
論文 / 著書情報
Article / Book Information

Title Effectiveness of the Oversubscribing Scheduling on Supercomputer
Systems

Authors Shohei Minami, Toshio Endo, Akihiro Nomura

Citation HPC Asia '23: Proceedings of the International Conference on High
Performance Computing in Asia-Pacific Region, , , pp. 18-28

Pub. date 2023, 2

Note (C) ACM 2023. This is the author's version of the work. It is posted here
for your personal use. Not for redistribution. The definitive Version of
Record was published in HPC Asia '23: Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region,
http://dx.doi.org/10.1145/3578178.3578221.

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Effectiveness of the Oversubscribing Scheduling on Supercomputer Systems

SHOHEI MINAMI, Prometech Software, Inc., Japan and Tokyo Institute of Technology, Japan

TOSHIO ENDO and AKIHIRO NOMURA, Tokyo Institute of Technology, Japan

High responsiveness is substantial for users’ satisfaction in supercomputer systems. Recently, the use of interactive jobs in addition to
traditional batch jobs is attracting attention. It is getting important to handle those jobs consolidated for responsive systems. Here we
show oversubscribing scheduling, in which multiple HPC jobs share computational resources, can effectively process jobs. This paper
builds the job scheduling simulator considering oversubscribing and evaluates the oversubscribing system using actual supercomputer
workload trace data. While keeping the short users’ response time, our solution achieves some strengths not found in a conventional
solution; benefits on normal jobs, alleviating the slowdown, and the unnecessariness of the effort of good system configuration.

CCS Concepts: • Software and its engineering → Massively parallel systems; • Theory of computation → Scheduling
algorithms.

Additional Key Words and Phrases: Job Scheduling, Oversubscription, Simulator, Short-running jobs

ACM Reference Format:
Shohei Minami, Toshio Endo, and Akihiro Nomura. 2023. Effectiveness of the Oversubscribing Scheduling on Supercomputer Systems.
1, 1 (May 2023), 21 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Recently, the real-time usage of supercomputing resources is getting more significant due to the recent spread of
machine-learning and big-data applications on supercomputers. For such purposes, typical users may make data
analysis code, execute computation on supercomputers, observe the results and then modify the code again. During the
development loop, high responsiveness of short-running jobs or interactive usage is critical. Hereafter, we call those
jobs high-responsiveness-requesting jobs (HRR jobs). On a supercomputer with a traditional scheduling configuration,
however, users of HRR jobs may suffer from long waiting time. If the system is already filled with long-running jobs
that take more than one day, the submitter of the short job may observe the waiting time of several days.

This issue has been partly alleviated by several ways, such as backfilling scheduling algorithm[10], node partitioning
for multiple jobs[11] and introducing dedicated nodes for HRR or interactive jobs[1, 11]. Unfortunately, they tend to be
insufficient especially when a system has high utilization ratio.

From the above discussion, this paper focuses on more aggressive way to improve responsiveness, oversubscribing
scheduling, with which multiple jobs can coexist on the same CPU cores[8]. While the idea of time-sharing of CPU cores
is common and supported by well-known schedulers such as Slurm[16], most of production supercomputers avoid
oversubscription. One of main reasons is that jobs suffer from speed down, which become even heavier for parallel jobs.

Authors’ addresses: Shohei Minami, minami@prometech.co.jp, Prometech Software, Inc., Bunkyo, Tokyo, Japan and Tokyo Institute of Technology,
Meguro, Tokyo, Japan; Toshio Endo, endo@is.titech.ac.jp; Akihiro Nomura, nomura@gsic.titech.ac.jp, Tokyo Institute of Technology, Meguro, Tokyo,
Japan.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-2553-2148
HTTPS://ORCID.ORG/0000-0001-7297-6211
HTTPS://ORCID.ORG/0000-0002-2417-1723
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0002-2553-2148
https://orcid.org/0000-0001-7297-6211
https://orcid.org/0000-0002-2417-1723

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Shohei Minami, Toshio Endo, and Akihiro Nomura

Not only the extension of running time itself is problematic, also it may break the assumption of backfilling scheduling,
backfilled job must finish untill the head-of-queue job starts, and cause failure of the scheduling.

Towards the above issues, we take the following approaches.

• During oversubscribing scheduling, we control the multiplicity, the number of jobs sharing the same cores, for
each core in order to alleviate speed down of parallel jobs.

• We describe our scheduling simulator, named node conscious oversubscribing scheduler simulator (NCS).
• We revise backfilling scheduling algorithm to consider speed down by oversubscription.
• We evaluate jobs’ behavior with oversubscribing using publicly available supercomputer workload traces.

With these approaches, we demonstrate oversubscribing scheduling largely improve responsiveness of HRR jobs,
which makes the usage of supercomputers much more attractive for interactive or short jobs users, without sacrificing
long-running jobs largely.

2 OVERSUBSCRIBING ON SUPERCOMPUTER SYSTEMS

Several production systems already use a sort of oversubscribing in a conservative style, called node partitioning[11].
With node partitioning, a single node can be shared by multiple jobs, while each processor (physical or logical) core is
still dedicated to a single job. It is useful to improve resource utilization ratio and reduce job waiting time compared
with systems without any partitioning. However, when almost all cores in the system are busy, jobs suffer from long
waiting time, critical for short or interactive jobs.

From the above discussion, we prefer to introduce oversubscribing more aggressively. This paper focuses on processor

core-level oversubscribing, hereafter called oversubscribing simply, which allows each core to be shared by multiple jobs.
Oversubscribing can improve the responsiveness of jobs since they can be started even when there are not enough idle
resources. Additionally, the total CPU utilization of the system can be improved with interactive jobs with fluctuating
CPU utilization.

Conventional production supercomputers, however, do not usually adopt this strategy. We consider this is mainly
for the following issues.

(1) Each job may suffer from performance degradation for other jobs coexist on the same cores.
(2) The performance degradation can be even worse with parallel jobs.
(3) Demands for the main memory capacity increase.

Hereafter we describe our proposed policies to make oversubscribing more controllable and practical, and some
assumptions used in our simulation evaluation.

In order to discuss the issue (1), we define the multiplicity𝑚 for each core in the system as the number of jobs that
are sharing the core. Apparently the speed of a running job, the ratio of processor core timeslice for the job, is degraded
according to𝑚 of the cores used by the job. In our simulation, we make a simple assumption for the speed down; if the
multiplicity of a core is𝑚, we assume the performance of a sequential job on the core becomes 1/𝑚 of the original job
speed without oversubscribing 1.

