
論文 / 著書情報
Article / Book Information

題目(和文) GPU を用いたコンピュータビジョンの高速化と最適化の研究

Title(English) GPU-Based Acceleration and Optimization Research on Computer
Vision

著者(和文) WANGCHENYU

Author(English) Chenyu Wang

出典(和文) 学位:博士(理学),
 学位授与機関:東京工業大学,
 報告番号:甲第12513号,
 授与年月日:2023年9月22日,
 学位の種別:課程博士,
 審査員:遠藤 敏夫,坂本 龍一,髙邉 賢史,脇田 建,佐藤 育郎

Citation(English) Degree:Doctor (Science),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第12513号,
 Conferred date:2023/9/22,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

GPU-Based Acceleration and
Optimization Research on Computer

Vision

Department of Mathematical and Computing Science
School of Computing

Tokyo Institute of Technology

Chenyu Wang

Supervisor: Toshio Endo

Ph.D. Dissertation

June 2023

Abstract

In this dissertation, we present an in-depth study on GPU-based accelera-
tion and optimization of computer vision task models, pursuing the trade-off
between performance and speed of the model, and our research encompasses
two primary research.

In our inaugural research, we focus primarily on the acceleration of the
Single Shot MultiBox Detector (SSD), a model extensively adopted in object
detection tasks. Given the computation-intensive nature of SSDs, we pro-
vide a comprehensive analysis of the challenges associated with performing
their computations both effectively and efficiently. As a crucial part of our
investigation, we proposed and implemented a solution for GPU accelera-
tion. We successfully ported components previously computed on the CPU
to the GPU and customized the model’s components for optimal utilization
of GPU resources. Our efforts particularly target the post-processing layer,
which includes critical functions such as non-maximum suppression (NMS)
and sorting. These functions, traditionally executed on the CPU, have now
been skillfully migrated to the GPU. Our GPU-accelerated SSD model show-
cases superior detection speed without major sacrifices in object detection
accuracy, achieving a superior trade-off between detection speed and model
accuracy. This speed enhancement is accomplished by effectively leverag-
ing the GPU’s vast parallel processing capabilities and optimized memory
management, translating into a substantial reduction in execution time. Our
research underscores the significant potential and feasibility of using GPUs
to accelerate object detection frameworks.

Next, we turn our focus to Transformer-based models, particularly the
Swin Transformer. These architectures have proven to be remarkably effec-
tive in a wide range of computer vision tasks. However, their heavy compu-
tational requirements necessitate the implementation of efficient computing
methods to enable their acceleration. Our objective is to harness the power
of the GPU to expedite computations, all the while ensuring performance is
preserved. In the original Swin Transformer architecture, we identify limita-
tions, particularly concerning window information interaction when dealing

1

with large feature scales. To address these issues, we introduce the Pyramid
Swin Transformer as an effective resolution. Although this refinement incurs
some additional computational overhead, it adeptly manages the window
information interaction problem intrinsic to large-scale feature dimensions.
Consequently, our Pyramid Swin Transformer demonstrates commendable
results across a range of computer vision tasks including image classification,
object detection, semantic segmentation, and video recognition. This show-
cases the effectiveness, scalability, and versatility of our solution, justifying
the computational trade-off involved. we also make research into GPU-based
acceleration techniques for the Swin Transformer architecture. We propose
innovative parallel processing strategies for window-based multi-head self-
attention mechanisms, achieving substantial computational performance im-
provements. Our parallel computing methods proved to be effective, scalable,
and versatile for various computational conditions, offering new insights for
GPU-based deep learning acceleration.

Overall, this dissertation presents novel methods for accelerating and im-
proving computer vision tasks on GPUs while demonstrating the adaptability
and scalability of these techniques in the context of state-of-the-art computer
vision architectures.

2

Acknowledgements

I would like to express my deepest gratitude to my esteemed advisor, Pro-
fessor Endo, for welcoming me into his laboratory and providing invaluable
guidance and support throughout my research journey. His mentorship has
been a constant source of inspiration, and I am truly grateful for his unwaver-
ing belief in my potential. Professor Endo has not only offered his academic
expertise but has also been a pillar of support in my personal life. Despite
the significant differences between my previous research and my current en-
deavors, he has consistently offered tremendous help in selecting research
topics, acquiring new knowledge, and navigating the challenges that have
arisen during the course of my studies.

I would also like to extend my heartfelt appreciation to Professors Hiro-
fuchi and Ikegami for their invaluable contributions to my research. Their
insightful advice, constructive feedback, and expertise have greatly helped
shape my work, enabling me to publish my research smoothly. The collab-
orations and discussions with them have enriched my understanding of the
field and have fostered a conducive environment for intellectual growth and
exploration.

Furthermore, I would like to acknowledge the contributions of my fellow
lab members, who have provided a stimulating and supportive atmosphere
throughout my research journey. Their camaraderie and encouragement have
made my time in the laboratory an enjoyable and rewarding experience. I
am grateful for the countless thought-provoking conversations and the shared
moments of triumph and challenges that we have encountered together.

Lastly, I would like to express my profound gratitude to my parents for
their unwavering love, support, and encouragement throughout my academic
journey. Their sacrifices, understanding, and belief in my abilities have been
instrumental in my pursuit of excellence in research. Their guidance and
constant presence in my life have given me the strength and determination
to overcome the obstacles I have faced and continue striving for success.

3

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Problem Statement . 10
1.3 Contribution . 11
1.4 Thesis Structure . 12

2 Background 15
2.1 Computer Vision . 15

2.1.1 Basic Computer Vision 15
2.1.2 Machine Learning-based Computer Vision 16
2.1.3 Deep Learning-based Computer Vision 19

2.2 GPU . 31
2.2.1 GPU Architectures . 31
2.2.2 CUDA Platform . 35
2.2.3 High-Performance Computing with GPUs 37

3 Speed-up Single Shot Detector on GPU with CUDA 40
3.1 Introduction . 40
3.2 Related Work . 42

3.2.1 Object detection . 43
3.2.2 High Speed of Feature extraction 45
3.2.3 Single Shot Multibox Detector (SSD) 46

3.3 Our Implementation and Optimization 50
3.3.1 Problem of Current Research 50
3.3.2 Pre-Processing . 50
3.3.3 Feature Extraction Layer 51
3.3.4 Proposal Layer . 52
3.3.5 Post Processing . 53

3.4 Result & Analysis . 56
3.4.1 Accuracy . 58
3.4.2 Speed . 61

4

CONTENTS

3.5 Conclusions . 68

4 Optimization for the Swin Transformer 70
4.1 Introduction . 70
4.2 Related Work . 73

4.2.1 Feature Pyramid Network 73
4.2.2 Vision Transformer . 76
4.2.3 Swin Transformer . 82
4.2.4 Mask R-CNN . 84
4.2.5 UPerNet . 86
4.2.6 Adam Optimization Algorithm 87

4.3 Pyramid Swin Transformer . 88
4.3.1 Object Detection with FPN 93
4.3.2 Semantic Segmentation Head 93
4.3.3 Video Recognition Adaptations 94
4.3.4 Experiment and Result 95

4.4 High-speed Window-based Multi-head Self-attention 106
4.4.1 Our Method . 107
4.4.2 Result & Analysis . 112

4.5 Conclusion . 116

5 Conclusion & Future Work 119
5.1 Conclusion . 119
5.2 Future Work . 120

A Publish List 138

5

List of Figures

2.1 Architecture of a Neural Network 19
2.2 A CNN architecture . 20
2.3 Illustration of a pooling operation 25
2.4 VGG Net [115] . 29
2.5 Residual Block[136] . 30
2.6 NVIDIA A100 GPU architecture 32
2.7 GPU Architecture Unit[119] 33
2.8 Matrix Multiplication Operation with Tensor Cores[91] 38

3.1 Single Shot Multibox Detector Model (SSD512) 46
3.2 Non-maximum Suppression algorithm 48
3.3 Visualization of Map-reduce NMS proposal[92] 49
3.4 Post Processing Data Flow . 55
3.5 Illustration of parallel merge sort with CUDA. 57
3.6 Pytorch version of SSD512 time ratio 62
3.7 Execution time Comparison Result 63
3.8 Execution time Comparison Result with Other Framework . . 68

4.1 Pyramid Swin Transformer . 72
4.2 Transformer block . 77
4.3 Self Attention Architecture . 79
4.4 Multi-head Attention Architecture 80
4.5 Vision Transformer[15] . 81
4.6 Shifted Window-based Self-Attention 83
4.7 Mask R-CNN[46] . 85
4.8 UPerNet[129] . 86
4.9 Swin Transformer architecture problem 89
4.10 Pyramid Swin Transformer architecture 90
4.11 Top-1 Accuracy vs FLOPs for Various Models 98
4.12 Object Detection on COCO 101
4.13 mAP vs FLOPs for Various Models(Mask R-CNN) 102

6

LIST OF FIGURES

4.14 Semantic Segmentation on ADE20K 103
4.15 Parallel Window-based Multi-head Self-Attention 107
4.16 Parallelization Strategy . 112
4.17 Comparison of Matrix Multiplication 113
4.18 Performance comparison with 8× 8 window size 115

7

List of Tables

3.1 Test Environment . 57
3.2 The mAP comparison of our SSD512 with the original 59
3.3 Execution time Of NMS and sorting(ms) 64
3.4 Execution time of Different NMS(ms) 65
3.5 Performances of NMS with different batch size(ms) 66

4.1 Pyramid Swin Transformer Detailed architecture 91
4.2 Test Environment . 95
4.3 Results on Imagenet Image Classification 97
4.4 Results on COCO object detection with Mask R-CNN 100
4.5 Results on COCO object detection with Cascade Mask R-CNN101
4.6 Results of ADE20K samantic segmentation with UperNet . . . 104
4.7 Results of Kinetics-400 video recognition. 105
4.8 Test Environment . 112

8

Chapter 1

Introduction

1.1 Motivation
The rapid development of computer vision technologies in recent years has
brought significant breakthroughs in various fields, including object detec-
tion, image classification, semantic segmentation, and video recognition [66,
105, 48]. These advancements have a wide range of applications, such as
autonomous vehicles, robotics, surveillance, and medical imaging, among
others. However, the growing complexity and computational requirements
of state-of-the-art models pose challenges in terms of processing efficiency,
energy consumption, and deployment in resource-constrained environments
[44].

Graphics Processing Units (GPUs) have emerged as an effective solution
to address the computational demands of deep learning models due to their
high parallelism capabilities and superior performance in handling matrix
operations [100, 20]. The utilization of GPUs for accelerating computer vi-
sion tasks has become increasingly important as researchers and practitioners
strive to develop more sophisticated models that can deliver better perfor-
mance while maintaining reasonable computational costs.

The initial motivation for this research arose from the observation that
most existing acceleration-related studies primarily focus on deep neural net-
works, whereas other computationally-intensive operations in object detec-
tion frameworks remain largely unexplored. In particular, we noticed that
many of these operations are executed on CPUs, leading to potential per-
formance bottlenecks. This also prompted us to investigate the feasibility of
leveraging GPUs to accelerate such operations, with the goal of validating
the effectiveness of this approach, facilitating the trade-off between speed
and accuracy.

9

CHAPTER 1. INTRODUCTION

Furthermore, our attention has also been paid to Transformer-based mod-
els due to their promising results across a range of computer vision tasks and
the computational problems it urgently needs to solve, the Swin Transformer
model being a notable example. Our preliminary investigation unveiled a la-
tent parallelizable computation aspect within the Swin Transformer model.
This discovery opens the possibility of employing GPUs to expedite the train-
ing and detection process of Swin Transformer models, which is promising
potential to achieve a superior balance between accuracy and speed. How-
ever, in the course of our research, we identified several limitations within
the Swin Transformer architecture [80]. This first led us to propose improve-
ments, which produced promising results, further intensifying our curiosity in
this domain. Then, we turned our attention towards studying GPU-based ac-
celeration techniques for the Swin Transformer. Our primary objective was to
leverage the potential parallelism inherent in the window-based multi-head
self-attention mechanism, which is a core component of the Swin Trans-
former. By implementing GPU-based acceleration, we aim to enhance the
processing speed of the Swin Transformer, thereby facilitating its deployment
in practical applications. In doing so, we anticipate that our research will
inspire new directions for further development and optimization of Trans-
former models in general, thus making contributions to the field of neural
network architectures.

In summary, the motivation of this research lies in exploring and develop-
ing GPU-based acceleration and optimization techniques that can effectively
enhance the performance of state-of-the-art computer vision models. By in-
vestigating efficient parallel processing approaches, optimization strategies,
and algorithmic adaptations, we aim to bridge the gap between these ad-
vanced models and their real-world applicability, while simultaneously push-
ing the boundaries of current research in the field.

1.2 Problem Statement
Despite the remarkable progress in computer vision tasks, several critical
issues hinder the real-world deployment and scalability of state-of-the-art
models, particularly in the context of object detection and image classifica-
tion. This research aims to address the following key problems:

1. Computational Complexity: Advanced computer vision models,
such as deep neural networks and Transformer-based architectures, re-
quire substantial computational resources to process high-dimensional
inputs and perform complex operations[48, 124]. This computational

10

CHAPTER 1. INTRODUCTION

complexity can lead to high latency and limit the applicability of these
models in time-sensitive and resource-constrained scenarios.

2. Limited GPU Acceleration Techniques: While GPU-based accel-
eration has proven to be effective for deep learning tasks, the current
literature primarily focuses on the acceleration of deep neural networks,
with limited exploration of other computationally-intensive operations
in object detection frameworks or other task frameworks. Moreover,
the application of GPU-based acceleration techniques for Transformer
models remains an underexplored area, further limiting the potential
of these powerful architectures in real-world scenarios.

3. Performance Bottlenecks: Many object detection frameworks rely
on CPU-based operations for several critical tasks, which can cre-
ate performance bottlenecks and hamper the overall efficiency of the
system[44]. Identifying and addressing these bottlenecks is crucial for
enhancing the performance of object detection frameworks and facili-
tating their deployment in practice.

4. Model Limitations and Improvement: Existing Transformer-based
architectures, such as the Swin Transformer [80], exhibit certain limi-
tations that can hinder their performance on various computer vision
tasks. Identifying these limitations and proposing improvements to the
architecture can further enhance the capabilities of these models, po-
tentially leading to better performance and more effective deployment.

To tackle these problems, this research focuses on the development and
evaluation of GPU-based acceleration and optimization techniques for com-
puter vision tasks. By exploring efficient parallel processing approaches,
optimization strategies, and algorithmic adaptations, we aim to address the
aforementioned challenges and contribute to the advancement of computer
vision research and applications.

1.3 Contribution
In this dissertation, we present a comprehensive study on GPU-based acceler-
ation of computer vision tasks, focusing on object detection and Transformer-
based architectures. Our main contributions are as follows:

1. We propose a GPU-accelerated version of the Single Shot MultiBox De-
tector (SSD) for object detection, which improves the overall processing

11

CHAPTER 1. INTRODUCTION

speed and efficiency. By adapting the original algorithm for GPU exe-
cution, we demonstrate the feasibility and effectiveness of using GPU
acceleration for object detection frameworks.

2. We identify limitations in the original Swin Transformer architecture
and introduce the Pyramid Swin Transformer as an improved solution.
These new architectures achieve superior performance across various
vision tasks, including object detection, image classification, semantic
segmentation, and video recognition.

3. We present a novel GPU-accelerated version of the window-based multi-
head self-attention, leveraging the parallel capabilities of GPUs to im-
prove the processing speed and efficiency of the computation. Our
accelerated window-based multi-head self-attention demonstrates bet-
ter performance than the original version, making it more suitable for
real-world applications.

4. Through extensive experiments, we validate the effectiveness of our pro-
posed techniques, showing that they consistently outperform state-of-
the-art methods in their respective tasks. Our work provides valuable
insights into the design of efficient and high-performing computer vision
models, paving the way for future research and practical applications.

5. We conduct a thorough analysis of the computational bottlenecks in
both object detection frameworks and Transformer-based architectures.
This analysis helps to identify the key areas that can benefit the most
from GPU acceleration, allowing us to focus our optimization efforts
and maximize the performance gains. Our findings can serve as a valu-
able reference for researchers and engineers looking to optimize and
accelerate their own computer vision models.

Our research not only contributes to the improvement of existing com-
puter vision models but also offers new insights into the potential of GPU
acceleration for a broader range of tasks. We anticipate that our findings will
stimulate further exploration in this area and help drive the development of
even more efficient and powerful computer vision solutions.

1.4 Thesis Structure
This thesis is organized into five major chapters, providing a detailed overview
of the research undertaken on GPU-based acceleration and optimization of
computer vision task models.

12

CHAPTER 1. INTRODUCTION

Chapter 1 sets the foundation for the research, presenting the motivation
for exploring GPU-based acceleration and optimization of computer vision
models, formulating the problem statement, and enumerating the contribu-
tions of this work. It outlines the fundamental challenges and aims that drive
the thesis.

Chapter 2 delves into the background necessary to understand the con-
cepts involved in the research. It starts with the basics of computer vision,
progressing to machine learning and deep learning-based computer vision. It
also provides an introduction to GPU architectures and the CUDA platform
which are key components of the solutions proposed in the thesis.

Chapter 3, titled ’Speed-up Single Shot Detector on GPU with CUDA’,
delves into the optimization and acceleration of the SSD model, a popular
choice for object detection tasks due to its balance of speed and accuracy.
Given the computation-intensive nature of SSDs, we provide a comprehen-
sive analysis of the challenges associated with performing their computations
both effectively and efficiently. In this chapter, we present our innovative ap-
proach to accelerating the SSD model using GPU computation. We detail
the process of porting the model’s components, traditionally computed on
the CPU, to the GPU, and customizing them for optimal utilization of GPU
resources. Our efforts particularly target the post-processing layer, which
includes critical functions such as non-maximum suppression (NMS) and
sorting. By skillfully migrating these functions to the GPU, we are able to
significantly reduce the execution time. Our GPU-accelerated SSD model
showcases superior detection speed without major sacrifices in object de-
tection accuracy, achieving a superior trade-off between detection speed and
model accuracy. This speed enhancement is accomplished by effectively lever-
aging the GPU’s vast parallel processing capabilities and optimized memory
management. The results of our research underscore the significant poten-
tial and feasibility of using GPUs to accelerate object detection frameworks,
paving the way for future advancements in this field.

Chapter 4, titled ’Optimization for the Swin Transformer’, we shift our fo-
cus to Transformer-based models, specifically Swin Transformer. We provide
a comprehensive review of related work including Feature Pyramid Network,
Vision Transformer, and Swin Transformer, leading to finding the problem
in Swin Transformer architecture and to our proposed methods and adapta-
tions. And we improve the shortcomings of Swin Transformer architecture,
presenting the Pyramid Swin Transformer which is based on Swin Trans-
former. The results and effectiveness of our model across various tasks
like image classification, object detection, semantic segmentation, and video
recognition are reported. Our novel framework performs better than Swin
Transformer and achieves superior accuracy and computational complexity

13

CHAPTER 1. INTRODUCTION

trade-offs. We also cover our research on High-speed window-based multi-
head self-attention which is the foundational operation of Swin Transformer.
After examining the efficient attention mechanisms and matrix multiplica-
tion acceleration techniques from existing research, we detail our proposed
methods for efficient matrix multiplication and parallelization strategies us-
ing GPU. We further implemented and evaluated this approach, and our
findings indicate that leveraging GPU acceleration for window-based multi-
head self-attention is a viable and effective strategy.

The final chapter, Chapter 5, encapsulates the conclusion of our research
and suggests potential future work. It revisits the main findings from the
previous chapters and proposes several directions for extending this research
further. It marks the end of the main body of the thesis. This structured
layout of the thesis will guide readers through the intricate journey of this
research, from understanding the basic concepts to appreciating the depth
and significance of GPU acceleration in computer vision task models.

14

Chapter 2

Background

2.1 Computer Vision
Computer vision is a field of study that focuses on enabling computers to un-
derstand and interpret visual information from the surrounding world, such
as images and videos. The goal is to teach machines to process and analyze
visual data in a way that is similar to how humans perceive their environ-
ment. Computer vision has a wide range of applications, including object
recognition, image and video analysis, augmented reality, and autonomous
driving.

2.1.1 Basic Computer Vision

Early computer vision techniques primarily relied on handcrafted features
and simple image processing and analysis algorithms. These methods can be
categorized into several key areas:

• Edge detection: This involves identifying the boundaries between
different regions in an image, often based on changes in intensity or
color. Popular edge detection techniques include the Sobel operator,
which computes the gradient of the image intensity at each pixel using
two 3x3 convolutional masks [116]; the Canny edge detector, which
combines non-maximum suppression and hysteresis thresholding to find
true edges [16]; and the Laplacian of Gaussian (LoG) operator, which
combines Gaussian smoothing and the Laplacian operator to detect
both strong and weak edges [86].

• Image segmentation: This is the process of partitioning an image
into multiple regions, typically based on similarities in pixel values

15

CHAPTER 2. BACKGROUND

or other properties. Common image segmentation techniques include
thresholding, where pixels are classified based on their intensity values;
region growing, which iteratively merges neighboring pixels with similar
properties; and watershed segmentation, which treats image gradients
as topographic relief and finds watershed lines separating adjacent re-
gions [45].

• Feature extraction: These methods aim to extract meaningful in-
formation from images, such as corners, key points, and descriptors.
Some well-known feature extraction techniques are Scale-Invariant Fea-
ture Transform (SIFT), which identifies and describes local features in
images that are invariant to scale, rotation, and illumination changes
[83]; Speeded Up Robust Features (SURF), an improved and faster
version of SIFT that uses integral images and Haar-like wavelets for
feature detection and description [6]; and Histogram of Oriented Gra-
dients (HOG), which captures the distribution of gradient directions in
an image to describe object shapes [28].

Although these approaches were effective for some specific problems, they
generally lacked robustness and scalability, as they relied on manual feature
engineering and could not adapt to new or more complex tasks.

2.1.2 Machine Learning-based Computer Vision

Machine learning-based computer vision methods focus on developing algo-
rithms that can learn to recognize patterns and make decisions based on
data without explicit programming. These methods rely on training models
using large sets of labeled data, extracting features from images, and making
predictions based on the learned patterns. Some of the key machine learning
techniques that have been employed in computer vision tasks include:

• Support vector machines (SVMs): SVMs are a widely-used su-
pervised learning method for classification and regression tasks. In
computer vision, SVMs have been extensively applied for image classi-
fication and object recognition tasks, often combined with hand-crafted
features like Histogram of Oriented Gradients (HOG) [28] or Scale-
Invariant Feature Transform (SIFT) [83]. SVMs aim to find the op-
timal decision boundary (i.e., the hyperplane in the high-dimensional
feature space) that separates different classes, maximizing the margin
between the classes. Despite their effectiveness in many computer vi-
sion tasks, SVMs can struggle with large-scale, high-dimensional data
and may require complex feature engineering.

16

CHAPTER 2. BACKGROUND

• k-Nearest Neighbors (k-NN): The k-NN algorithm[65] is a simple
and intuitive method for classification and regression tasks based on the
concept of similarity between instances. In the context of computer vi-
sion, k-NN has been used for image classification, object recognition,
and image retrieval. Given a query image, the k-NN algorithm finds the
k most similar images in the training set (based on a chosen distance
metric) and assigns the query image to the majority class of its neigh-
bors. Although k-NN is easy to implement and understand, it may
suffer from high computational complexity and storage requirements,
particularly when dealing with large image datasets.

• Boosting algorithms: Boosting is a family of ensemble learning
methods that combine the predictions of multiple weak classifiers to
improve classification accuracy. AdaBoost (Adaptive Boosting) [39] is
one of the most popular boosting algorithms and has been applied to
various computer vision tasks, such as face detection [125] and object
recognition. Boosting algorithms can be highly effective for object de-
tection tasks, as they can achieve high detection rates with relatively
low computational complexity. However, they may be sensitive to noisy
data and may require careful tuning of hyperparameters.

• Random forests: Random forests[13] are ensemble learning meth-
ods that construct multiple decision trees and combine their predic-
tions through averaging or majority voting. They have been used in
various computer vision tasks, such as image classification[38], object
detection, and semantic segmentation[114, 25]. Random forests can
efficiently handle large datasets, provide robust and accurate predic-
tions, and offer a degree of interpretability through the decision tree
structure, provide robust and accurate predictions, and offer a degree
of interpretability through the decision tree structure. However, they
may struggle with high-dimensional data and may not be as effective
as deep learning methods for certain tasks.

• Graph-based methods: Graphs provide a flexible and powerful rep-
resentation for modeling complex relationships between image elements,
such as pixels, regions, or objects. Graph-based methods have been
widely used in computer vision for tasks like image segmentation, where
the image is modeled as a graph with nodes representing pixels and
edges representing spatial or feature-based similarities [37, 12]. Graph-
cut algorithms can then be applied to partition the graph into disjoint
regions corresponding to different image segments. For example, max-
flow/min-cut can be used to find the cut with the minimum sum of edge

17

CHAPTER 2. BACKGROUND

weights that divides the graph into disjoint sub-graphs. Other graph-
based techniques, like Markov random fields and conditional random
fields, have also been employed for various computer vision tasks, in-
cluding object recognition, image restoration, and semantic segmenta-
tion [67, 106]. Graph-based methods can effectively model the relation-
ships between image elements and incorporate domain-specific knowl-
edge. However, they may suffer from high computational complexity,
especially when dealing with large images or complex graphs.

• Neural networks: Before the advent of deep learning, shallow neural
networks, like the one illustrated in Figure 2.1, were widely used for
computer vision tasks[136]. These networks typically consisted of an
input layer, one or two hidden layers, and an output layer. The input
layer receives raw pixel data from the images, and each neuron in the
hidden layer applies a non-linear transformation to the input data,
allowing the network to learn complex patterns. This transformation
can be represented as:

hi = σ(
∑
j

wijxj + bi) (2.1)

where hi is the output of the ith neuron in the hidden layer, xj is the
jth input, wij is the weight connecting the ith neuron to the jth input,
bi is the bias term for the ith neuron, and σ is the activation function
[43].

The final output layer uses the transformed inputs from the last hid-
den layer to generate predictions, often through a softmax function for
classification tasks, which can be represented as:

yk =
ezk∑
j e

zj
(2.2)

where yk is the output of the kth neuron in the output layer, and zk is
the input to the kth neuron [9].

Some popular shallow neural network architectures include the multi-
layer perceptron (MLP) and the radial basis function (RBF) network
[9]. The MLP is fully connected, meaning each neuron in a layer is
connected to all neurons in the previous and next layers. The RBF
network, on the other hand, typically has a single hidden layer and
uses radial basis functions as activation functions, which can provide a
measure of similarity to a set of exemplars.

18

CHAPTER 2. BACKGROUND

Shallow neural networks have been applied to tasks such as handwritten
digit recognition and face recognition [71]. Despite the success of these
early neural network models in some computer vision tasks, they were
limited by the lack of depth and the inability to learn hierarchical
feature representations, which is a key strength of modern deep learning
models. These limitations were addressed by the introduction of deep
learning and convolutional neural networks, which we will discuss in
the next section.

Figure 2.1: Architecture of a Neural Network

Machine learning-based computer vision techniques have played a signif-
icant role in the development of the field, paving the way for the rise of deep
learning-based methods. These methods have addressed various challenges,
including image classification, object detection, and segmentation, by learn-
ing from large labeled datasets and capturing meaningful patterns in the
data [66]. However, many of these methods require hand-crafted features or
carefully engineered representations, and they may struggle with large-scale,
high-dimensional data. The advent of deep learning and convolutional neural
networks has largely addressed these limitations, leading to breakthroughs in
computer vision performance and enabling the development of more sophisti-
cated models that can learn hierarchical feature representations directly from
the raw data [43].

