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Abstract

Navigating a team of agents without colliding with each other plays a crucial role in the
modern and coming automation era, including fleet operations in warehouses, as well
as collaborative robotic construction, to name just a few. Aiming at providing founda-
tions for such broad applications from computational aspects, this dissertation devotes
to developing quick, scalable, near-optimal, robust, domain-independent, and end-to-
end multi-agent navigation technologies. Multi-agent navigation is a very complicated
art based on compositing many technical components from artificial intelligence and
robotics. Therefore, the dissertation decomposes multi-agent navigation into three per-
spectives, that is, planning, execution, and representation, and respectively overcomes
current limitations of cutting-edge technologies.

The first part studies planning, which asks how to determine a sequence of actions
for agents. The corresponding problem of multi-agent navigation is often formulated as
multi-agent pathfinding (MAPF) which asks for a list of collision-free paths on graphs
for multiple agents. The primary challenge of MAPF is to maintain solvability and qual-
ity while suppressing computational effort. On one hand, state-of-the-art optimal MAPF
algorithms have difficulty in solving instances from the grid MAPF benchmark, contain-
ing a few hundred agents, within realistic timeframes. On the other hand, sub-optimal
algorithms can cope with massive instances in a short time (e.g., less than 30 s), mean-
while, such algorithms often lack completeness. Indeed, they often fail condensed or
cluttered MAPF instances, even if less than ten agents are involved. Aiming at break-
ing this tradeoff, the dissertation first presents algorithms with short horizon planning
called PIBT and TSWAP, respectively developed for solving MAPF iteratively, and, simul-
taneous target assignment and collision-free pathfinding. Then, the LaCAM algorithm is
presented, which uses short-horizon planning like PIBT and TSWAP as a sub-procedure.
LaCAM is complete for MAPF, furthermore, it eventually converges to optima, provided
that solution cost is accumulative transition costs. As another direction, the dissertation
also presents the framework of iterative refinement, enabling us to improve the qual-
ity of arbitrary MAPF solutions. Empirically, the dissertation demonstrates that these
proposed methods have excellent performance in success rate, computation time, and
solution quality, significantly outperforming existing MAPF technologies.

The second part studies execution, which asks how to achieve robust plan execution
by agents under various uncertainties in the real world. The primary challenge here is,
at runtime, how to ensure safety (i.e., no collision) and liveness (i.e., eventually reach-
ing destinations) when something bad happens, unexpected from the planning phase.
To this end, the dissertation studies a novel integration style of planning and execution,
namely, deliberative offline planning assuming that agents reactively execute the plan at
runtime. Two types of example studies are presented, called the OTIMAPP and MAP-
PCF problems, respectively for timing uncertainties and crash faults. For both proposed
problems, theoretical foundations, such as computational complexities, as well as prac-
tical approaches to solving the problems are provided. As proofs-of-concept, demon-
strations of decentralized execution with real robots are also included, while ensuring
liveness, without any central intervention at runtime, and without any global interac-
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tions. Such things can be achieved neither by conventional centralized execution styles
that rely on global monitoring systems nor by decentralized execution styles that lack
centralized planners.

The third and last part studies representation, which asks how to model the world for
agents from infinite design choices. Considering representation issues is necessary to re-
alize end-to-end multi-agent navigation. The primary challenge here is how to construct
small but effective search spaces for subsequent planning. It is necessary to construct a
sparse representation of the workspace (i.e., roadmaps), otherwise, it becomes dramat-
ically difficult to find a combination of plausible paths because of having to manage a
higher number of inter-agent collisions. Nevertheless, roadmaps should be sufficiently
dense to ensure high planning solvability and better solutions. To break this tradeoff, the
dissertation provides two directions. The first approach is learning to construct sparse
roadmaps from planning demonstrations, in short, data-driven roadmap construction.
The second approach is combining roadmap construction and multi-agent search (i.e.
collision-free path planning), making it possible to develop a small but effective search
space such that the multi-agent search is willing to use. Both concepts are extensively
tested in various scenarios, revealing their power, i.e., solving more planning instances
much faster compared to existing methods.

Putting everything together, the dissertation presents a consistent story to realize
multi-agent navigation technologies applicable to various domains.
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Chapter 1

Introduction

Navigation:
the act of directing a ship, aircraft, etc. from one place to another,
or the science of finding a way from one place to another

— Cambridge Dictionary

Navigating a team of agents efficiently is a holy grail technology in the modern and
coming automation era.

A prominent example can be seen in logistics, that is, fleet operations of mobile robots
in warehouses [Wurman et al., 2008]. In such systems, robots are continuously assigned
tasks to convey packages. This problem is non-trivial because, when multiple robots op-
erate in a shared workspace, coordination is required. It is obvious, but each robot has
a physical body and hence exclusively occupies a certain region in the workspace. Con-
sequently, without coordination, “something bad” can be easily triggered. For instance,
robots may bump into each other and crash. In another case, robots may block each
other, leading to deadlock situations where they cannot complete tasks permanently. If
such bad things are triggered, packages never reach end-users. Moreover, coordination
is not only necessary but also brings “something good.” In the example of warehouse
systems, system designers are eager to maximize the number of conveyed packages per a
certain time (i.e., throughput). Without good-enough coordination strategies, the system
throughput may be unsatisfactory even if the system is operated safely.

In the above example, coordination is embodied as navigating a team of agents without
colliding with each other, while guaranteeing that each robot eventually reaches its destination,
moreover, minimizing losses of robot motions. Herein, this kind of coordination is shortly
referred to as multi-agent navigation. Throughout the dissertation, there is no special
difference between the terms “agent” and “robot.”

Not limited to logistics applications, the necessity to maneuver multiple moving
agents is getting common. We can see the following examples:

• Modern factories for material handling to produce silicon wafers utilize thousands
of autonomous vehicles [Intel Corporation, 2020].

• Displaying information by multiple mobile robots [Alonso-Mora et al., 2012; Le Goc
et al., 2016] is another prominent example that needs coordination to form mean-
ingful patterns by robots, nowadays commonly seen in drone shows as entertain-
ment.

• Animated agents that do not have actual physical bodies may also require coordi-
nation, as examples seen in video games [Silver, 2005]; to make them realistic, it is
ideal to prohibit two animated agents pass through each other.

1
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(a) fleet operation (b) drone show (c) manufacturing

Figure 1.1: Example applications of multi-agent navigation. Images are retrieved
from: 1.1a: Techwords (2017)/CC BY 4.0; 1.1b: Preetam.choudhury (2018)/CC BY 4.0;
1.1c: Steve Jurvetson (2012)/CC BY 2.0.

Moreover, multi-agent navigation is expected to play a crucial role in future high-impacted
automated systems:

• Cooperative intelligent transportation systems are a prominent example. Consid-
ering extensive attention and investments in the developments of self-driving cars
as of 2023, in near future, autonomous vehicles are expected to be deployed on city
roads. If so, we need to manage traffic at intersections to avoid collisions between
vehicles, as example studies seen in [Dresner and Stone, 2008; Hirata et al., 2021].
This is where coordination is required.

• Assuming deployments of self-driving cars, another interesting application is au-
tomated parking [Okoso et al., 2019], posing how to pack unmanned multiple ve-
hicles into tight spaces to maximize space utility.

• Automating airport surface operations [Morris et al., 2016] is an attractive appli-
cation of multi-agent navigation, where various heterogeneous mobile entities (air-
craft, track, etc) are needed to be operated while following time constraints.

• Collective robotic construction [Petersen et al., 2019] is an exciting and promis-
ing research topic that automates building construction (e.g., towers or domes)
by multi-robot systems. Doing so can naturally receive benefits of the nature of
multi-robot systems such as concurrency and robustness. A bunch of studies in this
field are emerging, e.g., assembling buildings by piling small brick-like parts [Au-
gugliaro et al., 2014; Werfel et al., 2014] and 3D printing systems with multiple
ground/aerial robots [Zhang et al., 2018; Zhang et al., 2022b]. Of course, without
coordination, such construction is impossible.

Some of the above examples visually appear in Fig. 1.1. Other applications include
scheduling on railway networks [Laurent et al., 2021], multi-robot exploration in un-
explored regions [Okumura et al., 2018], and robot soccer [MacAlpine et al., 2015], to
name just a few. All these examples are based on multi-agent navigation technologies.

Despite its significance, the realization of multi-agent navigation entails many dif-
ficulties. Specifically, it is very challenging to design agents’ behaviors to achieve effi-
cient coordination (i.e., planning). For instance, multi-agent path planning (MAPP) poses
a computational problem that seeks collision-free trajectories of multiple robots. This is
the foundation of multi-agent navigation, however, even finding sub-optimal solutions
are tremendously challenging in general [Hopcroft et al., 1984; Spirakis and Yap, 1984;
Hearn and Demaine, 2005]. The intractability of MAPP is relaxed when the environment
is explicitly represented as graphs and two agents collide only when sharing vertices or
edges simultaneously, which is often referred to as the multi-agent pathfinding (MAPF)
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problem. Indeed, MAPF is sub-optimally solvable in polynomial time based on graph
analytic approaches [Kornhauser et al., 1984; De Wilde et al., 2014; Yu and Rus, 2015].
Meanwhile, solving MAPF optimally remains computationally intractable in various cri-
teria [Yu and LaValle, 2013b], even when restricting fields in grid structures [Banfi et al.,
2017; Geft and Halperin, 2022] or approximating solution quality [Ma et al., 2016].

Another example of difficulties in multi-agent navigation lies in execution. Even a pre-
cise plan execution of one physical robot itself entails significant challenges, moreover,
we need to care about multiple agents. Therefore, the potential that something unex-
pected happens dramatically increases as the number of agents increases. In addition,
multi-robot systems are inherently distributed systems wherein an interconnected collec-
tion of autonomous agents is spatially deployed. Therefore, system designers need to be
aware of difficulties stemming from the nature of distributed systems, such as the nonex-
istence of exact consensus about global time [Sheehy, 2015], unreliable communication,
and robot faults.

To this end, this dissertation is dedicated to developing the foundations and practices
for multi-agent navigation technologies, aiming to overcome the limitations of cutting-
edge studies.

1.1 Multi-Agent Navigation Problem

The core problem of multi-agent navigation is abstracted as follows, which is partially
influenced by [Pecora et al., 2018; Mannucci et al., 2021].

Definition 1.1 (multi-agent navigation problem). We consider a problem of trajectory plan-
ning and execution for a team of agents in the shared workspace, controllable by a central unit,
subject to the following assumptions.

• Each agent is operated following its own motion constraints while occupying a certain
region in the workspace.

• The workspace may contain static obstacles, each having a volume. Then, an agent region
cannot overlap with obstacle regions.

• Two agents cannot overlap their occupying regions.

• The central unit can wirelessly communicate with each agent. It is assumed that any
message is eventually delivered, however, communication delays are inevitable.

• Each agent is autonomous in the sense that it takes actions spontaneously while sensing
surrounding situations.

• There is no reliable wall time clock, namely, each agent and the central unit can use its
own clock, but it might be unsynchronized due to communication delays (e.g., clock shift
or drift happens).

The objective is to synthesize a sequence of instructions, issued by the central unit, to derive all
agents to be at their destination.

Several details of Def. 1.1 are complemented below.

• The problem assumes a centralized controller, but of course, it is possible to take
decentralized approaches without intervention by the central unit.

• The workspace is typically a three-dimensional closed space; at least, the disserta-
tion assumes such spaces.

• An agent team may comprise heterogeneous agents. Those agents differ in their
shapes and motion constraints.
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• Motion constraints are particularly called kinodyanamic constraints in robotics. We
see such examples in wheeled robots that cannot move directly in lateral directions,
as well as high-speed cars that are impossible to stop instantly.

• Depending on applications, it is convenient to estimate an agent occupying region
larger than its physical body. For instance, quadrocopters need to consider the
downwash effect [Hönig et al., 2018b].

• Communication between actors happens while preserving FIFO manner (first in,
first out), namely, two messages sent by an actor in order are delivered to another
actor in that order. This is because making non-FIFO protocol to FIFO is not diffi-
cult [Cachin et al., 2011].

• Destinations may be assigned to each agent a priori, otherwise, target assignment,
determining which agent goes where, is required. The necessity of target assign-
ment occurs when systems do not care about task-executing agents, as seen in ware-
house automation.

1.2 Ultimate Goal

Observe that Def. 1.1 covers, abstracts, and dominates applications of multi-agent navi-
gation discussed at the beginning. Therefore, the dissertation ultimately aims at solving
this problem in “good” manners from computational perspectives. More precisely, the
objective is elaborated as follows.

Ultimate Goal of the Dissertation� �
Establish quick, scalable, near-optimal, robust, domain-independent, and end-to-
end methodologies to solve the multi-agent navigation problem, specified in Def. 1.1.� �

The above description involves several key notions, further elaborated below.

Quickness. “Quick” refers to planning speed assessed by the amount of time required
for computation. This is significant because most applications demand real-time plan-
ning where deliberation time is limited. For instance, in warehouse applications, path
planning must be completed by the timing counting backward from the user-specified
delivery date; trivially, slow planners spending a month are useless. Moreover, quick
planners can play replanning in a feedback loop. As a general thing of control systems,
one-shot execution style without intervention at runtime is vulnerable to reality gaps
unpredictable in the planning phase. Therefore, it is desirable to update planning ac-
cording to real-time data obtained through sensing. Slow planners are unable to play the
replanning part because they are inevitably based on outdated sensing results.

Scalability. Modern factories often operate hundreds or more agents [Wurman et al.,
2008; Intel Corporation, 2020]. Here, unscalable methods that can handle only a few
agents are useless. Therefore, the dissertation pursues scalable methods that can handle
that size, i.e., hundreds or more agents.

Near-Optimality. Even with sufficient speed and scalability, navigation methods are
useless if the quality of the outcome is terrible. In multi-agent navigation, we are in-
terested in minimizing losses in agents’ motions, typically represented by total travel
time, makespan, or sum of moving distance related to energy consumption. It is ideal
to achieve optimal coordination, however, such optimization problems may incur an un-
realistic computational burden. On the other hand, in practice, optimal solutions are
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not mandatory. Rather, it is sufficient to use near-optimal solutions. This is where the
dissertation is heading.

Robustness. Building robust and resilient multi-robot systems is an emerging and im-
portant topic [Prorok et al., 2021], since those systems are expected to be infrastructures
of logistics or product lines. To build reliable systems, multi-agent navigation should
be tolerant of a slight deviation from the perfect behaviors of agents; otherwise, the sys-
tem is very vulnerable because it asks “all” agents to take actions precisely following in-
structions. This is a ridiculous assumption when the system involves hundreds or more
agents.

Domain-Independence. Multi-agent navigation technologies are applicable to various
domains (e.g., warehouse automation, animated agents, intelligent transportation sys-
tems), therefore, we should not restrict the discussion to one specific robotic system.
Therefore, the dissertation puts aside application-specific optimization, rather, we seek
domain-independent methods. The domain-independence poses a necessity to abstract
many aspects of the navigation problem, such as agent shapes, motion constraints, and
communication models; formulating these components itself is not trivial.

End-to-End Style. Finally, the dissertation aims at developing end-to-end approaches.
As a counter-example, conventional MAPF studies assume a graph abstraction of the
workspace, however, how to define such graphs is a remarkable problem. Moreover,
MAPF regards the manner of executing solution paths as a blackbox, however, there
are many significant challenges in robust plan execution as discussed earlier. The dis-
sertation aims at removing such blackbox assumptions or manually designed technical
components as much as possible.

1.3 Global Strategy

Multi-agent navigation is a very complicated art, based on compositing many technical
components from fields of artificial intelligence and robotics. Studying it as it is is in-
tractable. Instead, to obtain better outlooks, the dissertation uses a decomposition of
multi-agent navigation into three perspectives, namely, planning, execution, and represen-
tation. Each perspective is compactly explained as follows:

• Planning poses how to determine a sequence of actions for agents.

• Execution poses how to execute planning by agents under various uncertainties that
lurk in the real world.

• Representation poses how to model the world for agents from infinite design choices.

Figure 1.2 illustrates these three perspectives.
As a result, the “global” strategy to achieve the dissertation goal is overcoming the

current limitations of cutting-edge technologies in each perspective, and then, integrat-
ing the developed techniques.

1.4 Contributions – Local Challenges and Strategies

Let me now explain the “local” challenges and strategies that address each perspective,
constituting a series of contributions of the dissertation. Here, the minimum descrip-
tions are provided. Further details will be explained in Chap. 3.6, after providing the
preliminary and background knowledge of multi-agent navigation (Chap. 2 and 3).
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Execution

Representation

Planning

Figure 1.2: Illustration of planning, execution, and representation.

1.4.1 Planning

In planning for multi-agent navigation, multi-agent pathfinding (MAPF) plays a crucial
role, which is a problem that assigns collision-free paths to each agent, given a graph
and a list of start-goal pairs for agents. Therefore, the planning part challenges this
compute-demanding problem, while following “good” manners discussed in Chap. 1.2.
The primary challenge of MAPF is to maintain solvability and quality, while suppressing plan-
ning efforts to secure speed and scalability. On one hand, even with state-of-the-art optimal
algorithms, planning with a few hundred agents in several minutes is still challenging [Li
et al., 2021b; Lam et al., 2022]; they lack quickness and scalability. On the other hand,
existing sub-optimal algorithms can solve massive instances, however, they lack good
theoretical properties such as completeness [Silver, 2005; Ma et al., 2019a; Li et al., 2022].
Indeed, these algorithms often fail condensed or cluttered MAPF instances, even if less
than ten agents are involved. Some graph analysis-based algorithms [Surynek, 2009;
De Wilde et al., 2014] can provide completeness, however, they drop domain indepen-
dence; these algorithms do not go beyond puzzle solvers and are never leveraged to var-
ious multi-agent navigation problems.

To this end, the dissertation presents four primary contributions to breaking the cur-
rent limitations of MAPF technologies.

• Contribution-1 (Chap. 4): The PIBT algorithm solving MAPF iteratively is pre-
sented. It ensures that all agents reach their destinations within a finite time, pro-
vided that all pairs of adjacent vertices in a graph belong to a simple cycle (e.g.,
biconnected).

• Contribution-2 (Chap. 5): The TSWAP algorithm solving simultaneous target as-
signment and path planning is presented. The problem is called unlabeled-MAPF.
TSWAP is complete for unlabeled-MAPF.

• Contribution-3 (Chap. 6): The LaCAM algorithm solving MAPF is presented. La-
CAM uses existing MAPF algorithms as a sub-procedure, such as PIBT or TSWAP.
It is complete, furthermore, eventually converges to optimal solutions, provided
that a solution cost is accumulative transition costs.

• Contribution-4 (Chap. 7): The iterative refinement framework for arbitrary MAPF
solutions is presented. It uses existing MAPF algorithms as a sub-procedure to find
appropriate neighborhood solutions.
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All of them are designed with quickness, scalability, near-optimality, as well as domain-
independence in mind. Especially, without a doubt, LaCAM has developed a new hori-
zon in MAPF studies. Combined with PIBT, it sub-optimally solved 99% of instances
retrieved from the MAPF benchmark [Stern et al., 2019] in 10 s, while ensuring even-
tual convergence to optima. This performance significantly outperforms existing MAPF
algorithms.

1.4.2 Execution

The primary challenge of execution is, at runtime, how to ensure safety (i.e., no collision)
and liveness (i.e., eventually reaching destinations) when something bad happens, unexpected
at the planning phase. The dissertation fights two types of something bad: timing un-
certainties and robot faults. Specifically, the former considers how to overcome various
types of timing uncertainties stemming from robot internal factors, such as kinematic
constraints, slips, and battery consumption, as well as distributed environmental factors,
such as communication delays, clock shift/drift, or uncaptured individual differences be-
tween robots. Meanwhile, the latter considers how to overcome robot faults happening
at runtime, potentially blocking others and compromising the liveness.

To realize robust execution overcoming such something bad, the dissertation explores
a novel relationship between planning and execution, namely, offline planning assuming
that agents “reactively” execute (or change) the plan at runtime. This concept is exemplified
in the following two contributions.

• Contribution-5 (Chap. 9): Aiming at overcoming timing uncertainties, the offline
time-independent multi-agent path planning (OTIMAPP) problem is studied. This is
a novel planning problem wherein agents spontaneously act without any timing as-
sumptions. The problem requires a list of paths, ensuring that all agents eventually
reach their destinations without permanently blocking each other.

• Contribution-6 (Chap. 10): Aiming at overcoming crash faults, the multi-agent
path planning with crash faults (MAPPCF) problem is studied. In this problem,
the crashed agents forever block part of the workspace. Correct agents (i.e., non-
crashed ones) can detect crashes through local observations and then switch their
executing path on the fly. The objective is to find a list of paths and their switch-
ing rules for each agent, such that all correct agents can reach their destinations
regardless of unforeseen crash patterns.

For both proposed problems, both theoretical foundations (e.g., analysis of computa-
tional complexity) and practical approaches to solving the problems are provided. The
dissertation also presents demonstrations with real robots as proofs-of-concept.

1.4.3 Representation

The representation issue arises when considering path planning in continuous spaces,
namely, how to construct discretized representations of the workspace for subsequent
planning. The representation often takes the form of a roadmap, which is a graph ap-
proximating the workspace for agents. Then, the primary challenge of representation is
constructing roadmaps suitable for planning algorithms. On one hand, there is the necessity
of constructing sparse roadmaps; otherwise, it would be dramatically difficult to find a
combination of plausible paths due to the necessity to manage a higher number of inter-
agent collisions. On the other hand, roadmaps should be sufficiently dense to ensure
a high planning solvability and to derive near-optimal trajectories. In short, there is a
tradeoff regarding roadmap density.
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To break the tradeoff in representation, the dissertation provides the following two
directions.

• Contribution-7 (Chap. 11): The first approach is learning to construct sparse roadmaps
from planning demonstrations, i.e., data-driven roadmap construction. The con-
structed roadmaps are called cooperative timed roadmaps (CTRM) and exploited by
arbitrary MAPF algorithms.

• Contribution-8 (Chap. 12): The second approach is building roadmaps while plan-
ning. Combining roadmap construction and multi-agent search (i.e. collision-free
planning) makes it possible to develop a small but effective search space such that
the multi-agent search is willing to use. This idea is fruited as the simultaneous
sampling-and-search planning (SSSP) algorithm, solving multi-robot motion planning
(MRMP).

Although multi-agent path planning in continuous spaces is tremendously challeng-
ing, both approaches contribute to reducing planning effort significantly, resulting in
quick, scalable, near-optimal planning. Furthermore, SSSP is an example of domain-
independence; it can do planning for various scenarios with diverse degrees of freedom
and kinematic constraints of agents. Moreover, the study includes a demonstration of
end-to-end multi-agent navigation using 32 ground robots in a dense situation.

1.5 Dissertation Outline

The rest of the dissertation begins with providing the preliminary knowledge in Chap. 2,
e.g., the basis of algorithmic properties, search, and motion planning. Then, Chap. 3
broadly reviews studies on multi-agent navigation, followed by detailed challenges and
strategies to achieve the dissertation goal. After that, the remaining dissertation divides
into three parts: Part I for planning, Part II for execution, and Part III for representation.
Finally, Chap. 13 concludes the dissertation while discussing future interesting direc-
tions.

The online material is summarized at https://kei18.github.io/phd-dissertation/.
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Chapter 2

Preliminaries

Before starting topics of multi-agent navigation, this chapter provides preliminary knowl-
edge used throughout the dissertation. The chapter begins with descriptions of notations
and mathematical styles (Chap. 2.1), followed by terminologies of graphs (Chap. 2.2), ba-
sic algorithm properties such as completeness and optimality (Chap. 2.3), quick overview
of computational complexity theory (Chap. 2.4), basis of planning and search (Chap. 2.5),
and robotic motion planning (Chap. 2.6). Readers who are familiar with these notations
can skip reading.

2.1 Notations and Mathematical Styles

The dissertation aligns with the following notations and mathematical styles, as much as
possible.

• For convenience, the dissertation uses ⊥ as “undefined” or “not found” sign.

• Bold letters represent vectors, e.g., x = [0,1,2]⊤.

• Script capital letters represent collections of objects such as sets or tuples.

• A set S = {a,b,c, . . . } is a collection of objects, where a,b,c are objects such as numer-
ical values.

• A tuple T = (a,b,c, . . .) is also a collection of objects but the objects are ordered. That
is, given an integer k, it is valid to consider the k-th element in tuples. Meanwhile,
the k-th element for sets is indefinable.

• |S | (or |T |) denotes the number of elements in S (resp. T ).

• T [k] denotes the k-th element in a tuple T , where 1 ≤ k ≤ |T |. Inspired by some
programming languages like Python, let T [−1] denote the last element of T , i.e.,
T [−1] := T [|T |].

• The dissertation uses a simplified notation of the asymptotic complexity like O(S)
rather than O(|S |), where S is a collection of objects.

Caution of Start Indexes in Collections. An index of a tuple usually starts from one,
however, there are exceptions. To align with notations in the literature, it sometimes
starts at zero. This is particularly when the index has the meaning of time. For instance,
in MAPF, it is common to represent an initial location of agent-i as Πi[0] = a, where
Πi = (a,b,c . . .) is a timed path on a graph and a,b,c, . . . are locations. For clarification, the
dissertation complements the starting index as necessary.
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2.2 Graph

Computer science cannot disjoint with graph representation; throughout the dissertation,
graphs play a crucial role. This section provides the very basic terminologies of graph
theory. For further details of graph theory, please refer to textbooks such as [Diestel,
2017].

A graph, or, an undirected graph G is a tuple (V ,E). The elements of V are vertices. The
elements of E are edges, a set of unordered pairs of vertices. A digraph, or, a directed graph
D is a tuple (V ,A). The elements of V are vertices. The elements of A are arcs, a set of
ordered pairs of vertices. Given a digraph D, its underlying graph, denoted as G(D), is the
undirected graph ignoring the direction of the arcs of D. This dissertation often does not
distinguish between arcs and edges; simply calls both “edges.”

An arc (or edge) is self-loop when it connects a vertex to itself, that is, (v,v) where
v ∈ V . A directed graph is a multigraph when it has two or more edges with both the same
tail and the same head vertices. An undirected graph is a multigraph when it has two or
more edges that are incident to the same two vertices. More precisely, a multigraph is
similar to a graph but edges E (or arcs for digraphs) are a multiset instead of just a set.
A directed/undirected graph is simple when it is not a multigraph, moreover, it has no
self-loops. Without explicit mentions, the dissertation assumes simple graphs.

A path in a digraph D = (V ,A) (or a graph G = (V ,E)) is a non-empty sequence of
vertices and arcs (resp. edges) of the form v1, e1,v2, e2, . . . , ek−1,vk such that vi ∈ V for all
1 ≤ i ≤ k, ej = (vj ,vj+1) ∈ A (resp. {vj ,vj+1} ∈ E) for all 1 ≤ j ≤ k − 1. A simple path is a path
such that vi , vj for all i , j. A cycle is a path such that v1 = vk , k ≥ 4, and the repeated
vertex is only the first/last vertex. Given a path Π, its i-th vertex is denoted as Π[i]. Its
index starts from one. |Π| is the number of vertices in Π. A length of a path Π is its
number of edges, denoted by length(Π) := |Π| − 1. A path is often denoted by omitting
edges, e.g., Π = (v1,v2, . . . , vk). Here, Π[1] = v1, Π[−1] = vk , |Π| = k, and length(Π) = k−1.

An (undirected) graph is connected when a path exists between each pair of distinct
vertices. A graph is biconnected when the graph will remain connected if any one vertex
is removed. A digraph D is weakly connected when G(D) is connected. A digraph is
strongly connected when a path exists between each pair of distinct vertices. A digraph
D is strongly biconnected when it is strongly connected and G(D) is biconnected. A cycle
graph is a graph that consists of a single cycle. A directed graph without cycles is called
a directed acyclic graph (DAG). An undirected graph without cycles is called a forest. A
forest is called a tree when it is connected. A graph is called planar when it is possible to
draw in a plane so that none of the edges cross each other.

A vertex v ∈ V is adjacent or neighboring to another vertex u ∈ V when there is an
edge connecting from u to v. Formally, the set of neighboring vertices of u is defined as
follows.

neigh(u) := {v | (u,v) ∈ A} (directed graph) (2.1)

neigh(u) := {v | {u,v} ∈ E} (undirected graph) (2.2)

The degree of a vertex u is the number of outgoing edges from u, denoted by deg(u) :=
|neigh(u)|. The maximum degree of G is denoted by ∆(G) := maxu∈V deg(u). Given two
vertices u and v in a directed/undirected graph, the distance from u to v, denoted by
dist(u,v), is the shortest path length from u to v;

dist(u,v) := argmin
Π∈Π

length(Π) (2.3)

Π := { paths on G starting from u and ending at v } (2.4)
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The distance is undefinable when there is no path connecting u and v. The diameter of
G, denoted by diam(G), is the greatest distance between any pair of vertices;

diam(G) := argmax
u,v∈V

dist(u,v) (2.5)

2.3 Algorithm Properties

An algorithm is a pre-designed procedure to solve specific problems without human inter-
vention at runtime. Designing appropriate algorithms is a central dogma of automation,
and of course, that of the dissertation. This section briefly explains general things about
algorithm properties.

2.3.1 Decision Problem

Given a problem instance I , a decision problem poses a yes-no question regarding I .
For instance, a problem instance of graph pathfinding is specified by I = (G,s, t), where
G = (V ,E) is either a directed or undirected graph, s ∈ V is a start vertex, and t ∈ V is
a goal vertex. The graph pathfinding problem asks existence of paths from s to t on G.
In this case, a path from s to t is evidence for the yes-answer of I . This kind of evidence
is called a solution. A solution is sometimes decorated as a feasible solution, to distin-
guish it from a infeasible solution that is unsatisfied with the problem specification. For
instance, in graph pathfinding, a path that does not end at the goal vertex is an infeasible
solution. Solvable instances are instances that have solutions (usually, they correspond to
yes-answer instances), and unsolvable instances are instances without solutions.

2.3.2 Completeness

For a given decision problem, an algorithm is called complete when it is guaranteed to
answer “yes” for all yes-answer instances and “no” for all no-answer instances, within a
finite time. Otherwise, the algorithm is called incomplete.

2.3.3 Optimization Problem

In many practical situations, beyond decision problems, we are interested in optimiz-
ing specific criteria regarding solutions. For instance, in graph pathfinding, finding the
shortest path is clearly important because the path length is usually related to, e.g., the
time consumption of schedules or energy consumption of robot motions. This is an opti-
mization problem. Given a problem instance and a cost function cost that maps a solution
to a real value, the optimization problem asks to find a solution that minimizes cost. In
the shortest pathfinding problem, the cost function is defined as cost(Π) := length(Π),
where Π is a path on G that starts from s and ends at t. A solution x∗ is optimal when no
solution x exists such that cost(x) < cost(x∗). Otherwise, the solution is sub-optimal. An
algorithm is called optimal when it outputs optimal solutions for all solvable instances;
otherwise, it is called sub-optimal. An algorithm is complete and optimal only if, within
finite time, it outputs an optimal solution for all solvable instances, and reports unsolv-
ability for all unsolvable instances. For instance, the CBS algorithm [Sharon et al., 2015]
for MAPF is optimal but incomplete because CBS cannot identify unsolvable instances.
On the other hand, the M∗ algorithm [Wagner and Choset, 2015] for MAPF is complete
and optimal.

It is worth notably that optimization problems are often compatible with decision
problems. For instance, given the shortest pathfinding problem, we can consider the
corresponding decision problem that asks whether a path from start to goal exists with a
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length of exactly k. It is possible to solve the optimization problem by repeatedly solving
the decision problem while incrementing k starting from zero.

2.3.4 Relaxations of Optimal Algorithms

Optimization problems are important, however, finding optimal solutions is sometimes
computationally intractable. Therefore, algorithmic concepts that relax optimization
have been developed. For instance, given a parameter w ≥ 1, an algorithm is called
bounded sub-optimal when it outputs a solution x such that cost(x) ≤ w · cost(x∗) for all
solvable instances, where x∗ is an optimal solution. An anytime algorithm [Zilberstein,
1996] is first finding a sub-optimal solution, and then gradually improving the solution
quality. The anytime property is desirable in real-time planning where deliberation time
for algorithms is limited. This is because, until the deadline, algorithms can improve
the solution quality while guaranteeing that at least one solution is available. We will
encounter both properties in this dissertation.

2.3.5 Safety and Liveness

When designing algorithms, it is valuable to consider two properties attached to algo-
rithms, namely, safety and liveness. Roughly speaking, an algorithmic property defines
safety when the algorithm never does “anything bad,” while an algorithm property de-
fines liveness when the algorithm eventually does “something good.” As an example,
consider multi-robot navigation in a shared workspace. Inter-robot collisions are “any-
thing bad” because robots might crash due to bumping each other; hence, safety includes
collision-free guarantees, together with other safety conditions such as that robots do not
go out of the workspace. Meanwhile, robots need to reach their destinations eventually;
this is “something good” and specifies the liveness condition. For instance, in lifelong
MAPF [Li et al., 2021d], the PIBT algorithm [Okumura et al., 2022b] provides the safe
condition (i.e., collision-free), moreover, it also provides the live condition (i.e., every
agent eventually reaches its assigned goal) when the workspace is represented as a bi-
connected graph.

2.4 Computational Complexity

Evaluating how computational problems are difficult is the foundation of computer sci-
ence, taking the form of computational complexity theory. The theory is worth under-
standing because it provides an outlook of the “limitations” of algorithms. This section
describes its very basic concepts and terminologies. For the formal definitions, please
refer to textbooks such as [MacCormick, 2018; Cormen et al., 2022]. The objective here
is to cover Fig. 2.1.

2.4.1 Time Complexity

Given a computational problem (e.g., decision or optimization problems), most com-
puter scientists, as well as practitioners, are first interested in whether the problem can
be solved in polynomial time with respect to the problem size. This is because, for such
problems, we can have a relatively high expectation to solve them in realistic timeframes.
The explanation of “polynomial” is as follows. The problem is said to be solvable in
polynomial time when a polynomial time algorithm that solves the problem exists. An
algorithm is said to be polynomial time if its running time is upper bounded by a poly-
nomial expression in the size of the input to the algorithm. Such an algorithm is often
denoted as O(poly(n)), where n is the size of the input and poly denotes a polynomial
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Figure 2.1: Complexity classes and hierarchies.

expression of n (e.g., nk where k ∈ N). Roughly speaking, the big-O notation means that,
if n is sufficiently large, the algorithm runtime is no worse than poly(n).

2.4.2 Complexity Class

Using the concept of polynomial time, the difficulty of a decision problem can be catego-
rized into various complexity classes. A decision problem is in class P when it is solvable in
polynomial time. A decision problem is in class NP when a solution candidate, might be
incorrect (i.e., infeasible), is verifiable in polynomial time. The verification asks whether
the solution candidate is correct (i.e., feasible) for the problem. The problem is in NP if a
polynomial time algorithm exists to answer this question. It is known that P ⊆ NP, and,
most people believe as P ,NP, as of 2023.

The computationally difficult problems are often categorized into class NP-hard. In-
formally, a decision problem is in NP-hard when it is at least as hard as the hardest
problems in NP. Here, the hardness refers to how much compute-demanding the prob-
lems are; “hard” problems are expected to require much computation time. A problem
is in class NP-complete when it is in both NP and NP-hard. An algorithm that solves the
NP-complete problem can solve all other NP problems with polynomial-time overhead.

In this dissertation, another class will appear called class co-NP. A decision prob-
lem is in co-NP when its complement problem is in NP. In the complement problem, any
yes-answer instances of the original problem must be answered as “no,” and vice versa.
Counterintuitively, whether co-NP is equivalent to NP is unknown as of 2023.1 The
corresponding class of NP-hard for co-NP is called class co-NP-hard; the problem is in
co-NP-hard when it is at least as hard as the hardest problems in co-NP. A problem is in
class co-NP-complete when it is in both co-NP and co-NP-hard.

Figure 2.1 visualizes relationships between P, NP, NP-hard, NP-complete, and their
counterparts of co-NP. The figure will be a “guide” to the difficulty of problems that we
will encounter.

It is worth mentioning that more computationally demanding classes exist than NP.
For instance, a problem is in class PSPACE if it can be solved using an amount of memory
that is polynomial in the input length. Class EXPTIME refers to problems that can be
decided in time O

(
2poly(n)

)
. Class PSPACE-hard, class PSPACE-complete, class EXPTIME-

hard, and class EXPTIME-complete are defined in the identical schemes to classes NP-hard
and NP-complete against class NP. It is known that P ⊆NP ⊆ PSPACE ⊆ EXPTIME.

In this dissertation, the critical border lies between P and NP, or, P and co-NP.

1If you prove either NP = co-NP or NP , co-NP, you will get a million-dollar prize since it is contraposi-
tion of the P versus NP problem.
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2.5 Planning and Search

As appeared in the title, planning plays a king role throughout the dissertation, which
is typically computed by (combinatorial) search. This section quickly provides the basis
for planning and search. For further details, I recommend referring to [Edelkamp and
Schrodl, 2011; Ghallab et al., 2016].

2.5.1 Planning

Planning is a computational procedure that determines a sequence of actions to lead an
agent to ideal states. An action transits the agent’s state from one to another. Therefore,
planning is also regarded as a procedure that determines a sequence of states, subject to
that two consecutive states are transitionable by an action. Unless explicitly mentioned,
this dissertation assumes planning to determine a sequence of states.

For instance, navigating a (holonomic) robot in a cluttered workspace requires path
planning. Here, the state of the robot is a location in the workspace. Planning then deter-
mines a sequence of locations that the robot will visit in order, where it starts from the
current location of the robot and ends at a specified destination. If any two consecutive
locations in the path are linearly travelable without encountering obstacles, the robot can
reach the destination as long as following the path. Without planning, the robot may get
lost and may fail to reach its destination.

When all states of an agent are represented in discrete manners, planning is inherently
equivalent to graph pathfinding. In this case, a digraph G = (V ,A) can be either explicitly
or implicitly constructed, where each state is a vertex and each action defines an edge.
The converted graph pathfinding problem requests a path that starts from a vertex corre-
sponding to the agent’s initial state, and ends at one of the vertices corresponding to ideal
states. Then, a solution, i.e., path Π = (v1,v2, . . . , vk) on G, indeed specifies a sequence of
states v1,v2, . . . , vk ∈ V , as well as a sequence of actions (v1,v2), (v2,v3), . . . , (vk−1,vk) ∈ A.
This graph is often called search space.

2.5.2 General Search Schema

Using the graph representation, planning is typically solved by search. Algorithm 2.1
presents a procedural schema of the search. We will meet many variations of this schema
throughout the dissertation.

Algorithm 2.1 General search schema.

input: directed graph G = (V ,A), start s ∈ V , goals V goal ⊂ V

output: path on G from s to v ∈ V goal or FAILURE

1: Open← J⟨state : s, parent :⊥⟩K ▷ J. . .K can be stack, queue, priority queue, etc

2: while Open , ∅ do

3: N ←Open.pop() ▷ selecting and removing one node from Open

4: ifN .state ∈ V goal then return backtrack(N )

5: for v ∈ neigh(N .state) do

6: if ¬prunable(v, . . .) then ▷ prunable returns TRUE or FALSE

7: Open.push
(
⟨state : v, parent :N⟩

)
8: return FAILURE
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The crux of Alg. 2.1 is building a search tree, consisting of search nodes. A search node,
herein simply called a node, typically consists of state that represents one state of the
agent, and parent that points to another node that generated the node. From the view of
a parent node, generated nodes (i.e., children) are often called successors. The search tree
is a tree that has an edge between two nodes when they have a parent-child relationship.

The search tree is gradually constructed by maintaining an Open list that stores nodes.
Open is implemented by data structures of stack, queue, or priority queue, etc. For each
iteration of Lines 2–7, Alg. 2.1 picks one node n from Open and removes the node from
Open (Line 3). If n satisfies the goal condition, a solution is obtained by backtracking
the search tree (i.e., following parent) from n until reaching the initial state s (Line 4).
Otherwise, it generates successors of n (Lines 5–7). In general, this process involves
pruning (Line 6), aiming at reducing planning effort. Pruning refers to a process that
avoids creating condition-matched successors. For instance, this process prunes nodes
already appearing in the search tree. In the pseudocode, the prunable function plays
this role.

By specifying Open and prunable, Alg. 2.1 can represent many of the existing search
schemes. For instance, assume that the prunable function returns TRUE if and only if
the state has been already included in the search tree. Then, when Open is implemented
by a data structure of stack, Alg. 2.1 is called depth-first search (DFS). When Open is im-
plemented by a queue, it is called breadth-first search (BFS). When Open is implemented
by a priority queue following a node scoring function f : N 7→ R, where N is a set of all
possible nodes, it is called best-first search.

The search effort (i.e., amount of required time) is largely determined by the average
branching factor, which is the number of successors at each node.

2.5.3 The A∗ Algorithm

One of the important forms of best-first search is the A∗ algorithm [Hart et al., 1968],
presented in Alg. 2.2. A∗ can solve a generalized version of the shortest pathfinding
problem wherein each edge is weighted by a non-negative real value. Formally, given
an edge cost function coste : V × V 7→ R≥0, this optimization problem requests a path
(v1,v2, . . . , vk) from the start s (i.e., v1 = s) to one of the goals V goal (i.e., vk ∈ V goal) that
minimizes the accumulated edge cost along the path:

∑k−1
i=1 coste(vi ,vi+1). The shortest

pathfinding problem described in Chap. 2.3 is a special case where coste is a constant
function that always returns one. In the rest of the dissertation, a path cost refers to the
accumulated edge cost along the path, usually unweighted (i.e., coste(·) = 1). The dist

function is defined by the minimum path cost between two vertices.
The procedural flow of A∗ is as follows. A∗ selects a node from Open according to

f-value, which is a sum of cost-to-come (aka. g-value) and estimation of cost-to-go (aka.
h-value). Cost-to-come is a path cost to reach the corresponding vertex from the start
vertex. Cost-to-go is the minimum path cost to reach one of the goal vertices from the
corresponding vertex. The estimation of cost-to-go is often called heuristic and provided
via a heuristic function h : V 7→ R≥0. The h function is admissible when, for every state
v ∈ V , h(v) is smaller than or equal to the actual cost-to-go. A∗ is guaranteed to be optimal
for the shortest pathfinding problem when h is admissible. For instance, h(v) := 0 is
admissible. In this case, A∗ is equivalent to the celebrated Dijkstra algorithm [Dijkstra,
1959].

Instead of the f-value, it is possible to prioritize the h-value by making coste always
return zero. This search scheme is called greedy (best-first) search. In general, there is no
optimal guarantee for the greedy search, but it has the potential to speed up the search
if the h-value is a good estimation of the actual cost-to-go.
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Algorithm 2.2 The A∗ search. The same parts from Alg. 2.1 are gray-colored.

input: G = (V ,A), s ∈ V , V goal ⊂ V , coste : V ×V 7→ R≥0, h : V 7→ R≥0

output: path or FAILURE

1: Open← J⟨state : s, parent :⊥, g : 0, f : h(s)⟩K

2: while Open , ∅ do

3: N ←Open.pop() ▷ priority queue, sorted by ascending order of f-value

4: ifN .state ∈ V goal then return backtrack(N )

5: for v ∈ neigh(N .state) do

6: g←N .g + coste(N .state,v)

7: f ← g + h(v)

8: if nodeM s.t.M.state = v ∧M.f ≤ f has not appeared in the search tree then

9: Open.push
(
⟨state : v, parent :N , g : g, f : f ⟩

)
10: return FAILURE

2.6 Motion Planning

Motion planning is a computational procedure that seeks a trajectory in continuous spaces
to lead a physical object on ideal states. The previous section (Chap. 2.5) refers to plan-
ning in discretized spaces, while this section provides basic concepts of planning in con-
tinuous spaces. Part III, studying representation for planning, relies on the concepts pre-
sented in this section.

Motion planning has been developed in the literature of robotics. For further details,
I recommend reading [Choset et al., 2005; LaValle, 2006].

2.6.1 Configuration Space

To begin with, consider a circle-shaped robot that can move in an arbitrary direction,
working in the 2D workspace W ⊂ R2. A pair of two real values (x,y) ∈ R2 can spec-
ify a configuration of the robot, which corresponds to a state of planning in discretized
domains. That is, a robot is abstracted by a single point in R2. The space where configu-
rations are laid is called configuration space, or C-space, and denoted as C. In this example,
C = R2. The number of degrees of freedom is the dimension of configuration space (e.g.,
two in this example). The dimension of workspace and configuration space is not neces-
sarily to be identical. For instance, manipulators are operated in the 3D workspace while
their degrees of freedom are linear to the number of joints.

In general, it is not allowed for a robot to take an arbitrary configuration q ∈ C be-
cause there are obstacles; the robot’s body and obstacles cannot be overlapped. Let a
set of points occupied by the robot at a configuration q ∈ C denote R(q) ⊂ W . Sim-
ilarly, let O ⊂ W be occupied regions by obstacles. An obstacle space for the robot is
Cobs := {q ∈ C | R(q)∩O , ∅}. Then, a free space for the robot is Cfree := C \ Cobs. That is, ev-
ery feasible state of the robot is “packed” into a single point in the free space. Figure 2.2
visualizes a free space of the circle-shaped robot. For simplicity, the dissertation assumes
that configurations leading to self colliding of robots are included in the obstacle space,
as seen in manipulators.
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Figure 2.2: Illustration of free space. left: A robot is represented by a pink-filled circle.
Gray zones are obstacle regions. A wall is represented by a black-line rectangle. right:
The free space is a blue-filled region.

2.6.2 Decision Problem

In a nutshell, motion planning aims at finding a possibly twisting and turning line that
connects the start and goal points (i.e., configuration), fitting in the free space. By contin-
uously transiting the robot’s configuration along that line, the robot can reach the ideal
configuration without colliding with obstacles.

Formally, given a workspaceW , a configuration space C, a set of obstaclesO, an initial
configuration qinit ∈ C, and a set of goal configurations Qgoal ⊂ C, the motion planning
problem poses whether a collision-free trajectory exists that starts from qinit and ends in
Qgoal. A trajectory is defined by a continuous mapping σ : [0,1] 7→ C. It is collision-free
when σ (τ) ∈ Cfree for 0 ≤ τ ≤ 1.

2.6.3 Roadmap

The primary challenge of motion planning is the manner of representing Cfree. It is not
given a priori, rather, motion planning includes a process of building representation.

A popular method to represent Cfree is using a (directed) graph G = (V ,E), specially
called a roadmap in the literature. Each vertex of the roadmap corresponds to one con-
figuration q ∈ Cfree of the robot. Each edge (qfrom,qto) ∈ E represents an existence of a
collision-free trajectory from qfrom to qto. This trajectory is typically local, in the sense
that it is easy to check whether two configurations are travelable. In motion planning
studies, this connectivity checking process is treated as a blackbox procedure, sometimes
called local planner. Once an appropriate roadmap is constructed, the motion planning
problem is reduced to the graph pathfinding problem that seeks a path on the roadmap
connecting to the initial and goal configurations. We can then obtain a trajectory that
satisfies the solution conditions by applying the local planner that interpolates between
consecutive points in the path.

Exact methods exist [Canny, 1988] to build a roadmap without resorting to approxi-
mations. However, they are too theoretical, and as stated in [LaValle, 2006], “it might be
close to impossible to implement.” Instead, approximating Cfree is a practical approach.
One of the common approaches is called sampling-based motion planning (SBMP) [Elban-
hawi and Simic, 2014], explained in next.

2.6.4 Sampling-Based Motion Planning (SBMP)

To construct a roadmap, the SBMP methods roughly comprise the following steps.

1. Initiate the roadmap G = (V ,E).
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2. Sample one configuration qrand from C.

3. Obtain qnew ∈ Cfree using qrand.

4. Add qnew to V . Update E with reference to qnew using the local planner.

5. Go back to Step 2 and repeat the above procedures until satisfying certain condi-
tions.

Details of each step have design choices. Indeed, many SBMP algorithms exist. Promi-
nent examples are probabilistic roadmap (PRM) [Kavraki et al., 1996] and rapidly-exploring
random trees (RRT) [LaValle, 1998].

Several important notions of SBMP are below.

• SBMP methods are often probabilistically complete, that is, the probability of finding
a solution increases with more sampling trials, eventually converging to one.

• Moreover, with appropriate sampling and edge connection rules, they are some-
times asymptotically optimal; with more sampling trials, a solution trajectory ap-
proaches optimal.

• A constructed roadmap by RRT is not a general graph, rather, it is a tree. Such a
SBMP algorithm is sometimes called a tree-based planner.

• Not limited to sampling uniformly at random from C, many studies use biased sam-
pling such that a configuration is sampled from “important” regions of C, aiming to
derive a better solution quickly, e.g., [Gammell et al., 2014; Gammell et al., 2015].

2.6.5 Kinodynamic Planning

Thus far, we assume that a robot can go in any direction in the configuration space, as
long as it does not encounter obstacles. Such planning is sometimes called geometric
planning. However, real robots are subject to kinematic constraints, as well as dynamics
constraints. These motion constraints are typically expressed in terms of differential
equations, governing the state of the robot. Consequently, we need to consider planning
under differential constraints.

Kinematic constraints restrict the local directions of motion available to a robot from
a given configuration. For instance, wheeled robots cannot translate sideways. Non-
integrable kinematic constraints are often referred to as nonholonomic constraints. Dy-
namics constraints are governed by the time derivatives, such as velocity and acceleration.
For instance, cars cannot stop instantly. Kinematic and dynamics constraints are collec-
tively called kinodynamic constraints. Motion planning under kinodynamic constraints is
called kinodynamic planning [Donald et al., 1993; Schmerling and Pavone, 2019].

Instead of planning in configuration space C, kinodynamic planning is performed in a
state space X ∈ Rn. A state x ∈ X of the robot is a composition of a configuration q ∈ C and
its derivative q̇, i.e., x := (q, q̇). Assume a control space of the robot, denoted as U ∈ Rm. For
instance, the control space of vehicles is defined by a handle, an accel pedal, and a brake
pedal. The state transition under kinodynamic constraints is then given by ẋ = f (x,u),
where x ∈ X and u ∈ U . Kinodynamic planning requests a sequence of control inputs,
namely, a continuous mapping R≥0 7→ U , such that the robot ends in the ideal states.
Note that, given an initial state, the mapping of control input specifies the trajectory of
the robot.

Fortunately, most SBMP methods are applied to kinodynamic planning with small
modifications of how to construct roadmaps in the state space. For instance, edges of
roadmaps are defined with two vertices, representing states, when there exist control
inputs that enable a robot to traverse those two. Moreover, random samplings of the
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state space are realized by, direct sampling from the state space, or, “simulating” robot
behavior with a sampled control input from the control space, given a specific state.
For this reason, it is not necessary to explicitly distinguish geometric and kinodynamic
planning, at least in the context of SBMP.

2.7 Others

Chapter 11 requires basic knowledge of machine learning (ML). Especially, it is desirable
for readers to be familiar with the foundation of deep learning, however, no deep under-
standing of deep learning is required.2 It is sufficient to know that neural networks can
approximate “blackbox” functions from empirical data. For further details, please refer
to textbooks such as [Bishop and Nasrabadi, 2006; Goodfellow et al., 2016].

2Indeed, I definitely declare that I do not have such knowledge.
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Chapter 3

Background

This chapter provides the background for presenting the contributions of this disserta-
tion. That is, the chapter presents the basics of multi-agent navigation, followed by the
current limitations of cutting-edge technologies, as well as strategies to overcome these
limitations. The chapter starts with general things about multi-agent navigation to get a
global picture.

3.1 Characterizing Multi-Agent Navigation

The objective of multi-agent navigation technologies is to solve Def. 1.1. In short, it is
to ensure the eventual occurrence of “something good,” such as all agents reaching their
destinations, while never triggering “anything bad,” such as inter-agent collisions. The
former defines liveness while the latter defines safety. Throughout this chapter, we will
see thorough reviews of how to achieve both these properties.

Recall that, since multi-agent navigation is very complicated, the dissertation relies
on a decomposition into three perspectives, that is, planning, execution, and representa-
tion. These perspectives are briefly summarized as follows:

• Planning poses how to determine a sequence of actions for agents.

• Execution poses how to execute planning by agents under various uncertainties that
lurk in the real world.

• Representation poses how to model the world for agents from infinite design choices.

The reviews in this chapter also exploits the three perspectives. Among the three,
planning plays a king role. This is because execution without planning does not make
sense, and, representation itself does not make sense. Both execution and representa-
tion must be combined with planning. Of course, planning without execution drops its
significance, and, planning without representation is impossible. In this sense, the three
perspectives cannot be considered separately.

We next see two fundamental axes to categorize approaches to multi-agent naviga-
tion. The first axis is whether an approach is centralized or decentralized. Another axis is
whether an approach is reactive or deliberative. The two axes are based on both planning
and execution perspectives, while representation does not affect them. The represen-
tation perspective appears when considering path planning in continuous spaces (i.e.,
motion planning).

3.1.1 Centralized vs. Decentralized

Multi-agent/robot systems are inherently distributed because agents are spatially de-
ployed. Consequently, the following questions must explicitly be addressed: who does
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planning, and who manages execution? This is a characteristic of multi-agent navigation
that differs from single-agent navigation. It is important to distinguish between planning
and execution regarding this point, elaborated as follows.

• Centralized planning refers to a planning style such that one component performs
planning for all agents.

• Decentralized planning refers to a planning style such that each agent performs its
own planning while negotiating with each other.

• Centralized execution refers to an execution style in which one component is respon-
sible for the entire execution by monitoring the entire configuration and issuing
instructions to agents as needed.

• Decentralized execution refers to an execution style in which each agent is respon-
sible for its own execution by observing situations and performing actions sponta-
neously.

Characteristics in Planning. In general, people phrase as follows: centralized planning
styles have good theoretical advantages over decentralized ones, such as completeness
and optimality. On the other hand, it compromises the planning speed and scalabil-
ity for the number of agents. Meanwhile, decentralized planning styles often have the
advantage of scalability, while compromising theoretical properties. Note, this is some-
what correct but inaccurate. When a centralized component is available, in most cases,
it is possible to “emulate” decentralized planning. Then, centralized planning is indeed
scalable. The true thing about planning is that it is difficult to achieve both good theoretical
properties and scalability (or speed).

Characteristics in Execution. Unlike planning, execution is straightforward to discuss.
Centralized execution styles have the advantage of theoretical properties such as safety
and liveness, while the implementations are sometimes costly or impossible. For in-
stance, consider deploying a thousand agents with centralized execution. It then requires
real-time monitoring systems that can track a thousand agents without delays. It is not
trivial at all how to realize such systems. In this sense, centralized execution is subject to
the limitation of scalability. Decentralized execution can overcome this issue, however,
provably safe and live systems are difficult to realize.

In Chap. 3.6.5, the relationships between centralized and decentralized execution
styles will be refined to provide strategies of the dissertation.

3.1.2 Reactive vs. Deliberative

Aside from who manages control of multiple agents, the relationship between planning
and execution is characterized by how the two interplay with each other. Specifically, we
can distinguish between reactive and deliberative approaches.

Reactive Approaches repeatedly alternate planning and execution in a short duration,
until agents reach ideal states. The planning used in reactive approaches is sometimes re-
ferred to as online planning. In multi-agent navigation, reactive approaches make agents
continuously react to situations at runtime to avoid collisions while heading to their des-
tination. Such examples can be seen in [Van Den Berg et al., 2011; Lalish and Morgansen,
2012; Senbaslar et al., 2018], to name just a few. This class is computationally inexpen-
sive and suitable for decentralized planning/execution. However, provably deadlock-free
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systems are difficult to realize owing to the shortsightedness of time evolution (i.e., lack-
ing liveness). Moreover, reactive approaches may require rich and no-delay observations,
such as accurate positions and velocities of the surrounding agents for each agent.

Deliberative Approaches first compute the entire planning, then execute it, and done;
hence this is typically a one-short style. The planning used in deliberative approaches
is sometimes referred to as offline planning. The main advantage of deliberative ap-
proaches is providing good theoretical properties, such as completeness and optimality.
On the other hand, deliberative approaches need to manage uncertainties in execution,
either by planning assumming uncertainties or runtime interventions during execution,
as later discussed in Chap. 3.5. Moreover, similar to the centralized vs. decentralized ap-
proaches, deliberative approaches often suffer from the size of problem instances. This
is because planning demands a large amount of computation time for large instances. In
other words, planning used in deliberative approaches is typically slow compared to that
used in reactive approaches.

When considering a strategy of planning in Chap. 3.6.3, we will see deeper insights
into the two approaches.

3.1.3 Chapter Organization

Based on the perspectives provided the above, the rest of the chapter conducts an exten-
sive literature review. Specifically, it is organized as follows.

• As mentioned earlier, planning plays a king role among the three perspectives.
Centralized planning for multiple agents used in deliberative approaches is often
embodied as a path planning problem for multiple agents on graphs, called multi-
agent pathfinding (MAPF) [Stern et al., 2019]. The MAPF problem plays a crucial
role in the dissertation, hence the detailed review are provided in Chap. 3.2.

• Classical MAPF is convenient as a starting point, however, it over-simplifies many
aspects of real multi-agent navigation, such as discretization of space and time. In
Chap. 3.3, all simplifications in classical MAPF are removed to discuss a general
form of planning in multi-agent navigation. The introduced problem is very chal-
lenging, called multi-robot motion planning (MRMP). Solving MRMP efficiently is
one of the ultimate goals of the dissertation. Since MRMP is planning in continu-
ous spaces, we here need to consider the representation perspective.

• Next, in Chap. 3.4, another sort of multi-agent navigation will be discussed, namely,
path planning with target assignment. MAPF and MRMP assume that agents have
distinct goals a priori, however, real applications often care only about the com-
pletion of tasks; they do not care about who does tasks. This is where the target
assignment is attractive.

• In Chap. 3.5, the execution perspective is organized, aiming at overcoming un-
certainties in the real world. Specifically, timing uncertainties and robot faults at
runtime are addressed.

• Based on provided knowledge in these sections, Chap. 3.6 presents non-trivial chal-
lenges and strategies of this dissertation.

• Last, in Chap. 3.7, relationships of the rest of the chapters are provided.

3.1.4 Disclaimer

• Control theory is sometimes used in reactive approaches, however, it is totally out-
side of the dissertation.
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• The dissertation perspectives are not from roboticists, mathematicians, and control
theory experts, but rather, they are from computer science, especially from artificial
intelligence.

3.2 Multi-Agent Pathfinding (MAPF)

In a nutshell, MAPF is a problem that assigns a path to each agent on graphs such that any
two agents never collide. MAPF plays a crucial role throughout the dissertation. Indeed,
Part I devotes to developing powerful MAPF algorithms. The rest of this section consists
of problem formulation (Chap. 3.2.1), known complexity analysis results (Chap. 3.2.3),
reviews of existing algorithms (Chap. 3.2.4), and MAPF variants (Chap. 3.2.5).

3.2.1 Problem Formulation

Below, MAPF formalization is presented for undirected graphs. An MAPF problem on
digraphs is similar to the undirected case.

Definition 3.1 (MAPF instance). An MAPF instance is defined by an undirected graph G =
(V ,E), a set of agents A = {1, . . . ,n}, an injective initial state function s : A 7→ V , and an
injective goal state function g : A 7→ V .

As simplified notations, the dissertation uses si for s(i), and gi for g(i), respectively.
Herein, as a problem formulation of MAPF, two types of representation are provided,

whether it is based on paths or configurations. Both representations are equivalent. How-
ever, the representations are closely connected to concepts behind each MAPF algorithm,
as we will see later. The dissertation uses both representations.

Formalization by Paths

Given an MAPF instance, let Πi[t] ∈ V denote the location of agent i ∈ A at discrete
time t ∈ N≥0. At each timestep t, agent-i can move to an adjacent vertex, or can stay at its
current vertex, i.e., Πi[t + 1] ∈ neigh(Πi[t])∪ {Πi[t]}. Therefore, Πi is a path on a “mod-
ified” graph of G such that each vertex has a self-loop. For clarification, the dissertation
sometimes refers to this path as timed path. To align with the literature, its index starts
from zero.

Timed paths for two agents i, j ∈ A,i , j, have a vertex collision when there exists
t ∈ N≥0 such that Πi[t] = Πj [t]. Similarly, the two paths have an edge collision when there
exists t ∈ N≥0 such that Πi[t] = Πj [t+1]∧Πi[t+1] = Πj [t]. The two paths are collision-free
when neither vertex nor edge collisions exist.

Definition 3.2 (MAPF problem; representation by paths). Given an MAPF instance, an
MAPF problem is a decision problem that asks existence of a tuple of timed paths Π =
(Π1,Π2, . . . ,Πn), where Πi = (Πi[0],Πi[1], . . . ,Πi[k]) is a timed path, k ∈ N≥0 is common
between agents, while satisfying the following conditions:

• Πi[0] = si for all i ∈ A.

• Πi[k] = gi for all i ∈ A.

• Any two paths in Π are collision-free.

A solution to MAPF is Π that satisfies the condition.
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Formalization by Configurations

We next see another representation of MAPF formulation. A configuration is a function
that maps A to V . For convenience, the dissertation uses a tuple representation of the
configuration, that is, Q = (v1,v2, . . . , vn) ∈ V |A|, where Q[i] = vi is the location of agent
i ∈ A. Then, the start configuration, or sometimes called the initial configuration, is S =
(s1, s2, . . . , sn). The goal configuration, or terminal configuration, is G = (g1, g2, . . . , gn).

A configuration Q has a vertex collision when there is a pair of agents i, j ∈ A,i ,
j such that Q[i] = Q[j]. Two configurations Qfrom and Qto has an edge collision when
there is a pair of agents i, j ∈ A,i , j, such that Qfrom[i] = Qto[j]∧Qto[i] = Qfrom[j]. Two
configurations Qfrom and Qto are connected when Qto[i] ∈ neigh(Qfrom[i])∪ {Qfrom[i]} for
all i ∈ A, and, there are neither vertex nor edge collisions in Qfrom and Qto.

Definition 3.3 (MAPF problem; representation by configurations). Given an MAPF in-
stance, an MAPF problem is a decision problem that asks existence of a tuple of configurations
Π = (Q0,Q1, . . . ,Qk), where Qt is a configuration, satisfying the following conditions:

• Q0 is the start configuration S .

• Qk is the goal configuration G.

• Any two consecutive configurations in Π are connected.

A solution to MAPF is Π that satisfies the condition. To align with the literature, the
index of Π starts from zero (i.e., Π[0] is the initial configuration).

Observe that a solution in Def. 3.2 (i.e., representation by paths) is transformable to
a solution in Def. 3.3 (i.e., representation by configurations), and vice versa.

Understanding MAPF as the Graph Pathfinding Problem

The MAPF representation by configurations enables us to regard MAPF as the graph
pathfinding problem. Indeed, we can construct a graph consisting of vertices represent-
ing configurations and edges representing the connectivity of configurations. The start
and goal vertices are the start and goal configurations, respectively. Therefore, any graph
pathfinding algorithms, such as A∗, can solve MAPF.

Other Collision Types

The above formulations consider two types of collisions (i.e., vertex and edge collisions).
Incorporating these two is popular among MAPF studies. Meanwhile, various collision
types other than these two have been suggested [Stern et al., 2019]. For instance, a fol-
lowing collision occurs when an agent uses the current location of another agent in the
next timestep, i.e., Qfrom[i] = Qto[j] with the representation by configurations. Imposing
following collisions is sometimes useful when considering the asynchronous execution
of MAPF.

3.2.2 Optimization Problems

Next, we consider optimization problems of MAPF. Recall that an optimization problem
aims at finding a solution that minimizes a given cost function.

Using the MAPF representation by configurations (Def. 3.3), consider a transition
cost between two configurations, coste : V |A| × V |A| 7→ R≥0. Then, many optimization
problems of MAPF take the form of the shortest pathfinding problem, that is, minimiz-
ing the accumulative transition cost defined along a solution (i.e., equivalent to accu-
mulative edge cost in Chap. 2.5.3). Formally, a solution cost is defined as cost(Π) :=∑k−1
t=0 coste

(
Π[t],Π[t + 1]

)
, where k is the last timestep of the solution Π. For instance:
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• The makespan metric is a solution length, defined by coste(X,Y ) := 1; that is, makespan
is length(Π).

• The sum-of-fuels metric (aka. total distance) is how many times agents move from
their current locations, representing energy consumption, defined by coste(Qfrom,Qto) :=
|{i ∈ A | Qfrom[i] ,Qto[i]}|.

• The sum-of-loss metric counts actions of non-staying at goals, defined by coste(Qfrom,Qto) :=∣∣∣{i ∈ A | ¬(Qfrom[i] =Qto[i] = gi)}
∣∣∣.

Another popular MAPF metric is sum-of-costs, also known as flowtime. Using the
MAPF representation by paths (Def. 3.2), the sum-of-costs is defined by

∑
i∈A ti , where ti

is the earliest timestep such that Πi[ti] = Πi[ti + 1] = . . . = gi . This metric is impossible
to be framed as the shortest pathfinding form because it is history-dependent on paths
of agents.1 For the same reason, the maximum-moves metric is impossible to formulate
by the representation by configurations. Formally, given a timed path Πi for agent i,
the number of moves is how many times each agent moves to adjacent vertices. The
maximum-moves metric takes the maximum over the scores of all agents. Note that its
summation version is equivalent to the sum-of-fuels.

Sum-of-costs and makespan have Pareto optimal structure [Yu and LaValle, 2013b].
Generally, they cannot be minimized simultaneously.

3.2.3 Computational Complexity

Next, theoretical limitations of MAPF algorithms are provided from the view of com-
putational complexity theory. The primary observation is that optimizing MAPF is very
challenging.

Decision Problems

Undirected Graph. Historically, the complexity studies of MAPF started from solving
the pebble motion (PM) problem, in which objects are moved on an undirected graph one-
at-a-time to rearrange the objects. Hence, rotation of agents along a cycle is impossible,
different from MAPF. PM is a generalization of 15 puzzles, illustrated in Fig. 3.1. In [Ko-
rnhauser et al., 1984], a polynomial time procedure is shown to answer the solvability
of PM, with the time complexity of O

(
V 3

)
, which is equal to the solution length (i.e.,

makespan). That is, PM is in P. The paper was later rediscovered in the MAPF research
community [Röger and Helmert, 2012]. Later work by [Yu and Rus, 2015] studied a vari-
ant of PM that allows rotation movements, and provided a polynomial time procedure to
solve PM with rotations, again with the time complexity of O

(
V 3

)
, which is equal to the

solution length. In summary, the decision problem of MAPF on undirected graphs is in
P.

Digraph. In contrast, the decision problem of MAPF on digraphs is in NP-complete [Nebel,
2020]. The NP-hardness does not hold when limiting graphs to strongly biconnected di-
graphs; a polynomial time procedure to solve such instances is reported in [Botea et al.,
2018]. Recent work in [Ardizzoni et al., 2022] reports a polynomial time procedure for
MAPF on strongly connected digraphs.

1However, it is worth mentioning that flowtime is definable as the shortest pathfinding problem by in-
troducing virtual goals where once an agent has reached there, it cannot move anywhere in the future.
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Figure 3.1: 15 puzzle. The image was retrieved from Wikipedia, ©Micha L. Rieser
(2007).

Optimization Problems

What about the optimization of MAPF? In short, MAPF on undirected graphs is known
to be an NP-hard problem for various optimization criteria. The known results are sum-
marized in Table 3.1.

general graph planar graph four-connected grid

sum-of-costs (aka. flowtime) [Yu and LaValle, 2013b] [Yu, 2015] [Banfi et al., 2017]

makespan [Surynek, 2010] [Yu, 2015] [Banfi et al., 2017]

sum-of-fuels (aka. total traveling distance) [Yu and LaValle, 2013b] [Yu, 2015] [Geft and Halperin, 2022]

maximum-moves ([Yu, 2015]) [Yu, 2015] N/A

sum-of-loss ([Yu and LaValle, 2013b]) N/A N/A

Table 3.1: Known NP-hard MAPF problems. For each entry, the first study that reports
the NP-hardness is displayed.

Solving PM optimally with reference to the solution length (i.e., makespan) is known
to be NP-hard since the 1980s [Ratner and Warmuth, 1986]. Similarly, solving makespan-
optimal MAPF in general graphs is proven to be NP-hard [Surynek, 2010]. The work
by [Yu and LaValle, 2013b] shows that optimal MAPF problems about sum-of-costs (aka.
flowtime), sum-of-fuels (aka. total distance), as well as makespan, are NP-hard. The
proof regarding sum-of-costs is applicable to sum-of-loss without modifications; hence,
solving sum-of-loss MAPF optimally is also NP-hard. In [Ma et al., 2016], it is revealed
that, even with an approximation of less than 4/3, the makespan-optimal MAPF is NP-
complete. This implies that finding good-enough sub-optimal solutions is difficult to
compute in general.

Later studies improve the hardness results. For instance, optimal MAPF problems
in planar graphs regarding sum-of-costs, makespan, sum-of-fuels, and maximum-moves
are NP-hard [Yu, 2015]. In [Banfi et al., 2017], it is shown that solving MAPF optimally in
four-connected grids regarding sum-of-costs and makespan is NP-hard. Recently in [Geft
and Halperin, 2022], it is proven that optimizing sum-of-fuels in four-connected grids is
also NP-hard.
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3.2.4 Algorithms

To date, numerous algorithms have been developed to solve MAPF. There are three fun-
damental questions to characterize MAPF solvers.

• The first question asks about completeness. Given an MAPF instance, an algorithm
is complete only if, in finite time, it returns a solution if the instance is solvable,
otherwise, reports the non-existence of solutions as NO_SOLUTION. This property
is achievable only if the search space is finite. Of course, complete algorithms are
ideal, however, incomplete algorithms have also practical values because they are
often scalable.

• The second question asks about optimality. Given an MAPF instance and a solution
metric, an algorithm is optimal only if, in finite time, it returns an optimal solution
if the instance is solvable. On one hand, optimal solvers are attractive, therefore, a
lot of effort has been devoted to the development of powerful optimal algorithms.
On the other hand, solving MAPF optimally is computationally intractable as seen
in Chap. 3.2.3. Therefore, sub-optimal algorithms are also engaging because they
are the only possibility to handle large MAPF instances (e.g., hundreds of agents or
more).

• The third and last question is a bit vague compared to the previous two. That
is, which type of representation is used, paths or configurations. This aspect will be
explained with the details of several algorithms.

Below, representative MAPF algorithms are explained, fitted into six categories, while
discussing completeness and optimality. The summary is available in Table 3.2. I also
recommend referring to comprehensive reviews such as [Felner et al., 2017; Stern, 2019;
Ma, 2022].

complete? optimal? representation scalability examples

graph pathfinding ✓ ✓ configurations poor
A∗ +OD [Standley, 2010]

M∗ [Wagner and Choset, 2015]

compiling-based SC ✓ configurations poor/fair
SAT-based [Surynek et al., 2016]

ILP-based [Yu and LaValle, 2016]

two-level SC ✓ paths good
CBS [Sharon et al., 2015]

BCP [Lam et al., 2022]

prioritized planning paths excellent
HCA∗ [Silver, 2005]

RPP [Čáp et al., 2015]

rule-based ✓
algorithm-

dependent
outstanding

BIBOX [Surynek, 2009]

PR [De Wilde et al., 2014]

learning-based configurations excellent
PRIMAL [Sartoretti et al., 2019]

GNN-based [Li et al., 2020]

Table 3.2: Categories of MAPF algorithms. ‘SC’ denotes solution complete, that is,
ensuring to return a solution for solvable instances. The scalability with respect to |V | or
|A| is also presented, based on my research experience.

