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Abstract

In the thesis, we propose a new formula for the Schur index of the N' = 4
U(N) supersymmetric Yang-Mills theory (SYM) via the AdS/CFT corre-
spondence.

The AdS/CFT correspondence is a conjectural relation between a super-
string theory in the anti-de sitter (AdS) space and a conformal field the-
ory (CFT). The simplest example which is discussed in this thesis is the
correspondence between the Type IIB string theory in AdSs x S° and the
four-dimensional N' = 4 U(N) SYM. In the large-N limit, the Type IIB
string theory can be described by a classical supergravity, while the N' = 4
SYM is in a strongly coupled region. Then, we can analyze quantities of the
N = 4 SYM in the strongly coupled region via the corresponding classical
supergravity. The AdS/CFT correspondence in the large-N limit is useful to
study strongly coupled CFTs.

How to tackle the AdS/CFT correspondence in the finite-N region is also
an important question because the rank of CFT that we are interested in is
usually not large N but finite N. If N is finite, quantum gravity corrections
are not negligible in the Type IIB string theory, and this is a difficulty in the
finite-N AdS/CFT correspondence. Fortunately, in recent years, there has
been progress in the study of the finite-N AdS/CFT correspondence. We
can study the finite-N AdS/CFT correspondence by using quantities that
are protected from quantum gravity corrections. One of such quantities is
the superconformal index, which is a kind of the supersymmetric partition
function. The superconformal index can be calculated in Lagrangian gauge
theories for the arbitrary rank N and arbitrary coupling constant by using the
localization method. The agreement of the index calculated on the gravity
(AdS) side and that on the gauge theory (CFT) side has been confirmed at
large N in different AdS/CFT examples. For example, the large-N index of
N = 4 U(N) SYM is the same as the index of the contribution from the



Kaluza-Klein modes in AdSs x S°.

The index on the gauge theory side can be calculated in principle as long
as the Lagrangian is known, while contributions to the index on the gravity
side are non-trivial. It was found by Arai and Imamura that on the gravity
side not only the Kaluza-Klein modes in AdSs x S° but also giant gravitons,
which are objects wrapped around three-cycles in §°, contribute to the index.
The contribution from giant gravitons is expected to be expressed as the sum
over wrapping number m = 1,2, .... In previous works with the author and
the collaborators only m = 1 contribution was taken into account. To obtain
the complete index we need to include m > 2 contributions. To calculate
m > 2 contributions we need to carry out certain contour integrals, and
it has not yet been well understood how we should choose contours in the
integrals.

The difficulty of the choice of the integration contours is caused by an
unusual pole structure of the integrand. In particular, the existence of in-
tersection strings makes the problem complicated. An intersection string is
an open string appearing in the system of multiple-wrapping giant gravitons
and stretches between two giant gravitons wrapped on different cycles.

In the thesis, we show that the problem of the intersection string can
be avoided by taking the Schur limit, which is a specialization limit of the
superconformal index. In the Schur limit, we find that the intersection string
contribution in the integrand becomes a simple form and can be factor out
of the integrals. Thanks to this, the multiple integrals factorize into integrals
each of which is associated with coincident giant gravitons wrapped on a
single cycle. This factorization makes the problem much simpler.

We also show a prescription for the choice of the integration contours.
By using the prescription, we can calculate the contributions of the multiple-
wrapping giant gravitons up to an arbitrary wrapping number in principle.
As a consistency check, we confirm that the formula reproduces the correct
index on the gauge theory side in the small N cases.

Although we use the Schur index to simplify the problem, it is desirable
to use the superconformal index because the superconformal index has more
information rather than the Schur index. Even so, the Schur index itself
has been attracted and great interesting, and plays an important role in
the analysis of superconformal field theories whose Lagrangian has not been
known. We leave the analysis using such properties of the Schur index for
future works.
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Chapter 1

Introduction

One of the most significant achievements of research of superstring theory
is the AdS/CFT correspondence [1]. The AdS/CFT correspondence is a
conjectural relation between a superstring theory in the anti-de sitter (AdS)
space and a conformal field theory (CFT). It is also called the gauge/gravity
correspondence because conformal field theories often are described by gauge
theories and superstring theories are approximated by gravity theories. Many
examples of the AdS/CFT correspondence have been studied and we focus
on the simplest one, which is the correspondence between the Type IIB
superstring theory in AdSs; x §° and the four-dimensional ' = 4 U(N)
! supersymmetric Yang-Mills (SYM) theory [2].

An important parameter in the AdS/CFT correspondence that we are
interested in is the rank of the gauge group N, which is associated with the
scale of the gravity L as follows:

L4
I ’

N~ (1.0.1)

where [, is the Planck length. In the large-N limit, gauge theories have
the rank N = oo while the scale of the gravity is much larger than the
Planck length and the Type IIB superstring theory can be described by the
classical supergravity. In addition, gauge theories are often in a strongly
coupled region. It follows that one can analyze quantities of gauge theories

! In some contexts one often considers an SU(N) gauge theory because the diagonal
U(1) in U(N) is decoupled in the IR. However, we consider a U(N) gauge theory
to simplify some formulas. This is a matter of convention and does not affect the
conclusion of the thesis.



in the strongly coupled region via the corresponding classical supergravity.
For example, in [3], the Wilson loop of the strongly coupled N' = 4 SYM
was calculated via the corresponding supergravity. Therefore, the AdS/CFT
correspondence is useful to study strongly coupled gauge theories. Further-
more, there are theories that are only defined in the strongly coupled region
and have no Lagrangian description. It is difficult to directly analyze such
non-Lagrangian theories and the AdS/CFT correspondence is useful to study
such theories.

The AdS/CFT correspondence has been tested with respect to various
quantities. In this thesis, we focus on the superconformal index [4], which is
defined as a supersymmetric partition function on S§* x §® and has informa-
tion of Bogomolnyi-Prasad-Sommerfield (BPS) states in the Hilbert space on
S3. The superconformal index can be calculated in principle in arbitrary La-
grangian gauge theories. In the simplest AdS/CFT example the agreement
of the superconformal index in the large N limit was confirmed in [4]. The
superconformal index on the gauge theory side is calculated in the N = 4
U(oo) SYM by using the localization method. On the gravity side, Kaluza-
Klein modes of massless fields in AdSs x S° contribute to the superconformal
index. Such an agreement has been confirmed in different examples in the
large-N limit [5, 6, 7, 8, 9].

We are interested in not only the large- N limit but also the finite NV case
because gauge theories we are interested in usually have finite ranks. To
tackle the finite-N AdS/CFT correspondence plays an important role also
for understanding quantum gravity.

The purpose of this thesis is to establish a new formula in the finite- NV
AdS/CFT correspondence. In this thesis, we focus on the N'=4 U(N) SYM
because the superconformal index on the gauge theory side is known and we
can confirm the correctness of the formula. It would be nice if we can extend
it to other examples and use it to predict the index of theories that can not
be analyzed directly. We leave such analysis for future works.

In general, it is difficult to study the finite-N AdS/CFT correspondence
because, if N is finite, quantum gravity corrections are not negligible in the
Type IIB string theory. Fortunately, in recent years, there has been progress
in the study of the finite-N AdS/CFT correspondence. We can study the
finite-N AdS/CFT correspondence by using quantities that are protected
from quantum gravity corrections. We assume that quantum gravity cor-
rections give continuous deformations to the background geometry with the
Planck scale. The superconformal index is independent of deformations of

7



continuous parameters of the background geometry and is not affected by
quantum gravity corrections. In fact, D3-brane corrections must be taken
into account even if the superconformal index is protected from quantum
gravity corrections.

An importance of extended branes in the context of the AdS/CFT cor-
respondence was first pointed out in [10]. [10] discussed the correspon-
dence between N' = 4 SO(N) SYM and the Type IIB superstring theory
in AdSs x S° /Zs. D3-branes wrapped on non-trivial three-cycles in S° /Lo
correspond to certain BPS operators, which must contribute to the index. A
BPS D3-brane solution in AdSs x S° was proposed in [11], and it is called
the giant graviton. More general BPS configurations were found in [12]. In
[13] they confirmed that a BPS partition function, which counts only the op-
erators consisting of the scalar fields, in the N' =4 U(N) SYM is reproduced
by the geometric quantization of the giant gravitons.

We are interested in the superconformal index at finite N. As we men-
tioned above we need to include the contribution from the giant gravitons. It
is expected to be expressed as the sum over wrapping number m = 1,2,.. ..
The m = 1 case has already been studied in previous works [14, 15, 16, 17, 18],
and we study the m > 2 case of multiple-wrapping giant gravitons to obtain
the complete index . The calculation of the m > 2 contributions includes
certain contour integrals, and the choice of integration contours has not yet
been well understood.

There is a problem caused by an unusual pole structure of the integrand.
In addition, the integrand is more complicated by the existence of intersec-
tion strings, which are open strings stretching between two giant gravitons
wrapped on different cycles. In the thesis, we show that the complication
of the integrand caused by the intersection string is resolved by taking the
Schur limit, which is a specialization limit of the superconformal index. In
the Schur limit, we find that the contribution of the intersection string in the
integrand becomes a tractable form and can be factor out of the integrals.
Due to this property, the multiple integrals factorize into integrals each of
which is associated with coincident giant gravitons wrapped on a single cycle.
This factorization makes the problem much simpler.

There remains the problem of an unusual pole structure of the integrand,
and we give a prescription for the choice of the integration contours. By
using the prescription, we can calculate the contributions of the multiple-
wrapping giant gravitons up to an arbitrary wrapping number in principle.
We propose a formula to calculate the Schur index of the N' = 4 U(N)
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SYM from the contributions of the multiple-wrapping giant gravitons. As a
consistency check, we numerically confirm that the formula reproduces the
correct index on the gauge theory side in the small N cases. We mean by
“numerical confirmation” that we expand indices and confirm the agreement
of the coefficients up to the order we computed.

Although in the thesis we use the Schur index instead of the supercon-
formal index to simplify the problem, the Schur index itself has various in-
teresting properties and applications.

