# T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

## 論文 / 著書情報 Article / Book Information

| 論題(和文)            | 建築物荷重指針・同解説を用いて風応答予測を行う際の風力スペクト<br>ルの平滑化指標の提案                                                                                       |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Title(English)    | Proposal of a Smoothing Index for Wind Force Spectra in Predicting<br>Wind Response using RECOMMENDATIONS FOR LOADS ON<br>BUILDINDS |  |  |  |  |  |
| 著者(和文)            | 小林稜, 佐藤大樹, 田中英之, 曽根孝行, 渡井一樹                                                                                                         |  |  |  |  |  |
| Authors(English)  | Ryo Kobayashi, Daiki Sato, Hideyuki Tanaka, Takayuki Sone, Kazuki<br>Watai                                                          |  |  |  |  |  |
| 出典 / Citation     | 日本建築学会関東支部研究報告集, , , pp. 477-480                                                                                                    |  |  |  |  |  |
| Citation(English) | , , , pp. 477-480                                                                                                                   |  |  |  |  |  |
| 発行日 / Pub. date   | 2023, 2                                                                                                                             |  |  |  |  |  |
|                   |                                                                                                                                     |  |  |  |  |  |

### 建築物荷重指針・同解説を用いて風応答予測を行う際の

風力スペクトルの平滑化指標の提案

#### 構造-振動

超高層建物 建築物荷重指針・同解説 風応答解析 パワースペクトル密度

#### 1. はじめに

「建築物荷重指針・同解説」1)(以下,荷重指針)を用 いることで風荷重や応答を評価することが出来る。「荷重 指針」において風応答の標準偏差を求める際,解析モデル の固有振動数における入力風力のパワースペクトル密度 /Power Spectrum Density (以下, PSD) の値をホワイトノ イズと仮定することで、数値積分を行うことなく解析的 に求めることができる<sup>2)</sup>。しかし,固有振動数における入 力風力の PSD の値にばらつきがある場合、応答の標準偏 差の値に影響を及ぼし、精度が悪くなる。そのため本研究 では、荷重指針の予測式による風応答評価の高精度化を 目的としている。このばらつきを小さくする, つまりパワ ースペクトル密度を平滑化する方法として, 複数波によ るアンサンブル平均が用いられる。しかし、時間や費用の 面から風力データのサンプル数を確保することが難しい 場合も少なくない。加えて,風力の平滑化度合いを数値で 評価する方法が確立されておらず、異なる風力の平滑化 度合いを比較することが困難である。そこで,筆者らはア ンサンブル平均と移動平均を併用して入力風力の PSD の 平滑化を行った場合の、荷重指針による風応答予測と時 刻歴応答解析による風応答予測を比較することで、平滑 化が風応答予測に及ぼす影響の検証を行ってきた。文献 3)において,解析モデルの1次固有振動数1fに対する移 動平均の振動数幅の比(バンド比)を用いて風応答予測と 平滑化の関係を検証した。しかし、バンド比と予測精度の 間に明確な関係は見いだせなかった。そこで本報では,パ ワースペクトル密度を無次元化し、その極値に注目する 新たな平滑化の指標を提案し、その予測精度を検証する ことを目的とする。

#### 2. 解析モデル概要

#### 2.1 解析モデル

解析対象建物は、建物密度 ρ=175 kg/m<sup>3</sup>、質量は高さに

| 正会員 〇 | 小林稜*1  | 正会員 | 佐藤大樹*2 |
|-------|--------|-----|--------|
| 正会員   | 田中英之*3 | 正会員 | 曽根孝行*3 |
| 正会員   | 渡井一樹*3 |     |        |

ー様であるとし,高さ H=200 m,辺長比 D/B=1 (D, B:幅,奥行き,D = B=40 m)の20 質点せん断型モデルと する<sup>4)</sup>。フレームの1次固有周期<sub>1</sub>Tは,<sub>1</sub>T=3.0 s, 5.0 s の2種類とし,建物の1次固有モードは直線の正規化モ ードとした。構造減衰は剛性比例型として,<sub>1</sub>T それぞれ に対して1次減衰定数<sub>1</sub> $\zeta$ =1%,2%,3%,4%,5%の5種 類を用いる。