Graph Pathfinding Approaches

MAPF can be seen as the graph pathfinding problem (Chap. 3.2.1), therefore, off-the-
shelf pathfinding algorithms are available such as A∗ (Alg. 2.2). However, the branching
factor of MAPF is exponential for the number of agents. Consequently, a vanilla A∗ is
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impractical to solve MAPF. Instead, several techniques have been proposed to resolve the
exponential size of the branching factor [Standley, 2010; Goldenberg et al., 2014; Wagner
and Choset, 2015]. In general, this class relies on the representation by configurations
since MAPF is converted to graph pathfinding, regarding a configuration as a vertex.
The search space is finite, therefore, algorithms can be complete. Furthermore, they
are optimal with admissible heuristics, provided that the solution cost is accumulative
transition costs.

Compiling-based Approaches

MAPF is reducible to various computational problems, such as constraint satisfaction
problem (CSP) [Ryan, 2010], boolean satisfiability problem (SAT) [Surynek, 2012; Surynek
et al., 2016], integer linear programming (ILP) [Yu and LaValle, 2016], and answer set
programming (ASP) [Erdem et al., 2013; G’omez et al., 2020]. Thus, one approach to solve
MAPF is to compile an MAPF instance to another well-known problem and uses off-the-
shelf matured solvers, such as Gurobi [Gurobi Optimization, 2022] or CPLEX [Cplex,
2009]. Algorithm 3.1 presents a general schema. Typically, compiling-based approaches
repeatedly build an encoding for makespan-fixed MAPF instance and then ask for its
solvability to, e.g., SAT solvers. This consulting continues until a solution is obtained.
Although compiling-based approaches can be optimal, the search space is not limited to
finite; they are thus incomplete. On other hand, for solvable instances, they are ensured
to return a solution. The dissertation calls this property solution complete.

Algorithm 3.1 Compiling-based MAPF.

input: MAPF instance I

output: solution

1: t0← compute lower bound of makespan ▷ e.g., maxi∈Adist(si , gi)

2: for t = t0, t0 + 1, t0 + 2, . . . do

3: build encoding E of I with makespan t

4: Π← consult about E by an off-the-shelf solver

5: if Π ,⊥ then return Π ▷ Recall that ⊥ means “not found” or “undefined”

Typically, encodings use a variable that represents whether a location at a certain
timestep is used by a specific agent. Therefore, for large MAPF instances (as for |V |
or |A|), the number of variables is dramatically increasing, bottlenecking for compiling-
based approaches. To mitigate this issue, efficient encoding or branching techniques of
variables have been actively studied, e.g., [Husár et al., 2022; Achá et al., 2022].

Remarks of Completeness. I acknowledge that the definition of completeness in MAPF
is debatable. According to [Yu and Rus, 2015], solvable MAPF instances have a solution
of O

(
V 3

)
-makespan. Therefore, it is possible to set the makespan upper bound; then

compiling-based approaches are complete. However, I present them as “incomplete” be-
cause the upper bound analysis is very sensitive to MAPF specifications. For instance, in
MAPF-C [Hönig et al., 2018b] where even two agents in distinct vertices can be colliding,
which is the starting point of MRMP, the analysis does not make sense at all. For the
same reason, I present two-level approaches as incomplete.
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Two-level Approaches

Modern and powerful MAPF algorithms take the form of two-level approaches, using the
representation by paths. In a nutshell, these algorithms start from infeasible solutions
that contain collisions, and then gradually resolve collisions by re-computing individual
paths for agents. The term two-level comes from that most algorithms have the same
algorithmic structure as follows.

• At the high-level, algorithms manage collisions among paths for agents.

• At the low-level, algorithms compute individual paths for agents, under constraints
imposed by the high-level.

Representatives of two-level approaches are conflict-based search (CBS) [Sharon et al.,
2015] and ICTS [Sharon et al., 2013]. In recent years, compiling-based approaches also
take the form of two-level approaches, achieving successful results, as seen in SAT [Surynek
et al., 2022] or branch-and-cut-and-price (BCP) framework [Lam et al., 2022]. They are
optimal but incomplete; the search space is not finite, regarding how to generate con-
straints at the high-level. Rather, they are solution complete. The most popular ap-
proach, CBS, is presented in detail as follows.

Conflict-Based Search (CBS). Algorithm 3.2 provides the pseudocode of CBS. A high-
level search of CBS manages collisions between agents. When a collision occurs between
two agents at a certain time and location, there are two possible resolutions depending
on which agent gets to use the location at that time. Following this observation, CBS
constructs a binary tree where each high-level node includes constraints prohibiting the
use of space-time pairs for certain agents. In a low-level search, agents find a single path
constrained by the corresponding high-level node.

Algorithm 3.2 Conflict-based search (CBS).

input: MAPF instance I

output: solution

1: Open← J⟨ paths : get_initial_paths(I), constraints : ∅ ⟩K

2: while Open , ∅ do

3: N ←Open.pop()

4: C← get constraints forN ▷ constraint specifies where and when is prohibited for i

5: if C = ∅ then returnN .paths

6: for (i ∈ A, constraint) ∈ C do

7: N new← ⟨ paths :N .paths, constraints :N .constraints∪ {(i,constraint)} ⟩

8: Πi ← compute a path for i followingN new.constraints ▷ low-level search

9: if Πi ,⊥ then

10: N new.paths[i]←Πi

11: Open.push (N new)

CBS has a bunch of powerful enhancements, e.g., prioritizing collisions [Boyarski et
al., 2015], improving heuristics [Felner et al., 2018; Li et al., 2019a], and posing effective
constraints [Li et al., 2021b; Zhang et al., 2022a], to name just a few. The low-level search
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is typically performed by A∗, but replacing it has been studied, by specialized pathfind-
ing algorithms in dynamic environments such as SIPP [Phillips and Likhachev, 2011]
or temporal jump point search [Hu et al., 2021; Hu et al., 2022]. Bounded sub-optimal
versions of CBS have also been proposed [Barer et al., 2014; Li et al., 2021c].

Prioritized Planning

This class is incomplete and sub-optimal, however, it is computationally inexpensive
and often outputs solutions with acceptable quality. In short, prioritized planning (aka.
PP) is practical in real scenarios. The scheme is sequentially planning individual paths
for agents, while avoiding collisions with already planned paths [Erdmann and Lozano-
Perez, 1987; Silver, 2005]; therefore, PP relies on the representation by paths. Algo-
rithm 3.3 provides the pseudocode. PP is a typical example of decoupled planning that
avoids planning in a joint space where the actions of all agents are considered.

Algorithm 3.3 Prioritized planning (PP).

input: MAPF instance I

output: solution or FAILURE

1: initiate Π (i.e., partial solution)

2: for i ∈ A do

3: Πi ← compute a path for agent-i without collisions with other paths in Π

4: if Πi =⊥ then return FAILURE

5: register Πi to Π

6: return Π

There is a sufficient condition that the sequential collision-free solution can always
be constructed regardless of planning orders [Čáp et al., 2015]. Such instances are called
well-formed. The condition of well-formed instances is that, for each pair of start and
goal, a path exists that traverses no other starts and goals. Meanwhile, a theoretical study
in [Ma et al., 2019a] reveals that there is an instance such that PP fails for any order of
priorities. Because priority ordering is crucial for PP in both solvability and solution
quality, a bunch of studies addressed this issue [Azarm and Schmidt, 1997; Bennewitz et
al., 2002; Van Den Berg and Overmars, 2005; Ma et al., 2019a; Wu et al., 2020; Zhang et
al., 2022c].

Rule-based Approaches

This class leverages analytical results of graph topology, and makes agents move step-
by-step following ad-hoc rules to solve MAPF. In [Peasgood et al., 2008], a rule-based
algorithm relying on spanning tree construction is studied. BIBOX [Surynek, 2009] is a
polynomial time complete algorithm for MAPF in biconnected graphs. Representative
of this class is the push and swap (PS) algorithm [Luna and Bekris, 2011] for arbitrary
graphs, relying on two primitives: the “push” operation to move an agent toward its
goal and the “swap” operation to allow two agents to swap locations without altering the
configuration of other agents. PS was originally presented as a complete algorithm, but
the follow-up work [De Wilde et al., 2014] pointed out it is indeed incomplete. Instead,
the work presented the push and rotate (PR) algorithm. PR is a polynomial time com-
plete algorithm for PM without rotations when at least two unoccupied vertices exist in
the start configuration. PR is also seen as an implementation algorithm of analysis by
[Kornhauser et al., 1984].
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Rule-based approaches have both advantages and disadvantages. The good points are
that they are complete for certain instances. Furthermore, they can solve MAPF in poly-
nomial time, i.e., ensuring excellent scalability. However, they are sub-optimal and the
solution quality is often terrible. Furthermore, the rule-based approaches are very sensi-
tive to problem specifications; the most critical flaw in achieving domain independence.
For instance, PR cannot solve MAPF instances requiring rotations. Other classes, such as
PP, are easy to adapt to changes in MAPF specifications. In contrast, once a specification
is slightly changed, the rule-based approaches require substantial changes to algorithm
structure, or in the worst case, the algorithms do not make sense at all.

Learning-based Approaches

This class is an emerging area that uses machine learning (ML) techniques, influenced by
recent successful results of deep learning in various fields [Mnih et al., 2015; Krizhevsky
et al., 2017; Jumper et al., 2021]. Typically, learning-based approaches mimic good agent
behaviors in expert data, for example, by combining imitation learning and reinforce-
ment learning [Sartoretti et al., 2019; Damani et al., 2021]. In the planning phase, each
agent observes nearby situations and determines the next location, indicated by a trained
ML model. Hence, this class relies on the representation by configurations. As ML mod-
els, various choices exist to incorporate how agents interact with each other, such as using
graph neural networks (GNN) [Li et al., 2020; Li et al., 2021e; Ma et al., 2021] or learning
collision avoidance policy with Monte-Carlo simulation [Skrynnik et al., 2021].

They have good potential for scalability with plausible solution quality, however, they
do not have any theoretical guarantees in general. In other words, learning-based ap-
proaches are incomplete and sub-optimal, furthermore, might produce infeasible solu-
tions (e.g., paths with collisions).

Others

Lastly, approaches not fitted into the aforementioned categories are introduced. The FAR
algorithm [Wang et al., 2008] first annotates a vertex so that avoids head-on collisions of
agents, and then plans the respective agent’s path by A∗ following the annotated graph,
while locally avoiding deadlocks by a heuristic method. The MAPP algorithm [Wang
and Botea, 2011] combines PP and rule-based approaches, which is complete in some in-
stances. These two algorithms were pioneers of MAPF algorithms. Influenced by SBMP,
in [Cáp et al., 2013], a discretized version of RRT is presented to solve MAPF. In [Bouzy,
2013], an adaptation of Monte-Carlo tree search to MAPF is studied. In [Li et al., 2022], a
large neighborhood search [Ahuja et al., 2002] is applied to MAPF, resulting in an excel-
lent solver called LNS2; the algorithm is similar to the two-level approaches like CBS. At
the high level, LNS2 selects a subset of agents. At the low level, it replans paths for those
agents while avoiding collisions as much as possible. This continues until entire agents
have no collisions. Note, a similar concept has already appeared in [Standley and Korf,
2011].

I am aware that many interesting algorithms other than the above have been pro-
posed, but of course, I cannot list all of them; they are endless! So I end up with the
introduction of MAPF algorithms here.

3.2.5 Variants of MAPF – One Step before MRMP

Thus far, many variants of MAPF have been studied. Among them, some variants are
positioned “one step before” multi-robot motion planning (MRMP), introduced in the
next section. Especially, three directions are worth to be mentioned here.
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Continuous Space and Time

Relaxing discretized space and time assumptions is one important direction beyond clas-
sical MAPF. For instance, MAPF assumes that each edge has a unit cost; however, in re-
ality, edge weight (i.e., traveling time) differs among locations. Motivated by this fact,
MAPF on weighted graphs has been studied [Walker et al., 2018; Ren et al., 2021].

Most MAPF studies assume grid environments that allow agents to move in four di-
rections: north, west, south, or east. However, allowing diagonal moves (e.g., northwest
and east-southeast) can save the traveling time of agents. The corresponding problem for
single-agent is known as any-angle path planning on grids [Daniel et al., 2010], and its
MAPF adaptation has also been studied [Yakovlev and Andreychuk, 2017].

Classical MAPF assumes that agents take action aligned with discretized time scale.
In contrast, allowing each agent to take action at any time can smooth the planned trajec-
tory. The corresponding problem is known as MAPF with continuous time [Andreychuk
et al., 2022; Kasaura et al., 2022].

Kinodynamic Constraints

Making agents close to “physical robots” is also an important direction. Classical MAPF
abstracts real robots into agents while dropping many important features such as kin-
odynamic constraints. Hence, there are huge reality gaps to deploy MAPF with real
robots. To reflect the kinodynamic constraints, post-processing classical MAPF solutions
has been studied [Hönig et al., 2016; Ma et al., 2019b]. Another approach is incorporating
the constraints in the planning phase [Yakovlev et al., 2019; Wen et al., 2022], assuming
specific models such as differential drive robots.

Heterogeneous Agents

The third direction is breaking the homogeneity of agents. A team of agents often con-
sists of different types of agents regarding shapes and kinodynamic constraints such as
maximum speeds. Thus, allowing planning for a team of heterogeneous agents is appeal-
ing. For this purpose, MAPF with heterogeneous agents, especially for heterogeneity of
shapes, has been studied [Li et al., 2019c; Atzmon et al., 2020c]. Those studies demon-
strate that MAPF algorithms (e.g., CBS) can adapt to heterogeneity.

3.3 Multi-Robot Motion Planning (MRMP)

In a nutshell, multi-robot motion planning (MRMP) is a multi-robot version of motion
planning, that is, planning trajectories for multiple objects to lead them to ideal states.
MRMP is also regarded as a generalized version of MAPF, assuming continuous space
and time, incorporating kinodynamic constraints, and allowing a team of heterogeneous
agents. Therefore, developing quick and scalable methods to solve MRMP near-optimally
is a holy grail for automation. Indeed, MRMP is the end boss monster of the dissertation,
studied in Part III.

3.3.1 Problem Formulation

The below definition naturally extends (single-agent) motion planning introduced in
Chap. 2.6 to multi-agent scenarios. We first define geometric planning, i.e., MRMP with-
out kinodynamic constraints. To align with the literature, this part uses “robot” instead
of “agent,” however, note again that these two have no special difference throughout the
dissertation.
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Geometric MRMP

Geometric MRMP considers a problem of motion planning for a team of n robots A =
{1,2, . . . ,n} in the 3D closed workspaceW ⊂ R3. Each robot i is operated in its own configu-
ration space Ci ⊂ Rdi where di ∈ N>0. A set of points occupied by robot i at a configuration
q ∈ Ci is denoted as Ri(q) ⊂ W . The space W may contain obstacles O ⊂ W . An ob-
stacle space for robot i is Cobs

i = {q | q ∈ Ci ,Ri(q)∩O , ∅}. A free space for robot i is then
Cfree
i = Ci \ Cobs

i . A trajectory for robot i is defined by a continuous mapping σi : R≥0 7→ Ci .

Definition 3.4 (geometric MRMP instance). A geometric MRMP instance is defined by
a tuple (W ,A,C,O,R,S ,G), where C = (C1,C2, . . . ,Cn) and R = (R1,R2, . . . ,Rn). S is a tu-
ple of initial configurations

(
qinit

1 ,qinit
2 , . . . , qinit

n

)
, where qinit

i ∈ Ci . G is a tuple of goal regions(
Q

goal
1 , . . . ,Q

goal
n

)
, where Qgoal

i ⊆ Ci .

Definition 3.5. Given a geometric MRMP instance, the geometric MRMP problem is a de-
cision problem that asks the existence of a tuple of n trajectories (σ1, . . . ,σn) (i.e., solution) and
tend ∈ R≥0 that satisfies the following conditions:

• endpoint: σi(0) = qinit
i ∧ σi(tend) ∈Qgoal

i , ∀i ∈ A

• obstacle-free: σi(τ) ∈ Cfree
i , ∀i ∈ A,0 ≤ τ ≤ tend

• inter-robot collision-free: Ri
(
σi(τ)

)
∩Rj

(
σj(τ)

)
= ∅, ∀i, j ∈ A,i , j,0 ≤ τ ≤ tend

Kinodynamic MRMP

Recall that kinodynamic planning requests a sequence of control inputs that determines
a trajectory in the state space.

Similarly to geometric MRMP, kinodynamic MRMP considers navigation for a team
of robots A in the workspaceW , which may contain obstacles O. A state space and control
space of robot i ∈ A is respectively provided as Xi ∈ Rd

X
i and Ui ∈ Rd

U
i , where dXi ,d

U
i ∈ N.

A set of points occupied by robot i at a state x ∈ Xi is denoted as Ri(x) ⊂ W . Then, an
obstacle space X obs

i and a free space X free
i for robot i are defined in the same way as the

geometric case, using Ri . The state transition under kinodynamic constraints of robot i
is given by ẋ = fi(x,u), where x ∈ Xi and u ∈ Ui . Given a continuous mapping for control
inputs of robot i, denoted by ξi : R≥0 7→ Ui , and an initial state xinit

i ∈ Xi , a trajectory of
the state is successively defined as follows.

σi(0) := xinit
i (3.1)

σi(t) :=
∫ t

0
fi (σi(τ),ξi(τ)) dτ + σi(0) (3.2)

A kinodynamic MRMP instance is defined by just replacing configuration spaces with
state spaces, and adding a tuple of state transition functions for each robot. A kinody-
namic MRMP problem is then a decision problem that asks the existence of a tuple of
continuous mapping for control inputs, respective for each robot, that satisfies the end-
point condition, the obstacle-free condition, and the inter-robot collision-free condition
in Def. 3.5.

Discretizing Time and Local Planner

MRMP is defined in continuous time, however, it is realistic for planning to discretize
the time. That is, by introducing ∆ ∈ R>0 as the small amount of time, MRMP aims at
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finding a path of configurations (or states) for each robot, such that any consecutive two
points are travelable in the amount of ∆ time, without encountering obstacles, without
inter-robot collisions, and following kinodynamic constraints. For instance, the state
trajectory of Eq. (3.2) is successively represented as follows, given a sequence of control
inputs ξ0,ξ1, . . ..

σ0
i := xinit

i (3.3)

σ ki := σ k−1
i + fi

(
σ k−1
i ,ξk−1

)
·∆ (3.4)

For this discretization, in motion planning studies, it is convenient to assume that
each robot i has a local planner [Choset et al., 2005; LaValle, 2006]. The dissertation
denotes it connecti . Given two configurations (or states) qfrom,qto ∈ Ci , this function
returns a unique trajectory σ that satisfies the following three conditions:

• σ (0) = qfrom ∧ σ (∆) = qto

• σ (τ) ∈ Cfree
i for 0 ≤ τ ≤ ∆

• (in kinodynamic MRMP) σ follows fi

If no such σ is found, connecti returns ⊥. For instance, connecti
(
qfrom,qto

)
may output

(∆−τ)qfrom+τqto for geometric MRMP, or Dubins paths [Dubins, 1957] for car-like robots.
Observe that the local planner “hides” primary differences between geometric and

kinodynamic MRMP, that is, the control input is now treated as a blackbox. As long
as the local planner is definable, there is no strong motivation to distinguish geometric
and kinodynamic MRMP. For this reason, the dissertation collectively calls both types of
problems MRMP.

3.3.2 Computational Complexity

As preliminary knowledge, single-robot motion planning itself is intractable in gen-
eral [Reif, 1979]. Specifically, the problem is in PSPACE-hard. For further details of
complexity results of (single-agent) motion planning, please consult reviews in [LaValle,
2006; Solovey, 2020].

Since motion planning itself is intractable, MRMP is at least as hard as this lower
bound. Moreover, MRMP is still tremendously challenging even in simplified situations.
The prominent example is the warehouseman’s problem, illustrated in Fig. 3.2, posing
rearrangements of axis-aligned rectangular boxes. It is shown that the warehouseman’s
problem is in PSPACE-hard [Hopcroft et al., 1984]. In [Hearn and Demaine, 2005], it
is revealed that the warehouseman’s problem is PSPACE-hard even for 1 × 2 rectangles
packed in a rectangle. Similarly, the many discs problem is MRMP for disc robots in
the plain with polygonal obstacles, which is shown to be in NP-hard [Spirakis and Yap,
1984].

3.3.3 Approaches to MRMP

Compared to MAPF, MRMP is still unmatured. Dominant approaches (e.g., PRM or RRT
for motion planning; PP or CBS for MAPF) have not been established as of 2023. The
below reviews existing approaches to MRMP.

In principle, SBMP such as PRM [Kavraki et al., 1996] or RRT [LaValle, 1998] is ap-
plicable to MRMP by considering one composite robot consisting of all robots [Choset et
al., 2005]. Indeed, in [Sánchez and Latombe, 2002], PRM is used to solve MRMP. A few
studies consider effective sampling strategies from the composite space. For instance,
in [Le and Plaku, 2018; Le and Plaku, 2019], solutions to MAPF are used as a heuristic.
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Figure 3.2: Warehouseman’s problem. The problem is to seek a finite number of trans-
lations for axis-aligned rectangles within a rectangular wokspace.

Despite its applicability, the strategy that samples from the composite space require
sampling from the high-dimensional space linear to the number of robots, being a bot-
tleneck even for SBMP [LaValle, 2006]. Consequently, modern MRMP studies mostly
take two-phase planning that first constructs roadmaps and then performs multi-agent
search, finding collision-free paths on those roadmaps. In those studies, as the first phase,
roadmaps are explicitly prepared via conventional SBMP [Švestka and Overmars, 1998;
Gharbi et al., 2009; Wagner et al., 2012b; Solovey et al., 2016; Solis et al., 2021; Dayan et
al., 2021] or implicitly embedded as lattice grids [Han et al., 2018; Hönig et al., 2018b;
Cohen et al., 2019]. Depending on the heterogeneity, a roadmap is shared among robots,
or, robot-wise roadmaps are constructed. The lattice grids are available when the config-
uration space of each robot is not high-dimensional or state transitions of robots are re-
stricted to a limited number; otherwise, the search space dramatically grows. The second
phase uses MAPF algorithms explained in Chap. 3.2.4. Moreover, discretized versions of
SBMP are also available [Solovey et al., 2016; Shome et al., 2020], which sample from the
composite space and then map the composite configuration to vertices in constructed
robot-wise roadmaps in the first phase.

A few studies are beyond this two-phase planning scheme, that is, simultaneously
performing roadmap construction and multi-agent search. In [Wagner et al., 2012b], RRT is
combined with subdimensional expansion, which is a concept behind the M∗ algorithm [Wag-
ner and Choset, 2015] for MAPF. In short, subdimensional expansion aims to gradually
couple the search space of multiple robots, which are initially separated. Doing so main-
tains the search space small. In very recent, tree-based SBMP planners have been used
combined with MAPF algorithms, e.g., with PP [Grothe et al., 2022] or with CBS [Kot-
tinger et al., 2022], resulting in promising outcomes.

3.4 Path Planning with Target Assignment

Next, we see another form of multi-agent navigation, i.e., those with target assignment.
The above MAPF and MRMP assume that each agent has its own target assigned a priori.
However, practical applications often do not care about task-executing agents. In other
words, goal locations for each agent have room for assignment. We can see such examples
in operations of automated warehouses [Wurman et al., 2008], robot soccer [MacAlpine
et al., 2015], pattern formation of robot swarms [Turpin et al., 2014], and a robot dis-
play [Alonso-Mora et al., 2012], to name just a few. This is where joint optimization
of target assignment and collision-free path planning is appealing. The corresponding
problem is called a unlabeled (or anonymous) version of MAPF/MRMP.

In the rest, this section first formulates unlabled-MAPF (Chap. 3.4.1), and then de-
scribes its computational complexities (Chap. 3.4.2), followed by broad reviews of exist-
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ing approaches to joint problems (Chap. 3.4.3).

Remarks to Unlabeled-MRMP. This dissertation does not study unlabeled-MRMP. In-
stead, I put several notes below. Unlike MAPF, MRMP defined in Chap. 3.3.1 assumes
that each agent has its respective configuration space. Consequently, it might be im-
possible to assign goal locations to arbitrary agents. For instance, a goal location laid
in a narrow corridor is only reachable by small robots. In this case, a mixed problem
of labeled- and unlabeled-MRMP needs to be solved (c.f., Chap. 3.4.3). Meanwhile,
unlabeled-MRMP limiting robot shapes to discs have been popularly studied, e.g., [Adler
et al., 2015; Solovey and Halperin, 2016].

3.4.1 Problem Formulation

Below, unlabeled-MAPF formalization is presented for undirected graphs. The directed
case is similar to the undirected one. Unlabeled-MAPF is defined over a set of targets,
instead of a goal function of MAPF.

Definition 3.6 (unlabeled-MAPF instance). An unlabled-MAPF instance is defined by an
undirected graph G = (V ,E), a set of agents A = {1,2, . . . ,n}, an injective initial state function
s : A 7→ V , and a set of target locations T = {g1, g2, . . . , gm}, where gk ∈ V and |T | ≤ |A|.

The below defines unlabeled-MAPF by the representation by configurations. It is
possible to define it by the representation by paths, similar to MAPF.

Definition 3.7 (unlabeled-MAPF problem; representation by configurations). Given an
unlabeled-MAPF instance, an unlabeled-MAPF problem asks to find a tuple of configurations
Π = (Q0,Q1, . . . ,Qk), where Qt is a configuration, satisfying the following conditions:

• Q0 is the start configuration.

• For each gl ∈ T , there exists i ∈ A such that Qk[i] = gl .

• Any two consecutive configurations in Π are connected.

For simplicity, the dissertation assumes |T | = |A| unless explicitly mentioned.

Optimization Problems

The same optimization metrics of MAPF are available to unlabeled-MAPF: sum-of-costs
(aka. flowtime), makespan, sum-of-fuels, maximum-moves, and sum-of-loss. See their defi-
nitions in Chap. 3.2.1. Similar to MAPF, unlabeled-MAPF has a Pareto optimal structure
for makespan and sum-of-costs metrics [Yu and LaValle, 2013a]. In other words, there is
an instance in which it is impossible to optimize both metrics simultaneously.

3.4.2 Computational Complexity

Unlike conventional MAPF, it is always possible to construct a solution for unlabeled-
MAPF in polynomial time when a graph is connected [Kornhauser et al., 1984; Yu and
LaValle, 2013a; Ma et al., 2016; Okumura and Défago, 2022b].2 Furthermore, find-
ing makespan-optimal solutions for unlabeled-MAPF is easier than for MAPF which
is known to be NP-hard. Indeed, unlabeled-MAPF has a polynomial-time optimal al-
gorithm based on a reduction to maximum flow [Yu and LaValle, 2013a]. Its detail is
available in Appendix C.1. According to the analysis of the paper, a makespan-optimal
solution has the makespan of |A| + |V | − 2 in the worst case. To my knowledge, other
complexity analysis results have not appeared yet, such as flowtime optimization.

2This is why Def. 3.7 avoids defining unlabeled-MAPF as a decision problem.
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3.4.3 Approaches to Unlabeled-MAPF and Beyond

The unlabeled-MAPF problem consists of two sub-problems: (i) target assignment, more
generally, task allocation, and (ii) collision-free path planning. On one hand, the multi-
robot task allocation problems are a mature field [Gerkey and Matarić, 2004] with well-
known algorithms, such as the Hungarian algorithm [Kuhn, 1955]. On the other hand,
path planning for multiple agents, often embodied as MAPF [Stern et al., 2019], has been
actively studied since the 2010s. The review below widely explains studies covering both
aspects, not limited to unlabeled-MAPF.

Similarly to MAPF algorithms, the existing approaches can be discussed with the
categories presented in Table 3.2, that is, graph pathfinding, compiling-based, two-level,
prioritized planning, and rule-based approaches.

For instance, graph pathfinding, compiling-based, and two-phase approaches have
been seen in solving the combined target assignment and pathfinding (TAPF) problem [Ma
and Koenig, 2016] (aka. colored MAPF [Barták et al., 2021]). TAPF generalizes both MAPF
and unlabeled-MAPF by partitioning the agents into teams. To solve the pathfinding
part, the studies for TAPF use existing MAPF algorithms such as M∗ (graph pathfind-
ing) [Wagner et al., 2012a], answer set programming (compiling-based) [Nguyen et al.,
2019], and CBS (two-level) [Ma and Koenig, 2016; Hönig et al., 2018a; Henkel et al.,
2019]. The target assignment part mostly uses off-the-shelf target assignment algorithms,
or, exploits the makespan-optimal algorithm for unlabeled-MAPF.

The unlabeled version of pebble motion has been studied [Kornhauser et al., 1984;
Călinescu et al., 2008; Goraly and Hassin, 2010]. These studies use graph analysis results.
Hence, they are categorized into rule-based approaches.

Prioritized planning (PP) is used in [Turpin et al., 2014] to solve unlabeled-MAPF in
continuous spaces. The method first solves the lexicographic bottleneck assignment [Burkard
and Rendl, 1991; Sokkalingam and Aneja, 1998] and then plans trajectories by PP, to-
gether with the delay offset about when agents start moving to avoid collisions. PP has
been also used to solve the multi-agent pickup and delivery (MAPD) problem [Ma et al.,
2017b; Liu et al., 2019], a joint problem of target assignment and path planning that as-
sumes applications of fleet operations in warehouses [Wurman et al., 2008]. In MAPD,
agents continuously need to convey packages, issued in an online manner, from their
pickup location to their delivery location. The formal definition of MAPD will be pro-
vided in Chap. 4.3.2.

3.5 Execution with Uncertainties

Thus far, we have seen what is planning for multiple moving agents. This section shifts
the topic to the execution perspective, namely, issues raised in plan execution for multiple
agents under uncertainties. The section begins with the discussion of timing uncertainties.

3.5.1 Timing Uncertainties – What are They?

Recall how to characterize approaches to multi-agent navigation. On one side, there are
reactive approaches. On another side, there are deliberative approaches. Below, we first
examine deliberative approaches to pose often overlooked problems of execution.

Deliberative approaches consist of preparing a list of collision-free trajectories before
robots start moving, and then letting each robot follow the prepared trajectory precisely at
runtime. The preparation phase is commonly formulated as MAPF (or MRMP). In MAPF,
a plan (i.e., a solution of offline planning; paths) specifies the locations that each agent
can use and the time at which it can be used. If an MAPF plan is followed precisely, all
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robots are guaranteed to reach their destinations because no two robots use overlapping
spatiotemporal points.

The main drawback of the above MAPF-based strategy is that robots must precisely
follow the planned trajectories both spatially and temporally, despite the existence of re-
ality gaps in real robots. Owing to trajectory tracking being a mature field (e.g., see [Ben-
Ari and Mondada, 2017]), it is reasonable to assume the use of trajectory tracking tech-
niques that suppress “spatial” error within a reasonable amount at runtime. However,
the “temporal” side is complicated.

In general, plan execution on multiple robots is subject to timing uncertainties. Hence,
a perfect on-time execution cannot be expected. For instance, robots are often delayed in
starting their actions from a prespecified wall-clock time. This is caused by robot internal
factors, such as kinodynamic constraints, slips, and battery consumption, as well as dis-
tributed environmental factors, such as communication delays, clock shift/drift, or uncap-
tured individual differences between robots. More specifically, the latter corresponds to
the non-existence of a reliable wall-clock global time that all robots follow because each
robot ultimately takes and finishes actions at its own timings independently and unpre-
dictably. Furthermore, when human workers involve in system operations together with
mobile robots, as seen in fleet management systems, the time factors become much more
unpredictable.

When one robot is delayed from the original plan because of such timing uncertain-
ties, the robot may collide with another robot and crash if they have common regions in
their trajectories. Since every motion requires time, it may be impossible to compensate
for the delay before bumping into each other. Even worse, such negative interference
exponentially increases with the number of agents because the actions of the agents tem-
porally depend on each other.

We, therefore, require a strategy to cope with the timing uncertainties of plan execu-
tion on real robots.

3.5.2 Approaches to Timing Uncertainties

Overcoming the issues stemming from timing uncertainties needs both planning and
execution perspectives. Existing approaches can be categorized into the following four
categories (of course, there are exceptions). As is usual in engineering, all of them have
pros and cons.

Deliberative Approaches with Robust Offline Planning

The first approach prepares robust offline planning against execution errors, and then
performs one-shot execution of the plan, as seen in [Wagner and Choset, 2017; Man-
souri et al., 2019; Peltzer et al., 2020; Atzmon et al., 2020a]. This class models timing
uncertainties based on the probabilities of travel time or maximum delay assumptions.
As long as the system state is within predefined uncertainty models at runtime, these
approaches provide safety and liveness. However, once failing to maintain the system
status in models owing to black swan events (i.e., events that are unpredictable but bring
fatal consequences), the system behavior becomes neither predictable nor controllable.

Deliberative Approaches with Online Intervention

The second approach relies on online intervention at runtime that enforces robots to fol-
low the prepared offline planning, as seen in [Čáp et al., 2016; Ma et al., 2017a; Hönig
et al., 2019; Atzmon et al., 2020b]. Taking an MAPF plan computed offline as input, at
the execution phase, this approach uses a central controller that monitors the status of
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all robots in real-time and continuously issues instructions on the manner in which the
robots move. However, this approach suffers from the weakness of centralized execution,
that is, requiring significant runtime effort. In addition, it requires additional and costly
infrastructure, such as steady networks and monitoring systems, to manage all robots’
statuses in real-time. The realization of such schemes in large systems is not trivial.

Reactive Centralized Approaches

When real-time intervention is possible by a central component, it is valuable to consider
a reactive approach, that is, continuously alternating state observation and planning for
the next several actions. We can see such styles in [Van Den Berg et al., 2011; Zhou
et al., 2017; Senbaslar et al., 2018; Luis et al., 2020; Park et al., 2022], often combined
with control theory rather than planning. The primary advantage is the limited effect
of timing uncertainties to plan execution because the system can immediately perform
online planning, based on rich and no-delay observations. The disadvantages come from
the nature of reactive approaches and centralized execution. In other words, ensuring
liveness (i.e., each robot eventually reaches its goal) is difficult to realize, moreover, it is
challenging to build large systems with this scheme.

Reactive Decentralized Approaches

The fourth and last approach uses entirely decentralized architecture, as seen in [Lalish
and Morgansen, 2012; Chen et al., 2017; Tordesillas and How, 2021]. That is, each robot
owes its planning and execution. If all robots take a reactive approach that relies only
on local interactions (i.e., observation and communication), the negative effect of tim-
ing uncertainties is moderately suppressed while achieving excellent scalability. On the
other hand, providing some good theoretical properties such as optimality and liveness
becomes very challenging.

3.5.3 Against Faults

Timing uncertainties are trouble sources, but they are not the only sources posing execu-
tion issues. We also need to care about robot faults. Building robust and resilient multi-
robot systems against faults is an emerging and important topic [Prorok et al., 2021] since
those systems are expected to be infrastructures of logistics or product lines.

Robot faults are not rare and are inevitable in practice due to sensor/motor errors,
battery consumption, or other unexpected events. Here, “faults” are beyond delays of
robot motions as stated in previous sections. Rather, they are critical events, such as
agents forever stopping their motions due to crashes, or, misbehaving from the planning.
For instance, according to publicly available data from one warehouse system, the MTBF
(mean time between failure) of a robot is 125 days [AutoStore, 2021]. This means that
if such a system operates with 125 robots concurrently, we encounter one fault per day
on average. Without countermeasures for robot faults, cascade failures may be triggered
even by one robot fault, and eventually, the entire system may stop its operation. Such
disasters actually happened in reality [Financial Times, 2021] and may affect our daily
life.

Some early-stage studies against robot faults at runtime can be seen, e.g., target track-
ing [Zhou et al., 2018], orienteering [Guangyao Shi, 2020], and task assignment [Schwartz
and Tokekar, 2020]. In the context of pathfinding, a few studies focus on system designs
for potentially non-cooperative agents [Bnaya et al., 2013; Strawn and Ayanian, 2021]
where those agents can pretend to be crashed.
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3.6 Challenges and Strategies

We are now ready to discuss non-trivial but critical challenges in multi-agent navigation.
This section explains what we will see in the rest of the dissertation, again, based on the
three perspectives of planning, execution, and representation.

3.6.1 Challenge in Planning

Solving MAPF is the foundation for multi-agent navigation. As explained in Chap. 3.2.4,
various algorithms have been proposed for MAPF. These algorithms are exposed to a
tradeoff between providing good theoretical properties (e.g., completeness and optimal-
ity) and reducing planning efforts (i.e., providing speed and scalability). Therefore, the
primary challenge in planning is described as follows.

Challenge in Planning� �
Develop MAPF algorithms with both good theoretical properties and small planning
efforts.� �

3.6.2 Empirical Results on MAPF Benchmark

To justify this challenge, let me “visualize” the tradeoff. Figure 3.3 is it. This figure
shows the number of solved instances (in total 13,900) of representative or state-of-the-
art MAPF algorithms, given a time limit up to 30 s. Below, several details for the figure
are provided.

Experimental Setup. The instances were retrieved from the MAPF benchmark [Stern
et al., 2019]. The benchmark includes 33 four-connected grid maps. For each map, 25
“random” scenarios are available, which is a list of start–goal pairs of agents. The max-
imum number of agents (i.e., list length) varies between grid maps, up to 1,000 agents.
The instances were extracted while increasing the number of agents by 50 up to the max-
imum. The experiments were run on a desktop PC with Intel Core i7-7820X 3.6 GHz
CPU and 32 GB RAM. A maximum of 16 different instances were run in parallel using
multi-threading.

Tested Algorithms. Eight algorithms were surveyed, including both representative and
state-of-the-art algorithms, covering wide algorithmic properties. The explanation of
each algorithm is below.

• A∗ [Hart et al., 1968] as a vanilla search algorithm. It is complete and optimal. The
used objective was sum-of-loss.

• ODrM∗ [Wagner and Choset, 2015] as a state-of-the-art optimal and complete al-
gorithm, based on graph pathfinding. The used objective was sum-of-loss. The im-
plementation was obtained from https://github.com/gswagner/mstar_public.

• CBS [Sharon et al., 2015] with many improvement techniques [Boyarski et al., 2015;
Felner et al., 2018; Li et al., 2019a; Li et al., 2019b; Li et al., 2021b; Zhang et al.,
2022a] as a state-of-the-art optimal solver. This is representative of two-level ap-
proaches using combinatorial search. CBS is solution complete and unable to dis-
tinguish unsolvable instances. The used objective was sum-of-costs (aka. flowtime).
The implementation was obtained from https://github.com/Jiaoyang-Li/CBSH2-RTC.
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Figure 3.3: Comparison of various algorithms on the MAPF benchmark.

• BCP [Lam et al., 2022] as a state-of-the-art optimal solver, which is representative
of two-level approaches using reduction to a mathematical optimization problem.
BCP is solution complete. For mathematical optimization, CPLEX [Cplex, 2009]
was used. The used objective was flowtime. The implementation was obtained
from https://github.com/ed-lam/bcp-mapf.

• Inflated ODrM∗ (I-ODrM∗) [Wagner and Choset, 2015] as a state-of-the-art bounded
sub-optimal and complete algorithm. This is a variant of ODrM∗. The used ob-
jective was sum-of-loss. The sub-optimality was set to five to find solutions as
much as possible. The implementation was obtained from https://github.com/

gswagner/mstar_public.

• EECBS (EECBS) [Li et al., 2021c] as a state-of-the-art bounded sub-optimal, but
solution complete algorithm. This is a variant of CBS. The used objective was
flowtime. The sub-optimality was set to five. The implementation was obtained
from https://github.com/Jiaoyang-Li/EECBS.
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planning phase execution phase

Figure 3.4: Typical relationships between planning and execution. The figure is in-
spired by [Ghallab et al., 2016].

• Prioritized Planning (PP) [Erdmann and Lozano-Perez, 1987; Silver, 2005] as a
basic approach for MAPF. This is sub-optimal and incomplete. The implementation
used distance heuristics [Van Den Berg and Overmars, 2005] for the planning order
and A∗ for single-agent pathfinding. Furthermore, it involved the repetition of the
PP with random priorities until the problem is solved. The implementation was
adaptive from https://github.com/Kei18/pibt2.

• MAPF-LNS2 (LNS2) [Li et al., 2022] as a state-of-the-art sub-optimal and incom-
plete solver, based on a large neighborhood search. The implementation was ob-
tained from https://github.com/Jiaoyang-Li/MAPF-LNS2.

Note that due to implementation issues, two objectives are mixed: sum-of-loss and flow-
time, owing to following the original implementations. The dissertation will later com-
plement more detailed results that assess various optimization metrics.

Observations. Figure 3.3 well captures the tradeoff between good theoretical proper-
ties and planning efforts. For instance, the complete and optimal solver (ODrM∗) solved
only 0.4% of the instances. When sacrificing completeness, the optimal state-of-the-
art algorithms (CBS and BCP) can solve around 10%. On the other side, a sub-optimal
and incomplete algorithm (LNS2), no longer with any good theoretical properties, solves
around 80%. However, it still remains unsolved in around 20% of instances.

Can we break this tradeoff? The next outlines the strategies of this dissertation.

3.6.3 Strategy in Planning – Short-Horizon Planning Guides Long-Horizon
Planning

Let’s rethink the relationship between deliberative and reactive approaches. Figure 3.4
visualizes the deliberative approaches (left) and reactive approaches (middle), as well as
hybrid approaches (right). Understanding this figure is very important to understand the
rest of the dissertation. For each part, the execution phase is represented by red arrows,
while the planning phase is illustrated by a blue triangle, assuming that the time flows
from left to right. Horizontal lengths of triangles are planning horizon, i.e., the amount
of time that planning considers. The area of the triangle represents a search space for
planning, i.e., a set of states that agents can take. The search space roughly approximates
the planning effort, and is dominantly determined by a planning horizon; a longer horizon
incurs a larger search space, and vice versa.

The crucial observation is that deliberative approaches have typically a larger search
space, while reactive approaches have a smaller search space.3 A large search space in-

3Of course, it is possible to consider reactive approaches with long planning horizons; however, this is
typically not suitable for reactive approaches due to their planning speed.
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Figure 3.5: Tradeoff in planning.

curs a large planning effort. Therefore, short-horizon planning (i.e., planning with short
planning horizon) requires less planning effort than long-horizon planning (i.e., planning
with long planning horizon). In contrast, a large search space enables planning to search
for better possibilities. Consequently, long-horizon planning can be attached with good
theoretical properties, such as completeness and optimality. This causes the aforemen-
tioned tradeoff, as summarized in Fig. 3.5. This is the very basic nature of planning.
Ideally, we want to establish methodologies located on the upper right, which is the holy
grail of algorithm design.

Basic lessons from the above discussions are as follows.

• To design complete and optimal algorithms, the long-horizon nature is mandatory be-
cause otherwise the search space will not be entirely explored.

• To design quick and scalable algorithms, the short-horizon nature is convenient. An-
other possible approach is relying on good heuristics; however, it is generally diffi-
cult to design such heuristics for multi-agent environments because they must take
into account interactions between agents.

According to the lessons, the best strategy to break the tradeoff seems to integrate long-
and short-horizon planning approaches. This will be a planning style such that (reactive)
short-horizon planning guides (deliberative) long-horizon planning, as illustrated in Fig. 3.6.
Observe first that Fig. 3.6 is significantly different from the hybrid of deliberative and
reactive approaches illustrated in Fig. 3.4(right). In the new integrated one, planning and
execution do not alternate. Rather, this is likely close to conventional heuristic search that
uses heuristics, which are estimations of cost-to-go. However, beyond just estimations,
the integrated one actually generates successors.

The above concept is the crux of lazy constraints addition search for MAPF (LaCAM),
one of the main contributions in Part I that studies planning. LaCAM is described in
Chap. 6, together with the eventually optimal version called LaCAM∗. Before that, two
examples of short-horizon planning are introduced. The first is priority inheritance with
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Figure 3.6: Strategy to break the tradeoff in planning.

backtracking (PIBT), suitable for solving MAPF iteratively, presented in Chap. 4. The sec-
ond is TSWAP, a complete algorithm for unlabeled-MAPF, presented in Chap. 5. Both
PIBT and TSWAP themselves have good theoretical properties. Not only that, both al-
gorithms can be enhanced by LaCAM(∗), providing completeness and the guarantee of
convergence to optima. By collectively seeing them, we will see the power of the above
concept, that is, successfully breaking the tradeoff!

In short, the strategy in planning is as follows.

Strategy in Planning� �
Establish a new planning style such that short-horizon planning guides long-horizon
planning.� �

3.6.4 Yet Another Strategy in Planning – Iterative Refinement

As a general thing in optimization problems, once a feasible solution is found, it is not
so difficult to improve its quality by local search (aka. iterative refinement). For instance,
a traveling salesman problem (TSP) is a celebrated example of an optimization problem,
having such many algorithms to improve solution quality [Rego et al., 2011]. Similar to
TSP, it is promising if we can improve the solution quality in MAPF. Though limited to
the solution quality aspect, with such methodologies, it is possible to break the tradeoff
in planning. This is illustrated in Fig. 3.7.

Therefore, another strategy in planning is as follows, which is studied in Chap. 7, at
the end of Part I.

Another Strategy in Planning� �
Establish iterative refinement methods for MAPF solutions.� �
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3.6.5 Challenge and Strategy in Execution

This primary challenge in execution is simply stated as follows.

Challenge in Execution� �
Develop scalable methods for execution with good theoretical properties, despite
uncertainties in the real world.� �

How do we tackle this challenge? Recall that Chap. 3.1 explains the two axes to
characterize multi-agent navigation: “deliberative vs. reactive” axis, and “centralized vs.
decentralized” axis. Here, we focus on the “centralized vs. decentralized” axis.

As stated earlier, it is very important to distinguish planning and execution perspec-
tives in “centralized vs. decentralized” axis. Figure 3.8 summarizes this relationships. In
general, only centralized planning can “easily” provide good theoretical properties such
as completeness. Meanwhile, centralized planning itself does not disturb scalability, con-
trary to popular belief.4 This is because centralized planning is mostly able to “emulate”
decentralized planning. Rather, the issue of scalability is linked to whether an approach
takes centralized or decentralized execution. When the approach takes decentralized ex-
ecution, this is where decentralized planning achieves excellent scalability. Therefore,
the blue line in Fig. 3.8 is not straight, rather, it turns in the middle.

The above discussion provides basic lessons in execution, similar to those of planning
with Fig. 3.5.

• To design scalable methods for execution, some flavor of decentralized execution is manda-
tory. Otherwise, a centralized controller needs to care of all agents’ statuses in real-
time, which will be impossible at some scale.

• To provide good theoretical properties for execution, centralized planning is convenient.
Another possibility is attaching such properties to decentralized planning, how-

4Indeed, we will see excellent scalability of centralized planning in Part I. Centralized path planning for
10,000 agents? Not problematic at all.
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Figure 3.8: Centralized vs. decentralized perspective.

ever, this way requires formal and rigorous proof of domain-dependent specifica-
tions; ironically, it is not a “scalable” direction in the sense of the domain-independence
of this dissertation goal.

According to the lessons, the best strategy to achieve the challenge seems to use central-
ized planning and decentralized execution. However, this style has already been discussed
as “Deliberative Approaches with Robust Offline Planning” in Chap. 3.5.2. As a disad-
vantage, this style needs uncertainties models. Once the system behavior is outside the
models, which is not unrealistic at all, the system behavior is no longer predictable.

To this end, the dissertation explores a novel relationship between planning and exe-
cution, that is, centralized deliberative planning assuming that agents “reactively” execute the
plan at runtime. The keyword is “reactively,” meaning that agents react to runtime situa-
tions and change/update their executing plan on the fly. Here, offline planning provides
multiple options, and agents choose one of them during execution. By considering such
styles, there is a possibility to overcome issues of getting off the rails of the uncertainty
models, still ensuring some good properties. This concept is illustrated in Fig. 3.9.

The challenge is, “is that possible?” In other words, how do we design centralized
planning, with provably good properties, and with room for reactive execution? This is
significantly different from strategy in planning, in which short-horizon planning guides
long-horizon planning. Rather, the role is reversed, summarized as follows.

Strategy in Execution� �
Establish execution methods such that offline planning guides reactive execution.� �

The above concept is embodied in Part II that studies the execution perspective.
Specifically, Chap. 9 exemplifies it for timing uncertainties and Chap. 10 exemplifies
it for crash faults. Before presenting the two studies, as a “hop” phase, we first see a
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Figure 3.9: Strategy in execution.

reactive centralized approach in Chap. 8. The chapter presents an algorithm tolerant
to timing uncertainties, namely, an extension of TSWAP for unlabeled-MAPF; originally
presented in Chap. 5. After that, we see the two examples. The first studies a novel
problem called offline time-independent multi-agent path planning (OTIMAPP). The sec-
ond studies a novel problem called fault-tolerant multi-agent path planning (MAPPCF;
with crashes). Through these studies, the dissertation provides a direction of (potentially)
scalable execution methods having good theoretical properties.

3.6.6 Challenge and Strategy in Representation

Thinking of planning in continuous spaces (aka. motion planning; MRMP with multiple
agents) has two benefits over planning in discretized spaces wherein the search space is
defined a priori, namely, improving solvability and improving solution quality. Figure 3.10
illustrates these merits.

no solution inefficient solution near-optimal solution

using grid representation

Figure 3.10: Motivations to consider path planning in continuous spaces. A robot and
its goal are depicted by blue-edged circles and squares, respectively.

The observations of Fig. 3.10 ask what are good environmental representations, which
is a central question of Part III. To do planning, discretization of the workspace is (almost)
mandatory; however, poorly thought-out discretizations cause the problems mentioned above.
In the representation part, we will dive into how to construct an effective representation
for planning. Specifically, it takes the form of a roadmap, a graph representation that
approximates the free space for robots (see Chap. 2.6).
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Figure 3.11: Tradeoff in representation. Roadmaps are constructed by PRM [Kavraki et
al., 1996]. The blue lines in the roadmaps are solution trajectories.

Note, there are planning methodologies without roadmaps, e.g., using artificial po-
tential fields [Hwang et al., 1992]. However, such approaches suffer from planning in
high-dimensional spaces. Similarly, rule-based roadmap construction methods (e.g., cell
decomposition [Preparata and Shamos, 1985], lattice grids [Pivtoraiko et al., 2009], or
visibility graphs [Lozano-Pérez and Wesley, 1979; Latombe, 1991]) also suffer from high-
dimensional spaces. Consequently, sampling-based motion planning (SBMP) will be the
core to realize domain-independent planning, i.e., a planning style applicable to various
domains not limited to specific robot systems. The remaining part of the dissertation,
therefore, regards SBMP as central to solving MRMP.

As nature in engineering like we encountered in planning and execution, representa-
tion has also a tradeoff. Figure 3.11 visualizes the tradeoff. This time, the effect appears
in planning, and again posing the tradeoff between quality (and solvability) vs. plan-
ning efforts. The control factor is density of the roadmap. For instance, dense roadmaps
have a high chance to obtain plausible solutions, meanwhile, such roadmaps incur large
planning efforts since the resulting search space is huge. Sparse roadmaps have reverse
effects; on one hand, planning efforts are low since the search space is not so huge. On
the other hand, it is unlikely to obtain good-enough solutions with the sparse roadmaps.

We, therefore, need to break this tradeoff.

Challenge in Representation� �
Develop methods to construct small but promising representations for MRMP.� �

The strategy to tackle this challenge is straightforward.

Strategy in Representation� �
Establish methods to construct roadmaps only in important regions for each agent.� �
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Figure 3.12: Strategy to break the tradeoff in representation.

Doing so keeps the search space small, enabling planners to derive solutions for
MRMP quickly. Figure 3.12 annotates the important region for the agent. Intuitively,
the roadmap outside of the red-edged ellipse is redundant for planning. We can cut off
such regions. Even so, the roadmap still contains plausible solutions. This strategy is
related to biased sampling of SBMP, which has already been successful in the literature of
(single-agent) motion planning, e.g., [Gammell et al., 2014; Gammell et al., 2015].

The remaining issue is how to design a “good bias” that identifies important re-
gions for respective agents, while considering interactions between agents because we
need to avoid inter-agent collisions. Instead of developing “manual” biases, Chap. 11
presents one approach via machine learning (ML) to realize biased sampling methods
for MRMP, namely, learning features of good bias from planning demonstrations. The
resulting roadmaps are called cooperative timed roadmaps (CTRM). This ML-based ap-
proach is influenced by recent successful results of leveraging ML to single-agent motion
planning [Ichter et al., 2018; Qureshi et al., 2020; Ichter et al., 2020; Chen et al., 2020;
Zhang et al., 2020].

3.6.7 Yet Another Strategy in Representation – Combining Sampling and Search

The previous strategy in representation implicitly assumes two-phase planning that de-
couples roadmap construction and multi-agent search. Then, it tries to develop effective
roadmap construction methods. However, with two-phase planning, it is inevitable to de-
velop search spaces that might not be used by multi-agent search. Consequently, it is possible
to develop large search spaces, even with well-designed biases.

After all, to mitigate the tradeoff in representation, coupled approaches of roadmap
construction and multi-agent search are necessary. Such approaches perform roadmap con-
struction and multi-agent search simultaneously. Doing so makes it possible to develop a
small but effective search space such that the multi-agent search willing to use it. In short,
the dissertation stands also on the below concept, which is also visualized in Fig. 3.13.
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Figure 3.13: Another strategy to break the tradeoff in representation.

Another Strategy in Representation� �
Establish MRMP algorithms that combine sampling and search.� �

Chapter 12 presents a proof-of-concept algorithm called simultaneous sampling-and-
search planning (SSSP) to solve MRMP. The main idea behind the algorithm is to unite
techniques developed for SBMP and search techniques for MAPF. Specifically, the SSSP
algorithm is directly inspired by two algorithms, respectively for SBMP [Hsu et al., 1997;
Hsu, 2000] and MAPF [Standley, 2010]. We will see the power of combining sampling
and search; SSSP significantly outperforms two-phase planning. Furthermore, this is
indeed an example of the integration of representation and planning.

3.7 Relationships of Chapters

Figure 3.14 illustrates the relationships of the remaining chapters. We will see the plan-
ning, execution, and representation perspectives in order.

4: PIBT
5: TSWAP

6: LaCAM

7: offline refinement

8: online time-
independence 9: OTIMAPP 10: MAPPCF

11: CTRM 12: SSSP

planning

execution

representation
integration

Figure 3.14: Structure of the dissertation.
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Chapter 4

Short-Horizon Planning for MAPF

In this chapter, we see an example of short-horizon planning for MAPF called the priority
inheritance with backtracking (PIBT) algorithm, originally aimed at solving MAPF itera-
tively. PIBT initially appeared in [Okumura et al., 2019], later journalized in [Okumura et
al., 2022b] on which this chapter is based.1 The chapter begins with a chapter overview.

4.1 Chapter Overview

The objective of the chapter is to see the power of short-horizon planning for MAPF, embodied
as PIBT, despite lacking long-horizon deliberation.

4.1.1 What is PIBT

Recall that a configuration denotes a tuple of locations for all agents (see Chap. 3.2.1).
PIBT is understood as a scheme that generates a new configuration, given another configura-
tion as input. By continuously generating configurations, PIBT yields a sequence of con-
figurations (i.e., solution for MAPF). Meanwhile, this configuration generator is applica-
ble to other variants of conventional MAPF. As evidence, PIBT will apply to a lifelong
version of MAPF called Multi-Agent Pickup and Delivery (MAPD) [Ma et al., 2017b].

Mechanism

The mechanism of PIBT is simple and easy to implement. The algorithm focuses on
the adjacent movements of multiple agents based on prioritized planning [Erdmann and
Lozano-Perez, 1987] in a unit-length time window. Priority inheritance is a well-known
approach for dealing effectively with priority inversion in real-time systems [Sha et al.,
1990] and is applied here to path adjustment. When a low-priority agent-X impedes the
movement of a higher-priority agent-Y, agent-X temporarily inherits the higher-priority
of agent-Y. To avoid agents getting stuck waiting, priority inheritance is executed in com-
bination with a backtracking protocol. Because this mechanism only requires local inter-
actions between agents, PIBT has a high potential for decentralized implementations.

4.1.2 Properties and Performance

Theoretical Properties

Combined with a dynamic priority assignment, PIBT ensures reachability, that is, every
agent always reaches its destination within a finite time when the environment is a graph

1In the past, I also considered a “long-horizon” version of PIBT [Okumura et al., 2020]; however, I con-
cluded that it was not a good idea.
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such that all pairs of adjacent vertices belong to a simple cycle (e.g., biconnected graphs).
Reachability does not ensure that all agents are on their goals simultaneously, hence,
PIBT is incomplete for conventional MAPF. However, agents often do not need to stay
at their goals in real-life applications such as lifelong delivery tasks. Reachability is
convenient in such scenarios. Indeed, the chapter introduces the application of PIBT to
a lifelong variant of MAPF (i.e., MAPD) while ensuring completeness.

PIBT also has low-cost time complexity. It repeats one-timestep planning (i.e., con-
figuration generation) until termination (e.g., until all agents have reached their desti-
nations). For each timestep, PIBT requires the time complexity O(A · (∆(G) + F + lgA)),
where A is a set of agents,2 ∆(G) is a maximum degree of a graph G, and F is the time
required to sort candidate locations for the next timestep, which can be O(∆(G) lg∆(G))
with preprocessing. Consequently, PIBT is expected to work in a short runtime, even in
the case of massive problems including thousands of agents.

Empirical Performance

For (one-shot) MAPF, PIBT immediately returns plausible solutions despite hundreds
or more agents in running times that are orders of magnitudes faster than other estab-
lished MAPF approaches, such as sub-optimal priority-based (PP) [Silver, 2005], rule-
based [Luna and Bekris, 2011], and search-based [Li et al., 2021c] algorithms, as well as
state-of-the-art optimal two-level approaches of search-based [Sharon et al., 2015] and
compiling-based [Lam et al., 2022] algorithms. For instance, using an ordinary laptop,
we will observe that PIBT solves MAPF in a large grid map (530 × 481, number of ver-
tices: 43,151) from [Stern et al., 2019] with 1,000 agents in at most 5 s, while keeping
sub-optimality below 1.5 on average. Furthermore, PIBT outperforms an existing ap-
proach for both runtime and solution quality on MAPD.

4.1.3 Original Motivation for PIBT

It is worth mentioning the original motivation to develop PIBT as a history.
Prior research on MAPF algorithms primarily focuses on solving a “one-shot” version

of the problem, where agents reach their respective goals from their initial positions only
once. In contrast, in practical applications such as conveying packages in a warehouse
with hundreds or more robots [Wurman et al., 2008], MAPF must be solved online and
iteratively on a lifelong basis. That is, whenever an agent reaches a goal, it receives a
new one, and the plan, a list of paths, is updated in real-time. Such scenarios rule out
any simple adaptations of offline and compute-intensive optimal approaches because,
despite state-of-the-art optimal algorithms [Lam et al., 2022; Li et al., 2021b], it is chal-
lenging to find solutions for a few hundred agents within a realistic timeframe. For this
purpose, an attractive possibility is to design scalable sub-optimal algorithms that out-
put plausible solutions within a predictable computational time, which also works in
iterative situations.

The above motivation fruits as the PIBT algorithm. However, in Chap. 6, PIBT will
be treated as a configuration generator, completely moving on to another direction from the
original motivation that focuses on online and lifelong scenarios.

4.1.4 Chapter Organization

The rest of the chapter is organized as follows.

• Chapter 4.2 presents the PIBT algorithm along with theoretical analyses.

2O(A) is used as a simplified notation instead of O(|A|), following Chap. 2.1.
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• Chapter 4.3 considers applying PIBT to specific problems such as MAPF and MAPD,
as well as decentralization and an MAPF model without rotations.

• Chapter 4.4 empirically evaluates PIBT and presents a demonstration of real robots.

• Chapter 4.5 reviews existing MAPF algorithms focusing on those closely related to
PIBT.

• Chapter 4.6 concludes the chapter.

The code and movie are available at https://kei18.github.io/pibt2.

4.1.5 Notations and Assumptions

Notations in this chapter are summarized below:

⊥ not found, undefined
G = (V ,E) (undirected) graph, a set of vertices, and a set of edges
A = {1,2, . . . ,n} a tuple of agents
(s1, s2, . . . , sn) start configuration, where si ∈ V
(g1, g2, . . . , gn) goal configuration, where gi ∈ V
dist V ×V 7→ N, function that returns shortest path length
Q configuration, a tuple of locations for all agents

Caution� �
The chapter uses the representation by configurations.� �

4.2 The PIBT Algorithm

This section introduces the PIBT algorithm, including theoretical analyses such as reach-
ability. The concept of PIBT is initially explained by intuitive examples. To avoid unnec-
essarily complex explanations, PIBT is introduced as a centralized algorithm, focusing
on analyzing the prioritization scheme itself. Note that PIBT relies on a decoupled ap-
proach, rendering it readily amenable to decentralization, as briefly discussed later.

4.2.1 Concept

PIBT repeats one-timestep prioritized planning until it is terminated. At every timestep,
each agent first updates its unique priority. Then, the agents sequentially determine
their next location in decreasing order of priorities while avoiding vertices that have
been requested by higher-priority agents. Prioritization alone, however, can still cause
deadlocks. As shown in Fig. 4.1a, a stuck agent (agent-1) cannot go anywhere without
collisions with other agents; hence, this situation can be regarded as a certain kind of
deadlock.

Priority Inheritance

A situation with a stuck agent can also be regarded as a case of priority inversion, in
the sense that a low-priority agent (agent-1) holding a resource claimed by a higher-
priority agent (agent-3) fails to obtain a second resource held by an agent with medium
priority agent-2. A classical way to deal with priority inversion is to rely on priority
inheritance [Sha et al., 1990] (Fig. 4.1b). The rationale is that a low-priority agent (agent-
1) temporarily inherits the higher priority of the agent (agent-3) claiming the resources
it holds, thus forcing medium-priority agents (agent-2) out of the way (Fig. 4.1c).
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Figure 4.1: Examples of priority inheritance. Circles with solid lines represent agents.
Requests for the next timestep are depicted by dashed circles, determined greedily ac-
cording to agents’ destinations (omitted here). Without inheritance (4.1a), a stuck agent
(agent-1) cannot give way to a high-priority agent (agent-3) without risking collision into
a third agent (agent-2). With priority inheritance (4.1b), agent-1 temporarily inherits the
priority of agent-3 forcing agent-2 to solve the situation (4.1c).

Backtracking

Priority inheritance deals effectively with priority inversion; however, it does not com-
pletely ensure deadlock freedom. For instance, as shown in Fig. 4.2a, agent-3 cannot
escape as a result of consecutive priority inheritances (7→ 6→ 5→ 4).
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(a) Priority inheritance
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Figure 4.2: Example of PIBT. The flow of backtracking is indicated by double-lined
arrows. Because agent-3 is stuck (4.2a), backtracking returns as invalid to agent-4, and
subsequently to agent-5. Agent-5 executes other priority inheritance to agent-1 (4.2b).
Agents 1,5,6, and 7 wait for the results of backtracking (4.2c) and then start moving
(4.2d).

The solution relies on backtracking; any agent i that executes priority inheritance must
wait for an outcome, VALID or INVALID. If VALID, agent-i successfully moves to the de-
sired vertex. Otherwise, it must request a different vertex, excluding: (i) vertices re-
quested by a higher priority agent, and (ii) vertices having already returned an INVALID

outcome. Upon finding no VALID or unoccupied vertices, agent-i sends back an INVALID

outcome to the agent from which it inherited its priority.
For instance, in Fig. 4.2b, agent-3 sends INVALID back to agent-4 as the outcome of

the request received previously from agent-4 (Fig. 4.2a). Agent-4 tries to replan its next
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location; however, in the absence of other alternatives, in turn sends INVALID to agent-5.
Because agent-1 has lower priority, agent-5 can let agent-1 inherit its priority as an alter-
native, which leads to the outcome of VALID (Fig. 4.2c), and agents can move (Fig. 4.2d).

By combining priority inheritance and backtracking, it is ensured that all agents are
assigned to the next locations without collisions.

4.2.2 Minimum Implementation

The aforementioned concept is formalized by recursive structure, as presented in Alg. 4.1.
The pseudocode presents a minimum version of PIBT. It takes one configuration (Qfrom)
and then generates a new configuration (Qto).

Algorithm 4.1 Minimum PIBT

input: configuration Qfrom, agents A

output: configuration Qto (each element is initialized with ⊥)

1: for i ∈ A do

2: if Qto[i] =⊥ then PIBT(i)

3: return Qto

4: procedure PIBT(i)

5: C← neigh
(
Qfrom[i]

)
∪
{
Qfrom[i]

}
6: sort C following some criteria

7: for v ∈ C do

8: if collision occurs in Qto supposing Qto[i] = v then continue

9: Qto[i]← v

10: if ∃j ∈ A s.t. Qfrom[j] = v ∧Qto[j] =⊥ then

11: if PIBT(j) = INVALID then continue

12: return VALID

13: Qto[i]←Qfrom[i]

14: return INVALID

The crux is understanding the PIBT procedure (Lines 4–14) that embodies the concept
of priority inheritance and backtracking. It has one argument, representing the agent i
making a decision. The procedure returns INVALID if i becomes a stuck agent like the
red agent in Fig. 4.2 (agent-3), otherwise returns VALID. Once this procedure is called, i
must determine the next location (i.e., Qto[i]) from the ordered set of candidate vertices
C. Here, C consists of Qfrom[i] and its neighbors (Line 5), sorted by user-specified criteria
(Line 6). C is filtered so that excludes vertices that occur vertex/edge collisions in Qto

(Line 8). Formally, a vertex v is filtered when there is an agent k that satisfies either
Qto[k] = v or Qto[k] =Qfrom[i]∧Qfrom[k] = v. If no vertices remain in C, this is the case of
a stuck agent; then, i must stay at the current location and the procedure returns INVALID
(Lines 13–14).

For each vertex v ∈ C, the procedure checks whether i can move to v in the next
timestep. After reserving v for i (Line 9), the priority inheritance occurs from i to another
agent j when j, which has not yet determined the next location, occupies v (Lines 10–11).
If j returns INVALID, the next location for i is replanned (Line 11), or else, i finishes the
planning and returns VALID, as well as that v is unoccupied by others (Line 12).
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A step-by-step example of Alg. 4.1 is illustrated in Fig. 4.3.
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(h) PIBT(1) calls PIBT(2)
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(i) PIBT(2) returns VALID
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(j) PIBT(1) returns VALID
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(k) PIBT(5) returns VALID
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✓
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(l) PIBT(6) returns VALID

Figure 4.3: Step-by-step example of Alg. 4.1 for Fig. 4.2. A black arrow corresponds to
Qto[i] updated at either Line 9 or Line 13. A checked mark means that Qto[i] has been
fixed. A gray-filled cell is a vertex requested as Qto[j] from any agent j. A double-lined
arrow shows backtracking, corresponding to either Line 12 (VALID) or Line 14 (INVALID).
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1
2 3

k

Qfrom[1]

v∗

this action is sure to succeed
C(simple cycle)

priority inheritancebacktracking
(VALID)

backtracking (INVALID)

Figure 4.4: Proof sketch of Lemma 4.1. Agent-1 can relocate to v∗ if there exists a simple
cycle C =

(
Qfrom[1],v∗, . . .

)
.

Analysis of Local Movements

Next, we see that an agent that initiates the planning with PIBT is always assigned to its
desired vertex, provided that its location and the desired vertex belong to a simple cycle.

Lemma 4.1 (local movement of PIBT). Let agent-1 denote the first agent in A. Let v∗ denote
the first vertex in C for agent-1 at Line 6, i.e., one of neighboring vertices of Qfrom[1]. If a
simple cycle C =

(
Qfrom[1],v∗, . . .

)
exists, Alg. 4.1 assigns v∗ to Qto[1].

Proof. Figure 4.4 visualizes the following.
Assume that the top-level procedure calls PIBT(1) at Line 2. At this phase, Qto[i] is

⊥ for any agent i, i.e., the next location for any agent has not been assigned yet. Conse-
quently, agent-1 selects v∗ as a target vertex v in the first iteration of Lines 7–12. Then, it
remains to prove that Line 11, priority inheritance, never returns INVALID when another
agent, say agent-2, occupies v∗. In the other cases, agent-1 evident gets v∗.

Next, assume that PIBT(2) is called from the original PIBT(1). The existence of the cy-
cle C = (Qfrom[1],v∗, . . .) guarantees that agent-2 has a non-empty set of candidate vertices
for Qto[2], say C2, without colliding with agent-1. During the iterations of Lines 7–12,
PIBT(2) returns VALID when an unoccupied vertex v ∈ C2 from vertices in Qto is selected.
This forms the basis of the remaining proof by induction.

Following this, suppose that PIBT(i) is called before PIBT(2) returns any value. Simi-
lar to the case of agent-2, PIBT(i) must return VALID when one of the surrounding vertices
ofQfrom[i] is unoccupied from vertices inQto. In addition, as distinct from agent-2, which
must avoid an edge collision with agent-1, agent-i can select Qfrom[1] and return VALID

when Qfrom[1] is neighbor to Qfrom[i]. As a result, PIBT(i − 1), which calls PIBT(i), also
returns VALID and eventually, PIBT(2) returns VALID.

Next, by contradiction, suppose that PIBT(2) returns INVALID. This assumption means
that, for all agents j(, 1) neighboring agent-2 in Qfrom, PIBT(j) returns INVALID. This is
the same for agent-j, and so forth. Meanwhile, the existence of C indicates that at least
one agent k(, 2) such that Qfrom[k] ∈ C had initially at least one free neighbor vertex.
Even though all vertices in C are occupied, the agent on the last vertex of C has a free
neighbor vertex, i.e., Qfrom[1]. This is a contradiction; PIBT(k) returns VALID. Conse-
quently, PIBT(2) returns VALID.

4.2.3 Dynamic Priority Assignment

Aiming to solve MAPF, we next incorporate a long-term perspective of planning into
minimum PIBT (Alg. 4.1), that is, dynamic priority assignment. Algorithm 4.2 presents
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the updated pseudocode. Given an MAPF instance, Alg. 4.2 generates a sequence of
configurations, until reaching a user-specified termination condition. Note, this time,
PIBT generates configurations beyond one timestep.

Algorithm 4.2 PIBT with dynamic priority assignment.

input: graph G = (V ,E), agents A, starts (s1, . . . sn), goals (g1, . . . gn)

output: sequence of configurations Π

preface: Π[t][i] is assumed to be initialized with ⊥

1: Π[0][i]← si : for each agent i ∈ A

2: pi ← ϵi : for each agent i ∈ A s.t. ϵi ∈ [0,1) and ϵi , ϵj for i , j ▷ setup priorities

(for each timestep t = 0,1, . . . until terminates, repeat the following)

3: pi ← if Π[t][i] = gi then ϵi else pi + 1: for each agent ai ∈ A ▷ update priorities

4: sort A in decreasing order of priorities pi

5: for i ∈ A do

6: if Π[t + 1][i] =⊥ then PIBT(i)

7: procedure PIBT(i) ▷ t is used implicitly

8: C← neigh (Π[t][i])∪ {Π[t][i]}

9: sort C in increasing order of dist(u,gi) where u ∈ C

10: for v ∈ C do

11: if ∃j ∈ A s.t.
(
Π[t + 1][j] = v

)
∨
(
Π[t][j] = v ∧Π[t + 1][j] =⊥

)
then continue

12: Π[t + 1][i]← v

13: if ∃k ∈ A s.t. Π[t][k] = v ∧Π[t + 1][k] =⊥ then

14: if PIBT(k) is INVALID then continue

15: return VALID

16: Π[t + 1][i]←Π[t][i]

17: return INVALID

The major changes are as follows. The identical parts with Alg. 4.1 are grayed out in
the pseudocode of Alg. 4.2.