In the context of the M-theory, which is a eleven-dimensional theory that
comprehensively describes all string theories, the six-dimensional (2,0) su-
perconformal field theory (SCFT) is an important theory that provides clues
to elucidate the M-theory. Although the (2,0) theory itself has not been well
understood, there is a rich class, called the class S, of four-dimensional SCFTs
obtained by compactifying the (2,0) theory on a two-dimensional Riemann
surface ¥ [19] and the relations between four-dimensional SCFTs and two-
dimensional theories realized on X are widely studied. Such relations has
been studied with respect to various quantities. For an SU(2) SCFT with
flavors, the superconformal index is interpreted as a correlator in a corre-
sponding two-dimensional topological QFT [20]. This relation was applied
to several limits of the N' = 2 superconformal index [21]. The Schur limit
case has been also studied and it was found in [22] that the Schur index of
an N = 2 generalized SU(N) quiver theory is captured by the structure con-
stants and the metric of the two-dimensional ¢-deformed Yang-Mills theory
[23] in the zero-area limit. This relation enables us to investigate interacting
field theories with no Lagrangian description.

The Schur index also appears in the context of the relation between the
four-dimensional SCF'T and the two-dimensional chiral algebra. For an ar-
bitrary four-dimensional SCFT with the extended supersymmetry, a two-
dimensional chiral algebra can be constructed as a sub-sector of the opera-
tors algebra [24]. In the literature, it was found that the Schur index of a
corresponding SCF'T is identified to the torus partition function called the
vacuum character in the chiral algebra . Several application of the chiral
algebra has been studied for the class S [25, 26], Argyres-Douglas theories
27, 28, 29], and N =3 SCFTs [30, 31].

In the Coulomb branch of a four-dimensional N’ = 2 SCFT a gauge group
is spontaneously broken to U(1)", where r is the rank of the gauge group,
and BPS states are characterized by the electric and magnetic charges. By
using the information of the BPS spectrum in the Coulomb branch, the
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procedure to calculate the Schur index was proposed in [27]. This procedure
is called the infrared (IR) formula. In the literature, by using the IR formula
the Schur index of non-Lagrangian theories such as Argyres-Douglas theories
32, 33] was calculated. Furthermore, in [34, 35], the IR formula for the Schur
index of an N/ = 2 SCFT with surface defects was developed and the Schur
index including surface defects contributions is identified to a character of a
non-vacuum module in the corresponding chiral algebra.

The Schur index has a wide range of applications and we leave the relation
between our works and such applications of the Schur index for future works.

This thesis is organized as follows. In Chapter 2, we explain the super-
conformal index. In 2.1 we first introduce the Witten index and explain
fundamental properties of the index. In order to extend the Witten index to
the superconformal index we introduce the superconformal algebra in 2.2 and
Bogomolnyi-Prasad-Sommerfield states in 2.3. In 2.4 we define the supercon-
formal index. We also explain the localization formula, which is obtained by
reducing the trace over the Hilbert space in the definition of the superconfor-
mal index to a tractable form. In 2.5 we define the Schur index and explain
the relation between the superconformal index and the Schur index.

In Chapter 3, we review the N' =4 U(N) SYM. First, in 3.1, we introduce
the N' = 4 vector multiplet. In 3.2 we define the Lagrangian of the N = 4
SYM. In 3.3 and 3.4 we define the superconformal index and the Schur index
of the N =4 U(N) SYM, respectively. In particular, in 3.3, we write down
the method to derive the single-particle index of the N' = 4 U(N) SYM.
In 3.5 we give some numerical results of the superconformal index and the
Schur index for small N and N = oo cases.

In Chapter 4, we review the AdS/CFT correspondence. We first consider
a system of N coincident D3-branes. In 4.1 we explain the gauge theory de-
scription of the system and explain that the AV =4 U(N) SYM appears. In
4.2 we explain the gravity description of the system and show that the metric
of the supergravity solution given by the branes is expressed as AdSs x S°
in the near horizon region. In 4.3 we explain the claim of the AdS/CFT
correspondence in [1] and explain some properties. In 4.4 we discuss the su-
perconformal index in the large- N limit on both the gauge theory and gravity
sides and explain that the contribution from Kaluza-Klein modes is identified
to the large-N index on the gauge theory side. In 4.4 we discuss the super-
conformal index in the finite-N case and suggest that the difference between
the finite-N and large-N indices should be reproduced by the contribution
from giant gravitons.

10



In Chapter 5, we explain the main topic of the thesis, which is based on
the author’s and the collaborators’s paper [36]. The purpose of this chapter
is to construct a formula to calculate the index by using the contributions on
the gravity side, especially giant graviton contributions, and to confirm the
correctness of the formula. In preparation for calculating the contributions
of multiple-wrapping giant gravitons, in 5.1, we define BPS configurations of
giant gravitons according to [12]. Following [14] we introduce the index of
single-wrapping giant gravitons. In 5.2 we expect that the superconformal
index of the N’ = 4 SYM includes all contributions from giant gravitons, and
give a formula by generalizing the index of single-wrapping giant gravitons.
In the formula, the multiple-wrapping contributions are given by certain
contour integrals. We explain the difficulty of this contour integrals and
give a procedure in the case for the system of giant gravitons wrapped on
a single cycle. In 5.3 we show that, by taking the Schur limit, the multiple
integrals factorize into the integrals for the system of giant gravitons wrapped
on a single cycle. Following the factorization, we propose a new formula
to calculate the Schur index of the N' = 4 SYM from the contributions
of multiple-wrapping giant gravitons. In 5.4 we explain the supergravity
contribution in the Schur limit. In 5.5 we explain the procedure to calculate
the integrals for the system of giant gravitons wrapped on a single cycle. In
5.6 we compare the numerical results of the multiple-wrapping contributions
with the known results of the A/ = 4 SYM and numerically confirm the
agreement of these results.

In Chapter 6, we conclude this thesis.

Technical details are shown in the Appendix.
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Chapter 2

Superconformal index

In Chapter 2, we define several kinds of indices. We first introduce the
Witten index and discuss some properties of the index. We also give the
general definition of the superconformal index and Schur index by extensions
of the Witten index.

2.1 Witten index

The Witten index [37] is a kind of partition functions defined in a system
with supersymmetry. The supersymmetry is a symmetry between bosons and
fermions. The generators of the supersymmetry are called the supercharge,
which is often denoted by (). The generators () act as

@ |boson) = |fermion) and (@ |fermion) = |boson) . (2.1.1)

Let us consider a system with the Hamiltonian H, a supercharge () and its
hermitian conjugate Q' satisfying

H={Q,Q%, [Q H=[Q"H=0. (2.1.2)
The Witten index is defined by
Tw = Tr(=1) 2", (2.1.3)

where the trace is taken over the Hilbert space. x is a complex parameter and
F is a fermion number which distinguish bosonic and fermionic states. The



important property of the Witten index is that it receive only the contribution
from ground states with H = 0.

Let us calculate the Witten index in a simple quantum mechanics and
explicitly show that the index pick up only the contribution of the ground
states. We consider a supersymmetric quantum mechanics of bosonic and
fermionic harmonic oscillators. (See [38]). The Hamiltonian of the super-
symmetric quantum mechanics is given by

2 2 1
H:%+%+§ [wh,¥], (2.1.4)

where x is a position and p is canonical conjugate to z. 1 is a complex
fermion. We define creation and annihilation operators,

on=s(etin, ah= =il ar=v. =l (215)

These operators satisfy the following commutation and anti-commutation
relations,

[aB,aE] =1, {ap,a}} =1, (2.1.6)

where the other commutation relations vanish. The Hamiltonian (2.1.4) is
rewritten as

H = dbap + dhap. (2.1.7)

The supercharges are given by

Qf = alap = —= (z +ip) ¥, (2.1.8)

These operators satisfy the relations in (2.1.2). We investigate the spectrum
of the model. Let |0) be the unique bosonic ground state, which satisfies
ap |0) = ar|0) = 0. The excitations by the creation operators are given by

n)g = (ap)"[0),  |n)p=(ap)"tap]0), (0 >1). (2.1.9)

The excited states |n)g and |n), are eigenstates for the H with the eigen-
values n. The fermionic number F' counts the number of the fermionic anni-
hilation operator a} and F is even for the state |n), while F' is odd for the

13



state |n) . The supercharges act on the excited states and transform them
as the following forms,

Q' n)p=nln)p, Qln)p=In)p, Qln)y= Q' n)p = 0. (2.1.10)

The structure of the Hilbert space is shown in Figure 2.1.

!
H=41 [4p—— 4)p
H=31 Bp+——P)p
H=21 [2)p+——|2)p
H=14 |1y 1),
H=0t 0)

I — (—1)"
-1 +1

Figure 2.1: The energy spectrum of the supersymmetric harmonic oscillator.
Two states connected by the arrow construct supersymmetric multiplets.

Let us calculate the Witten index. The trace counts the spectrum in
Figure 2.1 and we obtain

Tw=Tr(-) 2" =1+ @+a2*+- )= (x+2®+---)=1. (2111

We see that only the state with H = 0 contributes to the Witten index
and the other states are cancelled out with the bosons and the fermions
respectively at each energy level.
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An important property of the index is that it is invariant under a con-
tinuous deformation of the system. For example, we can deform the system
considered above by replacing the supercharges in (2.1.8) by

1 1
V2 V2

f(z) is a function given by

Q=—=(fle) —ip)p, Q"= —=(f(x)+ip)y". (2.1.12)

f(z) =z + gh(z), (2.1.13)

where ¢ is a coupling constant and h(z) is a function that goes to zero at
infinity. Then, the Hamiltonian H = {Q, Q'} is given by

1 1 1
H = §f($)2 + 5192 + §f($)’ [WT, 9] (2.1.14)
The system is a particle in the potential
1 1
V(z) = §f(95)2 =3 (z + gh(x))?, (2.1.15)

coupling to the fermionic degrees of freedom.

If g changes, the Hilbert space also changes and it is in general difficult
to calculate the eigenvalues of H. Even so, the degeneracy of the excited
states is preserved, and excited states always appear in a pair of a boson and
a fermion. Let [¢)) be an eigenstate of the Hamiltonian with non-zero energy,

Hp)=E|}), E+0. (2.1.16)

By using the relations (2.1.2) we can show that F > 0 and Q |[¢) or QT |¢)
gives another state |¢)') with the same energy and the opposite the statistics.
This means that an excited state with £/ > 0 always appears with the pair
of |¢) and |¢)') and the contributions to the Witten index cancel with each
other. Therefore, the Witten index is given by

IW = TI‘H:()(—l)F =nNp —Ng, (2117)

where ng and ng are the numbers of the bosonic and fermionic zero-energy
states, respectively. Although each of ng and np change, the difference
ng — ng is preserved under continuous deformations of the system because
of the degeneracy of excited states. (See Figure 2.2). Therefore, the Witten
index is independent of the coupling constant.

15



~ g=0 g#0
-- O—@
. -
A\
U O—@
O—@ .
H=0 -+ O SREEEEEE Oo—O—@

Figure 2.2: The Hilbert spaces with ¢ = 0 and g # 0. The white and black
circles represent respectively bosons and fermions. The transition of states
always occur in the pair of bosons and fermions.