本報では、1次モードの風応答のみに注目し、1次モー ダル質量<sub>1</sub>Mと1次モーダル風力<sub>1</sub>Fとして与える水平1 自由度の1質点系モデルで解析・検討を行う。

#### 2.2 入力風力

構造物に作用する風外力は風洞実験結果  $4 \circ$  用いた。実 験気流は「荷重指針」の地表面粗度区分 III の気流を目標に 作成された。対象建物を想定した実験模型は、高さ 300 mm, D/B = 1.0 の角柱模型とし、層風力は高さ方向に 9 層 分測定した。基本風速は  $U_0 = 36$  m/s,風速は再現期間 100 年の時に頂部風速  $U_H = 52.0$  m/s,再現期間 500 年の時 頂部風速は  $U_H = 57.9$  m/sを想定した。検討用風外力は、 1 組につき 20 質点分の風力波形を 0.05 s 秒刻み 14000 ス テップとした。各風力波形前後に 50 s のエンベロープを 設け、中間の 600 s が重ならないように 10 組(wave1~10) 取り出した。その後、応答の減衰時間を考慮し、加力を行 わない 100 s のデータを最後に加えた 800 s×10 組で検討 を行った。検討用風力入力方向は、風直交方向とする。

#### 予測式の概要

1次モーダル変位の標準偏差<sub>1</sub>σ<sub>q</sub>の予測値は式(1)(以下, 予測式)のように表すことが出来る<sup>2)</sup>。

$${}_{1}\sigma_{q} = \frac{{}_{1}\sigma_{F}}{{}_{1}M\left(2\pi_{1}f\right)^{2}} \sqrt{1 + \frac{\pi}{4_{1}\zeta} \frac{{}_{1}f_{1}S_{F}\left({}_{1}f\right)}{{}_{1}\sigma_{F}^{2}}}$$
(1)

ここで,<sub>1</sub>*S<sub>F</sub>*(1*f*):1次固有振動数<sub>1</sub>*f*における1次モーダル 風力のパワースペクトル密度, 1*σ<sub>F</sub>*:1次モーダル風力の標

Proposal of a Smoothing Index for Wind Force Spectra in Predicting Wind Response using"RECOMMENDATIONS FOR LOADS ON BUILDINDS"

Ryo KOBAYASHI , Daiki SATO , Hideyuki TANAKA, Takayuki SONE , Kazuki WATAI 準偏差である。 $_{1}f$ 付近における入力風力の PSD は振動数 の変化量に対するパワースペクトル密度の変化量(以降, ばらつき)が大きく、予測式の $_{1}S_{F(1f)}$ の値として PSD の 値を用いると、1 次モーダル変位の標準偏差 $_{1}\sigma_{q}$ にもばら つきを生じることが確認されている<sup>3)</sup>。そこで本報では、 入力風力のパワースペクトル密度をアンサンブル平均や 移動平均による平滑化を行い、 $_{1}S_{F(1f)}$ を算出したのち、予 測式(式(1))を用いて得られる $_{1}\sigma_{q}$ (以降, RLB)と時刻 歴応答解析による $_{1}\sigma_{q}$ (以降, THA)を比較し、平滑化度 合いと時刻歴応答解析に対する予測式の精度の関係を把 握し、平滑化指標を提案する。

#### 4. 平滑化の評価

#### 4.1 平滑化指標の概要

本節では、無次元化パワースペクトル密度<sub>1</sub> $\widehat{S}_{NDF}$ を用いて、平滑化の指標を提案する。図1(a)、(b)のように無次元パワースペクトル密度の極値に注目し、固有振動数<sub>1</sub>f に対して±50%の範囲<sup>3</sup>における極値同士の差の絶対値 (以下、振幅  $\Delta S$ )を抽出する。その後、図1(c)、(d)のように振幅  $\Delta S$ を並べ、 $\Delta S$ の標準偏差  $\Gamma_{s}$ を式(2)から算出 し、 $\Gamma_{s}$ と THA に対する RLB の比 RLB/THA との関係について検証を行う。

$$\Gamma_{s} = \sqrt{\frac{1}{j_{2} - j_{1} + 1} \sum_{j=j_{1}}^{j_{2}} \left( \Delta S^{(j)} - \Delta \overline{S} \right)^{2}}$$
(2)

