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Abstract: Brain activity decoding aims to predict the intentions or mental states of the brain by the
utilization of brain recording signals. One significant obstacle for brain activity decoding is the brain
recording noise that has complicated distribution, which may lead to large performance deterioration
for existing brain decoding algorithms. To address this problem, the present thesis aims to propose
robust brain activity decoding algorithms under the framework of information theoretic learning
to alleviate the negative effects of the adverse brain recording noise. In particular, minimum error
entropy criterion and maximum correntropy criterion were utilized to build robust objective functions
for brain decoding algorithms. In addition, another significant problem for brain activity decoding,
the high-dimensional issue, is also taken into account in this thesis. The proposed algorithms were
evaluated systematically with synthetic datasets and real-world brain data. The experimental results
demonstrated that information theoretic learning based robust brain decoding algorithms effectively
reduce the performance deterioration caused by the noise and realize higher brain decoding accuracy
on the real-world noisy brain data.
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1. Introduction

Humans have been interested in how their brains work and interact with the external world for a
long time. In particular, the mysterious phrase “mind reading” is full of fascination for human beings.
The brain is the most complex organ in a human body, where the cerebral cortex is the most developed
region which dominates all activity processes in the organism and regulates the balance between the
organism and the surrounding environment, undertaking the basis for neural activities of higher level
[1]. In the past, the investigations regrading the brain have been primarily explored from a medical or
anatomical perspective. The first written record of the human brain dates back to Egypt, 4000 years
ago. However, the prevailing view then was “heart-centered”, that the heart was the source of mental
activity, not the brain. It was since the 5th century that the brain was considered as the most important
organ. With the lifting of taboos on dissecting human body, the invention of microscope, the creation
of comparative anatomy and cranial phrenology, scientists were able to produce a fascinating array of
research on the brain. In the 17th century, Thomas Willis rejected the view of “ventricle” and proposed
that the higher cognitive functions of the human brain come from the folds of cerebral cortex, instead
of the smoother region [2]. In the 1950s and 1960s, Roger Sperry found that the hemispheres in human
brains play different cognitive functions, where the left hemisphere can interpret language but not the
right hemisphere, by severing the corpus callosum on cats, monkeys, and humans [3]. Investigations
on the brain were carried out from the chemical and cytological perspectives as well. For example,
the Alzheimer’s disease, one frequent neuro-degenerative disease which damages patients’ cognition
and memory, is commonly thought to be caused by the imbalance in the production and clearance of
amyloid-β protein [4]. Studying how the numerous neurons in the brain are connected with each other
and the mechanism of synaptic connections can also help to understand the brain [5,6].

With the advent of the information technology era, digital devices such as electroencephalogram
(EEG) [7], magnetoencephalography (MEG) [8], electrocorticography (ECoG) [9], as well as functional
magnetic resonance imaging (fMRI) [10], were invented with the capability to measure and record the
brain activities through different physical quantities, which enabled the digitized description for brain
activity. After the physiological activities in the cerebral cortex are converted into numerical digits and
stored in the computer, one can utilize mathematical approaches to analyze and process brain activity
recording data. In particular, with the investigations of artificial intelligence technology in the recent
decades, the machine learning techniques have been more and more widely employed to analyze and
process brain activity data [11,12]. Until now, machine learning based cognitive neuroscience has been
witnessing the fast growths in the size and complexity of human brain data and the computational
methods that allow scientists to study the brain mechanism under more naturalistic conditions [13,14].
The currently popular tools for “data-driven” neuroscience can be classifies into two prevailing forms:
encoding and decoding. Encoding models aim to simulate and predict the brain activities under the
awareness of external stimulus or spontaneous intention. By comparison, decoding refers to disclosing
the received stimulus or spontaneous intention from recorded brain activities of different measurement
modalities. A schematic diagram for encoding and decoding is illustrated in Fig. 1.

1

external stimulus
/spontaneous intention

encoding decoding

brain activity

?

?

?

external stimulus
/spontaneous intention

Figure 1. Schematic diagram of brain activity encoding and decoding. Encoding refers to simulating
the brain activities with the input of stimulus or spontaneous intention, while decoding aims to expose
the received stimulus or intention from the recorded brain activities.

Both encoding and decoding models aim to relate stimulus or mental status with brain signals,
while decoding models exhibit an extra potential for the applications which aim to predict the inherent
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cognitive activities or utilize neural activity to control external device [13]. More interestingly, brain
activity decoding can be considered to be a more scientific name for “mind reading” [15]. Hence, this
thesis mainly focuses on the brain activity decoding task. Brain activity decoding frameworks can
be classified into two categories according to the property of target variable. The first framework is
classification, where the neural activity corresponds to one of a finite set of possible event types, such
as to move the left hand or the right hand. Many conventional machine learning algorithms have been
employed to structure a classification model to classify the category of neural activities [16,17]. Motor
imagery is a canonical paradigm for neural activity classification, where the subject imagines a virtual
movement and the classification models is trained to identify the imaginary movement direction or
limb [18]. Speech is another popular research topic in brain activity decoding. Discrete speech features
have been successfully predicted, including vowels [19], phonemes [20], words [21], and sentences
[22]. In addition, classification-based visual decoding can build the relationship between brain activity
and the predefined labels for visual stimulus [23–25]. The second framework is reconstruction, which
could be also called regression in a machine learning context, where continuous variables are restored
from brain recording signals. For example, the parameters of upper limb movements were successfully
reconstructed to control a robotic arm [26]. Further, continuous movement trajectories of an upper limb
in the three-dimensional space could be directly predicted from brain activities [27,28]. Continuous
features for speech reconstruction could be also accurately identified, such as amplitude power and
spatiotemporal modulations [29,30], mel-frequency cepstral coefficients [31], and speech envelope [32].
Furthermore, visual reconstruction from brain activity has been receiving a growing attention in the
research community [33–38].

The brain-computer interface (BCI) technology is another valuable research topic which is closely
related to brain activity decoding. BCI refers to translating the brain signals to proper commands and
using external device to help the communication with outside without muscle operation for paralyzed
people [39]. BCI technology can be traced back to [40], in which monkeys were trained to modulate
their neural activity rates above a threshold to be rewarded. This work demonstrated that the animal
could interact with their own neural activities through causal links. This pioneering study and the
corresponding technological innovations inspired the first invasive BCI system which was successfully
implemented on rats [41]. Fig. 2 illustrates the experiment, where the rats performed a motion task
with their neural activities being recorded which were used to replace the movements by controlling
the robotic arm. It was found that neural activities were no longer associated with actual movements
gradually, which means the rats did not need to move the limbs to generate neural signals. This shows
that neurons exhibit powerful plasticity in neural coding and provide theoretical supports for later
developments of BCI.

2

food
robotic arm

neural 
activities

actual motion

Figure 2. Experiment paradigm of the first invasive BCI system [41]. The rats were found to be able to
regulate their neural activities to directly control the robotic arm without actual movements on their
limbs.

Over the past twenty years many researchers have evaluated the possibility of realizing auxiliary
communication technologies which are not dependent on muscle movements with different sensors
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and brain activity types [42–44]. These BCI systems measure brain activities, extract their features, and
translate them into target instructions to control external devices. Currently, BCI has been a promising
approach to connect human brains and external world directly. A common BCI system is illustrated in
Fig. 3, which consists of three central procedures: (1) Signal Recording: For different scenarios, choose
proper recording modality and design user-friendly experiment, such that the BCI user could focus on
performing specific brain activities. (2) Brain Activity Decoding: Reading one’s intention through brain
signals is critical for a BCI system. Machine learning can automatically extract effective features from
brain signals, and recognize the pattern of extracted features, e.g. to move the left hand or the right
hand. (3) Control & Feedback: Based on the user’s intention, send appropriate control instructions to
the external device to assist the user, and the user receives the feedback and performs the subsequent
intentions.