2.2 Superconformal algebra

We want to define an index in a superconformal field theory. Let us first
summarize the symmetry algebra. In this thesis we use a cylinder Rx 83, Tt is
more convenient for construction of the irreducible unitary representations of
the superconformal algebra [39]. Furthermore, we define the superconformal
index as the partition function on the cylinder R x S§% as the background
spacetime.

The superconformal algebra is an extension of the conformal algebra by
the supersymmetry. The four-dimensional superconformal algebra is gener-
ated by

I
o’

« _d_ le% a I A a Q
H7 Jﬁa J B P[ja K B3’ Q[a I> S

I
o R 5,

(2.2.1)

The first five generate the conformal algebra so(2,4). In R x 8 H is the
Hamiltonian generating the translation along R. The rotation group on S? is
SO(4) = SU2)1es X SU(2)rignt- J%5 and 7a5 are respectively the generators
of SU(2)ief, and SU(2)yignt- Indices a and ¢ are respectively spin indices of
SU(2)]eft and SU(Q)right'

In the literature the Minkowski spacetime R!? is also used. It is related
to R x 8% by the Weyl transformation and the Wick rotation. For RY® H
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is the dilatation, J¢g, J” ;5 are the Lorentz spins, Pdﬁ are the translations
generator, and K¢ 5 are the generators of special conformal transformations.

The commutation relations for the generators of the conformal algebra
are

[J g 5| = 03J% — 05T 5,
(T3 T 5 = 630" = 08T,
[J ﬁ’ ] — 56P'Y - _5,8P’Y57

[J° 4, PYs) = =0 P% + 55;1375,

(6% (6% 1 (0%
[T, K7 ] = —5gK 5+§55K75,
1 &
(7% B3] = 63K 5 = 503K,
[H,P%;] = P4,
[H,K* 5] = —KO‘
(K5, P = 6”H+67J°‘ — 05T 4.

The hermitian conjugates of the conformal generators are given by
« G _/3) lo% «
H'=H, (J%)' =07, (Jp)=7J (P%"=K, (2.2.2)

The generators P and K on the cylinder R x S are swapped by the hermitian
conjugate. P and K change the energy by +1 and —1, respectively. In the
construction of irreducible unitary representations we treat P and K as the
raising and lowing operator for the energy.

The supercharges QI, S¢, and S are fermionic generators with
SU(2) spin indices « and &. The indices I, J run from 1 to N, where N/
represents the number of supersymmetries. In four-dimensional field theories
without gravity the maximum number of N is four. The anti-commutation
relations for the supercharges are given by

(QL Q5 =6,P7,, (2.2.3)

{57, 55} = o/K°, (2.2.4)
1 4-N

{S¢, Q%Y = 6765 ( H + N r) +67J% + 05R7 (2.2.5)
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—— o (1 4—-N —i N
{Qr, S5} = 075 (§H— % r) — 67T 5 = 05R ), (2.2.6)

and the other anti-commutation relations for @, Q, S, S vanish. The U(N)
(or SU(N)) global symmetry acting on the index I is called the R-symmetry.
R! ; are the generators of SU(N) and r is the generator of U(1) C U(N).
In the case of N' = 4 the coefficients of r in (2.2.5) and (2.2.6) are zero and
the generator r appears in no (anti-)commutation relations. This means the
U(1) symmetry can be removed and the R-symmetry for N' = 4 is SU(4).
R! ; obey the following relations:

1
[R5, Q0] = =05 Qo + 379590 (2.2.7)

[RI Jo RKL] = 5£RKJ - 5§RI L (2.2.8)
The U(1) charge r is normalized so that

—I

ok ok e o <4
[T7 Qi] = _Qia [T7 QI] = Qla [7’, S[] = _S], [7’, Sd] = Sd' (229)
The hermiticity of the supercharges and R-symmetry generators is
QD =52, (@) =38, (R )=R, rli=r (2.2.10)

The commutation relations between the Hamiltonian and the supercharges
are given by

[H,Q]zéQ, [H,@]:%@, [H,S]:—%S, [H,S]z—%?. (2.2.11)

The other commutation relations between fermionic generators and confor-
mal generators are

(&3 « ]‘ fo% o a ]_ a
—6 ' S R —& = — 1 _.—
75 @1 = 0500 +505Qr, 775,55 = 85 - 5635,

o aol & v
[K /B’Q{Y] = 57S/37 [P B> S}y] = _(5%@]7

«a ) Y Qo a al &

(K Bv@}y] = 5gS[a [P ,BaS"y] = _%Qé-

18



The maximal compact subgroup of the superconformal symmetry with
N <3is SO(2) x SU(2)? x U(N) and the Cartan charges of it are given by

H J=JYy=-J, J=J;i=-1, R —R' r (2212

There are N/ + 3 Cartan generators. In the case of NV =4 the U(1) Cartan
generator r is removed and there are six Cartan generators.

2.3 Bogomolnyi-Prasad-Sommerfield states

In the definition of the Witten index in 2.1 the relation H = {Q, Q'} plays
an important role and states satisfying Q |[¢)) = QT |¢)) = 0 contribute to
the index. Although there is no supercharge satisfying H = {Q, Q'} in the
superconformal algebra, we can define an operator A which plays a similar
role to H. We focus on the anti-commutation relations in (2.2.5) and (2.2.6).

Because of the hermiticity S = Qf and S = @T in (2.2.10),
{QL, 57y ={QL. @)} >0, (2.3.1)
R —d& =d
{Q7,5:) ={Q7, (@)} >0, (2.3.2)
These bounds come from the unitarity. ! These bounds give conditions on

the Cartan charges for each choice of «, &, I. Namely, the Cartan charges
appearing in the (2.2.5) and (2.2.6) have the following bounds:

1 4-N

SH+ 7 r+J% +R, >0, (2.3.4)
1 4—-N -
sH=—v 7 s — R >0 (2.3.5)

Because the total number of the supercharges Q! and @? is 4N, there are
4N conditions corresponding to the respective supercharges.

1 We act an operator O satisfying {O, O} = ¢, where ¢ is a constant parameter, on a
ket vector,

019) 2 + 10" [¢) 2 = ($] {0, O} [) = ¢ (vlv) . (2:3.3)

If a theory is unitary, the norm of the ket vector is positive. In such a case, the left
hand side on the (2.3.3) is positive, and it follows that the constant ¢ must be positive,
namely ¢ > 0.
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Let us consider a state saturating the bound for a supercharge Qg, with
the fixed indices I’ and o/. Such a saturating state is called the Bogomolnyi-
Prasad-Sommerfield (BPS) state. A BPS state is invariant under the trans-
formation generated by QI, while it is generically transformed by the other
generators. It follows that a supersymmetric multiplet is lack for one part
regarding the generator Qg,. Such a lacking multiplet is called the short
multiplet and may have a manageable property in terms of non-perturbation

theories. We define a quantity for the Qg,,
A={QL, (L)1} (2.3.6)

An eigenstate for A has a non-negative eigenvalue and A plays a similar role
to H in the Witten index defined in 2.1. All states with A > 0 appear in a pair
of bosonic and fermionic states and do not contribute to the index. Therefore,
the index dose not change under deformations of continuous parameters.

2.4 Superconformal index

Superconformal index [4, 8] is an extension of the Witten index defined in an
N = 1 superconformal field theory. Let ) be one of the supercharges. The
general definition of the superconformal index is

(_1)F‘TA H Ya ¢

T = Tryy, . A=2{Q,Q", (2.4.1)

where the trace is taken over the Hilbert space Hgr on the cylinder R x S®.
Hr includes only physical (gauge invariant) states. F'is the fermion number
and the factor (—1)% gives +1 for bosons and —1 for fermions. M, are linear
combination of the Cartan generators of the global symmetry of the theory
which satisfy

(M., My) = [M.,., Q] = 0. (2.4.2)

The variables z,y, are complex free parameters called “fugacities”.

This index is invariant under continuous deformations [4]. The reason is
essentially the same as the coupling independence of the Witten index. As
we explained in the previous section, non-BPS states with A > 0 do not
contribute to the the index because all non-BPS states appear in pairs of
bosons and fermions.
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It follows that Z is independent of the fugacity x. We can easily check the
z-independence of Z from the definition (2.4.1) as follows. The derivative of
T with respect to x is

oT

= o7
ox g

(—1)F AzBt HyM] =0, (2.4.3)

where in the last equality we use the following relation:

Tr [(-1)FQQ'C] = — Tr [Q(-1)FQ'C]

= -Tr [(-1)"Q'CQ]
=-Tr [(-1)"Q'QC], (2.4.4)
where the first equality uses the relation (—1)7Q = —Q(—1)F, the second
equality uses the property that the trace is invariant under the cyclic permu-

tations, and the third quality uses the relation C'Q) = QC.
Now, let us give M, explicitly for the A" = 1 superconformal index case.

First, we choose a supercharge ) = @?:11 , whose quantum numbers are shown
in Table 2.1. There are four Cartan generators of the N' = 1 superconformal
symmetry given in (2.2.12):

H, J J, i, (2.4.5)

where we denote the U(1)g charge r by r; for distinction from the U(1)
charge in N' = 2 theory discussed in the next section. From the relation
(2.2.6) A is given by

3 —
A=H- -2 (2.4.6)
There are three independent linear combinations of (2.4.5) satisfying (2.4.2).

One of three is A because [A, Q] = 0. The remaining two, M; and Ms, can
be chosen as follows:

Miy=H+J+J, M,=J. (2.4.7)
In addition, we may also have flavor charges

M; = F, (2.4.8)
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where F; are the generators of flavor symmetries. Because the index is in-
dependent of the fugacity = corresponding to A, the N’ = 1 superconformal
index is written as

Z(y1,y2,y;) = Tr (—1)FxAyf”J+7yé]Hyfi ) (2.4.9)

Table 2.1: The Cartan charges for the N’ = 1 supercharges.