ここで、 $j_1: \Gamma_s$ の計算を開始する点、 $j_2: \Gamma_s$ の計算を終了 する点、 $\Delta \overline{S}: \Delta S^{(j)}(j = j_1 \sim j_2)$ の平均値である。図1より、  $_{1}T = 3 \text{ s} \text{ ki}_{1}T = 5 \text{ s}$ の時に比べ $\Gamma_{s}$ を計算する際の $j_{1} - j_{2}$ の範囲が広いことが分かる。また、 $_{1}T = 3 \text{ s}$ の時は $\Gamma_{s} = 0.30$ 、 $_{1}T = 5 \text{ s}$ の時は $\Gamma_{s} = 0.46$ となり $_{1}T = 3 \text{ s}$ の場合の方が $\Gamma_{s}$ の値は小さくなる。これは、 $_{1}T = 5 \text{ s}$ における $j_{1} - j_{2}$ の範囲内にPSDのピークが存在したことでばらつきが大きくなったと考えられる。

#### 4.2 平滑化指標を用いた評価

本報で検討に用いる平滑化の方法は、アンサンブル平 均と移動平均と2つとする。アンサンブル数は3波、5波、 10 波の3種類とし、移動平均はパワースペクトル密度の 振動数刻み $\Delta f$  (=0.00125 Hz)を用いて、2 $n_s \Delta f$ ( $n_s$ =0~16) の17種類で検討を行う。

図2にアンサンブル数が3波(wave1~3),5波(wave1~5), 10波(wave1~10)の入力風力のパワースペクトル密度(有 次元)を $n_s=0$ , 1, 8, 16で移動平均したもの,表2にそ の時の無次元化したパワースペクトル密度の振幅の標準 偏差 $\Gamma_s$ の値を示す。図2,表1より, $n_s=0$ (移動平均前) の場合,アンサンブル数が大きくなると、 $\Gamma_s$ の値も小 さくなっている。また、同じアンサンブル数で比較した場 合、 $n_s$ の値が大きくなるとグラフも滑らかになり $\Gamma_s$ の値 も小さくなっているが、 $n_s=16$ における $\Gamma_s$ の値が $n_s=8$ に おける値より大きいことから、 $n_s$ に限界がある可能性が ある。そこで次に、図3に $n_s$ を増やした $n_s \ge \Gamma_s$ の関係を 示す。

図3より,移動平均幅 $n_s$ が大きくなるにつれて $\Gamma_s$ の値 が小さくなる傾向があるが, $n_s=8$ 付近を超えると $n_s$ を大 きくしてもあまり $\Gamma_s$ の値は変わらない結果となった。周



期に注目すると、 $_1T = 5 \text{ s}$ よりも $_1T = 3 \text{ s}$ の場合の方が $\Gamma_s$ の値が大きく、図 1(a)、(b)から得られた結果と同様となった。また、アンサンブル数に注目すると、 $n_s = 0$ の場合はアンサンブル数が多いほど $\Gamma_s$ の値は小さくなるものの、 $n_s$ を大きくするとアンサンブル数によらないことも分かった。

以上のことより、*Γ*<sub>s</sub>を小さくするためには *n*<sub>s</sub>を大きく することが最も効果的で、次に<sub>1</sub>*T*を短くすることである。 一方で、アンサンブル数を大きくしても移動平均ほどの 平滑化効果は期待できない。



表1 移動平均後の 厂。



#### 5. 有効平滑化指標の決定

#### 5.1 Г。と RLB/THA の関係

表 2 に本章で用いるパラメータを示す。また、THA に 対する RLB の比である RLB/THA と、その時の  $\Gamma_s$ の関係 を図 4 に示す。図 4 より、多くのケースが  $\Gamma_s = 0~0.3$ 付近に集中しているように見受けられる。そこで次節に おいて、RLB/THA の誤差が±10%となるデータが多く含 まれる範囲について検証を行い、その  $\Gamma_s$ の範囲を決定し、 これを有効平滑化指標と呼ぶこととする。