4

signal recording

· ··

signal processing feature extraction pattern recognition

brain activity decoding

feedback control

grasp move spell voice emotion

Figure 3. Schematic diagram of the common BCI system. Brain activities are recorded by the proper
measurements for specific scenarios. Brain activity decoding translates the brain data to generate an
appropriate command for the external device. The user receives an assistance from the external device.

With the development of more advanced brain activity decoding algorithms and experimental
paradigms, BCI technology has been revealing increasing prospects under miscellaneous assistance
scenarios. The canonical motor imagery paradigm has been widely utilized for controlling a wheelchair
[45]. In addition to auxiliary movement, BCI can help re-establish channels of communication with the
outside world for the people who lost the ability of speaking. For example, a recent study proposed to
decode the imagined handwriting movements from neural activities in the motor cortex and translate
them into text in real time, by which the paralyzed subject achieved the typing speed of 90 characters
per minute with 94.1% online accuracy [46]. The capability of BCI in repairing or reproducing sensory-
motor functions has been also demonstrated by recent scientific and technological advances [47–49].

Despite the developments of brain activity decoding techniques and their promising applications
in BCI systems, the performance of brain activity decoding is potentially deteriorated by miscellaneous
factors [12,50,51]. One significant obstacle for brain activity decoding is the brain measurement noise
accompanied with the recording process of brain activity. For example, EEG signal is prone to electronic
and magnetic interference, eye blinks and movements, scalp muscle activities, and so on [52,53]. fMRI
signals may be corrupted by head motions, breathing noise, and cardiac noise [54,55]. Although many
preprocessing methods have been proposed to denoise brain recordings as far as possible [56,57], one
can hardly guarantee the noises to be thoroughly separated from natural brain activities. Furthermore,
since the ground truth for clean brain activities can never be accessed with existing recording methods,
it will be difficult to objectively evaluate the effectiveness of denoising approaches. The most intuitive
influence caused by the brain recording noises is that the brain activity decoding becomes less accurate.
This is because the brain recording noises usually exhibit non-Gaussian distributions, which could be
intractable for conventional machine learning algorithms [58]. Such performance degradation due to
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adverse noises is known as the issue of “robustness” in machine learning, which has been studied for
a lone time since 1960s [59], and continually proven to be important for real-world applications [60,61].
There exist several strategies to realize robust machine learning. First, preprocessing approaches could
alleviate the adverse effects of noise by removing or reweighting noisy samples [62,63]. Second, meta-
learning techniques can be utilized to achieve robust machine learning [64,65]. Moreover, the machine
learning model itself could be implemented with a robust formulation by employing a robust objective
function in the model learning process [66–69].

This thesis aims to improve the brain activity decoding performance by proposing robust machine
learning algorithms to solve the problem of brain measurement noises, from the perspective of objective
function. In particular the main motivation of this thesis is information theoretic learning (ITL) framework
[70], which refers to utilizing information-theory descriptors to structure objective function for machine
learning, e.g., error entropy, correntropy, and mutual information, instead of the conventional statistics
including the Euclidean distance and variance. ITL has been revealing growing potential for realizing
more advanced machine learning methods. For example, mutual information could be employed for
feature selection [71] and unsupervised learning in deep generative model [72]. A latest concept in ITL
called information bottleneck can be utilized to interpret the learning process of deep learning models
[73,74]. On the focus of this thesis, robust machine learning, ITL has realized promising robustness in
many machine learning scenarios. In particular, two learning criteria in ITL have been utilized to build
robust models, namely the minimum error entropy (MEE) criterion and the maximum correntropy criterion
(MCC), in many machine learning tasks, including classification [75–78], regression [79–84], feature
selection [85–89], and so on. Motivated by the promising implementations of MEE and MCC in robust
machine learning, this thesis investigated how to use MEE or MCC to improve the robustness of brain
activity decoding for superior performance.

Another significant obstacle for brain activity decoding is the high-dimensional problem, where
the number of covariates (also called features or explanatory variables) is larger than that of training
samples, which would make it difficult for machine learning models to extract the information most
relevant to the task. This is because numerous solutions can achieve good results on the training set in a
high-dimensional case, whereas few can generalize well to new testing samples. The high-dimensional
problem for brain activity decoding mainly arises from the difficulty of collecting a large number of
brain activity trials [90], in contrast to the excellent spatial resolution of fMRI [91,92] or high temporal
resolution of EEG [93]. To address the high-dimensional problem in brain activity decoding, scientists
have implemented two strategies, subspace dimensionality reduction [94–98] and feature selection
[99–102]. However, few of existing brain decoding algorithms designed for high-dimensional scenario
have taken the noise issue into account. As a result, although these decoding algorithms can solve the
high-dimensional problem, their performance may still be affected and limited by the recording noise.
To address this issue, the latter part of this thesis further investigated how to embed the robust ITL into
high-dimensional brain activity decoding scenarios, so as to solve the “noise” and “high-dimensional”
problems simultaneously for better brain decoding performance.

The remainder of this thesis is organized as follows. Section 2 reviews the fundamental machine
learning techniques for brain activity decoding, and then gives a brief introduction concerning ITL, in
particular about MEE and MCC. In Section 3, an in-depth discussion of MEE for classification task is
presented, through which a new learning criterion is proposed for robust classification that is exactly a
special case of MEE. In Section 4, the focus is turned to the high-dimensional case, in which the partial
least square, a popular approach for subspace dimensionality reduction, is reformulated with MCC for
robust implementation. Section 5 investigates how to employ MCC in the sparse Bayesian learning
framework for better robustness which can realize effective feature selection in brain decoding. Finally,
Section 6 presents a conclusion for this thesis and several discussions for future works corresponding
to the previous sections. A wider prospect for brain activity decoding is provided at the end of this
thesis.
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2. Technical Background

This section briefly reviews the commonly used brain recording approaches and how conventional
machine learning can be utilized to predict or reconstruct desired output from the brain activity. Then,
the poor robustness of the conventional machine learning techniques is interpreted with illustrative
examples. Subsequently, this section gives an introduction about the ITL framework, in particular for
MEE and MCC.

2.1. Brain Activity Decoding by Conventional Machine Learning

The commonly used brain recording approaches can be classified into three categories: invasive,
non-invasive, and semi-invasive. Invasive modalities, such as the single-unit activities or local field
potentials, usually provide better decoding performance, which would suffer pessimistic long-term
stability, however, due to the capriciousness in the recorded neuronal-ensemble [103]. By comparison,
non-invasive recordings, such as EEG, MEG, and fMRI, can eliminate the need for craniotomy on the
brain which will significantly improve the security of experiments. Therefore, non-invasive modalities
are the most popular approaches for brain activity recording and are widely exploited to structure BCI
systems due to their ease of use [104]. However, non-invasive brain recordings might be limited in
their capability and may require considerable training for BCI control [105]. A sophisticated alternative
which has better signal quality than non-invasive EEG while exhibits higher long-term stability than
invasive modalities, is the semi-invasive ECoG [9], which places electrodes in direct contact with the
surface of cerebral cortex without inserting the electrodes into the cortex to avoid surgical damage.