Dynamic Priorities. Algorithm 4.2 first updates the priority pi ∈ R≥0 for each agent i
(Line 3). The rule is simple; increment pi when i has not reached its goal gi , otherwise,
reset pi to ϵi ∈ [0,1). The tie-breaker ϵi , which is distinct for agents, has the role of keep-
ing pi unique among agents. Subsequently, according to priorities, the algorithm assigns
locations to each agent i who has not been assigned with Π[t + 1][i] via the procedure
PIBT (Line 6). The termination of the algorithm is explained later in Chap. 4.3.1.

Vertex Scoring. The candidate vertices are sorted in increasing order of distance from
the goal gi (Line 9). Doing so makes agents progress towards their goal each timestep. In
our implementation, to avoid unnecessary priority inheritance, the presence (or absence)
of an agent is used as a tie-breaking rule.
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4.2.4 Reachability

Here, a powerful property of Alg. 4.2 is proven, that is, all agents eventually reach their
respective destination in graphs with adequate properties (e.g., biconnected graphs). The
proof relies on Lemma 4.1, which states that the agent with the highest priority at each
timestep, denoted as agent-1, is always assigned to its desired vertex.

Theorem 4.2 (reachability of PIBT). Given an MAPF instance such that G has a simple cycle
for all pairs of adjacent vertices, Alg. 4.2 generates a sequence of connected configurations Π
such that for any agent i ∈ A, Π[0][i] = si and there is a timestep t ≤ diam(G) · |A| such that
Π[t][i] = gi .

Proof. From Lemma 4.1, the agent with highest priority (i.e., the first agent calling PIBT)
reaches its own goal within diam(G) timesteps. Based on the update rule of the priority
pi for an agent i, once some agent i has reached its goal, pi is reset and is lower than
the priority of all other agents who have not reached their goal yet. These agents see
their priority increase by one. As long as such agents remain, exactly one of them must
have the highest priority. In turn, this agent reaches its own goal after at most diam(G)
timesteps. This repeats until all agents have reached their goal at least once, which takes
at most diam(G) · |A| timesteps in total.

Remarks. Hereafter, this property is referred to as reachability, that is, all agents even-
tually reach their goal. Different from completeness for one-shot MAPF, the reachability
never ensures that all agents reach their goal simultaneously; hence, PIBT is not ensured
to solve conventional MAPF defined in Chap. 3.2.1. Indeed, we will see livelock situa-
tions of PIBT in Chap. 6. Alternatively, with the graph condition of Thrm. 4.2, PIBT is
complete for the MAPF variant where agents need not necessarily stay at their goals.

Graph Condition. A typical example that satisfies the aforementioned graph condition
is the biconnected undirected graph. The opposite is not true, however, and Thrm. 4.2
is expressed more generally to consider directed graphs. For instance, a directed ring
satisfies the condition even though it is not biconnected.

Failure Case. Without the graph condition in Thrm. 4.2, several agents may remain in
the same vertices permanently and may not reach their goals. Figure 4.5 shows such an
example. In practice, PIBT needs a pre-defined maximum planning timestep to detect
such failure cases. When PIBT reaches this timestep, it stops planning and reports a
planning failure. For details, see also Chap. 4.3.1.

4.2.5 Time Complexity Analysis

Now we consider the time complexity of PIBT. Let F be the maximum time required for
sorting candidate vertices (Line 6 in Alg. 4.1). F depends on both G and how to evaluate
each vertex. Recall that ∆(G) denotes the maximum degree of G.

To begin with, the complexity of a minimum PIBT (Alg. 4.1) is analyzed as followed.

Proposition 4.3. The time complexity of Alg. 4.1 is O (A · (∆(G) +F)).

Proof. The procedure PIBT is called exactly |A| times, once for each agent. This is because
PIBT(i) is called if and only if agent-i has not yet determined the next location (i.e., when
Qto[i] = ⊥; Lines 2 and 11) but PIBT(i) assigns Qto[i] (Line 9) before calling another
PIBT(k) for priority inheritance. The loop of Lines 7–12 iterates at most ∆(G) + 1 times.
Each operation in the loop is performed in constant time. From the assumption, Line 6
requires O(F). As a result, Alg. 4.1 requires O(A · (∆(G) +F)).
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1 2

(a) Priority inheritance

1 2

(b) Backtracking

Figure 4.5: Failure case of PIBT on a graph without cycles. Assume that the goal of
agent-1 is the location of another agent, say agent-2. The priority inheritance to agent-2
(4.5a) is INVALID (4.5b) because agent-2 has no escape vertex. Then, agent-1 does re-
planning, however, it selects the current location as the next location since it is the next
nearest vertex to the goal. As a result, this situation will be held beyond the current
timestep and there will be no progress. Later in Chap. 6.6, a countermeasure is pro-
vided.

The time complexity of Alg. 4.2 (PIBT for multiple timesteps) is assessed by simply
adding the overhead of dynamic priorities.

Proposition 4.4. The time complexity of Alg. 4.2 in one timestep is O (A · (∆(G) +F + lgA)).

Proof. Line 3 requires O(A). Line 4 requires O(A lgA). In total, together with Prop. 4.3,
PIBT (Alg. 4.2) in one timestep requires O (A · (∆(G) +F + lgA)).

The analysis is further continued for specific conditions. Assume that a distance ta-
ble for the goal of each agent is computed by breadth-first search prior to executing
PIBT, where the overhead is O(A · E). Then, F will be solely sorting candidate vertices
following the table, resulting in O(∆(G) lg∆(G)). Consequently, PIBT in one timestep is
O (A · (∆(G) lg∆(G) + lgA)). Assume further that G is a four-connected grid, as commonly
used in MAPF studies as a benchmark. Here, instead of ∆(G), consider ∆(G) + 1 for ac-
curate analysis. Then, (∆(G) + 1) lg(∆(G) + 1) ≃ 11.6. As a result, without a huge team of
agents (|A| < 3125), the first term |A|·∆(G) lg∆(G) is dominant; otherwise, the second term
|A| lg |A| is dominant. In either case, PIBT can be said to be computationally very inexpensive.

The small time complexity provides many advantages:

• For instance, PIBT can address large instances for both A andG, which other MAPF
algorithms cannot solve within a realistic timeframe.

• Another advantage is an application to anytime planning, a scheme that yields a
feasible solution whenever interrupted but gradually improves solution quality as
time goes by. Anytime planning is attractive, particularly in on-demand situations
where the deliberation time is finite. We will see how to realize such a refinement
method in Chap. 7. For such an approach, obtaining initial solutions as quickly as
possible is key because we can leave much time for refinement. In this sense, PIBT
is a good choice to obtain an initial solution. In contrast, the anytime approach
cannot be realized by “slow” solvers because they may not provide solutions within
a time limit.

• Lastly, given a certain timestep, the runtime of PIBT is predictable, which is a fun-
damental characteristic in real-time planning.

The power of PIBT is reflected in the experiment.
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4.3 Application to Specific Problems

The previous section of Chap. 4.2 describes the fundamental mechanism of PIBT. This
section complements how PIBT applies to specific problems, such as (one-shot) MAPF
and MAPD, decentralization, and path planning without rotations.

4.3.1 One-shot MAPF

Termination

Thus far, when the PIBT run has been completed, has not been specified. In the conven-
tional MAPF, PIBT is assumed to run until it reaches the goal configuration (g1, . . . , gn);
otherwise, PIBT “fails” to solve the MAPF instance when it reaches the pre-defined suf-
ficiently large timesteps.

Distance Evaluation

In Alg. 4.2, for each timestep, each agent has to evaluate distances from the surround-
ing vertices to its goal (Line 9). This operation could be implemented by calling A∗ on
demand but it could also be a bottleneck. Instead, PIBT can save computation time by
preparing distance tables from each agent’s goal. This is computed by a breadth-first
search from the goals with an overhead of O(A ·E).3

Extension for One-shot MAPF

Even if G satisfies the condition for reachability, PIBT does not ensure that all agents
reach their goal simultaneously, which is a requirement of conventional MAPF. In fact,
with naive PIBT, a certain kind of livelock situation was confirmed in our experiment.
This motivates the development of PIBT+, a framework that enhances known MAPF
solvers, presented in Alg. 4.3. The main idea behind PIBT+ is to make problem instances
easier for the subsequent MAPF solver by bringing agents near their destinations using
PIBT. The target MAPF solver is called a complement solver.

Algorithm 4.3 PIBT+

input: graph G, agents A, starts (s1, . . . sn), goals (g1, . . . gn)

output: MAPF solution Π

1: tmin←maxj∈Adist(Π[0][j], gj )

2: Set initial priorities pi to agents in descending order of dist(si , gi) by adjusting the

tie-breaker ϵi at Line 2 in Alg. 4.2

3: Π← PIBT (Alg. 4.2) until timestep tmin

4: if Π[tmin] = (g1, . . . , gn) then return Π

5: Π′← other MAPF algorithm (complement solver), taking Π[tmin] as the start configu-

ration

6: return a concatenation of Π and Π′

The concept of Alg. 4.3 is as follows. tmin is the minimum number of timesteps needed
for solutions from the start to the goal configurations. Because PIBT can be regarded as
prioritized planning, the agent with the longest initial distance reaches its goal following

3Indeed, this is the main reason for the speedup of the implementation from [Okumura et al., 2019].
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the shortest path by providing priorities according to the initial distance. This implies
that there is a chance that all agents reach their goals at tmin. The remaining problem is
relatively easy compared to the original because most agents are expected to have already
reached their goals.

Theorem 4.5. PIBT+ is complete for MAPF on undirected graphs as long as the completeness
conditions of the complement solver are satisfied.

Proof. Let Qinit,Qtmp,Qgoal be the start configuration, the configuration at tmin planned
by Line 3 in Alg. 4.3, and the goal configuration, respectively. There exists a solution
from Qtmp to Qinit because PIBT computes the plan from Qinit to Qtmp. If the original
problem is solvable, there exists a solution from Qinit to Qgoal, meaning that, at least one
solution exists from Qtmp to Qgoal. According to this assumption, PIBT+ finally uses the
complete solver from Qtmp to Qgoal, and the complete solver must return a solution. The
above satisfies the statement.

PIBT+ is essentially helpful for situations where it is difficult to obtain solutions
through a direct adaptation of the complement solver but where plausible solutions are
sought in a short time. As a complement solver, it is desirable to use complete algorithms
such as rule-based, search-based, or compiling-based approaches. Note that PIBT+ does
not guarantee a better solution nor finish planning faster than using the complement
solver from the beginning. On the other hand, since the transition from the initial con-
figuration to the configuration at tmin is reversible, the additional burdens of sum-of-cost
and makespan from optimal ones can be, respectively, at most 2|A| · tmin and 2tmin. Sim-
ilarly, the additional burden of time complexity can be O(tmin ·A · (∆(G) + F + lgA)) from
the consequence of Prop. 4.4.

4.3.2 Multi-Agent Pickup and Delivery (MAPD)

The MAPD problem is a typical example of online and lifelong scenarios requiring task
allocation and path planning. Here, how PIBT adapts to MAPD is described. To begin
with, the MAPD problem is formulated.

Problem Formulation of MAPD

Similar to MAPF, a graph G = (V ,E) and a set of agents A = {1,2, . . . ,n} with |A| ≤ |V |, and
an injective initial state function s : A 7→ V , are given. s(i) is simply denoted as si .

Consider a stream of tasks Γ = (τ1, τ2, . . .). A task τj is defined as a tuple (vpick,vdeliv),
where vpick,vdeliv ∈ V . MAPD includes situations in which tasks are added to Γ as time
progresses. In other words, it is not assumed that all tasks are known initially. An agent
is free when it has no assigned task. A task τj ∈ Γ can only be assigned to free agents
and is assigned to at most one agent. When τj is assigned to agent-i, i has to visit vpick
and vdeliv in order. When the two vertices have been visited by i, τj is completed, and i
becomes free again. A service time of τj is defined as the time interval from the generation
of τj to its completion. Similar to MAPF, time is discretized. At each timestep, each agent
can move to an adjacent vertex or stay at its current vertex, provided that no two agents
collide, i.e., vertex and edge collisions are prohibited.

The objective of MAPD is to complete all tasks as quickly as possible. A solution
to MAPD is a set of collision-free paths and task assignments, with each agent starting
from si . When |Γ | is finite, an MAPD algorithm is complete as it ensures that all tasks are
finished within a finite number of timesteps.

Two kinds of objective functions are considered: (i) service time and (ii) makespan,
that is, the timestep when all tasks are completed. Note that makespan is only defined
when Γ is finite.
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Applying PIBT to MAPD

To design a complete MAPD algorithm, we must guarantee two claims: (i) all non-
assigned tasks are eventually assigned, and (ii) all assigned tasks are eventually com-
pleted, i.e., a task-assigned agent must visit pickup and delivery locations in order. For
simplification, consider assigning a task to an agent only when the agent is at the pickup
location. The remaining work for the agent is to visit the delivery location.

PIBT (Alg. 4.2) is convenient for the second claim due to the following reason. Re-
call that Lemma 4.1 states that, for each timestep, the agent with the highest priority
can always move to an arbitrary neighbor vertex. Using this lemma, ensuring that a
task-assigned agent completes the task in finite time is straightforward. This is achieved
with a special prioritization scheme that satisfies the two conditions: (i) all task-assigned
agents have higher priorities than free agents, and (ii) every task-assigned agent eventu-
ally gets the highest priority and holds it until the task is completed.

The first claim, all non-assigned tasks are eventually assigned, is achieved by various
approaches. A simple approach is taken here, i.e., for each timestep, all free agents set
their goals to the nearest pickup location of non-assigned tasks. Assume that every free
agent eventually gets the highest priority among free agents and holds the highest until
it reaches a goal (a pickup location). Then, this approach satisfies the first claim because
all task-assigned agents eventually become free due to the second claim.

Algorithm 4.4 PIBT for MAPD

input: graph G, agents A, initial locations (Π[0][1], . . . ,Π[0][n]), task stream Γ

output: task assignment and paths Π

(repeat below for each timestep t = 0,1, . . . until all tasks are completed)

1: for i ∈ A do

2: if i is assigned to a task τ = (vpick,vdeliv) then gi ← vdeliv; continue

3: Let τ = (vpick,vdeliv) ∈ Γ be an unassigned task that minimizes dist
(
Π[t][i],vpick

)
4: if τ =⊥ then

5: gi ←Π[t][i]

6: else if vpick = Π[t][i] then

7: assign τ to i; remove τ from Γ ; gi ← vdeliv

8: else

9: gi ← vpick

10: S ← (Π[t][1], . . . ,Π[t][n]); G ← (g1, . . . , gn)

11: Π[t+1][1], . . . ,Π[t+1][n]← Alg. 4.2 for one-timestep with starts S and goals G, while

adding a prioritization rule such that all task-assigned agents have higher ones than

those of free agents

12: for each agent i ∈ A assigned to a task τ = (vpick,vdeliv) do

13: if Π[t + 1][i] = vdeliv then make i free ▷ τ is completed

Algorithm 4.4 realizes the aforementioned concept to solve MAPD. For each timestep,
the algorithm first assigns tasks while updating the agents’ goals (Lines 1–9). Then, the
algorithm uses PIBT to plan locations for the next timestep (Lines 10–11). As discussed
earlier, for each timestep, Alg. 4.4 prioritizes the task-assigned agents than free agents.
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As a secondary prioritization, it uses the original PIBT prioritization scheme (Line 3 of
Alg. 4.2) as it is.

The following theorem is a consequence of the aforementioned discussion and its
reachability.

Theorem 4.6. Algorithm 4.4 is complete for an MAPD problem when G has a simple cycle for
all pairs of adjacent vertices.

Comparison of our Proposed Approach with an Existing Complete Approach

PIBT (Alg. 4.4) is later compared with the TP algorithm [Ma et al., 2017b] experimen-
tally. Before that, a qualitative discussion is provided as follows. TP is complete for
MAPD in a limited situation. First, it requires locations that never be either pickup or
delivery locations for any tasks, called non-task endpoints. The non-task endpoints are
required at least for the number of agents. Then, for any two endpoints, a path must exist
without traversing any other endpoints. Here, endpoints consist of non-task endpoints
and candidates of pickup/delivery locations. Compared to TP, PIBT does not require
such conditions and works in a wide range of situations as long as the graph condition is
satisfied.

Other Task Allocation

Algorithm 4.4 takes a simple and greedy task allocation process. However, more aggres-
sive approaches are applicable, e.g., incorporating linear cost-optimal assignment [Kuhn,
1955] or bottleneck assignment [Gross, 1959], as well as assignment algorithms discussed
in the next chapter (Chap. 5). Doing so can improve solution qualities but potentially re-
quires more computation time.

4.3.3 Decentralized Online Planning

Here, the decentralization of PIBT implementations is briefly discussed. In particular,
we focus on the online planning of PIBT, that is, agents repeat a set of single-timestep
planning and move actions. Since PIBT is based on prioritized planning, adopting a
decentralized context is realistic. The part of priority inheritance and backtracking is
performed by the propagation of information. Further, PIBT relies on local interactions
between agents, implying that agents are not required to know other agents’ information
far away from their current location. To illustrate this, the concept of interacting agents,
a set of agents that must negotiate their planning, is introduced.

Interacting Agents

When two agents are located within two hops of each other’s move, they may collide in
the next timestep; then, they are said to be directly interacting in that timestep. For an
agent i, a group of interacting agents Ai(t) ⊆ A is then defined by transitivity over direct
interactions in timestep t. Note that, given an agent i and Ai(t), for any other agent
j ∈ Ai(t), we have Aj(t) =Ai(t). Whenever the context is obvious, A is directly used.

Because agents belonging to different groups cannot affect each other, path planning,
the negotiation process using priority inheritance and backtracking, can effectively occur
in parallel. As a result, theoretically speaking,4 PIBT can be decentralized, relying only
on local interactions; it is sufficient that two agents in close proximity talk directly and

4Realizing truly decentralized systems is really difficult, which I learned through building the AFADA
system [Kameyama et al., 2021]. Therefore, I want to emphasize this term.
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utilize multi-hop communication. However, note that the groups of interacting agents
are fully identified prior to starting a PIBT process for one timestep.

Communication

Assume that interacting agents are fully detected at each timestep. Then, we analyze
communication complexity, i.e., how many messages are required in PIBT. In a decen-
tralized context, PIBT requires agents to know others’ priorities before deciding on the
next vertices. Usually, this requires |A|2 messages between agents. However, the update
rule of the priority pi relaxes this effort. For instance, storing other agents’ priorities and
communicating only when the priority is reset. Therefore, the communication cost of
PIBT mainly depends on the information propagation phase.

Next, consider this information propagation phase. In PIBT, communication between
agents corresponds to calling PIBT (priority inheritance), and when the procedure re-
turns a value (corresponding to backtracking). PIBT(i) is never called twice within a
timestep, as discussed in the analysis of time complexity. Moreover, each agent sends a
backtracking message at most once in each timestep. Overall, the communication cost
for PIBT at each timestep is linear for the number of agents O(A). In reality, this can be
even lower because the figures depend on the number of interacting agents |A|, which
can be much smaller than |A|.

4.3.4 Without Rotations

In physical environments such as mobile robots, movements corresponding to “rota-
tions” might be difficult to realize due to synchronization problems. A rotation is a
set of adjacent agents moving along a circle within one timestep. Formally, a rota-
tion occurs for a subset of agents {i, j,k, . . . , l} ⊆ A during timestep t and t + 1 when
Π[t + 1][i] = Π[t][j] ∧Π[t + 1][j] = Π[t][k] ∧ . . .Π[t + 1][l] = Π[t][i] is satisfied. Let two
connected configurations be rotation-free when there is no rotation. This part adapts
PIBT to situations where rotations are prohibited.

PIBT (Alg. 4.2) does not require major changes even in a model without rotations.
During the iteration for the candidate vertices of the next timestep (Lines 10–15), skip
vertices resulting in rotations like Line 11 to prevent collisions. Let the corresponding
Alg. 4.2 denote PIBT

⊗
. This variant outputs rotation-free paths.

Lemma 4.7 (Local movement in rotation-free model). Let agent-1 denote the agent with
highest priority at timestep t and v∗ the nearest vertex to g1 neighboring Π[t][1]. If |A| <
|V | and there exists a path between v∗ to an arbitrary vertex without going through Π[t][1],
PIBT

⊗
assigns v∗ to agent-1 as Π[t + 1][1].

Proof. Following |A| < |V |, we can derive ∃v′ < {Π[t][i] | i ∈ A}. There exists a path D
between v∗ to v′ without going through Π[t][1]. The subsequent proof is almost identical
to that of Lemma 4.1 by using D instead of C.

Theorem 4.8 (Reachability in rotation-free model). Given an MAPF instance such that
G is biconnected and |A| < |V |, PIBT

⊗
generates a sequence of rotation-free and connected

configurations Π such that, for any agent i ∈ A, Π[0][i] = si and there is a timestep t ≤
diam(G) · |A| such that Π[t][i] = gi .

Proof. The same proof procedure of the reachability (Thrm. 4.2) can be applied using
Lemma 4.7 instead of Lemma 4.1.

Note that this theorem is restricted to biconnected graphs compared to the original
theorem on reachability (Thrm. 4.2).
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4.4 Evaluation

This section evaluates PIBT thoroughly to empirically demonstrate that PIBT is a quick
and scalable MAPF algorithm with acceptable solution quality. PIBT is tested in MAPF
(Chap. 4.4.1) and MAPD (Chap. 4.4.2), followed by a stress test for the number of agents
(Chap. 4.4.3) and robot demonstration (Chap. 4.4.4). The simulator was developed in
C++, and the experiments were run on a laptop with Intel Core i9 2.3 GHz CPU and
16 GB RAM. The code is available at https://kei18.github.io/pibt2. The experi-
mental result of PIBT for MAPF in extremely dense situations is complemented in Ap-
pendix B.1.

4.4.1 Multi-Agent Path Finding (MAPF)

Setup

Benchmark. The MAPF benchmark [Stern et al., 2019], which includes a set of four-
connected grids and start–goal pairs for agents, was used. Ten grids were first selected
with different portfolios, e.g., size, sparseness, and complexity (see Fig. 4.6 and 4.7). For
each grid, 25 “random scenarios” were used while increasing the number of agents by
ten up to the maximum (1,000 agents in most cases). Therefore, identical instances were
tested for the solvers in all settings. Note that almost all selected grids did not satisfy the
graph condition of reachability. The problem setting follows conventional MAPF, i.e., all
agents are necessary to be at their goals to be terminated.

Baselines. The following algorithms were carefully picked for comparisons with PIBT:

• HCA∗ [Silver, 2005] as standard prioritized planning [Erdmann and Lozano-Perez,
1987]. Aiming at improving solution quality, each agent was prioritized so that
those with more considerable distances from their starts to goals have higher prior-
ities, following heuristics from [Van Den Berg and Overmars, 2005].

• EECBS [Li et al., 2021c] as a state-of-the-art bounded search-based sub-optimal
solver. The sub-optimality was set to 1.2. Note that EECBS is bounded sub-optimal
for the sum-of-costs metric.

• EECBS-M: The adapted version of EECBS for the makespan metric.

• Push and Swap (PS) [Luna and Bekris, 2011] as a standard rule-based approach.
Although PS is incomplete as pointed out in [De Wilde et al., 2014], it is the origin
of many extended algorithms [Sajid et al., 2012; De Wilde et al., 2014; Wiktor et al.,
2014; Zhang et al., 2016]. Hence, PS was used.

• PS+: The post-processing solutions were obtained by PS. PS allows at most one
agent to move, resulting in terrible outcomes. Thus, the solutions were compressed
while preserving temporal dependencies of the solutions, influenced by the tech-
niques in [Hönig et al., 2016], which allow multiple agents to move simultaneously.

• CBS [Sharon et al., 2015] with improvement techniques [Boyrasky et al., 2015; Bo-
yarski et al., 2015; Felner et al., 2018; Li et al., 2019a; Li et al., 2019b; Li et al., 2021b;
Zhang et al., 2022a] as a state-of-the-art search-based two-level optimal solver. Note
that CBS optimizes the sum-of-costs metric.

• CBS-M: The makespan optimal version of CBS instead of sum-of-costs.

• BCP [Lam et al., 2022] as a state-of-the-art compiling-based two-level solver, which
is optimal for the sum-of-costs metric.
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Figure 4.6: Summary of MAPF results (1/2). |V | is shown in parentheses.

For EECBS, CBS, and BCP, the implementations coded by their respective authors
were used.5 When these implementations have parameter specifications, the default was
used for each. The other solvers (HCA∗, PS, and PS+) were coded by the author, which is
own-coded in C++.

Failure Case. An algorithm was regarded as having failed to solve an instance when
either of the three conditions was met:

1. The algorithm reported failure.

2. The algorithm reached the runtime limit (30 s). This value was based on [Stern et
al., 2019].

3. The algorithm reached the makespan limit (2,000 in brc202d; otherwise 1,000).

5The codes are available on https://github.com/Jiaoyang-Li/EECBS, https://github.com/

Jiaoyang-Li/CBSH2-RTC, and https://github.com/ed-lam/bcp-mapf, respectively. (EE)CBS-M was im-
plemented in a best-first search manner that prioritizes makespan-better search nodes in the high-level tree,
modifying the aforementioned codes.
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Figure 4.7: Summary of MAPF results (2/2).

This rules out impractical MAPF outcomes. The values were set according to pre-
liminary results.

Metrics. The following four evaluation metrics were used, referring to other MAPF
studies:

• Success rate over 25 instances.

• Runtime.

• Sum-of-costs divided by
∑
i∈Adist(si , gi).

• Makespan divided by maxi∈Adist(si , gi).

The latter two assess the solution quality; smaller solutions are better and the minimum
is one. Although optimal costs are challenging to obtain, these scores work as a lower
bound of sub-optimality. Note that CBS and BCP are optimal for the sum-of-costs metric
whereas CBS-M is optimal for makespan; hence makespan scores of CBS/BCP and sum-
of-costs scores of CBS-M are omitted from the charts. Note further that sum-of-costs and
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Figure 4.8: Details of MAPF results. As typical examples, random-32-32-20 and ost003d
were selected. Charts with a fixed number of agents are shown. The scores of sum-of-
costs for CBS-M and those of makespan for CBS/BCP are omitted. In the rightmost chart
of ost003d, the plots of EECBS and EECBS-M are overlapped.

makespan have Pareto optimal structure [Yu and LaValle, 2013b], i.e., they cannot be
minimized simultaneously in general.

Other Remarks. PIBT+ uses PS+ as a complement solver. Own-coded solvers (PIBT(+),
HCA∗, PS(+)) used a distance table for the start locations of each agent, computed by
breadth-first search. The runtime included the procedure of creating the table.

Results

Figures 4.6 and 4.7 present the results. Figure 4.8 provides detailed perspectives of the
results focusing on two maps. Excluding success rates, the scores are averaged over only
the successful instances with that solver.6 In addition, Table 4.1 shows the classification
of failures of each solver.

Overall, PIBT outputs solutions immediately (≤ 5s in large maps) even with a thou-
sand agents, with a slight decline in the solution quality (sum-of-costs). Specific findings
are summarized as follows.

PIBT is extremely scalable. The scalability here is defined by map size and the number
of agents. In both aspects, PIBT outperforms the other baselines. The runtime of PIBT
is significantly faster by orders of magnitude compared to the other solvers. In other

6For a fair comparison, it is better to present the average scores of instances that all solvers solved. How-
ever, due to the high failure rates, the current style of data plots was selected.
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random-32-32-20

PIBT PIBT+ HCA∗ EECBS EECBS-M PS PS+ CBS CBS-M BCP

total 674 102 590 568 333 908 426 872 862 823
1. failure report 0 3 590 0 0 0 0 0 0 0
2. makespan limit 674 99 0 0 0 908 426 0 0 0
3. time over 0 0 0 568 333 0 0 872 862 823

ost003d

PIBT PIBT+ HCA∗ EECBS EECBS-M PS PS+ CBS CBS-M BCP

total 204 0 473 1301 1296 2497 2439 2311 2237 2294
1. failure report 0 0 0 0 0 0 0 0 0 0
2. makespan limit 204 0 0 0 0 2497 2439 0 0 0
3. time over 0 0 473 1301 1296 0 0 2311 2237 2294

Table 4.1: Classification of failures. The numbers of failed instances, regardless of |A|,
are reported.

words, PIBT can solve large instances that other solvers cannot solve. This is owing to
the small-time complexity.

PIBT outputs solutions with acceptable quality in sparse situations. In general, PIBT
does not guarantee solution quality. However, both sum-of-costs and makespan are ade-
quate compared to others in sparse settings. This is in contrast to pure rule-based solvers
(PS(+)) that mostly fail due to the makespan limit even with fewer agents. PIBT is based
on prioritized planning, enabling output solutions with acceptable quality.

Failure reasons of PIBT. Table 4.1 reveals that the failure reason for PIBT is due to the
makespan limit. Two failure categories of PIBT are further explained as follows. The
first case is due to the nature of reachability (Thrm. 4.2) that does not ensure that all
agents reach their goals simultaneously, causing livelock situations (c.f. Chap. 6.6). The
second case is due to graphs without a cycle for any two adjacent vertices. In such graphs,
it is possible to reach situations where several agents stop moving, similar to Fig. 4.5.
As those agents remain in their locations, PIBT eventually reaches the makespan limit.
Therefore, PIBT often fails with many agents in small maps (for instance, empty-48-48
and random-64-64-20).

PIBT+ can increase the success rate of PIBT dramatically. The aforementioned short-
coming of PIBT for one-shot MAPF is overcome by adding a complement solver. Note
that PIBT+ sometimes failed because an incomplete solver PS+ was used as a complement
solver. Note further that it is possible to use other solvers for the complement solver.

Solution quality of PIBT+ in dense situations. In Fig. 4.6, the upper bound of subop-
timality of PIBT+ in random-32-32-20 dramatically increases with the number of agents.
This is due to the complement solver. In the experiment, PIBT+ used PS+ as the comple-
ment solver to achieve high success rates within a small computation time. In general,
PS+ is quick even for large instances, however, its solution quality is not excellent, as seen
in our results. In cluttered and dense situations such as random-32-32-20, it is difficult to
obtain solutions by PIBT. Then, PIBT+ often uses the complement solver, degrading the
solution quality.
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Figure 4.9: Map used in the MAPD experiment. The graph is 21 × 35 four-connected
grid. Gray cells in the MAPD map are task endpoints, i.e., pickup and delivery locations.

Interpretations of comparisons’ results. Optimal solvers (CBS and BCP) can address a
few hundred agents in some cases, but usually, they cannot address several hundreds of
agents, emphasizing the necessity of sub-optimal solvers. Pure rule-based solvers (PS(+))
are quick, but their solution qualities are not acceptable compared to the other solvers.
Indeed, failures of PS(+) are mainly due to the makespan limit. Prioritized planning
(HCA∗) outputs plausible solutions for both sum-of-costs and makespan. It is scalable
but not so much as PIBT. In addition, when scenarios are dense, it is significantly dif-
ficult to find solutions according to static priorities (see random-32-32-20 in Table 4.1),
making dynamic priorities attractive as used in PIBT. The overall result of the search-
based sub-optimal solver (EECBS) is similar to HCA∗, i.e., it outputs plausible solutions
but is not as quick and scalable as PIBT. In short, PIBT has a unique position compared to
other established MAPF approaches, i.e., it is rapid and scalable with acceptable solution
qualities.

4.4.2 Multi-Agent Pickup and Delivery (MAPD)

Setup. The experimental setup follows that of the original MAPD study [Ma et al.,
2017b], using the same undirected graph as a testbed, and setting the same locations
as candidates for pickup and delivery (Fig. 4.9). A sequence of 500 tasks was generated
by randomly choosing pickup and delivery locations from all task endpoints. The six
different task frequencies where numbers of tasks are added to the task stream Γ were as
follows: 0.2 (one task every five timesteps), 0.5, 1, 2, 5, and 10 with the number of agents
increasing from 10 to 50. The token passing (TP) algorithm [Ma et al., 2017b] was also
tested as a baseline, which was own-programmed in C++. All experimental settings were
performed over 100 instances in which the initial positions of agents were set randomly.
The following three metrics were evaluated:

• Runtime per one timestep, because MAPD is assumed to be online.

• Service time, the duration from issue to completion of tasks.

• Makespan, the first timestep at which all tasks are completed.

Both PIBT (Alg. 4.4) and TP used an all-pairs distance matrix, pre-computed with the
Floyd–Warshal algorithm [Floyd, 1962].

Result. Figure 4.10 summarizes the results. PIBT significantly outperforms TP in run-
time and is comparable to or better than TP in solution quality, characterized by service
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time and makespan. The runtime improvements are because of the low time complexity
of PIBT. The improvements in solution quality are mainly due to how the algorithm deals
with free agents. Assume that there is one unassigned task. In PIBT, all free agents move
toward the pickup location, with only the earliest one actually getting the task and then
having to start moving to the delivery location while pushing the other free agents away,
thanks to the prioritization scheme. In contrast, TP evacuates all free agents to non-task
endpoints to avoid deadlocks other than the one agent that is newly assigned. However,
this assigned agent must still “dodge” those free agents’ locations to prevent deadlocks. As
a result, the path planned by PIBT for the task-assigned agent will be shorter than that
of TP.

4.4.3 Stress Test for Scalability

Setup. The scalability of PIBT was evaluated through MAPF with a large map while
varying the number of agents from 2,000 to 10,000. The map, shown in Fig. 4.11, was
the largest in the MAPF benchmark [Stern et al., 2019]. Here, only runtime per timestep
was evaluated, averaged over the first 100 timesteps, regardless of whether the planning
succeeded. Similar to the previous MAPF experiment, distance tables computed before
executing PIBT were used. The starts and goals of agents were set randomly for each
repetition.

Result. Figure 4.11 summarizes the result. The scores follow almost a linear trend in
the number of agents. Surprisingly, even with 10,000 agents, PIBT scored around 10 ms
per one timestep on an ordinary laptop.

4.4.4 Demonstrations with Real Robots

PIBT was also implemented with a team of small physical robots. Here, an online and
lifelong scenario is presented where a new goal is immediately assigned to an agent who
reaches its current goal. Note that, because of reachability, PIBT ensures that all assigned
goals are eventually met, that is, visited by assigned robots.

Platform. Toio robots (https://toio.io/) were used to implement PIBT. The robots,
connected to a master computer via the Bluetooth LE (low energy) protocol, advance on
a specific playmat and are controllable by instructions using absolute coordinates.

Usage. The robots were controlled in a centralized, synchronized, and online mode, de-
scribed as follows. A virtual grid (7× 5 with obstacles) was created on the playmat. The
robots followed the grid. A central server (a laptop) managed the locations of all robots.
Periodically, the server executed PIBT for one single timestep and issued the instructions
(i.e., where to go) to each robot. The code was written in Node.js.

Snapshot. Figure 4.12 shows a snapshot of the demo. The full video and code are also
available at https://kei18.github.io/pibt2.

4.5 Related Work

Finally, how PIBT relates to other MAPF algorithms is discussed. The global picture
of MAPF algorithms has already been presented in Chap. 3.2.4. Therefore, the below
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Figure 4.10: Summary of MAPD results. Each value is an average of 100 instances with
95% confidence intervals. For both service time and makespan, the intervals are hard to
recognize because they are tiny.
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Figure 4.11: Results of the stress test. The average runtime per timestep is shown. The
plots of the 95% confidence intervals are too small and difficult to recognize.

Figure 4.12: Snapshot of PIBT demonstration with real robots. The virtual gird is
shown with white dotted lines. Each robot’s goal is further annotated with colored ar-
rows. Green-lighted robots have recently been allocated. Yellow ducks are obstacles.

discussion focuses on prioritized planning (PP) and rule-based approaches because PIBT
has features of these two classes.7

4.5.1 Prioritized Planning (PP)

The concept of PP [Erdmann and Lozano-Perez, 1987] is that agents sequentially plan
paths according to their unique priorities while avoiding conflicts with previously planned
paths (see Alg. 3.3). PP is neither complete nor optimal, however, it is a computation-
ally inexpensive approach to MAPF, hence it has been incorporated into many MAPF
algorithms. For instance, the MAPP algorithm [Wang and Botea, 2011] combines tech-
niques of PP for the way the blanks moved around in sliding tile puzzles and proposed
a complete algorithm for a specific class of instances. In [Velagapudi et al., 2010], de-
centralized implementations of PP that divide planning into several iterations. Variants
of PP have also been studied, e.g., multi-robot decoupled planning that first computes
individual plans neglecting collisions, and then replans individual paths while incorpo-
rating collision costs gradually [Jiang et al., 2019]. This scheme has similarities to PIBT,

7In my frank opinion, PIBT is PP rather than rule-based approaches. It just sequentially assign resources
(vertices) – without graph topology analysis.
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albeit the applied problem is different and the approach has no theoretical guarantee.
The well-known algorithm of PP for MAPF is hierarchical cooperative A∗ (HCA∗) [Silver,
2005]. The “windowed” version of HCA∗ is known as windowed HCA∗ (WHCA∗) [Silver,
2005], which repeatedly plans fixed-length (windowed) paths for all agents. PIBT can be
considered as using WHCA∗ with unit-length window size.

Because priority ordering is crucial for PP, many studies addressed this issue. The
negotiation process between agents regarding the ordering was studied in [Azarm and
Schmidt, 1997]; this process solves conflicts by having involved agents try all priority
orderings and deals with congestion by limiting negotiation to at most three agents while
letting others wait. A similar approach is taken in [Bnaya and Felner, 2014] where the
winner determines the prioritization scheme. There are some heuristic approaches for
offline planning to find a reasonable ordering, for instance, adjusting the ordering by
simple hill-climbing [Bennewitz et al., 2002], or using distances between initial locations
and destinations [Van Den Berg and Overmars, 2005]. There is a sufficient condition that
the sequential collision-free solution can always be constructed regardless of priority
orders, called well-formed instances [Čáp et al., 2015], such that for each pair of start
and goal, a path exists that traverses no other starts and goals. However, well-formed
instances are difficult to realize in dense situations. A recent theoretical analysis for
PP [Ma et al., 2019a] identifies instances that fail for any order of static priorities, which
provides a strong case for planning based on dynamic priorities, such as the approach
taken with PIBT. The paper also presents a variant of PP that searches for good static
priorities using techniques from CBS. However, the method has no theoretical guarantee.

4.5.2 Rule-based Approaches

Rule-based approaches make agents move step-by-step following ad-hoc rules. The rep-
resentatives are push and swap/rotate (PS/PR) [Luna and Bekris, 2011; De Wilde et al.,
2014], which partly influenced the proposed PIBT. PS/PR are a sub-optimal rule-based
approach for arbitrary graphs. They rely on two primitives: the “push” operation to
move an agent toward its goal and the “swap” operation to allow two agents to swap
locations without altering the configuration of other agents. These approaches, however,
only allow a single agent or a pair of agents to move at a time.

Some studies enhanced PS/PR, for instance, parallel push and swap [Sajid et al., 2012]
by enabling all agents to move simultaneously, or push–swap–wait [Wiktor et al., 2014]
by taking a decentralized approach in narrow passages. In [Wei et al., 2014], a decen-
tralized approach that partly uses the PS technique to avoid deadlocks is presented. Dis-
CoF [Zhang et al., 2016], a decentralized method for MAPF, also uses swap operations to
ensure completeness. There is an algorithm similar to PS, called TASS [Khorshid et al.,
2011], targeting trees.

PIBT can be regarded as a combination of safe “push” operations because of the back-
tracking protocol and dynamic priorities. Note that PIBT does not require the opera-
tional equivalent of “swap.”

4.6 Concluding Remarks

This chapter introduced PIBT, a quick and scalable algorithm for solving MAPF itera-
tively. PIBT focuses on the adjacent movements of multiple agents, relying on a simple
prioritization scheme; hence, it can be applied to many domains, including online and
lifelong situations. The four empirical results support this aspect:

• PIBT(+) can promptly solve large MAPF instances, whereas other solvers take the
time or require unrealistic computational times.
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• PIBT outperforms current solutions for pickup and delivery (MAPD).

• Despite thousands of agents, PIBT can yield planning in a real-time manner.

• A real-robot execution of PIBT was further presented.

PIBT has good theoretical properties as well as powerful empirical results, mean-
while, several drawbacks had already been observed in the chapter. The critical cri-
tique is that PIBT is incomplete for MAPF. Although PIBT+ can overcome this issue to
some extent, however, in the experiment, a rule-based algorithm PS was used. This is
problematic. As discussed in Chap. 3.2.4, rule-based approaches are very sensitive to
problem specifications, shutting a door for domain-independent planning for multiple
agents like MRMP. Later in Chap. 6, we will see the incompleteness of PIBT is overcome
by LaCAM. But before that, let us see another example of short-horizon planning for
unlabeled-MAPF, in the next chapter.
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Short-Horizon Planning for
Unlabeled-MAPF

This chapter provides another example of short-horizon planning. This time, it is for
unlabeled-MAPF, a joint problem of target assignment and collision-free pathfinding (see
the definition in Chap. 3.4). The proposed algorithm is called the TSWAP algorithm.
TSWAP initially appeared in [Okumura and Défago, 2022b].1 The chapter begins with
its overview.

5.1 Chapter Overview

The objective of the chapter is to see the power of short-horizon planning for unlabeled-MAPF,
embodied as TSWAP, despite lacking long-horizon deliberation.

5.1.1 What is TSWAP

Similar to PIBT, TSWAP is understood as a configuration generator for unlabeled-MAPF.
That is, given one configuration, TSWAP produces another configuration. By continu-
ously generating configurations, TSWAP yields a sequence of configurations, constituting
a solution. Different from PIBT, it is possible for this successive generation to converge
to the goal configuration. Therefore, TSWAP is complete for unlabeled-MAPF. Note, in
general, TSWAP is sub-optimal.

Mechanism

The structure of TSWAP is simple and easy to be implemented. Specifically, it first as-
signs each agent to one of the target locations, using arbitrary target assignment algo-
rithms (e.g., greedy, bottleneck, or linear optimal assignments). Then, it repeatedly gen-
erates a sequence of configurations until the termination (i.e., all agents have reached
targets) while swapping targets between agents as necessary.

5.1.2 Properties and Performance

Theoretical Properties

TSWAP is complete. Furthermore, it has low-cost time complexity like PIBT. The time
complexity for one timestep is O(A(α + β)), where A is agents, α is the time required for
vertex evaluation, which can be constant with preprocessing. β denotes the time required

1To align with the dissertation structure, some parts of the paper will appear in Chap. 8. Moreover, this
chapter is based on the journal submission currently under review.
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to detect deadlocks. In the worst case, the detection is linear to |A|, however, this value
is usually so small and can be negligible in practice. Consequently, TSWAP can quickly
solve unlabeled-MAPF, even with thousands of agents.

TSWAP is also applicable to online planning assuming timing uncertainties of execu-
tion. This is another topic discussed in the execution part (Chap. 8).

Empirical Performance

TSWAP is scalable and can yield near makespan-optimal solutions while reducing run-
time by orders of magnitude in most cases, compared to the polynomial-time optimal
algorithm [Yu and LaValle, 2013a]. For instance, with an appropriate target assignment
algorithm, TSWAP solved unlabeled-MAPF near-optimally in around a second on aver-
age, even with 2,000 agents in a large grid map (418× 530; |V | = 43,151). Furthermore,
TSWAP can generate good solutions with respect to sum-of-costs, another commonly used
metric in MAPF studies.

5.1.3 Target Assignment with Lazy Evaluation

Assuming to use with TSWAP, the chapter also presents efficient assignment algorithms
with the lazy evaluation of distances. In unlabeled-MAPF, costs for assignments are un-
known initially and require distance evaluation, possibly being bottlenecks for quick
planning. The lazy evaluation eliminates this overhead by evaluating the distance on de-
mand. Specifically, two algorithms are presented. The first is bottleneck assignment [Gross,
1959] combined with the lazy evaluation, which minimizes the largest distance in the as-
signment and can generate makespan near-optimal solutions with TSWAP. The second
is a greedy assignment followed by iterative refinement, aimed at addressing large in-
stances in a very short time.

5.1.4 Original Motivation for TSWAP

Similar to PIBT, the development of TSWAP had another motivation, noted below.
Finding makespan-optimal solutions for unlabeled-MAPF is easier than for MAPF

which is known to be NP-hard [Yu and LaValle, 2013b]. Indeed, unlabeled-MAPF has
a polynomial-time optimal algorithm based on a reduction to maximum flow [Yu and
LaValle, 2013a]. However, the size of the flow network is quadratic to the size of the
original graph, making practical problems in large graphs (e.g., 500×500 grid) still chal-
lenging. Despite its importance, unlabeled-MAPF has received little attention compared
to conventional MAPF, for which many scalable sub-optimal solvers have been devel-
oped, such as [Surynek, 2009; Wang and Botea, 2011; De Wilde et al., 2014] as well as
PIBT. Quick sub-optimal algorithms for unlabeled-MAPF are also attractive because it is
possible to efficiently refine the solution quality for known MAPF solutions, as presented
in Chap. 7.

To this end, we originally aimed at developing a centralized approach to solving large
unlabeled-MAPF instances with sufficiently good quality in a small computation time.
This motivation fruits as the TSWAP algorithm. However again, in Chap. 6, TSWAP will
be regarded as a configuration generator.

5.1.5 Chapter Organization

• Chapter 5.2 presents the TSWAP algorithm and its theoretical analysis.

• Chapter 5.3 presents assignment algorithms with lazy evaluation.

• Chapter 5.4 presents empirical results.
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• Chapter 5.5 reviews the studies closely related to TSWAP.

• Chapter 5.6 concludes the chapter.

The code and movie are available at https://kei18.github.io/tswap.

5.1.6 Notations and Assumptions

Notations in this chapter are summarized below:

⊥ not found, undefined
G = (V ,E) (undirected) graph, a set of vertices, and a set of edges
A = {1,2, . . . ,n} a tuple of agents
S = (s1, s2, . . . , sn) start configuration, where si ∈ V
T = {g1, g2, . . . , gm} target vertices, where gi ∈ V
dist V ×V 7→ N, function that returns shortest path length
h V ×V 7→ R, admissible heuristic function
Q configuration
M A 7→ T , bijective function, assignment (matching)
diam(G) diameter of G

Unless explicitly mentioned, the chapter assumes the number of targets is equal to
the size of agents (i.e., |T | = |A|). Furthermore, the chapter assumes admissible heuristics
h(u,v) for computing the shortest path length in constant time, i.e., h(u,v) ≤ dist(u,v),
such as the Manhattan distance.

Caution� �
The chapter uses the representation by configurations.� �

5.2 The TSWAP Algorithm

This section presents the TSWAP algorithm. Essentially, TSWAP generates a pair of a
configuration and an assignment, given another pair. Here, an assignment is a bijective
functionM : A 7→ T . For convenience, the chapter uses a list representationM[i], instead
ofM(i). The section begins with descriptions of the concept behind the algorithm.

5.2.1 Concept

A vanilla approach to unlabeled-MAPF is to disjoint target assignment and path plan-
ning parts. That is, such approaches first obtain an assignment by off-the-shelf assign-
ment algorithms. Then, taking the assignment as a goal configuration, they solve the
MAPF problem with off-the-shelf MAPF algorithms. However, this type of approach
potentially fails because the initial assignment might generate an unsolvable MAPF in-
stance.2 This is a critical pitfall since unlabeled-MAPF is always solvable (see Chap. 3.4.2).
Therefore, we cannot apply MAPF solvers directly to design a complete unlabeled-MAPF
algorithm.

The above issue is resolved by swapping assigned targets as necessary during path plan-
ning. TSWAP realizes this concept, with five simple rules as described below. The rules
are also illustrated in Fig. 5.1.

• rule-1, stay in target: An agent remains in the current location if the agent is at the
assigned target.

2For instance, see an assignment of Fig. 5.2 at t = 0.
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• rule-2, move toward target: If the nearest neighboring vertex towards the assigned
target is unoccupied, the agent moves there.

• rule-3, swap targets: If the nearest vertex is occupied by another agent that is at its
assigned target, two agents swap assigned targets.

• rule-4, resolve deadlocks: If two or more agents form a deadlock about the next
locations, rotate targets between agents and resolve the deadlock. The formulation
of deadlock appears later.

• rule-5, do nothing: Otherwise, remain there.

i i

rule-1: stay in target

i i

rule-2: move toward target

i j i j

rule-3: swap targets

i j i j

rule-4: resolve deadlock

i j i j

rule-5: do nothing

Figure 5.1: Rules constituting TSWAP. “Before” and “after” configurations are depicted
on the left and right, respectively. Bold arrows represent assigned targets. Dashed lines
correspond to the shortest paths for assigned targets of each agent. One vertex is filled
with gray for visualization.

5.2.2 Minimum Implementation

Algorithm 5.1 presents the pseudocode of minimum TSWAP, akin to the minimum im-
plementation of PIBT (Alg. 4.1). Using the five rules in Fig. 5.1, Alg. 5.1 generates a pair
of a configuration and an assignment, given another pair.

Several details of Alg. 5.1 are complemented below.

Vertex Evaluation (Line 4). The next_vertex function is defined as follows.

next_vertex(u,v) := argmin
w∈neigh(u)

dist(w,v) (5.1)
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Algorithm 5.1 Minimum TSWAP (function TSWAP)

input: configuration Qfrom, assignmentMfrom, agents A

output: configuration Qto, assignmentMto (each element is initialized with ⊥)

1: Qto← copy
(
Qfrom

)
; Mto← copy

(
Mfrom

)
2: for i ∈ A do

3: if Qto[i] =Mto[i] then continue ▷ rule-1

4: u← next_vertex
(
Qto[i],Mto[i]

)
5: let j be an agent in A s.t. Qto[j] = u

6: if j =⊥ then Qto[i]← u; continue ▷ rule-2

7: ifMto[j] = u thenMto[i],Mto[j]←Mto[j],Mto[i]; continue ▷ rule-3

8: if ∃ deadlock for A′ ⊆ A∧ i ∈ A′ then rotateMto of A′; continue ▷ rule-4

(otherwise; do nothing) ▷ rule-5

9: return Qto,Mto

This function is assumed to be deterministic, i.e., tie-break between vertices having the
same scores is done deterministically. The function can be implemented, e.g., via the
shortest pathfinding algorithms.

Deadlock (Line 8). A deadlock is defined as follows. Let denote ui a shorthand nota-
tion of next_vertex

(
Qto[i],Mto[i]

)
. A set of agents A′ = (i, j,k, . . . , l) is in a deadlock when

ui =Qto[j]∧uj =Qto[k]∧ . . .∧ul =Qto[i]. When detecting a deadlock for A′, the algorithm
“rotates” targets. That is, Mto[i] ← Mto[l],Mto[j] ← Mto[i],Mto[k] ← Mto[j], . . .. The
detection is done by incrementally checking whether the next location of each agent is
occupied by another agent and concurrently checking the existence of a loop.

Analysis of Local Movements

To analyze Alg. 5.1, consider the following function, defined by a configuration Q and an
assignmentM.

φ(Q,M) :=
∑
i∈A

[
dist (Q[i],M[i]) +

∣∣∣∣{j ∈ A | M[j] ∈ P (Q[i],M[i])
}∣∣∣∣] (5.2)

Here, P (u,v) ⊂ V is a set of vertices in the shortest path from u ∈ V to v ∈ V , identified
by next_vertex, except for endpoints u and v. Observe that φ(Q,M) ≥ 0 and φ becomes
zero only when Q is equal toM. SinceM is a bijective function with reference to targets,
φ is seen as a potential function that evaluates how closeQ is to the terminal configuration
of unlabeled-MAPF.

Lemma 5.1 (local movement of TSWAP). With Alg. 5.1, φ
(
Qto,Mto

)
is smaller than

φ
(
Qfrom,Mfrom

)
. Otherwise, Qfrom is equal toMfrom, i.e., φ

(
Qfrom,Mfrom

)
= 0.

Proof. It is trivial to see φ is non-increasing by each operation of Alg. 5.1. Therefore, the
remaining part proves that φ decreases when φ

(
Qfrom,Mfrom

)
> 0 by contradiction.

Suppose that φ does not differ between ⟨Qfrom,Mfrom⟩ and ⟨Qto,Mto⟩. Then, let B :={
i ∈ A | Qfrom[i] ,Mfrom[i]

}
. This is non-empty because φ

(
Qfrom,Mfrom

)
, 0, i.e., there

are agents not on their targets.
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We now confirm each operation. First, there is no swap operation by Line 7; oth-
erwise, the second term of φ must decrease. Second, all agents in B do not move, i.e.,
Qfrom[i] = Qto[i] for all i ∈ B; otherwise, the first term of φ must decrease. Furthermore,
for an agent i ∈ B, next_vertex

(
Qfrom[i],Mto[i]

)
, say ui , must be occupied by another

agent j ∈ B in Qto; otherwise, i moves to ui . This is the same for j, i.e., there is an agent
k ∈ B such that Qto[k] = uj . By induction, this sequence of agents must form a deadlock
somewhere; however, by deadlock detection and resolution in Line 8, the first term of φ
must decrease. Hence, this is a contradiction.

Lemma 5.1 is interpreted as, by each applying of Alg. 5.1, the resulting configuraiton
approaches the terminal configuraiton.

5.2.3 Complete Algorithm

We now see a complete algorithm for unlabeled-MAPF, build upon Alg. 5.1. Algo-
rithm 5.2 is it. After getting an initial assignment by external algorithms (Line 1), for
each timestep until all targets are occupied, either of the five rules is applied to each
agent and determines the location for the next timestep (Lines 3–5). These operations
bring the agents to the targets. Figure 5.2 shows a running example.

Algorithm 5.2 TSWAP.

input: unlabeled-MAPF instance (A,G,S ,T )

output: solution Π

1: get an initial assignmentM

2: Π[0]←S

3: for t = 0,1,2, . . . do

4: if Π[t] =M then return Π

5: Π[t + 1],M← TSWAP (Π[t],M) ▷ Alg. 5.1

g1

s1 s2

g2

s3

g3

3 2 1t = 0

3 2 1t = 1

3 2 1t = 2

Figure 5.2: Running example of TSWAP. An unlabeled-MAPF instance is shown at the
top. Current locations of agents, i.e., Π[t][i], are shown within vertices. The assigned
target is illustrated with bold arrows. A target swapping happens between agent-1 and
agent-2 at t = 0 (Line 7 in Alg. 5.1).
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5.2.4 Theoretical Analyses

Completeness

Theorem 5.2. TSWAP (Alg. 5.2) is complete for unlabeled-MAPF (Def. 3.7).

Proof. This is trivial from Lemma 5.1.

Any assignment algorithms can be applied to TSWAP because Thrm. 5.2 does not
rely on initial assignments. Furthermore, TSWAP can easily adapt to unlabeled-MAPF
instances such that the number of targets is less than that of agents (i.e., |A| > |T |) by
assigning agents without targets to any non-target locations.

Solution Quality

Proposition 5.3. TSWAP has upper bounds of;

• makespan: O(A · diam(G))

• sum-of-costs (aka. flowtime): O(A2 · diam(G))

• maximum-moves: O(A · diam(G))

• sum-of-moves (aka. sum-of-fuels): O(A · diam(G))

Proof. The potential function φ of Eq. (5.2) isO(A ·diam(G)). This is the makespan upper
bound. Note that the second term of φ is bounded by diam(G) because P assumes the
shortest paths on G. That of sum-of-costs is trivially obtained by multiplying |A|.

To derive the upper bound of sum-of-moves, consider another potential function
ψ(Q,M) :=

∑
i∈Adist (Q[i],M[i]). Similarly to φ, ψ is non-increasing. ψ becomes zero

when the problem is solved, i.e., Q =M. Furthermore, with the call of TSWAP (Alg. 5.1),
ψ is decremented in a new configuration by each “move” action at Line 6. Consequently,
ψ eventually reaches zero. Observe that ψ = O(A · diam(G)); this is the upper bound of
sum-of-moves. This bound works also for maximum-moves.

Compared to sum-of-costs, the upper bound of sum-of-moves is significantly reduced
because it ignores all “wait” actions. The bound on sum-of-moves is tight in some sce-
narios, such as a line graph with all agents starting on one end and all targets on the
opposite end. Furthermore, TSWAP is optimal for sum-of-moves depending on the ini-
tial assignment.

Proposition 5.4. TSWAP is optimal for sum-of-moves when the initial assignmentM mini-
mizes

∑
i∈Adist(si , gi).

Proof. Because ψ of Eq. (5.2) never increases during Alg. 5.2.

In general, the upper bound on makespan is greatly overestimated. Later, we will
see that TSWAP yields near-optimal solutions for makespan depending on initial assign-
ments through the experiments. On the other hand, there are adversarial instances of
TSWAP.

Observation 5.5. There is an instance such that TSWAP requires Ω(A) makespan regardless
of initial assignments, while the optimal makespan is constant for A.

Proof. Figure 5.3 shows an adversarial instance for TSWAP. The makespan-optimal solu-
tion is to make all agents just move down (3 steps). However, with TSWAP, regardless
of initial assignments, all agents use the rightmost vertex because it makes agents move
along the shortest paths. As a result, its makespan is |A|+ 1.
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1start

target

2 N

· · ·

Figure 5.3: Adversarial instance for TSWAP.

In Fig. 5.3, the sum-of-costs of TSWAP is 2 + 3 + . . . + (N + 1) = N (N + 3)/2 = Θ(A2)
while the optimal case is 3|A| − 1 = Θ(A). We will later see a similar adversarial instance
in the experiment of Chap. 5.4.5.

Time Complexity

Proposition 5.6. Assume that the time complexity of next_vertex and the deadlock resolu-
tion (Line 8) in Alg. 5.1 are α and β,3 respectively. Then, the time complexity of the function
TSWAP (Alg. 5.1) is O(A(α + β)).

Proof. Each operation in Lines 2–8 is constant except for Line 4, O(α), and Line 8, O(β).
These operations repeat exactly |A| times for each timestep, thus deriving the statement.

Proposition 5.7. The time complexity of TSWAP (Alg. 5.2) excluding Line 1 isO(A2·diam(G)·
(α+β)).

Proof. According to Prop. 5.3, the makespan is O(A ·diam(G)), i.e., the repetition number
of Lines 3–5. The statement is then derived by multiplying the complexity obtained from
Prop. 5.6.

From Prop. 5.7, TSWAP has an advantage in large fields compared to the time com-
plexity O(AV 2) of the makespan-optimal algorithm [Yu and LaValle, 2013a] with a nat-
ural assumption that E =O(V ). Note that, depending on implementations, α can be con-
stant once the shortest paths between starts and the initial targets are obtained because
agents follow these paths even with target swapping.

3β is treated as blackbox, but it can be obviously implemented by O(A ·α). Note that this is too conserva-
tive in practice, i.e., deadlocks with many agents are rare.
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TSWAP on General Graphs

Not limited to connected undirected graphs, TSWAP is complete for general graphs such
as digraphs or non-connected graphs, when the initial assignment is feasible. The as-
signment is feasible when, for each agent, there is a path on the graph from its start to the
assigned target. If so, TSWAP works without modifications.

5.2.5 Effective Implementation

Next, an “efficient” implementation of TSWAP is presented to obtain better solutions
than those produced by a vanilla TSWAP (Alg. 5.2). Recall that TSWAP applies the five
rules to each agent sequentially. This order affects the solution quality, illustrated as
follows.

j i

Figure 5.4: Example that a planning order affects makespan.

Consider Fig. 5.4 as a motivating example:

• case-1: Assume that j plans its next location prior to i. The makespan is two; in the
first timestep, the rule-3 “swap targets” is applied to j, then i moves to the updated
target (i.e., one step right). In the next timestep, j reaches the swapped target.

• case-2: Assume that an agent i plans its next location prior to j. The makespan is
again two; in the first timestep, since i is on its assigned target, the rule-1 “stay in
target” is applied to i. Then the rule-3 “swap targets” is applied to j. In the next
timestep, both agents move to their targets.

However, the optimal makespan is clearly one; in the first timestep, make both agents
move one step to the right. In what follows, methodologies to overcome this pitfall are
provided.

Algorithm 5.3 is an extended version of TSWAP. The main difference from Alg. 5.2 is
the use of queue U (Line 5; taken from “undecided”), instead of naive sequential plan-
ning (i.e., for-loop). This trick realizes a flexible planning order of TSWAP. We explain it
as follows.

For each timestep, as long as the queue U is not empty, the algorithm selects one agent
i (Line 7) and applies the condition-matched rules to i:

1. If the rule-1 “stay in target” is not applied (Line 9–), i tries to move to the desired
vertex u.

2. When u will be occupied by another agent j in the next timestep t + 1, then i stays
in its current location (rule-5 “do nothing”; Line 10).

3. Otherwise, u is unoccupied in the next timestep. i can move to u only when (i) there
is no agent at u in the current timestep, or, (ii) there is another agent j at u but j will
move to another vertex. If either condition holds, the rule-2 “move toward target”
is applied (Lines 11–12).

4. If the above rules are not applied, i skips determining the next location by inserting
i to the queue U . Before that, rule-3 “swap targets” and rule-4 “resolve deadlock”
are sequentially applied if the conditions are matched.
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Algorithm 5.3 TSWAP with flexible planning order.

input: unlabeled-MAPF instance (A,G,S ,T )

output: solution Π

preface: Π[t][i] is initialized with ⊥

1: get an initial assignmentM

2: Π[0]←S

3: for t = 0,1,2, . . . do

4: if Π[t] =M then return Π

5: initialize U with A ▷ queue

6: while U , ∅ do

7: i←U .pop()

8: if Π[t][i] =M[i] then Π[t + 1][i]←Π[t][i]; continue ▷ rule-1

9: u← next_vertex (Π[t][i],M[i])

10: if ∃j,Π[t + 1][j] = u then Π[t + 1][i]←Π[t][i]; continue ▷ rule-5

(u is unoccupied at t + 1)

11: if
(
∄j,Π[t][j] = u

)
∨
(
∃j,Π[t][j] = u ∧Π[t + 1][j] ,⊥

)
then

12: Π[t + 1][i]← u; continue ▷ rule-2

13: if ∃j s.t. Π[t][j] = u ∧Π[t][j] =M[j] thenM[i],M[j]←M[j],M[i] ▷ rule-3

14: if ∃deadlock for A′ ⊆ A∧ i ∈ A′ then rotateM of A′ ▷ rule-4

15: U .push(i)

With Alg. 5.3, the case-1 (j plans first) of Fig. 5.4 is resolved. The running example is
described as follows.

1. Assume that U is initialized with Jj, iK. In the first iteration of Lines 6–15, j is
popped from U and the rule-3 “swap goals” is applied (Line 13). Then j is re-
inserted to U . U is now Ji, jK.

2. In the second iteration, i is popped. The rule-2 “move toward target” (Line 12) is
applied. U is now JjK.

3. Lastly, j is popped again then the rule-2 “move toward target” (Line 12) is applied.

These operations are the planning within one timestep. Consequently, the makespan
becomes one, rather than two.

Proposition 5.8. Algorithm 5.3 terminates.

Proof. It is proven that U eventually becomes empty with operations in Lines 6–15. This
is done by using the same potential function φ as the proof of Lemma 5.1. Assume, by
contradiction, that U does not change for |A| iterations. Meanwhile, φ must decrease by
the same logic as the proof of Lemma 5.1; hence this is a contradiction.

The case-2 (i plans first) of Fig. 5.4 can be avoided by using a priority queue rather
than just a queue. The modification counts how many times the agent is called in the
iterations and uses this score in the ascending order in this priority queue. This prevents
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an eternal loop. The tie-break is done by giving the priority to agents that are not on
their target, i.e., j in Fig. 5.4. Consequently, the planning by TSWAP for Fig. 5.4 results
in a solution with the makespan one.

5.3 Target Assignment with Lazy Distance Evaluation

Although TSWAP works with an arbitrary initial assignment, path planning is signifi-
cantly affected by the assignment. Ideal assignment algorithms are quick, scalable, and
with reasonable quality for solution metrics (e.g., makespan). It is possible to apply con-
ventional assignment algorithms such as the Hungarian algorithm [Kuhn, 1955]. How-
ever, costs (i.e., distances) for each start-target pair are unknown initially, which is typ-
ically computed via breadth-first search with time complexity O(A(V + E)). This would
be a non-negligible overhead. This section thus presents two examples that efficiently
solve target assignment with lazy distance evaluation, which avoids exhaustive distance
evaluation.

5.3.1 Bottleneck Assignment

Algorithm 5.4 aims to minimize makespan by solving the bottleneck assignment prob-
lem [Gross, 1959], i.e., assign each agent to one target while minimizing the maximum
cost, regarding distances between initial locations and targets as costs. A running exam-
ple is shown in Fig. 5.5.

Algorithm 5.4 Bottleneck assignment.

input: unlabeled-MAPF instance (A,G,S ,T )

output: assignmentM

1: initializeM; Let B be a bipartite graph (A,T ,∅)

2: Open: priority queue of ⟨i ∈ A,g ∈ T ,real distance,estimated distance⟩

in increasing order of distance (use real one if exists, otherwise use estimated one)

3: for i ∈ A,g ∈ T do

4: Open.push
(
⟨si , g,⊥,h(si , g)⟩

)
5: while Open , ∅ do

6: ⟨i,g,dreal,dest⟩ ←Open.pop()

7: if dreal =⊥ then Open.push
(
⟨i,g,dist(si , g),dest⟩

)
; continue

8: add a new edge (i,g) to B

9: updateM by finding an augmenting path on B

10: if |M| = |T | then

11: †optional: add all ⟨·, ·,d, ·⟩ ∈Open to B s.t. d = dreal

12: break

13: †optional:M←minimum cost maximum matching on B

14: returnM

The algorithm incrementally adds pairs of an agent and a target to a bipartite graph
B (Line 8), in increasing order of their distances using a priority queue Open. B is initial-
ized as (A,T ,∅) (Line 1). This iteration continues until all targets are matched to agents
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Figure 5.5: Running example of the bottleneck assignment (Alg. 5.4†). An unlabeled-
MAPF instance is shown at the top. The target assignment is illustrated using a bipartite
graph B. The assignmentM is denoted by red lines. The middle part, with annotation of
costs, corresponds to finding the bottleneck cost (Lines 4–12), i.e., incrementally adding
pairs of an initial location and a target and then updating the matching. The bottom part
corresponds to solving the minimum cost maximum matching problem (Line 13). Two
edges are added from the last situation due to Line 11. The final outcome is equivalent
to the assignment of Fig. 5.2.

(Line 10). At each iteration, the maximum bipartite matching problem on B is solved
(Line 9). In general, the Hopcroft-Karp algorithm [Hopcroft and Karp, 1973] efficiently
solves this problem inO(

√
V ′E′) runtime for any bipartite graph (V ′ ,E′), but Alg. 5.4 uses

the reduction to the maximum flow problem and the Ford-Fulkerson algorithm [Ford
and Fulkerson, 1956]. The basic concept of this algorithm is finding repeatedly an aug-
menting path, i.e., a path from source to sink with available capacity on all edges in the
path, then making the flow along that path. Such paths are found, e.g., via depth-first
or breadth-first search. Here, finding a single augmenting path in O(E′) runtime is suf-
ficient to update the matching because the number of matched pairs increases at most
once for each adding.

The algorithm uses lazy evaluation of real distance (Line 7). This is realized by the
use of priority queue Open (Line 2) and admissible heuristics h (Line 4), then evaluating
the real distance as needed. ⊥ denotes that the corresponding real distance has not been
evaluated yet. The lazy evaluation contributes to the speedup of the target assignment,
as we will see later.

The algorithm optionally solves the minimum cost maximum matching problem (Line 13),
aiming at improving the sum-of-costs metric. The problem can be solved by reducing to
the minimum cost maximum flow problem and then using the successive shortest path
algorithm [Ahuja et al., 1993], a generalization of the Ford-Fulkerson algorithm that uses
Dijkstra’s shortest path algorithm [Dijkstra, 1959], to find an augmenting path with min-
imum cost. Its time complexity is O (f (E′ +V ′ lgV ′)) where f is the maximum flow size
and V ′ and E′ represent the network; hence O

(
A3

)
. Note that when finding the bottle-

neck cost, all edges in Open with their costs equal to the bottleneck cost are added to B
to improve the sum-of-costs metric of the assignment (Line 11). This operation includes
lazy evaluation similar to the main loop (Lines 5–12). The corresponding algorithm is
denoted as Alg. 5.4†.
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Proposition 5.9. The time complexity of Alg. 5.4(†) is O
(
max

(
A(V +E),A4

))
.

Proof. Consider the worst case, i.e., all agent-target pairs are evaluated and contained in
B. The number of vertices and edges of B are 2|A| and |A|2, respectively. Then, Line 13 is
O
(
A3

)
by the successive shortest path algorithm because its time complexity is O(f (E′ +

V ′ lgV ′)) where f is the maximum flow size and V ′ and E′ represent the network. The
total operations of dist become running the breadth-first search |A| times, therefore,
O(A(V + E)). Operations for a priority queue Open are both O(lgn) for extracting and
inserting, where n is the length of the queue. Thus, the runtime of Line 4 is O

(
A2 lgA

)
.

The queue operations in Lines 5–12 require O
(
A2 lgA

)
. Line 9 finds a single augmenting

path and this is linear for the number of edges in B, thus, its complexity is 1+2+· · ·+
∣∣∣A2

∣∣∣ =

O
(
A4

)
. As the result, the complexity of Alg. 5.4 is;

O(A(V +E)) finding shortest path

+O
(
A3

)
min-cost maximum matching

+O
(
A2 lgA

)
queue operations

+O
(
A4

)
update matching

5.3.2 Greedy Assignment with Refinement

Since TSWAP is sub-optimal in general, it makes sense to use sub-optimal assignment
algorithms. Algorithm 5.5 aims at finding a sub-optimal but reasonable assignment for
makespan as quickly as possible, which uses;

• Greedy assignment (Lines 1–9) assigns one target to one agent step by step, while
allowing reassignment if a better assignment will be expected (Lines 8–9).

• Iterative refinement (Lines 10–15) swaps targets of two agents until no improve-
ments are detected.

• Lazy evaluation of distances for start-target pairs, implemented by pausing the
breadth-first search as soon as the query start-target pair is in the search tree, sim-
ilar to reverse resumable A∗ [Silver, 2005].

A running example is shown in Fig. 5.6. The correctness of Alg. 5.5 is proven as
follows.

Proposition 5.10. Algorithm 5.5 is correct; returns a distinct target for each agent.

Proof. We focus on the initial assignment phase (Lines 1–9) because the refinement phase
(Lines 10–15) only swaps targets for the existing assignmentM. Moreover, it terminates
within finite iterations because each target for each agent is evaluated at most once. Triv-
ially, each assignment operation never assigns one target to more than one agent. Observe
that |U |+ |M| = |A| is invariant. Thus, the output of the algorithm is correct.