QI7§I H J J ‘ T
= 1 1

=l 50 0] -1
Qi |3 -3 0 |-
—a=1

Qi |3 0 —3]1
—a=2

Q- |3 0 3|1

Localization formula

Thanks to the property that the index is independent of coupling constants,
the index can be calculated in the weak coupling limit ¢ = 0. In the limit
all fields become free fields and we can construct the Hilbert space explicitly.
As a simple example let us consider a free real scalar field ¢ with mass m on
R x §2. The equation of motion for ¢ is

(=07 +A—m?) ¢ =0, (2.4.10)

where A is the Laplacian on S%. We first expand ¢ by spherical harmonics
in §°. Let Y, be the eigenfunctions of m?> — A and w? (w, > 0) be the
associated eigenvalues:

(m* = A)Y, = —w.Y,. (2.4.11)
By using Y,,, the mode expansion of ¢ is expressed as

¢ = (Ane ™Y, + AV, | (2.4.12)
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where A, and Al are annihilation and creation operators, respectively, and
they satisfy

[An, A6L] = o (2.4.13)
The Hilbert space H for ¢ is

H: {H(AL)“"|0)} . a, € Lo, (2.4.14)

n

where |0) is the vacuum state annihilated by A,.

Even in more general theories including fermions and gauge fields, we
can construct the Hilbert space explicitly in a similar way by using the mode
expansion. The index is given by

(172 Tl Hc:“]
= Y TT oI - (0 2 [T [Te - (A= [0).  (24.15)

{an} n

IG = TI'H

Because we are considering the free theory with g = 0, we can treat the gauge
symmetry as the global symmetry. In (2.4.15) we introduced fugacities ¢; for
Cartan charges «; of the gauge symmetry GG. To obtain the index Z in (2.4.1)
defined as the trace over Hqr, we need to extract the contributions of only
physical states from (2.4.15). This can be done by extracting gauge invariant
contributions by (; integrals:

7- / duTe, (2.4.16)

where dp is the Haar measure of the gauge group G. If G = U(N), du is

defined by
d¢; N G
/ N = H% oo 1L (1 - C_j) . (2.4.17)

i#]

Because we have constructed the Hilbert space (2.4.14), we can calculate
the summation over the states in (2.4.15) straightforwardly. There is a con-
venient way to do it. We first define the sub-space H; C H of single-particle
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states:
Hi: {AL]0)} . (2.4.18)

We define the index ¢ for this sub-space
ic =Try, | (=) 2 [Tt ] ¢
= SOl A T T Al o). (2409)

This is called the single-particle index. Once we obtain ig, we can calculate
I by the following formula:
IG = Pexp (’lg) . (2420)

Pexp is the plethystic exponential defined by

Pexp (Z cx) = H ﬁ (2.4.21)

where ¢; are numerical coefficients and z; are fugacities. Pexp converts
single-particle contributions to multiple-particle contributions. By combin-
ing (2.4.16) and (2.4.20) we obtain the localization formula

7= /duPeXp (i) - (2.4.22)

2.5 Schur index

The Schur index is a specialization of the superconformal index. In addition
to @ used in the definition of the superconformal index (2.4.1), we choose

another supercharge @ which has opposite chirality to ¢ and anti-commutes
with Q). By using the supercharge ) we define

A =2{Q,Q. (2.5.1)
The Schur index is defined by

7 ="T1Ir

(—1)FQ;A%5Hu%] : (2.5.2)

a
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where the trace is taken over the Hilbert space on the cylinder. The fugacities
x,T,u, are complex parameters. M, are linear combination of the Cartan
generators satisfying

(M, My) = [M,,Q] = [M,,Q] = 0. (2.5.3)

Only states satisfying A = A = 0 contribute to the Schur index, and the
Schur index is independent of the fugacities z, . The Schur index inherits
the properties of the superconformal index that it is independent of coupling
constants, so that the Schur index can be calculated exactly even in strong-
coupled theories.

Table 2.2: The Cartan charges for the N' = 2 supercharges.

=
<

QI7 QI
=1
a=1
I=1
a=2
1=2
a=1

1=2
Qa:Z

—a=1

QI:l.

‘ (R,13)

J
0
0 | (~3.-1)
0
0

/N N
N TN NI N

N—= N

|
N =
—~
|
N—= N NS
—_
~—

|
—_

|
—_

N~ N~ N|— N

—_

—_
N—" —

Q
|
—
NI N[~ N N
(@) ) @) )
N = |
DO [

N =
—~
|
—_
~—

In this thesis, we use the convention with ) = @?:11 and é = Q!=2. Their
quantum numbers are shown in Table 2.2. There are five Cartan generators
of the A/ = 2 superconformal symmetry given in (2.2.12):

H, J, J, R, 1o, (2.5.4)

where R = R} and ro = r. From the relations (2.2.5) and (2.2.6) A and A
are given by

1 —

< 1
A=H+gr—2] 2R (2.5.6)
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There are three independent linear combinations of (2.5.4) satisfying (2.5.3)

and two of three are A and A. The remaining one, M;, can be chosen as
follows:

My=H+J+J. (2.5.7)
We may also have flavor generators
M; = F;. (2.5.8)
The N = 2 Schur index is written as

Ty y) = Tr | (—)F 252+ T | (2.5.9)

We can regard the A = 2 theory as a special N' = 1 theory. Let us use

the N = 1 sub-algebra with Q) = @?;1 to define the superconformal index of
the N/ = 2 theory. Cartan generators commuting with ) are

1 —
A, M0:H+§T’2—2J—2R, M1:H+J+J, MQZJ, MZ:E
(2.5.10)

The N = 2 superconformal index is written as
H+lry—2J-2R
Tl g, = T | () = Tl | 250

Now, we consider the limit y, — 1 in the N’ = 2 superconformal index
(2.5.11). In this limit M, in (2.5.10) corresponding to y» does not contribute
to the index. All generators in (2.5.10) except for M, satisfy the condition
(2.5.3) and M, in (2.5.10) is nothing but A in (2.5.6). It follows that the A" =
2 superconformal index (2.5.11) at yo = 1 is independent of yy corresponding
to My = A. Namely, in taking the limit yo — 1, the limit yo — 1 is
automatically taken and the A/ = 2 superconformal index reduces to the
N = 2 Schur index.

We can relate the N/ = 1 superconformal index (2.4.9) and the N/ = 2
superconformal index (2.5.11) by using the relations

37’1 :T2+4R, FZQR—TQ, (2512)

where F' commutes with Q=% and we can regard F as a flavor symmetry
from the view point of the N' =1 theory.
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Chapter 3

N = 4 supersymmetric
Yang-Mills theory

In Chapter 3, we review the N' = 4 U(N) supersymmetric Yang-Mills theory
in four-dimensions and define the superconformal index of the theory. This
theory has the N/ = 4 superconformal symmetry.

We consider the theory in R x S, because it is the boundary of the
five-dimensional anti-de Sitter space AdSs in the global coordinate. We will
discuss the AdS/CFT correspondence in detail in Chapter 4. On the gauge
theory side the superconformal index is the partition function in R x §%, and
is calculated by the localization method from the Lagrangian on the cylinder
[40]. See also the Lagrangians and the conformal Killing spinors in [41, 42].

3.1 N =4 vector multiplet

The four-dimensional N/ = 4 supersymmetric Yang-Mills theory consists of
an N = 4 vector multiplet, whose components are

A,: four-dimensional vector,
¢ry: six real scalars, (3.1.1)

Y1, X'+ four Weyl fermions and their conjugates.

I,J are indices of SU(4) R-symmetry. x; and X’ belong to 4 and 4 of
SU(4), respectively. All component fields of the vector multiplet belong to
the adjoint representation of the gauge group GG and they are expanded by



hermitian generators 7 labeled by a =1, ...,dim G,

dim G
=) T (3.1.2)

a=1

The scalar ¢r; belongs to the anti-symmetric representation 6 of SU(4) and
satisfy

1
b1y =—¢s, ¢ = §GUKL¢KL = (or)". (3.1.3)
¢rs consists of three independent complex scalars and we denote them by

X =0¢1n2, Y =013, Z=0ou. (3.1.4)

In the following we only consider G = U(N). Then, T, are N x N
hermitian matrices and a runs from 1 to N?. The commutation relation and
the trace for ®s are expressed as

[@,@] =) e*@° [T, 77, (3.1.5)
a?ﬁ
Tr[@D--- @] = Y @7 &7 Tx[T°T7 .. T7]. (3.1.6)
a,Byy

The N = 4 supersymmetric transformations on R x S* are generated by
the conformal Killing spinors €, € satisfying the Killing spinor equations on
the cylinder R x S§3,

where k! and %; are arbitrary spinor parameters. 4* are gamma matrices and
satisfy the Clifford algebra {v*,7"} = 2¢". V,, are the covariant derivatives
for spinors, which are expressed as

1
VX = dux + ngb%bx. (3.1.8)

w/‘jb are the spin-connections satisfying de® + w? A e’ = 0. The N' = 4
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supersymmetric transformations for the vector multiplet are
514# =1 (EI’V/JXI + EI'VMYI) )
5x1 = sy FMer + 29" (Dubrs) € + Ax” 2i w7
Xr = 3w er + 2y (Dyubry) € + 4k g1y + 2ok, ¢ ey,

1 . _
X' = S e 4+ 29" (Do") ey + AR50 + 2i[0"F, presle,

2
61y =i (erxs — €sx1 + €rsxre X")
5¢IJ - (EIYJ o EJYI + EIJKLEKXL) ) (319)

The covariant derivatives D,, acting on the scalar and spinor fields are

Du¢IJ = au¢IJ +i[Am¢IJ]7 DuXI = VuXI +i[Au7XI]- (3'1-1())

3.2 Lagrangian

The Lagrangian of the N' = 4 supersymmetric Yang-Mills theory on R x S*
is given by
1 1 v —J 1 1J
£N24 = Q—TI' __F:ul/F”u + X VMDMXI - _DuQﬁIJDH(é -
Iym 4 2

1

S0

+x1(x7, "+ X X, o1s] + i[ﬁbu, oxi]lo", o™,

(3.2.1)

where gyy is a coupling constant and the trace is taken over the N x N
matrix representation. In the large-N limit, 't Hooft coupling

A= g@ulN (3.2.2)

is also defined. The potential —55¢;¢'/ comes from the coupling of the
scalars to the scalar curvature R = 6/12, where [ is the radius of S°.

In the weak coupling limit gyp — 0 the NV = 4 supersymmetric Yang-
Mills theory with the Lagrangian (3.2.1) becomes a free theory with the
potential — sz ¢ 0"

1 1
Lﬁfﬁ; =Tr _ZFWFW + iYIV#vuXI ) (’aﬂX|2 + ]8#3/]2 + |8HZ|2)

1
~o (IXP+[Y]*+12P) ], (3.2.3)
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where we rescaled all fields by ® — gym®. The Lagrangian (3.2.3) play a role
in calculating the index via the localization method, which was explained in
2.4.