Another way for brain recording taxonomy could be conducted from the morphology of the brain
recording signals. The first category is wave-based recording, including EEG, MEG, and ECoG. This
kind of brain measurement can be summarized as the recording of changes in the physical quantities
at different locations by multiple sensors on the time scale with a high temporal resolution. As a result,
the wave-based recording can be expressed by several waves in the same period, as illustrated in Fig. 4
(a). The second class is image-based recording, such as fMRI and functional near-infrared spectroscopy
(fNIRS) [106]. Image-based recordings scan the entire brain iteratively, from which each scan yields a
high-spatial-resolution image. However, since each scan usually costs considerable time, there exists a
significant time lag between each scan, resulting in a low temporal resolution. Image-based recording
is illustrated in Fig. 4 (b). Despite the differences in morphology of various brain recording modalities,
brain activities or their induced features can be unified in a vector or matrix for the following pattern
recognition.

3

I. Introduction

(a) (b)

time

ch
an

n
el

time

Figure 4. Illustrative examples for (a) wave-based recordings and (b) image-based recordings.

A commonly utilized context for machine learning based brain activity decoding is described in
what follows. Consider the recorded brain activities or their induced features, which can be expressed
by a D-dimensional vector x = (x1, x2, · · · , xD) ∈ R1×D, where D denotes the number of covariates or
features. x is usually a continuous variable. The purpose for brain activity decoding is to predict or to
reconstruct a target variable t (usually assumed as a scalar) from the brain activity x, which represents
the desired intention or the true received stimulus. x can be regarded to take values in a metric space
X and T denotes the space for the target variable t. Brain activity decoding can be realized by building
a machine learning model f : X → T which can establish the mapping from x to t. In practice, to train
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the machine learning model f , one utilizes a finite dataset {(xn, tn)}N
n=1 with N observations (samples)

which are commonly assumed to be independent and identically distributed (i.i.d). For brain decoding,
each pair (xn, tn) including the brain activity xn and the corresponding target tn is usually acquired by
an individual trial of cognitive experiments. For a simpler notation, the dataset can be expressed with
X = (xT

1 , xT
2 , · · · , xT

N)
T ∈ RN×D and t = (t1, t2, · · · , tN)

T ∈ RN×1, where T denotes the transpose and
each row of X represents an individual sample.

Regression means t can be taken from any values in an arbitrary continuous interval. For example,
decoding the continuous movement trajectories of a limb from brain activities is a regression task. For
regression, the following data generation model is usually used as an assumption

t = f ∗(x) + ε (1)

where f ∗ is the desired whereas unknown mapping from x to t, and ε is the measurement noise on this
system. For a simplified setting, one could employ the following canonical linear-in-parameter (LIP)
model

t = Φ(x)w + ε (2)

where Φ(x) is a predetermined mapping on x for feature extraction and w denotes the model parameter
vector which has the same dimension as Φ(x) for inner product. If the mapping function Φ(·) is further
excluded for simplification, LIP model will degenerate to the linear regression model

t = xw + ε (3)

in which w = (w1, w2, · · · , wD)
T ∈ RD×1 is the model parameter which realizes a weighting of each

entry of x. The most vintage and widely used method to learn the model parameter w is to minimize
the expectation of the quadratic error

w∗ = arg min
w

Ep(e)

[
e2
]
= arg min

w
Ep(t,x)

[
(t− xw)2

]
(4)

where w∗ denotes the optimal solution, Ep(·) [·] represents the mathematical expectation with respect
to the distribution p(·). The prediction error is defined as the subtraction between the target and the
current prediction e , t− xw. Eq.(4), which minimizes the variance of ε and belongs to the traditional
second-order statistics, is called least-square (LS) criterion or mean squared error (MSE) loss function.
In practice, the expectation in Eq.(4) is estimated empirically by the finite dataset {(xn, tn)}N

n=1 with N
samples, leading to

w∗ = arg min
w

1
N

N

∑
n=1

e2
n = arg min

w

1
N

N

∑
n=1

(tn − xnw)2 (5)

which is called empirical risk minimization. By setting the gradient of the MSE loss function to be zero,
one can obtain the following closed-form solution

w∗ = (XTX)−1XTt (6)

This solution is optimal and unbiased if the noise term ε exhibits a zero-mean Gaussian distribution.
Classification refers to the condition that t is taken from several discrete values, such as choosing

from multiple predetermined options. For example, decoding whether the subject desires to move the
left hand or the right hand can be regarded as a classification problem. Binary classification is the most
primitive setting where t is taken from either of two options which is commonly denoted by t ∈ {0, 1}.
There exist two categories for classification models: non-regression-like models and regression-like
models [78]. The prediction of non-regression-like models is discrete, and the learning machine can be
trained from the perspective of information gain. A representative for the non-regression-like models
is the decision tree model [107]. Another category is regression-like classification model, in which the
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prediction is probability of continuous variable, including logistic regression [108] and artificial neural
networks. The most idealistic solution for classification is supposed to minimize the misclassification
rate on the training dataset, whereas the optimization of the corresponding 0-1 loss function is usually
intractable. Therefore, many alternatives were proposed by using the convex upper bounds of 0-1 loss,
e.g. hinge loss in support vector machine (SVM) and exponential loss in AdaBoost [109,110]. Logistic
regression is a widely used probability-based (regression-like) classification model, which uses a linear
discriminant function that recognizes two different classes with a weighted summation of each input
feature

f (x, w) =
D

∑
d=1

wdxd = xw (7)

in which x is the attribute value of the sample and w is the logistic regression model parameter. A bias
term is also usually introduced into the discriminant function, whereas omitted here for the reason of
clarity. If the discriminant function f (x, w) < 0, the corresponding label is predicted as 0. Otherwise,
the label is predicted as 1. In {0,1}-label context, logistic regression computes the probability that x
belongs to class 1 through the sigmoid function

y , p(t = 1|x, w) =
1

1 + exp(− f (x, w))
(8)

where y denotes the probability for t = 1. Logistic regression employs the binomial distribution for the
categorical data, where the opposite probability for class 0 is defined by p(t = 0|x, w) = 1− y. Given a
finite dataset {(xn, tn)}N

n=1 and based on the i.i.d assumption, the likelihood probability can be written

p(t|X, w) =p(t1, t2, · · · , tN |x1, x2, · · · , xN , w)

=
N

∏
n=1

p(tn|xn, w) =
N

∏
n=1

ytn
n (1− yn)

1−tn
(9)

where yn , p(tn = 1|xn, w). The model parameter w could be learned by maximizing the likelihood
function Eq.(9) in a logarithmic form for the maximum likelihood estimation (MLE)

w∗ = arg max
w

log p(t|X, w) = arg max
w

N

∑
n=1

(tn log yn + (1− tn) log(1− yn)) (10)

which could be effectively solved by Newton’s method since Eq.(10) is a convex optimization problem.
After the optimal solution w∗ is acquired, one can predict a new testing sample x with class 1 provided
f (x, w∗) > 0 (or equally p(t = 1|x, w∗) > 0.5), or with class 0 otherwise. Eq.(10) can be also interpreted
from the perspective of empirical risk minimization that aims to minimize the cross entropy (CE) loss
function

w∗ = arg min
w
− 1

N

N

∑
n=1

(tn log yn + (1− tn) log(1− yn)) (11)

which is derived from minimizing the Kullback-Leibler divergence between {tn}N
n=1 and {yn}N

n=1.
Conventional learning strategies, including the minimization of MSE (for regression) and CE (for

classification) loss functions, have been successfully employed in countless real-world applications for
pattern recognition. Further, these learning strategies have been also utilized in other data analysis
techniques. For example, principal component analysis (PCA), the most famous algorithm in subspace
dimensionality reduction, is also formulated by second-order statistics, which exploits the following
objective function

w∗ = arg max
w

Tr(wTXXTw) = arg min
w

N

∑
n=1

∥∥∥xn − xnwwT
∥∥∥2

2
(12)
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where Tr(·) denotes the trace of a matrix, and ‖·‖2 is the L2-norm of a vector. The objective function of
PCA could be interpreted to minimize the second order of the reconstruction errors by the projector w.
In addition, for the EEG-based motor imagery task, common spatial pattern (CSP) [111–114] algorithm
is the most widely used approach for EEG feature extraction, which aims to maximize the separability
between the data of different categories with the spatial filter w by the following objective function

w∗ = arg max
w

∥∥wTX1
∥∥2

2

‖wTX0‖2
2

(13)

which maximizes the ratio between the variances of the spatially filtered data of different classes. X1

and X0 denote the EEG data matrices for class 1 and class 0, respectively, which are usually centralized
and normalized in advance. One can find that, CSP is also based on the second-order statistics, i.e., the
variance.