2.1.3 Deep Learning-based Computer Vision

Deep learning-based computer vision techniques have significantly advanced
the field in recent years. Deep learning models, particularly convolutional

19

CHAPTER 2. BACKGROUND

Figure 2.2: A CNN architecture

neural networks (CNNs), have demonstrated remarkable performance in var-
ious computer vision tasks, such as image classification [66, 115, 48], ob-
ject detection [42, 105], semantic segmentation [82, 5], and video recognition
[59, 123]. These advancements have led to widespread adoption and contin-
ued research in the field, driving the development of even more powerful and
efficient computer vision models.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning models
specifically designed for computer vision tasks[72]. The core concept of a
CNN is the convolution operation, which allows the model to learn spatial
hierarchies of features by applying a series of filters (also called kernels) to
the input image.

The convolution operation is defined as:

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n), (2.3)

In this formula, I is the input image and K is the kernel. (i, j) are the
coordinates of a pixel in the image, and (m,n) are the coordinates of a pixel
in the kernel. The operation computes the dot product of the kernel with
each region of the input image, producing a new image where each pixel value
represents the strength of the detected feature at the corresponding location
in the input image.

An essential aspect of CNNs is their architecture, which typically consists
of alternating convolutional layers and pooling layers, followed by one or
more fully connected layers. The convolutional layers perform the feature

20

CHAPTER 2. BACKGROUND

extraction, while pooling layers (such as max pooling or average pooling)
reduce the spatial dimensions of the feature maps, and fully connected layers
combine the learned features for the final classification or regression tasks.
Activation functions, such as Rectified Linear Units (ReLU) [88], are applied
after each convolutional or fully connected layer to introduce nonlinearity
into the model.

CNNs are typically trained using backpropagation [107], which is an al-
gorithm for minimizing the loss function by updating the model’s parameters
based on the gradient of the loss function with respect to each parameter.
The gradient of the loss function is computed using the chain rule of calculus,
which allows the gradient to be propagated backward through the layers of
the network. The model’s parameters are then updated using an optimization
algorithm, such as stochastic gradient descent (SGD) [11], Adam [61]. The
objective is to minimize the loss function, which measures the difference be-
tween the model’s predictions and the ground-truth labels. Commonly used
loss functions for classification tasks include the cross-entropy loss, while for
regression tasks, the mean squared error loss is often used.

To prevent overfitting, various regularization techniques are employed,
such as weight decay, dropout, and data augmentation. Weight decay adds
a penalty term to the loss function, proportional to the squared norm of the
model’s weights. This encourages the model to learn simpler functions with
smaller weights. Dropout is a technique where, during training, a fraction of
the neurons in a layer are randomly "dropped" or deactivated, forcing the
model to rely on a diverse set of features for its predictions. Data augmenta-
tion involves creating new training samples by applying random transforma-
tions, such as rotations, translations, and flips, to the original images. This
increases the size of the training dataset and encourages the model to learn
more robust features.

CNNs have been proven to be highly effective for various computer vision
tasks, and their success can be attributed to their ability to learn hierarchical
feature representations directly from raw data, their invariance to transla-
tions and other transformations [70], and their efficient use of parameters
through weight sharing and pooling operations [115]. The development of
advanced CNN architectures, such as VGGNet [115], Inception [120], ResNet
[48], DenseNet [55], and MobileNet [53], has further pushed the boundaries
of what is possible with deep learning-based computer vision approaches.

In summary, Convolutional Neural Networks have revolutionized the field
of computer vision, providing state-of-the-art performance in a wide range of
tasks. Their mathematical foundations, including convolution and pooling
operations, as well as their efficient and robust learning capabilities, make
them a powerful tool for processing and analyzing visual data.

21

CHAPTER 2. BACKGROUND

Convolutional Layers

The input data is convolved in convolutional layers with a set of learnable
filters (or kernels). The output of this operation, known as the feature map,
is computed by sliding each filter across the input data and taking the dot
product between the filter and the input data at each location.

Activation Functions Activation functions play a crucial role in deep
learning architectures by introducing non-linearity into the model, enabling
it to learn complex patterns and relationships among input features. These
functions are applied element-wise to the neurons’ outputs in a layer, trans-
forming the weighted sum of inputs before passing it to the next layer. Several
activation functions have been proposed and widely used in the literature,
each with its own advantages and drawbacks. We will discuss some of the
most popular activation functions below.

• Sigmoid function: The sigmoid function, also known as the logis-
tic function, is one of the earliest activation functions used in neural
networks. It is defined as:

f(x) =
1

1 + e−x
, (2.4)

which maps the input value x to the range (0, 1). The sigmoid func-
tion is smooth and differentiable, making it suitable for gradient-based
optimization methods. However, it suffers from the vanishing gradient
problem, where the gradients become too small during backpropaga-
tion, leading to slow convergence or training stagnation [50].

• Tanh function: The hyperbolic tangent (tanh) function is another
widely-used activation function, defined as:

f(x) =
ex − e−x

ex + e−x
, (2.5)

which maps the input value x to the range (−1, 1). Similar to the
sigmoid function, the tanh function is smooth and differentiable, but it
also suffers from the vanishing gradient problem [50].

• Rectified Linear Unit (ReLU): Introduced by Nair and Hinton [88],
the ReLU function is currently one of the most popular activation func-
tions in deep learning. It is defined as:

22

CHAPTER 2. BACKGROUND

f(x) = max(0, x), (2.6)

which maps the input value x to the range [0,∞). ReLU is computa-
tionally efficient and mitigates the vanishing gradient problem, enabling
the training of deeper networks. However, it can cause some neurons to
become inactive during training, a phenomenon known as the "dying
ReLU" problem, which may hinder the model’s learning capacity.

• Leaky ReLU: To address the dying ReLU issue, Maas et al. [84]
proposed the Leaky ReLU function, defined as:

f(x) = max(αx, x), (2.7)

where α is a small positive constant (e.g., 0.01). Leaky ReLU allows
small negative values, ensuring that neurons remain active during train-
ing and mitigating the dying ReLU problem. The dying ReLU problem
refers to the phenomenon where some neurons become permanently in-
active and only output 0. This can happen if a large gradient flows
through a ReLU neuron, causing a large update to its weights. If the
updated weights cause the weighted sum of inputs to that neuron to
be negative, then the neuron will output 0. If this happens, then in
subsequent iterations, the neuron will still output 0, no matter what
values the input takes on.

• Exponential Linear Unit (ELU): Clevert et al. [21] introduced the
ELU function to improve the ReLU’s performance, defined as:

f(x) =

{
x, if x > 0

α(ex − 1), otherwise
(2.8)

where α is a positive constant. ELU retains the advantages of ReLU,
such as mitigating the vanishing gradient problem, and it allows nega-
tive outputs, ensuring that neurons remain active during training. ELU
also has a smooth derivative for negative inputs, which can help with
gradient-based optimization.

23

CHAPTER 2. BACKGROUND

• Swish: Ramachandran et al. [101] proposed the Swish activation func-
tion, which is defined as:

f(x) = x · σ(βx), (2.9)

where σ is the sigmoid function, and β is a learnable parameter or a
fixed constant. Swish is smooth, differentiable, and allows both positive
and negative outputs. It has been shown to perform better than ReLU
in some deep learning tasks [101].

Activation functions are essential components in neural networks, allow-
ing them to learn complex, non-linear relationships among input features.
The choice of activation function depends on the problem, architecture, and
specific requirements of the task. Researchers are continually exploring new
activation functions to improve the performance, stability, and convergence
of deep learning models.

Pooling Layer The pooling operation is another key component of convo-
lutional neural networks (CNNs). It is used to reduce the spatial dimensions
of the feature maps while retaining the most important information. This op-
eration helps to make the network invariant to small translations and reduces
the computational complexity of subsequent layers [43].

The two most common types of pooling are max pooling and average
pooling. Max pooling selects the maximum value within a specified window,
while average pooling computes the average value within the window. The
pooling operation can be defined as:

P (i, j) = max
m∈Wi,n∈Wj

I(m,n), (2.10)

for max pooling, and

P (i, j) =
1

|Wi||Wj|
∑

m∈Wi,n∈Wj

I(m,n), (2.11)

for average pooling, where I is the input feature map, P is the output
pooled feature map, and Wi and Wj represent the pooling window dimen-
sions.

It’s worth noting that the pooling operation is applied independently to
each input channel, and it does not change the number of channels [43]. This
can be represented as:

Pc(i, j) = max
m∈Wi,n∈Wj

Ic(m,n), (2.12)

24

CHAPTER 2. BACKGROUND

for each channel c in the input feature map, where Ic is the cth channel of
the input feature map, and Pc is the cth channel of the output pooled feature
map.

Figure 2.3: Illustration of a pooling operation

Fully Connected Layers Fully connected layers, also known as dense
layers, are a fundamental component of various deep learning architectures.
In these layers, each neuron is connected to every neuron in the previous
layer, forming a complete bipartite graph between the two layers. The fully
connected layer’s primary function is to learn the final feature representations
and perform high-level reasoning based on the features extracted by preceding
layers, such as convolutional layers in the case of CNNs.

Given layer l as a fully connected layer, the output of the ith neuron in
layer l can be computed as:

y
(l)
i = f

(
z
(l)
i

)
, (2.13)

where f(·) represents the activation function and z
(l)
i is the weighted sum

of the input neurons connected to the ith neuron in layer l. The weighted
sum can be calculated as:

z
(l)
i =

m
(l−1)
1∑
j=1

w
(l)
i,jx

(l−1)
j + b

(l)
i , (2.14)

25

CHAPTER 2. BACKGROUND

where m
(l−1)
1 is the number of neurons in layer (l − 1), w(l)

i,j denotes the
weight connecting the jth neuron in layer (l− 1) to the ith neuron in layer l,
x
(l−1)
j represents the output of the jth neuron in layer (l − 1), and b

(l)
i is the

bias term for the ith neuron in layer l.
Fully connected layers are often employed in the final stages of a deep

learning model to combine the features extracted by previous layers and
generate the final output, such as class probabilities in classification tasks
or continuous values in regression tasks. It is worth noting that a fully
connected layer intrinsically includes non-linearities through the activation
function f(·), enabling the learning of complex patterns and relationships
among the input features.

Normalization

Normalization techniques play a crucial role in deep learning models, includ-
ing the Swin Transformer, by ensuring stable and efficient training. In this
section, we will discuss the normalization methods used in the Swin Trans-
former and their underlying mathematical principles.

The two primary normalization techniques used in the Swin Transformer
are Layer Normalization (LN) [4] and Batch Normalization (BN) [57]. While
both methods aim to stabilize training by normalizing the input data, they
differ in terms of the dimensions across which they compute the normalization
statistics.

• Layer Normalization: Layer normalization (LN) is a normalization
technique that is performed across each individual input or hidden layer
of a neural network. Specifically, the mean and variance for normal-
ization are computed across each single input data point, instead of
computing across different input data points in the batch (as in batch
normalization). For a given layer input x = [x1, x2, ..., xm], layer nor-
malization computes the mean µ and variance σ2 as follows:

µ =
1

m

m∑
i=1

xi (mean of the inputs) (2.15)

σ2 =
1

m

m∑
i=1

(xi − µ)2 (variance of the inputs) (2.16)

After which, layer normalization applies the following transformation:

y =
x− µ√
σ2 + ϵ

∗ γ + β (2.17)

26

CHAPTER 2. BACKGROUND

Here, x is the original input, µ and σ are the mean and standard devia-
tion of the inputs, γ and β are learnable scale and shift parameters, ϵ is
a small constant added for numerical stability, and y is the normalized
output.

This type of normalization is particularly useful for models that need
to maintain a consistent hidden state across each layer, as it doesn’t
normalize across the batch dimension.

• Batch Normalization: Batch normalization (BN) is a normalization
technique that normalizes across batches of inputs, rather than across
layers. For a given mini-batch B = {x1, x2, ..., xm} of size m, batch
normalization computes the mean µB and variance σ2

B as follows:

µB =
1

m

m∑
i=1

xi (mean of the batch) (2.18)

σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (variance of the batch) (2.19)

And then normalizes each input in the mini-batch with:

y =
x− µB√
σ2
B + ϵ

∗ γ + β (2.20)

In this formula, x is the original input, µB and σB are the mean and
standard deviation of the batch, γ and β are learnable scale and shift
parameters, ϵ is a small constant added for numerical stability, and y
is the normalized output.

The primary difference between BN and LN lies in the dimensions over which
they compute the mean and variance. While batch normalization computes
it over the batch dimension, layer normalization computes it over the feature
dimension. This makes batch normalization dependent on the batch size and
requires a large batch size to work effectively. In contrast, layer normalization
works independently of batch size, making it more suitable for tasks where
batch size might vary.

CNN Architectures

Over the years, numerous CNN architectures have been proposed, each im-
proving upon its predecessors and pushing the limits of deep learning-based
computer vision. In this section, we will review some of the most popular
and influential CNN architectures.

27

CHAPTER 2. BACKGROUND

• AlexNet: AlexNet [66], developed by Krizhevsky et al., was a major
breakthrough in the field, achieving state-of-the-art performance in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012.
AlexNet consists of five convolutional layers, followed by three fully
connected layers and an output layer for classification. It introduced
the use of ReLU activation functions and dropout layers to improve the
training process and prevent overfitting.

• VGGNet: VGGNet, proposed by Simonyan and Zisserman [115], as
shown in figure 2.4, is a significant milestone in the field of deep learn-
ing due to its simplicity, depth, and performance. VGGNet is charac-
terized by its homogeneity and depth. It uniformly uses small (3x3)
convolutional filters throughout the entire network, which was a shift
from the previous architectures that typically used larger filters (e.g.,
5x5 or 7x7) in the first convolutional layers. VGGNet demonstrated
the importance of depth in neural networks for achieving high per-
formance in computer vision tasks. Its architecture comprises several
layers, with the main variants being VGG-16 and VGG-19, which con-
sist of 16 and 19 layers, respectively. The depth of the network allowed
it to learn more complex and abstract features, which contributed to
its impressive performance. The network’s layers follow a simple pat-
tern: convolutional layers with small filters followed by max-pooling
layers, with this sequence repeated multiple times to form the whole
network. This simplicity and consistency make VGGNet easy to un-
derstand, implement, and modify, which has contributed to its wide
adoption in the research community. Despite its higher computational
cost and larger model size compared to other models like AlexNet or
GoogLeNet, VGGNet has been widely adopted in various applications
due to its excellent performance and simplicity. Its learned features
have been shown to generalize well to other tasks and datasets, and its
architecture has served as a foundation or a point of comparison for
many subsequent models. Furthermore, the concept of using smaller
filters in deeper networks, introduced by VGGNet, has been influential
in the design of more recent architectures.

• Inception (GoogLeNet): The Inception architecture, also known as
GoogLeNet [120], was developed by Szegedy et al. at Google. In-
ception introduced the concept of "inception modules," which consist
of parallel convolutional layers with different filter sizes, followed by a
concatenation of their outputs. This design enables the network to cap-
ture features at multiple scales. Inception also uses auxiliary classifiers

28

CHAPTER 2. BACKGROUND

Figure 2.4: VGG Net [115]

during training to alleviate the vanishing gradient problem in deeper
layers.

• ResNet: Residual Networks (ResNet), developed by Kaiming He et al.,
revolutionized the field of deep learning by introducing the concept of
"residual connections" or "skip connections" [48]. In a traditional deep
neural network, each layer learns a new representation of the data, and
this new representation is passed on to the next layer. However, this ap-
proach becomes less effective as the network depth increases due to the
problem of vanishing gradients. During backpropagation, the gradients
often get smaller and smaller as they reach the initial layers, leading
to slower convergence or the model not learning effectively. To solve
this problem, ResNet introduced the idea of "shortcut connections"
that allow the gradients to propagate directly through several layers by
skipping intermediate layers. These shortcut connections perform iden-
tity mapping, and their outputs are added to the outputs of the stacked
layers. This allows the stacked layers to fit a residual mapping instead
of the original mapping, hence the name Residual Network. This in-
novative design made it feasible to train very deep networks (e.g., up
to 152 layers), which was difficult with previous architectures. ResNet
achieved state-of-the-art performance in the ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) 2015 competition, significantly
reducing the error rate compared to previous models. It has since be-
come a popular choice for many computer vision tasks, such as object
detection, segmentation, and face recognition, due to its superior per-

29

CHAPTER 2. BACKGROUND

formance and the generalization capability of the learned features. The
principles behind ResNet have also influenced the design of subsequent
deep learning architectures, making it a milestone in the development
of deep learning models.

Figure 2.5: Residual Block[136]

• DenseNet: Dense Convolutional Networks (DenseNet) [55], proposed
by Huang et al., extend the idea of skip connections by connecting each
layer to every other layer in a feed-forward fashion. This design results
in the efficient use of parameters and improved gradient flow. DenseNet
has been shown to achieve high performance with fewer parameters
compared to other architectures.

• MobileNet: MobileNet [53], developed by Howard et al., is designed
for mobile and embedded vision applications, prioritizing efficiency
and low computational cost. MobileNet introduces depthwise separa-
ble convolutions, which factorize standard convolutions into depthwise
convolutions and pointwise convolutions, reducing the number of oper-
ations and parameters. MobileNet has multiple versions with varying
trade-offs between performance and computational cost.

These popular CNN architectures have made significant contributions
to the field of computer vision and have been widely adopted in various
applications, ranging from image classification and object detection to
semantic segmentation and image generation.

30

CHAPTER 2. BACKGROUND

• Capsule Networks: Capsule Networks (CapsNets) [110], introduced
by Sabour et al., is a novel architecture designed to address the limita-
tions of traditional CNNs, particularly in regard to preserving spatial
relationships between features. CapsNets replace scalar feature acti-
vations with vector-valued "capsules" that represent the presence and
properties of entities in the input image. CapsNets have shown promise
in tasks requiring the preservation of spatial hierarchies and pose esti-
mation.

• EfficientNet: EfficientNet [121], proposed by Tan and Le, is an ar-
chitecture that focuses on balancing model efficiency and accuracy by
using a compound scaling method. The authors found that scaling up
the width, depth, and resolution of the network simultaneously results
in more efficient use of resources. EfficientNet has several variants (B0
to B7) with different capacities, achieving state-of-the-art performance
while maintaining efficiency in terms of the number of parameters and
computational cost.

The aforementioned CNN architectures have significantly influenced the field
of computer vision, with wide applications in image classification, object de-
tection, semantic segmentation, and image generation, among others. As
advancements in CNN architectures continue to emerge and push the bound-
aries of what’s possible in deep learning-based computer vision, researchers
and practitioners alike are persistently exploring new techniques to improve
these models’ efficiency, robustness, and performance. These ongoing devel-
opments enable novel applications and the solving of increasingly complex
problems within the realm of computer vision.

2.2 GPU
Graphics Processing Units (GPUs) have become an essential component in
accelerating computer vision and deep learning applications due to their
highly parallel architecture and superior computational capabilities com-
pared to traditional Central Processing Units (CPUs). The following sec-
tions will provide a more detailed overview of GPU architectures, their com-
ponents, and how they differ from CPUs.

2.2.1 GPU Architectures

A GPU is a specialized hardware designed to accelerate rendering tasks in
graphics applications. However, their highly parallel architecture and pow-

31

CHAPTER 2. BACKGROUND

erful computational capabilities make them well-suited for general-purpose
parallel computing, including computer vision and deep learning tasks. GPUs
are composed of thousands of smaller cores that can execute many threads
simultaneously, making them ideal for data-parallel tasks. Unlike CPUs,

Figure 2.6: NVIDIA A100 GPU architecture

which typically have a small number of cores optimized for single-threaded
performance and complex control flow, GPUs have a massive number of
simpler cores designed for parallelism and throughput-oriented tasks. This
architectural difference makes GPUs more suitable for processing large-scale,
high-dimensional data common in computer vision and deep learning appli-
cations.

NVIDIA is one of the leading manufacturers of GPUs, and their GeForce,
Quadro, and Tesla product lines are widely used in research and industry.
NVIDIA GPUs are based on several architectures, such as Fermi, Kepler,
Maxwell, Pascal, Volta, Turing, and Ampere [93]. Each successive archi-
tecture has introduced improvements in performance, energy efficiency, and
programmability.

As illustrated in Figure 2.6, a typical GPU architecture consists of sev-
eral streaming multiprocessors (SMs), each containing multiple CUDA cores
(also called streaming processors, or SPs) for arithmetic operations, special
function units (SFUs) for complex mathematical functions, and load/store
units (LD/ST) for memory access.

GPUs have different types of memory, each with varying access speeds
and capacities:

32

CHAPTER 2. BACKGROUND

Figure 2.7: GPU Architecture Unit[119]

• Global memory is the largest memory type on a GPU and is acces-
sible by all threads and the host (CPU). It is also known as device
memory and is allocated off-chip, which makes it slower compared to
other memory types. However, global memory provides high bandwidth
and large capacity, making it suitable for storing large data sets.

• Shared memory is a smaller, faster memory type that is shared
among the threads within a thread block. It is allocated on-chip, pro-
viding low-latency access for threads. Shared memory is used for inter-
thread communication and to cache frequently accessed data, reducing
the need for slower global memory accesses.

• Constant memory is a read-only memory type that can be cached
for faster access. It is used for storing constant values, such as model
parameters or lookup tables, which remain unchanged throughout the
execution of a kernel. Constant memory is also allocated off-chip but
can be cached on-chip for improved access speed.

• Local memory is a private memory space for each thread, used for
storing local variables and temporary values that do not fit into the

33

CHAPTER 2. BACKGROUND

thread’s registers. Local memory is allocated off-chip and has similar
access times as global memory.

• Texture memory and surface memory are specialized memory
types for handling 2D and 3D data, such as images and volumes. These
memory types offer specific hardware features, such as filtering and
boundary handling, which can be useful in computer vision applica-
tions. Texture and surface memory are also cached for faster access.

Understanding the characteristics and usage of these different memory types
is crucial for optimizing GPU performance in computer vision and deep learn-
ing applications. Efficient memory management and access patterns can sig-
nificantly improve the execution speed and reduce the memory footprint of
GPU-accelerated algorithms.

In addition to memory types, other architectural components also play
a significant role in GPU performance. For instance, the number of reg-
isters per thread, the number of threads per block, and the occupancy of
streaming multiprocessors (SMs) can influence the overall throughput and
efficiency of a GPU-accelerated application. Balancing these factors to uti-
lize the available hardware resources fully is a key aspect of optimizing GPU-
based algorithms[119].

Another important difference between GPUs and CPUs is their approach
to instruction execution. While CPUs typically employ complex out-of-order
execution and branch prediction mechanisms to optimize single-threaded per-
formance, GPUs use a simpler in-order execution model called Single Instruc-
tion Multiple Threads (SIMT). In SIMT, groups of threads, called warps, ex-
ecute the same instruction simultaneously, which simplifies the control logic
and allows for greater parallelism. However, this also means that divergent
control flow within a warp can lead to performance degradation, as different
execution paths must be serialized.

In summary, GPUs have revolutionized the field of computer vision and
deep learning by providing a highly parallel architecture and powerful com-
putational capabilities. Their numerous simpler cores, specialized memory
types, and throughput-oriented design make them more suitable for process-
ing large-scale, high-dimensional data than traditional CPUs. Understanding
the architectural differences between GPUs and CPUs, as well as the intri-
cacies of GPU memory management and execution models, is essential for
developing high-performance computer vision and deep learning applications.

34

CHAPTER 2. BACKGROUND

2.2.2 CUDA Platform

The CUDA (Compute Unified Device Architecture) platform, developed by
NVIDIA[23], is a parallel computing platform and programming model that
allows developers to harness the power of NVIDIA GPUs for general-purpose
computing tasks [90]. CUDA has had a significant impact on various fields,
including scientific computing, machine learning, and computer vision, by
enabling researchers and engineers to leverage GPU acceleration for their
applications [94, 66].

CUDA provides a C/C++ programming interface, along with libraries
and tools, for writing parallel algorithms that can be executed on the GPU
[23]. The CUDA programming model is based on the concept of threads,
blocks, and grids. Threads are the smallest execution units and are grouped
into blocks, which are further organized into a grid [90]. Each thread in a
block can access a shared memory space, enabling efficient communication
and data sharing between threads within the same block. The grid is a
higher-level abstraction that represents the entire problem domain and is
divided into blocks.

In the CUDA programming model, the GPU is treated as a highly parallel
co-processor that works in conjunction with the CPU [90]. The CPU, referred
to as the host, is responsible for executing the main program, managing
memory transfers between the host and the device (GPU), and launching
kernels on the device. Kernels are functions that are executed on the GPU
by a large number of threads in parallel [90].

The CUDA platform exposes the GPU’s hierarchical memory architec-
ture, which includes global memory, shared memory, constant memory, and
texture memory [23]. Global memory is the largest and slowest memory
space, accessible by all threads in the grid, and can be used to store large data
structures. Shared memory, which is faster than global memory, is shared
among threads within the same block and can be used for inter-thread com-
munication and data sharing [90]. Constant memory is a read-only memory
space that can be used to store constant data used by all threads, while tex-
ture memory is a cached memory space optimized for 2D and 3D data access
patterns [23].

To optimize the performance of CUDA applications, developers need to
carefully manage the memory hierarchy and thread execution [109]. For
example, they should minimize global memory access, use shared memory
and constant memory to reduce memory latency, and design the kernel to
maximize thread-level parallelism and occupancy [126].

CUDA provides a rich set of libraries, such as cuBLAS, and cuDNN [20],
which offer GPU-accelerated implementations of commonly used functions in

35

CHAPTER 2. BACKGROUND

linear algebra, signal processing, sparse matrix operations, and deep learning.
These libraries allow developers to easily integrate GPU acceleration into
their applications without having to write custom GPU kernels [94].

The CUDA platform also includes various tools for profiling and debug-
ging, such as the NVIDIA Visual Profiler [91]. These tools enable developers
to analyze the performance of their GPU-accelerated applications, identify
bottlenecks, and debug their code. They can also help in optimizing memory
usage, identifying performance-limiting factors, and ensuring the correctness
of the code [23].

To sum up, the CUDA platform has played a crucial role in democratizing
GPU computing and has made it accessible to a broad range of developers
and researchers. Its programming model, rich set of libraries, and develop-
ment tools have enabled the rapid development and deployment of GPU-
accelerated applications in various fields, including computer vision, deep
learning, and scientific computing [94, 66, 23]. By leveraging the powerful
capabilities of NVIDIA GPUs, the CUDA platform has significantly con-
tributed to the advancement of these fields and has set the stage for further
breakthroughs and innovations.

cuBLAS

NVIDIA’s cuBLAS [91] is a GPU-accelerated library that provides implemen-
tations for a wide range of Basic Linear Algebra Subprograms (BLAS). It is
an essential component in the matrix multiplication operation, a core com-
putation in deep learning models. By leveraging the vast parallel computing
capability inherent to GPU architectures, cuBLAS offers highly optimized
routines that significantly enhance the performance of matrix multiplication.
The strength of cuBLAS lies in its meticulous design to exploit the capa-
bilities of NVIDIA GPUs. The library includes different versions of matrix
multiplication routines tailored for various scenarios, such as small or large
matrices, dense or sparse matrices, single or double-precision computations,
and more. These routines are highly parameterizable, offering flexibility in
how they’re used based on the specific requirements of the operation at hand.

The influence of cuBLAS extends to major deep learning frameworks
such as TensorFlow and PyTorch, both of which utilize cuBLAS as their
backend for executing matrix multiplication operations on NVIDIA GPUs.
By doing so, these frameworks can deliver high-performance computation,
leading to faster training and inference times for deep learning models. The
extensive use of cuBLAS in these frameworks underscores its effectiveness
in accelerating matrix multiplication and, in turn, the overall performance
of deep learning models. However, as with any library, the performance of

36

CHAPTER 2. BACKGROUND

cuBLAS is contingent upon the GPU architecture it’s used with, meaning
that the specific GPU’s features and specifications can influence the acceler-
ation achieved.

