642-01957-9_2
https://doi.org/10.1007/978-3-642-33167-1_42

Bibliography 313

[DAn+20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, Jose
Maria Bermudo Mera, Michiel Van Beirendonck, and Andrea Basso. SABER. Tech. rep. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization/round-3-submissions. National Institute of Standards
and Technology, 2020 (cit. on pp. 172, 179).

[DRV20] Jan-Pieter D’Anvers, Mélissa Rossi, and Fernando Virdia. “(One) Failure Is Not an Option:
Bootstrapping the Search for Failures in Lattice-Based Encryption Schemes”. In: EURO-
CRYPT 2020, Part III. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12107. LNCS. Springer,
Heidelberg, May 2020, pp. 3–33. DOI: 10.1007/978-3-030-45727-3_1 (cit. on p. 179).

[DAn+19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede. “Tim-
ing Attacks on Error Correcting Codes in Post-Quantum Schemes”. In: Proceedings of ACM
Workshop on Theory of Implementation Security Workshop. TIS’19. London, United Kingdom:
Association for Computing Machinery, 2019, pp. 2–9. DOI: 10.1145/3338467.3358948. URL:
https://doi.org/10.1145/3338467.3358948 (cit. on p. 173).

[DVV19] Jan-Pieter D’Anvers, Frederik Vercauteren, and Ingrid Verbauwhede. “The Impact of Error
Dependencies on Ring/Mod-LWE/LWR Based Schemes”. In: Post-Quantum Cryptography
- 10th International Conference, PQCrypto 2019. Ed. by Jintai Ding and Rainer Steinwandt.
Springer, Heidelberg, 2019, pp. 103–115. DOI: 10.1007/978-3-030-25510-7_6 (cit. on p. 173).

[Dac+20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. “LWE with Side In-
formation: Attacks and Concrete Security Estimation”. In: CRYPTO 2020, Part II. Ed. by
Daniele Micciancio and Thomas Ristenpart. Vol. 12171. LNCS. Springer, Heidelberg, Aug.
2020, pp. 329–358. DOI: 10.1007/978-3-030-56880-1_12 (cit. on p. 176).

[dFW20] Cyprien de Saint Guilhem, Marc Fischlin, and Bogdan Warinschi. “Authentication in Key-
Exchange: Definitions, Relations and Composition”. In: CSF 2020 Computer Security Foun-
dations Symposium. Ed. by Limin Jia and Ralf Küsters. IEEE Computer Society Press, 2020,
pp. 288–303. DOI: 10.1109/CSF49147.2020.00028 (cit. on pp. 28, 32, 33).

[DGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. “Deniable authentication and
key exchange”. In: ACM CCS 2006. Ed. by Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati. ACM Press, Oct. 2006, pp. 400–409. DOI: 10.1145/1180405.1180454
(cit. on pp. 11, 22, 25, 27, 56–59, 71).

[DVW92] Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. “Authentication and authenti-
cated key exchanges”. In: Designs, Codes and Cryptography 2.2 (June 1992), pp. 107–125. DOI:
10.1007/BF00124891 (cit. on p. 30).

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. “Tor: The Second-Generation
Onion Router”. In: USENIX Security 2004. Ed. by Matt Blaze. USENIX Association, Aug. 2004,
pp. 303–320 (cit. on pp. 194, 195, 258).

[DG22] Samuel Dobson and Steven D. Galbraith. “Post-Quantum Signal Key Agreement from SIDH”.
In: Post-Quantum Cryptography. Ed. by Jung Hee Cheon and Thomas Johansson. Cham:
Springer International Publishing, 2022, pp. 422–450 (cit. on pp. 26, 27).

[Dod+18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. “Fast Message
Franking: From Invisible Salamanders to Encryptment”. In: CRYPTO 2018, Part I. Ed. by
Hovav Shacham and Alexandra Boldyreva. Vol. 10991. LNCS. Springer, Heidelberg, Aug.
2018, pp. 155–186. DOI: 10.1007/978-3-319-96884-1_6 (cit. on pp. 13, 82–84).

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-030-45727-3_1
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1109/CSF49147.2020.00028
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1007/BF00124891
https://doi.org/10.1007/978-3-319-96884-1_6

314 Bibliography

[Dod+09] Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish. “Composability and On-
Line Deniability of Authentication”. In: TCC 2009. Ed. by Omer Reingold. Vol. 5444. LNCS.
Springer, Heidelberg, Mar. 2009, pp. 146–162. DOI: 10.1007/978-3-642-00457-5_10 (cit. on
pp. 27, 58, 59, 71).

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. “Fuzzy Extractors: How to Generate Strong
Keys from Biometrics and Other Noisy Data”. In: EUROCRYPT 2004. Ed. by Christian Cachin
and Jan Camenisch. Vol. 3027. LNCS. Springer, Heidelberg, May 2004, pp. 523–540. DOI:
10.1007/978-3-540-24676-3_31 (cit. on p. 15).

[Dow+22] Benjamin Dowling, Eduard Hauck, Doreen Riepel, and Paul Rösler. Strongly Anonymous
Ratcheted Key Exchange. Cryptology ePrint Archive, Report 2022/1187. https://eprint.iacr.
org/2022/1187. 2022 (cit. on p. 2).

[Duc18] Léo Ducas. “Shortest Vector from Lattice Sieving: A Few Dimensions for Free”. In: EU-
ROCRYPT 2018, Part I. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10820. LNCS.
Springer, Heidelberg, Apr. 2018, pp. 125–145. DOI: 10.1007/978-3-319-78381-9_5 (cit. on
p. 176).

[DV19] F. Betül Durak and Serge Vaudenay. “Bidirectional Asynchronous Ratcheted Key Agreement
with Linear Complexity”. In: IWSEC 19. Ed. by Nuttapong Attrapadung and Takeshi Yagi.
Vol. 11689. LNCS. Springer, Heidelberg, Aug. 2019, pp. 343–362. DOI: 10.1007/978-3-030-
26834-3_20 (cit. on p. 2).

[ElG85] Taher ElGamal. “A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms”. In: IEEE Transactions on Information Theory 31 (1985), pp. 469–472 (cit. on p. 5).

[Esg+19a] Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. “Lattice-Based Zero-
Knowledge Proofs: New Techniques for Shorter and Faster Constructions and Applications”.
In: CRYPTO 2019, Part I. Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11692.
LNCS. Springer, Heidelberg, Aug. 2019, pp. 115–146. DOI: 10.1007/978-3-030-26948-7_5
(cit. on p. 70).

[Esg+19b] Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and Dongxi Liu. “Short
Lattice-Based One-out-of-Many Proofs and Applications to Ring Signatures”. In: ACNS 19.
Ed. by Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung. Vol. 11464.
LNCS. Springer, Heidelberg, June 2019, pp. 67–88. DOI: 10.1007/978-3-030-21568-2_4
(cit. on p. 70).