Despite the successful applications of conventional learning strategies, they cannot perform well
in all situations. For example, the solution of least-square regression Eq.(6) is optimal only in the case
of Gaussian-distributed noise. If the noise ε exhibits a non-Gaussian distribution, Eq.(6) will lead to a
biased solution. In particular, if the training data is corrupted by outliers, which refer to the samples
that are largely deviated from the regular data distribution, the second-order statistics based machine
learning model will be deteriorated significantly. This is fundamentally because second-order statistics
assigns excessive importance to the large entry for the objective function, while the outlier will exactly
correspond to a large prediction error with the desired model parameter [115,116]. As a result, outliers
will dominate the learning process and the model cannot extract effective information from regular
samples. Fig. 5 illustrates an example about how the CSP algorithm is deteriorated evidently by only
one outlier. A synthetic dataset is utilized with two different classes in respective colors. With regular
samples, CSP can acquire the spatial filter which maximizes the ratio of filtered variances of different
classes, as shown in the solid line. However, when only one outlier is added to the top left corner, the
spatial filter is corrupted to be the dashed line, which is obviously deviated from the optimal one.

class 1

class 2

outlier

spatial filter without outlier

spatial filter with outlier

Figure 5. Illustrative example of common spatial pattern and how only one outlier would corrupt the
spatial filter significantly.

2.2. Information Theoretic Learning

In the middle of the 20th century, information theory was proposed and developed as a pioneering
research field for designing communication systems, the core of which locates in the quantification of
the abstract “information” through the concept of entropy [117]. Claude E. Shannon, the pioneer of
information theory, proposed a classical formula to measure the degree of chaos of a random variable
which is called Shannon’s entropy

HS(p(x)) , −
∫

x
p(x) log p(x)dx (14)
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where x denotes an arbitrary continuous random variable with its probability density function (PDF)
p(x). With the development of information theory, Shannon’s entropy HS has been extended to more
generalized forms. One representative is the Rényi’s entropy proposed by Alfréd Rényi [118]

HR,α(p(x)) ,
1

1− α
log

∫
x

pα(x)dx (15)

where HR,α denotes the Rényi’s entropy of α-order and α is a free parameter. One can find that Rényi’s
entropy will degenerate to Shannon’s entropy when α→ 1.

In the recent two decades, scientists have begun to investigate how to utilize information-theory
descriptors to structure the objective function for machine learning model, which is called Information
Theoretic Learning (ITL) [70]. This thesis mainly focuses on the implementation of ITL in robust machine
learning. In what follows, two learning criteria of ITL with exceptional robustness will be introduced,
which have a close relation with Rényi’s entropy.

2.2.1. Minimum Error Entropy Criterion

A common diagram for supervised machine learning can be expressed in Fig. 6.

3

learning
system

covariate output target
-

prediction error

learning
system

covariate output target
-

prediction error

Figure 6. Schematic diagram of supervised machine learning.

One can find that, the prediction error e indicates the difference between the current prediction
and the target, which contains the information for such difference. The purpose of supervised machine
learning is to restore the target variable as far as possible, which means to preserve the information of
the data generating system as much as possible. If the information contained in the prediction error is
minimized, it means the learned information in the learning system is maximized for predicting target
variable.

As mentioned before, entropy is exactly an adequate concept to measure the information contained
in a random variable. Therefore, a natural conception to design a supervised machine learning model is
to minimize the entropy of the prediction error, which is called Minimum Error Entropy (MEE) criterion.
MEE is one fundamental and popular approach in the ITL field, which commonly employs the Rényi’s
entropy in practice due to its easier implementation than Shannon’s entropy. MEE has been utilized to
propose state-of-the-art robust algorithms for regression [70,84], feature extraction [89], dimensionality
reduction [85,119], subspace clustering [86,120], and so on.

For the mathematical expressions in MEE, the learning criterion for the optimal model parameter
w∗ can be denoted by

w∗ = arg min
w

HR,α(p(e)) = arg min
w

1
1− α

log
∫

e
pα(e)de (16)

in which p(e) denotes the PDF for the prediction error e. One can further define the information potential
(IP) as the term in the logarithm

Iα (p(e)) ,
∫

e
pα (e) de = Ep(e)

[
pα−1 (e)

]
(17)
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For simplicity, the free parameter α is usually set as α = 2. Thus, the objective function for MEE will
become

w∗ = arg min
w

HR,2(p(e)) = arg min
w
− log

∫
e

p2(e)de (18)

Since the logarithm function is a monotonically increasing function, Eq.(18) can be also expressed by

w∗ = arg max
w

I2(p(e)) = arg max
w

Ep(e) [p(e)] (19)

To realize the optimization of Eq.(19) with a finite dataset {(xn, tn)}N
n=1 in practice, one could compute

the current predictions {yn}N
n=1 by a temporary learning system, and then obtain the prediction errors

{en}N
n=1 by en = tn − yn. To acquire an empirical estimation of p(e), denoted by p̂(e), one could utilize

the Parzen’s estimator [121,122]

p̂(e) =
1
N

N

∑
n=1

κ(e− en) (20)

where κ(·) is a Mercer kernel function which is usually adopted with the Gaussian kernel function

κh(e) =
1√
2πh

exp(− e2

2h
) (21)

with the kernel bandwidth h. Then, the empirical estimation for the second-order IP can be computed

Î2 (p(e)) = Ep(e) [ p̂(e)]

=
1
N

N

∑
n=1

p̂(en)

=
1

N2

N

∑
i=1

N

∑
j=1

κh(ei − ej)

(22)

Thus, the empirical objective function for MEE is written

w∗ = arg max
w

1
N2

N

∑
i=1

N

∑
j=1

κh(ei − ej) (23)

One can regard the PDF estimator p̂(·) as an adaptive objective function since it changes with {en}N
n=1,

which is different from the conventional ones that are generally invariable. This adaptation will result
in extra advantages, as proved theoretically and confirmed numerically [70]. Entropy provides a PDF
concentration measure that higher concentration implies lower entropy, which is the initial motivation
to use entropic risk functionals. For continuous variable, the local minimum of HR,2(p(e)) corresponds
to a PDF represented by several Dirac-δ functions, a Dirac-δ comb. When all errors are zero, a single
Dirac-δ at the origin for error PDF can be achieved as the ideal situation p(e) = 0|e 6=0. This demands a
learning machine to guarantee the convergence of the error PDF towards a single Dirac-δ at the origin.

The robustness of MEE could be briefly explained as follows. In the learning process with regular
samples, MEE ensures most of errors are close to zero so as to approach a Dirac-δ function at the origin.
If outliers happen, the error PDF will not only hold a main peak at the origin, but also generate small
peaks at large errors caused by outliers. This kind of distribution, as mentioned above, is also a local
minimum for MEE. It can be also interpreted from Eq.(23). For a large error caused by outlier, its effect
on the maximization is weakened since the Gaussian kernel function of Eq.(21) is bounded, which can
saturate the summation term κh(ei − ej). Theoretical insights for robustness of MEE are investigated in
[70,123,124].