Tensor Cores

Tensor Cores [91] are innovative hardware units developed by NVIDIA and
integrated into their Volta, Turing, and subsequent architectures. These
units have been explicitly designed to accelerate matrix arithmetic, which is
essential for deep learning operations. They allow significantly faster train-
ing and inference of neural networks by performing mixed-precision matrix
multiply-and-accumulate calculations in a single operation. In more detail, a
Tensor Core takes as input two half-precision floating-point matrices (FP16)
and one full-precision matrix (FP32), performs a matrix multiplication of
the half-precision matrices, and then adds the full-precision matrix to the
result. The operation can be written as D = A ∗ B + C, where A and B
are FP16 matrices, C and D are FP32 matrices, ” ∗ ” denotes matrix mul-
tiplication, and ” + ” signifies matrix addition. This operation is common
in deep learning computations, particularly in convolution and transformer-
based architectures.

The ability of Tensor Cores to perform this operation in a single step leads
to dramatic speedup in computation. They can deliver up to 125 teraFLOPS
of performance for mixed-precision matrix multiplication in a single GPU,
making them instrumental in achieving high performance in deep learning
tasks. Moreover, using mixed-precision arithmetic, where the bulk of the
computation is performed in lower precision, can lead to further acceleration
and memory savings without significant loss in model accuracy. NVIDIA
provides software support for using Tensor Cores in popular deep learning
frameworks, making their power accessible to the deep learning community.
Figure 2.8 illustrates the usage of Tensor Cores in a matrix multiplication
operation.

2.2.3 High-Performance Computing with GPUs

High-performance computing (HPC) stands at the forefront of computa-
tional advancement, enabling researchers and industries to tackle complex,
data-intensive tasks with unprecedented efficiency and speed. Over the past
decade, Graphics Processing Units (GPUs) have emerged as a pivotal tool
within the HPC landscape[93].

GPUs, originally designed for rendering images in computer graphics,
have expanded their influence far beyond their initial purpose. Their ar-

37

CHAPTER 2. BACKGROUND

Figure 2.8: Matrix Multiplication Operation with Tensor Cores[91]

chitecture, comprising hundreds to thousands of cores, allows for efficient
parallel processing of computational tasks. This feature is well-aligned with
the needs of HPC, where the simultaneous execution of tasks can signifi-
cantly reduce computational times and improve the handling of large-scale
problems.

The GPU’s ability to accelerate computational workloads has found wide
application in areas such as scientific computing, deep learning, and big data
analytics. Compared to traditional Central Processing Units (CPUs), GPUs
offer superior throughput and energy efficiency, making them particularly
suitable for data-intensive computations in HPC.

Another significant aspect of GPUs in HPC is their compatibility with
programming models and languages that have been widely adopted by the
scientific community. For instance, NVIDIA’s CUDA (Compute Unified De-
vice Architecture) platform[23] provides a software environment that allows
developers to use the C programming language to code algorithms directly
into GPU instructions. This has greatly eased the implementation of GPU-
based computation in HPC. The integration of GPUs into HPC systems has
substantially enhanced the capability to handle ’big data.’ As the volume of
data generated by various fields continues to explode, the need for compu-
tational platforms that can quickly process and analyze this data becomes
critical. GPUs, with their high-performance computing capabilities, provide
a solution to this challenge.

Moreover, the advent of GPU-accelerated supercomputers has set new
milestones in HPC. Notably, systems like the Summit at Oak Ridge National
Laboratory in the United States and TSUBAME at the Tokyo Institute of
Technology in Japan represent this major shift. The Summit supercomputer
leverages thousands of GPUs, delivering unprecedented computational capa-
bilities and setting the pace for scientific discovery. Similarly, the TSUBAME
series, known for its GPU-accelerated computing power, have been instru-
mental in pushing the boundaries of HPC. The latest in this series, TSUB-

38

CHAPTER 2. BACKGROUND

AME 3.0[112], has garnered international attention for its efficient power us-
age and significant computational capacity, showcasing the efficacy of GPU
utilization in HPC.

These innovative supercomputers underline the critical role GPUs play
in modern HPC systems and highlight a significant shift in supercomputer
design and utilization. The ability to harness the power of GPUs at this
scale opens up unprecedented possibilities for tackling large-scale, complex
problems across a multitude of research domains.

The future of HPC with GPUs appears bright, as ongoing advancements
promise to elevate their role further. Emerging trends like exascale computing
and artificial intelligence, heavily reliant on GPU-accelerated computation,
are pushing the frontiers of what is possible in HPC. These developments
suggest a continual and integral role for GPUs in the evolution of high-
performance computing.

39

Chapter 3

Speed-up Single Shot Detector on
GPU with CUDA

3.1 Introduction
Object detection is a vital component of computer vision that aims to recog-
nize and locate real-world objects in images or video sequences. Humans pos-
sess an innate ability to recognize objects regardless of changes in viewpoint,
scale, translation, or rotation. Even when an object is partially obscured,
humans can often identify it with ease. The ultimate goal in the field of
computer vision is to enable contemporary computing systems to detect ob-
jects with human-like precision while maintaining the high-speed processing
capabilities of computers. Despite significant advancements in recent years,
this problem remains a challenging task.

Artificial Neural Networks (ANNs), inspired by the biological nervous
systems, have been proposed as a means to teach computers to learn in a
manner similar to humans. Artificial neural networks are composed of indi-
vidual "neurons" with weights that mimic the connections found in biological
neural networks. The process of determining each neuron’s weight is referred
to as training, while inference involves using a trained neural network to per-
form a computing task. An ANN consists of at least two layers, input and
output, each containing numerous perceptrons. The "hidden layer" is the
layer that sits between the input and output layers. A deep neural network
is an ANN with multiple hidden layers.

As object detection technology has rapidly evolved, its commercial value
has been recognized in various fields, such as large-scale security surveillance
and autonomous driving. Numerous commercial companies have launched
products or services based on object detection, leading to a continuously

40

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

growing market. However, an efficient and reliable object detection system
that meets commercial demands has yet to be developed. For commercial
applications, detection speed remains a critical challenge [56]. While ob-
ject detection using deep convolutional neural networks has made significant
progress in recent years, achieving real-time detection without sacrificing ac-
curacy is still an ongoing pursuit.

Object detection involves identifying the presence of an object of interest
in an image or video frame, regardless of its size, orientation, or environment.
Various methods exist for performing detection tasks, with the simplest being
the template matching technique using a moving window slide, such as in R-
CNN [42]. However, the computational time required by this approach is a
significant bottleneck.

In this research, we explore techniques for accelerating object detection
algorithms, specifically focusing on deep learning-based methods, to strike a
balance between accuracy and speed. We aim to develop a real-time object
detection system that maintains high accuracy while addressing the compu-
tational challenges associated with deep learning. By leveraging the power of
GPUs and the CUDA platform, we aim to optimize the performance of object
detection algorithms for commercial applications, enabling the deployment
of efficient and reliable systems in various industries.

The increasing resolutions of images and videos present a growing chal-
lenge for object detection tasks. Sequential processing of high-resolution
images and videos using a single-core processor can no longer satisfy the re-
quired speedup for detecting objects. Consequently, contemporary research
has shifted its focus to parallel processing, which involves performing mul-
tiple calculations simultaneously using either a hardware paradigm, such as
GPUs, or a software-hardware paradigm, such as FPGAs. Both paradigms
offer superior performance compared to single-core CPUs.

GPUs, initially designed for rendering graphics, have evolved to serve
as general-purpose accelerators. NVIDIA’s Compute Unified Device Archi-
tecture (CUDA) technology is now frequently employed to accelerate image
and video processing applications beyond the realm of graphics. In 2010,
S. Mehta et al. presented a high-performance implementation of the Sum
of Absolute Differences (SAD) [87], a measure of similarity between image
blocks, on a general-purpose GPU architecture using NVIDIA’s CUDA. Their
research demonstrated that object detection could achieve faster detection
speeds through GPU acceleration while maintaining satisfactory results. The
recent advancements in GPU computing capabilities have paved the way for
the real-time execution of highly complex computer vision algorithms.

Multithreaded data-parallel GPU architectures have found widespread
applications in fields such as advanced driver assistance systems (ADAS),

41

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

autonomous driving, scene interpretation, intelligent video analytics, and
facial recognition, among others. The potential for further advancements
and applications of GPU-accelerated object detection is immense, making it
an exciting and promising area of research.

In this work, we explore the possibilities of harnessing the power of GPUs
and CUDA technology to further improve the speed and efficiency of object
detection algorithms. By optimizing the parallel processing capabilities of
GPUs and developing innovative techniques to accelerate deep learning-based
object detection methods, we aim to create a robust and real-time object
detection system suitable for various commercial and industrial applications.

One of the most widely used detection networks is the Single Shot Multi-
box Detector (SSD) [78]. It achieves a high mean Average Precision (mAP)
compared to other high-speed detection networks, striking a favorable bal-
ance between accuracy and detection speed. As a result, SSD serves as an
excellent subject for research in object detection acceleration.

Most object detection networks are built upon convolutional neural net-
works (CNNs), and numerous techniques have been developed to speed up the
computation of CNN’s convolution and fully connected layers. However, in
detection networks, other modules besides convolution and fully connected
layers also require a significant amount of processing time. Therefore, in
addition to optimizing the CNN layers, attention should be given to the cal-
culation of other layers. By accelerating these layers using GPUs, we can
achieve faster detection speeds, which is a primary goal of our research.

Our main contribution is the acceleration of the SSD512 detection through
the use of CUDA, resulting in a performance improvement of approximately
22.53% compared to the standard version [73], a trade-off between speed and
accuracy that we do extremely well. We implemented all components using
CUDA [111] and C++, and rewrote the Backbone (VGG16) with cuDNN,
which made the backbone about 9.19% faster than the original version.
Leveraging the GPU’s capabilities, we processed the image and classifica-
tion tasks in parallel. Finally, we proposed a CUDA-based Non-maximum
Suppression (NMS) algorithm that is approximately 52.61% faster than the
original version. This research demonstrates the potential for further im-
provements in object detection speed and efficiency by optimizing both CNN
layers and other modules using GPU acceleration and CUDA technology.

3.2 Related Work
In this section, we highlight and discuss the research efforts that bear signif-
icance and relevance to our own investigation.

42

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

3.2.1 Object detection

Since 2010, manual feature extraction-based object detection algorithms faced
limitations in their development. Classical techniques consist of three steps:
region selection, feature extraction, and classification. However, these tech-
niques encountered two significant issues: the absence of an efficient region-
selection method with a simple time complexity and the lack of robustness in
manual feature extraction. In object detection competitions such as the "Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC)" [108], "COCO:
Common Objects in Context Detection Challenge" [77], and "PASCAL VOC:
The PASCAL Visual Object Classes Challenge" [32], deep neural network-
based methods consistently outperformed other approaches.

In 2012, a breakthrough method based on convolutional neural networks
(CNN) was introduced by Krizhevsky et al. [66], revolutionizing the object
detection landscape. CNNs significantly improved both region selection and
feature extraction, particularly in region proposal-based approaches like R-
CNN [42].

Modern object detection methods can be broadly categorized into two
groups: one-stage frameworks and two-stage frameworks. One-stage frame-
works include YOLO (You Only Look Once) [103], SSD (Single Shot Multi-
Box Detector) [78], and RetinaNet [76], while two-stage frameworks comprise
Faster R-CNN [105], Mask R-CNN [46], and Cascade R-CNN [14].

• Two-stage frameworks: Pioneered by the introduction of the Region-
CNN (R-CNN)[42] and its successors, Fast R-CNN[41] and Faster R-
CNN[105], these frameworks primarily focus on accuracy. The two-
stage approach starts with the first stage which generates a number
of region proposals which are potential areas in the image where the
object could be. These region proposals are not actual bounding boxes,
but areas where the algorithm believes an object is present based on
the features learned. The second stage uses these region proposals to
not only refine the bounding box coordinates, i.e., improve the local-
ization of the object, but also to predict the classification scores for
each refined box. While these methods offer high accuracy, the process
is inherently slow due to the two-stage structure and the complexity of
the operations, making real-time applications a challenge.

• One-stage frameworks: To overcome the speed limitations of two-
stage frameworks, one-stage frameworks were introduced. These meth-
ods, like YOLO (You Only Look Once)[103] and SSD (Single Shot
Multibox Detector)[78], aim for faster detection speeds by merging the

43

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

two stages into a single network pass. In one swift operation, they pre-
dict bounding box coordinates and classification results simultaneously.
These methods eliminate the need for region proposal generation, thus
substantially increasing the speed of object detection. However, while
their speed is commendable, they often lag behind in terms of accuracy
compared to their two-stage counterparts. This is primarily because
they have to balance speed and accuracy, and the single pass through
the network doesn’t always allow for the careful refinement of bounding
boxes that two-stage methods provide.

It’s important to note that the choice between one-stage and two-stage
frameworks often depends on the specific requirements of a task. If accuracy
is paramount and processing time is less of an issue, a two-stage method
might be preferred. Conversely, if real-time detection is needed, a one-stage
method could be a better choice. Our work, in this case, is focused on improv-
ing the speed of one-stage detectors, specifically SSD, without significantly
compromising accuracy.

The imbalance between background and non-background regions is the
primary reason for these differences. In two-stage frameworks, background
samples are filtered through the region proposal stage, reducing the number of
candidates. One-stage frameworks, on the other hand, are more prone to false
positives due to the larger number of regions classified as background. To
address this issue, RetinaNet introduced a new loss function called Focal Loss,
which helps maintain a balance between background and non-background
regions during training.

In two-stage frameworks, a region proposal network (RPN) generates pos-
sible bounding boxes, which are then refined by the detection head network
in terms of bounding box coordinates and classification scores. In contrast,
one-stage frameworks predict box coordinates and classification results in a
single network pass. Non-maximum suppression (NMS) serves as a crucial
post-processing step, removing boxes with similar locations and shapes but
with lower confidence levels. Huang et al. [56] provided a comprehensive
analysis of the performance of various object detection frameworks, exam-
ining not only the accuracy of different approaches but also their detection
speeds, which is an important indicator of a framework’s maturity.

In conclusion, over the past ten years, there has been a significant evo-
lution in the field of object detection approaches. Accuracy and computing
efficiency have improved because of Convolutional Neural Networks (CNNs)
and other deep learning approaches. The choice between a one-stage and
two-stage framework depends on the application’s details as well as the bal-
ance between detection speed and accuracy that is deemed appropriate for

44

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

the particular situation. These frameworks offer a wide range of possibilities
for practitioners in a variety of domains, helping to push the limits of what
is possible for object identification jobs even though they are not without
trade-offs.

3.2.2 High Speed of Feature extraction

In the realm of feature extraction, speed is of the essence. The faster the al-
gorithm, the more efficient the overall process becomes, leading to improved
performance and productivity. Two algorithms that stand out in this re-
gard are Winograd’s minimal filtering algorithm [68] and the Fast Fourier
Transform (FFT)[24].

Winograd’s Minimal Filtering Algorithm

Winograd’s minimal filtering algorithm is an efficient method for convolu-
tion, a fundamental operation in feature extraction. Named after Shmuel
Winograd, this algorithm reduces the number of multiplications in the con-
volution process, thereby increasing the speed of computation. The algo-
rithm works by transforming the convolution operation into a set of smaller,
simpler operations that can be computed more quickly. It does this by ex-
ploiting the redundancy in the computation of overlapping output values.
The transformed operations are then computed using a minimal number of
multiplications, hence the name "minimal filtering algorithm". Winograd’s
minimal filtering algorithm is particularly effective in the context of convo-
lutional neural networks (CNNs), where convolution operations are a key
component. By reducing the computational complexity of these operations,
the algorithm significantly speeds up the feature extraction process in CNNs.

Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) is another algorithm that plays a cru-
cial role in feature extraction. FFT is an algorithm to compute the Discrete
Fourier Transform (DFT) and its inverse, which are mathematical techniques
used to transform a function into its constituent frequencies. FFT reduces the
computational complexity of calculating the DFT from O(n2) to O(nlogn),
where n is the data size. This makes it an extremely efficient method for
transforming time-domain signals into frequency-domain signals, a common
operation in feature extraction. In the context of image processing, for ex-
ample, FFT can be used to identify the frequency components of an image,
which can then be used as features for tasks such as image recognition or

45

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

classification. The high speed of the FFT algorithm makes it a valuable tool
for feature extraction in large-scale data analysis.

Both Winograd’s minimal filtering algorithm and the Fast Fourier Trans-
form contribute significantly to the high speed of feature extraction. Their
efficiency and speed make them indispensable tools in the field of data anal-
ysis and machine learning.

3.2.3 Single Shot Multibox Detector (SSD)

The Single Shot Multibox Detector (SSD) is a widely-used one-stage frame-
work that improves upon the limitations of the R-CNN family of algorithms.
In contrast to R-CNN, which requires multiple iterations to compute region
proposals and classifications, SSD combines these tasks into a single pass
through the CNN. As the name "Single Shot" implies, this streamlined ap-
proach accelerates the object detection process.

SSD Architecture

The SSD architecture is designed to output multi-scale bounding boxes from
multiple output layers, enabling it to detect objects of various sizes effectively.
The model architecture, as illustrated in Figure 3.1, is based on the VGG16
network [115], which serves as the backbone for feature extraction.

Figure 3.1: Single Shot Multibox Detector Model (SSD512)

Depending on the input image size, SSD is mainly divided into two vari-
ants: SSD300 [78] and SSD512, as shown in Figure 3.1. The first part of
the network, known as the base network, follows a standard architecture for

46

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

image classification and is responsible for feature extraction. The follow-
ing layers serve as auxiliary structures for detecting multiple objects using
multi-scale feature maps.

Multi-Scale Feature Maps

Multi-Scale Feature Maps capture information at different spatial scales in
an image, accommodating objects and patterns of varying sizes. There are
several ways to implement multi-scale feature maps in Convolutional Neural
Networks (CNNs)[58]. One approach is the use of pyramidal architectures,
where the input image is processed at different resolutions. Each resolution
captures features at a distinct scale, which are then combined to provide a
multi-scale feature representation.

Another approach is through Inception modules, introduced in GoogLeNet
[120]. These modules perform convolutions and pooling operations at multi-
ple scales in parallel, then concatenate the results. This allows the network
to learn features at different scales simultaneously. Dilated (atrous) convo-
lutions [133] offer yet another technique. They introduce a dilation factor
to standard convolutions, expanding the receptive field without increasing
the number of parameters, allowing the model to capture larger scale fea-
tures. Lastly, Feature Pyramid Networks (FPNs) [75] construct a pyramid
of feature maps at different scales, combining low-level, high-resolution fea-
tures with high-level, low-resolution features. This combination offers a rich
multi-scale feature representation. These methods enhance a CNN’s ability
to recognize objects and patterns of varying sizes, improving its performance
in many computer vision tasks.

Non-maximum Suppression

Non-Maximum Suppression (NMS) is a technique employed in various com-
puter vision tasks. It is a class of algorithms designed to select one entity,
such as bounding boxes, out of many overlapping entities. The selection
criteria can be customized to achieve the desired results, typically involving
some form of probability measure and an overlap metric like Intersection over
Union (IoU). NMS plays a crucial role in high-resolution image detection,
where more candidate regions are generated, increasing the NMS computa-
tion time. In all object detection frameworks, NMS is an essential algorithm
that influences detection accuracy and speed.

To enhance detection accuracy, several NMS variants have been proposed
[10, 52, 49]. Soft NMS [10] reduces the confidence score as a continuous func-
tion of IoU and retains all boxes, rather than discarding them. Continuous

47

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

Figure 3.2: Non-maximum Suppression algorithm

functions are manually designed in [10], and a specialized network is learned
in [52] to regain confidence. Additionally, [49] improves localization accuracy
by updating bounding box coordinates when suppressing adjacent boxes, in
addition to changing the confidence.

In terms of time cost, the worst-case complexity for NMS is O(n2), where
N is the number of boxes. As a result, the time cost becomes high when the
number of boxes is large. This issue is particularly pronounced in crowded
scene object detection, where thousands of boxes are generated by the RPN
of Faster R-CNN, and the number of candidate boxes can even exceed 10,000,
especially as high-resolution image detection gains popularity.

The map-reduce approach presented in [92] serves as the foundation
for our implementation, which includes several enhancements. Firstly, the
method in [92] requires sorted input, while our approach accepts inputs in
any order. Secondly, [92] does not account for the non-transitive property.

We start with the method described in [92], as shown in Figure 3.3[92].
Let each object class have a bit matrix M of size N × N . The matrix is
defined as follows:

Mi,j =

{
1 if i > j and IOUi,j > threashold
0 otherwise

Mi,j is a symmetric matrix, as shown in Figure 3.3, since IOU(i,j) = IOU(j,i).
All of the 1 components in the lower triangle are marked as -1. This is the
stage of the map. Row by row, the matrix is reduced: if a row of the matrix
has a -1 element, output 1, else output 0.

Figure 3.3 presents a simplified illustration of the proposed algorithm. In
the given image frame, they have three objects, three window clusters, and

48

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

Figure 3.3: Visualization of Map-reduce NMS proposal[92]

nine detections. Their matrix aims to encode the relationship between all
detections, with the initial assumption that all are potential cluster repre-
sentatives (indicated by a matrix filled with ones).

The algorithm proceeds as follows:

1. First, they decide if two candidate areas di and dj belong to the same
cluster based on whether their areas overlap beyond a given threshold.
If they do not, we assign a zero to the corresponding matrix coordinates
(di, dj) and (dj, di).

2. Next, they evaluate the non-zero values in each row. They then assign
a zero if the area of the detection indexed by the row (di) is strictly
smaller than that of the detection indexed by the column (dj). As a
result, di is discarded as a potential cluster representative.

3. Finally, a horizontal AND reduction operation is performed. This oper-
ation preserves a single representative per cluster, thereby completing
the Non-Maximum Suppression (NMS) process.

Through these steps, their algorithm effectively carries out the task of
object detection and selection within the given image frame. The GPU-based
algorithm exhibits varying acceleration effects depending on the number of
boxes. One possible enhancement is to optimize the computation of the usage
of shared memory, exploiting the parallel processing capabilities of the GPU.
Additionally, they can explore more efficient sorting and data organization
methods to further speed up the NMS process. Another aspect to consider

49

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

is the adaptability of the algorithm to different object detection frameworks,
ensuring that the improved NMS method can be seamlessly integrated into
various models.

In conclusion, our research aims to build upon the existing GPU-based
NMS method to create a more efficient and adaptable algorithm for object
detection tasks. By implementing enhancements to the computation and
sorting, we hope to create an improved NMS algorithm that can be seam-
lessly integrated into a wide range of object detection frameworks and deliver
superior performance than previous work.

3.3 Our Implementation and Optimization
In this section, we will first discuss how SSD512 is constructed using CUDA
and how to implement and improve the NMS algorithm using CUDA. De-
tailed results are discussed in the next chapter.

3.3.1 Problem of Current Research

In SSD512[78], we divide it into four parts: pre-processing layer, feature
extraction layer, proposal layer, and post-processing layer. We use [73] as
the test object. In our test, the most time-consuming part is the feature
extraction layer, which accounts for 55.38% of the total computation time.
However, the remaining three parts also account for nearly half of the overall
processing time. In the original SSD512 implementation, only the feature
extraction layer is calculated on the GPU. The remaining three parts are
all computed on the CPU. Therefore, we propose to move these three parts
to the GPU to accelerate the computation. Later, we will introduce our
GPU-based implementation method.

3.3.2 Pre-Processing

During the preprocessing phase of our approach, we focus on utilizing the
GPU efficiently to carry out tasks that prepare the input images for subse-
quent processing. These tasks include resizing the input images to a dimen-
sion suitable for the network and normalizing the images by subtracting the
mean RGB values. Normalization assists in mitigating the effects of light-
ing conditions and other environmental factors on object detection, thereby
enhancing the model’s robustness. To streamline this process, we assign a
thread to each output pixel in the resized image, allowing for concurrent pro-
cessing of each output pixel. This concurrent processing strategy enhances

50

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

the performance of the preprocessing stage.
The preprocessing tasks are executed within a single GPU function, re-

ferred to as a CUDA kernel. This approach helps to minimize the overhead
associated with launching multiple kernels and transferring data between the
CPU and GPU. Efficient memory management is also an integral part of our
optimization strategy. Techniques such as using shared memory for rapid
data access and minimizing global memory accesses are investigated. These
optimization strategies are applied to various operations within the prepro-
cessing stage, including resizing and normalization, with the aim of further
enhancing performance. The performance results affirm the effectiveness of
these approaches.

3.3.3 Feature Extraction Layer

In the feature extraction stage, we employed the cuDNN library in our imple-
mentation. This choice was made due to cuDNN’s highly optimized routines
for deep neural networks, which can significantly boost the performance of
our model. In particular, our implementation focuses on enhancing the ef-
ficiency of the VGG16 network, a critical component in the SSD model for
feature extraction. The original PyTorch version of SSD also utilizes Python,
a high-level interpreted language. While Python is known for its easy-to-use
syntax and rich ecosystem, it does not always provide the most efficient exe-
cution for low-level, compute-intensive operations like convolution, which is
widely used in VGG16. PyTorch already leverages cuDNN under the hood
for many of its operations, including those used in the VGG16 feature ex-
tractor. However, by explicitly rewriting this layer with cuDNN, we are able
to ensure relatively more optimal use of cuDNN’s capabilities according to
different CNN models, which may not always be achieved with PyTorch’s
high-level interface. By contrast, our cuDNN-accelerated version is imple-
mented in C++, a lower-level language that allows for more fine-grained
control of the computing resources. With cuDNN, we can directly tap into
the optimized routines for convolution, pooling, and other operations, pro-
vided by NVIDIA. The library is specifically designed to leverage the GPU’s
capabilities to their full extent, resulting in faster execution times for feature
extraction.

Additionally, cuDNN provides automatic tuning functionality that can
select the optimal algorithm settings based on the specific GPU architecture
and the size of the input data. This feature further contributes to the im-
proved efficiency of our feature extraction stage. It’s essential to mention
that these performance gains are hardware-dependent and can vary based on
factors like the specific GPU model used, its memory bandwidth, and the

51

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

size of the dataset processed. Despite these variables, the use of cuDNN and
C++ for feature extraction generally leads to a more efficient computation
compared to the original Python-based PyTorch version.

3.3.4 Proposal Layer

In the proposal layer stage of our implementation, the aim is to generate a
set of potential bounding boxes or ’anchors’ within the input images that
likely encapsulate objects of interest. This process is crucial for subsequent
object detection layers within the network. The proposal layer is optimized
using GPU-accelerated processes. Specifically, a unique GPU thread is as-
signed to each element, where an element could be an anchor or a candidate
region. This one-to-one mapping ensures concurrent processing of each ele-
ment, which substantially improves the efficiency of the proposal layer stage.
Moreover, in the pursuit of optimization, efforts are made to condense the
processing into as few kernels as possible. This strategy helps to reduce
the overhead associated with launching multiple kernels and minimizes data
transfer between the CPU and GPU, thereby enhancing the efficiency of the
overall process.

In the generation of proposals, strategies have been employed to create
anchors that consider varying aspect ratios and scales of potential objects
within the input images. This ensures the creation of bounding boxes suit-
able for the detection of objects with diverse sizes and shapes. The proposal
layer also includes the Softmax function, an essential component that nor-
malizes the confidence scores associated with each proposed region. The im-
plementation of Softmax on the GPU, as shown in algorithm 1, has provided
acceleration in the processing of the proposal layer.