Our basic policy to mitigate the speed down is to introduce a parameter named maximum multiplicity𝑀 , configured
by the system administrator. The oversubscribing scheduler controls jobs so that multiplicity𝑚 does not exceed𝑀 at

1Actually speed of jobs are affected by many factors, including cache pollution, synchronization within parallel jobs, and so on. A report has analyzed this
performance degradation in detail[12]

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Effectiveness of the Oversubscribing Scheduling on Supercomputer Systems 3

any core. Note that since we avoid "infinite" oversubscription, jobs may still experience waiting. The evaluation of this
paper includes investigation of the trade-off introduced by𝑀 .

Related to the issue (2), we discuss slow down of parallel jobs. Since threads of a parallel job are placed on different
cores (that may be on different nodes), those threads may suffer from different multiplicity. In our simulation, we assume
that the speed down of the entire job is determined by its slowest thread. For example, let us consider a parallel running
job 𝐴, which occupies 10 cores. Then a serial job 𝐵 is started on one of those cores. Although the resource available for
the job 𝐴 is 95%, the speed of 𝐴 may degrade to around 50%. The above assumption is based on a consideration that
threads in job 𝐴 may use synchronization and communication heavily. Actually, the speed down could be more modest
if the job is tolerant to heterogeneous core speeds. Anyway, our simulation uses this pessimistic assumption.

We also mention the issue (3), the increase in memory usage. Our current policy is to avoid oversubscribing of
memory capacity to avoid page swapping costs. Combined with the above discussion related to𝑀 , a new coming job is
suspended if (a) there is no sufficient cores that have multiplicity less than𝑀 , or (b) there is no node that have sufficient
free memory. While detailed investigation of memory usage is our future work, Shalf’s report[15], which describes that
50% of jobs at NERSC HPC center use < 20% of the node memory, supports the feasibility of oversubscribing.

In Section 3 and later, we describe the scheduling and simulation method with core-level oversubscribing with the
above-mentioned policies and assumptions. Although our assumptions includes pessimistic ones, we demonstrate that
oversubscribing largely improves the responsiveness of jobs.

3 METHODOLOGY FOR SIMULATING OVERSUBSCRIBING SCHEDULING

The purpose of this paper is to demonstrate the benefits of oversubscribing scheduling with our policy in the previous
section. For this purpose, we conduct experiments using our new simulator, node conscious oversubscribing scheduler
simulator (NCS). NCS is designed to simulate oversubscribing job scheduling considering speed down of jobs considering
multiplicity. The source code is available at the author’s Bitbucket site[3]2.

NCS takes a configuration file for system description and an SWF file[5, 7] for information of a set of jobs as inputs.
The configuration file contains the number of nodes, number of cores per node, and memory capacity per node. It also
contains maximum multiplicity𝑀 and a scheduling policy (Section 3.3).

Then NCS simulates the scheduling of jobs described in the SWF file. Here oversubscribing is allowed if multiplicity
does not exceed the maximum multiplicity 𝑀 at any cores. During the simulation, unlike the typical scheduling
simulators, NCS needs to simulate performance degradation of jobs under oversubscribing.

In the rest of this section, we show our system model in the simulation and basic scheduling method in Section
3.1. Then we discuss how the performance degradation due to oversubscribing is estimated (Section 3.2). And then
we describe the detailed scheduling algorithm of NCS, which includes modification of a well-known algorithm, EASY
Backfilling to support oversubscribing (Section 3.3).

3.1 System Model and Basic Scheduling

Hereafter, we use the notation such as N16C8 (capitalized) to indicate a system with 16 nodes, each of which has 8 cores.
The notation n2c8 corresponds to a job that requests 2 nodes in total and occupies 8 cores in each node.

2This repository is anonymized for the double-blinded review process

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Shohei Minami, Toshio Endo, and Akihiro Nomura

Core 0

Core 1

Core 2

Core 3

Node 1

Core 0

Core 1

Core 2

Core 3

Node 0

n1c1 job
1. Select Node 1 because the
number of occupied CPU slot(3)
is smaller than that of Node 0.

2. Select Core 3 because
this core is the least
mul�plicity(0).

: Already occupied
by other jobs

Fig. 1. An example of oversubscribing scheduling on a N2C4 system. Two slots are prepared per core since the maximum multiplicity
𝑀 is two.

NCS internally maintains the status of the target system during the simulation as shown in Figure 1, which shows an
example of 𝑁2𝐶4 system with𝑀 = 2. Each core has𝑀 = 2 slots used to maintain running jobs on the core. Here red
slots have been occupied by running jobs.

When NCS takes a new job submission, it needs to decide on nodes and cores for the job. This allocation is done
in a hierarchical style as follows. In Figure 1, NCS is going to schedule a new n1c1 (serial) job. First, NCS determines
an appropriate node for the job, which has sufficient empty slots and free memory. If there are several candidates for
nodes, NCS consider the total occupied slots per node, and selects a node with the least occupied slots, which is Node 1
in the figure with 3 total occupied slots. Then NCS determines a core with the least occupied slots, Core 3. For parallel
jobs, NCS determines nodes and cores similarly.

If the above process fails, since there are not enough slots for the new coming job, it is put in the waiting queue. Jobs
in the queue are examined later when the status of slots is changed (Section 3.3).

3.2 Simulation of Job Progress

Unlike typical job scheduling simulators, NCS for oversubscribing scheduling has to consider jobs’ performance
degradation. Here we are based on assumptions that degradation is determined by multiplicity𝑚 as described in Section
2. We also need to consider that𝑚 on each core changes dynamically.

Let us explain the behavior of NCS using a small system of N1C4 and𝑀 = 2 as shown in Figure 2. We consider two
jobs, job0 = n1c4 and job1 = n1c2. Also, job0 is submitted at 𝑡 = 0 and the original execution time, included in the input
data, is 30. Job1 is submitted at 𝑡 = 10 and the original execution time is 10.
Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Effectiveness of the Oversubscribing Scheduling on Supercomputer Systems 5

Core 0

Core 1

Core 2

Core 3

t = 0 t = 10 t = 20 t = 30 t = 40

: Job0

: Job1

Fig. 2. An example of time-series of oversubscribing scheduling. The speeds of Job0 and Job1 are degraded while they share CPU
cores.

• 𝑡 = 0: Job0 is submitted and starts immediately.
• 0 < 𝑡 < 10: Job0 uses four dedicated cores. During this period, job0 does not suffer from degradation.
• 𝑡 = 10: Job1 is submitted and starts immediately because there is room in the CPU core slots. Here cores 0 and 1

are used.
• 10 < 𝑡 < 30: Both job0 and job1 share cores 0 and 1. Since we assume that the performance of each job is

determined by the slowest threads, the performance of job0 and job1 becomes 1/2 of the original. Although
cores 2 and 3 are used only by job0, the speed of entire job0 is halved.