[Esg+19c] Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. “Ma-
tRiCT: Efficient, Scalable and Post-Quantum Blockchain Confidential Transactions Protocol”.
In: ACM CCS 2019. Ed. by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz. ACM Press, Nov. 2019, pp. 567–584. DOI: 10.1145/3319535.3354200 (cit. on p. 70).

[FOR17] Pooya Farshim, Claudio Orlandi, and Răzvan Roşie. “Security of Symmetric Primitives under
Incorrect Usage of Keys”. In: IACR Trans. Symm. Cryptol. 2017.1 (2017), pp. 449–473. DOI:
10.13154/tosc.v2017.i1.449-473 (cit. on pp. 13, 82, 83).

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. “Multiple Non-Interactive Zero Knowledge Proofs
Based on a Single Random String (Extended Abstract)”. In: 31st FOCS. IEEE Computer Society
Press, Oct. 1990, pp. 308–317. DOI: 10.1109/FSCS.1990.89549 (cit. on p. 17).

https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1007/978-3-540-24676-3_31
https://eprint.iacr.org/2022/1187
https://eprint.iacr.org/2022/1187
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1145/3319535.3354200
https://doi.org/10.13154/tosc.v2017.i1.449-473
https://doi.org/10.1109/FSCS.1990.89549

Bibliography 315

[FJP14] Luca De Feo, David Jao, and Jérôme Plû. “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies”. In: Journal of Mathematical Cryptology 8.3 (2014), pp. 209–
247. DOI: doi:10.1515/jmc-2012-0015 (cit. on p. 174).

[Fis05] Marc Fischlin. “Communication-Efficient Non-interactive Proofs of Knowledge with Online
Extractors”. In: CRYPTO 2005. Ed. by Victor Shoup. Vol. 3621. LNCS. Springer, Heidelberg,
Aug. 2005, pp. 152–168. DOI: 10.1007/11535218_10 (cit. on p. 71).

[Fli15] Ola Flisbäck. Stalking anyone on Telegram. Dec. 2015. URL: https://oflisback.github.io/
telegram-stalking/ (cit. on p. 2).

[FPZ08] Pierre-Alain Fouque, David Pointcheval, and Sébastien Zimmer. “HMAC is a randomness
extractor and applications to TLS”. In: ASIACCS 08. Ed. by Masayuki Abe and Virgil Gligor.
ACM Press, Mar. 2008, pp. 21–32 (cit. on p. 51).

[Fre+13] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. “Non-Interactive
Key Exchange”. In: PKC 2013. Ed. by Kaoru Kurosawa and Goichiro Hanaoka. Vol. 7778.
LNCS. Springer, Heidelberg, Feb. 2013, pp. 254–271. DOI: 10.1007/978-3-642-36362-7_17
(cit. on p. 22).

[Fuj+12] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. “Strongly Secure
Authenticated Key Exchange from Factoring, Codes, and Lattices”. In: PKC 2012. Ed. by Marc
Fischlin, Johannes Buchmann, and Mark Manulis. Vol. 7293. LNCS. Springer, Heidelberg,
May 2012, pp. 467–484. DOI: 10.1007/978-3-642-30057-8_28 (cit. on pp. 21, 23–25, 31, 32).

[Fuj+13] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. “Practical and post-
quantum authenticated key exchange from one-way secure key encapsulation mechanism”.
In: ASIACCS 13. Ed. by Kefei Chen, Qi Xie, Weidong Qiu, Ninghui Li, and Wen-Guey Tzeng.
ACM Press, May 2013, pp. 83–94 (cit. on p. 24).

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric and Symmetric
Encryption Schemes”. In: CRYPTO’99. Ed. by Michael J. Wiener. Vol. 1666. LNCS. Springer,
Heidelberg, Aug. 1999, pp. 537–554. DOI: 10.1007/3-540-48405-1_34 (cit. on p. 18).

[GJ18] Kristian Gjøsteen and Tibor Jager. “Practical and Tightly-Secure Digital Signatures and Au-
thenticated Key Exchange”. In: CRYPTO 2018, Part II. Ed. by Hovav Shacham and Alexandra
Boldyreva. Vol. 10992. LNCS. Springer, Heidelberg, Aug. 2018, pp. 95–125. DOI: 10.1007/978-
3-319-96881-0_4 (cit. on pp. 23, 24, 27, 31–33).

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to Construct Random Functions
(Extended Abstract)”. In: 25th FOCS. IEEE Computer Society Press, Oct. 1984, pp. 464–479.
DOI: 10.1109/SFCS.1984.715949 (cit. on p. 15).

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Digital Signature Scheme Secure
Against Adaptive Chosen-message Attacks”. In: SIAM Journal on Computing 17.2 (Apr. 1988),
pp. 281–308 (cit. on p. 14).

[GM13] Glenn Greenwald and Ewen MacAskill. NSA Prism program taps in to user data of Apple, Google
and others. The Guardian. 2013. URL: https://www.theguardian.com/world/2013/jun/06/
us-tech-giants-nsa-data (cit. on p. 1).

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. “Message Franking via Committing Authen-
ticated Encryption”. In: CRYPTO 2017, Part III. Ed. by Jonathan Katz and Hovav Shacham.
Vol. 10403. LNCS. Springer, Heidelberg, Aug. 2017, pp. 66–97. DOI: 10.1007/978-3-319-
63697-9_3 (cit. on pp. 13, 82, 83).

https://doi.org/doi:10.1515/jmc-2012-0015
https://doi.org/10.1007/11535218_10
https://oflisback.github.io/telegram-stalking/
https://oflisback.github.io/telegram-stalking/
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1109/SFCS.1984.715949
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-319-63697-9_3

316 Bibliography

[Gua] Guardian Project. Orbot: Proxy with Tor. URL: https://guardianproject.info/apps/org.
torproject.android/ (visited on 04/15/2022) (cit. on pp. 194, 195, 258).

[Guo+17] Qian Guo, Thomas Johansson, Erik Mårtensson, and Paul Stankovski. “Coded-BKW with
Sieving”. In: ASIACRYPT 2017, Part I. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10624.
LNCS. Springer, Heidelberg, Dec. 2017, pp. 323–346. DOI: 10.1007/978-3-319-70694-8_12
(cit. on p. 177).

[Guo+19] Qian Guo, Thomas Johansson, Erik Mårtensson, and Paul Stankovski Wagner. “On the Asymp-
totics of Solving the LWE Problem Using Coded-BKW With Sieving”. In: IEEE Transactions
on Information Theory 65.8 (2019), pp. 5243–5259. DOI: 10.1109/TIT.2019.2906233 (cit. on
p. 177).

