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PREFACE

The scope of the theory of spin glasses has been expanding well beyond its origi-
nal goal of explaining the experimental facts of spin glass materials. For the first
time in the history of physics we have encountered an explicit example in which
the phase space of the system has an extremely complex structure and yet is
amenable to rigorous, systematic analyses. Investigations of such systems have
opened a new paradigm in statistical physics. Also, the framework of the analyti-
cal treatment of these systems has gradually been recognized as an indispensable
tool for the study of information processing tasks.

One of the principal purposes of this book is to elucidate some of the im-
portant recent developments in these interdisciplinary directions, such as error-
correcting codes, image restoration, neural networks, and optimization problems.
In particular, I would like to provide a unified viewpoint traversing several dif-
ferent research fields with the replica method as the common language, which
emerged from the spin glass theory. One may also notice the close relationship
between the arguments using gauge symmetry in spin glasses and the Bayesian
method in information processing problems. Accordingly, this book is not neces-
sarily written as a comprehensive introduction to single topics in the conventional
classification of subjects like spin glasses or neural networks.

In a certain sense, statistical mechanics and information sciences may have
been destined to be directed towards common objectives since Shannon formu-
lated information theory about fifty years ago with the concept of entropy as the
basic building block. It would, however, have been difficult to envisage how this
actually would happen: that the physics of disordered systems, and spin glass
theory in particular, at its maturity naturally encompasses some of the impor-
tant aspects of information sciences, thus reuniting the two disciplines. It would
then reasonably be expected that in the future this cross-disciplinary field will
continue to develop rapidly far beyond the current perspective. This is the very
purpose for which this book is intended to establish a basis.

The book is composed of two parts. The first part concerns the theory of
spin glasses. Chapter 1 is an introduction to the general mean-field theory of
phase transitions. Basic knowledge of statistical mechanics at undergraduate
level is assumed. The standard mean-field theory of spin glasses is developed
in Chapters 2 and 3, and Chapter 4 is devoted to symmetry arguments using
gauge transformations. These four chapters do not cover everything to do with
spin glasses. For example, hotly debated problems like the three-dimensional spin
glass and anomalously slow dynamics are not included here. The reader will find
relevant references listed at the end of each chapter to cover these and other
topics not treated here.
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The second part deals with statistical-mechanical approaches to information
processing problems. Chapter 5 is devoted to error-correcting codes and Chapter
6 to image restoration. Neural networks are discussed in Chapters 7 and 8, and
optimization problems are elucidated in Chapter 9. Most of these topics are
formulated as applications of the statistical mechanics of spin glasses, with a
few exceptions. For each topic in this second part, there is of course a long
history, and consequently a huge amount of knowledge has been accumulated.
The presentation in the second part reflects recent developments in statistical-
mechanical approaches and does not necessarily cover all the available materials.
Again, the references at the end of each chapter will be helpful in filling the gaps.
The policy for listing up the references is, first, to refer explicitly to the original
papers for topics discussed in detail in the text, and second, whenever possible,
to refer to review articles and books at the end of a chapter in order to avoid an
excessively long list of references. I therefore have to apologize to those authors
whose papers have only been referred to indirectly via these reviews and books.

The reader interested mainly in the second part may skip Chapters 3 and 4
in the first part before proceeding to the second part. Nevertheless it is recom-
mended to browse through the introductory sections of these chapters, including
replica symmetry breaking (§§3.1 and 3.2) and the main part of gauge theory
(§§4.1 to 4.3 and 4.6), for a deeper understanding of the techniques relevant to
the second part. It is in particular important for the reader who is interested in
Chapters 5 and 6 to go through these sections.

The present volume is the English edition of a book written in Japanese
by me and published in 1999. I have revised a significant part of the Japanese
edition and added new material in this English edition. The Japanese edition
emerged from lectures at Tokyo Institute of Technology and several other uni-
versities. I would like to thank those students who made useful comments on
the lecture notes. I am also indebted to colleagues and friends for collabora-
tions, discussions, and comments on the manuscript: in particular, to Jun-ichi
Inoue, Yoshiyuki Kabashima, Kazuyuki Tanaka, Tomohiro Sasamoto, Toshiyuki
Tanaka, Shigeru Shinomoto, Taro Toyoizumi, Michael Wong, David Saad, Peter
Sollich, Ton Coolen, and John Cardy. I am much obliged to David Sherrington
for useful comments, collaborations, and a suggestion to publish the present En-
glish edition. If this book is useful to the reader, a good part of the credit should
be attributed to these outstanding people.

H. N.

Tokyo
February 2001
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1

MEAN-FIELD THEORY OF PHASE TRANSITIONS

Methods of statistical mechanics have been enormously successful in clarifying
the macroscopic properties of many-body systems. Typical examples are found
in magnetic systems, which have been a test bed for a variety of techniques.
In the present chapter, we introduce the Ising model of magnetic systems and
explain its mean-field treatment, a very useful technique of analysis of many-
body systems by statistical mechanics. Mean-field theory explained here forms
the basis of the methods used repeatedly throughout this book. The arguments in
the present chapter represent a general mean-field theory of phase transitions in
the Ising model with uniform ferromagnetic interactions. Special features of spin
glasses and related disordered systems will be taken into account in subsequent
chapters.

1.1 Ising model

A principal goal of statistical mechanics is the clarification of the macroscopic
properties of many-body systems starting from the knowledge of interactions
between microscopic elements. For example, water can exist as vapour (gas),
water (liquid), or ice (solid), any one of which looks very different from the oth-
ers, although the microscopic elements are always the same molecules of H2O.
Macroscopic properties of these three phases differ widely from each other be-
cause intermolecular interactions significantly change the macroscopic behaviour
according to the temperature, pressure, and other external conditions. To inves-
tigate the general mechanism of such sharp changes of macroscopic states of
materials, we introduce the Ising model, one of the simplest models of interact-
ing many-body systems. The following arguments are not intended to explain
directly the phase transition of water but constitute the standard theory to de-
scribe the common features of phase transitions.

Let us call the set of integers from 1 to N , V = {1, 2, . . . , N} ≡ {i}i=1,...,N ,
a lattice, and its element i a site. A site here refers to a generic abstract object.
For example, a site may be the real lattice point on a crystal, or the pixel of
a digital picture, or perhaps the neuron in a neural network. These and other
examples will be treated in subsequent chapters. In the first part of this book
we will mainly use the words of models of magnetism with sites on a lattice for
simplicity. We assign a variable Si to each site. The Ising spin is characterized
by the binary value Si = ±1, and mostly this case will be considered throughout
this volume. In the problem of magnetism, the Ising spin Si represents whether
the microscopic magnetic moment is pointing up or down.

1



2 MEAN-FIELD THEORY OF PHASE TRANSITIONS

i j

Fig. 1.1. Square lattice and nearest neighbour sites 〈ij〉 on it

A bond is a pair of sites (ij). An appropriate set of bonds will be denoted as
B = {(ij)}. We assign an interaction energy (or an interaction, simply) −JSiSj

to each bond in the set B. The interaction energy is −J when the states of the
two spins are the same (Si = Sj) and is J otherwise (Si = −Sj). Thus the
former has a lower energy and is more stable than the latter if J > 0. For the
magnetism problem, Si = 1 represents the up state of a spin (↑) and Si = −1
the down state (↓), and the two interacting spins tend to be oriented in the
same direction (↑↑ or ↓↓) when J > 0. The positive interaction can then lead
to macroscopic magnetism (ferromagnetism) because all pairs of spins in the set
B have the tendency to point in the same direction. The positive interaction
J > 0 is therefore called a ferromagnetic interaction. By contrast the negative
interaction J < 0 favours antiparallel states of interacting spins and is called an
antiferromagnetic interaction.

In some cases a site has its own energy of the form −hSi, the Zeeman energy
in magnetism. The total energy of a system therefore has the form

H = −J
∑

(ij)∈B

SiSj − h
N∑

i=1

Si. (1.1)

Equation (1.1) is the Hamiltonian (or the energy function) of the Ising model.
The choice of the set of bonds B depends on the type of problem one is

interested in. For example, in the case of a two-dimensional crystal lattice, the
set of sites V = {i} is a set of points with regular intervals on a two-dimensional
space. The bond (ij) (∈ B) is a pair of nearest neighbour sites (see Fig. 1.1).
We use the notation 〈ij〉 for the pair of sites (ij) ∈ B in the first sum on the
right hand side of (1.1) if it runs over nearest neighbour bonds as in Fig. 1.1. By
contrast, in the infinite-range model to be introduced shortly, the set of bonds
B is composed of all possible pairs of sites in the set of sites V .

The general prescription of statistical mechanics is to calculate the thermal
average of a physical quantity using the probability distribution

P (S) =
e−βH

Z
(1.2)
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for a given Hamiltonian H . Here, S ≡ {Si} represents the set of spin states, the
spin configuration. We take the unit of temperature such that Boltzmann’s con-
stant kB is unity, and β is the inverse temperature β = 1/T . The normalization
factor Z is the partition function

Z =
∑

S1=±1

∑
S2=±1

. . .
∑

SN=±1

e−βH ≡
∑
S

e−βH . (1.3)

One sometimes uses the notation Tr for the sum over all possible spin configu-
rations appearing in (1.3). Hereafter we use this notation for the sum over the
values of Ising spins on sites:

Z = Tr e−βH . (1.4)

Equation (1.2) is called the Gibbs–Boltzmann distribution, and e−βH is termed
the Boltzmann factor. We write the expectation value for the Gibbs–Boltzmann
distribution using angular brackets 〈· · ·〉.

Spin variables are not necessarily restricted to the Ising type (Si = ±1). For
instance, in the XY model, the variable at a site i has a real value θi with modulo
2π, and the interaction energy has the form −J cos(θi − θj). The energy due to
an external field is −h cos θi. The Hamiltonian of the XY model is thus written
as

H = −J
∑

(ij)∈B

cos(θi − θj) − h
∑

i

cos θi. (1.5)

The XY spin variable θi can be identified with a point on the unit circle. If
J > 0, the interaction term in (1.5) is ferromagnetic as it favours a parallel spin
configuration (θi = θj).

1.2 Order parameter and phase transition

One of the most important quantities used to characterize the macroscopic prop-
erties of the Ising model with ferromagnetic interactions is the magnetization.
Magnetization is defined by

m =
1
N

〈
N∑

i=1

Si

〉
=

1
N

Tr

(
(
∑

i

Si)P (S)

)
, (1.6)

and measures the overall ordering in a macroscopic system (i.e. the system in
the thermodynamic limit N → ∞). Magnetization is a typical example of an
order parameter which is a measure of whether or not a macroscopic system is
in an ordered state in an appropriate sense. The magnetization vanishes if there
exist equal numbers of up spins Si = 1 and down spins Si = −1, suggesting the
absence of a uniformly ordered state.

At low temperatures β 	 1, the Gibbs–Boltzmann distribution (1.2) implies
that low-energy states are realized with much higher probability than high-energy
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m

0
T Tc

Fig. 1.2. Temperature dependence of magnetization

states. The low-energy states of the ferromagnetic Ising model (1.1) without the
external field h = 0 have almost all spins in the same direction. Thus at low
temperatures the spin states are either up Si = 1 at almost all sites or down
Si = −1 at almost all sites. The magnetization m is then very close to either 1
or −1, respectively.

As the temperature increases, β decreases, and then the states with various
energies emerge with similar probabilities. Under such circumstances, Si would
change frequently from 1 to −1 and vice versa, so that the macroscopic state of
the system is disordered with the magnetization vanishing. The magnetization
m as a function of the temperature T therefore has the behaviour depicted in
Fig. 1.2. There is a critical temperature Tc; m 
= 0 for T < Tc and m = 0 for
T > Tc.

This type of phenomenon in a macroscopic system is called a phase transition
and is characterized by a sharp and singular change of the value of the order
parameter between vanishing and non-vanishing values. In magnetic systems the
state for T < Tc with m 
= 0 is called the ferromagnetic phase and the state
at T > Tc with m = 0 is called the paramagnetic phase. The temperature Tc is
termed a critical point or a transition point.

1.3 Mean-field theory

In principle, it is possible to calculate the expectation value of any physical quan-
tity using the Gibbs–Boltzmann distribution (1.2). It is, however, usually very
difficult in practice to carry out the sum over 2N terms appearing in the partition
function (1.3). One is thus often forced to resort to approximations. Mean-field
theory (or the mean-field approximation) is used widely in such situations.

1.3.1 Mean-field Hamiltonian

The essence of mean-field theory is to neglect fluctuations of microscopic vari-
ables around their mean values. One splits the spin variable Si into the mean
m =

∑
i〈Si〉/N = 〈Si〉 and the deviation (fluctuation) δSi = Si−m and assumes

that the second-order term with respect to the fluctuation δSi is negligibly small
in the interaction energy:
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H = −J
∑

(ij)∈B

(m + δSi)(m + δSj) − h
∑

i

Si

≈ −Jm2NB − Jm
∑

(ij)∈B

(δSi + δSj) − h
∑

i

Si. (1.7)

To simplify this expression, we note that each bond (ij) appears only once in the
sum of δSi + δSj in the second line. Thus δSi and δSj assigned at both ends of
a bond are summed up z times, where z is the number of bonds emanating from
a given site (the coordination number), in the second sum in the final expression
of (1.7):

H = −Jm2NB − Jmz
∑

i

δSi − h
∑

i

Si

= NBJm2 − (Jmz + h)
∑

i

Si. (1.8)

A few comments on (1.8) are in order.
1. NB is the number of elements in the set of bonds B, NB = |B|.
2. We have assumed that the coordination number z is independent of site

i, so that NB is related to z by zN/2 = NB. One might imagine that the
total number of bonds is zN since each site has z bonds emanating from
it. However, a bond is counted twice at both its ends and one should divide
zN by two to count the total number of bonds correctly.

3. The expectation value 〈Si〉 has been assumed to be independent of i. This
value should be equal to m according to (1.6). In the conventional ferro-
magnetic Ising model, the interaction J is a constant and thus the average
order of spins is uniform in space. In spin glasses and other cases to be
discussed later this assumption does not hold.

The effects of interactions have now been hidden in the magnetization m in
the mean-field Hamiltonian (1.8). The problem apparently looks like a non-
interacting case, which significantly reduces the difficulties in analytical manip-
ulations.

1.3.2 Equation of state

The mean-field Hamiltonian (1.8) facilitates calculations of various quantities.
For example, the partition function is given as

Z = Tr exp

[
β

{
−NBJm2 + (Jmz + h)

∑
i

Si

}]

= e−βNBJm2 {2 coshβ(Jmz + h)}N
. (1.9)

A similar procedure with Si inserted after the trace operation Tr in (1.9) yields
the magnetization m,
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y y=m

m0

y= Jmztanh( )�

( > )T T

( )T <T

c

c

Fig. 1.3. Solution of the mean-field equation of state

m =
TrSie−βH

Z
= tanh β(Jmz + h). (1.10)

This equation (1.10) determines the order parameter m and is called the equation
of state. The magnetization in the absence of the external field h = 0, the spon-
taneous magnetization, is obtained as the solution of (1.10) graphically: as one
can see in Fig. 1.3, the existence of a solution with non-vanishing magnetization
m 
= 0 is determined by whether the slope of the curve tanh(βJmz) at m = 0 is
larger or smaller than unity. The first term of the expansion of the right hand
side of (1.10) with h = 0 is βJzm, so that there exists a solution with m 
= 0 if
and only if βJz > 1. From βJz = Jz/T = 1, the critical temperature is found
to be Tc = Jz. Figure 1.3 clearly shows that the positive and negative solutions
for m have the same absolute value (±m), corresponding to the change of sign
of all spins (Si → −Si, ∀i). Hereafter we often restrict ourselves to the case of
m > 0 without loss of generality.

1.3.3 Free energy and the Landau theory

It is possible to calculate the specific heat C, magnetic susceptibility χ, and other
quantities by mean-field theory. We develop an argument starting from the free
energy. The general theory of statistical mechanics tells us that the free energy
is proportional to the logarithm of the partition function. Using (1.9), we have
the mean-field free energy of the Ising model as

F = −T log Z = −NT log{2 coshβ(Jmz + h)} + NBJm2. (1.11)

When there is no external field h = 0 and the temperature T is close to the
critical point Tc, the magnetization m is expected to be close to zero. It is then
possible to expand the right hand side of (1.11) in powers of m. The expansion
to fourth order is

F = −NT log 2 +
JzN

2
(1 − βJz)m2 +

N

12
(Jzm)4β3. (1.12)
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Fig. 1.4. Free energy as a function of the order parameter

It should be noted that the coefficient of m2 changes sign at Tc. As one can see
in Fig. 1.4, the minima of the free energy are located at m 
= 0 when T < Tc and
at m = 0 if T > Tc. The statistical-mechanical average of a physical quantity
obtained from the Gibbs–Boltzmann distribution (1.2) corresponds to its value
at the state that minimizes the free energy (thermal equilibrium state). Thus the
magnetization in thermal equilibrium is zero when T > Tc and is non-vanishing
for T < Tc. This conclusion is in agreement with the previous argument using
the equation of state. The present theory starting from the Taylor expansion
of the free energy by the order parameter is called the Landau theory of phase
transitions.

1.4 Infinite-range model

Mean-field theory is an approximation. However, it gives the exact solution in the
case of the infinite-range model where all possible pairs of sites have interactions.
The Hamiltonian of the infinite-range model is

H = − J

2N

∑
i �=j

SiSj − h
∑

i

Si. (1.13)

The first sum on the right hand side runs over all pairs of different sites (i, j) (i =
1, . . . , N ; j = 1, . . . , N ; i 
= j). The factor 2 in the denominator exists so that each
pair (i, j) appears only once in the sum, for example (S1S2 + S2S1)/2 = S1S2.
The factor N in the denominator is to make the Hamiltonian (energy) extensive
(i.e. O(N)) since the number of terms in the sum is N(N − 1)/2.

The partition function of the infinite-range model can be evaluated as follows.
By definition,

Z = Tr exp

(
βJ

2N
(
∑

i

Si)2 − βJ

2
+ βh

∑
i

Si

)
. (1.14)

Here the constant term −βJ/2 compensates for the contribution
∑

i(S
2
i ). This

term, of O(N0 = 1), is sufficiently small compared to the other terms, of O(N),
in the thermodynamic limit N → ∞ and will be neglected hereafter. Since we
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cannot carry out the trace operation with the term (
∑

i Si)2 in the exponent, we
decompose this term by the Gaussian integral

eax2/2 =

√
aN

2π

∫ ∞

−∞
dm e−Nam2/2+

√
Namx. (1.15)

Substituting a = βJ and x =
∑

i Si/
√

N and using (1.9), we find

Tr

√
βJN

2π

∫ ∞

−∞
dm exp

(
−NβJm2

2
+ βJm

∑
i

Si + βh
∑

i

Si

)
(1.16)

=

√
βJN

2π

∫ ∞

−∞
dm exp

(
−NβJm2

2
+ N log{2 coshβ(Jm + h)}

)
. (1.17)

The problem has thus been reduced to a simple single integral.
We can evaluate the above integral by steepest descent in the thermodynamic

limit N → ∞: the integral (1.17) approaches asymptotically the largest value of
its integrand in the thermodynamic limit. The value of the integration variable
m that gives the maximum of the integrand is determined by the saddle-point
condition, that is maximization of the exponent:

∂

∂m

(
−βJ

2
m2 + log{2 coshβ(Jm + h)}

)
= 0 (1.18)

or
m = tanh β(Jm + h). (1.19)

Equation (1.19) agrees with the mean-field equation (1.10) after replacement of
J with J/N and z with N . Thus mean-field theory leads to the exact solution
for the infinite-range model.

The quantity m was introduced as an integration variable in the evaluation
of the partition function of the infinite-range model. It nevertheless turned out
to have a direct physical interpretation, the magnetization, according to the
correspondence with mean-field theory through the equation of state (1.19). To
understand the significance of this interpretation from a different point of view,
we write the saddle-point condition for (1.16) as

m =
1
N

∑
i

Si. (1.20)

The sum in (1.20) agrees with the average value m, the magnetization, in the
thermodynamic limit N → ∞ if the law of large numbers applies. In other
words, fluctuations of magnetization vanish in the thermodynamic limit in the
infinite-range model and thus mean-field theory gives the exact result.

The infinite-range model may be regarded as a model with nearest neighbour
interactions in infinite-dimensional space. To see this, note that the coordination
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number z of a site on the d-dimensional hypercubic lattice is proportional to d.
More precisely, z = 4 for the two-dimensional square lattice, z = 6 for the three-
dimensional cubic lattice, and z = 2d in general. Thus a site is connected to very
many other sites for large d so that the relative effects of fluctuations diminish
in the limit of large d, leading to the same behaviour as the infinite-range model.

1.5 Variational approach
Another point of view is provided for mean-field theory by a variational approach.
The source of difficulty in calculations of various physical quantities lies in the
non-trivial structure of the probability distribution (1.2) with the Hamiltonian
(1.1) where the degrees of freedom S are coupled with each other. It may thus
be useful to employ an approximation to decouple the distribution into simple
functions. We therefore introduce a single-site distribution function

Pi(σi) = TrP (S)δ(Si, σi) (1.21)

and approximate the full distribution by the product of single-site functions:

P (S) ≈
∏

i

Pi(Si). (1.22)

We determine Pi(Si) by the general principle of statistical mechanics to minimize
the free energy F = E−TS, where the internal energy E is the expectation value
of the Hamiltonian and S is the entropy (not to be confused with spin). Under
the above approximation, one finds

F = Tr

{
H(S)

∏
i

Pi(Si)

}
+ T Tr

{∏
i

Pi(Si)
∑

i

log Pi(Si)

}

= −J
∑

(ij)∈B

TrSiSjPi(Si)Pj(Sj) − h
∑

i

TrSiPi(Si)

+ T
∑

i

TrPi(Si) log Pi(Si), (1.23)

where we have used the normalization TrPi(Si) = 1. Variation of this free energy
by Pi(Si) under the condition of normalization gives

δF

δPi(Si)
= −J

∑
j∈I

Simj − hSi + T log Pi(Si) + T + λ = 0, (1.24)

where λ is the Lagrange multiplier for the normalization condition and we have
written mj for Tr SjPj(Sj). The set of sites connected to i has been denoted by
I. The minimization condition (1.24) yields the distribution function

Pi(Si) =
exp
(
βJ
∑

j∈I Simj + βhSi

)
ZMF

, (1.25)

where ZMF is the normalization factor. In the case of uniform magnetization
mj (= m), this result (1.25) together with the decoupling (1.22) leads to the
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distribution P (S) ∝ e−βH with H identical to the mean-field Hamiltonian (1.8)
up to a trivial additive constant.

The argument so far has been general in that it did not use the values of the
Ising spins Si = ±1 and thus applies to any other cases. It is instructive to use
the values of the Ising spins explicitly and see its consequence. Since Si takes
only two values ±1, the following is the general form of the distribution function:

Pi(Si) =
1 + miSi

2
, (1.26)

which is compatible with the previous notation mi = TrSiPi(Si). Substitution
of (1.26) into (1.23) yields

F = −J
∑

(ij)∈B

mimj − h
∑

i

mi

+ T
∑

i

(
1 + mi

2
log

1 + mi

2
+

1 − mi

2
log

1 − mi

2

)
. (1.27)

Variation of this expression with respect to mi leads to

mi = tanh β


J
∑
j∈I

mj + h


 (1.28)

which is identical to (1.10) for uniform magnetization (mi = m, ∀i). We have
again rederived the previous result of mean-field theory.

Bibliographical note

A compact exposition of the theory of phase transitions including mean-field
theory is found in Yeomans (1992). For a full account of the theory of phase tran-
sitions and critical phenomena, see Stanley (1987). In Opper and Saad (2001),
one finds an extensive coverage of recent developments in applications of mean-
field theory to interdisciplinary fields as well as a detailed elucidation of various
aspects of mean-field theory.



2

MEAN-FIELD THEORY OF SPIN GLASSES

We next discuss the problem of spin glasses. If the interactions between spins
are not uniform in space, the analysis of the previous chapter does not apply
in the näıve form. In particular, when the interactions are ferromagnetic for
some bonds and antiferromagnetic for others, then the spin orientation cannot
be uniform in space, unlike the ferromagnetic system, even at low temperatures.
Under such a circumstance it sometimes happens that spins become randomly
frozen — random in space but frozen in time. This is the intuitive picture of
the spin glass phase. In the present chapter we investigate the condition for the
existence of the spin glass phase by extending the mean-field theory so that it
is applicable to the problem of disordered systems with random interactions. In
particular we elucidate the properties of the so-called replica-symmetric solution.
The replica method introduced here serves as a very powerful tool of analysis
throughout this book.

2.1 Spin glass and the Edwards–Anderson model

Atoms are located on lattice points at regular intervals in a crystal. This is
not the case in glasses where the positions of atoms are random in space. An
important point is that in glasses the apparently random locations of atoms do
not change in a day or two into another set of random locations. A state with
spatial randomness apparently does not change with time. The term spin glass
implies that the spin orientation has a similarity to this type of location of atom
in glasses: spins are randomly frozen in spin glasses. The goal of the theory of
spin glasses is to clarify the conditions for the existence of spin glass states.1

It is established within mean-field theory that the spin glass phase exists at
low temperatures when random interactions of certain types exist between spins.
The present and the next chapters are devoted to the mean-field theory of spin
glasses. We first introduce a model of random systems and explain the replica
method, a general method of analysis of random systems. Then the replica-
symmetric solution is presented.

1More rigorously, the spin glass state is considered stable for an infinitely long time at
least within the mean-field theory, whereas ordinary glasses will transform to crystals without
randomness after a very long period.

11
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2.1.1 Edwards–Anderson model

Let us suppose that the interaction Jij between a spin pair (ij) changes from
one pair to another. The Hamiltonian in the absence of an external field is then
expressed as

H = −
∑

(ij)∈B

JijSiSj . (2.1)

The spin variables are assumed to be of the Ising type (Si = ±1) here. Each Jij is
supposed to be distributed independently according to a probability distribution
P (Jij). One often uses the Gaussian model and the ±J model as typical examples
of the distribution of P (Jij). Their explicit forms are

P (Jij) =
1√

2πJ2
exp
{
− (Jij − J0)2

2J2

}
(2.2)

P (Jij) = pδ(Jij − J) + (1 − p)δ(Jij + J), (2.3)

respectively. Equation (2.2) is a Gaussian distribution with mean J0 and variance
J2 while in (2.3) Jij is either J (> 0) (with probability p) or −J (with probability
1 − p).

Randomness in Jij has various types of origin depending upon the specific
problem. For example, in some spin glass materials, the positions of atoms car-
rying spins are randomly distributed, resulting in randomness in interactions.
It is impossible in such a case to identify the location of each atom precisely
and therefore it is essential in theoretical treatments to introduce a probability
distribution for Jij . In such a situation (2.1) is called the Edwards–Anderson
model (Edwards and Anderson 1975). The randomness in site positions (site
randomness) is considered less relevant to the macroscopic properties of spin
glasses compared to the randomness in interactions (bond randomness). Thus
Jij is supposed to be distributed randomly and independently at each bond (ij)
according to a probability like (2.2) and (2.3). The Hopfield model of neural net-
works treated in Chapter 7 also has the form of (2.1). The type of randomness of
Jij in the Hopfield model is different from that of the Edwards–Anderson model.
The randomness in Jij of the Hopfield model has its origin in the randomness
of memorized patterns. We focus our attention on the spin glass problem in
Chapters 2 to 4.

2.1.2 Quenched system and configurational average

Evaluation of a physical quantity using the Hamiltonian (2.1) starts from the
trace operation over the spin variables S = {Si} for a given fixed (quenched)
set of Jij generated by the probability distribution P (Jij). For instance, the free
energy is calculated as

F = −T log Tr e−βH , (2.4)

which is a function of J ≡ {Jij}. The next step is to average (2.4) over the
distribution of J to obtain the final expression of the free energy. The latter
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procedure of averaging is called the configurational average and will be denoted
by brackets [· · ·] in this book,

[F ] = −T [log Z] = −T

∫ ∏
(ij)

dJij P (Jij) log Z. (2.5)

Differentiation of this averaged free energy [F ] by the external field h or the
temperature T leads to the magnetization or the internal energy, respectively.
The reason to trace out first S for a given fixed J is that the positions of atoms
carrying spins are random in space but fixed in the time scale of rapid thermal
motions of spins. It is thus appropriate to evaluate the trace over S first with
the interactions J fixed.

It happens that the free energy per degree of freedom f(J) = F (J)/N has
vanishingly small deviations from its mean value [f ] in the thermodynamic limit
N → ∞. The free energy f for a given J thus agrees with the mean [f ] with
probability 1, which is called the self-averaging property of the free energy. Since
the raw value f for a given J agrees with its configurational average [f ] with
probability 1 in the thermodynamic limit, we may choose either of these quan-
tities in actual calculations. The mean [f ] is easier to handle because it has no
explicit dependence on J even for finite-size systems. We shall treat the average
free energy in most of the cases hereafter.

2.1.3 Replica method

The dependence of log Z on J is very complicated and it is not easy to calculate
the configurational average [log Z]. The manipulations are greatly facilitated by
the relation

[log Z] = lim
n→0

[Zn] − 1
n

. (2.6)

One prepares n replicas of the original system, evaluates the configurational
average of the product of their partition functions Zn, and then takes the limit
n → 0. This technique, the replica method, is useful because it is easier to evaluate
[Zn] than [log Z].

Equation (2.6) is an identity and is always correct. A problem in actual replica
calculations is that one often evaluates [Zn] with positive integer n in mind and
then extrapolates the result to n → 0. We therefore should be careful to discuss
the significance of the results of replica calculations.

2.2 Sherrington–Kirkpatrick model

The mean-field theory of spin glasses is usually developed for the Sherrington–
Kirkpatrick (SK) model, the infinite-range version of the Edwards–Anderson
model (Sherrington and Kirkpatrick 1975). In this section we introduce the SK
model and explain the basic methods of calculations using the replica method.
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2.2.1 SK model
The infinite-range model of spin glasses is expected to play the role of mean-field
theory analogously to the case of the ferromagnetic Ising model. We therefore
start from the Hamiltonian

H = −
∑
i<j

JijSiSj − h
∑

i

Si. (2.7)

The first sum on the right hand side runs over all distinct pairs of spins, N(N −
1)/2 of them. The interaction Jij is a quenched variable with the Gaussian
distribution function

P (Jij) =
1
J

√
N

2π
exp

{
− N

2J2

(
Jij − J0

N

)2
}

. (2.8)

The mean and variance of this distribution are both proportional to 1/N :

[Jij ] =
J0

N
, [(∆Jij)2] =

J2

N
. (2.9)

The reason for such a normalization is that extensive quantities (e.g. the energy
and specific heat) are found to be proportional to N if one takes the above
normalization of interactions, as we shall see shortly.

2.2.2 Replica average of the partition function
According to the prescription of the replica method, one first has to take the
configurational average of the nth power of the partition function

[Zn] =
∫ ∏

i<j

dJijP (Jij)


Tr exp


β
∑
i<j

Jij

n∑
α=1

Sα
i Sα

j + βh

N∑
i=1

n∑
α=1

Sα
i


 ,

(2.10)
where α is the replica index. The integral over Jij can be carried out indepen-
dently for each (ij) using (2.8). The result, up to a trivial constant, is

Tr exp


 1

N

∑
i<j


1

2
β2J2

∑
α,β

Sα
i Sα

j Sβ
i Sβ

j + βJ0

∑
α

Sα
i Sα

j


+ βh

∑
i

∑
α

Sα
i


 .

(2.11)
By rewriting the sums over i < j and α, β in the above exponent, we find the
following form, for sufficiently large N :

[Zn] = exp
(

Nβ2J2n

4

)
Tr exp


β2J2

2N

∑
α<β

(∑
i

Sα
i Sβ

i

)2

+
βJ0

2N

∑
α

(∑
i

Sα
i

)2

+ βh
∑

i

∑
α

Sα
i


 . (2.12)
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2.2.3 Reduction by Gaussian integral

We could carry out the trace over Sα
i independently at each site i in (2.12) if the

quantities in the exponent were linear in the spin variables. It is therefore useful
to linearize those squared quantities by Gaussian integrals with the integration
variables qαβ for the term (

∑
i Sα

i Sβ
i )2 and mα for (

∑
i Sα

i )2:

[Zn] = exp
(

Nβ2J2n

4

)∫ ∏
α<β

dqαβ

∫ ∏
α

dmα

· exp


−Nβ2J2

2

∑
α<β

q2
αβ − NβJ0

2

∑
α

m2
α




· Tr exp


β2J2

∑
α<β

qαβ

∑
i

Sα
i Sβ

i + β
∑

α

(J0mα + h)
∑

i

Sα
i


 .(2.13)

If we represent the sum over the variable at a single site (
∑

Sα
i
) also by the

symbol Tr, the third line of the above equation is


Tr exp


β2J2

∑
α<β

qαβSαSβ + β
∑
α

(J0mα + h)Sα






N

≡ exp(N log Tr eL),

(2.14)
where

L = β2J2
∑
α<β

qαβSαSβ + β
∑
α

(J0mα + h)Sα. (2.15)

We thus have

[Zn] = exp
(

Nβ2J2n

4

)∫ ∏
α<β

dqαβ

∫ ∏
α

dmα

· exp


−Nβ2J2

2

∑
α<β

q2
αβ − NβJ0

2

∑
α

m2
α + N log Tr eL


 . (2.16)

2.2.4 Steepest descent

The exponent of the above integrand is proportional to N , so that it is possible
to evaluate the integral by steepest descent. We then find in the thermodynamic
limit N → ∞

[Zn] ≈ exp


−Nβ2J2

2

∑
α<β

q2
αβ − NβJ0

2

∑
α

m2
α + N log Tr eL +

N

4
β2J2n
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≈ 1 + Nn


−β2J2

4n

∑
α�=β

q2
αβ − βJ0

2n

∑
α

m2
α +

1
n

log Tr eL +
1
4
β2J2


 .

In deriving this last expression, the limit n → 0 has been taken with N kept
very large but finite. The values of qαβ and mα in the above expression should
be chosen to extremize (maximize or minimize) the quantity in the braces { }.
The replica method therefore gives the free energy as

−β[f ] = lim
n→0

[Zn] − 1
nN

= lim
n→0


−β2J2

4n

∑
α�=β

q2
αβ

−βJ0

2n

∑
α

m2
α +

1
4
β2J2 +

1
n

log Tr eL

}
. (2.17)

The saddle-point condition that the free energy is extremized with respect to the
variable qαβ (α 
= β) is

qαβ =
1

β2J2

∂

∂qαβ
log Tr eL =

Tr SαSβeL

Tr eL
= 〈SαSβ〉L, (2.18)

where 〈· · ·〉L is the average by the weight eL. The saddle-point condition for mα

is, similarly,

mα =
1

βJ0

∂

∂mα
log Tr eL =

Tr SαeL

Tr eL
= 〈Sα〉L. (2.19)

2.2.5 Order parameters

The variables qαβ and mα have been introduced for technical convenience in
Gaussian integrals. However, these variables turn out to represent order parame-
ters in a similar manner to the ferromagnetic model explained in §1.4. To confirm
this fact, we first note that (2.18) can be written in the following form:

qαβ = [〈Sα
i Sβ

i 〉] =

[
Tr Sα

i Sβ
i exp(−β

∑
γ Hγ)

Tr exp(−β
∑

γ Hγ)

]
, (2.20)

where Hγ denotes the γth replica Hamiltonian

Hγ = −
∑
i<j

JijS
γ
i Sγ

j − h
∑

i

Sγ
i . (2.21)

It is possible to check, by almost the same calculations as in the previous sections,
that (2.18) and (2.20) represent the same quantity. First of all the denominator of
(2.20) is Zn, which approaches one as n → 0 so that it is unnecessary to evaluate
them explicitly. The numerator corresponds to the quantity in the calculation
of [Zn] with Sα

i Sβ
i inserted after the Tr symbol. With these points in mind, one
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can follow the calculations in §2.2.2 and afterwards to find the following quantity
instead of (2.14):

(Tr eL)N−1 · Tr (SαSβeL). (2.22)

The quantity log Tr eL is proportional to n as is seen from (2.17) and thus Tr eL

approaches one as n → 0. Hence (2.22) reduces to Tr (SαSβeL) in the limit
n → 0. One can then check that (2.22) agrees with (2.18) from the fact that the
denominator of (2.18) approaches one. We have thus established that (2.20) and
(2.18) represent the same quantity. Similarly we find

mα = [〈Sα
i 〉]. (2.23)

The parameter m is the ordinary ferromagnetic order parameter according
to (2.23), and is the value of mα when the latter is independent of α. The other
parameter qαβ is the spin glass order parameter. This may be understood by
remembering that traces over all replicas other than α and β cancel out in the
denominator and numerator in (2.20). One then finds

qαβ =

[
TrSα

i e−βHα

Tr e−βHα

Tr Sβ
i e−βHβ

Tr e−βHβ

]
= [〈Sα

i 〉〈Sβ
i 〉] = [〈Si〉2] ≡ q (2.24)

if we cannot distinguish one replica from another. In the paramagnetic phase at
high temperatures, 〈Si〉 (which is 〈Sα

i 〉 for any single α) vanishes at each site i
and therefore m = q = 0. The ferromagnetic phase has ordering almost uniform
in space, and if we choose that orientation of ordering as the positive direction,
then 〈Si〉 > 0 at most sites. This implies m > 0 and q > 0.

If the spin glass phase characteristic of the Edwards–Anderson model or the
SK model exists, the spins in that phase should be randomly frozen. In the spin
glass phase 〈Si〉 is not vanishing at any site because the spin does not fluctuate
significantly in time. However, the sign of this expectation value would change
from site to site, and such an apparently random spin pattern does not change
in time. The spin configuration frozen in time is replaced by another frozen
spin configuration for a different set of interactions J since the environment
of a spin changes drastically. Thus the configurational average of 〈Si〉 over the
distribution of J corresponds to the average over various environments at a given
spin, which would yield both 〈Si〉 > 0 and 〈Si〉 < 0, suggesting the possibility of
m = [〈Si〉] = 0. The spin glass order parameter q is not vanishing in the same
situation because it is the average of a positive quantity 〈Si〉2. Thus there could
exist a phase with m = 0 and q > 0, which is the spin glass phase with q as the
spin glass order parameter. It will indeed be shown that the equations of state
for the SK model have a solution with m = 0 and q > 0.

2.3 Replica-symmetric solution
2.3.1 Equations of state
It is necessary to have the explicit dependence of qαβ and mα on replica indices
α and β in order to calculate the free energy and order parameters from (2.17)
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to (2.19). Näıvely, the dependence on these replica indices should not affect the
physics of the system because replicas have been introduced artificially for the
convenience of the configurational average. It therefore seems natural to assume
replica symmetry (RS), qαβ = q and mα = m (which we used in the previous
section), and derive the replica-symmetric solution.

The free energy (2.17) is, before taking the limit n → 0,

−β[f ] =
β2J2

4n

{−n(n − 1)q2
}− βJ0

2n
nm2 +

1
n

log Tr eL +
1
4
β2J2. (2.25)

The third term on the right hand side can be evaluated using the definition of
L, (2.15), and a Gaussian integral as

log Tr eL = log Tr

√
β2J2q

2π

∫
dz

· exp

(
−β2J2q

2
z2 + β2J2qz

∑
α

Sα − n

2
β2J2q + β(J0m + h)

∑
α

Sα

)

= log
∫

Dz exp
(
n log 2 cosh(βJ

√
qz + βJ0m + βh) − n

2
β2J2q

)

= log
(

1 + n

∫
Dz log 2 coshβH̃(z) − n

2
β2J2q + O(n2)

)
. (2.26)

Here Dz = dz exp(−z2/2)/
√

2π is the Gaussian measure and H̃(z) = J
√

qz +
J0m + h. Inserting (2.26) into (2.25) and taking the limit n → 0, we have

−β[f ] =
β2J2

4
(1 − q)2 − 1

2
βJ0m

2 +
∫

Dz log 2 coshβH̃(z). (2.27)

The extremization condition of the free energy (2.27) with respect to m is

m =
∫

Dz tanh βH̃(z). (2.28)

This is the equation of state of the ferromagnetic order parameter m and cor-
responds to (2.19) with the trace operation being carried out explicitly. This
operation is performed by inserting qαβ = q and mα = m into (2.15) and taking
the trace in the numerator of (2.18). The denominator reduces to one as n → 0. It
is convenient to decompose the double sum over α and β by a Gaussian integral.

Comparison of (2.28) with the equation of state for a single spin in a field
m = tanh βh (obtained from (1.10) by setting J = 0) suggests the interpretation
that the internal field has a Gaussian distribution due to randomness.

The extremization condition with respect to q is

β2J2

2
(q − 1) +

∫
Dz(tanhβH̃(z)) · βJ

2
√

q
z = 0, (2.29)
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partial integration of which yields

q = 1 −
∫

Dz sech2βH̃(z) =
∫

Dz tanh2 βH̃(z). (2.30)

2.3.2 Phase diagram

The behaviour of the solution of the equations of state (2.28) and (2.30) is
determined by the parameters β and J0. For simplicity let us restrict ourselves to
the case without external field h = 0 for the rest of this chapter. If the distribution
of Jij is symmetric (J0 = 0), we have H̃(z) = J

√
qz so that tanh βH̃(z) is an odd

function. Then the magnetization vanishes (m = 0) and there is no ferromagnetic
phase. The free energy is

−β[f ] =
1
4
β2J2(1 − q)2 +

∫
Dz log 2 cosh(βJ

√
qz). (2.31)

To investigate the properties of the system near the critical point where the spin
glass order parameter q is small, it is convenient to expand the right hand side
of (2.31) as

β[f ] = −1
4
β2J2 − log 2 − β2J2

4
(1 − β2J2)q2 + O(q3). (2.32)

The Landau theory tells us that the critical point is determined by the condition
of vanishing coefficient of the second order term q2 as we saw in (1.12). Hence
the spin glass transition is concluded to exist at T = J ≡ Tf .

It should be noted that the coefficient of q2 in (2.32) is negative if T > Tf . This
means that the paramagnetic solution (q = 0) at high temperatures maximizes
the free energy. Similarly the spin glass solution q > 0 for T < Tf maximizes
the free energy in the low-temperature phase. This pathological behaviour is a
consequence of the replica method in the following sense. As one can see from
(2.25), the coefficient of q2, which represents the number of replica pairs, changes
the sign at n = 1 and we have a negative number of pairs of replicas in the limit
n → 0, which causes maximization, instead of minimization, of the free energy.
By contrast the coefficient of m does not change as in (2.25) and the free energy
can be minimized with respect to this order parameter as is usually the case in
statistical mechanics.

A ferromagnetic solution (m > 0) may exist if the distribution of Jij is not
symmetric around zero (J0 > 0). Expanding the right hand side of (2.30) and
keeping only the lowest order terms in q and m, we have

q = β2J2q + β2J2
0m2. (2.33)

If J0 = 0, the critical point is identified as the temperature where the coefficient
β2J2 becomes one by the same argument as in §1.3.2. This result agrees with
the conclusion already derived from the expansion of the free energy, Tf = J .
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P

SG

F

AT line

M

0
1

k T/J

1

J J0 /

B

Fig. 2.1. Phase diagram of the SK model. The dashed line is the boundary
between the ferromagnetic (F) and spin glass (SG) phases and exists only
under the ansatz of replica symmetry. The dash–dotted lines will be explained
in detail in the next chapter: the replica-symmetric solution is unstable below
the AT line, and a mixed phase (M) emerges between the spin glass and
ferromagnetic phases. The system is in the paramagnetic phase (P) in the
high-temperature region.

If J0 > 0 and m > 0, (2.33) implies q = O(m2). We then expand the right
hand side of the equation of state (2.28) bearing this in mind and keep only the
lowest order term to obtain

m = βJ0m + O(q). (2.34)

It has thus been shown that the ferromagnetic critical point, where m starts to
assume a non-vanishing value, is βJ0 = 1 or Tc = J0.

We have so far derived the boundaries between the paramagnetic and spin
glass phases and between the paramagnetic and ferromagnetic phases. The bound-
ary between the spin glass and ferromagnetic phases is given only by numerically
solving (2.28) and (2.30). Figure 2.1 is the phase diagram thus obtained. The
spin glass phase (q > 0, m = 0) exists as long as J0 is smaller than J . This spin
glass phase extends below the ferromagnetic phase in the range J0 > J , which is
called the re-entrant transition. The dashed line in Fig. 2.1 is the phase bound-
ary between the spin glass and ferromagnetic phases representing the re-entrant
transition. As explained in the next chapter, this dashed line actually disappears
if we take into account the effects of replica symmetry breaking. Instead, the ver-
tical line (separating the spin glass and mixed phases, shown dash–dotted) and
the curve marked ‘AT line’ (dash–dotted) emerge under replica symmetry break-
ing. The properties of the mixed phase will be explained in the next chapter.
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2.3.3 Negative entropy

Failure of the assumption of replica symmetry at low temperatures manifests
itself in the negative value −1/2π of the ground-state entropy for J0 = 0. This
is a clear inconsistency for the Ising model with discrete degrees of freedom. To
verify this result from (2.31), we first derive the low-temperature form of the
spin glass order parameter q. According to (2.30), q tends to one as T → 0. We
thus assume q = 1 − aT (a > 0) for T very small and check the consistency of
this linear form. The q in sech2H̃(z) of (2.30) can be approximated by one to
leading order. Then we have, for β → ∞,

∫
Dz sech2βJz =

1
βJ

∫
Dz

d
dz

tanh βJz

−→ 1
βJ

∫
Dz {2δ(z)} =

√
2
π

T

J
. (2.35)

This result confirms the consistency of the assumption q = 1 − aT with a =√
2/π/J .
To obtain the ground-state entropy, it is necessary to investigate the be-

haviour of the first term on the right hand side of (2.31) in the limit T → 0.
Substitution of q = 1−aT into this term readily leads to the contribution −T/2π
to the free energy. The second term, the integral of log 2 cosh H̃(z), is evaluated
by separating the integration range into positive and negative parts. These two
parts actually give the same value, and it is sufficient to calculate one of them
and multiply the result by the factor 2. The integral for large β is then

2
∫ ∞

0

Dz
{
βJ

√
qz + log(1 + e−2βJ

√
qz)
}
≈ 2βJ(1 − aT/2)√

2π
+2
∫ ∞

0

Dz e−2βJ
√

qz.

(2.36)
The second term can be shown to be of O(T 2), and we may neglect it in our
evaluation of the ground-state entropy. The first term contributes −√2/πJ+T/π
to the free energy. The free energy in the low-temperature limit therefore behaves
as

[f ] ≈ −
√

2
π

J +
T

2π
, (2.37)

from which we conclude that the ground-state entropy is −1/2π and the ground-
state energy is −√2/πJ .

It was suspected at an early stage of research that this negative entropy
might have been caused by the inappropriate exchange of limits n → 0 and
N → ∞ in deriving (2.17). The correct order is N → ∞ after n → 0, but we
took the limit N → ∞ first so that the method of steepest descent is applicable.
However, it has now been established that the assumption of replica symmetry
qαβ = q (∀(αβ);α 
= β) is the real source of the trouble. We shall study this
problem in the next chapter.
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REPLICA SYMMETRY BREAKING

Let us continue our analysis of the SK model. The free energy of the SK model
derived under the ansatz of replica symmetry has the problem of negative en-
tropy at low temperatures. It is therefore natural to investigate the possibility
that the order parameter qαβ may assume various values depending upon the
replica indices α and β and possibly the α-dependence of mα. The theory of
replica symmetry breaking started in this way as a mathematical effort to avoid
unphysical conclusions of the replica-symmetric solution. It turned out, however,
that the scheme of replica symmetry breaking has a very rich physical implica-
tion, namely the existence of a vast variety of stable states with ultrametric
structure in the phase space. The present chapter is devoted to the elucidation
of this story.

3.1 Stability of replica-symmetric solution

It was shown in the previous chapter that the replica-symmetric solution of the
SK model has a spin glass phase with negative entropy at low temperatures.
We now test the appropriateness of the assumption of replica symmetry from a
different point of view.

A necessary condition for the replica-symmetric solution to be reliable is that
the free energy is stable for infinitesimal deviations from that solution. To check
such a stability, we expand the exponent appearing in the calculation of the
partition function (2.16) to second order in (qαβ − q) and (mα − m), deviations
from the replica-symmetric solution, as

∫ ∏
α

dmα

∏
α<β

dqαβ exp [−βN{fRS + (quadratic in (qαβ − q) and (mα − m))}] ,

(3.1)
where fRS is the replica-symmetric free energy. This integral should not diverge
in the limit N → ∞ and thus the quadratic form must be positive definite (or
at least positive semi-definite). We show in the present section that this stability
condition of the replica-symmetric solution is not satisfied in the region below a
line, called the de Almeida–Thouless (AT) line, in the phase diagram (de Almeida
and Thouless 1978). The explicit form of the solution with replica symmetry
breaking below the AT line and its physical significance will be discussed in
subsequent sections.

23
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3.1.1 Hessian

We restrict ourselves to the case h = 0 unless stated otherwise. It is convenient
to rescale the variables as

βJ qαβ = yαβ,
√

βJ0 mα = xα. (3.2)

Then the free energy is, from (2.17),

[f ] = −βJ2

4
− lim

n→0

1
βn


−
∑
α<β

1
2
(yαβ)2 −

∑
α

1
2
(xα)2

+ log Tr exp


βJ

∑
α<β

yαβSαSβ +
√

βJ0

∑
α

xαSα




 . (3.3)

Let us expand [f ] to second order in small deviations around the replica-symmetric
solution to check the stability,

xα = x + εα, yαβ = y + ηαβ . (3.4)

The final term of (3.3) is expanded to second order in εα and ηαβ as, with the
notation L0 = βJy

∑
α<β SαSβ +

√
βJ0x

∑
α Sα,

log Tr exp


L0 + βJ

∑
α<β

ηαβSαSβ +
√

βJ0

∑
α

εαSα




≈ log Tr eL0 +
βJ0

2

∑
αβ

εαεβ〈SαSβ〉L0 +
β2J2

2

∑
α<β

∑
γ<δ

ηαβηγδ〈SαSβSγSδ〉L0

− βJ0

2

∑
αβ

εαεβ〈Sα〉L0〈Sβ〉L0 −
β2J2

2

∑
α<β

∑
γ<δ

ηαβηγδ〈SαSβ〉L0〈SγSδ〉L0

− βJ
√

βJ0

∑
δ

∑
α<β

εδηαβ〈Sδ〉L0〈SαSβ〉L0

+ βJ
√

βJ0

∑
δ

∑
α<β

εδηαβ〈SδSαSβ〉L0 . (3.5)

Here 〈· · ·〉L0 denotes the average by the replica-symmetric weight eL0 . We have
used the facts that the replica-symmetric solution extremizes (3.3) (so that the
terms linear in εα and ηαβ vanish) and that Tr eL0 → 1 as n → 0 as explained
in §2.3.1. We see that the second-order term of [f ] with respect to εα and ηαβ

is, taking the first and second terms in the braces {· · ·} in (3.3) into account,

∆ ≡ 1
2

∑
αβ

{
δαβ − βJ0(〈SαSβ〉L0 − 〈Sα〉L0〈Sβ〉L0)

}
εαεβ
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+ βJ
√

βJ0

∑
δ

∑
α<β

(〈Sδ〉L0〈SαSβ〉L0 − 〈SαSβSδ〉L0)ε
δηαβ

+
1
2

∑
α<β

∑
γ<δ

{
δ(αβ)(δγ) − β2J2(〈SαSβSγSδ〉L0

−〈SαSβ〉L0〈SγSδ〉L0)
}

ηαβηγδ (3.6)

up to the trivial factor of βn (which is irrelevant to the sign). We denote the
matrix of coefficients of this quadratic form in εα and ηαβ by G which is called
the Hessian matrix. Stability of the replica-symmetric solution requires that the
eigenvalues of G all be positive.

To derive the eigenvalues, let us list the matrix elements of G. Since 〈· · ·〉L0

represents the average by weight of the replica-symmetric solution, the coefficient
of the second-order terms in ε has only two types of values. To simplify the
notation we omit the suffix L0 in the present section.

Gαα = 1 − βJ0(1 − 〈Sα〉2) ≡ A (3.7)
Gαβ = −βJ0(〈SαSβ〉 − 〈Sα〉2) ≡ B. (3.8)

The coefficients of the second-order term in η have three different values, the
diagonal and two types of off-diagonal elements. One of the off-diagonal elements
has a matched single replica index and the other has all indices different:

G(αβ)(αβ) = 1 − β2J2(1 − 〈SαSβ〉2) ≡ P (3.9)

G(αβ)(αγ) = −β2J2(〈SβSγ〉 − 〈SαSβ〉2) ≡ Q (3.10)

G(αβ)(γδ) = −β2J2(〈SαSβSγSδ〉 − 〈SαSβ〉2) ≡ R. (3.11)

Finally there are two kinds of cross-terms in ε and η:

Gα(αβ) = βJ
√

βJ0(〈Sα〉〈SαSβ〉 − 〈Sβ〉) ≡ C (3.12)

Gγ(αβ) = βJ
√

βJ0(〈Sγ〉〈SαSβ〉 − 〈SαSβSγ〉) ≡ D. (3.13)

These complete the elements of G.
The expectation values appearing in (3.7) to (3.13) can be evaluated from the

replica-symmetric solution. The elements of G are written in terms of 〈Sα〉 = m
and 〈SαSβ〉 = q satisfying (2.28) and (2.30) as well as

〈SαSβSγ〉 ≡ t =
∫

Dz tanh3 βH̃(z) (3.14)

〈SαSβSγSδ〉 ≡ r =
∫

Dz tanh4 βH̃(z). (3.15)

The integrals on the right of (3.14) and (3.15) can be derived by the method in
§2.3.1.
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3.1.2 Eigenvalues of the Hessian and the AT line

We start the analysis of stability by the simplest case of paramagnetic solution.
All order parameters m, q, r, and t vanish in the paramagnetic phase. Hence
B, Q, R, C, and D (the off-diagonal elements of G) are all zero. The stability
condition for infinitesimal deviations of the ferromagnetic order parameter εα is
A > 0, which is equivalent to 1 − βJ0 > 0 or T > J0 from (3.7). Similarly the
stability for spin-glass-like infinitesimal deviations ηαβ is P > 0 or T > J . These
two conditions precisely agree with the region of existence of the paramagnetic
phase derived in §2.3.2 (see Fig. 2.1). Therefore the replica-symmetric solution
is stable in the paramagnetic phase.

It is a more elaborate task to investigate the stability condition of the ordered
phases. It is necessary to calculate all eigenvalues of the Hessian. Details are given
in Appendix A, and we just mention the results here.

Let us write the eigenvalue equation in the form

Gµ = λµ, µ =
( {εα}
{ηαβ}

)
. (3.16)

The symbol {εα} denotes a column from ε1 at the top to εn at the bottom, and
{ηαβ} is for η12 to ηn−1,n.

The first eigenvector µ1 has εα = a and ηαβ = b, uniform in both parts. Its
eigenvalue is, in the limit n → 0,

λ1 =
1
2

{
A − B + P − 4Q + 3R ±

√
(A − B − P + 4Q − 3R)2 − 8(C − D)2

}
.

(3.17)
The second eigenvector µ2 has εθ = a for a specific replica θ and εα = b otherwise,
and ηαβ = c when α or β is equal to θ and ηαβ = d otherwise. The eigenvalue of
this eigenvector becomes degenerate with λ1 in the limit n → 0. The third and
final eigenvector µ3 has εθ = a, εν = a for two specific replicas θ, ν and εα = b
otherwise, and ηθν = c, ηθα = ηνα = d and ηαβ = e otherwise. Its eigenvalue is

λ3 = P − 2Q + R. (3.18)

A sufficient condition for λ1, λ2 > 0 is, from (3.17),

A−B = 1− βJ0(1− q) > 0, P − 4Q +3R = 1− β2J2(1− 4q +3r) > 0. (3.19)

These two conditions are seen to be equivalent to the saddle-point condition
of the replica-symmetric free energy (2.27) with respect to m and q as can be
verified by the second-order derivatives:

A − B =
1
J0

∂2[f ]
∂m2

∣∣∣∣
RS

> 0, P − 4Q + 3R = − 2
βJ2

∂2[f ]
∂q2

∣∣∣∣
RS

> 0. (3.20)

These inequalities always hold as has been mentioned in §2.3.2.
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Fig. 3.1. Stability limit of the replica-symmetric (RS) solution in the h–T phase
diagram (the AT line) below which replica symmetry breaking (RSB) occurs.

The condition for positive λ3 is

P − 2Q + R = 1 − β2J2(1 − 2q + r) > 0 (3.21)

or more explicitly (
T

J

)2

>

∫
Dz sech4(βJ

√
qz + βJ0m). (3.22)

By numerically solving the equations of state of the replica-symmetric order pa-
rameters (2.28) and (2.30), one finds that the stability condition (3.22) is not
satisfied in the spin glass and mixed phases in Fig. 2.1. The line of the limit of
stability within the ferromagnetic phase (i.e. the boundary between the ferromag-
netic and mixed phases) is the AT line. The mixed phase has finite ferromagnetic
order but replica symmetry is broken there. More elaborate analysis is required
in the mixed phase as shown in the next section.

The stability of replica symmetry in the case of finite h with symmetric
distribution J0 = 0 can be studied similarly. Let us just mention the conclusion
that the stability condition in such a case is given simply by replacing J0m by h
in (3.22). The phase diagram thus obtained is depicted in Fig. 3.1. A phase with
broken replica symmetry extends into the low-temperature region. This phase is
also often called the spin glass phase. The limit of stability in the present case
is also termed the AT line.

3.2 Replica symmetry breaking

The third eigenvector µ3, which causes replica symmetry breaking, is called the
replicon mode. There is no replica symmetry breaking in mα since the replicon
mode has a = b for εθ and εν in the limit n → 0, as in the relation (A.19) or
(A.21) in Appendix A. Only qαβ shows dependence on α and β. It is necessary to
clarify how qαβ depends on α and β, but unfortunately we are not aware of any
first-principle argument which can lead to the exact solution. One thus proceeds
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by trial and error to check if the tentative solution satisfies various necessary
conditions for the correct solution, such as positive entropy at low temperatures
and the non-negative eigenvalue of the replicon mode.

The only solution found so far that satisfies all necessary conditions is the one
by Parisi (1979, 1980). The Parisi solution is believed to be the exact solution of
the SK model also because of its rich physical implications. The replica symmetry
is broken in multiple steps in the Parisi solution of the SK model. We shall explain
mainly its first step in the present section.

3.2.1 Parisi solution

Let us regard qαβ (α 
= β) of the replica-symmetric solution of the SK model
as an element of an n × n matrix. Then all the elements except those along the
diagonal have the common value q, and we may write

{qαβ} =




0
0

0
q

q
0

0
0




. (3.23)

In the first step of replica symmetry breaking (1RSB), one introduces a pos-
itive integer m1 (≤ n) and divides the replicas into n/m1 blocks. Off-diagonal
blocks have q0 as their elements and diagonal blocks are assigned q1. All diagonal
elements are kept 0. The following example is for the case of n = 6, m1 = 3.