• 𝑡 = 30: Job1 finishes at this time, taking 10/(1/2) = 20 time considering performance degradation.
• 30 < 𝑡 ≤ 40: Job0 uses four dedicated cores again and the performance is recovered. Job0 finishes at 𝑡 = 40.

In total, while the original execution time of Job0 is 30, its execution time with oversubscribing is 40. Note that in
the instance, since Core 2 and 3 are spped down due to multiplicity, wasted CPU time occurs. The wasted CPU time
approximate to 0.50 [speed] * 2 [core] * 10 [s] = 10 [CPU Core time]. Increasing the number of speed down cores may
invite a reduction in system throughput. However, if you sticked to avoiding speed down cores completely, it would
not achieve the effectiveness sufficiently since jobs can not start immediately. We should admit that the waste always
accompanies this scheduling policy and explore optimum node/core selection methods in the future.

3.3 Scheduling Considering Oversubscribing

With our oversubscribing policies, a job may suffer fromwaiting time due to a lack of enough slots or memory. Thus NCS
needs to maintain a job waiting queue like conventional schedulers. We have implemented two scheduling algorithms
on NCS based on well-known algorithms, first-come first-served (FCFS) and EASY backfilling that are revised to
support oversubscribing. This added implementation mainly focuses on logical consistency to execute oversubscribing
scheduling without any problem. Thus at present, we have not undertaken some complicated optimization specific to
oversubscribing: considering the preference of oversubscribing for each job, local maximum multiplicity m for each job,
minimizing the number of speed down processor cores, and so on.

First, FCFS is easy to support oversubscribing. The main modification is the treatment of requesting time. Execution
time may exceed the original requesting time owing to oversubscribing, which leads the unintentional termination. To

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Shohei Minami, Toshio Endo, and Akihiro Nomura

avoid it, the scheduler scales the requesting time proportionally when oversubscribing. The scheduler takes a job from
the head of the waiting queue and tries to allocate resources for it. If there are not enough slots, considering multiplicity,
the job is stuck. After the job is successfully scheduled, the scheduler can take the next job.

On the other hand, backfilling algorithms needs to be modified considerably for the following reason. After the
scheduler makes future schedules of several jobs, a new coming job, which is typically a short-running job may be
scheduled earlier (backfilled) than the existing jobs. Among backfilling algorithms, we adopt EASY backfilling (EB
hereafter[10]), where backfilling is allowed only if the start times of existing jobs are not delayed. Note that the decision
of backfilling requires information on the execution time of jobs, which are changed due to oversubscribing.

We discuss how EB is modified for oversubscribing while keeping the above-mentioned condition. Figure 3 (a) is a
simple case, where Job0, Job1, and Job2 have already been scheduled. When Job3 (n2c1) is submitted at "Current Time"
in the figure, the scheduler temporarily allocates cores for it, core1 on node0 and core0 on node1 in this case. Then
the scheduler estimates the finish times of Job3 if it is started immediately, considering the performance degradation.
And it checks whether the start times of existing jobs are changed or not. If the degraded execution of Job3 is shorter
than 𝑇 , we can estimate that the start time of the existing Job2 is not changed. We consider more about Job0. Since the
speed of Job0 is already degraded to 50% due to the existence of Job1, starting Job3 does not degrade the speed of Job1
furthermore. From the above consideration, Job3 can be started immediately.

Figure 3 (b) shows a bit complicated case. Here Job0, Job1, Job2, and Job3 have been scheduled. At "Current Time",
Job4 (n2c1) is newly submitted, and core1 on node0 and core0 on node1 are allocated temporarily. In this case, we need
to consider performance degradation both of Job4 and existing Job1. This is because starting Job4 would increase the
multiplicity of Job1. If either Job1 or Job4 finishes later than Job3’s original start time, it would cause a change in the
schedule. Thus we abandon backfilling.

In the above case, we just checked only Job1. Generally, however, it is even more complicated since invoking a new
parallel job may cause multiple victims to be affected, which has been implemented in NCS.

4 EVALUATION OF OVERSUBSCRIBING SCHEDULINGWITHWORKLOAD TRACES

This section evaluates the effects of oversubscribing scheduling using two workload traces on our NCS simulator. The
evaluation uses EASY backfilling (EB) scheduling algorithm that is modified for oversubscribing. On the oversubscribing
system, the maximum multiplicity𝑀 is varied within 1 ≤ 𝑀 ≤ 8. While we execute all jobs in the workload traces, we
focus more on behavior of high-responsiveness-requesting jobs (HRR jobs). Basically HRR jobs are smaller in size in
terms of parallelism and running time, which are defined in detail in 4.2.

4.1 Evaluation Method

4.1.1 Comparison Target System. We evaluate the advantages of the oversubscribing system by comparing it with a
system with another configuration as described below.

While many production supercomputers do not use oversubscribing, some systems prepare several dedicated nodes
for HRR jobs separated from the normal nodes for non-HRR jobs (normal jobs) [1, 11]. On such a system (which we call
conventional system), it has been expected that responsiveness of HRR jobs are kept better.

On the conventional system, we introduce a parameter 𝑅, which means the ratio of dedicated nodes for HRR jobs
to the entire system, which is configured for each simulation. For example, if the system is N100C10 and 𝑅 = 5%, the
N5C10 system is used for HRR jobs, N95C10 for the rest of the jobs.

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Effectiveness of the Oversubscribing Scheduling on Supercomputer Systems 7

Node 0 Core 0 Job0(50% speed)

Job1(50% speed) Job2(50% speed)

Core 1 Job0

Job2

Node 1 Core 0 Job0

Job2

Core 1 Job0

Job2

Current Time, job3 = n2c1 is coming

Job 2 will start at.T

Check here
for job3

Scan here
for job3

(a) Case 1

Node 0 Core 0 Job0 Job3

Job2

Core 1 Job1 Job3

Node 1 Core 0 Job1 Job3

Core 1 Job1 Job3

Job 3 will start at.T

Current Time, job4 = n2c1 is coming

Don’t scan
here for job4 Because job1 will speed

down if backfill is done here

Don’t scan
here for job4 Because job1 will speed

down if backfill is done here

(b) Case 2

Fig. 3. Behaviors of EASY backfilling with oversubscribing.

On the oversubscribing system, we do not distinguish between HRR jobs and non-HRR jobs. All jobs may be executed
on any nodes.