Moreover, we adopted various memory management and data processing
techniques to further optimize the proposal layer’s performance. Utilizing
shared memory for quicker data access, minimizing global memory accesses,
and optimizing parallel reduction operations are some of the key steps taken.
It is crucial to note that these enhancements not only improved the efficiency
of individual components within the SSD512 object detection framework but
also increased the overall performance of the system. However, performance
can still vary depending on factors such as the specific GPU model used, its
memory bandwidth, the size of the dataset processed, and the complexity of
the images.

52

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

Algorithm 1: Softmax with GPU
Input: fea_in, class_num, height, channel
Output: fea_out

1 i← threadIdx.x+ blockIdx.x ∗ blockDim.x;
2 j ← threadIdx.y + blockIdx.y ∗ blockDim.y;
3 k ← blockIdx.z ∗ class_num;
4 if k < channel then
5 k_iter ← k; step← height ∗ channel
6 for k_iter < (k + class_num); do
7 coef+ = expf(fea_in[i ∗ step+ j ∗ channel + k_iter])
8 end
9 coef ← 1/coef ;

10 for k_iter < (k + class_num); do
11 fea_in[i ∗ step+ j ∗ channel + k_iter]←

expf(fea[i ∗ step+ j ∗ channel + k_iter]) ∗ coef ;
12 end
13 end
14 fea_out← fea_in;

3.3.5 Post Processing

The post-processing stage of the implementation, particularly the Non-Maximum
Suppression (NMS) algorithm, has been an area of focus for optimization ef-
forts. Non-Maximum Suppression is a common technique in object detection,
used to eliminate overlapping bounding boxes, ensuring that each object is
only detected once. The use of shared memory and algorithmic adjustments
to cater to object detection tasks has resulted in improvements in processing
times. The NMS algorithm plays a crucial role in object detection tasks. Its
primary function is to refine the candidate object detections by selecting the
most representative bounding box from each cluster of similar detections.
The process of NMS can be likened to a clustering problem involving two
essential operations: (1) classifying each detection into a particular cluster,
and (2) selecting a representative for each cluster.

To maximize the inherent parallelism offered by general-purpose GPUs
as much as possible, the NMS kernel is designed such that each processing
thread can independently assess the overlap between two specific bounding
boxes. The goal is to minimize data dependencies that could potentially en-
force serialized computations, thereby addressing the scalability challenges
associated with the conventional iterative clustering procedure. It’s impor-
tant to note that while improvements have been achieved in our method,

53

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

about 52.61% faster than the original version, the effectiveness of these op-
timizations can still be influenced by factors such as the specific GPU ar-
chitecture, different sizes of shared memory, the complexity of the images
processed, and the characteristics of the bounding box clusters.

Algorithm 2: Our NMS method with GPU
1 Function nms_kernel(d_bboxes, d_nms, num_bboxes, threshold):
2 shared_coords, shared_scores ← allocate shared memory
3 block ← this thread block
4 idx ← get current thread index
5 if idx < num_bboxes then
6 my_bbox ← d_bboxes[idx]
7 store my_bbox into shared_coords and my_bbox.score into

shared_scores at position of threadIdx.x
8 sync block
9 for i ← threadIdx.x+1 to min(blockDim.x, num_bboxes) do

10 other_bbox ← get from shared_coords at position of i
11 iou ← IoU(my_bbox, other_bbox)
12 mask ← parallel comparison(iou > threshold)
13 if threadIdx.x is a multiple of 32 then
14 d_nms[i + blockIdx.x * blockDim.x] ← (mask == 0)
15 end
16 sync block
17 end
18 end

This kernel function nms_kernel takes algorithm 2 in an array of Bound-
ingBox structures, an array to store the NMS results, the total number of
bounding boxes, and an overlap threshold as its parameters. Each Bound-
ingBox structure represents a detected object and includes its bounding
boxes coordinates (x, y, w, h) and detection score. The cooperative_groups
namespace is part of CUDA’s Cooperative Groups programming model. In
this code, it is used to create a thread block, which represents a group of
threads that can synchronize and share resources. The shared_mem shared
memory space is declared to store the coordinates and scores of each bound-
ing box in the thread block. Shared memory is a type of on-chip memory
that allows threads within the same block to share data.

The kernel function then runs a loop over all bounding boxes. For each
bounding box, it calculates the Intersection-over-Union (IoU) with all other
bounding boxes. If the IoU exceeds the threshold, it means the bounding

54

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

boxes are overlapping relatively significantly and only the one with the higher
score should be kept. The ballot_sync function is a warp-level primitive
that collects the predicate value from all active threads in the warp and
returns a mask. If the IoU is greater than the threshold, the corresponding
bit in the mask is set to 1, indicating that the bounding box should be
suppressed. Finally, the kernel writes the suppression result back to the
d_nms array in global memory. The suppression result is represented as a
binary mask, where 1 means the bounding box should be kept and 0 means
it should be suppressed.

Figure 3.4: Post Processing Data Flow

The post-processing data flow in our method consists of multiple stages,
as illustrated in Figure 3.4. Each dark grey box in this figure represents
a CUDA block, and each light grey box symbolizes a CUDA thread. The
numerical values within each thread correspond to score-coordinate pairs for
the default bounding boxes.

In the initial stage, all bounding boxes are sorted based on their scores.
Sorting is an important step as it determines the order in which the bound-
ing boxes are evaluated and eliminated. Higher-scored bounding boxes are
considered more likely to contain an object and are therefore processed first.
After sorting, the score-coordinate pairs are stored in the shared memory
for efficient access. Shared memory has lower latency and higher bandwidth
than global memory, making it suitable for storing data that needs to be
frequently accessed. In the next stage, each thread retrieves the bounding

55

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

box with the highest score from the shared memory. This is the "target"
bounding box for that thread. Subsequently, each thread calculates the In-
tersection over Union (IoU) between its target bounding box and all other
bounding boxes. The IoU is a measure of the overlap between two bounding
boxes. If the IoU of a bounding box with the target bounding box exceeds
a certain threshold, it is considered to be part of the same object detection
cluster and is eliminated.

Through this data flow, the proposed method maximizes parallelism as
much as possible by ensuring that each thread independently handles a dif-
ferent bounding box. Furthermore, it leverages shared memory to reduce
memory access latency, contributing to an overall acceleration in the post-
processing stage.

The use of Algorithm 2 necessitates the sorting of bounding boxes ac-
cording to their scores. We implemented the sorting algorithm on the GPU,
adapting the merge sort algorithm for parallel processing [34]. Additionally,
we pruned boxes with lower scores, given that the quantity of remaining
boxes impacts detection accuracy.

Our parallel merge sort comprises three stages. Initially, we divide the
input data into n equal-sized segments. Following that, we employ n thread
blocks to sort each of these segments. Finally, these sorted segments are
merged to form the final sequence. An illustrative example of parallel merge
sort is presented below, where each thread is assigned a number from the
unsorted array [34].

Figure 3.5 depicts a CUDA implementation of merge sort using two blocks
and four threads per block, showcasing our method’s operation. This ap-
proach harnesses the parallel processing capabilities of GPUs to expedite
the sorting process, thereby enhancing our object detection method’s overall
performance.

In this example, the sortBlocks function first sorts the blocks. This
function compares each block element with the adjacent one and sorts them
accordingly, forming a sorted group of four elements. This step repeats un-
til the block consists of sorted elements. Following this, the mergeBlocks
function merges the sorted blocks. It combines the blocks into a larger one,
yielding a sorted array. This function continues to be called, doubling the
block size each iteration until a single sorted block remains.

3.4 Result & Analysis
We will showcase the benchmark results of our implementation. It’s worth
noting that our framework tests did not include the training process, only

56

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

Figure 3.5: Illustration of parallel merge sort with CUDA.

the prediction phase. We directly used the weights trained from the PyTorch
version, ensuring a fair comparison between the two implementations. First,
we will provide the results for SSD512, followed by a discussion on the perfor-
mance of the NMS algorithm, where we have paid lots of effort. A summary
of our test environment can be found in Table 3.1:

CPU Intel(R) Xeon(R) CPU E5-2678 v3

GPU GeForce GTX 1080 Ti

OS Ubuntu 18.04

CUDA 11.0

cuDNN 8.0

Table 3.1: Test Environment

In this study, we compare our implementation with [73] using the PAS-
CAL VOC2007 dataset [32]. This classic dataset contains 20 categories of
objects for identification purposes. We will conduct various analyses on ac-
curacy and speed later on. Our tests were conducted using a GeForce GTX
1080 Ti. This choice was deliberate to ensure the applicability and scalabil-
ity of our methodology across a wide variety of real-world scenarios. Given
that the 1080 Ti is relatively older, we reasoned that if our techniques could

57

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

demonstrate effective performance enhancement on this GPU, they will also
be likely applicable to newer, more powerful GPUs. Consequently, this guar-
antees that our approach is future-proof and adaptable, ensuring its relevance
and usability as technology progresses.

Another reason for selecting the GeForce GTX 1080 Ti is its larger mem-
ory capacity, which facilitates the execution of all computations on the GPU
without necessitating data exchanges with the CPU. Initially, we used the
GeForce GTX 1050 Ti, but its limited memory size did not allow all com-
putations to run on the GPU exclusively. This requirement for a larger
memory capacity is critical to our objective of minimizing data transfers
between the CPU and GPU, thus ensuring optimal performance. In addi-
tion, it is worth noting that all our implementations utilize single-precision
floating-point format (FP32) for computations. This choice is motivated
by the balance between computational precision and resource utilization, as
FP32 offers sufficient precision for most computer vision tasks while consum-
ing less memory and computational resources compared to higher precision
formats.

3.4.1 Accuracy

To verify the effectiveness of our reconstructed SSD512 network, we compare
its accuracy with the original work [78]. Precision and recall are two metrics
used to evaluate accuracy. The accuracy of each output bounding box can
be categorized into four classifications: true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN). Precision is defined as:

Precision =
TP

TP + FP

Here, TP and FP represent the number of true positives and false posi-
tives, respectively. The recall is defined as:

Recall =
TP

TP + FN

where FN represents the number of false negatives. Precision indicates
how many default boxes correctly represent the target objects’ positions
among the outputs, i.e., the correctness of the output bounding boxes. Re-
call refers to the number of target objects captured in the final output. Since
items in datasets are divided into multiple classes, another metric called
"mean average precision" (mAP) is introduced to represent the overall pre-

58

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

cision:
mAP =

1

|classes|
∑

c∈classes

Precision(c)

where |classes| denotes the number of classes. We conducted an exper-
iment to assess the mAP of SSD512. The original SSD512’s performance is
provided by the author of the study. The experiment uses the same PAS-
CAL VOC2007 datasets [32] as the SSD publication[78]. The results are
compared with the reported value in Table 3.2. The term "proposals" refers
to the number of default boxes generated in the final output of SSD512.

Model Proposals mAP(%)

Original
SSD512

200 75.6
400 76.4
1000 76.8
4000 76.4

Our accelerated
SSD512

200 75.2
400 76.1
1000 76.4
4000 76.2

Table 3.2: The mAP comparison of our SSD512 with the original

Experiments were conducted using the PASCAL VOC2007 datasets. "Pro-
posals" refers to the number of default boxes generated in the final output
of SSD512. As shown in the right column, our accelerated SSD512 achieves
nearly the same level of accuracy as the original one across different pro-
posal amounts. As depicted in Table 3.2, the mAP of our implementation
aligns closely with that of the original SSD512, with any differences lying
within acceptable margins. Furthermore, the table illustrates that as the
number of bounding box proposals increases, the mAP experiences gradual
improvement. However, it’s noteworthy that an increase in proposal count
beyond 4000 sees a bottleneck in mAP improvement, eventually leading to a
slight decline. This behavior could be attributed to increased false positives
when too many bounding boxes are proposed, adversely affecting precision
without improving recall. The comparison of mAP (Mean Average Precision)
performances between our CUDA-accelerated SSD512 model and the original
PyTorch SSD512 model is detailed in Table 3.2. The varying number of pro-
posals utilized is indicative of the trade-off between computational resources
and detection precision.

59

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

Upon closer analysis, the disparity in prediction accuracies between the
two models may be attributed to the following:

• Precision Issues: One of the significant factors that could have influ-
enced the mAP performance of our CUDA-accelerated SSD512 model
is the precision of floating-point operations. In our implementation,
we used a single-precision floating-point format (FP32), which, while
efficient in terms of memory usage and computational speed, can intro-
duce small rounding errors during arithmetic operations. For instance,
consider a scenario in our neural network where we are performing a se-
ries of multiplications and additions in a layer. This discrepancy seems
negligible for this single operation. However, imagine this operation
being part of a larger computation involving millions of such opera-
tions. The small errors from each operation can accumulate, leading
to a more significant deviation in the final result. This accumulated
error can manifest in various ways in a deep learning model. For in-
stance, during the forward pass, the computed activations of neurons
might slightly deviate from their expected values. During the backward
pass, the gradient values used to update the model’s weights might be
slightly off. These discrepancies, while minor in isolation, can com-
pound over numerous iterations of training, leading to a model that
performs slightly differently than expected.

• Usage of OpenCV Library Functions: Our CUDA implementation
leverages OpenCV for image preprocessing. It’s worth noting that cer-
tain OpenCV functions, especially those running on the GPU, might
have minor numerical discrepancies compared to their CPU counter-
parts or other libraries. These discrepancies, while typically minuscule,
might affect the final prediction results, especially when these functions
are used extensively.

• Randomness: Despite the lack of training steps in our implementa-
tion, the forward propagation process still involves extensive parallel
computations. The inherent concurrency in GPU programming can
sometimes lead to minor inconsistencies, as the execution order and
speed of threads might affect the outcomes. This is especially common
when handling operations that require multiple computational stages,
such as reduction operations. These inconsistencies can, over time,
cause accumulated errors, which might contribute to the lower accu-
racy observed. Additionally, certain implementations of algorithms for
inference in CUDA might involve a degree of non-determinism due to
the inherent parallelism of GPU architectures. Consequently, even with

60

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

the same input and weights, these operations could lead to slight varia-
tions in output between different runs, thus causing slight discrepancies
in the final predictions when compared to a more deterministic CPU-
based implementation like PyTorch.

• Hardware discrepancies: Despite using the same trained weights
from the PyTorch model, the hardware discrepancy issue can still be
relevant. The computation of neural networks relies heavily on floating-
point arithmetic. However, the way floating-point numbers are handled
can differ subtly but significantly between CPUs and GPUs, and even
among different GPU architectures.

Although the CUDA-accelerated SSD512 model presents slight drops in
mAP compared to the original model, the differences lie within reasonable
boundaries. In fact, the accelerated model offers near-identical performances
while substantially reducing the computational time, demonstrating the feasi-
bility and efficiency of CUDA implementations for deep learning-based object
detection models.

3.4.2 Speed

In the ensuing segment of this study, we will unveil the findings derived
from our computational speed evaluations, paying particular attention to
the performance metrics pertaining to the post-processing stage.

Execution time of each component

SSD512 can be conceptually understood as being partitioned into four key
components: pre-processing, feature extraction, proposal layer, and post-
processing. The relative time contributions of each of these components
within the overall framework have not been widely discussed in the literature,
prompting us to perform a detailed measurement in our own experimental
setup. The results, as displayed in Figure 3.6, reveal that feature extraction
(VGG16) is the most time-consuming process, occupying about 55.38% of
the total time. The second most resource-demanding step is post-processing,
an area in which we have particularly focused our optimization efforts.

As illustrated in Figure 3.6, a detailed breakdown of the time alloca-
tion across the various components of the SSD512 model is provided. It
is noteworthy that the process of feature extraction, which currently runs
exclusively on the GPU, occupies the majority of the computational time.
The remaining components, commonly termed ’common basic processes’,
are handled by the CPU. These common basic processes, despite being less

61

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

Figure 3.6: Pytorch version of SSD512 time ratio

time-intensive individually, cumulatively represent a substantial portion of
the overall processing time. Their computational characteristics and current
CPU-bound implementation constitute the primary focus of our research en-
deavors.

Given the evident time consumption of the feature extraction process and
the potential computational power of modern GPUs, migrating these com-
mon basic processes from CPU to GPU could indeed be a promising strategy.
However, this approach should not be considered a panacea. The feasibility
and efficiency of such a transition are contingent on various factors, including
the specific computational requirements of each process, the parallelization
potential, and the hardware resources available. It is therefore proposed that
a systematic, in-depth investigation be carried out to evaluate the potential
benefits and drawbacks of porting these common basic processes to the GPU.
This would ensure an empirically grounded and technologically sound basis
for any subsequent optimizations and could potentially contribute to better
performance improvements in the SSD512 model.

Speed Comparison of each component

Figure 3.7 is a comparison of our implementation results with the original
SSD512. All parts of our implementation are faster than the original SSD512.

62

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

Figure 3.7: Execution time Comparison Result

As illustrated in Figure 3.7, substantial improvements can be observed in the
proposal layer and the post-processing layer. By rewriting the feature extrac-
tion layer, we also achieved an approximately 9.19% acceleration compared
to the original implementation. The proposal layer and the post-processing
layer exhibit relatively significant enhancements, with the proposal layer be-
ing 28.44% faster and the post-processing layer being 52.61% faster than
their original counterparts. Such relatively better speed improvements can
be attributed to our refined algorithm and the comprehensive utilization of
the GPU.

Although the speed-up in the feature extraction layer is not as pro-
nounced, it still plays a vital role in accelerating the overall SSD512 frame-
work. In summary, our implementation is 22.53% faster than the original
version, demonstrating the feasibility of using GPUs to accelerate existing
object detection frameworks. This highlights the effectiveness of our ap-
proach in enhancing the performance of the SSD512 framework for object
detection tasks.

Speed Comparison of NMS algorithm

Initially, our attention will be concentrated on the analysis of the Non-
Maximum Suppression (NMS) algorithm, incorporating sorting in our evalu-

63

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

ation. This methodical approach aligns with the comprehensive and rigorous
standards typically expected in doctoral research.

Proposal/Boxes CPU(ms) GPU(ms) Speed-Up
200/24564 5.82 3.47 ×1.68
400/24564 6.37 3.58 ×1.78
1000/24564 7.46 4.01 ×1.86
4000/24564 13.13 6.47 ×2.03

Table 3.3: Execution time Of NMS and sorting(ms)

In table 3.3, We set the threshold to 0.3. The left column shows the
number of boxes for the proposal and the number of boxes left after sorting.
The middle column shows the results of the tests on the CPU, and the right
column shows the results of the GPU tests. In our experiments, we initially
had 24,564 bounding boxes, which is also the same number as SSD512. We
eliminate low-scoring boxes during the sorting process and subsequently sort
the remaining ones. We then select the top 200, 400, 1,000, and 4,000 boxes
for evaluation. Since the number of boxes varies, the test results differ ac-
cordingly. In our previous comprehensive assessment, we employed data from
4,000 default boxes. The case with 4,000 boxes is the most computationally
demanding.

It’s noteworthy to mention that as the number of proposals (or bounding
boxes pre-sorting) increases, the speed-up factor also rises. This observa-
tion can be attributed to the ability of GPUs to exploit parallelism more
effectively, thus yielding higher relative performance as the number of simul-
taneous tasks increases. In a scenario where there are only 200 proposals, the
GPU is already 1.68 times faster than the CPU. When the number of pro-
posals increases fourfold to 800, the speed-up factor escalates to 1.78. This
trend continues up to 4,000 proposals, where the GPU is over twice as fast as
the CPU. One of the intriguing aspects of these results is the demonstration
of the CUDA-optimized algorithm’s ability to maintain high performance
even when the number of proposals is large. This is particularly crucial in
real-world scenarios where the number of potential bounding boxes could be
quite high, reinforcing the advantage of GPU-based methods in such com-
putational contexts. The robustness of the CUDA-based approach to the
number of proposals underlines its superiority and its potential for wider
adoption in similar computational challenges.

In the development of our methodology, we strategically leverage one-
dimensional blocks in our GPU-accelerated computation. This approach
emerged as the most effective solution through a series of rigorous testing sce-

64

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

Proposal 200 400 1000 4000 20000
Faster Python[85] 0.67 1.32 2.17 8.06 78.61
Map-reduce[92] 0.28 0.54 1.29 5.69 42.67
Our Method 0.08 0.13 0.66 3.28 28.75

Table 3.4: Execution time of Different NMS(ms)

narios, ensuring the alignment of our computational problem characteristics
with the selected model to yield optimal results. The use of one-dimensional
blocks enhances the manageability of threads, enabling the efficient utiliza-
tion of the GPU’s computational resources. This approach simplifies the
mapping between the data elements and the GPU threads, reducing compu-
tational overhead and in turn, boosting overall performance.

Table 3.4 provides a comparative analysis of our method against two
other techniques across various proposal volumes. Our proposed method
consistently outperforms the other two techniques, providing a convincing
demonstration of the effectiveness of our GPU-accelerated approach. Specif-
ically, the results validate our proposition that a GPU-based algorithm, when
handling computationally intensive tasks like Non-Maximum Suppression
(NMS), can deliver a substantial performance improvement. As the number
of proposals escalates, all methods naturally exhibit increased execution time.
However, our method’s execution time grows at a relatively slower pace, indi-
cating superior scalability, a quality crucial in real-world applications where
the number of proposals can be substantial. Moreover, the one-dimensional
block structure, despite its simplicity, illustrates an excellent balance of scal-
ability and efficiency, particularly with the escalating number of proposals.
However, with the increase in proposal volume, the speed-up ratio tends
to taper, largely due to the finite number of available GPU threads. Once
the tasks surpass the GPU’s thread capacity, they must be queued, causing
waiting times that can impact performance.

Despite this minor setback, the overall performance of our method re-
mains superior. Furthermore, this observation highlights potential avenues
for further optimization and improvement. Future work could consider the
implementation of advanced strategies, such as dynamic resource allocation
or more sophisticated scheduling algorithms, to circumvent this limitation
and fully exploit the GPU’s computational power.

NMS algorithms employing various batch sizes effectively remove related
boxes for distinct types of boxes, leading to a relatively significant increase
in speed. The different batch size method is incorporated into the NMS algo-
rithm, allowing for the separation of diverse kinds of boxes. This technique is

65

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

realized by adding an offset to boxes of different categories. However, as the
number of categories increases, more memory is consumed, which in turn,
results in a corresponding decrease in speed, as shown in Table 3.5. This
trade-off highlights the need for careful consideration when selecting batch
sizes in order to optimize both memory usage and processing speed.

Batch Size CPU(ms) GPU(ms) Speed-Up
1 1.32 0.129 ×10.23
2 3.16 0.147 ×21.50
4 7.51 0.162 ×46.36
8 16.68 0.193 ×86.42
16 35.93 0.285 ×126.07

Table 3.5: Performances of NMS with different batch size(ms)

Batch size, in the context of our implementation, refers to the number
of images that are processed simultaneously during the Non-Maximum Sup-
pression (NMS) stage. NMS is a crucial step in object detection algorithms,
including our SSD512 model, where it helps in reducing the number of over-
lapping bounding boxes by keeping only the most probable ones. By increas-
ing the batch size in the NMS algorithm, we process more images at once,
potentially speeding up the prediction process. However, it also requires more
memory resources. Therefore, choosing an appropriate batch size in the NMS
stage is a balance between computational efficiency and resource utilization.
Table 3.5 provides an overview of the CPU and GPU performances of NMS
across different batch sizes, highlighting the superior efficiency of our pro-
posed method. With a batch size of 1 and 400 proposals, our method gets
a speed-up ratio of at least 10. This performance enhancement becomes in-
creasingly evident as the batch size incrementally increases, signifying the
effectiveness of our approach in boosting processing speed while maintaining
the requisite level of accuracy in object detection tasks. A deeper examina-
tion of the data reveals that the execution time of the GPU method does not
scale linearly with the batch size. In instances where the batch size is less
than 16, the execution time remains relatively stable. This can be attributed
to the overhead of kernel launch dominating the processing time when dealing
with smaller batch sizes. Simultaneously, as the batch size expands, thread-
level parallelism intensifies, launching more threads and facilitating a higher
volume of calculations within the same timeframe. This situation contributes
to the improved speed of our method, reflecting the powerful capability of
GPU computation.

However, when the batch size equals or exceeds 16, the number of threads

66

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

launched may surpass the number of threads a GPU can execute concurrently.
This saturation point results in an extended execution time due to the need
for waiting until more threads are available. Importantly, we adopted a
two-dimensional block structure in this scenario, introducing an additional
dimension for batches. This strategic adaptation is found to be exception-
ally effective, providing an impressive performance boost while dealing with
larger batch sizes. The two-dimensional block configuration permits more
fine-grained control over thread allocation, thus maximizing parallel process-
ing and enhancing the efficiency of the overall computation. In essence,
these results underscore the potential of GPU-accelerated computations in
handling large-scale tasks, particularly when coupled with the right configu-
rations, such as our two-dimensional block structure. However, it also hints
at the necessity to further explore the trade-offs between the batch size, the
overhead of thread launching, and the maximum thread capacity of the GPU,
to refine the method and achieve even higher performance.

In the case of CPU-based NMS, each image takes 1.32ms to process when
the batch size is 1 and the number of proposals is 400. According to our
results in Table 3.3, our approach takes 47.17 ms to perform an image infer-
ence with a batch size of 1 and 4000 proposals. If NMS runs on the GPU, it
will account for approximately 13.72% of the total processing time. Utilizing
the GPU, the NMS can be completed in roughly 3ms, which is a negligible
amount of time within the overall pipeline. This represents an improvement
in performance speed.

Other Framework

In figure 3.8, we present a comparison of our accelerated SSD512’s speed
against multiple other target detection frameworks. While creating an apples-
to-apples comparison is inherently difficult, we have strived to contextualize
our implementation against other prevalent frameworks. Choosing the most
effective model isn’t a clear-cut process, as real-world applications often ne-
cessitate a careful equilibrium between speed and accuracy.

Apart from detector types, one must also contemplate additional ele-
ments that can significantly impact performance. These factors include fea-
ture extractors (such as VGG16, ResNet and MobileNet), Non-maximum
suppression (NMS) IoU threshold, bounding box encoding, and other related
considerations. In Figure 3.8, we depict the speed test outcomes for a di-
verse array of object detection frameworks. The observations reveal that the
overall speed of two-stage frameworks[26, 105] tends to lag behind one-stage
frameworks[104]. However, these two-stage frameworks typically achieve
higher accuracy. Despite the landscape, our implementation showcases a

67

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

Figure 3.8: Execution time Comparison Result with Other Framework

noteworthy edge in terms of detection speed, earning the distinction of being
the fastest among the analyzed frameworks. Please note that this does not
declare our approach as universally superior, but merely highlights the ef-
fectiveness of our implementation in specific contexts where detection speed
is of paramount importance. Furthermore, our approach is not confined to
a specific context, and instead, exhibits a high degree of versatility. It can
be seamlessly applied to a wide array of detection frameworks, extending its
applicability beyond merely object detection.

3.5 Conclusions
Our research, which focused on the GPU acceleration of the SSD512 object
detection algorithm, has yielded tangible outcomes. By optimizing common
processes found in a variety of detection networks, we have not only enhanced
the performance of SSD512 but also outlined a methodology that can be
extrapolated to other better detection networks. These include prominent
architectures such as Mask R-CNN[46], YOLO[102], and M2det[139], among
others.

Our speed-up approach has demonstrated the capability to handle the
intricate complexity associated with these detection networks and made an
effective trade-off between accuracy and speed. An important insight derived
from our analysis is that the complexity of the detection architecture directly

68

CHAPTER 3. SPEED-UP SINGLE SHOT DETECTOR ON GPU WITH
CUDA

influences the proportion of common processes involved. As such, our ap-
proach gains in relevance and value with the escalating complexity of these
architectures, paving the way for further enhancements in state-of-the-art
object detection systems.