3.3 Definition of superconformal index

Let us define the superconformal index for the ' = 4 supersymmetric Yang-
Mills theory explicitly following the general definition in 2.4. The N = 4
SYM has the NV = 4 superconformal symmetry, which was introduced in
2.2. The four-dimensional N/ = 4 superconformal algebra has six Cartan
generators

H, J, J, Rx, Ry, Ry (3.3.1)

The Hamiltonian H and the spins J and J are Cartan generators for the
four-dimensional conformal algebra so(2,4), and Rx, Ry, and R, are Cartan
generators of the R-symmetry so(6), which are related to R! ; defined in 2.2
by

RY :%(RX+RY+RZ),
R22—%(RX—RY_RZ)7

R, = % (=Rx + Ry — Ryz),

R, = % (-Rx — Ry + Ry). (3.3.2)

The Cartan charges for the supercharges Q' and @, are listed in Table
3.1. Q' and Q; belong to 4 and 4 of SU(4) representations, respectively.

The Cartan charges for the component fields in the vector multiplet are
listed in Table 3.2.

In order to define the superconformal index we choose the supercharge
with the following Cartan charges:

Q=0 (H,J.7. Ry, Ry, Ry) = (5,0, ~L +1 4L +1).  (3.3.3)
Then, A is given by

A=2{0Y, 0 = H—2] — Rx — Ry — Ry. (3.3.4)
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Table 3.1: The Cartan charges for the supercharges. [%] means the spin-half
representation for SU(2).

QI7 @I H J j ‘ (RXJ RY7 RZ)
Q |3 Bl 0] (-3-3-3)
Q |3 [ 0| (=3 +5+3)
@ 13 B 0| (+5-3+3)
Q |3 B 0] (+5+3-3)
Q |3 0 5| (+3.+5+3)
9, |1 o ]| (hebe)
Q |3 0 [ (=3+3-3)
Q |3 0 [51](-3-3+3)

Table 3.2: The Cartan charges of the N' = 4 vector multiplet.

Flelds \ H J J \ SO(6) rep.
Fu,Fyl 2 £ =£3 1

X! S0 +5 4

Ory 1 0 0 6

There are five independent linear combinations for Cartan generators com-
muting with Q:

A, H+J, J Rx—Ry, Ry-—Rjz (3.3.5)
We define the superconformal index by
Z(q,y,u,v) = Tr (—1)FquHJrij‘]uRX’RYvRY’RZ] . (3.3.6)
Because the index Z counts only the BPS states with A = 0, Z is independent
of x. We also use the following notation:
v 1

W= U=, U= (uugug = 1). (3.3.7)

In this notation the corresponding part of the index becomes

XUy uffs = yfix vy fiv =z, (3.3.8)

Uy
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The Cartan generators Ry — Ry and Ry — Ry are the ones of the R-symmetry
subgroup SU(3) C SU(4).

By using the localization method we rewrite the superconformal index
into a tractable form,

T (a.9100) = [ duPesp (il 03" (339)
where Y3 is the character for the adjoint representation of U(N) given by

N
adj

= g— (3.3.10)
ij=1 >

Now, let us calculate the single-particle index iyec(q, y, u,v). The proce-
dure is as follows: Since we are considering the weakly coupled limit, the
fields that appear in the theory are free fields. We calculate the mode ex-
pansions of free fields and construct the single-particle states as given in
(2.4.18). The single-particle states are composed by a single action of the
creation operators Al on the vacuum |0): Al |0). The single-particle index
can be obtained by examining the quantum numbers of such single-particle
states. A convenient way to investigate the quantum numbers is to use lo-
cal operators corresponding to the single-particle states. In general CFT,
there is a one-to-one correspondence between states |n) on R x S and local
operators O, inserted at the origin on R*:

[n) «— On. (3.3.11)

It is called the state/operator correspondence. R x §? is related to R* by the
Weyl transformation and Wick rotation, and the origin on R* corresponds to
the infinite past t = —oo on R x §*. It follows that any state at t = t, can be
generated by an operator inserted in the infinite past given as the origin. (See
Figure 3.1). If |n) is a k-particle state, the corresponding operator consists
of k elementary fields and derivatives on R*. Now, we consider the k = 1
case. The local operator consists of one elementary field and derivatives. As
a simple example, let us consider the case for the scalar field ¢5 given in
(3.1.4). The general form of the local operator is given by

(a1i)ll (am)lz (a2i)l3 (822)14 P12, (3-3'12>
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Weyl transformation
R x §° > R*

Oy,
Figure 3.1: A state/operator correspondence. The infinite past ¢ = —oo on

R x S? is moved onto the origin on R* by the Weyl transformation. A state
In) at t =ty corresponds to a local operator inserted at the origin.

where l4 234 € Z>( and the derivatives 0,4 have the quantum numbers listed
in Table 3.3. By summing over [; 534 we obtain the contributions of ¢;5 to
the single-particle index:

e 3\ /1 Nl2/ 3 \B/ 1 .\l
> (q?y) (q?y) <q2y 1) (qu 1) qu. (3.3.13)
l1,l2,13,14=0
Note that operators in (3.3.12) are not all linearly independent. Among the

contributions we need to subtract the degree of freedom in the equation of

Table 3.3: The quantum numbers of the derivatives 0,4 and the elementary
field ¢12.

Q. Q;|H J J |(Rx,Ry,Ry)
811 1 % % (07070)
o5 |1 3 —3| (0,00
821 1 _% % (07070)
Oy |1 -3 —3| (0,00
P12 1 0 0 (1,0,0)

o
w



motion for ¢;s:
90012 = 0. (3.3.14)

The subtracted contributions are

& 3 \! ENY . l ) Iy,
> (q%y)l(qu)Q(q%y‘1)3<q§y‘l)4q“w (3.3.15)

l1,l2,l3,l4=

Performing the above operations for all elementary fields in (3.1.1) yields the
single-particle index. In fact, since the cancellation between the contributions
from bosons and fermions, in the construction of the local operator in (3.3.12)
we do not have to take account of derivatives and fields with A > 0.

By summing up all the contributions from each component fields in the
free vector multiplet listed in Table 3.4, we obtain the single-particle index

X0 — a2 (y +y7") — X + 2¢°
(1—q2y)(1 = g2y )

where X[q5 is the SU(3) Weyl character for the representation with the

Dynkin label [a, b] given by

ivec(nyau;v) = s (3316)

wett 1 gt uw 1wt
Yo = | @/ 1 | /] ) 1 @ |, @aan)
(1/v)*t 1 (1 v)~"! (/o) 1 (1fv)~

and we give simple examples of the SU(3) Weyl characters:

1

) 1
X0 =+ —+—, Xoy=—-—+—-+v (3.3.18)
u v U v

3.4 Definition of Schur index

Let us define the Schur index for the N' = 4 supersymmetric Yang-Mills
theory explicitly following the general definition in 2.5. We need to choose
another supercharge () which has opposite chirality to ) and anti-commutes
with ). We use the one with the following Cartan charges:

@ = Q(Ix::é : (Ha ‘]aja RXaRY7RZ) = (%7 _%,O,‘{’%,‘F%, —%) (341)
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Table 3.4: A = 0 states in the N' = 4 vector multiplet.
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The anti-commutation relation for the supercharge is
A=2{(Q),Q} =H —2J— Rx — Ry + Ry. (3.4.2)

A and A have bounds A, A > 0 and states saturating the bounds reproduce
a short multiplet. There are four linear combinations of the Cartan charges
which commute with ) and Q:

A, A, H+J+J, Rx—Ry. (3.4.3)
We define the Schur index,
Z(q,u) = Tr [(—1)FxA55qH+J+7uRX*RY . (3.4.4)

Because only the BPS states with A = A = 0 contribute to the Schur index,
7 is independent of x and . The Schur index is a specialization of the super-
conformal index, and the Schur index is obtained from the superconformal
index by taking the limit y = q%, v = 1. The survived R-symmetry is SU(2)
and the corresponding Cartan charge is Ry — Ry.

The localization method can be used for the Schur index:

IU(N)(Q7U) = /d,U/NPeXp (ivec(Q7u)X7\§j> . (345)

The contribution from each component field in the free vector multiplet is
listed in Table 3.5. The single-particle index is given by

. a1 — 2¢°
ivec(q, U) = 1_—(]27 (3.4.6)
where x, is the SU(2) Weyl character given by
ua+1 _ u—(a—i—l)
Xa(u) = : (3.4.7)

u—ut

In [43], Bourdier, Drukker, and Felix analyzed the Schur index (3.4.5)
at v = 1 and derived the exact solution of Zy(ny(¢g,u = 1). The following
general formula is known:

oo

7
IU—((N)) =3 T I = (1) (v4nCn + N1 On)g N,
U(o0) lu=1 n=0

(3.4.8)

where ,,C}, is the binomial coefficient.

36



Table 3.5: A = A = 0 states in the A’ = 4 vector multiplet.

Field | [J, J]%™™™ | index
(1,0,0)

[

X [070]1 +qu
Y | [0,0){? tqu!

1 (323 2
Ay | [+3,0]5 q
4 TR
R U T e
Opi | g +3I"" | 4+

3.5 Numerical results

3.5.1 Superconformal index

We give numerical results of Zy(ny(q,y, u,v) for small NV cases:

Ty = 1,

Zyay =1+ qxp,o — Q%Xl(y) + QZ(X[ZO] — X[o1]) + qg(—X[m] + X0 — X2(y)
+1) + X1 ()X +

Ty =1+ qxpo — 42 X1 (%) + ¢ (2x0 — Xo) — X1 ()Xo + ¢ (— Xy
+2xs.0 — X2(y) + 2) + a2 x1(¥) (Xoa) — X))+

T =1+ axo — 2 x1(y) + ¢ (2xpo — Xo) — X1 ) xwe + ¢ (=X
+ 3x3.0 — X2(y) +2) + Q%X1(Z/)(X[0,1] —2X[2,0))

Ly =1+ qxpo — Q%X1(?/) =+ q2(2X[2,O] — X[o1]) — qu1<y)X[1,0] + qg(—X[m]
+3x30) — X2(y) +2) + q%X1(y)(X[O,1] — 2X[0) + - (3.5.1)

The above numerical results (3.5.1) show that each term in the g-expansion

converge to some values as the rank N increases. In fact, Zy(y) converge in
the large-IV limit to the large-N index Zy(«). Zy(«) can be obtain from the
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saddle point analysis [4] given by

—1 —1 3 3 —1
qu qu v qu q2y q2y
IU(oo) = Pexp + ] + 1 3 3 :
l—qgu 1—qutv 1—qu 1—q2y 1-—q2y!