The termination of the algorithm is derived by contradiction. Assume the invalid
state of the algorithm, namely, Line 5 does not have any corresponding values, meaning
that all targets have already been evaluated. This violates the invariance of |U |+ |M| = |A|;
hence such states never are realized. For each agent, no target is evaluated more than
once. Therefore, the algorithm eventually terminates.

This algorithm is expected to run in a very short time;
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Algorithm 5.5 Greedy assignment with refinement for makespan.

input: unlabeled-MAPF instance (A,G,S ,T )

output: assignmentM

1: initializeM; initialize queue U by A

2: while U , ∅ do

3: i←U .pop()

4: while TRUE do

5: g← the non-evaluated nearest target from si

6: if ∄(j,g) ∈M then

7: add (i,g) toM; break

8: else if ∃(j,g) ∈M∧ dist(si , g) < dist(sj , g) then

9: replace (j,g) ∈M by (i,g); U .push(j); break

10: whileM is updated in the last iteration do

11: (i,gi)← argmax
(k,g)∈M

dist(sk , g); cnow← dist(si , gi)

12: for (j,gj ) ∈M do

13: if h(sj , gi) ≥ cnow then continue ▷ for lazy evaluation

14: cswap←max
(
dist(sj , gi),dist(si , gj )

)
15: if cswap < cnow then swap gi and gj ofM; break

16: returnM

g1

s1 s2

g2

s3

g3

s1 s2 s3

g1 g2 g3

i = 1,U = J2,3K

2

s1 s2 s3

g1 g2 g3

i = 2,U = J3K

2 1

s1 s2 s3

g1 g2 g3

i = 3,U = J2K

2 1
0

s1 s2 s3

g1 g2 g3

i = 2,U = J K

2 1
02

refinement by Lines 10–15

s1 s2 s3

g1 g2 g3

2 1 1
2 0

Figure 5.6: Running example of the greedy assignment (Alg. 5.5). An unlabeled-MAPF
instance is shown at the top. The assignmentM is denoted by red lines. The middle part,
with annotation of costs, corresponds to finding a greedy assignment (Lines 1–9). The
bottom part corresponds to the refinement (Lines 10–15).
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Proposition 5.11. The time complexity of Alg. 5.5 is O(A(V +E)).

Proof. In the worst case, the algorithm requires O(A(V + E)) in total to evaluate all dis-
tances of agent-target pairs by running the breadth-first search |A| times. The operations
in Lines 5–9 repeat at most |A|2 times because each target for each agent is evaluated at
most once. Lines 10–15 repeat at most diam(G) times because each iteration must reduce
the maximum cost of the assignmentM. Both Line 11 and Lines 12–15 are O(A). As a
result, the algorithm is O

(
A(V +E) +A2 +A · diam(G)

)
, which equals to O(A(V +E)).

Algorithm 5.5 presents the refinement for makespan. Its sum-of-costs version is
straightforward, as presented in Alg. 5.6.

Algorithm 5.6 Refinement for sum-of-costs.

input: unlabeled-MAPF instance (A,G,S ,T )

output: assignmentM

1: execute Lines 1–9 of Alg. 5.5

2: whileM is updated in the last iteration do

3: for (i,gi), (j,gj ) ∈M, i , j do

4: cnow← dist(si , gi) + dist(sj , gj )

5: if h(sj , gi) + h(si , gj ) ≥ cnow then continue

6: cswap← dist(sj , gi) + dist(si , gj )

7: if cswap < cnow then swap gi and gj ofM; break

8: returnM

Proposition 5.12. The time complexity of Alg. 5.6 is O
(
A(V +E) +A3 · diam(G)

)
.

Proof. Lines 2–7 repeat at most |A| · diam(G). Each iteration requires O
(
A2

)
. The state-

ment is derived together with the proof of Prop. 5.11.

5.4 Evaluation

The experiments aim at demonstrating that TSWAP is efficient, i.e., it returns near-
optimal solutions within a short time and scales well, depending on initial assignments.
In particular, this section constitutes four parts:

• Chapter 5.4.1 assesses the effect of planning order in TSWAP. In other words, we
compare a vanilla TSWAP (Alg. 5.2) and the extended version with flexible plan-
ning order (Alg. 5.3).

• Chapter 5.4.2 illustrates the effect of initial assignments including the proposed
assignment algorithms (Alg. 5.4(†), Alg. 5.5, and Alg. 5.6).

• Chapter 5.4.3 compares TSWAP with the makespan-optimal polynomial-time al-
gorithm [Yu and LaValle, 2013a].

• Chapter 5.4.4 assesses another metric, sum-of-costs.

Several four-connected grids were carefully picked up from the MAPF benchmark [Stern
et al., 2019] as a graph G, shown in Fig. 5.7. The simulator was developed in C++ and
the experiments were run on a laptop with Intel Core i9 2.3 GHz CPU and 16 GB RAM.
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For each setting, 50 instances were prepared while randomly generating starts and tar-
gets. Note that, as the number of agents increases, the optimal makespan decreases be-
cause initial locations and targets were set randomly. Implementation details of [Yu and
LaValle, 2013a] are described in Appendix C.1. Throughout this section, the runtime
evaluation of TSWAP includes both target assignment and path planning.

random-32-32-20

32× 32
(819)

random-64-64-20

64× 64
(3,270)

lak303d

194× 194
(14,784)

den520d

257× 256
(28,178)

brc202d

418× 530
(43,151)

Figure 5.7: Used maps. |V | is shown with parentheses.

5.4.1 Effect of Planning Order

At first, the effect of planning order in TSWAP was investigated. In particular, Alg. 5.2
(vanilla TSWAP) and Alg. 5.3 (TSWAP with flexible planning order) were compared, re-
garding the solution quality of makespan and sum-of-costs. To obtain initial assign-
ments, both implementations used Alg. 5.4† that performs the bottleneck assignment
minimizing maximum distance. Therefore, both implementations started with the ex-
actly same initial assignments. The used map was random-64-64-20 and lak303d.

Table 5.1 presents the result. Overall, Alg. 5.3 outperforms Alg. 5.2 especially when
the instances become denser (i.e., with more agents); the solution quality of TSWAP is
affected by the planning order. In what follows, the experiment used Alg. 5.3 as the
implementation of TSWAP since it outputs better solutions.

5.4.2 Effect of Initial Target Assignment

Next, the effect of initial assignments on TSWAP was evaluated, while varying the num-
ber of agents |A|. Several assignment algorithms were tested: Alg. 5.4 (bottleneck; min-
imizing maximum distance), Alg. 5.4† (with min-cost maximum matching), Alg. 5.5
(greedy with refinement for makespan), Alg. 5.6 (for sum-of-costs), naive greedy assign-
ment [Avis, 1983], and optimal linear assignment (minimizing total distances) solved by
the successive shortest path algorithm [Ahuja et al., 1993]. These assignment algorithms
do not consider inter-agent collisions. The last two used distances for start-target pairs
obtained by the breadth-first search as costs. To assess the effect of lazy evaluation, the
adapted version of Alg. 5.4† and Alg. 5.5 without lazy evaluation were also tested. They
are denoted as Alg. 5.4†∗ and Alg. 5.5∗.

Table 5.2 summarizes the results on random-64-64-20 and lak303d. In summary;

• Algorithm 5.4 contributes to finding good solutions for makespan.

• Algorithm 5.4† significantly improves sum-of-costs.

• Algorithm 5.5 and Alg. 5.6 are blazing fast while solution qualities outperform
those of the naive greedy assignment.

• The lazy evaluation speedups each assignment algorithm.

• The optimal linear assignment requires time because its time complexity is O
(
A3

)
.
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random-64-64-20

|A| metric vanilla (Alg. 5.2) practical (Alg. 5.3) improvement

110 makespan 18
(17,18)

17
(17,18) 5.6%

sum-of-costs 951
(914,988)

936
(900,971) 1.6%

500 makespan 13
(12,13)

11
(10,11) 15.4%

sum-of-costs 2372
(2276,2463)

2169
(2084,2252) 8.6%

1000 makespan 13
(12,13)

9
(9,9) 30.8%

sum-of-costs 3585
(3449,3723)

2922
(2811,3029) 18.5%

2000 makespan 15
(14,16)

7
(7,8) 53.3%

sum-of-costs 5612
(5337,5878)

3469
(3313,3615)

38.2%

lak303d

|A| metric vanilla (Alg. 5.2) practical (Alg. 5.3) improvement

100 makespan 89
(83,95)

89
(83,94) 0%

sum-of-costs 3274
(3041,3495)

3264
(3038,3482) 0.3%

500 makespan 63
(58,68)

61
(56,66) 3.2%

sum-of-costs 9406
(8558,10155)

9226
(8398,9958) 1.9%

1000 makespan 52
(47,55)

47
(44,50) 9.6%

sum-of-costs 12494
(11559,13315)

11891
(11039,12654) 4.8%

2000 makespan 60
(55,66)

49
(44,53)

18.3%

sum-of-costs 20598
(18940,22120)

18183
(16819,19520) 11.7%

Table 5.1: Effect of planning order of TSWAP. 95% confidence intervals of the mean are
also displayed, on which bold characters are based. The improvements of Alg. 5.3 over
Alg. 5.2 are also shown, which are calculated based on the mean values.

5.4.3 Makespan-optimal Algorithm vs. TSWAP

This part is further divided into two: (i) assessing scalability for both G and A, and
(ii) testing the solvers in large graphs.

Scalability

Figure 5.8 displays the average runtime and makespan of “quadrupling” the size of G,
i.e., those of random-64-64-20, regarding the results of random-32-32-20 as a baseline.
The main observations are:

• TSWAP quickly yields near-optimal solutions in non-dense situations, with the ini-
tial assignments of either Alg. 5.4 or Alg. 5.5.

• The runtime of TSWAP remains small when enlarging G while the optimal algo-
rithm increases dramatically. This empirical result is consistent with the time com-
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random-64-64-20

|A| metric Alg. 5.4 Alg. 5.4† Alg. 5.4†∗ Alg. 5.5 Alg. 5.5∗ Alg. 5.6 greedy linear

runtime(ms) 5
(4, 5)

9
(8,9)

15
(15,16)

2
(2,2)

12
(11,12)

3
(3,3)

12
(12,12)

23
(23,24)

110 makespan 17
(17,18)

17
(17,18)

17
(17,18)

21
(20,22)

21
(20,22)

37
(35,39)

84
(79,88)

36
(33,39)

sum-of-costs 1078
(1037,1119)

936
(900,972)

936
(899,971)

1130
(1086,1173)

1133
(1090,1175)

957
(921,991)

1391
(1313,1469)

941
(901,979)

runtime(ms) 66
(58,73)

172
(156,185)

203
(193,211)

11
(10,12)

83
(83,84)

18
(18,19)

80
(79,80)

582
(572,590)

500 makespan 10
(10,11)

11
(10,11)

11
(10,11)

13
(12,13)

13
(12,13)

33
(31,35)

79
(75,82)

32
(29,35)

sum-of-costs 2595
(2490,2690)

2169
(2081,2252)

2169
(2082,2251)

2889
(2780,2996)

2888
(2778,2996)

2521
(2414,2627)

4620
(4366,4873)

2423
(2304,2541)

runtime(ms) 315
(261,362)

758
(670,830)

849
(787,904)

22
(21,23)

265
(264,266)

53
(52,55)

251
(250,252)

3783
(3725,3829)

1000 makespan 9
(8,9)

9
(9,9)

9
(9,9)

11
(10,11)

11
(10,11)

28
(26,30)

71
(68,74)

26
(23,28)

sum-of-costs 3593
(3451,3731)

2922
(2810,3029)

2922
(2812,3030)

4041
(3870,4205)

4059
(3893,4220)

3659
(3496,3822)

7457
(7008,7881)

3477
(3298,3652)

runtime(ms) 1395
(1205,1564)

2975
(2754,3170)

3354
(3140,3541)

58
(54,61)

947
(943,949)

207
(202,213)

915
(913,917)

31713
(31604,31817)

2000 makespan 8
(7,8)

7
(7,8)

7
(7,8)

10
(9,11)

10
(10,11)

23
(21,25)

57
(53,60)

23
(21,24)

sum-of-costs 4666
(4479,4852)

3469
(3312,3617)

3469
(3312,3617)

5213
(4961,5450)

5266
(5032,5492)

5434
(5072,5780)

12203
(11327,13045)

5097
(4725,5441)

lak303d

|A| metric Alg. 5.4 Alg. 5.4† Alg. 5.4†∗ Alg. 5.5 Alg. 5.5∗ Alg. 5.6 greedy linear

runtime(ms) 31
(30,32)

39
(37,41)

39
(38,39)

18
(17,19)

34
(33,35)

21
(20,22)

36
(35,36)

42
(42,43)

100 makespan 89
(83,94)

89
(83,94)

89
(83,95)

89
(83,95)

89
(83,95)

229
(206,252)

387
(363,412)

242
(217,267)

sum-of-costs 3831
(3537,4095)

3264
(3029,3483)

3264
(3024,3482)

3930
(3636,4197)

3939
(3648,4213)

3450
(3176,3702)

4503
(4222,4779)

3496
(3231,3755)

runtime(ms) 570
(473,657)

794
(684,894)

817
(718,904)

77
(73,81)

213
(211,215)

119
(110,127)

212
(210,214)

707
(704,710)

500 makespan 60
(56,65)

61
(56,66)

61
(56,66)

61
(56,66)

61
(56,66)

260
(232,286)

425
(403,448)

287
(257,316)

sum-of-costs 11137
(10164,12054)

9226
(8411,9953)

9226
(8429,9961)

12508
(11416,13549)

12465
(11349,13482)

11211
(10106,12240)

16956
(15857,17979)

11721
(10552,12816)

runtime(ms) 3386
(2879,3885)

4405
(3824,4945)

4515
(3970,5035)

139
(131,146)

557
(552,562)

250
(235,266))

536
(531,540)

3998
(3983,4012)

1000 makespan 46
(43,49)

47
(43,50)

47
(43,50)

47
(44,50)

47
(44,50)

218
(194,242)

394
(374,415)

239
(215,263)

sum-of-costs 14353
(13300,15325)

11891
(11013,12668)

11891
(11044,12661)

17085
(15727,18250)

17100
(15786,18304)

15070
(13791,16256)

26547
(24954,28027)

15563
(14173,16843)

runtime(ms) 25237
(20298,29658)

30884
(25682,35651)

31309
(26076,35964)

336
(310,361)

1584
(1566,1602)

637
(602,671)

1506
(1500,1512)

34098
(34007,34195)

2000 makespan 47
(42,51)

49
(44,53)

49
(44,53)

48
(43,52)

48
(43,52)

185
(165,204)

372
(354,390)

212
(188,234)

sum-of-costs 21239
(19556,22790)

18183
(16834,19479)

18183
(16828,19477)

26831
(24736,28758)

26736
(24676,28674)

23336
(21222,25279)

45769
(43364,48105)

24554
(22386,26656)

Table 5.2: Effect of initial assignments on TSWAP. 95% confidence intervals of the
mean are also displayed, on which bold characters are based.

plexities, that is, the makespan-optimal algorithm is quadratic to |V | while TSWAP
excluding the target assignment is linear to diam(G).

Figure 5.9 shows dense situations such that |A| ≥ |V |/8. As the size of agents increases,
the runtime of TSWAP with Alg. 5.4 (bottleneck) quickly increases compared to the op-
timal algorithm, because it is quartic on |A| (see Prop. 5.9). Meanwhile, TSWAP with
Alg. 5.5 (greedy) immediately yields solutions even with a few thousand agents while a
bit compromising the solution quality of makespan.
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Figure 5.8: Results on instances with “quadrupling” the size ofG. The average runtime
and makespan are shown with minimum and maximum values displayed by transparent
regions. Algorithm 5.4 (TSWAP-B; bottleneck) and Alg. 5.5 (TSWAP-G; greedy) were used
in the initial target assignment of TSWAP. “Flow” is the makespan-optimal algorithm.
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Figure 5.9: Results in dense situations. See also the caption of Fig. 5.8.

Large Graphs

Table 5.3 shows the results on large graphs with a timeout of 5 min. The makespan-
optimal algorithm took time to return solutions or sometimes failed due to the timeout,
whereas TSWAP succeeded in all cases in a comparatively very short time. This result
highlights the need for sub-optimal algorithms of unlabeled-MAPF. In addition, TSWAP
yields high-quality solutions for the makespan.
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runtime (sec) success rate(%) sub-optimality

map |A| Flow Alg. 5.4 Alg. 5.5 Flow Alg. 5.4 Alg. 5.5 Alg. 5.4 Alg. 5.5

lak303d 100 26.2
(21.3,30.6)

0.0
(0.0,0.0)

0.0
(0.0,0.0) 100 100 100 1.001 1.003

500 60.6
(47.8,71.3)

0.6
(0.5,0.7)

0.1
(0.1,0.1) 100 100 100 1.008 1.019

1,000 54.7
(47.7,61.2)

3.6
(3.1,4.2)

0.2
(0.2,0.2) 100 100 100 1.069 1.090

2,000 56.3
(49.1,63.0)

31.0
(24.9,36.6)

0.5
(0.4,0.5) 100 100 100 1.334 1.372

den520d 100 46.0
(38.6, 52.7)

0
(0,0)

0
(0,0) 100 100 100 1.000 1.052

500 67.5
(56.9,77.3)

0.3
(0.2,0.3)

0.1
(0.1,0.1) 100 100 100 1.003 1.113

1,000 82.3
(72.4,91.7)

1.6
(1.3,1.9)

0.2
(0.2,0.2) 98 100 100 1.015 1.129

2,000 89.8
(81.7,97.7)

9.4
(7.7,11.0)

0.4
(0.4,0.4)

100 100 100 1.041 1.177

brc202d 100 141.9
(118.5,164.7)

0.1
(0.1,0.1)

0.1
(0.1,0.1) 60 100 100 1.000 1.000

500 214.5
(194.0,236.3)

0.7
(0.6,0.7)

0.3
(0.3,0.3) 48 100 100 1.001 1.001

1,000 238.5
(219.4,259.1)

2.7
(2.4,3.1)

0.5
(0.5,0.5) 42 100 100 1.002 1.008

2,000 230.2
(196.1,273.9)

14.8
(10.7,19.3)

1.0
(1.,1.1) 16 100 100 1.019 1.023

Table 5.3: Results in large graphs. “Flow” is the optimal algorithm. The scores are aver-
ages over instances that were solved by all solvers. The sub-optimality is for makespan,
dividing the makespan of TSWAP by the optimal scores. 95% confidence intervals of the
mean are also displayed.

5.4.4 Sum-of-costs Metric

Next, the sum-of-costs metric of TSWAP was assessed. As a baseline, ECBS-TA [Hönig
et al., 2018a] was used, which yields bounded sub-optimal solutions with respect to the
sum-of-costs. The implementation of ECBS-TA was obtained from the authors.4 The
random-32-32-20 map was used with 30, 70, and 110 agents. The sub-optimality of
ECBS-TA was set to 1.3, which was adjusted to solve problems within the acceptable
time (5 min). TSWAP used the bottleneck assignment with min-cost maximum match-
ing (Alg. 5.4†) as the initial target assignment. Note that we preliminary confirmed that
ECBS-TA in denser situations failed to return solutions within a reasonable time.

Figure 5.10 shows that TSWAP yields solutions with acceptable quality while re-
ducing computation time (lower, vertical axis) by orders of magnitude compared to the
others; the quality of sum-of-costs (horizontal axis) is competitive with ECBS-TA, with
makespan quality close to optimal (upper, vertical axis). TSWAP is significantly faster
than ECBS-TA because, unlike ECBS-TA, TSWAP uses a one-shot target assignment and
a simple path planning process.

5.4.5 Limitation; Adversarial Instance

Lastly, a planning demo of TSWAP in an adversarial instance is presented, similar to
Fig. 5.3. The used instance is shown in Fig. 5.11, together with planning results at an in-
termediate timestep. For comparison, the makespan-optimal algorithm was also tested.

With TSWAP, all agents tried to follow the shortest paths toward assigned targets.
Consequently, all agents tried to pass through a narrow corridor located at the center,

4The code is available on https://github.com/whoenig/libMultiRobotPlanning.
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Figure 5.10: Results for the sum-of-costs metric. The data was obtained on random-32-
32-20. The average scores are plotted. Scatter plots of 50 instances are also plotted by
transparent points.

(a) instance (b) TSWAP (t = 8; T = 32) (c) Flow (t = 8; T = 15)

Figure 5.11: Evaluation of an adversarial instance. (a) The initial locations of agents
and target locations are represented by colored circles and boxes, respectively. (b) A
configuration of timestep 8 from the planning result by TSWAP. The makespan is 32.
(c) That of the makespan-optimal algorithm. The makespan is 15.

compromising the solution quality of the makespan. In contrast, the makespan-optimal
algorithm uses side corridors located on the left and right, resulting in a much better
outcome than TSWAP. This pitfall may be overcome by improving next_vertex so that
taking the non-shortest paths.

5.5 Related Work

The general review of unlabeled-MAPF has already appeared in Chap. 3.4. Therefore,
the below review focuses on studies closely related to TSWAP.
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Unlike conventional MAPF, unlabeled-MAPF is always solvable [Kornhauser et al.,
1984; Yu and LaValle, 2013a; Adler et al., 2015; Ma et al., 2016]. Among them, TSWAP
relates to the analysis presented in [Yu and LaValle, 2013a] because both approaches
use target swapping. Their analysis relies on optimal linear assignment whereas TSWAP
works for any assignment.

The multi-agent pickup and delivery (MAPD) problem [Ma et al., 2017b] is a popular
variant of MAPF, which includes target assignment. Although MAPD is a problem dif-
ferent from unlabeled-MAPF, TSWAP is similar to an MAPD algorithm TPTS [Ma et al.,
2017b] in the sense that both algorithms swap assigned targets adaptively. One primary
difference though is that, unlike TSWAP, TPTS sets additional conditions about start and
target locations.

The unlabeled version of pebble motion has also been studied [Kornhauser et al.,
1984; Călinescu et al., 2008; Goraly and Hassin, 2010]. However, in unlabeled-MAPF,
agents can move simultaneously. Different from those studies, TSWAP explicitly assumes
this fact, resulting in practical outcomes.

Pattern formation of multiple agents [Oh et al., 2015] is one of the motivating exam-
ples of unlabeled-MAPF; various approaches have been proposed. Among them, several
studies are highlighted below. SCRAM [MacAlpine et al., 2015] is a target assignment al-
gorithm considering collisions and works only in open space without obstacles; hence its
applications are limited. The bottleneck assignment algorithm (Alg. 5.4) uses a scheme
similar to SCRAM but differs in its use of lazy evaluation. Incorporating lazy evaluation
for optimal linear target assignment is studied in [Aakash and Saha, 2022], but missing
the path planning aspect. In [Turpin et al., 2014], a method that first solves the lexico-
graphic bottleneck assignment [Burkard and Rendl, 1991] and then plans trajectories on
graphs is proposed. To avoid collisions, the method uses the delay offset about when
agents start moving, resulting in a longer makespan. TSWAP avoids using such offsets
by swapping targets on demand.

5.6 Concluding Remarks

The chapter presented the TSWAP algorithm to solve unlabeled-MAPF. Similar to PIBT,
TSWAP consecutively generates a sequence of configurations but it also swaps targets
assigned to agents as necessary. Theoretically, TSWAP is complete regardless of initial
assignments. Empirically, depending on assignment algorithms, TSWAP scored excellent
performance; it can solve large instances near-optimally in a very short time, which is
order-of-magnitude faster than those of the optimal algorithm. This is the power of short-
horizon planning.

As a drawback, TSWAP is sub-optimal. Indeed, with adversarial instances, TSWAP
can output solutions far from optimal ones. The next chapter includes how to overcome
this limitation, by incorporating long-horizon planning.
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Chapter 6

Short-Horizon Planning Guides
Long-Horizon Planning

LaC
AM PIBT/TSWAP

Figure 6.1: Concept of LaCAM. When I came up with the algorithm, I actually thought
like this. The original image is by OpenClipart-Vectors / Pixabay License.

In the previous two chapters (Chap. 4 and 5), we have seen the powers of short-
horizon planning such as excellent speed and scalability. They are “horses,” enabling
the search to progress speedily and bravely. Meanwhile, they lack a global planning per-
spective due to their short planning horizons. For instance, PIBT lacks completeness for
MAPF. TSWAP lacks optimality for unlabeled-MAPF. To overcome such shortcomings,
incorporating long-horizon planning is mandatory. The question here is whether it is
possible to incorporate the long-horizon nature without compromising the benefits of
short-horizon planning.

To this end, this chapter presents a good “horse-rider” for short-horizon planning.
The proposed algorithm is called lazy constraint addition search for MAPF (LaCAM). The
chapter is a peak of Part I. LaCAM originally appeared in [Okumura, 2023], but the
chapter includes non-trivial and remarkable extensions.1

6.1 Chapter Overview

The objective of the chapter is to understand planning style such that short-horizon planning
guides long-horizon planning, embodied as LaCAM, and see its power.

1The extended parts are currently under review.
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6.1.1 What is LaCAM

A lazy constraint addition search is a graph pathfinding algorithm. This is a newly de-
veloped concept to overcome planning problems with huge branching factors. LaCAM is
an implementation of this search for MAPF.

Mechanism

LaCAM comprises a two-level search. At the high-level, it searches a sequence of con-
figurations (i.e., a tuple of locations for agents). At the low-level, it searches constraints
that specify which agents go where in the next configuration. Successors at the high-level
(i.e., configurations) are generated in a lazy manner while following constraints from the
low-level, leading to a dramatic reduction of the search effort. Moreover, each successor
is generated by short-horizon planning (such as PIBT), therefore, LaCAM can inherit the
benefits of the small computational effort of such algorithms.

This chapter also presents LaCAM∗, an anytime version of LaCAM that gradually
improves solution quality once found. This is achieved by rewriting the tree structure
when finding better connections between search nodes.

Throughout the chapter, we focus on solving MAPF. However, LaCAM is expected to
be applicable to unlabeled-MAPF with the transition from PIBT to TSWAP.

6.1.2 Properties and Performance

Theoretical Properties

LaCAM is complete for MAPF; it returns a solution for solvable instances, otherwise
reports the non-existence. Moreover, LaCAM∗ eventually returns optimal solutions, pro-
vided that a solution cost takes the form of accumulative transition costs.

Empirical Performance

LaCAM with PIBT solved a variety of MAPF instances in a very short time, including
complicated puzzle-like instances, instances with large maps (e.g., 1,491 × 656 four-
connected grid), instances with massive agents (e.g., 10,000), or dense situations. For
instance, it solved all instances with 400 agents on a 32 × 32 grid with 20% obstacles
from the MAPF benchmark [Stern et al., 2019], with a median runtime of 1 s. In contrast,
baseline sub-optimal MAPF algorithms, such as [Silver, 2005; Standley, 2010; Okumura
et al., 2022b; Li et al., 2021c; Li et al., 2022], mostly failed to solve the instances with
the timeout of 30 s. Moreover, combined with an extended version of PIBT specially
customized to overcome livelock situations, LaCAM solved 99% instances of the MAPF
benchmark sub-optimally in 10 s, with the guarantee of eventual optimality. From the
empirical evidence, beyond dispute, LaCAM has developed a new frontier in MAPF.

6.1.3 Chapter Organization

• Chapter 6.2 explains the concept of lazy constraints addition search.

• Chapter 6.3 describes the sub-optimal LaCAM algorithm.

• Chapter 6.4 assesses the performance of a vanilla LaCAM.

• Chapter 6.5 attaches eventual optimality to LaCAM and presents LaCAM∗.

• Chapter 6.6 presents an improved successor generator, specifically, an enhanced
version of PIBT.
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• Chapter 6.7 evaluates the performance of the enhancements presented in Chap. 6.5
and 6.6.

• Chapter 6.8 reviews algorithms closely related to LaCAM.

• Chapter 6.9 concludes the chapter.

The code and movie are available at https://kei18.github.io/lacam.

6.1.4 Notations and Assumptions

⊥ undefined, not found
G = (V ,E) (undirected) graph, a set of vertices, and a set of edges
A = {1,2, . . . ,n} a set of agents
S = (s1, . . . , sn) start configuration, where si ∈ V
G = (g1, . . . , gn) goal configuration, where gi ∈ V
∆ maximum degree of G (G is omitted for simplicity)

Caution� �
The chapter uses the representation by configurations.� �

6.2 Concept of Lazy Constraints Addition Search

To begin with, we see the concept behind LaCAM, called lazy constraints addition search,
shortly denoted LaCA search. This is illustrated with an example of single-agent pathfind-
ing.

6.2.1 Classical Search

See first Fig. 6.2, illustrating how the usual search scheme solves grid pathfinding. In par-
ticular, the figure visualizes the greedy best-first search with a heuristic of the Manhattan
distance. Here, the location of the agent corresponds to the “state” of the search. Let’s use
the term “configuration” instead of “state” for consistency of the remaining part. From
the initial configuration (i.e., start location), the search generates three successor nodes
(left, up, right), each corresponding to one configuration. It then takes one of the gen-
erated nodes according to specific criteria (i.e., heuristic), and expands successors. This
procedure continues until finding the goal configuration.

Consider now how many search nodes are generated. Even though the solution length
is eight, 22 nodes are generated. This number is related to the number of neighboring
configurations (i.e., branching factor). It is four in single-agent grid pathfinding, there-
fore, the number of node generations is acceptable. However, in MAPF, the number of
successors is exponential for the number of agents. Consequently, the generation itself
becomes intractable. This is why the vanilla A∗ is hopeless to solve large MAPF instances,
as we have already observed in Fig. 3.3.

6.2.2 Configuration Generator and Constraints

The LaCA search tries to relieve this huge-branching-factor issue when good configuration
generator is available. A configuration generator takes one configuration and constraints.
Then, it returns one neighboring (i.e., connected) configuration (i.e., successor) from the
given configuration. Constraints should be embodied by domains. In this example, consider
a constraint as a prohibition of direction, such as not moving up, left, right, or down.
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Figure 6.2: Greedy search with the heuristic of the Manhattan distance.

6.2.3 Constraint Tree

In the LaCA search, each search node contains not only a configuration but also con-
straints, typically taking the form of a tree structure. Constraints are added in a lazy
manner as follows. For each node invoke, the LaCA search gradually develops the con-
straint tree by low-level search, implemented by e.g., breadth-first search (BFS). A node
on the tree has a constraint and represents several constraints by tracing a path to the
root.

6.2.4 Algorithm Flow

The LaCA search is now explained using Fig. 6.3, with a depth-first search (DFS) style.
The attempt to find a sequence of configurations is called high-level search.

At the beginning of the search, a (high-level) search node of the start configuration is
examined (Fig. 6.3a). The node has no constraints for the first invoke, that is, the config-
uration generator can generate any connected configuration. Here, it is assumed that the
generator generates an “up” configuration, following the Manhattan distance guide, as
illustrated by the pink arrow. Preparing for the second invoke of the node, the node pro-
ceeds the low-level search and expands a constraint tree with new constraints (e.g., “not
go up”). The high-level search does not discard the examined node immediately, rather,
it discards when all connected configurations have been generated. This corresponds to
when all nodes in its constraint tree have been examined.

Next, Fig. 6.3b and 6.3c show an example of the second invoke of high-level nodes.
In Fig. 6.3b, the generator generates an already known configuration. Since this example
assumes DFS, the LaCA search examines the blue-colored node again in Fig. 6.3c. This
time, the generator must follow a constraint “not go right” and its parent “no constraint.”
Consequently, the example assumes that a “left” configuration is generated.

The search continues until finding the goal configuration (Fig. 6.3d). It then eventu-
ally outputs a solution by backtracking.

With appropriate designs of constraint trees, the LaCA search can be an exhaustive
search (i.e., guaranteeing completeness). LaCAM exemplifies the LaCA search for MAPF,
described immediately after. The LaCA search can greatly decrease the number of node
generations if the configuration generator is promising in outputting configurations that
are close to the goal. This is a silver bullet for quick planning, especially in planning problems
where the branching factor is huge like MAPF.
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Figure 6.3: Illustration of the LaCA search using single-agent pathfinding.

6.3 Algorithm Description

6.3.1 High-Level Description

Next, some artifacts of LaCAM to solve MAPF are specified with a concrete example,
shown in Fig. 6.4. The following part explains the figure step by step. Herein, the term
“configuration” refers to a tuple of locations for all agents.

Overview. LaCAM is a two-level search. At the high-level, it explores a sequence of
configurations; each search node corresponds to one configuration. For each high-level
node, it also performs a low-level search that creates constraints. A constraint specifies
which agent is where in the next configuration. The low-level search proceeds lazily,
creating a minimal successor each time the corresponding high-level node is invoked.

High-Level Search. As in general search schema like Alg. 2.1, LaCAM progresses by
updating an Open list that stores the high-level nodes. Open is implemented by data
structures of stack, queue, or priority queue. Throughout the chapter, we assume using
the stack. Thus, LaCAM is explained as a DFS style. The first row of Fig. 6.4 illustrates
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Figure 6.4: Running example of LaCAM. Orange arrows represent the search progress
order. Selected and searched low-level nodes are filled with black and gray, respectively.
Constraints are shown by blue-colored arrows.

Open. For each search iteration, LaCAM selects one node from Open. Different from
the general search schema, LaCAM does not immediately discard the selected node, as
explained after three paragraphs.

Low-Level Search. Each high-level node comprises a configuration and a constraint tree.
The constraint tree gradually grows at each time invoking the high-level node; this is
the low-level search of LaCAM. Throughout the chapter, BFS is used for the low-level.
The middle row of Fig. 6.4 visualizes this step. Each node of the constraint tree has
a constraint, except for the root node. For instance, in the first column, the root node
has two successors: ‘1a’ and ‘1b.’ This means that an agent-1 must go to the vertex-a or
vertex-b in the next configuration. Successors of the low-level search are created by two
steps:

1. Select an agent i. Let v be the vertex of i in the configuration.

2. Create successors that specifies i is on u ∈ neigh(v) or v.

The agent is selected so that each path from each low-level node to the root does not
contain duplicated agents. Therefore, those paths specify constraints for several agents.
In addition, no successors are created when the depth of the node is beyond |A| because
constraints have been assigned for all agents.

Configuration Generation. Once both the high- and low-level nodes are specified, a
new configuration is generated. The new one must satisfy the constraints of the low-
level node, which are specified by a path to the low-level root node. Excluding that, any
connected configuration from the original configuration can be generated. We will see how
to generate new configurations following constraints later in Chap. 6.3.4, but for now, regard
this as a blackbox function. The generation step is visualized in the third row of Fig. 6.4.
According to the new configuration, a new high-level node is created. For instance, at
the end of the first column of Fig. 6.4, a new configuration (b,c) is generated and inserted
to Open.

Discarding High-Level Nodes. When finished searching all low-level nodes, the corre-
sponding high-level node has been generating all configurations connected to its config-
uration. Therefore, this high-level node is discarded and removed from Open.
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6.3.2 Example

LaCAM continues the above search operations until finding the goal configuration G.
Once G is found, it is trivial to obtain a solution by backtracking high-level nodes. Next,
a running example of Fig. 6.4 is explained in detail step by step in columns.

1. Initially, Open contains only a high-level node for the start configuration S . At the
low-level, two successors are created. In this step, any agent can be selected; the
example chooses agent-1. Next, LaCAM generates a configuration connected to the
original one (a,c). Since the target low-level node is the root, there is no constraint.
Assume that a new configuration (b,c) is generated. Then, the corresponding new
high-level node is inserted into Open.

2. The high-level node generated in the previous iteration is selected. At the low-level,
the example again chooses agent-1. This time, LaCAM generates four successors:
‘1a,’ ‘1b,’ ‘1c,’ and ‘1d.’ The example adds them to the low-level tree in order of ‘1b,’
‘1c,’ ‘1d,’ and ‘1a’ to make it interesting. Assume that the same configuration (b,c) is
generated. Then, a high-level node is not created since the generated configuration
has already appeared in the search.

3. The same high-level node is selected as the previous iteration. The low-level search
generates two nodes for agent-2: ‘2b’ and ‘2c.’ This time, the configuration genera-
tion must follow the constraint of ‘1b.’ Consequently, the same configuration (b,c)
is generated and no new high-level node is created.

4. According to the selected low-level node, it is impossible to generate a connected
configuration due to a collision between agent-1 and agent-2; this iteration skips
the creation of a high-level node.

5. The constraint makes agent-1 move to vertex-d. Then, a new configuration (d,b) is
generated. The corresponding high-level node is created and inserted into Open.

6. The high-level node for (d,b) is selected, and then, a new configuration (b,a) is
generated. The search can find the goal configuration in the next iteration.

6.3.3 Pseudocode

Algorithm 6.1 shows an example implementation of LaCAM. In the pseudocode, N and
C correspond to high- and low-level nodes, respectively. The low-level search uses queue
(tree) because it is breadth-first. Several details are below.

Configuration Generation. This is performed by a blackbox function configuration_generator

(Line 14). The function returns a configuration connected to a configuration of a high-
level node, following constraints specified by a low-level node. It returns ⊥ when failing
to generate such configurations (e.g., the fourth column of Fig. 6.4). Note that, at the
bottom of the low-level tree, all agents have constraints. Therefore, exactly one configu-
ration is specified without freedom.

High-Level Node Management. To manage already known configurations, Alg. 6.1
uses an Explored table that takes a configuration as a key and stores a high-level node.

Low-Level Agent Selection. To generate low-level search trees, a high-level node in-
cludes order, an enumeration of all agents sorted by specific criteria, specified by two

106



Algorithm Description CHAPTER 6. LACAM

Algorithm 6.1 LaCAM

input: MAPF instance (S : starts, G: goals)

output: solution or NO_SOLUTION

notation: Cinit := ⟨ parent :⊥,who :⊥,where :⊥ ⟩ ▷ initial constraint

1: initialize Open, Explored ▷ Open: stack

2: N init←
〈

config : S , tree : J Cinit K,order : get_init_order(),parent :⊥
〉

3: Open.push
(
N init

)
; Explored[S] =N init

4: while Open , ∅ do

5: N ←Open.top()

6: ifN .config = G then return backtrack(N )

7: ifN .tree = ∅ then Open.pop(); continue

8: C ←N .tree.pop() ▷ low-level search begins

9: if depth(C) ≤ |A| then

10: i←N .order [depth(C)]; v←N .config[i]

11: for u ∈ neigh(v)∪ {v} do

12: Cnew← ⟨ parent : C,who : i,where : u ⟩

13: N .tree.push (Cnew) ▷ low-level search ends
14: Qnew← configuration_generator(N ,C)

15: if Qnew =⊥ then continue

16: if Explored [Qnew] ,⊥ then continue

17: N new← ⟨ config :Qnew, tree :
q
Cinit y

,order : get_order(Qnew,N ),parent :N
〉

18: Open.push (N new); Explored [Qnew] =N new

19: return NO_SOLUTION

functions get_init_order (Line 2) and get_order (Line 17). The agent is selected fol-
lowing order and depth of the low-level search tree (starting at one; obtained by a func-
tion depth) (Line 10). This scheme ensures that each path of the constraint tree has no
duplicate agents.

Theorem 6.1 (completeness). LaCAM (Alg. 6.1) returns a solution for solvable MAPF in-
stances; otherwise, it reports NO_SOLUTION.

Proof. A search space is finite:

• For the high-level, the number of configurations is O
(
V A

)
.

• For the low-level, the number of search iterations is upper bounded by 1 +∆+∆2 +
. . .+∆A =O

(
∆A+1

)
.

When the low-level search is finished, the corresponding high-level node has been gen-
erating all configurations connected to its configuration. Consequently, all reachable con-
figurations from the start configuration, defined by transitivity over connections of two
configurations, are examined, deriving the theorem.
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6.3.4 Implementation Details

Configuration Generation. The heart of LaCAM is how to generate configurations fol-
lowing constraints (Line 14). Ideally, this sub-procedure should be sufficiently quick and
generate a promising configuration to reach the goal configuration. This can be realized
by adapting existing MAPF algorithms that can compute a partial solution, i.e., a list of
paths until a certain timestep. Regarding the target configuration as a start configuration
and then producing a partial solution by these algorithms, we can extract a configuration
at timestep one in the partial solution. For instance, a naive approach is to adapt prior-
itized planning with a limited planning horizon, such as windowed HCA∗ [Silver, 2005]
with single-step window size. A rolling horizon approach for lifelong MAPF [Li et al.,
2021d] is also available to generate configurations. An aggressive approach is to adapt
PIBT (Alg. 4.1), a scalable MAPF algorithm that repeats planning for one-timestep; the
experiments used PIBT. Those algorithms with short planning horizons, originally developed
to solve MAPF, are available to create promising successors in the high-level search of LaCAM.

Order of Agents. In our implementation, the agent order of the initial high-level node
was in descending order of the distance between the start and goal (Line 2), influenced
by commonly used heuristics of PP [Van Den Berg and Overmars, 2005]. In other high-
level nodes (Line 17), the implementation prioritized agents who are not on their goal,
aiming to create constraints for those agents earlier in the low-level search. A tie-break
used the last arrival timestep of agents in the high-level search so that agents who have
been apart from goals for a long time are prioritized, akin to PIBT.

Order of Low-Level Nodes. As seen in Fig. 6.4, the order of inserting low-level nodes
affects search progress. The implementation provisionally made the order random. This
part requires further investigation in the future.

Reinsert High-Level Node. Algorithm 6.1 takes a naive DFS style. Instead, when find-
ing an already known configuration, reinserting the corresponding high-level node to
Open (Line 16) can improve solution quality. The reason is that repeatedly appearing
configurations in the search can be seen as a bottleneck; it makes sense to advance the
low-level search of the high-level node, which is performed by the reinsert operation.
This modification is empirically tested in Chap. 6.4.6. Note that LaCAM does not lose
completeness with this modification.

6.4 Evaluation of LaCAM

This section evaluates LaCAM using PIBT as a configuration generator. Specifically, the
section presents five empirical results:

• Chap. 6.4.2 evaluates LaCAM with small complicated MAPF instances.

• Chap. 6.4.3 evaluates LaCAM with the MAPF benchmark.

• Chap. 6.4.4 reveals the limitation of LaCAM using an adversarial instance.

• Chap. 6.4.5 assesses scalability of LaCAM with up to 10,000 agents.

• Chap. 6.4.6 investigates other implementation designs.

6.4.1 Experimental Setups

Baselines. The following six sub-optimal MAPF algorithms were carefully selected as
baselines.
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• Prioritized Planning (PP) [Erdmann and Lozano-Perez, 1987; Silver, 2005] as a
basic approach for MAPF. PP used distance heuristics [Van Den Berg and Overmars,
2005] for the planning order and A∗ [Hart et al., 1968] for single-agent pathfinding.

• A∗ with operator decomposition (OD) [Standley, 2010] as an adaptation of the
general search scheme to MAPF. OD used a greedy search fashion to obtain solu-
tions as much as possible (i.e., neglecting g-value of A∗). The heuristic (i.e., h-value)
was the sum of distance towards goals.

• PIBT [Okumura et al., 2022b], which repeats one-timestep planning to solve MAPF.
A vanilla PIBT was tested because the LaCAM implementation used PIBT as a sub-
procedure (Chap. 6.3.4). To detect planning failure, PIBT was regarded as a failure
to solve an instance when it reached pre-defined sufficiently large timesteps.

• PIBT+ [Okumura et al., 2022b] as a state-of-the-art scalable MAPF solver,2 which
uses PIBT until a certain timestep. The rest of the planning is performed by an-
other MAPF algorithm. The complement phase used a rule-based solver, push and
swap [Luna and Bekris, 2011].

• EECBS [Li et al., 2021c] as a state-of-the-art search-based solver that bases on a
celebrated MAPF algorithm, CBS [Sharon et al., 2015]. The sub-optimality was set
to five to find solutions as much as possible. In Chap. 6.4.5, it was set to the default
value (1.2) of the authors’ implementation due to better performance.

• MAPF-LNS2 (LNS2) [Li et al., 2022] as another excellent MAPF solver based on
large neighborhood search.

It is worth mentioning that PP, PIBT(+), EECBS, and LNS2 are incomplete; they can-
not detect unsolvable instances, unlike LaCAM. For PIBT(+), EECBS, and LNS2, the im-
plementations coded by their respective authors were used. The codes are available on
https://github.com/Jiaoyang-Li/EECBS, https://github.com/Jiaoyang-Li/MAPF-LNS2,
and https://github.com/Kei18/pibt2. For PP, an implementation was used that in-
cluded in [Okumura et al., 2022b]. OD was own-coded in C++.

Evaluation Environment. LaCAM was also coded in C++. The experiments were run
on a desktop PC with Intel Core i9-7960X 2.8 GHz CPU and 64 GB RAM. A maximum of
32 different instances was run in parallel using multi-threading.

Solution Metric. This section uses sum-of-costs (aka. flowtime) to rate solution cost.

6.4.2 Small Complicated Instances

Setup. First, LaCAM was tested on instances used in [Luna and Bekris, 2011], shown
in Table 6.1. The runtime limit was 10 s. Since the LaCAM implementation used non-
determinism (see Chap. 6.3.4), it was run five times for the same instance while changing
random seeds.

Result. Table 6.1 summarizes the results. As reference records, sum-of-costs optimal
solutions are presented, obtained by a vanilla A∗ ignoring the runtime limit. Although
most baseline methods failed several instances, LaCAM solved all the instances regard-
less of random seeds, within reasonable timeframes. Regarding solution quality (i.e.,
sum-of-costs), LaCAM compromises the quality compared to PP, EECBS, and LNS2. This
is due to the nature of LaCAM, which progresses the search with a short planning hori-
zon.

2In 2022. Because we have now LaCAM∗.
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time(ms) SOC time(ms) SOC time(ms) SOC time(ms) SOC time(ms) SOC time(ms) SOC Solved

LaCAM(med) 0 19 17 47 173 190 0 66 34 1,752 0 168 6/6LaCAM(worst) 0 41 31 70 208 254 0 68 124 2,593 3 281

PP N/A N/A 0 32 N/A N/A N/A N/A N/A N/A N/A N/A 1/6
OD 0 31 0 47 30 191 0 22 5,882 2,269 27 129 6/6
PIBT N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0/6
PIBT+ 0 55 0 54 0 227 0 52 N/A N/A 0 130 5/6
EECBS 1 16 1 32 N/A N/A 0 20 N/A N/A N/A N/A 3/6
LNS2 N/A N/A 0 32 N/A N/A 0 20 N/A N/A 160 0 3/6

A∗(SOC-opt.) 0 16 16 32 24 53 1 20 17,752 121 391,138 80 6/6

Table 6.1: Results of the small complicated instances.

6.4.3 MAPF Benchmark

Setup. Next, LaCAM was tested with the MAPF benchmark [Stern et al., 2019], which
includes a list of four-connected grids and start–goal pairs for agents. Twelve grids with
different portfolios (e.g., size, sparseness, and complexity) were selected. For each grid,
25 “random scenarios” were used while increasing the number of agents by 50 up to the
maximum. Therefore, identical instances were tried for the solvers in all settings. The
runtime limit was set to 30 s following [Stern et al., 2019]. LaCAM was run five times
for each setting. For reference, A∗ used in Table 6.1 failed to solve an instance with ten
agents in random-32-32-20.

Result. Figures 6.5 and 6.6 summarize the results. In most scenarios, LaCAM outper-
forms PP, OD, EECBS, and LNS2 in both success rate and runtime, while compromising
the solution quality. The runtime of LaCAM is comparable with PIBT(+), furthermore,
LaCAM outperforms a vanilla PIBT in the success rate. The most competitive results
with LaCAM were scored by PIBT+. However, overall, the sum-of-costs scores of La-
CAM are better than those of PIBT+, especially in dense situations. Furthermore, La-
CAM solved challenging scenarios, such as random-32-32-20 with 400 agents, where the
baseline methods almost failed to solve. In summary, LaCAM can solve various instances
within short timeframes, with acceptable solution quality. Meanwhile, we can observe
that LaCAM scored poor performance in several grids, such as random-64-64-20 and
warehouse-20-40-10-2-1. This reason is investigated in the next.

6.4.4 Adversarial Instance

Observation from MAPF Benchmark. In the previous experiment, LaCAM quickly
solved various scenarios but scored poor performance in several grids. Specifically, La-
CAM solved all instances of warehouse-20-40-10-2-2 while it failed frequently in warehouse-
20-40-10-2-1. The two maps differ in the width of corridors: the former is two while the
latter is one. Therefore, it is natural to consider as the existence of narrow corridors such
that two agents cannot pass through could be a bottleneck for LaCAM.

Setup and Result. For investigation, an adversarial instance for LaCAM was prepared
(see Table 6.2), where two pairwise agents need to swap their locations in narrow corri-
dors. The number of search iterations of the high-level search was counted while chang-
ing the number of agents (two: only agents-{1,2} appear, four, and six). LaCAM solved

110



Evaluation of LaCAM CHAPTER 6. LACAM

co
st

ru
nt

im
e

(s
ec

)
su

cc
es

s
ra

te

room-32-32-4
32x32 (682)

50 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

50 100 200 300
0

10

20

30

50 100 200 300
1

2

3

4

5

6

room-64-64-16
64x64 (3,646)

50 250 500 750 1000
0.0

0.2

0.4

0.6

0.8

1.0

50 250 500 750 1000
0

10

20

30

50 250 500 750 1000
1

2

3

4

5

6

room-64-64-8
64x64 (3,232)

50 250 500 750 1000
0.0

0.2

0.4

0.6

0.8

1.0

50 250 500 750 1000
0

10

20

30

50 250 500 750 1000
1

2

3

4

5

6

random-32-32-20
32x32 (819)

50 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

50 100 200 300 400
0

10

20

30

50 100 200 300 400
1

2

3

4

5

6

co
st

ru
nt

im
e

(s
ec

)
su

cc
es

s
ra

te

random-64-64-20
64x64 (3,270)

50 250 500 750 1000
0.0

0.2

0.4

0.6

0.8

1.0

50 250 500 750 1000
0

10

20

30

50 250 500 750 1000
1

2

3

4

5

6

maze-32-32-2
32x32 (666)

50 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

50 100 200 300
0

10

20

30

50 100 200 300
1

2

3

4

5

6

warehouse-20-40-10-2-1
321x123 (22,599)

50 250 500 750 1000
0.0

0.2

0.4

0.6

0.8

1.0

50 250 500 750 1000
0

10

20

30

50 250 500 750 1000
1

2

3

4

5

6

warehouse-20-40-10-2-2
340x164 (38,756)

50 250 500 750 1000
0.0

0.2

0.4

0.6

0.8

1.0

50 250 500 750 1000
0

10

20

30

50 250 500 750 1000
1

2

3

4

5

6

Figure 6.5: Results of the MAPF benchmark (1/2). The number of vertices for each grid
is shown with parentheses. “cost” represents sum-of-costs divided by the total distance of
start-goal pairs,

∑
i∈Adist(si , gi). This score works as the upper bound of sub-optimality,

where the minimum is one. For “runtime” and “cost,” median scores of solved instances
within each solver are displayed. The figure further shows the minimum and maximum
scores using semi-transparent regions. The success rate of LaCAM was based on the
number of successful trials over total trials.

all instances, however, the search effort dramatically increases with more agents. This is
because, with more agents, the high-level search can contain a huge number of slightly
different configurations. Those configurations differ only one or two agents differ in their
locations and disturb the progression of the search.

111



Evaluation of LaCAM CHAPTER 6. LACAM

co
st

ru
nt

im
e

(s
ec

)
su

cc
es

s
ra

te

ost003d
194x194 (13,214)

50 250 500 750 1000
0.0

0.2

0.4

0.6

0.8

1.0

50 250 500 750 1000
0

10

20

30

50 250 500 750 1000
1

2

3

4

5

6

lt_gallowstemplar_n
251x180 (10,021)

50 250 500 750 1000
0.0

0.2

0.4

0.6

0.8

1.0

50 250 500 750 1000
0

10

20

30

50 250 500 750 1000
1

2

3

4

5

6

brc202d
530x481 (43,151)

50 250 500 750 1000
0.0

0.2

0.4

0.6

0.8

1.0

50 250 500 750 1000
0

10

20

30

50 250 500 750 1000
1

2

3

4

5

6

orz900d
1491x656 (96,603)

50 250 500 750 1000
0.0

0.2

0.4

0.6

0.8

1.0

50 250 500 750 1000
0

10

20

30

50 250 500 750 1000
1

2

3

4

5

6

agents: |A|
LaCAM PP PIBT PIBT+ EECBS LNS2OD

Figure 6.6: Results of the MAPF benchmark (2/2). See the caption of Fig. 6.5 for details.

1
2

3
4

5
6

|A| search iteration

2 128

4 23,907

6 287,440

Table 6.2: LaCAM performance in an adversarial instance.

Discussion. From this observation, the poor performance in several grids of Fig. 6.5
and 6.6 is considered as follows. The LaCAM implementation used a DFS style, there-
fore, once a configuration similar to Table 6.2 appears during the search, resolving this
configuration towards the goal configuration requires significant search effort. Conse-
quently, LaCAM reaches the timeout. Overcoming this limitation is one promising di-
rection. One resolution might be developing a better configuration generator other than
vanilla PIBT, which will be further investigated in Chap. 6.6.

6.4.5 Scalability Test

Setup. Next, the scalability of the number of agents was evaluated, using instances with
up to 10,000 agents in warehouse-20-40-10-2-2. The runtime limit was set to 1000 s. OD
was excluded since it run out of memory.

Result. Figure 6.7 summarizes the result. Only LaCAM solved all instances. Further-
more, the runtime was in at most 30 s even with 10,000 agents, demonstrating the excel-
lent scalability of LaCAM. Note that LaCAM can be faster depending on computational
environments. As a pilot study, the same setting was tested with a single-thread run
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Figure 6.7: Results with massive agents. The used map was warehouse-20-40-10-2-2.

in a laptop with Intel Core i9 2.3 GHz CPU and 16 GB RAM. Even with 10,000 agents,
LaCAM solved all instances at most in 10 s in the worst case.

6.4.6 Design Choice of LaCAM

Setup. Finally, the design choice of LaCAM implementation was investigated. Specifi-
cally, two variants were tested:

• DFS does not use the reinsert operation at the high-level. See Chap. 6.3.4.

• GREEDY uses another configuration generator instead of PIBT, such that agents
greedily determines the location according to the priority order. This is equivalent
to PP with a single-step planning horizon.
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Figure 6.8: Results with different LaCAM designs. The used map was random-32-32-
20.

Result. Figure 6.8 shows the result in random-32-32-20. There are two observations:

• The reinsert operation improves the sum-of-costs metric.

• The choice of configuration generator significantly affects the search as seen in that
GREEDY failed in most settings. Consequently, the excellent performance of La-
CAM in Fig. 6.5 and 6.6 relies on promising successor generation at the high-level,
which is done by PIBT.
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6.4.7 Discussion

Overall, the empirical results in this section demonstrate that LaCAM with PIBT is very
promising, i.e., solving various types of MAPF in a very short time, and having excellent
scalability.

Why is LaCAM quick? In general, the average branching factor largely determines the
search effort. A vanilla A∗ for MAPF generates O

(
∆A

)
configurations from one search

node, which is intractable especially when |A| is large. In contrast, each high-level node of
LaCAM initially generates only one successor (i.e., configuration), and if necessary, grad-
ually generates other successors in a lazy manner. This scheme virtually suppresses the
branching factor of LaCAM. If the generated successor is promising (i.e., closer toward
the goal configuration from the original), LaCAM can dramatically reduce the number of
node generations. Promising successors can be quickly obtained by techniques of recent
MAPF studies such as PIBT. This is a trick of quickness in LaCAM. Although virtually
reducing the branching factor in A∗ (aka. partial expansion) for MAPF has been pro-
posed [Standley, 2010; Goldenberg et al., 2014; Wagner and Choset, 2015], those studies
never achieve the dramatic reductions as LaCAM.

Shortcomings. LaCAM with PIBT achieved excellent performance, meanwhile, several
shortcomings have already been observed, that is, (i) solution quality and (ii) solvability
in instances with narrow corridors. Therefore, the following two sections try to resolve
these shortcomings. The first section (Chap. 6.5) is for (i) solution quality, while the
second section (Chap. 6.6) is for (ii) improving solvability by improving the configuration
generator (i.e., PIBT).

6.5 LaCAM∗: Eventually Optimal Algorithm

Thus far, LaCAM is presented as a sub-optimal algorithm; it neglects solution quality.
This section improves this aspect by presenting an anytime version of LaCAM called
LaCAM∗. The main difference from LaCAM is that it rewrites the search tree as needed,
while updating the accumulated transition costs of nodes from the start node. Such
rewriting schemes are partially seen in asymptotically optimal motion planning studies,
e.g., [Karaman and Frazzoli, 2011; Shome et al., 2020].

Optimization Problem. As a solution cost for an MAPF solution Π, this section as-
sumes accumulative transition costs, taking the form of:

cost(Π) :=
length(Π)−1∑

t=0

coste

(
Π[t],Π[t + 1]

)
(6.1)

where coste : V |A| ×V |A| 7→ R≥0 returns a transition cost between two configurations. In
other words, we are interested in minimizing Eq. (6.1). See also Chap. 3.2.2 that describes
solution costs for MAPF.

Admissible Heuristic. This section assumes an admissible heuristic h : V |A| 7→ R≥0, such
that h(Q) never overestimates the optimal cost fromQ to G. For instance, h(Q) :=

∑
i∈Adist(Q[i], gi)

is available for sum-of-{loss, fuels}, while h(Q) := maxi∈Adist(Q[i], gi) exists for makespan.
Since coste(·) ≥ 0, a constant function h(Q) := 0 is always admissible, meaning that, there
are admissible heuristics for any form of Eq. (6.1).
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6.5.1 Pseudocode

Algorithm 6.2 presents LaCAM∗. The same parts as LaCAM (Alg. 6.1) are gray-out. The
added parts from Alg. 6.1 are displayed in black. The blue-colored lines are not necessary
from the theoretical side but are effective in speeding up the search. The low-level part
of LaCAM is abstracted in Line 10. For the convenience of notations, the transition cost
function coste and admissible heuristic function h can take search nodes (corresponding
to configurations) as arguments.

The main differences from LaCAM are twofold: (i) it continues the search when find-
ing the goal configuration G, and, (ii) it rewrites parent relationships between search
nodes as necessary. In what follows, the updated parts and their intentions are explained.

Keeping Goal Node. LaCAM∗ keeps the goal node N goal, rather than immediately re-
turning solutions when first finding the goal configuration (Line 6). The search termi-
nates when there is no remaining search node otherwise there is an interruption from
users such as timeout (Line 4). A solution is then constructed by backtracking from
N goal (Lines 27–28). Doing so makes LaCAM∗ an anytime algorithm. In other words,
after finding the goal node, it is interruptible whenever a solution is required, while gradually
refining solution quality as time allows.

Search Node Ingredients. Each search node contains a set neigh that stores connected
configurations (i.e., nodes) and g-value that represents cost-to-come from the start con-
figuration (Line 2), equivalent to g-value in A∗. They are initialized and updated appro-
priately when finding a new configuration (Lines 24–26).

Updating Parents and Costs. The crux of LaCAM∗ lies in operations done when finding
an already known configuration. It first updates neigh (Line 14) and then updates the
node cost and parent to maintain the optimality of the search tree, explained later in the
proof. This is done by an adaptation of Dijkstra’s algorithm (Lines 15–21). The visual
illustration is available in Fig. 6.9.
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Figure 6.9: Updating parents and costs. Each circle is a search node (i.e., configuration),
including its cost (i.e., g) of the makespan metric. Arrows represent known neighboring
relationships. Among them, solid lines correspond to parent. The updated parts are red-
colored.

Discarding Redundant Nodes. Once the goal node is found, LaCAM∗ can discard nodes
that do not contribute to improving solution quality (Line 7). To maintain the optimality,
LaCAM∗ revives nodes as necessary when their cost is updated (Line 22).
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Algorithm 6.2 LaCAM∗.

input: MAPF instance, transition cost coste, admissible heuristic h

output: solution, NO_SOLUTION, or FAILURE

notation: f(N ) :=N .g + h(N ); ♠ :=
(
N goal ,⊥

)
1: initialize Open,Explored;N goal←⊥

2: N init←
〈

config : S , tree :
q
Cinit y

,parent :⊥, neigh : ∅, g : 0
〉

3: Open.push
(
N init

)
; Explored[S] =N init

4: while Open , ∅ ∧ ¬interrupt() do

5: N ←Open.top()

6: ifN .config = G thenN goal←N

7: if ♠∧ f(N goal) ≤ f(N ) then Open.pop(); continue

8: ifN .tree = ∅ then Open.pop(); continue

9: C ←N .tree.pop()

10: low_level_expansion(N ,C) ▷ Lines 9–13 of Alg. 6.1

11: Qnew← configuration_generator(N ,C)

12: if Qnew =⊥ then continue

13: if Explored [Qnew] ,⊥ then

14: N .neigh.append (Explored [Qnew])

15: D← JN K ▷ Dijkstra, priority queue of ascending order of g

16: while D , ∅ do

17: N from←D.pop()

18: forN to ∈ N from.neigh do

19: g←N from.g + coste

(
N from,N to

)
20: if g <N to.g then

21: N to.g← g; N to.parent =N from; D.push(N to)

22: if ♠∧ f
(
N to

)
< f

(
N goal

)
then Open.push

(
N to

)
23: else

24: g←N .g + coste (N ,Qnew)

25: N new←
〈
config :Qnew,tree : J Cinit K,parent :N , neigh : ∅, g : g

〉
26: Open.push (N new); Explored [Qnew] =N new; N .neigh.append (N new)

27: if ♠∧Open = ∅ then return backtrack
(
N goal

)
▷ optimal solution

28: else if ♠ then return backtrack
(
N goal

)
▷ sub-optimal solution

29: else if Open = ∅ then return NO_SOLUTION ▷ unsolvable instance

30: else return FAILURE

6.5.2 Theoretical Analysis

Theorem 6.2. Without interruption, LaCAM∗ (Alg. 6.2) returns an optimal solution with
respect to Eq. (6.1) for solvable instances, otherwise reports NO_SOLUTION.
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Proof. Consider first Alg. 6.2 without the blue lines (Line 7, Line 22); they just speed up
the search. In this proof, the term “path” refers to a sequence of connected configurations.

The proof introduces a directed graph H , where its vertex corresponds to one config-
uration. Initially, H consists of a single vertex of the start configuration S . Then, H is
built gradually according to the search iteration of LaCAM∗. When a new search node is
created (Line 25), its configuration is added to H . Arcs from a vertex in H follow neigh
of the corresponding search node, i.e., an arc occurs when the search finds a connection
from the vertex.

The proof now states that: (♣) for any configuration Q in H , a path from S to Q con-
structed by backtracking (i.e., by following N .parent) is the shortest path in H , defined with
Eq. (6.1), at any phase of the search. In other words, there are no paths with a smaller cost
than the path from S to Q in H .

The statement ♣ is derived by induction. Initially, H comprises a single vertex S ,
clearly satisfying ♣. Assume now that ♣ is satisfied in the previous iteration of Lines 4–
26. In the next iteration, H is updated by:

• generating a new configuration (Lines 25–26), or

• finding a known configuration (Lines 14–21).

The former case holds ♣ since only a new vertex and an arc toward the vertex are added
to H . The latter case also holds ♣ due to the following reason. Observe that only one
arc is added to H from the previous iteration, regarding the search node N (Line 14);
it is sufficient to consider the effect of this addition. Lines 15–21 essentially performs
the Dijkstra algorithm starting from N . Therefore, the shortest paths from N to other
configurations are constructed, or, the remaining configurations have paths with smaller
costs from the start S , without passing throughN . Consequently, the statement ♣ holds.

LaCAM∗ is ensured to terminate; the search space of LaCAM∗ is also finite, as already
presented in the proof of Thrm. 6.1. Moreover, it examines all reachable configurations
from S , defined by transitivity over connections of two configurations. Consequently,
when LaCAM∗ terminates, H includes all possible paths from S to G for solvable in-
stances. Together with ♣, LaCAM∗ returns optimal solutions, otherwise, reports the non-
existence.

Finally, the blue lines are complemented as follows. Line 7 prunes search nodes with
larger costs than that of the known best solution because they do not contribute to finding
better solutions. However, depending on the manner of constructing H , discarded nodes
due to overestimated costs potentially lay in optimal paths. LaCAM∗ thus re-inserts such
nodes in Line 22 when costs are updated. By Line 22, Line 7 does not break the optimal
guarantee.

6.5.3 Implementation Tips

Following Chap. 6.3.4, when finding an already known configuration at Line 13, our
implementation reinserts the corresponding node to Open. Moreover, with a small prob-
ability (e.g., 0.1%), our implementation reinserts a node of the start configuration instead
of the found one. Doing so enables the search to “escape” from configurations being bot-
tlenecks. Such techniques relying on non-determinism have already appeared in other
search problems [Kautz et al., 2002] as well as MAPF studies [Andreychuk and Yakovlev,
2018; Cohen et al., 2018b]. Indeed, it was informally observed that this random replace-
ment slightly improved the success rate. Note that the optimality (Thrm. 6.2) still holds
with these modification.
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Figure 6.10: Failure example of PIBT. Agents are shown with colored circles. Their goals
are represented by arrows.

6.6 Improving Configuration Generator

The performance of LaCAM heavily relies on a configuration generator, therefore, the de-
velopment of a good generator is the heart of LaCAM. The implementation in Chap. 6.4
uses a vanilla PIBT, resulting in poor performances in several scenarios, especially in
instances with narrow corridors. In short, this is because PIBT itself often fails such sce-
narios, hence being ineffective guides for long-horizon planning. This section elaborates
on this phenomenon and presents its countermeasure.

6.6.1 Failure Analysis of PIBT

As explained in Chap. 4, PIBT is priority-based. For each timestep, it tries to make the
agent with highest priority move one step ahead toward its goal. Once an agent reaches
its goal, the agent drops its priority, while the others increase their priorities. Conse-
quently, PIBT assigns high priorities to agents being not on their goals. This scheme is
sufficient for scenarios wherein all agents are not necessarily being goals simultaneously,
such as MAPD [Ma et al., 2017b]. However, in MAPF, livelock situations can be trig-
gered. See Fig. 6.10. In the figure, two agents reach their destinations periodically but
PIBT never reaches the goal configuration.

LaCAM can break such livelocks by adding constraints. However, it may require sig-
nificant effort because appropriate combinations of constraints should be explored. Even
worse, with more agents, the search effort dramatically increases, as explicitly shown in
Table 6.2 of the prior experiment.

6.6.2 Enhancing PIBT by Swap

Livelocks in PIBT can be handled by “swap” operation, originally developed in rule-
based approaches [Luna and Bekris, 2011; De Wilde et al., 2014]. Roughly describing,
the swap operation swaps the locations of two agents using a vertex with a degree of
three or more. Figure 6.11 shows its example. The last two steps were omitted since they
are trivial, i.e., just moving two agents toward their goals. The rule-based algorithms
themselves have several critiques as discussed so far. However, incorporating flavors of
such rules into PIBT is possible by adjusting vertex scoring. More precisely, this is done
by adjusting Line 6 in Alg. 4.1.

Algorithm 6.3 extends the PIBT function from Alg. 4.2. The same parts as Alg. 4.2 are
gray-out. The modification is simple; if the agent i and neighboring agent j are judged to
require swap (Line 4), i reverses the order of candidate vertices (Line 5). In other words,
i tries to be apart from goals. Then, if i successfully moves to the first vertex in the
candidate set C, i “pulls” j to the current occupying vertex (Line 11). With appropriate
implementations of the function swap_required_and_possible, PIBT does not fall into
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Figure 6.11: Swap operation.

Algorithm 6.3 PIBT with swap.

1: procedure PIBT
swap

(i)

2: C← neigh
(
Qfrom[i]

)
∪
{
Qfrom[i]

}
3: sort C in increasing order of dist(u,gi) where u ∈ C

4: j← swap_required_and_possible
(
i,C[1],Qfrom

)
▷ index of C starts from one

5: if j ,⊥ then reverse C

6: for v ∈ C do

7: if collision occurs in Qto supposing Qto[i] = v then continue

8: Qto[i]← v

9: if ∃j ∈ A s.t. Qfrom[j] = v ∧Qto[j] =⊥ then

10: if PIBTswap(j) = INVALID then continue

11: if v = C[1]∧ j ,⊥∧Qto[j] =⊥ then Qto[j]←Qfrom[i]

12: return VALID

13: Qto[i]←Qfrom[i]

14: return INVALID

the livelock of Fig. 6.10, rather, it generates a sequence of configurations depicted in
Fig. 6.11.

The swap_required_and_possible function is a pattern detector that should be man-
ually designed, i.e., it is implementation dependent. Note, the section does not aim at de-
signing complete detectors because pitfalls of the detector can be complemented by LaCAM.
However, a well-tuned implementation can relax the search effort of LaCAM. Below, our
example implementation is illustrated., while omitting tiny fine-tunings.

Pattern Detector Implementation

Assume that swap_required_and_possible is called. Assume further that another agent
j is on v such that deg(v) ≤ 2. The implementation uses two emulations.

The first emulation asks about the necessity of the swap. This is done by continuously
moving i to j’s location while moving j to another vertex not equal to i’s location, ignoring
the other agents. The emulation stops in two cases:

• The swap is not required when j’s location has a degree of more than two.

• The swap is required when j’s location has a degree of one, or, when i reaches its
goal while j’s nearest neighboring vertex towards its goal is i’s goal.
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If the swap is required, the second emulation asks about the possibility of the swap.
This is done by continuously moving j to i’s location while moving i to another vertex,
i.e., reversing the emulation direction of the first emulation. It stops in two cases:

• The swap is possible when i’s location has a degree of more than two.

• The swap is impossible when i is on a vertex with degree of one.

The function returns j when the swap is required and possible. For instance, in con-
figurations of Fig. 6.11(a,b), the swap is required for both agent-(1,2). In contrast, the
swap is possible only for agent-1, then, the candidate set of the agent is reversed (Line 5).
Consequently, Alg. 6.3 generates configurations of Fig. 6.11(b,c). An exception is the case
of Fig. 6.11c, where agent-2 needs to reverse the candidate sets to generate a configura-
tion of Fig. 6.11d. It is noted that the detection is possible by slightly changing the above
two emulations.

6.7 Evaluation of Improvements

This section evaluates two techniques presented in Chap. 6.5 and 6.6. Specifically, the
section presents the following empirical results:

• Chapter 6.7.2 sees how the improved configuration generator reduces planning ef-
fort of LaCAM.

• Chapter 6.7.3 sees how LaCAM∗ refines solution.

• Chapter 6.7.4 evaluates the effect of discarding redundant nodes.

• Chapter 6.7.5 evaluates LaCAM∗ with small complicated instances.

• Chapter 6.7.6 evaluates LaCAM∗ with the MAPF benchmark.

• Chapter 6.7.7 compares LaCAM∗ with another anytime MAPF algorithm.

• Chapter 6.7.8 evaluates LaCAM∗ with extremely congested scenarios.

6.7.1 Experimental Setup

Baselines. A variety of representative or state-of-the-art MAPF algorithms that diverse
properties for solvability and optimality were tested as follows. See also Fig. 6.13.