Despite observing improvements in execution time, it is also notewor-
thy that convolution and fully connected layers still constitute a substantial
proportion of the overall processing time. It suggests a fertile ground for
further optimizations and improvements. We hypothesize that applying our
techniques to a network with less convolution computation could potentially
yield a more marked speedup, a prospect that we intend to explore in our
future work.

Our tests were predominantly conducted on a relatively powerful GPU,
which delivered robust results. However, for broader applicability and com-
mercial viability, it is important to consider GPUs with lower power con-
sumption. While these GPUs may not deliver the same level of performance
as high-end GPUs, they offer a better balance between power efficiency and
computational power, making them more suitable for a wide array of real-
world applications. These applications span across diverse sectors including
but not limited to autonomous vehicles, unmanned aerial vehicles, and even
edge computing devices. This points to a potentially promising research di-
rection - exploring more power-efficient GPUs and devising tailored strategies
to maximize their performance in object detection tasks, which will consti-
tute a significant part of our future endeavors.

In conclusion, the research presented here establishes a solid foundation
for GPU-accelerated object detection. It has elucidated the potential for
further advancements and set a clear direction for future explorations in this
domain. As technology advances and object detection algorithms become
more complex, our approach provides an essential blueprint for harnessing
the power of GPUs to achieve unprecedented levels of performance.

69

Chapter 4

Optimization for the Swin
Transformer

4.1 Introduction
The field of computer vision has witnessed remarkable advancements in re-
cent years, fueled by the rapid progress of deep learning techniques. Convo-
lutional neural networks (CNNs) have served as the foundation of computer
vision, achieving significant success in various tasks such as image classifica-
tion [66, 115, 48], object detection [42, 105, 102, 69, 142], semantic segmenta-
tion [82], and video recognition [59, 127]. Nevertheless, the recent advent of
transformers [124], initially designed for natural language processing tasks,
has introduced new opportunities in the computer vision domain, challenging
the supremacy of CNNs. Following the successful application of the AlexNet
[66] in image classification tasks, the field of convolutional neural networks
(CNNs) experienced an explosion of innovative research. This period saw
the development of several prominent backbone networks such as GoogLeNet
[120], VGG [115], and ResNet [48]. Concurrently, the domain of object detec-
tion frameworks also witnessed significant advancements. Techniques such
as Faster R-CNN[105] and Mask R-CNN[46] emerged as two-stage detectors,
offering a more accurate albeit slower alternative to single-stage detectors
like YOLO [102] and SSD [78].

Despite the success of CNNs in the field of computer vision, recent re-
search has shown that Vision Transformers (ViT) [31]have the potential to
surpass CNNs’ performance in various visual applications [3, 17, 7, 117, 80].
Introduced by Vaswani et al. [124], Transformers have revolutionized the
field of natural language processing (NLP) and have recently shown promise
in computer vision tasks.

70

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Initially developed for machine translation, the Transformer’s ability to
model long-range dependencies has proven beneficial for a variety of tasks.
Further advancements led to the development of Transformer-based pre-
trained models (PTMs) [96], which have demonstrated state-of-the-art per-
formance in numerous NLP tasks.

The successful application of Transformers in NLP tasks prompted re-
searchers to explore their potential in other domains. Dosovitskiy et al. [31]
pioneered this initiative by introducing the Vision Transformer (ViT), which
demonstrated competitive performance on image classification tasks. Subse-
quent research expanded the application of Transformers to other computer
vision tasks, resulting in architectures such as DETR [17] for object detection,
DeiT [122] for image classification, and TimeSformer [8] for video recognition.
Despite their remarkable results, these architectures often face scalability is-
sues and high computational complexity. Addressing these limitations, Liu
et al. [80] introduced the Swin Transformer, a hierarchical vision transformer
that employs a local window-based self-attention mechanism and a shifted
window strategy. This innovative approach has led to state-of-the-art perfor-
mance across a range of computer vision tasks and benchmarks, exhibiting
strong scalability and adaptability. As such, the Swin Transformer repre-
sents a promising avenue for future research and applications in the field of
computer vision.

In the preceding chapter, we discussed the employment of GPUs to accel-
erate object detection frameworks, primarily those employing backbone net-
works reminiscent of CNNs. However, with the emerging dominance of the
Transformer model, which has demonstrated considerable prowess in object
detection, our focus in this chapter pivots towards the Transformer model,
specifically the Swin Transformer. Our objective initially involved optimiz-
ing the model to a degree, all the while preserving its inherent strengths,
and subsequently utilizing the GPU to alleviate the computational speed
challenges. The Swin Transformer was selected for this purpose, given its
high-performance characteristics and impressive efficacy in a variety of com-
puter vision tasks. The presence of parallel computation possibilities within
its structure allows for acceleration, thereby rendering it an ideal choice for
our studies. This thoughtful strategy led to effective optimization without
compromising the core benefits of the Swin Transformer model.

In this chapter, we build upon the Pyramid Swin Transformer, which
employs different-size windows in the Swin Transformer architecture to en-
hance its performance in image classification and other computer vision tasks,
achieving an effective trade-off between accuracy and computation complex-
ity. The Pyramid Swin Transformer addresses the problem of the lack of
connections among windows on a large scale in the original Swin Trans-

71

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

former. To enhance training efficiency and detection speeds, we have honed
the acceleration of the underlying window-based Multi-head Self Attention
(W-MSA) mechanism which is the most important basement part within the
Swin Transformer and Pyramid Swin Transformer models. Given the innate
potential of W-MSA for parallel computation, we identified GPU utilization
as an effective strategy for its acceleration optimization, looking forward to
striking an optimal balance between speed and accuracy.

Figure 4.1: Pyramid Swin Transformer

In figure 4.1, a) model is used for image classification, b) model is used
for object detection, c) model is used for semantic segmentation, d) model is
used for video recognition.

Our goal is to test our Pyramid Swin Transformer on a wider range of com-
puter vision tasks, demonstrating its potential for various vision applications
and its superior performance, by implementing multiple windows of varying
sizes on an extensive feature map, we construct a layered hierarchy of win-
dows. In this arrangement, a single window in the upper layer encapsulates

72

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

the features of four windows in the immediate lower layer. This progression
strengthens the interconnections among the windows, thereby enhancing the
overall representational capability of the model. Furthermore, the funda-
mental aim of this work is to enhance detection results while maintaining
optimal speed. As our Pyramid Swin Transformer architecture adds to the
computational burden, it becomes crucial to assure the efficiency and com-
petitiveness of our model for training and detection tasks. With this in mind,
we have utilized the inherent parallelism of the Pyramid Swin Transformer’s
W-MSA to formulate a CUDA-enabled W-MSA algorithm. By leveraging the
CUDA-based W-MSA algorithm that exploits the parallelism of the core W-
MSA operation within the Pyramid Swin Transformer, we are ensuring the
competitiveness of our model, leading to more effective and efficient training
and detection procedures. Our experiments demonstrate the improved per-
formance achieved by the new architecture across four vision tasks: image
classification on ImageNet [108], object detection on COCO[77], semantic
segmentation on ADE20K[141], and video recognition on Kinetics-400[60],
as shown in Figure 4.1. Moreover, our GPU-accelerated variant of W-MSA
outpaces the performance of the original W-MSA implementation in terms
of speed.

4.2 Related Work
In this section, we provide an overview of the key advancements and architec-
tures that have contributed to the development of our Pyramid Swin Trans-
former. We begin by discussing Feature Pyramid Networks, which have been
instrumental in building hierarchical feature representations. Next, we dis-
cuss the emergence of Vision Transformers, which have shown great promise
in various computer vision tasks. Finally, we delve into the Swin Trans-
former, a hierarchical vision transformer that has achieved state-of-the-art
performance in several vision benchmarks.

4.2.1 Feature Pyramid Network

Feature Pyramid Networks (FPNs) [75] are a popular and versatile neural
network architecture that addresses the challenge of scale variation in images.
They have been successfully applied to a wide range of computer vision tasks,
such as object detection, semantic segmentation, and instance segmentation.
In this subsection, we provide an in-depth overview of FPNs, discussing their
motivation, design principles, and applications in various computer vision
tasks.

73

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Scale variation is a fundamental challenge in computer vision, as objects
in real-world images can appear at vastly different sizes and resolutions.
Traditional convolutional neural networks (CNNs) often struggle with this
issue, as they are designed to capture local patterns and may not be robust to
changes in scale. To address this problem, researchers have proposed various
approaches, such as image pyramids [1], scale-invariant feature transform
(SIFT) [83], and more recently, deep learning-based methods like multi-scale
feature learning [113] and spatial pyramid pooling (SPP) [47]. However, these
methods either require a large amount of computation or fail to fully exploit
the rich hierarchical feature representations learned by deep CNNs.

FPNs were proposed as a solution to these shortcomings, building on the
strengths of deep CNNs while effectively handling the issue of scale variation.
By combining low-level features with high-level semantic information, FPNs
can efficiently process objects of different scales in an image.

Design Principles

FPNs consist of a bottom-up pathway, a top-down pathway, and lateral con-
nections. The bottom-up pathway is essentially a deep CNN that computes
a feature hierarchy with increasing levels of abstraction. At each level, the
spatial resolution is downsampled by a factor of 2, and the number of chan-
nels is typically doubled to maintain a constant time complexity. This results
in a pyramid of feature maps, with each level corresponding to a different
scale.

The top-down pathway aims to refine and propagate high-level semantic
information to lower levels of the pyramid. This is achieved by upsampling
the feature maps at each level by a factor of 2 and then combining them with
the corresponding feature maps from the bottom-up pathway via lateral con-
nections. The lateral connections are implemented using 1× 1 convolutional
layers, which serve to reduce the number of channels in the bottom-up feature
maps to match the top-down feature maps. The combination of the upsam-
pled top-down feature maps and the lateral connections is performed using
element-wise addition, effectively fusing the high-level semantic information
with the fine-grained spatial details.

The resulting feature pyramid can be used as a multi-scale feature repre-
sentation for various computer vision tasks. For instance, in object detection,
the pyramid can be fed into a region proposal network (RPN) [105] and a
detection head to predict bounding boxes and class labels for objects at dif-
ferent scales. Similarly, in semantic segmentation, the pyramid can be used
to generate dense pixel-wise predictions by upsampling and combining the
feature maps at different levels.

74

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Applications

FPNs have been widely adopted in various computer vision tasks due to their
effectiveness in handling scale variation:

Object Detection: FPNs were initially introduced for object detec-
tion in the context of the Faster R-CNN framework [75]. By incorporating
FPNs, the detection performance significantly improved, especially for small
objects. FPNs have since become a standard component in many state-
of-the-art object detection architectures, such as RetinaNet [76], Cascade
R-CNN []cai2018cascade, and Mask R-CNN [46].

• Semantic Segmentation: FPNs have been successfully applied to
semantic segmentation tasks as well. In the context of DeepLab [18],
FPNs were used to generate multi-scale feature representations that
improved the model’s ability to handle objects of varying scales. Sim-
ilarly, PSPNet [138] employed a pyramid pooling module that built
upon the FPN architecture to capture global context information for
semantic segmentation.

• Instance Segmentation: Instance segmentation is another area where
FPNs have demonstrated remarkable performance. Mask R-CNN [46],
a widely-used instance segmentation framework, integrated FPNs into
its architecture to achieve state-of-the-art results on the COCO dataset
[77].

• Panoptic Segmentation: Panoptic segmentation is a task that com-
bines semantic and instance segmentation, aiming to assign a class label
and instance ID to each pixel in an image. FPNs have been utilized in
panoptic segmentation architectures like Panoptic FPN [62] and UP-
SNet [131], where they help provide multi-scale feature representations
and improve the overall segmentation performance.

• Pose Estimation: FPNs have also been employed in the field of hu-
man pose estimation. In the context of multi-person pose estimation,
the FPN architecture has been incorporated into models like High-
erHRNet [19] to capture multi-scale human key points, improving the
estimation accuracy for both small and large-scale human instances.

In summary, Feature Pyramid Networks have demonstrated their effective-
ness in handling scale variation and have been widely adopted in various
computer vision tasks. Their ability to fuse high-level semantic information
with fine-grained spatial details makes them a powerful tool for addressing
the challenges posed by objects of different sizes in real-world images.

75

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

4.2.2 Vision Transformer

The Vision Transformer (ViT) has gained significant attention in the com-
puter vision community due to its competitive performance in various vision
tasks. The underlying principle of ViT is the Transformer model [124], which
was originally introduced for natural language processing (NLP) tasks. In
recent years, the Transformer model has been successfully adapted to handle
computer vision problems, showing promising results and even outperforming
traditional convolutional neural networks (CNNs) in some cases.

Transformer Model

The Transformer model, introduced by Vaswani et al. [124], revolutionized
the field of natural language processing by addressing the limitations of re-
current neural networks (RNNs) and convolutional neural networks (CNNs)
in capturing long-range dependencies in input sequences. Unlike RNNs and
CNNs, which process sequences iteratively or through local receptive fields,
the Transformer model employs a self-attention mechanism to directly model
dependencies between any two elements in an input sequence, regardless of
their distance. The core component of the Transformer model is the Trans-
former block 4.2, which consists of two main sub-layers: a multi-head self-
attention mechanism and a position-wise feed-forward network. The multi-
head self-attention mechanism enables the model to capture different aspects
of the relationships between elements in an input sequence by computing
weighted sums of the input elements. The weights for each element are cal-
culated based on the similarity between the element’s query, key, and value
vectors. This allows the model to dynamically focus on different parts of
the input sequence, thereby capturing long-range dependencies and complex
interactions between elements. To provide information about the relative
positions of elements in the input sequence, the Transformer model incorpo-
rates positional encodings into its input embeddings. These encodings are
added to the input embeddings before they are processed by the multi-head
self-attention mechanism, thus allowing the model to consider the positions
of the elements when computing attention weights.

Following the multi-head self-attention mechanism, the output is then
passed through a position-wise feed-forward network, which consists of two
fully connected layers with a non-linear activation function (e.g., ReLU) in
between. This network further processes the information extracted by the
self-attention mechanism and helps refine the representations. The Trans-
former model is built by stacking multiple Transformer blocks, forming a
deep architecture capable of learning complex relationships and generating

76

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Figure 4.2: Transformer block

rich representations. The model is trained end-to-end using gradient-based
optimization techniques. Since its introduction, the Transformer model has
been widely adopted and adapted for various tasks, not only in natural lan-
guage processing but also in computer vision, where it has been used to
replace or complement traditional CNN-based architectures.

Self-attention Mechanism The self-attention mechanism, also known as
the transformer model in some contexts, is a powerful technique used in
many modern machine learning models. It is particularly popular in the
field of natural language processing, where it forms the backbone of models
like BERT[30], GPT[97], and Transformers[124], but has also been applied
with great success in vision tasks.

Self-attention is a method of assigning importance weights to input ele-

77

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

ments. It is called "self" attention because the weights are determined based
on the input itself, rather than on any external context or learned param-
eters. This allows the model to focus on the most important or relevant
parts of the input when making predictions, rather than treating all input
elements equally. In the self-attention mechanism, each element in the in-
put (which could be words in a sentence, pixels in an image, or nodes in
a graph) is compared with every other element to compute a score. This
score is then used to weigh the contribution of each element to the output.
This enables the model to capture interactions between elements that are far
apart in the input sequence, overcoming the limitations of models that only
consider local context. In essence, the self-attention mechanism provides a
flexible and powerful way for models to automatically learn to focus on the
most important parts of their input, leading to more accurate and robust
predictions. As our understanding of this mechanism continues to grow, it is
likely to play an increasingly important role in the development of advanced
machine-learning models. The self-attention mechanism is defined as:

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V, (4.1)

where Q, K, and V are the query, key, and value matrices, respectively,
and dk is the dimension of the key vectors. These matrices are derived from
the input through linear transformations using learned weight matrices:

Q = XWQ, K = XWK , V = XWV , (4.2)

where WQ, WK , and WV are the learned weight matrices for queries, keys,
and values, respectively, and X is the input matrix.

Figure 4.3, the self-attention mechanism computes a weighted sum of the
input values, where the weights are determined by the compatibility between
the queries and keys. This allows the model to focus on different parts of the
input sequence, effectively capturing the dependencies between elements.

Multi-Head Attention The Multi-Head Attention mechanism is an ad-
vanced variant of the self-attention mechanism that aims to expand the
model’s ability to focus on different types of information in the input. In
standard self-attention, each input element interacts with every other ele-
ment to produce an attention score, which is used to weigh the contribution
of each element to the output. While this allows the model to capture com-
plex interactions within the input, it also means that the model uses the

78

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Figure 4.3: Self Attention Architecture

same method to consider all types of interaction. To capture different as-
pects of the input data, the Transformer model uses multi-head attention,
which consists of several self-attention mechanisms running in parallel:

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O, (4.3)

where headi = Attention(QWQ
i , KWK

i , V W V
i), and WQ

i , WK
i , W V

i , and
WO are learned weight matrices.

The multi-head attention mechanism, as shown in figure 4.4, allows the
model to learn different types of dependencies and interactions between the
elements in the input sequence.

The Multi-Head Attention mechanism addresses this by splitting the at-
tention process into multiple parallel ’heads’. Each head performs its own
self-attention computation, effectively allowing the model to learn different
types of interaction in parallel. The outputs of each attention head are then
concatenated and linearly transformed to produce the final output. This
allows the model to consider and combine different types of information in
the input, leading to a richer understanding of the input data. The number
of heads in the Multi-Head Attention mechanism is a hyperparameter that
can be tuned based on the specific task and data. In practice, increasing the
number of heads can often lead to improved performance, as it allows the
model to consider more types of interaction simultaneously. The Multi-Head
Attention mechanism is a key component of many modern machine learning
models, especially in the field of natural language processing. It allows these
models to capture a more nuanced understanding of their input data, leading
to improved performance on a wide range of tasks.

79

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Figure 4.4: Multi-head Attention Architecture

Vision Transformer Model

In the context of NLP, the input is typically a sequence of word embeddings,
but in the case of ViT, the input is a sequence of image patch embeddings. To
create the input sequence for ViT, an image is divided into non-overlapping
patches, and each patch is linearly embedded into a flat vector. The sequence
of patch embeddings is then processed by the Transformer model to capture
both local and global contextual information.

Dosovitskiy et al. [31] first demonstrated the applicability of the Trans-
former model to vision tasks by introducing the ViT architecture 4.5. The
authors showed that ViT achieves competitive performance in image classi-
fication tasks when trained on large-scale datasets. Furthermore, the ViT
architecture benefits from transfer learning, where a model pre-trained on a
large dataset can be fine-tuned for specific tasks or smaller datasets, resulting
in better performance compared to models trained from scratch.

To incorporate positional information, ViT adds learnable positional em-
beddings to the patch embeddings. This approach allows the model to learn
spatial relationships between patches, which is crucial for capturing the struc-
ture of the visual data.

The ViT architecture is composed of a series of Transformer blocks, each
containing a layer normalization, a multi-head self-attention mechanism, an-
other layer normalization, a position-wise feed-forward network, and a resid-

80

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Figure 4.5: Vision Transformer[15]

ual connection. These components are stacked to form a deep transformer
network that processes the input sequence of patch embeddings.

Despite its simplicity and effectiveness, the ViT architecture has a few
drawbacks. One of the main challenges is the quadratic complexity of the
self-attention mechanism with respect to the input sequence length, which
can lead to high computational costs and memory requirements. This issue
becomes more pronounced as the input resolution or the number of patches
increases.

To address this challenge, several variants of the ViT architecture have
been proposed, such as the DeiT [122], which employs data-efficient train-
ing techniques to achieve better performance with smaller datasets, and the
T2T-ViT [134] that introduces a token-to-token self-attention mechanism to
reduce the complexity of the attention computation. In summary, the Vision
Transformer has emerged as a powerful and flexible model for various com-
puter vision tasks. Its success has inspired a wave of research exploring the
use of Transformer models for tasks such as object detection [17], semantic
segmentation [140], and video recognition [8]. The development of more effi-
cient vision transformer architectures and the combination with other models
or techniques will likely continue to shape the future of computer vision re-
search and applications.

81

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

4.2.3 Swin Transformer

The Swin Transformer, proposed by Liu et al. [80], is an innovative approach
that addresses the limitations of traditional Vision Transformers, enabling
more efficient and scalable models for various computer vision tasks. This
section provides a more detailed overview of three key components of the
Swin Transformer that contribute to its performance: local window-based
self-attention, shifted window strategy, and hierarchical structure.

Window-based Multi-head Self-attention

The window-based self-attention mechanism in the Swin Transformer is de-
signed to address the computational and memory limitations associated with
the global self-attention mechanism used in standard Vision Transformers.
In this part, we will provide a more detailed explanation of the mechanism
and its advantages.

In a traditional Transformer model, the self-attention operation computes
the response at a position in a sequence by considering all positions in the
entire sequence, resulting in a quadratic computational complexity of O(n2),
where n is the number of input tokens. This complexity becomes a bottle-
neck when dealing with large input sizes and deeper architectures, which are
common in computer vision tasks.

To overcome this challenge, the Swin Transformer introduces a window-
based self-attention mechanism. Instead of computing self-attention over
the entire input sequence, the mechanism partitions the input feature map
into non-overlapping windows and computes multi-head self-attention within
each window independently. This approach reduces the computational com-
plexity from O(n2) to O(nw2), where n is the number of patches and w is
the window size. However, the expression O(nw2) seems to be a simplifi-
cation. The detailed computational complexity of window-based multi-head
self-attention (W-MSA) is O(4hwC2 + 2M2hwC), where h and w are the
height and width of the image in terms of patches, C is the number of chan-
nels, and M is the window size. This complexity is linear with respect to
the number of patches when window size M is fixed, which can be seen as a
significant reduction from the quadratic complexity of global self-attention.
Furthermore, the window-based self-attention mechanism can be combined
with the multi-head self-attention mechanism to enable the model to learn
different features at different positions within the window. In a multi-head
self-attention setup, the self-attention operation is computed independently
for multiple heads, and their outputs are then concatenated and linearly
transformed to produce the final output. By leveraging window-based self-

82

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

attention, the Swin Transformer effectively addresses the computational and
memory limitations of global self-attention, enabling it to scale efficiently to
large input sizes and deeper architectures commonly encountered in computer
vision tasks.

Shifted Window-based Multi-head Self-Attention

The shifted window-based self-attention figure 4.6 mechanism is another cru-
cial component of the Swin Transformer, designed to address the limited
receptive field issue introduced by local window-based self-attention. This
section provides a more detailed explanation of the shifted window-based
self-attention mechanism and its benefits.

Figure 4.6: Shifted Window-based Self-Attention

As mentioned earlier, local window-based self-attention divides the input
feature map into non-overlapping local windows, and self-attention is com-
puted independently within each window. While this approach effectively
reduces the computational complexity, it also limits the receptive field of the
model, potentially hindering its ability to capture long-range dependencies
and context information. To address this limitation, the Swin Transformer
incorporates a shifted window-based self-attention mechanism. The key idea
behind this mechanism is to shift the windows by half the window size in
both the vertical and horizontal directions at alternating layers of the net-
work. This shifting operation ensures that each token’s receptive field ex-
pands across multiple layers, ultimately covering the entire feature map and
allowing the model to capture long-range dependencies.

By integrating the shifted window-based self-attention mechanism, the
Swin Transformer effectively addresses the limited receptive field issue intro-
duced by local window-based self-attention, enabling the model to capture
both local and long-range contextual information efficiently. This mecha-
nism allows the Swin Transformer to achieve state-of-the-art performance in
various computer vision tasks, such as image classification, object detection,
semantic segmentation, and video recognition while maintaining computa-
tional efficiency and scalability.

83

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Hierarchical Structure

The Swin Transformer’s hierarchical structure is designed to efficiently han-
dle objects and features of varying sizes and scales in the input image. This
structure is inspired by traditional convolutional neural networks (CNNs)
that leverage pooling layers to create a hierarchy of feature maps at differ-
ent resolutions. In the Swin Transformer, a similar hierarchical approach is
implemented using non-overlapping patches and multi-stage processing. At
the beginning of the Swin Transformer, the input image is divided into non-
overlapping patches at multiple scales, with each scale constituting a different
level of the hierarchy. The patches at each scale are transformed into linear
embeddings, which serve as the input tokens for the transformer layers.

The Swin Transformer processes these input tokens in a multi-stage man-
ner. Each stage consists of a series of transformer layers that process the
tokens at a specific hierarchical level. The tokens are then aggregated and
downsampled to form the input tokens for the next stage. The downsam-
pling operation is performed using a patch merging layer, which merges the
neighboring tokens in a non-overlapping manner to create new tokens with
half the spatial dimensions. This process is repeated across multiple stages,
resulting in a hierarchy of token embeddings at progressively lower resolu-
tions. The hierarchical structure of the Swin Transformer enables the model
to efficiently handle objects and features at various scales in the input im-
age. This multiscale processing provides an effective mechanism for capturing
both local and global context information, ultimately enhancing the model’s
performance on tasks with diverse scale requirements, such as object detec-
tion and semantic segmentation. Moreover, the hierarchical structure allows
the Swin Transformer to adapt and scale to different input resolutions and
task complexities, making it a versatile and powerful architecture for a wide
range of computer vision applications.

4.2.4 Mask R-CNN

Mask R-CNN [46] is an influential model for object detection and instance
segmentation, enhancing the Faster R-CNN[105] framework with an addi-
tional layer for outputting binary masks for detected objects. This makes
Mask R-CNN particularly effective for tasks that not only require identify-
ing and localizing objects but also require a detailed understanding of their
shapes.

The Mask R-CNN model comprises two central stages. The first part is
a deep convolutional network, often a ResNet[48], acting as the backbone for
feature extraction. This network is followed by the Feature Pyramid Net-

84

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Figure 4.7: Mask R-CNN[46]

work (FPN)[75], a multi-scale architecture that enhances the model’s ability
to detect objects at varying scales. The second part of Mask R-CNN in-
volves two subnetworks that function atop the feature pyramid - the Region
Proposal Network (RPN) for proposing candidate object bounding boxes,
and the box heads for classifying and refining these boxes. The RPN per-
forms a comprehensive scan across the feature map output of the previous
layer, proposing regions of different scales and aspect ratios as potential ob-
ject bounding boxes, and scoring each based on its object likelihood. These
proposals are then reshaped and funneled into the box head subnetworks.

In the box head, each proposed region undergoes three parallel compu-
tations: class prediction, bounding box refinement, and mask prediction.
The class prediction uses a fully connected layer to output class scores. The
bounding box refinement applies bounding box regression to adjust the co-
ordinates of the proposed region for more accurate object localization. The
mask prediction, however, introduces a fully convolutional network to output
a binary mask for each class.

Mask R-CNN innovatively addresses the issue of spatial quantization in
RoI features. Mask R-CNN introduces RoIAlign, which correctly aligns the
extracted features with the input, avoiding any misalignment and enabling
the network to learn to predict masks that are spatially coherent with the
RoI. Mask R-CNN has achieved wide recognition in object detection and
instance segmentation due to its effective design and comprehensive multi-
task training. Although simple in implementation, it represents a powerful
tool for a range of computer vision applications.

85

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

4.2.5 UPerNet

Unified Perceptual Parsing Network or UPerNet [129], is a versatile and ro-
bust deep learning framework designed for a variety of pixel-level prediction
tasks, including semantic segmentation, object detection, and instance seg-
mentation. This network aims to address these tasks in a unified, holistic
manner, minimizing the need for task-specific architectures and creating a
more general solution.

UPerNet builds upon the Feature Pyramid Network (FPN)[75] used in
models like Mask R-CNN. It enhances the FPN with a top-down pathway
and lateral connections to provide multi-scale feature representation, which
is crucial for pixel-level prediction tasks that deal with objects of varying
sizes and contexts.