0 q1 q1

q1 0 q1

q1 q1 0
q0

q0

0 q1 q1

q1 0 q1

q1 q1 0




. (3.24)

In the second step, the off-diagonal blocks are left untouched and the diagonal
blocks are further divided into m1/m2 blocks. The elements of the innermost
blocks are assumed to be q2 and all the other elements of the larger diagonal
blocks are kept as q1. For example, if we have n = 12, m1 = 6, m2 = 3,
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0 q2 q2

q2 0 q2

q2 q2 0
q1

q1

0 q2 q2

q2 0 q2

q2 q2 0

q0

q0

0 q2 q2

q2 0 q2

q2 q2 0
q1

q1

0 q2 q2

q2 0 q2

q2 q2 0




. (3.25)

The numbers n, m1, m2, . . . are integers by definition and are ordered as n ≥
m1 ≥ m2 ≥ · · · ≥ 1.

Now we define the function q(x) as

q(x) = qi (mi+1 < x ≤ mi) (3.26)

and take the limit n → 0 following the prescription of the replica method. We
somewhat arbitrarily reverse the above inequalities

0 ≤ m1 ≤ · · · ≤ 1 (0 ≤ x ≤ 1) (3.27)

and suppose that q(x) becomes a continuous function defined between 0 and 1.
This is the basic idea of the Parisi solution.

3.2.2 First-step RSB

We derive expressions of the physical quantities by the first-step RSB (1RSB)
represented in (3.24). The first term on the right hand side of the single-body
effective Hamiltonian (2.15) reduces to

∑
α<β

qαβSαSβ =
1
2


q0

(
n∑
α

Sα

)2

+ (q1 − q0)
n/m1∑
block

(
m1∑

α∈block

Sα

)2

− nq1


 .

(3.28)
The first term on the right hand side here fills all elements of the matrix {qαβ}
with q0 but the block-diagonal part is replaced with q1 by the second term. The
last term forces the diagonal elements to zero. Similarly the quadratic term of
qαβ in the free energy (2.17) is

lim
n→0

1
n

∑
α�=β

q2
αβ = lim

n→0

1
n

{
n2q2

0 +
n

m1
m2

1(q
2
1 − q2

0) − nq2
1

}
= (m1 − 1)q2

1 − m1q
2
0 .

(3.29)
We insert (3.28) and (3.29) into (2.17) and linearize (

∑
α Sα)2 in (3.28) by a

Gaussian integral in a similar manner as in the replica-symmetric calculations.
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It is necessary to introduce 1 + n/m1 Gaussian variables corresponding to the
number of terms of the form (

∑
α Sα)2 in (3.28). Finally we take the limit n → 0

to find the free energy with 1RSB as

βf1RSB =
β2J2

4
{
(m1 − 1)q2

1 − m1q
2
0 + 2q1 − 1

}
+

βJ0

2
m2 − log 2

− 1
m1

∫
Du log

∫
Dv coshm1 Ξ (3.30)

Ξ = β(J
√

q0 u + J
√

q1 − q0 v + J0m + h). (3.31)

Here we have used the replica symmetry of magnetization m = mα.
The variational parameters q0, q1, m, and m1 all fall in the range between 0

and 1. The variational (extremization) conditions of (3.30) with respect to m, q0,
and q1 lead to the equations of state:

m =
∫

Du

∫
Dv coshm1 Ξ tanh Ξ∫

Dv coshm1 Ξ
(3.32)

q0 =
∫

Du

(∫
Dv coshm1 Ξ tanh Ξ∫

Dv coshm1 Ξ

)2

(3.33)

q1 =
∫

Du

∫
Dv coshm1 Ξ tanh2 Ξ∫

Dv coshm1 Ξ
. (3.34)

Comparison of these equations of state for the order parameters with those for
the replica-symmetric solution (2.28) and (2.30) suggests the following interpre-
tation. In (3.32) for the magnetization, the integrand after Du represents mag-
netization within a block of the 1RSB matrix (3.24), which is averaged over all
blocks with the Gaussian weight. Analogously, (3.34) for q1 is the spin glass order
parameter within a diagonal block averaged over all blocks. In (3.33) for q0, on
the other hand, one first calculates the magnetization within a block and takes its
product between blocks, an interblock spin glass order parameter. Indeed, if one
carries out the trace operation in the definition of qαβ , (2.18), by taking α and
β within a single block and assuming 1RSB, one obtains (3.34), whereas (3.33)
results if α and β belong to different blocks. The Schwarz inequality assures
q1 ≥ q0.

We omit the explicit form of the extremization condition of the free energy
(3.31) by the parameter m1 since the form is a little complicated and is not used
later.

When J0 = h = 0, Ξ is odd in u, v, and thus m = 0 is the only solution
of (3.32). The order parameter q1 can be positive for T < Tf = J because the
first term in the expansion of the right hand side of (3.34) for small q0 and
q1 is β2J2q1. Therefore the RS and 1RSB give the same transition point. The
parameter m1 is one at Tf and decreases with temperature.
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3.2.3 Stability of the first step RSB

The stability of 1RSB can be investigated by a direct generalization of the argu-
ment in §3.1. We mention only a few main points for the case J0 = h = 0. It is
sufficient to treat two cases: one with all indices α, β, γ, δ of the Hessian elements
within the same block and the other with indices in two different blocks.

If α and β in qαβ belong to the same block, the stability condition of the
replicon mode for infinitesimal deviations from 1RSB is expressed as

λ3 = P − 2Q + R = 1 − β2J2

∫
Du

∫
Dv coshm1−4 Ξ∫
Dv coshm1 Ξ

> 0. (3.35)

For the replicon mode between two different blocks, the stability condition reads

λ3 = P − 2Q + R = 1 − β2J2

∫
Du

(∫
Dv coshm1−1 Ξ∫
Dv coshm1 Ξ

)4

> 0. (3.36)

According to the Schwarz inequality, the right hand side of (3.35) is less than
or equal to that of (3.36), and therefore the former is sufficient. Equation (3.35)
is not satisfied in the spin glass phase similar to the case of the RSB solution.
However, the absolute value of the eigenvalue is confirmed by numerical evalu-
ation to be smaller than that of the RS solution although λ3 is still negative.
This suggests an improvement towards a stable solution. The entropy per spin
at J0 = 0, T = 0 reduces from −0.16 (= −1/2π) for the RS solution to −0.01 for
the 1RSB. Thus we may expect to obtain still better results if we go further into
replica symmetry breaking.

3.3 Full RSB solution

Let us proceed with the calculation of the free energy (2.17) by a multiple-step
RSB. We restrict ourselves to the case J0 = 0 for simplicity.

3.3.1 Physical quantities

The sum involving q2
αβ in the free energy (2.17) can be expressed at the Kth

step of RSB (K-RSB) as follows by counting the number of elements in a similar
way to the 1RSB case (3.29):∑

α�=β

ql
αβ

= ql
0n

2 + (ql
1 − ql

0)m
2
1 ·

n

m1
+ (ql

2 − ql
1)m

2
2 ·

m1

m2
· n

m1
+ · · · − ql

K · n

= n

K∑
j=0

(mj − mj+1)ql
j , (3.37)

where l is an arbitrary integer and m0 = n, mK+1 = 1. In the limit n → 0, we
may use the replacement mj − mj+1 → −dx to find
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1
n

∑
α�=β

ql
αβ → −

∫ 1

0

ql(x)dx. (3.38)

The internal energy for J0 = 0, h = 0 is given by differentiation of the free
energy (2.17) by β as2

E = −βJ2

2


1 +

2
n

∑
α<β

q2
αβ


→ −βJ2

2

(
1 −
∫ 1

0

q2(x)dx

)
. (3.39)

The magnetic susceptibility can be written down from the second derivative of
(2.17) by h as

χ = β


1 +

1
n

∑
α�=β

qαβ


→ β

(
1 −
∫ 1

0

q(x)dx

)
. (3.40)

It needs some calculations to derive the free energy in the full RSB scheme.
Details are given in Appendix B. The final expression of the free energy (2.17)
is

βf = −β2J2

4

{
1 +
∫ 1

0

q(x)2dx − 2q(1)
}
−
∫

Du f0(0,
√

q(0)u). (3.41)

Here f0 satisfies the Parisi equation

∂f0(x, h)
∂x

= −J2

2
dq

dx

{
∂2f0

∂h2
+ x

(
∂f0

∂h

)2
}

(3.42)

to be solved under the initial condition f0(1, h) = log 2 coshβh.

3.3.2 Order parameter near the critical point
It is in general very difficult to find a solution to the extremization condition
of the free energy (3.41) with respect to the order function q(x). It is neverthe-
less possible to derive some explicit results by the Landau expansion when the
temperature is close to the critical point and consequently q(x) is small. Let us
briefly explain the essence of this procedure.

When J0 = h = 0, the expansion of the free energy (2.17) to fourth order in
qαβ turns out to be

βf = lim
n→0

1
n

{
1
4

(
T 2

T 2
f

− 1
)

Tr Q2 − 1
6
Tr Q3

− 1
8
Tr Q4 +

1
4

∑
α�=β �=γ

Q2
αβQ2

αγ − 1
12

∑
α�=β

Q4
αβ


 , (3.43)

where we have dropped q-independent terms. The operator Tr here denotes the
diagonal sum in the replica space. We have introduced the notation Qαβ =

2The symbol of configurational average [· · ·] will be omitted in the present chapter as long
as it does not lead to confusion.
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(βJ)2qαβ . Only the last term is relevant to the RSB. It can indeed be verified
that the eigenvalue of the replicon mode that determines stability of the RS
solution is, by setting the coefficient of the last term to −y (which is actually
−1/12),

λ3 = −16yθ2, (3.44)

where θ = (Tf − T )/Tf . We may thus neglect all fourth-order terms except Q4
αβ

to discuss the essential features of the RSB and let n → 0 to get

βf =
1
2

∫ 1

0

dx

{
|θ|q2(x) − 1

3
xq3(x) − q(x)

∫ x

0

q2(y)dy +
1
6
q4(x)

}
. (3.45)

The extremization condition with respect to q(x) is written explicitly as

2|θ|q(x) − xq2(x) −
∫ x

0

q2(y)dy − 2q(x)
∫ 1

x

q(y)dy +
2
3
q3(x) = 0. (3.46)

Differentiation of this formula gives

|θ| − xq(x) −
∫ 1

x

q(y)dy + q2(x) = 0 or q′(x) = 0. (3.47)

Still further differentiation leads to

q(x) =
x

2
or q′(x) = 0. (3.48)

The RS solution corresponds to a constant q(x). This constant is equal to |θ|
according to (3.46). There also exists an x-dependent solution

q(x) =
x

2
(0 ≤ x ≤ x1 = 2q(1)) (3.49)

q(x) = q(1) (x1 ≤ x ≤ 1). (3.50)

By inserting this solution in the variational condition (3.46), we obtain

q(1) = |θ| + O(θ2). (3.51)

Figure 3.2 shows the resulting behaviour of q(x) near the critical point where θ
is close to zero.

3.3.3 Vertical phase boundary

The susceptibility is a constant χ = 1/J near the critical point Tf because the
integral in (3.40) is 1 − T/Tf according to (3.49)–(3.51). It turns out in fact
that this result remains valid not only near Tf but over the whole temperature
range below the critical point. We use this fact to show that the phase boundary
between the spin glass and ferromagnetic phases is a vertical line at J0 = J as
in Fig. 2.1 (Toulouse 1980).
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Fig. 3.2. q(x) near the critical point

The Hamiltonian of the SK model (2.7) suggests that a change of the centre
of distribution of Jij from 0 to J0/N shifts the energy per spin by −J0m

2/2.
Thus the free energy f(T, m, J0) as a function of T and m satisfies

f(T, m, J0) = f(T, m, 0)− 1
2
J0m

2. (3.52)

From the thermodynamic relation

∂f(T, m, 0)
∂m

= h (3.53)

and the fact that m = 0 when J0 = 0 and h = 0, we obtain

χ−1 =
(

∂m

∂h

]
h→0

)−1

=
∂2f(T, m, 0)

∂m2

]
m→0

. (3.54)

Thus, for sufficiently small m, we have

f(T, m, 0) = f0(T ) +
1
2
χ−1m2. (3.55)

Combining (3.52) and (3.55) gives

f(T, m, J0) = f0(T ) +
1
2
(χ−1 − J0)m2. (3.56)

This formula shows that the coefficient of m2 in f(T, m, J0) vanishes when χ =
1/J0 and therefore there is a phase transition between the ferromagnetic and
non-ferromagnetic phases according to the Landau theory. Since χ = 1/J in the
whole range T < Tf , we conclude that the boundary between the ferromagnetic
and spin glass phases exists at J0 = J .

Stability analysis of the Parisi solution has revealed that the eigenvalue of
the replicon mode is zero, implying marginal stability of the Parisi RSB solution.
No other solutions have been found with a non-negative replicon eigenvalue of
the Hessian.
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Fig. 3.3. Simple free energy (a) and multivalley structure (b)

3.4 Physical significance of RSB

The RSB of the Parisi type has been introduced as a mathematical tool to
resolve controversies in the RS solution. It has, however, been discovered that
the solution has a profound physical significance. The main results are sketched
here (Mézard et al. 1987; Binder and Young 1986).

3.4.1 Multivalley structure

In a ferromagnet the free energy as a function of the state of the system has
a simple structure as depicted in Fig. 3.3(a). The free energy of the spin glass
state, on the other hand, is considered to have many minima as in Fig. 3.3(b),
and the barriers between them are expected to grow indefinitely as the system
size increases. It is possible to give a clear interpretation of the RSB solution if
we accept this physical picture.

Suppose that the system size is large but not infinite. Then the system is
trapped in the valley around one of the minima of the free energy for quite
a long time. However, after a very long time, the system climbs the barriers
and reaches all valleys eventually. Hence, within some limited time scale, the
physical properties of a system are determined by one of the valleys. But, after
an extremely long time, one would observe behaviour reflecting the properties
of all the valleys. This latter situation is the one assumed in the conventional
formulation of equilibrium statistical mechanics.

We now label free energy valleys by the index a and write ma
i = 〈Si〉a for the

magnetization calculated by restricting the system to a specific valley a. This is
analogous to the restriction of states to those with m > 0 (neglecting m < 0) in
a simple ferromagnet.

3.4.2 qEA and q

To understand the spin ordering in a single valley, it is necessary to take the
thermodynamic limit to separate the valley from the others by increasing the
barriers indefinitely. Then we may ignore transitions between valleys and observe
the long-time behaviour of the system in a valley. It therefore makes sense to
define the order parameter qEA for a single valley as
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qEA = lim
t→∞ lim

N→∞
[〈Si(t0)Si(t0 + t)〉] . (3.57)

This quantity measures the similarity (or overlap) of a spin state at site i after a
long time to the initial condition at t0. The physical significance of this quantity
suggests its equivalence to the average of the squared local magnetization (ma

i )2:

qEA =

[∑
a

Pa (ma
i )2
]

=

[∑
a

Pa
1
N

∑
i

(ma
i )2
]

. (3.58)

Here Pa is the probability that the system is located in a valley (a pure state)
a, that is Pa = e−βFa/Z. In the second equality of (3.58), we have assumed that
the averaged squared local magnetization does not depend on the location.

We may also define another order parameter q that represents the average
over all valleys corresponding to the long-time observation (the usual statistical-
mechanical average). This order parameter can be expressed explicitly as

q =

[
(
∑

a

Pama
i )2
]

=

[∑
ab

PaPbm
a
i mb

i

]
=

1
N

[∑
ab

PaPb

∑
i

ma
i mb

i

]
, (3.59)

which is rewritten using mi =
∑

a Pama
i as

q = [m2
i ] = [〈Si〉2]. (3.60)

As one can see from (3.59), q is the average with overlaps between valleys taken
into account and is an appropriate quantity for time scales longer than transition
times between valleys.

If there exists only a single valley (and its totally reflected state), the relation
qEA = q should hold, but in general we have qEA > q. The difference of these two
order parameters qEA− q is a measure of the existence of a multivalley structure.
We generally expect a continuous spectrum of order parameters between q and
qEA corresponding to the variety of degrees of transitions between valleys. This
would correspond to the continuous function q(x) of the Parisi RSB solution.

3.4.3 Distribution of overlaps

Similarity between two valleys a and b is measured by the overlap qab defined by

qab =
1
N

∑
i

ma
i mb

i . (3.61)

This qab takes its maximum when the two valleys a and b coincide and is zero
when they are completely uncorrelated. Let us define the distribution of qab for
a given random interaction J as

PJ (q) = 〈δ(q − qab)〉 =
∑
ab

PaPbδ(q − qab), (3.62)
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Fig. 3.4. Distribution function P (q) of a simple system (a) and that of a system
with multivalley structure (b)

and write P (q) for the configurational average of PJ(q):

P (q) = [PJ(q)]. (3.63)

In a simple system like a ferromagnet, there are only two different valleys con-
nected by overall spin reversal and qab assumes only ±m2. Then P (q) is consti-
tuted only by two delta functions at q = ±m2, Fig. 3.4(a). If there is a multivalley
structure with continuously different states, on the other hand, qab assumes var-
ious values and P (q) has a continuous part as in Fig. 3.4(b).

3.4.4 Replica representation of the order parameter

Let us further investigate the relationship between the RSB and the continuous
part of the distribution function P (q). The quantity qαβ in the replica formalism
is the overlap between two replicas α and β at a specific site

qαβ = 〈Sα
i Sβ

i 〉. (3.64)

In the RSB this quantity has different values from one pair of replicas αβ to
another pair. The genuine statistical-mechanical average should be the mean of
all possible values of qαβ and is identified with q defined in (3.59),

q = lim
n→0

1
n(n − 1)

∑
α�=β

qαβ . (3.65)

The spin glass order parameter for a single valley, on the other hand, does not
reflect the difference between valleys caused by transitions between them and
therefore is expected to be larger than any other possible values of the order
parameter. We may then identify qEA with the largest value of qαβ in the replica
method:

qEA = max
(αβ)

qαβ = max
x

q(x). (3.66)

Let us define x(q) as the accumulated distribution of P (q):
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x(q) =
∫ q

0

dq′P (q′),
dx

dq
= P (q). (3.67)

Using this definition and the fact that the statistical-mechanical average is the
mean over all possible values of q, we may write

q =
∫ 1

0

q′dq′P (q′) =
∫ 1

0

q(x)dx. (3.68)

The two parameters qEA and q have thus been expressed by q(x). If there are
many valleys, qαβ takes various values, and P (q) cannot be expressed simply in
terms of two delta functions. The order function q(x) under such a circumstance
has a non-trivial structure as one can see from (3.67), which corresponds to the
RSB of Parisi type. The functional form of q(x) mentioned in §3.3.2 reflects the
multivalley structure of the space of states of the spin glass phase.

3.4.5 Ultrametricity

The Parisi RSB solution shows a remarkable feature of ultrametricity. The con-
figurational average of the distribution function between three different states

PJ(q1, q2, q3) =
∑
abc

PaPbPcδ(q1 − qab)δ(q2 − qbc)δ(q3 − qca) (3.69)

can be evaluated by the RSB method to yield

[PJ (q1, q2, q3)] =
1
2
P (q1)x(q1)δ(q1 − q2)δ(q1 − q3)

+
1
2
{P (q1)P (q2)Θ(q1 − q2)δ(q2 − q3) + (two terms with 1, 2, 3 permuted)} .

Here x(q) has been defined in (3.67), and Θ(q1 − q2) is the step function equal
to 1 for q1 > q2 and 0 for q1 < q2. The first term on the right hand side is
non-vanishing only if the three overlaps are equal to each other, and the second
term requires that the overlaps be the edges of an isosceles triangle (q1 > q2, q2 =
q3). This means that the distances between three states should form either an
equilateral or an isosceles triangle. We may interpret this result as a tree-like
(or equivalently, nested) structure of the space of states as in Fig. 3.5. A metric
space where the distances between three points satisfy this condition is called an
ultrametric space.

3.5 TAP equation

A different point of view on spin glasses is provided by the equation of state due to
Thouless, Anderson, and Palmer (TAP) which concerns the local magnetization
in spin glasses (Thouless et al. 1977).
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Fig. 3.5. Tree-like and nested structures in an ultrametric space. The distance
between C and D is equal to that between C and E and to that between D
and E, which is smaller than that between A and C and that between C and
F.

3.5.1 TAP equation

The local magnetization of the SK model satisfies the following TAP equation,
given the random interactions J = {Jij}:

mi = tanh β



∑

j

Jijmj + hi − β
∑

j

J2
ij(1 − m2

j)mi


 . (3.70)

The first term on the right hand side represents the usual internal field, a gen-
eralization of (1.19). The third term is called the reaction field of Onsager and
is added to remove the effects of self-response in the following sense. The mag-
netization mi affects site j through the internal field Jijmi that changes the
magnetization of site j by the amount χjjJijmi. Here

χjj =
∂mj

∂hj

∣∣∣∣
hj→0

= β(1 − m2
j). (3.71)

Then the internal field at site i would increase by

JijχjjJijmi = βJ2
ij(1 − m2

j)mi. (3.72)

The internal field at site i should not include such a rebound of itself. The third
term on the right hand side of (3.70) removes this effect. In a usual ferromagnet
with infinite-range interactions, the interaction scales as Jij = J/N and the
third term is negligible since it is of O(1/N). In the SK model, however, we have
J2

ij = O(1/N) and the third term is of the same order as the first and second
terms and cannot be neglected. The TAP equation gives a basis to treat the spin
glass problem without taking the configurational average over the distribution
of J .
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The TAP equation (3.70) corresponds to the extremization condition of the
following free energy:

fTAP = −1
2

∑
i �=j

Jijmimj −
∑

i

himi − β

4

∑
i �=j

J2
ij(1 − m2

i )(1 − m2
j )

+
T

2

∑
i

{
(1 + mi) log

1 + mi

2
+ (1 − mi) log

1 − mi

2

}
. (3.73)

The first and second terms on the right hand side are for the internal energy, and
the final term denotes the entropy. The third term corresponds to the reaction
field.

This free energy can be derived from an expansion of the free energy with
magnetization specified

−βf̃(α, β, m) = log Tr e−βH(α) − β
∑

i

himi, (3.74)

where H(α) = αH0 −∑i hiSi and m = {mi}. The Hamiltonian H0 denotes
the usual SK model, and hi(α, β, m) is the Lagrange multiplier to enforce the
constraint mi = 〈Si〉α, where 〈·〉α is the thermal average with H(α). Expanding
f̃ to second order in α around α = 0 and setting α equal to one, we can derive
(3.73). This is called the Plefka expansion (Plefka 1982).

To see it, let us first carry out the differentiations

∂f̃

∂α
= 〈H0〉α (3.75)

∂2f̃

∂α2
= −β

〈
H0

(
H0 − 〈H0〉α −

∑
i

∂hi

∂α
(Si − mi)

)〉
α

. (3.76)

The first two terms of the expansion f̃(1) ≈ f̃(0) + f̃ ′(0) give (3.73) except the
Onsager term with J2

ij since

f̃(0) = T
∑

i

(
1 + mi

2
log

1 + mi

2
+

1 − mi

2
log

1 − mi

2

)
(3.77)

f̃ ′(0) = −1
2

∑
i �=j

Jijmimj . (3.78)

The second derivative (3.76) can be evaluated at α = 0 from the relation

∂hi

∂α

]
α=0

=
∂

∂α

∂f̃

∂mi

]
α=0

= −
∑
j( �=i)

Jijmj . (3.79)

Inserting this relation into (3.76) we find
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f̃ ′′(0) = −1
2
β
∑
i �=j

J2
ij(1 − m2

i )(1 − m2
j) (3.80)

which gives the Onsager term in (3.73). It has hence been shown that fTAP =
f̃(0) + f̃ ′(0) + f̃ ′′(0)/2. It can also be shown that the convergence condition of
the above expansion for α ≥ 1 is equivalent to the stability condition of the free
energy that the eigenvalues of the Hessian {∂2fTAP/∂mi∂mj} be non-negative.
All higher order terms in the expansion vanish in the thermodynamic limit as
long as the stability condition is satisfied.

3.5.2 Cavity method

The cavity method is useful to derive the TAP equation from a different perspec-
tive (Mézard et al. 1986, 1987). It also attracts attention in relation to practical
algorithms to solve information processing problems (Opper and Saad 2001).
The argument in the present section is restricted to the case of the SK model
for simplicity (Opper and Winther 2001).

Let us consider the local magnetization mi = 〈Si〉, where the thermal average
is taken within a single valley. The goal is to show that this local magnetization
satisfies the TAP equation. For this purpose it suffices to derive the distribution
function of local spin Pi(Si), with which the above thermal average is carried
out. It is assumed for simplicity that there is no external field hi = 0. The local
magnetization is determined by the local field h̃i =

∑
j JijSj . Hence the joint

distribution of Si and h̃i can be written as

P (Si, h̃i) ∝ eβh̃iSiP (h̃i \ Si), (3.81)

where P (h̃i \Si) is the distribution of the local field when the spin Si is removed
from the system (i.e. when we set Jij = 0 for all j) (cavity field). More explicitly,

P (h̃i \ Si) ≡ TrS\Si
δ(h̃i −

∑
j

JijSj)P (S \ Si), (3.82)

where P (S \ Si) is the probability distribution of the whole system without Si

(Jij = 0 for all j). The distribution

Pi(Si) ∝
∫

dh̃i eβh̃iSiP (h̃i \ Si) (3.83)

is thus determined once P (h̃i \ Si) is known.
In the SK model the range of interaction is unlimited and the number of

terms appearing in the sum
∑

j JijSj is N −1. If all these terms are independent
and identically distributed, then the central limit theorem assures that the cavity
field h̃i is Gaussian distributed. This is certainly the case on the Bethe lattice
(Fig. 3.6) that breaks up into independent trees as soon as a site is removed. Let
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i

j

Fig. 3.6. There are no loops of bonds on the Bethe lattice, so that removal of
any single site breaks the system into independent trees.

us assume that this is also true for the SK model in which the correlations of
different sites are weak. We then have

P (h̃i \ Si) =
1√

2πV 2
i

exp

{
− (h̃i − 〈h̃i〉\i)2

2Vi

}
. (3.84)

Combination of this Gaussian form and (3.83) yields

mi = tanh β〈h̃i〉\i. (3.85)

It is therefore necessary to evaluate the average 〈h̃i〉\i.
The standard average of the local field (without the cavity),

〈h̃i〉 = TrSi

∫
dh̃i h̃iP (Si, h̃i), (3.86)

together with the Gaussian cavity field (3.84) leads to the relation

〈h̃i〉 = 〈h̃i〉\i + Vi〈Si〉 (3.87)

or, in terms of mi,
〈h̃i〉\i =

∑
j

Jijmj − Vimi. (3.88)

We then have to evaluate the variance of the local field

Vi =
∑
j,k

JijJik(〈SjSk〉\i − 〈Sj〉\i〈Sk〉\i). (3.89)

Only the diagonal terms (j = k) survive in the above sum because of the clus-
tering property in a single valley

1
N2

∑
j,k

(〈SkSj〉 − 〈Sk〉〈Sj〉)2 → 0 (3.90)

as N → ∞ as well as the independence of Jij and Jik (j 
= k). We then have

Vi ≈
∑

j

J2
ij(1 − 〈Sj〉2\i) ≈

∑
j

J2
ij(1 − 〈Sj〉2) =

∑
j

J2
ij(1 − m2

j). (3.91)

From this, (3.85), and (3.88), we arrive at the TAP equation (3.70).
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The equations of state within the RS ansatz (2.28) and (2.30) can be derived
from the TAP equation with the cavity method taken into account. We first
separate the interaction Jij into the ferromagnetic and random terms,

Jij =
J0

N
+

J√
N

zij , (3.92)

where zij is a Gaussian random variable with vanishing mean and unit variance.
Then (3.88) is

〈h̃i〉\i =
J0

N

∑
j

mj +
J√
N

∑
j

zijmj − Vimi. (3.93)

The first term on the right hand side is identified with J0m, where m is the fer-
romagnetic order parameter. The effects of the third term, the cavity correction,
can be taken into account by treating only the second term under the assumption
that each term zijmj is an independent quenched random variable; the whole
expression of (3.93) is the thermal average of the cavity field and therefore the
contribution from one site j would not interfere with that from another site
j. Then the second term is Gaussian distributed according to the central limit
theorem. The mean vanishes and the variance is∑

j

∑
k

[zijzik]mjmk =
∑

j

m2
j = Nq. (3.94)

Thus the second term (with the third term taken into account) is expressed as√
Nq z with z being a Gaussian quenched random variable with vanishing mean

and variance unity. Hence, averaging (3.85) over the distribution of z, we find

m =
∫

Dz tanhβ(J0m +
√

Jq z), (3.95)

which is the RS equation of state (2.28). Averaging the square of (3.85) gives
(2.30). One should remember that the amount of information in the TAP equa-
tion is larger than that of the RS equations of state because the former is a
set of equations for N variables whereas the latter is for the macroscopic order
parameters m and q. It is also possible to derive the results of RSB calculations
with more elaborate arguments (Mézard et al. 1986).

3.5.3 Properties of the solution

To investigate the behaviour of the solution of the TAP equation (3.70) around
the spin glass transition point, we assume that both the mi and hi are small and
expand the right hand side to first order to obtain

mi = β
∑

j

Jijmj + βhi − β2J2mi. (3.96)
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This linear equation (3.96) can be solved by the eigenvalues and eigenvectors of
the symmetric matrix J . Let us for this purpose expand Jij by its eigenvectors
as

Jij =
∑

λ

Jλ〈i|λ〉〈λ|j〉. (3.97)

We define the λ-magnetization and λ-field by

mλ =
∑

i

〈λ|i〉mi, hλ =
∑

i

〈λ|i〉hi (3.98)

and rewrite (3.96) as

mλ = βmλJλ + βhλ − β2J2mλ. (3.99)

Thus the λ-susceptibility acquires the expression

χλ =
∂mλ

∂hλ
=

β

1 − βJλ + (βJ)2
. (3.100)

The eigenvalues of the random matrix J are known to be distributed between
−2J and 2J with the density

ρ(Jλ) =

√
4J2 − J2

λ

2πJ2
. (3.101)

It is thus clear from (3.100) that the susceptibility corresponding to the largest
eigenvalue Jλ = 2J diverges at Tf = J , implying a phase transition. This transi-
tion point Tf = J agrees with the replica result.

In a uniform ferromagnet, the uniform magnetization corresponding to the
conventional susceptibility (which diverges at the transition point) develops be-
low the transition point to form an ordered phase. Susceptibilities to all other
external fields (such as a field with random sign at each site) do not diverge at
any temperature. In the SK model, by contrast, there is a continuous spectrum
of Jλ and therefore, according to (3.100), various modes continue to diverge one
after another below the transition point Tf where the mode with the largest
eigenvalue shows a divergent susceptibility. In this sense there exist continuous
phase transitions below Tf . This fact corresponds to the marginal stability of the
Parisi solution with zero eigenvalue of the Hessian and is characteristic of the
spin glass phase of the SK model.

The local magnetization ma
i which appeared in the argument of the multival-

ley structure in the previous section is considered to be the solution of the TAP
equation that minimizes the free energy. Numerical analysis indicates that solu-
tions of the TAP equation at low temperatures lie on the border of the stability
condition, reminiscent of the marginal stability of the Parisi solution (Nemoto
and Takayama 1985). General solutions of the TAP equation may, however, cor-
respond to local minima, not the global minima of the free energy (3.73). It
is indeed expected that the solutions satisfying the minimization condition of
the free energy occupy only a fraction of the whole set of solutions of the TAP
equation that has very many solutions of O(eaN ) (a > 0).
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Bibliographical note

Extensive accounts of the scheme of the RSB can be found in Mézard et al.
(1987), Binder and Young (1986), and Fischer and Hertz (1991). All of these
volumes and van Hemmen and Morgenstern (1987) cover most of the develop-
ments related to the mean-field theory until the mid 1980s including dynamics
and experiments not discussed in the present book. One of the major topics of
high current activity in spin glass theory is slow dynamics. The goal is to clarify
the mechanism of anomalous long relaxations in glassy systems at the mean-field
level as well as in realistic finite-dimensional systems. Reviews on this problem
are found in Young (1997) and Miyako et al. (2000). Another important issue
is the existence and properties of the spin glass state in three (and other fi-
nite) dimensions. The mean-field theory predicts a very complicated structure
of the spin glass state as represented by the full RSB scheme for the SK model.
Whether or not this picture applies to three-dimensional systems is not a trivial
problem, and many theoretical and experimental investigations are still going
on. The reader will find summaries of recent activities in the same volumes as
above (Young 1997; Miyako et al. 2000). See also Dotsenko (2001) for the renor-
malization group analyses of finite-dimensional systems.



4

GAUGE THEORY OF SPIN GLASSES

We introduced the mean-field theory of spin glasses in the previous chapters
and saw that a rich structure of the phase space emerges from the replica sym-
metry breaking. The next important problem would be to study how reliable
the predictions of mean-field theory are in realistic finite-dimensional systems.
It is in general very difficult to investigate two- and three-dimensional systems
by analytical methods, and current studies in this field are predominantly by
numerical methods. It is not the purpose of this book, however, to review the
status of numerical calculations; we instead introduce a different type of argu-
ment, the gauge theory, which uses the symmetry of the system to derive a
number of rigorous/exact results. The gauge theory does not directly answer the
problem of the existence of the spin glass phase in finite dimensions. Nevertheless
it places strong constraints on the possible structure of the phase diagram. Also,
the gauge theory will be found to be closely related to the Bayesian method
frequently encountered in information processing problems to be discussed in
subsequent chapters.

4.1 Phase diagram of finite-dimensional systems

The SK model may be regarded as the Edwards–Anderson model in the limit of
infinite spatial dimension. The phase diagram of the finite-dimensional ±J Ising
model (2.3) is expected to have a structure like Fig. 4.1. The case of p = 1 is
the pure ferromagnetic Ising model with a ferromagnetic phase for T < Tc and
paramagnetic phase for T > Tc. As p decreases, antiferromagnetic interactions
gradually destabilize the ferromagnetic phase, resulting in a decreased transition
temperature. The ferromagnetic phase eventually disappears completely for p
below a threshold pc. Numerical evidence shows that the spin glass phase ex-
ists adjacent to the ferromagnetic phase if the spatial dimensionality is three
or larger. There might be a mixed phase with the RSB at low temperatures
within the ferromagnetic phase. The Gaussian model (2.2) is expected to have
an analogous phase diagram.

It is very difficult to determine the structure of this phase diagram accurately,
and active investigations, mainly numerical, are still going on. The gauge theory
does not give a direct answer to the existence problem of the spin glass phase
in finite dimensions, but it provides a number of powerful tools to restrict pos-
sibilities. It also gives the exact solution for the energy under certain conditions
(Nishimori 1980, 1981; Morita and Horiguchi 1980; Horiguchi 1981).

46



GAUGE TRANSFORMATION 47

P

SGAF F

T

T

0
p = 1pp = 0

c

c

Fig. 4.1. Phase diagram of the ±J model

4.2 Gauge transformation

Let us consider the symmetry of the Edwards–Anderson model

H = −
∑
〈ij〉

JijSiSj (4.1)

to show that a simple transformation of variables using the symmetry leads to a
number of non-trivial conclusions. We do not restrict the range of the sum 〈ij〉
in (4.1) here; it could be over nearest neighbours or it may include farther pairs.
We first discuss the ±J model and add comments on the Gaussian and other
models later.

We define the gauge transformation of spins and interactions as follows:

Si → Siσi, Jij → Jijσiσj . (4.2)

Here σi is an Ising spin variable at site i fixed to either 1 or −1 arbitrarily
independently of Si. This transformation is performed at all sites. Then the
Hamiltonian (4.1) is transformed as

H → −
∑
〈ij〉

Jijσiσj · Siσi · Sjσj = H, (4.3)

which shows that the Hamiltonian is gauge invariant.
To see how the probability distribution (2.3) of the ±J model changes under

the gauge transformation, it is convenient to rewrite the expression (2.3) as

P (Jij) =
eKpτij

2 coshKp
, (4.4)

where Kp is a function of the probability p,
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e2Kp =
p

1 − p
. (4.5)

In (4.4), τij is defined as Jij = Jτij , the sign of Jij . It is straightforward to
check that (4.4) agrees with (2.3) by inserting τij = 1 or −1 and using (4.5). The
distribution function transforms by the gauge transformation as

P (Jij) → eKpτijσiσj

2 coshKp
. (4.6)

Thus the distribution function is not gauge invariant. The Gaussian distribution
function transforms as

P (Jij) → 1√
2πJ2

exp

(
−J2

ij + J2
0

2J2

)
exp
(

J0

J2
Jijσiσj

)
. (4.7)

It should be noted here that the arguments developed below in the present
chapter apply to a more generic model with a distribution function of the form

P (Jij) = P0(|Jij |) eaJij . (4.8)

The Gaussian model clearly has this form with a = J0/J2, and the same is true
for the ±J model since its distribution can be expressed as

P (Jij) = pδ(τij −1)+(1−p)δ(τij +1) =
eKpτij

2 coshKp
{δ(τij −1)+δ(τij +1)} (4.9)

for which we choose a = Kp/J . The probability distribution (4.8) transforms as

P (Jij) → P0(|Jij |) eaJijσiσj . (4.10)

4.3 Exact solution for the internal energy
An appropriate application of gauge transformation allows us to calculate the
exact value of the internal energy of the Edwards–Anderson model under a cer-
tain condition. We mainly explain the case of the ±J model and state only the
results for the Gaussian model. Other models in the class (4.8) can be treated
analogously.

4.3.1 Application of gauge transformation
The internal energy is the configurational average of the statistical-mechanical
average of the Hamiltonian:

[E] =
[
TrS He−βH

TrS e−βH

]
=
∑

τ

exp(Kp

∑
〈ij〉 τij)

(2 coshKp)NB

· TrS (−J
∑

〈ij〉 τijSiSj) exp(K
∑

〈ij〉 τijSiSj)

TrS exp(K
∑

〈ij〉 τijSiSj)
. (4.11)

Here TrS denotes the sum over S = {Si = ±1}, K = βJ , and NB is the number
of terms in the sum

∑
〈ij〉 or the total number of interaction bonds, NB = |B|.
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We write Tr for the sum over spin variables at sites and reserve the symbol
∑

τ

for variables {τij} defined on bonds.
Let us now perform gauge transformation. The gauge transformation (4.2)

just changes the order of sums in TrS appearing in (4.11) and those in
∑

τ . For
example, the sum over Si = ±1 in the order ‘+1 first and then −1’ is changed
by the gauge transformation to the other order ‘−1 first and then 1’, if σi = −1.
Thus the value of the internal energy is independent of the gauge transformation.
We then have

[E] =
∑
τ

exp(Kp

∑
τijσiσj)

(2 coshKp)NB
· TrS (−J

∑
τijSiSj) exp(K

∑
τijSiSj)

TrS exp(K
∑

τijSiSj)
, (4.12)

where gauge invariance of the Hamiltonian has been used. It should further be
noted that the value of the above formula does not depend on the choice of the
gauge variables σ ≡ {σi} (of the Ising type). This implies that the result remains
unchanged if we sum the above equation over all possible values of σ and divide
the result by 2N , the number of possible configurations of gauge variables:

[E] =
1

2N (2 coshKp)NB

∑
τ

Trσ exp(Kp

∑
τijσiσj)

·TrS (−J
∑

τijSiSj) exp(K
∑

τijSiSj)
TrS exp(K

∑
τijSiSj)

. (4.13)

4.3.2 Exact internal energy

One observes in (4.13) that, if K = Kp, the sum over S in the denominator
(the partition function) cancels out the sum over σ that has been obtained by
gauge transformation from the probability distribution P (Jij). Then the internal
energy becomes

[E] =
1

2N (2 coshK)NB

∑
τ

TrS


−J

∑
〈ij〉

τijSiSj


 exp(K

∑
τijSiSj). (4.14)

The sums over τ and S in (4.14) can be carried out as follows:

[E] = − J

2N(2 coshK)NB

∑
τ

TrS
∂

∂K
exp(K

∑
τijSiSj)

= − J

2N(2 coshK)NB

∂

∂K
TrS

∏
〈ij〉


 ∑

τij=±1

exp(KτijSiSj)




= −NBJ tanh K. (4.15)

This is the exact solution for the internal energy under the condition K = Kp.
The above calculations hold for any lattice. Special features of each lattice are
reflected only through NB, the total number of bonds.
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Fig. 4.2. Nishimori line (dashed) in the (a) ±J and (b) Gaussian models

4.3.3 Relation with the phase diagram
The condition K = Kp relates the temperature T (= J/K) and the probability
p (= (tanhKp + 1)/2), which defines a curve in the T –p phase diagram. The
curve K = Kp is called the Nishimori line and connects (T = 0, p = 1) and
(T = ∞, p = 1/2) in the phase diagram of the ±J model (Fig. 4.2(a)).

The exact internal energy (4.15) on the Nishimori line has no singularity as
a function of the temperature. The Nishimori line, on the other hand, extends
from the ferromagnetic ground state at (T = 0, p = 1) to the high-temperature
limit (T = ∞, p = 1/2) as shown in Fig. 4.2(a); it inevitably goes across a phase
boundary. It might seem strange that the internal energy is non-singular when
the line crosses a phase boundary at a transition point. We should, however,
accept those two apparently contradicting results since (4.15) is, after all, the
exact solution.3 One possibility is that the singular part of the internal energy
happens to vanish on the Nishimori line. This is probably a feature only of the
internal energy, and the other physical quantities (e.g. the free energy, specific
heat, and magnetic susceptibility) should have singularities at the crossing point.
In almost all cases investigated so far, this transition point on the Nishimori line
is a multicritical point where paramagnetic, ferromagnetic, and spin glass phases
merge.

Similar arguments apply to the Gaussian model. The Nishimori line in this
case is J0/J2 = β, from the cancellation condition of numerator and denominator
as in the previous subsection. It is shown as the dashed line in Fig. 4.2(b). The
energy for J0/J2 = β is

[E] = −NBJ0. (4.16)

It is possible to confirm (4.16) for the infinite-range version of the Gaussian
model, the SK model, with h = 0. One can easily verify that m = q from the RS
solution (2.28) and (2.30) under the condition βJ2 = J0. The internal energy is,
from the free energy (2.27),

3The existence of a finite region of ferromagnetic phase in two and higher dimensions has
been proved (Horiguchi and Morita 1982a, b).
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[E] = −N

2
{
J0m

2 + βJ2(1 − q2)
}

. (4.17)

Insertion of m = q and βJ2 = J0 into the above formula gives [E] = −J0N/2,
which agrees in the limit N → ∞ with (4.16) with NB = N(N − 1)/2 and
J0 → J0/N . Therefore the RS solution of the SK model is exact on the Nishimori
line at least as far as the internal energy is concerned. The AT line lies below the
Nishimori line and the RS solution is stable. It will indeed be proved in §4.6.3
that the structure of the phase space is always simple on the Nishimori line.

4.3.4 Distribution of the local energy
We can calculate the expectation value of the distribution function of the energy
of a single bond JijSiSj

P (E) = [〈δ(E − JijSiSj)〉] (4.18)

by the same method as above (Nishimori 1986a). Since δ(E − JijSiSj) is gauge
invariant, arguments in §4.3 apply and the following relation corresponding to
(4.14) is derived when K = Kp:

P (E) =
1

2N(2 coshK)NB

∑
τ

TrS δ(E − JijSiSj) exp(K
∑

τlmSlSm). (4.19)

Summing over bond variables other than the specific one (ij), which we are
treating, can be carried out. The result cancels out with the corresponding factors
in the denominator. The problem then reduces to the sum over the three variables
τij , Si, and Sj , which is easily performed to yield

P (E) = pδ(E − J) + (1 − p)δ(E + J). (4.20)

It is also possible to show that the simultaneous distribution of two different
bonds is decoupled to the product of distributions of single bonds when K = Kp:

P2(E1, E2) = [〈δ(E1 − JijSiSj)δ(E2 − JklSkSl)〉] = P (E1)P (E2). (4.21)

The same holds for distributions of more than two bonds. According to (4.20) and
(4.21), when K = Kp, the local energy of a bond is determined independently
of the other bonds or spin variables on average but depends only on the original
distribution function (2.3). The same is true for the Gaussian model.

4.3.5 Distribution of the local field
The distribution function of the local field to site i

P (h) = [〈δ(h −
∑

j

JijSj)〉] (4.22)

can be evaluated exactly if K = Kp by the same method (Nishimori 1986a).
Since the Hamiltonian (4.1) is invariant under the overall spin flip Si → −Si (∀i),
(4.22) is equal to
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P (h) =
1
2
[〈δ(h −

∑
j

JijSj)〉 + 〈δ(h +
∑

j

JijSj)〉] (4.23)

which is manifestly gauge invariant. We can therefore evaluate it as before under
the condition K = Kp. After gauge transformation and cancellation of denomi-
nator and numerator, one is left with the variables related to site i to find

P (h) =
1

(2 coshK)z

∑
τ

δ(h − J
∑

j τij) + δ(h + J
∑

j τij)
2

exp(K
∑

j

τij)

=
1

(2 coshK)z

∑
τ

δ(h − J
∑

j

τij) coshβh, (4.24)

where z is the coordination number, and the sum over τ runs over the bonds
connected to i. This result shows again that each bond connected to i behaves
independently of other bonds and spins with the appropriate probability weight
p = eKp/2 coshKp or 1 − p = e−Kp/2 coshKp. The same argument for the
Gaussian model leads to the distribution

P (h) =
1

2
√

2πz J

{
exp
(
− (h − zβJ)2

2zJ2

)
+ exp

(
− (h + zβJ)2

2zJ2

)}
(4.25)

when βJ2 = J0.

4.4 Bound on the specific heat
It is not possible to derive the exact solution of the specific heat. We can never-
theless estimate its upper bound. The specific heat is the temperature derivative
of the internal energy:

T 2[C] = −∂[E]
∂β

=

[
TrS H2e−βH

TrS e−βH
−
(

TrS He−βH

TrS e−βH

)2
]

. (4.26)

For the ±J model, the first term of the above expression (≡ C1) can be calculated
in the same manner as before:

C1 =
∑
τ

exp(Kp

∑
τij)

(2 coshKp)NB
· TrS (−J

∑
τijSiSj)2 exp(K

∑
τijSiSj)

TrS exp(K
∑

τijSiSj)

=
J2

2N(2 coshKp)NB

∑
τ

Trσ exp(Kp

∑
τijσiσj)

· (∂
2/∂K2)TrS exp(K

∑
τijSiSj)

TrS exp(K
∑

τijSiSj)
. (4.27)

Cancellation of the denominator and numerator is observed when K = Kp to
give

C1 =
J2

2N(2 coshK)NB

∂2

∂K2
TrS exp(K

∑
τijSiSj)
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=
J2

2N(2 coshK)NB
2N ∂2

∂K2
(2 coshK)NB

= J2(N2
B tanh2 K + NBsech2K). (4.28)

The second term on the right hand side of (4.26), C2, cannot be evaluated directly
but its lower bound is obtained by the Schwarz inequality:

C2 = [E2] ≥ [E]2 = J2N2
B tanh2 K. (4.29)

From (4.28) and (4.29),
T 2[C] ≤ J2NBsech2K. (4.30)

Hence the specific heat on the Nishimori line does not diverge although the line
crosses a phase boundary and thus the specific heat would be singular at the
transition point.

For the Gaussian distribution, the upper bound on the specific heat is

T 2[C] ≤ J2NB. (4.31)

4.5 Bound on the free energy and internal energy

We can derive an interesting inequality involving the free energy and, simulta-
neously, rederive the internal energy and the bound on the specific heat from an
inequality on the Kullback–Leibler divergence (Iba 1999). Let us suppose that
P (x) and Q(x) are probability distribution functions of a stochastic variable x.
These functions satisfy the normalization condition

∑
x P (x) =

∑
x Q(x) = 1.

The following quantity is called the Kullback–Leibler divergence of P (x) and
Q(x):

G =
∑

x

P (x) log
P (x)
Q(x)

. (4.32)

Since G vanishes when P (x) = Q(x) (∀x), it measures the similarity of the two
distributions. The Kullback–Leibler divergence is also called the relative entropy.

The Kullback–Leibler divergence is positive semi-definite:

G =
∑

x

P (x)
{

log
P (x)
Q(x)

+
Q(x)
P (x)

− 1
}

≥ 0. (4.33)

Here we have used the inequality − log y+y−1 ≥ 0 for positive y. The inequality
(4.33) leads to an inequality on the free energy. We restrict ourselves to the ±J
model for simplicity.

Let us choose the set of signs τ = {τij} of Jij ≡ Jτij as the stochastic variable
x and define P (x) and Q(x) as

P (τ ) =
Trσ exp(Kp

∑
〈ij〉 τijσiσj)

2N(2 coshKp)NB
, Q(τ ) =

Trσ exp(K
∑

〈ij〉 τijσiσj)

2N (2 coshK)NB
. (4.34)
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It is easy to check that these functions satisfy the normalization condition. Then
(4.32) has the following expression:

G =
∑

τ

Trσ exp(Kp

∑
τijσiσj)

2N (2 coshKp)NB

·
{

log Trσ exp(Kp

∑
τijσiσj) − log Trσ exp(K

∑
τijσiσj)

}
−NB log 2 coshKp + NB log 2 coshK. (4.35)

This equation can be shown to be equivalent to the following relation by using
gauge transformation:

G =
∑

τ

exp(Kp

∑
τij)

(2 coshKp)NB

·
{

log Trσ exp(Kp

∑
τijσiσj) − log Trσ exp(K

∑
τijσiσj)

}
−NB log 2 coshKp + NB log 2 coshK. (4.36)

The second term on the right hand side of (4.36) is nothing more than the
logarithm of the partition function of the ±J model, the configurational average
of which is the free energy F (K, p) divided by temperature. The first term on
the right hand side is the same quantity on the Nishimori line (K = Kp). Hence
the inequality G ≥ 0 is rewritten as

βF (K, p) + NB log 2 coshK ≥ βpF (Kp, p) + NB log 2 coshKp. (4.37)

The function βF0(K) = −NB log 2 coshK is equal to the free energy of the one-
dimensional ±J model with NB bonds and free boundary condition. Then (4.37)
is written as

β{F (K, p) − F0(K)} ≥ βp{F (Kp, p) − F0(Kp)}. (4.38)

This inequality suggests that the system becomes closest to the one-dimensional
model on the Nishimori line as far as the free energy is concerned.

Let us write the left hand side of (4.38) as g(K, p). Minimization of g(K, p)
at K = Kp gives the following relations:

∂g(K, p)
∂K

]
K=Kp

= 0,
∂2g(K, p)

∂K2

]
K=Kp

≥ 0. (4.39)

The equality in the second relation holds when g(K, p) is flat at K = Kp. This
happens, for instance, for the one-dimensional model where g(K, p) = 0 identi-
cally. However, such a case is exceptional and the strict inequality holds in most
systems. By noting that the derivative of βF by β is the internal energy, we can
confirm that the first equation of (4.39) agrees with the exact solution for the
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internal energy (4.15). The second formula of (4.39) is seen to be equivalent to
the upper bound of the specific heat (4.30).

When the strict inequality holds in the second relation of (4.39), the following
inequality follows for K close to Kp:

J
∂g(K, p)

∂K
= [E] + NBJ tanh K

{
< 0 (K < Kp)
> 0 (K > Kp).

(4.40)

The energy thus satisfies

[E(T, p)]
{

< −NBJ tanh K (T > Tp = J/Kp)
> −NBJ tanh K (T < Tp)

(4.41)

when T is not far away from Tp. The internal energy for generic T and p is smaller
(larger) than the one-dimensional value when T is slightly larger (smaller) than
Tp corresponding to the point on the Nishimori line for the given p.

4.6 Correlation functions

One can apply the gauge theory to correlation functions to derive an upper
bound that strongly restricts the possible structure of the phase diagram (Nishi-
mori 1981; Horiguchi and Morita 1981). For simplicity, the formulae below are
written only in terms of two-point correlation functions (the expectation value
of the product of two spin variables) although the same arguments apply to any
other many-point correlation functions. It will also be shown that the distribu-
tion function of the spin glass order parameter has a simple structure on the
Nishimori line (Nishimori and Sherrington 2001; Gillin et al. 2001) and that the
spin configuration is a non-monotonic function of the temperature (Nishimori
1993).

4.6.1 Identities

Let us consider the ±J model. The two-point correlation function is defined by

[〈S0Sr〉K ] =
[
TrS S0Sre−βH

TrS e−βH

]

=
∑
τ

exp(Kp

∑
τij)

(2 coshKp)NB
· TrS S0Sr exp(K

∑
τijSiSj)

TrS exp(K
∑

τijSiSj)
. (4.42)

A gauge transformation changes the above expression to

[〈S0Sr〉K ] =
1

2N (2 coshKp)NB

∑
τ

Trσ σ0σr exp(Kp

∑
τijσiσj)

·TrS S0Sr exp(K
∑

τijSiSj)
TrS exp(K

∑
τijSiSj)

. (4.43)

We do not observe a cancellation of the numerator and denominator here even
when K = Kp because of the factor σ0σr caused by the gauge transformation of
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S0Sr. However, an interesting identity results if one inserts the partition function
to the numerator and denominator:

[〈S0Sr〉K ] =
1

2N (2 coshKp)NB

∑
τ

{
Trσ exp(Kp

∑
τijσiσj)

}

·
(

Trσ σ0σr exp(Kp

∑
τijσiσj)

Trσ exp(Kp

∑
τijσiσj)

)
·
(

TrS S0Sr exp(K
∑

τijSiSj)
TrS exp(K

∑
τijSiSj)

)
.(4.44)

The last two factors here represent correlation functions 〈σ0σr〉Kp and 〈S0Sr〉K
for interaction strengths Kp and K, respectively. The above expression turns out
to be equal to the configurational average of the product of these two correlation
functions

[〈S0Sr〉K ] = [〈σ0σr〉Kp〈S0Sr〉K ]. (4.45)

To see this, we write the definition of the right hand side as

[〈σ0σr〉Kp〈S0Sr〉K ] =
1

(2 coshKp)NB

∑
τ

exp(Kp

∑
τij)

·TrS S0Sr exp(Kp

∑
τijSiSj)

TrS exp(Kp

∑
τijSiSj)

· TrS S0Sr exp(K
∑

τijSiSj)
TrS exp(K

∑
τijSiSj)

. (4.46)

Here we have used the variable S instead of σ in writing 〈σ0σr〉Kp . The result
is independent of such a choice because, after all, we sum it up over ±1. The
product of the two correlation functions in (4.46) is clearly gauge invariant. Thus,
after gauge transformation, (4.46) is seen to be equal to (4.44), and (4.45) has
been proved.

By taking the limit r → ∞ in (4.45) with K = Kp, site 0 should become
independent of site r so that the left hand side would approach [〈S0〉K ][〈Sr〉K ],
the square of the ferromagnetic order parameter m. The right hand side, on the
other hand, approaches [〈σ0〉K〈S0〉K ][〈σr〉K〈Sr〉K ], the square of the spin glass
order parameter q. We therefore have m = q on the Nishimori line. Since the spin
glass phase has m = 0 and q > 0 by definition, we conclude that the Nishimori
line never enters the spin glass phase (if any). In other words, we have obtained
a restriction on the possible location of the spin glass phase. The result m = q
will be confirmed from a different argument in §4.6.3.

Another interesting relation on the correlation function can be derived as
follows. Let us consider the configurational average of the inverse of the correla-
tion function [〈S0Sr〉−1

K ]. The same manipulation as above leads to the following
relation: [

1
〈S0Sr〉K

]
=
[ 〈σ0σr〉Kp

〈S0Sr〉K

]
. (4.47)

The right hand side is unity if K = Kp. Therefore the expectation value of the
inverse of an arbitrary correlation function is one on the Nishimori line. This
is not as unnatural as it might seem; the inverse correlation 〈S0Sr〉−1

K is either
greater than 1 or less than −1 depending upon its sign. The former contribution
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dominates on the Nishimori line (a part of which lies within the ferromagnetic
phase), resulting in the positive constant.

A more general relation holds if we multiply the numerator of the above
equation (4.47) by an arbitrary gauge-invariant quantity Q:[

Q

〈S0Sr〉K

]
=
[
Q〈σ0σr〉Kp

〈S0Sr〉K

]
. (4.48)

Here Q may be, for instance, the energy at an arbitrary temperature 〈H〉K′ or the
absolute value of an arbitrary correlation |〈SiSj〉K′ |. This identity (4.48) shows
that the gauge-invariant quantity Q is completely uncorrelated with the inverse
of the correlation function on the Nishimori line because the configurational
average decouples: [

Q

〈S0Sr〉Kp

]
= [Q]

(
= [Q]

[
1

〈S0Sr〉Kp

])
. (4.49)

It is somewhat counter-intuitive that any gauge-invariant quantity Q takes a
value independent of an arbitrarily chosen inverse correlation function. More
work should be done to clarify the significance of this result.

4.6.2 Restrictions on the phase diagram

A useful inequality is derived from the correlation identity (4.45). By taking the
absolute values of both sides of (4.45), we find

|[〈S0Sr〉K ]| =
∣∣[〈σ0σr〉Kp〈S0Sr〉K

]∣∣ ≤ [|〈σ0σr〉Kp | · |〈S0Sr〉K |] ≤ [∣∣〈σ0σr〉Kp

∣∣] .
(4.50)

It has been used here that an upper bound is obtained by taking the absolute
value before the expectation value and that the correlation function does not
exceed unity.

The right hand side of (4.50) represents a correlation function on the Nishi-
mori line K = Kp. This is a correlation between site 0 and site r, ignoring the
sign of the usual correlation function 〈σ0σr〉Kp . It does not decay with increasing
r if spins are frozen at each site as in the spin glass and ferromagnetic phases.
The left hand side, on the other hand, reduces to the square of the usual ferro-
magnetic order parameter in the limit r → ∞ and therefore approaches zero in
the spin glass and paramagnetic phases. The right hand side of (4.50) vanishes
as r → ∞ if the point on the Nishimori line corresponding to a given p lies
within the paramagnetic phase. Then the left hand side vanishes irrespective of
K, implying the absence of ferromagnetic ordering. This fact can be interpreted
as follows.

Let us define a point A as the crossing of the vertical (constant p) line L
(dash–dotted in Fig. 4.3) and the Nishimori line (shown dashed). If A lies in
the paramagnetic phase as in Fig. 4.3, no point on L is in the ferromagnetic
phase by the above argument. We therefore conclude that the phase boundary
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A

M

L

C1 C2 C3
0

T

p = 1p
c

Fig. 4.3. Structure of the phase diagram compatible with the correlation in-
equality: C2 and C3. The shape C1 is not allowed.

between the ferromagnetic and spin glass (or paramagnetic, in the absence of the
spin glass phase) phases does not extend below the spin glass (or paramagnetic)
phase like C1. The boundary is either vertical as C2 or re-entrant as C3 where
the spin glass (or paramagnetic) phase lies below the ferromagnetic phase. It
can also be seen that there is no ferromagnetic phase to the left of the crossing
point M of the Nishimori line and the boundary between the ferromagnetic and
non-ferromagnetic phases. It is then natural to expect that M is a multicritical
point (where paramagnetic, ferromagnetic, and spin glass phases merge) as has
been confirmed by the renormalization-group and numerical calculations cited
at the end of this chapter.