[GJS15] Qian Guo, Thomas Johansson, and Paul Stankovski. “Coded-BKW: Solving LWE Using
Lattice Codes”. In: CRYPTO 2015, Part I. Ed. by Rosario Gennaro and Matthew J. B. Robshaw.
Vol. 9215. LNCS. Springer, Heidelberg, Aug. 2015, pp. 23–42. DOI: 10.1007/978-3-662-
47989-6_2 (cit. on p. 177).

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. “A Key Recovery Attack on MDPC with
CCA Security Using Decoding Errors”. In: ASIACRYPT 2016, Part I. Ed. by Jung Hee Cheon
and Tsuyoshi Takagi. Vol. 10031. LNCS. Springer, Heidelberg, Dec. 2016, pp. 789–815. DOI:
10.1007/978-3-662-53887-6_29 (cit. on p. 179).

[GJY19] Qian Guo, Thomas Johansson, and Jing Yang. “A Novel CCA Attack Using Decryption Errors
Against LAC”. In: ASIACRYPT 2019, Part I. Ed. by Steven D. Galbraith and Shiho Moriai.
Vol. 11921. LNCS. Springer, Heidelberg, Dec. 2019, pp. 82–111. DOI: 10.1007/978-3-030-
34578-5_4 (cit. on p. 173).

[GMW21] Qian Guo, Erik Mårtensson, and Paul Stankovski Wagner. “On the Sample Complexity
of solving LWE using BKW-Style Algorithms”. In: 2021 IEEE International Symposium on
Information Theory (ISIT). 2021, pp. 2405–2410. DOI: 10.1109/ISIT45174.2021.9518190 (cit.
on pp. 176, 177).

[Guo+20] Siyao Guo, Pritish Kamath, Alon Rosen, and Katerina Sotiraki. “Limits on the Efficiency
of (Ring) LWE Based Non-interactive Key Exchange”. In: PKC 2020, Part I. Ed. by Aggelos
Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas. Vol. 12110. LNCS. Springer,
Heidelberg, May 2020, pp. 374–395. DOI: 10.1007/978-3-030-45374-9_13 (cit. on p. 3).

[HGS99] Chris Hall, Ian Goldberg, and Bruce Schneier. “Reaction Attacks against several Public-Key
Cryptosystems”. In: ICICS 99. Ed. by Vijay Varadharajan and Yi Mu. Vol. 1726. LNCS. Springer,
Heidelberg, Nov. 1999, pp. 2–12 (cit. on p. 179).

[Has+21a] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. “An Efficient
and Generic Construction for Signal’s Handshake (X3DH): Post-Quantum, State Leakage
Secure, and Deniable”. In: PKC 2021, Part II. Ed. by Juan Garay. Vol. 12711. LNCS. Springer,
Heidelberg, May 2021, pp. 410–440. DOI: 10.1007/978-3-030-75248-4_15 (cit. on pp. 21, 26,
59, 69).

[Has+22] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. “An Efficient
and Generic Construction for Signal’s Handshake (X3DH): Post-quantum, State Leakage
Secure, and Deniable”. In: Journal of Cryptology 35.3 (May 2022). DOI: 10.1007/s00145-022-
09427-1 (cit. on p. 21).

https://guardianproject.info/apps/org.torproject.android/
https://guardianproject.info/apps/org.torproject.android/
https://doi.org/10.1007/978-3-319-70694-8_12
https://doi.org/10.1109/TIT.2019.2906233
https://doi.org/10.1007/978-3-662-47989-6_2
https://doi.org/10.1007/978-3-662-47989-6_2
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1109/ISIT45174.2021.9518190
https://doi.org/10.1007/978-3-030-45374-9_13
https://doi.org/10.1007/978-3-030-75248-4_15
https://doi.org/10.1007/s00145-022-09427-1
https://doi.org/10.1007/s00145-022-09427-1

Bibliography 317

[Has+21b] Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest, and Bas West-
erbaan. “A Concrete Treatment of Efficient Continuous Group Key Agreement via Multi-
Recipient PKEs”. In: ACM CCS 2021. Ed. by Giovanni Vigna and Elaine Shi. ACM Press, Nov.
2021, pp. 1441–1462. DOI: 10.1145/3460120.3484817 (cit. on pp. 6, 79, 194–203, 207, 209, 210,
221, 235, 236, 240–248, 297, 299, 300).

[Has+21c] Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest, and Bas West-
erbaan. A Concrete Treatment of Efficient Continuous Group Key Agreement via Multi-Recipient
PKEs. Cryptology ePrint Archive, Report 2021/1407. https://eprint.iacr.org/2021/1407.
2021 (cit. on pp. 79, 202, 203, 206, 207, 209, 210, 216, 221–227, 231, 233, 234, 236, 238, 253).

[HKP22a] Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest. “How to Hide MetaData in MLS-
Like Secure Group Messaging: Simple, Modular, and Post-Quantum”. In: ACM CCS 2022.
Ed. by Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. ACM Press, Nov. 2022,
pp. 1399–1412. DOI: 10.1145/3548606.3560679 (cit. on p. 193).

[HKP22b] Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest. How to Hide MetaData in MLS-Like
Secure Group Messaging: Simple, Modular, and Post-Quantum. Cryptology ePrint Archive, Paper
2022/1533. 2022. DOI: 10.1145/3548606.3560679. URL: https://eprint.iacr.org/2022/
1533 (cit. on p. 193).

[HKM18] Gottfried Herold, Elena Kirshanova, and Alexander May. “On the asymptotic complexity of
solving LWE”. In: Designs, Codes and Cryptography 86.1 (Jan. 2018), pp. 55–83. DOI: 10.1007/
s10623-016-0326-0 (cit. on p. 177).

[Höv+20] Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. “Generic Authenticated
Key Exchange in the Quantum Random Oracle Model”. In: PKC 2020, Part II. Ed. by Aggelos
Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas. Vol. 12111. LNCS. Springer,
Heidelberg, May 2020, pp. 389–422. DOI: 10.1007/978-3-030-45388-6_14 (cit. on pp. 24, 31,
32).

[How+20] James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi. “Isochronous Gaussian Sam-
pling: From Inception to Implementation”. In: Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020. Ed. by Jintai Ding and Jean-Pierre Tillich. Springer, Heidelberg,
2020, pp. 53–71. DOI: 10.1007/978-3-030-44223-1_5 (cit. on p. 180).

[Hul+20] Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer,
Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M Lauridsen,
Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe,
Jean-Philippe Aumasson, Bas Westerbaan, and Ward Beullens. SPHINCS+. Tech. rep. available
at https://csrc.nist.gov/projects/post- quantum- cryptography/post- quantum-
cryptography-standardization/round-3-submissions. National Institute of Standards
and Technology, 2020 (cit. on p. 298).