Figure 4.8: UPerNet[129]

The main architecture of UPerNet can be divided into three parts: a back-
bone network for feature extraction, a Pyramid Pooling Module (PPM)[47]
for multi-scale global context representation and a sequential fusion mod-
ule for feature fusion. UPerNet typically employs a ResNet[48] backbone,
although it can be adapted to work with other types of deep convolutional
networks. The backbone network is tasked with extracting hierarchical fea-
tures from the input image. These features, especially from the last few
stages of the backbone, carry rich semantic information and are forwarded to
the PPM and the sequential fusion module. The PPM in UPerNet is adapted
from the Pyramid Scene Parsing Network (PSPNet), a model renowned for

86

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

its strong performance in semantic segmentation tasks. The PPM captures
global context information by applying pooling operations at different scales
and concatenating the resulting features. This operation effectively extracts
context cues of various scales from the entire scene, providing a more com-
prehensive understanding of the global context.

After obtaining multi-scale features from the PPM, UPerNet applies a
sequential fusion module for feature fusion. Unlike the FPN, which adopts
a top-down pathway and lateral connections for feature fusion, UPerNet
performs fusion in a sequential manner. Starting from the deepest stage,
UPerNet gradually fuses the features of each stage with the upsampled fea-
tures from the previous stage. Through this approach, UPerNet preserves
rich high-level semantic information while incorporating lower-level details,
producing a full-resolution feature map that is beneficial for pixel-level pre-
diction.

In essence, UPerNet provides a unified solution to various perceptual
parsing tasks by combining a strong feature extraction backbone, a global
context representation module, and a sequential feature fusion scheme. This
integration enables UPerNet to handle a wide range of tasks that require
both local details and global context understanding, making it a powerful and
versatile tool for pixel-level prediction tasks. The architecture of UPerNet
reflects the growing trend in computer vision research towards more unified,
multi-task frameworks that can leverage shared representations for better
performance.

4.2.6 Adam Optimization Algorithm

Adam[61], short for Adaptive Moment Estimation, is an optimization algo-
rithm used extensively in the field of deep learning. It was first proposed by
Kingma and Ba in the paper "Adam: A Method for Stochastic Optimization"
in 2015.

Adam is a method that computes adaptive learning rates for each param-
eter. In addition to storing an exponentially decaying average of past squared
gradients vt like Adadelta and RMSprop, Adam also keeps an exponentially
decaying average of past gradients mt, similar to momentum:

mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β2) · g2t

where: - mt and vt are estimates of the first moment (the mean) and
the second moment (the uncentered variance) of the gradients respectively, -

87

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

β1 and β2 are exponential decay rates for these moving averages, - gt is the
gradient at time step t.

As mt and vt are initialized as vectors of 0’s, the authors of Adam observe
that they are biased towards zero, especially during the initial time steps,
and especially when the decay rates are small. They counteract these biases
by computing bias-corrected first and second moment estimates:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

They then use these to update the parameters, which yields the Adam
update rule:

θt+1 = θt − α · m̂t√
v̂t + ϵ

where: - θt+1 are the updated parameters, - α is the step size or learning
rate, - ϵ is a small number to prevent any division by zero in the implemen-
tation (default value is suggested to be 10−8).

Adam has been shown to combine the advantages of two popular stochas-
tic gradient descent advancements: Root Mean Square Propagation (RM-
SProp) and Adaptive Gradient Algorithm (AdaGrad). This makes it an
efficient and effective choice for non-convex optimization problems often en-
countered in deep learning.

4.3 Pyramid Swin Transformer
Swin Transformer effectively addresses the multi-scale and computational
complexity challenges in vision Transformer(ViT)[31], however, it also in-
troduces new issues due to its implementation of window-based multi-head
self-attention, which makes the windows independent from each other.

Although the authors have introduced shifted window-based multi-head
self-attention to facilitate connections among specific windows, an inadequate
information exchange persists between certain windows, especially in large-
scale dimensions, as depicted in Figure 4.9. Even when the shift window
operation is applied, each window can only connect to four windows post-
reintegration. This restricts the window’s ability to associate with any of the
other five windows, impacting the overall performance of the model. This

88

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

example only scratches the surface. At larger scales of feature maps, due
to the employment of fixed-size windows, this situation worsens, resulting in
more windows losing connectivity with others.

Figure 4.9: Swin Transformer architecture problem

Our model architecture is primarily inspired by and built upon the Swin
Transformer [80]. As depicted in Figure 4.10, our design for object detection
introduces an additional feature pyramid component and implements crucial
modifications to the original Swin Transformer structure. Using Pyramid
Swin-R as an instance, we leverage a hierarchical network configuration. In
this setup, the first stage possesses the largest dimensions (64 × 64). At
this stage, we fragment the feature map into four distinct window types
(16× 16, 8× 8, 4× 4, 2× 2), each corresponding to a different window size of
4× 4, 8× 8, 16× 16, and 32× 32, respectively.

The window of size 32× 32 corresponds to a self-attention span of 1024,
which substantially increases the computational complexity. This increase
in complexity is due to the nature of multi-head self-attention computation
in Transformer-based models. In multi-head self-attention, for each position
in the input, the model computes a weighted sum of all positions in the in-
put, with the weights determined by a compatibility function of the input at
those two positions. This means the model needs to compute and store val-
ues for every pair of input positions, leading to a time and space complexity
of O(n2), where n is the number of positions or the self-attention span. In
the case of a 32 × 32 window, the self-attention span is 1024, meaning the
model needs to compute and store 1024 * 1024 = 1,048,576 values for each
head in the multi-head self-attention, and this computation is done for every
position in the input. As the number of heads or the self-attention span in-
creases, the computational cost grows quadratically, leading to a substantial
increase in computational complexity. This is the reason why we limit the
use of the 32× 32 window size to the first stage in our Pyramid Swin Trans-
former model to balance the computational demands with the performance

89

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

of the model. Consequently, this particular window size is solely used in the
first stage, while the other stages refrain from its usage. This strategic de-
cision contributes to managing computational demands while achieving high
performance in object detection tasks.

Figure 4.10: Pyramid Swin Transformer architecture

Each layer comprises two steps: one for window-based multi-head self-
attention and another for shift window-based multi-head self-attention. Ev-
ery layer is identical and includes two computations of multi-head self-attention,
consistent with the Swin Transformer [80]. As shown in Figure 4.10, our
model differs in that we split the attention process into smaller blocks. The
number of different-sized windows in each layer follows a hierarchical progres-
sion from larger to smaller, promoting global connectivity. In each stage, the
concluding layer (with the exception of the fourth stage) comprises a 2 × 2
window. The rationale behind this is that an optimal shift window-based
multi-head self-attention is realized when the number of windows is 2 × 2.
Under this configuration, all four windows are interconnected, thereby boost-
ing the information exchange between windows and consequently augmenting
global relevance. This strategic placement of windows ensures the balance
between local feature refinement and global context understanding, thereby
optimizing the overall performance of the model. It also brings out the in-
herent strength of the attention mechanism to make use of the positional
relationships within the image.

Our proposed Pyramid Swin Transformer serves as an enhancement of
the traditional Swin Transformer architecture, specifically tailored to boost
efficiency and scalability within multi-task computer vision scenarios. Within
this Pyramid Swin Transformer framework, we employ a new scheme to
compute multi-head self-attention across windows of differing sizes. This
approach facilitates the model’s capacity to capture a blend of both localized
and global image information.

Our Pyramid Swin Transformer layers process the input image and ex-
tract features at multiple scales, as same as the Swin Transformer. As shown

90

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

P.Swin-S Size Layers Channel Windows Window size Heads

Stage 1 642 3 96 82, 42, 22 82, 162, 322 3
Stage 2 322 2 192 42, 22 82, 162 6
Stage 3 162 2 384 42, 22 42, 82 12
Stage 4 82 1 768 12 82 24

P.Swin-R Size Layers Channel Windows Window size Heads

Stage 1 642 4 96 162, 82, 42, 22 42, 82, 162, 322 3
Stage 2 322 3 192 82, 42, 22 42, 82, 162 6
Stage 3 162 2 384 42, 22 42, 82 12
Stage 4 82 2 768 22, 12 42, 82 24

P.Swin-B Size Layers Channel Windows Window size Heads

Stage 1 642 4 128 162, 82, 42, 22 42, 82, 162, 322 4
Stage 2 322 3 256 82, 42, 22 42, 82, 162 8
Stage 3 162 3 512 82, 42, 22 22, 42, 82 16
Stage 4 82 2 1024 22, 12 42, 82 32

P.Swin-L Size Layers Channel Windows Window size Heads

Stage 1 642 4 192 162, 82, 42, 22 42, 82, 162, 322 6
Stage 2 322 3 384 82, 42, 22 42, 82, 162 12
Stage 3 162 3 768 82, 42, 22 22, 42, 82 24
Stage 4 82 2 1536 22, 12 42, 82 48

Table 4.1: Pyramid Swin Transformer Detailed architecture

in Figure 4.10, illustrates the Pyramid Swin Transformer using several times
different-sized windows to compute window-based multi-head self-attention
on the same scale of the feature map. The window size is set according
to the feature map scale size. For large-scale feature maps, we use more
times of W-MSA calculation, and also the window size is split into more
different sizes. This approach, which involves conducting more multi-head
self-attention calculations at larger scales, does slightly increase our compu-
tational load. However, it also aids in enhancing the model’s comprehension
and recognition of target objects. Moreover, large-scale features provide a
wealth of contextual information, which is particularly beneficial for the at-
tention mechanism. By leveraging the attention mechanism, the model can
utilize this contextual information to capture long-distance dependencies be-
tween features, thereby enhancing the model’s performance.

The detailed architecture is shown in Table 4.1, where the input image

91

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

size is 256 × 256. We refer to it as Pyramid Swin-R and the first stage has
4 layers, the second stage has 3 layers, the third stage has 2 layers, and
the last stage has 2 layers. We also implement other frameworks, including
Pyramid Swin-S, Pyramid Swin-B, and Pyramid Swin-L, which only differ
from Pyramid Swin-R in the number of channels and layers. The details are
as follows:

- Pyramid Swin-S: C = 96, layer = {3,2,2,1}
- Pyramid Swin-R: C = 96, layer = {4,3,2,2}
- Pyramid Swin-B: C = 128, layer = {4,3,3,2}
- Pyramid Swin-L: C = 192, layer = {4,3,3,2}

Here, C represents the number of channels in the first stage’s layer, and each
layer consists of two sub-multi-head self-attention calculations. The main
idea behind the Pyramid Swin Transformer is to continuously add windows
of various sizes to a uniform scale to improve their direct information contact.
We utilize different window sizes in each layer, with the subsequent layer
complementing the previous one. The issue with the Swin Transformer was
the insufficient information interaction between windows at the low semantic
level. Our improvements have enhanced the interaction between separate
windows.

Suppose each window contains 2i × 2i window sizes; on an image of size
h × w feature map, the computational complexity of a global multi-head
self-attention module and a window-based one is as follows:

Ω(MSA) = 4hwC2 + 2(hw)2C

Ω(W −MSA) = 4hwC2 + (2)2i+1hwC

Where C is a channel, the former complexity is quadratic to feature map
size h×w, while the latter mainly depends on the size of i, with i ∈ 0, 5. In
our design, due to the large computation when i = 5, we attempt to mini-
mize the occurrence of i = 5 in the entire framework. In fact, we only use
i = 5 once at the first layer of the first stage. As window-based multi-head
self-attention is scalable for h× w, global self-attention computation is typ-
ically expensive. Therefore, window-based self-attention has great potential
for reducing computation requirements. For self-attention computation, we
follow [99, 54, 80] by including a relative position bias β ∈ RM2×M2 to each
head:

Attention(Q,K, V) = SoftMax(QKT/
√
d+ β)V,

where Q,K, V ∈ RM2×d are the query, key and value matrices, d is the query
and key dimension and M2 is the window size.

92

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

4.3.1 Object Detection with FPN

In our Pyramid Swin Transformer architecture for object detection, we in-
corporate a Feature Pyramid Network (FPN) to enhance the model’s ability
to detect objects at different scales. The FPN was proposed by Lin et al.
[75] as a top-down architecture with lateral connections to fuse high-level
semantic information with low-level spatial details more effectively. This fu-
sion enables the model to handle a wide range of object sizes and scales,
making it particularly well-suited for object detection tasks. The FPN is
constructed by taking the output feature maps from different layers of the
base network and then combining them in a hierarchical manner. This is
achieved by upsampling higher-level feature maps and adding them element-
wise to lower-level feature maps, followed by a 1x1 convolution operation
to reduce the number of channels. The resulting multi-scale feature maps
are then fed into separate object detection heads to predict object classes
and bounding box coordinates. By incorporating the FPN into our Pyramid
Swin Transformer architecture, we can leverage the advantages of both the
Swin Transformer’s self-attention mechanism and the FPN’s multi-scale ob-
ject representation. This combination results in improved object detection
performance across different object scales and varying levels of detail.

4.3.2 Semantic Segmentation Head

In order to provide a more detailed description of integrating the Pyramid
Swin Transformer with UperNet for semantic segmentation, we first replace
UperNet’s[129] original backbone with our Pyramid Swin Transformer. This
modification allows us to utilize the powerful feature extraction capabilities
and hierarchical structure of the Pyramid Swin Transformer, which has been
demonstrated to be effective for object detection tasks. The Pyramid Swin
Transformer generates multi-scale feature maps at different stages of its archi-
tecture. These feature maps capture different levels of abstraction, ranging
from low-level spatial details to high-level semantic information. By incor-
porating these feature maps into UperNet’s pyramid pooling module(PPM
head)[47], our combined model can effectively capture both local and global
context information.

The pyramid pooling module[47], which serves to aggregate context from
varying regions of an image by applying diverse scales of pooling, thereby
encapsulating information that might be more apparent or impactful at dif-
ferent scales, in UperNet is designed to merge feature maps from different
stages with varying levels of abstraction. It does so by applying pooling
operations with different window sizes and strides, followed by bilinear up-

93

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

sampling to match the spatial dimensions. This process effectively fuses
multi-scale features and allows the model to benefit from both high-level
semantics and low-level spatial details. After the pyramid pooling module,
the fused feature maps are processed through a series of convolutional layers
and activation functions. These layers help refine the feature maps and ex-
tract more discriminative features for the semantic segmentation task. The
refined feature maps are then used to generate per-pixel class probabilities,
resulting in the final segmentation prediction. This output provides a high-
resolution segmentation map with accurate and detailed class boundaries.
By integrating the Pyramid Swin Transformer with UperNet[129], our ap-
proach effectively combines the strengths of both architectures. This fusion
results in a powerful and efficient model for semantic segmentation, which
has been shown to achieve state-of-the-art performance on the challenging
ADE20K dataset [141].

4.3.3 Video Recognition Adaptations

To adapt the Pyramid Swin Transformer to video recognition tasks, as shown
in Figure 4.1 (d model), we incorporate temporal information into the archi-
tecture by extending the input patches to include both spatial and temporal
dimensions. Specifically, the input patches are formed by stacking consec-
utive frames from the input video along the temporal dimension, creating
space-time video volumes. This approach allows the model to process the
video input while preserving the temporal context. The attention mechanism
in the transformer layers is also modified to consider temporal dependencies.
This is achieved by incorporating temporal positional encodings, inspired by
the work of Vaswani et al. [124], into the self-attention computation. Tem-
poral positional encodings are added to the input embeddings, enabling the
model to learn and exploit temporal relationships between video frames. This
modification allows the Pyramid Swin Transformer to handle the temporal
dynamics present in video data effectively.

In addition to the modifications to the attention mechanism, we also
adjust the architecture of the Pyramid Swin Transformer to process the
space-time video volumes more effectively. We introduce additional layers
and connections specifically designed to capture the temporal information
present in the video data, drawing inspiration from recent works on video
recognition, such as TSN [127]. These additional components ensure that
the model can effectively learn and exploit the relationships between video
frames at different temporal scales. The output of the video recognition
model is a sequence of class probabilities for each input frame. These proba-
bilities represent the likelihood of the presence of specific objects or actions

94

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

in the corresponding video frames. The final video-level prediction can be
generated by aggregating these frame-level probabilities using various strate-
gies, such as averaging, max-pooling, or more sophisticated temporal pooling
techniques, like the ones proposed in [36, 130].

By incorporating temporal information and modifying the attention mech-
anism, we successfully adapt the Pyramid Swin Transformer for video recog-
nition tasks. This adaptation demonstrates the flexibility and potential of
our proposed architecture for handling a wide range of computer vision tasks
that involve both spatial and temporal dimensions.

4.3.4 Experiment and Result

Our experiments were conducted using the following hardware and software
specifications, as shown in Table 4.2:

CPU Intel(R) Xeon(R) Silver 4110

Memory 16G

GPU NVIDIA Tesla V100 PCIe

GPU Memory 16G

Pytorch 1.8.1

CUDA 11.6

OS Ubuntu 18.04

Table 4.2: Test Environment

We evaluate the performance of our proposed Pyramid Swin Transformer
architecture on two benchmark datasets: ImageNet-1K for image classifica-
tion [29] and COCO for object detection [77]. In the following sections, we
present the results of our experiments and compare the performance of the
Pyramid Swin Transformer to the state-of-the-art methods for these tasks.
The primary metrics used for assessing our model encompass its accuracy,
parameter count, and the number of Floating Point Operations (FLOPs).
These three key indicators provide a holistic understanding of the model’s
performance, enabling an evaluation of the balance between its computa-
tional complexity and predictive accuracy. This analysis is critical for ef-
fective model deployment, particularly in resource-constrained environments
where the trade-off between model complexity and prediction capability be-
comes crucial.

95

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Image Classification on ImageNet

Settings. We benchmark the proposed Pyramid Swin Transformer on ImageNet-
1K [29], which contains 1.28 million training images and 50k validation im-
ages from 1,000 classes. We report the single-crop top-1 accuracy, following
the training methods used in Swin Transformer [80].
ImageNet-1K training. This setting mostly follows [122]. We employ
an AdamW [61] optimizer for 300 epochs using a cosine decay learning rate
scheduler, as in the Swin Transformer [80]. We include most of the augmen-
tation and regularization strategies of [122] in training, except for repeated
augmentation [51] and EMA [95]. This is in contrast to the situation where
consistent augmentation is essential for maintaining ViT training [31].

Table 4.3.4 shows the results of our Pyramid Swin Transformer compared
to state-of-the-art CNNs and other Transformer-based models. The mod-
els are divided into categories based on computation. Our Pyramid Swin
Transformer achieves slightly better accuracy compared to state-of-the-art
Convolution Nets and Vision Transformer models, such as RegNet [98], Effi-
cientNet [121], CoAtNet [27], ViT [31], DeiT [122], MViTv2 [33], Swin [80],
and SwinV2 [79].

Table 4.3.4, we make pre-train on ImageNet-1K. Our Pyramid Swin model
is trained for 300 epochs without any external data or models. Our proposed
design, the Pyramid Swin Transformer, has been shown to outperform sev-
eral CNN systems on ImageNet, even when utilizing a small model (Pyramid
Swin-S) and regular model (Pyramid Swin-R)4.3.4. However, our design does
not exhibit significant advantages over Transformer systems in image classifi-
cation, such as DeiT [122], MVit [33], and Swin Transformer [80]. Compared
to the original Swin Transformer and Swin Transformer V2 [79], our im-
proved version achieves greater accuracy while utilizing fewer parameters.
For example, Pyramid Swin-R achieves the same accuracy as SwinV2-B with
fewer parameters. On the regular-size model, Pyramid Swin-R outperforms
Swin-B by +0.1% in accuracy, while on the large-size model, Pyramid Swin-
L improves +0.8% over SwinV2-B. Our Pyramid Swin Transformer main-
tains accuracy while reducing computation compared to SwinV2-B. When
compared to MVit with a (320× 320) image size, our large model (Pyramid
Swin-L) achieves higher accuracy but at a higher computational cost. On the
other hand, our regular model (Pyramid Swin-R) achieves a +0.6% higher
accuracy compared to MVit with a (224× 224) image size.

Our architecture’s impact on image classification tasks is rather nuanced,
with the primary value proposition being a reduction in computational re-
quirements while maintaining competitive accuracy. This is likely attributable
to the design choices in our Pyramid Swin Transformer, which employs more

96

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Method Resolution Params FLOPs Top-1 Acc.

RegNetY-4G [98] 2242 21M 4G 80.0
RegNetY-8G [98] 2242 39M 8G 81.7
RegNetY-16G [98] 2242 84M 16G 82.9

EfficientNet-B5 [121] 4562 30M 10G 83.6
EfficientNet-B6 [121] 5282 43M 19G 84.0
EfficientNet-B7 [121] 6002 66M 37G 84.4

CoAtNet-0 [27] 2242 25M 4G 81.6
CoAtNet-1 [27] 2242 42M 8G 83.3
CoAtNet-2 [27] 2242 75M 16G 84.1
CoAtNet-3 [27] 2242 168M 35G 84.6

Vit-B/16 [31] 3842 86M 55G 77.9
Vit-L/16 [31] 3842 307M 191G 76.5

DeiT-S [122] 2242 22M 5G 79.8
DeiT-B [122] 2242 86M 18G 81.8
DeiT-B [122] 3842 86M 55G 83.1

MViTv2-T [74] 2242 24M 5G 82.3
MViTv2-S [74] 2242 35M 7G 83.6
MViTv2-B [74] 2242 52M 11G 84.4
MViTv2-L [74] 2242 218M 42G 85.3

Swin-T [80] 2242 28M 5G 81.3
Swin-S [80] 2242 50M 9G 83.0
Swin-B [80] 2242 88M 15G 83.5
Swin-B [80] 3842 88M 47G 84.5

SwinV2-T [79] 2562 28M 7G 82.8
SwinV2-S [79] 2662 50M 13G 84.1
SwinV2-B [79] 2562 88M 22G 84.6

Pyramid Swin-S 2562 64M 11G 83.9
Pyramid Swin-R 2562 77M 14G 84.6
Pyramid Swin-B 2562 123M 27G 85.1
Pyramid Swin-L 2562 164M 39G 85.4

Table 4.3: Results on Imagenet Image Classification

frequent feature extraction processes on larger-scale feature maps and less
so on smaller-scale ones, potentially influencing its performance in image

97

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

classification tasks. Despite these considerations, our Pyramid Swin Trans-
former exhibits competitive performance, outpacing several state-of-the-art
Transformer models like SwinV2 and MVit-B-24. This advantage is partic-
ularly pronounced in achieving a desirable trade-off of higher accuracy with
fewer parameters and reduced computational load, thereby highlighting the
effectiveness and efficiency of our proposed architecture.

Figure 4.11: Top-1 Accuracy vs FLOPs for Various Models

Figure 4.11 presents a compelling depiction of the trade-off between model
complexity(Number of Floating Point Operations(FLOPs)) and performance
accuracy in several state-of-the-art models. Among these, our Pyramid Swin
model emerges as a leading contender, delivering the highest accuracy among
the models analyzed. However, it’s worth noting that this superior perfor-
mance comes with a relative increase in model complexity. Yet, the com-
plexity level is within an acceptable range considering the improved accu-
racy, rendering the Pyramid Swin model a robust and efficient choice for
high-demand, accuracy-centric applications.

An interesting trend emerges when we compare the performance of CNN-
based networks with Transformer-based networks. It’s evident that these
different architectural paradigms have reached an almost identical level of
complexity and accuracy, essentially leveling the playing field. Moreover, in

98

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

some cases, Transformer-based networks even outperform their CNN-based
counterparts in terms of accuracy. This observation signals a promising
shift in the landscape of computer vision. It suggests that the potential
of Transformer-based models in this field is not only on par with but may
exceed that of traditional CNNs. Given the inherent advantages of Trans-
former models, including their ability to model long-range dependencies and
their flexibility in processing inputs of different sizes, their application in
computer vision is likely to become even more prevalent.

Our Pyramid Swin model showcases the potential of Transformer-based
models in achieving high accuracy for computer vision tasks, even with rela-
tively higher computational complexity. Furthermore, the general trend to-
wards equal performance between CNN and Transformer architectures sug-
gests a bright future for Transformer models in the domain of computer
vision. This trend is likely to fuel further research and development efforts
aimed at refining and expanding the application of Transformer models for
an even wider range of computer vision tasks.

Object Detection on COCO

We conduct object detection experiments on the Microsoft COCO [77] dataset.
An ablation study is conducted using the validation set, and test-dev is used
to report on a system-level comparison. We use standard Mask R-CNN [46]
and Cascade Mask R-CNN [14] detection frameworks implemented in Detec-
tron2. The backbone networks of the objects we compared are ResNet [48],
PVT-S [128], ViL-S-RPB [137], and Swin [80]. For a fair comparison, we fol-
low the same approach as Swin Transformer [80]. For these four frameworks,
we utilize the same settings: multi-scale training [17, 118]. For Pyramid
Swin, we take the backbone pre-trained from ImageNet-1K. The input sizes
are set as [64, 32, 16, 8] for the multi-scale four stages, consistent with the
self-attention size used in ImageNet-1K pre-training.

When utilizing the Mask R-CNN framework , our Pyramid Swin Trans-
former achieved the highest accuracy on the regular-size model, outperform-
ing other models in the comparison. Specifically, Pyramid Swin-R achieved
an AP box of 50.3, improving by +1.8 AP box over Swin-B [80], while utilizing
fewer parameters. Compared to ViT-B-RPB, our Pyramid Swin architecture
demonstrated an advantage with a +0.7 box AP improvement. On the big-
size and large-size model, Pyramid Swin-L achieved an AP box of 51.1 and
AP box of 51.6, achieving better performance than Swin-B, despite utilizing
more parameters. These results demonstrate the superior performance of our
Pyramid Swin Transformer architecture when utilized with the Mask R-CNN
framework for object detection tasks.

99

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Model AP box APmask FLOPs Params

Res50 [48] 41.0 37.1 260G 44M
Res101 [48] 42.8 38.5 336G 63M
X101-64 [63] 44.4 39.7 493G 101M

PVT-S [128] 43.0 39.9 245G 44M
PVT-M [128] 44.2 40.5 302G 64M
PVT-L [128] 44.5 40.7 364G 81M

ViL-S-RPB [137] 47.1 42.1 277 G 45M
ViL-M-RPB [137] 48.9 44.2 352G 60M
ViL-B-RPB [137] 49.6 44.5 384G 76M

MViTv2-T [74] 48.2 43.8 701G 76M
MViTv2-S [74] 49.9 45.1 748G 87M
MViTv2-B [74] 51.0 45.7 814G 103M
MViTv2-L [74] 51.8 46.2 1097G 238M

Swin-T [80] 46.0 41.6 264G 48M
Swin-S [80] 48.5 43.3 354G 69M
Swin-B [80] 48.5 43.4 496G 107M

Pyramid Swin-S 49.9 44.2 402G 78M
Pyramid Swin-R 50.3 44.8 463G 94M
Pyramid Swin-B 51.1 45.3 657G 137M
Pyramid Swin-L 51.6 45.7 864G 193M

Table 4.4: Results on COCO object detection with Mask R-CNN

Within the framework of Cascade Mask R-CNN, our Pyramid Swin Trans-
former has also demonstrated commendable performance outcomes, surpass-
ing other models in the comparison. In particular, our Pyramid Swin-S out-
performed all other models with an AP box of 53.1, which is +1.3 AP box higher
than Swin-S [80]. However, MViTv2-S [74] achieves higher scores. Pyramid
Swin-R achieved an AP box of 53.6, surpassing Swin-B by +1.7 AP box and
MViTv2-B by +0.5 AP box, while utilizing fewer parameters. In the large-
size model, Pyramid Swin-L achieved an AP box of 54.3. Our Pyramid Swin
Transformer architecture outperformed other models when used in the Cas-
cade Mask R-CNN framework for object detection tasks.