4.6.3 Distribution of order parameters

The remarkable simplicity of the exact energy (4.15) and independence of energy
distribution (4.21) suggest that the state of the system would be a simple one on
the Nishimori line. This observation is reinforced by the relation q = m, which is
interpreted as the absence of the spin glass phase. We show in the present subsec-
tion that a general relation between the order parameter distribution functions
confirms this conclusion. In particular, we prove that the distribution functions
of q and m coincide, Pq(x) = Pm(x), a generalization of the relation q = m. Since
the magnetization shows no RSB, the structure of Pm(x) is simple (i.e. composed
of at most two delta functions). Then the relation Pq(x) = Pm(x) implies that
Pq(x) is also simple, leading to the absence of a complicated structure of the
phase space on the Nishimori line.

The distribution function of the spin glass order parameter for a generic
finite-dimensional system is defined using two replicas of the system with spins
σ and S:
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Pq(x) =

[
Trσ TrS δ(x − 1

N

∑
i σiSi) e−βH(σ)−βH(S)

Trσ TrS e−βH(σ)−βH(S)

]
, (4.51)

where the Hamiltonians are

H(σ) = −
∑

Jijσiσj , H(S) = −
∑

JijSiSj . (4.52)

The two replicas share the same set of bonds J . There is no interaction between
the two replicas. If the system has a complicated phase space, the spins take
various different states so that the overlap of two independent spin configurations∑

i σiSi/N is expected to have more than two values (±m2) for a finite-step RSB
or a continuous spectrum for full RSB as in the SK model.

It is convenient to define a generalization of Pq(x) that compares spin con-
figurations at two different (inverse) temperatures β1 and β2,

Pq(x;β1J, β2J) =

[
Trσ TrS δ(x − 1

N

∑
i σiSi) e−β1H(σ)−β2H(S)

Trσ TrS e−β1H(σ)−β2H(S)

]
. (4.53)

The distribution of magnetization is defined similarly but without replicas:

Pm(x) =

[
TrS δ(x − 1

N

∑
i Si) e−βH(S)

TrS e−βH(S)

]
. (4.54)

By applying the same procedure as in §4.6.1 to the right hand side of (4.54), we
find

Pm(x) =
1

2N(2 coshKp)NB

∑
τ

Trσ exp(Kp

∑
τijσiσj)

·Trσ TrS δ(x − 1
N

∑
i σiSi) exp(Kp

∑
τijσiσj) exp(K

∑
τijSiSj)

Trσ TrS exp(Kp

∑
τijσiσj) exp(K

∑
τijSiSj)

. (4.55)

Similarly, gauge transformation of the right hand side of (4.53) yields the same
expression as above when β1J = Kp and β2J = K. We therefore have

Pm(x;K) = Pq(x;Kp, K). (4.56)

Here the K-dependence of the left hand side has been written out explicitly. By
setting K = Kp, we obtain Pq(x) = Pm(x). This relation shows that the phase
space is simple on the Nishimori line as mentioned above. Comparison of the first
moments of Pq(x) and Pm(x) proves that q = m. Since q = m means that the
ordered state on the Nishimori line should be a ferromagnetic phase, the absence
of complicated phase space implies the absence of a mixed phase (ferromagnetic
phase with complicated phase space).

Equation (4.56) may be interpreted that the spin state at K projected to the
spin state at Kp (the right hand side) always has a simple distribution function
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(a) K K= p (b) K K> p

Fig. 4.4. The distribution function of the spin glass order parameter on the
Nishimori line is simple (a). If there exists a phase with full RSB immediately
below the Nishimori line, the derivative of Pq(x) with respect to K should
be positive in a finite range of x (b).

(the left hand side). Physically, this implies that the spin state at Kp, on the
Nishimori line, is much like a perfect ferromagnetic state since the left hand side
of the above equation represents the distribution of the spin state relative to the
perfect ferromagnetic state,

∑
i(Si · 1). This observation will be confirmed from

a different point of view in §4.6.4.
More information can be extracted from (4.56) on the possible location of

the AT line. Differentiation of both sides of (4.56) by K at K = Kp yields

∂

∂K
Pm(x;K)

]
K=Kp

=
∂

∂K
Pq(x;Kp, K)

]
K=Kp

=
1
2

∂

∂K
Pq(x;K, K)

]
K=Kp

.

(4.57)
The left hand side is

∂

∂K
Pm(x;K) = −1

2
δ′(x − m(K))m′(K) +

1
2
δ′(x + m(K))m′(K) (4.58)

which vanishes at almost all x (
= ±m(K)). The right hand side thus vanishes at
x 
= ±m(K). It follows that there does not exist a phase with full RSB immedi-
ately below the Nishimori line K = Kp; otherwise the derivative of Pq(x;K, K)
with respect to the inverse temperature K should be positive in a finite range
of x to lead to a continuous spectrum of Pq(x;K, K) at a point slightly below
the Nishimori line, see Fig. 4.4. Clearly the same argument applies to any step
of the RSB because the right hand side of (4.57) would have non-vanishing (di-
vergent) values at some x 
= ±m(K) if a finite-step RSB occurs just below the
Nishimori line. Therefore we conclude that the Nishimori line does not coincide
with the AT line marking the onset of RSB if any. Note that the present ar-
gument does not exclude the anomalous possibility of the RSB just below the
Nishimori line with infinitesimally slow emergence of the non-trivial structure
like Pq(x) ∝ f(x) e−1/(K−Kp).
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It is possible to develop the same argument for the Gaussian model.

4.6.4 Non-monotonicity of spin configurations

Let us next investigate how spin orientations are aligned with each other when
we neglect the reduction of spin magnitude by thermal fluctuations in the ±J
model. We only look at the sign of correlation functions:[ 〈S0Sr〉K
|〈S0Sr〉K |

]
=

1
(2 coshKp)NB

∑
τ

exp(Kp

∑
τij)

TrS S0Sr exp(K
∑

τijSiSj)
|TrS S0Sr exp(K

∑
τijSiSj)| .

(4.59)
After gauge transformation, we find[ 〈S0Sr〉K

|〈S0Sr〉K |
]

=
1

2N(2 coshKp)NB

∑
τ

Trσ exp(Kp

∑
τijσiσj)〈σ0σr〉Kp

〈S0Sr〉K
|〈S0Sr〉K |

≤ 1
2N(2 coshKp)NB

∑
τ

Trσ exp(Kp

∑
τijσiσj)|〈σ0σr〉Kp |. (4.60)

We have taken the absolute value and replaced the sign of 〈S0Sr〉K by its upper
bound 1. The right hand side is equivalent to[ 〈σ0σr〉Kp

|〈σ0σr〉Kp |
]

(4.61)

because, by rewriting (4.61) using the gauge transformation, we have[ 〈σ0σr〉Kp

|〈σ0σr〉Kp |
]

=
1

2N(2 coshKp)NB

∑
τ

{Trσ σ0σr exp(Kp

∑
τijσiσj)}2

|Trσ σ0σr exp(Kp

∑
τijσiσj)|

=
1

2N(2 coshKp)NB

∑
τ

∣∣∣Trσ σ0σr exp(Kp

∑
τijσiσj)

∣∣∣
=

1
2N(2 coshKp)NB

∑
τ

Trσ exp(Kp

∑
τijσiσj)

∣∣〈σ0σr〉Kp

∣∣ . (4.62)

Thus the following relation has been proved:

[sgn〈σ0σr〉K ] ≤ [sgn〈S0Sr〉Kp ]. (4.63)

This inequality shows that the expectation value of the relative orientation of
two arbitrarily chosen spins is a maximum at K = Kp as a function of K
with p fixed. Spins become best aligned with each other on the Nishimori line
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ii

Fig. 4.5. Different bond configurations with the same distribution of frustra-
tion. Bold lines denote antiferromagnetic interactions. Black dots indicate
the frustrated plaquettes (fc = −1). One of the two configurations changes
to the other by the gauge transformation with σi = −1.

when the temperature is decreased from a high value at a fixed p, and then the
relative orientation decreases as the temperature is further lowered, implying
non-monotonic behaviour of spin alignment. Note that the correlation function
itself [〈S0Sr〉K ] is not expected to be a maximum on the Nishimori line.

4.7 Entropy of frustration

We further develop an argument for the ±J model that the phase boundary
below the Nishimori line is expected to be vertical like C2 of Fig. 4.3 (Nishimori
1986b). Starting from the definition of the configurational average of the free
energy

−β[F ] =
∑
τ

exp(Kp

∑
τij)

(2 coshKp)NB
· log TrS exp(K

∑
τijSiSj), (4.64)

we can derive the following expression by gauge transformation under the con-
dition K = Kp:

−β[F ] =
1

2N (2 coshK)NB

∑
τ

Trσ exp(K
∑

τijσiσj) · log TrS exp(K
∑

τijSiSj)

≡ 1
2N (2 coshK)NB

∑
τ

Z(K) log Z(K). (4.65)

Let us recall here that Z(K) in front of log Z(K) was obtained from the gauge
transformation of the distribution function P (Jij) and the sum over gauge vari-
ables. Since gauge transformation does not change the product of bonds fc =∏

c Jij over an arbitrary closed loop c, this fc is a gauge-invariant quantity,
called frustration (see Fig. 4.5).4 The sum of all bond configurations with the

4A more accurate statement is that the loop c is said to be frustrated when fc < 0. One often
talks about frustration of the smallest possible loop, a plaquette (the basic square composed of
four bonds in the case of the square lattice, for example).
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same distribution of frustration {fc} gives Z(Kp) (up to a normalization fac-
tor). This Z(Kp) is therefore identified with the probability of the distribution
of frustration. Then, (4.65) may be regarded as the average of the logarithm of
the probability of frustration distribution on the Nishimori line, which is nothing
but the entropy of frustration distribution. We are therefore able to interpret the
free energy on the Nishimori line as the entropy of frustration distribution.

It should be noted here that the distribution of frustration is determined
only by the bond configuration J and is independent of temperature. Also, it
is expected that the free energy is singular at the point M in Fig. 4.3 where
the Nishimori line crosses the boundary between the ferromagnetic and non-
ferromagnetic phases, leading to a singularity in the frustration distribution.
These observations indicate that the singularity in the free energy at M is caused
by a sudden change of the frustration distribution, which is of geometrical nature.
In other words, the frustration distribution is singular at the same p (= pc) as
the point M as one changes p with temperature fixed. This singularity should be
reflected in singularities in physical quantities at p = pc. Our conclusion is that
there is a vertical phase boundary at the same p as M. It should be remembered
that singularities at higher temperatures than the point M are actually erased by
large thermal fluctuations. This argument is not a rigorous proof for a vertical
boundary, but existing numerical results are compatible with this conclusion (see
the bibliographical note at the end of the chapter).

Singularities in the distribution of frustration are purely of a geometrical
nature independent of spin variables. It is therefore expected that the location
of a vertical boundary is universal, shared by, for instance, the XY model on the
same lattice if the distribution of Jij is the same (Nishimori 1992).

4.8 Modified ±J model
The existence of a vertical phase boundary discussed in §4.7 can be confirmed
also from the following argument (Kitatani 1992). The probability distribution
function of interactions of the ±J model is given as in (4.4) for each bond. It
is instructive to modify this distribution and introduce the modified ±J model
with the following distribution:

PM(Kp, a, τ ) =
exp{(Kp + a)

∑
〈ij〉 τij}Z(Kp, τ )

(2 coshKp)NBZ(Kp + a, τ )
, (4.66)

where a is a real parameter. Equation (4.66) reduces to the usual ±J model
when a = 0. It is straightforward to show that (4.66) satisfies the normalization
condition by summing it over τ and then using gauge transformation.

4.8.1 Expectation value of physical quantities
The expectation value of a gauge-invariant quantity in the modified ±J model
coincides with that of the conventional ±J model. We denote by {· · ·}a

Kp
the

configurational average by the probability (4.66) and [· · ·]Kp for the configura-
tional average in the conventional ±J model. To prove the coincidence, we first
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write the definition of the configurational average of a gauge-invariant quantity
Q in the modified ±J model and apply gauge transformation to it. Then we sum
it over the gauge variables σ to find that Z(Kp + a, τ ) appearing in both the
numerator and denominator cancel to give

{Q}a
Kp

=
1

2N(2 coshKp)NB

∑
τ

Z(Kp, τ )Q = [Q]Kp . (4.67)

The final equality can be derived by applying gauge transformation to the defini-
tion of [Q]Kp and summing the result over gauge variables. Equation (4.67) shows
that the configurational average of a gauge-invariant quantity is independent of
a.

Let us next derive a few relations for correlation functions by the same
method as in the previous sections. If we take the limit r → ∞ in (4.45) (which
holds for the conventional ±J model), the left hand side reduces to the squared
magnetization m(K, Kp)2. Similarly, when K = Kp, the right hand side ap-
proaches the square of the usual spin glass order parameter q(Kp, Kp)2. We thus
have

m(Kp, Kp) = q(Kp, Kp). (4.68)

The corresponding relation for the modified ±J model is

mM(Kp + a, Kp) = qM(Kp + a, Kp), (4.69)

where the subscript M denotes that the quantities are for the modified ±J model.
Another useful relation is, for general K,

q(K, Kp) = qM(K, Kp), (4.70)

which is valid according to (4.67) because the spin glass order parameter q is
gauge invariant. It is also not difficult to prove that

m(Kp + a, Kp) = mM(Kp, Kp) (4.71)

from gauge transformation.

4.8.2 Phase diagram

Various formulae derived in the previous subsection are useful to show the close
relationship between the phase diagrams of the modified and conventional ±J
models. First of all, we note that the spin glass phase exists in the same region
in both models according to (4.70). In the conventional ±J model, (4.68) implies
that q > 0 if m > 0 on the Nishimori line K = Kp. Thus there does not exist
a spin glass phase (q > 0, m = 0) when K = Kp, and the ordered phase at low
temperatures on the Nishimori line (the part with p > pc in Fig. 4.6(a)) should
be the ferromagnetic phase. Accordingly, the ordered phase to the upper right
side of the Nishimori line cannot be the spin glass phase but is the ferromagnetic
phase.
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Fig. 4.6. Phase diagram of the conventional (a) and modified (b) ±J models

In the modified ±J model, on the other hand, (4.69) holds when K = Kp +a,
so that the lower part of the curve K = Kp + a is in the ferromagnetic phase
(the part with p > pc in Fig. 4.6(b)). It is very plausible that the ordered phase
to the upper right of the line K = Kp + a is the ferromagnetic phase, similar to
the case of the conventional ±J model.

We next notice that the magnetization at the point B on the line K = Kp +a
in the conventional ±J model (Fig. 4.6(a)) is equal to that at C on K = Kp in the
modified ±J model (Fig. 4.6(b)) according to (4.71). Using the above argument
that the ferromagnetic phase exists to the upper right of K = Kp + a in the
modified ±J model, we see that mM(Kp, Kp) > 0 at C and thus m(Kp+a, Kp) >
0 at B. If we vary a (> 0) with p fixed, B moves along the vertical line below
K = Kp. Therefore, if m(Kp, Kp) > 0 at a point on the line K = Kp, we are
sure to have m(K, Kp) > 0 at all points below it. It is therefore concluded that
m > 0 below the line K = Kp for all p in the range p > pc. We have already
proved in §4.6 that there is no ferromagnetic phase in the range p < pc, and
hence a vertical boundary at p = pc is concluded to exist in the conventional ±J
model.

We have assumed in the above argument that the modified ±J model has the
ferromagnetic phase on the line K = Kp, which has not been proved rigorously
to be true. However, this assumption is a very plausible one and it is quite
reasonable to expect that the existence of a vertical boundary is valid generally.

4.8.3 Existence of spin glass phase

Active investigations are still being carried out concerning the existence of a spin
glass phase as an equilibrium state in the Edwards–Anderson model (including
the conventional ±J and Gaussian models) in finite dimensions. Numerical meth-
ods are used mainly, and it is presently believed that the Edwards–Anderson
model with Ising spins has a spin glass phase in three and higher dimensions. In
the modified ±J model, it is possible to prove the existence of a spin glass phase
relatively easily. Let us suppose a < 0 in the present section.

As pointed out previously, the conventional ±J and modified ±J models
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Fig. 4.7. Phase diagram of the modified ±J model with a < 0

share the same region with q > 0 (spin glass or ferromagnetic phase) in the
phase diagram. In the modified ±J model, we have mM = qM > 0 in the low-
temperature part of the line K = Kp+a and hence this part lies in the ferromag-
netic phase (Fig. 4.7). It is by the way possible to prove the following inequality
similarly to (4.50):

|{〈S0Sr〉K}a
Kp

| ≤ {|〈S0Sr〉Kp+a|}a
Kp

. (4.72)

If we set r → ∞ in this relation, the left hand side reduces to the squared
magnetization on the line K = Kp in the modified ±J model and the right hand
side to an order parameter on K = Kp + a. Thus the right hand side approaches
zero in the paramagnetic phase (where p < pm in Fig. 4.7) and consequently
the left hand side vanishes as well. It then follows that the shaded region in the
range pc < p < pm in Fig. 4.7 has qM > 0, mM = 0, the spin glass phase.

The only assumption in the above argument is the existence of the ferro-
magnetic phase in the conventional ±J model at low temperature, which has
already been proved in two dimensions (Horiguchi and Morita 1982b), and it is
straightforward to apply the same argument to higher dimensions. Hence it has
been proved rigorously that the modified ±J model has a spin glass phase in
two and higher dimensions.

We note that the bond variables τ are not distributed independently at each
bond (ij) in the modified ±J model in contrast to the conventional ±J model.
However, the physical properties of the modified ±J model should not be essen-
tially different from those of the conventional ±J model since gauge-invariant
quantities (the spin glass order parameter, free energy, specific heat, and so on)
assume the same values. When a > 0, the distribution (4.66) gives larger prob-
abilities to ferromagnetic configurations with τij > 0 than in the conventional
±J model, and the ferromagnetic phase tends to be enhanced. The case a < 0
has the opposite tendency, which may be the reason for the existence of the spin
glass phase.
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It is nevertheless remarkable that a relatively mild modifications of the ±J
model leads to a model for which a spin glass phase is proved to exist.

4.9 Gauge glass

The gauge theory applies not just to the Ising models but to many other models
(Nishimori 1981; Nishimori and Stephen 1983; Georges et al. 1985; Ozeki and
Nishimori 1993; Nishimori 1994). We explain the idea using the example of the
XY model with the Hamiltonian (gauge glass)

H = −J
∑
〈ij〉

cos(θi − θj − χij), (4.73)

where quenched randomness exists in the phase variable χij . The case χij = 0
is the usual ferromagnetic XY model. The gauge theory works in this model if
the randomly quenched phase variable follows the distribution

P (χij) =
1

2πI0(Kp)
exp(Kp cos χij), (4.74)

where I0(Kp) is the modified Bessel function for normalization. The gauge trans-
formation in this case is

θi → θi − φi, χij → χij − φi + φj . (4.75)

Here φi denotes the gauge variable arbitrarily fixed to a real value at each i. The
Hamiltonian is gauge invariant. The distribution function (4.74) transforms as

P (χij) → 1
2πI0(Kp)

exp{Kp cos(φi − φj − χij)}. (4.76)

4.9.1 Energy, specific heat, and correlation

To evaluate the internal energy, we first write its definition

[E] =
NB

(2πI0(Kp))NB

∫ 2π

0

∏
〈ij〉

dχij exp(Kp

∑
cos χij)

·
∫ 2π

0

∏
i dθi {−J cos(θi − θj − χij)} exp{K∑ cos(θi − θj − χij)}∫ 2π

0

∏
i dθi exp{K∑ cos(θi − θj − χij)}

. (4.77)

The integration range shifts by φi after gauge transformation, which does not
affect the final value because the integrand is a periodic function with period 2π.
The value of the above expression therefore does not change by gauge transfor-
mation:

[E] = − NBJ

(2πI0(Kp))NB

∫ 2π

0

∏
〈ij〉

dχij exp{Kp

∑
cos(φi − φj − χij)}
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·
∫ 2π

0

∏
i dθi cos(θi − θj − χij) exp{K∑ cos(θi − θj − χij)}∫ 2π

0

∏
i dθi exp{K∑ cos(θi − θj − χij)}

. (4.78)

Both sides of this formula do not depend on {φi}, and consequently we may
integrate the right hand side over {φi} from 0 to 2π and divide the result by
(2π)N to get the same value:

[E] = − NBJ

(2π)N (2πI0(Kp))NB

·
∫ 2π

0

∏
〈ij〉

dχij

∫ 2π

0

∏
i

dφi exp{Kp

∑
cos(φi − φj − χij)}

·
∫ 2π

0

∏
i dθi cos(θi − θj − χij) exp{K∑ cos(θi − θj − χij)}∫ 2π

0

∏
i dθi exp{K∑ cos(θi − θj − χij)}

. (4.79)

If K = Kp, the denominator and numerator cancel and we find

[E] = − J

(2π)N (2πI0(K))NB

·
∫ 2π

0

∏
〈ij〉

dχij
∂

∂K

∫ 2π

0

∏
i

dθi exp{K
∑

cos(θi − θj − χij)}. (4.80)

Integration over χij gives 2πI0(K) for each 〈ij〉:

[E] = − J

(2π)N (2πI0(K))NB
(2π)N ∂

∂K
(2πI0(K))NB = −JNB

I1(K)
I0(K)

. (4.81)

Because the modified Bessel functions I0(K) and I1(K) are not singular and
I0(K) > 0 for positive K, we conclude, as in the case of the Ising model, that
the internal energy has no singularity along the Nishimori line K = Kp although
it crosses the boundary between the ferromagnetic and paramagnetic phases.

It is straightforward to evaluate an upper bound on the specific heat on the
Nishimori line, similar to the Ising case, and the result is

T 2[C] ≤ J2NB

{
1
2

+
I2(K)
2I0(K)

−
(

I1(K)
I0(K)

)2
}

. (4.82)

The right hand side remains finite anywhere on the Nishimori line.
Arguments on the correlation equality and inequality work as well. The cor-

relation function is [〈cos(θi−θj)〉K ], or [〈exp i(θi−θj)〉K ], and by using the latter
expression and the gauge theory, we can derive the following identity:

[〈cos(θi − θj)〉K ] = [〈cos(φi − φj)〉Kp〈cos(θi − θj)〉K ]. (4.83)

By taking the absolute value and evaluating the upper bound, we have

|[〈cos(θi − θj)〉K ]| ≤ [|〈cos(φi − φj)〉Kp |]. (4.84)

This relation can be interpreted in the same way as in the Ising model: the
ferromagnetic phase is not allowed to lie below the spin glass phase.
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+�

Fig. 4.8. Ground-state configuration of the six-site XY model with a single
antiferromagnetic bond (bold line). The right plaquette has chirality + and
the left −.

4.9.2 Chirality
The XY model has an effective degree of freedom called chirality. We can show
that the chirality completely loses spatial correlations when K = Kp.

This result is a consequence of the following relation

[〈f1(θi − θj −χij)f2(θl − θm − χlm)〉] = [〈f1(θi − θj − χij)〉][〈f2(θl − θm −χlm)〉]
(4.85)

for K = Kp, where 〈ij〉 and 〈lm〉 are distinct bonds and f1 and f2 are arbitrary
functions with period 2π. Equation (4.85) can be proved in the same way as
we derived the exact energy (4.81) and is analogous to the decoupling of bond
energy in the Ising model (4.21). Each factor on the right hand side of (4.85) is
evaluated as in the previous subsection and the result is

[〈f1(θi − θj −χij)f2(θl − θm −χlm)〉] =

∫ 2π

0
dθ f1(θ)eK cos θ∫ 2π

0 dθ eK cos θ
·
∫ 2π

0
dθ f2(θ)eK cos θ∫ 2π

0 dθ eK cos θ

(4.86)
under the condition K = Kp.

Chirality has been introduced to quantify the degree of twistedness on the
frustrated XY model (Villain 1977) and is defined by

κp =
∑

sin(θi − θj − χij), (4.87)

where the sum is over a directed path (counter-clockwise, for example) around
a plaquette. Frustrated plaquettes are generally neighbouring to each other as
in Fig. 4.8, and such plaquettes carry the opposite signs of chirality. It is a
direct consequence of the general relation (4.86) that chiralities at plaquettes
without common bonds are independent. In particular, we have [〈κp〉] = 0 at
any temperature since the sine in (4.87) is an odd function and consequently

[〈κp1κp2〉] = [〈κp1〉][〈κp2〉] = 0 (4.88)

if K = Kp and the plaquettes p1 and p2 are not adjacent to each other sharing
a bond.
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The complete absence of chirality correlation (4.88) is not easy to understand
intuitively. Chiralities are in an ordered state at low temperatures in regular
frustrated systems (Miyashita and Shiba 1984) and in a spin glass state in the
random XY model (Kawamura and Li 1996). There is no apparent reason to
expect the absence of chirality correlations in the present gauge glass problem.
Further investigation is required to clarify this point.

4.9.3 XY spin glass

The name ‘XY spin glass’ is usually used for the XY model with random inter-
actions:

H = −
∑
〈ij〉

Jij cos(θi − θj), (4.89)

where Jij obeys such a distribution as the ±J or Gaussian function as in the
Ising spin glass. This model is clearly different from the gauge glass (4.73). It
is difficult to analyse this XY spin glass by gauge transformation because the
gauge summation of the probability weight leads to a partition function of the
Ising spin glass, which does not cancel out the partition function of the XY spin
glass appearing in the denominator of physical quantities such as the energy. It
is nevertheless possible to derive an interesting relation between the Ising and
XY spin glasses using a correlation function (Nishimori 1992).

The gauge transformation of the Ising type (4.2) reveals the following relation
of correlation functions:

[〈Si · Sj〉XY
K ] = [〈σiσj〉IKp

〈Si · Sj〉XY
K ], (4.90)

where Si (= t(cos θi, sin θi)) denotes the XY spin and the thermal average is
taken with the ±J XY Hamiltonian (4.89) for 〈· · ·〉XY and with the ±J Ising
model for 〈· · ·〉I. Taking the absolute value of both sides of (4.90) and replacing
〈Si · Sj〉XY

K on the right hand side by its upper bound 1, we find

|[〈Si · Sj〉XY
K ]| ≤ [|〈σiσj〉IKp

|]. (4.91)

The right hand side vanishes for p < pc (see Fig. 4.3) in the limit |i − j| → ∞
since the Nishimori line is in the paramagnetic phase. Thus the left hand side
also vanishes in the same range of p. This proves that pc, the lower limit of the
ferromagnetic phase, for the XY model is higher than that for the Ising model

pXY
c ≥ pI

c. (4.92)

It is actually expected from the argument of §4.7 that the equality holds in
(4.92).

The same argument can be developed for the Gaussian case as well as other
models like the ±J/Gaussian Heisenberg spin glass whose spin variable has three
components S = t(Sx, Sy, Sz) under the constraint S2 = 1.
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4.10 Dynamical correlation function

It is possible to apply the gauge theory also to non-equilibrium situations (Ozeki
1995, 1997). We start our argument from the master equation that determines
the time development of the probability Pt(S) that a spin configuration S is
realized at time t:

dPt(S)
dt

= TrS′W (S|S′)Pt(S′). (4.93)

Here W (S|S′) is the transition probability that the state changes from S′ to
S (
= S′) in unit time. Equation (4.93) means that the probability Pt(S) increases
by the amount by which the state changes into S. If W < 0, the probability
decreases by the change of the state from S.

An example is the kinetic Ising model

W (S|S′) = δ1(S|S′)
exp(−β

2 ∆(S, S′))

2 cosh β
2 ∆(S, S′)

− δ(S, S′)TrS′′δ1(S′′|S)
exp(−β

2 ∆(S′′, S))

2 cosh β
2 ∆(S, S′′)

, (4.94)

where δ1(S|S′) is a function equal to one when the difference between S and S′

is just a single spin flip and is zero otherwise:

δ1(S|S′) = δ{2,
∑

i

(1 − SiS
′
i)}. (4.95)

In (4.94), ∆(S, S′) represents the energy change H(S) − H(S′). The first term
on the right hand side of (4.94) is the contribution from the process where the
state of the system changes from S′ to S by a single spin flip with probability
e−β∆/2/2 cosh(β∆/2). The second term is for the process where the state changes
from S to another by a single spin flip. Since δ(S, S′), δ1(S|S′), and ∆(S, S′) are
all gauge invariant, W is also gauge invariant: W (S|S′) = W (Sσ|S′σ), where
Sσ = {Siσi}.

The formal solution of the master equation (4.93) is

Pt(S) = TrS′〈S|etW |S′〉P0(S′). (4.96)

We prove the following relation between the dynamical correlation function and
non-equilibrium magnetization using the above formal solution:

[〈Si(0)Si(t)〉Kp

K ] = [〈Si(t)〉FK ]. (4.97)

Here 〈Si(0)Si(t)〉Kp

K is the autocorrelation function, the expectation value of the
spin product at site i when the system was in equilibrium at t = 0 with the
inverse temperature Kp and was developed over time to t:

〈Si(0)Si(t)〉Kp

K = TrSTrS′ Si〈S|etW |S′〉S′
iPe(S′, Kp) (4.98)
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Pe(S′, Kp) =
1

Z(Kp)
exp(Kp

∑
τijS

′
iS

′
j), (4.99)

where the K (= βJ)-dependence of the right hand side is in W . The expecta-
tion value 〈Si(t)〉FK is the site magnetization at time t starting from the perfect
ferromagnetic state |F〉:

〈Si(t)〉FK = TrS Si〈S|etW |F〉. (4.100)

To prove (4.97), we perform gauge transformation (τij → τijσiσj , Si → Siσi)
to the configurational average of (4.100)

[〈Si(t)〉FK ] =
1

(2 coshKp)NB

∑
τ

exp(Kp

∑
τij)TrS Si〈S|etW |F〉. (4.101)

Then the term etW is transformed to 〈Sσ|etW |F〉, which is equal to 〈S|etW |σ〉
by the gauge invariance of W . Hence we have

[〈Si(t)〉FK ] =
1

(2 coshKp)NB

1
2N

∑
τ

Trσ exp(Kp

∑
τijσiσj)TrS Si〈S|etW |σ〉σi

=
1

(2 coshKp)NB

1
2N

∑
τ

TrSTrσ Si〈S|etW |σ〉σiZ(Kp)Pe(σ, Kp). (4.102)

It is also possible to show that the configurational average of (4.98) is equal to
the above expression, from which (4.97) follows immediately.

Equation (4.97) shows that the non-equilibrium relaxation of magnetization
starting from the perfect ferromagnetic state is equal to the configurational av-
erage of the autocorrelation function under the initial condition of equilibrium
state at the inverse temperature Kp. In particular, when K = Kp, the left hand
side is the equilibrium autocorrelation function, and this identity gives a direct
relation between equilibrium and non-equilibrium quantities.

A generalization of (4.97) also holds:

[〈Si(tw)Si(t + tw)〉Kp

K ] = [〈Si(tw)Si(t + tw)〉FK ]. (4.103)

Both sides are defined as follows:

〈Si(tw)Si(t + tw)〉Kp

K

= TrS0TrS1TrS2S2i〈S2|etW |S1〉S1i〈S1|etwW |S0〉Pe(S0, Kp) (4.104)
〈Si(tw)Si(t + tw)〉FK
= TrS1TrS2 S2i〈S2|etW |S1〉S1i〈S1|etwW |F〉. (4.105)

Equation (4.104) is the autocorrelation function at time t after waiting for tw
with inverse temperature K starting at time t = 0 from the initial equilibrium
state with the inverse temperature Kp. Equation (4.105), on the other hand,
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represents the correlation function with the perfect ferromagnetic state as the
initial condition instead of the equilibrium state at Kp in (4.104). Equation (4.97)
is a special case of (4.103) with tw = 0.

To prove (4.103), we first note that the gauge transformation in (4.105) yields
σ as the initial condition in this equation. Similar to the case of (4.102), we take
a sum over σ and divide the result by 2N . We next perform gauge transformation
and sum it up over the gauge variables in (4.104), comparison of which with the
above result leads to (4.103). It is to be noted in this calculation that (4.105) is
gauge invariant.

If K = Kp in (4.103),

[〈Si(0)Si(t)〉eqKp
] = [〈Si(tw)Si(t + tw)〉FKp

]. (4.106)

For K = Kp, the left hand side of (4.103) is the equilibrium autocorrelation func-
tion and should not depend on tw, and thus we have set tw = 0. Equation (4.106)
proves that the autocorrelation function does not depend on tw on average if it is
measured after the system is kept at the equilibrium state with inverse tempera-
ture Kp for time duration tw and the initial condition of a perfect ferromagnetic
state. The aging phenomenon, in which non-equilibrium quantities depend on
the waiting time tw before measurement, is considered to be an important char-
acteristic of the spin glass phase (Young 1997; Miyako et al. 2000). Equation
(4.106) indicates that the configurational average of the autocorrelation function
with the perfect ferromagnetic state as the initial condition does not show aging.

Bibliographical note

The analytical framework of the gauge theory has been developed in the refer-
ences cited in the text. Numerical investigations of various problems related to
the gauge theory have been carried out by many authors. The main topics were
the location of the multicritical point (in particular whether or not it is on the
Nishimori line) and the values of the critical exponents (especially around the
multicritical point). References until the early 1990s include Ozeki and Nishimori
(1987), Kitatani and Oguchi (1990, 1992), Ozeki (1990), Ueno and Ozeki (1991),
Singh (1991), and Le Doussal and Harris (1988, 1989). These problems have been
attracting resurgent interest recently as one can see in Singh and Adler (1996),
Ozeki and Ito (1998), Sørensen et al. (1998), Gingras and Sørensen (1998), Aarão
Reis et al. (1999), Kawashima and Aoki (2000), Mélin and Peysson (2000), Ho-
necker et al. (2000), and Hukushima (2000). Properties of the multicritical point
in two dimensions have been studied also from the standpoints of the quantum
Hall effect (Cho and Fisher 1997; Senthil and Fisher 2000; Read and Ludwig
2000) and supersymmetry (Gruzberg et al. 2001).
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ERROR-CORRECTING CODES

Reliable transmission of information through noisy channels plays a vital role in
modern society. Some aspects of this problem have close formal similarities to
the theory of spin glasses. Noise in the transmission channel can be related to
random interactions in spin glasses and the bit sequence representing informa-
tion corresponds to the Ising spin configuration. The replica method serves as
a powerful tool of analysis, and TAP-like equations can be used as a practical
implementation of the algorithm to infer the original message. The gauge theory
also provides an interesting point of view.

5.1 Error-correcting codes

Information theory was initiated by Shannon half a century ago. It formulates
various basic notions on information transmission through noisy channels and
develops a framework to manipulate those abstract objects. We first briefly re-
view some ideas of information theory, and then restate the basic concepts, such
as noise, communication, and information inference, in terms of statistical me-
chanics of spin glasses.

5.1.1 Transmission of information

Suppose that we wish to transmit a message (information) represented as a
sequence of N bits from one place to another. The path for information trans-
mission is called a (transmission) channel. A channel usually carries noise and
the output from a channel is different in some bits from the input. We then ask
ourselves how we can infer the original message from the noisy output.

It would be difficult to infer which bit of the output is corrupted by noise if the
original message itself had been fed into the channel. It is necessary to make the
message redundant before transmission by adding extra pieces of information,
by use of which the noise can be removed. This process is called channel coding
(or encoding), or simply coding. The encoded message is transmitted through a
noisy channel. The process of information retrieval from the noisy output of a
channel using redundancy is called decoding.

A very simple example of encoding is to repeat the same bit sequence several
(for instance, three) times. If the three sequences received at the end of the
channel coincide, one may infer that there was no noise. If a specific bit has
different values in the three sequences, one may infer its correct value (0 or 1)
by the majority rule. For example, when the original message is (0, 0, 1, 1, 0) and
the three output sequences from a noisy channel are (0, 0, 1, 1, 0), (0, 1, 1, 1, 0),

74
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1 0 1 1 0 1 1

1 0 0 1 0 1 1

1

1

channel

Fig. 5.1. Parity-check code

and (0, 0, 1, 1, 0), the correct second bit can be inferred to be 0 whereas all the
other bits coincide to be (0, ∗, 1, 1, 0). This example shows that the redundancy
is helpful to infer the original information from the noisy message.

A more sophisticated method is the parity-check code. For example, suppose
that seven bits are grouped together and one counts the number of ones in the
group. If the number is even, one adds 0 as the eighth bit (the parity bit) and
adds 1 otherwise. Then there are always an even number of ones in the group of
eight bits in the encoded message (code word). If the noise rate of the channel
is not very large and at most only one bit is flipped by noise out of the eight
received bits, one may infer that the output of the channel carries no noise when
one finds even ones in the group of eight bits. If there are odd ones, then there
should be some noise, implying error detection (Fig. 5.1). Error correction after
error detection needs some further trick to be elucidated in the following sections.

5.1.2 Similarity to spin glasses
It is convenient to use the Ising spin ±1 instead of 0 and 1 to treat the present
problem by statistical mechanics. The basic operation on a bit sequence is the
sum with modulo 2 (2=0 with mod 2), which corresponds to the product of Ising
spins if one identifies 0 with Si = 1 and 1 with Si = −1. For example, 0 + 1 = 1
translates into 1× (−1) = −1 and 1 + 1 = 0 into (−1)× (−1) = 1. We hereafter
use this identification of an Ising spin configuration with a bit sequence.

Generation of the parity bit in the parity-check code corresponds to the
product of appropriate spins. By identifying such a product with the interaction
between the relevant spins, we obtain a spin system very similar to the Mattis
model of spin glasses.

In the Mattis model one allocates a randomly quenched Ising spin ξi to each
site, and the interaction between sites i and j is chosen to be Jij = ξiξj . The
Hamiltonian is then

H = −
∑
〈ij〉

ξiξjSiSj . (5.1)

The ground state is clearly identical to the configuration of the quenched spins
Si = ξi (∀i) (or its total reversal Si = −ξi (∀i)), see Fig. 5.2(a).

Returning to the problem of error-correcting codes, we form the Mattis-type
interactions {J0

i1...ir
= ξi1 . . . ξir} with r an integer for appropriate combinations
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(a ) (b ) (c)

Fig. 5.2. The ground-state spin configurations of the Mattis model without
noise added (a), the interaction marked by a cross flipped by noise (b), and
three interactions flipped by strong noise (c). Thin lines represent ferromag-
netic interactions and bold lines antiferromagnetic interactions. The plaque-
ttes marked by dots are frustrated.

of sites {i1 . . . ir}. We then feed these interactions (encoded message), instead of
the original spin configuration ξ ≡ {ξi} (original message), into the noisy chan-
nel. The encoded information is redundant because the number of interactions
NB (which is the number of elements in the set {(i1 . . . ir)}) is larger than the
number of spins N .

For instance, the conventional r = 2 Mattis model on the two-dimensional
square lattice has NB = 2N interactions, the number of neighbouring sites. For
the original interactions without noise J0 = {ξiξj}, the product of the J0

ij along
an arbitrary closed loop c, fc =

∏
J0

ij =
∏

(ξiξj), is always unity (positive)
since all the ξi appear an even number of times in the product. Thus the Mattis
model has no frustration. However, noise in the channel flips some elements of
J0 and therefore the output of the channel, if it is regarded as interactions of
the spin system, includes frustration (Fig. 5.2(b)). Nevertheless the original spin
configuration is still the ground state of such a system if the noise rate is not large
(i.e. only a small number of bits are flipped) as exemplified in Fig. 5.2(b). It has
thus been shown that correct inference of the original message is possible even
if there exists a small amount of noise in the channel, as long as an appropriate
procedure is employed in encoding and decoding the message.

5.1.3 Shannon bound

It is necessary to introduce redundancy appropriately to transmit information
accurately through a noisy channel. It can indeed be proved that such redun-
dancy should exceed a threshold so that we are able to retrieve the original
message without errors.

Let us define the transmission rate R of information by a channel as

R =
N(number of bits in the original message)

NB(number of bits in the encoded message)
. (5.2)

For smaller denominator, the redundancy is smaller and the transmission rate
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is larger. Strictly speaking, the numerator of (5.2) should be the ‘number of
informative bits in the original message’. For biased messages, where 0 and 1
appear with unequal probabilities, the amount of information measured in bits
is smaller than the length of the binary message itself. This can easily be verified
by the extreme case of a perfectly biased message with only ones; the message
carries no information in such a case. By multiplying (5.2) by the number of bits
transmitted per second, one obtains the number of information bits transmitted
per second.

We consider a memoryless binary symmetric channel (BSC) where noise flips
a bit from 1 to 0 and 0 to 1 independently at each bit with a given probability.
It is known that the transmission rate should satisfy the following inequality so
that error-free transmission is possible through the BSC in the limit of a very
long bit sequence:

R < C, (5.3)

where C is a function of the noise probability and is called the channel capacity.
The capacity of the BSC is

C = 1 + p log2 p + (1 − p) log2(1 − p). (5.4)

Here p is the probability that a bit is flipped by noise. Equation (5.3) is called
the channel coding theorem of Shannon and implies that error-free transmission
is possible if the transmission rate does not exceed the channel capacity and
an appropriate procedure of encoding and decoding is employed. Similar results
hold for other types of channels such as the Gaussian channel to be introduced
later. A sketch of the arguments leading to the channel coding theorem is given
in Appendix C.

An explicit example of a code that saturates the Shannon bound (5.3) asymp-
totically as an equality is the Sourlas code (Sourlas 1989): one takes all possible
products of r spins from N sites to form Mattis-type interactions. We have
mainly explained the conventional Mattis model with r = 2 in §5.1.2, and we
discuss the general case of an arbitrary r (= 2, 3, 4, . . .) hereafter. This is nothing
but the infinite-range model with r-body interactions.5 It will be shown later
that the Shannon bound (5.3) is asymptotically achieved and the error rate ap-
proaches zero in the Sourlas code if we take the limit N → ∞ first and r → ∞
afterwards. It should be noted, however, that the inequality (5.3) reduces to an
equality with both sides approaching zero in the Sourlas code, which means that
the transmission rate R is zero asymptotically. Therefore the transmission is not
very efficient. A trick to improve this point was shown recently to be to take the
product of a limited number of combinations, not all possible combinations of r
spins, from N sites. All of these points will be elucidated in detail later in the
present chapter.

5The symbol p is often used in the literature to denote the number of interacting spins. We
use r instead to avoid confusion with the error probability in the BSC.
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5.1.4 Finite-temperature decoding

Let us return to the argument of §5.1.2 and consider the problem of inference
of spin configurations when the noise probability is not necessarily small. It was
shown in §5.1.2 that the ground state of the Ising spin system (with the output
of the channel as interactions) is the true original message (spin configuration) if
the channel is not very noisy. For larger noise, the ground state is different from
the original spin configuration (Fig. 5.2(c)). This suggests that the original spin
configuration is one of the excited states and thus one may be able to decode
more accurately by searching for states at finite temperature. It will indeed be
shown that states at a specific finite temperature Tp determined by the error
rate p give better results under a certain criterion. This temperature Tp turns
out to coincide with the temperature at the Nishimori line discussed in Chapter
4 (Ruján 1993).

5.2 Spin glass representation

We now formulate the arguments in the previous section in a more quantitative
form and proceed to explicit calculations (Sourlas 1989).

5.2.1 Conditional probability

Suppose that the Ising spin configuration ξ = {ξi} has been generated according
to a probability distribution function P (ξ). This distribution P (ξ) for generat-
ing the original message is termed the prior. Our goal is to infer the original
spin configuration from the output of a noisy channel as accurately as possible.
Following the suggestion in the previous section, we form a set of products of r
spins

J0
i1...ir

= ξi1 . . . ξir (= ±1) (5.5)

for appropriately chosen combinations of the ξi and feed the set of interactions
into the channel. We first consider the BSC, and the output of the channel Ji1...ir

is flipped from the corresponding input J0
i1...ir

= ξi1 . . . ξir with probability p and
is equal to −ξi1 . . . ξir . The other possibility of correct output ξi1 . . . ξir has the
probability 1− p. The output probability of a BSC can be expressed in terms of
a conditional probability:

P (Ji1...ir |ξi1 . . . ξir ) =
exp(βpJi1...irξi1 . . . ξir )

2 coshβp
, (5.6)

where βp is a function of p defined as

e2βp =
1 − p

p
. (5.7)

Equation (5.6) is equal to 1 − p when Ji1...ir = ξi1 . . . ξir according to (5.7)
and is equal to p when Ji1...ir = −ξi1 . . . ξir , implying that (5.6) is the correct
conditional probability to characterize the channel. Equations (5.6) and (5.7)
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are analogous to the distribution function (4.4)–(4.5) in the gauge theory. The
inverse of βp defined in (5.7), denoted Tp at the end of the previous section,
coincides with the temperature on the Nishimori line. One should note here that
p in the present chapter is 1− p in Chapter 4. The temperature Tp is sometimes
called the Nishimori temperature in the literature of error-correcting codes.

Assume that (5.6) applies to each set (i1 . . . ir) independently. This is a mem-
oryless channel in which each bit is affected by noise independently. The overall
probability is then the product of (5.6)

P (J |ξ) =
1

(2 coshβp)NB
exp
(
βp

∑
Ji1...irξi1 . . . ξir

)
, (5.8)

where the sum in the exponent is taken over all sets (i1 . . . ir) for which the spin
products are generated by (5.5). The symbol NB is for the number of terms in
this sum and is equal to the number of bits fed into the channel.

5.2.2 Bayes formula

The task is to infer the original message (spin configuration) ξ from the out-
put J = {Ji1...ir}. For this purpose, it is necessary to introduce the conditional
probability of ξ given J , which is called the posterior. The posterior is the con-
ditional probability with the two entries of the left hand side of (5.8), J and ξ,
exchanged. The Bayes formula is useful for exchanging these two entries.

The joint probability P (A,B) that two events A and B occur is expressed
in terms of the product of P (B) and the conditional probability P (A|B) for A
under the condition that B occurred. The same holds if A and B are exchanged.
Thus we have

P (A,B) = P (A|B)P (B) = P (B|A)P (A). (5.9)

It follows immediately that

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)∑
A P (B|A)P (A)

. (5.10)

Equation (5.10) is the Bayes formula.
We can express P (σ|J) in terms of (5.8) using the Bayes formula:

P (σ|J) =
P (J |σ)P (σ)

TrσP (J |σ)P (σ)
. (5.11)

We have written σ = {σ1, . . . , σN} for dynamical variables used for decoding.
The final decoded result will be denoted by ξ̂ = {ξ̂1, . . . , ξ̂N}, and we reserve ξ =
{ξ1, . . . , ξn} for the true original configuration. Equation (5.11) is the starting
point of our argument.

The probability P (J |σ) represents the characteristics of a memoryless BSC
and is given in (5.8). It is therefore possible to infer the original message by (5.11)
if the prior P (σ) is known. Explicit theoretical analysis is facilitated by assuming
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a message source that generates various messages with equal probability. This
assumption is not necessarily unnatural in realistic situations where information
compression before encoding usually generates a rather uniform distribution of
zeros and ones. In such a case, P (σ) can be considered a constant. The posterior
is then

P (σ|J) =
exp (βp

∑
Ji1...irσi1 . . . σir )

Trσ exp (βp

∑
Ji1...ir σi1 . . . σir )

. (5.12)

Since J is given and fixed in the present problem, (5.12) is nothing more than the
Boltzmann factor of an Ising spin glass with randomly quenched interactions J .
We have thus established a formal equivalence between the probabilistic inference
problem of messages for a memoryless BSC and the statistical mechanics of the
Ising spin glass.

5.2.3 MAP and MPM

Equation (5.12) is the probability distribution of the inferred spin configuration
σ, given the output of the channel J . Then the spin configuration to maximize
(5.12) is a good candidate for the decoded (inferred) spin configuration. Maxi-
mization of the Boltzmann factor is equivalent to the ground-state search of the
corresponding Hamiltonian

H = −
∑

Ji1...irσi1 . . . σir . (5.13)

This method of decoding is called the maximum a posteriori probability (MAP).
This is the idea already explained in §5.1.2. Maximization of the conditional
probability P (J |σ) with respect to σ is equivalent to maximization of the poster-
ior P (σ|J) if the prior P (σ) is uniform. The former idea is termed the maximum
likelihood method as P (J |σ) is the likelihood function of σ.

The MAP maximizes the posterior of the whole bit sequence σ. There is
another strategy of decoding in which we focus our attention on a single bit i,
not the whole sequence. This means we trace out all the spin variables except for a
single σi to obtain the posterior only of σi. This process is called marginalization
in statistics:

P (σi|J) =
Trσ( �=σi) exp (βp

∑
Ji1...irσi1 . . . σir )

Trσ exp (βp

∑
Ji1...irσi1 . . . σir )

. (5.14)

We then compare P (σi = 1|J) and P (σi = −1|J) and, if the former is larger,
we assign one to the decoded result of the ith bit (ξ̂i = 1) and assign ξ̂i = −1
otherwise. This process is carried out for all bits, and the set of thus decoded bits
constitutes the final result. This method is called the finite-temperature decoding
or the maximizer of posterior marginals (MPM) and clearly gives a different
result than the MAP (Ruján 1993; Nishimori 1993; Sourlas 1994; Iba 1999).

It is instructive to consider the MPM from a different point of view. The
MPM is equivalent to accepting the sign of the difference of two probabilities as
the ith decoded bit
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ξ̂i = sgn {P (σi = 1|J) − P (σi = −1|J)} . (5.15)

This may also be written as

ξ̂i = sgn

( ∑
σi=±1

σiP (σi|J)

)
= sgn

(
TrσσiP (σi|J)
TrσP (σi|J)

)
= sgn〈σi〉βp . (5.16)

Here 〈σi〉βp is the local magnetization with (5.12) as the Boltzmann factor. Equa-
tion (5.16) means to calculate the local magnetization at a finite temperature
Tp = β−1

p and assign its sign to the decoded bit. The MAP can be regarded
as the low-temperature (large-β) limit in place of finite βp in (5.16). The MAP
was derived as the maximizer of the posterior of the whole bit sequence, which
has now been shown to be equivalent to the low-temperature limit of the MPM,
finite-temperature decoding. The MPM, by contrast, maximizes the posterior
of a single bit. We shall study the relation between these two methods in more
detail subsequently.

5.2.4 Gaussian channel

It is sometimes convenient to consider channels other than the BSC. A typical
example is a Gaussian channel. The encoded message ξi1 . . . ξir (= ±1) is fed into
the channel as a signal of some amplitude, J0ξi1 . . . ξir . The output is continu-
ously distributed around this input with the Gaussian distribution of variance
J2:

P (Ji1...ir |ξi1 . . . ξir ) =
1√
2πJ

exp
{
− (Ji1...ir − J0ξi1 . . . ξir )2

2J2

}
. (5.17)

If the prior is uniform, the posterior is written using the Bayes formula as

P (σ|J) =
exp
{
(J0/J2)

∑
Ji1...irσi1 . . . σir

}
Trσ exp {(J0/J2)

∑
Ji1...irσi1 . . . σir}

. (5.18)

Comparison of this equation with (5.12) shows that the posterior of the Gaussian
channel corresponds to that of the BSC with βp replaced by J0/J2. We can
therefore develop the following arguments for both of these channels almost in
the same way.

5.3 Overlap

5.3.1 Measure of decoding performance

It is convenient to introduce a measure of success of decoding that represents
the proximity of the decoded message to the original one. The decoded ith bit is
ξ̂i = sgn〈σi〉β with β = βp for the MPM and β → ∞ for the MAP. It sometimes
happens that one is not aware of the noise rate p of the channel, or equivalently
βp. Consequently it makes sense even for the MPM to develop arguments with
β unspecified, which we do in the following.
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The product of ξ̂i and the corresponding original bit ξi, ξisgn〈σi〉β , is 1 if
these two coincide and −1 otherwise. An appropriate strategy is to increase the
probability that this product is equal to one. We average this product over the
output probability of the channel P (J |ξ) and the prior P (ξ),

M(β) = Trξ

∑
J

P (ξ)P (J |ξ) ξi sgn〈σi〉β , (5.19)

which is the overlap of the original and decoded messages. We have denoted the
sum over the site variables ξ by Trξ and the one over the bond variables J by∑

J . A better decoding would be the one that gives a larger M(β). For a uniform
message source P (ξ) = 2−N , the average over ξ and J leads to the right hand
side independent of i,

M(β) =
1

2N(2 coshβp)NB

∑
J

Trξ exp(βp

∑
Ji1...irξi1 . . . ξir ) ξisgn〈σi〉β . (5.20)

This expression may be regarded as the average of sgn〈σi〉β with the weight
proportional to Z(βp)〈ξ〉βp , which is essentially equivalent to the configurational
average of the correlation function with a similar form of the weight that appears
frequently in the gauge theory of spin glasses, for example (4.43).

The overlap is closely related with the Hamming distance of the two mes-
sages (the number of different bits at the corresponding positions). For closer
messages, the overlap is larger and the Hamming distance is smaller. When the
two messages coincide, the overlap is one and the Hamming distance is zero,
while, for two messages completely inverted from each other, the overlap is −1
and the Hamming distance is N .

5.3.2 Upper bound on the overlap
An interesting feature of the overlap M(β) is that it is a non-monotonic function
of β with its maximum at β = βp:

M(β) ≤ M(βp). (5.21)

In other words the MPM at the correct parameter value β = βp gives the opti-
mal result in the sense of maximization of the overlap (Ruján 1993; Nishimori
1993; Sourlas 1994; Iba 1999). The MPM is sometimes called the Bayes-optimal
strategy.

To prove (5.21), we first take the absolute value of both sides of (5.20) and
exchange the absolute value operation and the sum over J to obtain

M(β) ≤ 1
2N(2 coshβp)NB

∑
J

∣∣∣Trξ ξi exp(βp

∑
Ji1...irξi1 . . . ξir )

∣∣∣ , (5.22)

where we have used |sgn〈σi〉β | = 1. By rewriting the right hand side as follows,
we can derive (5.21):

M(β) ≤ 1
2N (2 coshβp)NB

∑
J

(Trξ ξi exp(βp

∑
Ji1...irξi1 . . . ξir ))2

|Trξ ξi exp(βp

∑
Ji1...irξi1 . . . ξir )|
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=
1

2N (2 coshβp)NB

∑
J

Trξ ξi exp(βp

∑
Ji1...irξi1 . . . ξir )

· Trξ ξi exp(βp

∑
Ji1...irξi1 . . . ξir )

|Trξ ξi exp(βp

∑
Ji1...irξi1 . . . ξir )|

=
1

2N (2 coshβp)NB

∑
J

Trξ ξi exp(βp

∑
Ji1...irξi1 . . . ξir )sgn〈σi〉βp

= M(βp). (5.23)

Almost the same manipulations lead to the following inequality for the Gaussian
channel:

M(β) =
1

2N
Trξ

∫ ∏
dJi1...ir P (J |ξ) ξi sgn〈σi〉β ≤ M

(
J0

J2

)
. (5.24)

We have shown that the bit-wise overlap defined in (5.19) is maximized by
the MPM with the correct parameter (β = βp for the BSC). This is natural in
that the MPM at β = βp was introduced to maximize the bit-wise (marginalized)
posterior. The MAP maximizes the posterior of the whole bit sequence σ, but
its probability of error for a given single bit is larger than the MPM with the
correct parameter value. This observation is also confirmed from the viewpoint
of Bayesian statistics (Sourlas 1994; Iba 1999).

The inequalities (5.21) and (5.24) are essentially identical to (4.63) derived
by the gauge theory in §4.6.4. To understand this, we note that generality is not
lost by the assumption ξi = 1 (∀i) in the calculation of M(β) for a uniform infor-
mation source. This may be called the ferromagnetic gauge. Indeed, the gauge
transformation Ji1...ir → Ji1...irξi1 . . . ξir and σi → σiξi in (5.19) removes ξi from
the equation. Then M defined in (5.19) is seen to be identical to (4.63) with the
two-point correlation replaced with a single-point spin expectation value. The
argument in §4.6.4 applies not only to two-point correlations but to any cor-
relations, and thus the result of §4.6.4 agrees with that of the present section.
Therefore the overlap M of the decoded bit and the original bit becomes a maxi-
mum on the Nishimori line as a function of the decoding temperature with fixed
error rate p. For the Gaussian channel, (5.24) corresponds to the fact that the
Nishimori line is represented as J0/J2 = β as observed in §4.3.3.

5.4 Infinite-range model

Inequality (5.21) shows that M(β) is a non-monotonic function, but the inequal-
ity does not give the explicit β-dependence. It may also happen that it is not
easy to adjust β exactly to βp in practical situations where one may not know
the noise rate p very precisely. One is then forced to estimate βp but should
always be careful of errors in the parameter estimation. It is therefore useful if
one can estimate the effects of errors in the parameter estimation on the overlap
M(β).
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A solvable model, for which we can calculate the explicit form of M(β), would
thus be helpful as a guide for non-solvable cases. The infinite-range model serves
as an important prototype for this and other purposes.

5.4.1 Infinite-range model

The Sourlas code explained in §5.1.3 is represented as the infinite-range model.
In the Sourlas code, the sum in the Hamiltonian

H = −
∑

i1<···<ir

Ji1...irσi1 . . . σir (5.25)

runs over all possible combinations of r spins out of N spins. Then the number
of terms is NB =

(
N
r

)
. This infinite-range model with r-body interactions can be

solved explicitly by the replica method (Derrida 1981; Gross and Mézard 1984;
Gardner 1985; Nishimori and Wong 1999). We show the solution for the Gaussian
channel. The BSC is expected to give the same result in the thermodynamic limit
according to the central limit theorem.

The parameters J0 and J in the Gaussian distribution (5.17) must be scaled
appropriately with N so that the expectation value of the infinite-range Hamil-
tonian (5.25) is extensive (proportional to N) in the limit N → ∞. If we also
demand that physical quantities remain finite in the limit r → ∞ after N → ∞,
then r should also be appropriately scaled. The Gaussian distribution satisfying
these requirements is

P (Ji1...ir |ξi1 . . . ξir ) =
(

N r−1

J2πr!

)1/2

exp

{
−N r−1

J2r!

(
Ji1...ir − j0r!

N r−1
ξi1 . . . ξir

)2
}

,

(5.26)
where J and j0 are independent of N and r. The appropriateness of (5.26) is
justified by the expressions of various quantities to be derived below that have
non-trivial limits as N → ∞ and r → ∞.

5.4.2 Replica calculations

Following the general prescription of the replica method, we first calculate the
configurational average of the nth power of the partition function and take the
limit n → 0. Order parameters naturally emerge in due course. The overlap M
is expressed as a function of these order parameters.

The configurational average of the nth power of the partition function of the
infinite-range model is written for the uniform prior (P = 2−N ) as

[Zn] = Trξ

∫ ∏
i1<···<ir

dJii...ir P (ξ)P (J |ξ)Zn

=
1

2N
Trξ

∫ ∏
i1<···<ir

dJii...ir

(
N r−1

J2πr!

)1/2
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· exp

{
−N r−1

J2r!

∑
i1<···<ir

(
Ji1...ir − j0r!