表2 検討パラメータ



#### 5.2 有効 / の決定

本節では、RLB/THA が±10%となるデータが多く含ま れる  $\Gamma_s$ の範囲を決定するために、式(3)のように、*j*番目 のビンにおけるサンプル数に対する *j*番目のビンにおい て誤差が±10%となるサンプル数の比 $\lambda_{s10}^{(j)}$ (以降,成功率) を定義する。

$$\lambda_{s10}^{(j)} = \frac{N_s^{(j)}}{N_{smp}^{(j)}}$$
(3)

ここで、 $N_s^{(j)}$ : *j*番目のビンにおいて、誤差が±10%となる サンプル数、 $N_{smp}^{(j)}$ : *j*番目のビンにおけるサンプル数であ る。図 5 に、 $\Gamma_s$ が 0 から 0.6 まで 0.01 刻みで $\lambda_{s10}$ を算出 したものとそれぞれの  $N_{smp}$ を示す。

図5より、データ数 $N_{smp}$ には偏りがあり、 $N_{smp}$ の値が 小さすぎる場合に $\lambda_{s10}$ の評価に偏りが生じることが考え られる。よって本報では、 $N_{smp}$ が最大となる $0.04 \leq \Gamma_S \leq$ 0.05の325個の1/10である33個未満のデータは無視す ることとする。以上の条件より、 $0.03 \leq \Gamma_S \leq 0.16$ の範囲 であれば、概ね $\lambda_{s10}$ の値が80%以上となることが分かる。 これより、本報では、 $0.03 \leq \Gamma_S \leq 0.16$ を有効な $\Gamma_S$ の範囲 と定め、この範囲を有効平滑化指標(有効 $\Gamma_S$ )とする。



#### 6. CFD 解析の風力を用いた有効 *「*<sub>s</sub>の検証

本章では、5章で設定した有効*Γ*。の検証を行うために、 2章で示した入力風力とは別の風力<sup>5)</sup>を用いて作成した風 力のパワースペクトル密度を有効*Γ*。の範囲に収まるよう に平滑化を行い、予測精度を確認する。

本章では、CFD 解析によって作成された風力 <sup>5</sup>を用いた。風速は再現期間 500 年相当とし、各風力波形前後に50 s のエンベロープを設け、中間の 600 s が重ならないように 5 組取り出したものである。その後、応答の減衰時間を考慮し、加力を行わない 100 s のデータを最後に加えた 800 s×5 組で検討を行った(wavel~5)。なお、風力入力方向は、風直交方向のみとする。また、検証を行った解析モデルの 1 次固有周期は  $_1T = 5$  s とする。

図 6(a)~(c)にアンサンブルの組み合わせが異なる3つの 風力のパワースペクトル密度と、それぞれを5章におけ る有効 $\Gamma_s$ の範囲内となる $\Gamma_s = 0.10$ を目標に移動平均を行 ったパワースペクトル密度を示す。また表に $\Gamma_s = 0.10$ を 目標に移動平均を行ったパワースペクトル密度を用いて RLB/THA の算出を行った結果を示す。なお、THA の値は アンサンブル5波の平均値を用いている。



| 風力      | $n_s = 0 \mathcal{O}\Gamma_s$ | $\Gamma_{\rm s}$ | n <sub>s</sub> | RLB/IHA         |                 |                 |                 |                 |
|---------|-------------------------------|------------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|         |                               |                  |                | $_1\zeta$ =0.01 | $_1\zeta$ =0.02 | $_1\zeta$ =0.03 | $_1\zeta$ =0.04 | $_1\zeta$ =0.05 |
| wave1-3 | 0.46                          | 0.10             | 12             | 1.08            | 1.00            | 0.96            | 0.93            | 0.91            |
| wave3-5 | 0.58                          | 0.10             | 9              | 1.06            | 0.99            | 0.95            | 0.92            | 0.90            |
| wave1-5 | 0.41                          | 0.10             | 4              | 1.09            | 1.01            | 0.97            | 0.94            | 0.92            |