Our experimental results reveal that our architecture demonstrates the
most robust performance in object detection tasks. This superiority is con-
jectured to stem from our model’s design, which entails executing a greater

100

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Figure 4.12: Object Detection on COCO

Model AP box APmask FLOPs Params

Res50 [48] 46.3 40.1 739G 82M
Res101 [48] 47.7 40.8 819G 101M

MViTv2-T [74] 52.2 45.0 701G 76M
MViTv2-S [74] 53.2 46.0 748G 87M
MViTv2-B [74] 54.1 46.8 814G 103M

Swin-T [80] 50.5 43.7 745G 86M
Swin-S [80] 51.8 44.7 838G 107M
Swin-B [80] 51.9 45.0 982G 145M

Pyramid Swin-S 53.1 45.9 812G 114M
Pyramid Swin-R 53.6 46.4 902G 136M
Pyramid Swin-B 54.0 47.1 1247G 201M
Pyramid Swin-L 54.3 47.5 1567G 273M

Table 4.5: Results on COCO object detection with Cascade Mask R-CNN

number of window-based multi-headed self-attention computations on large-
scale feature maps. This approach offers two advantages:

Firstly, by facilitating more attention computations on large feature maps,
our model can better apprehend and utilize the global contextual information
embedded within the image data. Such a capability is critical for object
detection tasks as understanding the broader context of an image can often
inform the model about the presence and positioning of objects within the
scene.

101

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Secondly, our Pyramid Swin Transformer’s use of larger windows in the at-
tention calculations further amplifies its performance. With larger windows,
each self-attention operation has access to a richer set of local information
within each window. This local richness can be particularly beneficial for
object detection, as it enables the model to capture intricate details and re-
lationships between neighboring pixels, thereby enhancing the model’s ability
to precisely locate and classify objects.

Ultimately, through these design choices that optimize both local detail
extraction and global context understanding, our model has achieved state-
of-the-art performance in object detection tasks, showing promise for further
development and application.

Figure 4.13: mAP vs FLOPs for Various Models(Mask R-CNN)

In our research, we illustrate the performance trade-off of various models
in Figure 4.13, where we depict the relationship between Number of Floating
Point Operations (FLOPs) and mean Average Precision (mAP) using the
Mask R-CNN framework. In this context, it becomes clear that our novel
architecture demonstrates a distinct advantage in terms of object detection
capabilities. Observing Figure 4.13, one can ascertain that our model stands
out in terms of achieving a finely balanced equilibrium between computa-
tional complexity, as indicated by FLOPs, and model accuracy, represented

102

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

by mAP. The superiority of our model becomes even more evident when con-
sidering that it effectively mitigates some of the inherent constraints of the
original Swin Transformer architecture. These enhancements in our archi-
tecture not only bolster model performance but also contribute substantially
towards optimizing computational resources. Hence, the evidence suggests
that our model provides a promising avenue for the development of more
efficient and accurate object detection systems.

Semantic Segmentation on ADE20K

We adopt the ADE20K dataset[141] for our semantic segmentation experi-
ments, a widely used benchmark covering a diverse range of 150 semantic
categories. The dataset comprises a total of 25,000 images, with 20,000 des-
ignated for training, 2,000 for validation, and 3,000 for testing.

Figure 4.14: Semantic Segmentation on ADE20K

For our base framework, we employ the efficient UperNet model[129], as
implemented in the mmseg library[22]. This choice allows for a fair compar-
ison with previous approaches in terms of both performance and efficiency.
In our experiments, we train Pyramid Swin-S and Pyramid Swin-R models,
following the same standard settings as those employed by prior methods.
Specifically, we use an input size of 512× 512 for both models, maintaining
consistency with the input dimensions used in previous studies.

Our Pyramid Swin Transformer design achieves superior accuracy com-
pared to Swin-B[80] and XCiT-S24/8[2] for the regular-size model (Pyramid
Swin-R) in table 4.3.4, with a +0.4 mIoU improvement over Swin-B and a
+1.4 mIoU improvement over XCiT-S24/8, all while maintaining a compara-
ble number of parameters. Notably, further increasing the number of param-

103

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Backbone Method mIoU FLOPs Params

ResNet-101 [48] DANet [40] 47.1 1119G 69M
ResNet-101 OCRNet [135] 46.0 1249G 69M
ResNet-101 DNL [132] 49.6 384G 76M
ResNet-101 UperNet 44.9 1029G 86M

XCiT-S24/8 [2] UperNet 47.1 - 74M
XCiT-M24/16 [2] UperNet 45.9 - 109M
XCiT-M24/8 [2] UperNet 46.9 - 109M

Swin-T [80] UperNet 44.5 945G 60M
Swin-S [80] UperNet 47.6 1038G 81M
Swin-B [80] UperNet 48.1 1188G 121M

Pyramid Swin-S UperNet 47.9 926G 92M
Pyramid Swin-R UperNet 48.5 1091G 113M
Pyramid Swin-B UperNet 48.8 1452G 161M
Pyramid Swin-L UperNet 49.0 2036G 237M

Table 4.6: Results of ADE20K samantic segmentation with UperNet

eters within our architecture can lead to even better results. In particular,
our big-size model attains a 48.8 mIoU, while our large-size model achieves
a 49.0 mIoU. These results highlight the effectiveness of our Pyramid Swin
Transformer approach in enhancing semantic segmentation performance.

While the Pyramid Swin Transformer demonstrates impressive perfor-
mance on object detection tasks, its efficacy in semantic segmentation tasks
may not be as robust. One possible explanation lies in the model’s inherent
feature extraction strategy. The Pyramid Swin Transformer tends to per-
form more multi-headed self-attention computations on large-scale feature
maps, consequently emphasizing global context understanding. Conversely,
it performs fewer computations on small-scale feature maps, which are cru-
cial for semantic segmentation tasks that require high-resolution features for
accurate pixel-level predictions. The balance between global and local infor-
mation can also have an impact on semantic segmentation tasks. Despite
the wealth of global information acquired from computations on large-scale
feature maps, preserving and enhancing local details is equally critical for
semantic segmentation. Therefore, our model may need further optimization
to adapt to the task of semantic segmentation in order to achieve better
results.

104

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Video Recognition on Kinetics-400

We evaluate the performance of our Pyramid Swin Transformer on the Kinetics-
400 dataset [60] (K400), which comprises approximately 240k training videos
and 20k validation videos spanning 400 human action categories. Our train-
ing methodology follows that of [81]. Specifically, we employ an AdamW
[61] optimizer for 30 epochs using a cosine decay learning rate scheduler and
2.5 epochs of linear warm-up, with a batch size of 64. As the backbone is
initialized from a pre-trained model while the head is randomly initialized,
we multiply the backbone learning rate by 0.1 to improve performance. The
initial learning rates for the ImageNet pre-trained backbone and the ran-
domly initialized head are set to 3e-5. To compute the final score, we take
the average score overall views.

Model Pre-train Top-1 Acc. FLOPs×views Params

SlowFast 16× 8 [36] - 79.8 234×3×10 60M
X3D-XL [35] - 79.1 48×3×10 11M
MoViNet-A6 [64] - 81.5 386×1×1 31M

ViT-B-TimeSformer [8] ImageNet-21K 80.7 2380×1×3 121M
ViT-B-VTN [89] ImageNet-21K 78.6 4218×1×1 11M
ViViT-L/16× 2 [3] ImageNet-21K 80.6 1446×4×3 311M
ViViT-L/16× 2 320 ImageNet-21K 81.3 3992×4×3 311M

Swin-T [80] ImageNet-1K 78.8 88×4×3 28M
Swin-S [80] ImageNet-1K 80.6 166×4×3 50M
Swin-B [80] ImageNet-1K 80.6 282×4×3 88M
Swin-B ImageNet-21K 82.7 282×4×3 88M

Pyramid Swin-S ImageNet-1K 80.8 206×4×3 64M
Pyramid Swin-R ImageNet-1K 81.2 261×4×3 77M
Pyramid Swin-R ImageNet-21K 83.4 261×4×3 77M

Table 4.7: Results of Kinetics-400 video recognition.

Table 4.3.4 presents the results of Kinetics-400 video recognition, where
we compare our Pyramid Swin Transformer models with other state-of-the-
art models. SlowFast 16×8 +NL[36], X3D-X[35]L, and MoViNet-A6[64] are
designed with different architectures. TimeSformer-L[8], ViT-B-VTN[89],
ViViT-L/16× 2[3], and ViViT-L/16× 2 320[3] are pre-trained on ImageNet-
21K. Swin-T, Swin-S, and Swin-B[80] are pre-trained on ImageNet-1K or
ImageNet-21K.

105

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Our Pyramid Swin Transformer models, including Pyramid Swin-S, Pyra-
mid Swin-R, and Pyramid Swin-L, outperform Swin-B and other models in
terms of accuracy with comparable or fewer parameters. Specifically, our
Pyramid Swin-S achieves a top-1 accuracy of 80.8%, and Pyramid Swin-R
achieves a top-1 accuracy of 81.2%, surpassing the other models in Table
4.3.4. Moreover, Pyramid Swin-R pre-trained on ImageNet-21K achieves the
highest accuracy of 83.4% among all the models, highlighting the effectiveness
of our Pyramid Swin Transformer models for video recognition tasks. In the
task of video recognition, which fundamentally parallels image classification,
the observed results could likely be attributed to the limited feature extrac-
tion conducted on small-scale feature maps. This leads to a considerable loss
of detailed semantic information. Such an observation underscores the ne-
cessity of extracting more granular features for tasks like video recognition,
where capturing temporal subtleties and intricate visual cues is imperative.
Balancing the focus between larger context and finer details remains a key
area of refinement for our Pyramid Swin Transformer in enhancing its per-
formance across a broader spectrum of visual recognition tasks.

In conclusion, while our model demonstrates promising capabilities, it also
highlights the necessity for continuous refinement and optimization. The effi-
cacy of our Pyramid Swin Transformer is inherently tied to the careful tuning
of model parameters, a process that should be intricately calibrated based
on the specific requirements of different tasks at hand. It is imperative to
not only take into account the intrinsic characteristics of the task, such as
the scale of feature maps and the nature of attention required but also the
computational constraints and efficiency demands. Through further itera-
tive experimentation and fine-tuning of these variables, we believe that our
model’s performance can be considerably enhanced, paving the way towards
superior results across a wide array of computer vision tasks.

4.4 High-speed Window-based Multi-head Self-
attention

In this section, we expound on our high-velocity implementation aimed at ex-
pediting the window-based multi-head self-attention (W-MSA) process using
CUDA. This is a central component of our proposed Pyramid Swin Trans-
former model. Given the substantial computational requirements of our
Pyramid Swin Transformer model, the need for a mechanism to enhance com-
putation speed is crucial. W-MSA, an efficient modification of the traditional
self-attention mechanism, is specially crafted to address the computational

106

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

and memory constraints of standard Transformer models when working with
large-scale images or extensive sequences. This variant not only preserves the
powerful representational capacity of self-attention but also facilitates more
efficient processing of large data, reinforcing the applicability and utility of
our Pyramid Swin Transformer model. In the initial stages of our research,
we identified that the Swin Transformer harbors a significant number of com-
ponents that can be parallelized, particularly the foundational W-MSA. This
realization implied that the use of GPUs could potentially enhance compu-
tational speed. The parallelization of these components, especially the W-
MSA, is a key factor in our high-speed implementation. By leveraging the
parallel processing capabilities of modern GPUs, we have managed to sig-
nificantly reduce the computation time, thereby making our Pyramid Swin
Transformer model more efficient and practical for real-world applications.

Figure 4.15: Parallel Window-based Multi-head Self-Attention

4.4.1 Our Method

In this section, we will describe our approach to accelerating window-based
multi-headed self-attentive computation using CUDA, which lays the foun-
dation for the enticing possibility of achieving an optimal trade-off between
computational speed and model precision.

Matrix Multiplication with GPU

Matrix multiplication is at the core of numerous operations in deep learn-
ing, including the self-attention mechanism. Its efficient and scalable exe-
cution influences the overall performance of these models. Therefore, any

107

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

improvement in matrix multiplication can directly lead to an increase in
the computational speed of the model. Recent developments in Graphics
Processing Units (GPUs) have brought forth their potential to accelerate
deep learning tasks. With their highly parallel structure, GPUs are particu-
larly adept at processing these computationally intense tasks, thereby making
them ideal for speeding up matrix multiplication. Leveraging the capabilities
of GPUs, therefore, becomes an integral part of our method for accelerating
the window-based multi-head self-attention mechanism. Our algorithm 3 op-
timizes the GPU memory bandwidth and computational resources, making
it highly efficient for large matrix multiplications, a common operation in
deep learning tasks.

108

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Algorithm 3: Optimized Matrix Multiplication Kernel
Data: Matrix A of size M x K, Matrix B of size K x N
Result: Matrix C of size M x N

1 Function matmul_kernel_opt(A, B, C, M, N, K):
2 #define TILE_SIZE 32
3 row ← blockIdx.y * blockDim.y + threadIdx.y
4 col ← blockIdx.x * blockDim.x + threadIdx.x
5 Allocate shared memory shared_A[TILE_SIZE][TILE_SIZE +

1] and shared_B[TILE_SIZE][TILE_SIZE + 1]
6 Initialize value ← 0
7 for tileIdx in 0 to (K + TILE_SIZE - 1) / TILE_SIZE do
8 if row < M and tileIdx * TILE_SIZE + threadIdx.x < K

then
9 shared_A[threadIdx.y][threadIdx.x] ← A[row * K +

tileIdx * TILE_SIZE + threadIdx.x]
10 else
11 shared_A[threadIdx.y][threadIdx.x] ← 0
12 end
13 if col < N and tileIdx * TILE_SIZE + threadIdx.y < K then
14 shared_B[threadIdx.y][threadIdx.x] ← B[(tileIdx *

TILE_SIZE + threadIdx.y) * N + col]
15 else
16 shared_B[threadIdx.y][threadIdx.x] ← 0
17 end
18 Synchronize threads
19 for e in 0 to TILE_SIZE do
20 value ← value + shared_A[threadIdx.y][e] *

shared_B[e][threadIdx.x]
21 end
22 Synchronize threads
23 end
24 if row < M and col < N then
25 C[row * N + col] ← value
26 end
27 end

This is where the TILE_SIZE of 32 comes in. When performing tiled
matrix multiplication, each thread block is responsible for computing a
TILE_SIZE × TILE_SIZE output tile. If we make TILE_SIZE equal to the
warp size, we can ensure that: Each thread block contains a whole number
of warps, which helps the GPU efficiently schedule the execution of these

109

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

warps. The threads within a warp can efficiently cooperate to load data and
perform computations because they are all working on adjacent elements of
the matrices. By setting TILE_SIZE to the warp size of 32, we are aligning
our computation with the underlying hardware architecture, which helps us
maximize the utilization of the GPU and achieve high performance.

Parallelization Strategy

The computational process in both methods 4.16 we employ commences
with the transformation of the input data into queries (Q), keys (K), and
values (V) via a set of learnable weight matrices. Each transformation is
executed through a matrix multiplication operation, a computation that is
inherently parallelizable and can be efficiently performed on a GPU. Upon
the generation of the Q, K, and V matrices, they undergo reshaping for sub-
sequent processing. Specifically, these matrices are partitioned into several
smaller matrices corresponding to different attention heads. Each head can
independently process its respective portion of the input, enabling further
parallelization. This "head-splitting" operation is executed in parallel by
allocating different threads to different sections of the input matrices. Sub-
sequent to the head-splitting, the scaled dot-product attention operation is
conducted. The interaction between different positions within each window
is computed. Notably, this computation is performed independently for each
attention head and for each window in the input, facilitating large-scale par-
allelization. For each position, this involves a dot product operation between
the corresponding Q and K vectors, a softmax operation, and then a weighted
sum operation with the Value (V). Following the attention computation, the
output from different attention heads is concatenated and transformed back
to the original data shape, a process often referred to as "head merging".
This operation is also highly parallelizable and is carried out by assigning
different GPU threads to different sections of the output data. Ultimately,
an output transformation is applied through a matrix multiplication with a
learnable weight matrix. Similar to the input transformations, this operation
is also highly parallelizable and can be efficiently executed on a GPU.

Nevertheless, the distinction lies in our adoption of thread blocks and
grids of varying sizes in our implementation to yield superior results 4.16. The
computational architecture is intrinsically three-dimensional, defined by the
window size, the count of windows, and the number of attention heads (h).
Depending on this three-dimensional structure, we can implement different
parallelization strategies. Initially, we employed a 3D parallelization strategy
in line with its construction.

In our 3D parallelization strategy, we theoretically size each block at

110

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

window_size × window_size × window_number. This means that each
block is responsible for executing computations for several window-based
multi-head self-attention. To put it simply, imagine that our data batch is
a three-dimensional cube. Each block in our grid takes a smaller cube (or
block) from this larger cube and processes it independently. This is where
the power of parallel processing comes into play, as each of these blocks can
be processed simultaneously by the GPU. Within each block, each thread
is assigned the task of calculating the attention score for a single head of a
single token within a single sequence in the batch.

However, due to the hardware limitations of the GPU, we need to adjust
the thread block size during implementation. GPUs have a maximum limit
on the number of threads per block (1024) and the total amount of shared
memory per block. Therefore, we need to configure the thread block size
to align with these limitations to ensure optimal performance and resource
utilization. This is akin to adjusting the number of workers on the assembly
line or the tasks assigned to each worker to ensure the factory runs efficiently.
In practice, this means we might need to adjust the size of our blocks or the
number of threads per block to fit within these constraints. For instance, if
our window size is very large, we might need to use smaller blocks or fewer
threads per block. Conversely, if our window size is small, we might be able
to use larger blocks or more threads per block. This flexibility allows us
to adapt our implementation to a wide variety of data sizes and structures,
ensuring that our model remains efficient and effective across different tasks
and datasets.

In our work, we have adopted a 2D parallelization 4.16 strategy in addi-
tion to the 3D parallelization approach, to fully leverage the computational
prowess of modern GPUs. This strategy involves configuring the thread
blocks to (window_size, window_size) and grid size to (window_number,
head_number), where each block is responsible for executing computations
for a window-based multi-head self-attention. Within each block, each thread
is tasked with calculating the attention score for a single head of a single pixel
within a single sequence in the batch.

This 2D parallelization strategy allows each thread to process all the
features of a single pixel in parallel, thereby effectively utilizing the GPU’s
parallel processing capabilities. However, it’s important to note that the
thread block size can become quite large for larger window sizes or a greater
number of windows, potentially exceeding the hardware limitations of certain
GPUs. Therefore, this strategy is particularly well-suited to scenarios where
the window size and the number of windows are not excessively large, and the
GPU is capable of robust parallel processing. Our 2D parallelization strategy
offers a flexible and efficient approach to processing large-scale image data in

111

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

the W-MSA model. By dynamically adjusting the thread block and grid sizes
based on the input data, we can ensure optimal performance and resource
utilization, making our model adaptable to a wide range of computer vision
tasks with diverse data sets and input dimensions.

Figure 4.16: Parallelization Strategy

4.4.2 Result & Analysis

In this section, we present the results of our experiments and provide a
detailed analysis of these outcomes. We evaluate our methods by focusing
on three main aspects: matrix multiplication and window-based multi-head
self-attention. Our experiments were conducted on a system equipped with
powerful hardware and state-of-the-art software to ensure high-performance
computations, as detailed in Table 4.8.

CPU Intel(R) Xeon(R) Platinum 8255C CPU

Memory 32G

GPU Nvidia GeForce RTX 2080Ti

GPU Memory 11G

Pytorch 1.8.1

CUDA 12.0

OS Ubuntu 18.04

Table 4.8: Test Environment

112

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Matrix Multiplication

Upon analysis of the provided test results as shown in figure 4.17, it is
observed that for matrices with smaller dimensions ranging from 8 × 8 to
1024× 1024, the custom kernel outperforms the cuBLAS library in terms of
computation speed. The probable cause for this behavior can be attributed
to the optimization approach of cuBLAS, which is specifically designed for
handling larger matrices efficiently rather than smaller ones. The small-sized
matrices do not fully utilize the inherent parallelism provided by cuBLAS,
thereby leading to less efficient execution.

Figure 4.17: Comparison of Matrix Multiplication

When it comes to medium-sized matrices, specifically those with dimen-
sions 448 × 448, the computation times for both the custom kernel and the
cuBLAS library seem to converge. This is likely due to the reason that the
custom kernel’s effectiveness starts to decline with the growth of the matrix
size, while the cuBLAS library begins to fully exploit its inherent parallelism
to accelerate computation. For larger matrices, ranging from dimensions
512 × 512 to 1024 × 1024, the cuBLAS library surpasses the performance
of the custom kernel. This superiority becomes increasingly pronounced as
the matrix size grows. The custom kernel’s performance decline is expected
as the management of shared memory becomes more complex with larger
matrices. In contrast, the cuBLAS library continues to benefit from its par-
allelization and optimization strategies, designed specifically for dealing with

113

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

large matrices. It is evident that for matrix multiplication tasks, the cus-
tom kernel demonstrates superior performance for smaller matrices, while
cuBLAS is more efficient for larger ones. A mixed strategy can be employed
in practice, switching between the custom kernel and cuBLAS based on the
matrix size to achieve optimal performance.

The superior performance of our CUDA matrix multiplication implemen-
tation for smaller matrices can be attributed to its effective use of the tiling
optimization technique and coalesced memory access pattern. The tiling
technique involves dividing the input matrices into smaller ’tiles’ or blocks,
which are loaded into the GPU’s faster-shared memory for computation. This
method reduces the number of slower global memory accesses, providing a
significant speedup, especially for smaller matrices where a large portion or
the entire matrix can be loaded into shared memory at once. The coalesced
memory access pattern, where threads in a block access consecutive mem-
ory addresses, further enhances memory access speed. This pattern allows
these accesses to be combined into a single memory transaction, maximizing
memory bandwidth utilization. However, it’s important to note that these
optimizations are relatively effective for smaller matrices. For larger matri-
ces, libraries like cuBLAS, which are designed to handle a variety of matrix
sizes and may employ more advanced algorithmic optimizations, can provide
superior performance.

window-based multi-head self-attention

Figure 4.18 demonstrates the performance comparison when using a window
size of 8×8. We also set batch size = 8, channel = 512 and head number = 8.
Similarly, our window-based approach demonstrates superior performance
across all tested settings.

As shown in Figure 4.18, we conducted another variation of the input size,
this time focusing on an 8×8 window size. In line with the previous observa-
tions, the 2D Parallel implementation maintained its status as the superior
performer. The efficiency gains over the PyTorch implementation were even
more significant. Specifically, the 2D Parallel approach was approximately
5.85× faster than PyTorch(CPU) and 1.88× faster than PyTorch(GPU) with
an input size of 16× 16. More dramatically, with an input size of 64× 64, it
exhibited performance speeds 8.57× faster than PyTorch(CPU) and 1.88×
faster than PyTorch(GPU). The 3D parallelization is about 1.65× faster than
Pytorch (GPU) and about 7.35× faster than Pytorch (CPU) for an input size
of 64× 64, which also performs better than the Pytorch version.

These findings underscore the compelling advantages of our 2D Parallel
implementation, particularly its ability to scale effectively with increasing

114

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

Figure 4.18: Performance comparison with 8× 8 window size

input size. Our implementation capitalizes on the computational prowess of
the GPU to a much greater extent than standard PyTorch implementations,
yielding a performance boost that is quite noticeable. The improvements are
substantial, with our version performing approximately two times faster than
its PyTorch counterpart. These enhancements substantiate our approach’s
potential for practical applications, particularly in scenarios requiring high
computational efficiency for window-based multi-head self-attention compu-
tations.

The parallelization strategy adopted for the Window-based Multi-head
Self-Attention (W-MSA) model, which includes both 2D and 3D paralleliza-
tion, provides a more efficient and optimized approach to GPU-based compu-
tations compared to the standard PyTorch implementation. By fully lever-
aging the parallel processing capabilities of modern GPUs and appropriately
configuring thread blocks and grid sizes based on input data, this strategy
ensures optimal utilization of GPU resources. It also incorporates coalesced
memory access, significantly enhancing memory access speed and overall per-
formance. Furthermore, by processing data in smaller chunks or ’windows’,
the strategy effectively reduces the memory footprint, leading to more effi-
cient memory usage and faster execution times. Lastly, the use of custom
CUDA kernels, specifically optimized for the computations involved in the W-
MSA model, contributes to faster execution times. In summary, this strategy
offers significant improvements in execution speed and overall performance,

115

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

demonstrating its effectiveness over the standard PyTorch implementation
on GPU.w

The efficiency of our 2D parallelization strategy may be attributed to
several factors that are intrinsic to the architecture of modern GPUs and the
nature of the Window-based Multi-head Self-Attention (W-MSA) model.

• Reduced Synchronization Overhead: In a 3D parallelization strat-
egy, the increased number of threads leads to a higher synchronization
overhead. All threads must reach designated synchronization points be-
fore progressing, causing faster threads to idle while waiting for slower
ones. This waiting period becomes more significant with a larger num-
ber of threads, as seen in 3D parallelization, thus contributing to the
extension of the overall execution time and making the 3D scheme less
efficient compared to the 2D approach.

• Hardware Limitations: GPU devices have a limit on the number of
threads per block. For example, some devices may limit the maximum
number of threads per block to 1024. If the product of your window
size and window number exceeds this limit, 3D parallelization might
not be able to utilize all threads effectively.

• Flexibility: The 2D parallelization strategy is more flexible and can
easily adapt to different data sizes and GPU architectures. This is
because the number of threads per block and the number of blocks
per grid can be appropriately adjusted based on the input data size
and the specific GPU architecture. This flexibility can lead to better
utilization of the GPU’s computational resources, resulting in faster
execution times.

In conclusion, our 2D parallelization strategy for the W-MSA model ef-
fectively leverages the parallel processing capabilities of modern GPUs, while
reducing synchronization overhead and so on. This results in a highly efficient
and scalable solution for large-scale image processing tasks.

4.5 Conclusion
In conclusion, the Pyramid Swin Transformer is an effective architecture
that achieves relatively remarkable performance in various computer vision
tasks such as object detection, image classification, semantic segmentation,
and video recognition. Our proposed design demonstrates consistent im-
provements over the original Swin Transformer and other state-of-the-art

116

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

models in terms of accuracy while making a better trade-off between com-
putational complexity and performance. In object detection, the Pyramid
Swin Transformer outperforms other models when utilized with Mask R-
CNN and Cascade Mask R-CNN frameworks. For image classification, our
architecture maintains competitive performance with other Transformer sys-
tems, even when using regular-sized models. In semantic segmentation, the
Pyramid Swin Transformer achieves higher accuracy than competing models,
showcasing its ability to capture rich semantic information. Lastly, in video
recognition tasks, our architecture surpasses Swin-B and other state-of-the-
art models in terms of accuracy, demonstrating its potential in spatiotempo-
ral understanding.

The success of our Pyramid Swin Transformer can be attributed to its
novel design, which utilizes different size windows on the same scale. This
combination allows for efficient computation and more effective feature ex-
traction, ultimately leading to improved performance across various com-
puter vision tasks. The Pyramid Swin Transformer demonstrates the ver-
satility and effectiveness of transformer-based architectures in the computer
vision domain, and it has the potential to serve as a solid foundation for
future research and applications in this field.