[Hül+21] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Philip R. Zimmermann.
“Post-quantum WireGuard”. In: 2021 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2021, pp. 304–321. DOI: 10.1109/SP40001.2021.00030 (cit. on p. 5).

[Jag+21] Tibor Jager, Eike Kiltz, Doreen Riepel, and Sven Schäge. “Tightly-Secure Authenticated Key
Exchange, Revisited”. In: EUROCRYPT 2021, Part I. Ed. by Anne Canteaut and François-Xavier
Standaert. Vol. 12696. LNCS. Springer, Heidelberg, Oct. 2021, pp. 117–146. DOI: 10.1007/978-
3-030-77870-5_5 (cit. on pp. 31–33).

https://doi.org/10.1145/3460120.3484817
https://eprint.iacr.org/2021/1407
https://doi.org/10.1145/3548606.3560679
https://doi.org/10.1145/3548606.3560679
https://eprint.iacr.org/2022/1533
https://eprint.iacr.org/2022/1533
https://doi.org/10.1007/s10623-016-0326-0
https://doi.org/10.1007/s10623-016-0326-0
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-030-44223-1_5
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1109/SP40001.2021.00030
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5

318 Bibliography

[Jao+20] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil
Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost
Renes, Vladimir Soukharev, David Urbanik, Geovandro Pereira, Koray Karabina, and Aaron
Hutchinson. SIKE. Tech. rep. available at https://csrc.nist.gov/projects/post-quantum-
cryptography/post- quantum- cryptography- standardization/round- 3- submissions.
National Institute of Standards and Technology, 2020 (cit. on pp. 171, 183).

[Jaq+20] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. “Implementing
Grover Oracles for Quantum Key Search on AES and LowMC”. In: EUROCRYPT 2020, Part II.
Ed. by Anne Canteaut and Yuval Ishai. Vol. 12106. LNCS. Springer, Heidelberg, May 2020,
pp. 280–310. DOI: 10.1007/978-3-030-45724-2_10 (cit. on pp. 178, 179).

[JMM19a] Daniel Jost, Ueli Maurer, and Marta Mularczyk. “A Unified and Composable Take on Ratch-
eting”. In: TCC 2019, Part II. Ed. by Dennis Hofheinz and Alon Rosen. Vol. 11892. LNCS.
Springer, Heidelberg, Dec. 2019, pp. 180–210. DOI: 10.1007/978-3-030-36033-7_7 (cit. on
pp. 2, 202).

[JMM19b] Daniel Jost, Ueli Maurer, and Marta Mularczyk. “Efficient Ratcheting: Almost-Optimal Guar-
antees for Secure Messaging”. In: EUROCRYPT 2019, Part I. Ed. by Yuval Ishai and Vincent
Rijmen. Vol. 11476. LNCS. Springer, Heidelberg, May 2019, pp. 159–188. DOI: 10.1007/978-3-
030-17653-2_6 (cit. on p. 2).

[Kan87] Ravi Kannan. “Minkowski’s Convex Body Theorem and Integer Programming”. In: Mathe-
matics of Operations Research 12.3 (1987), pp. 415–440. URL: http://www.jstor.org/stable/
3689974 (visited on 09/14/2022) (cit. on p. 176).

[Kat+20] Shuichi Katsumata, Kris Kwiatkowski, Federico Pintore, and Thomas Prest. “Scalable Ci-
phertext Compression Techniques for Post-quantum KEMs and Their Applications”. In: ASI-
ACRYPT 2020, Part I. Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12491. LNCS. Springer,
Heidelberg, Dec. 2020, pp. 289–320. DOI: 10.1007/978-3-030-64837-4_10 (cit. on pp. 17–19,
82, 83, 110, 171, 172, 174, 179, 180, 183, 297).

[KW03] Jonathan Katz and Nan Wang. “Efficiency Improvements for Signature Schemes with Tight
Security Reductions”. In: ACM CCS 2003. Ed. by Sushil Jajodia, Vijayalakshmi Atluri, and
Trent Jaeger. ACM Press, Oct. 2003, pp. 155–164. DOI: 10.1145/948109.948132 (cit. on p. 91).

[Kaw+20] Tomoki Kawashima, Katsuyuki Takashima, Yusuke Aikawa, and Tsuyoshi Takagi. “An Ef-
ficient Authenticated Key Exchange from Random Self-reducibility on CSIDH”. In: ICISC
20. Ed. by Deukjo Hong. Vol. 12593. LNCS. Springer, Heidelberg, Dec. 2020, pp. 58–84. DOI:
10.1007/978-3-030-68890-5_4 (cit. on pp. 24, 31).

[Kle+21] Karen Klein, Guillermo Pascual-Perez, Michael Walter, Chethan Kamath, Margarita Capretto,
Miguel Cueto, Ilia Markov, Michelle Yeo, Joël Alwen, and Krzysztof Pietrzak. “Keep the
Dirt: Tainted TreeKEM, Adaptively and Actively Secure Continuous Group Key Agreement”.
In: 2021 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May 2021,
pp. 268–284. DOI: 10.1109/SP40001.2021.00035 (cit. on pp. 4, 79, 80, 125, 186, 194, 195, 197,
299, 300).

[KGV20] Bor de Kock, Kristian Gjøsteen, and Mattia Veroni. “Practical Isogeny-Based Key-Exchange
with Optimal Tightness”. In: Selected Areas in Cryptography. Ed. by Orr Dunkelman, Michael J.
Jacobson Jr., and Colin O’Flynn. Cham: Springer International Publishing, 2020, pp. 451–479
(cit. on pp. 24, 31).

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
http://www.jstor.org/stable/3689974
http://www.jstor.org/stable/3689974
https://doi.org/10.1007/978-3-030-64837-4_10
https://doi.org/10.1145/948109.948132
https://doi.org/10.1007/978-3-030-68890-5_4
https://doi.org/10.1109/SP40001.2021.00035

Bibliography 319

[Kra05] Hugo Krawczyk. “HMQV: A High-Performance Secure Diffie-Hellman Protocol”. In: CRYPTO 2005.
Ed. by Victor Shoup. Vol. 3621. LNCS. Springer, Heidelberg, Aug. 2005, pp. 546–566. DOI:
10.1007/11535218_33 (cit. on pp. 21, 23, 31, 32).

[Kra10] Hugo Krawczyk. “Cryptographic Extraction and Key Derivation: The HKDF Scheme”. In:
CRYPTO 2010. Ed. by Tal Rabin. Vol. 6223. LNCS. Springer, Heidelberg, Aug. 2010, pp. 631–
648. DOI: 10.1007/978-3-642-14623-7_34 (cit. on p. 20).

[Kro21] Andy Kroll. FBI Document Says the Feds Can Get Your WhatsApp Data - in Real Time. Rolling
Stone. 2021. URL: https : / / www . rollingstone . com / politics / politics - features /
whatsapp-imessage-facebook-apple-fbi-privacy-1261816/ (cit. on p. 2).