(3.5.2)

The numerical result of Zy () is

3 5
Ti(oe) = 1+ axp0 — 2 x1(y) + ¢ (2x2.0 — Xp0.17) — €2 X2 (W) X0 + ¢ (=X
+ 3xp3.0 — X2(y) +2) + q7/2X1(y)(X[0,1] — 2Xp2,0)) + (3.5.3)

3.5.2 Schur index

We give numerical results of Zy(ny(q, u) for small N cases:

0

+axi+ @ e —-2)+ e —x1) +¢ (u—x2) + -,

L,
=1 2(
L+gxi+ @ (20 —2)+¢ 2x —2x1) +¢* Bxa —3x2) + -+,
1 2(
1 2(

(0)
(1)
()
®3)
(4)

Faxi+ P (2x2 —2)+ ¢ Bxs —2x1) + ¢* (—dxy +dxa + 1)+ -+,
2X2—2)+q3(3X3—2X1)+q4(—4xg+5x4+1)+--~ .
(3.5.4)

As in the case of the superconformal index, Zy () (g, u) converge in the large-
N limit to the large-N index Zy (o) (q, u) given by

3

FEHES

4 +axi1+4q

-1

2
qu qu q
IU(oo) = Pexp (1 ~ qu + 11— qufl — 11— q2> . (355)

The numerical result of Zy () is

Tueo) =1+ + ¢ (2x2 —2) +¢° (3xs — 2x1) +¢" (—dxa +Oxa+ 1) +--- .
(3.5.6)

We are interested in the difference between Zy(ny and Zy (), and it is useful

to take the form Zy(ny/Zy (o). We give the numerical results of Zy vy /Zy(o):

o =l=axi+ @ (B—x2) +¢" (5= x2) + " (—x1 —xz+x5) +

o) =1 =+ (20— )+ 2 —xa - D+ 2 -1+

o =1l =xs+q" 22 —xa— D+ a+xs—xs)+-

o =l—gu+(—x1+26—xs) + " a—xs+2)+--,

6
(

o) =1 =" x5+ ¢® (—x2+2xa—x6) +¢" (X1 + X5 — X7) + - .
(3.5.7)

FEEIS
SRCICHCHO
IS
S SSs
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For u = 1 case most of the terms in the numerical results in (3.5.7) vanish,
and the numerical results with © = 1 become simpler:

Zv)/Zuiso)| oy = 1 — 20+ 2¢" — 2¢° +2¢"° — 2¢%° + - - -,
Tuy/Zves)|,_, = 1 — 3¢ +5¢° — 7¢'2 +9¢%° — 11¢% + - - -,
Tv@)/Tuso)| .y = 1 — 4¢° +9¢° — 16¢"° + 25¢** + - - -,

IU(3)/IU(OO) ’u:l =1—5¢* +14¢" — 30¢*® + 55¢% + - - -,

Lo/ Tuoo)| oy = 1 = 60° +20¢™ = 50¢”" + - . (3.5.8)

u=

These results are consistent with the general formula (3.4.8).
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Chapter 4
AdS/CFT correspondence

In Chapter 4, we review the AdS/CFT correspondence, which is a conjectural
relationship between a superstring theory on the anti-de Sitter space and
a conformal field theory. Especially, we introduce the original model [1]
of the AdS/CFT correspondence, which is a relationship between the four-
dimensional N' = 4 U(N) supersymmetric Yang-Mills theory and the Type
IIB string theory in the AdS5; x S° spacetime.

We first consider a system of NV coincident D3-branes in the ten-dimensional
flat spacetime R, There are two descriptions of the system, the gauge the-
ory description and the gravity description. We first explain the gauge theory
description in 4.1 and also explain the gravity description in 4.2.

After that, we focus on the superconformal index in the AdS/CFT cor-
respondence and discuss the case for large N and finite N, respectively.

4.1 N =4 SYM from open strings

An open string is a string with endpoints. The endpoints are attached to
objects, so-called D-branes. A D-brane is a dynamical object with different
dimensions. D-branes with spatial dimension p are called Dp-branes. The
motion of the open string attached to the D-branes generates gauge theories
in various dimensions.

We discuss a system of coincident N Dp-branes labeled by ¢ = 1.... N.
Because an open string has two endpoints, there are N? ways for the two
endpoints to be attached to the Dp-branes. The degrees of freedom are
described by the Chan-Paton factor [44] specified by (3, j).



Table 4.1: Massless states of the open string on the Dp-brane. The index a
running from one to N? labels the adjoint representation of the U(N) gauge

group.

Sector \ Field
NS " (p + 1)-dimensional vector
% (9 — p) real scalars

R A% fermion

Let us quantize the open string with the Chan-Paton factor (i,j) and
obtain states described by the fluctuation modes of the open string. The
states have also the Chan-Paton factor (i, j) and belong to the adjoint rep-
resentation of the U(N) gauge group. We denote the parallel and transverse
directions to the Dp-brane as p=10,...,pand [ =p+1,...,9, respectively.
We obtain the massless states listed in Table 4.1. The index a in Table 4.1
labels the adjoint representation of the U(N) gauge group. In summary, the
worldvolume theory on the coincident N Dp-branes is the supersymmetric
U(N) Yang-Mills theory with the maximal supersymmetry.

The Lorentz symmetry SO(1,9) in the target space is broken down to
the following symmetry:

SO(1,p) x SO(9 — p) C SO(1,9). (4.1.1)

The SO(1,p) is the Lorentz symmetry in the worldvolume theory on the
Dp-brane. The SO(9 — p) is a rotation of the transverse coordinates to the
Dp-brane, and it is an internal symmetry in the worldvolume theory.

In particular, the worldvolume theory on the N coincident D3-branes is
the NV = 4 U(N) supersymmetric Yang-Mills theory introduced in Chapter
3. The internal symmetry SO(6) ~ SU(4) is interpreted as the R-symmetry
of the N' = 4 supersymmetry. The fields on the worldvolume form an N =
4 vector multiplet, which contains a four-dimensional vector field, six real
scalars, and four Weyl fermions.
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4.2 Near horizon geometry of N coincident
D3-branes

We consider a system of the N coincident D3-branes along 2°, 2!, 22, 23. In

the gravity description, the branes are given as a supergravity solution. The
metric is given by

ds® = f2dskis + 2 (dr? + r2dQ2)

L4
f= 1+T—4, L = (4mgsN)

-

L, (4.2.1)

where dsg, 3 = ndatde” and d©QF is the metric on the unit five-dimensional
sphere. The classical solution is almost flat in the asymptotic region r > L.

Degrees of freedom propagating in the asymptotic region are decoupled
from localized degrees of freedom near the horizon at r» = 0 in the limit
ls — 0. We are interested in the localized degrees of freedom. In the near
horizon region r < L the metric (4.2.1) becomes

2 2
ds® = L* (%dsil,g + %) + L?d03. (4.2.2)
The first term represents the five-dimensional anti-de Sitter (AdSs) spacetime
with the radius L and the second term is the five-dimensional sphere (S°)
with the radius L. Therefore, localized degrees of freedom around the event
horizon are described by the Type IIB string theory in AdSs x S°.

In the gravity description, there is a background gauge field, which is
induced by the charge of the N coincident D3-branes. The N coincident D3-
branes couple to the four-form gauge field C, in the Type IIB supergravity.
The flux of the gauge field is given by

/ dCy = 27N, (4.2.3)
SS

In order to obtain a concrete form for C; we introduce the metric for S°,
L2dQ; = L? (sin® 0d¢® + db” + cos® 0d9)3) (4.2.4)
and the volume element on S°,

ws = L°sin @ cos® 0dH A dg A dSs, (4.2.5)
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where 0 < 0 < 7 and 0 < ¢ < 27. Note that the volume of S® is given by
Vs = [gsws = m°L°. By using the volume element, the flux is written by

2T N 4Ths
dcy = =
4 Vv Ws I

We integrate (4.2.6) for § and C} is given by

ws. (4.2.6)

27N r® [3J0)
— — (1 =cos*p) == 4.2.
Cy Vo (1 —cos*0) Y dt A dSs, (4.2.7)

where the integration constant is determined so that Cy =0 at 8 = 0.

Global coordinate system
The five-dimensional AdS space can be given as the hypersurface in R?#,

X2+ X5 —-X; - —X{=1" (4.2.8)

The coordinates z* and r in (4.2.2) are related to X; by

2 2
x, == (1 +— (1 + mwx“x”)) :

2r L
X, = %x“,
L2 TQ 2 v
Xi=- (1 -7 (L? = nuat'a )) : (4.2.9)

and the metric of AdSs is given by
4
ds® = —dX?, —dXg + Y dX}. (4.2.10)
i=1
We introduce the global coordinates (p, T,w;) in AdSs by

X _ 1= LcoshpcosT,
Xo = LcoshpsinT,
X; = Lw;sinhp, fori=1,2,3,4, (4.2.11)

where 0 < 7 < 27 and p € Rsg. w; are the coordinates of S* satisfying
>;w? =1. The metric of AdSs is

ds®> = L? (— cosh® pdr?® + dp® + sinh? pd€23) . (4.2.12)
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The boundary is given by the limit p — oco. For large p, the metric is
approximately

L2€2p
4
and we see that the boundary of AdS; is R x S°.

ds® ~

(—dr? + d3) (4.2.13)

4.3 AdS/CFT correspondence

The AdS/CET correspondence claims that a superstring theory in d + 1-
dimensional AdS spacetime (AdS;;1) with a compact internal manifold X is
equivalent to a d-dimensional CFT on the boundary of AdSy.;. The more
precise statement in [1] for the simplest example is that

the Type IIB string theory with the string length [, and the string coupling g,
in AdSs x S° with the AdS radius L and N units of five-form flux on S°
is equivalent to
the /=4 U(N) SYM on R x §* with the coupling constant gyy.

We can see from the metric (4.2.12) that the topology of AdSsis Rx By, where
By is the four-dimensional open ball. It has the boundary Rx S® and the CET
realizes on the boundary. See Figure 4.1. The AdS/CFT correspondence is an
example for the holography. As a simple consistency check of the AdS/CFT
correspondence, let us compare the symmetries of two theories. From the
metric (4.2.10) we see that the AdS; space has the isometry SO(2,4). The
five-dimensional sphere S° has the isometry SO(6). Therefore, the Type I1IB
string theory in AdSs x §° has the symmetry SO(2,4) x SO(6). On the other
hand, the N/ = 4 SYM has A = 4 superconformal symmetry and its bosonic
part is SO(2,4) x SO(6), where SO(2,4) is the four-dimensional conformal
group and SO(6) is the R-symmetry. We see that two theories have the
same symmetry. This fact is important because it enable us to define the
superconformal index on both sides of the correspondence. The AdS/CFET
correspondence also claim that their Hilbert spaces of two systems should
be the same. This means that two indices calculated on each side must be
identical.