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Shohei Minami, Toshio Endo, and Akihiro Nomura

4.1.2 Definition of Evaluation Criteria under Oversubscribing. We reconsider evaluation metrics to support oversub-
scribing. With oversubscribing, the running time 𝑇r gets larger because other jobs are sharing cores. Thus the value
of slowdown, a popular metric, may become smaller superficially, which causes underestimation of oversubscribing
overhead. Therefore, we consider keeping the denominator constant regardless of the multiplicity. For this purpose,
we use 𝑇a, the running time of a job with the multiplicity of one (dedicated execution). We define a new metric,
oversubscribing conscious slowdown 𝑆OSub. We represent typical and new slowdowns as follows:

𝑆 = (𝑇e −𝑇s)/𝑇r = (𝑇r +𝑇w)/𝑇r (1)

𝑆OSub = (𝑇e −𝑇s)/𝑇a = (𝑇r +𝑇w)/𝑇a (2)

Here 𝑇s, 𝑇e, and 𝑇w are each job submission, end, and wait time[6]. We use 𝑆OSub to evaluate the responsiveness of jobs.

4.2 Target Workload Traces

In our simulation, we use workload traces in the SWF format that are publicly available, UniLu-Gaia-2014-1 [1] and
KIT-FH2-2016-1 [2]. We choose these traces since they are collected on systems with multiple job queues.

4.2.1 UniLu-Gaia-2014-1. This data set (UniLu hereafter) contains three months data from the Gaia cluster at the
University of Luxemburg[1]. It contains multiple queues prepared for interactive jobs and batch jobs, respectively. Thus
we regard interactive jobs as HRR jobs.

Note that HRR jobs are originally interactive jobs, but they are regarded like (short) batch jobs in the simulation,
whose CPU utilization is constant during resource allocation. The speed down of job is determined by𝑚, as described
before. The accurate simulation of interactive jobs will be investigated as future work, and we discuss the direction in
Section 5.2.

Table 1 shows the system information and the workload information. The ratio of HRR jobs is 3.4%, thus the ratio of
HRR nodes 𝑅 on the conventional system is configured to be around it. In the evaluation, we use 𝑅 = 1, 3, 5, 7, 10 [%].

Table 1. UniLu-Gaia-2014-1

System Configuration N150C12
of Nodes 150
of Cores per Node 12

Workload Characteristic
of Jobs 51,871

HRR Jobs 1,762(3.4%)
Maximum Degree of Parallelism 516

HRR Jobs 12
Maximum Execution Time[s] 1,800,012

HRR Jobs[s] 43,507
of Users 82

4.2.2 KIT-FH2-2016-1. This data set (KIT hereafter) contains one and a half years worth of accounting records from
the ForHLR II system located at the Karlsruhe Institute of Technology in Germany[2].

We observed that two queues are used differently depending on the job size; one queue is used for smaller scale jobs.
Thus we regard jobs in the queue as HRR jobs.
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Effectiveness of the Oversubscribing Scheduling on Supercomputer Systems 9

Table 2 shows the system information and the workload information. We evaluate the conventional system with
𝑅 = 0.5, 1, 3, 5 [%].

Table 2. System and workload information for KIT-FH2-2016-1

System Configuration N1152C20
of Nodes 1,152
of Cores per Node 20

Workload Characteristic
of Jobs 114,347

HRR Jobs 2,349(2.1%)
Maximum Degree of Parallelism 22,960

HRR Jobs 48
Maximum Execution Time[s] 604,800

HRR Jobs 259,200
of Users 161

4.3 Evaluation Results

4.3.1 The Responsiveness of HRR Jobs. First, we evaluate the waiting time of jobs. Figure 4 shows the maximum waiting
time among all HRR jobs. If the value is zero, no HRR job suffers from waiting time, which is the best case for the users.

In the conventional system, waiting times for HRR jobs get better as 𝑅 increases since the system is configured
preferably for HRR jobs. When 𝑅 reaches 10%, all jobs can be processed immediately. Also in the oversubscribing
system, the responsiveness improves with more aggressive oversubscribing with larger𝑀 . When𝑀 reaches four, all
jobs, including normal jobs though not displayed in the figure, can commence with zero waiting time.

Figure 5 shows results with jobs in the KIT trace. While we observe a similar tendency on the conventional system,
waiting time is not eliminated on the oversubscribing system with 𝑀 = 8. Nevertheless, we expect that around 6
minutes of the longest waiting time is still tolerable for typical users.

From the discussion, oversubscribing scheduling can immediately provide the resources for HRR jobs as well as a
well-configured conventional system.

4.3.2 Evaluation of Slowdown. Next, we evaluate the slowdown of jobs mainly for normal jobs. Here we use 𝑆𝑂𝑆𝑢𝑏 ,
which has been revised in Section 4.1.2. Figure 6 shows 𝑆𝑂𝑆𝑢𝑏 on the conventional and the oversubscribing system
with UniLu trace.

Slowdowns of normal jobs are largely different between the two systems. In the conventional system, the values for
normal jobs get worse as 𝑅 increases. On the other hand, the slowdown values of all HRR jobs are one with R = 10
[%], which corresponds to the fact that the waiting time is zero. This indicates that when the conventional system is
configured for efficient execution of HRR jobs, it is unfavorable for normal jobs, introducing a trade-off. When 𝑅 is 10%
with UniLu, the slowdown of normal jobs is quite terrible. We also observe a similar tendency with KIT (Figure 7); all
HRR jobs can be started without waiting when 𝑅 is 5% as shown in Figure 5, however, the response of normal jobs is
awful.

On the other hand, with oversubscribing scheduling, slowdown gets better both for normal and HRR with larger𝑀 .
On the other hand, unlike on the conventional system, the slowdown does not reach one. This is due to performance

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Shohei Minami, Toshio Endo, and Akihiro Nomura

640,843

31,482

8,660

787

0

156,974

33,367

5,129

0

0 2000 4000 6000 8000 10000

Conv., R=1%

Conv., R=3%

Conv., R=5%

Conv., R=7%

Conv., R=10%

OSub, M=1

OSub, M=2

OSub, M=3

OSub, M=4

Maximum Tw of HRR jobs [s]

Fig. 4. Maximum waiting time for HRR jobs when conventional system and oversubscribing system with UniLu-Gaia-2014-1 workload
trace. Oversubscribing results with𝑀 > 4 are the same with𝑀 = 4. Since some cases exceed the upper bound of axis, the value for
each case is included near the bar.

degradation caused by oversubscribing. While we suffer from this overhead, we can conclude that normal HRR and
normal jobs can coexist efficiently on the oversubscribing system.

4.3.3 Detailed Evaluation of Slowdown. In the previous section, we examined the maximum value of slowdown. In
order to evaluate tendency in detail, Figures 8 and 9 show distribution of slowdown values among jobs. The X-axis is
the cumulative ratio of jobs and the Y-axis is the slowdown value. Here HRR and normal jobs are mixed.