[Kur02] Kaoru Kurosawa. “Multi-recipient Public-Key Encryption with Shortened Ciphertext”. In:
PKC 2002. Ed. by David Naccache and Pascal Paillier. Vol. 2274. LNCS. Springer, Heidelberg,
Feb. 2002, pp. 48–63. DOI: 10.1007/3-540-45664-3_4 (cit. on pp. 17, 82, 297).

[KF14] Kaoru Kurosawa and Jun Furukawa. “2-Pass Key Exchange Protocols from CPA-Secure
KEM”. In: CT-RSA 2014. Ed. by Josh Benaloh. Vol. 8366. LNCS. Springer, Heidelberg, Feb.
2014, pp. 385–401. DOI: 10.1007/978-3-319-04852-9_20 (cit. on pp. 21, 24, 26).

[Kwi20] Kris Kwiatkowski. An Efficient and Generic Construction for Signal’s Handshake (X3DH): Post-
Quantum, State Leakage Secure, and Deniable. Proof of concept implementation. Dec. 2020. URL:
https://github.com/post- quantum- cryptography/post- quantum- state- leakage-
secure-ake (cit. on pp. 22, 50, 52, 55).

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. “Stronger Security of Authenticated
Key Exchange”. In: ProvSec 2007. Ed. by Willy Susilo, Joseph K. Liu, and Yi Mu. Vol. 4784.
LNCS. Springer, Heidelberg, Nov. 2007, pp. 1–16 (cit. on pp. 21, 23–25, 31, 32).

[Lau+21] Ben Laurie, Adam Langley, Emilia Kasper, Eran Messeri, and Rob Stradling. Certificate Trans-
parency Version 2.0. Internet-Draft draft-ietf-trans-rfc6962-bis-35. Work in Progress. Internet
Engineering Task Force, Mar. 2021. 60 pp. URL: https://datatracker.ietf.org/doc/html/
draft-ietf-trans-rfc6962-bis-35 (cit. on p. 82).

[LS17] Yong Li and Sven Schäge. “No-Match Attacks and Robust Partnering Definitions: Defining
Trivial Attacks for Security Protocols is Not Trivial”. In: ACM CCS 2017. Ed. by Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu. ACM Press, Oct. 2017, pp. 1343–
1360. DOI: 10.1145/3133956.3134006 (cit. on pp. 30, 32).

[LP11] Richard Lindner and Chris Peikert. “Better Key Sizes (and Attacks) for LWE-Based Encryp-
tion”. In: CT-RSA 2011. Ed. by Aggelos Kiayias. Vol. 6558. LNCS. Springer, Heidelberg, Feb.
2011, pp. 319–339. DOI: 10.1007/978-3-642-19074-2_21 (cit. on p. 171).

[LAZ19] Xingye Lu, Man Ho Au, and Zhenfei Zhang. “Raptor: A Practical Lattice-Based (Linkable)
Ring Signature”. In: ACNS 19. Ed. by Robert H. Deng, Valérie Gauthier-Umaña, Martín
Ochoa, and Moti Yung. Vol. 11464. LNCS. Springer, Heidelberg, June 2019, pp. 110–130. DOI:
10.1007/978-3-030-21568-2_6 (cit. on pp. 25, 70).

[LR88] Michael Luby and Charles Rackoff. “How to construct pseudorandom permutations from
pseudorandom functions”. In: SIAM Journal on Computing 17.2 (1988) (cit. on p. 15).

https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-14623-7_34
https://www.rollingstone.com/politics/politics-features/whatsapp-imessage-facebook-apple-fbi-privacy-1261816/
https://www.rollingstone.com/politics/politics-features/whatsapp-imessage-facebook-apple-fbi-privacy-1261816/
https://doi.org/10.1007/3-540-45664-3_4
https://doi.org/10.1007/978-3-319-04852-9_20
https://github.com/post-quantum-cryptography/post-quantum-state-leakage-secure-ake
https://github.com/post-quantum-cryptography/post-quantum-state-leakage-secure-ake
https://datatracker.ietf.org/doc/html/draft-ietf-trans-rfc6962-bis-35
https://datatracker.ietf.org/doc/html/draft-ietf-trans-rfc6962-bis-35
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-030-21568-2_6

320 Bibliography

[Lyu+20] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor
Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech. rep. available at https:
//csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-
standardization/round-3-submissions. National Institute of Standards and Technology,
2020 (cit. on pp. 70, 181, 297).

[MG19] Alexandra Ma and Ben Gilbert. Facebook understood how dangerous the Trump-linked data firm
Cambridge Analytica could be much earlier than it previously said. Here’s everything that’s hap-
pened up until now. INSIDER. [Online; accessed 8-January-2023]. 2019. URL: https://www.
businessinsider.com/cambridge- analytica- a- guide- to- the- trump- linked- data-
firm-that-harvested-50-million-facebook-profiles-2018-3 (cit. on p. 1).

[MP16a] Moxie Marlinspike and Trevor Perrin. The double ratchet algorithm. Nov. 2016. URL: https:
//signal.org/docs/specifications/doubleratchet/ (cit. on pp. 2, 193).

[MP16b] Moxie Marlinspike and Trevor Perrin. The X3DH key agreement protocol. Nov. 2016. URL:
https://signal.org/docs/specifications/x3dh/ (cit. on pp. 2, 3, 5, 22, 24, 31, 48, 52).

[Mar+21] Ian Martiny, Gabriel Kaptchuk, Adam J. Aviv, Daniel S. Roche, and Eric Wustrow. “Improving
Signal’s Sealed Sender”. In: NDSS 2021. The Internet Society, Feb. 2021 (cit. on pp. 3, 194, 197).

[McG+15] Susan E. McGregor, Polina Charters, Tobin Holliday, and Franziska Roesner. “Investigating
the Computer Security Practices and Needs of Journalists”. In: USENIX Security 2015. Ed. by
Jaeyeon Jung and Thorsten Holz. USENIX Association, Aug. 2015, pp. 399–414 (cit. on p. 2).

[MRC16] Susan E. McGregor, Franziska Roesner, and Kelly Caine. “Individual versus Organizational
Computer Security and Privacy Concerns in Journalism”. In: PoPETs 2016.4 (Oct. 2016),
pp. 418–435. DOI: 10.1515/popets-2016-0048 (cit. on p. 2).

[Moh21] Vaishnavi Krishna Mohan. WhatsApp’s New Privacy Policy: Collecting Metadata and Its Im-
plications. Jan. 2021. URL: https://www.globalviews360.com/articles/whatsapps-new-
privacy-policy-collecting-metadata-and-its-implications (cit. on p. 2).