• A∗ [Hart et al., 1968] as a vanilla search algorithm. It is complete and optimal. The
used objective is makespan (A∗-m) and sum-of-loss (A∗-l).

• A∗ with operator decomposition (OD) [Standley, 2010] as an adaptation of the
general search to MAPF. It was implemented as a greedy search to obtain solutions
as much as possible. The heuristic was the sum of distance towards goals.

• ODrM∗ [Wagner and Choset, 2015] as a state-of-the-art optimal and complete al-
gorithm, based on graph pathfinding. The used objective is sum-of-loss (ODrM∗-
l) and makespan (ODrM∗-m). The implementation was retrieved from https:

//github.com/gswagner/mstar_public. The original implementation uses sum-
of-loss as an objective function. The makespan version was adapted from it.

• Inflated ODrM∗ (I-ODrM∗) [Wagner and Choset, 2015] as a state-of-the-art bounded
sub-optimal and complete algorithm, which is a variant of ODrM∗. The used objec-
tives were makespan (I-ODrM∗-m) and sum-of-loss (I-ODrM∗-l). The sub-optimality
was set to five to find solutions as much as possible.
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• BCP [Lam et al., 2022] as a state-of-the-art optimal solver, a representative of two-
level approaches using reduction to a mathematical optimization problem. BCP
is solution complete, namely, it cannot distinguish unsolvable instances. It used
CPLEX [Cplex, 2009] for mathematical optimization. The implementation was
retrieved from https://github.com/ed-lam/bcp-mapf. The used objective was
flowtime (aka. sum-of-costs), following the original implementation.

• CBS [Sharon et al., 2015] with many improvement techniques as appeared in [Li
et al., 2021b], as a state-of-the-art optimal solver. This is representative of two-
level approaches using combinatorial search. CBS is solution complete. The im-
plementation was retrieved from https://github.com/Jiaoyang-Li/CBSH2-RTC.
The used objectives were flowtime (CBS-l), makespan (CBS-m), and sum-of-loss
(CBS-l). The original implementation uses flowtime as an objective function. The
makespan and sum-of-loss versions were adapted from it.

• EECBS [Li et al., 2021c] as a state-of-the-art bounded sub-optimal but solution
complete algorithm, which is a variant of CBS. The used objectives were flowtime
(EECBS-f), makespan (EECBS-m), and sum-of-loss (EECBS-l). The sub-optimality
was set to five. The implementation was retrieved from https://github.com/

Jiaoyang-Li/EECBS. The original implementation uses flowtime as an objective
function. The makespan and sum-of-loss versions were adapted from it.

• Prioritized planning (PP) [Erdmann and Lozano-Perez, 1987; Silver, 2005] as a
basic approach for MAPF. The implementation first uses distance heuristics [Van
Den Berg and Overmars, 2005] for the planning order. Furthermore, it involves the
repetition of PP with random priorities until the problem is solved. The implemen-
tation was adapted from https://github.com/Kei18/pibt2.

• MAPF-LNS2 (LNS2) [Li et al., 2022] as a state-of-the-art sub-optimal and incom-
plete solver, based on a large neighborhood search. The implementation was re-
trieved from https://github.com/Jiaoyang-Li/MAPF-LNS2.

• PIBT [Okumura et al., 2022b], which is an incomplete and sub-optimal algorithm.
A vanilla PIBT was tested because LaCAM used PIBT. To detect planning fail-
ure, PIBT was regarded as a failure when it reached pre-defined sufficiently large
timesteps. The implementation was retrieved from https://github.com/Kei18/

pibt2.

• PIBT+ [Okumura et al., 2022b], as a state-of-the-art scalable MAPF solver, which
is incomplete and sub-optimal. It used push and swap [Luna and Bekris, 2011] to
complement solutions.

• LaCAM [Okumura, 2023], used in Chap. 6.4, which is a complete sub-optimal al-
gorithm. It used a vanilla PIBT as a configuration generator. The implementation
was from https://github.com/Kei18/lacam.

The section additionally rates the following anytime MAPF algorithm.

• AFS [Cohen et al., 2018a], an anytime version of CBS that eventually converges
to optima. its implementation was obtained from the authors of the paper. The
original implementation uses flowtime as an objective function. The sum-of-loss
versions were adapted from it.

Experimental Environment. The experiments were run on a desktop PC with Intel
Core i7-7820X 3.6 GHz CPU and 32 GB RAM. A maximum of 16 different instances was
run in parallel using multi-threading. LaCAM∗ was coded in C++. Unless mentioned,
this section uses a timeout of 30 s for solving MAPF.
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6.7.2 Effect of Improved Configuration Generator

Table 6.3 presents the number of search iterations of LaCAM on an instance that requires
“swap,” using a vanilla PIBT (Alg. 4.2) and the improved one (Alg. 6.3) as a configuration
generator. Table 6.4 further compares the generators with larger instances. The results
show that Alg. 6.3 dramatically reduced the search iterations of LaCAM, contributing to
smaller computation time in large instances. Note however that the pattern detector has
runtime overhead, as seen in |A| = 100 of Table 6.4.

1
2

3
4

5
6

|A| w/Alg. 4.2 w/Alg. 6.3

2 128 6

4 23,907 8

6 287,440 8

Table 6.3: The number of search iterations of LaCAM to solve instances. The table
corresponds to Table 6.2. A vanilla PIBT (Alg. 4.2) and PIBT with swap (Alg. 6.3) are
compared. When |A| = 2, only agents-1, 2 appear, and so forth.

search iterations runtime (ms)

|A| w/Alg. 4.2 w/Alg. 6.3 w/Alg. 4.2 w/Alg. 6.3

100 374 (344,54468) 366 (338,401) 65 (31,1218) 112 (34,216)

300 54802 (388,369131) 392 (357,482) 3049 (291,18858) 301 (187,409)

500 181459 (44534,268724) 410 (391,432) 18063 (4598,29820) 500 (347,574)

Table 6.4: Effect of configuration generators. For each |A|, median, min, and max scores
are presented for instances solved by both algorithms among 25 instances on warehouse-
20-40-10-2-1.

6.7.3 Refinement of LaCAM∗

Figure 6.12 shows how LaCAM∗ refines solutions. As baselines, the experiment used
scores of a complete and optimal algorithm , (I-)ODrM∗. In the small instances, LaCAM∗

quickly found initial solutions and converged to optimal ones. Meanwhile, the conver-
gence speed was slow in the large instances with many agents. This is due to finding new
connections between known configurations becoming rare, hence reducing the chance of
rewriting the search tree.

6.7.4 Effect of Discarding Redundant Nodes

Table 6.5 shows how discarding redundant search nodes (blue lines of Alg. 6.2) affects
the search to identify optimal solutions. Regardless of the generators, the discarding
dramatically reduced the search effort. The reduction was larger with Alg. 6.3 because
initial solutions can be found with smaller search iterations than Alg. 4.2. Note that
without the discarding, the numbers of search iterations are equivalent between Alg. 4.2
and Alg. 6.3 because the search spaces are identical.

In the remaining parts, LaCAM∗ uses Alg. 6.3 while LaCAM denotes the original im-
plementation that uses Alg. 4.2.
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Figure 6.12: Refinement of LaCAM∗. Three maps were used, shown in Table 6.1
and Fig. 6.5. For each chart, five identical instances were used where starts and goals
were set randomly. The optimization was for sum-of-loss. “loss” shows the gaps from
scores of (I-)ODrM∗. In random-32-32-20, the bounded sub-optimal version with sub-
optimality of 1.5 was used because ODrM∗ failed to solve the instances. LaCAM∗ used
Alg. 4.2 as a configuration generator.

tree corners tunnel string loop-chain connector

no discard 10K 2M 410M 19M N/A N/A
w/Alg. 4.2 1K 28K 287K 103K N/A N/A
w/Alg. 6.3 1K 1K 199K 103K N/A N/A

Table 6.5: The number of search iterations for termination. “no discard” is blue-lines
omitted version of LaCAM∗. The metric was for makespan. The instances are displayed
in Table 6.1. In the last two instances, LaCAM∗ did not terminate before the timeout.

6.7.5 Small Complicated Instances

Table 6.6 summarizes the result of small complicated instances, which are the same set-
ting used in Chap. 6.4.2. Both two types of LaCAM∗ were evaluated, one for makespan
(LaCAM∗-m) and another for sum-of-loss (LaCAM∗-l). Note that flowtime (aka. sum-of-
costs) is difficult to represent by Eq. (6.1); see Chap. 3.2.2. Overall, LaCAM∗ immediately
found not only initial solutions but also (near-)optimal ones. In contrast, the baselines
failed some instances or returned low-quality solutions.

6.7.6 MAPF Benchmark

Next, LaCAM∗ was tested on the MAPF benchmark [Stern et al., 2019]. This time, as
already introduced in Chap. 3.6.2, 13,900 instances on 33 four-connected grid maps were
retrieved from the benchmark. Note, when increasing the number of agents by 50, we
stopped testing some algorithms if they failed to solve all instances in the previous round
to avoid unnecessary computation.

Results

The percentage of solved instances is summarized in Fig. 6.13. Figure 6.14 presents
partial results for each map. The full results are available in Appendix D.1. Overall,
LaCAM∗ solved a variety of problem instances that have diverse sizes of graphs or agents,
sparseness, and complexity, within several seconds. Indeed, LaCAM∗ only failed in the
instances of maze-128-128-1 and sub-optimally solved all the other instances within 10 s,
outperforming the other algorithms. The failures might be reduced by improving the
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time s-opt time s-opt time s-opt time s-opt time s-opt time s-opt solved

m
ak

es
p

an

LaCAM∗-m 0 1.20 0 1.23 0 1.41 0 1.81 2 6.58 0 1.62 6/6
after 1 s 0 1.00 2 1.00 6 1.00 7 1.00 578 1.35 226 1.00

A∗-m 0 1.00 0 1.00 30 1.00 27 1.00 11125 1.00 N/A N/A 5/6
ODrM∗-m 5 1.00 2 1.00 396 1.00 402 1.00 N/A N/A N/A N/A 4/6
I-ODrM∗-m 1 1.00 0 1.50 70 1.07 2 1.25 N/A N/A N/A N/A 4/6
CBS-m 71 1.00 0 1.00 N/A N/A 149 1.00 N/A N/A N/A N/A 3/6
EECBS-m 2 1.00 1 1.00 N/A N/A 0 1.00 N/A N/A N/A N/A 3/6

OD 0 1.00 0 1.88 14 2.73 0 1.25 2133 31.22 5 1.50 6/6
LaCAM 0 1.17 1 2.12 92 2.00 0 2.25 55 17.83 0 1.56 6/6
PP N/A N/A 0 1.00 N/A N/A 0 1.00 N/A N/A N/A N/A 2/6
LNS2 N/A N/A 0 1.00 N/A N/A 0 1.00 N/A N/A 29 1.00 3/6
PIBT N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0/6
PIBT+ 0 3.50 0 1.25 0 4.07 0 2.12 N/A N/A 0 1.81 5/6

su
m

-o
f-

lo
ss

LaCAM∗-l 0 1.25 0 1.12 0 1.46 0 2.36 2 7.12 0 (1.48) 6/6
after 1 s 0 1.00 13 1.00 77 1.00 8 1.00 700 1.44 408 (1.08)

A∗-l 0 1.00 149 1.00 35 1.00 25 1.00 15124 1.00 N/A N/A 5/6
ODrM∗-l 3 1.00 40 1.00 675 1.00 0 1.00 N/A N/A N/A N/A 4/6
I-ODrM∗-l 0 1.00 0 1.31 257 1.08 0 1.00 N/A N/A 124 (1.39) 5/6
CBS-l 70 1.00 0 1.00 N/A N/A 180 1.00 N/A N/A N/A N/A 3/6
EECBS-l 2 1.00 0 1.00 N/A N/A 0 1.00 N/A N/A 86 (1.61) 4/6

OD 0 1.00 0 1.50 14 2.57 0 1.20 2133 30.62 5 (1.38) 6/6
LaCAM 0 1.23 1 1.69 92 1.91 0 3.30 55 19.15 0 (1.45) 6/6
PP N/A N/A 0 1.00 N/A N/A 0 1.00 N/A N/A N/A N/A 2/6
LNS2 N/A N/A 0 1.00 N/A N/A 0 1.00 N/A N/A 29 (1.00) 3/6
PIBT N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0/6
PIBT+ 0 4.38 0 1.12 0 3.91 0 2.20 N/A N/A 0 (1.68) 5/6

BCP 194 - 150 - N/A - 117 - N/A - N/A - 3/6

Table 6.6: Results of the small complicated instances. The unit of “time” is millisec-
onds. “s-opt” scores are solution costs divided by optimal ones; hence the minimum is
one. Two rows show results of LaCAM∗: (i) scores for initial solutions and (ii) solution
quality at 1 s and the runtime when that solution was obtained; they are an average of 10
trials with different random seeds. Regarding sum-of-loss in connector (those decorated
by parentheses), the scores normalized by known best values (80) are presented since the
optimal score had not been obtained. Algorithms are categorized into LaCAM∗, those
optimizing makespan, sub-optimal ones, and BCP optimizing another metric (i.e., flow-
time).

pattern detector; however, the author considers such implementations are too optimized
for the benchmark. As shown in Fig. 6.15, the refinement was steady but not dramatic
due to the same reason of Fig. 6.12.
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Discussion of Other Algorithms

Although recent remarkable progress in MAPF studies, the scalability of optimal algo-
rithms (e.g., ODrM∗, BCP, CBS) is limited; they failed to handle a few hundred agents in
most cases. Bounded sub-optimal algorithms such as I-ODrM∗ and EECBS can solve a
variety of instances but struggle to solve challenging instances (e.g., with 1000 agents).
Sub-optimal algorithms such as PP, LNS2, or PIBT(+) sometimes can handle such chal-
lenging instances but still failed many instances. From another perspective, it is ideal
for an algorithm to be complete, however, the completeness can be the bottleneck for
achieving speed. This is observed in A∗, OD, and ODrM∗.

In general, makespan-optimal solutions are easier to obtain than sum-of-loss-optimal
ones. This is because, given an instance, the number of makespan-optimal solutions is
larger than that of sum-of-loss. Empirically, this is validated with ODrM∗ and CBS in
Fig. 6.13. For instance, CBS-m solved much more instances than CBS-l. Meanwhile,
we can see a reverse trend in I-ODrM∗, which is a bounded sub-optimal complete al-
gorithm; I-ODrM∗-l solved more instances than I-ODrM∗-m. This is considered as an
effect of admissible heuristics. The sum-of-loss optimization uses

∑
i∈Adist(si , gi) while

the makespan optimization uses maxi∈Adist(si , gi); the former provides more beneficial
guidance than the latter.

6.7.7 Comparison with Anytime MAPF Solver

LaCAM∗ was compared with AFS [Cohen et al., 2018a], a CBS-based anytime MAPF
solver that guarantees to converge optima. Table 6.7 summarizes the results. Contrary
to LaCAM∗, AFS can obtain plausible solutions from the beginning, however, it com-
promises scalability. This quality gap may be overcome by developing better generators
other than PIBT.

solved(%) time-init(ms) loss-init loss-30 s

|A| AFS LaCAM∗ AFS LaCAM∗ AFS LaCAM∗ AFS LaCAM∗

50 100 100 88 1 25 159 24 118
100 56 100 7223 2 140 609 139 545
150 0 100 N/A 4 N/A 1463 N/A 1368

Table 6.7: Comparison of anytime MAPF algorithms. The experiment used sum-of-loss
and 25 “random” scenarios of random-32-32-20. “init” shows scores related to initial
solutions. “loss” is the gap scores from

∑
i∈Adist(si , gi). The scores are averaged for

instances solved by both solvers, except for |A| = 150 because AFS failed all.

6.7.8 Extremely Dense Scenarios

Table 6.8 reports LaCAM∗ in very congested scenarios that existing solvers mostly fail.
Even with such challenging cases, LaCAM∗ solved many instances, demonstrating its
excellent scalability.

6.7.9 Discussion

Overall, LaCAM∗ resulted in remarkable results. That is, it empirically broke the tradeoff
between good theoretical properties (i.e., completeness and optimality) and the small
planning effort (i.e., quickness and scalability). This is achieved under the concept of
integrating short- and long-horizon planning.
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algorithm reference solvability optimality metrics

■ A∗ [Hart et al., 1968] complete optimal makespan, sum-of-loss
■ OD [Standley, 2010] complete sub-optimal (using greedy search)

■■ ODrM∗ [Wagner and Choset, 2015] complete optimal makespan, sum-of-loss
■■ I-ODrM∗ [Wagner and Choset, 2015] complete bounded sub-optimal makespan, sum-of-loss
■ BCP [Lam et al., 2022] solution complete optimal flowtime

■■■ CBS [Sharon et al., 2015] solution complete optimal flowtime, makespan, sum-of-loss
■■■ EECBS [Li et al., 2021c] solution complete bounded sub-optimal flowtime, makespan, sum-of-loss

■ PP [Silver, 2005] incomplete sub-optimal
■ LNS2 [Li et al., 2022] incomplete sub-optimal

■■ PIBT(+) [Okumura et al., 2022b] incomplete sub-optimal
■ LaCAM [Okumura, 2023] complete sub-optimal
■ LaCAM∗ complete eventually optimal makespan, sum-of-loss

Figure 6.13: Performance on the MAPF benchmark. upper: The number of solved in-
stances among 13,900 instances on 33 four-connected grid maps, retrieved from [Stern
et al., 2019]. The size of agents varies up to 1,000. ‘-f,’ ‘-m,’ and ‘-l’ respectively mean
that an algorithm tries to minimize flowtime, makespan, or sum-of-loss. The scores of
LaCAM∗ are for initial solutions. lower: Representative or state-of-the-art MAPF algo-
rithms. “Solution complete” means that an algorithm ensures returning solutions for
solvable instances, however, it cannot identify unsolvable instances.

map |A| success(%) time(s) other algorithms

empty-8-8 58 100 0.00 PIBT&LaCAM (100%; 0.00 s)

random-32-32-20 737 100 0.63 LaCAM (4%; 14.81 s)

random-64-64-20 2943 68 11.64 N/A
maze-128-128-10 9772 100 55.54 N/A

Table 6.8: Results on extremely dense scenarios. |A| was adjusted so that |A|/ |V | = 0.9.
For each scenario, 25 instances were prepared while randomly placing starts and goals.
“success(%)” is the success percentage by LaCAM∗ with timeout of 60 s. “time” is the
median runtime to obtain initial solutions. The other solvers in Fig. 6.13 were also tested.
The table reports solvers that solved in at least one instance.

From another perspective, the implementation can be understood as combination of
four types of MAPF approaches discussed in Chap. 3.2.4: graph pathfinding, two-level,
prioritized planning, and rule-based approaches. LaCAM∗ itself is categorized into graph
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Figure 6.14: Results of the MAPF benchmark. Scores of sum-of-loss are normalized by∑
i∈Adist(si , gi). For runtime and sum-of-loss, median, min, and max scores of solved

instances within each solver are displayed. Scores of LaCAM∗ are from initial solutions.
Full results appear in Appendix D.1.
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Figure 6.15: Refinement by LaCAM∗ for the MAPF benchmark. The effect is visualized
by red zones.

pathfinding, however, it uses the two-level scheme to be the exaustive search. Meanwhile,
the used configuration generator (extended PIBT; Alg. 6.3) relied on both characteristics
of prioritized planning and rule-based approaches. This implies that, for the sake of break-
ing the tradeoff, it was necessary to reflect perspectives of various MAPF algorithms. These
relationships are organized in the next section.

6.8 Related Work

LaCAM(∗) borrows several ideas from the prior art of MAPF. This section summarizes the
relationships between LaCAM and existing algorithms.
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Graph Pathfinding. LaCAM is categorized into graph pathfinding approaches, such
as [Standley, 2010; Goldenberg et al., 2014; Wagner and Choset, 2015]. In those studies,
successors of a search node are generated without aggressive coordination between agents
beyond collision checking. In contrast, LaCAM considers aggressive coordination when
generating successors at the high-level, which is incorporated by the use of other MAPF
algorithms (i.e., short-horizon planning) as a configuration generator. Moreover, LaCAM
dramatically reduces the number of successor generations compared to existing graph
pathfinding-based approaches to MAPF, achieving both completeness and scalability.

Two-Level Approaches. Modern MAPF algorithms such as [Sharon et al., 2013; Sharon
et al., 2015; Surynek, 2019; Lam et al., 2022] take the form of two-level approaches. At
the high-level, they usually search negative constraints that specify which agents cannot
use where and when, while at the low-level, they perform single-agent pathfinding fol-
lowing constraints. LaCAM also relies on a two-level search, however, constraints are
addressed at the low-level. In other words, the roles of high-level and low-level searches
are reversed from the known two-level approaches to MAPF. Furthermore, the imple-
mentation uses positive constraints that specify who to be where. Positive constraints are
not new in the literature; we can see an example in CBS [Li et al., 2019b]. Note that La-
CAM with negative constraints is possible to implement, however, the search space for
the low-level can be dramatically larger than using positive ones.

Constraint Tree. The manner of adding constraints is partially influenced by A∗ with
operator decomposition [Standley, 2010]. This algorithm creates successor nodes that
correspond to one action of one agent, instead of actions for the entire agents. LaCAM
adds constraints in a similar scheme.

Anytime MAPF. Anytime MAPF algorithms that converge to optimal solutions have
been studied [Standley and Korf, 2011; Cohen et al., 2018a; Vedder and Biswas, 2021].
However, their scalability is limited; they often fail to derive initial solutions, as we
empirically saw. Techniques to refine arbitrary MAPF solutions have also been stud-
ied [Surynek, 2013; De Wilde et al., 2014; Okumura et al., 2021a; Li et al., 2021a] but
they do not ensure optimality.

Rewriting Edge Connection. LaCAM∗ is partially influenced by RRT∗ [Karaman and
Frazzoli, 2011], which is an asymptotically optimal version of RRT [LaValle, 1998] for
sampling-based motion planning (SBMP). Roughly, SBMP algorithms are called asymp-
totically optimal when, for solvable instances, the probability to find optimal solutions
approach one as the number of samples (i.e., vertices of roadmaps) increases. The crux
of RRT∗ is rewriting edge connection on demand. LaCAM∗ uses a similar trick to ensure
eventual optimality.

PIBT Extension. As mentioned, incorporating swap into PIBT (Alg. 6.3) is directly in-
spired from rule-based algorithms [Luna and Bekris, 2011; De Wilde et al., 2014]. This is
accomplished by almost only manipulating the vertex scoring in PIBT. Since the imple-
mentation of swap_required_and_possible uses a perspective of graph topology anal-
ysis, the current implementation of LaCAM∗ also incoporates a flavors of rule-based ap-
proaches. It would be nice to remove this dependency by, for example, using machine
learning to learn good vertex scoring in PIBT.
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6.9 Concluding Remarks

This chapter introduced LaCAM(∗), a novel search-based MAPF algorithm, designed fol-
lowing the concept that short-horizon planning guides long-horizon planning. LaCAM is
complete. Not only that, it can be an eventually optimal anytime algorithm, provided
that solution costs are accumulated transition costs. The exhaustive experiments reveal
that LaCAM can solve various instances in a very short time, even with complicated,
dense, and challenging scenarios that other state-of-the-art MAPF algorithms cannot
handle. Furthermore, LaCAM is scalable; even with 10,000 agents, it solved instances
in tens of seconds. In summary, LaCAM had developed a new horizon of MAPF algorithms.

6.9.1 Interesting Directions

Some interesting directions for the development of LaCAM are listed below.

• Developing more effective configuration generators than PIBT variants which can
output near-optimal initial solutions.

• Improving the convergence speed of LaCAM∗.

• Applying the LaCA search to other planning problems because it is just a graph
pathfinding algorithm. I am especially interested in applying the same concept to
path planning in continuous spaces (aka. motion planning) because it is under-
stood as a planning problem with an infinite branching factor.

129



Chapter 7

Improving Solution Quality by
Iterative Refinement

Thus far, we have seen powerful sub-optimal solvers, which do not care about solution
quality (excluding LaCAM∗). In contrast, this chapter presents how to iteratively refine
MAPF solutions. The iterative refinement framework originally appeared in [Okumura et
al., 2021a].1

7.1 Chapter Overview

The objective of the chapter is to see a method to refine an arbitrary solution to MAPF.

7.1.1 What is Iterative Refinement

This chapter presents a framework that, given an MAPF solution, returns a solution with
better quality, which is generated based on the original solution. By repeatedly applying
this procedure, it is possible to iteratively refine solutions. Despite its significance, such
a framework had received little attention in the literature.

7.1.2 Why Iterative Refinement is Attractive

Applications of MAPF are inherently real-time systems with a limited time for planning
as seen in the operations of automated warehouses [Wurman et al., 2008]. Therefore,
the primary challenge is to obtain feasible solutions before deadlines. Then, the aspect
of solution quality is considered, that is, we want to obtain a better solution as much as
possible.

The solution quality is important, however, recall that optimization of MAPF is a
computationally demanding problem, as discussed in Chap. 3.2.3. Indeed, it is known
to be an NP-hard problem for various optimization criteria [Yu and LaValle, 2013b]. Fur-
thermore, it is still intractable when restricting fields in grid structures [Banfi et al., 2017;
Geft and Halperin, 2022], or approximating solution quality in near-optimal constant
values [Ma et al., 2016]. Even with state-of-the-art optimal algorithms [Li et al., 2021b;
Lam et al., 2022], as seen in previous chapters, planning with hundreds of agents is still
challenging. Such planners have no feasible solution when optimal solutions are not
obtained. After all, there is no choice but to use sub-optimal algorithms.

On the other hand, we can create sub-optimal solutions in a very short time, as seen
in Chap. 4 to 6. With feasible solutions obtained quickly, we can use the remaining

1Most figures and tables presented here were re-created for this dissertation but some of them were
reused from the seminal paper. See Copyrights.
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time until the deadlines for iterative refinement. This is the basic motivation of anytime
algorithms [Zilberstein, 1996], which can yield a feasible solution whenever interrupted,
the quality of which improving as time passes, well-match with practical demands.

Iterative refinement is also fruitful for online situations where goals are allocated
dynamically [Ma et al., 2017b; Švancara et al., 2019]. The challenging part here is replan-
ning. Two intuitive approaches exist: (i) replan all paths, or (ii) replan a single path for
one agent with a new goal while keeping the others unchanged. The first approach may
return efficient solutions but it is costly and typically inappropriate for online use. The
second approach may return inefficient solutions but is nearly costless. We can apply
the second approach for an initial solution that we can gradually refine within the time
constraints.

7.1.3 How to Refine Solutions

Iterative refinement is promising though under-explored in MAPF because, so far, it was
unclear how to incrementally improve a known solution. In the context of local search,
this corresponds to finding a good neighborhood solution.

This chapter provides one answer based on an effective combination of existing solvers.
The proposed framework first uses a sub-optimal MAPF solver to quickly obtain an ini-
tial feasible solution, then, it uses an optimal MAPF solver to find good neighborhood
solutions. Precisely, the framework refines the solution iteratively by selecting a subset of
agents and using an optimal solver to refine their paths while keeping other paths fixed.
Although the refinement process uses an optimal solver, each refinement are completed
quickly because it solves a sub-problem whose size depends on the number of selected
agents, typically much smaller than the original. This chapter also presents reasonable
candidates on how to select a subset of agents.

The effectiveness of the approach is evaluated in various benchmarks. The main ob-
servation is that the framework converges almost optimally within a short time in small
instances, and remains responsive even for very large instances (i.e., large environments
and/or many agents). In other words, it brings many practical advantages based on prior
art.

7.1.4 Chapter Organization

• Chapter 7.2 reviews related work.

• Chapter 7.3 describes the framework including basic theoretical analysis.

• Chapter 7.4 presents construction rules of a subset of agents.

• Chapter 7.5 evaluates the proposal from a variety of aspects.

• Chapter 7.6 concludes the chapter.

The code and movie are available at https://kei18.github.io/mapf-IR.

7.1.5 Notations and Assumptions

⊥ undefined, not found
G = (V ,E) (undirected) graph, a set of vertices, and a set of edges
A = {1,2, . . . ,n} a set of agents
si ∈ V ,gi ∈ V start and goal for agent-i

As a solution cost of MAPF, this chapter uses sum-of-costs (aka. flowtime), however,
the iterative refinement framework can easily adapt to other metrics.
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Caution� �
Unlike previous chapters, this chapter is based on the representation by paths.� �

7.2 Related Work

Some anytime MAPF algorithms have been developed so far. For instance, in [Stand-
ley and Korf, 2011], an anytime version of the optimal MAPF algorithm called A∗ with
operator decomposition [Standley, 2010] has been developed. In [Cohen et al., 2018a],
an anytime algorithm based on a variant of A∗ was applied to the high-level search of
CBS. X∗ [Vedder and Biswas, 2021] is an anytime MAPF solver assuming sparse scenar-
ios, i.e., agent distributed sparsely in fields and where the potential for collisions is rare.
The BCP algorithm [Lam et al., 2022] also has an anytime property due to the nature of
branch-cut-price optimization. Moreover, LaCAM∗ in Chap. 6.5 is an anytime version of
LaCAM [Okumura, 2023]. These methods search for non-optimal solutions by relaxing
some constraints, then eventually converge to optimal solutions by iteratively tightening
the constraints. A drawback is that they are each tied to a specific solver, and that they
may fail to obtain initial solutions in a reasonable time thus returning nothing.

Several ad-hoc rules to repair MAPF solutions have also been seen in the litera-
ture [Surynek, 2013; De Wilde et al., 2014]. However, since improvements are done by
ad-hoc local changes, redundancies of a priori unknown patterns remain in the solution.

In a wider view, the study can also be seen as solving a very large-scale neighborhood
search [Ahuja et al., 2002]. Closer to our concept, in [Balyo et al., 2012], local replanning
for domain-independent planning problems was studied to optimize makespan. It re-
peats the following; create a sub-problem, obtain an optimal sub-solution by SAT-based
techniques, and replace the part of the original solution with a new one.

Finally, [Li et al., 2021a] was concurrent to this study, which has the same concept
that uses MAPF algorithms to refine solutions. This chapter further provides limitations
of this concept, practical techniques such as early stop, as well as various strategies to
choose a subset of agents.

7.3 Framework

Algorithm 7.1 presents the proposed framework. In short, it first obtains an initial so-
lution by a sub-optimal MAPF solver, and then iteratively refines selected parts of the
solutions, the paths of a selected subset of the agents, using an optimal MAPF solver.

Algorithm 7.1 Framework of iterative refinement.

input: MAPF instance

output: solution Π or FAILURE

1: Π← initial solution obtained by an MAPF solver

2: if Π =⊥ then return FAILURE

3: while ¬interrupt() do

4: create a modification set M ⊆ A using Π

5: Π← refined MAPF solution for M while fixing the others’ paths in Π

6: return Π
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7.3.1 Framework Details

At first, an initial feasible solution is quickly obtained by a sub-optimal MAPF solver (Line 1),
referred to as an initial solver. If the initial solver failed to obtain solutions, the framework
ends with FAILURE (Line 2); otherwise, the refinement starts (Lines 3–5). The refinement
iteratively conducts two procedures:

1. Create a modification set M ⊆ A using the current solution Π (Line 4).

2. Refine the current solution Π by changing paths for agents in M (Line 5), using an
optimal MAPF solver.

The solver that does refinement is called a refinement solver. The refinement solver only
changes the paths for agents in M; paths for agents not in M are unchanged. The refine-
ment continues until interrupted, e.g., timeout, reaching the predetermined iteration
number, when no improvement is expected, interruption by users, etc. After the inter-
ruption, the framework eventually returns the final solution (Line 6).

Used MAPF Solvers. The initial solver can be any sub-optimal MAPF solver, as long
as it provides feasible solutions. As the refinement solver, it is desirable to use versions
adapted from an optimal solver. The adaptation is simple; let it plan paths for agents
in M regarding the others as dynamic obstacles. For instance, with CBS, it solves MAPF
only for agents in M while prohibiting the low-level search to use all space-time pairs
used by agents outside of M. In a precise sense, the refinement solver is not limited to
optimal MAPF solvers. The requirement is that the refined solution never worsens from
the original. Considering that cost of paths for agents outside of M does not change,
the requirement is that cost of paths for agents in M is non-increasing before and after
refinement.

The next property is obvious from the requirements set on the refinement solver.

Corollary 7.1 (Monotonicity). For each iteration in Alg. 7.1, the solution cost is non-increasing.

A key point is that the refinement solver recomputes the paths for a selected subset
M of agents, rather than for the entire set A of all agents. Compared to solving the
original problem directly using optimal solvers, the problem solved at each iteration by
the refinement solver is significantly smaller, ensuring that the framework is scalable
even to a large number of agents.

7.3.2 Early Stop

Even though sub-problems solved by the refinement solver are small compared to the
original problem, the refinement may still take too long if |M | is too big. In such cases, it
is preferable to abort the current refinement by returning the current solution, and then
start a new iteration with a new set M. The criteria can be a timeout or using a threshold
value for the size of a search tree in the refinement solver.

7.3.3 Limitations

As a limitation, the framework may have the local minimum with no sub-optimality
bounds from the optimal.

Proposition 7.2 (no sub-optimality bounds). Consider the optimal cost c∗. With Alg. 7.1,
there is no w ≥ 1 such that always c ≤ wc∗ unless selecting A itself as a modification set M,
where c is the solution cost in each iteration.
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Proof. Consider an example in Fig. 7.1. Assume that an initial solution assigns agent i to
a clockwise path (cost: k) and agent j to a counterclockwise path (cost: 1). With k ≥ 6,
this is not optimal because i can take a counterclockwise path if j temporally moves
over from its goal (sum-of-costs: 6). Unless M , A, the solution of the refinement is
unchanged. Assume w ≥ 1 such that c ≤ wc∗. We can take an arbitrary k, contradicting
the existence of w.

j
i

length: k

Figure 7.1: Example of local minimum. Goals are depicted by arrows.

Corollary 7.3 (Existence of local minimum). Depending on initial solutions, it may be im-
possible to reach the optimal solution unless selecting A itself as M.

Note that whenM = A, the refinement solver has to solve the original MAPF problem.

7.4 Design of Modification Set

The modification set is an important component of the framework, and its design will af-
fect the performance such as computation time and solution quality. This section defines
several selection rules to provide reasonable candidates.

7.4.1 Random

One naive approach is to pick a subset of agents randomly. The size of a modification
set M is then a user-specified parameter. Not to mention, there is a tradeoff in the size
of M; large |M | has a chance to reduce costs largely in one iteration but takes time for
refinement because sub-problems become challenging, and vice versa.

7.4.2 Single Agent

This rule always picks a single agent as M. This can be regarded as a special case of
the previous rule (random). Even with a single agent, the cost might be reduced by the
refinement. In this case, the refinement becomes just a single-agent pathfinding problem
and can be computed efficiently without MAPF solvers, e.g., by A∗.

7.4.3 Focusing at Goals

Consider an example in Fig. 7.2. Assume that the current solution is Π1 = (v2,v3,v6,v3,v3)
and Π2 = (v1,v2,v3,v4,v5). An agent-1 cannot achieve a shorter path because agent-2
uses a goal of agent-1 (i.e., v3) at a timestep 2. In general, for agent i, one reason for a
gap between ideal cost dist(si , gi) and cost contribution of agent i in a solution Π, de-
noted as cost(i,Π), might be that another agent j uses a goal for i (i.e., gi) at a timestep
t ≥ dist(si , gi). At least before t, i cannot arrive at gi and remain there. In this case, it is
required to jointly refine paths of i and j.

This observation motivates us to create a following simple rule, taking a current so-
lution Π and one agent i as input.

M←
{
j ∈ A |Πj [t] = gi ,dist(si , gi) ≤ t ≤ cost(i,Π)

}
(7.1)
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2 1
v1 v2 v3 v4 v5

v6 v7

Figure 7.2: Example of local repair around goals.

The selecting rule of agent-i is arbitrary.

7.4.4 Local Repair around Goals

This is a special case of the previous rule (focusing-at-goals). Assume again the example
in Fig. 7.2; Π1 = (v2,v3,v6,v3,v3) and Π2 = (v1,v2,v3,v4,v5). In focusing-at-goals, M for
agent-1 is {1,2}, therefore, the refinement solver has to solve a sub-problem with two
agents; however, this effort can be reduced. Consider obtaining a better path for agent-1
ignoring Π2. In this example, a new path is obtained without searching by local repair
around the goal; (v2,v3,v3,v3,v3). Next, compute a single path for agent-2 while avoiding
collisions with this new path and the other agents’ paths. If the sum-of-costs of two new
paths is smaller than the original, replace Π1 and Π2 with the new paths. Since the
search effort is reduced, the refinement is expected to finish faster.

In general, when Πi = (. . . , gi ,v,gi , . . . , gi) where v , gi and another agent j uses gi at
that timestep, this rule can be applied.

7.4.5 Using MDD

Given a single path cost c, a set of paths from si to gi can be compactly represented as a
multi-valued decision diagram (MDD) [Srinivasan et al., 1990]. MDD is a directed acyclic
graph where a vertex is a pair of a location v ∈ V and a timestep t ∈ N. Each vertex in an
MDD satisfies two conditions:

• a reachable location at that timestep from a start, and

• a reachable location to a goal from that timestep.

Let MDDc
i be an MDD for agent i with a cost c. Figure 7.3 shows two examples: MDD2

1
and MDD3

1. MDDs are used often in MAPF solvers, e.g., [Sharon et al., 2013; Boyarski et
al., 2015].

1

2

v1 v2

v3 v4 v5

v6 v7 v3,0

MDD2
1

v4,1

v5,2

v3,0

MDD3
1

v3,1 v4,1

v4,2 v5,2

v5,3

Figure 7.3: Examples of MDD.

Using MDDc
i where dist(si , gi) ≤ c < cost(i,Π), a set of agents interfering with Πi

can be detected. See an example in Fig. 7.3. Assume that the current solution is Π1 =
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(v3,v3,v4,v5) and Π2 = (v7,v4,v2,v1). Consider to update MDD2
1 by Π2; remove vertices

of MDD2
1 that collides of Π2, i.e., (v4,1). Then, remove all redundant vertices that do

not satisfy the two conditions due to the first operation: (v3,0) and (v5,2). Now it turns
out to be impossible that agent-1 reaches its goal with a cost of two because there is
no remaining vertex. In other words, Π2 is preventing that agent-1 achieves a smaller
cost; hence Π1 and Π2 should be jointly refined. The general procedure is described in
Alg. 7.2.

Algorithm 7.2 using-MDD.

input: solution Π, agent i ∈ A

output: modification set M ⊆ A

1: M← {i}

2: for dist(si , gi) ≤ c < cost(i,Π) do

3: create MDDc
i

4: for j ∈ A \ {i} do

5: update MDDc
i by Πj

6: if MDDc
i is updated by Πj then M←M ∪ { j }

7: return M

7.4.6 Using Bottleneck Agent

Consider the example of Fig. 7.3 again; Π1 = (v3,v3,v4,v5) and Π2 = (v7,v4,v2,v1). If
removing Π2, agent-1 can take a shorter path, meaning that, agent-2 is a bottleneck for
agent-1. There is a chance to reduce cost by refining jointly with such a bottleneck agent
and agents that can take shorter paths without the agent. This concept is described in
Alg. 7.3.

Algorithm 7.3 using-bottleneck-agent.

input: solution Π, agent i ∈ A

output: modification set M ⊆ A

1: M← {i}

2: for j ∈ A \ {i} do

3: c← cost of the best path for j while avoiding collisions with Π \ {Πi ,Πj}

4: if c < cost(j,Π) then M←M ∪ { j }

5: return M

7.4.7 Composition

Each rule might have suitable situations, e.g., the rule focusing-at-goals (Chap. 7.4.3) is
costless to create modification sets, but it might be weak to detect effective sets when
solutions are already efficient to some extent. On the other hand, the rule using-MDD
(Chap. 7.4.5) takes time but they are highly expected to detect effective sets. Therefore,
one promising direction is to composite these rules, namely, execute the first rule until no
improvement is expected, and then switch to the second rule; same as above.
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7.5 Evaluation

To assess the performance of the iterative refinement framework, a series of experiments
were conducted, comprising the following six parts:

• Chapter 7.5.2 compares the selection rules of agents with inefficient initial solu-
tions.

• Chapter 7.5.3 compares the rules with efficient initial solutions.

• Chapter 7.5.4 evaluates dependencies on different initial solvers.

• Chapter 7.5.5 assesses solution costs obtained by the framework compared to the
optimal ones.

• Chapter 7.5.6 compares to another anytime MAPF solver.

• Chapter 7.5.7 tests the framework in challenging scenarios, i.e., huge maps with
many agents.

7.5.1 Experimental Setup

Instance Generation. Several four-connected grids were carefully selected from [Sturte-
vant, 2012; Stern et al., 2019] as a graph G, shown in Fig. 7.4. In all settings, identical
instances between solvers were tested. All instances were created by choosing randomly
initial locations and destinations.

random-32-32-20

32× 32
(819)

random-32-32-10

32× 32
(922)

random-64-64-20

64× 64
(3,270)

arena

49× 49
(2,054)

lak307d

84× 84
(4,706)

lak503d

194× 194
(17,953)

brc202d

481× 530
(43,151)

ost000a

969× 487
(130,478)

Figure 7.4: Used maps. |V | is shown with parentheses.

Metrics. The objective here is to minimize the sum-of-costs metric. The below often
presents sum-of-costs normalized by

∑
i∈Adist(si , gi) as the solution quality; smaller is

better and the minimum is one. Even though optimal costs are hard to obtain, these
values work as upper bounds of sub-optimality.

Experimental Environment. All experiments were run on a laptop with Intel Core i9
2.3 GHz CPU and 16 GB RAM. The framework was coded in C++.
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Implementation of Iterative Refinement

Refinement Solver. As a refinement solver, an adapted version of ICBS [Boyarski et al.,
2015] was used for the following reasons. First, CBS [Sharon et al., 2015] is a promising
and actively-studied optimal solver; it is however sensitive to tie-break of choosing high-
level nodes, resulting in pure CBS being poorly scalable. ICBS, an extension of CBS,
improves this aspect. Though not state-of-the-art, ICBS is stable and has been used in
many studies, e.g., [Felner et al., 2018; Li et al., 2019a; Stern et al., 2019]. Therefore, ICBS
was considered sufficient as a baseline for our experiments. Note that results heavily
depend on the refinement solver, meaning that, the refine speed might become much
faster with a faster refinement solver.

Early Stop. In each setting, the early stop by the timeout was introduced (see Chap. 7.3.2).
They were adjusted to appropriate values before experiments.

Agent Selection. In the rules single-agent, focusing-at-goal, using-MDD, using-bottleneck-
agent, one agent needs to be selected. In the implementation, that agent is selected se-
quentially from A.

Composition Rule. In the refinement rule composition (Chap. 7.4.7), the following rules
were sequentially applied:

1. local-repair-around-goals (Chap. 7.4.4)

2. focusing-at-goals (Chap. 7.4.3)

3. using-MDD (Chap. 7.4.5)

4. random (Chap. 7.4.1) with 30 agents.

These rules were chosen according to preliminary results. The switching was when no
improvement is achieved for all agents.

7.5.2 with Inefficient Initial Solutions

Setup. The first experiment aims at assessing how each rule refines inefficient initial
solutions. The initial solver was PIBT+ (Chap. 4.3.1). The refinements were stopped after
90 s in the small maps (random-32-32-20 and arena) and 10 min in lak503d. The numbers
of agents were fixed at 110, 300, and 500, respectively. This duration includes the time
required for the initial solver. The refinement timeout was 1 s for lak503d, otherwise
500 ms.

Result. Figure 7.5 shows the average progress of the refinement over 25 instances. The
rules single-agent and local-repair-around-goals reduce costs immediately but soon reach
their limits, i.e., no improvement even with room for refinement. The rule focusing-at-
goals dramatically improves solution quality in each case while the rule use-bottleneck-
agent does not work well as expected. Note that PIBT+ returned solutions within 500 ms
even for the worst case (in lak503d with 500 agents; see also Table 7.1).

7.5.3 with Efficient Initial Solutions

Setup. Next, the refinement was applied to already efficient solutions to some extent,
obtained by ECBS [Barer et al., 2014] or RPP [Čáp et al., 2015]. The former is a bounded
sub-optimal version of CBS while the latter is a variant of prioritized planning. Both
algorithms were own-coded in C++. The used instances were the same as the previous
ones.
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Figure 7.5: Average progress of the refinement with inefficient initial solutions. The
initial solver was PIBT+.
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Figure 7.6: Average progress of the refinement with efficient initial solutions. In
random-32-32-20 and arena, we used ECBS to obtain the initial solutions. The subopti-
mality was 1.2 and 1.1 respectively, which were adjusted to balance runtime and solution
quality. For lak503d, we prepared well-formed instances and used RPP. Note that it is dif-
ficult to get such instances with other settings because they are too dense. In lak503d, we
do not start the y-axis from one to see differences between rules; the improvements were
tiny.

Result. Figure 7.6 shows the results, revealing a limitation of the rule focusing-at-goals
in arena and random-32-32-20; it is difficult to refine efficient enough solutions by this
rule. Rather, the rules using-MDD and random achieved smaller final costs. In lak503d,
initial solutions with little room for refinement were often obtained, therefore, the effect
of refinement was subtle (see y-axis). Even so, several rules still improved the solution
quality.

Throughout two experiments so far (Chap. 7.5.2 and 7.5.3), the rule composition suc-
cessfully reduced costs with reasonable speeds; therefore, hereinafter, the experiments
used this rule.

7.5.4 with Different Initial Solvers

Setup. The third experiment evaluated dependencies on initial solvers. Five initial
solvers were used: PIBT+, HCA∗ [Silver, 2005], WHCA∗ [Silver, 2005], ECBS, and RPP.
HCA∗ and WHCA∗ are variants of prioritized planning, own-coded by C++. The refine-
ment timeout was set 1 s for lak503d, otherwise 500 ms.
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Figure 7.7: Average progress of the refinement with different initial solvers. All in-
stances were well-formed. The averages are for success instances in all initial solvers.
In lak503d, the scores were calculated removing those of WHCA∗ because WHCA∗ failed
most cases. From the left, the suboptimality of ECBS was 1.05, 1.05, and 1.1. The win-
dow size of WHCA∗ was 30, 10, 30. Those parameters were adjusted to balance success
rate, cost, and runtime.

PIBT+ HCA∗ WHCA∗ ECBS RPP

cost (init) 1.219 1.069 1.096 1.037 1.035
random-64-64-20 cost (last) 1.015 1.015 1.015 1.014 1.016

300 agents #success 25 23 15 25 25
runtime (ms) 43 201 228 3436 153

cost (init) 1.190 1.021 1.155 1.007 1.007
lak307d cost (last) 1.003 1.003 1.003 1.003 1.003

300 agents #success 25 25 23 25 25
runtime (ms) 43 171 247 2306 119

cost (init) 1.148 1.021 - 1.026 1.019
lak503d cost (last) 1.019 1.018 - 1.018 1.019

500 agents #success 25 25 1 24 25
runtime (ms) 376 5716 - 54433 5640

Table 7.1: Detailed results with different initial solvers. “cost” is the sum-of-costs
divided by the lower bound. Both initial and last scores are shown. “#success” is the
number of successful instances in 25 instances. Some solvers failed in some instances
because they returned failure due to incompleteness, or, failed to obtain solutions before
the deadlines (90 s in random-64-64 and lak307d; 10 min in lak503d). “runtime” is when
initial solvers return solutions. All scores were averaged over success instances in all ini-
tial solvers except for lak503d where WHCA∗ failed most cases; for lak503d, the average
scores without WHCA∗ are shown. ©2021 IEEE.

Result. Figure 7.7 shows the average progress. Table 7.1 summarizes the details. The
main observation is that, although the initial costs were widely different between the
solvers, the final costs ended up not so. This implies that any initial solvers can be used
if you have enough time for refinement.

In the following, PIBT+ was used because it instantly returns a feasible solution and
meets well with anytime property.
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7.5.5 vs. Optimal Solutions

Setup. According to Prop. 7.2, the approximation ratio of refined solutions is unbounded
from the optimal. In practice, however, the estimation from empirical data is useful
hence this was evaluated. Two small settings were used to test this aspect (30 agents
in random-32-32-20; 50 agents in random-32-32-10) because optimal solvers often fail to
obtain solutions within a reasonable time in large maps or with many agents. Optimal
solutions were obtained by CBSH [Li et al., 2019a], an extension of CBS. Its implemen-
tation was obtained from the authors of that paper. The refinements continued for 1 s
including the time for the initial solver.
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1.25
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st

 / 
op
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al random-32-32-20

30agents

instances1.00
1.05
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1.15
1.20
1.25 random-32-32-10

50agents
init
0.1s
1.0s

Figure 7.8: Results vs. optimal solutions. Three types of the suboptimality of 50 in-
stances are shown: initial scores, 0.1 s later, and at 1 s. The scores at 1 s are hard to
recognize because most of them reach the optimal. ©2021 IEEE.

Result. Figure 7.8 summarizes the results of 50 instances, showing the sum-of-costs di-
vided by the optimal costs. The average runtime of CBSH was 710 ms with 30 agents and
1743 ms with 50 agents while the refinement (PIBT+) got initial solutions less than 3 ms
in all instances. Despite large gaps between the initial and optimal costs, the refinement
dramatically reduced the gaps within a short time. Furthermore, most solutions reached
the optimal within 1 s.

7.5.6 vs. Other Anytime MAPF Solver

Setup. Next, the proposed framework was compared with another anytime MAPF solver,
AFS [Cohen et al., 2018a], using random-32-32-20 while changing the number of agents.
AFS applies anytime planning to the high-level search of CBS. Its implementation was re-
trieved from the authors of the paper. Note that AFS theoretically converges the optimal
someday but the proposal may not. The refinement timeout was 100 ms. The runtime
limit was 30 s.

Result. Figure 7.9 shows the results of 25 instances. AFS failed to obtain solutions
within the time for 2 instances with 90 agents. Clearly, the proposal has an advantage; it
obtained initial solutions immediately while AFS did not, and the convergence was fast
enough with better costs.

7.5.7 Challenging Scenarios

Setup. Finally, the refinement with many agents in huge grids was tested, namely,
1,500 agents in brc202d and 3,000 agents in ost000a. The refinement timeout was 3 s
for brc202d and 10 s for ost000a. In such scenarios, it is unrealistic to obtain the optimal
solutions; hence, iterative refinement is attractive to obtain good enough solutions.
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Figure 7.9: Results vs. another anytime MAPF solver. We omit scores after 10 s because
they are almost flat. The improvements of AFS were subtle and hard to recognize. ©2021
IEEE.
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Figure 7.10: Results of challenging scenarios. ©2021 IEEE.

Result. Figure 7.10 shows the progress of 10 instances with one-hour refinement. The
initial solutions were obtained 4 s for brc202d and 17 s for ost000a on average.2 The
refinement gradually reduced costs; however, the speed of the refinement was not so
fast.

7.6 Concluding Remarks

This chapter presented the iterative refinement framework for MAPF. The framework
uses two MAPF solvers as sub-procedures: a sub-optimal solver to obtain an initial so-
lution and an optimal solver to refine the solution. Although the framework does not
guarantee finding the optimal solution, the empirical results demonstrate its usefulness;
the framework finds a solution with acceptable costs in a small computation time with
high scalability. Furthermore, it is anytime planning, which is a desired property for real-
time systems with severe deadlines. MAPF studies are very active and the framework can
be better with their developments, as we have seen through Part I. With their effective
use, it is expected that the framework becomes better than empirically presented here.

Practical Anytime MAPF. According to the experiments, the costs can be reduced near-
optimal regardless of the initial solutions; however, it is better to start with efficient

2Preliminary, other solvers were tried including CBSH and AFS but most of them could not solve any
instances. As a result, it is unlikely to obtain efficient enough solutions from the beginning in such huge
scenarios.
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enough solutions if available, because we can get better solutions at an early stage. Thus,
a practical anytime MAPF scheme will be the following. First, in parallel, start several
initial solvers with different portfolios between runtime and solution quality (e.g., PIBT+,
LaCAM, RPP, EECBS). Then, apply refinement to the first solution you get. If another
initial solver gets a better solution compared to the refined solution at that time, replace
the current one with the new one. This scheme complements a time lag of an efficient
initial solver with a fast inefficient initial solver.
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Execution
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Chapter 8

Online Planning to Overcome
Timing Uncertainties in Execution

From this chapter, the dissertation starts considering the execution perspective, aiming
at overcoming uncertainties entailed in multi-agent navigation.

To begin with, this chapter shortly revisits the TSWAP algorithm for unlabeled-MAPF
(Chap. 5) and presents its online version. The resulting algorithm, called online TSWAP,
solves the execution of unlabeled-MAPF allowing timing uncertainties. The algorithm is
based on the notion of (online) time independence, playing a crucial role in the next two
chapters.

Time independence initially appeared in [Okumura et al., 2021b], which studied on-
line time-independent planning for MAPF by adapting PIBT. Later in [Okumura and
Défago, 2022b], the notion became sophisticated; this chapter is based on the second
paper.1

8.1 Chapter Overview

The objective of the chapter is to understand the notion of time-independent planning for
multiple moving agents, developed to overcome timing uncertainties during execution.
Specifically, this chapter presents online time-independent planning for unlabeled-MAPF,
embodied as online TSWAP. Time-independent planning poses a significantly different
planning style from previous chapters.

8.1.1 What is Online Time-Independent Planning

Since timing uncertainties (e.g., delays of robot motions) are inevitable in execution,
many studies have studied the uncertainties (see 3.5.2). Among them, the limitation of
robust offline planning is the necessity of pre-defined timing uncertainty models. Such
models are vulnerable in practice because the system behavior must fit into the model.
Otherwise, the behavior is totally uncontrollable and unpredictable. If so, it might be
better not to put such uncertainty models from the beginning.

To this end, this chapter abandons all timing assumptions (e.g., synchronization, trav-
eling time, rotation time, delay probabilities) and regards the whole system as a transition
system that changes its configuration according to atomic actions of agents. The primary
challenges are the following two: (i) how to formulate the notion of time independence,
and, (ii) how to design an algorithm to ensure liveness (i.e., all agents reach their goals),

1Actually, the concept got clear when studying [Okumura et al., 2022a] presented in the next chapter,
which was before [Okumura and Défago, 2022b]. The history of research was a bit complicated!
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regardless of when agents start and finish each action. The former is approached by in-
troducing a notion of scheduler, originally developed in studies of theoretical distributed
algorithms. The latter is approached by developing an extension of TSWAP.

Note that online TSWAP assumes centralized execution (see Chap. 3.1.1); agents re-
quire instructions repeatedly issued by a central controller at runtime. This is not the
case in the following two chapters that allow decentralized execution.

8.1.2 Properties and Performance

Online TSWAP is complete in the sense that, as long as agents eventually take action, all
targets are guaranteed to be occupied by agents. The formal definition will be provided
in the chapter. We will see the power of this property in demonstrations by real robots
that solve unlabeled-MAPF despite disturbance at runtime.

8.1.3 Chapter Organization

• Chapter 8.2 formulates the online time-independent problem and highlights dif-
ferences from conventional MAPF.

• Chapter 8.3 presents online TSWAP.

• Chapter 8.4 presents robot demos.

• Chapter 8.5 concludes the chapter.

The code and movie are available at https://kei18.github.io/tswap.

8.1.4 Notations and Assumptions

G = (V ,E) (undirected) graph, a set of vertices, and a set of edges
A = {1,2, . . . ,n} a tuple of agents
S = (s1, s2, . . . , sn) start configuration, where si ∈ V
T = {g1, g2, . . . , gm} target vertices, where gi ∈ V
M A 7→ T , bijective function, assignment (matching)
E = (i, j,k, . . .) execution schedule, infinite sequence of agents

Caution� �
The chapter uses the representation by configurations.� �

8.2 Online Time-Independent Problem

8.2.1 Problem Formulation

An execution schedule is defined by an infinite sequence of agents, E = (i, j,k, . . .), defining
the order in which each agent is activated and can move one step. We also call i’s turn in
E an activation for i. E is called fair when all agents appear infinitely often in E.

Given an unlabeled-MAPF instance (agents A, graph G, starts S , targets T ), a situa-
tion where all agents are at their initial locations (i.e., S), and an execution schedule E, an
agent i can move to an adjacent vertex if (i) it is i’s turn in E (i.e., i is activated) and (ii) the
vertex is unoccupied by others. Termination is a situation where all targets are occupied
by a subset of agents simultaneously. An algorithm is called complete when termination
is achieved within a finite number of activations for any fair execution schedules.
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It is worth mentioning that the above definition can be applied to online time-independent
MAPF by changing the terminal condition. That is, termination is when all agents reach
their assigned goals.

Metrics. Given an execution schedule, we rate the efficiency of agents’ behaviors ac-
cording to two metrics: maximum-moves and sum-of-moves. Their definitions are the same
as for the offline problem (see Chap. 3.4.1). Note that sum-of-costs and makespan for the
online problem are not formally defined because they should be measured according to
actual time.

8.2.2 Differences from Conventional (unlabeled-)MAPF

The primary differences from conventional MAPF problems are as follows.

Collision. In MAPF, collisions are prevented by timings. In other words, collisions are
prevented by planning such that two agents never share the same spatiotemporal point.
Meanwhile, time-independent planning assumes collision avoidance is done on the fly
according to online situations. Therefore, algorithm design needs to care about liveness
(targets are eventually occupied), rather than safety (collision-free).

Scheduling. From the view of time-independent planning, though several minor dif-
ferences exist, MAPF is seen as a planning problem assuming a special execution sched-
ule like E = (1,2, . . . ,n,1,2, . . . ,n, . . .). Meanwhile, time-independent planning aims at
overcoming planning under timing uncertainties. Therefore, “completeness” of time-
independent planning is not only defined by problem instances but also considers sched-
ules. Since any complete algorithms must deal with any fair schedules, they inherently
assume timing uncertainties.

8.2.3 Other Remarks

For simplicity, the above definition assumes that at most one agent is activated at any
time, therefore, the execution is determined by a sequence over the agents. However,
there is no loss of generality as long as an agent can atomically reserve its next vertex
before each move. Indeed, several robots acted simultaneously in our demonstrations.
A similar concept regarding activation is known as a locally central daemon in theoretical
distributed algorithms [Altisen et al., 2019].

8.3 Online TSWAP

TSWAP is not limited to offline planning and can also apply to online planning with
timing uncertainties. Algorithm 8.1 presents online TSWAP to solve the online time-
independent problem. Before execution, TSWAP assigns targets to each agent (Line 1)
and initiates the virtual configurationQwith S (Line 2). During execution, online TSWAP
runs the procedures of the offline version for one agent (Lines 3–8). The primary differ-
ence is Line 6; if the virtual location (i.e., Q[i]) is updated, then let the agent actually
moves there.

Theorem 8.1. Online TSWAP (Alg. 8.1) is complete for the online time-independent problem
(Chap. 8.2).

Proof. Most part is the same as for the proof of the completeness of the offline version
(Thrm. 5.2). The problem assumes a fair execution schedule, therefore, the potential
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Algorithm 8.1 Online TSWAP. The same parts with offline TSWAP is gray-out.

input: unlabeled-MAPF instance (A,G,S ,T )

offline phase

1: get an initial assignmentM

2: Q←S

online phase when agent i ∈ A is activated

3: if Q[i] =M[i] then continue ▷ rule-1

4: u← next_vertex (Q[i],M[i])

5: let j be an agent in A s.t. Q[j] = u

6: if j =⊥ then Q[i]← u; move i to u; continue ▷ rule-2

7: ifM[j] = u thenM[i],M[j]←M[j],M[i]; continue ▷ rule-3

8: if ∃ deadlock for A′ ⊆ A∧ i ∈ A′ then rotateM of A′; continue ▷ rule-4

(otherwise; do nothing) ▷ rule-5

function φ (Eq. (5.2)) must decrease within the sufficiently long period during which all
agents are activated at least once; otherwise, φ(Q,M) = 0.

Proposition 8.2. Regardless of execution schedules, Online TSWAP has upper bounds of;

• maximum-moves: O(A · diam(G))

• sum-of-moves: O(A · diam(G))

Proof. The same proof of Prop. 5.3 is applied.

8.4 Demonstrations of Online Planning

Next, we see online TSWAP with real robots, using the bottleneck assignment of Alg. 5.4†.

8.4.1 Setup

Platform. Toio robots (https://toio.io/) were used to implement online TSWAP. The
robots, connected to a computer via Bluetooth, evolve on a specific playmat and are con-
trollable by instructions of absolute coordinates.

Usage. The robots were controlled in a centralized style, described as follows. A virtual
grid was created on the playmat; the robots followed the grid. A central server (a laptop)
managed the locations of all robots and issued the instructions (i.e., where to go) to each
robot step-by-step. The instructions were periodically issued to each robot (per 50 ms)
but they were issued asynchronously between robots. The code was written in Node.js.

8.4.2 Demonstration of Time Independence

Figure 8.1 shows a three-robot demonstration highlighting the time independence of
TSWAP. In this demonstration, the experimenter disturbed robots’ progression during
the execution. No matter when the robots moved and no matter what order the robots
moved, the online problem was certainly solved.
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Figure 8.1: Demonstrations of time-independence of online TSWAP. Three scenarios
with identical initial (top for each) and terminal (bottom for each) configurations were
prepared. A graph is illustrated in the top-left image. The pictures are annotated by
colored triangles to distinguish each robot. Although the experimenter disturbed robots’
progression with chopsticks during the execution (middle and right settings), all robots
reached the targets while flexibly swapping their assigned targets.

8.4.3 Demonstration of Delay Tolerance

The next demonstration presents a simple setting that highlights the delay tolerance of
TSWAP. The comparison baseline was MCPs [Ma et al., 2017a], an execution policy that
makes agents move while preserving temporal dependencies of offline MAPF solution.
Two scenarios with two robots were prepared while manipulating the robot’s speed. In
one scenario, robots moved at the usual speeds. In another scenario, one of them halved
its speed, i.e., with delays, assuming an accident happened.

Figure 8.2 shows the configuration and both makespan and sum-of-costs results over
ten repetitions measured in actual time. Without delays, TSWAP and MCPs did not
differ in the results; however, with delays, the results of TSWAP were clearly better for
both metrics. In MCPs, disturbing/delaying one robot may critically affect the entire
performance because it cannot change the temporal orders during the execution, while
TSWAP can adaptively address such effects.
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Figure 8.2: Demonstrations of delay tolerance. left: The initial configuration and the
offline plan, accompanied by temporal orders, used in MCPs are illustrated. Targets
are shown by the tips of arrows. The red one’s speed was made half in one scenario
(with delay). right: Average sum-of-costs. Scatter plots of ten repetitions are plotted by
transparent points.

8.4.4 Demonstration with Eight Robots

Finally, Fig. 8.3 presents eight-robot demonstrations. Two scenarios were carefully de-
signed to clarify the characteristics of TSWAP. MCPs’ offline plans were obtained by the
makespan-optimal algorithm [Yu and LaValle, 2013a] and ECBS-TA [Hönig et al., 2018a].
In the first scenario, TSWAP performed better than the other two, but not so in the sec-
ond scenario. This is because the latter has bottleneck vertices that all shortest paths
from starts to targets must use (two middle vertices in the second column). Since TSWAP
makes robots move following the shortest paths, all robots must use the bottleneck ver-
tices, causing unavoidable congestion. In contrast, the former does not have such bottle-
neck vertices, resulting in a small execution time compared to the others.

8.5 Concluding Remarks

This chapter shortly presented an online time-independent problem and its complete al-
gorithm called online TSWAP. Its benefits were demonstrated through real-robot demon-
strations, such as time independence and delay tolerance.

Though the online time-independent problem can cope with timing uncertainties, it
requires online intervention at runtime, inherently suffering from the weakness of cen-
tralized execution such as scalability. In the next chapter, we will see how to overcome
this limitation by considering its offline version. Such a planning-execution style does
not need online intervention by any central unit at runtime.
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Figure 8.3: Demonstrations with eight robots execution. left: The initial configurations
and virtual grids are shown. Targets are marked by white-filled circles. right: The re-
sults for makespan and sum-of-costs in two scenarios. Scatter plots of ten repetitions are
shown with transparent points. The points “X” are average scores. “MCPs/F” represents
MCPs with an offline plan obtained by the makespan optimal algorithm. “MCPs/E” rep-
resents those with ECBS-TA.
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Chapter 9

Offline Planning to Overcome
Timing Uncertainties in Execution

This chapter extends the concept of time-independent planning described in the previ-
ous chapter (Chap. 8). Here, we consider offline version of the problem, called offline
time-independent multi-agent path planning (OTIMAPP). The chapter is a “peak” of Part II
because OTIMAPP embodies the execution strategy described in Chap. 3.6.5; solving
OTIMAPP exemplifies an execution style in which deliberative planning guides reactive
execution.

The chapter presents the labeled problem, unlike the previous chapter for unlabeled-
MAPF. OTIMAPP was originally presented in [Okumura et al., 2022a]; this chapter con-
tains non-trivial extensions of the previous publication.1

9.1 Chapter Overview

The objective of the chapter is to establish an offline planning style that overcomes timing
uncertainties in execution, embodied as OTIMAPP. The chapter provides both theoretical
foundations and practical methods, as well as robot demonstrations.

9.1.1 What is OTIMAPP

OTIMAPP is a novel planning problem for multiple agents that cannot share holding
resources. Given a graph and a set of start-goal pairs, the problem to be addressed is
assigning a path to each agent, such that every agent eventually reaches its destination
without blocking others, regardless of when each agent starts and finishes each own ac-
tion. In contrast to conventional solution concepts of MAPF that rely on timings, once
OTIMAPP solutions are obtained, they can be executed without any synchronization be-
tween agent actions. Moreover, there is a theoretical guarantee that all agents eventually
reach their destinations, provided that agents avoid collisions reactively.

Example

Consider a situation presented in Fig. 9.1(left). This plan (a combination of two paths)
runs the risk of an execution failure. If agent j is delayed for any reason while agent
i moves two steps to the right, then each agent blocks the other and neither agent can
progress on its respective path. In contrast, in Fig. 9.1(right), regardless of how the two
agents are scheduled, both agents eventually reach their destinations unless they perma-
nently stop the progression. OTIMAPP asks about the existence of such paths.

1This chapter is based on the journal submission currently under reviewed.
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i j i j

Figure 9.1: Example of OTIMAPP. A graph is depicted with black lines. Two agents
(i, j) and their paths are colored. left: Both agents stop progression permanently due to
mutual exclusion (i.e., no collision) if i moved two steps before j moves. right: As long
as each agent follows its respective path, both agents eventually reach their last vertex;
these paths constitute an OTIMAPP solution.

9.1.2 Why OTIMAPPP is Attractive

As discussed in the strategy of Chap. 3.6.5, unlike the previous chapter, we here focus
on centralized planning followed by decentralized execution. Conventionally, robust
offline planning methods without runtime intervention rely on their uncertainty models
of timings. We can see such examples in [Wagner and Choset, 2017; Mansouri et al., 2019;
Peltzer et al., 2020; Atzmon et al., 2020a], to name just a few. Such approaches model
uncertainties based on the probabilities of traveling time or assuming maximum delays.
However, as discussed repeatedly throughout the dissertation, once failing to maintain
the system status in pre-defined uncertainty models owing to some happening, we lose
the outlook of system outcomes.

Instead of computing “timed” paths vulnerable to timing uncertainties, OTIMAPP
allows agents to spontaneously act without any timing assumptions, as long as agents
locally avoid collisions by some means. Once OTIMAPP solutions are obtained, asyn-
chronous execution of the solutions can be performed, with a theoretical guarantee that
all agents eventually reach their destinations. Here, asynchronous execution refers to
those without cumbersome action synchronization between multiple agents, as assumed
in conventional MAPF execution methods. In addition, since OTIMAPP execution only
requires collision avoidance at runtime, if the avoidance scheme is implemented by each
robot with local interactions (i.e., observation and communication), multi-agent naviga-
tion can be performed only with local interactions without any central control, again
with the theoretical guarantee as above.

Potential Applications

Applications of OTIMAPP include robotic navigation, but they are not limited to robotics.
Rather, OTIMAPP can be applied to situations wherein each agent attempts to transit to
its goal status while always using certain shared resources in mutual exclusion, thus block-
ing other agents from accessing them until release. For instance, consider software agents
in packet-switched networks with limited buffer spaces [Tel, 2000], where an agent is a
packet, the goal is a packet destination, and shared resources are buffer spaces. Another
example is the lock operations of transactions on distributed databases [Knapp, 1987],
where an agent makes operation requests to the database, the goal is the completion of
the operations, and shared resources are entries in the database. These are just a few
examples of OTIMAPP applications.

9.1.3 What will be Presented

The chapter aims at the establishment of the foundation of OTIMAPP both theoretically and
practically. Specifically, the contents below are categorized into theoretical and practical
parts as follows.

153



Chapter Overview CHAPTER 9. OTIMAPP

Theoretical Part

We first see the formalization of OTIMAPP. The chapter then derives a necessary and
sufficient condition for a solution, i.e., a tuple of paths that makes all agents reach their
goals without timing assumptions. For this purpose, four types of deadlocks are intro-
duced; cyclic or terminal; potential or reachable. Using this condition, computational com-
plexity analyses are performed. The results reveal that (i) finding a solution is NP-hard,
and (ii) verifying a solution is co-NP-complete. Both proofs are by reductions of the 3-
SAT problem. Further analyses are provided regarding the cost of time independence, in
particular, solvability and optimality, compared to two well-known problems for multi-
ple moving agents on graphs: the pebble motion (PM) problem [Kornhauser et al., 1984]
(i.e., a generalization of a sliding puzzle) and MAPF. Against the others, OTIMAPP is
restricted in solvability and results in higher optimal costs.

Practical Part

Two approaches for deriving solutions are presented: prioritized planning (PP) and deadlock-
based search (DBS). Both algorithms are derived from basic MAPF algorithms [Erdmann
and Lozano-Perez, 1987; Sharon et al., 2015] and relied on a newly developed procedure
to detect deadlocks within a set of paths. The chapter further presents a relaxed solu-
tion concept, called m-tolerant solutions, which ensures no deadlocks with m agents or
fewer, aiming at solving large OTIMAPP instances. The rationale is that deadlocks in-
volving many agents are rare. Unfortunately, the complexity class does not change, and
it is still in NP-hard. Through experiments, including robot demonstrations, the chapter
evaluates these algorithms and demonstrates the following four:

• Either PP or DBS can compute large OTIMAPP instances to a certain extent.

• OTIMAPP solutions cause robots to move efficiently in an adverse environment for
timing assumptions compared to existing approaches with runtime support [Ma et
al., 2017a; Okumura et al., 2021b].

• A relaxation of the solution concept (m-tolerant solutions) moderately offloads the
burden of computation but with a risk of execution failure.

• Solutions are executable with physical robots in both a centralized style and a de-
centralized style with only local interactions, without cumbersome procedures of
online interventions.

9.1.4 Chapter Organization

• Chapter 9.2 formulates the OTIMAPP problem.

• Chapter 9.3 identifies a necessary and sufficient condition for solutions.

• Chapter 9.4 conducts computational complexity analyses.

• Chapter 9.5 analyzes the cost of time independence, compared to PM and MAPF.

• Chapter 9.6 presents how to solve OTIMAPP.

• Chapter 9.7 presents a relaxed solution concept.

• Chapter 9.8 presents empirical results including robot demonstrations.