The cumulative ratio on the oversubscribing system reaches one faster than that of the conventional case, which
means that the maximum slowdown can be suppressed by oversubscribing. Now we compare conventional system
with 𝑅 = 5% and oversubscribing system with𝑀 = 4 with UniLu trace. While slowdown with oversubscribing is 4 at
maximum, on the conventional system, the line is still at 96.2%. Also, 650 jobs (1.3%) have 𝑆𝑂𝑆𝑢𝑏 ≥ 100, though we
cannot see it in the figure. The KIT trace shows similar results. On conventional system with 𝑅 = 3%, 3.2% jobs suffer
from 𝑆𝑂𝑆𝑢𝑏 ≥ 100.

With the KIT data trace, while "OSub, M=8" reaches one at 𝑆𝑂𝑆𝑢𝑏 = 6, other lines are still around 90%, which means
around 10% jobs suffer from 𝑆𝑂𝑆𝑢𝑏 > 6. This is explained by the that the KIT trace represents a more crowded system
than the UniLu trace. Thus oversubscribing scheduling is preferable to improve responsiveness on such a crowded
system with a proper configuration of𝑀 . Also oversubscribing tends to be fair for all the jobs in the aspect of slowdown.

Those figures also show the middle of oversubscribing curves is higher than conventional ones, which means
that some jobs are degraded by oversubscribing. Figures 10 and 11 show the slowdown comparing conventional and
oversubscribing systems. They are average slowdown ratios between conventional and oversubscribing in normal and
Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Effectiveness of the Oversubscribing Scheduling on Supercomputer Systems 11

2,171,987
224,633

11,514
0

237,279
156,792
72,176
33,451

1,782
595

225
344

0 5000 10000 15000

Conv., R=0.5%

Conv., R=1%

Conv., R=3%

Conv., R=5%

OSub, M=1

OSub, M=2

OSub, M=3

OSub, M=4

OSub, M=5

OSub, M=6

OSub, M=7

OSub, M=8

Maximum Tw of HRR jobs [s]

Fig. 5. Maximum waiting time for HRR jobs when conventional system and oversubscribing system with KIT-FH2-2016-1 workload
trace. Since some cases exceed the upper bound of axis, the value for each case is included near the bar.

HRR jobs, binned by the size and length of jobs. From both figures, short jobs drastically improved, which corresponds
to the elimination of waiting time by oversubscribing as shown in Figures 4 and 5. On the other hand, long jobs tend to
be degraded. In this case, the turn around time of long jobs can be approximated to 𝑇𝑟 +𝑇𝑤 ∼ 𝑇𝑟 . Thus, the effect of
reduction of 𝑇𝑤 by oversubscribing will not be expected as short jobs.

From the above discussion, we can conclude the contribution to the slowdown as follows: (1) Oversubscribing can
suppress the maximum slowdown. There are no extremely late jobs. (2) Short jobs improve but long jobs do not. It
depends on whether the running time is dominant to the turnaround time.

4.3.4 Investigation of Individual Jobs. So far we have evaluated different scheduling methods statistically. Contrarily,
this section picks up some individual jobs with specific characteristics from the UniLu data set shown in Table 3.

Job 2819 is a massively parallel job with 200 cores, and the slowdown is largely improved from 11.0 to 2.00 by
introducing oversubscribing, which is an example of how oversubscribing works effectively for massively parallel
jobs. Job 918 has a short execution time. Although it is a normal job, we assume that the responsiveness of such jobs
is important. In this case, there are no jobs with a quite painful slowdown in the conventional system accidentally.
However, we expect oversubscribing can reduce the waiting time for this type of job. Job 9121 is a job with a long
execution time. We observe its slowdown is improved from 7.07 to 2.00.

4.3.5 Evaluation of the overall system efficiency. Finally, we show the overall system efficiency. Figure 12 shows the
makespan with UniLu trace. There is not a significant difference between cases. The increase in the worst case ("OSub,
M=2") is very tiny, 2.5%. It is tolerable. Table 4 shows the 90 th and 95 th percentiles of computed jobs. The values are

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Shohei Minami, Toshio Endo, and Akihiro Nomura

12151/129606

18652/1508

27416/32

35691/2

26994/1

28621/2792

2207/644

108/6

4/3

0 10000 20000 30000 40000 50000

Conv., R=1%

Conv., R=3%

Conv., R=5%

Conv., R=7%

Conv., R=10%

OSub, M=1

OSub, M=2

OSub, M=3

OSub, M=4

Maximum Slowdown [-]

■ Conv, Normal job ▧ Conv, HRR job

■ OSub, Normal job ▧ OSub, HRR job

Fig. 6. Maximum Oversubscribing conscious slowdown for normal and HRR jobs when conventional system and oversubscribing
system with UniLu-Gaia-2014-1 workload trace. Oversubscribing results with𝑀 > 4 are the same with𝑀 = 4. Filled bars represent
normal jobs, striped bars HRR jobs. The label shows the value of normal job/HRR job. Since some cases exceed the upper bound of
axis, the value for each case is included near the bar.

Table 3. Examples of Improved Jobs Under Oversubscribing. Conventional system is with 𝑅 = 5% and Oversubscribing system is with
𝑀 = 4.𝑇𝑠𝑝𝑒𝑐 is the specified time and 𝑃 is the parallelism. Rest variables are defined in Section 4.1.2

Job ID 𝑇𝑎 Job Class 𝑇𝑠𝑝𝑒𝑐 𝑃
𝑇𝑟 𝑇𝑤 𝑆𝑂𝑆𝑢𝑏

Conv. OSub Conv. OSub Conv. OSub
2819 2,938 normal 36,000 200 2,938 5,876 29,289 0 11.0 2.00
918 119 normal 300 4 119 119 0 0 1.00 1.00
9121 20,920 normal 36,000 12 20,920 41,840 12,702 0 7.07 2.00

the same in all cases. As mentioned in Section 3.2, although oversubscribing scheduling achieves high responsiveness it
may invite a degredation of system efficiency. However, these results suggest that oversubscribing scheduling, if ever,
hardly affects in terms of system efficiency.