[MRS18] Ben Morris, Phillip Rogaway, and Till Stegers. “Deterministic Encryption with the Thorp
Shuffle”. In: Journal of Cryptology 31.2 (Apr. 2018), pp. 521–536. DOI: 10.1007/s00145-017-
9262-z (cit. on p. 298).

[MSs12] Steven Myers, Mona Sergi, and abhi shelat. “Blackbox Construction of a More Than Non-
Malleable CCA1 Encryption Scheme from Plaintext Awareness”. In: SCN 12. Ed. by Ivan
Visconti and Roberto De Prisco. Vol. 7485. LNCS. Springer, Heidelberg, Sept. 2012, pp. 149–165.
DOI: 10.1007/978-3-642-32928-9_9 (cit. on pp. 11, 59).

[Nae+20] Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook, Brian LaMacchia,
Patrick Longa, Ilya Mironov, Valeria Nikolaenko, Christopher Peikert, Ananth Raghunathan,
and Douglas Stebila. FrodoKEM. Tech. rep. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-
submissions. National Institute of Standards and Technology, 2020 (cit. on pp. 83, 110, 171,
172, 174, 176, 178, 180, 181, 183).

[NZ96] Noam Nisan and David Zuckerman. “Randomness is Linear in Space”. In: Journal of Computer
and System Sciences 52.1 (1996), pp. 43–52. DOI: https://doi.org/10.1006/jcss.1996.0004
(cit. on p. 15).

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://www.businessinsider.com/cambridge-analytica-a-guide-to-the-trump-linked-data-firm-that-harvested-50-million-facebook-profiles-2018-3
https://www.businessinsider.com/cambridge-analytica-a-guide-to-the-trump-linked-data-firm-that-harvested-50-million-facebook-profiles-2018-3
https://www.businessinsider.com/cambridge-analytica-a-guide-to-the-trump-linked-data-firm-that-harvested-50-million-facebook-profiles-2018-3
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
https://doi.org/10.1515/popets-2016-0048
https://www.globalviews360.com/articles/whatsapps-new-privacy-policy-collecting-metadata-and-its-implications
https://www.globalviews360.com/articles/whatsapps-new-privacy-policy-collecting-metadata-and-its-implications
https://doi.org/10.1007/s00145-017-9262-z
https://doi.org/10.1007/s00145-017-9262-z
https://doi.org/10.1007/978-3-642-32928-9_9
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/https://doi.org/10.1006/jcss.1996.0004

Bibliography 321

[NIS17] NIST. Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Stan-
dardization Process. Accessed: 2021-04-16. 2017. URL: https://csrc.nist.gov/CSRC/media/
Projects/Post- Quantum- Cryptography/documents/call- for- proposals- final- dec-
2016.pdf (cit. on pp. 178, 179).

[Oma+21] Emad Omara, Benjamin Beurdouche, Eric Rescorla, Srinivas Inguva, Albert Kwon, and
Alan Duric. The Messaging Layer Security (MLS) Architecture. Internet-Draft draft-ietf-mls-
architecture-06. Work in Progress. Internet Engineering Task Force, Mar. 2021. 33 pp. URL:
https://datatracker.ietf.org/doc/html/draft-ietf-mls-architecture-06 (cit. on
pp. 6, 79, 175).

[Ops13] Kurt Opsahl. Why Metadata Matters. June 2013. URL: https://www.eff.org/deeplinks/2013/
06/why-metadata-matters (cit. on p. 2).

[PST20] Christian Paquin, Douglas Stebila, and Goutam Tamvada. “Benchmarking Post-quantum
Cryptography in TLS”. In: Post-Quantum Cryptography - 11th International Conference, PQCrypto
2020. Ed. by Jintai Ding and Jean-Pierre Tillich. Springer, Heidelberg, 2020, pp. 72–91. DOI:
10.1007/978-3-030-44223-1_5 (cit. on p. 53).

[Pas03] Rafael Pass. “On Deniability in the Common Reference String and Random Oracle Model”.
In: CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729. LNCS. Springer, Heidelberg, Aug. 2003,
pp. 316–337. DOI: 10.1007/978-3-540-45146-4_19 (cit. on p. 58).

[Pei20] Chris Peikert. “He Gives C-Sieves on the CSIDH”. In: EUROCRYPT 2020, Part II. Ed. by Anne
Canteaut and Yuval Ishai. Vol. 12106. LNCS. Springer, Heidelberg, May 2020, pp. 463–492.
DOI: 10.1007/978-3-030-45724-2_16 (cit. on p. 24).

[Per16] Trevor Perrin. The XEdDSA and VXEdDSA Signature Schemes. Oct. 2016. URL: https://signal.
org/docs/specifications/xeddsa/ (cit. on p. 22).

[Per18] Trevor Perrin. The Noise Protocol Framework. The Noise Protocol Framework. July 2018. URL:
http://www.noiseprotocol.org/noise.pdf (cit. on p. 193).

[PR18] Bertram Poettering and Paul Rösler. “Towards Bidirectional Ratcheted Key Exchange”. In:
CRYPTO 2018, Part I. Ed. by Hovav Shacham and Alexandra Boldyreva. Vol. 10991. LNCS.
Springer, Heidelberg, Aug. 2018, pp. 3–32. DOI: 10.1007/978-3-319-96884-1_1 (cit. on p. 2).

[PS14] David Pointcheval and Olivier Sanders. “Forward Secure Non-Interactive Key Exchange”. In:
SCN 14. Ed. by Michel Abdalla and Roberto De Prisco. Vol. 8642. LNCS. Springer, Heidelberg,
Sept. 2014, pp. 21–39. DOI: 10.1007/978-3-319-10879-7_2 (cit. on p. 22).

[Pre+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON.
Tech. rep. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions. National Institute
of Standards and Technology, 2020 (cit. on pp. 70, 297).

[Pre+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON.
Tech. rep. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022. National Institute of Standards and Technology, 2022 (cit. on
p. 5).

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-mls-architecture-06
https://www.eff.org/deeplinks/2013/06/why-metadata-matters
https://www.eff.org/deeplinks/2013/06/why-metadata-matters
https://doi.org/10.1007/978-3-030-44223-1_5
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/978-3-030-45724-2_16
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/xeddsa/
http://www.noiseprotocol.org/noise.pdf
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-10879-7_2
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

322 Bibliography

[Sav13] Charlie Savage. Court Rejects Appeal Bid by Writer in Leak Case. The New York Times. Oct. 2013.
URL: http://www.nytimes.%20com/2013/10/16/us/court-rejects-appealbid-by-writer-
in-leak-case.html (cit. on p. 2).