To alleviate the computational bottleneck caused by the double summation in Eq.(23), quantization
can be implemented where the error PDF is estimated by a representative codebook with fewer samples,
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which is acquired from the original error set {en}N
n=1, so that the inner summation for PDF estimation

could be decreased [84]. In this way, an alternative for MEE with quantization, called quantized MEE
(QMEE), is expressed

w∗ = arg max
w

1
N

N

∑
n=1

p̂(en)

≈ arg max
w

1
N

N

∑
n=1

p̂Q(en)

= arg max
w

1
N2

N

∑
i=1

N

∑
j=1

κh(ei −Q[ej])

= arg max
w

1
N2

N

∑
i=1

M

∑
j=1

ϕjκh(ei − cj)

(24)

where p̂Q(e) is the estimated error PDF based on some representative samples in the original error
set {en}N

n=1. Q[·] denotes a quantization operator that leads to a codebook C = (c1, c2, ..., cM), where
Q[·] is a function which maps each error sample ei to one of the representatives cj. The parameter
Φ = (ϕ1, ϕ2, ..., ϕM) denotes the number that how many samples are quantized to the corresponding
element in C. Obviously, one can know ∑M

j=1 ϕj = N. Since {cj}M
j=1 is a representative description of

{ei}N
i=1, one usually has M� N, and thus the complexity to compute the objective function would be

decreased from O(N2) to O(MN). By theoretical analysis and experimental results, QMEE can realize
the commensurate performance as the original MEE with proper quantization [84,89]. This is because
the elements {cj}M

j=1 in codebook are representative enough for the whole errors {ei}N
i=1 where each

{ϕj}M
j=1 acts as weight, so that QMEE can realize the same effect as the original MEE. To realize proper

quantization, an adaptive method was proposed in [89], as summarized in Algorithm 1.

Algorithm 1 Adaptive quantization procedure for QMEE

1: input:
original error set {ei}N

i=1;
quantization threshold ε (usually ε = 0.05 or 0.1);

2: initialize:
C1 = {e1}, where Ci denotes the codebook at the ith iteration;

3: output:
quantization result {Q [ei]}N

i=1;
4: Compute the error interval ψ = max(ei)−min(ei);
5: for i = 2, · · · , N do
6: compute the minimum distance between ei and Ci−1: dis(ei, Ci−1) = min

1≤j≤|Ci−1|
|ei − Ci−1(j)|

where Ci−1(j) denotes the j-th element of Ci−1, and |Ci−1| is the length of Ci−1;
7: if dis(ei, Ci−1) ≤ ε · ψ then
8: keep the codebook unchanged: Ci = Ci−1 and quantize ei to the closest code word: Q [ei] =

Ci−1(j∗), where j∗ = arg min |ei − Ci−1(j)|;
9: else

10: update the codebook: Ci = {Ci−1, ei} and quantize ei to itself: Q [ei] = ei;
11: end if
12: end for

2.2.2. Maximum Correntropy Criterion

Another popular learning criterion in ITL with excellent robustness is called maximum correntropy
criterion (MCC), which is based on a sophisticated measure “correntropy” [79]. Correntropy was first
proposed as a generalized correlation function for accurate description of a stochastic process by inner
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products of vectors in a kernel feature space [125]. Although the original correntropy was designed for
a single stochastic process, this generalized correlation function was further extended to the general
case of two arbitrary random variables. For two arbitrary random variables a and b, their correntropy
measure is defined by the expectation of the kernel function between them

V(a, b) , Ep(a,b) [k(a− b)] (25)

in which p(a, b) is the joint distribution of a and b. In practice, with their N observations {(an, bn)}N
n=1,

the empirical estimation of correntropy is given based on the Gaussian kernel function

V̂(a, b) =
1
N

N

∑
n=1

kh(an − bn) ∝
1
N

N

∑
n=1

exp(− (an − bn)2

2h
) (26)

An important property of correntropy is that it contains all the even moments of the variable e , a− b

V(a, b) =
1√
2πh

∞

∑
n=0

(−1)n

2nn!
Ep(a,b)

[
(a− b)2n

hn

]
(27)

When the kernel bandwidth h is increased, the higher-order moments will decompose faster than the
lower-order moments. For an extreme case h→ ∞, the second-order moments will dominate Eq.(27)
and correntropy will degenerate to MSE between a and b. Hence, correntropy can be regarded as a
generalized form for conventional second-order statistics, while all the properties of correntropy are
controlled by one single free parameter, kernel bandwidth h. The objective function for MCC could be
written

w∗ = arg max
w

1
N

N

∑
n=1

exp(− e2
n

2h
) (28)

Using a correntropy-based learning criterion exhibits many benefits. First, the value of correntropy
is mainly determined by the Gaussian kernel function kh along a = b, which means it is a local similarity
measure and could alleviate the negative effect of large deviations caused by the outliers. Therefore, in
a supervised machine learning task, maximizing the correntropy (MCC) between the model prediction
and the desired target exhibits exceptional robustness with respect to outliers. From the viewpoint of
kernel methods, correntropy induces a nonlinear mapping which transforms data from the original
space to an infinite-dimensional reproducing kernel Hilbert space (RKHS). Correntropy is also related
closely to the m-estimation that can be regarded as a robust formulation of Welsch m-estimator [126].
Therefore, MCC is essentially a non-parametric m-estimator. In addition, correntropy induces a metric
in the sample space which obeys the properties of non-negativity, identity of indiscernible, symmetric,
and triangle inequality. Correntropy induced metric (CIM) is defined by

CIM(a, b) , [1−V(a, b)]
1
2 (29)

which is illustrated with the contours between a random variable and the origin in a two-dimensional
space in Fig. 7. One could observe that CIM(x, 0) behaves differently in different domains. When x is
close to the origin, CIM(x, 0) is similar to L2-norm, which can be found from the Taylor expansion in
Eq.(27). Outside of this “Euclidean zone”, CIM(x, 0) behaves similarly as L1-norm in a further range,
and eventually like L0-norm which is insensitive to distance. This provides a geometric interpretation
for the desired robustness of MCC with respect to the outlier. Correntropy has been further extended
with different generalized forms, such as correntropy with a variable center [127], mixture correntropy
[128], multi-kernel correntropy [129], and correntropy with a generalized kernel density function [82].

In addition to the excellent robustness of MEE and MCC with respect to the non-Gaussian noise
for supervised learning, they have been also utilized for robust data characterization in unsupervised
learning or feature extraction. In particular, they have been used to propose robust objective functions
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Figure 7. Contours of CIM(x, 0) in a two-dimensional space.

for CSP algorithm for EEG feature extraction. In [87], CIM was utilized as a robust substitute for the
conventional variance in Eq.(13), leading to CSP-CIM algorithm

w∗ = arg max
w

CIM(wTX1, 0)
CIM(wTX0, 0)

(30)

which can effectively deal with the outliers in EEG recordings for feature selection. Compared with
correntropy-based learning, MEE not only has good robustness against outliers, but also exhibits good
adaptability to other non-Gaussian noises, such as multi-modal distribution noise. Motivated by this,
CSP-CIM algorithm was further extended by a QMEE-aware measure of dispersion with the following
objective function, named as CSP-QMEE [89]

w∗ = arg max
w

1− 1
N2 ∑N

i=1 ∑M
j=1 ϕjκh(wTx1,i − cj)

1− 1
N2 ∑N

i=1 ∑M
j=1 ϕ′jκh(wTx0,i − c′j)

(31)

in which ϕj and cj are obtained by the quantization of wTX1, while ϕ′j and c′j are obtained from the

quantization of wTX0. Experimental results demonstrate that CSP-QMEE could realize superior feature
extraction for noisy EEG recordings.