• Chapter 9.9 reviews related work to OTIMAPP.

• Chapter 9.10 concludes the chapter with discussions of interesting directions to
extend OTIMAPP.

The code and movie are available at https://kei18.github.io/otimapp.
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9.1.5 Notations and Assumptions

⊥ not found, undefined
G = (V ,E) (undirected) graph, a set of vertices, and a set of edges
A = {1,2, . . . ,n} a tuple of agents
si , gi start and goal vertices of agent i
E = (i, j,k, . . .) execution schedule, infinite sequence of agents

Caution� �
In this chapter, all indexes start from one. This is because OTIMAPP no more includes
time factors. Furthermore, the chapter uses the representation by paths.� �

9.2 Offline Time-Independent Problem

9.2.1 Problem Formulation

Problem Instance. An OTIMAPP instance is given by a graph G = (V ,E), a set of agents
A = {1,2, . . . ,n}, injective initial-state function s : A 7→ V , and injective goal-state function
g : A 7→ V . Let si and gi denote s(i) and g(i), respectively. An OTIMAPP instance on a
digraph is similar to the undirected case.

Execution. An execution schedule is an infinite sequence of agents (e.g., E = (i, j,k, . . .)).
An OTIMAPP execution is defined by an OTIMAPP instance, execution schedule E, and
tuple of paths Π = (Π1, . . . ,Πn) as follows. The agents are activated in turn according to
E. Upon activation and until it reaches the end of its path Πi , agent i takes a single step
along Πi if the vertex is vacant or stays at its current location otherwise. After reaching
the end of the path, the agent remains at the last vertex of the path. E is called fair when
every agent appears infinitely-many times in E.

Decision Problem. An OTIMAPP problem determines whether there exists a tuple of
paths (Π1, . . . ,Πn), such that

• each path for agent i, Πi , begins from si and ends at gi ,

• for any fair execution schedule, all agents reach the end of their paths (i.e., goals)
with a finite number of activations.

A solution is a tuple of paths that satisfies these two conditions.

Progres Index. For convenience, the location of agent i is associated with a progress
index, denoted as clocki ∈ {1, · · · , |Πi |}, and is represented as Πi[clocki], where Πi[k] is the
k-th vertex in Πi . Every progress index starts at one and is incremented each time the
agent moves a step along its path. The progress index is non-decreasing and no longer
increases after reaching the end of the path.

9.2.2 Difference from Online Problem

In the online problem, it is assumed to perform planning and execution based on the
current configuration; hence, both a planner and agents are reactive. In contrast, in the
offline problem, we only know the initial configuration and cannot access what configu-
rations are realized at runtime; therefore, the planner is deliberative. Meanwhile, agents
are reactive because they are assumed to react to online situations. In short, OTIMAPP
disjoints styles of the planner and the agents.
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9.2.3 Other Remarks

Similar to online time-independent planning, any solution must address all timing un-
certainties because the execution schedules are unknown during offline planning. More-
over, the OTIMAPP definition assumes that agents are activated sequentially, i.e., each
activation is atomic. However, there is no loss of generality provided that an agent can
atomically reserve its next location before each move. In other words, unless two agents
never enter the same vertex simultaneously, OTIMAPP solutions are executable. Indeed,
several robots acted simultaneously in our demonstrations. A similar concept regarding
activation is known as a locally central daemon in theoretical distributed algorithms [Al-
tisen et al., 2019]. Note that “wait” actions in conventional MAPF, such that an agent i
chooses staying in the current location as the next action, is meaningless in OTIMAPP.
This is because there are execution schedules such that i consecutively takes actions, i.e.,
(. . . , i, i, . . .). In the rest of the chapter, each path Πi is assumed to start from si and end at
gi to focus on analyses related to schedules.

9.3 Solution Analysis

Given a solution candidate (i.e., a tuple of paths), the first question is whether it is a
(feasible) solution. This section derives the necessary and sufficient condition for the
solutions. For this purpose, four types of deadlocks are introduced, categorized as; cyclic
or terminal; potential or reachable. Informally, a cyclic deadlock is a situation wherein
agent i wants to move to the current vertex of j, who wants to move to the current vertex
of k, and who wants to move to . . . of i. A terminal deadlock is a situation wherein agent i
reaches its destination and blocks the progress of agent j. A potential deadlock is called
reachable when an execution schedule exists and leads to the deadlock.

Definition 9.1 (potential cyclic deadlock). Given an OTIMAPP instance and a tuple of
paths (Π1, . . .Πn), a potential cyclic deadlock is a pair of tuples

(
(i, j,k, . . . , l), (ti , tj , tk , . . . , tl)

)
such that Πi[ti + 1] = Πj [tj ]∧Πj [tj + 1] = Πk[tk]∧ . . .∧Πl[tl + 1] = Πi[ti]. The elements of
the first tuple are not duplicated.

Definition 9.2 (potential terminal deadlock). Given an OTIMAPP instance and a tuple of
paths (Π1, . . .Πn), a potential terminal deadlock is a tuple (i, j, tj ) such that Πi [−1] = Πj [tj ]
and i , j.

Definition 9.3 (reachable cyclic deadlock). A potential cyclic deadlock
(
(i, j, . . . , l), (ti , tj , . . . , tl)

)
is reachable when there is an execution schedule that leads to a situation where clocki =
ti ∧ clockj = tj ∧ . . .∧ clockl = tl . This deadlock is called a reachable cyclic deadlock.

Definition 9.4 (reachable terminal deadlock). A potential terminal deadlock
(
i, j, tj

)
is reach-

able when there is an execution schedule that leads to a situation where clocki = |Πi |∧clockj =
tj − 1. This deadlock is called a reachable terminal deadlock.

Both reachable (or potential) cyclic/terminal deadlocks are called reachable (resp.
potential) deadlocks and simply called “deadlock” whenever the context is obvious. At
least one execution schedule is required to verify whether a potential deadlock is reach-
able. For instance, in Fig. 9.1(left), a schedule (i, i, . . .) is evidence. A potential deadlock
is not always reachable as illustrated in Fig. 9.2.

Theorem 9.5 (necessary and sufficient condition). Given an OTIMAPP instance, a tuple of
path (Π1, . . . ,Πn) is a solution if and only if there are:

• No reachable terminal deadlocks.
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i j

k

i j

Figure 9.2: Examples of unreachable potential deadlocks. left: cyclic;
(
(i, j,k), (3,1,2)

)
.

right: terminal; (i, j,2).

• No reachable cyclic deadlocks.

Proof. Without “no reachable terminal deadlocks,” there is an execution that one agent
arrives at its goal and remains there, disturbing the progression of another agent. With-
out “no reachable cyclic deadlocks,” a cyclic deadlock might occur, and these agents stop
the progression. Therefore, these two conditions are necessary.

Now, consider the proof for these two conditions being sufficient. Given a solu-
tion candidate (Π1, . . . ,Πn) with no reachable deadlocks, consider the potential function
φ :=

∑
i∈A(|Πi | − clocki), defined over a configuration (clock1, . . . ,clockn).2 As the progress

indexes clocki are non-decreasing, φ is non-increasing, and φ = 0 means that all agents
have reached their goals. Furthermore, when φ > 0, φ is guaranteed to decrease if each
agent is activated at least once. This is proven by contradiction as follows.

Assume that there exists a configuration such that the value of φ is unchanged after
the activation of all agents. Since φ , 0, there are agents with progress indices lower
than the maximum values. Let them be B ⊆ A. For an agent i ∈ B, Πi[clocki + 1] is
occupied by another agent j; otherwise, i moves there. The agent j must be in B due to
“no reachable terminal deadlocks.” This is the same for j; i.e., there exists an agent k ∈ B,
such that Πj [clockj + 1] = Πk[clockk]. By induction, since the number of agents is finite,
this sequence of agents must form a cycle somewhere, i.e., a cyclic deadlock. However,
this contradicts “no reachable cyclic deadlocks.”

Each agent is activated at least once in a sufficiently long period because of the fair
assumption, deriving the statement.

When reachable deadlocks are inevitable, OTIMAPP instances have no solution. Fig-
ure 9.3 shows such examples.

i j j

i

i j

j i

start

goal

Figure 9.3: Unsolvable OTIMAPP instances. To visualize instances, the figures dis-
tinguish three types of vertices: start (circle), goal (square), and others (small dots).
left: There is an inevitable reachable terminal deadlock, i.e., j reaches its goal before
i. right: There is an inevitable reachable cyclic deadlock, i.e., when both agents enter the
middle two vertices. Note that these instances are solvable in MAPF or the pebble motion
(PM) problem.

2Precisely, this is not a “configuration” used before that specifies a tuple of locations, however, it is
equivalent because each progress index clocki is associated with a path Πi .
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9.4 Computational Complexity

Next, this section discusses the complexity of OTIMAPP. In particular, the section an-
swers two questions: the difficulty of finding solutions (Chapter 9.4.1) and that of verify-
ing solutions (Chapter 9.4.2). The primary result is that both problems are computation-
ally intractable; the former is NP-hard and the latter is co-NP-complete. Both proofs are
based on reductions of the 3-SAT problem, determining the satisfiability of a formula in
conjunctive normal form with three literals in each clause.

9.4.1 Finding Solutions

The NP-hardness for directed graphs is first derived. Then, it is extended to the case
of undirected graphs. The following proof is partially inspired by the NP-hardness of
MAPF in digraphs [Nebel, 2020].
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c12 c22
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variable decider: x3

clause constrainer C2

¬x1 ∨ x2 ∨ x3

start goal

Figure 9.4: OTIMAPP instance reduced from 3-SAT. The corresponding formula is (x1∨
x2 ∨¬x3)∧ (¬x1 ∨ x2 ∨ x3).

Theorem 9.6 (complexity on digraphs). OTIMAPP on directed graphs is NP-hard.

Proof. The proof is a reduction of the 3-SAT problem. Figure 9.4 is an example of the
reduction from a formula (x1 ∨ x2 ∨¬x3)∧ (¬x1 ∨ x2 ∨ x3).

A. Construction of an OTIMAPP instance

The proof introduces two gadgets, called variable decider and clause constrainer. The
OTIMAPP instance contains one variable decider for each variable and one clause con-
strainer for each clause.
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The variable decider for variable xi assigns xi as TRUE or FALSE. This gadget contains
one agent χi with two paths to reach its goal: left or right. Taking a left path corresponds
to assigning xi as FALSE, and vice versa. For the j-th clause Cj in the formula, when its
k-th literal is either xi or ¬xi , the gadget further includes one agent cjk . Its start and goal
are positioned on the right side from χi when the literal is a negation; otherwise, they are
positioned on the left side. cjk has two alternate paths for reaching its goal: a path within
the variable decider or a path via a clause constrainer. The former is only available when
χi takes a path in the opposite direction to avoid a reachable cyclic deadlock.

The clause constrainer for clause Cj connects the start and the goal of cjk . The gadget

contains a triangle. Each literal cjk enters the triangle from a distinct vertex and exits
it from another vertex. As a result, this gadget prevents three literals in Cj from being
FALSE simultaneously; otherwise, three agents enter the gadget, and there is a reachable
cyclic deadlock.

The number of agents, vertices, and edges are all polynomials with respect to the size
of the formula.

B. The formula is satisfiable if OTIMAPP has a solution

The use of one clause constrainer by three literal agents results in a reachable cyclic
deadlock. Thus, in every OTIMAPP solution, at least one literal agent for each clause
avoids using a clause constrainer. Then, the corresponding variable agent follows the
opposite path to that clause agent, thus satisfying every clause. For instance, in Fig. 9.4,
if c2

3 avoids using the clause constrainer, χ3 must take the right path. This sets x3 to TRUE,
thus satisfying clause C2.

C. OTIMAPP has a solution if the formula is satisfiable

If satisfiable, let the variable agent χi follow a path that follows the assignment. Let cjk
take a path within the variable decider when χi follows the opposite direction. Other-
wise, let cjk use the clause constrainer. For instance, if x3 is set to TRUE, χ3 takes the
right path. c2

3 uses the path within the variable decider. In contrast, c1
3 uses a clause

constrainer. Observe that three agents never enter one clause constrainer due to satisfi-
ability; otherwise, the corresponding clause is not satisfied. Consequently, these paths
constitute a solution.

χ1ζ1
1 ζ2

1

c11 c21

c11 c21

χ1

ζ1
1 ζ2

1

Figure 9.5: Variable decider of x1 with undirected edges.
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Theorem 9.7 (complexity on undirected graphs). OTIMAPP on undirected graphs is NP-
hard.

Proof. The result is derived by extending the proof of NP-hardness on the digraphs. Re-
call that each variable decider for variable xi contains an agent cjk corresponding to k-th
literal in clause Cj when the literal is either xi or ¬xi . The proof for undirected graphs
revises the variable decider by adding a new agent ζjk for each cjk and converting all di-
rected edges of the original variable decider into undirected edges. Figure 9.5 shows an
example of the revised one for x1. The start and goal of ζjk are positioned next to the start

of cjk .
Using this revised gadget, the proof claims that an OTIMAPP instance has a solution

if and only if the formula is satisfiable. This claim holds when solution paths for an agent
χi in a variable decider for xi is virtually the two shortest paths (both two steps; ‘left –
up’ or ‘right – up’). If so, to avoid deadlocks, cjk positioned on the left side must use a
clause constrainer if χi takes the left path, and vice versa. The remainder of the proof is
performed by applying the same arguments as in directed graphs. The reduction is still
in polynomial time.

It is now proven that χi takes the shortest paths in the OTIMAPP solutions, as follows:

A. ζjk must take the shortest path (two steps)

Observe that ζjk must pass through at least one goal of another agent if it does not follow
the shortest path. For instance, ζ1

1 must use either goal of c1
1, c2

1, or ζ2
1 . Now, consider an

execution schedule such that ζjk is not activated for a sufficiently long time and remains
at its start. In such execution schedules, the other agents reach their goal because the
start of ζjk never blocks any other paths. ζjk has no choice other than to take the shortest
path; otherwise, terminal deadlocks exist.

B. χi must take one of the shortest paths (two steps)

Assume, by contradiction, that χi does not take the shortest paths. Specifically, we are
interested in paths without the use of the left/right next edge at the start of χi (red-
colored in Fig. 9.5). However, such paths must use one of the goals of ζ agents. As these
ζ agents take their shortest paths, there are reachable terminal deadlocks.

Strictly speaking, neither χi nor ζjk must take their shortest paths. For instance, χ1
can first visit the left vertex next to its start, then move back to its start, again visit the
left vertex, and finally, visit its goal. However, such trivial variant paths do not affect the
proof structure.

9.4.2 Verification

The co-NP completeness of the verification relies on a lemma stating that finding cyclic
deadlocks is computationally intractable. Subsequently, the complexity result is derived
because the solution has no reachable deadlocks, according to the necessary condition
(Thrm. 9.5).

Lemma 9.8 (complexity of detecting cyclic deadlocks). Determining whether a set of paths
contains reachable or potential cyclic deadlocks is NP-complete.

Proof. The proof is a reduction of the 3-SAT problem, i.e., constructing a combination of
an OTIMAPP instance and a set of paths, such that potential cyclic deadlocks exist if and
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only if the corresponding formula is satisfiable. The below shows the case of directed
graphs. The proof procedure applies to the undirected case without modifications. In
addition, all potential cyclic deadlocks are reachable in the translated problem. The
reduction is performed in polynomial time, deriving the NP-hardness for detecting both
reachable and potential cyclic deadlocks. Since a potential cyclic deadlock can be verified
in polynomial time, and since a reachable cyclic deadlock can be verified in polynomial
time with an execution schedule, they are NP-complete.

It is now explained how to translate the 3-SAT formula to the OTIMAPP instance
and the corresponding set of paths. Without loss of generality, the proof assumes that
all variables appear positively and negatively in the formula. Throughout the proof, the
following example is used:

(x1 ∨ x2 ∨¬x3)∧ (¬x1 ∨ x2 ∨ x3)∧ (x1 ∨¬x2 ∧¬x3) (9.1)

Its outcome is partially depicted in Fig. 9.6. The complete version is presented in Fig. 9.7.

z

c12

c32

c22
c12 c22 c32c21 c23

z

♣ ♣

variable decider: x2

clause constrainer: C2

c21
c22

c23

TRUE (upper)

FALSE (lower)

start

goal

vacation vertex

Figure 9.6: OTIMAPP instance and solution reduced from 3-SAT. The corresponding
instance is (x1∨ x2∨¬x3)∧ (¬x1∨ x2∨ x3)∧ (x1∨¬x2∧¬x3). For visualization, we break
a large circle; regard two ♣ marks as connected. Omitted vertices and edges are comple-
mented in Fig. 9.7.

A. Construction of an OTIMAPP instance and a set of paths

For each literal in each clause, a literal agent is introduced. Here, cjk denotes a literal agent
for the k-th literal in j-th clause Cj in the formula. In addition, a special agent, z, is used.

Next, consider two gadgets: variable decider and clause constrainer. Note that they are
different from those used in the proof of Thrm. 9.6; however, their intuitions are similar,
thus, the same names are used.

The variable decider determines whether the variable xi occurs positively or nega-
tively. One gadget is introduced for each variable. All the literal agents for xi (i.e., either
xi or ¬xi) begin from the vertices in this gadget. The gadget contains two paths: an upper
path, corresponding to assigning TRUE to xi , and a lower path, corresponding to FALSE

assignment to xi . Positive literals are connected to the upper path, whereas negative lit-
erals are connected to the lower path. For instance, x2 has three literal agents: c1

2 (x2), c2
2

(x2), and c3
2 (¬ x2). In Fig. 9.6, the upper and lower paths are highlighted by bold lines.

c1
2 and c2

2 are connected to the upper path while c3
2 is connected to the lower path. Each

literal agent uses one edge in the upper/lower path and moves to a clause constrainer via
one vacation vertex.
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The clause constrainer contains all goals of the literal agents in the clause. Three
edges are used to reach the goals. Each edge is for each literal agent. For instance, the
clause constrainer of C2 contains the goals of c2

1, c2
2, and c2

3. In Fig. 9.6, three edges are
annotated with the agent’s name. c2

2 is supposed to use the colored middle one. Note that
multiple edges are used for simplicity. The gadget can be easily converted into a simple
graph, as shown immediately after the proof.

As a result, all literal agents take six edges to reach their goals. This is visualized by
colored edges in Fig. 9.6 and 9.7. The special agent z uses two edges to reach its goal,
through ♣marks in the figure. Now, the description has finished about how to construct
the OTIMAPP instance and the corresponding set of paths. The remaining part indicates
that these paths contain potential/reachable cyclic deadlocks if and only if the formula
is satisfiable. This translation from the formula into an OTIMAPP instance and paths is
clearly realized in polynomial time.

z

c12

c32

c22 c12c11 c13 c32c31 c33c22c21 c23

z

♣ ♣

c11

c21

c31

c13

c23

c33

Figure 9.7: Complete version of Fig. 9.6. The formula is (x1∨x2∨¬x3)∧ (¬x1∨x2∨x3)∧
(x1 ∨¬x2 ∧¬x3). Each color corresponds to a path for each agent.

B. A potential cyclic deadlock exists if the formula is satisfiable

To observe this, if a potential cyclic deadlock exists, the agents must attempt to use:
a) either an upper or a lower path for each variable decider, b) one edge for each clause
constrainer, and c) edge for z (i.e., ♣).

When the formula is satisfiable for one assignment, consider the following execution.

1. For each assigned value, move the corresponding clause agents to vacation vertices
in each variable decider, i.e., one step before clause constrainers.

2. Among the above agents, for each clause constrainer, there is at least one agent
capable of entering the clause constrainer owing to satisfiability. Move them one
step further. As a result, all clause constrainers have one agent at the first vertices.
Vertices in upper/lower paths in the variable deciders must be vacant now.

3. Move all unassigned clause agents one step. As a result, all vertices in the unas-
signed paths are filled by the unassigned clause agents.

We now have a cyclic deadlock. This deadlock is reachable and thus potential.
For example, consider a satisfiable assignment x1 = TRUE, x2 = TRUE, x3 = TRUE. Ini-

tially, move assigned agents, c1
1, c1

2, c2
2, c2

3, and c3
1 to vacation vertices in each variable

decider (Fig. 9.8; Step 1). Next, move c1
2, c2

2, and c3
1 to the first vertices of each clause

constrainer of C1, C2, and C3, respectively (Fig. 9.8; Step 2). Subsequently, move all
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Step 1: Move assigned agents to vacation vertices
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c22

c22

c23

c23

c31
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c21 c32 c13 c33

Step 2: Fill clause constrainers

z

c12

c32

c22 c12c11 c13 c32c31 c33c22c21 c23

z

♣ ♣

c11

c21

c31

c13

c23

c33

c11

c11

c12

c12

c22

c22

c23

c23

c31

c31

c21

c21

c32

c32

c13

c13

c33

c33

Step 3: Move unassigned agents one step

Figure 9.8: Construction of a reachable deadlock. The formula is (x1∨x2∨¬x3)∧(¬x1∨
x2∨x3)∧(x1∨¬x2∧¬x3). The assignment is x1 = TRUE, x2 = TRUE, and x3 = TRUE. Locations
of all agents are colored. When an agent departs from its start, the corresponding vertex
is grayed out. Bold lines in Step 3 constitute a reachable deadlock.

unassigned agents, c2
1, c3

2, c1
3, and c3

3, one step (Fig. 9.8; Step 3). Consequently, there is a
cyclic deadlock with c2

1, c
3
2, c

1
3, c

3
3, c

1
2, c

2
2, c

3
1, and z, as annotated with bold lines in Fig. 9.8.
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C. The formula is satisfiable if a potential cyclic deadlock exists

To form a potential cyclic deadlock, for each variable decider, one or several agents at-
tempt to move along either an upper or a lower path. Consider assigning an opposite
value to the path used for the variable. For instance, if c1

2 and c2
2 are involved in the dead-

lock at the variable decider (see Fig. 9.6), then assign FALSE to x2. This assignment must
satisfy the formula because at least one literal in each clause becomes TRUE; otherwise, at
least one clause constrainer exists, such that the first vertex is empty, i.e., no deadlock.

D. All potential cyclic deadlocks are reachable

Thus far, the proof has established the claim that a potential cyclic deadlock exists if and
only if the formula is satisfiable. Next, it is claimed that all potential cyclic deadlocks
are reachable. According to the above discussion, given a potential cyclic deadlock, the
corresponding satisfiable assignment exists. Consider the execution of Part B using this
assignment, slightly changing Step 2. In this step, arbitrary agents can be selected for
each clause constrainer. Therefore, the agents involved in a potential cyclic deadlock can
be selected. Consequently, this deadlock is reachable.

In the proof of Lemma 9.8, multiple edges in a gadget clause constrainer for the re-
duction from 3-SAT are used. Since OTIMAPP assumes a simple graph (i.e., no multiple
edges), how to convert it into a correct OTIMAPP instance is complemented here. Fig-
ure 9.9 shows an example of the clause constrainer forC2. Recall that a clause constrainer
contains all goals for the corresponding clause agents. In this new gadget, intermediate
vertices are added for each edge, which can potentially trigger cyclic deadlocks. For each
agent cjk , a new agent ĉjk is introduced. The start point is an intermediate vertex, whereas

the goal point is the original goal of cjk . Furthermore, a goal for cjk is changed to the start

of ĉjk . Consider now replacing all old clause constrainers with this new gadgets. The
translation is performed in polynomial time. The remainder of the proof is straightfor-
ward, as from Lemma 9.8.

c12 ĉ12

c22 ĉ22

c32 ĉ32

ĉ12 ĉ22 ĉ32

Figure 9.9: Example of clause constrainer without multiple edges. Used in the proof of
Lemma 9.8.

Finally, the co-NP-completeness is derived as follows.

Theorem 9.9 (complexity of verification). Verifying a solution of OTIMAPP is co-NP-complete.

Proof. The necessary condition of Theorem 9.5 states that a solution has non-reachable
terminal/cyclic deadlocks. Verifying no reachable terminal deadlocks is in co-NP; in-
deed, a reachable terminal deadlock is verifiable in polynomial time given an appro-
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priate execution schedule. Verifying no reachable cyclic deadlocks is co-NP-complete,
according to Lemma 9.8.

9.5 Cost of Time Independence

This section analyzes OTIMAPP and compares it with other problems for multiple mov-
ing agents on graphs, namely the pebble motion (PM) problem [Kornhauser et al., 1984],
which is a generalization of a sliding puzzle, and MAPF [Stern et al., 2019], which finds
“timed” paths on graphs. Because PM, MAPF, and OTIMAPP have the same inputs and
similar outputs, i.e., instructions on how agents move, the analysis of the OTIMAPP
compared to those two to clarify the characteristics is a sensible option.

A formal description of PM is as follows. Refer to Chap. 3.2.1 for that of MAPF.

Definition 9.10 (PM). The pebble motion (PM) problem is defined as follows. The inputs
are a graph, set of agents, and start-goal pair for each agent. The starts and goals are distinct
between agents. In one operation, one agent is moved from its current vertex to an adjacent
vacant vertex. A solution is a sequence of operations that makes all agents reach their goals.

The main observation is that time independence is costly; solvable instances are more
restrictive, and the solution cost increases.

9.5.1 Solvability

PM prohibits two agents from moving simultaneously, whereas MAPF allows it. This
causes a slight change; MAPF allows a rotation of agents, i.e., a set of agents move along a
cycle simultaneously, whereas the PM cannot. Emulating a feasible solution for PM using
MAPF is possible by moving an agent one by one. In summary;

Proposition 9.11 (solvability: PM vs. MAPF). Solvable instances for PM are solvable for
MAPF. The opposite does not hold.

OTIMAPP is more restrictive than PM and MAPF.

Proposition 9.12 (solvability: OTIMAPP vs. PM, MAPF). Solvable instances for OTIMAPP
are solvable for PM and MAPF. The opposite does not hold.

Proof. A solvable instance of OTIMAPP has a solution. This solution operates with any
fair execution schedules. Take one of the schedules. The corresponding execution can be
emulated by PM, deriving the first claim, along with Prop. 9.11. For the second claim,
we have already seen examples in Fig. 9.3.

9.5.2 Optimality

Next, we consider the solution quality, i.e., the cost of the solutions. For the optimization
criteria of OTIMAPP, this section uses the minimum activation counts wherein all agents
reach the goals, e.g., seven in Fig. 9.1 (see right). Let C∗OTIMAPP denote the optimal cost
for a given OTIMAPP instance.

The cost of PM is the number of operations, e.g., the optimal cost in Fig. 9.1 is six
(see left). Let C∗PM denote the optimal cost of PM. Note that solving PM optimally is
NP-hard [Ratner and Warmuth, 1986].

Proposition 9.13 (optimality: OTIMAPP vs. PM). For any instances wherein OTIMAPP is
solvable, 1 ≤ C∗OTIMAPP/C

∗
PM. The bound is tight. For any k ∈ R, there exists an instance where

C∗OTIMAPP/C
∗
PM > k.
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instance

j i j i

PM solution

j i j i

OTIMAPP solution

j i j i

Figure 9.10: Example with a large optimal ratio between PM and OTIMAPP. Regard
the dashed line (black) as a sufficiently long path. The optimal PM solution requires six
operations, while in OTIMAPP, either i or j has to take the long path.

Proof. C∗OTIMAPP ≥ C
∗
PM holds because PM can emulate OTIMAPP execution. Figure 9.10

shows an example where the optimal ratio can be increased arbitrarily.

The cost of MAPF varies; see Chap. 3.2.2. The most commonly used method is the
number of operations (aka. makespan). Let C∗MAPF denote the optimal makespan of
MAPF. Since MAPF can emulate PM, C∗MAPF never exceeds C∗PM. Furthermore, for solv-
able PM instances, there exists a polynomial-time procedure [Kornhauser et al., 1984]
to obtain a solution that requires O(V 3) operations, where |V | is the number of vertices,
concluding as follows.

Proposition 9.14 (optimality: PM vs. MAPF). 1 ≤ C∗PM/C
∗
MAPF ≤O

(
V 3

)
for the same inputs

when PM is solvable.

Proposition 9.15 (optimality: OTIMAPP vs. MAPF). For any instance in which OTIMAPP
is solvable, 1 ≤ C∗OTIMAPP/C

∗
MAPF. The bound is tight. For any k ∈ R, there exists an instance

where C∗OTIMAPP/C
∗
MAPF > k.

9.5.3 Complexity

Finally, the computational complexity of the three problems is summarized.

Finding Solutions. Finding a solution to PM or MAPF in directed graphs is NP-hard [Nebel,
2020]. Further, OTIMAPP on directed graphs is NP-hard (Thrm. 9.6). In addition, find-
ing a solution to PM or MAPF in undirected graphs can be computed in polynomial time.
A polynomial-time procedure for solving PM was reported in [Kornhauser et al., 1984;
Yu and Rus, 2015]. By contrast, OTIMAPP on undirected graphs is NP-hard (Thrm. 9.7).

Verification. On both directed and undirected graphs, verification of a solution can-
didate is performed in polynomial time in both PM and MAPF; they belong to NP. In
contrast, on both the directed and undirected graphs, the verification of OTIMAPP is
co-NP-complete (Thrm. 9.9).

9.6 Solvers

From this section, we shift our focus to solving OTIMAPP.
In practice, using the necessary and sufficient condition (Thrm. 9.5) is challenging

because the corresponding schedules must be specified. This motivates us to build a
relaxed sufficient condition.

Theorem 9.16 (relaxed sufficient condition). Given an OTIMAPP instance, a tuple of path
(Π1, . . . ,Πn) is a solution when there are:

• no use of other goals, i.e., gj <Πi for all i , j except for si = gj .
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• no potential cyclic deadlocks.

Proof. Use Thrm. 9.5; the “no use of other goals” is sufficient for “no reachable terminal
deadlocks,” whereas “no potential cyclic deadlocks” is sufficient for “no reachable cyclic
deadlocks.”

Given a tuple of paths, “no use of other goals” can be easily checked, whereas “no
potential cyclic deadlocks” is intractable in computation (Lemma 9.8). Nevertheless,
detecting potential cyclic deadlock is the basis for solving OTIMAPP. Therefore, this section
first explains how to detect potential cyclic deadlocks. Subsequently, two algorithms for
solving OTIMAPP are presented.

9.6.1 Detection of Potential Cyclic Deadlocks

First, a notion of fragment is introduced, which is a candidate for potential cyclic dead-
locks.

Definition 9.17 (fragment). Given a tuple of paths (Π1,. . . ,Πn), a fragment is a tuple(
(i, j,k, . . . , l), (ti , tj , tk , . . . , tl)

)
such that Πi[ti + 1] = Πj [tj ]∧Πj [tj + 1] = Πk[tk]∧ . . . = Πl[tl].

The elements of the first tuple are without duplicates.

A fragment starts from a vertex u when Πi[ti] = u and ends at a vertex v when Πl[tl +1] =
v. A fragment ending at its start (i.e., Πl[tl + 1] = Πi[ti]) is a potential cyclic deadlock.

Using fragments, Alg. 9.1 detects a potential cyclic deadlock in a tuple of paths,
provided it exists. In the pseudocode, fragments are denoted by a pair of two lists:
“agents” and (progress) “indexes.” ‘+’ operation generates a new list by concatenating
elements while maintaining the order, e.g., i + (j,k) → (i, j,k), (i, j) + k → (i, j,k), and
(i) + j + (k)→ (i, j,k). The intuition for the algorithm is as follows.

1. The algorithm checks each path one by one.

2. All the fragments created thus far are stored.

3. For each edge in each path, the algorithm creates new fragments using the existing
fragments.

4. If a fragment ends at its start, this is a potential cyclic deadlock.

The algorithm details are described in the proof of completeness.

vfrom vto
θto

case 1

vfrom vto
θfrom

case 2

vfrom vto
θto θfrom

case 3

Figure 9.11: Three cases of creating new fragments by extending existing fragments.

Theorem 9.18 (completeness of deadlock detection). Algorithm 9.1 finds and returns a
potential cyclic deadlock if at least one exists; otherwise, it returns NOT_FOUND.

Proof. The algorithm uses two tables that store fragments: Θfrom and Θto. Both tables
use one vertex as the key. One entry in Θfrom stores all the fragments starting from the
vertex, while one entry in Θto stores all the fragments ending at the vertex. A fragment
is registered in both tables. The theorem is now derived through induction on Πi .
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Algorithm 9.1 Potential cyclic deadlock detection.

input: tuple of paths (Π1, . . . ,Πn)

output: one potential cyclic deadlock or NOT_FOUND

1: Θfrom,Θto←∅ ▷ table for fragments, key: vertex
2: procedure register(θ)

3: i← θ.agents[1]; j← θ.agents[−1]

4: ti ← θ.indexes[1]; tj ← θ.indexes[−1]

5: Θfrom[Πi[ti]].append(θ)

6: Θto[Πj [tj + 1]].append(θ)

7: function isDeadlock(θ)

8: i← θ.agents[1]; j← θ.agents[−1]

9: ti ← θ.indexes[1]; tj ← θ.indexes[−1]

10: return Πi[ti] = Πj [tj + 1]

11: for i = 1 . . .n do
12: for t = 1 . . . |Πi | − 1 do
13: vfrom←Πi[t],vto←Πi[t + 1]

14: θ← {agents : (i), indexes : (t)} ▷ add a single fragment
15: register(θ)

16: for θto ∈Θto[vfrom] do ▷ case 1
17: if i ∈ θto.agents then continue
18: θ← {agents : θto.agents + i, indexes : θto.indexes + t}
19: if isDeadlock(θ) then return θ
20: register(θ)

21: for θfrom ∈Θfrom[vto] do ▷ case 2
22: if i ∈ θfrom.agents then continue
23: θ← {agents : i +θfrom.agents, indexes : t +θfrom.indexes}
24: if isDeadlock(θ) then return θ
25: register(θ)

26: for θto ∈Θto[vfrom], θfrom ∈Θfrom[vto] do ▷ case 3
27: if i ∈ θto.agents∪θfrom.agents then continue
28: if θto.agents∩θfrom.agents , ∅ then continue
29: θ← {agents : θto.agents + i +θfrom.agents,

indexes : θto.indexes + t +θfrom.indexes}
30: if isDeadlock(θ) then return θ
31: register(θ)

32: return NOT_FOUND

Base Case. In the first iteration of the loop (Lines 11–31), all fragments for {Π1} are
registered in Θfrom and Θto because of Lines 14–15. No potential cyclic deadlocks exist
for {Π1}.

Induction Hypothesis. Assume that there are no potential cyclic deadlocks for {Π1, . . . ,Πi−1},
and all their fragments are registered in Θfrom and Θto.
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Induction Step. Now, the property for i is derived. Otherwise, a potential cyclic dead-
lock exists for {Π1, . . . ,Πi}, and consequently the algorithm returns it. All the new frag-
ments of Πi are categorized as follows:

• A fragment with only Πi .

• A fragment that extends other fragments on Θfrom and Θto using (vfrom,vto) ∈Πi .

The former is preserved because of Lines 14–15. The latter is further categorized into
three cases:

1. A fragment that ends at vfrom.

2. A fragment that starts from vto.

3. A fragment connecting two existing fragments, one that ends at vfrom and another
that starts from vto.

See also Fig. 9.11. Each case corresponds to Lines 16–20, Lines 21–25, and Lines 26–31,
respectively. Consequently, all fragments are to register on Θfrom and Θto. Otherwise, a
potential cyclic deadlock exists and the algorithm returns it (Lines 19, 24 and 30).

Table 9.1 provides an example update of Θfrom using Alg. 9.1.

induction key new fragments

{π1} u [(1), (1), (u,v)]

v [(1), (2), (v,w)]

{π1,π2} u [(1,2), (1,1), (u,v,x)]

v [(2), (1), (v,x)]

x [(2), (2), (x,y)]

{π1,π2,π3} u [(1,2,3), (1,1,2), (u,v,x,u)]

v [(2,3), (1,2), (v,x,u)]

[(2,3,1), (1,2,1), (v,x,u,v)]

x [(3), (2), (x,u)], [(3,1), (2,1), (x,u,v)]

[(3,1,2), (2,1,1), (x,u,v,x)]

z [(3), (1), (z,x)], [(3,2), (1,2), (z,x,y)]

Table 9.1: Example of detecting potential cyclic deadlocks. The update of Θfrom for
Π1 = (u,v,w), Π2 = (v,x,y), and Π3 = (z,x,u) is described. See also Fig. 9.12. The table
uses [(agents), (progress indexes), (path)] as a notation of fragment, where “path” is a cor-
responding sequence of vertices of the fragment. Detected potential cyclic deadlocks are
blue-colored. Note that the algorithm halts when it finds one of them.

The time complexity does not contradict the NP-completeness in detecting potential
deadlocks (Lemma 9.8).

Observation 9.19 (space and time complexity). Algorithm 9.1 requires Ω
(
2|A|

)
both for

space and time complexity in the worst case.

Proof. Consider the example in Fig. 9.13. In any solution, the number of fragments start-
ing from u becomes Ω

(
2|A|

)
, implying the statement.

Although Alg. 9.1 does not run in polynomial time, it works sufficiently fast in a
sparse environment such that not many paths use the same vertices.

Next, we see two algorithms that use Alg. 9.1 as a sub-procedure to solve OTIMAPP.
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1

u

2

v w

x

y

3
z

Figure 9.12: Situation of Table 9.1.

u v{si } {gi }

Figure 9.13: Example that requires huge space and time to detect potential deadlocks.
All starts are on the left. All goals are on the right. Two zones are connected by a suffi-
ciently long path whose length exceeds |A|.

9.6.2 Prioritized Planning (PP)

As appeared several times so far, prioritized planning (PP) [Erdmann and Lozano-Perez,
1987] is neither complete nor optimal. However, it is computationally inexpensive,
hence, it is a popular approach to MAPF. PP plans paths sequentially while avoiding
collisions with the previously planned paths. Instead of inter-agent collisions, solvers for
OTIMAPP must consider potential cyclic deadlocks.

Algorithm 9.2 is PP for OTIMAPP. When planning a single-agent path, PP avoids us-
ing (i) the goals of other agents and (ii) edges that trigger potential cyclic deadlocks (Line 3).
The latter is detected by storing all fragments created by the previously computed paths.
For this purpose, PP uses the adaptive version of Alg. 9.1. A path that satisfies these con-
straints can be found using ordinary pathfinding algorithms. If not, PP returns FAILURE.
The correctness of PP is derived from the relaxed sufficient condition (Thrm. 9.16).

Algorithm 9.2 PP for OTIMAPP.

input: OTIMAPP instance

output: solution (Π1, . . . ,Πn) or FAILURE

1: Θfrom,Θto←∅

2: for i = 1 . . . |A| do

3: Πi ← a path for agent i while avoiding the use of

· gj ,∀j , i,except for si

· (u,v) ∈ E s.t. ∃θ ∈Θto[u] and θ starts from v

▷ avoiding cyclic deadlocks for {Πj}j<i
4: if Πi is not found then return FAILURE

5: update Θfrom and Θto with Πi using Alg. 9.1

6: return (Π1, . . . ,ΠN )
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PP is simple albeit incomplete. In particular, the planning order of agents is crucial;
an instance may or may not be solved, as illustrated in Fig. 9.14. One resolution involves
the repetition of PP with random priorities until the problem is solved. Let’s call this
PP+. However, finding good orders can be challenging because there are |A|! patterns.
This motivates us to develop a search-based solver as described in the next.

i

j

Figure 9.14: Example instance that the planning order affects the solvability. When i
plans prior to j, PP results in success with solid lines. PP fails if j plans first and takes
the dotted line.

9.6.3 Deadlock-based Search (DBS)

Next, deadlock-based search (DBS) to solve OTIMAPP is presented, based on a popular
MAPF solver, CBS [Sharon et al., 2015]. CBS uses a two-level search. A high-level search
manages collisions between agents. When a collision occurs between two agents at a cer-
tain time and location, there are two possible resolutions depending on which agent gets
to use the location at that time. Following this observation, CBS constructs a binary tree
where each node includes constraints prohibiting the use of space-time pairs for certain
agents. In a low-level search, agents find a single path constrained by the corresponding
high-level node.

Instead of collisions, DBS considers potential cyclic deadlocks. When detecting a
deadlock in a tuple of paths, one of the agents in the deadlock avoids using the edge.
Thus, the constraints identify which agents prohibit using which edges in which orienta-
tions.

Algorithm 9.3 describes the high-level search of DBS. Each node in the high-level
search contains constraints, a list of tuples comprising one agent and two vertices (repre-
senting “from vertex” and “to vertex”), and paths as a solution candidate. The root node
has no constraints (Line 1). Its paths are computed following “no use of other goals” in
Thrm. 9.16 (Line 2). The node is then inserted into a priority queue Open (Line 3). In the
main loop (Lines 4–11), DBS repeats;

1. Selecting one node (Line 5).

2. Checking a deadlock and creating constraints (Line 6).

3. Returning a solution if the paths contain no deadlocks (Line 7).

4. If not, creating successors and inserting them into Open (Lines 8–11).

DBS returns NOT_FOUND when Open becomes empty (Line 12). Several complementary
details are provided below.

• Line 5: Open is a priority queue and needs the order of nodes. Although DBS
works in any order, good orders reduce the search effort. For effective heuristics,
our implementation uses the descending order of the number of deadlocks with
two agents, which is computed within a reasonable time.
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Algorithm 9.3 Deadlock-based search (DBS) for OTIMAPP.

input: OTIMAPP instance

output: solution (Π1, . . . ,Πn) or NOT_FOUND

1: N init.constraints←∅

2: N init.paths← find paths with “no use of other goals”

3: Open.push
(
N init

)
▷ Open: priority queue

4: while Open , ∅ do

5: N ←Open.pop()

6: C← get constraints ofN using Alg. 9.1

7: if C = ∅ then returnN .paths

8: for (i,u,v) ∈ C do

9: N new← {constraints :N .constraints + (i,u,v), paths :N .paths}

10: update Πi inN new.paths to followN new.constraints

11: if Πi is found then Open.push (N new)

12: return NOT_FOUND

• Line 6: Let
(
(i, j,k, . . . , l), (ti , tj , tk , . . . , tl)

)
be the deadlock returned by Alg. 9.1. Then,

constraints (i,Πi[ti],Πi[ti+1]), (j,Πj [tj ],Πj [tj+1]), . . . , (l,Πl[tl],Πl[tl+1]) are created.

• Line 10 forces one path Πi in the node to follow the new constraints. This low-level
search must follow “no use of other goals,” furthermore, all edges in the constraints
for i. If not found, DBS discards the corresponding successor.

Theorem 9.20 (DBS). DBS returns a solution when solutions satisfying Thrm. 9.16 exist;
otherwise, it returns NOT_FOUND.

Proof. Assume that there is a solution Π that satisfies the relaxed sufficient condition
(Thrm. 9.16). At each cycle of Lines 4–11, at least one node in Open is consistent with
Π, i.e., its constraints allow searching Π. This is derived from the following induction:
(i) the initial nodeN init is consistent with Π, and (ii) the nodes generated from a consis-
tent node with Π must include at least one consistent node. The search space, i.e., which
agents are prohibited from using which edges in which directions, is finite. Therefore,
DBS eventually returns Π (or another solution); otherwise, no such solutions exist.

Example

An example of DBS is described using Fig. 9.14. Assume that the initial path of i is the
solid blue line and the path for j is the dashed red line (Line 2). This node is inserted
into Open (Line 3) and is expanded immediately (Line 5). There is one potential cyclic
deadlock in the paths. Consequently, two constraints are created: either i or j avoids
using the shared edge (Line 10). Two child nodes are generated; however, the node that
changes i’s path is invalid because there is no such path without using the goal of j. The
other is valid: j takes the solid red line. Therefore, a node is added to Open from the root
node. In the next iteration, the newly added node is expanded. There are no potential
cyclic deadlocks at this node. Thus, DBS returns its paths as a solution.
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Optimization

Although the chapter focuses on a decision problem, DBS can apply to optimization
problems. The total and maximum path lengths in a solution can be defined as the ob-
jective functions (i.e., sum-of-fuels and maximum-moves in MAPF). These optimization
problems can be optimally solved using DBS when it prioritizes high-level search nodes
with smaller scores, as is commonly performed in CBS. Note that metrics that assess time
aspects, such as the total traveling time used in MAPF studies, are significantly affected
by execution schedules. Thus, adaptation is not trivial.

9.6.4 PP vs. DBS

DBS has the theoretical guarantee of finding solutions (Thrm. 9.20) while PP does not.
Indeed, there are instances solvable for DBS but unsolvable for PP even with any plan-
ning order. Figure 9.15a shows such an example. Observe first that this instance has
a solution satisfying the sufficient condition (Thrm. 9.16), as shown in Fig. 9.15b. DBS
eventually returns it.

(a) instance

21

3 4

1 2

43

(b) planning by DBS

21

3 4

1 2

43

(c) planning by PP(+)

(infeasible)

21

3 4

1 2

43

start

goal

Figure 9.15: Instance solvable for DBS but unsolvable for PP(+).

In contrast, PP(+) fails to solve the instance. Suppose that the single-agent pathfinding
in PP prefers to use the middle two vertices of the instance, as illustrated in the path of
agent-1 in Fig. 9.15c. Consider the planning order of (1,2,3,4). PP assigns paths with the
middle two vertices (blue and orange) to agents 1 and 2. Then, it assigns a path shown
in Fig. 9.15c to agent 3 (7 steps; cyan), reflecting avoiding cyclic deadlocks with agents
1 and 2. Now, agent 4 has no path without cyclic deadlocks. For instance, consider the
red path in Fig. 9.15c. Then, there are reachable cyclic deadlocks for the combination of
these paths, e.g., ((1,2,3,4), (4,3,3,2)) using the notation of Def. 9.1. Due to the symmetry
of the instance, regardless of planning orders, the last planning agent has always no path
without deadlocks.

As a technical point, the assumption that single-agent pathfinding prefers to use the
middle two vertices follows the typical implementation of PP for MAPF which plans
the shortest paths for each agent. Note, the path length of Fig. 9.15b (say, path-b) and
Fig. 9.15c (path-c) of agents {1,2} do not differ. However, the instance can introduce
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auxiliary vertices and agents to make the path-b longer than path-c while maintaining
the structure above. Figure 9.15 just presents a minimum example.

Although PP has no guarantee of finding solutions, in general, the planning burden
tends to be smaller compared to that of DBS. In other words, PP is faster than DBS. This
is because PP seeks solutions in a decoupled search space that does not consider the joint
actions of multiple agents. The above discussion corresponds to the discussion of PP vs.
CBS in the MAPF literature, i.e., PP is faster than CBS in general while compromising the
guarantee of finding solutions. We will later see empirical results that justify this trend.

9.7 Relaxation of Feasibility

OTIMAPP is unfortunately computationally intractable (Thrm. 9.6 and 9.7). Moreover,
detecting potential cyclic deadlocks itself, which is a core of solving OTIMAPP, is com-
putationally intractable (Lemma 9.8). Therefore, one realistic approach in large problem
instances is to relax the solution concept of OTIMAPP. More precisely, it is practical to
find a set of paths that is unlikely to trigger something bad (i.e., deadlock). Following
this perspective, we introduce a relaxed solution concept as follows.

Definition 9.21 (m-tolerant solution). A tuple of paths is an m-tolerant solution when

• No reachable terminal deadlocks.

• No reachable cyclic deadlocks with m agents or fewer.

This motivation stems from the fact that reachable deadlocks with many agents rarely
occur. For instance, in grids, deadlocks with more than eight agents are unlikely to occur
with schedules generated uniformly at random (see Chap. 9.8.3). It should be noted that
when a tuple of paths is |A|-tolerant, it is a solution to OTIMAPP.

To find m-tolerant solutions, a procedure for detecting potential cyclic deadlocks of
up to m agents is required. This is constructed directly from Alg. 9.1; abandon all frag-
ments with m agents or more, unless they are potential cyclic deadlocks. In addition, a
fragment whose first vertex is m′ steps apart from its last vertex can be discarded, with-
out using the vertices in the fragment, when the number of agents in the fragment plus
m′ exceeds m. This fragment never produces potential cyclic deadlocks with m or fewer
agents. Since stored fragments are dramatically reduced, which is the bottleneck for de-
tecting potential cyclic deadlocks, a significant reduction in the computational burden is
expected for both PP and DBS introduced in Chap. 9.6.

Unfortunately, the complexity of finding m-tolerant solutions remains intractable.

Theorem 9.22 (complexity of m-tolerant solutions). Finding 2-tolerant solutions is NP-
hard.

Proof. The proof of NP-hardness on undirected graphs (Thrm. 9.7) already restricts dead-
locks with three agents (i.e., 3-tolerant solutions). Here, the proof further replaces the
clause constrainer as Fig. 9.16 to restrict 2-tolerant solutions. This new gadget cannot
be used simultaneously by the three agents. Otherwise, agent cj2 has a reachable cyclic

deadlock with either cj1 or cj3 (at red colored edges), or if either cj1 or cj3 meet terminal

deadlocks with cj2. The translation is still in polynomial time.
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Figure 9.16: Equivalent gadget of the clause constrainer for a clause Cj .

9.8 Evaluation

This section empirically demonstrates that OTIMAPP solutions are computable to a cer-
tain extent (Chap. 9.8.1), and they are useful in adverse environments regarding tim-
ings (Chap. 9.8.2) through simulation experiments. This section also presents how m-
tolerant solutions relax computational effort while incurring the risk of execution failure
(Chap. 9.8.3), as well as OTIMAPP execution with mobile robots (Chap. 9.8.4). The code
was written in C++, and the experiments were run on a desktop PC with Intel Core i9
2.8 GHz CPU and 64 GB RAM.

9.8.1 Stress Test

Setup. Each solver was tested with a timeout of 5 min on four-connected undirected
grids picked up from [Stern et al., 2019] as a graph G. In addition, the random graphs
were tested. All instances were generated by setting random start si and goal gi , while
ensuring that si and gi have at least one path without the use of other goals; otherwise,
it violates the “no use of other goals” condition of Thrm. 9.16. However, unsolvable
instances may still be included.

Result. Figures 9.17 and 9.18 present the results. Since DBS detects unsolvable in-
stances regarding the relaxed sufficient condition of Thrm. 9.16, the figures additionally
show the corresponding scores for the sum of the numbers of solved instances and de-
tected unsolvable instances. The corresponding scores are marked as DBS∗. The main
findings of the results are as follows.

• Both solvers can solve instances with tens of agents in various maps within a rea-
sonable timeframe. The scalability of DBS is partially due to focusing on decision
problems rather than optimization problems, unlike usual CBS studies in MAPF.

• PP frequently fails because of priority orders (e.g., Fig. 9.14), whereas PP+ and DBS
can overcome such limitations to some extent. Recall that PP+ repeats PP with
random order until finding solutions or reaching the timeout.

• The bottleneck of each solver is the procedure for detecting potential cyclic dead-
locks, an NP-hard problem (Lemma 9.8). This also led to similar success rates for
PP+ and DBS.

• The bottom of Fig. 9.17 displays how many random attempts in PP+ were done for
the solved instances. PP+ solved instances with small numbers of the trials (at most
17 in the displayed results); otherwise, it failed.
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• In experiments on random graphs, it becomes easier to find solutions as the edge
connection probability p increases. This is attributed to an increase in the aver-
age degree of the graphs and a decrease in their diameter; both factors contribute
reasonably to finding deadlock-free paths.

• As seen in runtime results of Fig. 9.17, PP(+) has the speed advantage over DBS, i.e.,
finding solutions with smaller computational burdens compared to those of DBS.
Meanwhile, PP+ misses the detection of unsolvable instances. Indeed, in Fig. 9.18,
there were many unsolvable instances detected by DBS (see differences between
DBS and DBS∗), while PP+ did not tell anything and just reached the timeout. These
observations are aligned with the discussion in Chap. 9.6.4.
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Figure 9.17: Stress test on four-connected grids. The success rate is based on 25 identi-
cal instances. DBS∗ includes detected instances that are unsolvable for DBS before time-
out, which is not possible for PP(+). The figure also presents accumulated runtime with a
fixed number of agents over 100 instances, and runtime profiling (median) of each solver
over success instances for both solvers. At the bottom, histograms of the numbers of ran-
dom attempts in PP+ are additionally reported for solved instances. The same instances
for runtime profiling were used.

176



Evaluation CHAPTER 9. OTIMAPP

G(1000,0.003) G(1000,0.004) G(1000,0.005)

0 40 80 120 160 200
agents

0

20

40

60

80

100
su

cc
es

s r
at

e 
(%

)

PP
PP+
DBS
DBS*

0 40 80 120 160 200
agents

0

20

40

60

80

100

su
cc

es
s r

at
e 

(%
)

PP
PP+
DBS
DBS*

0 40 80 120 160 200
agents

0

20

40

60

80

100

su
cc

es
s r

at
e 

(%
)

PP
PP+
DBS
DBS*

Figure 9.18: Stress test on random graphs. The success rate is based on 25 identical
instances. Results on random graphs G(n,p) are shown, where n is the number of vertices
and every possible edge occurs independently with probability p.

Solvability of OTIMAPP vs. MAPF. Recall that OTIMAPP and MAPF have the same
input structure. To see the difference in the difficulty of solving instances, we applied an
MAPF algorithm to all grid instances above. Specifically, a state-of-the-art sub-optimal
MAPF algorithm PIBT+ [Okumura et al., 2022b] solved all instances at most within
300 ms. The solved instances by PIBT+ for MAPF include all detected unsolvable in-
stances by DBS for OTIMAPP. This result highlights the difficulty of solving OTIMAPP;
filling the gap of both algorithmic speed and solvability between MAPF and OTIMAPP
is one primary future challenge.

9.8.2 Delay Tolerance

Next, it is demonstrated that OTIMAPP solutions (if found) are useful in a simulated
environment with stochastic delays of agent moves built on conventional MAPF, called
MAPF-DP (with delay probabilities) [Ma et al., 2017a]. MAPF-DP emulates the imperfect
execution of MAPF by introducing the possibility pi of unsuccessful moves to agent i
(remaining there).

Setup. The delay probabilities pi were chosen uniformly at random from [0, p̄], where
p̄ is the upper bound of pi . A higher p̄ means that agents frequently delay and vice versa.
The metric is the total traveling time of the agents; smaller values indicate less wasted
time at runtime. The following two baselines were also tested.

• MCPs [Ma et al., 2017a] force agents to preserve the order relations of visiting
one vertex in an offline MAPF plan at the runtime. The plan was obtained us-
ing ECBS [Barer et al., 2014], a bounded sub-optimal version of the CBS algorithm.
The sub-optimality was set to 1.05 to obtain plausible solutions in a short time.

• Causal-PIBT [Okumura et al., 2021b] is an online time-independent planning method,
that is, each agent repeats one-step planning and action adaptively to the surround-
ing current situations.

Result. Table 9.2 reveals that the execution of OTIMAPP solutions outperforms the
alternatives when there are delays in agents’ motions. This is because:

• Unlike MCPs, OTIMAPP solutions are free from the temporal dependencies of of-
fline plans in which one-agent delays are possibly fatal.
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• Unlike Causal-PIBT, agents follow long-term plans and avoid possible congested
locations, which is a positive side effect of avoiding deadlocks in OTIMAPP solu-
tions.

Note however that, without delays (i.e., p̄ = 0), MCPs scored better than OTIMAPP solu-
tions. This is because agents in MCPs can follow “optimized” offline planning precisely,
provided by ECBS.

Discussion. Although finding OTIMAPP solutions is challenging, Table 9.2 motivates
us to compute them. Meanwhile, other approaches can solve larger instances with more
agents (e.g., |A| = 200) and with a much shorter planning time than solving OTIMAPP.
Moreover, there are situations where OTIMAPP has no solutions, whereas the others can
find feasible plans because OTIMAPP assumes no intervention at runtime, as discussed
in Chap. 9.5.1. In association with this discussion of solvability, we additionally display
the success rate of solving MAPF-DP by each approach in Table 9.3. With denser situ-
ations (e.g., |A| = 60), the OTIMAPP algorithm (i.e., PP+) often failed to find solutions
whereas the other approaches solved all. One promising direction for OTIMAPP is to fill
these gaps.

fixing |A|
|A| = 35 p̄ = 0.2 p̄ = 0.5 p̄ = 0.8

MCPs+ECBS 1015 (1004,1026) 1422 (1404,1440) 2551 (2507,2596)

Causal-PIBT 986 (976,995) 1238 (1225,1250) 1841 (1816,1866)

OTIMAPP 941 (931,951) 1178 (1165,1190) 1730 (1707,1752)

fixing p̄

p̄ = 0.5 |A| = 20 |A| = 40 |A| = 60

MCPs+ECBS 724 (711,736) 1698 (1678,1716) 2938 (2911,2964)

Causal-PIBT 662 (653,671) 1466 (1453,1479) 2425 (2405,2444)

OTIMAPP 639 (631,648) 1395 (1383,1408) 2328 (2311,2345)

p̄ = 0.0 |A| = 20 |A| = 40 |A| = 60

MCPs+ECBS 449 (408,489) 934 (891,983) 1438 (1385,1489)

Causal-PIBT 472 (467,478) 1042 (1033,1050) 1725 (1713,1738)

OTIMAPP 458 (452,464) 993 (985,1001) 1628 (1617,1638)

Table 9.2: Total traveling time on MAPF-DP. All settings used random-32-32-10. For
each setting, ten instances that OTIMAPP solutions were found by PP+ were first picked
up. For each instance and approach, then 50 trials were performed while changing the
random seed. For all approaches, all execution trials succeeded. Thus, the scores are
means on 500 executions, accompanied by 95% confidence intervals. upper: Results of
changing p̄ while fixing |A|. lower: Results of changing |A| while fixing p̄. Note that the
probability that someone delays increases with more agents. As reference records, the
table also presents scores without delays, i.e., p̄ = 0.

9.8.3 m-tolerant Solutions

Recall that a tuple of paths is m-tolerant when there are no reachable cyclic deadlocks
with m or fewer agents. Next, the study empirically evaluates how computational effort
is relaxed by introducing m-tolerant solutions, as well as the risk of execution failure.
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p̄ = 0.5 |A| = 20 |A| = 40 |A| = 60

MCPs+ECBS 1.00 1.00 1.00
Causal-PIBT 1.00 1.00 1.00
OTIMAPP (PP+) 1.00 0.80 0.44

Table 9.3: Success rate of solving MAPF-DP. For each |A|, we used 25 instances; they are
same as instances in Fig. 9.17. OTIMAPP and MCPs never fail in the execution phase if
offline solutions are obtained, therefore, the scores presented here are equivalent to the
planning success rate. The scores of Causal-PIBT were calculated from 50 trials for each
instance (i.e., 1,250 executions).

Setup. Both PP+ and DBS were used in the same experimental setting as in Chap. 9.8.1.
Further, for each successful planning outcome, the outcome was simulated with ran-
domly generated 100 execution schedules, and then the number of executions that trig-
gered actual deadlocks was counted. An execution was regarded as a failure when it
triggered deadlocks because several agents never reach their destinations eternally. In
this way, the execution failure rate was calculated.

Result. Figure 9.19 summarizes the result. The results emphasize a tradeoff between
the computational burden and the risk of execution failure. In both PP+ and DBS, m-
tolerant solutions are easier to compute than exact |A|-tolerant solutions, particularly
when m is sufficiently small (e.g., ≤ 6). On the other hand, with a smaller m (e.g., two),
the risk of execution failure increases. In practice,m-tolerant solutions are useful because
OTIMAPP is computationally difficult; however, the parameter m should be adjusted
considering the risk of execution failure.

9.8.4 Robot Demonstrations

Finally, the section presents two OTIMAPP execution demonstrations with centralized
and decentralized mobile robots. The video is available at https://kei18.github.io/
otimapp/. Figure 9.20 shows snapshots. The OTIMAPP solution was prepared using
DBS.

In both cases, although the robots moved without any synchronization procedures,
they were ensured to eventually reach their goals owing to the nature of OTIMAPP. More-
over, for the latter, any actor had no methods to know the entire configuration at runtime,
which cannot be addressed by conventional execution strategies. The implementation
details are as follows.

Centralized Execution

Toio robots (https://toio.io/) were used, similar to demonstrations in Chap. 8.4. The
robots evolve on a specific playmat and can be controlled by instructions of absolute
coordinates. A virtual grid was prepared on the playmat and the robots followed the grid.
Prior to the demonstration, it was informally confirmed that there is a non-negligible
action delay between robots when simultaneously sending instructions to several robots
(e.g., ten robots, see the movie). Therefore, one-shot execution — robots move alone
without communication after the receipt of plans — will result in collisions and risk of
execution failure. In this demonstration, a central server (laptop) managed the locations
of all robots and issued instructions (i.e., where to go) to each robot step by step. The
instructions were issued synchrony between robots while avoiding collisions.
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Figure 9.19: Results ofm-tolerant solutions. The planning success rate (upper) is based
on the same 25 identical instances as Fig. 9.17. The time limit was set to 5 min. The
execution failure rate (lower) is based on 100 execution for each successful plan.

Decentralized Execution

The AFADA platform [Kameyama et al., 2021] was used. It has an architecture compris-
ing mobile robots that evolve over an active environment made of flat cells, each equipped
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Figure 9.20: OTIMAPP execution with 10 robots in an 8× 8 grid. Colored arrows rep-
resent an OTIMAPP solution.

with a computing unit. Adjacent cells can communicate with each other via a serial in-
terface. Further, cells form the environment in two ways: as a two-dimensional physical
grid and as a communication network. In addition, a cell can communicate with robots
on it via near-field communication (NFC). Using these local communication schemes, we
implemented collision avoidance only with local interactions between actors. Each robot
spontaneously acted; hence, the system was fully asynchronous, and no actor knew the
entire configuration at runtime.

9.9 Related Work

Before concluding the chapter, this section summarizes related studies to OTIMAPP.

9.9.1 Deadlock

A deadlock [Coffman et al., 1971] is a widely recognized phenomenon that is not lim-
ited to robotics. It is a system state wherein several components claim resources held
by others and then block each other permanently. Strategies to cope with deadlocks are
categorized as prevention, detection/recovery, and avoidance [Silberschatz et al., 2006;
Fanti and Zhou, 2004]. Deadlock prevention prevents deadlock situations by constrain-
ing how the requests for resources can be made to suppress one of the known condi-
tions necessary for deadlock [Silberschatz et al., 2006]. Deadlock detection/recovery
examines the system state at runtime to detect when a deadlock occurs and, if found,
corrects it by applying predefined procedures. Deadlock avoidance prevents the oc-
currence of deadlocks by avoiding risky states through on-demand interventions such
as in the Banker’s algorithm [Silberschatz et al., 2006]. OTIMAPP is based on preven-
tion;3 it aims to ensure deadlock-free status at runtime by determining which agent vis-
its which resources in which order (i.e., path) prior to execution. A non-deadlock state
from which reaching deadlocks is “inevitable” is referred to as unsafe [Silberschatz et al.,
2006]. Meanwhile, reachable deadlocks of OTIMAPP correspond to states from which
reaching deadlocks may be “possible.” The notion of a potential terminal deadlock is re-
lated to well-formed instances of MAPF [Čáp et al., 2015], that is, for each start-goal pair,
a path exists that traverses no other starts and goals. The relaxed sufficient condition of
OTIMAPP (Thrm. 9.16) requires that each agent has at least one path without using the
goals of the others. The notion of a reachable cyclic deadlock is referred to as nonlive
states/sets for deadlock management in automated manufacturing systems [Fanti and
Zhou, 2004] or a multi-robot scheduling problem [Mannucci et al., 2021].

3OTIMAPP essentially aims at removing the possibility of cyclic waiting, one of the four necessary condi-
tions for deadlocks to happen [Silberschatz et al., 2006].
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9.9.2 Path Planning for Multiple Agents

Path planning for multiple robots has been studied extensively. These approaches are
typically categorized as reactive or deliberative approaches, as repeatedly stated through-
out the dissertation.

In reactive approaches, as we can see in [Van Den Berg et al., 2011; Lalish and Mor-
gansen, 2012; Senbaslar et al., 2018], robots continuously react to situations at runtime
to avoid collisions while heading to their destination. This class is computationally in-
expensive; however, deadlock-free systems are difficult to realize owing to the short-
sightedness of time evolution. Moreover, reactive approaches require rich and no-delay
observations, such as accurate positions and velocities of the surrounding robots for each
robot. Thus, implementing this in highly distributed environments may pose non-trivial
challenges. In contrast, OTIMAPP execution assumes only the mutual exclusion of loca-
tions. This requirement is expected to be much easier to implement than the observation
assumptions of reactive approaches.

Deliberative approaches use longer planning horizons to plan collision-free trajecto-
ries. This problem is formulated as MAPF or MRMP. In a typical MAPF, the inputs are
a graph and a set of start-goal pairs for agents. The objective is to find a list of “timed”
paths because MAPF assumes that all agents act synchronously. Both optimal and sub-
optimal algorithms for MAPF have been extensively studied (see Chap. 3.2.4), although
these methods rely heavily on timing assumptions and are fragile to action delays in robot
execution at runtime. Therefore, many studies on MAPF consider timing uncertainties.
However, current methods still largely rely on additional assumptions on the travel speed
of agents or delays to follow certain probability distributions (see Chap. 3.5.2). Failure
to represent the inherent uncertainty in the domain means that the system behavior can
be unpredictable. In contrast, OTIMAPP can tolerate any type of action delay owing to
disclaiming any timing assumptions.

OTIMAPP contains both reactive and deliberative faces. It is reactive because it relies
on (online) collision avoidance, which is assumed to be performed by each agent. It is de-
liberative because it plans the entire trajectories prior to execution. Combining these two
properties, OTIMAPP provides a unique concept for achieving multi-robot coordination.

Alternative approaches include a combination of offline deliberative approaches and
online intervention during execution, for example, forcing agents to preserve the tem-
poral dependencies of offline planning [Ma et al., 2017a; Hönig et al., 2019; Atzmon et
al., 2020b] or continuously synthesize deadlock-free scheduling [O’Donnell and Lozano-
Pérez, 1989; Čáp et al., 2016; Coskun and O’Kane, 2019; Mannucci et al., 2021]. However,
these approaches suffer from inherent limitations of centralized execution, e.g., requiring
costly runtime effort and additional infrastructure (e.g., steady networks and global mon-
itoring systems) to continuously manage the status of all robots. In contrast, OITMAPP
does not require such facilities. Once a solution is obtained, it is ensured that all robots
reach their destinations by following their respective paths while avoiding collisions lo-
cally.

The notion of time independence was originally considered from [Okumura et al.,
2021b], being polished in Chap. 8 (and [Okumura and Défago, 2022b]). Time-independent
planning represents the entire system with multiple agents on graphs as a transition sys-
tem. The study presents online planning that incrementally moves agents while resolv-
ing deadlocks on demand. In contrast, OTIMAPP is offline planning aimed at without or
with less runtime effort.

In graph theory, the (vertex) disjoint path problem and its variants [Robertson and
Seymour, 1985] are partly related to ours in the sense that a set of disjoint paths clearly
satisfies the solution condition of OTIMAPP; however, the reverse does not.
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9.10 Concluding Remarks

This chapter studied a novel path planning problem called OTIMAPP, motivated by the
timing uncertainties critical for plan execution on real robots. OTIMAPP is an offline
planning problem that considers every possible schedule of agent behaviors at runtime.
The chapter presented both theoretical and practical aspects, including the solution con-
dition, computational complexities, solvers, and the relaxed solution concept.

OTIMAPP exemplifies execution methods such that offline planning guides reactive
execution. In the next chapter, we see another example that considers crash faults.

9.10.1 Interesting Directions

Some interesting directions for the development of OTIMAPP are discussed below.

• Variants of OTIMAPP: For instance, an unlabeled version of OTIMAPP, wherein
agents can achieve one of the goals while ensuring all goals are eventually occu-
pied by agents, is helpful for robotic pattern formation. The previous chapter in-
troduced an online time-independent planning method for the unlabeled problem;
however, offline planning remains missing.

• Continuous spaces: This chapter studied discretized environments but extending
the work to continuous spaces has practical values. For this direction, definitions of
potential/reachable deadlocks in continuous spaces should be elaborated like [Gre-
goire et al., 2013].

• Enhancing each solver: This paper presented two basic solvers based on MAPF
studies, which is a very active research field. Using the state-of-the-art MAPF tech-
niques such as LaCAM, both solvers are expected to be more powerful.

• Applications to other multi-agent planning domains: Since OTIMAPP, after all,
asks for a sequential resource allocation problem, it is interesting to leverage OTIMAPP
to other resource allocation problems with mutual exclusion such as distributed
databases [Knapp, 1987].

183



Chapter 10

Offline Planning to Overcome Crash
Faults in Execution

This chapter studies multi-agent path planning (MAPP) assuming crashes of agents.
Here, following the terminology in the previous chapter of OTIMAPP, MAPP is used
as a generalized term for path planning for multiple agents, not limited to the formaliza-
tion of MAPF. The study uses the same strategy as what we saw for timing uncertainties,
namely, considering offline planning so that agents can reactively act according to run-
time situations. The problem is formulated as MAPP with crash faults (MAPPCF), which
originally appeared in [Okumura and Tixeuil, 2023].1

10.1 Chapter Overview

The objective of the chapter is to establish offline planning followed by reactive execution that
overcomes crash faults at runtime, embodied as MAPPCF. The chapter provides both theo-
retical foundations and practical methods.

10.1.1 What is MAPPCF

MAPPCF is a novel graph path planning problem for multiple agents that may crash at
runtime. The crashed agents then forever block part of the workspace. Correct agents
(i.e., non-crashed ones) can detect crashes through local observations and then switch their
executing path on the fly, based on this observation. The objective is to find a collection
of paths and their switching rules for each agent, such that correct agents can reach their
destinations regardless of crash patterns.

Throughout the chapter, MAPPCF assumes local observations that permit to immedi-
ately detect a crash if it occurs in a neighboring location. Therefore, significantly dif-
ferent from conventional MAPP studies, the challenge here is to design a safe planning
methodology that avoids collisions or deadlocks, under the assumption that agents be-
have following their plan, and their own observed information about other agents’ crashes.

10.1.2 Why MAPPCF is Attractive

As discussed in Chap. 3.5.3, building robust and resilient multi-robot systems is an
emerging and important topic. Since MAPP is the foundation of multi-robot systems,
designing robust and resilient approaches to MAPP is a critical component to realize re-
liable multi-robot systems. Nevertheless, cutting-edge MAPP studies largely overlook

1Work done during an internship at LIP6, Sorbonne University, France. I really enjoyed the collaboration,
as well as the beautiful city of Paris!
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this aspect and assume that agents perfectly follow the offline planning that is prepared
without any fault assumptions. Therefore, the chapter is positioned as the first step of
fault-tolerant MAPP.

Similar to OTIMAPP, once a solution to MAPPCF is obtained, decentralized execu-
tion is possible. That is, each agent can take actions spontaneously while sensing its
surrounding situation. Furthermore, all correct agents are guaranteed to reach their des-
tination (i.e., liveness) despite unforeseen crashes.

10.1.3 What will be Presented

Just like the previous chapter, this chapter contains both theoretical and practical parts.

Theoretical Part

The MAPPCF problem is formalized. The formalization includes the conventional syn-
chronous execution model of MAPF where all agents take actions simultaneously, as
well as the asynchronous execution model of OTIMAPP. In the formalization, agents can
switch executing paths on the fly according to local observation results. The observation
is done using a failure detector, a blackbox function that tells an agent whether an adja-
cent location is occupied by a crashed agent, occupied by a correct agent, or vacant. The
chapter considers anonymous and named failure detectors; the former cannot identify a
crashed agent (only a crashed location). After characterizing relationships between exe-
cution models and failure detector variants, the computational complexities of MAPPCF
are provided. The main results are that finding a solution is NP-hard, and verifying a
solution is co-NP-complete.