[Sch90] Claus-Peter Schnorr. “Efficient Identification and Signatures for Smart Cards (Abstract) (Rump
Session)”. In: EUROCRYPT’89. Ed. by Jean-Jacques Quisquater and Joos Vandewalle. Vol. 434.
LNCS. Springer, Heidelberg, Apr. 1990, pp. 688–689. DOI: 10.1007/3-540-46885-4_68 (cit. on
p. 5).

[Sch+20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé. CRYSTALS-KYBER. Tech.
rep. available at https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum- cryptography- standardization/round- 3- submissions. National Institute of
Standards and Technology, 2020 (cit. on pp. 83, 110, 171–174, 176, 179, 183).

[Sch+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding. CRYSTALS-
KYBER. Tech. rep. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022. National Institute of Standards and Technology, 2022 (cit. on
p. 5).

[SSW20] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “Post-Quantum TLS Without Handshake
Signatures”. In: ACM CCS 2020. Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna. ACM Press, Nov. 2020, pp. 1461–1480. DOI: 10.1145/3372297.3423350 (cit. on p. 5).

[Sho94] Peter W. Shor. “Polynominal time algorithms for discrete logarithms and factoring on a
quantum computer”. In: Algorithmic Number Theory, First International Symposium, ANTS-I,
Ithaca, NY, USA, May 6-9, 1994, Proceedings. Ed. by Leonard M. Adleman and Ming-Deh A.
Huang. Vol. 877. Lecture Notes in Computer Science. Springer, 1994, p. 289. DOI: 10.1007/3-
540-58691-1_68. URL: https://doi.org/10.1007/3-540-58691-1%5C_68 (cit. on p. 4).

[Sho97] Victor Shoup. “Lower Bounds for Discrete Logarithms and Related Problems”. In: EURO-
CRYPT’97. Ed. by Walter Fumy. Vol. 1233. LNCS. Springer, Heidelberg, May 1997, pp. 256–266.
DOI: 10.1007/3-540-69053-0_18 (cit. on p. 195).

[Sho00] Victor Shoup. “Using Hash Functions as a Hedge against Chosen Ciphertext Attack”. In:
EUROCRYPT 2000. Ed. by Bart Preneel. Vol. 1807. LNCS. Springer, Heidelberg, May 2000,
pp. 275–288. DOI: 10.1007/3-540-45539-6_19 (cit. on p. 11).

[Sig] Signal. Signal protocol: Technical Documentation. URL: https://signal.org/docs/ (cit. on pp. 2,
31).

[Sig18] Signal Blog. Technology preview: Sealed sender for Signal. Oct. 2018. URL: https://signal.org/
blog/sealed-sender/ (cit. on pp. 3, 194).

[Sig19] Signal Blog. Technology Preview: Signal Private Group System. Dec. 2019. URL: https://signal.
org/blog/signal-private-group-system/ (cit. on pp. 4, 194–196).

[Sma05] Nigel P. Smart. “Efficient Key Encapsulation to Multiple Parties”. In: SCN 04. Ed. by Carlo
Blundo and Stelvio Cimato. Vol. 3352. LNCS. Springer, Heidelberg, Sept. 2005, pp. 208–219.
DOI: 10.1007/978-3-540-30598-9_15 (cit. on p. 17).

[Spe21] Speedtest. Speedtest Global Index — Internet Speed around the world. July 2021. URL: https:
//www.speedtest.net/global-index (cit. on p. 80).

http://www.nytimes.%20com/2013/10/16/us/court-rejects-appealbid-by-writer-in-leak-case.html
http://www.nytimes.%20com/2013/10/16/us/court-rejects-appealbid-by-writer-in-leak-case.html
https://doi.org/10.1007/3-540-46885-4_68
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.1007/3-540-58691-1%5C_68
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-45539-6_19
https://signal.org/docs/
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://signal.org/blog/signal-private-group-system/
https://signal.org/blog/signal-private-group-system/
https://doi.org/10.1007/978-3-540-30598-9_15
https://www.speedtest.net/global-index
https://www.speedtest.net/global-index

Bibliography 323

[Sta20] Katherine E. Stange. Algebraic aspects of solving Ring-LWE, including ring-based improvements in
the Blum-Kalai-Wasserman algorithm. 2020. arXiv: 1902.07140 [cs.CR] (cit. on p. 178).

[Tya+21] Nirvan Tyagi, Julia Len, Ian Miers, and Thomas Ristenpart. Orca: Blocklisting in Sender-
Anonymous Messaging. Cryptology ePrint Archive, Report 2021/1380. https : / / eprint .
iacr.org/2021/1380. 2021 (cit. on p. 3).

[UG15] Nik Unger and Ian Goldberg. “Deniable Key Exchanges for Secure Messaging”. In: ACM
CCS 2015. Ed. by Indrajit Ray, Ninghui Li, and Christopher Kruegel. ACM Press, Oct. 2015,
pp. 1211–1223. DOI: 10.1145/2810103.2813616 (cit. on pp. 3, 27, 58, 59, 71).

[UG18] Nik Unger and Ian Goldberg. “Improved Strongly Deniable Authenticated Key Exchanges for
Secure Messaging”. In: PoPETs 2018.1 (Jan. 2018), pp. 21–66. DOI: 10.1515/popets-2018-0003
(cit. on pp. 3, 27, 58, 59, 71).

[Vat+20] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk. “On the Crypto-
graphic Deniability of the Signal Protocol”. In: ACNS 20, Part II. Ed. by Mauro Conti, Jianying
Zhou, Emiliano Casalicchio, and Angelo Spognardi. Vol. 12147. LNCS. Springer, Heidelberg,
Oct. 2020, pp. 188–209. DOI: 10.1007/978-3-030-57878-7_10 (cit. on pp. 3, 22, 25, 27, 56, 59,
71).

[Wei19] Matthew Weidner. Group messaging for secure asynchronous collaboration. MPhil dissertation.
University of Cambridge, Cambridge, UK, 2019 (cit. on pp. 4, 79).

[Wei+21] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R. Beresford. “Key
Agreement for Decentralized Secure Group Messaging with Strong Security Guarantees”. In:
ACM CCS 2021. Ed. by Giovanni Vigna and Elaine Shi. ACM Press, Nov. 2021, pp. 2024–2045.
DOI: 10.1145/3460120.3484542 (cit. on pp. 4, 195, 197).

[Wik22] Wikipedia contributors. PRISM — Wikipedia, The Free Encyclopedia. [Online; accessed 8-January-
2023]. 2022. URL: https : / / en . wikipedia . org / w / index . php ? title = PRISM & oldid =
1111536426 (cit. on p. 1).

[XL21] Yufei Xing and Shuguo Li. “A Compact Hardware Implementation of CCA-Secure Key
Exchange Mechanism CRYSTALS-KYBER on FPGA”. In: IACR TCHES 2021.2 (2021). https:
//tches.iacr.org/index.php/TCHES/article/view/8797, pp. 328–356. DOI: 10.46586/
tches.v2021.i2.328-356 (cit. on p. 173).