N r−1
ξi1 . . . ξir

)2
}

·Trσ exp

(
β
∑

i1<···<ir

Ji1...ir

∑
α

σα
i1 . . . σα

ir

)
, (5.27)

where α (= 1, . . . , n) is the replica index. A gauge transformation

Ji1...ir → Ji1...irξi1 . . . ξir , σi → σiξi (5.28)

in (5.27) removes ξ from the integrand. The problem is thus equivalent to the
case of ξi = 1 (∀i), the ferromagnetic gauge. We mainly use this gauge in the
present chapter. The sum over ξ in (5.27) then simply gives 2N , and the factor
2−N in front of the whole expression disappears.

It is straightforward to carry out the Gaussian integral in (5.27). If we ignore
the trivial overall constant and terms of lower order in N , the result is

[Zn]

= Trσ exp

{
β2J2r!
4N r−1

∑
i1<···<ir

(
∑

α

σα
i1 . . . σα

ir
)2 +

βr!j0
N r−1

∑
i1<···<ir

∑
α

σα
i1 . . . σα

ir

}

= Trσ exp


β2J2r!

4N r−1

∑
i1<···<ir

(
∑
α�=β

σα
i1 . . . σα

ir
σβ

i1
. . . σβ

ir
+ n)

+
βr!j0
N r−1

∑
i1<···<ir

∑
α

σα
i1 . . . σα

ir

}

= Trσ exp


β2J2N

2

∑
α<β

(
1
N

∑
i

σα
i σβ

i

)r

+
β2J2

4
Nn

+ j0βN
∑

α

(
1
N

∑
i

σα
i

)r}
. (5.29)

Here Trσ is the sum over σ. In deriving the final expression, we have used a
relation that generalizes the following relation to the r-body case:

1
N

∑
i1<i2

σi1σi2 =
1
2

(
1
N

∑
i

σi

)2

+ O(N0)

1
N2

∑
i1<i2<i3

σi1σi2σi3 =
1
3!

(
1
N

∑
i

σi

)3

+ O(N0).

(5.30)

It is convenient to introduce the variables

qαβ =
1
N

∑
i

σα
i σβ

i , mα =
1
N

∑
i

σα
i (5.31)
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to replace the expressions inside the parentheses in the final expression of (5.29)
by qαβ and mα so that we can carry out the Trσ operation. The condition to sat-
isfy (5.31) is imposed by the Fourier-transformed expressions of delta functions
with integration variables q̂αβ and m̂α:

[Zn] = Trσ

∫ ∏
α<β

dqαβdq̂αβ

∫ ∏
α

dmαdm̂α exp


β2J2N

2

∑
α<β

(qαβ)r

−N
∑
α<β

qαβ q̂αβ + N
∑
α<β

q̂αβ

(
1
N

∑
i

σα
i σβ

i

)
+ j0βN

∑
α

(mα)r

−N
∑
α

mαm̂α + N
∑
α

m̂α

(
1
N

∑
i

σα
i

)
+

1
4
β2J2Nn

}
. (5.32)

We can now operate Trσ independently at each i to find

[Zn] =
∫ ∏

α<β

dqαβdq̂αβ

∫ ∏
α

dmαdm̂α exp


β2J2N

2

∑
α<β

(qαβ)r

−N
∑
α<β

qαβ q̂αβ +
1
4
β2J2Nn + j0βN

∑
α

(mα)r

−N
∑

α

mαm̂α + N log Tr exp


∑

α<β

q̂αβσασβ +
∑

α

m̂ασα




 . (5.33)

Here Tr denotes sums over single-site replica spins {σ1, . . . , σn}.
5.4.3 Replica-symmetric solution

Further calculations are possible under the assumption of replica symmetry:

q = qαβ , q̂ = q̂αβ , m = mα, m̂ = m̂α. (5.34)

We fix n and take the thermodynamic limit N → ∞ to evaluate the integral by
steepest descent. The result is

[Zn] ≈ exp
[
N

{
β2J2 n(n − 1)

4
qr − n(n − 1)

2
qq̂ + j0βnmr − nmm̂ +

1
4
nβ2J2

+ log Tr
∫

Du exp

(√
q̂ u
∑
α

σα + m̂
∑

α

σα − n

2
q̂

)}]
, (5.35)

where Du = e−u2/2du/
√

2π. This u has been introduced to reduce the double sum
over α and β (

∑
α<β) to a single sum. The trace operation can be performed for
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each replica independently so that the free energy βf defined by [Zn] = e−Nnβf

becomes in the limit n → 0

−βf = −1
4
β2J2qr +

1
2
qq̂ + βj0m

r − mm̂

+
1
4
β2J2 − 1

2
q̂ +
∫

Du log 2 cosh(
√

q̂ u + m̂). (5.36)

The equations of state for the order parameters are determined by the saddle-
point condition. By variation of (5.36), we obtain

q̂ =
1
2
rβ2J2qr−1, m̂ = βj0rm

r−1 (5.37)

q =
∫

Du tanh2(
√

q̂ u + m̂), m =
∫

Du tanh(
√

q̂ u + m̂). (5.38)

Eliminating q̂ and m̂ from (5.38) using (5.37), we can write the equations for q
and m in closed form:

q =
∫

Du tanh2 βG, m =
∫

Du tanh βG, (5.39)

where

G = J

√
rqr−1

2
u + j0rm

r−1. (5.40)

These reduce to the equations of state for the conventional SK model, (2.28) and
(2.30), when r = 2. One should remember that 2j0 here corresponds to J0 in the
conventional notation of the SK model as is verified from (5.27) with r = 2.

5.4.4 Overlap

The next task is to derive the expression of the overlap M . An argument similar
to §2.2.5 leads to formulae expressing the physical meaning of q and m:

q =
[
〈σα

i σβ
i 〉
]

=
[〈σi〉2

]
, m = [〈σα

i 〉] = [〈σi〉] . (5.41)

Comparison of (5.41) and (5.39) suggests that tanh2 β(·) and tanhβ(·) in the
integrands of the latter may be closely related with 〈σi〉2 and 〈σi〉 in the former.
To confirm this, we add h

∑
i σα

i σβ
i to the final exponent of (5.27) and follow

the calculations of the previous section to find a term hσασβ in the exponent
of the integrand of (5.35). We then differentiate −βnf with respect to h and
let n → 0, h → 0 to find that σα and σβ are singled out in the trace operation
of replica spins, leading to the factor tanh2 β(·). A similar argument using an
external field term h

∑
i σα

i and differentiation by h leads to tanh β(·).
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It should now be clear that the additional external field with the product of
k spins, h

∑
i σα

i σβ
i . . ., yields

[〈σi〉kβ
]

=
∫

Du tanhk βG. (5.42)

Thus, for an arbitrary function F (x) that can be expanded around x = 0, the
following identity holds:

[F (〈σi〉β)] =
∫

Du F (tanhβG). (5.43)

The overlap is, in the ferromagnetic gauge, M(β) = [sgn〈σi〉β ]. If we therefore
take as F (x) a function that approaches sgn(x) (e.g. tanh(ax) with a → ∞), we
obtain the desired relation for the overlap:

M(β) = [sgn〈σi〉β ] =
∫

Du sgnG. (5.44)

It has thus been established that M(β) is determined as a function of q and m
through G.

5.5 Replica symmetry breaking

The system (5.25) and (5.26) in the ferromagnetic gauge is a spin glass model
with r-body interactions. It is natural to go further to investigate the properties
of the RSB solution (Derrida 1981; Gross and Mézard 1984; Gardner 1985; Nishi-
mori and Wong 1999; Gillin et al. 2001). We shall show that, for small values
of the centre of distribution j0, a 1RSB phase appears after the RS paramag-
netic phase as the temperature is lowered. A full RSB phase follows at still lower
temperature. For larger j0, paramagnetic phase, ferromagnetic phase without
RSB, and then ferromagnetic phase with RSB phases appear sequentially as the
temperature is decreased.

5.5.1 First-step RSB

The free energy with 1RSB can be derived following the method described in
§3.2:

−βf = −m̂m +
1
2
xq̂0q0 +

1
2
(1 − x)q̂1q1 + βj0m

r

− 1
4
xβ2J2qr

0 − 1
4
(1 − x)β2J2qr

1 +
1
4
β2J2 − 1

2
q̂1

+
1
x

∫
Du log

∫
Dv coshx(m̂ +

√
q̂0 u +

√
q̂1 − q̂0 v) + log 2, (5.45)

where x (0 ≤ x ≤ 1) is the boundary of q0 and q1 in the matrix block, denoted
by m1 in §3.2. Extremization of (5.45) with respect to q0, q1, q̂0, q̂1, m, m̂, x leads
to the equations of state. For m, q0, q1,
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m̂ = βj0rm
r−1, q̂0 =

1
2
β2J2rqr−1

0 , q̂1 =
1
2
β2J2rqr−1

1 . (5.46)

Elimination of m̂, q̂0, q̂1 using (5.46) from the equations of extremization with
respect to q̂0, q̂1, m̂ leads to

m =
∫

Du

∫
Dv coshx βG1 tanh βG1∫

Dv coshx βG1
(5.47)

q0 =
∫

Du

(∫
Dv coshx βG1 tanh βG1∫

Dv coshx βG1

)2

(5.48)

q1 =
∫

Du

∫
Dv coshx βG1 tanh2 βG1∫

Dv coshx βG1
(5.49)

G1 = J

√
rqr−1

0

2
u + J

√
r

2
(qr−1

1 − qr−1
0 ) v + j0rm

r−1. (5.50)

These equations coincide with (3.32)–(3.34) for r = 2 if we set h = 0 and 2j0 =
J0. The equation of extremization by x does not have an intuitively appealing
compact form so that we omit it here.

The AT stability condition of the RS solution is

2T 2q2−r

r(r − 1)
> J2

∫
Du sech4βG. (5.51)

The criterion of stability for 1RSB is expressed similarly. For the replica pair
(αβ) in the same diagonal block, the stability condition for small deviations of
qαβ and q̂αβ from 1RSB is

2T 2q2−r
1

r(r − 1)
> J2

∫
Du

∫
Dv coshx−4 βG1∫
Dv coshx βG1

. (5.52)

Further steps of RSB take place with the diagonal blocks breaking up into smaller
diagonal and off-diagonal blocks. Thus it is sufficient to check the intra-block
stability condition (5.52) only.

5.5.2 Random energy model
The model in the limit r → ∞ is known as the random energy model (REM)
(Derrida 1981). The problem can be solved completely in this limit and the spin
glass phase is characterized by 1RSB.

As its name suggests, the REM has an independent distribution of energy.
Let us demonstrate this fact for the case of j0 = 0. The probability that the
system has energy E will be denoted by P (E),

P (E) = [δ(E − H(σ))] . (5.53)

The average [· · ·] over the distribution of J , (5.26), can be carried out if we
express the delta function by Fourier transformation. The result is



90 ERROR-CORRECTING CODES

P (E) =
1√

NπJ2
exp
(
− E2

J2N

)
. (5.54)

The simultaneous distribution function of the energy values E1 and E2 of two
independent spin configurations σ(1) and σ(2) with the same set of interactions
can be derived similarly:

P (E1, E2) =
[
δ(E1 − H(σ(1)))δ(E2 − H(σ(2)))

]
=

1
NπJ2

√
(1 + qr)(1 − qr)

exp
(
− (E1 + E2)2

2N (1 + qr)J2
− (E1 − E2)2

2N (1 − qr)J2

)

q =
1
N

∑
i

σ
(1)
i σ

(2)
i . (5.55)

It is easy to see in the limit r → ∞ that

P (E1, E2) → P (E1)P (E2), (5.56)

which implies independence of the energy distributions of two spin configurations.
Similar arguments hold for three (and more) energy values.

The number of states with energy E is, according to the independence of
energy levels,

n(E) = 2NP (E) =
1√

πNJ2
exp N

{
log 2 −

(
E

NJ

)2
}

. (5.57)

This expression shows that there are very many energy levels for |E| < NJ
√

log 2
≡ E0 but none in the other range |E| > E0 in the limit N → ∞. The entropy
for |E| < E0 is

S(E) = N

[
log 2 −

(
E

NJ

)2
]

. (5.58)

We then have, from dS/dE = 1/T ,

E = −NJ2

2T
. (5.59)

The free energy is therefore

f =


−T log 2 − J2

4T
(T > Tc)

−J
√

log 2 (T < Tc),
(5.60)

where Tc/J = (2
√

log 2)−1. Equation (5.60) indicates that there is a phase tran-
sition at T = Tc and the system freezes out completely (S = 0) below the
transition temperature.
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5.5.3 Replica solution in the limit r → ∞
It is instructive to rederive the results of the previous subsection by the replica
method. We first discuss the case j0 = 0. It is quite reasonable to expect no RSB
in the paramagnetic (P) phase at high temperature. We thus set q = q̂ = m =
m̂ = 0 in (5.36) to obtain

fP = −T log 2 − J2

4T
. (5.61)

This agrees with (5.60) for T > Tc.
It is necessary to introduce RSB in the spin glass (SG) phase. We try 1RSB

and confirm that the result agrees with that of the previous subsection. For the
1RSB to be non-trivial (i.e. different from the RS), it is required that q0 < q1 ≤ 1
and q̂0 < q̂1. Then, if q1 < 1, we find q̂0 = q̂1 = 0 in the limit r → ∞ from (5.46).
We therefore have q1 = 1, and q̂1 = β2J2r/2 from (5.46). Then, in (5.48), we find
G1 = J

√
r/2v for r 	 1 and the v-integral in the numerator vanishes, leading

to q0 = 0. Hence q̂0 = 0 from (5.46). From these results, the free energy (5.45)
in the limit r → ∞ is

−βf =
β2J2

4
x +

1
x

log 2. (5.62)

Variation with respect to x gives

(xβJ)2 = 4 log 2. (5.63)

The highest temperature satisfying this equation is the following one for x = 1:

Tc

J
=

1
2
√

log 2
, (5.64)

and therefore, for T < Tc,
fSG = −J

√
log 2. (5.65)

This agrees with (5.60), which confirms that 1RSB is exact in the temperature
range T < Tc. It is also possible to show by explicit k-step RSB calculations that
the solution reduces to the 1RSB for any k (≥ 1) (Gross and Mézard 1984).

It is easy to confirm that x < 1 for T < Tc from (5.63); generally, x = T/Tc.
The order parameter function q(x) is equal to 1 (= q1) above x (= T/Tc) and
0 (= q0) below x (see Fig. 5.3).

For j0 exceeding some critical value, a ferromagnetic (F) phase exists. It is
easy to confirm that the solution of (5.48), (5.49), and (5.47) in the limit r → ∞
is q0 = q1 = m = 1 when j0 > 0, m > 0. The ferromagnetic phase is therefore
replica symmetric since q0 = q1. The free energy (5.36) is then

fF = −j0. (5.66)

The phase boundaries between these three phases are obtained by comparison
of the free energies:
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Fig. 5.3. Spin glass order parameter of the REM below the transition temper-
ature

k T/J

0

2log2
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P

SG F

2l o g j /J0

B

Fig. 5.4. Phase diagram of the REM. The Nishimori line is shown dashed.

1. P–SG transition: Tc/J = (2
√

log 2)−1.
2. SG–F transition: (j0)c/J =

√
log 2.

3. P–F transition: j0 = J2/(4T ) + T log 2.
The final phase diagram is depicted in Fig. 5.4.

Let us now turn to the interpretation of the above results in terms of error-
correcting codes. The overlap M is one in the ferromagnetic phase (j0/J >√

log 2) because the spin alignment is perfect (m = 1), implying error-free de-
coding.6 To see the relation of this result to the Shannon bound (5.3), we first
note that the transmission rate of information by the Sourlas code is

R =
N(
N
r

) . (5.67)

As shown in Appendix C, the capacity of the Gaussian channel is

6Remember that we are using the ferromagnetic gauge.
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C =
1
2

log2

(
1 +

J2
0

J2

)
. (5.68)

Here we substitute J0 = j0r!/N r−1 and J2 → J2r!/2N r−1 according to (5.26)
and take the limit N 	 1 with r fixed to find

C ≈ j2
0r!

J2N r−1 log 2
. (5.69)

The transmission rate (5.67), on the other hand, reduces in the same limit to

R ≈ r!
N r−1

. (5.70)

It has thus been established that the transmission rate R coincides with the
channel capacity C at the lower limit of the ferromagnetic phase j0/J =

√
log 2.

In the context of error-correcting codes, j0 represents the signal amplitude and J
is the amplitude of the noise, and hence j0/J corresponds to the S/N ratio. The
conclusion is that the Sourlas code in the limit r → ∞, equivalent to the REM,
is capable of error-free decoding (m = 1, M = 1) for the S/N ratio exceeding
some critical value and the Shannon bound is achieved at this critical value.

The general inequality (5.21) is of course satisfied. Both sides vanish if j0 <
(j0)c. For j0 > (j0)c, the right hand side is one while the left hand side is zero
in the paramagnetic phase and one in the ferromagnetic phase. In other words,
the Sourlas code in the limit r → ∞ makes it possible to transmit information
without errors under the MAP as well as under the MPM. An important point is
that the information transmission rate R is vanishingly small, impeding practical
usefulness of this code.

The Nishimori line βJ2 = J0 is in the present case T/J = J/(2j0) and passes
through the point at j0/J =

√
log 2 and T/J = 1/2

√
log 2 where three phases

(P, SG, F) coexist. The exact energy on it, E = −j0, derived from the gauge
theory agrees with the above answer (5.66). One should remember here that the
free energy coincides with the energy as the entropy vanishes.

5.5.4 Solution for finite r

It is necessary to solve the equations of state numerically for general finite r.7

The result for the case of r = 3 is shown here as an example (Nishimori and Wong
1999; Gillin et al. 2001). If j0 is close to zero, one finds a 1RSB SG solution with
q1 > 0 and q0 = m = 0 below T = 0.651J . As the temperature is lowered, the
stability condition of the 1RSB (5.52) breaks down at T = 0.240J , and the full
RSB takes over.

The ferromagnetic phase is RS (5.39) in the high-temperature range but
the RSB should be taken into account below the AT line (3.22); a mixed (M)
phase with both ferromagnetic order and RSB exists at low temperatures. The

7Expansions from the large-r limit and from r = 2 are also possible (Gardner 1985).
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Fig. 5.5. Phase diagram of the model with r = 3. The double dotted line
indicates the limit of metastability (spinodal) of the ferromagnetic phase.
Error correction is possible to the right of this boundary. Thermodynamic
phase boundaries are drawn in full lines. The Nishimori line is drawn dashed.
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Fig. 5.6. Overlap for r = 3, j0 = 0.77

ferromagnetic phase, with RS and/or RSB, continues to exist beyond the limit
of thermodynamic stability as a metastable state (i.e. as a local minimum of the
free energy). Figure 5.5 summarizes the result.

Dependence of the overlap M(β) on T (= 1/β) is depicted in Fig. 5.6 where
j0/J is fixed to 0.77 close to the boundary of the ferromagnetic phase. The
overlap M(β) is a maximum at the optimal temperature T/J = J/2j0 = 0.649
appearing on the right hand side of (5.24) corresponding to the Nishimori line
(the dot in Fig. 5.6). The ferromagnetic phase disappears above T/J = 0.95 even
as a metastable state and one has M = 0: the paramagnetic phase has 〈σi〉β = 0
at each site i, and sgn〈σi〉β cannot be defined. It is impossible to decode the
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message there. For temperatures below T/J = 0.43, the RSB is observed (the
dashed part). We have thus clarified in this example how much the decoded
message agrees with the original one as the temperature is changed around the
optimal value.

5.6 Codes with finite connectivity
The Sourlas code saturates the Shannon bound asymptotically with vanishing
transmission rate. A mean-field model with finite connectivity has a more desir-
able property that the rate is finite yet the Shannon bound is achieved. We state
some of the important results about this model in the present section. We refer
the reader to the original papers cited in the text for details of the calculations.

5.6.1 Sourlas-type code with finite connectivity
The starting point is analogous to the Sourlas code described by the Hamiltonian
(5.25) but with diluted binary interactions for the BSC,

H = −
∑

i1<···<ir

Ai1...irJi1...irσi1 . . . σir − F
∑

i

σi, (5.71)

where the element of the symmetric tensor Ai1...ir (representing dilution) is either
zero or one depending on the set of indices (i1, i2, . . . , ir). The final term has
been added to be prepared for biased messages in which 1 may appear more
frequently than −1 (or vice versa). The connectivity is c; there are c non-zero
elements randomly chosen for any given site index i:∑

i2,...,ir

Ai i2...ir = c. (5.72)

The code rate is R = r/c because an encoded message has c bits per index i and
carries r bits of the original information.

Using the methods developed for diluted spin glasses (Wong and Sherrington
1988), one can calculate the free energy under the RS ansatz as (Kabashima and
Saad 1998, 1999; Vicente et al. 1999)

−βf (RS) =
c

r
log coshβ +

c

r

∫ r∏
l=1

dxl π(xl)


log


1 + tanh βJ

r∏
j=1

tanh βxj






J

− c

∫
dxdy π(x)π̂(y) log(1 + tanh βx tanh βy) − c

∫
dy π̂(y) log coshβy

+
∫ c∏

l=1

dyl π̂(yl)


log


2 cosh(β

∑
j

yj + βFξ)






ξ

. (5.73)

Here [· · ·]J and [· · ·]ξ denote the configurational averages over the distributions of
J and ξ, respectively. The order functions π(x) and π̂(y) represent distributions
of the multi-replica spin overlap and its conjugate:
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Fig. 5.7. Finite-temperature phase diagram of the unbiased diluted Sourlas
code with R = 1/4 in the limit r, c → ∞ (Vicente et al. 1999). The Shannon
bound is achieved at pc. The ferromagnetic phase is stable at least above the
dashed line. (Copyright 1999 by the American Physical Society)

qαβ...γ = a

∫
dxπ(x) tanhl βx, q̂αβ...γ = â

∫
dy π̂(y) tanhl βy, (5.74)

where a and â are normalization constants, and l is the number of replica indices
on the left hand side. Extremization of the free energy gives paramagnetic and
ferromagnetic solutions for the order functions. The spin glass solution should be
treated with more care under the 1RSB scheme. The result becomes relatively
simple in the limit where r and c tend to infinity with the ratio R = r/c (≡ 1/α)
kept finite and F = 0:

fP = −T (α log coshβ + log 2)
fF = −α(1 − 2p) (5.75)

f1RSB−SG = −Tg(α log coshβg + log 2),

where p is the noise probability of the BSC, and Tg is determined by the condition
of vanishing paramagnetic entropy, α(log coshβg − βg tanh βg) + log 2 = 0. The
ferromagnetic and 1RSB–SG phases are completely frozen (vanishing entropy).
The finite-temperature phase diagram for a given R is depicted in Fig. 5.7. Perfect
decoding (m = M = 1) is possible in the ferromagnetic phase that extends to
the limit pc. It can be verified by equating fF and f1RSB−SG that the Shannon
bound is achieved at pc,

R = 1 + p log2 p + (1 − p) log2(1 − p) (p = pc). (5.76)
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Fig. 5.8. Ground-state magnetization as a function of the noise probability for
various r (written as K in the figure) (Vicente et al. 1999). The rate R is
1/2 and F = 0. Also shown by open circles are the numerical results from
the TAP-like decoding algorithm. (Copyright 1999 by the American Physical
Society)

The ferromagnetic solution appears as a metastable state at a very high tem-
perature of O(r/ log r), but the thermodynamic transition takes place at T of
O(1). This suggests that there exists a high energy barrier between the ferromag-
netic and paramagnetic solutions. Consequently, it might be difficult to reach the
correctly decoded (i.e. ferromagnetic) state starting from an arbitrary initial con-
dition (which is almost surely a paramagnetic state) by some decoding algorithm.
We are therefore lead to consider moderate r, in which case the ferromagnetic
phase would have a larger basin of attraction although we have to sacrifice the
final quality of the decoded result (magnetization smaller than unity). In Fig.
5.8 the ground-state magnetization (overlap) is shown as a function of the noise
probability for various finite values of r (written as K in the figure) in the case
of R = 1/2. The transition is of first order except for r = 2. It can be seen that
the decoded result is very good (m close to one) for moderate values of r and p.

It is useful to devise a practical algorithm of decoding, given the channel
output {Jµ}, where µ denotes an appropriate combination of site indices. The
following method based on an iterative solution of TAP-like equations is a pow-
erful tool for this purpose (Kabashima and Saad 2001; Saad et al. 2001) since its
computational requirement is only of O(N). For a given site i and an interaction
µ that includes i, one considers a set of conditional probabilities

P (σi|{Jν �=µ}) ≡ 1 + mµiσi

2
, P (Jµ|σi, {Jν �=µ}) ≡ const · (1 + m̂µiσi), (5.77)

where ν also includes i.8 Under an approximate mean-field-like decoupling of the

8We did not write out the normalization constant in the second expression of (5.77) because
the left hand side is to be normalized with respect to Jµ in contrast to the first expression to
be normalized for σi.



98 ERROR-CORRECTING CODES

conditional probabilities, one obtains the following set of equations for mµi and
m̂µi:

mµi = tanh


 ∑

ν∈M(i)\µ

tanh−1 m̂νi + βF




m̂µi = tanhβJµ ·
∏

l∈L(µ)\i

mµl,

(5.78)

where M(i) is a set of interactions that include i, and L(µ) is a set of sites
connected by Jµ. After iteratively solving these equations for mµi and m̂µi, one
determines the final decoded result of the ith bit as sgn(mi), where

mi = tanh


 ∑

ν∈M(i)

tanh−1 m̂νi + βF


 . (5.79)

This method is equivalent to the technique of belief propagation used in infor-
mation theory. It is also called a TAP approach in the statistical mechanics
literature owing to its similarity to the TAP equations in the sense that mµi and
m̂µi reflect the effects of removal of a bond µ from the system.

The resulting numerical data are shown in Fig. 5.8. One can see satisfactory
agreement with the replica solution. It also turns out that the basin of attraction
of the ferromagnetic solution is very large for r = 2 but not for r ≥ 3.

5.6.2 Low-density parity-check code

Statistical-mechanical analysis is applicable also to other codes that are actively
investigated from the viewpoint of information theory. We explain the low-density
parity-check code (LDPC) here because of its formal similarity to the diluted
Sourlas code treated in the previous subsection (Kabashima et al. 2000a; Mu-
rayama et al. 2000). In statistical mechanics terms, the LDPC is a diluted many-
body Mattis model in an external field.9

Let us start the argument with the definition of the code in terms of a Boolean
representation (0 and 1, instead of ±1). The original message of length N is
denoted by an N -dimensional Boolean vector ξ and the encoded message of
length M by z0. The latter is generated from the former using two sparse matrices
Cs and Cn according to the following modulo-2 operation of Boolean numbers:

z0 = C−1
n Csξ. (5.80)

The matrix Cs has the size M ×N and the number of ones per row is r and that
per column is c, located at random. Similarly, Cn is M × M and has l ones per

9There are several variations of the LDPC. We treat in this section the one discussed by
MacKay and Neal (1997) and MacKay (1999). See also Vicente et al. (2000) for a slightly
different code.
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row and column randomly. The channel noise ζ is added to z0, and the output
is

z = z0 + ζ. (5.81)

Decoding is carried out by multiplying z by Cn:

Cnz = Cnz0 + Cnζ = Csξ + Cnζ. (5.82)

One finds the most probable solution of this equation for the decoded message
σ and the inferred noise τ

Csσ + Cnτ = Csξ + Cnζ. (5.83)

The Ising spin representation corresponding to the above prescription of the
LDPC, in particular (5.83), is

∏
i∈Ls(µ)

σi

∏
j∈Ln(µ)

τj =
∏

i∈Ls(µ)

ξi

∏
j∈Ln(µ)

ζj (≡ Jµ), (5.84)

where Ls(µ) is a set of indices of non-zero elements in the µth row of Cs and
similarly for Ln(µ). Note that σ, τ , ξ, and ζ are all Ising variables (±1) from
now on. The Hamiltonian reflects the constraint (5.84) as well as the bias in the
original message and the channel noise:

H =
∑

Ai1...ir ;j1...jl
δ[−1, Ji1...ir ;j1...jl

σi1 . . . σirτj1 . . . τjl
]

−TFs

∑
i

σi − TFn

∑
j

τj . (5.85)

Here A is a sparse tensor for choosing the appropriate combination of indices
corresponding to Cs and Cn (or Ls(µ) and Ls(µ)), Fs is the bias of the original
message, and Fn = 1

2 log(1 − p)/p comes from the channel noise of rate p. The
interaction Ji1...ir ;j1...jl

is specified by the expressions involving ξ and ζ in (5.84).
The problem is to find the ground state of this Hamiltonian to satisfy (5.84),
given the output of the channel {Jµ} defined in (5.84).

The replica analysis of the present system works similarly to the diluted
Sourlas code. The resulting RS free energy at T = 0 is

f =
c

r
log 2 + c

∫
dxdx̂ π(x)π̂(x̂) log(1 + xx̂) +

cl

r

∫
dydŷ ρ(y)ρ̂(ŷ) log(1 + yŷ)

− c

r

∫ r∏
k=1

dxkπ(xk)
l∏

m=1

dymρ(ym) log

(
1 +
∏
k

xk

∏
m

ym

)

−
∫ r∏

k=1

dx̂kπ̂(x̂k)

[
log

(
eFsξ
∏
k

(1 + x̂k) + e−Fsξ
∏
k

(1 − x̂k)

)]
ξ



100 ERROR-CORRECTING CODES

 +1

0

m

P

F

pp
c

+1

0
m

P

F

p

-1

123p
s

+1

0

m

F

pp
s 1

F’

 
(a) (b) (c)

Fig. 5.9. Magnetization as a function of the channel-error probability in the
LDPC (Murayama et al. 2000). Bold lines represent stable states. (a) r ≥ 3
or l ≥ 3, r > 1. (b) r = l = 2. (c) r = 1. (Copyright 2000 by the American
Physical Society)

− c

r

∫ l∏
m=1

dŷmρ̂(ŷm)

[
log

(
eFnζ

∏
m

(1 + ŷm) + e−Fnζ
∏
m

(1 − ŷm)

)]
ζ

. (5.86)

The order functions π(x) and π̂(x̂) denote the distributions of the multi-replica
overlaps and their conjugates for the σ-spins, and ρ(y) and ρ̂(ŷ) are for the
τ -spins:

qαβ...γ = aq

∫
dxπ(x)xl, q̂αβ...γ = aq̂

∫
dx̂ π̂(x̂)x̂l,

rαβ...γ = ar

∫
dy ρ(y)yl, r̂αβ...γ = ar̂

∫
dŷ ρ̂(ŷ)ŷl.

(5.87)

Extremization of the free energy (5.86) with respect to these order functions
yields ferromagnetic and paramagnetic solutions. Since the interactions in the
Hamiltonian (5.85) are of Mattis type without frustration, there is no spin glass
phase. When r ≥ 3 or l ≥ 3, r > 1, the free energy for an unbiased message
(Fs = 0) is

fF = − 1
R

Fn tanh Fn, fP =
1
R

log 2 − log 2 − 1
R

log 2 coshFn. (5.88)

The spin alignment is perfect (m = 1) in the ferromagnetic phase. The magne-
tization as a function of the channel-error probability p is shown in Fig. 5.9(a).
The ferromagnetic state has a lower free energy below pc that coincides with
the Shannon bound as can be verified by equating fF and fP. The paramagnetic
solution loses its significance below pc because its entropy is negative in this
region. A serious drawback is that the basin of attraction of the ferromagnetic
state is quite small in the present case.

If r = l = 2, the magnetization behaves as in Fig. 5.9(b). The perfect fer-
romagnetic state and its reversal are the only solutions below a threshold ps.
Any initial state converges to this perfect state under an appropriate decoding
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algorithm. Thus the code with r = l = 2 is quite useful practically although the
threshold ps lies below the Shannon bound.

The system with single-body interactions r = 1 has the magnetization as
shown in Fig. 5.9(c). Again, the Shannon bound is not saturated, but the perfect
ferromagnetic state is the only solution below ps. An advantage of the present
case is that there is no mirror image (m = −1).

Iterative solutions using TAP-like equations work also in the LDPC as a
rapidly converging tool for decoding (Kabashima and Saad 2001; Saad et al.
2001). These equations have similar forms to (5.78) but with two types of pa-
rameters, one for the σ-spins and the other for τ . Iterative numerical solutions
of these equations for given dilute matrices Cs and Cn show excellent agreement
with the replica predictions.

5.6.3 Cryptography

The LDPC is also useful in public-key cryptography (Kabashima et al. 2000b). The
N -dimensional Boolean plain text ξ is encrypted to an M -dimensional ciphertext
z by the public key G ≡ C−1

n CsD (where D is an arbitrary invertible dense
matrix of size N × N) and the noise ζ with probability p according to (5.81)

z = Gξ + ζ. (5.89)

Only the authorized user has the knowledge of Cn, Cs, and D separately, not just
the product G. The authorized user then carries out the process of decryption
equivalent to the decoding of the LDPC to infer Dξ and consequently the original
plaintext ξ. This user succeeds if r = l = 2 and p < ps as was discussed in the
previous subsection.

The task of decomposing G into Cn, Cs, and D is NP complete10 and is very
difficult for an unauthorized user, who is therefore forced to find the ground state
of the Hamiltonian, which is the Ising spin representation of (5.89):

H = −
∑

Gi1...ir′Ji1...ir′ σi1 . . . σir′ − TFs

∑
i

σi, (5.90)

where G is a dense tensor with elements 1 or 0 corresponding to G, and J is
either 1 or −1 according to the noise added as ζ in the Boolean representation
(5.89). Thus the system is frustrated. For large N , the number r′ in the above
Hamiltonian and c′ (the connectivity of the system described by (5.90)) tend
to infinity (but are smaller than N itself) with the ratio c′/r′ kept finite. The
problem is thus equivalent to the Sourlas-type code in the same limit. We know,
as mentioned in §5.6.1, that the basin of attraction of the correctly decrypted
state in such a system is very narrow. Therefore the unauthorized user almost
surely fails to decrypt.

This system of cryptography has the advantage that it allows for relatively
high values of p, and thus an increased tolerance against noise in comparison

10See Chapter 9 for elucidation of the term ‘NP completeness’.
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with existing systems. The computational requirement for decryption is of O(N),
which is much better than some of the commonly used methods.

5.7 Convolutional code

The convolutional code corresponds to a one-dimensional spin glass and plays
important roles in practical applications. It also has direct relevance to the turbo
code, to be elucidated in the next section, which is rapidly becoming the standard
in practical scenes owing to its high capability of error correction. We explain
the convolutional code and its decoding from a statistical-mechanical point of
view following Montanari and Sourlas (2000).

5.7.1 Definition and examples

In a convolutional code, one first transforms the original message sequence ξ =
{ξ1, . . . , ξN} (ξi = ±1, ∀i) into a register sequence τ = {τ1(ξ), . . . , τN (ξ)}
(τi = ±1, ∀i). In the non-recursive convolutional code, the register sequence
coincides with the message sequence (τi = ξi, ∀i), but this is not the case in
the recursive convolutional code to be explained later in §5.7.3. To encode the
message, one prepares r registers, the state of which at time t is described by
Σ1(t),Σ2(t), . . . , Σr(t).11 The number r is called the memory order of the code.
The register sequence τ is fed into the register sequentially (shift register):

Σ1(t + 1) = Σ0(t) ≡ τt

Σ2(t + 1) = Σ1(t) = τt−1

...
Σr(t + 1) = Σr−1(t) = τt−r.

(5.91)

The encoder thus carries the information of (r + 1) bits τt, τt−1, . . . , τt−r at any
moment t.

We restrict ourselves to the convolutional code with rate R = 1/2 for sim-
plicity. Code words J = {J (1)

1 , . . . , J
(1)
N ; J (2)

1 , . . . , J
(2)
N } are generated from the

register bits by the rule

J
(α)
i =

r∏
j=0

(τi−j)κ(j;α). (5.92)

Here, α = 1 or 2, and we define τj = 1 for j ≤ 0. The superscript κ(j; α) is
either 0 or 1 and characterizes a specific code. We define κ(0; 1) = κ(0; 2) = 1
to remove ambiguities in code construction. Two simple examples will be used
frequently to illustrate the idea:

11The original source message is assumed to be generated sequentially from i = 1 to i = N .
Consequently the time step denoted by t (= 1, 2, . . . , N) is identified with the bit number
i (= 1, 2, . . . , N).
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Fig. 5.10. A convolutional code with code rate 1/2 (example 2 in the text)
expressed as a spin system. Interactions exist among three spins around each
triangle and between two horizontally neighbouring spins. Two up spins are
located at i = −1 and i = 0 to fix the initial condition.

1. κ(0; 1) = κ(1; 1) = 1, and the other κ(j; 1) = 0; κ(0; 2) = 1, and the other
κ(j; 2) = 0. The memory order is r = 1. The code words are J

(1)
i = τiτi−1

and J
(2)
i = τi. The corresponding spin Hamiltonian is

H = −
N∑

i=1

J̃
(1)
i σiσi−1 −

N∑
i=1

J̃
(2)
i σi, (5.93)

where J̃
(α)
i is the noisy version of J

(α)
i and σi is the dynamical variable

used for decoding. This is a one-dimensional spin system with random
interactions and random fields.

2. κ(0; 1) = κ(1; 1) = κ(2; 1) = 1, and the other κ(j; 1) = 0; κ(0; 2) =
κ(2; 2) = 1, and the other κ(j; 2) = 0. The memory order is r = 2 and
the code words are J

(1)
i = τiτi−1τi−2 and J

(2)
i = τiτi−2. There are three-

body and two-body interactions in the corresponding spin system

H = −
N∑

i=1

J̃
(1)
i σiσi−1σi−2 −

N∑
i=1

J̃
(2)
i σiσi−2, (5.94)

which can be regarded as a system of ladder-like structures shown in Fig.
5.10. A diagrammatic representation of the encoder is depicted in Fig. 5.11.

5.7.2 Generating polynomials

Exposition of the encoding procedure in terms of the Boolean (0 or 1) repre-
sentation instead of the binary (±1) representation is useful to introduce the
recursive convolutional code in the next subsection. For this purpose, we express
the original message sequence ξ = {ξ1, . . . , ξN} by its generating polynomial
defined as

H(x) =
N∑

j=1

Hjx
j , (5.95)

where Hj (= 0 or 1) is the Boolean form of ξj : ξj = (−1)Hj . Similarly the
generating polynomial for the register sequence τ is



104 ERROR-CORRECTING CODES
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t

Fig. 5.11. Encoder corresponding to the code of Fig. 5.10. J
(1)
t is formed from

the three consecutive register bits and J
(2)
t from two bits.

G(x) =
N∑

j=1

Gjx
j , τj = (−1)Gj . (5.96)

The non-recursive convolutional code has G(x) = H(x), but this is not the case
for the recursive code to be explained in the next subsection. The code word
J (α) (α = 1, 2) is written as

L(α)(x) =
N∑

j=1

L
(α)
j xj (5.97)

with J
(α)
j = (−1)L

(α)
j . The relation between L(α)(x) and G(x) is determined by

(5.92) and is described by another polynomial

gα(x) =
r∑

j=0

κ(j; α)xj (5.98)

as
L(α)(x) = gα(x)G(x) (5.99)

or equivalently

L
(α)
i =

r∑
j=0

κ(j; α)Gi−j (mod 2). (5.100)

The right hand side is the convolution of κ and G, from which the name of
convolutional code comes.

The examples 1 and 2 of §5.7.1 have the generating polynomials as (1) g1(x) =
1 + x and g2(x) = 1, and (2) g1(x) = 1 + x + x2 and g2(x) = 1 + x2.

5.7.3 Recursive convolutional code

The relation between the source and register sequences ξ and τ (or H(x) and
G(x)) is not simple in the recursive convolutional code. The register sequence of
recursive convolutional code is defined by the generating polynomial as
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�1(t) �2(t)��
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Fig. 5.12. Encoder of the recursive convolutional code to be compared with the
non-recursive case of Fig. 5.11.

G(x) =
1

g1(x)
H(x). (5.101)

Code words satisfy L(α)(x) = gα(x)G(x) and therefore we have

L(1)(x) = H(x), L(2)(x) =
g2(x)
g1(x)

H(x). (5.102)

The first relation means J(1) = ξ in the binary representation.
The relation between the source and register sequences (5.101) can be written

in terms of the binary representation as follows. Equation (5.101) is seen to
be equivalent to G(x) = H(x) + (g1(x) − 1)G(x) because G(x) = −G(x) and
H(x) = −H(x) (mod 2). The coefficient of xi in this relation is, if we recall
κ(0; 1) = 1, Gi = Hi +

∑r
j=1 κ(j; 1)Gi−j , which has the binary representation

τi = ξi

r∏
j=1

(τi−j)κ(j;1)


⇔ ξi =

r∏
j=0

(τi−j)κ(j;1)


 . (5.103)

This equation allows us to determine τi recursively; that is, τi is determined if
we know τ1, . . . , τi−1. From the definition L(α)(x) = gα(x)G(x), code words are
expressed in terms of the register sequence in the same form as in the case of
the non-recursive convolutional code:

J
(α)
i =

r∏
j=0

(τi−j)κ(j;α). (5.104)

The encoder for the code of example 2 of §5.7.1 is shown in Fig. 5.12. Decoding
is carried out under the Hamiltonian

H = −
N∑

i=1


J̃

(1)
i

r∏
j=0

(σi−j)κ(j;1) + J̃
(2)
i

r∏
j=0

(σi−j)κ(j;2)


 , (5.105)
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where J̃
(α)
i is the noisy version of the code word J

(α)
i . According to (5.103), the

ith bit is inferred at the inverse temperature β as

ξ̂i = sgn

〈
r∏

j=0

(σi−j)κ(j;1)

〉
β

, (5.106)

which is to be contrasted with the non-recursive case

ξ̂i = sgn〈σi〉β . (5.107)

5.8 Turbo code
The turbo code is a powerful coding/decoding technique frequently used recently.
In has near-optimal performance (i.e. the transmission rate can be made close
to the Shannon bound under the error-free condition), which is exceptional in a
practicable code. We explain its statistical-mechanical formulation and some of
the results (Montanari and Sourlas 2000; Montanari 2000).

The turbo code is a variant of the recursive convolutional code with the
source message sequence ξ = {ξ1, . . . , ξN} and the permuted sequence ξP =
{ξP (1), . . . , ξP (N)} as the input to the encoder. The permutation P operates on
the set {1, 2, . . . , N} and is fixed arbitrarily for the moment. Correspondingly,
two register sequences are generated according to the prescription of the recursive
convolutional code (5.103):

τ
(1)
i = τi(ξ) = ξi

r∏
j=1

(τi−j(ξ))κ(j;1) (5.108)

τ
(2)
i = τi(ξP ) = ξP (i)

r∏
j=1

(τi−j(ξP ))κ(j;1) (5.109)

or, equivalently,

ξi =
r∏

j=0

(τ (1)
i−j)

κ(j;1) ≡ εi(τ (1)) (5.110)

ξP
i =

r∏
j=0

(τ (2)
i−j)

κ(j;1) ≡ εi(τ (2)). (5.111)

The code words are comprised of three sequences and the rate is R = 1/3:

J
(0)
i =

r∏
j=0

(τ (1)
i−j)

κ(j;1), J
(1)
i =

r∏
j=0

(τ (1)
i−j)

κ(j;2), J
(2)
i =

r∏
j=0

(τ (2)
i−j)

κ(j;2). (5.112)

The posterior to be used at the receiving end of the channel has the following
expression:

P (σ(1), σ(2)|J̃ (0)
, J̃

(1)
, J̃

(2)
) =

1
Z

N∏
i=1

δ(εP (i)(σ(1)), εi(σ(2)))
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· exp{−βH(σ(1), σ(2))}, (5.113)

where the Hamiltonian is, corresponding to (5.112),

H(σ(1), σ(2)) = −
N∑

i=1


J̃

(0)
i

r∏
j=0

(σ(1)
i−j)

κ(j;1)

+ J̃
(1)
i

r∏
j=0

(σ(1)
i−j)

κ(j;2) + J̃
(2)
i

r∏
j=0

(σ(2)
i−j)

κ(j;2)


 . (5.114)

The interactions J̃
(0)
i , J̃

(1)
i , and J̃

(2)
i are the noisy versions of the code words

J
(0)
i , J

(1)
i , and J

(2)
i , respectively. The system (5.114) is a one-dimensional spin

glass composed of two chains (σ(1) and σ(2)) interacting via the constraint
εP (i)(σ(1)) = εi(σ(2)) (∀i). In decoding, one calculates the thermal expectation
value of the variable representing the original bit, (5.110), using the posterior
(5.113):

ξ̂i = sgn〈εi(σ(1))〉β . (5.115)

The finite-temperature (MPM) decoding with the appropriate β is used in prac-
tice because an efficient TAP-like finite-temperature iterative algorithm exists as
explained later briefly.

To understand the effectiveness of turbo code intuitively, it is instructive
to express the spin variable σ

(1)
i in terms of the other set σ(2). In example

1 of §5.7.1, we have κ(0; 1) = κ(1; 1) = 1 and therefore, from the constraint
εP (i)(σ(1)) = εi(σ(2)), σ

(2)
i σ

(2)
i−1 = σ

(1)
P (i)σ

(1)
P (i)−1, see (5.110) and (5.111). We thus

have σ
(1)
i =

∏i
j=1 σ

(1)
j σ

(1)
j−1 =

∏i
j=1 σ

(2)
P−1(j)σ

(2)
P−1(j)−1 with σ

(α)
j = 1 for j ≤ 0.

If i is of O(N) and the permutation P is random, it is very plausible that this
final product of the σ(2) is composed of O(N) different σ(2). This means that
the Hamiltonian (5.114) has long-range interactions if expressed only in terms
of σ(2), and the ferromagnetic phase (in the ferromagnetic gauge) is likely to
have an enhanced stability compared to simple one-dimensional systems. We
may therefore expect that good performance is achieved in a turbo code with
random permutation P , which is indeed confirmed to be the case in numerical
experiments.

The decoding algorithm of the turbo code is described as follows. One pre-
pares two chains labelled by α = 1, 2 with the Hamiltonian

H(α)(σ(α)) = −
∑

i

(J̃ (0)
i + Γ(α)

i )
r∏

j=0

(σ(α)
i−j)

κ(j;1) −
∑

i

J̃
(α)
i

r∏
j=0

(σ(α)
i−j)

κ(j;2).

(5.116)
Then one iteratively solves a set of TAP-like equations for the effective fields
Γ(α)

i that represent the effects of the other chain:

Γ(1)
i (k + 1) = β−1 tanh−1〈εP−1(i)(σ(2))〉(2) − Γ(2)

P−1(i)(k) (5.117)
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Γ(2)
i (k + 1) = β−1 tanh−1〈εP (i)(σ(1))〉(1) − Γ(1)

P (i)(k), (5.118)

where 〈· · ·〉(α) is the thermal average with the Hamiltonian H(α)(σ(α)) and k
denotes the iteration step. The process (5.116)–(5.118) is an approximation to
the full system (5.114) and yet yields excellent performance numerically.

Detailed statistical-mechanical analysis of the system H(1)(σ(1))+H(2)(σ(2))
with εP (i)(σ(1)) = εi(σ(2)) has been carried out (Montanari 2000). We describe
some of its important results. Let us suppose that the channel is Gaussian and β
is adjusted to the optimal value (MPM). The S/N ratio is denoted as 1/w2. There
exists a phase of error-free decoding (overlap M = 1) that is locally unstable in
the high-noise region w2 > w2

c . The numerical values w2
c are 1/ log 4 = 0.721

for the code 1 of §5.7.1 and 1.675 for the code 2. The latter is very close to the
Shannon limit w2

S = 1/(22/3−1) = 1.702 derived by equating the capacity of the
Gaussian channel with the rate R = 1/3:

1
2

log2

(
1 +

1
w2

S

)
=

1
3
. (5.119)

The limit of the first example (wc = 0.721) is found to be close to numerical
results whereas the second (wc = 1.675) shows some deviation from numerical
results. The stability analysis leading to these values may not give the correct
answer if a first-order phase transition takes place in the second example.

5.9 CDMA multiuser demodulator

In this section we present a statistical-mechanical analysis of signal transmission
by modulation (T. Tanaka 2001). This topic deviates somewhat from the other
parts of this chapter. The signal is not encoded and decoded but is modulated
and demodulated as described below. Nevertheless, the goal is very similar to
error-correcting codes: to extract the best possible information from a noisy
output using the idea of Bayesian inference.

5.9.1 Basic idea of CDMA

Code-division multiple access (CDMA) is an important standard of modern mo-
bile communications (Simon et al. 1994; Viterbi 1995). The digital signal of a
user is modulated and transmitted to a base station through a channel that is
shared by multiple users. At the base station, the original digital signal is re-
trieved by demodulation of the received signal composed of the superposition of
multiple original signals and noise. An important problem is therefore to design
an efficient method to modulate and demodulate signals.

In CDMA, one modulates a signal in the following way. Let us focus our
attention to a signal interval, which is the time interval carrying a single digital
signal, with a signal ξi (= ±1) for the ith user. The signal interval is divided into
p chip intervals (p = 4 in Fig. 5.13). User i is assigned a spread code sequence
ηt

i (= ±1) (t = 1, . . . , p). The signal ξi is modulated in each chip interval t by the
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Fig. 5.13. Modulation of the signal of a single user in CDMA. A signal interval
is composed of four chip intervals in this example. The full line represents
the original signal and the dashed line denotes the spread code sequence.

spread code sequence according to the multiplication ηt
iξi. Modulated signals of

N users are superimposed in a channel and are further disturbed by noise. At
the base station, one receives the signal

yt =
N∑

i=1

ηt
iξi + νt (5.120)

at the chip interval t and is asked to retrieve the original signals ξi (i = 1, . . . , N)
from yt (t = 1, . . . , p) with the knowledge of the spread code sequence ηt

i (t =
1, . . . , p; i = 1, . . . , N).

Before proceeding to the problem of demodulation, we list a few points of
idealization that lead to the simple formula (5.120): modulated signals of N
users are assumed to be transmitted under perfect synchronization at each chip
interval t throughout an information signal interval. This allows us simply to
sum up ηt

iξi over all i (= 1, . . . , N) at any given chip interval t. Furthermore, all
signals are supposed to have the same amplitude (normalized to unity in (5.120)),
a perfect power control. Other complications (such as the effects of reflections)
are ignored in the present formulation. These aspects would have to be taken
into account when one applies the theory to realistic situations.

The measure of performance is the overlap of the original (ξi) and demodu-
lated (ξ̂i) signals

M =
1
N

N∑
i=1

ξiξ̂i, (5.121)

averaged over the distributions of ξi, η
t
i , and νt. Equivalently, one may try to

minimize the bit-error rate (the average probability of error per bit) (1−M)/2.
We show in the following that the CDMA multiuser demodulator, which uses
Bayesian inference, gives a larger overlap than the conventional demodulator.
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5.9.2 Conventional and Bayesian demodulators

Let us first explain the simple method of the conventional demodulator. To
extract the information of ξi from yt, we multiply the received signal at the
t th chip interval yt by the spread code ηt

i and sum it up over the whole signal
interval:

hi ≡ 1
N

p∑
t=1

ηt
iy

t =
p

N
ξi +

1
N

p∑
t=1

∑
k( �=i)

ηt
iη

t
kξk +

1
N

p∑
t=1

ηt
iν

t. (5.122)

The first term on the right hand side is the original signal, the second represents
multiuser interference, and the third is the channel noise (which is assumed to
be Gaussian). We then demodulate the signal by taking the sign of this quantity

ξ̂i = sgn(hi). (5.123)

It is easy to analyse the performance of this conventional demodulator in the
limit of large N and p with α = p/N fixed. We also assume that the noise power
σ2

s , the variance of νt, scales with N such that βs ≡ N/σ2
s is of O(1), and that ηt

i

and ξk are all independent. Then the second and third terms on the right hand
side of (5.122) are Gaussian variables, resulting in the overlap

M = Erf
(√

α

2(1 + β−1
s )

)
, (5.124)

where Erf(x) is the error function. This represents the performance of the con-
ventional demodulator as a function of the number of chip intervals per signal
interval α and the noise power βs.

To improve the performance, it is useful to construct the posterior of the
original signal, given the noisy signal, following the method of Bayesian infer-
ence. Let us denote the set of original signals by ξ = t(ξ1, . . . , ξN ) and the
corresponding dynamical variables for demodulation by S = t(S1, . . . , SN ). The
sequence of received signals within p chip intervals is also written as a vector in
a p-dimensional space y = t(y1, . . . , yp). Once the posterior P (S|y) is given, one
demodulates the signal by the MAP or MPM:

MAP: ξ̂ = arg max
S

P (S|y), (5.125)

MPM: ξ̂i = arg max
Si

TrS\Si
P (S|y). (5.126)

To construct the posterior, we first write the distribution of Gaussian noise
νt = yt −∑i ηt

iξi, (5.120), as

p∏
t=1

P (yt|ξ) ∝ exp


− βs

2N

p∑
t=1

(
yt −

N∑
i=1

ηt
iξi

)2

 ∝ exp{−βsH(ξ)}, (5.127)
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where the effective Hamiltonian has been defined as

H(ξ) =
1
2

N∑
i,j=1

Jijξiξj −
N∑

i=1

hiξi, Jij =
1
N

p∑
t=1

ηt
iη

t
j . (5.128)

The field hi has already been defined in (5.122). If we assume that the prior is
uniform, P (ξ) = const, the posterior is seen to be directly proportional to the
prior according to the Bayes formula:

P (S|y) ∝ exp{−βsH(S)}. (5.129)

The Hamiltonian (5.128) looks very similar to the Hopfield model to be discussed
in Chapter 7, (7.7) with (7.4), the only difference being that the sign of the
interaction is the opposite (Miyajima et al. 1993).

5.9.3 Replica analysis of the Bayesian demodulator
The replica method is useful to analyse the performance of the Bayesian demodu-
lator represented by the posterior (5.129).

Since we usually do not know the noise power of the channel βs, it is appro-
priate to write the normalized posterior with an arbitrary noise parameter β in
place of βs, the latter being the true posterior. From (5.127)–(5.129), we then
find

P (S|r) =
1

Z(r)
exp


−β

2

p∑
t=1

(
rt − N−1/2

N∑
i=1

ηt
iSi

)2

 , (5.130)

where the vector r denotes t(r1, . . . , rp) with rt = yt/
√

N , and the normalization
factor (or the partition function) is given as

Z(r) = 2−NTrS exp


−β

2

p∑
t=1

(
rt − N−1/2

N∑
i=1

ηt
iSi

)2

 . (5.131)

The factor 2−N is the uniform prior for ξ. The macroscopic behaviour of the
system is determined by the free energy averaged over the distributions of the
spreading code sequence, which is assumed to be completely random, and the
channel noise. The latter distribution of noise is nothing more than the partition
function (5.131) with the true hyperparameter β = βs, which we denote by Z0(r).
The replica average is therefore expressed as

[Zn] =
∫ p∏

t=1

drt [Z0(r)Zn(r)]η, (5.132)

where the configurational average on the right hand side is over the spreading
code sequence. It is convenient to separate the above quantity into the spin-
dependent part g1 and the rest g2 for further calculations:
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[Zn] =
∫ ∏

0≤α<β≤n

dQαβ eN(g1+αg2), (5.133)

where α = p/N in the exponent should not be confused with the replica index.
The zeroth replica (α = 0) corresponds to the probability weight Z0. The two
functions g1 and g2 are defined by

eNg1 = TrS

∏
0≤α<β≤n

δ(Sα · Sβ − NQαβ) (5.134)

eg2 =
∫

dr

[
exp

{
−βs

2
(r − v0)2 − β

2

n∑
α=1

(r − vα)2
}]

η

, (5.135)

where the following notations have been used:

v0 =
1√
N

N∑
i=1

ηiSi0, vα =
1√
N

N∑
i=1

ηiSiα (α = 1, . . . , n). (5.136)

In the thermodynamic limit p, N → ∞ with their ratio α fixed, these v0 and
vα become Gaussian variables with vanishing mean and covariance given by the
overlap of spin variables, under the assumption of a random distribution of the
spread code sequence:

Qαβ = [vαvβ ]η =
Sα · Sβ

N
(α, β = 0, . . . , n). (5.137)

To proceed further, we assume symmetry between replicas (α = 1, . . . , n):
Q0α = m, Qαβ = q (α, β ≥ 1). Then v0 and vα are more conveniently written in
terms of independent Gaussian variables u and zα with vanishing mean and unit
variance,

v0 = u

√
1 − m

q2
− tm√

q
, vα = zα

√
1 − q − t

√
q (α ≥ 1). (5.138)

We are now ready to evaluate the factor eg2 explicitly as

eg2 =
∫

dr

∫
Dt

∫
Du exp


−βs

2

(
u

√
1 − m2

q
− tm√

q
− r

)2



·
{∫

Dz exp
(
−β

2
(z
√

1 − q − t
√

q − r)2
)}n

= {1 + βs(1 − m2/q)}−1/2{1 + β(1 − q)}−n/2

·
∫

dr

∫
Dt exp

{
− βs(tm/

√
q + r)2

2{1 + βs(1 − m2/q)} − nβ(t
√

q + r)2

2{1 + β(1 − q)}
}

=
√

2π{1 + β(1 − q)}−(n−1)/2
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· [βs{1 + β(1 − q)} + nβ{1 + βs(1 − 2m + q)}]−1/2 . (5.139)

The other factor eNg1 (5.134) can be evaluated using the Fourier representation
of the delta function

eNg1 =
∫ ∏

0≤α<β≤n

dMαβ

2πi

· expN


log G(M) −

∑
0≤α<β≤n

MαβQαβ


 , (5.140)

G(M) = TrS exp


 ∑

0≤α,β≤n

MαβSαSβ




= 2
∫

Dz (2 cosh(
√

F z + E))ne−nF/2, (5.141)

where we have used the RS form of the matrix M0α = E and Mαβ = F (α 
=
β ≥ 1). In the thermodynamic limit, the leading contribution is

g1 = log
∫

Dz (2 cosh(
√

F z + E))n − n

2
F − nEm − 1

2
n(n − 1)Fq. (5.142)

From (5.139) and (5.142), the total free energy g1 + αg2 is given in the limit
n → 0 as

−βF

N
=
∫

Dz log 2 cosh(
√

F z + E) − Em − 1
2
F (1 − q)

−α

2

{
log{1 + β(1 − q)} +

β{1 + βs(1 − 2m + q)}
βs{1 + β(1 − q)}

}
. (5.143)

Extremization of the free energy yields the equations of state for the order pa-
rameters as

m =
∫

Dz tanh(
√

F z + E), q =
∫

Dz tanh2(
√

F z + E) (5.144)

E =
αβ

1 + β(1 − q)
, F =

αβ2(β−1
s + 1 − 2m + q)

{1 + β(1 − q)}2
. (5.145)

The overlap is determined from these quantities by

M =
∫

Dz sgn(
√

F z + E). (5.146)

The stability limit of the RS solution, the AT line, is expressed as

α = E2

∫
Dz sech4(

√
F z + E). (5.147)

The optimum demodulation by MPM is achieved at the parameter β = βs

whereas the MAP corresponds to β → ∞.
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Fig. 5.14. Bit-error rate of the CDMA demodulators. The left one (a) is for
the noise power βs = 1 and the right (b) is for βs = 20. The symbols are:
Opt. for the MPM, MFA for the mean-field demodulator with β = βs, and
CD for the conventional demodulator (T. Tanaka 2001; Copyright 2001 by
the Massachusetts Institute of Technology).