3. Restricted Minimum Error Entropy Criterion

Despite the satisfactory robustness of ITL-based CSP algorithms, as introduced before, achieving
robustness only in feature extraction is not sufficient. The reason is, even if with an expected spatial
filter, to say the features of regular samples are not affected, the deviated features by the contaminated
samples still survive in the dataset. These non-informative features (commonly with large amplitudes)
are adverse noises to the classification model, which may significantly degenerate the learning process.
Therefore, in addition to robust feature extraction, achieving robust classification is also important
for robust brain activity decoding, which means the learning process of classification model is less
affected by noises than by regular samples [130].

It has been shown that convex loss functions for classification are not robust to outliers [131,132],
which mainly arises from the unbounded property of the convex loss functions, which would assign
large losses on outliers [132–135]. Consequently, the learning process is mainly determined by outliers,
rather than those meaningful samples, and the decision boundaries could be affected severely, leading
to significant performance degradation. For example, the poor robustness of logistic regression results
from the log likelihood function log p(t|X, w) of Eq.(10), because it assigns excessive weight to large
errors [78,136]. Although Eq.(10) or Eq.(11) does not contain the prediction error en explicitly, [78] gave
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an analytical form of log p(t|X, w) with respect to prediction error. In {0, 1}-label context, maximizing
the log likelihood log p(t|X, w) in Eq.(10) or minimizing the CE loss function in Eq.(11) is equivalent to
minimizing the following loss function with respect to prediction error

w∗ = arg min
w

Ep(e) [− log(2− 2te)] (32)

which is shown in Fig. 8. In particular, one could observe that when the error is close to 1 (the worst
case), the loss value will be infinite. As a result, the noise will play a dominant rule with the use of the
conventional objective function in logistic regression, and the classification model will have difficulty
extracting valid information from noisy data.
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Figure 8. Loss function of cross entropy with respect to prediction error e (t = 1).

Different from the noise in regression tasks which means that attribute value diverges from the
foreseeable distribution, the noise in classification is more complicated and can be classified into two
categories: attribute noise and label noise [131,137]. The attribute noise means a measurement error
resulting from noisy sensors, recordings, communications, or data storage, and the label noise means a
mistake when labeling samples. As stated in [132], label noise could result from mutual elements as
attribute noise, such as communication errors, whereas it mainly arises from expert elements [138]: i)
unreliable labeling due to insufficient information, ii) unreliable non-expert for low cost, iii) subjective
labeling. Not to mention, class is not always totally distinguishable as lived and died [139]. The outlier,
as a more severe case of noise [140], usually causes serious performance degradation. According to the
above taxonomy, it can be stated that attribute outliers are deviate attribute values whereas irrelevant
to label information, while label outliers imply that some distinct samples are assigned with wrong
labels. Note that mislabeled samples are not necessarily label outliers since they could occur near the
boundary region thus being less adverse for classification model [132]. However, for the brain activity
decoding task, one could find that the principal contamination in the dataset will happen in the brain
recordings that are utilized as the explanatory variables. Therefore, to realize a robust classification for
brain activity decoding, one should mainly consider the attribute contamination.

To realize robust classification model, many methods have been proposed to suppress the adverse
effects of outliers, such as removing or relabeling training samples in data preprocessing [132,141–143]
or re-weighting the samples to reduce the outliers’ proportion in the learning process [132,144,145]. In
addition, recovery of clean data by robust principal component analysis can realize robust classification
as well [146]. Moreover, meta-learning technique can achieve robustness by evaluating the gradient
for each data point at the learned parameters [147]. From the perspective of robust objective functions,
bounded Savage loss was proposed to construct robust SavageBoost algorithm [134], and [135] further
extended this work. In [148], a robust SVM algorithm was developed based on the ramp loss. In [149],
the truncated least square loss was proposed for the robust least square SVM. In particular, MCC has
also been utilized for robust classification, called C-Loss [75,76]. By contrast, the potential robustness
of MEE with respect to outliers in classification has not been thoroughly explored.
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This section aims to investigate an implementation of MEE method for robust classification model.
Although MEE has been widely used for a robust implementation in other machine learning tasks, as
introduced in Section 2.2.1, robust classification based on MEE is a rather vacancy in the literature and
has been only discussed in detail in [78]. In this section, an in-depth discussion for MEE in classification
is provided, and a new learning criterion for robust classification which is closely related to QMEE is
proposed.

3.1. Error Distribution Analysis for Noisy Classification

To facilitate the proposal of a new robust objective function for classification, this part first presents
an error distribution analysis in noisy classification tasks. In the context of {0, 1}-label coding scheme
and logistic regression, note that the essential prediction is the probability y ∈ (0, 1) of Eq.(8), which is
a continuous variable. As a result, one can obtain a continuous error variable e = t− y ∈ (−1, 1) by
subtraction. Denoting the class prior probability by p = p(t = 1) and q = 1− p = p(t = 0), one can
obtain the cumulative distribution function of error F(e)

F(e) = p(e 6 E)

= pp(e 6 E|t = 1) + qp(e 6 E|t = 0)

= pp(1− y 6 E|t = 1) + qp(−y 6 E|t = 0)

= p(1− Fy|t=1(1− e)) + q(1− Fy|t=0(−e))

= 1− pFy|t=1(1− e)− qFy|t=0(−e)

(33)

where Fy|t=1 and Fy|t=0 denote the class-conditional cumulative distribution functions for class 1 and
class 0, respectively. Thus, the error PDF p(e) can be obtained by the differential of F(e)

p(e) = p · py|t=1(1− e) + q · py|t=0(−e) (34)

in which py|t=1 and py|t=0 denote the class-conditional distributions of the prediction y. Suppose that
the covariates of two classes can be denoted by x|t=1 ∼ px|t=1(x) and x|t=0 ∼ px|t=0(x). To acquire py|t
from px|t, a famous theorem is first given as follows.
Theorem 1: Assume px(x) is the PDF of a random variable x, with ϑ(x) a monotonic and differentiable
function. If py(y) denotes the PDF of y = ϑ(x) and ϑ′(x) 6= 0, ∀x ∈ X, then one has

py(y) =


px(ϑ−1(y))
|ϑ′(ϑ−1(y))| infϑ(x) < y < supϑ(x)

0 otherwise
(35)

in which x = ϑ−1(y) is the inverse function of y = ϑ(x). �
Since the sigmoid function of Eq.(8) satisfies the conditions, the following three heuristics with logistic
regression can be presented by this theorem. For clarity, supposing class 0 stands for negative and
class 1 for positive, one can denote those outliers located in the positive region whereas assigned with
negative labels as false negative (FN) outliers, and vice versa as false positive (FP) outliers.
1: Suppose that px|t=1(x) and px|t=0(x) are Gaussian distributions, where px|t=1(x) = N (µ1, Σ1) and
px|t=0(x) = N (µ0, Σ0), respectively. Given the model parameter w, xw will be subject to a univariate
Gaussian distribution N (µtw, wTΣtw). Then one calculates the PDF of y|t = 1

1+exp(−xtw)
as

py|t(y) =
1

y(1− y)
·

exp(−
(log( y

1−y )−µtw)2

2wTΣtw
)√

2πwTΣtw
(36)
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where y ∈ (0, 1). Substituting Eq.(36) into Eq.(34), one obtains

p(e) =
p

e(1− e)
·

exp(− (log( 1−e
e )−µ1w)2

2wTΣ1w )√
2πwTΣ1w

− q
e(1 + e)

·
exp(− (log( −e

1+e )−µ0w)2

2wTΣ0w )√
2πwTΣ0w

(37)