There are many different ways to choose a compact space X and various
CFTs or gauge theories appear depending on how X is chosen. Several
examples are shown in Table 4.2.
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Type IIB N =4 SYM
string theory

- - < -

Figure 4.1: (a) The Type IIB string theory in R x B (b) The N' =4 SYM
in R x §3.

We can give a more quantitative relation called the Gubser-Klebanov-
Polyakov-Witten (GKP-Witten) relation [45, 46]:

fddeiJiOi> :/ Do, 75[4)”&]_ 4.3.1
<e CFT H i ( )

The left hand side is the generating function of correlation functions in the
CFT. O, are operators in the CFT and J; are corresponding source fields.
The left hand side is given by the following path integral with respect to the
fields in the CFT:

(Jaamino = / Dlfields|e=Scrr+/ ¢, 50: (43.2)
CFT

The right hand side in (4.3.1) is defined as the path integral with respect
to the fields ®; in AdS,; satisfying the boundary condition imposed on the
AdS boundary:

(I)i|b0undary ~ J;. (433>

Both the left and right hand sides in (4.3.1) are the functional of the source
field J; and (4.3.1) claim that they are the same. With this relation we can
calculate the correlation function in the CFT by using the supergravity or
superstring theory in AdS;,1. For this relation to hold for each operator O;
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Table 4.2: Several examples of the AdS/CFT correspondence. SFEs is the
five-dimensional Sasaki-Einstein manifold.

‘ boundary CF'T ‘ compact internal space X

d=4 | N =4S5S0, Sp SYMs X =S8°/Z,

N = 1,2 orbifold quiver gauge theories | X = §°/T

N = 1,2 toric quiver gauge theories X = SE;5

N = 3 S-fold SCFTs X =8°/7

N =2 SCFTs X =8°/Zn,
d=6| N =(2,0) SCFTs X =5

N = (1,0) SCFTs X = 87,
d=3| N =06,8 ABJM theories X=9

in the CFT there must be a corresponding field ®;. For a special class of
operators the fields ®; are the massless supergravity fields, while in general
they may be stringy excited states or fields associated with expanded branes.
For a four-dimensional A/ = 4 CFT the operators O; carry the quantum
numbers related to the SU(4) R-symmetry. The corresponding fields ®; are
Kaluza-Klein modes in S° and carry the charges of the isometry SO(6) ~
SU(4). In addition to the quantum numbers, the dimension of the operators
corresponds to the energy of the fields. Especially, an operator with the
dimension A corresponds to a field with the energy of the order A/L.

Parameter relation

The four-dimensional N’ = 4 supersymmetric Yang-Mills theory is character-
ized by two parameters; the gauge coupling gyy and the rank N of the gauge
group. On the other hand the Type IIB string theory in AdSs x S° is also
characterized by two dimensionless parameters L/l and g5, where [, L, and
gs are the string length, the AdS radius, and the string 1coupling constant,

respectively. ! The Planck length [, is given by I, = gdl,. There are two
parameter relations:

L L
p S

! In both the N' = 4 SYM and the Type IIB string theory, there is one more parameter:
f-angle. It does not play any role in the following arguments and we ignore it.
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Note that we ignore the numerical coefficients.

There are two conditions for the string theory to be approximated accu-
rately by the classical supergravity. One is that a correction from quantum
gravity is small:

G l

8
1> -5~ (f) ~ N2 (4.3.5)

This means N must be sufficiently greater than one. The other condition is
that stringy excitations can be ignored. This requires

NS
N

ls _
1> T~ (AmgsN) ™1 ~ A7 1, (4.3.6)
This means A must be sufficiently greater than one. In the large- N limit and
A > 1 the Type IIB string theory becomes a weakly coupled supergravity,
while the corresponding N’ = 4 SYM is strongly coupled. On the other hand,
in the large-N limit and A < 1 the N' = 4 SYM is weakly coupled, and we

need to consider the stringy excitations in the Type IIB string theory.

4.4 Large-N index and supergravity Kaluza-
Klein modes

It is difficult to prove the AdS/CFT correspondence because when one side of
the correspondence is weakly coupled, the other side is strongly coupled and
we cannot calculate quantities on the both sides. However, in the parameter
region of a weakly coupled string theory and a strongly coupled gauge theory,
we can calculate the superconformal index in a strongly coupled gauge theory
by using the localization method and we can obtain strong evidence of the
AdS/CFT correspondence by comparing the indices on the both sides of the
duality.

First of all, we consider the large N case. The superconformal index
Z17(s) on the gauge theory side can be calculated by the localization method
and is given by (3.5.2). On the gravity side, the Kaluza-Klein modes, which
we will explain shortly, contribute to the superconformal index Zxk. It was
found in [4] that the superconformal indices on the both sides, Zy() and
Tk, agree

Ty (o0) = Ikk- (4.4.1)

47



This relation also holds in the Schur limit.

In the large-N limit and A > 1 the dynamical degree of freedom is a free
supergravity multiplet in AdSsx S°. The mode expansion of the supergravity
multiplet in AdSs x S° has been studied in [47, 48]. The Kaluza-Klein modes
satisfying the BPS condition A = 0 are labeled by the Cartan charges; the
energy E, SU(2) spins J and J, and R-charges Ry, Ry, and Rz. We denote
the BPS states as [J, 7]SERX’RY’RZ). The Kaluza-Klein modes with A = 0 are
listed in Table 4.3. For the Kaluza-Klein modes in Table 4.3 we consider the

Table 4.3: The Kaluza-Klein modes in AdSs x S° with A = 0 and their
contribution to the superconformal index.

| [J, )00 R2) | index
n>1 [0,0]%”’0’?1 1 +4" X[n,0]
[%70]:1—;575) —g"(y +y_1)X[n—1,o]
(n,lyl ,l) n
0, %]nJr; 2 —q" X n—1,1]
[0, 1]511_11’0’0) +q" X n-1,0]
n>2[ 0,005 | +¢" iy ag
1 17(rn—1,1,0) n+3 s
(5 5]?“3 - HE (Y + Y ) X2
n777777 n é —
N e A R b
o s -
n >3]0, %]iJrg 23) —q +2X[n—3,1}
n—1,1, n
[0, 1]51—4—21 Y +q +3X[n73,0]

excitation by the following differential operators satisfying A = 0,
dr1:(H,J,J,Rx,Ry,Rz) = (1,+1,+1,0,0,0), (4.4.2)
d_y:(H,J,J,Rx,Ry,Rz) = (1,—%,43,0,0,0). (4.4.3)

The contribution of single 0, ;, d_; to the superconformal index is q%yjEl
and the multiple excitations give the factor

1
(1-qy)(1—q2y™")

The superconformal index of the single-particle state of the Kaluza-Klein

3
2

Pexp (q (y + y_1)> = (4.4.4)
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modes in Table 4.3 with specific n is given by
1
. n n+1 -1 n+1
s, = 5 —— ("Xt — W+ ¥ )X 10 — @ X 1)
(1 —q2y)(1—q2y™")
3 _
+qn+2X[n—1,0] + qn+1X[n—2,0] +q¢" 2 (y+y 1)X[n—2,1]

3 — n n
—¢""2(y+ Y )X 20 — ¢ N3] + ¢ +3X[n—3,0]> . (4.4.5)

where some SU(3) Weyl characters are formally calculated according to
(3.3.17) as follows:

X[-1,0 = X[-1,1] = X[-2,0 =0, X[—211=—1. (4.4.6)
In summing over n, we obtain the single-particle index 2
. = qu qutv qu! gy gzy~?
ZKKzzlsnzl +1 —1 +1 1 ENu ENPE
n=1 Tqu Lmquere L qu L—=qy 1—qy”

(4.4.8)

The contribution of the Kaluza-Klein modes including multiple-particle states
is given by
IKK = Pexp (ZKK)

=14qxuo + q2(2X[2,0] — X[o41]) + QS(—X[l,l] +3X3,0 — X2(y) +2) + -+,
(4.4.9)

and this agrees with Zy (o) (q, ¥, u,v) in (3.5.3).

4.5 Finite-N index and giant gravitons

In the previous section, we confirmed the large-N index Zy () is the same
with the index of the supergravity Kaluza-Klein modes Zxk. Now, we con-
sider the case when N is finite.

2 The following formula is useful in calculating the summation over n:

[eS)
1
n = P =
00 0o 2 3
n+1 _ n+1 o q~X[o,1] — ¢4
n— - X[n— X - X[n— - .
;}q Xin-1.1) nz_%q (Xin—1.00X10.) = Xin—201) = 7050 = gty (1= o)
(4.4.7)
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The difference between the superconformal indices in the large N and
finite N cases is

oy = Tk = =" P xvao + - (4.5.1)

This suggests that the corresponding object has the energy in the order of
N/L. In fact, an object called a giant graviton can have this energy.

A giant graviton is a D3-brane expanded in 8°. 3 Let us consider a giant
graviton wrapped around a large S° in S°. Its energy is the product of the
volume 2723 and the tension Tps,

N
22 L% x Tpy = T (4.5.2)

and this reproduce the order of the difference (4.5.1) up to the constant shift
+1.

In fact, a giant graviton can take general configurations [11]. Let o®
(a = 0,1,2,3) be the coordinates on the worldvolume of the D3-brane and
XM (M =0,1,...,9) be the coordinates of the background spacetime. The
motion of the D3-brane is described by maps XM (0) from the worldvolume
of the D3-brane to the background spacetime. The action of a D3-brane in
a curved spacetime with non-vanishing Cj is

SDg = —TDg/d4O'\/ —det Gab — /04 (453)

We set the gauge field and the fermion fields on the D3-brane, which we are
not interested in here, to be zero. The first term is the Nambu-Goto action
and the second term is the minimal coupling to the background gauge field
Cy. Tps is the tension of the D3-brane given in terms of the string length [
and the string coupling g, by

2

Tpg = —
D3 (27l5)4gs

(4.5.4)

3 In the Type IIB string theory in AdSs x S° there are two types of giant gravitons;
one wraps around S° in 8% called the sphere giant [11] and the other wraps around
S3 in AdS; called the AdS giant [49, 50]. These giant gravitons are complementary
in the sense that they reproduce the same BPS partition function of the N'=4 U(N)
SYM [13, 51]. We focus on only the sphere giant. The role of the AdS giant in the
finite IV index has not been known. Henceforth, we often call a sphere giant a giant
graviton.
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G is the induced metric defined by

OXMoxN

Gap = .
b 9% Dob gMN

(4.5.5)

We use the coordinate system in S° (4.2.4). Let us consider a D3-brane
with the worldvolume (4.5.3) given by

0 = const., ¢ = ¢(t). (4.5.6)

This ansatz represents a giant graviton moving along the ¢ direction. (See
Figure 4.2). For this giant graviton the action (4.5.3) reduces to

/dt (—M\/l — (Lsin0¢)2 + ML cos 0q’5> : (4.5.7)

where M = Tps(L cos 0)3s.