5.9.4 Performance comparison

The results of the previous analysis in terms of the bit-error rate (1 − M)/2
are plotted in Fig. 5.14 for (a) βs = 1 and (b) βs = 20 for the conventional
demodulator (CD), MPM (‘Opt.’), and MAP demodulators. Also shown is the
mean-field demodulator in which one uses the mean-field equation of state for
local magnetization

mi = tanh{β(−
∑

j

Jijmj + hi)} (5.148)

in combination with ξ̂i = sgn(mi). This method has the advantage that it serves
as a demodulating algorithm of direct practical usefulness.

It is observed that the MAP and MPM show much better performance than
the conventional demodulator. The curve for the MAP almost overlaps with the
MPM curve when the noise power is high, βs = 1, but a clear deviation is found
in the low-noise case βs = 20. The MPM result has been confirmed to be stable
for RSB. By contrast, one should take RSB into account for the MAP except in
a region with small α and large βs.

Bibliographical note

General expositions of information theory and error-correcting codes are found
in textbooks on these subjects (McEliece 1977; Clark and Cain 1981; Lin and
Costello 1983; Arazi 1988; Rhee 1989; Ash 1990; Wicker 1995). The present
form of statistical-mechanical analysis of error-correcting codes was proposed by
Sourlas (1989) and has been expanding rapidly as described in the text. Some
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of the recent papers along this line of development (but not cited in the text)
include Kanter and Saad (2000), Nakamura et al. (2000), and Kabashima et al.
(2000c). See also Heegard and Wicker (1999) for the turbo code.
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IMAGE RESTORATION

The problem of statistical inference of the original image given a noisy image can
be formulated in a similar way to error-correcting codes. By the Bayes formula
the problem reduces to a form of random spin systems, and methods of statis-
tical mechanics apply. It will be shown that image restoration using statistical
fluctuations (finite-temperature restoration or MPM) gives better performance
than the MAP if we are to maximize the pixel-wise similarity of the restored
image to the original image. This is the same situation as in error-correcting
codes. Mean-field treatments and the problem of parameter estimation will also
be discussed.

6.1 Stochastic approach to image restoration
Let us consider the problem of inference of the original image from a given digital
image corrupted by noise. This problem would seem to be very difficult without
any hints about which part has been corrupted by the noise. In the stochastic
approach to image restoration, therefore, one usually makes use of empirical
knowledge on images in general (a priori knowledge) to facilitate reasonable
restoration. The Bayes formula plays an important role in the argument.

6.1.1 Binary image and Bayesian inference
We formulate the stochastic method of image restoration for the simple case of
a binary (‘black and white’) image represented by a set of Ising spins ξ = {ξi}.
The index i denotes a lattice site in the spin system and corresponds to the pixel
index of an image. The set of pixel states ξ is called the Markov random field in
the literature of image restoration.

Suppose that the image is corrupted by noise, and one receives a degraded
(corrupted) image with the state of the pixel τi inverted from the original value
ξi with probability p. This conditional probability is written as

P (τi|ξi) =
exp(βpτiξi)
2 coshβp

, (6.1)

where βp is the same function of p as in (5.7). Under the assumption of indepen-
dent noise at each pixel, the conditional probability for the whole image is the
product of (6.1):

P (τ |ξ) =
1

(2 coshβp)N
exp(βp

∑
i

τiξi), (6.2)

where N is the total number of pixels.

116
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The problem is to infer the original image ξ, given a degraded image τ . For
this purpose, it is useful to use the Bayes formula (5.10) to exchange the entries
τ and ξ in the conditional probability (6.2). We use the notation σ = {σi} for
dynamical variables to restore the image which are to be distinguished from the
true original image ξ. Then the desired conditional probability (posterior) is

P (σ|τ ) =
exp(βp

∑
i τiσi)P (σ)

Trσ exp(βp

∑
i τiσi)P (σ)

. (6.3)

Here the original image is assumed to have been generated with the probability
(prior) P (σ).

One usually does not know the correct prior P (σ). Nevertheless (6.3) shows
that it is necessary to use P (σ) in addition to the given degraded image τ to
restore the original image. In error-correcting codes, it was reasonable to assume
a uniform prior. This is not the case in image restoration where non-trivial
structures (such as local smoothness) are essential. We therefore rely on our
knowledge on images in general to construct a model prior to be used in place
of the true prior.

Let us consider a degraded image in which a black pixel is surrounded by
white pixels. It then seems natural to infer that the black pixel is likely to have
been caused by noise than to have existed in the original image because real
images often have extended areas of smooth parts. This leads us to the following
model prior that gives a larger probability to neighbouring pixels in the same
state than in different states:

P (σ) =
exp(βm

∑
〈ij〉 σiσj)

Z(βm)
, (6.4)

where the sum 〈ij〉 runs over neighbouring pixels. The normalization factor
Z(βm) is the partition function of the ferromagnetic Ising model at temperature
Tm = 1/βm. Equation (6.4) represents our general knowledge that meaning-
ful images usually tend to have large areas of smooth parts rather than rapidly
changing parts. The βm is the parameter to control smoothness. Larger βm means
a larger probability of the same state for neighbouring pixels.

6.1.2 MAP and MPM

With the model prior (6.4) inserted in the Bayes formula (6.3), we have the
explicit form of the posterior,

P (σ|τ ) =
exp(βp

∑
i τiσi + βm

∑
〈ij〉 σiσj)

Trσ exp(βp

∑
i τiσi + βm

∑
〈ij〉 σiσj)

. (6.5)

The numerator is the Boltzmann factor of an Ising ferromagnet in random fields
represented by τ . We have thus reduced the problem of image restoration to the
statistical mechanics of a random-field Ising model.
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If one follows the idea of MAP, one should look for the ground state of the
random-field Ising model because the ground state maximizes the Boltzmann
factor (6.5). Note that the set τ , the degraded image, is given and fixed, which
in other words represents quenched randomness. Another strategy (MPM) is to
minimize the pixel-wise error probability as described in §5.2.3 and accept sgn〈σi〉
as the restored value of the ith pixel calculated through the finite-temperature
expectation value. It should also be noted here that, in practical situations of
restoration of grey-scale natural images, one often uses multivalued spin systems,
which will be discussed in §§6.4 and 6.5.

6.1.3 Overlap

The parameter βp in (6.5) represents the noise rate in the degraded image. One
does not know this noise rate beforehand, so that it makes sense to replace it
with a general variable h to be estimated by some method. We therefore use the
posterior (6.5) with βp replaced by h. Our theoretical analysis will be developed
for a while for the case where the original image has been generated according
to the Boltzmann factor of the ferromagnetic Ising model:

P (ξ) =
exp(βs

∑
〈ij〉 ξiξj)

Z(βs)
, (6.6)

where βs is the inverse of the temperature Ts of the prior.
We next define the average overlap of the original and restored images as in

(5.19)

M(βm, h) = TrξTrτ P (ξ)P (τ |ξ) {ξi sgn〈σi〉}
=

1
(2 coshβp)NZ(βs)

·TrξTrτ exp


βs

∑
〈ij〉

ξiξj + βp

∑
i

τiξi


 {ξisgn〈σi〉}. (6.7)

Here 〈σi〉 is the average by the Boltzmann factor with βp replaced by h in (6.5).
The dependence of M on βm and h is in the quantity sgn〈σi〉. The overlap
M(βm, h) assumes the largest value when βm and h are equal to the true values,
βs and βp, respectively:

M(βm, h) ≤ M(βs, βp). (6.8)

This inequality can be proved in the same way as in §5.3.2.
The inequality (6.8) has been derived for the artificial image generated by

the Ising model prior (6.6). It is not possible to prove comparable results for
general natural images because the prior is different from one image to another.
Nevertheless it may well happen in many images that the maximization of pixel-
wise overlap is achieved at finite values of the parameters βm and h.
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We have been discussing noise of type (6.2), a simple reversal of the binary
value. Similar arguments can be developed for the Gaussian noise

P (τ |ξ) =
1

(
√

2πτ)N
exp

{
−
∑

i

(τi − τ0ξi)2

2τ2

}
. (6.9)

The inequality for the maximum overlap between pixels, corresponding to (6.8),
is then

M(βm, h) ≤ M
(
βs,

τ0

τ2

)
. (6.10)

6.2 Infinite-range model

The true values of the parameters βm and h (βs and βp, respectively) are not
known beforehand. One should estimate them to bring the overlap M close to
the largest possible value. It is therefore useful to have information on how the
overlap M(βm, h) depends upon the parameters near the best values βm = βs and
h = βp. The infinite-range model serves as a prototype to clarify this point. In the
present section we calculate the overlap for the infinite-range model (Nishimori
and Wong 1999).

6.2.1 Replica calculations
Let us consider the infinite-range model with the following priors (the real and
model priors):

P (ξ) =
exp
(
(βs/2N )

∑
i �=j ξiξj

)
Z(βs)

, P (σ) =
exp
(
(βm/2N )

∑
i �=j σiσj

)
Z(βm)

. (6.11)

This model is very artificial in the sense that all pixels are neighbours to each
other, and it cannot be used to restore the original image of a realistic two-
dimensional degraded image. However, our aim here is not to establish a model
of practical usefulness but to understand the generic features of macroscopic
variables such as the overlap M . It is well established in statistical mechanics
that the infinite-range model is suited for such a purpose.

For the Gaussian noise (6.9), we can calculate the overlap M(βm, h) by the
replica method. The first step is the evaluation of the configurational average of
the nth power of the partition function:

[Zn] =
∫ ∏

i

dτi
1

(
√

2πτ)N
exp

(
− 1

2τ2

∑
i

(τ2
i + τ2

0 )

)

·Trξ

exp
(
(βs/2N )

∑
i �=j ξiξj + (τ0/τ2)

∑
i τiξi

)
Z(βs)

·Trσ exp


 βm

2N

∑
i �=j

∑
α

σα
i σα

j + h
∑

i

∑
α

τiσ
α
i
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=
1

Z(βs)(
√

2πτ)N

∫ ∏
i

dτi exp

(
− 1

2τ2

∑
i

(τ2
i + τ2

0 )

)

·
(

Nβs

2π

)1/2(
Nβm

2π

)n/2 ∫
dm0

∫ ∏
α

dmαTrξTrσ

· exp

{
−Nβsm

2
0

2
− βs

2
− nβm

2
+ βsm0

∑
i

ξi

− Nβm

2

∑
α

m2
α + βm

∑
α

mα

∑
i

σα
i +
∑

i

(
τ0

τ2
ξi + h

∑
α

σα
i

)
τi

}

∝ 1
Z(βs)

∫
dm0

∫ ∏
α

dmα exp N

{
−βsm

2
0

2
− βm

2

∑
α

m2
α

+ log Tr
∫

Du exp

(
βsm0ξ + βm

∑
α

mασα

+ τ0hξ
∑
α

σα + hτu
∑
α

σα

)}
, (6.12)

where Tr denotes the sums over σα and ξ. We write [Zn] = exp(−βmnNf),
and evaluate −βmnf to first order in n by steepest descent assuming replica
symmetry,

−βmnf = −1
2
βsm

2
0 + log 2 coshβsm0 − 1

2
nβmm2

+ n
Trξ

∫
Du eβsm0ξ log 2 cosh(βmm + τ0hξ + τhu)

2 coshβsm0
, (6.13)

where Trξ is the sum over ξ = ±1.
By extremization of the free energy at each order of n, we obtain the equations

of state for order parameters. From the n-independent terms, we find

m0 = tanh βsm0. (6.14)

This represents the ferromagnetic order parameter m0 = [ξi] in the original
image. It is natural to have a closed equation for m0 because the original image
should not be affected by degraded or restored images.

The terms of O(n) give

m =
Trξ

∫
Du eβsm0ξ tanh(βmm + τ0hξ + τhu)

2 coshβsm0
. (6.15)

This is the equation for the ferromagnetic order parameter m = [〈σi〉] of the
restored image. The overlap M can be calculated by replacing tanh(·) in (6.15)
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Fig. 6.1. The overlap as a function of the restoration temperature

by ξsgn(·) as in §5.4.4. Here, we should remember that we cannot use the ferro-
magnetic gauge in image restoration (because the prior is not a constant) and
the value ξ remains explicitly in the formulae.

M =
Trξ

∫
Du eβsm0ξξsgn(βmm + τ0hξ + τhu)

2 coshβsm0
. (6.16)

The information on the original image (6.14) determines the order parameter of
the restored image (6.15) and then we have the overlap (6.16).

6.2.2 Temperature dependence of the overlap

It is straightforward to investigate the temperature dependence of M by numer-
ically solving the equations for m0, m, and M in (6.14), (6.15), and (6.16). In
Fig. 6.1 we have drawn M as a function of Tm = 1/βm by fixing the ratio of
βm and h to the optimum value βs/(τ0/τ2) determined in (6.10). We have set
Ts = 0.9, τ0 = τ = 1. The overlap is seen to be a maximum at the optimal
parameter Tm = 0.9 (= Ts). The MAP corresponds to Tm → 0 and the overlap
there is smaller than the maximum value. It is clear that the annealing process
(in which one tries to reach equilibrium by decreasing the temperature from a
high value) gives a smaller overlap if one lowers the temperature beyond the
optimal value.

6.3 Simulation

It is in general difficult to discuss quantitatively the behaviour of the overlap M
for two-dimensional images by the infinite-range model. We instead use Monte
Carlo simulations and compare the results with those for the infinite-range model
(Nishimori and Wong 1999).

In Fig. 6.2 is shown the overlap M of the original and restored images by
finite-temperature restoration. The original image has 400 × 400 pixels and was
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Fig. 6.2. The overlap as a function of the restoration temperature for a
two-dimensional image.

generated by the prior (6.11) (Ts = 2.15). Degradation was caused by the binary
noise with p = 0.1. The overlap M assumes a maximum when the restoration
temperature Tm is equal to the original Ts = 2.15 according to the inequality
(6.8), which is seen to be true within statistical uncertainties. In this example,
the parameter h has been changed with βm so that the ratio of βm and h is kept
to the optimum value βs/βp.

Comparison with the case of the infinite-range model in Fig. 6.1 indicates
that M depends relatively mildly on the temperature in the two-dimensional
case below the optimum value. One should, however, be aware that this result
is for the present specific values of Ts and p, and it still has to be clarified how
general this conclusion is.

An explicit illustration is given in Fig. 6.3 that corresponds to the situation
of Fig. 6.2. Figure 6.3(a) is the original image (Ts = 2.15), (b) is the degraded
image (p = 0.1), (c) is the result of restoration at a low temperature (Tm = 0.5),
and (d) has been obtained at the optimum temperature (Tm = 2.15). It is clear
that (d) is closer to the original image than (c). The MAP has Tm = 0 and is
expected to give an even less faithful restored image than (c), in particular in
fine structures. It has thus become clear that the MPM, the finite-temperature
restoration with correct parameter values, gives better results than the MAP for
two-dimensional images generated by the ferromagnetic Ising prior (6.11).

6.4 Mean-field annealing

In practical implementations of image restoration by the MAP as well as by
the MPM, the required amount of computation is usually very large because
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(a) (b) (c) (d)

Fig. 6.3. Restoration of an image generated by the two-dimensional Ising model:
(a) original image, (b) degraded image, (c) restored image at a very low tem-
perature (close to MAP), and (d) restored image at the optimum temperature
(MPM).

there are 2N degrees of freedom for a binary image. Therefore one often makes
use of approximations, and a typical example is mean-field annealing in which
one looks for the optimum solution numerically using the idea of the mean-field
approximation (Geiger and Girosi 1991; Zhang 1992; Bilbro et al. 1992).

6.4.1 Mean-field approximation

We now generalize the argument from binary to grey-scale images to be repre-
sented by the Potts model. Generalization of (6.5) to the Potts model is

P (σ|τ ) =
exp(−βpH(σ|τ ))

Z
(6.17)

H(σ|τ ) = −
∑

i

δ(σi, τi) − J
∑
〈ij〉

δ(σi, σj) (6.18)

Z = Trσ exp(−βpH(σ|τ )), (6.19)

where τ and σ are Q-state Potts spins (τi, σi = 0, 1, . . . , Q − 1) to denote grey
scales of degraded and restored images, respectively. In the ferromagnetic Potts
model, (6.18) with J > 0, the interaction energy is −J if the neighbouring spins
(pixels) are in the same state σi = σj and zero otherwise. Thus the neighbouring
spins tend to be in the same state. The Ising model corresponds to Q = 2. The
MAP evaluates the ground state of (6.18), and the MPM calculates the thermal
average of each spin σi at an appropriate temperature.

Since it is difficult to evaluate (6.17) explicitly, we approximate it by the
product of marginal distributions

ρi(n) = TrσP (σ|τ )δ(n, σi) (6.20)

as
P (σ|τ ) ≈

∏
i

ρi(σi). (6.21)
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The closed set of equations for ρi can be derived by inserting the mean-field
approximation (6.21) into the free energy

F = Trσ{H(σ|τ ) + Tp log P (σ|τ )}P (σ|τ ) (6.22)

and minimizing it with respect to ρi under the normalization condition

Trσ

∏
i

ρi(σi) = 1. (6.23)

Simple manipulations then show that ρi satisfies the following equation:

ρi(σ) =
exp
(−βpH

MF
i (σ)

)
∑Q−1

n=0 exp
(−βpHMF

i (n)
) (6.24)

HMF
i (n) = −δ(n, τi) − J

∑
n.n.∈i

ρj(n), (6.25)

where the sum in the second term on the right hand side of (6.25) runs over
nearest neighbours of i.

6.4.2 Annealing

A numerical solution of (6.24) can be obtained relatively straightforwardly by
iteration if the parameters βp and J are given. In practice, one iterates not for
the function ρi itself but for the coefficients {m(l)

i }

ρi(σ) =
Q−1∑
l=0

m
(l)
i Φl(σ) (6.26)

of the expansion of the function in terms of the complete orthonormal system of
polynomials

Q−1∑
σ=0

Φl(σ)Φl′ (σ) = δ(l, l′). (6.27)

The following discrete Tchebycheff polynomials are useful for this purpose (Tanaka
and Morita 1996):

Ψ0(σ) = 1, Ψ1(σ) = 1 − 2
Q − 1

σ,

(l + 1)(Q − 1 − l)Ψl+1(σ)
= −(2σ − Q + 1)(2l + 1)Ψl(σ) − l(Q + l)Ψl−1(σ) (6.28)

Φl(σ) =
Ψl(σ)√∑Q−1
σ=0 Ψl(σ)2

.

Multiplying both sides of (6.24) by Φl(σ) and summing the result over σ, we find
from (6.27) and (6.26)
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m
(l)
i =

TrσΦl(σ) exp
{
βpδ(σ, τi) + βpJ

∑
n.n.∈i

∑
l′ m

(l′)
j Φl′(σ)

}
ZMF

, (6.29)

where ZMF is the denominator of (6.24). The set of coefficients {m(l)
i } can thus be

calculated by iteration. In practice, one usually does not know the correct values
of βp and J , and therefore it is necessary to estimate them by the methods
explained below.

Equation (6.29) is a generalization of the usual mean-field approximation to
the Potts model. To confirm this explicitly, we apply (6.24) and (6.25) to the
Ising model (Q = 2):

ρi(σ) = m
(0)
i + m

(1)
i (1 − 2σ) (6.30)

HMF
i (σ) = −δ(σ, τi) − J

∑
n.n.∈i

{m(0)
j + m

(1)
j (1 − 2σ)}, (6.31)

where σ = 0 or 1. Using the first two Tchebycheff polynomials Ψ0 and Ψ1, we
find from (6.29) that m

(0)
i = 1 and the mean-field equation in a familiar form

m
(1)
i = tanh

(
βpJ

∑
n.n.∈i

m
(1)
j +

βp

2
τi

)
, (6.32)

where we have used the conventional Ising variables (±1 instead of 0 and 1).
In the MAP (βp → ∞) as well as in the MPM, one has to lower the temper-

ature gradually starting from a sufficiently high temperature (βp ≈ 0) to obtain
a reliable solution of (6.29). This is the process of mean-field annealing.

6.5 Edges

For non-binary images, it is useful to introduce variables representing discontin-
uous changes of pixel values between neighbouring positions to restore the edges
of surfaces as faithfully as possible (Geman and Geman 1984; Marroquin et al.
1987). Such an edge variable uij takes the value 0 (no edge between pixels i and
j) or 1 (existence of an edge). In the present section, we solve a Gaussian model
of image restoration with edges using the mean-field approximation (Geiger and
Girosi 1991; Zerubia and Chellappa 1993; Zhang 1996; K. Tanaka 2001b).

Let us consider a Q-state grey-scale image. The model prior is assumed to
have a Gaussian form

P (σ, u) =
1
Z

exp


−βm

∑
〈ij〉

(1 − uij){(σi − σj)2 − γ2}

 , (6.33)

where σi = 0, 1, . . . , Q − 1 and uij = 0, 1. Note that we are considering a Q-
state Ising model here, which is different from the Potts model. The difference
between neighbouring pixel values |σi − σj | is constrained to be small (less than
γ) if uij = 0 (no edge) to reflect the smoothness of the grey scale, whereas the
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same difference |σi − σj | can take arbitrary values if uij = 1 (edge). Thus this
prior favours the existence of an edge if the neighbouring pixel values differ by
a large amount.12 Noise is also supposed to be Gaussian

P (τ |ξ) =
∏

i

1√
2πw

exp
{
− (τi − ξi)2

2w2

}
, (6.34)

where the true original image ξ and degraded image τ both have Q values at
each pixel. The posterior is therefore of the form

P (σ, u|τ ) =
exp(−H(σ, u|τ ))∑

u Trσ exp(−H(σ, u|τ ))
, (6.35)

where

H(σ, u|τ ) = −βm

∑
〈ij〉

(1− uij){(σi − σj)2 − γ2}− (2w2)−1
∑

i

(τi − σi)2. (6.36)

In the finite-temperature (MPM) estimation, we accept the value ni that maxi-
mizes the marginalized posterior

P (ni|τ ) =
∑
u

TrσP (σ, u|τ )δ(σi, ni) (6.37)

as the restored pixel state at i.
It is usually quite difficult to carry out the above procedure explicitly. A

convenient yet powerful approximation is the mean-field method discussed in
the previous section. The central quantities in the mean-field approximation are
the marginal probabilities

ρi(n) =
∑
u

TrσP (σ, u|τ )δ(σi, n)

ρij(u) =
∑
u

TrσP (σ, u|τ )δ(uij , u).
(6.38)

The full probability distribution is approximated as

P (σ, u|τ ) ≈
∏

i

ρi(σi)
∏
〈ij〉

ρij(uij). (6.39)

The marginal probabilities are determined by minimization of the free energy

F =
∑
u

Trσ{H(σ, u|τ ) + log P (σ, u|τ )}P (σ, u|τ ) (6.40)

12Interactions between edges represented by the products of the uij are often included to take
into account various types of straight and crossing edges of extended lengths in real images.
The set {uij} is called the line field in such cases.
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with respect to ρi(σi) and ρij(uij) under the normalization condition

Q−1∑
n=0

ρi(n) = 1,
∑

u=0,1

ρij(u) = 1. (6.41)

The result is

ρi(n) =
e−Ei(n)∑Q−1

m=0 e−Ei(m)

ρij(l) =
e−Eij(l)∑

k=0,1 e−Eij(k)

Ei(n) =
(n − τi)2

2w2

+
∑
j∈Gi

∑
k=0,1

Q−1∑
m=0

βm(1 − k){(n − m)2 − γ2}ρj(m)ρij(k)

Eij(l) = βm

Q−1∑
m,m′=0

(1 − l){(m − m′)2 − γ2}ρi(m)ρj(m′),

(6.42)

where Gi is the set of neighbours of i. By solving these equations iteratively, we
obtain ρi(n), from which it is possible to determine the restored value of the ith
pixel as the n that gives the largest value of ρi(n).

For practical implementation of the iterative solution of the set of equations
(6.42) for large Q, it is convenient to approximate the sum over Q pixel values∑Q−1

m=0 by the integral
∫∞
−∞ dm because the integrals are analytically calculated

to give

ρi(n) =
1√

2πwi

exp
(
− (n − µi)2

2w2
i

)
(6.43)

µi =
(2σ2)−1τi + βm

∑
j∈Gi

(1 − λij)µj

(2σ2)−1 + βm

∑
j∈Gi

(1 − λij)
(6.44)

1
2w2

i

=
1

2w2
+ βm

∑
j∈Gi

(1 − λij) (6.45)

λij =
1

1 + exp[−βm{w2
i + w2

j + (µi − µj)2 − γ2}] . (6.46)

It is straightforward to solve (6.44), (6.45), and (6.46) by iteration. Using the
result in (6.43), the final estimation of the restored pixel value is obtained.

An example is shown in Fig. 6.5 for Q = 256. The original image (a) has
been degraded by Gaussian noise of vanishing mean and variance 900 into (b).
The image restored by the set of equations (6.43) to (6.46) is shown in (c)
together with a restored image (d) obtained by a more sophisticated cluster
variation method in which the correlation effects of neighbouring sites are taken
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(a) (b)

(c) (d)

Fig. 6.4. Restoration of 256 grey-scale image by the Gaussian prior and edges
(line process). Degradation was by Gaussian noise of vanishing mean and
variance 900: (a) original image, (b) degraded images, (c) restored image by
mean-field annealing, and (d) restored image by cluster variation method.
Courtesy of Kazuyuki Tanaka (copyright 2001).

into account in the Bethe-like approximation (K. Tanaka 2001b). Even in the
mean-field level (c), discontinuous changes of pixel values (edges) around the
eyes are well reproduced. The edges would have been blurred without the uij-
term in (6.33).

6.6 Parameter estimation

It is necessary to use appropriate values of the parameters βp and J to restore
the image using the posterior (6.17). However, one usually has only the degraded
image and no explicit knowledge of the degradation process characterized by
βp or the parameter J of the original image. We therefore have to estimate
these parameters (hyperparameters) from the degraded image only (Besag 1986;
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Lakshmanan and Derin 1989; Pryce and Bruce 1995; Zhou et al. 1997; Molina
et al. 1999).

The following procedure is often used for this purpose. We first marginalize
the probability of the given degraded image τ , erasing the original image

P (τ |βp, J) = TrξP (τ |ξ, βp)P (ξ, J). (6.47)

The above notation denotes the probability of degraded image τ given the pa-
rameters βp and J . Since we know τ , it is possible to estimate the parameters
βp and J as the ones that maximize the marginalized likelihood function (6.47)
or the evidence. However, the computational requirement for the sum in (6.47)
is exponentially large, and one should resort to simulations or the mean-field
approximation to implement this idea.

A different strategy is to estimate σ that maximizes P (τ |σ, βp)P (σ, J) as
a function of βp and J without marginalization of ξ in (6.47). One denotes the
result as {σ̂(βp, J)} and estimates βp and J that maximize the product

P (τ |{σ̂(βp, J)}, βp)P ({σ̂(βp, J)}, J).

This method is called the maximum likelihood estimation.
Another idea is useful when one knows the number of neighbouring pixel pairs

L having different grey scales (Tanaka and Morita 1995; Morita and Tanaka 1996,
1997; Tanaka and Morita 1997; K. Tanaka 2001a)

L =
∑
〈ij〉

{1 − δ(ξi, ξj)} . (6.48)

One then accepts the image nearest to the degraded image under this constraint
(6.48). By taking account of the constraint using the Lagrange multiplier, we see
that the problem is to find the ground state of

H = −
∑

i

δ(σi, τi) − J


L −

∑
〈ij〉

{1 − δ(σi, σj)}

 .

The Potts model in random fields (6.18) has thus been derived naturally. The
parameter J is chosen such that the solution satisfies the constraint (6.48). Figure
6.5 is an example of restoration of a 256-level grey-scale image by this method
of constrained optimization.13

13Precisely speaking, the restored image (c) has been obtained by reducing the 256-level
degraded image to an eight-level image and then applying the constrained optimization method
and mean-field annealing. The result has further been refined by a method called conditional
maximization with respect to the grey scale of 256 levels.
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(a) (b)

(c)

Fig. 6.5. Restoration of 256-level image by the Potts model: (a) original image,
(b) degraded image, and (c) restored image. Courtesy of Kazuyuki Tanaka
(1999). (Copyright 1999 by the Physical Society of Japan)

Bibliographical note

The papers by Geman and Geman (1984), Derin et al. (1984), Marroquin et
al. (1987), and Pryce and Bruce (1995) are important original contributions on
stochastic approaches to image restoration and, at the same time, are useful to
obtain an overview of the field. For reviews mainly from an engineering point
of view, see Chellappa and Jain (1993). Some recent topics using statistical-
mechanical ideas include dynamics of restoration (Inoue and Carlucci 2000), state
search by quantum fluctuations (Tanaka and Horiguchi 2000; Inoue 2001), hyper-
parameter estimation in a solvable model (Tanaka and Inoue 2000), segmentation
by the XY model (Okada et al. 1999), and the cluster variation method to im-
prove the näıve mean-field approach (Tanaka and Morita 1995, 1996; K. Tanaka
2001b).
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ASSOCIATIVE MEMORY

The scope of the theory of neural networks has been expanding rapidly, and
statistical-mechanical techniques stemming from the theory of spin glasses have
been playing important roles in the analysis of model systems. We summarize
basic concepts in the present chapter and study the characteristics of networks
with interneuron connections given by a specific prescription. The next chap-
ter deals with the problem of learning where the connections gradually change
according to some rules to achieve specified goals.

7.1 Associative memory

The states of processing units (neurons) in an associative memory change with
time autonomously and, under certain circumstances, reach an equilibrium state
that reflects the initial condition. We start our argument by elucidating the
basic concepts of an associative memory, a typical neural network. Note that
the emphasis is, in the present book, on mathematical analyses of information
processing systems with engineering applications in mind (however remote they
might be), rather than on understanding the functioning of the real brain. We
nevertheless use words borrowed from neurobiology (neuron, synapse, etc.) be-
cause of their convenience to express various basic building blocks of the theory.

7.1.1 Model neuron

The structure of a neuron in the real brain is schematically drawn in Fig. 7.1. A
neuron receives inputs from other neurons through synapses, and if the weighted
sum of the input signals exceeds a threshold, the neuron starts to emit its own
signal. This signal is transmitted through an axon to many other neurons.

synapse

axon

Fig. 7.1. Schematic structure of a neuron

131
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To construct a system of information processing, it is convenient to model
the functioning of a neuron in a very simple way. We label the state of a neuron
by the variable Si = 1 if the neuron is excited (transmitting a signal) and by
Si = −1 when it is at rest. The synaptic efficacy from neuron j to neuron i will
be denoted by 2Jij . Then the sum of signals to the ith neuron, hi, is written as

hi =
∑

j

Jij(Sj + 1). (7.1)

Equation (7.1) means that the input signal from j to i is 2Jij when Sj = 1
and zero if Sj = −1. The synaptic efficacy Jij (which will often be called the
connection or interaction) can be both positive and negative. In the former case,
the signal from Sj increases the value of the right hand side of (7.1) and tends to
excite neuron i; a positive connection is thus called an excitatory synapse. The
negative case is the inhibitory synapse.

Let us assume that the neuron i becomes excited if the input signal (7.1)
exceeds a threshold θi at time t and is not excited otherwise:

Si(t + ∆t) = sgn


∑

j

Jij(Sj(t) + 1) − θi


 . (7.2)

We focus our argument on the simple case where the threshold θi is equal to∑
j Jij so that there is no constant term in the argument on the right hand side

of the above equation:

Si(t + ∆t) = sgn


∑

j

JijSj(t)


 . (7.3)

7.1.2 Memory and stable fixed point

The capability of highly non-trivial information processing emerges in a neural
network when very many neurons are connected with each other by synapses,
and consequently the properties of connections determine the characteristics of
the network. The first half of the present chapter (up to §7.5) discusses how
memory and its retrieval (recall) become possible under a certain rule for synaptic
connections.

A pattern of excitation of a neural network will be denoted by {ξµ
i }. Here

i (= 1, . . . , N) is the neuron index, µ (= 1, . . . , p) denotes the excitation pattern
index, and ξµ

i is an Ising variable (±1). For example, if the µth pattern has the
ith neuron in the excited state, we write ξµ

i = 1. The µth excitation pattern
can be written as {ξµ

1 , ξµ
2 , . . . , ξµ

N}, and p such patterns are assumed to exist
(µ = 1, 2, . . . , p).

Let us suppose that a specific excitation pattern of a neural network corre-
sponds to a memory and investigate the problem of memorization of p patterns
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in a network of N neurons. We identify memorization of a pattern {ξµ
i }i=1,...,N

with the fact that the pattern is a stable fixed point of the time evolution rule
(7.3) that Si(t) = ξµ

i → Si(t + ∆t) = ξµ
i holds at all i. We investigate the

condition for this stability.
To facilitate our theoretical analysis as well as to develop arguments inde-

pendent of a specific pattern, we restrict ourselves to random patterns in which
each ξµ

i takes ±1 at random. For random patterns, each pattern is a stable fixed
point as long as p is not too large if we choose Jij as follows:

Jij =
1
N

p∑
µ=1

ξµ
i ξµ

j . (7.4)

The diagonal term Jii is assumed to be vanishing (Jii = 0). This is called the
Hebb rule. In fact, if the state of the system is in perfect coincidence with the
pattern µ at time t (i.e. Si(t) = ξµ

i , ∀i), the time evolution (7.3) gives the state
of the ith neuron at the next time step as

sgn


∑

j

Jijξ
µ
j


 = sgn


 1

N

∑
j

∑
ν

ξν
i ξν

j ξµ
j


 = sgn

(∑
ν

ξν
i δνµ

)
= sgn (ξµ

i ) ,

(7.5)
where we have used the approximate orthogonality between random patterns

1
N

∑
j

ξµ
j ξν

j = δνµ + O
(

1√
N

)
. (7.6)

Consequently we have Si(t+∆t) = ξµ
i at all i for sufficiently large N . Drawbacks

of this argument are, first, that we have not checked the contribution of the
O(1/

√
N) term in the orthogonality relation (7.6), and, second, that the stability

of the pattern is not clear when one starts from a state slightly different from
the embedded (memorized) pattern (i.e. Si(t) = ξµ

i at most, but not all, i). These
points will be investigated in the following sections.

7.1.3 Statistical mechanics of the random Ising model

The time evolution described by (7.3) is equivalent to the zero-temperature dy-
namics of the Ising model with the Hamiltonian

H = −1
2

∑
i,j

JijSiSj = −1
2

∑
i

Si

∑
j

JijSj . (7.7)

The reason is that
∑

j JijSj is the local field hi to the spin Si,14 and (7.3) aligns
the spin (neuron state) Si to the direction of the local field at the next time step

14Note that the present local field is different from (7.1) by a constant
∑

j
Jij .
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state

energy

Fig. 7.2. Energy landscape and time evolution

t + ∆t, leading to a monotonic decrease of the energy (7.7). Figure 7.2 depicts
this situation intuitively where the network reaches a minimum of the energy
closest to the initial condition and stops its time evolution there. Consequently,
if the system has the property that there is a one-to-one correspondence between
memorized patterns and energy minima, the system starting from the initial con-
dition with a small amount of noise (i.e. an initial pattern slightly different from
an embedded pattern) will evolve towards the closest memorized pattern, and the
noise in the initial state will thereby be erased. The system therefore works as an
information processor to remove noise by autonomous and distributed dynamics.
Thus the problem is to find the conditions for this behaviour to be realized under
the Hebb rule (7.4).

We note here that the dynamics (7.3) definitely determines the state of
the neuron, given the input hi(t) =

∑
j JijSj(t). However, the functioning of

real neurons may not be so deterministic, which suggests the introduction of a
stochastic process in the time evolution. For this purpose, it is convenient to
assume that Si(t + ∆t) becomes 1 with probability 1/(1 + e−2βhi(t)) and is −1
with probability e−2βhi(t)/(1 + e−2βhi(t)). Here β is a parameter introduced to
control uncertainty in the functioning of the neuron. This stochastic dynamics
reduces to (7.3) in the limit β → ∞ because Si(t + ∆t) = 1 if hi(t) > 0 and is
Si(t+∆t) = −1 otherwise. The network becomes perfectly random if β = 0 (see
Fig. 7.3).

This stochastic dynamics is equivalent to the kinetic Ising model (4.93) and
(4.94). To confirm this, we consider, for example, the process of the second term
on the right hand side of (4.94). Since S′′ is a spin configuration with Si inverted
to −Si in S = {Si}, we find ∆(S′′, S) = H(S′′)−H(S) = 2Sihi. The transition
probability of this spin inversion process is, according to (4.94),

w =
1

1 + exp
(
β∆(S′′, S)

) =
1

1 + e2βSihi
. (7.8)

If Si = 1 currently, the possible new state is Si = −1 and the transition prob-
ability for such a process is w = (1 + e2βhi)−1 = e−2βhi/(1 + e−2βhi), which
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1

hi

0

)2exp(1

1

ih���

Fig. 7.3. The probability that the neuron i becomes excited.

coincides with the above-mentioned transition probability of neuron update to
Si = −1.

If we now insert the equilibrium Gibbs–Boltzmann distribution into Pt(S)
of (4.93), the right hand side vanishes, and the equilibrium distribution does
not change with time as expected. It is also known that, under the kinetic Ising
model, the state of a system approaches the equilibrium Gibbs–Boltzmann distri-
bution at an appropriate temperature β−1 = T even when the initial condition is
away from equilibrium. Thus the problem of memory retrieval after a sufficiently
long time starting from an initial condition in a neural network can be analysed
by equilibrium statistical mechanics of the Ising model (7.7) with random in-
teractions specified by the Hebb rule (7.4). The model Hamiltonian (7.7) with
random patterns embedded by the Hebb rule (7.4) is usually called the Hopfield
model (Hopfield 1982).

7.2 Embedding a finite number of patterns

It is relatively straightforward to analyse statistical-mechanical properties of the
Hopfield model when the number of embedded patterns p is finite (Amit et al.
1985).

7.2.1 Free energy and equations of state

The partition function of the system described by the Hamiltonian (7.7) with
the Hebb rule (7.4) is

Z = Tr exp

(
β

2N

∑
µ

(
∑

i

Siξ
µ
i )2
)

, (7.9)

where Tr is the sum over S. The effect of the vanishing diagonal (Jii = 0) has
been ignored here since it is of lower order in N . By introducing a new integration
variable mµ to linearize the square in the exponent, we have

Z = Tr
∫ p∏

µ=1

dmµ exp

{
−1

2
Nβ
∑

µ

m2
µ + β

∑
µ

mµ

∑
i

Siξ
µ
i

}
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=
∫ ∏

µ

dmµ exp

{
−1

2
Nβm2 +

∑
i

log(2 coshβm · ξi)

}
, (7.10)

where m = t(m1, . . . , mp), ξi = t(ξ1
i , . . . , ξp

i ), and the overall multiplicative
constant has been omitted as it does not affect the physical properties.

In consideration of the large number of neurons in the brain (about 1011) and
also from the viewpoint of designing computational equipment with highly non-
trivial information processing capabilities, it makes sense to consider the limit
of large-size systems. It is also interesting from a statistical-mechanical point of
view to discuss phase transitions that appear only in the thermodynamic limit
N → ∞. Hence we take the limit N → ∞ in (7.10), so that the integral is
evaluated by steepest descent. The free energy is

f =
1
2
m2 − T

N

∑
i

log(2 coshβm · ξi). (7.11)

The extremization condition of the free energy (7.11) gives the equation of state
as

m =
1
N

∑
i

ξi tanh (βm · ξi) . (7.12)

In the limit of large N , the sum over i in (7.12) becomes equivalent to the average
over the random components of the vector ξ = t(ξ1, . . . , ξp) (ξ1 = ±1, . . . , ξp =
±1) according to the self-averaging property. This averaging corresponds to the
configurational average in the theory of spin glasses, which we denote by [· · ·],
and we write the free energy and the equation of state as

f =
1
2
m2 − T [log(2 coshβm · ξ)] (7.13)

m = [ξ tanh βm · ξ] . (7.14)

The physical significance of the order parameter m is revealed by the saddle-
point condition of the first expression of (7.10) for large N :

mµ =
1
N

∑
i

Siξ
µ
i . (7.15)

This equation shows that mµ is the overlap between the µth embedded pattern
and the state of the system. If the state of the system is in perfect coincidence
with the µth pattern (Si = ξµ

i , ∀i), we have mµ = 1. In the total absence of
correlation, on the other hand, Si assumes ±1 independently of ξµ

i , and conse-
quently mµ = 0. It should then be clear that the success of retrieval of the µth
pattern is measured by the order parameter mµ.

7.2.2 Solution of the equation of state

Let us proceed to the solution of the equation of state (7.14) and discuss the
macroscopic properties of the system. We first restrict ourselves to the case of a
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m
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0

Fig. 7.4. Free energy of the Hopfield model when a single pattern is retrieved.

single-pattern retrieval. There is no loss of generality by assuming that the first
pattern is to be retrieved: m1 = m, m2 = · · · = mp = 0. Then the equation of
state (7.14) is

m = [ξ1 tanh(βmξ1)] = tanh βm. (7.16)

This is precisely the mean-field equation of the usual ferromagnetic Ising model,
(1.19) with h = 0, which has a stable non-trivial solution m 
= 0 for T = β−1 < 1.
The free energy, accordingly, has minima at m 
= 0 if T < 1 as shown in Fig. 7.4. It
is seen in this figure that an initial condition away from a stable state will evolve
towards the nearest stable state with gradually decreasing free energy under
the dynamics of §7.1.3 if the uncertainty parameter of the neuron functioning T
(temperature in the physics terms) is smaller than 1. In particular, if T = 0, then
the stable state is m = ±1 from (7.16), and a perfect retrieval of the embedded
pattern (or its complete reversal) is achieved. It has thus been shown that the
Hopfield model, if the number of embedded patterns is finite and the temperature
is not very large, works as an associative memory that retrieves the appropriate
embedded pattern when a noisy version of the pattern is given as the initial
condition.

The equation of state (7.14) has many other solutions. A simple example is
the solution to retrieve l patterns simultaneously with the same amplitude

m = (ml, ml, ml, . . . , ml, 0, . . . , 0). (7.17)

It can be shown that the ground state (T = 0) energy El of this solution satisfies
the following inequality:

E1 < E3 < E5 < . . . . (7.18)

The single-retrieval solution is the most stable one, and other odd-pattern re-
trieval cases follow. All even-pattern retrievals are unstable. At finite tempera-
tures, the retrieval solution with l = 1 exists stably below the critical tempera-
ture Tc = 1 as has been shown already. This is the unique solution in the range
0.461 < T < 1. The l = 3 solution appears at T = 0.461. Other solutions with
l = 5, 7, . . . show up one after another as the temperature is further decreased.
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Solutions with non-uniform components in contrast to (7.17) also exist at low
temperatures.

7.3 Many patterns embedded
We next investigate the case where the number of patterns p is proportional to
N (Amit et al. 1987). As was mentioned at the end of the previous section, the
equation of state has various solutions for finite p. For larger p, more and more
complicated solutions appear, and when p reaches O(N), a spin glass solution
emerges, in which the state of the system is randomly frozen in the sense that the
state has no correlation with embedded patterns. If the ratio α ≡ p/N exceeds a
threshold, the spin glass state becomes the only stable state at low temperatures.
This section is devoted to a detailed account of this scenario.

7.3.1 Replicated partition function
It is necessary to calculate the configurational average of the nth power of the
partition function to derive the free energy F = −T [log Z] averaged over the
pattern randomness {ξµ

i }. It will be assumed for simplicity that only the first
pattern (µ = 1) is to be retrieved. The configurational average of the replicated
partition function is, by (7.4) and (7.7),

[Zn] =


Tr exp


 β

2N

∑
i,j

∑
µ

n∑
ρ=1

ξµ
i ξµ

j Sρ
i Sρ

j






= Tr
∫ ∏

µρ

dmµ
ρ


exp


βN


−1

2

∑
µ≥2

∑
ρ

(mµ
ρ )2 +

1
N

∑
µ≥2

∑
ρ

mµ
ρ

∑
i

ξµ
i Sρ

i

−1
2

∑
ρ

(m1
ρ)

2 +
1
N

∑
ρ

m1
ρ

∑
i

ξ1
i Sρ

i

)}]
. (7.19)

It is convenient to separate the contribution of the first pattern from the rest.

7.3.2 Non-retrieved patterns
The overlap between the state of the system and a pattern other than the first
one (µ ≥ 2) is due only to coincidental contributions from the randomness of
{ξµ

i }, and is

mµ
ρ =

1
N

∑
i

ξµ
i Sρ

i ≈ O
(

1√
N

)
. (7.20)

The reason is that, if ξµ
i and Sρ

i assume 1 or −1 randomly and independently, the
stochastic variable

∑
i ξµ

i Sρ
i has average 0 and variance N , since (

∑
i ξµ

i Sρ
i )2 =

N +
∑

i �=j ξµ
i ξµ

j Sρ
i Sρ

j = N . In the case of finite p treated in the previous section,
the number of terms with µ ≥ 2 in (7.19) is finite, and we could ignore these con-
tributions in the limit of large N . Since the number of such terms is proportional
to N in the present section, a more careful treatment is needed.
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The first step is the rescaling of the variable mµ
ρ → mµ

ρ/
√

βN to reduce mµ
ρ to

O(1). We then perform configurational averaging [· · ·] for the terms with µ ≥ 2
in (7.19) to find

exp


−1

2

∑
µρ

(mµ
ρ )2 +

∑
iµ

log cosh

(√
β

N

∑
ρ

mµ
ρSρ

i

)
 . (7.21)

The sum over µ is for the range µ ≥ 2. In the limit of large N , we may expand
log cosh(·) and keep only the leading term:

exp

(
−1

2

∑
µ

∑
ρσ

mµ
ρKρσmµ

σ

)
, (7.22)

where
Kρσ = δρσ − β

N

∑
i

Sρ
i Sσ

i . (7.23)

The term (7.22) is quadratic in mµ
ρ , and the integral over mµ

ρ can be carried
out by the multivariable Gaussian integral. The result is, up to a trivial overall
constant,

(detK)−(p−1)/2 = exp
(
−p − 1

2
Tr log K

)
=
∫ ∏

(ρσ)

dqρσδ

(
qρσ − 1

N

∑
i

Sρ
i Sσ

i

)

· exp
{
−p − 1

2
Trn log{(1 − β)I − βQ)}

}
. (7.24)

Here (ρσ) is the set of n(n − 1) replica pairs. We have also used the fact that
the diagonal element Kρρ of the matrix K is equal to 1− β and the off-diagonal
part is

Kρσ = − β

N

∑
i

Sρ
i Sσ

i = −βqρσ. (7.25)

The expression Q is a matrix with the off-diagonal elements qρσ and 0 along the
diagonal. The operation Trn in the exponent is the trace of the n × n matrix.
Fourier representation of the delta function in (7.24) with integral variable rρσ

and insertion of the result into (7.19) yield

[Zn] = Tr
∫ ∏

ρ

dm1
ρ

∫ ∏
(ρσ)

dqρσdrρσ exp


−N

2
αβ2
∑
(ρσ)

rρσqρσ

+
αβ2

2

∑
i,(ρσ)

rρσSρ
i Sσ

i


 exp

{
−p− 1

2
Trn log{(1 − β)I − βQ}

}

·
[
exp βN

(
−1

2

∑
ρ

(m1
ρ)

2 +
1
N

∑
ρ

m1
ρ

∑
i

ξ1
i Sρ

i

)]
. (7.26)
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7.3.3 Free energy and order parameter
The Si-dependent parts in (7.26) are written as

Tr exp


β
∑
i,ρ

m1
ρξ

1
i Sρ

i +
1
2
αβ2

∑
i,(ρσ)

rρσSρ
i Sσ

i






=


exp



∑

i

log Tr exp


β
∑

ρ

m1
ρξ

1
i Sρ +

1
2
αβ2
∑
(ρσ)

rρσSρSσ








= expN


log Tr exp


β
∑

ρ

m1
ρξ

1Sρ +
1
2
αβ2
∑
(ρσ)

rρσSρSσ




 . (7.27)

In going from the second expression to the last one, we have used the fact that
the sum over i is equivalent to the configurational average [· · ·] by self-averaging
in the limit of large N . Using this result in (7.26), we obtain

[Zn] =
∫ ∏

dmρ

∫ ∏
drρσ

∏
dqρσ

· expN


−β

2

∑
ρ

(m1
ρ)

2 − α

2
Trn log{(1 − β)I − βQ} − 1

2
αβ2
∑
(ρσ)

rρσqρσ

+


log Tr exp


1

2
αβ2
∑
(ρσ)

rρσSρSσ + β
∑

ρ

m1
ρξ

1Sρ






 , (7.28)

where we have set (p − 1)/N = α assuming N, p 	 1. In the thermodynamic
limit N → ∞, the free energy is derived from the term proportional to nβ in the
exponent:

f =
1
2n

∑
ρ

(m1
ρ)

2 +
α

2nβ
Trn log{(1 − β)I − βQ}

+
αβ

2n

∑
(ρσ)

rρσqρσ − 1
βn

[
log Tr eβHξ

]
, (7.29)

where βHξ is the quantity in the exponent after the operator log Tr in (7.28).
The order parameters have the following significance. The parameter mµ

ρ is
the overlap between the state of the system and the µth pattern. This can be
confirmed by extremizing the exponent of (7.19) with respect to mµ

ρ to find

mµ
ρ =

1
N

∑
i

ξµ
i Sρ

i . (7.30)

Next, qαβ is the spin glass order parameter from comparison of (7.24) and (2.20).
As for rρσ, extremization of the exponent of (7.26) with respect to qαβ gives
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rρσ =
1
α

∑
µ≥2

mµ
ρmµ

σ. (7.31)

To calculate the variation with respect to the components of Q in the Trn log
term, we have used the facts that the Trn log term is written by the integral over
mµ

ρ of (7.22) with Kρσ replaced by (1 − β)I − βQ and that we have performed
scaling of mµ

ρ by
√

βN just before (7.22). From (7.31), rρσ is understood as the
sum of effects of non-retrieved patterns.

7.3.4 Replica-symmetric solution

The assumption of replica symmetry leads to an explicit form of the free energy
(7.29). From m1

ρ = m, qρσ = q, and rρσ = r for ρ 
= σ, the first term of (7.29) is
m2/2 and the third term in the limit n → 0 is −αβrq/2. To calculate the second
term, it should be noted that the eigenvectors of the matrix (1 − β)I − βQ are,
first, the uniform one t(1, 1, . . . , 1) and, second, the sequence of the nth roots of
unity t(e2πik/n, e4πik/n, . . . , e2(n−1)πik/n) (k = 1, 2, . . . , n − 1). The eigenvalue of
the first eigenvector is 1− β + βq − nβq without degeneracy, and for the second
eigenvector, it is 1 − β + βq (degeneracy n − 1). Thus in the limit n → 0,

1
n

Trn log{(1 − β)I − βQ} =
1
n

log(1 − β + βq − nβq) +
n − 1

n
log(1 − β + βq)

→ log(1 − β + βq) − βq

1 − β + βq
. (7.32)

The final term of (7.29) is, as n → 0,

1
n

[
log Tr exp

(
1
2
αβ2r(

∑
ρ

Sρ)2 − 1
2
αβ2rn − β

∑
ρ

mξ1Sρ

)]

= −1
2
αrβ2 +

1
n

[
log Tr

∫
Dz exp

(
−β

√
αrz
∑

ρ

Sρ − β
∑

ρ

mξSρ

)]

→ −1
2
αrβ2 +

[∫
Dz log 2 coshβ(

√
αrz + mξ)

]
. (7.33)

The integral over z has been introduced to reduce the quadratic form (
∑

ρ Sρ)2

to a linear expression. Collecting everything together, we find the RS free energy
as

f =
1
2
m2 +

α

2β

(
log(1 − β + βq) − βq

1 − β + βq

)
+

αβ

2
r(1 − q)

−T

∫
Dz
[
log 2 coshβ(

√
αrz + mξ)

]
. (7.34)

The equations of state are derived by extremization of (7.34). The equation
for m is
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m =
∫

Dz
[
ξ tanh β(

√
αrz + mξ)

]
=
∫

Dz tanh β(
√

αrz + m). (7.35)

Next, a slight manipulation of the extremization condition with respect to r gives

q =
∫

Dz
[
tanh2 β(

√
αrz + mξ)

]
=
∫

Dz tanh2 β(
√

αrz + m), (7.36)

and from extremization by q,

r =
q

(1 − β + βq)2
. (7.37)

It is necessary to solve these three equations simultaneously.
It is easy to check that there is a paramagnetic solution m = q = r = 0.

At low temperatures, the spin glass solution m = 0, q > 0, r > 0 exists. The
critical temperature for the spin glass solution to appear is T = 1 +

√
α, as can

be verified by combining (7.37) and the leading term in the expansion of the
right hand side of (7.36) with m = 0.

The retrieval solution m > 0, q > 0, r > 0 appears discontinuously by a first-
order transition. Numerical solution of the equations of state (7.35), (7.36), and
(7.37) should be employed to draw phase boundaries.15

The final phase diagram is shown in Fig. 7.5. For α smaller than 0.138,
three phases (paramagnetic, spin glass, and metastable retrieval phases) appear
in this order as the temperature is decreased. If α < 0.05, the retrieval phase
is stable (i.e. it is the global, not local, minimum of the free energy) at low
temperatures. The RS solution of the retrieval phase is unstable for RSB at very
low temperatures. However, the RSB region is very small and the qualitative
behaviour of the order parameter m and related quantities is expected to be
relatively well described by the RS solution.

7.4 Self-consistent signal-to-noise analysis
The replica method is powerful but is not easily applicable to some problems. For
instance, when the input–output relation of a neuron, which is often called the
activation function, is not represented by a simple monotonic function like (7.3),
it is difficult (and often impossible) to use the replica method. Self-consistent
signal-to-noise analysis (SCSNA) is a convenient approximation applicable to
many of such cases (Shiino and Fukai 1993).

7.4.1 Stationary state of an analogue neuron
The idea of SCSNA is most easily formulated for analogue neurons. The mem-
brane potential of a real neuron is an analogue quantity and its change with time
is modelled by the following equation:

dhi

dt
= −hi +

∑
j

JijF (hj). (7.38)

15Analytical analysis is possible in the limits α → 0 and T → 0.
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Fig. 7.5. Phase diagram of the Hopfield model. The dashed line near the α axis
is the AT line and marks the instability of the RS solution.

The first term on the right hand side is for a natural decay of hi, and the second
term is the input signal from other neurons. F (h) is the activation function of
an analogue neuron, Sj = F (hj) in the notation of (7.3). The variable Sj has
continuous values, and the connection Jij is assumed to be given by the Hebb
rule (7.4) with random patterns ξµ

i = ±1. The self-interaction Jii is vanishing.
In the stationary state, we have from (7.38)

hi =
∑

j

JijSj . (7.39)

Let us look for a solution which has the overlap

mµ =
1
N

∑
j

ξµ
j Sj (7.40)

of order m1 = m = O(1) and mµ = O(1/
√

N) (µ ≥ 2) as in §§7.2 and 7.3.

7.4.2 Separation of signal and noise

To evaluate the overlap (7.40), we first insert the Hebb rule (7.4) into the defini-
tion of hi, (7.39), to find the following expression in which the first and the µth
patterns (µ ≥ 2) are treated separately:

hi = ξ1
i m + ξµ

i mµ +
∑

ν �=1,µ

ξν
i mν − αSi. (7.41)

The last term −αSi is the correction due to Jii = 0. The possibility that a term
proportional to Si may be included in the third term of (7.41) is taken into
account by separating this into a term proportional to Si and the rest,
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∑
ν �=1,µ

ξν
i mν = γSi + ziµ. (7.42)

From (7.41) and (7.42),

Si = F (hi) = F (ξ1
i m + ξµ

i mµ + ziµ + ΓSi), (7.43)

where we have written Γ = γ − α. Now, suppose that the following solution has
been obtained for Si from (7.43):

Si = F̃ (ξ1
i m + ξµ

i mµ + ziµ). (7.44)

Then the overlap for µ ≥ 2 is

mµ =
1
N

∑
j

ξµ
j F̃ (ξ1

j m + zjµ) +
mµ

N

∑
j

F̃ ′(ξ1
j m + zjµ), (7.45)

where we have expanded the expression to first order in mµ = O(1/
√

N). The
solution of (7.45) for mµ is

mµ =
1

KN

∑
j

ξµ
j F̃ (ξ1

j m + zjµ), K = 1 − 1
N

∑
j

F̃ ′(ξ1
j m + zjµ). (7.46)

Here we have dropped the µ-dependence of K in the second relation defining K,
since zjµ will later be assumed to be a Gaussian random variable with vanishing
mean and µ-independent variance. Replacement of this equation in the left hand
side of (7.42) and separation of the result into the (j = i)-term and the rest give

∑
ν �=1,µ

ξν
i mν =

1
KN

∑
ν �=1,µ

F̃ (ξ1
i m+ziν)+

1
KN

∑
j �=i

∑
ν �=1,µ

ξν
i ξν

j F̃ (ξ1
j m+zjν). (7.47)

Comparison of this equation with the right hand side of (7.42) reveals that the
first term on the right hand side of (7.47) is γSi and the second ziµ. Indeed,
the first term is (p/KN)Si = αSi/K according to (7.44). Small corrections of
O(1/

√
N) can be ignored in this correspondence. From αSi/K = γSi, we find

γ = α/K.
The basic assumption of the SCSNA is that the second term on the right hand

side of (7.47) is a Gaussian random variable ziµ with vanishing mean. Under the
assumption that various terms in the second term on the right hand side of (7.47)
are independent of each other, the variance is written as

σ2 = 〈z2
iµ〉 =

1
K2N2

∑
j �=i

∑
ν �=1,µ

〈F̃ (ξ1
j m + zjν)2〉 =

α

K2
〈F̃ (ξ1m + z)2〉ξ,z. (7.48)

Here 〈· · ·〉ξ,z is the average by the Gaussian variable z and the random variable
ξ (= ±1). The above equation holds because in the large-N limit the sum over j
(and division by N) is considered to be equivalent to the average over ξ and z.
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A similar manipulation to rewrite (7.46) yields

K = 1 − 〈F̃ ′(ξm + z)〉ξ,z. (7.49)

Finally, m is seen to satisfy

m = 〈ξF̃ (ξm + z)〉ξ,z. (7.50)

Solution of (7.48), (7.49), and (7.50) determines the properties of the system.