With the KIT trace, a similar consideration can be derived with from Figure 13 and Table 5. The increase in makespan
of the worst case ("OSub, M=8") is 1.2% and negligible. The percentiles are slightly degraded in oversubscribing systems.
However, it is tolerable. We confirm the low impact on system efficiency also in the trace.
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Effectiveness of the Oversubscribing Scheduling on Supercomputer Systems 13

3128/7626
3380/962

3822/3
4313/1

2965/1134
2041/656

1458/221
201/52
257/7

15/6
17/6
17/6

0 1000 2000 3000 4000 5000

Conv., R=0.5%
Conv., R=1%
Conv., R=3%
Conv., R=5%

OSub, M=1
OSub, M=2
OSub, M=3
OSub, M=4
OSub, M=5
OSub, M=6
OSub, M=7
OSub, M=8

Maximum Slowdown [-]

■ Conv, Normal job ▧ Conv, HRR job

■ OSub, Normal job ▧ OSub, HRR job

Fig. 7. Maximum Oversubscribing conscious slowdown for normal jobs when conventional system and oversubscribing system with
KIT-FH2-2016-1 workload trace. Filled bars represent normal jobs, striped bars HRR jobs. The label shows the value of normal job/HRR
job. Since some cases exceed the upper bound of axis, the value for each case is included near the bar.

Table 4. 90th and 95th percentiles of computed jobs when conventional system and oversubscribing system with UniLu-Gaia-2014-1
workload trace. Oversubscribing results with 𝑀 > 4 are the same with 𝑀 = 4. The values indicate the time when 51,871 * 0.90 =
46,684 th and 51,871 * 0.95 = 49,278 th job are finished.

90th percentile [hour] 95th percentile [hour]
OSub, M=4 2094 2105
OSub, M=3 2094 2105
OSub, M=2 2094 2105
OSub, M=1 2094 2105
Conv, R=10% 2094 2105
Conv, R=7% 2094 2105
Conv, R=5% 2094 2105
Conv, R=3% 2094 2105
Conv, R=1% 2094 2105

4.4 Summary of Evaluation

In this section, we have evaluated oversubscribing scheduling system by comparing it with a conventional system
with separated queues, using two actual workload traces. We demonstrated that oversubscribing largely decreases
response time, which is critical for HRR jobs. It could be achieved on the conventional system, if it is configured with
plentiful dedicated HRR nodes, however, it makes the slowdown of normal jobs worse. We observe that oversubscribing

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Shohei Minami, Toshio Endo, and Akihiro Nomura

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1

Sl
o

w
d

o
w

n

Cumula�ve Ra�o of Computed Jobs

Conv., R = 1% Conv., R = 5% Conv., R = 10%

OSub, M = 1 OSub, M = 2 OSub, M = 4

Fig. 8. Distribution chart of Slowdown for all jobs when conventional system with 𝑅 = 1%, 5%, 10% and oversubscribing system with
𝑀 = 1, 2, 4 with UniLu-Gaia-2014-1 workload trace.

Table 5. 90th and 95th percentiles of computed jobs when conventional system and oversubscribing system with KIT-FH2-2016-1
workload trace. The values indicate the time when 114,347 * 0.90 = 102,913 th and 114,347 * 0.95 = 108,630 th job are finished.

90th percentile [hour] 95th percentile [hour]
OSub, M=8 13566 13728
OSub, M=7 13568 13728
OSub, M=6 13569 13728
OSub, M=5 13568 13728
OSub, M=4 13568 13728
OSub, M=3 13566 13727
OSub, M=2 13566 13726
OSub, M=1 13566 13726
Conv, R=5% 13570 13726
Conv, R=3% 13568 13726
Conv, R=1% 13566 13726
Conv, R=0.5% 13565 13726

improves turn around time, which is not seen in the conventional system. Thus the oversubscribing scheduling works
efficiently both for HRR jobs and normal jobs.
Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Effectiveness of the Oversubscribing Scheduling on Supercomputer Systems 15

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1

Sl
o

w
d

o
w

n

Cumula�ve Ra�o of Computed Jobs

Conv., R = 0.5% Conv., R = 3% Conv., R = 5%

OSub, M = 1 OSub, M = 4 OSub, M = 8

Fig. 9. Distribution chart of Slowdown for all jobs when conventional system with 𝑅 = 1%, 3%, 5% and oversubscribing system with
𝑀 = 1, 4, 8 with KIT-FH2-2016-1 workload trace.

Also, oversubscribing scheduling is robust to the changes in the number of HRR jobs. On conventional systems,
administrators have to change the number of dedicated HRR nodes to support the fluctuation, however, it has disadvan-
tages in the system CPU utilization. On the contrary, the oversubscribing system can adapt to the changes in the ratio
of HRR jobs, both an increase and decrease without any configuration change.

5 DISCUSSIONS

5.1 Comparison to related work

Prior to this work, Hofmeyr et al. have reported the simulation results of time-sharing, oversubscribing scheduling[8].
Here we discuss relationship between their work and this work using Table 6, which summarizes the primary differences.

In order to show the superiority of job scheduling methods, it is important to use realistic and large scale job data
sets. Hofmeyr’s work uses data set collected on the NERSC Edison supercomputer, which is a large scale set with 2.4M
jobs. On the other hand, our simulation uses two data sets (UniLu and KIT), each of which is smaller than theirs. On the
other hand, since we use data sets collected on different supercomputers, it has been demonstrated that our method
can improve slowdown and latency with job mixes with difference tendencies. Also the data sets we used are publicly
available and our results are reproducible by other researchers.

For scheduling algorithm, both methods are based on FIFO + backfilling algorithm.
Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Shohei Minami, Toshio Endo, and Akihiro Nomura

Fig. 10. Average slowdown ratio between conventional when 𝑅 = 7% and oversubscribing when𝑀 = 4, binned by the size and length
of jobs with UniLu-Gaia-2014-1 workload trace. Conventional and oversubscribing slowdowns are averaged(arithmetic mean) inside
each bin and the ratio is calculated by dividing the values. White bin means no jobs there. The red bin means the oversubscribing is
effective while the blue bin does it is ineffective.

The last row of the table shows that we use a more accurate model of performance degradation under time-sharing.
Our scheduling algorithm and simulator consider the multiplicity in core-level; the speeds of jobs are affected by "how
many threads are sharing each core". On the other hand, their work considers multiplicity in node-level, "how many
jobs are sharing each node". Since modern systems consists of multi/many core CPUs, the "node-level multiplicity" may
introduce misevaluation of actual performance evaluation, especially when some jobs occupy only subsets of CPU cores
per node. Such jobs include interactive jobs discussed in Section 5.2. We will demonstrate advantages of our core-level
approach quantitatively in the near future.

5.2 Discussion on Interactive Jobs

This paper has assumed that CPU utilization of each job is constant over time as shown in Figure 14 (a), while the
number of allocated CPU cores may be different among jobs. We used the assumption even in evaluation with the
UniLu data set (Section 4.2.1), which includes jobs marked as "interactive". The reason for this assumption is that the
Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Effectiveness of the Oversubscribing Scheduling on Supercomputer Systems 17

Fig. 11. Average slowdown ratio between conventional when 𝑅 = 3% and oversubscribing when𝑀 = 8, binned by the size and length
of jobs with KIT-FH2-2016-1 workload trace. Conventional and oversubscribing slowdowns are averaged(arithmetic mean) inside each
bin and the ratio is calculated by dividing the values. The red bin means the oversubscribing is effective while the blue bin does it is
ineffective.