Practical Part

A method to solve MAPPCF is presented, called decoupled crash faults resolution frame-
work (DCRF). DCRF resolves the effects of crashes one by one by preparing backup paths.
Then, DCRF with the named failure detector was evaluated in grid environments. The
experiments show that DCRF can address more problem instances compared to com-
puting a list of vertex disjoint paths, i.e., a trivially fault-tolerant approach since correct
agents can reach their destinations regardless of crash patterns. Moreover, we see that
the difficulty of finding solutions stems both from the problem instance size (e.g., the
number of agents), and from the number of crashes to be tolerated.

10.1.4 Chapter Organization

• Chapter 10.2 formalizes MAPPCF.

• Chapter 10.3 presents preliminary analyses.

• Chapter 10.4 presents analyses on computational complexity.

• Chapter 10.5 describes DCRF.

• Chapter 10.6 presents empirical results.

• Chapter 10.7 reviews related work.

• Chapter 10.8 concludes the chapter.

The code is available at https://kei18.github.io/mappcf.
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10.1.5 Notations and Assumptions

G = (V ,E) (undirected) graph, a set of vertices, and a set of edges
A = {1,2, . . . ,n} a tuple of agents
si , gi start and goal of agent i
f the maximum number of crashes
pi plan for agent i

Caution� �
Similar to the previous chapter of OTIMAPP, in this chapter, all indexes start from
one. The chapter uses the representation by paths.� �

10.2 Offline Problem

10.2.1 Problem Formulation

MAPPCF Instance. An MAPPCF instance is given by a graph G = (V ,E), a set of agents
A = {1,2, . . . ,n}, the maximum number of crashes f ∈ N≥0, injective initial-state function
s : A 7→ V , and injective goal-state function g : A 7→ V . Let si and gi denote s(i) and g(i),
respectively. An MAPPCF instance on digraphs is similar to the undirected case.

Plan. A plan for one agent comprises a list of paths each defined on G and transition
rules. At runtime, the agent moves along one path in the plan, called executing path,
while always occupying one vertex. Meanwhile, the agent switches its executing path
following the transition rules. A plan contains one special path called primary path which
is initially executed. A transition rule is defined with a failure detector and progress index,
explained below.

Crash and Failure Detector. During plan execution, agents are potentially crashed.
Crashed agents eternally remain in their occupying vertices. Correct agents are those who
are not crashed. Correct agents cannot pass where crashed agents are located. However,
a correct agent can use a failure detector at runtime to change its executing path. Doing
so enables the correct agent to reach its goal under crash faults. A failure detector tells
a correct agent about the existence of an agent on an adjacent vertex, and if so, whether
it has crashed or not. Two types of detectors are considered. A detector is called named
(NFD) when it can identify who is crashed, otherwise anonymous (AFD). Formal defini-
tions are as follows. Assume that an agent i is at v ∈ V . Then, AFD : neigh(v) 7→ {◦,×,⊥}
and NFD : neigh(v) 7→ {◦,⊥} ∪ A. Here, ◦ and × respectively correspond to a correct or
crashed agent, otherwise ⊥ is returned (no agent is there). NFD returns an agent instead
of ×.

Progress Index. A progress index clocki ∈ N>0 specifies location; the agent i is at ⟨clocki⟩–
th vertex of its executing path. For each transition of executing paths, the progress index
is initialized with one. It increases up to the length of the executing path.

Transition Rule. The rule specifies the next executing path given the current executing
path, progress index, and results of the failure detector. Two execution models that differ
in how to increment progress indexes are then described.
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Synchronous Execution Model (SYN). In this model, all agents take actions simulta-
neously. More precisely, all the correct agents perform the following at the same time:

1. Agents may crash.

2. Correct agents change executing paths if necessary, using a failure detector.

3. Move to their next vertices.

4. Increment their progress indexes.

Two types of collisions must be prohibited by plans:

• vertex collisions: two agents are on the same vertex simultaneously.

• swap collisions: two agents swap their hosting vertices simultaneously.

Note that an agent can remain at its hosting vertex if its executing path contains the same
vertex consecutively.

Sequential Execution Model (SEQ). In this model, agents take actions sequentially but
we cannot control how agents are scheduled at runtime. More precisely, given an infinite
sequence of agents E called execution schedule, the agents are activated in turn according
to E. Upon activating, the agent performs the following:

1. Change executing paths if necessary.

2. Move to its next vertex specified by the progress index if the vertex is unoccupied
by other agents.

3. Increment its progress index if moved.

The agent remains on its hosting vertex when the next vertex is occupied. Agents crash
at any time, except for the duration of the procedures for activation.2 The execution
schedule E is unknown when offline planning, but the chapter assumes that every agent
appears infinitely-many times in E.

Solution. Given an MAPPCF instance, a solution for SYN is a tuple of plans (p1,p2, . . . ,pn)
respectively for each agent, such that:

1. The primary path of pi begins with a start si .

2. For each path that is not primary, the path begins with a vertex where the agent
changes its executing path.

3. The agent i is ensured to reach its goal gi provided that i follows pi , regardless of
other agents’ crashes, when the total number of crashes is up to f .

A solution for SEQ is similar to SYN but the third condition should be satisfied for any
execution schedule. Figure 10.1 presents solution examples for both models. Without
crash assumptions (i.e., when f = 0), solutions for SYN are equivalent to those of classical
MAPF of Chap. 3.2.1, and solutions for SEQ are equivalent to those of OTIMAPP (Chap. 9.2.1).
The reminder assumes f > 0.

2Hence, activation is regarded as atomic.
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i

v1 v2
i

v3
j

v4

j v5

v1,v2,v3

pi for SYN/SEQ

v4,v4,v2,v5

v4,v2,v5 v4,v1,v5

clockj = 1∧
AFD(v1) = ×

clockj = 2∧
AFD(v2) = ×

pj for SYN

v4

v4,v2,v5 v4,v1,v5

clockj = 1∧
AFD(v1) = ×

clockj = 1∧
AFD(v1) =⊥

pj for SEQ
start goal

Figure 10.1: Solution example with AFD.

10.2.2 Remarks

As discussed in the online time-independent planning (Chap. 8.2.2), in SYN, a solution
must prevent collisions, while in SEQ, collisions are assumed to be prevented by agents’
runtime behaviors. Implementations of failure detectors depend on applications, e.g.,
using heartbeats as commonly used in distributed network systems [Felber et al., 1999]
or multi-robot platforms such that environments can detect robot faults [Kameyama et
al., 2021]. Herein, failure detectors are assumed to be blackbox functions.

10.3 Preliminary Analysis

To begin with, two fundamental analyses are provided to grasp the characteristics of
MAPPCF, namely, the model power and the necessary condition for instance to include a
solution.

10.3.1 Model Power

A model X is weakly stronger than another model Y when all solvable instances in Y are
also solvable inX. X is strictly stronger than Y when it is weakly stronger than Y and there
exists an instance that is solvable in X but unsolvable in Y . Two models are equivalent
when both are respectively weakly stronger than another.

A model of MAPPCF is specified by two components:

• whether the failure detector is anonymous (AFD) or named (NFD), and

• whether the execution model is synchronous (SYN) or sequential (SEQ).

Characterizing model power, i.e., which model is stronger than another, is important
because it can be instrumental when implementing the algorithm. For instance, AFD is
intuitively easier to implement than NFD. So, if those two models have equivalent power,
then we may not need to realize NFD.

The main results are summarized in Fig. 10.2. Several relationships are still open
questions, e.g., whether NFD is strictly stronger than AFD in SYN. In what follows, three
theorems for the model power analysis are presented.

Theorem 10.1 (NFD vs. AFD). When using the same execution model, NFD is weakly
stronger than AFD.
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SYN + NFD

SYN + AFD SEQ + NFD
SEQ + AFD

Figure 10.2: Relationship of models. ‘X → Y ’ denotes that model Y is strictly stronger
than model X. A dashed arrow means a weakly stronger relationship.

Proof. NFD can emulate AFD by dropping “who.”

Theorem 10.2 (SYN vs. SEQ). When using the same failure detector types, SYN is strictly
stronger than SEQ.

Proof. Figure 10.3 shows an instance that is solvable for SYN but unsolvable for SEQ. In
SYN, the agent j can wait until i passes the middle two vertices, and according to crash
patterns, j can change its path toward its goal. However, in SEQ, there are execution
schedules that j enters either of the middle two vertices prior to i because j cannot dis-
tinguish whether i is on its start or goal. If j is crashed there and i still remains at its
start, i cannot reach its goal.

Next, it is proven that every solvable instance in SEQ is solvable in SYN. Consider
constructing a new solution Zsyn in SYN given a solution Zseq in SEQ. This is achieved
by, considering one execution schedule (e.g., (1, 2, . . . , n, 1, 2, . . . , n, . . . )) and allowing
Zsyn to move agents in their turn. For instance, at timestep one, only agent-1 is allowed
to move, and at timestep two, only agent-2 is allowed to move, and so forth. With appro-
priate modifications of paths specified Zseq, since Zseq solves the original instance, Zsyn
also solves the instance in SYN.

i i

j

j

start goal

Figure 10.3: Solvable instance in SYN but unsolvable in SEQ.

Theorem 10.3 (NFD vs. AFD in SEQ). In SEQ, NFD is strictly stronger than AFD.

Proof. Figure 10.4a is an instance that is only solvable with NFD in SEQ. Regardless of the
failure detector types, i needs to move to the center vertex as the first action (Fig. 10.4b);
otherwise, i may crash at the goal vertex of another agent, and this agent never reaches
its goal due to i’s crash. The same argument holds for j and k.

Assume that j detects someone is crashed at the center vertex. Then j needs to move
to either the goal of i or the goal of k. Consider that j moves to k’s goal, and then crashes
(Fig. 10.4c). If the crashed agent at the center vertex is i, the remaining correct agent k
cannot reach its goal. A symmetric situation occurs if j moves to i’s goal but the crashed
agent at the center vertex is k. As a result, this instance is unsolvable with AFD. In
contrast, with NFD, j can choose the “correct” vertex according to detected crashes, e.g.,
i’s goal when i is crashed at the center vertex. Even if j is further crashed at i’s goal, k
can reach its goal (Fig. 10.4d).
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(a) initial configuration
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k j

i

i

(b) first action

j k

k

i

i

j

(c) with AFD

j k

k

i

i

j
(i)

(i, j)

(d) with NFD

location

goal

Figure 10.4: Instance that is solvable with NFD, but unsolvable for AFD in SEQ. A red
cross corresponds to a crashed agent. In (d), part of the plan of k is visualized by dashed
arrows, annotated with detected crashes.

10.3.2 Necessary Condition

Theorem 10.4. Regardless of execution models and failure detector types, two conditions are
necessary for instances to contain solutions.

• No use of other goals: For each agent i, there exists a path in G from si to gi that does not
include any gj , for all j ∈ A,j , i.

• Limitation of other starts: For each agent i, for each B ⊂ A where i < B and |B| = f , there
exists a path in G from si to gi that does not include sj , for all j ∈ B.

Proof. Each item is respectively proven as follows:

• No use of other goals: Suppose that there exists an agent i that needs to pass through
one of the goals gj . If i crashes at gj , then j cannot reach gj .

• Limitation of other starts: Suppose that there exists an agent i that needs to pass
through one of the starts of B. If all agents in B are crashed at their starts, then i
cannot reach gi .

When f = |A| − 1, the conditions in Thrm. 10.4 are equivalent to a well-formed in-
stance [Čáp et al., 2015] for MAPF; an instance such that every agent has at least one path
that uses no others’ start and goal vertices. The condition of Thrm. 10.4 slightly differs
in the limitation of starts because agents can change their behavior at runtime, according
to failure detectors.
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x x y y z z

C1

x∨ y ∨¬z

C2

¬x∨ y ∨ z

C1 C2

TRUE

FALSE

start goal

Figure 10.5: MAPPCF instance on a directed graph in SEQ reduced from SAT. The
corresponding formula is (x∨ y ∨¬z)∧ (¬x∨ y ∨ z).

10.4 Computational Complexity

This section discusses the complexity of MAPPCF. Specifically, two questions are con-
sidered, namely, the difficulty of finding solutions and that of verifying solutions. The
primary result is that both problems are computationally intractable; the former is NP-
hard and the latter is co-NP-complete. Both proofs are based on reductions of the 3-SAT
problem, determining the satisfiability of a formula in conjunctive normal form with
three literals in each clause.

10.4.1 Finding Solutions

Theorem 10.5 (complexity of the decision problem). MAPPCF is NP-hard regardless of
models.

Proof. It is first proven that MAPPCF on digraphs in SEQ is NP-hard. The proof is done
by reduction of the SAT problem and works regardless of failure detector types. Through-
out the proof, the following example is used: (x∨ y ∨¬z)∧ (¬x∨ y ∨ z). The reduction is
depicted in Fig. 10.5.

A. Construction of an MAPPCF Instance

To begin with, a variable agent is introduced for each variable xi . Figure 10.5 highlights
the corresponding agent of the variable x as blue-colored. The reduced instance has two
paths for each variable agent: upper or lower paths. Both paths include at least one vertex
(just above/below the start in Fig. 10.5) and additional vertices depending on clauses of
the formula.

Next, a clause agent is introduced for each clause Cj of the formula. Each clause agent
has multiple paths, corresponding to each literal in the clause. Those paths contain two
vertices excluding the start and the goal: one vertex unique to each literal, and another
vertex shared with the corresponding variable agent. The shared vertex is located on the
lower (or upper) path of the variable agent when the literal is positive (resp. negative). In
Fig. 10.5, the corresponding agent of the clause C1 = x∨ y ∨¬z is highlighted as brown-
colored. The translation from the formula into an MAPPCF instance is clearly done in
polynomial time.
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Figure 10.6: Diode gadgets.

B. MAPPCF has a solution if the formula is satisfiable

Given a satisfiable assignment, a solution for MAPPCF is built as follows. When a vari-
able is assigned TRUE (or FALSE), let the corresponding agent takes the upper (resp. lower)
path. Each clause agent then has at least one path (vertex) disjoint with any variable
agent; otherwise, the clause is unsatisfied. Let the clause agent take this path. These
paths constitute a solution because all paths are disjoint.

C. The formula is satisfiable if MAPPCF has a solution

In every solution, a plan for each agent inherently consists of a single path, due to the
instance construction. These paths should be (vertex) disjoint; otherwise, a crash of one
agent blocks another from reaching its goal. Then, build an assignment as follows. As-
sign a variable TRUE (or FALSE) when the corresponding variable agent uses the upper
(resp. lower) path. This assignment is satisfiable because it ensures at least one literal is
satisfied in all clauses.

D. Extending the reduction to undirected graphs

The aforementioned proof is extended to the undirected case by introducing a diode gad-
get to the starts of every agent, as partially shown in Fig. 10.6a. This gadget prevents back
to the start once the agent passes through the gadget (i.e., reaching vertex u in Fig. 10.6b–
c). Therefore, the same proof procedure (i.e., finding disjoint paths) is applied to other
models. The gadget for SEQ and SYN are shown in Fig. 10.6b–c, respectively. The proofs
of their properties are delivered into Observations 10.6 and 10.7.

Observation 10.6 (diode gadget for SEQ). Assuming SEQ, in Fig. 10.6b, agent i cannot go
back to its starting location once it has reached vertex u.

Proof. Observe that agent α cannot move until i moves to the center vertex; otherwise,
i cannot reach u if α crashes at the center vertex. Once i reaches u, α moves to the
center vertex. If α crashes there, then i cannot go back to its starting location. Note that
regardless of the crashed status of i, α can reach its goal.

Observation 10.7 (diode gadget for SYN). Assuming SYN, in Fig. 10.6c, agent i cannot go
back to its starting location once it has reached vertex u.

Proof. Figure 10.7 shows how the agent i reaches the vertex u. In the initial configuration
(Fig. 10.6c), β needs to wait for i to move from the starting location; otherwise, if β
crashes there, either i or γ cannot reach its goal. The core observation is that γ (or β) must
use the right neighboring vertex of i’s starting location in Step 2 of Fig. 10.7. Therefore,
if γ crashes at Step 2, i cannot go back to the starting location. Note that regardless of
the crashed status of i, β, and γ , the remaining agents can reach their goals.
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Figure 10.7: Execution in the diode gadget for SYN without crashes.

Although MAPPCF is intractable in general, it is notable that the difficulties might
be relaxed in certain classes, e.g., instances on planner graphs.

10.4.2 Verification

Theorem 10.8 (complexity of verification). Verifying a solution of MAPPCF is co-NP-complete
regardless of models.

Proof. The below part focuses on the case of SEQ with AFD; however, it is easily applica-
ble to other models such as those with SYN or with NFD. The proof is done by reduction
of the SAT problem, i.e., constructing a combination of an MAPPCF instance and a tuple
of plans such that the plans constitute a solution if and only if the corresponding for-
mula is unsatisfiable. Since the infeasibility check of the plan is done in polynomial time
with a proper execution schedule and crash patterns, the verification is co-NP-complete.
Throughout the proof, the proof uses the following example:

(x∨ y ∨¬z)∧ (¬x∨ y ∨ z)∧ (¬x∨¬y) (10.1)

The reduction is depicted in Fig. 10.8. Let denote the number of clauses in the formula
as l.

A. Construction of Instance and Plans

First, a variable agent is introduced for each variable xi of the formula. Figure 10.8 high-
lights the corresponding agent of the variable x as blue-colored. A plan for a variable
agent is just to move one step to the right.

Next, a clause agent is introduced for each clause Cj . Figure 10.8 highlights the cor-
responding agent of the clause C2 = ¬x ∨ y ∨ z as brown-colored. A plan for the clause
agent consists of two sub-plans:

• A primary plan passes through: (i) either the start or the goal of a variable agent,
(ii) a rest vertex, (iii) one of the bottleneck vertices, and (iv) its goal (so, four steps in
total).

• An contingency plan directly reaches the goal in one step. This plan is used when
the clause agent cannot take the first step of the primary plan.

Each rest vertex is unique to each clause agent. The start of a clause agent is connected to
a rest vertex via a start (or goal) of a variable agent when the clause contains a negative
(resp. positive) literal of the variable. Bottleneck vertices are shared between clause
agents, and their number is l −1. Each rest vertex and goal of a clause agent is connected
to all bottleneck vertices.

The reduction further introduces observation edges (dotted lines) between each start
of a clause agent and start of a variable agent. These edges are not included in any plans
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Figure 10.8: MAPPCF instance and solution reduced from SAT. The corresponding for-
mula is (x∨ y ∨¬z)∧ (¬x∨ y ∨ z)∨ (¬x∨¬y). Dotted lines are edges that are not used in
the plans.

but they enable clause agents not to enter the goals of variable agents when the variable
agents are correct, and they are on their start locations.

The translation from the formula into an MAPPCF instance and the plans is clearly
done in polynomial time.

B. The formula is unsatisfiable when the plans are the solution

Observe that any assignment can be built by the execution of MAPPCF. Specifically, as-
sign a variable TRUE when the corresponding variable agent is crashed at its start; other-
wise FALSE, i.e., when the variable agent enters its goal.

Assume now that all clause agents use their primary plan, and are currently on their
rest vertex. If l − 1 clause agents move to bottleneck vertices, and crash there, then
the remaining agent cannot reach its goal following the plan. Therefore, for the set of
plans to be a solution, it is necessary that at least one clause agent takes its contingency
plan. Consider now that clause agent. This agent i cannot take the primary plan because
some variable agents are blocking i either due to a crash at their start, or upon reaching
their goal. The corresponding assignment is unsatisfiable for the clause. For instance,
in Fig. 10.8, assume that the clause agent C2 takes the contingency plan. This happens
when the variable agent x is crashed at its start, and both y and z have entered their goals.
The assignment is then x = TRUE, y = FALSE, and z = FALSE, which is unsatisfiable for C2.

C. The plans constitute a solution when the formula is unsatisfiable

When the formula is unsatisfiable, it never happens that all agents take their primary
plan and all correct agents are ensured to reach their goals.

194



Solving MAPPCF CHAPTER 10. MAPPCF

10.5 Solving MAPPCF

From this section, we focus on the practical part, namely, describing how to solve MAP-
PCF. The primary challenge is how to manage crash awareness differences among agents.
For instance, agent i may observe a crash of agent j while at a neighboring position,
and change its path accordingly. However, another correct agent k, located further away
from j, might not be aware that j has crashed. To preserve safety and liveness, a plan
of k requires avoiding collisions and deadlocks with both before-after paths of i (that is,
regardless of the crash of j). Any planning algorithm solving MAPPCF thus has to cope
with different awareness of crash patterns.

The proposed method, decoupled crash faults resolution framework (DCRF), returns an
MAPPCF solution. Herein, the study focuses only on NFD, but DCFR is also applicable
to AFD.

10.5.1 Framework Description

Algorithm 10.1 presents DCFR. Figure 10.9 illustrates a running example in SYN. The
below part first describes DCRF using this example, followed by detailed parts of the
implementation.

Algorithm 10.1 DCRF.

input: MAPPCF instance I

output: solution P or FAILURE

1: P ← get_initial_plans(I)

2: U ← get_initial_unresolve_events(I ,P )

3: while U , ∅ do

4: e←U .pop() ▷ event; pair of crash and effect

5: π← find_backup_path(I,P , e)

6: if π =⊥ then return FAILURE

7: U .push
(
get_new_unresolved_events(I,P ,π)

)
8: update P with π

9: return P

Finding Initial Plans. DCRF first obtains an initial plan for each agent (i.e., a path)
(Line 1). This process is equivalent to solving MAPF with existing solvers. In the exam-
ple, the initial plans for agents i, j, and k are respectively depicted in Fig. 10.9d, 10.9b,
and 10.9c.

Identifying Unresolved Events. DCRF next identifies unresolved events. An event is a
pair of crash (i.e., who crashes where and when), and effect (i.e., whose path is affected
where and when). Finding unresolved events is done by finding shared vertices in a tuple
of paths. In the example (Fig. 10.9d), the initial plans contain two unresolved events:

• e1: Pi cannot use ⟨v2; t = 2⟩ if j is crashed at ⟨v2; t = 1⟩
• e2: Pi cannot use ⟨v3; t = 3⟩ if k is crashed at ⟨v3; t = 2⟩

These events should be resolved by preparing backup paths. DCRF resolves events in a
decoupled manner as follows.

195



Solving MAPPCF CHAPTER 10. MAPPCF

i

v1

i

v4

j

v2

j
v5

k

v7

k
v6

v3

(a)

j

j

Pj
(b)

k

k

Pk
(c)

i i

(d)

i ij

(e)

i ik

(g)

i

ij k

(f)

event: e1
crash: ⟨j;v2; t = 1⟩
effect: ⟨v2; t = 2⟩

event: e2
crash: ⟨k;v3; t = 2⟩
effect: ⟨v3; t = 3⟩

event: e3
crash: ⟨k;v3; t = 2⟩
effect: ⟨v3; t = 3⟩

Pi

Figure 10.9: Running example of DCRF in SYN. A red cross corresponds to an observed
crashed agent. Dotted lines are paths with which the planning should avoid collisions.

Resolving Events. Unresolved events are stored in a priority queue U (named from
“unresolved”) and handled one by one (Lines 3–8). For each event, DCRF tries to find a
backup path (Line 5). This is a single-agent pathfinding problem, whose goal location is
the same as the initial path, while the start location is one-step before where the crashed
agent is. The pathfinding is constrained to avoid collisions with observed crashed agents
and other already constructed plans. If failed to find such a path, DCRF reports FAILURE.
Otherwise, DCRF identifies new unresolved events with the backup path, and updates
the plan. The event is now resolved. When all events are resolved, the framework returns
a solution (Line 9). In the example, when the event e1 is popped from U , DCRF computes
the backup path shown in Fig. 10.9e. Observe that this backup path must not use v6 to
avoid collisions with pk . DCRF then identifies and registers a new unresolved event e3,
and updates i’s plan. DCRF continues applying the same procedure for the events e2

(Fig. 10.9g) and e3 (Fig. 10.9f).

10.5.2 Implementation Details

Discarding Unnecessary Events. When one crash affects a given path several times,
only the first effect should be resolved. This happens when the path is not simple. For
this purpose, the queue U stores events in ascending order of their occurring time. DCRF
then discards events when encountering already resolved crashes.

Inconsistent Crash Patterns. When preparing a backup path for agent i, pathfind-
ing does not necessarily need to avoid collisions with all others’ paths. For instance,
Fig. 10.9e assumes j has crashed. Therefore, in descendant backup paths for i, i can ne-
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glect j’s plan. Similarly, when two different paths assume crashes at distinct locations of
the same agent, or when two paths assume more than f crashes in total, those two paths
cannot be executed during the same execution. Consequently, DCRF does not need to
identify unresolved events between these paths.

Refinement of Initial Paths. Reducing the number of events is crucial for constructing
solutions, as a higher number of events yields a higher number of paths for each agent.
Consequently, when preparing a backup path, the pathfinding process tries to avoid col-
lisions with those many paths, and may fail to find a suitable path. To circumvent this
problem, when preparing initial plans, we introduce a refinement phase that minimizes
the use of shared vertices between agents. This is done by adapting the technique to
improve MAPF solutions, presented in Chap. 7.

Implementation for SEQ. DCRF is applicable to SEQ by simply replacing ‘collision’
and ‘MAPF’ by ‘deadlocks’ and ‘OTIMAPP,’ respectively.

Implementation for AFD. For AFD, the same workflow is available by assuming that
observed crashes are anonymous.

10.5.3 Limitations

DCRF is incomplete, i.e., it does not guarantee to return a solution even though an in-
stance is solvable. Figure 10.10 presents a failure planning example of DCRF in SYN. An
MAPPCF instance is shown in Fig. 10.10a. Assume that vertices v1 and v5 are connected
through a long path including v11. Observe first that this instance contains a solution
(shown in Fig. 10.10h); these paths are vertex disjoint, hence all agents reach their goals
regardless of crash patterns.

Consider now that DCRF provides initial plans as Fig. 10.10e, 10.10b, and 10.10d
respectively for agent i, j, and k at Line 1. Then, the planning eventually fails because
there is a crash pattern that i cannot prepare a backup path, as shown in Fig. 10.10g.

10.6 Evaluation

This section evaluates DCRF in both SYN and SEQ with NFD, and presents a variety of
aspects including merits to consider MAPPCF and bottlenecks of the planning.

10.6.1 Setup

Baseline. DCRF was compared with a procedure to obtain pairwise vertex-disjoint
paths. The rationale is that disjoint paths are trivially fault-tolerant; regardless of crash
patterns, correct agents can always reach their destinations. On the other hand, with
more agents, it is expected that finding such paths becomes impossible. The disjoint
paths were obtained by an adapted version of CBS [Sharon et al., 2015]. The adapted one
is complete, i.e., eventually returning disjoint paths if they exist, otherwise, reporting
non-existence.

Experimental Design. MAPPCF has two critical factors: the number of agents |A| and
crashes f . To investigate those effects on the planning, two scenarios were prepared:
(i) fixing f while changing |A|, or (ii) fixing |A| while changing f . Each scenario was
tested on two four-connected grids (size: 32× 32 and 64× 64) obtained from [Stern et al.,
2019]. These grids contain randomly placed obstacles (10%), , as shown in Fig. 10.11. For
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Figure 10.10: Failure example of DCRF in SYN.

each scenario, grid, and |A|, 25 well-formed instances [Čáp et al., 2015] were prepared,
considering the necessary condition for solutions to exist (see Chap. 10.3.2). However,
note that unsolvable instances might still be included because it is not sufficient. The
identical instances were used in both SYN and SEQ.

Planning Failure. A method is regarded as succeeding in solving an instance when it
returns a solution before the timeout of 30 s; otherwise, the attempt is a failure.
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Figure 10.11: Used grids in the experiments.

Implementation of DCRF. The initial paths were obtained by prioritized planning [Čáp
et al., 2015; Okumura et al., 2022a], respectively for SYC and SEQ. Single-agent pathfind-
ing was implemented by A∗, adding a heuristic that penalizes the use of common vertices
with other agents’ paths. It was informally observed that this manipulation improves
the success rate due to a smaller number of events. The refinement over initial paths
(Chap. 10.5.2) was applied for SYN but not for SEQ because the effect was subtle (see
Chap. 10.6.3).

Evaluation Environment. The code was written in Julia. The experiments were run
on a desktop PC with Intel Core i9-7960X 2.8 GHz CPU and 64 GB RAM. 32 different
instances were run in parallel using multi-threading.

10.6.2 Results

Figures 10.12 and 10.13 summarize the results. In the figures, three types of charts are
included.

• failure rate: Failure reasons of MAPPCF are also presented by stacking graphs.
“no_backup” means that MAPPCF failed to prepare a backup path. “timeout”
means that MAPPCF reaches the time limit. “init_paths” means that MAPPCF
fails to prepare initial paths.

• runtime: The average runtime of successful instances is presented, accompanied by
minimum and maximum values shown by transparent regions. Runtime profiling
is also presented, which is categorized into preparing initial paths (“init_paths”)
and computing backup paths (“backup”).

• cost: This rates solution quality when crashes do not happen. The detailed descrip-
tion of solution quality will be complemented later. The average, minimum, and
maximum values of the successful instances are shown. Note that finding disjoint
paths are irrelevant from f .

The main findings are below:

• Regardless of models, finding solutions become difficult to compute as the number of
agents |A| or crashes f increase. With larger |A| or f , DCRF needs to manage a huge
number of crash patterns. Consequently, DCRF often fails to find backup paths or
reaches the timeout.

• MAPPCF can address more crash situations compared to just finding disjoint paths.
Note however that the gaps in the success rate between DCRF and finding disjoint
paths becomes smaller in SEQ. This is partially due to finding deadlock-free paths
as they are difficult to compute in SEQ, as seen in Chap. 9.
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Figure 10.12: Results with a fixed number of crashes (f = 1).

• Without crashes, DCRF provides solutions with smaller costs, compared to disjoint paths.
Figures 10.12 and 10.13 also present the cost of paths that agents are to follow if
there is no crash. For SYN, a cost is total traveling time (aka. sum-of-costs). For
SEQ, a cost is the sum of path distance (aka. sum-of-fuels). Both scores were nor-
malized by the sum of distances between start-goal pairs; hence the minimum is
one. Note that the cost is identical with different f if |A| and start-goal locations are
the same. The result indicates that DCRF provides better planning that suppresses
redundant agents’ motions when the entire system operates correctly.
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Figure 10.13: Results with a fixed number of agents (|A| = 15).

10.6.3 Effect of Refinement

This part complements the effect of refinement over the initial paths introduced in Chap. 10.5.2.
Figure 10.14 presents the number of solved instances given a certain time, over the iden-
tical instances to those of Fig. 10.12 (the scenario of fixed crashes). The timeout was set
to 30 s. We can see a slight effect in SYN while not so in SEQ. This is owing to that finding
deadlock-free (backup) path itself is difficult.
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Figure 10.14: Effect of refinement. The number of solved instances until a certain time
is visualized. The identical instances to those of Fig. 10.12 were used. The maximum
number of crashes f was fixed to one while the number of agents varied from 5 to 30 in
random-32-32-10 and from 10 to 60 in random-64-64-10.

10.6.4 Results of Large Instances

Setup. Lastly, DCRF was evaluated in larger grids compared to the experiment in Chap. 10.6.
Scenarios with fixed the number of crashes f as one were prepared, while changing the
number of agents up to 80. 25 well-formed instances in warehouse-20-40-10-2-2 and
Paris_1_256 were prepared.

|A| 20 40 60 80

warehouse-20-40-10-2-2
SYN 1.00 1.00 1.00 0.76
SEQ 0.64 0.00 0.00 0.00

Paris_1_256
SYN 1.00 0.84 0.52 0.04
SEQ 0.24 0.00 0.00 0.00

Table 10.1: Success rate of large instances. The number of crashes is fixed as f = 1.

Result. Table 10.1 presents the success rate of DCRF with the 5 min timeout. In SYC,
DCRF solved a moderate number of instances even with tens of agents, while in SEQ,
DCRF failed in most instances. These gaps stem from the difficulty of finding deadlock-
free paths in SEQ.

10.6.5 Discussion

Since this is the first study of MAPPCF where agents may observe different information
at runtime, there is room for algorithmic improvements. Therefore, further improve-
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ments in DCRF or the development of new MAPPCF algorithms are promising direc-
tions. Specifically, as seen in the results, a large amount of failure reasons is failing to
prepare backup paths. DCRF takes a decoupled approach that sequentially plans a path
for each agent. Instead, developing coupled approaches may decrease the failure rate.

10.7 Related Work

Before concluding the chapter, this section summarizes related studies to MAPPCF.

10.7.1 Path Planning for Multiple Agents

Reactive vs. Deliberative. Similar to OTIMAPP, MAPPCF is based on the discussion
of reactive and deliberative approaches. Reactive approaches can deal with unexpected
events such as crash failures. However, provably deadlock-free systems are difficult to re-
alize due to the shortsightedness of time evolution. Deliberative approaches use a longer
planning horizon to plan collision/deadlock-free trajectories. Recent studies [Atzmon et
al., 2020b; Shahar et al., 2021; Okumura et al., 2022a] focus on robust MAPF for timing
uncertainties, i.e., where agents might be delayed at runtime. On the other hand, those
studies assume that agents never crash and eventually take actions; significantly different
from MAPPCF. MAPPCF is on the deliberative side but also has reactive aspects because
agents change their behaviors at runtime according to failure detectors.

Two-level Search Scheme. DCRF can be regarded as a two-level search, akin to popular
MAPF algorithms [Sharon et al., 2013; Sharon et al., 2015; Surynek, 2019; Lam et al.,
2022]. Those algorithms manage collisions at a high-level, and perform single-agent
pathfinding at a low level. Instead of collision management, DCRF manages unresolved
crash faults at the high-level.

Local Observation Assumption. MAPP with local observations is not new in the litera-
ture [Wiktor et al., 2014; Zhang et al., 2016]. Typically, previous studies aim at avoiding
collisions or deadlocks by applying ad-hoc rules of agents’ behavior, according to obser-
vation results at runtime, without assumptions of crash fault. It is notable that learning-
based MAPF approaches like [Sartoretti et al., 2019] also assume local observations of
each agent (e.g., field-of-view).

10.7.2 Resilient Multi-Robot Systems

Studies on multi-robot systems sometimes assume robot crashes at runtime, e.g., for
target tracking [Zhou et al., 2018], orienteering [Guangyao Shi, 2020], and task assign-
ment [Schwartz and Tokekar, 2020]. In these studies, however, crashed robots do not
disturb correct robots as we assume in this chapter. In the context of pathfinding, a few
studies focus on system designs for potentially non-cooperative agents [Bnaya et al., 2013;
Strawn and Ayanian, 2021] where those agents can pretend to be crashed. However, they
do not provide safe paths as presented in this paper.

10.7.3 Failure Detector

The notion of a failure detector is inspired by a popular abstraction in theoretical dis-
tributed algorithms [Chandra and Toueg, 1996], introduced to enable consensus solv-
ability in an asynchronous setting. With respect to the original concept, this paper as-
sumes the detector to be both accurate (i.e., it never suspects correct agents) and complete
(i.e., it always suspects crashed agents). Removing these assumptions is an interesting
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future direction. Contrary to the seminal paper, we assume failure detectors to be local,
providing localized information about failures, rather than global, providing information
about all agents.

10.8 Concluding Remarks

This chapter studied a graph path planning problem for multiple agents that may crash
at runtime, and block part of the workspace. Different from conventional MAPP stud-
ies, each agent can change its executing path according to local crash failure detection;
hence a collection of paths constitute a solution for each agent. This chapter presented
a safe approach to ensure that correct agents reach their destinations regardless of crash
patterns, including a series of theoretical analyses.

Similar to OTIMAPP, MAPPCF exemplifies execution methods such that offline plan-
ning guides reactive execution. Therefore, it is possible to perform decentralized execu-
tion, provided that failure detectors are available, e.g., by [Kameyama et al., 2021]. Then,
MAPPCF can overcome the inherent limitations of centralized execution.

10.8.1 Interesting Directions

Some interesting directions for the development of MAPPCF are listed below.

• Developing complete algorithms that can address the crash awareness differences
among agents.

• Optimization: The chapter focused on the feasibility problem (i.e., the decision
problem of whether a given instance contains a solution); optimization problems
are not addressed. One potential objective is minimizing the worst-case makespan
(i.e., the maximum traveling time), which is convenient to practical situations.

• Global Failure Detector: The chapter assumed that an agent detects crashes only
when it is adjacent to crashed agents. Extending this observation range might im-
prove the planning success rate because agents can determine its behavior based
on supplementary knowledge about crashes. On the other hand, collecting crash
information at a wider range is likely to induce a delay in propagating this infor-
mation further away, inducing more inconsistent observations between agents. Of
course, if the crash information propagation is immediate and the span of the ob-
servation is the entire graph, MAPPCF becomes a centralized problem, since every
agent has the same information.
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Chapter 11

Building Representation from
Learning

From this chapter, we consider the representation perspective, ultimately aiming to solve
multi-robot motion planning (MRMP). As discussed in the dissertation strategy described
in Chap. 3.6.6, the primary challenge of MRMP is how to represent the environment for
subsequent planning algorithms so as to derive collision-free paths efficiently. This chap-
ter, therefore, studies the representation of multi-agent path planning (MAPP) in contin-
uous 2D spaces. The proposed approach is a machine learning (ML)-based method that
constructs cooperative timed roadmaps (CTRM). CTRM originally appeared in [Okumura
et al., 2022c].1

This chapter studies a simplified version of MRMP, therefore, the problem studied is
called “MAPP in continuous spaces.”

11.1 Chapter Overview

The objective of the chapter is to see the power of representation for MAPP, embodied as
CTRM, built by a data-driven approach.

11.1.1 Representation Issue

Recall that one possible approach to MAPP in continuous spaces is two-phase planning,
consisting of the following two phases:

1. Approximate the spaces by constructing graphs called roadmaps.

2. Derive collision-free paths using MAPF algorithms on those roadmaps.

While such approaches have been widely used for single-agent planning [LaValle, 2006],
doing the same for multiple agents is non-trivial. This is primarily due to the necessity of
constructing sparse roadmaps; otherwise, dense roadmaps would make it dramatically
difficult to find collision-free paths due to the necessity to manage a higher number of
collisions. Nevertheless, there is a tradeoff between roadmap density and solution quality
(see Fig. 3.11), that is, roadmaps should be sufficiently dense to ensure a high planning
success rate and better solutions. Consequently, we need to consider what are and how
to construct such roadmaps.

1Work done during an internship at OMRON SINIC X. I really enjoyed the internship and collaboration!
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Figure 11.1: Learning to construct CTRM. upper: From MAPP demonstrations, we learn
a conditional variational autoencoder (CVAE) that predicts how agents move to their
goals while avoiding collisions with others. lower: For a new problem instance, we use
the learned model as a vertex sampler FCTRM to construct CTRM, on which an MAPF
algorithm is invoked to derive solution paths efficiently.

11.1.2 What is CTRM

To handle this tradeoff, this chapter presents a novel concept of graph representations of
the space called cooperative timed roadmaps (CTRM). CTRM consists of directed acyclic
graphs constructed in the following fashion.

• Agent-specific: Each CTRM is specialized for respective agents to focus on their
important locations.

• Cooperative: Each CTRM is aware of the behaviors of other agents so as to make it
easier for subsequent planning to find collision-free paths.

• Timed: Each vertex in CTRM is augmented in the time direction to represent not
only “where,” as commonly done in conventional roadmaps, but also “when,” be-
cause solutions of MAPP are a list of “timed” paths.

By considering these properties collectively, CTRM aims to provide a small search space
that still contains plausible solutions.

11.1.3 How to Construct CTRM

The proposed approach to construct CTRM is machine learning (ML)-based. Figure 11.1
outlines the workflow. Suppose that a collection of MAPP demonstrations is given, which
is a pair of problem instances and plausible solution paths. These demonstrations can
be obtained by intensive offline computation with conventional roadmaps, e.g., those
constructed with uniform random sampling. Next, the ML model learns from how agents
behave cooperatively at each unit of time (i.e., timestep), which is implicitly embedded
in the demonstrations, to predict how they will move in the next timesteps (Fig. 11.1;
upper). Then, for a new, previously unseen problem instance, the learned model serves
as a vertex sampler that samples a small set of agent-specific vertices (i.e., space-time
pairs) for generating multiple solution path candidates. These candidate paths are then
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composited and constitute CTRM. As a result, CTRM can serve a smaller but promising
search space and enable the planning to derive a solution more efficiently than when
using conventional roadmaps (Fig. 11.1; lower).

Machine Learning Model. Technically, the proposed ML-model extends a class of gen-
erative models called the conditional variational autoencoder (CVAE) [Sohn et al., 2015],
a popular choice for ML sampling-based motion planning [Ichter et al., 2018; Kumar et
al., 2019], to learn a conditional probability distribution of the vertices of CTRM for each
agent, given the observations of multiple agents. The model can work with an arbitrary
number of agents and even within a heterogeneous setting where agents are diverse in
their spatial size and motion constraints.

11.1.4 Performance

An extensive evaluation of CTRM was performed, on a variety of MAPP problems with
several different setups in terms of the number of agents (21–40), the presence of obsta-
cles, and the heterogeneity in agent sizes and motion speeds. The results consistently
demonstrate that, compared to standard roadmap construction strategies, planning by
learning to construct CTRM is several orders of magnitude more efficient in the plan-
ning effort (e.g., assessed by search node expansions or runtime), while maintaining a
comparable planning success rate and solution quality, with acceptable overheads.

11.1.5 Chapter Organization

• Chapter 11.2 re-provides formulation of MAPP. This is a limited version of that
presented in Chap. 3.3.1.

• Chapter 11.3 explains how to train the ML model and its components.

• Chapter 11.4 describes the methodology to construct CTRM using the trained model.

• Chapter 11.5 evaluations path planning using CTRM while comparing other roadmap
construction methods.

• Chapter 11.6 reviews studies closely related to CTRM.

• Chapter 11.7 concludes the chapter.

The code is available at https://omron-sinicx.github.io/ctrm/.

11.1.6 Notations and Assumptions

⊥ not found, undefined
Di = (V ,E) timed roadmap (DAG) for agent i
I problem instance
W 2D workspace
A = {1,2, . . . ,n} a set of agents
Ri(q) ⊂W occupied region by agent i at position q ∈W
O ⊂W obstacle
Cfree
i ,Cobs

i ⊆W free and obstacle spaces for i
Mi motion constraints
si , gi ∈W start and goal of i
Πi path for i
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Caution� �
• This chapter uses the representation by paths. Those indexes start from zero.

• The assumed problem in this chapter is a limited version of MRMP defined in
Chap. 3.3.1. For instance, this chapter assumes that the configuration spaces of
each agent are equivalent to the workspace.� �

11.2 Preliminaries

11.2.1 Problem Formulation

Problem Instance. We consider a problem of path planning for a team of n agents A =
{1,2, . . . ,n} in the 2D continuous space W ⊂ R2. Each agent i has a body modeled by a
convex region Ri(q) ∈ W around its position q ∈ W , which remains fixed regardless of
position but may vary from agent to agent. The space W may contain a set of convex
obstacles {O1, . . . ,Om} ⊂ W , where O =

⋃
j∈{1,...,m}Oj . Then, the obstacle space for an agent

i is represented by Cobs
i = O ⊖Ri(0), where ⊖ is the Minkowski difference and 0 is the

origin of R2. The free space for i is Cfree
i = W \ Cobs

i . A trajectory for agent i is defined
by a continuous mapping σi : R≥0 7→ W . Each agent i has its motion constraints Mi ,
e.g., each agent has a maximum velocity and moves based on a constant acceleration
model. A problem instance of MAPP is defined by a tuple I = (A,W ,O,R,M,S ,G), where
R = (R1,R2, . . . ,Rn) andM = (M1,M2, . . . ,Mn). S = (s1, . . . , sn | si ∈W ) and G = (g1, . . . , gn |
gi ∈W ) are a set of initial and goal positions, respectively.

Solution. A solution for the problem instance is a tuple of n trajectories (σ1, . . . ,σn) that
satisfy the following four conditions:

• endpoint: σi(0) = si ∧ σi(tend) = gi , ∀i ∈ A

• obstacle-free: σi(τ) ∈ Cfree
i , 0 ≤ τ ≤ tend,∀i ∈ A

• inter-agent collision-free: Ri
(
σi(τ)

)
∩Rj

(
σj(τ)

)
= ∅, ∀i, j ∈ A,i , j,0 ≤ τ ≤ tend

• constraints-aware: σi satisfies constraints ofMi

Here, tend ∈ R≥0 denotes the makespan. Under these conditions, the quality of a solution
is measured by sum-of-costs:

∑
i∈A ti where ∀i ∈ A,ti ≤ τ ≤ tend : σi(τ) ∈ gi .

11.2.2 Assumed Artifacts

Local Planner. As assumed in many studies of planning in continuous spaces [LaValle,
2006], the chapter assumes that each agent i has a local planner connecti . Given two
positions qfrom,qto ∈ W , this function returns a collision-free continuous mapping µ :
[0,1] 7→ Cfree

i that starts from qfrom and ends at qto while followingMi . In other words,
µ(0) = qfrom, µ(1) = qto, and µ(τ) ∈ Cfree

i for 0 ≤ τ ≤ 1. When such mapping does not exist,
connecti returns ⊥ as “not found.” For instance, connecti may return (1− τ)qfrom + τqto

or Dubins paths [Dubins, 1957].

Timed Roadmaps. To solve MAPP problems, our approach relies on a timed roadmap
Di for each agent i, which approximates the original space Cfree

i with a finite set of ver-
tices augmented in the time direction, similar to [Erdmann and Lozano-Perez, 1987;
Fraichard, 1998]. Each timed roadmap Di is defined as a directed acyclic graph (DAG)
Di = (Vi ,Ei), where each vertex v = (p, t) ∈ Vi is a pair of space p ∈ W and discrete time
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t ∈ N≥0, representing that an agent i is at location p at timestep t. An edge (u,v) ∈ Ei
exists only when u = (p, t) and v = (p′ , t + 1). The roadmap Di is regarded as consistent
with agent i when:

• p ∈ Cfree
i for all (p, t) ∈ Vi , and

• the local planner returns a continuous mapping for all
(
(p, t), (p′ , t + 1)

)
∈ Ei .

Multi-Agent Path Planner. On the tuple of timed roadmaps that are consistent with re-
spective agents, (D1, . . . ,Dn), a multi-agent path planner is invoked to find a tuple of paths
defined on discrete and synchronized time: Π = (Π1, . . . ,Πn), where Πi =

(
Πi[0], . . . ,Πi[⌈tend⌉]

)
∈(

Cfree
i

)⌈tend⌉. We can then obtain a trajectory σi that meets the solution conditions by ap-
plying the local planner that interpolates between consecutive points in Πi . The local
planner is also used to check the inter-agent condition. Any typical MAPF algorithm,
such as CBS [Sharon et al., 2015], PP [Erdmann and Lozano-Perez, 1987; Silver, 2005], or
algorithms presented in Part I, is potentially applicable for a multi-agent path planner.

11.3 Learning Generative Model

The main technical challenge of the chapter lies in the construction of timed roadmaps
for each agent in a way that effectively reduces the computational effort of multi-agent
path planners. We want the roadmaps to provide the planners with a small search space
that contains a solution path with plausible quality. To this end, the chapter argues that
roadmaps should be “cooperative” in the sense that planners can easily find a collision-
free path by taking into account the presence of other agents during the roadmap con-
struction. This leads to the proposed CTRM, which are agent-specific timed roadmaps
aware of agent interactions.

11.3.1 Entire Process

This chapter casts roadmap construction as an ML problem. Suppose we are given a collec-
tion of MAPP demonstrations consisting of problem instances and their solutions. The
solutions can be obtained by offline intensive computation of MAPF algorithms on suffi-
ciently dense roadmaps constructed with uniform random or grid sampling (Fig. 11.2a).
Using MAPP demonstrations as training data, a generative model can learn an approx-
imation of a probability distribution for vertices constituting a solution path for each
agent. The learned model can then be used as a vertex sampler to construct CTRM that
are more effective for solving a new, previously unseen problem instance efficiently.

11.3.2 ML-Model

Feature Extraction. As a generative model, the conditional variational auto-encoder
(CVAE) [Sohn et al., 2015] is extended, which is known to be effective for sequence mod-
eling and prediction [Salzmann et al., 2020; Ivanovic et al., 2021]. The proposed CVAE
model takes a feature vector x extracted from the observations of agent i and its neighbors
at current timestep t in a solution Π. This provides a conditional probability distribution
p(y | x) of the vector y that informs how that agent should move in the next timestep t+1
(Fig. 11.2b). Specifically, using a pair of positions Πi[t] and Πi[t + 1] extracted from so-
lution path Πi , the objective is to learn the distribution of y = ξ(Πi[t + 1]−Πi[t]), where

ξ(v) =
[
|v|, (v/ |v|)⊤

]⊤
is the magnitude and relative direction of Πi[t + 1] with respect to

Πi[t].
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Figure 11.2: The model architecture and its components. “⊕” represents the concate-
nation of multiple vectors.

Encoder and Decoder. The ML model consists of two neural networks: an encoder and
a decoder. The encoder Enc(x;θ), parameterized by θ, takes x as input to produce a
conditional probability distribution pθ(z | x). The variable z is referred to as a latent
variable that represents x in a lower-dimensional space. Then, the decoder Dec(x,z;φ),
parameterized by φ, accepts x and z drawn from pθ(z | x) to form another conditional
distribution pφ(y | x,z). The output distribution p(y | x) can be obtained by p(y | x) =∑

z pθ(z | x)pφ(y | x,z). Doing so is particularly effective when x is high-dimensional, as
in our case.

Using ML-Model as a Sampler. Given a collection of input features xk and ground-
truth outputs yk , i.e., {(xk ,yk)}

K
k=1, extracted across agents and timesteps from problem

instances in the training data, we can train the encoder and decoder jointly in a super-
vised learning fashion (see Appendix E.1 for the details). Once learned, CVAE can be
used as a vertex sampler taking x as input to yield a particular sample y′ in accordance
with the learned probability distribution p(y | x). In the following sections, this sampling
process with the learned CVAE is referred to as a sampler function y′ ∼ FCTRM(x).

11.3.3 Features

Extracting informative features to form x is essential for constructing effective CTRM.
An inherent challenge in MAPP is that each agent needs to move toward its goal while
avoiding collisions with other agents that are also in motion. The proposed ML model
consists of three types of features:

• Goal-driven features that inform agent i of the way to its goal.

• Communication features extracted using an attention network that encodes the in-
formation of other agents.

• An indicator feature that takes into account high-level choices for which direction
to move in when obstacles and other agents are present.
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Goal-driven Features

The most basic feature that helps agent i move toward its goal gi is the magnitude and
relative direction of gi with respect to the current position Πi[t], i.e., ξ(gi −Πi[t]). The
features also include a single-step motion history ξ(Πi[t−1]−Πi[t]), parameters of body
region Ri , and motion constraintsMi , as they affect how agent i moves.

Furthermore, environmental information is encoded into the field of view (FOV) of
agent i around its position Πi[t] to take into account nearby obstacles. To do so, first,
the original world W ⊂ R2 is discretized by the L2 grid, where L ∈ N>0. Then the FOV
is created around Πi[t] with size l2, where l ∈ N>0. Within the FOV, two binary maps
are extracted (illustrated in Fig. 11.2c: local occupancy map), indicating if each grid cell
is occupied by obstacles and a cost-to-go-map that shows if each cell is closer to the goal
compared to the current position, pre-computed by means of a breadth-first search on
the grid. These two maps are fed to a neural network NNself_env to transform them into a
compact vector. As shown in Fig. 11.2d, these features are then concatenated to form a
goal-driven feature vector xgoal.

Communication Features

To learn the cooperative behaviors between agents observed in ground-truth paths, it is
critical to extract features about other agents j, such as:

• where they are in the current and previous timesteps, i.e., ξ(Πj [t]−Πi[t]),ξ(Πj [t −
1]−Πi[t]),

• where they will be moving, i.e., their goal position ξ(gj −Πi[t]), and

• how their trajectory could be affected by agent bodyRj and motion constraintsMj .

The features also take into account the occupancy and cost-to-go maps around the po-
sition of agent j by feeding them into a neural network NNother_env to be represented by
a compact vector. Let xj→i be a feature vector concatenating all this information about
agent j with respect to agent i, as shown in Fig. 11.2e.

Suppose now that a collection of features {xj→i | j ∈ Ni} is given for all the agents
nearby target i, where Ni is a set of the predefined number of neighboring agents of i.
The question then is how to aggregate them as a part of feature vector x. Obviously,
just concatenating them all is not scalable and would not be able to deal with problem
instances affecting variable numbers of agents. Instead, this study leverages the recent
progress in multi-agent interaction modeling that deals with agent communications us-
ing an attention network [Hoshen, 2017]. Specifically, xj→i is fed to a neural network
NNcomm that outputs two variables: attention vector αj→i and message vector mj→i . Mes-
sage vectors are then aggregated while weighted using attention vectors to provide a
communication feature vector xcomm, as follows:

xcomm :=
∑
j∈Ni

mj→i ·wj→i ,

wj→i :=
exp

[
−∥αj→i −αi→i∥2

]∑
k∈Ni exp

[
−∥αk→i −αi→i∥2

] (11.1)

where wj→i is a scalar weight for the message vector mj→i , which is defined by the L2
distance between two attention vectors αj→i and αi→i normalized across j ∈ Ni using
the softmax function. With Eq. (11.1), agent i can consider message vectors only from
selected agents who are close to i in terms of attention vectors.
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Indicator feature

Figure 11.3a depicts typical situations where we want to sample the next motion of target
agent i in the presence of another agent j or obstacles in front of i. As shown in these
examples, agents are often presented with multiple and discrete choices about their mov-
ing direction (such as moving left, straight, or right) depending on the layout of the sur-
rounding agents and obstacles. As such, it is ideal that the sampling of the next motions
is affected by such high-level choices, which is indeed crucial for constructing effective
CTRM, as we will empirically see in the experiments.

To this end, the study proposes augmenting an input feature x with a discrete feature
called an indicator feature xind that is learned to indicate promising choices of the next
moving directions based on the current observations. Specifically, xind is defined by the
relative direction of Πi[t + 1] from Πi[t] with respect to the goal direction gi −Πi[t],
in the one-hot form such as left, straight, or right, respectively indicated by [1,0,0]⊤,
[0,1,0]⊤, and [0,0,1]⊤. Concrete implementations are presented in Chap. 11.5.2. While
calculating this feature from ground-truth path Πi in the training phase, the method
also learns a neural network NNind taking the concatenation of xgoal and xcomm as input
to predict it. The learned network is then used in the inference phase to provide xind,
where Πi[t + 1] is unknown.

Putting Everything Together

Finally, all features are concatenated to form x, i.e., x =
[
x⊤goal,x

⊤
comm,x

⊤
ind

]⊤
. Note that

the neural networks used for the feature extraction, i.e., NNself_env, NNother_env, NNcomm,
and NNind, can be trained end-to-end with the CVAE.

11.4 Constructing Roadmaps with Learned Model

This section explains how to construct CTRM while exploiting the learned model as a
vertex sampler.
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11.4.1 Algorithm Overview

Algorithm 11.1 previews the proposed method, taking a problem instance I as input
and then building CTRM consistent with respective agents, i.e., D = (D1,D2, . . . ,Dn). It
generates a sequence of vertices (i.e., path) with a maximum length tmax ∈ N>0 for each
agent using sample_next_vertex (explained in Chap. 11.4.2), which is repeated ntraj ∈
N>0 times to construct CTRM. Each path being generated is temporally stored in the table
loc, where loci [t] refers to the location of agent i sampled for timestep t. This table is used
by the learned model in sample_next_vertex to sample the next vertices for each agent
while being aware of the locations of other agents, that is, loci [t] is used as a proxy of
Πi[t] for the feature extraction described in Chap. 11.3.3.

Algorithm 11.1 construct_CTRM.

input: problem instance I

output: a tuple of timed roadmaps D = (D1,D2, . . . ,Dn)

hyperparameters: ntraj ∈ N>0, tmax ∈ N>0

1: Di ←
(
{(si ,0)},∅

)
: for each i ∈ A

2: tmakespan← 0

3: for j = 1, . . . ,ntraj do

4: initialize table loc ▷ loci [t] is location of agent-i at timestep t

5: loci [0]← si : for each i ∈ A

6: for t = 1, . . . , tmax − 1 do ▷ create one set of trajectories

7: for i = 1, . . . ,n do

8: p← sample_next_vertex (I, t, i, loc) ▷ p ∈ Cfree
i

9: q← find_compatible_vertex(I, t, i,p,Di)

10: if q =⊥ then

11: loci [t]← p; insert(p, t,Di)

12: else

13: loci [t]← q

14: if check_reachability_to_goals(I, t, loc) then

15: tmakespan←max
{
t + 1, tmakespan

}
; break

16: insert(gi , t,Di): for each t = 1, . . . , tmakespan, i ∈ A

17: return D = (D1, . . . ,Dn)

During each path generation, the insert function is invoked to add a sampled vertex
(p, t) to the current CTRM Di = (Vi ,Ei) and update Ei properly (Line 11). This procedure
is done only when the algorithm confirms that the sampled vertex is not compatible with
those it already has in Vi using find_compatible_vertex (see Chap. 11.4.3). Further, it
keeps updating tmakespan to be the smallest number of timesteps to move all the agents
to their goals by checking whether they can reach their goals from their last locations
with the check_reachability_to_goals function (Line 14). After all the iterations, the
algorithm inserts each agent’s goal gi into Di for time t = 1, . . . , tmakespan (Line 16) and
returns CTRM D.
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11.4.2 Combining Sampling from Learned Model with Random Walk

In the sub-routine sample_next_vertex, presented in Alg. 11.2, a learned model FCTRM
is used to sample vertices such that CTRM can efficiently cover a variety of possible
solution paths. A sample is mainly obtained from the trained model FCTRM (Line 2), but
the algorithm also introduces a random walk centered at the last location (Line 5) with
the probability of 1 − pmodel. Once a vertex (p, t) is sampled either from the model or
randomly, the algorithm validates whether this is reachable from the current location
loci [t − 1] using the local planner. If p is invalid, it repeats the random-walk sampling
up to the maximum times specified for resampling, and returns p = loci [t − 1] (which is
trivially valid) if p is still invalid.

Algorithm 11.2 sample_next_vertex.

input: instance I , timestep t, agent i, location table loc

output: one sample p ∈ Cfree
i

hyperparameters: 0 ≤ pmodel ≤ 1, nretry ∈ N

1: if with probability pmodel then

2: p ∼ FCTRM(·)

3: if valid_edge(loci [t − 1] ,p, I , i) then return p

4: for k = 1 . . .nretry do

5: p← random walk from loci [t − 1]

6: if valid_edge(loci [t − 1] ,p, I , i) then return p

7: return loci [t − 1]

Incorporating Random Walk. Algorithm 11.2 replaces the learned model with a ran-
dom walk centered at the current location (loci [t − 1]) at probability 1 − pmodel. This
contributes to improving the expressiveness of CTRM beyond what has been learned
from the training data, as illustrated in Fig. 11.3b. Similar techniques are commonly
introduced in learning-based sampling for SBMP [Ichter et al., 2018; Ichter et al., 2020;
Chen et al., 2020]. In practice, pmodel is set to be low in the initial timestep and gradually
increases from there.

11.4.3 Finding Compatible Vertices

At Line 9 of the roadmap construction (Alg. 11.1), the algorithm invokes find_compatible_vertex
to search the current CTRM for a vertex that is compatible with the sampled vertex (p, t).
Replacing the original vertex (p, t) with a compatible one (q, t) ∈ Vi can reduce the time
required for connectivity checking in the insert function and, more importantly, reduce
the search space for multi-agent path planners.

The specific algorithm of find_compatible_vertex is presented in Chap. 11.4.3,
which is partially inspired by the post-processing technique of roadmap sparsification
for single-agent motion planning [Salzman et al., 2014]. Intuitively, two vertices p,q are
regarded as compatible when they (i) are spatially close enough and (ii) share the same
connectivity to other vertices. The former is determined by whether ∥q − p∥ ≤ δ ∈ R≥0
holds (Line 4) In the experiments, δ was set to be the tenth of the maximum speed of
each agent. The latter needs to check the relationship between the parents and children
of these samples. Specifically, the algorithm initially obtains potential parents and chil-
dren for a new sample p at timestep t by two functions get_parents_candidates and
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Algorithm 11.3 find_compatible_vertex.

input: instance I , timestep t, agent i, location p, roadmap D

output: location q ∈ Cfree
i or NOT_FOUND

hyperparameters: δ ∈ R, heuristics h :W 7→ R

1: Vparents← get_parents_candidates(p,I, t, i,D)

2: Vchildren← get_children_candidates(p,I, t, i,D)

3: for v = (q, t′) ∈ Vi s.t. t′ = t do

4: if ∥q − p∥ > δ then continue

5: if
(
Vparents = parents of v

)
∧
(
Vchildren = children of v

)
then

6: if h(p) < h(q) then

7: replace q of v by p

8: return p

9: else

10: return q

11: if
(
Vparents ⊆ parents of v

)
∧
(
Vchildren ⊆ children of v

)
then

12: return q

13: if
(
parents of v ⊆ Vparents

)
∧
(
children of v ⊆ Vchildren

)
then

14: replace q of v by p

15: replace parents of v by Vparents

16: replace children of v by Vchildren

17: return p

18: return NOT_FOUND

get_children_candidates (Lines 1–2), using the local planner. Then, for each vertex
v = (q, t) ∈ Vi of the current roadmap, the algorithm checks whether p and q are compati-
ble. If so, it returns p or q based on their structures of parents and children (Lines 3–17),
and otherwise returns NOT_FOUND (Line 18). The algorithm considers three cases for p
and q:

1. p and q have the same parents and children (Lines 5–10): Select one of them based
on the heuristics h(p), which in our experiment were given by the distance from p
to the goal.

2. q contains p’s edge structure (Lines 11–12): The algorithm simply returns q, as it
can account for the edge structure of p.

3. p contains q’s edge structure (Lines 13–17): After replacing q of v with p and up-
dating the edge structure, the algorithm returns p.

11.5 Evaluation

Next, this section evaluates CTRM in various MAPP problems and clarifies its merits.
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11.5.1 Experimental Setups

MAPP Problems. Recall that an MAPP problem instance is a tuple I = (A,W ,O,R,M,S ,G);
see Chap. 11.2. For all the MAPP problem instances, agent bodiesR and obstaclesO were
modeled as a circle in the 2D closed continuous spaceW = [0,1]2 to detect collisions eas-
ily. Hence, an agent body Ri ∈ R is characterized by a scalar value ri representing the
radius. As motion constraintsMi ∈ M, it was assumed that each agent i has the maxi-
mum velocity vi and moves linearly in two vertices (space-time pairs) at constant veloc-
ity. With these settings, 100 different instances were generated, hereafter referred to as
test instances, for each of the following five scenarios of MAPP (see also the leftmost of
Fig. 11.5).

• Basic Scenario: A baseline scenario referred to as (i) Basic that corresponds to a
discrete setting of a 32× 32 grid and contains 21–30 homogeneous agents as A and
ten non-uniform obstacles as O. For each timestep, an agent can move a maximum
distance of vi = 1/32. The radius of agents is set to half of their maximum speed,
i.e., ri = 1/64. For each problem instance, the number of agents |A| was randomly
determined from the range |A| ∈ {21,22, . . . ,30}. The initial positions S , goal posi-
tions G, and the positions of the obstacles were set randomly for each instance.

• Variants of the Basic Scenario: Three scenarios that each change one of the settings
from those of Basic: (ii) More Agents with |A| ∈ {31,32, . . . ,40}, (iii) No Obstacles
with no obstacles, and (iv) More Obstacles with 20 non-uniform obstacles as O, to
see how robust the proposed approach against these parameters.

• Heterogeneous agent scenario: An advanced scenario was included, called (v) Het-
ero Agents, containing |A| ∈ {21,22, . . . ,30} agents whose size ri and speed vi are
each multiplied randomly by ×1, ×1.25, or ×1.5 from the original ones defined in
Basic.

Baselines for Roadmap Construction Methods. To evaluate the effectiveness of CTRM,
four other roadmap construction methods (see also Fig. 11.4) that are non-timed and
non-cooperative were implemented, which have commonly been used for single-agent
SBMP and previous work on MAPP in continuous spaces.

• Random sampling (random) that samples agent locations uniformly at random
from the space. This is equivalent to a simplified version of PRM [Karaman and
Frazzoli, 2011] and has been used as part of the procedure to solve MAPP [Van
Den Berg and Overmars, 2005; Solis et al., 2021]. The numbers of samples were set
to {3,000;5,000;7,000}.

• Grid sampling (grid) like the ones the conventional MAPF assumes as a discretized
environment [Stern et al., 2019]. The grid sizes were set to {32×32,64×64,84×84}.

• SPARS (SPArse Roadmap Spanner algorithm) [Dobson and Bekris, 2014], an al-
gorithm for roadmap construction that attempts to reduce both vertices and edges.
SPARS has been developed for single-agent planning and has also been used in
MAPP [Hönig et al., 2018b]. The implementation was obtained from the Open Mo-
tion Planning Library [Şucan et al., 2012].

• Square sampling (square) as a variant of the random sampling focusing on the
square region with its diagonal line given by the start and goal for a single agent
(with a margin). This sampling was introduced as a simpler approach to providing
a tuple of agent-specific roadmaps. The number of samples was determined by the
length of the diagonal line times a parameter given adaptively to generate low-,
middle-, and high-density roadmaps.
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CTRM random grid SPARS square

Figure 11.4: Constructed roadmaps for one agent in the Basic scenario. The blue line
is a path in a solution. Parameters are: CTRM: ntraj = 25; random: 3,000 samples; grid:
32× 32; square: the middle density.

More details for SPARS and square sampling are presented in Chap. 11.5.3. Given a set of
samples as vertices, roadmaps were built by creating edges at two vertices where agents
can travel within a single timestep given their size ri and speed vi parameters. For the
former three methods, a single roadmap was shared across all the agents in the scenarios
(i–iv) since their size and speed were set identically. For scenario (v) with heterogeneous
agents, different roadmaps for individual agents were constructed, as done for CTRM
and the square sampling.

Metrics. Since the objective of MAPP is to plan collision-free trajectories, the effective-
ness of roadmap construction methods should be evaluated in terms of the subsequent
planning results. Standard prioritized planning (PP) [Silver, 2005; Van Den Berg and
Overmars, 2005] was used as the planner. The following metrics were computed.

• Success rate of the planning: Percentage of successful planning among 100 in-
stances. Two cases were regarded as a failure: when the PP yielded failure or when
the planning time reached a 10 min timeout.

• Sum-of-costs: Solution quality defined in Chap. 11.2 averaged across all problem
instances that resulted in planning success.

• The number of expanded search nodes in the planning: Metric of the planning
effort (the smaller, the better), which was also averaged across all problem instances
that resulted in planning success. This metric is used as a proxy of runtime, since
actual runtimes rely heavily on implementations. Specifically, the number of search
nodes expanded in PP was counted.

• Runtime: Reference record of the execution time for the roadmap construction and
the subsequent planning.

Evaluation Environment. All methods were implemented in Python with partial use
of C++. The results were obtained on a desktop PC with Intel Core i7-8700 CPU and
32 GB RAM.

11.5.2 Implementation Details for CTRM

Model Architectures. All neural networks used in our method are standard multilayer
perceptrons; see Chap. 11.5.3 for details. The FOV was set to l = 19 and L = 160. The
number of neighboring agents of Ni was set to 15 based on the distance between the
current locations of agents, Πi[t]. The indicator feature xind was defined by a three-
dimensional one-hot vector indicating left, straight, and right, which were determined
based on whether the sine of the angle between two vectors gi −Πi[t] and Πi[t+1]−Πi[t]
was in [−1,−1/3], (−1/3,1/3], or (1/3,1].
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Training Setups. 1,000 problem instances were prepared as training data and 100 in-
stances for validation, where the trained model with the minimum loss on the validation
data was stored and used to construct CTRM for test instances. Regardless of test sce-
narios, the same training and validation data were used so that the parameters followed
the Hetero-Agent scenario. This is because the Hetero-Agent scenario naturally contains
diverse agent behaviors that could also be observed in the other scenarios, which helps
reduce the time needed for training with little empirical performance degradation. Note
that no identical instances were shared among training, validation, and test instances.
Solutions to those instances were obtained by means of roadmap construction based on
random sampling with 3,000 samples and path planning by PP. Model parameters were
updated using the Adam optimizer [Kingma and Ba, 2015] with the mini-batch size, the
number of epochs, and the learning rate set to (50;1000;0.001). The data creation and
model training were conducted on a single workstation equipped with an Intel Xeon
CPU E5-2698 v4 and NVIDIA Tesla V100 GPU to complete the procedures in a reason-
able amount of time (data creation: 1 day with ×40 multiprocessing; training: 2 hours).

Weighted Loss. Prior to the experiments, it was observed that the training and valida-
tion data created as above contained many agents that trivially moved along the shortest
path from their start to goal positions, while it was expected to observe actions of agents
dodging each other to learn their interactions. As such data imbalance typically makes
training difficult [Lin et al., 2017; Lu et al., 2018], therefore, a weighted loss technique was
introduced. The technique gives different weights to each training sample based on the
angle ∆ between gi−Πi[t] and Πi[t+1]−Πi[t] with the following criterion: 1−exp

(
−γ∆2

)
,

where γ = 50. Intuitively, this gave smaller weights to samples that just move agents for-
ward.

Roadmap Construction. The parameters for constructing CTRM in Alg. 11.1 were set
as follows. ntraj was set to {25,50,75,100}, and tmax was 64. In sample_next_vertex,

pmodel was adaptively set based on timestep t with 1 − exp
(
−γt/min(tmax, tmakespan)

)
,

where γ = 5, until each agent arrives at its goal. pmodel was then fixed to 0.1 after agents
reach their goal so that they can move around to avoid other agents still moving toward
their goal.

11.5.3 Further Details of Experimental Setups

Parameters for Baselines

• SPARS: The implementation in the Open Motion Planning Library [Şucan et al.,
2012] has four hyperparameters: dense_delta_fraction, spars_delta_fraction,
stretch_factor, and time limits. These parameters were set to 0.1, 0.01, 1.3, and
30 s, respectively.

• Square Sampling: The number of samples of each agent is determined by the
length of the diagonal line l (between its start and goal) times a given parameter c.
Specifically, this was determined by the number of c/vi , where vi is the maximum
velocity of agent i. c was set to 50 (low), 75 (middle), and 100 (high). The margin
of the square region was set to vi/5.

Parameters for CTRM

All the neural networks used in the method, i.e., NNself_env, NNother_env, NNcomm, NNind,
along with the encoders Enc(x;θ), Enc(x,y;ψ) and decoder Dec(z;φ) in CVAE, were de-
fined by a standard multilayer perceptron with two fully connected layers and 32 chan-
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nels, followed by ReLU activation [Nair and Hinton, 2010] except for the last layer. The
encoders and decoder also had batch normalization [Ioffe and Szegedy, 2015] between
the fully connected layers and ReLU to stabilize the training. The output of NNind was
activated by the softmax function to predict the one-hot indicator feature xind, where the
argmax function was further applied in the inference phase. The dimensions of message
vectors mj→i , attention vectors αj→i , and the latent variables of CVAE z were respectively
set to 32, 10, and 64.