7.4.3 Equation of state
Let us rewrite (7.48), (7.49), and (7.50) in a more compact form. Equation (7.41)
is expressed as a relation between random variables according to (7.42):

h = ξm + z + ΓY (ξ, z)
(
Γ =

α

K
− α
)

, (7.51)

where Y (ξ, z) = F (ξm + z + ΓY (ξ, z)). Introducing new symbols

q =
K2σ2

α
,
√

αr = σ, U = 1 − K, xσ = z, (7.52)

we have the following equations in place of (7.50),(7.48), and (7.49)

m =
〈∫

Dx ξY (ξ, x)
〉

ξ

(7.53)

q =
〈∫

DxY (ξ, x)2
〉

ξ

(7.54)

U
√

αr =
〈∫

DxxY (ξ, x)
〉

ξ

(7.55)

and auxiliary relations

Y (ξ, x) = F (ξm +
√

αr x + ΓY (ξ, x)), Γ =
αU

1 − U
, q = (1 − U)2r. (7.56)

Equations (7.53)–(7.56) are the equations of state of the SCSNA.

7.4.4 Binary neuron
Let us exemplify the idea of the SCSNA using the case of a binary neuron
F (x) = sgn(x). For an odd function F (x), it is seen from (7.56) that Y (−1, x) =
−Y (1,−x). Accordingly, we may drop the average over ξ in (7.53)–(7.55) for
m, q, U

√
αr and replace the integrands by their values at ξ = 1.

The equation for Y , (7.56), reads

Y (x) = sgn(m +
√

αr x + ΓY (x)). (7.57)

The stable solution of this equation is, according to Fig. 7.6, Y (x) = 1 when√
αr x + m > 0 and is Y (x) = −1 for

√
αr x + m < 0. When two solutions exist
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Fig. 7.6. Solutions of the equation for Y

simultaneously as in Fig. 7.6, one accepts the one with a larger area between√
αr x+m and the Y axis, corresponding to the Maxwell rule of phase selection.

From this and (7.54), we have q = 1, and from (7.53) and (7.55),

m = 2
∫ m/

√
αr

0

Dx,
√

αr =
√

α +

√
2
π

e−m2/2αr. (7.58)

The solution obtained this way agrees with the limit T → 0 of the RS solution
(7.35)–(7.37). This is trivial for m and q. As for r, (7.56) coincides with (7.37)
using the correspondence U = β(1 − q).

The SCSNA generally gives the same answer as the RS solution when the
latter is known. The SCSNA is applicable also to many problems for which the
replica method is not easily implemented. A future problem is to clarify the
limit of applicability of the SCSNA, corresponding to the AT line in the replica
method.

7.5 Dynamics
It is an interesting problem how the overlap m changes with time in neural
networks. An initial condition close to an embedded pattern µ would develop
towards a large value of mµ at T = 0. It is necessary to introduce a theoret-
ical framework beyond equilibrium theory to clarify the details of these time-
dependent phenomena.

It is not difficult to construct a dynamical theory when the number of em-
bedded patterns p is finite (Coolen and Ruijgrok 1988; Riedel et al. 1988; Shiino
et al. 1989). However, for p proportional to N , the problem is very complicated
and there is no closed exact theory to describe the dynamics of the macroscopic
behaviour of a network. This aspect is closely related to the existence of a compli-
cated structure of the phase space of the spin glass state as mentioned in §7.3; it
is highly non-trivial to describe the system properties rigorously when the state
of the system evolves in a phase space with infinitely many free energy minima.
The present section gives a flavour of approximation theory using the example
of the dynamical theory due to Amari and Maginu (1988).
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7.5.1 Synchronous dynamics

Let us denote the state of neuron i at time t by St
i (= ±1). We assume in the

present section that t is an integer and consider synchronous dynamics in which
all neurons update their states according to

St+1
i = sgn


∑

j

JijS
t
j


 (7.59)

simultaneously at each discrete time step t (= 0, 1, 2, . . .). In other words, we
apply (7.59) to all i simultaneously and the new states thus obtained {St+1

i } are
inserted in the right hand side in place of {St

i} for the next update.16 Synchronous
dynamics is usually easier to treat than its asynchronous counterpart. Also it is
often the case that systems with these two types of dynamics share very similar
equilibrium properties (Amit et al. 1985; Fontanari and Köberle 1987).

7.5.2 Time evolution of the overlap

Let us investigate how the overlap mµ changes with time under the synchronous
dynamics (7.59) when the synaptic couplings Jij are given by the Hebb rule (7.4)
with Jii = 0. The goal is to express the time evolution of the system in terms of a
few macroscopic variables (order parameters). It is in general impossible to carry
out this programme with only a finite number of order parameters including the
overlap (Gardner et al. 1987). Some approximations should be introduced. In the
Amari–Maginu dynamics, one derives dynamical equations in an approximate
but closed form for the overlap and the variance of noise in the input signal.

Let us consider the case where the initial condition is close to the first pattern
only, m1 = m > 0 and mµ = 0 for µ 
= 1. The input signal to Si is separated
into the true signal part (contributing to retrieval of the first pattern) and the
rest (noise):

ht
i =
∑
j �=i

JijS
t
j =

1
N

p∑
µ=1

∑
j �=i

ξµ
i ξµ

j St
j

=
1
N

∑
j �=i

ξ1
i ξ1

j St
j +

1
N

∑
µ�=1

∑
j �=i

ξµ
i ξµ

j St
j

= ξ1
i mt + N t

i . (7.60)

The term with µ = 1 gives the true signal ξ1
i mt, and the rest is the noise N t

i .
Self-feedback JiiS

t
i vanishes and is omitted here as are also terms of O(N−1).

The time evolution of the overlap is, from (7.59) and (7.60),

16We implicitly had asynchronous dynamics in mind so far in which (7.59) is applied to a
single i and the new state of this ith neuron, St+1

i , is inserted in the right hand side with all
other neuron states (Sj (j �= i)) unchanged. See Amit (1989) for detailed discussions on this
point.
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mt+1 =
1
N

∑
i

ξ1
i sgn(ht

i) =
1
N

∑
i

sgn(mt + ξ1
i N t

i ). (7.61)

If the noise term ξ1
i N t

i is negligibly small compared to mt, then the time de-
velopment of mt is described by mt+1 = sgn(mt), which immediately leads to
m1 = 1 or m1 = −1 at the next time step t = 1 depending on the sign of the
initial condition mt=0. Noise cannot be ignored actually, and we have to consider
its effects as follows.

Since N t
i is composed of the sum of many terms involving stochastic variables

ξµ
i , this N t

i would follow a Gaussian distribution according to the central limit
theorem if the terms in the sum were independent of each other. This indepen-
dence actually does not hold because St

j in N t
i has been affected by all other {ξµ

i }
during the past update of states. In the Amari–Maginu dynamics, one neverthe-
less accepts the approximate treatment that N t

i follows a Gaussian distribution
with vanishing mean and variance σ2

t , denoted by N(0, σ2
t ). The appropriateness

of this approximation is judged by the results it leads to.
If we assume that N t

i obeys the distribution N(0, σ2
t ), the same should hold

for ξ1
i N t

i . Then the time development of mt can be derived in the large-N limit
from (7.61) as

mt+1 =
∫

Du sgn(mt + σtu) = F

(
mt

σt

)
, (7.62)

where F (x) = 2
∫ x

0 Du.

7.5.3 Time evolution of the variance

Our description of dynamics in terms of macroscopic variables mt and σt becomes
a closed one if we know the time evolution of the variance of noise σ2

t since we
have already derived the equation for mt in (7.62). We may assume that the
first pattern to be retrieved has ξ1

i = 1 (∀i) without loss of generality as can be
checked by the gauge transformation Si → Siξ

1
i , the ferromagnetic gauge.

With the notation E[· · ·] for the average (expectation value), the variance of
N t

i is written as

σ2
t = E[(N t

i )
2] =

1
N2

∑
µ�=1

∑
ν �=1

∑
j �=i

∑
j′ �=i

E[ξµ
i ξν

i ξµ
j ξν

j′S
t
jS

t
j′ ]. (7.63)

The expectation value in this sum is classified into four types according to the
combination of indices:

1. For µ = ν and j = j′, E[· · ·] = 1. The number of such terms is (p−1)(N−1).
2. For µ 
= ν and j = j′, E[· · ·] = 0, which can be neglected.
3. Let us write v3 ≡ E[ξµ

j ξµ
j′S

t
jS

t
j′ ] for the contribution of the case µ = ν and

j 
= j′. The number of terms is (p − 1)(N − 1)(N − 2).
4. When µ 
= ν and j 
= j′, we have to evaluate v4 ≡ E[ξµ

i ξν
i ξµ

j ξν
j′S

t
jS

t
j′ ]

explicitly. The number of terms is (p − 1)(p − 2)(N − 1)(N − 2).
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For evaluation of v3, it is convenient to write the ξµ
j , ξµ

j′ -dependence of St
jS

t
j′

explicitly. According to (7.60),

St
j = sgn(mt−1 + Q + ξµ

j R + N−1ξµ
j ξµ

j′S
t−1
j′ )

St
j′ = sgn(mt−1 + Q′ + ξµ

j′R + N−1ξµ
j′ξ

µ
j St−1

j ),
(7.64)

where Q, Q′, and R are defined by

Q =
1
N

∑
ν �=1,µ

∑
k �=j

ξν
j ξν

kSt−1
k , Q′ =

1
N

∑
ν �=1,µ

∑
k �=j

ξν
j′ξ

ν
kSt−1

k , R =
1
N

∑
k �=j,j′

ξµ
k St−1

k .

(7.65)
We assume these are independent Gaussian variables with vanishing mean and
variance σ2

t−1, σ
2
t−1, and σ2

t−1/p, respectively. By writing Y11 for the contribution
to v3 when ξµ

j = ξµ
j′ = 1 and similarly for Y1−1, Y−11, Y−1−1, we have

v3 =
1
4
(Y11 + Y1−1 + Y−11 + Y−1−1). (7.66)

The sum of the first two terms is

Y11 + Y1−1 =
∫

P (Q)P (Q′)P (R) dQ dQ′ dR

·
{

sgn

(
mt−1 + Q + R +

St−1
j′

N

)
sgn

(
mt−1 + Q′ + R +

St−1
j

N

)

− sgn

(
mt−1 + Q + R − St−1

j′

N

)
sgn

(
mt−1 + Q′ − R − St−1

j

N

)}
. (7.67)

The Gaussian integral over Q and Q′ gives the function F used in (7.62). The
integral over R can be performed by expanding F to first order assuming that
R ± St−1

j,j′ /N is much smaller than mt−1 in the argument of F . The remaining
Y−11 + Y−1−1 gives the same answer, and the final result is

Nv3 =
2

πα
exp
(
−m2

t−1

σ2
t−1

)
+

4mt−1√
2πσt−1

exp
(
− m2

t−1

2σ2
t−1

)
F

(
mt−1

σt−1

)
. (7.68)

A similar calculation yields for v4

N2v4 =
2m2

t−1

πσ2
t−1

exp
(
−m2

t−1

σ2
t−1

)
. (7.69)

We have thus obtained σ2
t . To be more accurate in discussing the variance, it is

better to subtract the square of the average from the average of the square. The
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Fig. 7.7. Memory retrieval by synchronous dynamics: (a) α = 0.08, and (b)
α = 0.20

relation (E[N t
i ])

2 = p2v4 coming from the definition of v4 can be conveniently
used in this calculation:

σ2
t+1 = α +

2
π

exp
(
−m2

t−1

σ2
t−1

)
+

4αmtmt+1√
2πσt

exp
(
− m2

t−1

2σ2
t−1

)
. (7.70)

The two equations (7.62) and (7.70) determine the dynamical evolution of the
macroscopic parameters mt and σt.

7.5.4 Limit of applicability
We show some explicit solutions of the time evolution equations (7.62) and (7.70).
Figure 7.7 depicts mt for various initial conditions with α = 0.08 (a) and 0.20 (b).
When α = 0.20, the state tends to mt → 0 as t → ∞ for any initial conditions, a
retrieval failure. For α = 0.08, mt approaches 1, a successful retrieval, when the
initial condition is larger than a threshold m0 > m0c. These analytical results
have been confirmed to agree with simulations, at least qualitatively.

Detailed simulations, however, show that the assumption of Gaussian noise
is close to reality when retrieval succeeds, but noise does not obey a Gaussian
distribution when retrieval fails (Nishimori and Ozeki 1993). The system moves
towards a spin glass state when retrieval fails, in which case the phase space has
a very complicated structure and the dynamics cannot be described in terms of
only two variables mt and σt.

For α larger than a critical value αc, the system moves away from the embed-
ded pattern even if the initial condition is exactly at the pattern m0 = 1. Numer-
ical evaluation of (7.62) and (7.70) reveals that this critical value is αc = 0.16.
This quantity should in principle be identical to the critical value αc = 0.138 for
the existence of the retrieval phase at T = 0 in the Hopfield model (see Fig. 7.5).
Note that equilibrium replica analysis has been performed also for the system
with synchronous dynamics under the Hebb rule (Fontanari and Köberle 1987).
The RS result αc = 0.138 is shared by this synchronous case. It is also known
that the RSB changes αc only by a very small amount (Steffan and Kühn 1994).

Considering several previous steps in deriving the time evolution equation
is known to improve results (Okada 1995), but this method is still inexact as
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Fig. 7.8. Simple perceptron

it uses a Gaussian assumption of noise distribution. It is in general impossi-
ble to solve exactly and explicitly the dynamics of associative memory with an
extensive number of patterns embedded (p proportional to N). Closed-form ap-
proximation based on a dynamical version of equiparitioning gives a reasonably
good description of the dynamical evolution of macrovariables (Coolen and Sher-
rington 1994). Another approach is to use a dynamical generating functional to
derive various relations involving correlation and response functions (Rieger et
al. 1989; Horner et al. 1989), which gives some insight into the dynamics, in
particular in relation to the fluctuation–dissipation theorem.

7.6 Perceptron and volume of connections
It is important to investigate the limit of performance of a single neuron. In
the present section, we discuss the properties of a simple perceptron with the
simplest possible activation function. The point of view employed here is a lit-
tle different from the previous arguments on associative memory because the
synaptic couplings are dynamical variables here.

7.6.1 Simple perceptron
A simple perceptron is an element that gives an output σµ according to the follow-
ing rule: given N inputs ξµ

1 , ξµ
2 , . . . , ξµ

N and synaptic connections J1, J2, . . . , JN

(Fig. 7.8) then

σµ = sgn


∑

j

Jjξ
µ
j − θ


 . (7.71)

Here θ is a threshold and µ (= 1, 2, . . . , p) is the index of the input–output
pattern to be realized by the perceptron. The perceptron is required to adjust
the weights J = {Jj} so that the input {ξµ

i }i=1,...,N leads to the desired output
σµ. We assume ξµ

j , σµ = ±1; then the task of the perceptron is to classify p input
patterns into two classes, those with σµ = 1 and those σµ = −1.

Let us examine an example of the case N = 2. By choosing J1, J2, and θ
appropriately as shown in Fig. 7.9, we have

∑
j Jjξ

µ
j − θ = 0 on the dashed line
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Fig. 7.9. Linearly separable task. The arrow is the vector J = t(J1, J2).

perpendicular to the vector J = t(J1, J2). This means that the output is σ1 = 1
for the input ξ1

1 = ξ1
2 = 1 denoted by the full circle and σµ = −1 for the open

circles, thus separating the full and open circles by the dashed line. However,
if there were two full circles at (1, 1) and (−1,−1) and the rest were open,
no straight line would separate the circles. It should then be clear that a simple
perceptron is capable of realizing classification tasks corresponding to a bisection
of the {ξµ

i } space by a hypersurface (a line in the case of two dimensions). This
condition is called linear separability.

7.6.2 Perceptron learning

Although it has the constraint of linear separability, a simple perceptron plays
very important roles in the theory of learning to be discussed in the next chapter.
Learning means to change the couplings J gradually, reflecting given examples of
input and output. The goal is to adjust the properties of the elements (neurons)
or the network so that the correct input–output pairs are realized appropriately.
We shall assume θ = 0 in (7.71) for simplicity.

If the initial couplings of a perceptron are given randomly, the correct input–
output pairs are not realized. However, under the following learning rule (the rule
to change the couplings), it is known that the perceptron eventually reproduces
correct input–output pairs as long as the examples are all linearly separable and
the number of couplings N is finite (the convergence theorem):

Jj(t + ∆t) = Jj(t) +
{

0 (correct output for the µth pattern)
ησµξµ

j (otherwise). (7.72)

This is called the perceptron learning rule. Here η is a small positive constant. We
do not present a formal proof of the theorem here. It is nevertheless to be noted
that, by the rule (7.72), the sum of input signals

∑
j Jjξ

µ
j increases by ησµN

when the previous output was incorrect, whereby the output sgn(
∑

j Jjξ
µ
j ) is

pushed towards the correct value σµ.
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7.6.3 Capacity of a perceptron

An interesting question is how many input–output pairs can be realized by a
simple perceptron. The number of input–output pairs (patterns) will be denoted
by p. Since we are interested in the limit of large N , the following normalization
of the input signal will turn out to be appropriate:

σµ = sgn


 1√

N

∑
j

Jjξ
µ
j


 . (7.73)

The couplings are assumed to be normalized,
∑N

j=1 J2
j = N .

As we present examples (patterns or tasks to be realized) µ = 1, 2, 3, . . . to the
simple perceptron, the region in the J-space where these examples are correctly
reproduced by (7.73) shrinks gradually. Beyond a certain limit of the number of
examples, the volume of this region vanishes and no J will reproduce some of
the tasks. Such a limit is termed the capacity of the perceptron and is known to
be 2N . We derive a generalization of this result using techniques imported from
spin glass theory (Gardner 1987, 1988).

The condition that the µth example is correctly reproduced is, as is seen by
multiplying both sides of (7.73) by σµ,

∆µ ≡ σµ

√
N

∑
j

Jjξ
µ
j > 0. (7.74)

We generalize this inequality by replacing the right hand side by a positive
constant κ

∆µ > κ (7.75)

and calculate the volume of the subspace in the J -space satisfying this relation.
If we use (7.74), the left hand side can be very close to zero, and, when the input
deviates slightly from the correct {ξµ

j }, ∆µ might become negative, producing
an incorrect output. In (7.75) on the other hand, a small amount of error (or
noise) in the input would not affect the sign of ∆µ so that the output remains
intact, implying a larger capability of error correction (or noise removal).

Let us consider the following volume (Gardner volume) in the J -space satis-
fying (7.75) with the normalization condition taken into account:

V =
1
V0

∫ ∏
j

dJjδ(
∑

j

J2
j − N)

∏
µ

Θ(∆µ − κ), V0 =
∫ ∏

j

dJjδ(
∑

j

J2
j − N),

(7.76)
where Θ(x) is a step function: Θ(x) = 1 for x > 0 and 0 for x < 0.

Since we are interested in the typical behaviour of the system for random
examples of input–output pairs, it is necessary to take the configurational average
of the extensive quantity log V over the randomness of ξµ

i and σµ, similar to the
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spin glass theory.17 For this purpose we take the average of V n and let n tend
to zero, following the prescription of the replica method,

[V n] =


 1

V n
0

∫ ∏
j,α

dJα
j δ


∑

j

(Jα
j )2 − N


∏

α,µ

Θ


 σµ

√
N

∑
j

Jα
j ξµ

j − κ




 .

(7.77)

7.6.4 Replica representation
To proceed further with the calculation of (7.77), we use the integral represen-
tation of the step function

Θ(y − κ) =
∫ ∞

κ

dλ

2π

∫ ∞

−∞
dx eix(λ−y) (7.78)

and carry out the average [· · ·] over {ξµ
i }:

∏
α,µ

Θ


 σµ

√
N

∑
j

Jα
j ξµ

j − κ






=
∫ ∞

−∞

∏
α,µ

dxα
µ

∫ ∞

κ

∏
α,µ

dλα
µ exp


i
∑
α,µ

xα
µλα

µ +
∑
j,µ

log cos

(
σµ

√
N

∑
α

xα
µJα

j

)


≈
{∫ ∞

−∞

∏
α

dxα

∫ ∞

κ

∏
α

dλα

· exp


i
∑
α

xαλα − 1
2

∑
α

(xα)2 −
∑
(αβ)

qαβxαxβ






p

. (7.79)

Here we have dropped the trivial factor (a power of 2π), set qαβ =
∑

j Jα
j Jβ

j /N ,
and used the approximation log cos(x) ≈ −x2/2 valid for small x. The notation
(αβ) is for the n(n − 1)/2 different replica pairs. Apparently, qαβ is interpreted
as the spin glass order parameter in the space of couplings.

Using the normalization condition
∑

j J2
j = N and the Fourier representation

of the delta function to express the definition of qαβ , we find

[V n] = V −n
0

∫ ∏
(αβ)

dqαβdFαβ

∏
α

dEα

∏
j,α

dJα
j {(7.79)} exp

{
−iN

∑
α

Eα

− iN
∑
(αβ)

Fαβqαβ + i
∑
α

Eα

∑
j

(Jα
j )2 + i

∑
(αβ)

Fαβ

∑
j

Jα
j Jβ

j




17In the present problem of capacity, ξµ
i and σµ are independent random numbers. In the

theory of learning to be discussed in the next chapter, σµ is a function of {ξµ
i }.
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= V −n
0

∫ ∏
(αβ)

dqαβ dFαβ

∏
α

dEα eNG. (7.80)

Here
G = αG1(qαβ) + G2(Fαβ , Eα) − i

∑
α

Eα − i
∑
(αβ)

Fαβqαβ (7.81)

with

G1(qαβ) = log
∫ ∞

−∞

∏
α

dxα

∫ ∞

κ

∏
α

dλα

· exp


i
∑
α

xαλα − 1
2

∑
α

(xα)2 −
∑
(αβ)

qαβxαxβ


 (7.82)

G2(Fαβ , Eα) = log
∫ ∞

−∞

∏
α

dJα

· exp


i


∑

α

Eα(Jα)2 +
∑
(αβ)

FαβJαJβ




 . (7.83)

The reader should not confuse the factor α (= p/N) in front of G1(qαβ) in (7.81)
with the replica index.

7.6.5 Replica-symmetric solution

The assumption of replica symmetry qαβ = q, Fαβ = F,Eα = E makes it possible
to go further with the evaluation of (7.82) and (7.83). We write the integral in
(7.82) as I1, which is simplified under replica symmetry as

I1 =
∫ ∞

−∞

∏
α

dxα

∫ ∞

κ

∏
α

dλα exp

(
i
∑
α

xαλα − 1 − q

2

∑
α

(xα)2 − q

2
(
∑

α

xα)2
)

=
∫ ∞

−∞

∏
α

dxα

∫ ∞

κ

∏
α

dλα

∫
Dy exp

(
i
∑
α

xαλα − 1 − q

2

∑
α

(xα)2

+ iy
√

q
∑
α

xα

)

=
∫

Dy

{∫ ∞

−∞
dx

∫ ∞

κ

dλ exp
(
−1 − q

2
x2 + ix(λ + y

√
q)
)}n

. (7.84)

The quantity in the final braces {· · ·}, to be denoted as L(q), is, after integration
over x,

L(q) =
∫ ∞

κ

dλ
1√

1 − q
exp
(
− (λ + y

√
q)2

2(1 − q)

)
= 2

√
π Erfc

(
κ + y

√
q√

2(1 − q)

)
, (7.85)
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where Erfc(x) is the complementary error function
∫∞

x
e−t2dt. Thus G1(qαβ) in

(7.82) is, in the limit n → 0,

G1(q) = n

∫
Dy log L(q). (7.86)

The integral over J in G2(F,E), on the other hand, can be evaluated by
a multidimensional Gaussian integral using the fact that the exponent is a
quadratic form in J .18 The eigenvalues of the quadratic form of J , E

∑
α(Jα)2+

F
∑

(αβ) JαJβ , are E+(n−1)F/2 (without degeneracy) and E−F/2 (degeneracy
(n − 1)), from which G2 is, apart from a trivial constant,

G2(F,E) = −1
2

log
(

E +
n − 1

2
F

)
− n − 1

2
log
(

E − F

2

)

→ −n

2
log
(

E − F

2

)
− nF

4E − 2F
. (7.87)

Substitution of (7.86) and (7.87) into (7.81) gives

1
n

G = α

∫
Dy log L(q) − 1

2
log
(

E − F

2

)
− F

4E − 2F
− iE +

i
2
Fq. (7.88)

According to the method of steepest descent, E and F can be eliminated in the
limit N → ∞ by extremization of G with respect to E and F :

E =
i(1 − 2q)
2(1 − q)2

, F = − iq
(1− q)2

. (7.89)

Then, (7.88) can be written only in terms of q, and the following expression
results:

1
n

G = α

∫
Dy log L(q) +

1
2

log(1 − q) +
1

2(1 − q)
. (7.90)

Various J are allowed for small p, but as p approaches the capacity limit,
the freedom of choice is narrowed in the J -space, and eventually only a single
one survives. Then q becomes unity by the definition N−1

∑
j Jα

j Jβ
j , so that

the capacity of the perceptron, αc, is obtained by extremization of (7.90) with
respect to q and setting q → 1. Using the limiting form of the complementary
error function Erfc(x) ≈ e−x2

/2x as x → ∞,

1
2(1 − q)2

=
α

2(1 − q)2

∫ ∞

−κ

Dy (κ + y)2. (7.91)

The final result for the capacity is

18Another idea is to reduce the quadratic form in the exponent involving F (
∑

α
Jα)2 to a

linear form by Gaussian integration.
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Fig. 7.10. Capacity of a simple perceptron

αc(κ) =
{∫ ∞

−κ

Dy (κ + y)2
}−1

. (7.92)

In the limit κ → 0, αc(0) = 2, which is the capacity 2N referred to in the first
part of §7.6.3. The function αc(κ) is monotonically decreasing as shown in Fig.
7.10. We mention without proof here that the RS solution is known to be stable
as long as α < 2 (Gardner 1987, 1988), which means that the J -space does not
have a complicated structure below the capacity.

Bibliographical note

Most of the developments in neural network theory from statistical-mechanical
points of view are covered in Amit (1989), Hertz et al. (1991), and Domany
et al. (1991) as far as references until around 1990 are concerned. More up-to-
date expositions are found in Coolen (2001) and Coolen and Sherrington (2001).
Activities in recent years are centred mainly around the dynamical aspects of
memory retrieval and the problem of learning. The latter will be treated in the
next chapter. Reviews concerning the former topic are given in Coolen (2001),
Coolen and Sherrington (2001), and Domany et al. (1995).



8

LEARNING IN PERCEPTRON

In the previous chapter we calculated the capacity of a simple perceptron under
random combinations of input and output. The problem of learning is different
from the capacity problem in that the perceptron is required to simulate the
functioning of another perceptron even for new inputs, not to reproduce random
signals as in the previous chapter. For this purpose, the couplings are gradually
adjusted so that the probability of correct output increases. An important objec-
tive of the theory of learning is to estimate the functional relation between the
number of examples and the expected error under a given algorithm to change
couplings. The argument in this book will be restricted to learning in simple
perceptrons.

8.1 Learning and generalization error

We first explain a few basic notions of learning. In particular, we introduce the
generalization error, which is the expected error rate for a new input not included
in the given examples used to train the perceptron.

8.1.1 Learning in perceptron

Let us prepare two perceptrons, one of which is called a teacher and the other a
student. The two perceptrons share a common input ξ = {ξj} but the outputs
are different because of differences in the couplings. The set of couplings of the
teacher will be denoted by B = {Bj} and that of the student by J = {Jj} (Fig.
8.1). All these vectors are of dimensionality N . The student compares its output
with that of the teacher and, if necessary, modifies its own couplings so that
the output tends to coincide with the teacher output. The teacher couplings do
not change. This procedure is termed supervised learning. The student couplings
J change according to the output of the teacher; the student tries to simulate
the teacher, given only the teacher output without explicit knowledge of the
teacher couplings. In the case of unsupervised learning, by contrast, a perceptron
changes its couplings only according to the input signals. There is no teacher
which gives an ideal output. The perceptron adjusts itself so that the structure
of the input signal (e.g. the distribution function of inputs) is well represented
in the couplings. We focus our attention on supervised learning.

Supervised learning is classified into two types. In batch learning (or off-line
learning) the student learns a given set of input–output pairs repeatedly until
these examples by the teacher are reproduced sufficiently well. Then the same
process is repeated for additional examples. The student learns to reproduce the

158
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Fig. 8.1. Teacher and student perceptrons with N = 3

examples faithfully. A disadvantage is that the time and memory required are
large.

The protocol of on-line learning is to change the student couplings immedi-
ately for a given example that is not necessarily used repeatedly. The student
may not be able to answer correctly to previously given examples in contrast
to batch learning. One can instead save time and memory in on-line learning.
Another advantage is that the student can follow changes of the environment
(such as the change of the teacher structure, if any) relatively quickly.

In general, the teacher and student may have more complex structures than a
simple perceptron. For example, multilayer networks (where a number of simple
elements are connected to form successive layers) are frequently used in prac-
tical applications because of their higher capabilities of information processing
than simple perceptrons. Nevertheless, we mainly discuss the case of a simple
perceptron to elucidate the basic concepts of learning, from which analyses of
more complex systems start. References for further study are listed at the end
of the chapter.

8.1.2 Generalization error

One of the most important quantities in the theory of learning is the generaliza-
tion error, which is, roughly speaking, the expectation value of the error in the
student output for a new input. An important goal of the theory of learning is
to clarify the behaviour of generalization error as a function of the number of
examples.

To define the generalization error more precisely, we denote the input signals
to the student and teacher by u and v, respectively,

u =
N∑

j=1

Jjξj , v =
N∑

j=1

Bjξj . (8.1)
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Suppose that both student and teacher are simple perceptrons. Then the outputs
are sgn(u) and sgn(v), respectively. It is also assumed that the components of
student and teacher couplings take arbitrary values under normalization

∑
j J2

j =∑
j B2

j = N . We discuss the case where the components of the input vector are
independent stochastic variables satisfying [ξi] = 0 and [ξiξj ] = δij/N . Other
detailed properties of ξ (such as whether ξi is discrete or continuous) will be
irrelevant to the following argument in the limit of large N . The overlap between
the student and teacher couplings is written as R:

R =
1
N

N∑
j=0

BjJj . (8.2)

As the process of learning proceeds, the structure of the student usually ap-
proaches that of the teacher (J ≈ B) and consequently R becomes closer to
unity.

We consider the limit of large N since the description of the system then often
simplifies significantly. For example, the stochastic variables u and v follow the
Gaussian distribution of vanishing mean, variance unity, and covariance (average
of uv) R when N → ∞ according to the central limit theorem,

P (u, v) =
1

2π
√

1 − R2
exp
(
−u2 + v2 − 2Ruv

2(1 − R2)

)
. (8.3)

The average with respect to this probability distribution function corresponds
to the average over the input distribution.

To define the generalization error, we introduce the training energy or training
cost for p examples:

E =
p∑

µ=1

V (J , σµ, ξµ), (8.4)

where σµ = sgn(vµ) is the teacher output to the µth input vector ξµ. Note
that the training energy depends on the teacher coupling B only through the
teacher output σµ; the student does not know the detailed structure of the teacher
(B) but is given only the output σµ. The generalization function E(J , σ) is
the average of V (J , σ, ξ) over the distribution of input ξ. A common choice of
training energy for the simple perceptron is the number of incorrect outputs

E =
p∑

µ=1

Θ(−σµuµ)

(
=

p∑
µ=1

Θ(−uµvµ)

)
, (8.5)

where Θ(x) is the step function. The generalization function corresponding to
the energy (8.5) is the probability that sgn(u) is different from sgn(v), which is
evaluated by integrating P (u, v) over the region of uv < 0:

E(R) ≡
∫

du dv P (u, v)Θ(−uv) =
1
π

cos−1 R. (8.6)
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Fig. 8.2. Coupling vectors of the teacher and student, and the input vectors to
give incorrect student output (shaded).

The generalization error εg of a simple perceptron is the average of the gener-
alization function over the distributions of teacher and student structures. The
generalization function E(R) depends on the teacher and student structures only
through the overlap R. Since the overlap R is a self-averaging quantity for a large
system, the generalization function is effectively equal to the generalization error
in a simple perceptron. The overlap R will be calculated later as a function of the
number of examples divided by the system size α = p/N . Thus the generalization
error is represented as a function of α through the generalization function:

εg(α) = E(R(α)). (8.7)

The generalization error as a function of the number of examples εg(α) is called
the learning curve.

It is possible to understand (8.6) intuitively as follows. The teacher gives
output 1 for input vectors lying above the plane perpendicular to the coupling
vector B, SB :

∑
j Bjξj = 0 (i.e. the output is 1 for

∑
j Bjξj > 0); the teacher

output is −1 if the input is below the plane
∑

j Bjξj < 0. Analogously, the stu-
dent determines its output according to the position of the input vector relative
to the surface SJ perpendicular to the coupling vector J . Hence the probability
of an incorrect output from the student (generalization error) is the ratio of the
subspace bounded by SB and SJ to the whole space (Fig. 8.2). The generaliza-
tion error is therefore equal to 2θ/2π, where θ is the angle between B and J . In
terms of the inner product R between B and J , θ/π is expressed as (8.6).

8.2 Batch learning

Statistical-mechanical formulation is a very powerful tool to analyse batch learn-
ing. A complementary approach, PAC (probably almost correct) learning, gives
very general bounds on learning curves (Abu-Mostafa 1989; Hertz et al. 1991)
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while statistical mechanics makes it possible to calculate the learning curve ex-
plicitly for a specified learning algorithm.

8.2.1 Bayesian formulation

It is instructive to formulate the theory learning as a problem of statistical in-
ference using the Bayes formula because a statistical-mechanical point of view is
then naturally introduced (Opper and Haussler 1991; Opper and Kinzel 1995).
We would like to infer the correct couplings of the teacher B, given p exam-
ples of teacher output σµ (= sgn(vµ)) for input ξµ (µ = 1, . . . , p). The result of
inference is the student couplings J , which can be derived using the posterior
P (J |σ1, . . . , σp). For this purpose, we introduce a prior P (J), and the conditional
probability to produce the outputs σ1, . . . , σp will be written as P (σ1, . . . , σp|J).
Then the Bayes formula gives

P (J |σ1, . . . , σp) =
P (σ1, . . . , σp|J)P (J)

Z
, (8.8)

where Z is the normalization. Although it is possible to proceed without ex-
plicitly specifying the form of the conditional probability P (σ1, . . . , σp|J), it is
instructive to illustrate the idea for the case of output noise defined as

σ =
{

sgn(v) prob. (1 + e−β)−1

−sgn(v) prob. (1 + eβ)−1.
(8.9)

The zero-temperature limit (β = 1/T → ∞) has no noise in the output (σ =
sgn(v)) whereas the high-temperature extreme (β → 0) yields perfectly random
output. The conditional probability of output σµ, given the teacher connections
B for a fixed single input ξµ, is thus

P (σµ|B) =
Θ(σµvµ)
1 + e−β

+
Θ(−σµvµ)

1 + eβ
=

exp {−βΘ(−σµvµ)}
1 + e−β

. (8.10)

The full conditional probability for p independent examples is therefore

P (σ1, . . . , σp|B) =
p∏

µ=1

P (σµ|B) = (1 + e−β)−p exp

{
−β

p∑
µ=1

Θ(−σµvµ)

}
.

(8.11)
The explicit expression of the posterior is, from (8.8),

P (J |σ1, . . . , σp) =
exp
{
−β
∑p

µ=1 Θ(−σµuµ)
}

P (J)

Z
, (8.12)

which has been derived for a fixed set of inputs ξ1, . . . , ξp. Note that vµ (=
B · ξµ) in the argument of the step function Θ in (8.11) has been replaced by
uµ (= J · ξµ) in (8.12) because in the latter we consider P (σ1, . . . , σp|J) instead
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of P (σ1, . . . , σp|B) in the former. We shall assume a uniform prior on the sphere,
P (J) ∝ δ(J2−N) and P (B) ∝ δ(B2−N) as mentioned in §8.1.2. The expression
(8.12) has the form of a Boltzmann factor with the energy

E =
p∑

µ=1

Θ(−σµuµ). (8.13)

This is the same energy as we introduced before, in (8.5). For large β the system
favours students with smaller training errors. Equation (8.12) motivates us to
apply statistical mechanics to the theory of learning.

A few comments are in order. First, input noise, in contrast with output
noise, stands for random deviations of ξ to the student from those to the teacher
as well as deviations of the teacher couplings from the true value. Input noise
causes various non-trivial complications, which we do not discuss here (Györgyi
and Tishby 1990). Second, training error is defined as the average of the training
energy per example E/p. The average is taken first over the posterior (8.12)
and then over the configuration of input ξ. Training error measures the average
error for examples already given to the student whereas generalization error is
the expected error for a new example. We focus our attention on generalization
error.

8.2.2 Learning algorithms

It is instructive to list here several popular learning algorithms and their prop-
erties. The Bayesian algorithm (Opper and Haussler 1991) to predict the output
σ for a new input ξ compares the probability of σ = 1 with that of σ = −1 and
chooses the larger one, in analogy with (5.15) for error-correcting codes,

σ = sgn(V + − V −), (8.14)

where V ± is the probability (or the volume of the relevant phase space) of the
output 1 or −1, respectively,

V ± =
∫

dJ Θ(±J · ξ)P (J |σ1, . . . , σp). (8.15)

This is the best possible (Bayes-optimal) strategy to minimize the generalization
error, analogously to the case of error-correcting codes. In fact the generalization
error in the limit of large p and N with α = p/N fixed has been evaluated for
the Bayesian algorithm as (Opper and Haussler 1991)

εg ≈ 0.44
α

(8.16)

for sufficiently large α, which is the smallest among all learning algorithms (some
of which will be explained below). A drawback is that a single student is unable
to follow the Bayesian algorithm because one has to explore the whole coupling
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space to evaluate V ±, which is impossible for a single student with a single set of
couplings J . Several methods to circumvent this difficulty have been proposed,
one of which is to form a layered network with a number of simple perceptrons
in the intermediate layer. All of these perceptrons have couplings generated by
the posterior (8.12) and receive a common input. The number of perceptrons in
the layer with σ = 1 is proportional to V + and that with σ = −1 to V −. The
final output is decided by the majority rule of the outputs of these perceptrons
(committee machine).

An alternative learning strategy is the Gibbs algorithm in which one chooses
a single coupling vector J following the posterior (8.12). This gives a typical
realization of J and can be implemented by a single student perceptron. The
performance is slightly worse than the Bayes result. The asymptotic form of the
generalization error is, for T → 0,

εg ≈ 0.625
α

(8.17)

in the regime α = p/N → ∞ (Györgyi and Tishby 1990). We shall present the
derivation of this result (8.17) later since the calculations are similar to those in
the previous chapter and include typical techniques used in many other cases.
The noise-free (T = 0) Gibbs learning is sometimes called the minimum error
algorithm.

In the posterior (8.12) we may consider more general forms of energy than the
simple error-counting function (8.13). Let us assume that the energy is additive
in the number of examples and write

E =
p∑

µ=1

V (σµuµ). (8.18)

The Hebb algorithm has V (x) = −x; the minimum of this energy with respect to
J has J ∝∑µ σµξµ, reminiscent of the Hebb rule (7.4) for associative memory,
as can be verified by minimization of E under the constraint J2 = N using a
Lagrange multiplier. This Hebb algorithm is simple but not necessarily efficient
in the sense that the generalization error falls rather slowly (Vallet 1989):

εg ≈ 0.40√
α

. (8.19)

The parameter x = σJ · ξ = σu may be interpreted as the level of confidence
of the student about its output: positive x means a correct answer, and as x
increases, small fluctuations in J or ξ become less likely to lead to a wrong
answer. In the space of couplings, the subspace with x > 0 for all examples is
called the version space. It seems reasonable to choose a coupling vector J that
gives the largest possible x in the version space. More precisely, we first choose
those J that have the stability parameter x larger than a given threshold κ.
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Then we increase the value of κ until such J cease to exist. The vector J chosen
at this border of existence (vanishing version space) is the one with the largest
stability. This method is called the maximum stability algorithm. The maximum
stability algorithm can be formulated in terms of the energy

V (x) =
{∞ x < κ

0 x ≥ κ.
(8.20)

One increases κ until the volume of subspace under the energy (8.20) vanishes in
the J -space. The asymptotic form of the generalization error for the maximum
stability algorithm has been evaluated as (Opper et al. 1990)

εg ≈ 0.50
α

, (8.21)

which lies between the Bayes result (8.19) and the minimum error (Gibbs) algo-
rithm (8.17). The inverse-α law of the generalization error has also been derived
from arguments based on mathematical statistics (Haussler et al. 1991).

8.2.3 High-temperature and annealed approximations
The problem simplifies significantly in the high-temperature limit and yet non-
trivial behaviour results. In particular, we show that the generalization error can
be calculated relatively easily using the example of the Gibbs algorithm (Seung
et al. 1992).

The partition function in the high-temperature limit (β → 0) is

Z =
∫

dJ P (J)

(
1 − β

∑
µ

Θ(−σµuµ)

)
+O(β2) ≡

∫
dR Z(R)+O(β2) (8.22)

according to (8.12). The partition function with R specified is rewritten as

Z(R) = VR

(
1 − β

∫
R dJ P (J)

∑
µ Θ(−σµuµ)

VR

)
, VR =

∫
R

dJ P (J). (8.23)

The integral with suffix R runs over the subspace with a fixed value of the overlap
R. The integral over R in (8.22) is dominated by the value of R that maximizes
Z(R) or minimizes the corresponding free energy. The configurational average of
the free energy for fixed R is

βF (R) = −[log Z(R)] = − log VR + βpE(R), (8.24)

where the relation (8.6) has been used. The volume VR is evaluated using the
angle θ between B and J as

VR ∝ sinN−2 θ = (1 − R2)(N−2)/2. (8.25)

The reason is that the student couplings J with a fixed angle θ to B lie on a
hypersphere of radius N sin θ and dimensionality N − 2 in the coupling space.
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Suppose that Fig. 8.2 is for N = 3; that is, J and B both lie on a sphere of radius
N (= 3). Then the J with a fixed angle θ to B all lie on a circle (dimensionality
N − 2 = 1) with radius N sin θ on the surface of the sphere.

We have to minimize the free energy F (R) in the large-N limit. From the
explicit expression of the free energy per degree of freedom

βf(R) =
α̃

π
cos−1 R − 1

2
log(1 − R2), (8.26)

where α̃ = βα, we find
R√

1 − R2
=

α̃

π
. (8.27)

The generalization error εg = E(R) is thus

εg =
1
π

cos−1 α̃√
π2 + α̃2

≈ 1
α̃

, (8.28)

where the last expression is valid in the large-α̃ limit. The combination α̃ = βα
is the natural parameter in the high-temperature limit (small β) because one
should present more and more examples (large α) to overwhelm the effects of
noise. The result (8.28) shows that the inverse-α law holds for the learning curve
in the high-temperature limit.

Annealed approximation is another useful technique to simplify calculations
(Seung et al. 1992). One performs the configurational average of Z, instead of
log Z, in the annealed approximation. This approximation can be implemented
relatively easily in many problems for which the full quenched analysis is difficult.
One should, however, appreciate that this is an uncontrolled approximation and
the result is sometimes qualitatively unreliable.

8.2.4 Gibbs algorithm

We now give an example of derivation of the learning curve for the case of the
noise-free Gibbs algorithm (minimum error algorithm) in the limit of large N
and p with the ratio α = p/N fixed (Györgyi and Tishby 1990). The techniques
used here are analogous to those in the previous chapter and are useful in many
other cases of batch learning.

According to (8.6), the generalization error εg(α) is determined by the relation
between R and α. It is useful for this purpose to calculate the volume of the space
of student couplings J under the posterior (8.12):

V =
1
Z

∫
dJ δ(

∑
j

J2
j − N) e−βE (8.29)

with E =
∑

µ Θ(−σµuµ). In the noise-free Gibbs algorithm the student chooses
J with a uniform probability in the version space satisfying E = 0. Correspond-
ingly, the limit β → ∞ will be taken afterwards.
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We investigate the typical macroscopic behaviour of the system by taking the
configurational average over the input vectors, which are regarded as quenched
random variables. It is particularly instructive to derive the average of log V ,
corresponding to the entropy (logarithm of the volume of the relevant space).
We use the replica method and express the average of V n in terms of the order
parameter qαβ . The normalization Z is omitted since it does not play a positive
role. The following equation results if we note that Θ is either 0 or 1:

[V n] =
∫ ∏

α

dRα

∫ ∏
(αβ)

dqαβ

∫ ∏
α,j

dJα
j

·
∏
α

δ(
∑

j

(Jα
j )2 − N)

∏
α

δ(
∑

j

BjJ
α
j − NRα)

∏
(αβ)

δ(
∑

j

Jα
j Jβ

j − Nqαβ)

·
[∏

α,µ

{e−β + (1 − e−β)Θ(uα
µvµ)}

]
. (8.30)

8.2.5 Replica calculations

Evaluation of (8.30) proceeds by separating it into two parts: the first half inde-
pendent of the input (the part including the delta functions), and the second half
including the effects of input signals (in the brackets [· · ·]). The former is denoted
by IN

1 , and we write the three delta functions in terms of Fourier transforms to
obtain, under the RS ansatz,

IN
1 =

∫ ∏
α,j

dJα
j exp


i

E
∑
α,j

(Jα
j )2 + F

∑
(αβ),j

Jα
j Jβ

j + G
∑
α,j

Jα
j Bj

−N

(
nE +

n(n − 1)
2

qF + nRG

)}]
, (8.31)

where the integrals over the parameters R, q, E, F , and G have been omitted in
anticipation of the use of the method of steepest descent.

It is possible to carry out the above integral for each j independently. The
difference between this and (7.83) is only in G, and the basic idea of calculation is
the same. One diagonalizes the quadratic form and performs Gaussian integration
independently for each eigenmode.19 It is to be noted that, for a given j, the term
involving G has the form GBj

∑
α Jα

j (uniform sum over α) and correspondingly
the uniform mode in the diagonalized form (with the eigenvalue E +(n−1)F/2)
has a linear term. In other words, for a given j, the contribution of the uniform
mode u (=

∑
α Jα

j ) to the quadratic form is

i
(

E +
n − 1

2
F

)
u2 + iGBju. (8.32)

19One may instead decompose the term involving the double sum (αβ) to a linear form by
Gaussian integration.
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By integrating over u and summing the result over j, we obtain −iG2N/[4{E +
(n − 1)F/2}] in the exponent. Thus in the limit n → 0

g1(E, F,G) ≡ 1
nN

log IN
1 = −1

2
log
(

E − F

2

)

− F

4E − 2F
− iG2

4E − 2F
− iE − iGR + i

qF

2
. (8.33)

The extremization condition of g1(E, F,G) with respect to E, F , and G yields

2E − F =
i

1 − q
,

F + iG2

−2E + F
=

q

1 − q
, iG =

R

1 − q
. (8.34)

We can now eliminate E, F , and G from (8.33) to obtain

g1 =
1
2

log(1 − q) +
1 − R2

2(1 − q)
. (8.35)

Next, the second half IN
2 of (8.30) is decomposed into a product over µ, and

its single factor is

(IN
2 )1/p =

[
2Θ(v)

∏
α

{e−β + (1 − e−β)Θ(uα)}
]

. (8.36)

Here, since the contribution from the region u > 0, v > 0 is the same as that
from u < 0, v < 0, we have written only the former and have multiplied the
whole expression by 2. It is convenient to note here that u and v are Gaussian
variables with the following correlations:

[uαuβ] = (1 − q)δα,β + q, [vuα] = R, [v2] = 1. (8.37)

These quantities can be expressed in terms of n + 2 uncorrelated Gaussian vari-
ables t and zα (α = 0, . . . , n), both of which have vanishing mean and variance
unity:

v =

√
1 − R2

q
z0 +

R√
q
t, uα =

√
1 − q zα +

√
qt (α = 1, . . . , n). (8.38)

Equation (8.36) is rewritten using these variables as

(IN
2 )1/p = 2

∫
Dt

∫
Dz0Θ

(√
1 − R2

q
z0 +

R√
q
t

)

·
n∏

α=1

∫
Dzα{e−β + (1 − e−β)Θ(

√
1 − q zα +

√
qt)}
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= 2
∫

Dt

∫ ∞

−Rt/
√

q−R2
Dz0

·
{∫

Dz{e−β + (1 − e−β)Θ(
√

1 − q z +
√

qt)}
}n

. (8.39)

We collect the two factors (8.35) and (8.39) and take the limit n → 0 to find

f ≡ lim
n→0

1
nN

log[V n] = 2α

∫
Dt

∫ ∞

−Rt/
√

q−R2
Dz0 log

{
e−β

+(1 − e−β)
∫ ∞

−
√

q/(1−q) t

Dz

}
+

1
2

log(1 − q) +
1 − R2

2(1 − q)
. (8.40)

The extremization condition of (8.40) determines R and q.

8.2.6 Generalization error at T = 0
It is possible to carry out the calculations for finite temperatures (Györgyi and
Tishby 1990). However, formulae simplify significantly for the noise-free case of
T = 0, which also serves as a prototype of the statistical-mechanical evaluation of
the learning curve. We therefore continue the argument by restricting ourselves
to T = 0. Let us then take the limit β → ∞ in (8.40) and change the variables
as

u =
R√
q
z0 −

√
q − R2

q
t, v =

√
q − R2

q
z0 +

R√
q
t (8.41)

to obtain

f = 2α

∫ ∞

0

Dv

∫ ∞

−∞
Du log

∫ ∞

w

Dz +
1
2

log(1 − q) +
1 − R2

2(1 − q)
(8.42)

w =

√
q − R2 u − Rv√

1 − q
. (8.43)

The extremization condition of (8.42) with respect to R and q leads to the
following equations:

α

√
2
π

∫ ∞

0

Dv

∫ ∞

−∞
Du

ue−w2/2∫∞
w Dz

=
q − 2R2

1 − 2q

√
q − R2

1 − q
(8.44)

α

√
2
π

∫ ∞

0

Dv

∫ ∞

−∞
Du

ve−w2/2∫∞
w Dz

=
1 − 3q + 2R2

(1 − 2q)
√

1 − q
. (8.45)

The solution of these equations satisfies the relation q = R. Indeed, by setting
q = R and rewriting the above two equations, we obtain the same formula

α

π

∫ ∞

−∞
Dx

e−qx2/2∫∞√
qx

Dz
=

q√
1 − q

. (8.46)

We have changed the variables u = x +
√

q/(1 − q) y, v = y in deriving this
equation. The relation q = R implies that the student and teacher are in a
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certain sense equivalent because of the definitions qαβ = N−1
∑

Jα
j Jβ

j and R =
N−1

∑
BjJ

α
j .

The behaviour of the learning curve in the limit of a large number of examples
(α → ∞) can be derived by setting q = 1− ε (|ε| � 1) since J is expected to be
close to B in this limit. Then (8.46) reduces to

ε ≈ π2

c2α2
, c =

∫ ∞

−∞
Dx

e−x2/2∫∞
x

Dz
. (8.47)

Substitution of this into (8.6) gives the asymptotic form of the learning curve as

εg ≈
√

2
cα

=
0.625

α
, (8.48)

as already mentioned in (8.17). This formula shows that the generalization error
of a simple perceptron decreases in inverse proportion to the number of examples
in batch learning. It is also known that the present RS solution is stable (Györgyi
and Tishby 1990).

8.2.7 Noise and unlearnable rules

We have discussed the case where the teacher and student are both simple per-
ceptrons with continuous weights and their binary outputs coincide if the student
coupling agrees with the teacher coupling. There are many other possible scenar-
ios of learning. For example, the output of the teacher may follow a stochastic
process (output noise) as mentioned before, or the input signal may include noise
(input noise). In both of these cases, the student cannot reproduce the teacher
output perfectly even when the couplings agree. In the simple case we have been
treating, output noise deteriorates the generalization error just by a factor mildly
dependent on the noise strength (temperature) (Opper and Haussler 1991; Op-
per and Kinzel 1995). Input noise causes more complications like RSB (Györgyi
and Tishby 1990). More complex structures of the unit processing elements than
a simple perceptron lead to such effects even for output noise (Watkin and Rau
1993).

Another important possibility we have not discussed so far is that the struc-
ture of the student is different from that of the teacher, so that the student cannot
reproduce the teacher output in principle (unlearnable or unrealizable rules). If
the teacher is composed of layers of perceptrons for instance, the teacher may be
able to perform linearly non-separable rules. A simple perceptron as the student
cannot follow such teacher outputs faithfully. Or, if the threshold θ appearing in
the output sgn(u − θ) is different between the teacher and student, the student
cannot follow the teacher output even if J coincides with B. A more näıve in-
stance is the weight mismatch where the components of the student vector J may
take only discrete values whereas the teacher vector B is continuous. These and
more examples of unlearnable rules have been investigated extensively (Seung et
al. 1992; Watkin and Rau 1992, 1993; Domany et al. 1995; Wong et al. 1997).
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A general observation is that RSB and spin glass states emerge in certain re-
gions of the phase diagram in these unlearnable cases. Non-monotonic behaviour
of the generalization error as a function of temperature is also an interesting
phenomenon in some of these instances.

8.3 On-line learning
The next topic is on-line learning in which the student changes its couplings im-
mediately after the teacher output is given for an input. In practical applications,
on-line learning is often more important than batch learning because the former
requires less memory and time to implement and, furthermore, adjustment to
changing environments is easier. Similar to the batch case, we mainly investigate
the learning curve for simple perceptrons under various learning algorithms. The
formula for the generalization error (8.6) remains valid for on-line learning as
well.

8.3.1 Learning algorithms
Suppose that both student and teacher are simple perceptrons, and the student
couplings change according to the perceptron learning algorithm (7.72) as soon
as an input is given. Expressing the student coupling vector after m steps of
learning by Jm, we can write the on-line perceptron learning algorithm as

Jm+1 = Jm + Θ(−sgn(u)sgn(v)) sgn(v)x = Jm + Θ(−uv) sgn(v)x, (8.49)

where u =
√

NJm · x/|Jm| and v =
√

NB · x/|B| are input signals to the
student and teacher, respectively, and x is the normalized input vector, |x| = 1.
The σµ in (7.72) corresponds to sgn(v) and ηξ to x. We normalize x to unity
since, in contrast to §7.6.2, the dynamics of learning is investigated here in the
limit of large N and we should take care that various quantities do not diverge.
The components of the input vector x are assumed to have no correlations with
each other, and independent x is drawn at each learning step; in other words,
infinitely many independent examples are available. This assumption may not
be practically acceptable, especially when the number of examples is limited.
The effects of removing this condition have been discussed as the problem of the
restricted training set (Sollich and Barber 1997; Barber and Sollich 1998; Heskes
and Wiegerinck 1998; Coolen and Saad 2000).

Other typical learning algorithms include the Hebb algorithm

Jm+1 = Jm + sgn(v)x (8.50)

and the Adatron algorithm

Jm+1 = Jm − uΘ(−uv)x. (8.51)

The Hebb algorithm changes the student couplings by sgn(v)x irrespective of
the student output (correct or not) so that the inner product J ·x tends to yield
the correct output sgn(v) for the next input. The Adatron algorithm is a little
similar to the perceptron algorithm (8.49), the difference being that the amount
of correction for incorrect output is proportional to u.
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8.3.2 Dynamics of learning

To develop a general argument, we write the learning algorithm in the form

Jm+1 = Jm + f(sgn(v), u)x. (8.52)

The choice of arguments of the function f , sgn(v) and u, shows that the student
knows only the teacher output sgn(v), not the input signal v to the teacher, the
latter involving the information on the teacher couplings.

Some algorithms may be interpreted as the dynamics along the gradient of
an energy (or cost function) with respect to J . For example, the Hebb algorithm
(8.50) can be expressed as

Jm+1 = Jm − ηm
∂V (σx · Jm)

∂Jm (8.53)

with σ = sgn(v), ηm = 1, and V (y) = −y. If we identify V with the cost function
analogously to batch learning (§8.2.1), (8.53) represents a process to reduce V
by gradient descent with constant learning rate ηm = 1.20 Such a viewpoint will
be useful later in §8.3.5 where adaptive change of ηm is discussed. We use the
expression (8.52) here, which does not assume the existence of energy, to develop
a general argument for the simple perceptron.

The learning dynamics (8.52) determines each component Ji of the coupling
vector J precisely. However, we are mainly interested in the macroscopic proper-
ties of the system in the limit N 	 1, such as the coupling length lm = |Jm|/√N
and the overlap Rm = (Jm ·B)/|Jm||B| to represent the teacher–student prox-
imity. We shall assume that |B| is normalized to

√
N . Our goal in the present

section is to derive the equations to describe the time development of these
macroscopic quantities R and l from the microscopic relation (8.52).

To this end, we first square both sides of (8.52) and write um = (Jm · x)/lm

to obtain
N{(lm+1)2 − (lm)2} = 2[fum]lm + [f2], (8.54)

where fu and f2 have been replaced with their averages by the distribution
function (8.3) of u and v assuming the self-averaging property. By writing lm+1−
lm = dl and 1/N = dt, we can reduce (8.54) to a differential equation

dl

dt
= [fu] +

[f2]
2l

. (8.55)

Here t is the number of examples in units of N and can be regarded as the time
of learning.

20The error back propagation algorithm for multilayer networks, used quite frequently in
practical applications, is formulated as a gradient descent process with the training error as
the energy or cost function. Note that this algorithm is essentially of batch type, not on-line
(Hertz et al. 1991). A more sophisticated approach employs natural gradient in information
geometry (Amari 1997).
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The equation for R is derived by taking the inner product of both sides of
(8.52) and B and using the relations B · Jm = NlmRm and v = B · x. The
result is

dR

dt
=

[fv] − [fu]R
l

− R

2l2
[f2]. (8.56)

The learning curve εg = E(R(t)) is obtained by solving (8.55) and (8.56) and
substituting the solution R(t) into (8.6).

8.3.3 Generalization errors for specific algorithms

We next present explicit solutions for various learning algorithms. The first one
is the perceptron algorithm

f = Θ(−uv)sgn(v). (8.57)

The averages in the equations of learning (8.55) and (8.56) reduce to the following
expressions after the integrals are evaluated:

[fu] = −[fv] =
∫

du dv P (u, v)Θ(−uv)u sgn(v) =
R − 1√

2π
(8.58)

[f2] =
∫

du dv P (u, v)Θ(−uv) = E(R) =
1
π

cos−1 R. (8.59)

Insertion of these equations into (8.55) and (8.56) will give the time dependence
of the macroscopic parameters R(t) and l(t), from which we obtain the learning
curve εg(t).

It is interesting to check the explicit asymptotic form of the learning curve
as l grows and R approaches unity. Setting R = 1− ε and l = 1/δ with ε, δ � 1,
we have from (8.55) and (8.56)

dδ

dt
= −

√
2ε

2π
δ3 +

εδ2

√
2π

,
dε

dt
=

√
2ε

2π
δ2 −

√
2
π

εδ, (8.60)

where use has been made of (8.58) and (8.59). The solution is

ε =
(

1
3
√

2

)2/3

t−2/3, δ =
2
√

π

(3
√

2)1/3
t−1/3. (8.61)

The final asymptotic form of the generalization error is therefore derived as
(Barkai et al. 1995)

εg = E(R) ≈
√

2
π(3

√
2)1/3

t−1/3 = 0.28 t−1/3. (8.62)

Comparison of this result with the learning curve of batch learning (8.48) for the
Gibbs algorithm, εg ∝ α−1, reveals that the latter converges much more rapidly
to the ideal state εg = 0 if the numbers of examples in both cases are assumed to
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be equal (α = t). It should, however, be noted that the cost (time and memory)
to learn the given number of examples is much larger in the batch case than in
on-line learning.