Table 6. The primary differences in data and method between ours and related work[8]. The fourth column shows which is superior
for each viewpoint. Its flag means more accurate or realistic time-sharing (oversubscribing) simulation in each viewpoint.

Ours Hofmeyr’s work Superiority

Size of data sets 50K jobs, over 3 months (UniLu)
110K jobs, over 19 months (KIT) 2.4M jobs, over 24 months Hofmeyr’s

Number of data sets 2 1 Ours
Scheduling algorithm FIFO + Backfilling FIFO + Backfilling Fair
Degradation model under time-sharing Multiplicity of cores Multiplicity of nodes Ours

SWF format does not provide information on the transition of core utilization during job execution. On the other hand,
the actual interactive usage of supercomputers or cloud resources can introduce heavy fluctuation of CPU and resource
utilization. As illustrated in Figure 14 (b), typical interactive users tend to repeat the following cycles: they execute
some computation processes, and after seeing the results, they consider and determine what is executed next.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Shohei Minami, Toshio Endo, and Akihiro Nomura

7767185

7697292

7697292

7697292

7697292

7697292

7893199

7697292

7697292

0.0E+00 2.0E+06 4.0E+06 6.0E+06 8.0E+06

Conv, R=1%

Conv, R=3%

Conv, R=5%

Conv, R=7%

Conv, R=10%

OSub, M=1

OSub, M=2

OSub, M=3

OSub, M=4

Makespan[s]

Fig. 12. Makespan, the finish time of final job, when conventional system and oversubscribing system with UniLu-Gaia-2014-1
workload trace. Oversubscribing results with𝑀 > 4 are the same with𝑀 = 4. The values are included on the right side.

From this discussion, our simulation with the above assumption tends to overestimate the costs introduced by
oversubscribing, if there are jobs with fluctuating CPU utilization like interactive jobs. This overestimation would be
improved if we could consider phase changes during the execution of interactive jobs. For this purpose, we plan to
extend NCS based on a model shown in Figure 14 (c). Here NCS takes new modes of each job, active mode and idle
mode. When a job is idle ("thinking" phase in Figure 14 (b)), it does not have an impact on the performance of other
jobs sharing the same CPU cores. When a job is active, it works similarly in the current NCS; active jobs that are
sharing cores get slowed down based on the multiplicity. The above discussion reinforces the importance of considering
core-level oversubscribing.

While we expect this extension to NCS itself is simple and straightforward, there will be challenges in collecting job
data including mode changes. As far as we have searched, there is no such data publicly available. Instead, we plan to
model the behaviors of interactive users statistically to produce phase information and combine it with SWF data. For
this purpose, we will obtain basic statistical data, including the average active rate, average and standard deviation of
length of each phase, and so on. They can be obtained through the monitoring of interactive users on real systems.

As another topic, we discuss the improvement of scheduling policy. In the current oversubscribing scheduling,
there is no difference in the treatment of batch (normal) and interactive (HRR) jobs; the classification is used only
in the evaluation. One of the future directions is to modify the scheduling policy using job classification according
to the preference of users and/or administrators. If they want to reduce the idle time of the CPU, the scheduler
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Effectiveness of the Oversubscribing Scheduling on Supercomputer Systems 19

50332768

50332768

50332768

50332768

50332768

50568795

50656754

50790547

50764158

50788663

50760248

50926890

0.0E+00 1.0E+07 2.0E+07 3.0E+07 4.0E+07 5.0E+07 6.0E+07

Conv, R=0.5%

Conv, R=1%

Conv, R=3%

Conv, R=5%

OSub, M=1

OSub, M=2

OSub, M=3

OSub, M=4

OSub, M=5

OSub, M=6

OSub, M=7

OSub, M=8

Makespan[s]

Fig. 13. Makespan, the finish time of final job, when conventional system and oversubscribing system with KIT-FH2-2016-1 workload
trace. The values are included on the right side.

Time

Batch Job

CP
U

Ut
ili

za
tio

n
Ra

tio 100%

0%

𝑇଴

(a) Batch job

Time

…

CP
U

Ut
ili

za
tio

n
Ra

tio

100%

0% Thinking

Execute

(b) Interactive job (c) Oversubscribed state

Fig. 14. The time-series of CPU utilization. The horizontal axis is time, the vertical is CPU utilization ratio.

should do oversubscribing aggressively. If they want to avoid performance degradation, the scheduler should suppress
oversubscribing so that oversubscribing occurs only among interactive jobs with lower core utilization.

6 RELATEDWORK

Hofmeyr et al. have reported the simulation of batch and time-sharing scheduling with their supercomputer’s data[8].
We have mentioned the relationship between their work and ours in Section 5.1. Their research has covered various

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Shohei Minami, Toshio Endo, and Akihiro Nomura

topics related to time-sharing on supercomputer systems, however, interactive jobs are not mentioned. We will focus
on this point in the future.

Albert et al. have studied interactive jobs from a job scheduling viewpoint[13, 14]. They claim that high responsiveness
promotes users’ productivity, and in fact, report their on-demanded interactive system can change user experiences
drastically.

Klusáček et al. have built a scheduling simulator for supercomputers and cluster systems, Alea[9]. It takes an SWF
file as input and implements various scheduling algorithms. Unfortunately, Alea is not aware of node boundaries
and allocates jobs to a huge node with 𝑁𝐶 cores, where 𝑁 and 𝐶 are the numbers of nodes and cores. Also, it is not
implemented to manage core numbers bound to jobs. In our context, we want to consider oversubscribing per core,
thus we need a simulator that can bind parallel jobs to desired nodes and cores. Since we could not find an existing
simulator that satisfies this condition, we have developed NCS.

Slurm[16], the OSS job scheduler, is equipped with the function of oversubscribing. Administrators can configure the
compute resources should be shared with multiple jobs. When we develop a real oversubscribing scheduling system in
the future, we expect Slurm can be used for the implementation basis. Even with the basis, it is not trivial to develop
scheduling algorithms, especially EASY Backfilling considering oversubscribing. Also, the scheduling algorithm requires
an estimation mechanism of performance degradation as shown in Section 3.2.

7 CONCLUSION AND FUTUREWORK

We developed a scheduler simulator, NCS, that takes oversubscribing into account, and evaluated oversubscribing
scheduling using actual supercomputer workload traces. NCS is equipped with scheduling algorithms, one of which is
EASY backfilling algorithm adapted for oversubscribing.