The optimal model parameter is supposed to push majority of the prediction y|t to the corresponding
t. Intuitive function curves of py|t(y) with specific µtw and wTΣtw are plotted in Fig. 9 (a) with solid
lines. In addition, if the dataset suffers some outliers, one can expect that the predictions of FP outliers
approach 0 according to the definition, and py|t=1(y) exhibits a distribution peak at y = 0 as a result.
In the same way, FN outliers engender py|t=0(y) with a distribution peak at y = 0. The distributions
caused by outliers are illustrated in dashed lines. Thereafter, the error PDF p(e) is plotted in Fig. 9 (b)
with the same scenario.
2: Suppose that px|t=1(x) and px|t=0(x) are uniform distributions, in which px|t=1(x) = U (a1, b1) and
px|t=0(x) = U (a0, b0), respectively. Comparably, y|t obeys the following distribution

py|t(y) =
1

y(1− y)
· 1
(bT − aT)w

(38)

where y ∈ ( 1
1+exp(−aTw)

, 1
1+exp(−bTw)

). Subsequently, one calculates the error PDF p(e) as

p(e) =
1

e(1− e)(b1 − a1)w
− 1

e(1 + e)(b0 − a0)w
(39)

Similarly, intuitions of py|t(y) and p(e) under the assumption of uniform distribution are illustrated in
Fig. 9 (c)(d), respectively. The resultant distribution of outliers is plotted in dashed lines as before.
3: Suppose px|t=1(x) and px|t=0(x) are Gaussian mixture distributions, both of which are composed of
two Gaussian distributions, for which one has px|t=1(x) = k1

1N (µ1
1, Σ1

1) + k2
1N (µ2

1, Σ2
1) and px|t=0(x) =

k1
0N (µ1

0, Σ1
0) + k2

0N (µ2
0, Σ2

0). Illustrations of py|t(y) and p(e) with this assumption are similarly shown
in Fig. 9 (e)(f), respectively.

In Fig. 9 (b)(d)(f), one observes that error distribution exhibits three peaks on {0,−1, 1} remarkably
in each scenario. Such consistent occurrence could suggest that the three-peak PDF is probably the
optimal error distribution in many circumstances. Previous literature has provided more exhaustive
discussions for the error distribution in the presence of outliers. In classification, outliers customarily
exhibit the opposite predictions from the corresponding labels, resulting in the worst cases, i.e. e = ±1
[150]. Additionally, [151] presented a literature review about the outlier detection techniques used in
logistic regression, which generally identify those with largest distances between predictions and true
labels as potential outliers. Moreover, [152] demonstrated that the errors from regular samples usually
converge around zero, whereas those from outliers could be more likely to reveal large values.

To formulate the optimal error distribution with the three-peak distribution for noisy classification
tasks, one can assume that each peak is close enough to a Dirac-δ function so that the density of the
desired error PDF is zero beyond the three peaks. Formally, this three-peak distribution, denoted by
ρ(e), can be expressed by

ρ(e) =


ζ0 e = 0

ζ−1 e = −1

ζ1 e = 1

0 otherwise

(40)

where ζi (i = 0,−1, 1) denotes the corresponding density for each peak, which is closely related to the
proportion of each type of samples. To be specific, ζ0 is the proportion of regular samples since the
corresponding peak results from those samples that are supposed to be classified correctly. Similarly,
one can know ζ1 (or ζ−1) is the proportion of FP (or FN) outliers. Fig. 10 illustrates a heuristic example
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Figure 9. Illustrative examples of py|t(y) and p(e) (assume p = q = 0.5). (a)(b): Gaussian distributions
wx|t=0 ∼ N (−4, 1), wx|t=1 ∼ N (4, 1), (c)(d): uniform distributions wx|t=0 ∼ U (−5,−2), wx|t=1 ∼
U (2, 5), and (e)(f): Gaussian-mixture distributions wx|t=0 ∼ 0.3N (−7, 1) + 0.7N (−4, 1), wx|t=1 ∼
0.7N (4, 1) + 0.3N (7, 1).

to support such hypothesis. One could perceive that only the desirable decision boundary realizes a
three-peak error distribution with the appropriate ζ values. By comparison, although those wrong
solutions also achieve ‘three-peak’ error distributions, the peaks show considerable deviations from
the expected ζ values.

3.2. Minimum Error Entropy for Classification

Until now, one can know that the optimal error distribution in a noisy classification task exhibits
three-peak distribution, as formulated by ρ(e) of Eq.(40). On the other hand, based on the introduction
for MEE in Section 2.2.1, one can also know that MEE is in particular proper for the cases where the
error is of multi-modal distribution. Therefore, it will be a natural idea that MEE could realize good
robustness in noisy classification tasks. However, compared to noisy regression tasks, one can find that
applying MEE (or QMEE) directly to a noisy classification task would encounter additional difficulties.
In particular, when the outlier proportion is increased, the performance of MEE-based classification
model will degenerate fast and significantly (one will find concrete experimental results for this later
in Section 3.4), which has been discussed in detail in [78] that “MEE is harder for classification than for
regression”. The main difficulties can be explained as follows.

In binary classification, according to Eq.(34) and Eq.(19), the purpose of MEE can be decomposed
by

min HR,2(p(e))⇔ max I2(p(e))

⇔ max p2 I2

(
py|t=1(1− e)

)
+ q2 I2

(
py|t=0(−e)

) (41)

in which the class-conditional property causes the difficulty. Recall that, class-conditional distributions,
entropies, and information potentials depend on the model parameter w, while this dependency has
been omitted for simplicity. Minimizing HR,2(p(e)) implies maximizing the sum of p2 I2(py|t=1(1− e))
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Figure 10. This example consists of 160 regular samples (80 for each class), 20 FP outliers, and 20 FN
outliers, respectively. According to Eq.(40), one can know ζ0 = 0.8 and ζ−1 = ζ1 = 0.1, which are
marked with red points in the error distribution histograms. Note that ζ0 is divided equally into two
compositions since in practical calculation, errors of regular samples approach zero from both positive
and negative directions.

and q2 I2(py|t=0(−e)), both of which are dependent on the model parameter w. As a result, it would be
hard to say about the minimum of HR,2(p(e)) since it depends on p, q, py|t=1, and py|t=0 simultaneously.
One has to consider each class-conditional distribution individually and study them together to realize
the minimization of HR,2(p(e)). By comparison, regression does not suffer from the class-conditional
property on HR,2(p(e)), which is much easier to deal with.

For a more specific and intuitive scenario in which MEE could fail for classification, MEE based
classifiers may predict all samples as the same class with large confidence. For example, suppose that
each predicted probability {yn}N

n=1 is close to 0. Thus, the errors from 0-class samples would be close
to 0, while those from 1-class samples would be close to 1, resulting in the p(e) with two approximate
Dirac-δ functions at {0, 1}, respectively. The basic explanation was already given as before: any Dirac-δ
comb achieves local minimum entropy. When this case happens, the classification accuracy could be
even the chance level. This instability inspires that, only focusing on minimizing the error entropy, i.e.
maximizing the information potential, is not sufficient.