表1(風洞実験)と表3(CFD解析)を比較すると, $n_s$  =0(移動平均前)において,表1(風洞)はアンサンブル 3波で $\Gamma_s$  = 0.46, アンサンブル5波で $\Gamma_s$  = 0.37, アンサン ブル10波で $\Gamma_s$  = 0.25となっており,表3(CFD)はアン サンブル3波である wavel~3は $\Gamma_s$  = 0.46, wave3~5は $\Gamma_s$  = 0.58, アンサンブル5波の $\Gamma_s$  = 0.41であることから,いず れの場合においても,アンサンブル数が大きくなると $\Gamma_s$ の値も小さくなる。このことから,アンサンブル数を大き くすると PSD が平滑化され,その平滑化度合いが $\Gamma_s$ に反 映されていることが分かる。また,同じアンサンブル数同 士で比較を行うと,アンサンブル3波の場合,表1(風洞)

の wave1~3  $\[ \] \Gamma_s = 0.46 \[ \] と 表 3 \]$  (CFD) の wave1~3  $\[ \] \Gamma_s = 0.46 \[ \] \nu_s = 0.46 \[ \] \nu_s$ 0.46 と同じ値を取っているが、wave3~5 の場合は $\Gamma_s = 0.58$ と大きな値を取っている。このことから、アンサンブル数 が同じ場合でも平滑が度合いが異なることが分かる。ま た,表1と表3のwave1~3より,表3のwave3~5の方が 平滑化されていないと言える。さらに、アンサンブル5波 同士で比較を行うと,表1の wave1~5 は $\Gamma_s$ =0.37 であり, 表 3 の wave1~5 は  $\Gamma_s = 0.41$  であることから,アンサンブ ル5波において、同じ条件でも CFD 解析による風力の方 が平滑化がされていないということが言える。このよう に、*Γ*。を用いることで異なる風力であっても平滑化度合 いを比較することが可能である。一方で、表3の wavel~3 と wave3~5 のように、スペクトルの形状によって元の*Γ*。 の値が大きくても必要な ns が小さい値を取ることもあり, 同じ ns でも同様に平滑化されるわけではないことにも注 意する必要がある。また、表3より、全てのケースにおい て RLB/THA が誤差±10%以内となり,成功率  $\lambda_{10}$  が 80% 以上となることが分かった。このことから,本報で決定し た有効 $\Gamma_s$ の範囲,  $0.03 \leq \Gamma_s \leq 0.16$  は有効であると考えら れる。

#### 7. まとめ

本報では荷重指針を用いて風応答予測を行う際に有効 な,入力風力のパワースペクトル密度(PSD)の平滑化指 標 *Γ*。を提案した。以下に知見を示す

・PSD の振幅の標準偏差 Γ<sub>s</sub>を用いることで風力の PSD の
平滑化の程度を評価することができる。

・ $\pm 10\%$ の誤差で予測できる $\Gamma_s$ の範囲  $0.03 \leq \Gamma_s \leq 0.16$  (有 効平滑化指標,有効 $\Gamma_s$ )を提案し,風洞実験および CDF 解析の風力を用いて検証を行った。

なお,本検証は限られた範囲であるため今後はさらに広 い条件での検証を行い,本手法の有用性を確認する予定 である。

#### 参考文献

- 1) 日本建築学会:建築物荷重指針·同解説, 2015
- 2) 日本建築学会:建築物荷重指針を活かす設計資料 2-建築物の風 応答・風荷重評価/CFD 適用ガイド, 2017.2, 2004.6
- 小林稜, 佐藤大樹, 田中英之, Alex Shegay: 風力のパワースペクトル密度の平滑化が風応答予測に及ぼす影響, 鋼構造年次論 文報告集, 第 30 巻, pp585-596, 2022.11
- 平塚紘基,佐藤大樹,田中英之:履歴型ダンパーを有する超高層 制振建物の弾塑性風応答予測,日本建築学会技術報告集,第27 巻,第66号,pp.662-667,2021.6
- 5) 沖村将大,佐藤大樹,田中英之,曽根孝行,渡井一樹,畔上泰彦: 風洞実験および CFD より得られた風力を用いた超高層建物の時 刻歴応答解析 その1 気流特性および風力特性の比較,日本 建築学会関東支部研究報告集,2023.3

- \*1東京工業大学環境・社会理工学院 大学院生
- \*2東京工業大学未来産業技術研究所 准教授・博士 (工学)
- \*3株式会社竹中工務店 技術研究所

Graduate Student, School of Environment and Society, Tokyo Institute of Technology Associate Prof., FIRST, Tokyo Institute of Technology, Dr. Eng. Research & Development Institute, Takenaka Corporation