A similar analysis applies to the Hebb algorithm

f(sgn(v), u) = sgn(v). (8.63)

The averages in (8.55) and (8.56) are then

[fu] =
2R√
2π

, [f2] = 1, [fv] =

√
2
π

. (8.64)

The asymptotic solution of the dynamical equations is derived by setting R =
1 − ε and l = 1/δ with ε, δ � 1:

dδ

dt
= −
√

2
π

δ2,
dε

dt
=

δ2

2
− 4√

2π
εδ. (8.65)

The solution is

ε =
π

4t
, δ =

√
π

2
1
t
, (8.66)

and the corresponding generalization error is (Biehl et al. 1995)

εg ≈ 1√
2π

t−1/2 = 0.40 t−1/2. (8.67)

It is seen that the learning curve due to the Hebb algorithm, εg ∝ t−1/2, ap-
proaches zero faster than in the case of the perceptron algorithm, εg ∝ t−1/3. It
is also noticed that the learning curve (8.67) shows a relaxation of comparable
speed to the corresponding batch result (8.19) if we identify t with α.

The Adatron algorithm of on-line learning has

f(sgn(v), u) = −uΘ(−uv), (8.68)

and integrals in the dynamical equations (8.55) and (8.56) are

[fu] = −
√

2
∫ ∞

0

Du u2Erfc

(
Ru√

2(1 − R2)

)
, [fv] =

(1 − R)3/2

π
+R[fu]. (8.69)

With (8.68), [f2] is equal to −[fu]. The asymptotic form for ε = 1 − R � 1 is,
writing c = 8/(3

√
2π),

[fu] ≈ −4(2ε)3/2

π

∫ ∞

0

y2dy Erfc(y) = −cε3/2, [fv] =

(
−c +

2
√

2
π

)
ε3/2. (8.70)

To solve the dynamical equations, we note that (8.55) has the explicit form
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dl

dt
=
(
−1 +

1
2l

)
cε3/2, (8.71)

which implies that l does not change if l = 1/2. It is thus convenient to restrict
ourselves to l = 1/2, and then we find that (8.56) is

dε

dt
= 2

(
c − 2

√
2

π

)
ε3/2. (8.72)

This equation is solved as ε = 4/(kt)2, where k = 4
√

2/π−2c. The generalization
error is therefore (Biehl and Riegler 1994)

εg ≈ 2
√

2
πk

· 1
t

=
3
2t

. (8.73)

It is remarkable that on-line Adatron learning leads to a very fast convergence
comparable to the batch case discussed in §8.2.2 after identification of α and t.

8.3.4 Optimization of learning rate

Let us go back to the dynamical equation of learning (8.52) with the learning
rate η written explicitly:

Jm+1 = Jm + ηmf(sgn(v), u)x. (8.74)

The constant learning rate ηm = 1 as in (8.52) keeps each component of J
fluctuating even after sufficient convergence to the desired result. Apparently, it
seems desirable to change the coupling vector J rapidly (large η) at the initial
state of learning and, in the later stage, adjust J carefully with small η. Such
an adjustment of learning rate would lead to an acceleration of convergence.
We discuss this topic in the present and next subsections. We first formulate the
problem as an optimization of the learning rate, taking the case of the perceptron
algorithm as an example (Inoue et al. 1997). Then a more general framework is
developed in the next subsection without explicitly specifying the algorithm.

The discrete learning dynamics (8.74) is rewritten in terms of differential
equations in the limit of large N as in (8.55) and (8.56) with f multiplied by η.
For the perceptron algorithm with simple perceptrons as the teacher and student,
the resulting equations are

dl

dt
=

η(R − 1)√
2π

+
η2 cos−1 R

2πl
(8.75)

dR

dt
= −η(R2 − 1)√

2πl
− η2R cos−1 R

2πl2
, (8.76)

where we have used (8.58) and (8.59).
Since εg = E(R) = 0 for R = 1, the best strategy to adjust η is to accelerate

the increase of R towards R = 1 by maximizing the right hand side of (8.76)
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with respect to η at each value of R. We thus differentiate the right hand side of
(8.76) by η and set the result to zero to obtain

η = −
√

2π l(R2 − 1)
2R cos−1 R

. (8.77)

Then the dynamical equations (8.75) and (8.76) simplify to

dl

dt
= − l(R − 1)3(R + 1)

4R2 cos−1 R
(8.78)

dR

dt
=

(R2 − 1)2

4R cos−1 R
. (8.79)

Taking the ratio of both sides of these equations, we can derive the exact relation
between R and l as

l =
cR

(R + 1)2
. (8.80)

The constant c is determined by the initial condition. This solution indicates
that l approaches a constant as R → 1.

The asymptotic solution of R(t) for R = 1− ε (|ε| � 1) can easily be derived
from (8.79) as ε ≈ 8/t2. Therefore the generalization error is asymptotically

εg =
cos−1 R

π
≈ 4

πt
, (8.81)

which is much faster than the solution with constant learning rate (8.62). The
learning rate decreases asymptotically as η ∝ 1/t as we expected before.

A weakness of this method is that the learning rate depends explicitly on
R, as seen in (8.77), which is unavailable to the student. This difficulty can be
avoided by using the asymptotic form η ∝ 1/t for the whole period of learning al-
though the optimization at intermediate values of t may not be achieved. Another
problem is that the simple optimization of the learning rate does not necessarily
lead to an improved convergence property in other learning algorithms such as
the Hebb algorithm. Optimization of the learning algorithm itself (to change the
functional form of f adaptively) is a powerful method to overcome this point
(Kinouchi and Caticha 1992).

8.3.5 Adaptive learning rate for smooth cost function

The idea of adaptive learning rate can be developed for a very general class of
learning algorithms including both learnable and unlearnable rules (Müller et
al. 1998). Let us assume that the cost function for a single input V (x, σ; J)
is differentiable by J .21 The output may be vector-valued σ. The goal is to
minimize the total energy

E(J) = [V (x, σ; J)], (8.82)

21Note that this condition excludes the perceptron and Adatron algorithms.
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which is identified with the generalization error εg. The energy is assumed to be
differentiable around the optimal state J = B:

E(J) = E(B) +
1
2

t(J − B)K(B)(J − B). (8.83)

Here K(B) is the value of the second-derivative matrix (Hessian) of the energy
E(J) at J = B. The on-line dynamics to be discussed here is specified by

Jm+1 = Jm − ηmK−1(J)
∂V (x, σ; J)

∂J
(8.84)

ηm+1 = ηm + a{b(V (x, σ; J) − Et) − ηm}, (8.85)

where Et =
∑

µ V (xµ, σµ; J)/p is the training error, and a and b are positive
constants. Equation (8.84) is a gradient descent with the direction modified by
K−1(J): the eigendirection of K(J) with the smallest eigenvalue has the fastest
rate of change. According to (8.85), η increases if the current error V exceeds
the cumulative training error Et. The final term with the negative sign in (8.85)
has been added to suppress uncontrolled increase of the learning rate.

The corresponding differential form of the learning dynamics is

dJ

dt
= −ηK−1(J)

[
∂V

∂J

]
dη

dt
= aη{b([V ] − Et) − η}.

(8.86)

We now expand V on the right hand sides of these equations around J = B:[
∂V

∂J

]
≈ K(B)(J − B)

[V ] − Et ≈ E(B) − Et +
1
2

t(J − B)K(B)(J − B).
(8.87)

Then the dynamical equations reduce to

dJ

dt
= −η(J − B)

dη

dt
= aη

{
b

2
t(J − B)K(B)(J − B) − η

}
.

(8.88)

These equations can be rewritten in terms of the energy as

dE(J)
dt

= −2η{E(J) − E(B)}
dη

dt
= abη{E(J) − E(B)} − aη2.

(8.89)

The solution is easily found to be

εg = E(J) = E(B) +
1
b

(
1
2
− 1

a

)
1
t

(8.90)
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η =
1
2t

. (8.91)

Choosing a > 2, we have thus shown that the learning rate with the 1/t law
(8.91) leads to rapid convergence (8.90) just as in the previous subsection but
under a very general condition. It is possible to generalize the present framework
to the cases without a cost function or without explicit knowledge of the Hessian
K (Müller et al. 1998).

8.3.6 Learning with query

Inputs satisfying the condition u = 0 lie on the border of the student output
sgn(u) (decision boundary). The student is not sure what output to produce for
such inputs. It thus makes sense to teach the student the correct outputs for
inputs satisfying u = 0 for efficient learning. This idea of restricting examples to
a subspace is called learning with query (Kinzel and Ruján 1990). One uses the
distribution function

P (u, v) =
δ(u)√

2π(1 − R2)
exp
(
−u2 + v2 − 2Ruv

2(1 − R2)

)
(8.92)

instead of (8.3). This method works only for the Hebb algorithm among the three
algorithms discussed so far because the perceptron algorithm has f ∝ Θ(−uv)
which is indefinite at u = 0, and the f for the Adatron algorithm is proportional
to u and vanishes under the present condition δ(u).

The dynamical equations (8.55) and (8.56) have the following forms for the
Hebb algorithm with query:

dl

dt
=

1
2l

(8.93)

dR

dt
=

1
l

√
2(1 − R2)

π
− R

2l2
. (8.94)

The first equation for l immediately gives l =
√

t, and the second has the asymp-
totic solution for small ε (R = 1− ε) as ε ≈ π/16t. The generalization error then
behaves asymptotically as

εg ≈ 1
2
√

2π
√

t
. (8.95)

Comparison with the previous result (8.67) reveals that asking queries reduces
the prefactor by a half in the generalization error.

It is possible to improve the performance further by combining query and
optimization of the learning rate. Straightforward application of the ideas of the
present section and §8.3.4 leads to the optimized learning rate

η =
1
R

√
2(1 − R2)

π
(8.96)
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Fig. 8.3. Output Ta(v) of the reversed-wedge-type perceptron

for the Hebb algorithm with query. The overlap is solved as R =
√

1 − c e−2α/π

and the generalization error decays asymptotically as

εg ≈ c

π
e−α/π, (8.97)

a very fast exponential convergence.
We have so far discussed learning with query based on a heuristic argument

to restrict the training set to the decision boundary. It is possible to formulate
this problem in a more systematic way using an appropriate cost function to be
extremized (such as information gain); one can then construct the best possible
algorithm to ask queries depending upon various factors. See Sollich (1994) and
references cited therein for this and related topics.

8.3.7 On-line learning of unlearnable rule

It is relatively straightforward, compared to the batch case, to analyse on-line
learning for unlearnable rules. Among various types of unlearnable rules (some
of which were mentioned in §8.2.7), we discuss here the case of the reversed-
wedge-type non-monotonic perceptron as the teacher (Inoue et al. 1997; Inoue
and Nishimori 1997). The student is the usual simple perceptron. The input
signal ξ is shared by the student and teacher. After going through the synaptic
couplings, the input signal becomes u for the student and v for the teacher as
defined in (8.1). The student output is sgn(u) and the teacher output is assumed
to be Ta(v) = sgn{v(a − v)(a + v)}, see Fig. 8.3.

The generalization error is obtained by integration of the distribution function
of u and v, (8.3), over the region where the student output is different from that
of the teacher:

εg = E(R) ≡
∫

du dv P (u, v)Θ(−Ta(v)sgn(u)) = 2
∫ 0

−∞
DtΩ(R, t), (8.98)

where

Ω(R, t) =
∫

Dz {Θ(−z
√

1 − R2 − Rt − a) + Θ(z
√

1 − R2 + Rt)
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Fig. 8.4. Generalization error of the non-monotonic perceptron

−Θ(z
√

1 − R2 + Rt − a)}. (8.99)

We have used in the derivation of (8.98) that (1)
∫

dvP (u, v)Θ(−Ta(v)sgn(u))
is an even function of u (and thus the integral over u < 0 is sufficient if we
multiply the result by 2) and that (2) z and t can be written in terms of two
independent Gaussian variables with vanishing mean and variance unity as u = t
and v = z

√
1 − R2 + Rt. In Fig. 8.4 we have drawn this generalization error as a

function of R. This non-monotonic perceptron reduces to the simple perceptron
in the limit a → ∞; then E(R) is a monotonically decreasing function of R and
has the minimum value E(R) = 0 at R = 1. When a = 0, the student output is
just the opposite of the teacher output for the same input, and we have E(R) = 0
at R = −1.

For intermediate values 0 < a < ∞, the generalization error does not vanish
at any R, and the student cannot simulate the teacher irrespective of the learning
algorithm. As one can see in Fig. 8.4, when 0 < a < ac1 =

√
2 log 2 = 1.18,

there is a minimum of E(R) in the range −1 < R < 0. This minimum is the
global minimum when 0 < a < ac2 ≈ 0.08. We have shown in Fig. 8.5 the
minimum value of the generalization error (a) and the R that gives this minimum
as functions of a (b). In the range a > ac2 the minimum of the generalization
error is achieved when the student has the same couplings as the teacher, R = 1,
but the minimum value does not vanish because the structures are different. In
the case of 0 < a < ac2, the minimum of the generalization error lies in the range
−1 < R < 0.

The generalization error as a function of R, (8.98), does not depend on the
type of learning. The general forms of the dynamical equations (8.55) and (8.56)
also remain intact, but the function f is different. For instance, the Hebb al-
gorithm in the case of a non-monotonic teacher has f = sgn{v(a − v)(a + v)}.
Then
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(a) (b)

Fig. 8.5. Minimum value of the generalization error (a) and overlap R that
gives the minimum of the generalization error (b).

[fu] =

√
2
π

R(1 − 2e−a2/2), [fv] =

√
2
π

(1 − 2e−a2/2), [f2] = 1. (8.100)

Accordingly, the dynamical equations read

dl

dt
=

1
2l

+

√
2
π

R(1 − 2e−a2/2) (8.101)

dR

dt
= − R

2l2
+

1
l

√
2
π

(1 − 2e−a2/2)(1 − R2). (8.102)

Solutions of (8.101) and (8.102) show different behaviour according to the value
of a. To see this, we set R = 0 on the right hand side of (8.102):

dR

dt
≈ 1

l

√
2
π

(1 − 2e−a2/2). (8.103)

This shows that R increases from zero when a > ac1 =
√

2 log 2 and decreases if
0 < a < ac1. Since (8.102) has a fixed point at R = 1 and l → ∞, R approaches
one as t → ∞ when a > ac1, and the learning curve is determined asymptotically
from (8.101) and (8.102) using R = 1− ε and l = 1/δ. It is not difficult to check
that ε ≈ (2k2t)−1, δ ≈ (kt)−1 holds as ε, δ � 1 with k =

√
2(1 − 2e−a2/2)/

√
π.

Substituting this into (8.98), we find the final result

εg ≈
√

2ε

π
+

2√
π

Erfc
(

a√
2

)

=
1√

2π(1 − 2e−a2/2)
1√
t

+
2√
π

Erfc
(

a√
2

)
. (8.104)

The second term on the right hand side is the asymptotic value as t → ∞ and
this coincides with the theoretical minimum of generalization error shown in Fig.
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8.5(a). This achievement of the smallest possible error is a remarkable feature
of the Hebb algorithm, and is not shared by other on-line learning algorithms
including the perceptron and Adatron algorithms.

Next, when 0 < a < ac1, we find R → −1 as t → ∞. If we set R = −1+ ε, l =
1/δ, the asymptotic form is evaluated as

εg ≈ 1√
6π(1 − 2e−a2/2)

1√
t

+ 1 − 2√
π

Erfc
(

a√
2

)
. (8.105)

The asymptotic value after the second term on the right hand side is larger than
the theoretical minimum of the generalization error in the range 0 < a < ac1.
Thus the Hebb algorithm is not the optimal one for small values of a. As one
can see in Fig. 8.4, the value R = −1 does not give the minimum of E(R) in
the case of 0 < a < ac1. This is the reason why the Hebb algorithm, which gives
R → −1 as t → ∞, does not lead to convergence to the optimal state.

Bibliographical note

We have elucidated the basic ideas of learning in very simple cases. There are
many interesting problems not discussed here, including the effects of noise,
perceptron with continuous output, multilayer networks, on-line Bayesian learn-
ing, path-integral formalism, support vector machines, restricted training set,
information-theoretical approaches, and unsupervised learning. These and other
topics are discussed in various review articles (Watkin and Rau 1993; Domany
et al. 1995; Wong et al. 1997; Saad 1998).
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OPTIMIZATION PROBLEMS

A decision-making problem is often formulated as minimization or maximization
of a multivariable function, an optimization problem. In the present chapter, after
a brief introduction, we show that methods of statistical mechanics are useful to
study some optimization problems. Then we discuss mathematical properties of
simulated annealing, an approximate numerical method for generic optimization
problems. In particular we analyse the method of generalized transition prob-
ability, which is attracting considerable attention recently because of its rapid
convergence properties.

9.1 Combinatorial optimization and statistical mechanics

The goal of an optimization problem is to find the variables to minimize (or
maximize) a multivariable function. When the variables take only discrete values
under some combinatorial constraints, the problem is called a combinatorial opti-
mization problem. The function to be minimized (or maximized) f(x1, x2, . . . , xn)
is termed the cost function or the objective function. It is sufficient to discuss
minimization because maximization of f is equivalent to minimization of −f .

An example of a combinatorial optimization problem familiar to physicists
is to find the ground state of an Ising model. The variables are the set of spins
{S1, S2, . . . , SN} and the Hamiltonian is the cost function. The ground state is
easily determined if all the interactions are ferromagnetic, but this is not the
case in spin glasses. The possible number of spin configurations is 2N , and we
would find the correct ground state of a spin glass system if we checked all of
these states explicitly. However, the number 2N grows quite rapidly with the
increase of N , and the ground-state search by such a näıve method quickly runs
into the practical difficulty of explodingly large computation time. Researchers
have been trying to find an algorithm to identify the ground state of a spin glass
by which one has to check less than an exponential number of states (i.e. power
of N). These efforts have so far been unsuccessful except for a few special cases.

The ground-state determination is an example of an NP (non-deterministic
polynomial) complete problem. Generally, the algorithm to solve an NP complete
problem can be transformed into another NP complete problem by a polynomial-
time algorithm; but no polynomial-time algorithm has been found so far for any
of the NP complete problems. These statements define the class ‘NP complete’.
It is indeed expected that we will need exponentially large computational efforts
to solve any NP complete problem by any algorithm.

183
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An exponential function of N grows quite rapidly as N increases, and it is
virtually impossible to solve an NP complete problem for any reasonable value of
N . There are many examples of NP complete problems including the spin glass
ground state, travelling salesman, number partitioning, graph partitioning, and
knapsack problems. We shall discuss the latter three problems in detail later. A
description of the satisfiability problem will also be given. Here in this section,
a few words are mentioned on the travelling salesman problem.

In the travelling salesman problem, one is given N cities and distances be-
tween all pairs of cities. One is then asked to find the shortest path to return to
the original city after visiting all the cities. The cost function is the length of the
path. There are about N ! possible paths; starting from a city, one can choose the
next out of N − 1, and the next out of N − 2, and so on. The precise number of
paths is (N−1)!/2 because, first, the equivalence of all cities as the starting point
gives the dividing factor of N , and, second, any path has an equivalent one with
the reversed direction, accounting for the factor 2 in the denominator. Since the
factorial increases more rapidly than the exponential function, identification of
the shortest path is obviously very difficult. The travelling salesman problem is a
typical NP complete problem and has been studied quite extensively. It also has
some practical importance such as the efficient routing of merchandise delivery.
A statistical-mechanical analysis of the travelling salesman problem is found in
Mézard et al. (1987).

Before elucidating statistical mechanical approaches to combinatorial opti-
mization problems, we comment on a difference in viewpoints between statisti-
cal mechanics and optimization problems. In statistical mechanics, the target of
primary interest is the behaviour of macroscopic quantities, whereas details of
microscopic variables in the optimized state play more important roles in opti-
mization problems. For example, in the travelling salesman problem, the shortest
path itself is usually much more important than the path length. In the situation
of spin glasses, this corresponds to clarification of the state of each spin in the
ground state. Such a point of view is somewhat different from the statistical-
mechanical standpoint in which the properties of macroscopic order parameters
are of paramount importance. These distinctions are not always very clear cut,
however, as is exemplified by the important role of the TAP equation that is
designed to determine local magnetizations.

9.2 Number partitioning problem

9.2.1 Definition

In the number partitioning problem, one is given a set of positive numbers A =
{a1, a2, . . . , aN} and asked to choose a subset B ⊂ A such that the partition
difference

Ẽ =

∣∣∣∣∣∣
∑
i∈B

ai −
∑

i∈A\B

ai

∣∣∣∣∣∣ (9.1)
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is minimized. The partition difference is the cost function. The problem is uncon-
strained if one can choose any subset B. In the constrained number partitioning
problem, the size of the set |B| is fixed. In particular, when |B| is half the total
size, |B| = N/2 (N even) or |B| = (N ± 1)/2 (N odd), the problem is called the
balanced number partitioning problem.

The number partitioning problem is known to belong to the class NP com-
plete (Garey and Johnson 1979). Below we develop a detailed analysis of the
unconstrained number partitioning problem as it is simpler than the constrained
problem (Sasamoto et al. 2001; Ferreira and Fontanari 1998). We will be in-
terested mainly in the number of partitions for a given value of the partition
difference.

9.2.2 Subset sum

For simplicity, we assume that N is even and the ai are positive integers, not
exceeding an integer L, with the gcd unity. The number partitioning problem is
closely related to the problem of subset sum in which we count the number of
configurations, C(E), with a given value E of the Hamiltonian

H =
N∑

i=1

aini. (9.2)

Here ni is a dynamical variable with the value of 0 or 1. The cost function of
the number partitioning problem (9.1), to be denoted as H̃, is related to this
Hamiltonian (9.2) using the relation Si = 2ni − 1 as

H̃ =

∣∣∣∣∣
N∑

i=1

aiSi

∣∣∣∣∣ =
∣∣∣∣∣2H −

N∑
i=1

ai

∣∣∣∣∣ . (9.3)

The spin configuration Si = 1 indicates that ai ∈ B and Si = −1 otherwise. From
(9.3) we have 2E −∑i ai = ±Ẽ, and the number of configurations, C(E), for
the subset sum (9.2) is translated into that for the number partitioning problem
(9.3), C̃(Ẽ), by the relation

C̃(Ẽ) =




C

(
Ẽ +

∑
i ai

2

)
+ C

(
−Ẽ +

∑
i ai

2

)
(Ẽ 
= 0)

C

(∑
i ai

2

)
(Ẽ = 0).

(9.4)

The following analysis will be developed for a given set {ai}; no configurational
average will be taken.

9.2.3 Number of configurations for subset sum

It is straightforward to write the partition function of the subset sum:
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Z =
∑
{ni}

e−βH =
N∏

i=1

(1 + e−βai). (9.5)

By expanding the right hand side in powers of e−β ≡ w, we can express the
above equation as

Z =
Emax∑
E=0

C(E)wE , (9.6)

where Emax = a1 + . . . + aN . Since E is a positive integer, the coefficient C(E)
of the polynomial (9.6) is written in terms of a contour integral:

C(E) =
1

2πi

∮
dw

wE+1
Z =

1
2πi

∮
elog Z

wE+1
dw, (9.7)

where the integral is over a closed contour around the origin of the complex-w
plane. Since log Z is proportional to the system size N (	 1), we can evaluate
(9.7) by steepest descent.

It is useful to note that the value of the energy E has a one-to-one correspon-
dence with the inverse temperature β through the expression of the expectation
value

E =
N∑

i=1

ai

1 + eβai
(9.8)

when the fluctuations around this thermal expectation value are negligible, which
is the case in the large-N limit. Let us therefore write the inverse temperature as
β0 which yields the given value of the energy, E0. It is then convenient to rewrite
(9.7) by specifying the integration contour as the circle of radius e−β0 and using
the phase variable defined by w = e−β0+iθ:

C(E0) =
1
2π

∫ π

−π

dθ elog Z+β0E0−iE0θ. (9.9)

It is easy to verify that the saddle point of the integrand is at θ = 0.22 We
therefore expand log Z in powers of θ (= iβ − iβ0) to second order and find

C(E0) = elog Z]β=β0+β0E0 · 1
2π

∫ π

−π

dθ exp

(
− θ2

2
∂2

∂β2
log Z

]
β=β0

)
. (9.10)

Since the exponent in the integrand is proportional to N , we may extend the
integration range to ±∞. The result is

C(E0) =
eβ0E0

∏
i(1 + e−β0ai)√

2π
∑

i a2
i /(1 + eβ0ai)(1 + e−β0ai)

. (9.11)

22There exist other saddle points if the gcd of {ai} is not unity.
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Fig. 9.1. The number of configurations as a function of the energy for the subset
sum with N = 20, L = 256, and {ai} = {218, 13, 227, 193, 70, 134, 89,
198, 205, 147, 227, 190, 64, 168, 4, 209, 27, 239, 192, 131}. The theoretical
prediction (9.11) is indistinguishable from the numerical results plotted in
dots.

This formula gives the number of configurations of the subset sum as a function
of E0 through

E0 =
N∑

i=1

ai

1 + eβ0ai
. (9.12)

Figure 9.1 depicts the result of numerical verification of (9.11).

9.2.4 Number partitioning problem

The number of partitions for a given value of Ẽ of the number partitioning
problem, C̃(Ẽ), can be derived from (9.11) using (9.4). For example, the optimal
configuration with Ẽ = 0 has β0 = 0 according to the relation 2E−∑i ai = ±Ẽ
and (9.12). Then, (9.11) with β0 = 0 gives the result for the number of optimal
partitions as

C̃(Ẽ = 0) =
2N+1√
2π
∑

i a2
i

. (9.13)

An important restriction on the applicability of the present argument is that
L should not exceed 2N for the following reason. If we choose {ai} from {1, . . . , L}
using a well-behaved distribution function, then

∑
i a2

i = O(L2), and (9.13) gives
C̃(Ẽ = 0) = O(2N/L). Since C̃ is the number of partitions, 2N/L must not be
smaller than one, which leads to the condition 2N > L. This condition may
correspond to the strong crossover in the behaviour of the probability to find a
perfect partition (Ẽ = 0) found numerically (Gent and Walsh 1996). The other
case of 2N < L is hard to analyse by the present method although it is quite
interesting from the viewpoint of information science (Gent and Walsh 1996). It
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is possible to apply the present technique to the constrained number partitioning
problem (Sasamoto et al. 2001).

Mertens (1998) applied statistical mechanics directly to the system with the
Hamiltonian (9.3) and derived the energy Ẽ(T ) and entropy S̃(T ) as functions
of the temperature T . The resulting S̃ as a function of Ẽ differs from ours
under the identification S̃(Ẽ) = log C̃(Ẽ) except at Ẽ = 0. In particular, his
result gives ∂S̃/∂Ẽ > 0 whereas we have the opposite inequality ∂S̃/∂Ẽ <
0 as can be verified from (9.11) and (9.12). Figure 9.1 shows that the latter
possibility is realized if we note that Ẽ = 0 corresponds to the peak of the curve
at E =

∑
i ai/2. It is possible to confirm our result also in the solvable case with

a1 = . . . = aN = 1: we then have H̃ = |∑i Si| for which

C̃(Ẽ) =
(

N

(N + Ẽ)/2

)
. (9.14)

This is a monotonically decreasing function of Ẽ. Equations (9.11) and (9.12)
with a1 = . . . = aN = 1 reproduce (9.14) for sufficiently large N .

The system described by the Hamiltonian (9.3) is anomalous because the
number of configurations (partitions) decreases with increasing energy. We should
be careful in applying statistical mechanics to such a system; the calculated en-
tropy may not necessarily give the logarithm of the number of configurations as
exemplified above.

9.3 Graph partitioning problem

The next example of statistical-mechanical analysis of an optimization problem
is the graph partitioning problem. It will be shown that the graph partitioning
problem is equivalent to the SK model in a certain limit.

9.3.1 Definition

Suppose we are given N nodes V = {v1, v2, . . . , vN} and the set of edges between
them E = {(vi, vj)}. Here N is an even integer. A graph is a set of such nodes
and edges. In the graph partitioning problem, we should divide the set V into
two subsets V1 and V2 with the same size N/2 and, at the same time, minimize
the number of edges connecting nodes in V1 with those in V2. The cost function is
the number of edges between V1 and V2. Let us consider an example of the graph
specified by N = 6, E = {(1, 2), (1, 3), (2, 3), (2, 4), (4, 5)}. The cost function has
the value f = 1 for the partitioning V1 = {1, 2, 3}, V2 = {4, 5, 6} and f = 3 for
V1 = {1, 2, 4}, V2 = {3, 5, 6} (Fig. 9.2).

It is known that the graph partitioning problem is NP complete. The prob-
lem has direct instances in real-life applications such as the configuration of
components on a computer chip to minimize wiring lengths.

The problem of a random graph, in which each pair of nodes (vi, vj) has
an edge between them with probability p, is conveniently treated by statistical
mechanics (Fu and Anderson 1986). We assume in this book that p is of order
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Fig. 9.2. A graph partitioning with N = 6

1 and independent of N . Thus the number of edges emanating from each node
is pN on average, which is a very large number for large N . The methods of
mean-field theory are effectively applied in such a case.

9.3.2 Cost function

We start our argument by expressing the cost function f(p) in terms of the Ising
spin Hamiltonian. Let us write Si = 1 when the node vi belongs to the set V1 and
Si = −1 otherwise. The existence of an edge between vi and vj is represented by
the coupling Jij = J , and Jij = 0 otherwise. The Hamiltonian is written as

H = −
∑
i<j

JijSiSj = −1
2


 ∑

i∈V1,j∈V1

+
∑

i∈V2,j∈V2

+
∑

i∈V1,j∈V2

+
∑

i∈V2,j∈V1


Jij

+


 ∑

i∈V1,j∈V2

+
∑

i∈V2,j∈V1


 Jij = −J

2
· 2N (N − 1)p

2
+ 2f (p)J, (9.15)

where N(N − 1)p/2 is the total number of edges. The cost function and the
Hamiltonian are therefore related to each other as

f(p) =
H

2J
+

1
4
N(N − 1)p. (9.16)

This equation shows that the cost function is directly related to the ground state
of the Hamiltonian (9.15) under the condition that the set V is divided into two
subsets of exactly equal size

N∑
i=1

Si = 0. (9.17)

Equation (9.17) does not change if squared. Expansion of the squared expression
may be interpreted as the Hamiltonian of a system with uniform antiferromag-
netic interactions between all pairs. Thus the partitioning problem of a random
graph has been reduced to the ferromagnetic Ising model with diluted interac-
tions (i.e. some Jij are vanishing) and with the additional constraint of uniform
infinite-range antiferromagnetic interactions.
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As was mentioned above, we apply statistical-mechanical methods that are
suited to investigate the average (typical) behaviour of a macroscopic system
of very large size. In the case of the graph partitioning problem, the principal
objective is then to evaluate the cost function in the limit of large N . The
Hamiltonian (the cost function) is self-averaging, and hence we calculate its
average with respect to the distribution of random interactions, which should
coincide with the typical value (the value realized with probability 1) in the
thermodynamic limit N → ∞.

9.3.3 Replica expression

Let us calculate the configurational average by the replica method. The replica
average of the partition function of the system (9.15) is

[Zn] = (1 − p)N(N−1)/2Tr
∏
i<j

{
1 + p0 exp

(
βJ

n∑
α=1

Sα
i Sα

j

)}
, (9.18)

where p0 = p/(1 − p), and Tr denotes the sum over spin variables under the
condition (9.17). We shall show below that (9.18) can be transformed into the
expression

[Zn] = (1 − p)N(N−1)/2 exp
{

N(N − 1)
2

log(1 + p0) − N

2
(βJc1n + β2J2c2n

2)
}

·Tr exp


(βJ)2

2
c2

∑
α,β

(∑
i

Sα
i Sβ

i

)2

+ O

β3J3

∑
i<j

(
∑

α

Sα
i Sα

j )3




 , (9.19)

where

cj =
1
j!

∞∑
l=1

(−1)l−1

l
pl
0l

j. (9.20)

To derive (9.19) we expand the logarithmic and exponential functions as
follows: ∑

i<j

log{1 + p0 exp(βJ
∑
α

Sα
i Sα

j )}

=
∞∑
l=1

(−1)l−1

l
pl
0

∞∑
k1=0

· · ·
∞∑

kl=0

(βJ)k1+···+kl

k1! . . . kl!

∑
i<j

(
∑

α

Sα
i Sα

j )k1+···+kl .

It is convenient to rewrite this formula as a power series in βJ . The constant
term corresponds to k1 = · · · = kl = 0, for which the sum over l gives {N (N −
1)/2} log(1 + p0). The coefficient of the term linear in βJ is, according to (9.17),
a constant

∞∑
l=1

(−1)l−1

l
pl
0 · l ·

1
2

∑
α

{(
∑

i

Sα
i )2 − N} = −Nn

2
c1. (9.21)
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Next, the coefficient of the quadratic term is, after consideration of all possibili-
ties corresponding to k1 + · · · + kl = 2 (such as (k1 = k2 = 1), (k1 = 2, k2 = 0),
and so on),

∞∑
l=1

(−1)l−1

l
pl
0

∑
i<j

(
∑
α

Sα
i Sα

j )2
((

l

2

)
+

l

2!

)

=
∞∑

l=1

(−1)l−1

l
pl
0 ·

l2

2

∑
α,β

{(
∑

i

Sα
i Sβ

i )2 − N}

=
c2

2

∑
α,β

(
∑

i

Sα
i Sβ

i )2 − Nn2

2
c2. (9.22)

Equation (9.19) results from (9.21) and (9.22).

9.3.4 Minimum of the cost function

Recalling (9.16), we write the lowest value of the cost function as

f(p) =
N2

4
p +

1
2J

Eg

Eg = lim
β→∞

lim
n→0

(
− 1

nβ

)Tr exp


 (βJ)2

2
c2

∑
α,β

(
∑

i

Sα
i Sβ

i )2

+O

β3J3

∑
i<j

(
∑

α

Sα
i Sα

j )3




− 1


 , (9.23)

where we have used the fact that the contribution of the term linear in βJ to
f(p) is Np/4 from c1 = p0/(1 + p0) = p. Equation (9.23) is similar to the SK
model expression (2.12) with J0 = 0 and h = 0. The additional constraint (9.17)
is satisfied automatically because there is no spontaneous magnetization in the
SK model when the centre of distribution J0 and the external field h are both
vanishing.

Since J has been introduced as an arbitrarily controllable parameter, we
may choose J = J̃/

√
N and reduce (9.23) to the same form as (2.12). Then, if

N 	 1, the term proportional to β3J3 is negligibly smaller than the term of
O(β2J2), and we can apply the results for the SK model directly. Substituting
c2 = p(1 − p)/2, we finally have

f(p) =
N2

4
p +

√
N

2J̃
U0

√
c2J̃N =

N2

4
p +

1
2
U0N

3/2
√

p(1 − p). (9.24)

Here U0 is the ground-state energy per spin of the SK model and is approxi-
mately U0 = −0.38 according to numerical studies. The first term on the right
hand side of (9.24) is interpreted as the number of edges between V1 and V2,
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N2/4, multiplied by the ratio of actually existing edges p. The second term is
the correction to this leading contribution, which is the non-trivial contribution
derived from the present argument.

9.4 Knapsack problem

The third topic is a maximization problem of a cost function under constraints
expressed by inequalities. The replica method is again useful to clarify certain
aspects of this problem (Korutcheva et al. 1994; Fontanari 1995; Inoue 1997).

9.4.1 Knapsack problem and linear programming

Suppose that there are N items, each of which has the weight aj and the value
cj . The knapsack problem is to maximize the total value by choosing appropriate
items when the total weight is constrained not to exceed b. This may be seen as
the maximization of the total value of items to be carried in a knapsack within
a weight limit when one climbs a mountain.

With the notation Sj = 1 when the jth item is chosen to be carried and
Sj = −1 otherwise, the cost function (the value to be maximized) U and the
constraint are written as follows:

U =
N∑

j=1

cj · Sj + 1
2

, Y =
N∑

j=1

aj · Sj + 1
2

≤ b. (9.25)

A generalization of (9.25) is to require many (K) constraints:

Yk =
1
2

∑
j

akj(Sj + 1) ≤ bk, (k = 1, . . . , K). (9.26)

When Sj is continuous, the minimization (or maximization) problem of a linear
cost function under linear constraints is called linear programming.

In this section we exemplify a statistical-mechanical approach to such a class
of problems by simplifying the situation so that the cj are constant c and so
are the bk (= b). It is also assumed that akj is a Gaussian random variable with
mean 1

2 and variance σ2,

akj =
1
2

+ ξkj , P (ξkj) =
1√
2πσ

exp

(
− ξ2

kj

2σ2

)
. (9.27)

The constraint (9.26) is then written as

Yk − b =
1
2

∑
j

(1 + Sj)ξkj +
1
4

∑
j

Sj +
N

4
− b ≤ 0. (9.28)

The first and second terms in (9.28), where sums over j appear, are of O(N) at
most, so that (9.28) is satisfied by any S = {Sj} if b 	 N/4. Then one can carry
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virtually all items in the knapsack (Sj = 1). In the other extreme case N/4 	 b,
one should leave almost all items behind (Sj = −1). The system shows the most
interesting behaviour in the intermediate case b = N/4, to which we restrict
ourselves.

9.4.2 Relaxation method

It is sometimes convenient to relax the condition of discreteness of variables to
solve a combinatorial optimization problem, the relaxation method, because com-
putations are sometimes easier and faster with continuous numbers. If discrete
values are necessary as the final answer, it often suffices to accept the discrete
values nearest to the continuous solution.

It is possible to discuss the large-scale knapsack problem, in which the number
of constraints K is of the same order as N , with Sj kept discrete (Korutcheva
et al. 1994). However, in the present section we follow the idea of the relaxation
method and use continuous variables satisfying

∑
j S2

j = N because the problem
is then formulated in a very similar form as that of the perceptron capacity
discussed in §7.6 (Inoue 1997). Hence the Sj are assumed to be continuous real
numbers satisfying

∑
j S2

j = N . We are to maximize the cost function

U =
cN

2
+

c
√

N

2
M (9.29)

under the constraint

Yk =
1
2

∑
j

(1 + Sj)ξkj +
√

N

4
M ≤ 0, M =

1√
N

∑
j

Sj . (9.30)

The normalization in the second half of (9.30) implies that
∑

j Sj is of order√
N when b = N/4, and consequently about half of the items are carried in

the knapsack. Consistency of this assumption is confirmed if M is found to be
of order unity after calculations using this assumption. This will be shown to
be indeed the case. M is the coefficient of the deviation of order

√
N from the

average number of items N/2 to be carried in the knapsack.

9.4.3 Replica calculations

Let V be the volume of subspace satisfying the condition (9.30) in the space
of the variables S. The typical behaviour of the system is determined by the
configurational average of the logarithm of V over the random variables {ξkj}.
According to the replica method, the configurational average of V n is, similarly
to (7.77),

[V n] =


V −n

0

∫ ∏
α,i

dSα
i

∏
α

δ


∑

j

Sα
j −

√
NM


 δ


∑

j

(Sα
j )2 − N
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·
∏
α,k

Θ


− 1√

N

∑
j

(1 + Sα
j )ξkj − M

2




 , (9.31)

where V0 is defined as the quantity with only the part of
∑

j(S
α
j )2 = N kept in

the above integrand.
Equation (9.31) has almost the same form as (7.77), so that we can evaluate

the former very similarly to §7.6. We therefore write only the result here. Under
the assumption of replica symmetry, we should extremize the following G:

[V n] = exp{nNG(q,E, F, M̃)}
G = αG1(q) + G2(E, F, M̃ ) − i

2
qF + iE

G1(q) = log
∫ ∞

M/2

∏
α

dλα

2π

∫ ∞

−∞

∏
α

dxα

· exp


i
∑
α

xαλα − σ2
∑
α

(xα)2 − σ2(1 + q)
∑
(αβ)

xαxβ




G2(E, F, M̃ ) = log
∫ ∞

−∞

∏
α

dSα

· exp


−iM̃

∑
α

Sα − iF
∑
(αβ)

SαSβ − iE
∑

α

(Sα)2


 ,

where q is the RS value of qαβ = N−1
∑

i Sα
i Sβ

i , and α = K/N (not to be
confused with the replica index α). Extremization by M̃ readily shows that
M̃ = 0. We also perform the integration and eliminate E and F by extremization
with respect to these variables, as in §7.6, to find

G = α

∫
Dy log L(q) +

1
2

log(1 − q) +
1

2(1 − q)
(9.32)

L(q) = 2
√

π Erfc

(
M/2 + yσ

√
1 + q√

2(1 − q)σ

)
. (9.33)

As the number of items increases with the ratio α (= K/N) fixed, the system
reaches a limit beyond which one cannot carry items. We write Mopt for the
value of M at this limit. To evaluate the limit explicitly we note that there is
only one way to choose items to carry at the limit, which implies q = 1. We thus
extremize (9.32) with respect to q and take the limit q → 1 to obtain Mopt as a
function of α as

α(Mopt) =

{
1
4

∫ ∞

−Mopt/(2
√

2σ)

Dy

(
Mopt

σ
+ 2

√
2y

)2
}−1

. (9.34)

Figure 9.3 shows Mopt as a function of α when σ = 1/12. Stability analysis of
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Fig. 9.3. Mopt as a function of α (full line) and the AT line (dashed)

the RS solution leads to the AT line:

α

{∫
Dt(1 − L2 + L2

1)
}2

= 1, Lk =

∫
Iz

Dz zk∫
Iz

Dz
,

∫
Iz

=
∫ ∞

(M/2σ+t
√

1+q)/
√

1−q

,

(9.35)
which is shown dashed in Fig. 9.3. The RS solution is stable in the range α <
0.846 but not beyond. The 1RSB solution for Mopt is also drawn in Fig. 9.3, but
is hard to distinguish from the RS solution at this scale of the figure. We may
thus expect that further RSB solutions would give qualitatively similar results.

9.5 Satisfiability problem

Another interesting instance of the optimization problem is the satisfiability
problem. One forms a logical expression out of many logical variables in a certain
special way. The problem is to determine whether or not an assignment of each
logical variable to ‘true’ or ‘false’ exists so that the whole expression is ‘true’. It
is possible to analyse some aspects of this typical NP complete problem (Garey
and Johnson 1979) by statistical-mechanical methods. Since the manipulations
are rather complicated, we describe only important ideas and some of the steps
of calculations below. The reader is referred to the original papers for more
details (Kirkpatrick and Selman 1994; Monasson and Zecchina 1996, 1997, 1998;
Monasson et al. 1999, 2000).

9.5.1 Random satisfiability problem

Let us define a class of satisfiability problems, a random K-satisfiability problem
(K-SAT). Suppose that there are N logical variables x1, . . . , xN , each of which is
either ‘true’ or ‘false’. Then we choose K (< N) of the variables xi1 , . . . , xiK and
negate each with probability 1

2 : xik
→ xik

(= NOT(xik
)). A clause Cl is formed

by logical OR (∨) of these K variables; for example,

Cl = xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ · · · ∨ xiK . (9.36)
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This process is repeated M times, and we ask if the logical AND (∧) of these M
clauses

F ≡ C1 ∧ C2 ∧ · · · ∧ CM (9.37)

gives ‘true’. If an assignment of each xi to ‘true’ or ‘false’ exists so that F is
‘true’, then this logical expression is satisfiable. Otherwise, it is unsatisfiable.

For instance, in the case of N = 3, M = 3, and K = 2, we may form the
following clauses:

C1 = x1 ∨ x2, C2 = x1 ∨ x3, C3 = x2 ∨ x3, (9.38)

and F = C1 ∧C2 ∧C3. This F is satisfied by x1 = ‘true’, x2 = ‘false’, and x3 =
‘true’.

It is expected that the problem is difficult (likely to be unsatisfiable) if M
is large since the number of conditions in (9.37) is large. The other limit of
large N should be easy (likely to be satisfiable) because the number of possible
choices of xi1 , . . . , xiK out of x1, . . . , xN is large and hence Cl is less likely to
share the same xi with other clauses. It can indeed be shown that the problem
undergoes a phase transition between easy and difficult regions as the ratio
α ≡ M/N crosses a critical value αc in the limit N, M → ∞ with α and K fixed.
Evidence for this behaviour comes from numerical experiments (Kirkpatrick and
Selman 1994; Hogg et al. 1996), rigorous arguments (Goerdt 1996), and replica
calculations (below): for α < αc (easy region), one finds an exponentially large
number of solutions to satisfy a K-SAT, a finite entropy. The number of solutions
vanishes above αc (difficult region) and the best one can do is to minimize the
number of unsatisfied clauses (MAX K-SAT). The critical values are αc = 1
(exact) for K = 2, 4.17 for K = 3 (numerical), and 2K log 2 (asymptotic) for
sufficiently large K. The order parameter changes continuously at αc for K = 2
but discontinuously for K ≥ 3. The RS solution gives the correct answer for
α < αc and one should consider RSB when α > αc.

It is also known that the K-SAT is NP complete for K ≥ 3 (Garey and
Johnson 1979) in the sense that there is no generic polynomial-time algorithm
to find a solution when we know that a solution exists. By contrast, a linear-time
algorithm exists to find a solution for K = 1 and 2 (Aspvall et al. 1979). The
qualitatively different behaviour of K = 2 and K ≥ 3 mentioned above may be
related to this fact.

9.5.2 Statistical-mechanical formulation

Let us follow Monasson and Zecchina (1997, 1998) and Monasson et al. (2000)
and formulate the random K-SAT. The energy to be minimized in the K-SAT
is the number of unsatisfied clauses. We introduce an Ising variable Si which
is 1 if the logical variable xi is ‘true’ and −1 for xi ‘false’. The variable with
quenched randomness Cli is equal to 1 if the clause Cl includes xi, Cli = −1
if xi is included, and Cli = 0 when xi does not appear in Cl. Thus one should
choose K non-vanishing Cli from {Cl1, . . . , ClN} and assign ±1 randomly for
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those non-vanishing components,
∑N

i=1 C2
li = K. Satisfiability is judged by the

value of
∑N

i=1 CliSi: if it is larger than −K for all l, the problem is satisfiable
because at least one of the CliSi is 1 (satisfied) in the clause. The energy or the
Hamiltonian is thus formulated using Kronecker’s delta as

E(S) =
M∑
l=1

δ

(
N∑

i=1

CliSi,−K

)
. (9.39)

Vanishing energy means that the problem is satisfiable. Macroscopic properties
of the problem such as the expectation values of the energy and entropy can
be calculated from this Hamiltonian by statistical-mechanical techniques. One
can observe in (9.39) that Kronecker’s delta imposes a relation between K spins
and thus represents an interaction between K spins. The qualitative difference
between K = 2 and K ≥ 3 mentioned in the previous subsection may be related
to this fact; in the infinite-range r-spin interacting model discussed in Chapter
5, the transition is of second order for r = 2 but is of first order for r ≥ 3.

Averaging over quenched randomness in Cli can be performed by the replica
method. Since M clauses are independent of each other, we find

[Zn] = Tr ζK(S)M (9.40)

ζK(S) =

[
exp

{
− 1

T

n∑
α=1

δ

(
N∑

i=1

CiS
α
i ,−K

)}]
, (9.41)

where Tr denotes the sum over S. The configurational average [· · ·] is taken over
the random choice of the Ci. We have introduced the temperature T to control
the average energy. It is useful to note in (9.41) that

δ

(
N∑

i=1

CiS
α
i ,−K

)
=

N∏
i=1;Ci �=0

δ(Sα
i ,−Ci), (9.42)

where the product runs over all the i for which Ci is not vanishing. Then ζK(S)
of (9.41) is

ζK(S) =
1

2K

∑
C1=±1

· · ·
∑

CK=±1

N−K
N∑

i1=1

· · ·
N∑

iK=1

exp

{
− 1

T

n∑
α=1

K∏
k=1

δ(Sα
ik

,−Ck)

}
,

(9.43)
where we have neglected corrections of O(N−1). This formula for ζK(S) is con-
veniently rewritten in terms of {c(σ)}σ, the set of the number of sites with a
specified spin pattern in the replica space σ = {σ1, . . . , σn}:

Nc(σ) =
N∑

i=1

n∏
α=1

δ(Sα
i , σα). (9.44)

Equation (9.43) depends on the spin configuration S only through {c(σ)}. In-
deed, if we choose σα

k = −CkSα
ik

, Kronecker’s delta in the exponent is δ(σα
k , 1).
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All such terms (there are Nc(−Ckσk) of them) in the sum over i1 to iK give the
same contribution. Hence (9.43) is written as

ζK(S) = ζK({c}) ≡ 1
2K

∑
C1=±1

· · ·
∑

CK=±1

∑
σ1

· · ·
∑
σK

c(−C1σ1) . . . c(−CKσK)

· exp

{
− 1

T

n∑
α=1

K∏
k=1

δ(σα
k , 1)

}
. (9.45)

We may drop the Ci-dependence of c(−Ciσi) in (9.45) due to the relation c(σ) =
c(−σ). This last equation is equivalent to the assumption that the overlap of odd
numbers of replica spins vanishes. To see this, we expand the right hand side of
(9.44) as

c(σ) =
1
N

∑
i

∏
α

1 + Sα
i σα

i

2
=

1
2n

(
1 +
∑
α

Qασα

+
∑
α<β

Qαβσασβ +
∑

α<β<γ

Qαβγσασβσγ + . . .


 , (9.46)

where

Qαβγ... =
1
N

∑
i

Sα
i Sβ

i Sγ
i . . . . (9.47)

The symmetry c(σ) = c(−σ) follows from the relation Qα = Qαβγ = · · · = 0 for
odd numbers of replica indices, which is natural if there is no symmetry breaking
of the ferromagnetic type. We assume this to be the case here.

The partition function (9.41) now has a compact form

[Zn] =
∫ ∏

σ

dc(σ) e−NE0({c})

·Tr
∏
σ

δ

{
c(σ) − N−1

N∑
i=1

n∏
α=1

δ(Sα
i , σα)

}
(9.48)

E0({c}) = −α log

{ ∑
σ1,...,σK

c(σ1) . . . c(σK)

·
n∏

α=1

(
1 + (e−β − 1)

K∏
k=1

δ(σα
k , 1)

)}
, (9.49)

where one should not confuse α = M/N in front of the logarithm with the
replica index. The trace operation over the spin variables S (after the Tr symbol
in (9.48)) gives the entropy as
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N !∏
σ(Nc(σ))!

= exp

(
−N
∑
σ

c(σ) log c(σ)

)
(9.50)

by Stirling’s formula. If we apply the steepest descent method to the integral in
(9.48), the free energy is given as, in the thermodynamic limit N, M → ∞ with
α fixed,

−βF

N
= −E0({c}) −

∑
σ

c(σ) log c(σ) (9.51)

with the condition
∑

σ c(σ) = 1.

9.5.3 Replica symmetric solution and its interpretation

The free energy (9.51) is to be extremized with respect to c(σ). The simple RS
solution amounts to assuming c(σ) which is symmetric under permutation of
σ1, . . . , σn. It is convenient to express the function c(σ) in terms of the distribu-
tion function of local magnetization P (m) as

c(σ) =
∫ 1

−1

dm P (m)
n∏

α=1

1 + mσα

2
. (9.52)

It is clear that this c(σ) is RS. The extremization condition of the free energy
(9.51) leads to the following self-consistent equation of P (m) as shown in Ap-
pendix D:

P (m) =
1

2π(1 − m2)

∫ ∞

−∞
du cos

(
u

2
log

1 + m

1 − m

)

· exp

{
−αK + αK

∫ 1

−1

K−1∏
k=1

dmk P (mk) cos
(u

2
log AK−1

)}
(9.53)

AK−1 = 1 + (e−β − 1)
K−1∏
k=1

1 + mk

2
. (9.54)

The free energy is written in terms of the solution of the above equation as

−βF

N
= log 2 + α(1 − K)

∫ 1

−1

K∏
k=1

dmk P (mk) log AK

+
αK

2

∫ 1

−1

K−1∏
k=1

dmkP (mk) log AK−1 − 1
2

∫ 1

−1

dmP (m) log(1 − m2).(9.55)

It is instructive to investigate the simplest case of K = 1 using the above
result. When K = 1, A0 is e−β and (9.53) gives

P (m) =
1

2π(1 − m2)

∫ ∞

−∞
du cos

(
u

2
log

1 + m

1 − m

)
e−α+α cos(uβ/2). (9.56)
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Expressing the exponential cosine in terms of modified Bessel functions (using
ez cos θ =

∑
k Ik(z)eikθ) and integrating the result over u, we find

P (m) = e−α
∞∑

k=−∞
Ik(α) δ

(
m − tanh

βk

2

)
. (9.57)

In the interesting case of the zero-temperature limit, this equation reduces to

P (m) = e−αI0(α)δ(m) +
1
2
(
1 − e−αI0(α)

) {δ(m − 1) + δ(m + 1)}. (9.58)

Inserting the distribution function (9.57) into (9.55), we obtain the free energy

−βF

N
= log 2 − αβ

2
+ e−α

∞∑
k=−∞

Ik(α) log cosh
βk

2
(9.59)

which gives, in the limit β → ∞,

E(α)
N

=
α

2
− α

2
e−α (I0(α) + I1(α)) . (9.60)

This ground-state energy is positive for all positive α. It means that the K = 1
SAT is always unsatisfiable for α > 0. The positive weight of δ(m ± 1) in (9.58)
is the origin of this behaviour: since a spin is fixed to 1 (or −1) with finite
probability (1− e−αI0(α))/2, the addition of a clause to the already existing M
clauses gives a finite probability of yielding a ‘false’ formula because one may
choose a spin fixed to the wrong value as the (M + 1)th clause. If P (m) were to
consist only of a delta function at the origin, we might be able to adjust the spin
chosen as the (M + 1)th clause to give the value ‘true’ for the whole formula;
this is not the case, however.

The coefficient e−αI0(α) of δ(m) in (9.58) is the probability that a spin is free
to flip in the ground state. Since a single free spin has the entropy log 2, the total
entropy might seem to be Ne−αI0(α) log 2, which can also be derived directly
from (9.59). A more careful inspection suggests subtraction of Ne−α log 2 from
the above expression to yield the correct ground-state entropy

S

N
= e−α(I0(α) − 1) log 2. (9.61)

The reason for the subtraction of Ne−α log 2 is as follows (Sasamoto, private
communication).

Let us consider the simplest case of M = 1, K = 1, and N arbitrary. Since
only a single spin is chosen as the clause, the values of all the other spins do
not affect the energy. In this sense the ground-state degeneracy is 2N−1 and the
corresponding entropy is (N − 1) log 2. However, such a redundancy is clearly a
trivial one, and we should count only the degree(s) of freedom found in the spins
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which actually exist in the clause, disregarding those of the redundant spins not
chosen in the clauses. Accordingly, the real degeneracy of the above example is
unity and the entropy is zero instead of (N − 1) log 2.

For general M (and K = 1), the probability of a spin not to be chosen in a
clause is 1 − 1/N , so that the probability that a spin is not chosen in any M
clauses is (1−1/N)M , which reduces to e−α as M, N → ∞ with α = M/N fixed.
Thus the contribution from the redundant spins to the entropy is Ne−α log 2,
which is to be subtracted as in (9.61). A little more careful argument on the
probability for a spin not to be chosen gives the same answer.

The entropy (9.61) is a non-monotonic function of α, starting from zero at
α = 0 and vanishing again in the limit α → ∞. Thus it is positive for any positive
α, implying a macroscopic degeneracy of the ground state, MAX 1-SAT.

Analysis of the case K ≥ 2 is much more difficult and the solutions are known
only partially. We summarize the results below and refer the interested reader to
Monasson and Zecchina (1997, 1998) and Monasson et al. (2000). If P (m) does
not have delta peaks at m = ±1, the spin states are flexible, and the condition
F = C1 ∧ · · · ∧ CM = ‘true’ can be satisfied. This is indeed the case for small α
(easy region). The ground-state energy vanishes in this region, and the problem is
satisfiable. There are an exponentially large number of solutions, a finite entropy.
When α exceeds a threshold αc, P (m) starts to have delta peaks at m = ±1
continuously (K = 2) or discontinuously (K ≥ 3) across αc. The delta peaks at
m = ±1 imply that a finite fraction of spins are completely frozen so that it is
difficult to satisfy the condition F = ‘true’; there is a finite probability that all
the xi in a clause are frozen to the wrong values. The K-SAT is unsatisfiable
in this region α > αc. The critical point is αc = 1 for K = 2 and αc = 4.17
for the discontinuous case of K = 3. The latter value of 4.17 is from numerical
simulations. It is hard to locate the transition point αc from the RS analysis for
K ≥ 3 because one should compare the RS and RSB free energies, the latter
taking place for α > αc. Comparison with numerical simulations indicates that,
for any K ≥ 2, the RS theory is correct for the easy region α < αc but not for
the difficult region α > αc. In the former region an extensive number of solutions
exist as mentioned above, but they suddenly disappear at αc.

9.6 Simulated annealing

Let us next discuss the convergence problem of simulated annealing. Simulated
annealing is widely used as a generic numerical method to solve combinatorial
optimization problems. This section is not about a direct application of the spin
glass theory but is nonetheless closely related to it; the ground-state search of
a spin glass system is a very interesting example of combinatorial optimization,
and simulated annealing emerged historically through efforts to identify the cor-
rect ground state in the complex energy landscape found typically in spin glasses
(Kirkpatrick et al. 1983). We investigate, in particular, some mathematical as-
pects of simulated annealing with the generalized transition probability, which
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Fig. 9.4. Phase space with a simple structure (a) and a complicated structure
(b)

is recently attracting attention for its fast convergence properties and various
other reasons (Abe and Okamoto 2001).

9.6.1 Simulated annealing

Suppose that we wish to find the optimal state (that minimizes the cost function)
by starting from a random initial state and changing the state gradually. If the
value of the cost function decreases by a small change of state, we accept the new
state as the one that is actually realized at the next step, and we reject the new
state if the cost function increases. We generate new states consecutively by this
process until no new states are actually accepted, in which case we understand
that the optimal state has been reached (Fig. 9.4). This idea is called the gradient
descent method. If the phase space has a simple structure as in Fig. 9.4(a),
the gradient descent always leads to the optimal state. However, this is not
necessarily the case if there are local minima which are not true minima as in
Fig. 9.4(b), because the system would be trapped in a local minimum for some
initial conditions.