[Xue+20] Haiyang Xue, Man Ho Au, Rupeng Yang, Bei Liang, and Haodong Jiang. Compact Authenti-
cated Key Exchange in the Quantum Random Oracle Model. Cryptology ePrint Archive, Report
2020/1282. https://eprint.iacr.org/2020/1282. 2020 (cit. on p. 24).

[Xue+18] Haiyang Xue, Xianhui Lu, Bao Li, Bei Liang, and Jingnan He. “Understanding and Construct-
ing AKE via Double-Key Key Encapsulation Mechanism”. In: ASIACRYPT 2018, Part II. Ed. by
Thomas Peyrin and Steven Galbraith. Vol. 11273. LNCS. Springer, Heidelberg, Dec. 2018,
pp. 158–189. DOI: 10.1007/978-3-030-03329-3_6 (cit. on p. 24).

[Yan14] Zheng Yang. “Modelling Simultaneous Mutual Authentication for Authenticated Key Ex-
change”. In: Foundations and Practice of Security. Ed. by Jean Luc Danger, Mourad Debbabi,
Jean-Yves Marion, Joaquin Garcia-Alfaro, and Nur Zincir Heywood. Cham: Springer Interna-
tional Publishing, 2014, pp. 46–62. DOI: 10.1007/978-3-319-05302-8_4 (cit. on p. 33).

https://arxiv.org/abs/1902.07140
https://eprint.iacr.org/2021/1380
https://eprint.iacr.org/2021/1380
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1515/popets-2018-0003
https://doi.org/10.1007/978-3-030-57878-7_10
https://doi.org/10.1145/3460120.3484542
https://en.wikipedia.org/w/index.php?title=PRISM&oldid=1111536426
https://en.wikipedia.org/w/index.php?title=PRISM&oldid=1111536426
https://tches.iacr.org/index.php/TCHES/article/view/8797
https://tches.iacr.org/index.php/TCHES/article/view/8797
https://doi.org/10.46586/tches.v2021.i2.328-356
https://doi.org/10.46586/tches.v2021.i2.328-356
https://eprint.iacr.org/2020/1282
https://doi.org/10.1007/978-3-030-03329-3_6
https://doi.org/10.1007/978-3-319-05302-8_4

324 Bibliography

[YCL18] Zheng Yang, Yu Chen, and Song Luo. “Two-Message Key Exchange with Strong Security
from Ideal Lattices”. In: CT-RSA 2018. Ed. by Nigel P. Smart. Vol. 10808. LNCS. Springer,
Heidelberg, Apr. 2018, pp. 98–115. DOI: 10.1007/978-3-319-76953-0_6 (cit. on pp. 21, 24,
26).

[YZ10] Andrew Chi-Chih Yao and Yunlei Zhao. “Deniable Internet Key Exchange”. In: ACNS 10.
Ed. by Jianying Zhou and Moti Yung. Vol. 6123. LNCS. Springer, Heidelberg, June 2010,
pp. 329–348. DOI: 10.1007/978-3-642-13708-2_20 (cit. on pp. 22, 25, 27, 56, 59, 71).

[Yue+21] Tsz Hon Yuen, Muhammed F. Esgin, Joseph K. Liu, Man Ho Au, and Zhimin Ding. “DualRing:
Generic Construction of Ring Signatures with Efficient Instantiations”. In: CRYPTO 2021, Part I.
Ed. by Tal Malkin and Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer, Heidelberg,
Aug. 2021, pp. 251–281. DOI: 10.1007/978-3-030-84242-0_10 (cit. on pp. 25, 70).

https://doi.org/10.1007/978-3-319-76953-0_6
https://doi.org/10.1007/978-3-642-13708-2_20
https://doi.org/10.1007/978-3-030-84242-0_10

325

Author’s Publications

List of Publications Related to This Dissertation

Journal Papers

[Has+22] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. “An Efficient
and Generic Construction for Signal’s Handshake (X3DH): Post-quantum, State Leakage
Secure, and Deniable”. In: Journal of Cryptology 35.3 (May 2022). DOI: 10.1007/s00145-022-
09427-1.

Refereed Conference Papers

[Has+21a] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. “An Efficient
and Generic Construction for Signal’s Handshake (X3DH): Post-Quantum, State Leakage
Secure, and Deniable”. In: PKC 2021, Part II. Ed. by Juan Garay. Vol. 12711. LNCS. Springer,
Heidelberg, May 2021, pp. 410–440. DOI: 10.1007/978-3-030-75248-4_15.

[Has+21b] Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest, and Bas West-
erbaan. “A Concrete Treatment of Efficient Continuous Group Key Agreement via Multi-
Recipient PKEs”. In: ACM CCS 2021. Ed. by Giovanni Vigna and Elaine Shi. ACM Press, Nov.
2021, pp. 1441–1462. DOI: 10.1145/3460120.3484817.

[HKP22] Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest. “How to Hide MetaData in MLS-
Like Secure Group Messaging: Simple, Modular, and Post-Quantum”. In: ACM CCS 2022.
Ed. by Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. ACM Press, Nov. 2022,
pp. 1399–1412. DOI: 10.1145/3548606.3560679.

Non-refereed Papers

[Has+21] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. “Design and
Implementation of a Post-Quantum Authenticated Key Exchange Protocol for Signal”. In:
2021 Symposium on Cryptography and Information Security. (In Japanese). Jan. 2021.

List of Other Publications

Journal Papers

[HO19] Keitaro Hashimoto and Wakaha Ogata. “Unrestricted and compact certificateless aggregate
signature scheme”. In: Information Sciences 487 (2019), pp. 97–114. DOI: https://doi.org/10.
1016/j.ins.2019.03.005.

https://doi.org/10.1007/s00145-022-09427-1
https://doi.org/10.1007/s00145-022-09427-1
https://doi.org/10.1007/978-3-030-75248-4_15
https://doi.org/10.1145/3460120.3484817
https://doi.org/10.1145/3548606.3560679
https://doi.org/https://doi.org/10.1016/j.ins.2019.03.005
https://doi.org/https://doi.org/10.1016/j.ins.2019.03.005

326 Author’s Publications

Non-refereed Papers

[HO18] Keitaro Hashimoto and Wakaha Ogata. “A Study on Construction and Security of Certifi-
cateless Aggregate Signature Scheme”. In: 2018 Symposium on Cryptography and Information
Security. (In Japanese). Jan. 2018.

[HOT20] Keitaro Hashimoto, Wakaha Ogata, and Toi Tomita. “Tight reduction for generic construction
of certificateless signature and its instantiation from DDH assumption”. In: 2020 Symposium
on Cryptography and Information Security. (In Japanese). Jan. 2020.