Through the simulated evaluation, we confirmed the oversubscribing system is superior to the conventional system
for the following factors. Oversubscribing reduces the waiting time of high-responsiveness-requesting jobs (HRR jobs)
largely. While it can be achieved on the conventional system, the configuration designated for HRR jobs hurts the
responsiveness of normal jobs heavily. Oversubscribing system is free from this trade-off and improves responsiveness
both for HRR and normal jobs.

In this paper, we conducted the simulations with pessimistic assumptions, which overestimate the impact of perfor-
mance degradation by oversubscribing. We have observed the advantages described above even with those assumptions,
thus we expect the real oversubscribing system would produce more benefits both for interactive users and batch users.

The future works are as follows:

• Accurate simulation of interactive jobs: As discussed in Section 5.2, we do not take into account the
fluctuation of CPU utilization of interactive jobs. While the modification is expected to emphasize the advantages
of oversubscribing, we need a realistic model of behaviors of interactive jobs.

• Consideration of accelerators: Today’s supercomputers have heterogeneous compute resources, such as
GPU, FPGA, and so on. We assume that the next consideration of compute resources in the simulation should
be GPU. Since some interactive jobs are used for the pre/post processing via GUI, oversubscription of GPU is
promising. GPU load should be considered for realistic estimation of responsiveness of HRR(interactive) jobs.

• Development of Oversubscribing Scheduler System:While our current evaluation uses simulation, we
plan to develop system software to realize oversubscribing on an actual system. The current plan is to improve

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Effectiveness of the Oversubscribing Scheduling on Supercomputer Systems 21

the OSS such as Slurm[16] or Open PBS[4]. However, we need development as described in Section 6 to harness
the benefits of oversubscribing scheduling.

REFERENCES
[1] 2014. The University of Luxemburg Gaia Cluster log. Retrieved Octorber 4, 2022 from https://www.cs.huji.ac.il/labs/parallel/workload/l_unilu_

gaia/index.html
[2] 2018. The KIT ForHLR II log. Retrieved Octorber 4, 2022 from https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
[3] 2022. Node Conscious Shceduler simulator. Retrieved Octorber 4, 2022 from https://bitbucket.org/for-double-blinded-review/

nodeconsciousscheduler
[4] Altair Engineering. 2022. OpenPBS Open Source Project. Retrieved Octorber 4, 2022 from https://www.openpbs.org/
[5] Steve J. Chapin, Walfredo Cirne, Dror G. Feitelson, James Patton Jones, Scott T. Leutenegger, Uwe Schwiegelshohn, Warren Smith, and David Talby.

1999. Benchmarks and Standards for the Evaluation of Parallel Job Schedulers. In IPPS/SPDP ’99/JSSPP ’99. 67–90.
[6] Dror G Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C Sevcik, and Parkson Wong. 1997. Theory and practice in parallel job scheduling.

In Workshop on Job Scheduling Strategies for Parallel Processing. Springer, 1–34.
[7] Dror G. Feitelson, Dan Tsafrir, and David Krakov. 2014. Experience with using the Parallel Workloads Archive. J. Parallel and Distrib. Comput. 74,

10 (2014), 2967–2982. https://doi.org/10.1016/j.jpdc.2014.06.013
[8] Steven Hofmeyr, Costin Iancu, Juan Colmenares, Eric Roman, and Brian Austin. 2016. Time-Sharing Redux for Large-Scale HPC Systems. In IEEE

HPCC/SmartCity/DSS 2016. 301–308. https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0051
[9] Dalibor Klusáček, Mehmet Soysal, and Frédéric Suter. 2019. Alea -Complex Job Scheduling Simulator. In 13th International Conference on Parallel

Processing and Applied Mathematics. Bialystok, Poland. https://hal.archives-ouvertes.fr/hal-02329635
[10] David A. Lifka. 1995. The ANL/IBM SP scheduling system. In Job Scheduling Strategies for Parallel Processing, Dror G. Feitelson and Larry Rudolph

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 295–303.
[11] Satoshi Matsuoka, Toshio Endo, Akira Nukada, Shinichi Miura, Akihiro Nomura, Hitoshi Sato, Hideyuki Jitsumoto, and Aleksandr Drozd. 2017.

Overview of TSUBAME3.0, Green Cloud Supercomputer for Convergence of HPC, AI and Big-Data. TSUBAME e-Science Journal 16 (2017), 2–9.
[12] Shohei Minami, Toshio Endo, and Akihiro Nomura. 2021. Measurement and Modeling of Performance of HPC Applications Towards Overcommitting

Scheduling Systems. In Workshop on Job Scheduling Strategies for Parallel Processing. Springer, 59–79. https://doi.org/10.1007/978-3-030-88224-2_4
[13] A.I. Reuther, T. Currie, J. Kepner, H.G. Kim, A. McCabe, P. Michaleas, and N. Travinin. 2005. Technology Requirements for Supporting On-Demand

Interactive Grid Computing. In 2005 Users Group Conference (DOD-UGC’05). 320–327. https://doi.org/10.1109/DODUGC.2005.65
[14] Albert Reuther, Jeremy Kepner, Chansup Byun, Siddharth Samsi, William Arcand, David Bestor, et al. 2018. Interactive Supercomputing on

40,000 Cores for Machine Learning and Data Analysis. In 2018 IEEE High Performance extreme Computing Conference (HPEC). 1–6. https:
//doi.org/10.1109/HPEC.2018.8547629

[15] John Shalf, George Michelogiannakis, Brian Austin, Taylor Groves, Manya Ghobadi, Larry Dennison, Tom Gray, Yiwen Shen, Min Yee Teh, Madeleine
Glick, and Keren Bergman. 2020. Photonic Memory Disaggregation in Datacenters. In Photonics in Switching and Computing 2020. PsW1F.5.

[16] Andy B Yoo, Morris A. Jette, and Grondona Mark. 2003. Slurm: Simple Linux Utility for Resource Management. In Workshop on job scheduling
strategies for parallel processing. Springer, 44–60.

Manuscript submitted to ACM

https://www.cs.huji.ac.il/labs/parallel/workload/l_unilu_gaia/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_unilu_gaia/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
https://bitbucket.org/for-double-blinded-review/nodeconsciousscheduler
https://bitbucket.org/for-double-blinded-review/nodeconsciousscheduler
https://www.openpbs.org/
https://doi.org/10.1016/j.jpdc.2014.06.013
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0051
https://hal.archives-ouvertes.fr/hal-02329635
https://doi.org/10.1007/978-3-030-88224-2_4
https://doi.org/10.1109/DODUGC.2005.65
https://doi.org/10.1109/HPEC.2018.8547629
https://doi.org/10.1109/HPEC.2018.8547629