It is then useful to introduce transitions induced by thermal fluctuations
since they allow processes to increase the value of the cost function with a cer-
tain probability. We thus introduce the concept of temperature T as an externally
controllable parameter. If the cost function decreases by a small change of state,
then we accept the new state just as in the simple gradient descent method. If, on
the other hand, the cost function increases, we accept the new state with prob-
ability e−∆f/T that is determined by the increase of the cost function ∆f (> 0)
and the temperature T . In the initial stage of simulated annealing, we keep the
temperature high, which stimulates transitions to increase the cost function with
relatively high probability because e−∆f/T is close to unity. The system searches
the global structure of the phase space by such processes that allow the system to
stay around states with relatively high values of the cost function. Then, a grad-
ual decrease of the temperature forces the system to have larger probabilities to
stay near the optimal state with low f , which implies that more and more local
structures are taken into account. We finally let T → 0 to stop state changes
and, if successful, the optimal state will be reached. Simulated annealing is the
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idea to realize the above process numerically to obtain an approximate solution
of a combinatorial optimization problem. One can clearly reach the true optimal
state if the temperature is lowered infinitesimally slowly. In practical numeri-
cal calculations one decreases the temperature at a finite speed and terminates
the process before the temperature becomes exactly zero if a certain criterion
is satisfied. Simulated annealing is an approximate numerical method for this
reason.

9.6.2 Annealing schedule and generalized transition probability

An important practical issue in simulated annealing is the annealing schedule, the
rate of temperature decrease. If the temperature were decreased too rapidly, the
system would be trapped in a local minimum and lose a chance to escape there
because a quick decrease of the temperature soon inhibits processes to increase
the cost function. If the temperature is changed sufficiently slowly, on the other
hand, the system may be regarded to be approximately in an equilibrium state at
each T and the system therefore reaches the true optimal state in the limit T → 0.
It is, however, impracticable to decrease the temperature infinitesimally slowly.
Thus the problem of the annealing schedule arises in which we ask ourselves how
fast we can decrease the temperature without being trapped in local (not global)
minima.

Fortunately, this problem has already been solved in the following sense (Ge-
man and Geman 1984; Aarts and Korst 1989). When we allow the system to
increase the cost function with probability e−∆f/T as mentioned before, the sys-
tem reaches the true optimal state in the infinite-time limit t → ∞ as long as the
temperature is decreased so that it satisfies the inequality T (t) ≥ c/ log(t + 2).
Here c is a constant of the order of the system size N . It should, however, be
noted that the logarithm log(t + 2) is only mildly dependent on t and the lower
bound of the temperature does not approach zero very quickly. Thus the above
bound is not practically useful although it is theoretically important.

An inspection of the proof of the result mentioned above reveals that this
logarithmic dependence on time t has its origin in the exponential form of the
transition probability e−∆f/T . It further turns out that this exponential func-
tion comes from the Gibbs–Boltzmann distribution P (x) = e−f(x)/T /Z of the
equilibrium state at temperature T .

However, it is not necessary to use the exponential transition probability,
which comes from the equilibrium distribution function, because we are inter-
ested only in the limit T → 0 in combinatorial optimization problems. The
only requirement is to reach the optimal state in the end, regardless of inter-
mediate steps. Indeed, numerical investigations have shown that the generalized
transition probability to be explained below has the property of very rapid con-
vergence to the optimal state and is now used actively in many situations (Abe
and Okamoto 2001). We show in the following that simulated annealing using
the generalized transition probability converges in the sense of weak ergodicity
under an appropriate annealing schedule (Nishimori and Inoue 1998). The proof
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given here includes the convergence proof of conventional simulated annealing
with the exponential transition probability as a special case.

9.6.3 Inhomogeneous Markov chain

Suppose that we generate states one after another sequentially by a stochastic
process starting from an initial state. We consider a Markov process in which the
next state is determined only by the present state, so that we call it a Markov
chain. Our goal in the present section is to investigate conditions of convergence
of the Markov chain generated by the generalized transition probability explained
below. We first list various definitions and notations.

The cost function is denoted by f that is defined on the set of states (phase
space) S. The temperature T is a function of time, and accordingly the transition
probability G from a state x (∈ S) to y is also a function of time t (= 0, 1, 2, . . .).
This defines an inhomogeneous Markov chain in which the transition probability
depends on time. This G is written as follows:

G(x, y; t) =
{

P (x, y)A(x, y; T (t)) (x 
= y)
1 −∑z( �=x) P (x, z)A(x, z; T (t)) (x = y). (9.62)

Here P (x, y) is the generation probability (probability to generate a new state)

P (x, y)
{

> 0 (y ∈ Sx)
= 0 (otherwise), (9.63)

where Sx is the neighbour of x, the set of states that can be reached by a single
step from x. In (9.62), A(x, y; T ) is the acceptance probability (probability by
which the system actually makes a transition to the new state) with the form

A(x, y; T ) = min{1, u(x, y; T )}
u(x, y; T ) =

(
1 + (q − 1)

f(y) − f(x)
T

)1/(1−q)

.
(9.64)

Here q is a real parameter and we assume q > 1 for the moment. Equation (9.62)
shows that one generates a new trial state y with probability P (x, y), and the
system actually makes a transition to it with probability A(x, y; T ). According
to (9.64), when the change of the cost function ∆f = f(y) − f(x) is zero or
negative, we have u ≥ 1 and thus A(x, y; T ) = 1 and the state certainly changes
to the new one. If ∆f is positive, on the other hand, u < 1 and the transition to y
is determined with probability u(x, y; T ). If ∆f < 0 and the quantity in the large
parentheses in (9.64) vanishes or is negative, then we understand that u → ∞
or A = 1. It is assumed that the generation probability P (x, y) is irreducible: it
is possible to move from an arbitrary state in S to another arbitrary state by
successive transitions between pairs of states x and y satisfying P (x, y) > 0. It
should be remarked here that the acceptance probability (9.64) reduces to the
previously mentioned exponential form e−∆f/T in the limit q → 1. Equation
(9.64) is a generalization of the Gibbs–Boltzmann framework in this sense.
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Now we choose the annealing schedule as follows:

T (t) =
b

(t + 2)c
(b, c > 0, t = 0, 1, 2, . . .). (9.65)

In the convergence proof of conventional simulated annealing corresponding to
q → 1, a logarithm of t appears in the denominator of (9.65). Here in the case
of the generalized transition probability (9.62)–(9.64), it will turn out to be
appropriate to decrease T as a power of t.

It is convenient to regard G(x, y; t) as a matrix element of a transition matrix
G(t):

[G(t)]x,y = G(x, y; t). (9.66)

We denote the set of probability distributions on S by P and regard a probability
distribution p as a row vector with element p(x) (x ∈ S). If at time s the system
is in the state described by the probability distribution p0 (∈ P), the probability
distribution at time t is given as

p(s, t) = p0G
s,t ≡ p0G(s)G(s + 1) . . . G(t − 1). (9.67)

We also introduce the coefficient of ergodicity as follows, which is a measure of
the state change in a single step:

α(Gs,t) = 1 − min

{∑
z∈S

min{Gs,t(x, z), Gs,t(y, z)}|x, y ∈ S
}

. (9.68)

In the next section we prove weak ergodicity of the system, which means that
the probability distribution is asymptotically independent of the initial condition:

∀s ≥ 0 : lim
t→∞ sup{‖p1(s, t) − p2(s, t)‖ | p01, p02 ∈ P} = 0, (9.69)

where p1(s, t) and p2(s, t) are distribution functions with different initial condi-
tions,

p1(s, t) = p01G
s,t, p2(s, t) = p02G

s,t. (9.70)

The norm of the difference of probability distributions in (9.69) is defined by

‖p1 − p2‖ =
∑
x∈S

|p1(x) − p2(x)|. (9.71)

Strong ergodicity to be contrasted with weak ergodicity means that the proba-
bility distribution approaches a fixed distribution irrespective of the initial con-
dition:

∃r ∈ P , ∀s ≥ 0 : lim
t→∞ sup{‖p(s, t)− r‖ | p0 ∈ P} = 0. (9.72)

The conditions for ergodicity are summarized in the following theorems (Aarts
and Korst 1989).



206 OPTIMIZATION PROBLEMS

Theorem 9.1. (Weak ergodicity) An inhomogeneous Markov chain is weakly
ergodic if and only if there exists a monotonically increasing sequence of integers

0 < t0 < t1 < · · · < ti < ti+1 < . . .

and the coefficient of ergodicity satisfies
∞∑

i=0

(1 − α(Gti,ti+1)) = ∞. (9.73)

Theorem 9.2. (Strong ergodicity) An inhomogeneous Markov chain is strong-
ly ergodic if

• it is weakly ergodic,
• there exists a stationary state pt = ptG(t) at each t, and
• the above pt satisfies the condition

∞∑
t=0

‖pt − pt+1‖ < ∞. (9.74)

9.6.4 Weak ergodicity
We prove in this section that the Markov chain generated by the generalized
transition probability (9.62)–(9.64) is weakly ergodic. The following lemma is
useful for this purpose.
Lemma 9.3. (Lower bound to the transition probability) The transition
probability of the inhomogeneous Markov chain defined in §9.6.3 satisfies the fol-
lowing inequality. Off-diagonal elements of G for transitions between different
states satisfy

P (x, y) > 0 ⇒ ∀t ≥ 0 : G(x, y; t) ≥ w

(
1 +

(q − 1)L
T (t)

)1/(1−q)

. (9.75)

For diagonal elements we have

∀x ∈ S \ SM , ∃t1 > 0, ∀t ≥ t1 : G(x, x; t) ≥ w

(
1 +

(q − 1)L
T (t)

)1/(1−q)

. (9.76)

Here SM is the set of states to locally maximize the cost function

SM = {x|x ∈ S, ∀y ∈ Sx : f(y) ≤ f(x)}, (9.77)

L is the largest value of the change of the cost function by a single step

L = max{|f (x) − f(y)| | P (x, y) > 0}, (9.78)

and w is the minimum value of the non-vanishing generation probability

w = min{P (x, y) | P (x, y) > 0, x, y ∈ S}. (9.79)
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Proof We first prove (9.75) for off-diagonal elements. If f(y) − f(x) > 0, then
u(x, y; T (t)) ≤ 1 and therefore

G(x, y; t) = P (x, y)A(x, y; T (t)) ≥ w min{1, u(x, y; T (t))}

= w u(x, y; T (t)) ≥ w

(
1 +

(q − 1)L
T (t)

)1/(1−q)

. (9.80)

When f(x) − f(y) ≤ 0, u(x, y; T (t)) ≥ 1 holds, leading to

G(x, y; t) ≥ w min{1, u(x, y; T (t))} = w ≥ w

(
1 +

(q − 1)L
T (t)

)1/(1−q)

. (9.81)

To prove the diagonal part (9.76), we note that there exists a state y+ ∈ Sx

to increase the cost function f(y+) − f(x) > 0 because of x ∈ S \ SM . Then

lim
t→∞ u(x, y; T (t)) = 0, (9.82)

and therefore

lim
t→∞ min{1, u(x, y; T (t))} = 0. (9.83)

For sufficiently large t, min{1, u(x, y; T (t))} can be made arbitrarily small, and
hence there exists some t1 for an arbitrary ε > 0 which satisfies

∀t ≥ t1 : min{1, u(x, y; T (t))} < ε. (9.84)

Therefore∑
z∈S

P (x, z)A(x, z; T (t))

=
∑
{y+}

P (x, y+)min{1, u(x, y+; T (t))}+
∑

z∈S\{y+}
P (x, z)min{1, u(x, z; T (t))}

<
∑
{y+}

P (x, y+)ε +
∑

z∈S\{y+}
P (x, z) = −(1 − ε)

∑
{y+}

P (x, y+) + 1. (9.85)

From this inequality and (9.62) the diagonal element satisfies

G(x, x; t) ≥ (1 − ε)
∑
{y+}

P (x, y+) ≥ w

(
1 +

(q − 1)L
T (t)

)1/(1−q)

. (9.86)

In the final inequality we have used the fact that the quantity in the large
parentheses can be chosen arbitrarily small for sufficiently large t. �
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It is convenient to define some notation to prove weak ergodicity. Let us write
d(x, y) for the minimum number of steps to make a transition from x to y. The
maximum value of d(x, y) as a function of y will be denoted as k(x):

k(x) = max{d(x, y)|y ∈ S}. (9.87)

Thus one can reach an arbitrary state within k(x) steps starting from x. The
minimum value of k(x) for x such that x ∈ S \ SM is written as R, and the x to
give this minimum value will be x∗:

R = min{k(x)|x ∈ S \ SM}, x∗ = arg min{k(x)|x ∈ S \ SM}. (9.88)

Theorem 9.4. (Weak ergodicity by generalized transition probability)
The inhomogeneous Markov chain defined in §9.6.3 is weakly ergodic if 0 < c ≤
(q − 1)/R.

Proof Let us consider a transition from x to x∗. From (9.67),

Gt−R,t(x, x∗) =
∑

x1,...,xR−1

G(x, x1; t−R)G(x1, x2; t−R+1) . . .G(xR−1, x
∗; t−1).

(9.89)
There exists a sequence of transitions to reach x∗ from x within R steps according
to the definitions of x∗ and R,

x 
= x1 
= x2 
= · · · 
= xk = xk+1 = · · · = xR = x∗. (9.90)

We keep this sequence only in the sum (9.89) and use Lemma 9.3 to obtain

Gt−R,t(x, x∗) ≥ G(x, x1; t − R)G(x1, x2; t − R + 1) . . .G(xR−1, xR; t − 1)

≥
R∏

k=1

w

(
1 +

(q − 1)L
T (t − R + k − 1)

)1/(1−q)

≥ wR

(
1 +

(q − 1)L
T (t − 1)

)R/(1−q)

. (9.91)

It therefore follows that the coefficient of ergodicity satisfies the inequality

α(Gt−R,t) = 1 − min

{∑
z∈S

min{Gt−R,t(x, z), Gt−R,t(y, z)}|x, y ∈ S
}

≤ 1 − min{min{Gt−R,t(x, x∗), Gt−R,t(y, x∗)}|x, y ∈ S}

≤ 1 − wR

(
1 +

(q − 1)L
T (t − 1)

)R/(1−q)

. (9.92)

We now use the annealing schedule (9.65). According to (9.92) there exists a
positive integer k0 such that the following inequality holds for any integer k
satisfying k ≥ k0:

1 − α(GkR−R,kR) ≥ wR

(
1 +

(q − 1)L(kR + 1)c

b

)R/(1−q)
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≥ wR

{
2(q − 1)LRc

b

(
k +

1
R

)c}R/(1−q)

. (9.93)

It is then clear that the following quantity diverges when 0 < c ≤ (q − 1)/R:

∞∑
k=0

(1−α(GkR−R,kR)) =
k0−1∑
k=0

(1−α(GkR−R,kR))+
∞∑

k=k0

(1−α(GkR−R,kR)). (9.94)

This implies weak ergodicity from Theorem 9.1. �

This proof breaks down if q < 1 since the quantity in the large parentheses of
(9.64) may be negative even when ∆f > 0. In numerical calculations, such cases
are treated as u = 0, no transition. Fast relaxations to the optimal solutions
are observed often for q < 1 in actual numerical investigations. It is, however,
difficult to formulate a rigorous proof for this case.

It is also hard to prove a stronger result of strong ergodicity and approach
to the optimal distribution (distribution uniform over the optimal states) for
the Markov chain defined in §9.6.3 for general q. Nevertheless, weak ergodicity
itself has physically sufficient significance because the asymptotic probability
distribution does not depend on the initial condition; it is usually inconceivable
that such an asymptotic state independent of the initial condition is not the
optimal one or changes with time periodically.

9.6.5 Relaxation of the cost function

It is not easy to prove the third condition of strong ergodicity in Theorem 9.2,
(9.74), for a generalized transition probability with q 
= 1. However, if we restrict
ourselves to the conventional transition probability e−∆f/T corresponding to
q → 1, the following theorem can be proved (Geman and Geman 1984).
Theorem 9.5. (Strong ergodicity by conventional transition probability)
If we replace (9.64) and (9.65) in §9.6.3 by

u(x, y; T ) = exp{−(f (y) − f(x))/T} (9.95)

T (t) ≥ RL

log(t + 2)
, (9.96)

then this Markov chain is strongly ergodic. The probability distribution in the
limit t → ∞ converges to the optimal distribution. Here R and L are defined as
in §9.6.4.

To prove this theorem, we set q → 1 in (9.92) in the proof of Theorem 9.4. By
using the annealing schedule of (9.96), we find that (9.94) diverges, implying weak
ergodicity. It is also well known that the stationary distribution at temperature
T (t) for any given t is the Gibbs–Boltzmann distribution, so that the second
condition of Theorem 9.2 is satisfied. Some manipulations are necessary to prove
the third convergence condition (9.74), and we only point out two facts essential
for the proof: the first is that the probability of the optimal state monotonically
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increases with decreasing temperature due to the explicit form of the Gibbs–
Boltzmann distribution. The second one is that the probabilities of non-optimal
states monotonically decrease with decreasing temperature at sufficiently low
temperature.

A comment is in order on the annealing schedule. As one can see in Theorem
9.4, the constant c in the annealing schedule (9.65) is bounded by (q−1)/R, but
R is of the order of the system size N by the definition (9.88) of R.23 Then, as
N increases, c decreases and the change of T (t) becomes very mild. The same
is true for (9.96). In practice, one often controls the temperature irrespective
of the mathematically rigorous result as in (9.65) and (9.96); for example, an
exponential decrease of temperature is commonly adopted. If the goal is to obtain
an approximate estimation within a given, limited time, it is natural to try fast
annealing schedules even when there is no guarantee of asymptotic convergence.

It is instructive to investigate in more detail which is actually faster between
the power decay of temperature (9.65) and the logarithmic law (9.96). The time
t1 necessary to reach a very low temperature δ by (9.65) is, using b/tc1 ≈ δ (where
c = (q − 1)/R),

t1 ≈ exp
(

k1N

q − 1
log

b

δ

)
. (9.97)

Here we have set R = k1N . For the case of (9.96), on the other hand, from
k2N/ log t2 ≈ δ,

t2 ≈ exp
(

k2N

δ

)
. (9.98)

Both of these are of exponential form in N , which is reasonable because we are
discussing generic optimization problems including the class NP complete. An
improvement in the case of the generalized transition probability (9.97) is that
δ appears as log δ whereas it has 1/δ-dependence in t2, which means a smaller
coefficient of N for small δ in the former case.

It should also be remarked that smaller temperature does not immediately
mean a smaller value of the cost function. To understand this, note that the
acceptance probability (9.64) for q 
= 1 is, when T = δ � 1,

u1(T = δ) ≈
(

δ

(q − 1)∆f

)1/(q−1)

, (9.99)

while for q = 1, according to (9.95),

u2(T = δ) ≈ e−∆f/δ. (9.100)

For transitions satisfying ∆f/δ 	 1, we have u1(δ) 	 u2(δ). This implies that
transitions to states with high cost function values take place easier for q 
= 1 than
for q = 1 if the temperature is the same. Transition probabilities for q 
= 1 cause

23The number of steps to reach arbitrary states is at least of the order of the system size.
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Fig. 9.5. Potential and barriers in one dimension

state searches among wide regions in the phase space even at low temperatures.
It would follow that the equilibrium expectation value of the cost function after
a sufficiently long time at a fixed temperature is likely to be higher in the case
q 
= 1 than in q = 1. In numerical experiments, however, it is observed in many
cases that q 
= 1 transition probabilities lead to faster convergence to lower values
of the cost function. The reason may be that the relaxation time for q 
= 1 is
shorter than for q = 1, which helps the system escape local minima to relax
quickly towards the real minimum.

9.7 Diffusion in one dimension

The argument in the previous section does not directly show that we can reach
the optimal state faster by the generalized transition probability. It should also
be kept in mind that we have no proof of convergence in the case of q < 1. In
the present section we fill this gap by the example of diffusion in one dimension
due to Shinomoto and Kabashima (1991). It will be shown that the generalized
transition probability with q < 1 indeed leads to a much faster relaxation to the
optimal state than the conventional one q = 1 (Nishimori and Inoue 1998).

9.7.1 Diffusion and relaxation in one dimension

Suppose that a particle is located at one of the discrete points x = ai (with i
integer and a > 0) in one dimension and is under the potential f(x) = x2/2.
There are barriers between the present and the neighbouring locations i±1. The
height is B to the left (i → i − 1) and B + ∆i to the right (i → i + 1) as shown
in Fig. 9.5. Here ∆i is the potential difference between two neighbouring points,
∆i = f(a(i + 1)) − f(ai) = ax + a2/2.

The probability Pt(i) that the particle is located at x = ai at time t follows
the master equation using the generalized transition probability:

dPt(i)
dt

=
(

1 + (q − 1)
B

T

)1/(1−q)

Pt(i + 1)
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+
(

1 + (q − 1)
B + ∆i−1

T

)1/(1−q)

Pt(i − 1)

−
(

1 + (q − 1)
B + ∆i

T

)1/(1−q)

Pt(i)

−
(

1 + (q − 1)
B

T

)1/(1−q)

Pt(i). (9.101)

The first term on the right hand side represents the process that the particle
at i + 1 goes over the barrier B to i, which increases the probability at i. The
second term is for i− 1 → i, the third for i → i + 1, and the fourth for i → i− 1.
It is required that the transition probability in (9.101) should be positive semi-
definite. This condition is satisfied if we restrict q to q = 1−(2n)−1 (n = 1, 2, . . .)
since the power 1/(1 − q) then equals 2n, which we therefore accept here.

It is useful to take the continuum limit a → 0 to facilitate the analysis. Let
us define γ(T ) and D(T ) by

γ(T ) =
1
T

(
1 + (q − 1)

B

T

)q/(1−q)

, D(T ) =
(

1 + (q − 1)
B

T

)1/(1−q)

, (9.102)

and expand the transition probability of (9.101) to first order in ∆i and ∆i−1 (∝
a) to derive

dPt(i)
dt

= D(T ) {Pt(i + 1) − 2Pt(i) + Pt(i − 1)}

+ aγ(T )
{
xPt(i) +

a

2
Pt(i) − xPt(i − 1) +

a

2
Pt(i − 1)

}
. (9.103)

We rescale the time step as a2t → t and take the limit a → 0, which reduces the
above equation to the form of the Fokker–Planck equation

∂P

∂t
= γ(T )

∂

∂x
(xP ) + D(T )

∂2P

∂x2
. (9.104)

We are now ready to study the time evolution of the expectation value of the
cost function y:

y(t) =
∫

dx f(x)P (x, t). (9.105)

The goal is to find an appropriate annealing schedule T (t) to reduce y to the
optimal value 0 as quickly as possible. The time evolution equation for y can be
derived from the Fokker–Planck equation (9.104) and (9.105),

dy

dt
= −2γ(T )y + D(T ). (9.106)

Maximization of the rate of decrease of y is achieved by minimization of the
right hand side of (9.106) as a function of T at each time (or maximization of
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the absolute value of this negative quantity). We hence differentiate the right
hand side of (9.106) with respect to T using the definitions of γ(T ) and D(T ),
(9.102):

Topt =
2yB + (1 − q)B2

2y + B
= (1 − q)B + 2qy + O(y2). (9.107)

Thus (9.106) is asymptotically, as y ≈ 0,

dy

dt
= −2B1/(q−1)

(
2q

1 − q

)q/(1−q)

y1/(1−q), (9.108)

which is solved as

y = B1/q

(
1 − q

2q

)1/q

t−(1−q)/q. (9.109)

Substitution into (9.107) reveals the optimal annealing schedule as

Topt ≈ (1 − q)B + const · t−(1−q)/q. (9.110)

Equation (9.109) indicates that the relaxation of y is fastest when q = 1/2 (n =
1), which leads to

y ≈ B2

4
t−1, Topt ≈ B

2
+

B2

4
t−1. (9.111)

The same analysis for the conventional exponential transition probability
with q → 1 in the master equation (9.101) leads to the logarithmic form of
relaxation (Shinomoto and Kabashima 1991)

y ≈ B

log t
, Topt ≈ B

log t
. (9.112)

Comparison of (9.111) and (9.112) clearly shows a faster relaxation to y = 0 in
the case of q = 1/2.

A remark on the significance of temperature is in order. Topt in (9.107) ap-
proaches a finite value (1 − q)B in the limit t → ∞, which may seem unsatis-
factory. However, the transition probability in (9.101) vanishes at T = (1− q)B,
not at T = 0, if q 
= 1, a → 0, and therefore T = (1 − q)B effectively plays the
role of absolute zero temperature.

Bibliographical note
The application of statistical mechanics to optimization problems started with
simulated annealing (Kirkpatrick et al. 1983). Review articles on optimization
problems, not just simulated annealing but including travelling salesman, graph
partitioning, matching, and related problems, from a physics point of view are
found in Mézard et al. (1987) and van Hemmen and Morgenstern (1987), which
cover most materials until the mid 1980s. A more complete account of simu-
lated annealing with emphasis on mathematical aspects is given in Aarts and
Korst (1989). Many optimization problems can be formulated in terms of neural
networks. Detailed accounts are found in Hertz et al. (1991) and Bishop (1995).



APPENDIX A

EIGENVALUES OF THE HESSIAN

In this appendix we derive the eigenvalues and eigenvectors of the Hessian dis-
cussed in Chapter 3. Let us note that the dimensionality of the matrix G is equal
to the sum of the spatial dimension of εα and that of ηαβ , n + n(n − 1)/2 =
n(n + 1)/2. We write the eigenvalue equation as

Gµ = λµ, µ =
( {εα}
{ηαβ}

)
. (A.1)

The symbol {εα} denotes a column from ε1 at the top to εn at the bottom and
{ηαβ} is for η12 to ηn−1,n.

A.1 Eigenvalue 1

There are three types of eigenvectors. The first one µ1 treated in the present
section has the form εα = a, ηαβ = b. The first row of G is written as

(A,B, . . . , B, C, . . . , C, D . . . , D), (A.2)

so that the first row of the eigenvalue equation Gµ1 = λµ1 is

Aa + (n − 1)Ba + (n − 1)Cb +
1
2
(n − 1)(n − 2)Db = λ1a. (A.3)

The lower half of the same eigenvalue equation (corresponding to {ηαβ}) is, using
the form of the corresponding row of G, (C,C,D, . . . , D, P, Q, . . . , Q, R, . . . , R),

2Ca + (n − 2)Da + Pb + 2(n − 2)Qb +
1
2
(n − 2)(n − 3)Rb = λ1b. (A.4)

The factor of 2 in front of the first C comes from the observation that both Gα(αβ)

and Gβ(αβ) are C for fixed (αβ). The factor (n − 2) in front of D reflects the
number of replicas γ giving Gγ(αβ) = D. The 2(n−2) in front of Q is the number
of choices of replicas satisfying G(αβ)(αγ) = Q, and similarly for (n−2)(n−3)/2.
The condition that both (A.3) and (A.4) have a solution with non-vanishing a
and b yields

λ1 =
1
2
(X ±

√
Y 2 + Z), (A.5)

X = A + (n − 1)B + P + 2(n − 2)Q +
1
2
(n − 2)(n − 3)R (A.6)
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Y = A + (n − 1)B − P − 2(n − 2)Q − 1
2
(n − 2)(n − 3)R (A.7)

Z = 2(n − 1){2C + (n − 2)D}2. (A.8)

This eigenvalue reduces in the limit n → 0 to

λ1 =
1
2

{
A − B + P − 4Q + 3R ±

√
(A − B − P + 4Q − 3R)2 − 8(C − D)2

}
.

(A.9)

A.2 Eigenvalue 2
The next type of solution µ2 has εθ = a (for a specific replica θ), εα = b (other-
wise) and ηαβ = c (when α or β is equal to θ), ηαβ = d (otherwise). We assume
θ = 1 without loss of generality. The first row of the matrix G has the form
(A,B . . . , B, C, . . . , C, D, . . . , D). Both B and C appear n − 1 times, and D ex-
ists (n− 1)(n− 2)/2 times. Vector µ2 is written as t(a, b, . . . , b, c, . . . , c, d, . . . , d),
where there are n − 1 of b and c, and (n− 1)(n − 2)/2 of d. The first row of the
eigenvalue equation Gµ2 = λ2µ2 is

Aa + (n − 1)Bb + Cc(n − 1) +
1
2
Dd(n − 1)(n − 2) = λ2a. (A.10)

The present vector µ2 should be different from the previous µ1 and these vectors
must be orthogonal to each other. A sufficient condition for orthogonality is
that the upper halves (with dimensionality n) of µ1 and µ2 have a vanishing
inner product and similarly for the lower halves. Then, using the notation µ1 =
t(x, x, . . . , x, y, y, . . . , y), we find

a + (n − 1)b = 0, c +
1
2
(n − 2)d = 0. (A.11)

Equation (A.10) is now rewritten as

(A − λ2 − B)a + (n − 1)(C − D)c = 0. (A.12)

We next turn to the lower half of the eigenvalue equation corresponding to
{ηαβ}. The relevant row of G is (C,C,D, . . . , D, P, Q, . . . , Q, R, . . . , R), where
there are n − 2 of the D, 2(n − 2) of the Q, and (n − 2)(n − 3)/2 of the R. The
eigenvector µ2 has the form t(a, b, . . . , b, c, . . . , c, d, . . . , d). Hence we have

aC+bC+(n−2)Db+Pc+(n−2)Qc+(n−2)Qd+
1
2
(n−2)(n−3)Rd = λ2c. (A.13)

This relation can be written as, using (A.11),

n − 2
n − 1

(C − D)a + {P + (n − 4)Q − (n − 3)R − λ2}c = 0. (A.14)

The condition that (A.12) and (A.14) have non-vanishing solution yields

λ2 =
1
2
(X ±

√
Y 2 + Z), (A.15)
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X = A − B + P + (n − 4)Q − (n − 3)R (A.16)
Y = A − B − P − (n − 4)Q + (n − 3)R (A.17)
Z = 4(n − 2)(C − D)2. (A.18)

This eigenvalue becomes degenerate with λ1 in the limit n → 0.
There are n possible choices of the special replica θ, so that we may choose n

different eigenvectors µ2. Dimensionality n corresponding to {εα} from n(n+1)/2
dimensions has thus been exhausted. Within this subspace, the eigenvectors µ1

and µ2 cannot all be independent as there are no more than n independent
vectors in this space. Therefore we have n independent vectors formed from µ1

and µ2. If we recall that λ1 and λ2 are both doubly degenerate, the eigenvectors
µ1 and µ2 are indeed seen to construct a 2n-dimensional space.

A.3 Eigenvalue 3
The third type of eigenvector µ3 has εθ = a, εν = a (for two specific replicas θ, ν)
and εα = b (otherwise), and ηθν = c, ηθα = ηνα = d and ηαβ = e otherwise. We
may assume θ = 1, ν = 2 without loss of generality.

A sufficient condition for orthogonality with µ1 = t(x, . . . , x, y . . . , y) gives

2a + (n − 2)b = 0, c + 2(n − 2)d +
1
2
(n − 2)(n − 3)e = 0. (A.19)

To check a sufficient condition of orthogonality of µ3 and µ2, we write µ2 =
t(x, y, . . . , y, v, . . . , v, w, . . . , w) and obtain

ax+ ay +(n− 2)by = 0, cv +(n− 2)dv = 0, (n− 2)dw +
1
2
(n− 2)(n− 3)ew = 0.

(A.20)
From this and the condition x + (n − 1)y = 0 as derived in (A.11), we obtain

a − b = 0, c + (n − 2)d = 0, d +
1
2
(n − 3)e = 0. (A.21)

From (A.19) and (A.21), a = b = 0, c = (2 − n)d, d = (3 − n)e/2. This relation
reduces the upper half of the eigenvalue equation (corresponding to {εα}) to
the trivial form 0 = 0. The relevant row of G is (. . . , P, Q, . . . , Q, R, . . . , R) and
µ3 = t(0, . . . , 0, c, d, . . . , d, e, . . . , e). Thus the eigenvalue equation is

Pc + 2(n − 2)Qd +
1
2
(n − 2)(n − 3)Re = λ3c, (A.22)

which can be expressed as, using (A.21),

λ3 = P − 2Q + R. (A.23)

The degeneracy of λ3 may seem to be n(n− 1)/2 from the number of choices of
θ and ν. However, n vectors have already been used in relation to λ1, λ2 and the
actual degeneracy (the number of independent vectors) is n(n − 3)/2. Together
with the degeneracy of λ1 and λ2, we have n(n + 1)/2 vectors and exhausted all
the eigenvalues.



APPENDIX B

PARISI EQUATION

We derive the free energy in the full RSB scheme for the SK model in this
appendix following Duplantier (1981). The necessary work is the evaluation of
the term Tr eL in the free energy (2.17). We set β = J = 1 during calculations
and retrieve these afterwards by dimensionality arguments.

As one can see from the form of the matrix (3.25) in §3.2.1, the diagonal blocks
have elements qK . Thus we may carry out calculations with the diagonal element
qαα kept untouched first in the sum of qαβSαSβ and add β2J2qK/2 (qK → q(1))
to βf later to cancel this extra term. We therefore evaluate

G = Tr exp


1

2

n∑
α,β=1

qαβSαSβ + h

n∑
α

Sα




= exp


1

2

∑
α,β

qαβ
∂2

∂hα∂hβ


∏

α

2 coshhα

]
hα=h

. (B.1)

If all the qαβ are equal to q (the RS solution), the manipulation is straightforward
and yields

G = exp
(

q

2
∂2

∂h2

)
(2 coshh)n, (B.2)

where we have used

∑
α

∂f(h1, . . . , hn)
∂hα

]
hα=h

=
∂f(h, . . . , h)

∂h
. (B.3)

In the case of 2RSB, we may reach the n× n matrix {qαβ} in three steps by
increasing the matrix dimension as m2, m1, n:
(2-1) (q2 − q1)I(m2). Here I(m2) is an m2 ×m2 matrix with all elements unity.
(2-2) (q2 − q1)Diagm1

[I(m2)] + (q1 − q0)I(m1). The matrix Diagm1
[I(m2)] has

dimensionality m1×m1 with all diagonal blocks equal to I(m2) and all the
other elements zero. The second term (q1 − q0)I(m1) specifies all elements
to q1 − q0, and the first term replaces the block-diagonal part by q2 − q0.

(2-3) (q2 − q1)Diagn[Diagm1
[I(m2)]] + (q1 − q0)Diagn[I(m1)] + q0I(n). All the

elements are set first to q0 by the third term. The second term replaces
the diagonal block of size m1 × m1 by q1. The elements of the innermost
diagonal block of size m2 × m2 are changed to q2 by the first term.
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Similarly, for general K-RSB,
(K-1) (qK − qK−1)I(mK) (mK × mK matrix),
(K-2) (qK −qK−1)DiagK−1[I(mK)]+(qK−1 −qK−2)I(mK−1) (mK−1×mK−1

matrix),
and so on. Now, suppose that we have carried out the trace operation for the
mK × mK matrix determined by the above procedure. If we denote the result
as g(mK , h), since the elements of the matrix in (K-1) are all qK − qK−1 corre-
sponding to RS, we have from (B.2)

g(mK , h) = exp
{

1
2
(qK − qK−1)

∂2

∂h2

}
(2 coshh)mK . (B.4)

The next step is (K-2). The matrix in (K-2) is inserted into qαβ of (B.1),
and the sum of terms (qK − qK−1)DiagK−1[I(mK)] and (qK−1 − qK−2)I(mK−1)
is raised to the exponent. The former can be written by the already-obtained
g(mK , h) in (B.4) and there are mK−1/mK of this type of contribution. The
latter has uniform elements and the RS-type calculation applies. One therefore
finds that g(mK−1, h) can be expressed as follows:

g(mK−1, h) = exp
{

1
2
(qK−1 − qK−2)

∂2

∂h2

}
[g(mK , h)]mK−1/mK . (B.5)

Repeating this procedure, we finally arrive at

G = g(n, h) = exp
{

1
2
q(0)

∂2

∂h2

}
[g(m1, h)]n/m1 . (B.6)

In the limit n → 0, the replacement mj −mj−1 = −dx is appropriate, and (B.5)
reduces to the differential relation

g(x + dx, h) = exp
{
−1

2
dq(x)

∂2

∂h2

}
g(x, h)1+d log x. (B.7)

In (B.4) we have mK → 1, qK − qK−1 → 0 and this equation becomes g(1, h) =
2 coshh. Equation (B.7) is cast into a differential equation

∂g

∂x
= −1

2
dq

dx

∂2g

∂h2
+

1
x

g log g, (B.8)

which may be rewritten using the notation f0(x, h) = (1/x) log g(x, h) as

∂f0

∂x
= −1

2
dq

dx

{
∂2f0

∂h2
+ x

(
∂f0

∂h

)2
}

. (B.9)

By taking the limit n → 0, we find from (B.6)

1
n

log Tr eL = exp
(

1
2
q(0)

∂2

∂h2

)
1
x

log g(x, h)
]

x,h→0
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= exp
(

1
2
q(0)

∂2

∂h2

)
f0(0, h)]h→0

=
∫

Du f0(0,
√

q(0)u). (B.10)

We have restricted ourselves to the case h = 0. The last expression can be
confirmed, for example, by expanding f0(0, h) in powers of h. The final expression
of the free energy (2.17) is

βf = −β2J2

4

{
1 +
∫ 1

0

q(x)2dx − 2q(1)
}
−
∫

Du f0(0,
√

q(0)u). (B.11)

Here f0 satisfies the following Parisi equation:

∂f0(x, h)
∂x

= −J2

2
dq

dx

{
∂2f0

∂h2
+ x

(
∂f0

∂h

)2
}

(B.12)

under the initial condition f0(1, h) = log 2 coshβh. The parameters β and J have
been recovered for correct dimensionality.



APPENDIX C

CHANNEL CODING THEOREM

In this appendix we give a brief introduction to information theory and sketch
the arguments leading to Shannon’s channel coding theorem used in Chapter 5.

C.1 Information, uncertainty, and entropy

Suppose that an information source U generates a sequence of symbols (or alpha-
bets) from the set {a1, a2, . . . , aL} with probabilities p1, p2, . . . , pL, respectively.
A single symbol ai is assumed to be generated one at a time according to this
independently, identically distributed probability. The resulting sequence has the
form of, for example, a2a5aia1 . . ..

The entropy of this information source is defined by

H(U) = −
L∑

i=1

pi log2 pi [bit/symbol]. (C.1)

This quantity is a measure of uncertainty about the outcome from the source.
For example, if all symbols are generated with equal probability (p1 = · · · =
pL = 1/L), the entropy assumes the maximum possible value H = log2 L as can
be verified by extremizing H(U) under the normalization condition

∑
i pi = 1

using the Lagrange multiplier. This result means that the amount of information
obtained after observation of the actual outcome (a1, for instance) is largest in
the uniform case. Thus the entropy may also be regarded as the amount of
information obtained by observing the actual outcome. The other extreme is
the case where one of the symbols is generated with probability 1 and all other
symbols with probability 0, resulting in H = 0. This vanishing value is also
natural since no information is gained by observation of the actual outcome
because we know the result from the outset (no uncertainty). The entropy takes
intermediate values for other cases with partial uncertainties.

The unit of the entropy is chosen to be [bit/symbol], and correspondingly the
base of the logarithm is two. This choice is easy to understand if one considers
the case of L = 2 and p1 = p2 = 1/2. The entropy is then H = log2 2 = 1, which
implies that one gains one bit of information by observing the actual outcome
of a perfectly randomly generated binary symbol.

A frequently used example is the binary entropy H2(p). A symbol (e.g. 0) is
generated with probability p and another symbol (e.g. 1) with 1 − p. Then the
entropy is

H2(p) = −p log2 p − (1 − p) log2(1 − p). (C.2)
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The binary entropy H2(p) is convex, reaches its maximum H2 = 1 at p = 1/2,
and is symmetric about p = 1/2.

C.2 Channel capacity

To discuss the properties of a transmission channel, it is convenient to introduce
a few quantities related to entropy. The first one is the conditional entropy
H(X |Y ) that is a measure of uncertainty about the set of events X given another
event y ∈ Y . For a given conditional probability P (x|y), the following quantity
measures the uncertainty about X , given y:

H(X |Y = y) = −
∑

x

P (x|y) log2 P (x|y). (C.3)

The conditional entropy is defined as the average of H(X |y) over the distribution
of y:

H(X |Y ) =
∑

y

P (y)H(X |y)

= −
∑

y

P (y)
∑

x

P (x|y) log2 P (x|y)

= −
∑

x

∑
y

P (x, y) log2 P (x|y), (C.4)

where we have used P (x, y) = P (x|y)P (y). Similarly,

H(Y |X) = −
∑

x

∑
y

P (x, y) log2 P (y|x). (C.5)

One sometimes uses the joint entropy for two sets of events X and Y although
it does not appear in the analyses of the present book:

H(X, Y ) = −
∑

x

∑
y

P (x, y) log2 P (x, y). (C.6)

It is straightforward to verify the following relations

H(X, Y ) = H(Y ) + H(X |Y ) = H(X) + H(Y |X) (C.7)

from the identity P (x, y) = P (x|y)P (y) = P (y|x)P (x).
The mutual information is defined by

I(X, Y ) = H(X) − H(X |Y ). (C.8)

The meaning of this expression is understood relatively easily in the situation of
a noisy transmission channel. Suppose that X is the set of inputs to the channel
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H X( )

H X Y( | ) I X Y( , )

Fig. C.1. Entropy H(X), conditional entropy H(X |Y ), and mutual information
I(X, Y )

and Y is for the output. Then H(X) represents uncertainty about the input with-
out any observation of the output, whereas H(X |Y ) corresponds to uncertainty
about the input after observation of the output. Thus their difference I(X, Y ) is
the change of uncertainty by learning the channel output, which may be inter-
preted as the amount of information carried by the channel. Stated otherwise, we
arrive at a decreased value of uncertainty H(X |Y ) by utilizing the information
I(X, Y ) carried by the channel (see Fig. C.1). The mutual information is also
written as

I(X, Y ) = H(Y ) − H(Y |X). (C.9)

The channel capacity C is defined as the maximum possible value of the
mutual information as a function of the input probability distribution:

C = max
{input prob}

I(X, Y ). (C.10)

The channel capacity represents the maximum possible amount of information
carried by the channel with a given noise probability.

The concepts of entropy and information can be applied to continuous dis-
tributions as well. For a probability distribution density P (x) of a continuous
stochastic variable X , the entropy is defined by

H(X) = −
∫

P (x) log2 P (x) dx. (C.11)

The conditional entropy is

H(Y |X) = −
∫

P (x, y) log2 P (y|x) dxdy, (C.12)

and the mutual information is given as

I(X, Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X). (C.13)

The channel capacity is the maximum value of mutual information with respect
to the input probability distribution function

C = max
{input prob}

I(X, Y ). (C.14)
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C.3 BSC and Gaussian channel

Let us calculate the channel capacities of the BSC and Gaussian channel using
the formulation developed in the previous section.

We first consider the BSC. Suppose that the input symbol of the channel is
either 0 or 1 with probabilities r and 1 − r, respectively:

P (x = 0) = r, P (x = 1) = 1 − r. (C.15)

The channel has a binary symmetric noise:

P (y = 0|x = 0) = P (y = 1|x = 1) = 1 − p
P (y = 1|x = 0) = P (y = 0|x = 1) = p.

(C.16)

Then the probability of the output is easily calculated as

P (y = 0) = r(1−p)+(1− r)p = r+p−2rp, P (y = 1) = 1−P (y = 0). (C.17)

The relevant entropies are

H(Y ) = −(r + p − 2rp) log2(r + p − 2rp)
− (1− r − p + 2rp) log2(1 − r − p + 2rp)

H(Y |X) = −p log2 p − (1 − p) log2(1 − p) = H2(p) (C.18)
I(X, Y ) = H(Y ) − H(Y |X).

The channel capacity is the maximum of I(X, Y ) with respect to r. This is
achieved when r = 1/2 (perfectly random input):

C = max
r

I(X, Y ) = 1 + p log2 p + (1 − p) log2(1 − p) = 1 − H2(p). (C.19)

Let us next investigate the capacity of the Gaussian channel. Suppose that
the input sequence is generated according to a probability distribution P (x).
The typical strength (power) of an input signal will be denoted by J2

0 :∫
P (x)x2 dx = J2

0 . (C.20)

The output Y of the Gaussian channel with noise power J2 is described by the
probability density

P (y|x) =
1√
2πJ

exp
{
− (y − x)2

2J2

}
. (C.21)

To evaluate the mutual information using the second expression of (C.13), we
express the entropy of the output using

P (y) =
∫

P (y|x)P (x) dx =
1√
2πJ

∫
exp
{
− (y − x)2

2J2

}
P (x) dx (C.22)
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as
H(Y ) = −

∫
P (y) log2 P (y) dy. (C.23)

The conditional entropy is derived from (C.12) and P (x, y) = P (y|x)P (x) as

H(Y |X) = log2(
√

2πJ) +
log2 e

2
. (C.24)

Thus the mutual information is

I(X, Y ) = −
∫

P (y) log2 P (y) dy − log2(
√

2πJ) − log2 e
2

. (C.25)

To evaluate the channel capacity, this mutual information should be maximized
with respect to the input probability P (x), which is equivalent to maximization
with respect to P (y) according to (C.22). The distribution P (y) satisfies two
constraints, which is to be taken into account in maximization:∫

P (y) dy = 1,

∫
y2P (y) dy = J2 + J2

0 (C.26)

as can be verified from (C.22) and (C.20). By using Lagrange multipliers to
reflect the constraints (C.26), the extremization condition

δ

δP (y)

{
−
∫

P (y) log2 P (y) dy

−λ1

(∫
P (y) dy − 1

)
− λ2

(∫
y2P (y) dy − J2 − J2

0

)}
= 0 (C.27)

reads
− log2 P (y) − λ2y

2 − const = 0. (C.28)

The solution is

P (y) =
1√

2π(J2 + J2
0 )

exp
{
− y2

2(J2 + J2
0 )

}
, (C.29)

where the constants in (C.28) have been fixed so that the result satisfies (C.26).
Insertion of this formula into (C.25) immediately yields the capacity as

C =
1
2

log2

(
1 +

J2
0

J2

)
. (C.30)

C.4 Typical sequence and random coding

We continue to discuss the properties of a sequence of symbols with the input
and output of a noisy channel in mind. Let us consider a sequence of symbols of
length M in which the symbol ai appears mi times (i = 1, 2, . . . , L; M =

∑
i mi).
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If M is very large and symbols are generated one by one independently, mi is
approximately equal to Mpi, where pi is the probability that ai appears in a
single event. More precisely, according to the weak law of large numbers, the
inequality ∣∣∣mi

M
− pi

∣∣∣ < ε (C.31)

holds for any positive ε if one takes sufficiently large M .
Then the probability ptyp that ai appears mi times (i = 1, . . . , L) in the

sequence is

ptyp = pm1
1 . . . pmL

L

≈ pMp1
1 . . . pMpL

L

= 2M(p1 log2 p1+···+pL log2 pL)

≡ 2−MH(U). (C.32)

A sequence with ai appearing Mpi times (i = 1, . . . , L) is called the typical
sequence. All typical sequences appear with the same probability 2−MH(U).

The number of typical sequences is the number of ways to distribute mi of
the ai among the M symbols (i = 1, . . . , L):

Ntyp =
M !

m1! . . . mL!
. (C.33)

For sufficiently large M and m1, m2, . . . , mL, we find from the Stirling formula
and mi = Mpi,

log2 Ntyp = M(log2 M − 1) −
∑

i

mi(log2 mi − 1)

= −M
∑

i

pi log2 pi

= MH(U). (C.34)

Thus Ntyp is the inverse of ptyp,

Ntyp = 2MH(U) = (ptyp)−1. (C.35)

This result is quite natural as all sequences in the set of typical sequences ap-
pear with the same probability. Equation (C.35) also confirms that H(U) is the
uncertainty about the outcome from U .

We restrict ourselves to binary symbols (0 or 1, for example) for simplicity
from now on (i.e. L = 2). The set of inputs to the channel is denoted by X and
that of outputs by Y . Both are composed of sequences of length M . The original
source message has the length N . Random coding is a method of channel coding
in which one randomly chooses code words from typical sequences in X . More
precisely, a source message has the length N and the total number of messages
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m
x

y
2

MH(X |Y)

typical sequences

source message
code word

(channel input)
output

Fig. C.2. The original message m has a one-to-one correspondence with a code
word x. There are 2MH(X|Y ) possible inputs corresponding to an output of
the channel. Only one of these 2MH(X|Y ) code words (marked as a dot) should
be the code word assigned to an original message.

is 2N . We assign a code word for each of the source messages by randomly
choosing a typical sequence of length M (> N) from the set X . Note that there
are 2MH(X) typical sequences in X , and only 2N of them are chosen as code
words. The code rate is R = N/M . This random coding enables us to decode
the message without errors if the code rate is smaller than the channel capacity
R < C as shown below.

C.5 Channel coding theorem
Our goal is to show that the probability of correct decoding can be made ar-
bitrarily close to one in the limit of infinite length of code word. Such an ideal
decoding is possible if only a single code word x (∈ X) corresponds to a given
output of the channel y (∈ Y ). However, we know that there are 2MH(X|Y ) pos-
sibilities as the input corresponding to a given output. The only way out is that
none of these 2MH(X|Y ) sequences are code words in our random coding except
a single one, the correct input (see Fig. C.2). To estimate the probability of such
a case, we first note that the probability that a typical sequence of length M is
chosen as a code word for an original message of length N is

2N

2MH(X)
= 2−M [H(X)−R] (C.36)

because 2N sequences are chosen from 2MH(X). Thus the probability that an
arbitrary typical sequence of length M is not a code word is

1 − 2−M [H(X)−R]. (C.37)

Now, we require that the 2MH(X|Y ) sequences of length M (corresponding to
a given output of the channel) are not code words except the single correct one.
Such a probability is clearly

pcorrect =
[
1 − 2−M [H(X)−R]

]2MH(X|Y )−1
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≈ 1 − 2−M [H(X)−R−H(X|Y )]. (C.38)

The maximum possible value of pcorrect is given by replacing H(X) − H(X |Y )
by its largest value C, the channel capacity:

max{pcorrect} = 1 − 2−M(C−R), (C.39)

which tends to one as M → ∞ if R < C. This completes the argument for the
channel coding theorem.



APPENDIX D

DISTRIBUTION AND FREE ENERGY OF K-SAT

In this appendix we derive the self-consistent equation (9.53) and the equilibrium
free energy (9.55) of K-SAT from the variational free energy (9.51) under the
RS ansatz (9.52).

The function c(σ) depends on σ only through the number of down spins
j in the set σ = (σ1, . . . , σn) if we assume symmetry between replicas; we thus
sometimes use the notation c(j) for c(σ). The free energy (9.51) is then expressed
as

−βF

N
= −

n∑
j=0

(
n

j

)
c(j) log c(j) + α log




n∑
j1=0

· · ·
n∑

jK=0

c(j1) . . . c(jK)

·
∑

σ1(j1)

· · ·
∑

σK(jK)

n∏
α=1

(
1 + (e−β − 1)

K∏
k=1

δ(σα
k , 1)

)
 , (D.1)

where the sum over σi(ji) is for the σi with ji down spins. Variation of (D.1)
with respect to c(j) yields

δ

δc(j)

(
−βF

N

)
= −
(

n

j

)
(log c(j) + 1) +

Kαg

f
, (D.2)

where

f =
n∑

j1=0

· · ·
n∑

jK=0

c(j1) . . . c(jK)

·
∑

σ1(j1)

· · ·
∑

σK(jK)

n∏
α=1

(
1 + (e−β − 1)

K∏
k=1

δ(σα
k , 1)

)
(D.3)

g =
n∑

j1=0

· · ·
n∑

jK−1=0

c(j1) . . . c(jK−1)
∑

σ1(j1)

· · ·
∑

σK−1(jK−1)

·
∑
σ(j)

n∏
α=1

(
1 + (e−β − 1)δ(σα, 1)

K−1∏
k=1

δ(σα
k , 1)

)
. (D.4)

These functions f and g are expressed in terms of the local magnetization density
P (m) defined by

228
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c(σ) =
∫ 1

−1

dm P (m)
n∏

α=1

1 + mσα

2
(D.5)

as

f =
∫ 1

−1

K∏
k=1

dmk P (mk)(AK)n (D.6)

g =
(

n

j

)∫ 1

−1

K−1∏
k=1

dmk P (mk)(AK−1)n−j , (D.7)

where

AK = 1 + (e−β − 1)
K∏

k=1

1 + mk

2
. (D.8)

Equations (D.6) and (D.7) are derived as follows.
Recalling that the sum over σ(j) in g appearing in (D.4) is for the σ with j

down spins (for which δ(σα, 1) = 0), we find

g =
n∑

j1=0

· · ·
n∑

jK−1=0

c(j1) . . . c(jK−1)

·
∑

σ1(j1)

· · ·
∑

σK−1(jK−1)

∑
σ(j)

n∏
α=1

′(
1 + (e−β − 1)

K−1∏
k=1

δ(σα
k , 1)

)

=
∑
σ(j)

∑
σ1

· · ·
∑

σK−1

c(σ1) . . . c(σK−1)

·
n∏

α=1

′(
1 + (e−β − 1)

K−1∏
k=1

δ(σα
k , 1)

)
, (D.9)

where the product is over the replicas with σα = 1. If we insert (D.5) into this
equation and carry out the sums over σ1 to σK−1, we find

g =
∑
σ(j)

∫ 1

−1

K−1∏
k=1

dmk P (mk)
n∏

α=1

′
AK−1

=
(

n

j

)∫ 1

−1

K−1∏
k=1

dmk P (mk)(AK−1)n−j , (D.10)

proving (D.7). Similar manipulations lead to (D.6).
In the extremization of F with respect to c(j), we should take into account the

symmetry c(j) = c(n−j) coming from c(σ) = c(−σ) as well as the normalization
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condition
∑n

j=0

(
n
j

)
c(j) = 1. Using a Lagrange multiplier for the latter and from

(D.2), the extremization condition is

−2 (log c(j) + 1)+Kα

∫ 1

−1

K−1∏
k=1

dmkP (mk)f−1{(AK−1)n−j +(AK−1)j}−2λ = 0,

(D.11)
from which we find

c(j) = exp

{
−λ − 1 +

Kα

2f

∫ 1

−1

K−1∏
k=1

dmkP (mk)((AK−1)n−j + (AK−1)k)

}
.

(D.12)
The number of replicas n has so far been arbitrary. Letting n → 0, we obtain

the self-consistent equation for P (m). The value of the Lagrange multiplier λ in
the limit n → 0 is evaluated from (D.12) for j = 0 using c(0) = 1. The result is
λ = Kα − 1, which is to be used in (D.12) to erase λ. The distribution P (m) is
now derived from the inverse relation of

c(j) =
∫ 1

−1

dm P (m)
(

1 + m

2

)n−j (1 − m

2

)j

(D.13)

in the limit n → 0; that is,

P (m) =
1

π(1 − m2)

∫ ∞

−∞
dy c(iy) exp

(
−iy log

1 − y

1 + y

)
. (D.14)

Inserting (D.12) (in the limit n → 0) with λ replaced by Kα − 1 into the right
hand side of the above equation, we finally arrive at the desired relation (9.53)
for P (m).

It is necessary to consider the O(n) terms to derive the free energy (9.55)
expressed in terms of P (m). Let us start from (D.1):

−βF

N
= −

n∑
j=0

(
n

j

)
c(j) log c(j) + α log f. (D.15)

The expression (D.6) for f implies that f is expanded in n as

f = 1 + na + O(n2) (D.16)

a =
∫ 1

−1

K∏
k=1

dmkP (mk) log AK . (D.17)

The first term on the right hand side of (D.15) is, using (D.12),

−
n∑

j=0

(
n

j

)
c(j) log c(j) = λ + 1 − Kα

2f

n∑
j=0

(
n

j

)
c(j)
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·
∫ 1

−1

K−1∏
k=1

dmkP (mk)((AK−1)n−j + (AK−1)j). (D.18)

We should therefore expand λ to O(n). For this purpose, we equate (D.12) and
(D.13) to get

eλ+1 =
exp
{
(Kα/2f )

∫ 1

−1

∏K−1
k=1 dmkP (mk)((AK−1)n−j + (AK−1)j)

}
∫ 1

−1
dm P (m)

(
1+m

2

)n−j ( 1−m
2

)j .

(D.19)
Since the left hand side is independent of j, we may set j = 0 on the right hand
side. We then expand the right hand side to O(n) to obtain

λ + 1 = Kα + n

{
Kα

(
−a +

b

2

)
+ log 2 −

∫ 1

−1

dmP (m) log(1 − m2)
}

+ O(n2),

(D.20)
where

b =
∫ 1

−1

K−1∏
k=1

dmk P (mk) log AK−1. (D.21)

The final term on the right hand side of (D.18) is evaluated as

n∑
j=0

(
n

j

)∫ 1

−1

dmk P (mk)
(

1 + mk

2

)n−j (1 − mk

2

)j

·
∫ 1

−1

K−1∏
k=1

dmk P (mk)((AK−1)n−j + (AK−1)j)

= 2
∫ 1

−1

K∏
k=1

dmk P (mk)
(

1 + mk

2
AK−1 +

1 − mk

2

)n

= 2f. (D.22)

Combining (D.15), (D.16), (D.18), (D.20), and (D.22), we find

− βF

Nn
= log 2+α(1−K)a+

αKb

2
− 1

2

∫ 1

−1

dm P (m) log(1−m2)+O(n), (D.23)

which gives the final answer (9.55) for the equilibrium free energy.
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Steffan, H. and Kühn, R. (1994). Zeitschrift für Physik B, 95, 249–60.
Tanaka, K. (1999). Butsuri, 54, 25–33. [In Japanese].
Tanaka, K. (2001a). Transactions of the Japanese Society for Artificial Intelli-
gence, 16, 246–58.
Tanaka, K. (2001b). Transactions of the Japanese Society for Artificial Intelli-
gence, 16, 259–67. [In Japanese].
Tanaka, K. and Horiguchi, T. (2000). Electronics Communications in Japan,
3-83, 84–94.
Tanaka, K. and Inoue, J. (2000). Technical report of IEICE, 100, 41-8. [In
Japanese].
Tanaka, K. and Morita, T. (1995). Physics Letters, 203A, 122–8.
Tanaka, K. and Morita, T. (1996). In Theory and applications of the cluster vari-
ation and path probability methods (ed. J. L. Morán-López and J. M. Sanchez),
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mean-field theory, 4
membrane potential, 142
memory order, 102
memoryless binary symmetric channel, 77
memoryless channel, 79
minimum error algorithm, 164
mixed phase, 27
modified ±J model, 63
MPM, 80
multivalley structure, 35
mutual information, 221

natural image, 118
nearest neighbour, 2
neural network, 131
neuron, 131
Nishimori line, 50
Nishimori temperature, 79
non-recursive convolutional code, 102
NP complete, 183
number partitioning problem, 184

objective function, 183
off-line learning, 158
on-line learning, 159, 171
Onsager’s reaction field, 39
optimal state, 202
optimization problem, 183
order parameter, 3
original image, 117
output noise, 170
overlap, 82, 87, 136

paramagnetic phase, 4
Parisi equation, 32
Parisi solution, 28
parity-check code, 75
partition difference, 184
partition function, 3
perceptron algorithm, 173
perceptron learning rule, 152
phase transition, 4
pixel, 116
plain text, 101
Plefka expansion, 40
posterior, 79, 117
Potts model, 123
prior, 78
public-key cryptography, 101

quenched, 12
query, 178
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Sherrington–Kirkpatrick model, 13
shift register, 102
signal interval, 108
signal power, 223
simple perceptron, 151
simulated annealing, 202
site, 1
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