11.5.4 Results

Figure 11.4 visualizes examples of constructed roadmaps. Figure 11.5 shows the main
results. Overall, we can see that CTRM substantially reduced the planning effort to ob-
tain plausible solutions while maintaining a high success rate and sum-of-costs. Specific
findings are summarized below.

CTRM contains solutions in a small search space. The size of the search space can
be assessed by the number of vertices in each roadmap per agent and per timestep, as
compared to the success rate in the second column of Fig. 11.5. CTRM has significantly
fewer vertices compared to the others but still allows the subsequent planner to suc-
cessfully find a solution at a high rate. The roadmaps created by the random, grid, and
SPARS sampling provided much larger search spaces since they are shared among agents
and should thus cover the entire space. The square sampling was a bit better than those
baselines, but was consistently outperformed by CTRM.

While keeping solution quality, CTRM contributes to reducing the planning effort by
several orders of magnitude. This is simply due to the small search space compared to
the baselines, as shown in the third and fourth columns. The sum-of-cost metric normal-
ized by the number of agents was comparable to the baseline methods and even better
than when the number of samples for the baseline methods is limited. This is primar-
ily because CTRM-approach learns where to sample vertices from the solution paths of
MAPP demonstrations.

CTRM achieves efficient MAPP solving from the end-to-end perspective. The total
runtime with the overhead from roadmap constructions is shown in the fourth column.
Although the runtime relies heavily on the implementation, the proposed method can
produce CTRM in a realistic computation time.2 Once CTRM is constructed, the plan-
ning can be finished immediately, unlike the baselines, despite the use of the same plan-
ning algorithm and implementation. Even so, there is room for further optimization in
the roadmap construction, including improvement to the implementation of connectiv-
ity checks between vertices, as it is often a bottleneck of SBMP [Elbanhawi and Simic,
2014].

CTRM-approach is generalizable for various scenarios. Even though the ML model
was trained on just a single scenario with heterogeneous agents, the model once trained
can be used for other scenarios with different numbers of agents and obstacles.

11.5.5 Ablation Study

Here, the effect of each technical component used in CTRM is further assessed. Specifi-
cally, the study evaluated degraded versions of the approach that omit

2The latest implementation is indeed much faster, see https://github.com/omron-sinicx/jaxmapp.
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Figure 11.5: Summary of results. The rows correspond to respective scenarios. For each
method, plots to the right correspond to the denser roadmaps (e.g., CTRM: ntraj = 25→
ntraj = 100, grid: 32 × 32→ 84 × 84). First column: Solution examples planned by PP on
CTRM (ntraj = 25). Second column: Success rate vs. the number of samples per agent and
per timestep in the constructed roadmaps. Third column: Sum-of-costs vs. the number
of expanded search nodes in the planning phase. Each value is normalized by dividing
by the number of agents. Fourth column: Overall runtime, consisting of the planning
and the roadmap construction phases. For the results in the third and fourth rows, in
order to obtain meaningful insights, several methods with success rates below 70% were
excluded; the scores have calculated the average of the metrics for problem instances
where all the remaining methods were successful in planning. Some baselines with spe-
cific parameter settings are also omitted due to extremely long computation times (over
15 min per problem instance) from the evaluation of the Hetero Agent scenario. All these
omitted methods and settings are marked with “x” in the fourth row.
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• communication features (no xcomm) or

• indicator features (no xind) when learning the model, and

• no random walk (i.e., pmodel =1) when constructing CTRM.

All the variants were evaluated on the Basic scenario in terms of success rate, sum-of-
costs, and the number of expanded nodes with ntraj = 25. As shown in Table 11.1, involv-
ing the random walk is particularly critical to ensure a high success rate. This is consis-
tent with the common practice of existing studies [Ichter et al., 2018; Ichter et al., 2020;
Chen et al., 2020] that use learned sampling and random sampling together. On top
of that, the lack of communication feature xcomm greatly limits the success rate, sum-
of-costs, and the number of expanded nodes, as agents are then required to avoid others
solely by random walks. Furthermore, we can see that the indicator feature xind is equally
important to improve the overall performance.

success rate sum-of-costs expanded nodes

CTRMs (ntraj = 25) 0.80 21.2 (20.3, 22.0) 612.4 (547.4, 674.2)

no xcomm 0.23 28.7 (27.3, 30.2) 996.3 (923.1, 1068.5)

no xind 0.33 31.3 (30.5, 32.2) 1058.6 (993.8, 1117.3)

no random walk 0.03 N/A N/A

Table 11.1: Results of the ablation study performed on the Basic scenario. Sum-of-
costs and expanded nodes are normalized by the number of agents and averaged over
11 instances that succeeded in all methods except “no random walk” (resulting in an
extremely low success rate), accompanied by 95% confidence intervals.

11.5.6 Limitations

Although CTRM generally worked well in various scenarios, it was informally confirmed
that the method sometimes failed in “bug trap” situations where SBMP generally strug-
gles [LaValle, 2006]. In general, the proposed approach is applicable only if each agent
can find an obstacle-free path to reach the goal when constructing CTRM. Failing to do
so will make it impossible to perform MAPF in the later stage. One possible resolution
would be to introduce bi-directional path generation like a variant of RRT [Kuffner and
LaValle, 2000]. Improving the overall performance by replacing the multi-agent path
planner from PP such as LaCAM is another promising direction.

11.6 Related Work

This study is broadly categorized into MAPP, which has evolved in multiple directions
and also shares some techniques with single-agent planning, as described below.

11.6.1 Learning-based MAPF

MAPF is a problem of MAPP in discrete spaces and has been studied extensively over the
2010s. More recently, some studies have attempted to leverage ML techniques to solve
MAPF. These techniques learn from planning demonstrations collected offline to directly
predict the next actions of agents given the current observations by means of imitation
learning or reinforcement learning [Sartoretti et al., 2019; Li et al., 2020; Damani et al.,
2021; Ma et al., 2021; Li et al., 2021e]. Despite such progress, it remains challenging to
determine how these techniques should be applied to MAPP in continuous spaces due to
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the inherent limitation that assumes the search space to be given a priori (typically as a
grid map).

11.6.2 MAPP in Continuous Spaces

Path planning in continuous spaces has long been studied for the single-agent case, typ-
ically in the form of sampling-based motion planning (SBMP) [Elbanhawi and Simic,
2014] which iteratively samples state points from the space to seek a solution. Popular
approaches include PRM [Kavraki et al., 1996], RRT [LaValle, 1998], or their asymp-
totically optimal versions (PRM∗, RRT∗) [Karaman and Frazzoli, 2011]. Most of the
studies on MAPP in continuous spaces have been built on these techniques. Roadmaps
(or simply pre-defined grid maps) are either constructed or given a priori to be shared
across agents [Van Den Berg and Overmars, 2005; Čáp et al., 2015; Hönig et al., 2018b;
Yakovlev and Andreychuk, 2017] or individually for each agent [Solis et al., 2021; Gharbi
et al., 2009; Kumar and Chakravorty, 2012]. In contrast to these previous attempts,
CTRM explores a different research direction that delves into what roadmap representa-
tions are effective for solving MAPP in continuous spaces and how they should be con-
structed.

11.6.3 Learning-based SBMP

The proposed approach learns how to construct effective roadmaps from MAPP demon-
strations. Such a learning-based approach is gaining attention as a promising method
for biased sampling in SBMP [Ichter et al., 2018; Ichter et al., 2020; Chen et al., 2020;
Qureshi et al., 2020; Kumar et al., 2019] to sample state points from important regions
of given problem instances to derive a solution efficiently. In contrast, only a few stud-
ies have examined how learning can improve roadmaps for multi-agent cases. The most
relevant work is [Arias et al., 2021b], which proposed learning to bias sampling of PRMs
so as to effectively avoid collisions with dynamic obstacles. However, this approach can
only be applied to MAPP with homogeneous agents having the same size and motion
constraints, since it generates a single roadmap shared across all agents. Moreover, it
biases samples based on learned obstacle layouts (e.g., narrow passages), making it hard
to run in obstacle-free or random-obstacle environments. Another related work [Henkel
and Toussaint, 2020] optimizes already constructed roadmaps by means of online learn-
ing, which is orthogonal to the above studies that focus on roadmap construction.

11.7 Concluding Remarks

This chapter presented cooperative timed roadmaps (CTRM), a novel graph representa-
tion tailored to MAPP in continuous spaces. CTRM is constructed to provide the subse-
quent planner with a small search space for each agent while simultaneously being aware
of other agents to avoid potential collisions and contain plausible solution paths. This
can be done by learning a generative model from relevant demonstrations and using it
as an effective vertex sampler. The experimental results demonstrate the effectiveness of
CTRM for a variety of MAPP problems.

There are several interesting directions to develop CTRM, such as anytime planning,
planning in continuous time, or multi-agent motion planning in higher-dimensional
spaces. Among them, the next chapter dives into an advanced idea, that is, integrating
representation and planning perspectives. This is a consequence of the primary observa-
tion of the chapter; representation is important for planning.
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Building Representation while
Planning

The previous chapter demonstrates the power of representation. Following this direc-
tion, this chapter goes one step further by integrating planning and representation, aim-
ing at solving multi-robot motion planning (MRMP) efficiently. The resulting algorithm
is called simultaneous sampling-and-search planning (SSSP) and can solve various types of
MRMP. SSSP originally appeared in the technical paper [Okumura and Défago, 2022a].

12.1 Chapter Overview

The aim of the chapter is to see the power of integration between planning and representation.

12.1.1 What is SSSP

SSSP is an algorithm solving MRMP. Recall that a standard approach to solve MRMP is
two-phase planning, which first constructs roadmaps and then performs the multi-agent
search, i.e., finding collision-free paths on those roadmaps. The previous chapter is in-
deed an example of two-phase planning. In contrast, SSSP performs roadmap construction
and multi-agent search at the same time.

Motivation

Since two-phase planning decouples roadmap construction and multi-agent search, it
always has the possibility to develop roadmaps in unnecessary regions wherein search
never uses. That is, the roadmap construction unexpectedly may prepare huge search
spaces. Meanwhile, combining roadmap construction and the search makes it possible
to develop a small but effective search space that the search is willing to use.

Mechanism

In short, SSSP performs an exhaustive search on agent-wise roadmaps while constructing
them by random walks. It is directly inspired by two algorithms listed below, respectively
for SBMP and MAPF:

• Expansive Space Trees (EST) [Hsu et al., 1997], an example of SBMP, that solves
single-robot motion planning by constructing a query tree growing with random
walks.
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• A∗ with operator decomposition [Standley, 2010] that solves MAPF efficiently by de-
composing successors in the search tree such that at most one agent takes an action,
rather than all agents taking actions simultaneously.

SSSP realizes rapid MRMP by combining these two techniques.

12.1.2 Properties and Performance

Theoretical Properties

SSSP eventually finds a sequential solution for solvable instances. An MRMP solution is
called sequential when two or more robots never take actions simultaneously. This prop-
erty corresponds to probabilistic completeness in SBMP; i.e, as time passes, the probabil-
ity of finding solutions approaches to one.

Empirical Performance

Extensive evaluations on various scenarios with diverse degrees of freedom and kine-
matic constraints demonstrate that SSSP significantly outperforms standard approaches
of two-phase planning, i.e., solving more problem instances much faster. This chapter
also provides a planning demo with 32 ground robots (64-DOF in total) in a dense situ-
ation.

12.1.3 Chapter Organization

• Chapter 12.2 re-organizes the problem formulation and explains assumptions to
solve MRMP.

• Chapter 12.3 describes the SSSP algorithm and its analyses.

• Chapter 12.4 presents empirical results.

• Chapter 12.5 concludes the chapter.

The code and movie are available at https://kei18.github.io/sssp.

12.1.4 Disclaimer

Configuration. Following the SBMP literature, this chapter uses the term “configura-
tion” as a robot state unlike Parts I and II that refer to it as a tuple of locations.

Agent vs. Robot. There is no primary difference between the terms “agent” and “robot,”
however, to be consistent with the literature, the term “robot” is used in this chapter.

Optimization. Throughout the chapter, since solving MRMP itself is challenging, we
focus on the decision problem rather than optimization problems. Optimal SSSP is dis-
cussed at the end.

Kinodynamic Constraints. As discussed in Chap. 2.6.5, robot motions are typically
categorized into kinematic or dynamics constraints. These constraints are collectively
called kinodynamic constraints and limit directions that a robot can take in the configu-
ration space. In this chapter, since this study is an early-stage attempt at combining sam-
pling and search, we consider only kinematic constraints and retain dynamics constraints for
simplicity. That is, SSSP is presented with kinematic constraints only, and all empirical
results presented consider only kinematic constraints. However, as like SBMP algorithms
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such as RRT [LaValle and Kuffner Jr, 2001] or EST [Hsu et al., 1997] which are applica-
ble to kinodynamic planning, SSSP has a high potential for kinodynamic MRMP; the
discussion of kinodynamic planning will appear at the end of this chapter.

Caution� �
The chapter uses the representation by configurations (i.e., locations for all agents).� �

12.2 Preliminaries

12.2.1 Problem Formulation

Unlike the previous chapter (Chap. 11), this chapter considers MRMP presented in Chap. 3.3.1;
i.e., we do not restrict the configuration spaces of robots. Recall that notations of geomet-
ric MRMP are as follows:

A = {1,2, . . . ,n} a set of robots
W ⊂ R3 workspace
O ⊂W obstacles
Ci configuration space for robot i
Ri(q) ⊂W body of i at configuration q ∈ Ci
Cobs
i ,Cfree

i obstacle and free spaces for i
σi : R≥0 7→ Ci trajectory
qinit
i ∈ Ci initial configuration for i

Qgoal
i ⊂ Ci goal configurations for i

This chapter furthermore considers kinematic MRMP. Following Chap. 3.3.1, the chap-
ter discretizes the time by introducing ∆ ∈ R>0 as the small amount of time. Each robot
i has local planner connecti . Following kinematic constraints, this blackbox function
returns an obstacle-free trajectory for the amount of ∆ time that connects two configura-
tions if exist. For instance, connecti

(
qfrom,qto

)
may output (1− τ)qfrom + τqto or Dubins

paths [Dubins, 1957]. Doing so hides the primary differences between geometric and
kinematic MRMP.

Using the representation by paths, a solution of MRMP is then a tuple of paths
Π = (Π1,Π2, . . . ,Πn), where Πi = (q0,q1, . . . , qk | qt ∈ Ci) and k is common between robots,
satisfying the following conditions:

• endpoint: Πi[0] = qinit
i ∧Πi[−1] ∈ Qgoal

i , ∀i ∈ A

• consistent path: connecti
(
Πi[t],Πi[t + 1]

)
,⊥, t ∈ {0,1, . . . , k − 1},∀i ∈ A

• inter-robot collision-free:

Ri
(
σi(τ)

)
∩Rj

(
σj(τ)

)
= ∅

∀i, j ∈ A,i , j, t ∈ {0,1, . . . k − 1},0 ≤ τ ≤ ∆

σ{i,j} = connect{i,j}
(
Π{i,j}[t],Π{i,j}[t + 1]

) (12.1)

12.2.2 Roadmap

A roadmap for robot i is a directed graph Gi = (Vi ,Ei) which approximates the original
space Cfree

i with a finite set of vertices. Each vertex q ∈ Vi corresponds to one configu-
ration of Ci , thus simply denoted as q ∈ Ci . The roadmap Gi must satisfy q ∈ Cfree

i for
all q ∈ Vi and connecti (q,q′) , ⊥ for all (q,q′) ∈ Ei . Here, Ei contains (q,q) for all q ∈ Vi
because this chapter considers planing without dynamics constraints.
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12.2.3 Utility Functions

Below, four “blackbox” utility functions are introduced to solve MRMP in a practical
manner. The first three are common in motion planning studies [Choset et al., 2005;
LaValle, 2006], whereas the last one is specific to MRMP.

Sampling. The function samplei randomly samples a configuration q ∈ Ci , where q is
not necessarily in Cfree

i .

Distance. The function disti : Ci × Ci 7→ R≥0 defines a distance of two configurations
of robot i. It is not necessary for this function to consider obstacles or inter-robot colli-
sions, however, we assume that p = q⇔ disti(p,q) = 0, dist(p,q) = dist(q,p), and disti

satisfies the triangle inequality. For instance, the experiment used Euclidean distance.

Steering. The steering function for robot i takes two configurations qfrom,qto ∈ Cfree
i

then returns a “closer” configuration q ∈ Cfree
i to qto. With a prespecified parameter ϵ > 0,

formally:

steeri

(
qfrom,qto

)
:= argmin

q∈Uϵ
disti

(
q,qto

)
where

Uϵ :=
{
q ∈ Cfree

i | disti
(
qfrom,q

)
≤ ϵ,connecti

(
qfrom,q

)
,⊥

} (12.2)

In practice, steer can be implemented by binary search.

Inter-robot Collision. For two robots i, j, given four configurations qfrom
{i,j} ,q

to
{i,j} ∈ C

free
{i,j}

such that connect{i,j}
(
qfrom
{i,j} ,q

to
{i,j}

)
, ⊥, the function collide(i,j)

(
qfrom
i ,qto

i ,q
from
j ,qto

j

)
re-

turns TRUE when there is a collision if two robots simultaneously change their configura-
tions from qfrom

{i,j} to qto
{i,j}. Here, a collision is defined similarly to Eq. (12.1). The function

otherwise returns FALSE. For convenience, the chapter uses collide
(
Qfrom,Qto

)
, where

Q{from, to} =
(
q

{from, to}
i ∈ Cfree

i

)i=1...n
. This shorthand notation returns TRUE if and only if

there is a pair (i, j) for which collide(i,j)

(
qfrom
i ,qto

i ,q
from
j ,qto

j

)
returns TRUE.

Domain Independence. To sum up, we solve MRMP using only five blackbox func-
tions: connect, sample, dist, steer, and collide. Doing so makes our formalism non-
restrictive to specific robotic systems, rather it is applicable to many planning domains
as we will see in the experiments.

12.3 Algorithm Description

In a nutshell, SSSP performs a best-first search using operator decomposition [Standley,
2010] while simultaneously growing robot-wise roadmaps via random walks [Hsu et al.,
1997]. This section first explains the core idea, followed by the pseudocode, theoretical
analysis of completeness, and postprocessing to obtain better solutions.

12.3.1 Core Idea

As a high-level description, SSSP constructs a search tree while expanding robot-wise

roadmaps. Each search node in the tree contains a tuple of configurationsQ =
(
qj ∈ Cfree

j

)j∈A
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and robot i that will take the next action. When this node is selected during the search
process, the algorithm does vertex expansion and search node expansion in order. The for-
mer expands the roadmap Gi for robot i by random walks from Q[i]. The latter creates
the successors of the node by transiting the configuration of robot i fromQ[i] to its neigh-
boring configurations onGi , and then passing the turn for i to i+1. Figure 12.1 illustrates
this procedure with initial roadmap construction explained later, while Fig. 12.2 shows
an example of constructed roadmaps.
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goals
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next action
search node 
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Figure 12.1: Illustration of SSSP. The algorithm progresses from left to right. top: Robot-
wise roadmaps and search situations. Two robots are shown by colored circles and an
obstacle by a black rectangle. bottom: Search trees. A node ‘xy’ corresponds to a situation
where the blue and red robots are respectively at vertices ‘x’ and ‘y,’ and the blue robot
will take the next action. left: Initial roadmaps. The search starts from the node ‘00.’
middle: Vertex expansion and search node expansion for the blue robot. The node ‘20’
is not expanded due to inter-robot collision. right: The red robot’s turn. The search
continues until all robots reach their goals.

Figure 12.2: Example of constructed roadmaps for 2D point robots. A solution is de-
picted at the leftmost. The others show respective roadmaps for each robot.

12.3.2 Details

Algorithm 12.1 presents the pseudocode of SSSP. Some artifacts are complimented as
follows.
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Algorithm 12.1 SSSP.

input: MRMP instance I

output: solution for MRMP

hyperparameters: number of sampling m ∈ N>0, random sampling prob. λ ∈ (0,1]

threshold distances θi ∈ R>0, decay rate γ ∈ (0,1)

1: Gi = (Vi ,Ei)← init_roadmap(I, i); for each i ∈ A

2: while TRUE do

3: initialize Open, Explored ▷ priority queue, set

4: N init←
〈
Q :Qinit, next : 1, parent :⊥

〉
5: Open.push

(
N init

)
; Explored.append

((
Qinit,1

))
6: while Open , ∅ do

7: N ←Open.pop()

8: if ∀i ∈ A,N .Q[i] ∈ Qgoal
i then return backtrack(N )

9: i←N .next; qfrom←N .Q[i]

10: for 1,2, . . . ,m do ▷ vertex expansion via sampling

11: qnew← samplei()

12: with probability (1−λ): qnew← steeri(qfrom,qnew)

13: if minq∈Vi disti (q,q
new) > θi then Vi ← Vi ∪ {qnew}; update Ei

14: j← i + 1 if i , |A| else 1 ▷ search node expansion

15: for qto ∈
{
q ∈ Vi |

(
qfrom,q

)
∈ Ei

}
do

16: Qnew← copy(N .Q); Qnew[i]← qto

17: if (Qnew, j) ∈ Explored then continue

18: if collide (N .Q,Qnew) then continue

19: N new←
〈
Q :Qnew,next : j,parent :N

〉
20: Open.push (N new); Explored.append ((Qnew, j))

21: θi ← γθi ; for each i ∈ A

Initial Roadmap Construction (Line 1) is done by conventional single-agent SBMP
such as RRT-Connect [Kuffner and LaValle, 2000]. The objective is to secure at least one
valid path from initial to goal configurations for each robot.

Best-first Search (Lines 3–20) realizes the core idea by maintaining a priority queue
Open that stores generated nodes and a set Explored that stores already expanded search
situations. For each iteration, SSSP checks whether the popped node from Open satisfies
the goal condition (Line 8). If so, it returns a solution by backtracking the node.

Vertex Expansion (Lines 10–13) is implemented by steering from the target configu-
ration to newly sampled ones. To guarantee the completeness, SSSP also uses vanilla
random sampling with a small probability λ (0.01 in the experiments). Each new vertex
must satisfy a constraint of distance threshold, which suppresses roadmaps being too
dense; otherwise, the search space dramatically increases, making it difficult to find a
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solution. Similar techniques are seen in SBMP studies [Kala, 2013; Dobson and Bekris,
2014].

Search Node Expansion (Lines 14–20) adds successors that (i) have not appeared yet
in the search process and (ii) do not collide with other robots.

Search Iteration (Lines 2–21). The search iterates until a solution is found while de-
creasing the distance thresholds for vertex expansion by multiplying 0 < γ < 1 by current
ones.

Search Node Scoring. The heart of the best-first search is how to score each node that
determines which node is popped from Open (Line 7). Given a tuple of configurations Q,
SSSP scores the node by summation over each robot i’s shortest path distance from Q[i]
to one of the configurations in Qgoal

i on the roadmap Gi . Here, each edge
(
qfrom,qto

)
∈ Ei

is weighted by dist
(
qfrom,qto

)
. The path distance is calculated by ignoring inter-agent

collisions, as common in heuristics for MAPF studies [Silver, 2005].

12.3.3 Properties

Let k ∈ N>0 be the number of search iterations of Lines 2–21. Moreover, let Gki be the
roadmap Gi at the beginning of k-th iteration (i.e., Gi at Line 3) and Gk := (Gki )i∈A. A
solution is called sequential if two or more robots never transit their configurations si-
multaneously.

Lemma 12.1. SSSP finds a solution in the k-th search iteration if Gk contains a sequential
solution.

Proof. For each k-th iteration, Gi is not infinitely increasing due to the distance threshold
θi . Thus, the search space is finite: O (|V1| × . . .× |Vn| × |A|). Thanks to brute-force search
in finite space, SSSP finds a solution if Gk contains one.

Theorem 12.2. For the geometric MRMP problem (Def. 3.5), the probability that SSSP finds
a solution approaches one as k approaches∞, provided the instance is solvable.

Proof. Here, the discussion is limited to geometric MRMP wherein each robot can move
in arbitrary directions in its configuration space. The proof is based on analysis in [Švestka
and Overmars, 1998], which claims that if an instance is solvable, (i) there is a sequential
solution and (ii) sufficiently dense robot-wise roadmaps constructed uniformly at ran-
dom sampling (e.g., PRM [Kavraki et al., 1996]) contain a sequential solution. According
to Lemma 12.1, SSSP finds a solution once roadmaps holding claim-(ii) are obtained.
SSSP eventually constructs such roadmaps due to as follows.

For each search iteration, each robot i tries to develop its roadmap with at least m ≥ 1
new samples. With the probability 1 − λ > 0, some of them are outcomes of uniformly
at random sampling. Each iteration terminates in finite time (see Lemma 12.1), there-
fore, each robot does not stop attempts of uniformly at random sampling until finding
solutions. Moreover, each iteration decreases the distance threshold, enabling robots to
construct denser roadmaps.

12.3.4 Postprocessing

SSSP returns only sequential solutions and compromises solution quality such as the
maximum traveling time. Thus, this section briefly complements how to realize paral-
lel execution that enables two or more robots to move simultaneously. Specifically, the
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Figure 12.3: Postprocessing to refine a solution..

section considers postprocessing to refine solutions. Smoothing solution trajectories by
postprocessing is common in single-robot SBMP [Geraerts and Overmars, 2007]. How-
ever, MRMP additionally takes care of inter-robot collisions.

The proposed method is described with Fig. 12.3a. Suppose that SSSP outputs a se-
quential solution of Πi = (0,1,1,2,2,3) (blue) and Πj = (0,0,1,1,2,2) (red). The method
repeats the next two steps until a given solution metric has not improved.

1. Construct a temporal plan graph (TPG) [Hönig et al., 2016] of the solution. TPG is a
directed acyclic graph that records temporal dependencies of each robot’s motions.
Moreover, possible “shortcut” motions are attached to TPG. Figure 12.3b shows an
example. There is an arc between the motions (0,1) of robots {i, j}; these motions
must happen in order due to collision avoidance. Several shortcut arcs exist, for
example, i can skip using vertex-2 by directly going from vertex-1 to vertex-3.

2. Remove redundant motions in TPG while keeping the dependencies between robots.
Figure 12.3c shows an example. For j, the motions (1,1) and (2,2) are removed but
(0,0) survives to keep the dependency with i.

In this example, we finally obtain a refined solution Πi = (0,1,3,3) and Πj = (0,0,1,2).
The above refinement is applicable to any MRMP solutions not limited to those from

SSSP. Indeed, the experiments applied the refinement for solutions obtained by all meth-
ods.

12.4 Evaluation

This section extensively evaluates SSSP on a variety of MRMP problems and demon-
strates that it can solve MRMP rapidly compared to other standard approaches. The ex-
periments further assess solution quality, scalability about the number of agents |A|, and
which components are essential for SSSP, followed by ground robot demos in a dense
situation.

12.4.1 Experimental Setups

Benchmarks. As illustrated in Fig. 12.4 and 12.5, various scenarios were prepared
with diverse degrees of freedom and kinematic constraints, in closed workspaces W ∈
[0,1]{2,3}. To focus on characteristics specific to MRMP, these scenarios were modeled
with simple geometric patterns (e.g., spheres or lines) and reduced the effort of the
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connect and collide functions. For each scenario, 100 instances were prepared by ran-
domly generating initial/goal configurations and obstacle layouts. For each instance, the
number of robots |A| was chosen from the interval {2,3, . . . ,10}. Robots’ body parame-
ters (e.g., radius and arm length) were also generated randomly and differed between
robots. These parameters were adjusted so that robots are sufficiently congested, other-
wise, the instances become easy to solve. Note that unsolvable instances might be in-
cluded, though obviously unsolvable instances were excluded, e.g., initial configurations
with inter-robot collisions. In summary, each instance consists of a team of heteroge-
neous robots and each robot has a different configuration space; a shared roadmap is
unavailable.

Baselines. The following well-known approaches to MRMP are carefully selected as
baselines, which are applicable to MRMP defined in Chap. 12.2.

• Probabilistic roadmap (PRM) [Kavraki et al., 1996] is a celebrated SBMP. For
MRMP, PRM samples a composite state of |A| robots directly from O(|A|) dimen-
sional spaces and constructs a single roadmap, then derives a solution by pathfind-
ing on it.

• Rapidly-exploring Random Tree (RRT) [LaValle, 1998] is another popular SBMP,
focusing on single-query situations. Similar to PRM, RRT for MRMP samples a
composite state and constructs a tree roadmap rooted in a composite state of the
initial configurations of all robots.

• RRT-Connect (RRT-C) [Kuffner and LaValle, 2000] is a popular extension of RRT,
which accelerates finding a solution by bi-directional search from both initial and
goal configurations.

• Prioritized Planning (PP) [Erdmann and Lozano-Perez, 1987; Silver, 2005; Van
Den Berg and Overmars, 2005] is a standard approach to MAPF in that robots se-
quentially plan paths while avoiding collisions with already planned paths. PP was
applied on roadmaps constructed by robot-wise PRMs, as taken in [Le and Plaku,
2018]. PP was repeated with random priorities until the problem is solved.

• Conflict-Based Search (CBS) [Sharon et al., 2015] is another popular algorithm
for MAPF. CBS is applicable to MRMP when roadmaps are given [Solis et al., 2021].
CBS was applied on robot-wise roadmaps constructed by PRM. Moreover, the heuris-
tics of CBS were manipulated such that avoids collisions as much as possible during
the search. Doing so loses the optimality of CBS but speeds up finding solutions
significantly like [Barer et al., 2014].

SSSP used RRT-Connect [Kuffner and LaValle, 2000] to obtain initial robot-wise roadmaps
(Line 1). Note that this is irrelevant to RRT-Connect in the baselines. PP/CBS were tested
with PRM rather than RRT-Connect because otherwise constructed roadmaps do not in-
clude detours, which is essential for solving MAPF in the second phase of two-phase
planning. Since all methods rely on non-determinism, we tested each method with 10
different random seeds for each instance (1,000 trials in total).

Hyperparameter Adjustment. All hyperparameters of each method including SSSP
were adjusted prior to the experiments, e.g., the maximum distance to connect two ver-
tices in the PRM-based two-phase planning methods (PP and CBS). For each scenario
and each algorithm, hyperparameters were adjusted to maximize the number of success-
ful instances within 30 s of 50 instances, among randomly chosen 50 pairs of parameters.
Tie-break was based on average runtime. The used instances were generated following
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Figure 12.4: Summary of results (1/2). Each scenario is visualized with robots’ bodies
(colored circles, spheres, or lines), obstacles (black-filled circles or spheres), and a solu-
tion example (thin lines). Degrees of freedom (DOF) are denoted below scenario names,
where |A| is the number of robots. The runtime of PP and CBS includes roadmap con-
struction. The runtime of SSSP also includes the initial roadmap construction.

the same parameters of the experiment but differed in random seeds. The used parame-
ters are included in the configuration files of the code repository.

Metrics. The objective here is to find solutions as quickly as possible. Therefore, how
many instances are solved within given time limits (maximum: 5 min) was rated.

Evaluation Environment. The simulator and all methods were coded in Julia. The ex-
periments were run on a desktop PC with Intel Core i9-7960X 2.8 GHz CPU and 64 GB
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Figure 12.5: Summary of results (2/2). See also the caption of Fig. 12.4. In Arm22 and
Arm33, each robot has a fixed root, represented as colored boxes. Those two and Snake2d
prohibit self-colliding. In Dubins2d, the robots must follow Dubins paths [Dubins, 1957].

RAM. 32 different instances were run in parallel using multi-threading. All methods
used exactly the same implementations of connect, collide, sample, and dist.

12.4.2 Results of Variety of MRMP Problems

Figures 12.4 and 12.5 summarize the results. In short, SSSP significantly outperforms
the other baselines in all tested scenarios, i.e., solving more instances much faster. We ac-
knowledge that runtime performance heavily relies on implementations, however, these
results indicate that SSSP is very promising. The results of SSSP in Arm22 and Dubins2d
are relatively non-remarkable but we guess this is due to many unsolvable instances,
which could be easily generated in these scenarios. The reason of why SSSP is quick will
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be discussed at the end of this chapter.

12.4.3 Solution Quality

As reference records of solution quality, Table 12.1 shows the expected total traveling
time of all robots (aka. sum-of-costs), after applying the postprocessing introduced in
Chap. 12.3.4 to all methods. Compared to the other baselines, the total traveling time of
SSSP is not the best but comparable.

SSSP PRM RRT RRT-C PP CBS

Point2d
54/100

1.93
(1.75, 2.10)

3.67
(2.95, 4.25)

3.42
(3.02, 3.81)

3.04
(2.62, 3.43)

1.45
(1.37, 1.52)

1.43
(1.36, 1.49)

Point3d
26/100

2.88
(2.56, 3.16) N/A N/A 4.58

(4.14, 4.99)
1.91

(1.73, 2.06)
1.72

(1.59, 1.84)

Line2d
34/100

2.68
(2.42, 2.92) N/A N/A 5.89

(5.14, 6.62)
1.80

(1.69, 1.90)
1.62

(1.56, 1.69)

Capsule3d
61/100

2.34
(2.12, 2.53) N/A N/A 2.89

(2.55, 3.23)
1.84

(1.79, 1.90)
2.33

(2.24, 2.43)

Arm22
30/100

1.57
(1.35, 1.75)

2.46
(2.13, 2.78)

2.23
(1.96, 2.48)

1.73
(1.43, 2.00)

1.60
(1.43, 1.73)

1.51
(1.35, 1.64)

Arm33
94/100

2.31
(2.22, 2.40) N/A N/A 2.97

(2.72, 3.21)
2.74

(2.64, 2.83)
2.75

(2.68, 2.82)

Dubins2d
30/100

1.52
(1.42, 1.62)

3.84
(3.31, 4.32)

3.06
(2.78, 3.33)

2.07
(1.80, 2.32)

1.28
(1.23, 1.32)

1.39
(1.34, 1.45)

Snake2d
55/100

3.17
(2.91, 3.42) N/A N/A 4.62

(4.20, 5.02)
3.28

(3.08, 3.48)
3.25

(3.04, 3.44)

Table 12.1: Total traveling time. Scores are averaged over instances successfully solved
by all methods, and normalized by

∑
i∈Adist(qinit

i ,q ∈ Qgoal
i ). The numbers below on the

scenario names are those numbers of instances. To obtain meaningful values, some cases
are excluded from the calculation due to the low success rates (≤20%; marked as N/A).
95% confidence intervals of means are also presented. Bold characters are based on the
overlap of the confidence intervals.

12.4.4 Scalability Test

Next, the scalability of SSSP about the number of robots |A| was evaluated, varied by
10 increments. For each |A|, a hundred Point2d instances were prepared with smaller
robots’ radius (see Fig. 12.6). PP with tuned parameters was also tested as a baseline,
which relatively scored high among the other baselines in the scenario with many robots.
Figure 12.6 shows that, with larger |A|, SSSP takes longer but still acceptable time for
planning, compared to PP. Note that PP relies on robot-wise PRMs covering the entire
space; the roadmap construction itself becomes a bottleneck with larger |A|.

Hyperparameter Adjustment. The parameters were manually adjusted and applied
them to all instances regardless of |A|. SSSP used m = 10, θi = 0.05, and ϵ = 0.2 (in the
steer function). PP was run on PRMs with 500 samples and the maximum distance to
connect two vertices was 0.1. These PRM’s values were adjusted such that roadmaps suf-
ficiently cover the entire workspace while being not too dense; otherwise, the roadmap
construction itself takes too much time and the search space will become too huge. Fig-
ure 12.7 shows two roadmaps created by PP (PRM) and SSSP. We informally observed
that those PP parameters were sensitive to obtain consistently good results.

Remark for Experimental Environment. It is noted that the scalability test was heavily
affected by experimental environments. We informally confirmed that both PP and SSSP
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Figure 12.6: Scalability test in Point2d. left: An example instance (|A| = 30) and its
solution from SSSP. right: The number of solved instances with annotation of |A|.

PP (PRM) SSSP

Figure 12.7: Constructed roadmaps for the scalability test.

could be faster (≥x2) with another environment. Nevertheless, SSSP generally worked
better than the baseline. For instance, SSSP solved instances with 50 agents (≤5 min)
while PP failed the same instances.

12.4.5 Ablation Study – Which Elements are Essential?

The next experiment addresses another question that asks which technical components
are essential to SSSP. Specifically, degraded versions were tested that omit the following
components in several scenarios.

• initial roadmap constructions (Line 1)

• search node scoring (replaced by random values)

• vertex expansion (Lines 10–13)

• distance thresholds check (Line 13)

• steering (by setting λ=1)

• integrated sampling and search

The last one rated SSSP without vertex expansion (m = 0) on robot-wise PRMs.

Results of Solvability. Table 12.2(upper) reveals that all these components contribute
to the performance of SSSP. Among them, involving the appropriate node scoring is par-
ticularly critical to achieving high success rates within a limited time, as well as ver-
tex expansion. The initial roadmap construction is effective when single-robot motion
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planning itself is difficult (Snake2d). The steering effect was non-dramatic because the
workspace is small relative to robots; this is further investigated below.

Results of Solution Quality. Table 12.2(lower) shows total traveling time of the abla-
tion study. From the table, we can see that initial roadmap construction contributes to
improving solution quality. This is because, with initial roadmaps, each roadmap is ex-
panded mainly in neighboring regions of a valid path from start to goal included in the
initial one. On the other hand, such a “guide” does not exist without initial roadmaps,
resulting in non-efficient trajectories.

number of solved instances within 5 min

SSSP random
score

no init
roadmap

no vertex
expansion

no dist

check λ=1 on
PRM

Point2d 880 512 793 498 737 875 807
Arm22 586 101 565 388 523 584 398

Snake2d 710 0 379 674 519 677 39

total traveling time

SSSP random
score

no init
roadmap

no vertex
expansion

no dist

check λ=1 on
PRM

Point2d
54/100

1.96
(1.75, 2.15)

7.49
(5.44, 9.28)

8.75
(4.78, 11.84)

1.89
(1.63, 2.08)

1.70
(1.58, 1.81)

2.02
(1.80, 2.21)

1.78
(1.58, 1.95)

Arm22
52/100

1.76
(1.58, 1.91) N/A 7.38

(5.71, 8.95)
1.87

(1.64, 2.06)
1.69

(1.55, 1.82)
1.74

(1.58, 1.88)
1.93

(1.72, 2.12)

Snake2d
63/100

3.35
(3.08, 3.62) N/A 50.11

(40.72, 58.44)
3.78

(3.41, 4.13) N/A 2.77
(2.56, 2.97)

3.64
(3.35, 3.93)

Table 12.2: Results of ablation studies. See also the caption of Table 12.1 for the bottom
table. To obtain meaningful values, some cases are excluded from the calculation due to
the low success rates (≤20%; marked as N/A).

Effect of Steering. SSSP was additionally evaluated with different λ (probability of
vanilla random sampling) in point2d with 20 robots, which were the same instances as
Chap. 12.4.4. To illustrate the steering effect clearly, the hyperparameters of SSSP were
set as m = 5, θi = 0.02, and ϵ = 0.05. Figure 12.8 shows the results, demonstrating the
decrease in success rate with a higher rate of vanilla random sampling.

12.4.6 Robot Demonstration

Finally, SSSP was applied to 32 robots (https://toio.io/) in a dense situation (Fig. 12.9).
The robots evolve on a specific playmat and are controllable by instructions of absolute
coordinates. The planning module was the same one used in the previous experiments
and the robots were modeled as Point2d. Even though an experimenter randomly placed
the robots as an initial configuration (see the movie), the planning was done in about
30 s, then all robots eventually reached their destinations. Importantly, the planning was
performed without prepared roadmaps like grids, rather, it was based on only five utility
functions (connect, sample, dist, steer, and collide).

12.4.7 Discussion – Why is SSSP Quick?

Below, two qualitative explanations regarding the quickness of SSSP are provided: one
from the MAPF side, and another from the SBMP side. The performance of SSSP relies
on both factors.
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Figure 12.8: Effect of steering. For each instance of Point2d among 100 instances, where
|A| = 20, SSSP was run 10 times with different random seeds.

Figure 12.9: Robot demo. From left to right, the pictures show the initial, intermediate,
and final configurations, which eventually constitute characters “SSSP.”

Branching Factor. During the search, SSSP decomposes successors into search nodes
corresponding to at most one robot taking a motion. Compared to search styles allowing
all robots to move at the same time, the decomposition significantly reduces branching
factor, i.e., the number of successors at each node (likewise LaCAM in Chap. 6). In gen-
eral, the average branching factor b largely determines the search effort [Edelkamp and
Schrodl, 2011]. Assume that each robot has k possible motions from each state on av-
erage. Coupled with perfect heuristics and a perfect tie-breaking strategy, allowing all
robots to move simultaneously results in b = k|A| and generates

(
k|A|

)
· l nodes, where l

is the depth of the search. In contrast, SSSP results in b = k and enables to search of
the equivalent node with only (k|A|) · l nodes generation. This is a key trick of A∗ with
operator decomposition [Standley, 2010] for MAPF; SSSP is based on this idea.

Imbalanced Roadmaps. PRM-based methods (i.e., PRM, PP, and CBS in the experi-
ments) have no choice other than to construct roadmaps uniformly spread in each con-
figuration space, making search spaces huge. Such drawbacks might be relieved with
biased sampling but representing good bias for MRMP is not trivial; indeed, existing
studies use machine learning [Arias et al., 2021a; Okumura et al., 2022c]. In contrast,
owing to carefully-designed components, SSSP naturally constructs sparse roadmaps in
important regions for each robot like in Fig. 12.2. As a result, the search space for SSSP
is kept small, which also contributes to quick MRMP.
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12.5 Concluding Remarks

The chapter introduced the SSSP algorithm that rapidly solves MRMP. The main idea be-
hind the algorithm was to unite techniques developed for SBMP and search techniques
for MAPF. The former, corresponding to the representation perspective, had been stud-
ied mainly in the robotic community, while the latter, corresponding to the planning
perspective, in the AI community. Bringing them together brings promising results, as
extensively demonstrated in the experiments.

12.5.1 Kinodynamic MRMP

This chapter untreated dynamics constraints, therefore, kinodynamic MRMP is an in-
teresting future direction. Similar to RRT or EST that are applicable to kinodynamic
planning, SSSP has a high potential for such planning. The adaptation is by considering
planning with a state x instead of a configuration q ∈ Ci for robot i, which comprises a
configuration q and its derivative q̇ (i.e., x := (q, q̇)). Some parts require care; in usual
kinodynamic MRMP, connecti(x,x) =⊥ as we see in cars that cannot stop instantly. This
means that sequential solutions are not allowed. In this case, it is necessary to regard |A|
successive search nodes in SSSP as “one block” to enable concurrent motions of multiple
robots, as taken in the original A∗ with operator decomposition. Moreover, it may be
necessary to change the sampling strategy as follows.

Sampling from Control Spaces

For kinodynamic motion planning, depending on what constraints fi are posed for robot
i, given arbitrary two configurations, the local planner may rarely return a trajectory due
to boundary condition issues. SSSP can address such planning problems by changing the
steering at Line 12. The below shortly complements this aspect.

Algorithm 12.1 assumes steered sampling obtained uniformly at random from Ci .
Instead, we can always get a connected configuration by considering sampling from the
control space as follows. Let denote sample

U
i sampling function from the control space

Ui for robot i. Let further denote dist
U
i distance function in Ui . Then, replace Line 12

by:

qnew← steer
U
i

(
qfrom,sampleUi ()

)
(12.3)

where (12.4)

steer
U
i (q,ξ) := emulatei (q,ξ

near) (12.5)

emulatei (q,ξ) := q+ fi (q,ξ) ·∆ (12.6)

ξnear := argmin
ξ ′∈Uξ

dist
U
i (ξ ′ ,ξ) (12.7)

Uξ :=
{
ξ ∈ U | connecti

(
q,emulatei (q,ξ)

)
,⊥

}
(12.8)

The updated one outputs steered sampling with feasible control inputs.

12.5.2 Interesting Directions

Some other interesting directions for the development of SSSP are listed below.

Optimal MRMP. SSSP prioritizes solving MRMP itself, rather than solution quality.
However, it is straightforward to take into account quality by modifying node scor-
ing, which is currently designed as a greedy best-first search. With terminologies of
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A∗ search [Hart et al., 1968], the chapter only used h-value (i.e., estimation of cost-to-go).
Incorporating g-value (i.e., cost-to-come) allows SSSP to solve MRMP optimally for a set
of roadmaps Gk at k-th search iteration. Therefore, it is expected that a modified version
of SSSP is asymptotically optimal, together with a discussion of eventual completeness.
Another methodology to achieve optimal MRMP may be rewriting the search tree, as
taken in LaCAM∗ (Chap. 6).

Further Integration of SBMP and MAPF. The concept behind the chapter was devel-
oping robot-wise roadmaps according to the multi-agent search progress, turning out to
be promising. Therefore, this direction should be further investigated. A very-recent
study [Kottinger et al., 2022] explores this direction for CBS. A bunch of powerful MAPF
algorithms exists not limited to A∗ with operator decomposition or CBS, as presented
in Chap. 3.2.4 and Part I. Therefore, integrating them with SBMP may fruit practical
methodologies for MRMP.
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Conclusion and Discussion

The dissertation aims at developing quick, scalable, near-optimal, robust, domain inde-
pendent, and end-to-end multi-agent navigation from computational aspects. To this
end, three perspectives were introduced, namely, planning, execution, and representa-
tion; they were respectively studied. Throughout the dissertation, the presented studies
provided methodologies to break tradeoffs existing in each perspective. This final chap-
ter concludes the dissertation while highlighting some remarkable things in the disser-
tation, rather than reviewing it all in detail. Each highlight is followed by interesting
future directions.

13.1 Planning

13.1.1 Summary of Contributions

The crux of the planning part is graph path planning for multiple agents, formulated as
MAPF. Therefore, Part I devoted to advancing MAPF technologies.

The advancement by this dissertation is impressively visualized in Fig. 13.1, corre-
sponding to the previous one presented in Fig. 3.3. Recall that this figure presents how
many instances have been successfully solved by each algorithm, where instances were
retrieved from the MAPF benchmark [Stern et al., 2019]. In past, the dissertation pointed
out the difficulty of ensuring completeness and solution quality while suppressing the
planning effort. Indeed, Fig. 3.3 was evidence of this tradeoff.

Now, let us confirm the result of the developed algorithms in the dissertation, in
Fig. 13.1. The PIBT(+) algorithm (Chap. 4) achieved good performance itself, i.e., solving
many instances speedily. However, due to its incompleteness, it has room for improve-
ments in success rate. Meanwhile, the LaCAM∗ algorithm (Chap. 6) with improved PIBT,
a complete algorithm, solved 99% of instances while guaranteeing to converge to op-
tima. This result is clearly breaking the tradeoff in planning! Furthermore, as presented
in Chap. 6, LaCAM can solve a variety of MAPF instances in a very short time. For in-
stance, it solved puzzle-like complicated instances (near-)optimally while it also solved
instances with 10,000 agents in a few of tens seconds. Such algorithms never exist so far.

13.1.2 Future Directions

Many enhancements and applications of Part I can be considered. Among them, two
directions that I am especially interested in are discussed.
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Figure 13.1: Comparison of various algorithms on the MAPF benchmark.

Integrating Planning and Learning

The current PIBT implementation (Chap. 6.6), used in LaCAM∗, incorporates a manu-
ally adjusted pattern detector to improve its performance. This will be a bottleneck for
domain independence since the detector is designed for the conventional MAPF setting
(four-connected grids). However, we can learn something important from here, namely,
improving vertex scoring of PIBT used in LaCAM can significantly improve the perfor-
mance of the search. Therefore, it has value to seek how to design “good” vertex scoring
automatically, while considering domain independence in mind.

One promising direction might be exploring machine learning, as we see success-
ful results in various domains [Mnih et al., 2015; Krizhevsky et al., 2017; Jumper et al.,
2021]. In particular, I expect that learning good short-horizon planning in a full-scratch
manner, like what AlphaZero did for board games [Silver et al., 2018], will be a very pow-
erful technology. Integrating ML into planning may also improve planning quality (e.g.,
flowtime and makespan in MAPF). In the MAPF literature, several studies have already
started to integrate planning and learning, e.g., [Huang et al., 2021; Virmani et al., 2021;
Huang et al., 2022].

Though LaCAM, as well as PIBT, resulted in very promising results, they are new-
comers to MAPF algorithms. In other words, they are not extensively examined for their
potential. Therefore, I believe integrating ML into these two fruit remarkable achieve-
ments.
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Leverage LaCAM to Other Graph Pathfinding Problems

After all, lazy constraint addition search, a concept behind LaCAM, is just a graph pathfind-
ing algorithm. Therefore, I believe it can leverage to search problems beyond MAPF. In-
deed, unlabeled-MAPF is easily captured by LaCAM by changing a configuration genera-
tor from PIBT to TSWAP (Chap. 5). The necessary components of LaCAM to apply other
domains are a “good” configuration generator (i.e., the role of PIBT/TSWAP) and the
manner of constructing a constraint tree. If these two components are designed appro-
priately, LaCAM may be a powerful search scheme for domains wherein the branching
factor is very huge like MAPF.

13.2 Execution

13.2.1 Summary of Contributions

In the execution part (Part II), aiming at overcoming uncertainties, the dissertation ex-
plored the non-trivial integration of planning and execution. That is, agents reactively
behave at runtime though planning itself is offline. The concept is exemplified by OTIMAPP
for timing uncertainties (Chap. 9) and MAPPCF for crash faults (Chap. 10). This novel
style can attach good theoretical properties to execution containing uncertainties. In-
deed, decentralized execution with real robots was presented, while ensuring liveness,
without any central intervention at runtime, and without any global interactions (Chap. 9.8.4).
This kind of demonstration can be achieved neither by conventional centralized execu-
tion styles that rely on global monitoring systems nor by decentralized execution styles
that lack centralized planners. In short, the proposed integrated planning-execution
style provides a unique concept for achieving multi-agent navigation.

13.2.2 Future Directions

Two interesting directions are discussed below.

Hybrid of Deliberative and Reactive Approaches

The primary observations of theoretical analyses in OTMAPP and MAPPCF are that these
problems are computationally challenging. Empirically, for both problems, we have seen
algorithms that can handle instances with tens of agents. However, with much larger
instances like we saw in Part I, it is significantly challenging to find solutions due to
both computational difficulty and the non-existence of feasible solutions. Therefore, it
makes sense to consider relaxed versions of the problems, which are unlikely to trigger
something bad.

As a nature of planning problems discussed in Chap. 3.6.3, the difficulty of such
problems partially stems from their length of planning horizons. Therefore, it might
be effective to consider relaxations by limiting the length of planning horizons. More
precisely, I suggest exploring a planning-execution style visualized in Fig. 13.2; this is
where I did not deeply survey.

The primary questions will be, with such styles, whether attaching something good
properties (e.g., liveness) to execution is possible, as what OTIMAPP and MAPPCF did.
Moreover, whether such styles really relax computational burdens is unclear.

Dynamic Obstacles

The dissertation assumed static obstacles while did not assume dynamic obstacles such
that their locations are time-varying. Dynamic obstacles are not rare in reality. For in-
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Figure 13.2: Hybrid of deliberative and reactive approaches.

stance, in warehouse applications, humans themselves are dynamic obstacles to robots.
This begs a new research question, namely, how to realize robust execution while ensur-
ing something good, even with dynamic obstacles. I envision that similar approaches to
OTIMAPP or MAPPCF are possible to answer this question.

13.3 Representation

13.3.1 Summary of Contributions

Considering representation issues is necessary to realize end-to-end multi-agent navi-
gation; hence studied in Part III. The primary challenge in representation was how to
construct small but effective search spaces (i.e., roadmaps) for subsequent planning. The
dissertation first considered two-phase planning, that is, decoupled planning style that
first constructs roadmaps and then solves MAPF on those roadmaps. Especially, with
the enhancements of ML techniques (Chap. 11), it had been demonstrated that such
small but effective roadmaps can be built. With this result, an advanced concept that
couples roadmap construction and multi-agent search has been tested as the SSSP algo-
rithm (Chap. 12) to solve MRMP. SSSP solved various planning instances in a domain-
independent way within short timeframes, including the ground robot demo. Though its
scalability is not remarkable compared to Part I, I believe this direction is promising for
the future development of MRMP.

13.3.2 Future Directions

Two interesting directions are discussed below.

Integration of SBMP, MAPF, and ML

SSSP uses random walks when sampling. This technical component is able to be replaced
with biased sampling enhanced by ML techniques, as done in CTRM. Doing so provides
much smaller but effective roadmaps, expected to bring scalable MRMP algorithms.

Observe that this idea integrates three technical components: SSSP itself is a com-
position of SBMP and MAPF, furthermore, the idea poses the integration of ML into
SSSP. Like this, I strongly envision the integration of SBMP, MAPF, and ML technolo-
gies fruit very powerful and practical approaches for MRMP. For instance, integration
of MAPF and ML has been seen in, e.g., [Huang et al., 2021; Zhang et al., 2022c]. That
of SBMP and MAPF has been seen in, e.g., [Solis et al., 2021; Kottinger et al., 2022].
That of ML and SBMP has been seen in, e.g., [Qureshi et al., 2020; Ichter et al., 2020;
Chen et al., 2020]. However, to the best of my knowledge, the integration of three com-
ponents is under-explored. This is where further research is promising.
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Environment Optimization

The dissertation treated the environment as untouchable, however, in many practical
scenarios, the environment is configurable. For instance, in warehouse operations, the
layout of shelf and delivery locations can be manipulated. This begs a new research
question that asks for a good representation of configurable environments. Some early
studies have appeared in the literature [Bellusci et al., 2020; Vainshtain and Salzman,
2021; Gao and Prorok, 2022].

13.4 Final Notes

The dissertation implicitly assumes that agents are physically embedded (even with an-
imated agents). However, after all, what was presented is multi-agent sequential decision-
making where agents potentially interfere with each other. Therefore, I expect that killer
applications of multi-agent navigation exist not limited to robotics. I am not sure about
this point, but it is always nice to seek something unimaginable thus far.
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Appendix B

PIBT

B.1 PIBT in Extremely Dense Situations

This section presents additional experiments on PIBT in extremely dense situations where
|A| > |V |/2 and G satisfies the graph condition of Thrm. 4.2. The empty-8-8 map and the
same experimental settings were used as those introduced in Chap. 4.4.1.

Table B.1 summarizes the result. Most instances are solved at most 5 ms; otherwise,
PIBT failed by reaching the makespan limit. Solution costs dramatically increase with
more agents because, in dense situations, most agents cannot take their shortest paths.

|A| success rate runtime (ms) sum-of-costs makespan

40 0.96 0.21 3.15 3.46
50 0.84 1.43 7.38 6.94
60 1.00 2.16 12.25 7.86
64 1.00 3.16 21.55 10.01

Table B.1: PIBT in an extremely dense situation. The used map is empty-8-8. 25 in-
stances were prepared for each |A|. Scores of “sum-of-costs” and “makespan” are upper
bounds of sub-optimality in the same way as Fig. 4.6.

Interestingly, PIBT solved all instances with 64 agents (fully occupied), while some-
times failing with 50 agents. This is because of the randomness of the tie-break rule at
Line 9 of Alg. 4.2. As a discussion of the implementation level, we used three rules when
sorting candidate nodes for the following location:

1. distances to the goal,

2. the presence of agents to avoid unnecessary priority inheritance, and

3. random values, when neither the prior two break a tie.

The rule-2 omitted version was also tested, succeeding for all instances regardless of
|A|. Since rule-2 loses its meaning in situations where |A| = |V |, we consider that the
randomness contributes to solving extremely dense situations. We also observed that
this trend is the same when testing a 16×16 empty grid, i.e., usual PIBT sometimes failed
whereas PIBT that omits the rule-2 tie-break solved all instances regardless of |A|. From
these observations, it is guessed that in tidy environments like empty-8-8, PIBT without
the rule-2 can solve one-shot MAPF with a high probability as makespan increases. This
is an interesting direction to seek but significantly beyond the dissertation scope.

Note that the aforementioned discussion is not applicable when G does not satisfy
the graph condition of Thrm. 4.2. Moreover, rule-2 is usually effective in improving
sum-of-costs, as shown in Table B.2.

267



APPENDIX B. PIBT

success rate sum-of-costs makespan

|A| normal random normal random normal random

100 1.00 1.00 1.04
(1.04, 1.05)

1.08
(1.07, 1.09)

1.00
(1.00, 1.00)

1.00
(1.00, 1.00)

300 1.00 1.00 1.10
(1.09, 1.10)

1.16
(1.15, 1.16)

1.00
(1.00, 1.00)

1.00
(1.00, 1.00)

500 0.96 1.00 1.15
(1.14, 1.15)

1.22
(1.22, 1.23)

1.00
(1.00, 1.00)

1.00
(1.00, 1.00)

700 0.96 0.96 1.20
(1.20, 1.20)

1.28
(1.27, 1.28)

1.00
(1.00, 1.00)

1.00
(1.00, 1.00)

900 0.88 0.96 1.25
(1.24, 1.25)

1.33
(1.32, 1.34)

1.00
(1.00, 1.00)

1.00
(1.00, 1.01)

Table B.2: Effect of tie-break strategy. “normal” is PIBT and “random” is PIBT without
the rule-2 tie-break. The used map was den520d. For each |A|, 25 random scenarios
were prepared, not equivalent to those in Chap. 4.4.1. The scores of sum-of-costs and
makespan are the average of the upper bounds of sub-optimality with 95% confidence
intervals, based on instances that were solved by both.
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TSWAP

C.1 Implementation of the Polynomial-Time Makespan-Optimal
Algorithm

In the experiments of TSWAP, the polynomial-time makespan-optimal algorithm [Yu and
LaValle, 2013a] was used. This algorithm has several techniques to improve the runtime
performance. Thus, prior to the experiments in Chap. 5.4, these techniques were tested
to select the best one for each experimental setting. This section describes the details.

C.1.1 Algorithm Description

Given a timestep T , a decision problem of whether an unlabeled-MAPF instance has
a solution with makespan T can be solved in polynomial time. This is achieved by a
reduction to maximum flow problems on a large graph called time expanded network [Yu
and LaValle, 2013a].1 Let denote NT be the time expanded network for makespan T . To
clarify the context, the following uses “nodes” for the networkNT and “vertices” for the
original graph G.

For each timestep 0 ≤ t < T and each vertex v ∈ V , the network NT has two nodes vtin
and vtout. In addition, there are two special nodes source and sink to convert the unlabeled-
MAPF instance to the maximum flow problem. NT has five types of edges with a unit
capacity. The intuitions are the following:

• (vtin,v
t
out): An agent can stay at v during [t, t + 1].

• (utin,v
t
out) if (u,v) ∈ E: An agent can move from u to v during [t, t + 1].

• (vtout,v
t+1
in ): Prevent vertex collisions.

• (source,v0
in) if v ∈ S : Initial locations.

• (vT−1
out ,sink) if v ∈ G: Targets.

Figure C.1 shows an example of time expanded networks with the maximum flows. Once
the maximum flow with a size equal to |A| is obtained, the solution for the unlabeled-
MAPF instance is easily obtained from the flow.

Since many polynomial-time maximum flow algorithms exist, the maximum flow
problem for time expanded networks can be solved in polynomial-time. For instance,
the time complexity of the Ford-Fulkerson algorithm [Ford and Fulkerson, 1956], a ma-
jor algorithm for the maximum flow problem, is O(f E′) where f is the maximum flow

1The structure of the network is slightly changed from the original paper to make the network slim,
i.e., removing internal two nodes for preventing edge collisions. In the unlabeled setting, plans with edge
collisions can be easily converted to plans without collisions. This technique is used in [Ma et al., 2016;
Liu et al., 2019].
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Figure C.1: Examples of time expanded network and two techniques (prune and
reuse). The left shows an unlabeled-MAPF instance. The center shows N1 with the
maximum flow (blue). Since the size of the maximum flow is not equal to |A|, there is
no feasible solution with makespan T = 1. The right shows N2 with the maximum flow
(blue and green). The resulting solution is Π1 = (v,w,w) and Π2 = (w,x,y). Since nodes
with bold lines, e.g., u0

out in both networks, never reach the sink, they can be pruned dur-
ing the search for augmenting paths. When extending timestep, the past flow (blue solid
line inN1) can be effectively reused to create a new flow (blue dotted line inN2).

size and E′ denotes edges in the network; the running time in NT is O(AVT ) with a nat-
ural assumption of E = O(V ). According to [Yu and LaValle, 2013a], T = |A| + |V | − 2 in
the worst case, thus, the time complexity is O

(
AV 2

)
.

Using the above scheme, the remaining problem is to find an optimal T . This phase
has many design choices. The typical one is incremental search (i.e., T = 1,2, . . .).

C.1.2 Techniques

This part introduces three effective techniques to speed up the optimal algorithm, as-
suming that the Fold-Furlkerson algorithm is used to find the maximal flow. The first
two techniques are about finding an optimal makespan T . The last one is for reducing
the search effort of the maximum flow; this is new in the MAPF literature.

Lower Bound

Starting the search for T from the makespan lower bound is expected to reduce the com-
putational effort because the number of solving the maximum flow problems is reduced.
A naive approach to obtain the bound is computing maxi minj h(si , gj ).2 A tighter bound
is obtained by solving the bottleneck assignment problem [Gross, 1959], i.e., assigning
each agent to one target while minimizing the maximum cost, regarding distances be-
tween initial locations and targets as costs. This bound is easily obtained by an adaptive
version of Alg. 5.4.

Pruning of Redundant Nodes

During the search for augmenting paths, nodes that never reach the sink can be pruned.
In Fig. C.1, such nodes are highlighted by bold lines. The pruning is realized by two
processes.

2Or, dist(si , gj ) but this is avoided because in most cases the admissible heuristics work well and it is
much faster.
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• Preprocessing: Before searching optimal makespans, calculate the minimum dis-
tance to reach one of the targets from each vertex v ∈ V . Let denote this distance
λ(v), e.g., λ(u) = 2 in Fig. C.1. This is computed by a one-shot breadth-first search
from all targets; its time complexity is O(V + E), i.e., the overhead of the prepro-
cessing.

• Pruning: During the search of augmenting paths, vtout such that t + λ(v) ≥ T is
avoided from expanding as successors. This also prevents from expanding vt+1

in .

Pruning reduces the search time of the maximum flow algorithm without affecting its
correctness and optimality. This concept to flow network can be seen in [Yu and LaValle,
2016], while similar concepts can be seen in other reduction-based approaches to labeled
MAPF, e.g., SAT-based [Surynek et al., 2016] and ASP-based [G’omez et al., 2020].

Reuse of Past Flows

Consider the incremental search of optimal makespan and expanding the network from
NT toNT+1. The Ford-Fulkerson algorithm iteratively finds an augmenting path until no
such path exists. Thus, a reduction in the iterations is expected to reduce computation
time.

A feasible flow ofNT+1 with a size equal to the maximum flow ofNT can be obtained
immediately without a search. To see this, let vT−1

out be a node used in the maximum flow
ofNT . Let this flow extending forNT+1 by using vT−1

out , vTin, vTout, and the sink. In Fig. C.1,
the example of N2 is shown, highlighted by a blue dotted line started from w0

out. This
new flow is trivially feasible in N2; in general, it is feasible in NT+1. As a result, the
Ford-Fulkerson algorithm in N2 only needs to find one augmenting path (green), rather
than two. Hence, the reuse of the past flow contributes to reducing the iterations of the
Ford-Fulkerson algorithm.

C.1.3 Evaluation of Techniques

The three techniques were evaluated using a four-connected grid random-64-64-20, shown
in Fig. 5.7, while changing the number of agents. The simulator and the experimental en-
vironment were the same as Chap. 5.4. All instances were created by choosing randomly
initial locations and targets.

LB Prn Re

✓
✓

✓
✓ ✓

✓ ✓
✓ ✓
✓ ✓ ✓
* ✓ *

0 2 4 6
runtime (sec)

|A|=50

0 2 4 6

|A|=110

0 2 4 6

|A|=500

0 2 4 6

|A|=1000

0 2 4 6

|A|=1500

0 2 4 6

|A|=2000

normal w/techniques w/optiml T

Figure C.2: The average runtime of the optimal algorithm in random-64-64-20. Check-
marks at “LB” mean starting the search from the lower bound obtained by Alg. 5.4; oth-
erwise, it is obtained by computing maxi minj h(si , gj ). “Prn” stands for pruning. “Re”
stands for reusing past flows.

The average runtime over 50 instances is shown in Fig. C.2. The figure additionally
shows a single run of the maximum flow algorithm with optimal makespan, unknown be-
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fore experiments (green bars). Since all combinations yield optimal solutions, the smaller
runtime is better.

As for the technique of the lower bounds, the following two were tested: the conser-
vative one obtained by maxi minj h(si , gj ) (without checkmarks at “LB”), or, the aggressive
one obtained by solving the bottleneck assignment problem using Alg. 5.4 (with check-
marks). The runtime includes computing the bounds. The aggressive one has an advan-
tage when the number of agents is small. However, as increasing, solving the assignment
problem itself takes time then it loses the advantage. Rather, the conservative one scores
smaller runtime.

The other two techniques surely contribute to reducing runtime. Notably, the best
runtimes with the proposed techniques (blue) do not differ or are faster than those given
the optimal makespan (green).

C.1.4 Implementations in the Experiments

Following the above result, in our experiments, the optimal algorithm used the tech-
niques of the aggressive “LB”, “Prn”, and “Re” except for |A| ≥ 1000; in this case, it
used the conservative “LB” instead of the aggressive one because Alg. 5.4 becomes costly.
brc202d is an exception; aggressive “LB” was used even when |A| ≥ 1,000. Since the
map is too large, conservative “LB” more often failed to find solutions within a time
limit.
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Appendix D

LaCAM

D.1 Detailed Results of MAPF Benchmark

Figures D.1 to D.4 present full results of the MAPF benchmark, complementing Fig. 6.14.
In addition to sum-of-loss, the figures also present makespan normalized by maxi∈Adist(si , gi).
Scores of LaCAM∗ are for initial solutions.
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Figure D.1: Result of the MAPF benchmark (1/4). See also the caption of Fig. 6.14. |V |
is shown in parentheses.
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Figure D.2: Result of the MAPF benchmark (2/4).
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Figure D.3: Result of the MAPF benchmark (3/4).
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Figure D.4: Result of the MAPF benchmark (4/4).
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CTRM

E.1 Conditional Variational Autoencoder and its Training

E.1.1 Basic Formulation of CVAE

The objective of CVAE [Sohn et al., 2015] is to approximate a conditional probability dis-
tribution p(y | x) of vector y given another vector x. CVAE consists of encoder Enc(x;θ)
and decoder Dec(x,z;φ), which are typically neural networks parameterized by θ and φ,
respectively. The encoder Enc(x;θ) takes x as input to produce a conditional probability
distribution pθ(z | x), where z is a latent variable that represents x in a low-dimensional
space called latent space. Here, pθ is modeled by a discrete, categorical distribution fol-
lowing [Ivanovic et al., 2021], but it is also possible to consider a continuous distribution
(such as Gaussian distribution). As for the decoder Dec(x,z;φ), it receives a concatenation
of x and z sampled from pθ to approximate another conditional probability distribution
pφ(y | x,z). By marginalizing out z, we can obtain p(y | x) as follows.

p(y | x) =
∑
z

pφ(y | x,z)pθ(z | x) (E.1)

E.1.2 CVAE with Importance Sampling

To perform the marginalization of Eq. (E.1), we expect z to contain some information
about y, otherwise pθ(z | x) will contribute very little to p(y | x). A typical approach to
this problem is importance sampling [Bishop and Nasrabadi, 2006], where we sample z

+
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𝑧
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Figure E.1: CAVE architecture.
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from a proposal distribution q(z | x,y) to select a proper z. To this end, another neural
network-based encoder Enc′(x,y;ψ) is introduced, parameterized by ψ, which takes the
concatenation of x and y to produce the proposal distribution qψ(z | x,y). Equation (E.1)
can then be rewritten as follows:

p(y | x) =
∑
z

pφ(y | x,z)pθ(z | x)

qψ(z | x,y)
qψ(z | x,y)

= Eqψ(z|x,y)

[
pφ(y | x,z)pθ(z | x)

qψ(z | x,y)

] (E.2)

By taking the log of both sides and using Jensen’s inequality, the evidence lower-bound
(ELBO) is obtained on the right-hand side in the following inequality:

logp(y | x) ≥ Eqψ(z|x,y)

[
logpφ(y | x,z)

]
−DKL

[
qψ(z | x,y) || pθ(z | x)

]
(E.3)

where DKL [p || q] := Ep [log(p(x)/q(x))] is a Kullback-Leibler (KL) divergence.

E.1.3 Training CVAE

Given a collection of pairs of x and y, we want to maximize this ELBO with respect to
θ,φ,ψ to achieve p(y | x). More specifically, the training of CVAE proceeds as follows (see
also Fig. E.1). First, the encoder Enc(x;θ) takes x as input to output the log of pθ(z | x).
At the same time, the other encoder Enc′(x,y;ψ) receives the concatenation of x and y to
output the log of qψ(z | x,y). Then, a latent variable z is drawn from qψ, concatenated
with x, and fed to the decoder Dec(x,z;φ) to obtain y′. This y′ can be regarded as a sample
drawn from p(y | x) under the current parameters θ, φ, and ψ. Therefore, minimizing the
discrepancy between y′ and y corresponds to maximizing the first log-likelihood term
of Eq. (E.3). Here, a reparameterization trick [Kingma and Welling, 2014; Eric Jang,
2017; Chris J. Maddison, 2017] is used for the sampling of latent variable z to enable the
end-to-end learning of encoder Enc

′(x,y;ψ) and decoder Dec(x,z;φ) by means of back-
propagation. Furthermore, it is easy to compute the second KL term of Eq. (E.3) directly
from the outputs of Enc(x;ψ) and Enc

′(x,y;ψ). In practice, the implementation measures
the L2 distance between y′ and y for the first log-likelihood term, and gives a scalar
weight 0.1 to the second KL term [Ichter et al., 2018], as it performed empirically well.

E.1.4 Using CVAE as a Sampler

Once trained, CVAE in the inference time can be used as a conditional sampler taking x
as input to generate plausible y′, which is denoted by FCTRM(x) in our work. Note that
we do not use Enc

′(x,y) anymore for this sampling.

E.1.5 Joint Training with Other Network Modules

As described in Chap. 11.3.3, CVAE is trained with the other network modules NNself_env,
NNother_env, NNcomm, and NNind jointly. Specifically, the study uses the negative log-likelihood
(NLL) loss between the softmax output of NNind and the ground-truth values of xind
computed exactly using solution paths in the training data. Then the multi-task loss
is minimized, defined by the sum of CVAE loss and NLL loss scaled by a factor of 0.001.
This scaling was necessary to roughly match the magnitude of the two losses. Since the
outputs from NNself_env, NNother_env, and NNcomm are used directly as inputs to the CVAE
and NNind, the parameters of those modules can also be updated end-to-end by back-
propagating the multi-task loss.
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