Figure 4.2: The giant graviton moving along the ¢ direction in S°.

The angular momentum P, conjugate to ¢ and the energy E are given
by

P 2
N =2 —costd
= leosbo+ [ X—7 45.
E 74| o8 —|—< p—; ), (4.5.8)
M L2 sin? ¢
P, S0 M Lcost. (4.5.9)

B \/1 — (Lsinf¢)?
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Figure 4.3: The energy E in (4.5.8). We set P,/N = 0.8. The left minimum
point at cos?§ = P,/N represents the giant graviton. The right minimum
point at cos? § = 0 represents the point-like Kaluza-Klein graviton.
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The energy has a minimum value Fy,;, = P,/ L at two points cos? 0 = 0, Py /N
(Figure 4.3). The point cos?# = 0 represents the point-like Kaluza-Klein
graviton and the point cos®§ = P,/N represents the giant graviton with the
finite radius.

In the following chapter, we show that we can reproduce the finite-NV
Schur index by taking account of the contribution of the degrees of freedom
on systems consisting of different numbers of giant gravitons.
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Chapter 5

Finite-N Schur index from
giant gravitons

In this chapter we show a new method for calculating the Schur index of the
N =4 U(N) supersymmetric Yang-Mills theory on the gravity side via the
AdS/CFT correspondence.

In [14] in calculating the superconformal index on the gravity side they
take account of the contribution from configurations with a single giant gravi-
ton because there is a difficulty in the calculation for multiple giant gravitons.
It is about the choice of contours in the integrals appearing in the calculation
for multiple giant gravitons. We point out that this difficulty can be par-
tially avoided if we take the Schur limit, and propose a rule for the contour
determination.

5.1 BPS configuration and Rigid motion

In order to describe the configuration of giant gravitons, we introduce C?
with the coordinates (zx, 2y, zz) and embed the five-dimensional sphere S°
in C3. The coordinates of C? satisfy

lzx)® + |2y [P+ |22 =1 on S°. (5.1.1)

We are interested in BPS configurations of giant gravitons wrapped on S°.
According to [12], a BPS configuration can be given by the intersection of a
holomorphic surface f(zx,zy,zz) = 0 in C* and the S°. The holomorphic



function is expanded by the holomorphic coordinates as

oo
flex, 2y, 22) = Z Unynynyg 25 2y 25" (5.1.2)

nx,ny,nz=0

The overall factor in (5.1.2) is irrelevant to determine the holomorphic surface
f=0.

We consider the case that f is a homogeneous polynomial with degree
m, and we call m = nx + ny + nz the wrapping number. Let us consider a
single giant graviton with m = 1. The corresponding holomorphic surface is
represented by

axzx +ayzy +azzz = 0, (513)

where we set ax = a199, ay = ao10, and az = ago1. Let us focus on the giant
graviton wrapped around zx = 0, which carries

H=Ry=N, Ry=R;=0. (5.1.4)

Note that we use the same notations of the Cartan generators in (3.3.1). The
system of the single giant graviton has the SU(3) R-symmetry that can be
interpreted as rotations in S°. The SU(3) rotations give the rigid motion
of the giant graviton and change the R-charges (Rx, Ry, Rz) as the BPS
condition

H— Ry —Ry — Ry =0, (5.1.5)

and Ryx,Ry,Rz > 0 are satisfied. Let the state with (Rx,Ry,Rz) =
(N,0,0) be a highest weight for the SU(3) symmetry. The general weights
are composed by reducing Rx = N of the highest weight and have the charge

(Rx, Ry,Rz) = (N —a— b,a, b), (516)

where a and b run from 0 to NV and satisfy a + b < N. There are two lowest
weights, (Rx, Ry, Rz) = (0,N,0) and (0,0, N). We see that these weights
construct the [N, 0] representation of SU(3). Their contribution to the index
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is
SU(3
¢ Xy o (11, iz, us)

N Uiv Uév Uév
+ +

A N [ M I

= (qu1)" Pexp (% + %> + (qus)™ Pexp <% 4
Ui U1 U2 Uz

where u; 23 are given in (3.3.7). Each of three terms in (5.1.7) can be inter-
preted as the contribution from one highest weight and two lowest weights.

The giant graviton wrapped around zy = 0 carries the charges (5.1.4).
This gives the factor (qu;)Y in the first term of (5.1.7). The factor Pexp(;2 +
Z—i’) can be regarded as the contribution from rigid motion around zy = 0.
Combining these two factors we obtain the first term in (5.1.7).

It was found in [14] that the correct index for single-wrapping giant gravi-
tons can be reproduced by replacing the Pexp factors in (5.1.7) by the index
of the field theory realized on the giant graviton. Namely, the contribution

from the single-wrapping configurations is
(qu1)"Pexp [ix] + (qua) " Pexp [iv] + (qus)" Pexp [iz], (5.1.8)

where ix is given by [14]

(1— ¢ ur)(1 = g2y)(1 — g2y ™)
(1 = qua)(1 — qus) ’

and 7y and iz, the index for the giant graviton on zy = 0 and z; = 0,
respectively, are given by cyclic permutations of u; 23. The g-expansion of
7 X is

ix =1— (5.1.9)

ix=—4+—4—H4---, (5.1.10)

and it includes negative and zero power of q. We define the plethystic expo-
nential of the negative power term, called tachyonic term, according to the
formula (2.4.21),

1 1
%@(—): _ = (5.1.11)

u1q ~ g 1—u1q'
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This means the tachyonic term raises the power of q. The terms of the
zero power of ¢ correspond to the rigid motion associated with the SU(3)
symmetry. These zero modes from iy, iy, and iz generates SU(3) characters.

5.2 Multiple giant gravitons

By generalizing (5.1.8) we expect that the superconformal index of the N' = 4
SYM including all contributions from giant gravitons is given by

= I(nx,ny,nz)v (521>
IU(OO) nx,ny,nz=0
where
I(”X,ny,nz) = (qul)nXN(QUQ)nYN(qu3>nZNH(”XJLYJLZ)' (5'2'2>
Hn my ny) is the index of the field theory realized on the brane configuration

specified by (nx,ny,nyz). It consists of ny giant gravitons on zx = 0, ny
giant gravitons on zy = 0, and ny giant gravitons on zz = 0. On each cycle
U(ny) gauge theory is realized. The whole theory is the gauge theory with
U(nx)xU(ny)xU(nz) gauge group. In addition, when there exist D3-branes
wrapped around different S? cycles in S° at the same time, we need to include
the contribution from open strings stretching between these D3-branes. We
call them intersection strings. For example, an intersection string attached
on two cycles zx = 0 and zy = 0 belong to the bi-fundamental representation
of U(nx) x U(ny). Namely, the system consists of fields belonging to the
adjoint representations and the bi-fundamental representations.
The index of the theory is

- j 1 -in i-fun
H(nx,ny,nz) = / H d#’nIPeXp ( Z ZIX?:}IJ + 5 ZZI,tJXELI,fan) .

I=X.Y,Z I=XY,Z I£J
(5.2.3)

The first term in the parentheses is the contributions of the fields belonging
to the adjoint representations and i; are given in (5.1.9) and chllj are given
in (3.3.10).

The second term is the the contributions of the fields belonging to the
bi-fundamental representations. The contribution of the intersection string
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between the D3-branes on zx = 0 and 2y = 0 to the single-particle index is

(1-q>y)(1—q2y™)
1—qus

[int
XYy —

3
3
- , 5.2.4
. (5.2.4)

and

ny ny
=S (G ). (5:25)

a=1 b=1

The fugacities ¢, and ¢/ in (5.2.5) correspond to the D3-branes wrapped
around z; = 0 and z; = 0, respectively.

Integration contour problem
In the integration for the gauge fugacities ¢, in (5.2.3), we need to determine
contours and there is a problem about the choice of contours. The rest of
this section will discuss the problem of contours.

Let us remember how we choose integration contours in standard index
calculation. The g-expansion of the single-particle index is denoted by

L= Z&k(%yuuav) - Zﬁj<q7y7u7v)7 (526>
k J

where «j and 3; have the positive and negative sign, respectively. Usually,
we assume |g| < 1 and the absolute value of the other fugacities is one, and
all a and f; consist of positive power of ¢ and |a;| < 1 and |5;| < 1. In
such a case, we use integration contours |(,| = 1 and poles in |(,| < 1 are
picked up.

However, it is not the case for the system on the giant gravitons. As we
saw in (5.1.10), «y appearing in the expansion of ix include negative power
of q or ¢ and if we assume |g| < 1, such a; do not satisfy |ay| < 1.

Let us consider (nx,ny,nz) = (2,0,0) as a simple example. H;
is simply written by

nx,ny,nz)

H00) = / dpsPexp (ixxgdj>- (5.2.7)

The integrand depends on gauge fugacities ¢; and (, only through ¢ = (;/(
and the Haar measure is

/ iy = / 2d<C< O -¢Y). (5.2.8)
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U(2) character is given by ngj =2+ (¢ + (1. By using the expansion of ix
in the form of (5.2.6), the above integrand is given by

- adi) _ (1—3)2(1— 5,01 —B;¢h)
P (") = [ T mey 29

s

The integrand has the poles ¢ = afl. If we consider the standard parameter
region,

lgl <1, |ul=|v|=ly| =1, (5.2.10)
the following three ay appear in |¢| > 1:

1 1
= —, az=—. (5.2.11)

a1 = - o
Uu uv

ugq
The structure of the poles is shown in Figure 5.1 (a). If we use the contour
|| = 1, the pole ( = a; is excluded in the contour integration and for the
poles ( = ay3 some special treatment is required because they are on the
contour. In fact, the integration with |¢| = 1 under the condition (5.2.10)
does not give the correct result.

I

(a)
Figure 5.1: The structure of the poles in the ¢ plane for ix (a) in (5.2.10)
and (b) in (5.2.14).

How do we 