Moreover, our research has led to advancements in the acceleration of
window-based multi-head self-attention (W-MSA). By harnessing the power
of CUDA, we have increased the speed of W-MSA computations. Our initial
breakthrough involved the enhancement of matrix multiplication, tailoring it
for smaller sizes, thereby optimizing its compatibility with multi-head self-
attention. Following this, we devised a 3D parallelization strategy and a
2D parallelization strategy that proved to be effective, resulting in a speed-
up compared to the original W-MSA implementation. This paves the way
towards the promising potential of a superior trade-off between processing
speed and model accuracy. This cumulative progress lays a robust foundation
for future exploration and signifies a leap in the optimization of the W-MSA
mechanism.

To sum up, our comprehensive investigation and innovation revolving
around the Pyramid Swin Transformer, as well as our advancements in accel-
erating W-MSA, highlight the potential and flexibility of transformer-based
models in the arena of computer vision. By merging the strengths of the
pyramid vision transformers and Swin Transformer architecture, we have de-
vised an efficient, accurate, and high-performing model that sets a promising
precedent for future research. Furthermore, our exploration of the accel-
eration of W-MSA computation marks a considerable stride in the domain.
We’ve pushed the boundaries of computational efficiency with CUDA, paving
the way for faster, yet reliable Swin Transformer-based models. This not only

117

CHAPTER 4. OPTIMIZATION FOR THE SWIN TRANSFORMER

amplifies the feasibility of applying these models in real-world tasks but also
inspires further enhancements and applications in this continually evolving
field.

118

Chapter 5

Conclusion & Future Work

5.1 Conclusion
Throughout this dissertation, we have taken an extensive exploration into
GPU-based acceleration of computer vision task models, focusing on three
main avenues of research: Single Shot MultiBox Detector (SSD) optimization
using CUDA, the development and application of the Pyramid Swin Trans-
former, and the high-speed implementation of window-based multi-head self-
attention mechanisms,

In the third chapter, we analyzed the potential of applying CUDA to
speed up the SSD, a widely used object detection model. After a compre-
hensive investigation into the computational requirements of the SSD, we
identified key areas where GPU-accelerated computation could enhance per-
formance. Using CUDA kernels, we transferred the computational burden to
the GPU, thereby enhancing the overall runtime of the model. The results
were relatively notable, showing a substantial performance boost of about
22.53% faster than the original version which underscored the viability of
applying GPUs to accelerate object detection frameworks and making an
effective trade-off between speed and accuracy. However, we believe there
are still opportunities for further acceleration, such as exploring CUDA’s
advanced capabilities, including concurrent kernel execution and dynamic
parallelism. These techniques hold the potential to unlock higher levels of
performance and will be a focal point of our future work.

In the fourth chapter, we focused on the Transformer-based models,
specifically the Swin Transformer, which has demonstrated impressive perfor-
mance in computer vision tasks. Recognizing the potential of this model and
identifying its limitations, we developed an innovative solution: the Pyramid
Swin Transformer, achieving a better balance between precision and com-

119

CHAPTER 5. CONCLUSION & FUTURE WORK

putational complexity. By incorporating more diverse window sizes, we in-
creased the model’s adaptability and performance, realizing a better trade-off
between computational complexity and accuracy. Our architecture has been
extensively evaluated on multiple benchmarks, including achieving 85.4%
top-1 accuracy on ImageNet for image classification, 51.6 AP box with Mask
R-CNN and 54.3 AP box with Cascade Mask R-CNN on COCO for object de-
tection, 49.0 mIoU on ADE20K for semantic segmentation, and 83.4 % top-1
accuracy on Kinetics-400 for video recognition. This model adeptly captures
local and global contextual information, providing improved performance
over existing state-of-the-art models. We also introduced the high-speed im-
plementation of the window-based multi-head self-attention(W-MSA) mech-
anism for GPU acceleration. To optimize this key component of the window-
based multi-head self-attention, we first focus on the matrix multiplication
operation, which is the basement of W-MSA. Our method is better than
cuBLAS when the matrix size is relatively small. We proposed a parallel
processing approach of W-MSA that outperformed the original PyTorch im-
plementation. We foresee that our acceleration approach will enhance the
speed of both training and detection within our model architecture, thus
fostering the potential to strike a superior trade-off between precision and
velocity.

In conclusion, this dissertation has made several important contributions
to the field of computer vision by demonstrating novel and efficient methods
for GPU-based acceleration and optimization methods. We believe that these
contributions not only provide practical solutions to current challenges in
the field but also open up new opportunities and directions for future work.
However, the rapid advancement of computer vision and machine learning
technologies means there is always more to do. With each contribution,
we strive not just to advance the state of the art but also to provide a
solid foundation for further exploration and development in this dynamic
and evolving field.

5.2 Future Work
In the future, one promising direction is to explore more advanced CUDA
optimization techniques for object detection models. While our research has
shown the potential for substantial performance improvements by optimizing
the Single Shot MultiBox Detector (SSD) with CUDA, there are additional
CUDA techniques that could further enhance performance. These advanced
techniques include concurrent kernel execution, dynamic parallelism, and
texture memory optimization. The integration and adaptation of these tech-

120

CHAPTER 5. CONCLUSION & FUTURE WORK

niques to SSD and other object detection models would be a challenging yet
worthwhile endeavor, potentially leading to substantial performance gains.
Porting our approach to some other detection architectures will also be one
of our future topics, even some other computer vision task architectures, such
as semantic segmentation, etc.

Moreover, the Pyramid Swin Transformer proposed in our research opens
up a myriad of possibilities for Transformer architectures in computer vision.
Future work could extend these models for other computer vision tasks not
covered in this dissertation, such as depth estimation, optical flow prediction,
and 3D object detection. It would be intriguing to observe the potential of
these models in these tasks and to make adaptations and refinements as nec-
essary to excel in these new challenges. In terms of the high-speed window-
based multi-head self-attention mechanism, the possibility of integrating the
entire approach into a full-fledged Swin Transformer model or our Pyramid
Swin Transformer is an exciting prospect. This integration would enable a
comprehensive evaluation of the impact on end-to-end tasks, including accu-
racy and complete training and inference time.

Finally, expanding upon the future work highlighted above, there’s an-
other promising and practical direction of research: the adaptation and test-
ing of our methods on smaller-scale GPUs for real-world applications. As
machine learning models are being increasingly deployed in smaller, embed-
ded devices for on-the-edge processing, optimizing our work for these less
powerful GPUs becomes a critical endeavor. This line of research involves ef-
ficiently porting our models to smaller, possibly resource-constrained, GPU
architectures. This will likely necessitate further model optimizations to
maintain the balance between accuracy and resource efficiency, and poten-
tially introduce the need for techniques like model quantization, pruning,
or distillation. Moreover, this work opens up a myriad of opportunities for
real-time, in-the-field applications of object detection and other vision tasks.
This could range from real-time surveillance systems, and autonomous vehi-
cles, to handheld devices with visual recognition capabilities, among others.
The practical application of our research for on-device, real-time computer
vision tasks on smaller GPUs represents a rich vein of future research. This
direction not only presents a host of technical challenges but also aligns with
the current trend towards edge computing and the Internet of Things (IoT),
making it an exciting prospect for future work.

In conclusion, the future of GPU-based acceleration for computer vision
task models is promising. The research presented in this dissertation serves
as a foundation for future explorations and innovations in this field. As
technology advances and computational demands continue to increase, the
techniques and insights gained from this research will be instrumental in the

121

CHAPTER 5. CONCLUSION & FUTURE WORK

quest for more efficient and effective computer vision models. The road ahead
is teeming with challenges and opportunities, and we eagerly anticipate the
continued evolution of this field.

122

Bibliography

[1] Edward H Adelson, Charles H Anderson, James R Bergen, Peter J
Burt, and Joan M Ogden. Pyramid methods in image processing. RCA
engineer, 29(6):33–41, 1984.

[2] Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bojanowski,
Matthijs Douze, Armand Joulin, Ivan Laptev, Natalia Neverova,
Gabriel Synnaeve, Jakob Verbeek, et al. Xcit: Cross-covariance im-
age transformers. Advances in neural information processing systems,
34:20014–20027, 2021.

[3] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario
Lučić, and Cordelia Schmid. Vivit: A video vision transformer. In
Proceedings of the IEEE/CVF international conference on computer
vision, pages 6836–6846, 2021.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer nor-
malization. arXiv preprint arXiv:1607.06450, 2016.

[5] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image segmenta-
tion. IEEE transactions on pattern analysis and machine intelligence,
39(12):2481–2495, 2017.

[6] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool.
Speeded-up robust features (surf). Computer vision and image un-
derstanding, 110(3):346–359, 2008.

[7] Josh Beal, Eric Kim, Eric Tzeng, Dong Huk Park, Andrew Zhai, and
Dmitry Kislyuk. Toward transformer-based object detection. arXiv
preprint arXiv:2012.09958, 2020.

[8] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time
attention all you need for video understanding? In ICML, volume 2,
page 4, 2021.

123

BIBLIOGRAPHY

[9] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition
and machine learning, volume 4. Springer, 2006.

[10] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis.
Soft-nms–improving object detection with one line of code. In Proceed-
ings of the IEEE international conference on computer vision, pages
5561–5569, 2017.

[11] Léon Bottou. Large-scale machine learning with stochastic gradient
descent. In Proceedings of the 19th international conference on compu-
tational statistics, pages 177–186. Springer, 2010.

[12] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy
minimization via graph cuts. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(11):1222–1239, 2001.

[13] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[14] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high
quality object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6154–6162, 2018.

[15] Ph.D. Cameron R. Wolfe. Using transformers for computer vision.
https://towardsdatascience.com/using-transformers-for-computer-
vision-6f764c5a078b, 2022.

[16] John Canny. A computational approach to edge detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 8(6):679–698,
1986.

[17] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection
with transformers. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16,
pages 213–229. Springer, 2020.

[18] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Mur-
phy, and Alan L Yuille. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected
crfs. IEEE transactions on pattern analysis and machine intelligence,
40(4):834–848, 2017.

124

BIBLIOGRAPHY

[19] Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi, Thomas S
Huang, and Lei Zhang. Higherhrnet: Scale-aware representation learn-
ing for bottom-up human pose estimation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pages 5386–5395, 2020.

[20] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Ef-
ficient primitives for deep learning. arXiv preprint arXiv:1410.0759,
2014.

[21] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast
and accurate deep network learning by exponential linear units (elus).
arXiv preprint arXiv:1511.07289, 2015.

[22] MMSegmentation Contributors. MMSegmentation: Openmmlab se-
mantic segmentation toolbox and benchmark. https://github.com/
open-mmlab/mmsegmentation, 2020.

[23] Shane Cook. CUDA programming: a developer’s guide to parallel com-
puting with GPUs. Newnes, 2012.

[24] James W Cooley and John W Tukey. An algorithm for the machine
calculation of complex fourier series. Mathematics of computation,
19(90):297–301, 1965.

[25] A Criminisi, J Shotton, and E Konukoglu. Decision forests for clas-
sification, regression, density estimation, manifold learning and semi-
supervised learning [internet]. Microsoft Research, 2011.

[26] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detec-
tion via region-based fully convolutional networks. Advances in neural
information processing systems, 29, 2016.

[27] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet:
Marrying convolution and attention for all data sizes. Advances in
Neural Information Processing Systems, 34:3965–3977, 2021.

[28] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for hu-
man detection. In 2005 IEEE computer society conference on computer
vision and pattern recognition (CVPR’05), volume 1, pages 886–893.
Ieee, 2005.

125

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

BIBLIOGRAPHY

[29] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[30] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[31] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[32] Mark Everingham, Luc Van Gool, Christopher KI Williams, John
Winn, and Andrew Zisserman. The pascal visual object classes (voc)
challenge. International journal of computer vision, 88:303–338, 2010.

[33] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng
Yan, Jitendra Malik, and Christoph Feichtenhofer. Multiscale vision
transformers. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 6824–6835, 2021.

[34] Neetu Faujdar and Satya Prakash Ghrera. Performance evaluation of
merge and quick sort using gpu computing with cuda. International
Journal of Applied Engineering Research (IJAER), 10(18):39315–9,
2015.

[35] Christoph Feichtenhofer. X3d: Expanding architectures for efficient
video recognition. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 203–213, 2020.

[36] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming
He. Slowfast networks for video recognition. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 6202–
6211, 2019.

[37] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva
Ramanan. Object detection with discriminatively trained part-based
models. IEEE transactions on pattern analysis and machine intelli-
gence, 32(9):1627–1645, 2009.

126

BIBLIOGRAPHY

[38] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani
Amorim. Do we need hundreds of classifiers to solve real world
classification problems? The journal of machine learning research,
15(1):3133–3181, 2014.

[39] Yoav Freund and Robert E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting. Journal of
Computer and System Sciences, 55(1):119–139, 1997.

[40] Jun Fu, Jing Liu, Jie Jiang, Yong Li, Yongjun Bao, and Hanqing Lu.
Scene segmentation with dual relation-aware attention network. IEEE
Transactions on Neural Networks and Learning Systems, 32:2547–2560,
2020.

[41] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1440–1448, 2015.

[42] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen-
tation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 580–587, 2014.

[43] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[44] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[45] Robert M. Haralick and Linda G. Shapiro. Image segmentation tech-
niques. Computer Vision, Graphics, and Image Processing, 29(1):100–
132, 1985.

[46] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 2961–2969, 2017.

[47] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial
pyramid pooling in deep convolutional networks for visual recogni-
tion. IEEE transactions on pattern analysis and machine intelligence,
37(9):1904–1916, 2015.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 770–778, 2016.

127

BIBLIOGRAPHY

[49] Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides, and Xiangyu
Zhang. Bounding box regression with uncertainty for accurate object
detection. In Proceedings of the ieee/cvf conference on computer vision
and pattern recognition, pages 2888–2897, 2019.

[50] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber,
et al. Gradient flow in recurrent nets: the difficulty of learning long-
term dependencies, 2001.

[51] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler,
and Daniel Soudry. Augment your batch: Improving generalization
through instance repetition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 8129–8138,
2020.

[52] Jan Hosang, Rodrigo Benenson, and Bernt Schiele. Learning non-
maximum suppression. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 4507–4515, 2017.

[53] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1–9, 2017.

[54] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local rela-
tion networks for image recognition. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 3463–3472, 2019.

[55] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. Densely connected convolutional networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
4700–4708, 2017.

[56] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop
Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song,
Sergio Guadarrama, et al. Speed/accuracy trade-offs for modern con-
volutional object detectors. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7310–7311, 2017.

[57] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Interna-
tional conference on machine learning, pages 448–456. PMLR, 2015.

128

BIBLIOGRAPHY

[58] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann
LeCun. What is the best multi-stage architecture for object recogni-
tion? In 2009 IEEE 12th international conference on computer vision,
pages 2146–2153. IEEE, 2009.

[59] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,
Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification with
convolutional neural networks. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages 1725–1732, 2014.

[60] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier,
Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back,
Paul Natsev, et al. The kinetics human action video dataset. arXiv
preprint arXiv:1705.06950, 2017.

[61] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[62] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár.
Panoptic feature pyramid networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 6399–
6408, 2019.

[63] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver,
Jessica Yung, Sylvain Gelly, and Neil Houlsby. Big transfer (bit): Gen-
eral visual representation learning. In European Conference on Com-
puter Vision, 2019.

[64] Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing
Tan, Matthew Brown, and Boqing Gong. Movinets: Mobile video net-
works for efficient video recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16020–
16030, 2021.

[65] Oliver Kramer and Oliver Kramer. K-nearest neighbors. Dimension-
ality reduction with unsupervised nearest neighbors, pages 13–23, 2013.

[66] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Communications of
the ACM, 60(6):84–90, 2017.

[67] Mohan Pawan Kumar and Andrew Zisserman. Object detection us-
ing discriminatively trained part-based models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(9):1627–1645, 2005.

129

BIBLIOGRAPHY

[68] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural
networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4013–4021, 2016.

[69] Hei Law and Jia Deng. Cornernet: Detecting objects as paired key-
points. In Proceedings of the European conference on computer vision
(ECCV), pages 765–781, 2018.

[70] Yann LeCun and Yoshua Bengio. Convolutional networks for images,
speech, and time-series. Handbook of brain theory and neural networks,
3361(10):1995, 1995.

[71] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86:2278–2324, 1998.

[72] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolu-
tional networks and applications in vision. In Proceedings of 2010 IEEE
international symposium on circuits and systems, pages 253–256. IEEE,
2010.

[73] Congcong Li. High quality, fast, modular reference implementation of
SSD in PyTorch. https://github.com/lufficc/SSD, 2018.

[74] Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam,
Bo Xiong, Jitendra Malik, and Christoph Feichtenhofer. Mvitv2: Im-
proved multiscale vision transformers for classification and detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4804–4814, 2022.

[75] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Har-
iharan, and Serge Belongie. Feature pyramid networks for object de-
tection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2117–2125, 2017.

[76] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dol-
lár. Focal loss for dense object detection. In Proceedings of the IEEE
international conference on computer vision, pages 2980–2988, 2017.

[77] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft
coco: Common objects in context. In Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

130

https://github.com/lufficc/SSD

BIBLIOGRAPHY

[78] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multi-
box detector. In European conference on computer vision, pages 21–37.
Springer, 2016.

[79] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei,
Jia Ning, Yue Cao, Zheng Zhang, Li Dong, et al. Swin transformer v2:
Scaling up capacity and resolution. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 12009–
12019, 2022.

[80] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision
transformer using shifted windows. arXiv preprint arXiv:2103.14030,
2021.

[81] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Han Hu. Video swin transformer. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 3202–
3211, 2022.

[82] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolu-
tional networks for semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3431–
3440, 2015.

[83] David G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2):91–110, 2004.

[84] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier
nonlinearities improve neural network acoustic models. In Proc. icml,
volume 30, page 3. Atlanta, Georgia, USA, 2013.

[85] Tomasz Malisiewicz, Abhinav Gupta, and Alexei A Efros. Ensemble of
exemplar-svms for object detection and beyond. In 2011 International
conference on computer vision, pages 89–96. IEEE, 2011.

[86] David Marr and Ellen Hildreth. Theory of edge detection. Proceed-
ings of the Royal Society of London. Series B. Biological Sciences,
207(1167):187–217, 1980.

[87] Sanyam Mehta, Arindam Misra, Ayush Singhal, Praveen Kumar, and
Ankush Mittal. A high-performance parallel implementation of sum

131

BIBLIOGRAPHY

of absolute differences algorithm for motion estimation using cuda. In
HiPC Conf, volume 2, page 6, 2010.

[88] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010.

[89] Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Asselmann. Video
transformer network. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3163–3172, 2021.

[90] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
parallel programming with cuda. Queue, 6(2):40–53, 2008.

[91] NVIDIA. Cuda toolkit documentation. https://docs.nvidia.com/
cuda, 2023.

[92] David Oro, Carles Fernández, Xavier Martorell, and Javier Hernando.
Work-efficient parallel non-maximum suppression for embedded GPU
architectures. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1026–1030. IEEE, 2016.

[93] John D Owens, Mike Houston, David Luebke, Simon Green, John E
Stone, and James C Phillips. Gpu computing. Proceedings of the IEEE,
96(5):879–899, 2008.

[94] John D Owens, David Luebke, Naga K Govindaraju, Mark Harris,
Jens Krüger, Aaron E Lefohn, and Tim Purcell. A survey of general-
purpose computation on graphics hardware. Computer graphics forum,
26(1):80–113, 2007.

[95] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic ap-
proximation by averaging. SIAM journal on control and optimization,
30:838–855, 1992.

[96] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xu-
anjing Huang. Pre-trained models for natural language processing: A
survey. Science China Technological Sciences, 63(10):1872–1897, 2020.

[97] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever,
et al. Improving language understanding by generative pre-training.
2018.

132

https://docs.nvidia.com/cuda
https://docs.nvidia.com/cuda

BIBLIOGRAPHY

[98] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He,
and Piotr Dollár. Designing network design spaces. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pages 10428–10436, 2020.

[99] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Ex-
ploring the limits of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research, 21:5485–5551,
2020.

[100] Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale deep
unsupervised learning using graphics processors. In Proceedings of the
26th annual international conference on machine learning, pages 873–
880, 2009.

[101] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for
activation functions. arXiv preprint arXiv:1710.05941, 2017.

[102] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
779–788, 2016.

[103] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7263–7271, 2017.

[104] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improve-
ment. arXiv preprint arXiv:1804.02767, 2018.

[105] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-
cnn: Towards real-time object detection with region proposal networks.
In Advances in Neural Information Processing Systems, pages 91–99,
2015.

[106] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. " grab-
cut" interactive foreground extraction using iterated graph cuts. ACM
transactions on graphics (TOG), 23(3):309–314, 2004.

[107] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. nature, 323(6088):533–
536, 1986.

133

BIBLIOGRAPHY

[108] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. Imagenet large scale visual recognition chal-
lenge. International journal of computer vision, 115:211–252, 2015.

[109] Shane Ryoo, Christopher I Rodrigues, Sam S Baghsorkhi, Stephen S
Stone, David B Kirk, and Wen-mei W Hwu. Optimization principles
and application performance evaluation of a multithreaded gpu using
cuda. ACM SIGPLAN Notices, 43(6):73–82, 2008.

[110] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing
between capsules. Advances in neural information processing systems,
30, 2017.

[111] Rafael Sachetto Oliveira, Bernardo Martins Rocha, Ronan Mendonça
Amorim, Fernando Otaviano Campos, Wagner Meira, Elson Magal-
hães Toledo, and Rodrigo Weber dos Santos. Comparing cuda, opencl
and opengl implementations of the cardiac monodomain equations. In
Parallel Processing and Applied Mathematics: 9th International Con-
ference, PPAM 2011, Torun, Poland, September 11-14, 2011. Revised
Selected Papers, Part II 9, pages 111–120. Springer, 2012.

[112] Matsuoka Satoshi, Endo Toshio, Nukada Akira, Miura Shinichi, No-
mura Akihiro, Sato Hitoshi, Jitsumoto Hideyuki, and Drozd Aleksandr.
Overview of tsubame3. 0, green cloud supercomputer for convergence
of hpc, ai and big-data. Tsubame ESJ.: e-science journal/Tsubame
e-science journal, 16:20–27, 2017.

[113] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob
Fergus, and Yann LeCun. Overfeat: Integrated recognition, local-
ization and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013.

[114] Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi.
Textonboost for image understanding: Multi-class object recognition
and segmentation by jointly modeling texture, layout, and context.
International journal of computer vision, 81:2–23, 2009.

[115] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[116] Irwin Sobel and Gary Feldman. Camera models and machine percep-
tion. PhD thesis, Stanford University, 1968.

134

BIBLIOGRAPHY

[117] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid.
Segmenter: Transformer for semantic segmentation. In Proceedings
of the IEEE/CVF international conference on computer vision, pages
7262–7272, 2021.

[118] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng Xu, Wei
Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan, Changhu Wang,
et al. Sparse r-cnn: End-to-end object detection with learnable pro-
posals. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 14454–14463, 2021.

[119] Matthews Suzanne J, Newhall Tia, and Webb Kevin C. Dive Into
Systems: A Gentle Introduction to Computer Systems. No Starch Press,
020.

[120] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1–
9, 2015.

[121] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. arXiv preprint arXiv:1905.11946,
2019.

[122] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa,
Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image
transformers & distillation through attention. In International confer-
ence on machine learning, pages 10347–10357. PMLR, 2021.

[123] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and
Manohar Paluri. Learning spatiotemporal features with 3d convolu-
tional networks. In Proceedings of the IEEE international conference
on computer vision, pages 4489–4497, 2015.

[124] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[125] Paul Viola and Michael J. Jones. Rapid object detection using a
boosted cascade of simple features. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages I–I, 2001.

135

BIBLIOGRAPHY

[126] Vasily Volkov and James W Demmel. Benchmarking gpus to tune
dense linear algebra. In 2008 SC-International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–
11. IEEE, 2008.

[127] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xi-
aoou Tang, and Luc Van Gool. Temporal segment networks: Towards
good practices for deep action recognition. In European conference on
computer vision, pages 20–36. Springer, 2016.

[128] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding
Liang, Tong Lu, Ping Luo, and Ling Shao. Pyramid vision transformer:
A versatile backbone for dense prediction without convolutions. In
Proceedings of the IEEE/CVF international conference on computer
vision, pages 568–578, 2021.

[129] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun.
Unified perceptual parsing for scene understanding. In Proceedings of
the European conference on computer vision (ECCV), pages 418–434,
2018.

[130] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Mur-
phy. Rethinking spatiotemporal feature learning for video understand-
ing. arXiv preprint arXiv:1712.04851, 1:5, 2017.

[131] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin
Yumer, and Raquel Urtasun. Upsnet: A unified panoptic segmentation
network. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8818–8826, 2019.

[132] Minghao Yin, Zhuliang Yao, Yue Cao, Xiu Li, Zheng Zhang, Stephen
Lin, and Han Hu. Disentangled non-local neural networks. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XV 16, pages 191–207. Springer, 2020.

[133] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by
dilated convolutions. In Proceedings of the International Conference
on Learning Representations (ICLR), 2016.

[134] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang
Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-to-
token vit: Training vision transformers from scratch on imagenet. In
Proceedings of the IEEE/CVF international conference on computer
vision, pages 558–567, 2021.

136

BIBLIOGRAPHY

[135] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-contextual rep-
resentations for semantic segmentation. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part VI 16, pages 173–190. Springer, 2020.

[136] Aston Zhang, Zachary C Lipton, Mu Li, and Alexander J Smola. Dive
into deep learning. arXiv preprint arXiv:2106.11342, 2021.

[137] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei
Zhang, and Jianfeng Gao. Multi-scale vision longformer: A new vision
transformer for high-resolution image encoding. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 2998–
3008, 2021.

[138] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and
Jiaya Jia. Pyramid scene parsing network. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2881–
2890, 2017.

[139] Qijie Zhao, Tao Sheng, Yongtao Wang, Zhi Tang, Ying Chen, Ling Cai,
and Haibin Ling. M2det: A single-shot object detector based on multi-
level feature pyramid network. In Proceedings of the AAAI conference
on artificial intelligence, volume 33, pages 9259–9266, 2019.

[140] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo,
Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr,
et al. Rethinking semantic segmentation from a sequence-to-sequence
perspective with transformers. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages 6881–6890,
2021.

[141] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Semantic understanding of scenes
through the ade20k dataset. International Journal of Computer Vision,
127:302–321, 2019.

[142] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as
points. arXiv preprint arXiv:1904.07850, 2019.

137

Appendix A

Publish List

[1] Chenyu Wang, Toshi Endo, Takahiro Hirofuchi, and Tsutomu Ikegami.
Speed-up single shot detector on GPU with CUDA. In 2022 23rd ACIS
International Summer Virtual Conference on Software Engineering, Arti-
ficial Intelligence, Networking and Parallel/Distributed Computing (SNPD-
Summer), pages 36–41, 2022.

[2] Chenyu Wang, Toshio Endo, Takahiro Hirofuchi, and Tsutomu Ikegami.
Speed-Up Single Shot Detector on GPU with CUDA, Software Engineer-
ing, Artificial Intelligence, Networking and Parallel/Distributed Computing,
Springer International Publishing, pages 89–106, 2022.

[3] Chenyu Wang, Toshio Endo, Takahiro Hirofuchi, and Tsutomu Ikegami.
Pyramid Swin Transformer: Different-size windows Swin Transformer for im-
age classification and object detection. In Proceedings of the 18th Interna-
tional Joint Conference on Computer Vision, Imaging and Computer Graph-
ics Theory and Applications(VISIGRAPP), pages 583–590, SCITEPRESS,
2023. (Poster)

[4] Chenyu Wang, Toshio Endo, Takahiro Hirofuchi, and Tsutomu Ikegami.
Pyramid Swin Transformer for Multi-Task: Expanding to more computer vi-
sion tasks. Advanced Concepts for Intelligent Vision Systems(Acivs), 2023.

138