3.3. Restricted Minimum Error Entropy Criterion

To propose a robust learning criterion for noisy classification tasks, the motivation can be obtained
from the three-peak optimal error distribution ρ(e). The inspiration is that the optimal parameter w∗

will lead to the error distribution ρ(e). If a classifier is designed to acquire a similar error distribution,
it can probably achieve satisfactory robust classification. To implement this conception, one can first
get rid of the MEE framework temporarily and focus on driving the error PDF obtained by the learning
process towards the optimal three-peak distribution ρ(e) of Eq.(40).
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To enforce two distributions as similar as possible, a basic idea is to maximize a similarity measure
between their PDFs. There exist many similarity measures for PDF in the literature, for which [153]
provides a comprehensive review. Here the elementary inner product is used to measure the similarity
between two distributions, which is generalized from its use for vectors [154,155]. The inner-product
similarity between two arbitrary continuous PDFs p(x) and g(x) is defined by

〈p(x), g(x)〉 ,
∫

x
p(x)g(x)dx (42)

Now one can maximize this similarity measure between the current error PDF p(e) and the desired
distribution ρ(e) by

max 〈p(e), ρ(e)〉

⇔ max
∫

e
p(e)ρ(e)de

⇔ max ζ0 p(e = 0) + ζ−1 p(e = −1) + ζ1 p(e = 1)

(43)

where the last equality is because ρ(e) always exhibits a zero probability density except for e = 0,−1,
or 1. In practice, with a finite dataset {(xn, tn)}N

n=1 which induces the error set {en}N
n=1, maximization

of 〈p(e), ρ(e)〉 is realized with the empirical estimation on p(e) by

w∗ = arg max
w
〈 p̂(e), ρ(e)〉

= arg max
w

ζ0 p̂(e = 0) + ζ−1 p̂(e = −1) + ζ1 p̂(e = 1)

= arg max
w

 ζ0
1
N ∑N

n=1 κh (0− en)

+ζ−1
1
N ∑N

n=1 κh (−1− en)

+ζ1
1
N ∑N

n=1 κh (1− en)


= arg max

w

1
N

N

∑
n=1

 ζ0κh (en)

+ζ−1κh (en + 1)
+ζ1κh (en − 1)


= arg max

w

1
N2

N

∑
n=1

 Nζ0κh (en)

+Nζ−1κh (en + 1)
+Nζ1κh (en − 1)



(44)

One might have noticed the comparability between this form and QMEE, because this formula Eq.(44)
can be regarded as a special case of QMEE of Eq.(24), if the codebook C = (0,−1, 1), the corresponding
quantization number Φ = (Nζ0, Nζ−1, Nζ1), and obviously M = 3. Note that the derivation of Eq.(44)
has originally nothing to do with the MEE framework because it aims to maximize the inner-product
similarity between the current error PDF p(e) and the desired distribution ρ(e).

Returning back to MEE framework, the meaning of Eq.(44) can be interpreted as follows. QMEE
aims to concentrate the prediction errors as close as possible to each {cj}M

j=1 to achieve a relatively

narrow error distribution, where {ϕj}M
j=1 act as weighting parameters. One could expect that if the

codebook is assigned with some specific values, QMEE will focus the training errors close to these
predetermined positions. By this consideration, QMEE is implemented with a predetermined codebook
C = (0,−1, 1), the purpose of which is to restrict errors on these three positions to avoid the undesired
double-peak training consequence. QMEE with a restricted codebook, called restricted MEE (RMEE), is
thus proposed by using the predetermined codebook C = (0,−1, 1)

w∗ = arg max
w

1
N2

N

∑
n=1

 ϕ0κh (en)

+ϕ−1κh (en + 1)
+ϕ1κh (en − 1)

 (45)
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where Φ = (ϕ0, ϕ−1, ϕ1) = (Nζ0, Nζ−1, Nζ1) denotes the corresponding number for each quantization
word C = (0,−1, 1). One can find the essential difference between QMEE and the proposed RMEE is,
the codebook C of the former is obtained by a data-driven method as in Algorithm 1 that aims to make
the elements {cj}M

j=1 as representative to the entirety as possible, while the latter’s is predetermined,
which aims to drive the error PDF p(e) towards the desired one ρ(e).

In the following, for the proposed RMEE, the optimization, convergence analysis, and how to
determine the hyper-parameters will be discussed.

3.3.1. Optimization

In Eq.(45), the Gaussian kernel function will bring non-convexity in optimization, not to mention
the implicit sigmoid transformation which is intractable particularly. Therefore, the half-quadratic (HQ)
technique is utilized to solve this problem, which is often used to solve ITL optimization [76,77,156,157].
To derive the HQ-based optimization, first the following theorem is given.
Theorem 2: Define a convex function g(v) = −v log(−v) + v, in which v < 0. Based on the conjugate
function theory [158], one has

exp(− (t− y)2

2h
) = sup

v<0
{v (t− y)2

2h
− g(v)} (46)

where the supremum is achieved at v = − exp(− (t−y)2

2h ) < 0.
Proof: By definition, the conjugate function g∗(u) of g(v) = −v log(−v) + v (v < 0) is written as

g∗(u) = sup
v<0
{uv− g(v)} = sup

v<0
{uv + v log(−v)− v} (47)

in which v is the optimization variable. One could directly obtain the solution of (47) by making the
differential of (uv + v log(−v)− v) equal to zero since this is a concave function with respect to v. The
result is

u + log(−v) = 0⇒ v = − exp(−u) < 0 (48)

Therefore one can see that

g∗(u) = sup
v<0
{uv + v log(−v)− v} = exp(−u) (49)

in which the equality is established if and only if v = − exp(−u) < 0. If one replaces u with (t−y)2

2h ,
then one can obtain

g∗(
(t− y)2

2h
) = sup

v<0
{ (t− y)2

2h
v + v log(−v)− v}

= exp(− (t− y)2

2h
)

(50)

where the supremum is achieved at v = − exp(− (t−y)2

2h ) < 0. �
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Thus, the objective function of RMEE Eq.(45) can be rewritten as

w∗ = arg max
w

N

∑
n=1


ϕ0 supun<0{un

e2
n

2h − g(un)}
+ϕ−1 supvn<0{vn

(en+1)2

2h − g(vn)}
+ϕ1 supsn<0{sn

(en−1)2

2h − g(sn)}



= arg max
w,un<0,vn<0,sn<0

N

∑
n=1

 ϕ0(un
e2

n
2h − g(un))

+ϕ−1(vn
(en+1)2

2h − g(vn))

+ϕ1(sn
(en−1)2

2h − g(sn))


, arg max

w,un<0,vn<0,sn<0
JR(w, un, vn, sn)

(51)

Now one can optimize JR(w, un, vn, sn) by alternate optimization on w, un, vn, and sn, respectively. To
be specific, in the k-th iteration with the current errors {en}N

n=1, one first optimizes

(uk
n, vk

n, sk
n) = arg max

un<0,vn<0,sn<0

N

∑
n=1

 ϕ0(un
e2

n
2h − g(un))

+ϕ−1(vn
(en+1)2

2h − g(vn))

+ϕ1(sn
(en−1)2

2h − g(sn))


= arg max

un<0,vn<0,sn<0
JR1(un, vn, sn)

(52)

According to Theorem 2, the closed-form solution of Eq.(52) is

uk
n = − exp(− e2

n
2h ) < 0

vk
n = − exp(− (en+1)2

2h ) < 0

sk
n = − exp(− (en−1)2

2h ) < 0
(n = 1, 2, ..., N)

(53)

Second, with the updated (uk
n, vk

n, sk
n) in the k-th iteration, one obtains w∗,k by solving the following

optimization

w∗,k = arg max
w

N

∑
n=1

 ϕ0(un
e2

n
2h − g(un))

+ϕ−1(vn
(en+1)2

2h − g(vn))

+ϕ1(sn
(en−1)2

2h − g(sn))


= arg max

w

N

∑
n=1

 ϕ0un(tn − yn)2

+ϕ−1vn(tn + 1− yn)2

+ϕ1sn(tn − 1− yn)2


= arg max

w
JR2(w)

(54)

Note that for different classification models, the forms of yn are different. For example, in the logistic
regression model, yn is obtained by Eq.(8). Despite the differences in the form of yn, one could always
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optimize JR2(w) of Eq.(54) with the prominent gradient-based method, since the objective function
JR2(w) is continuous and differentiable. In the context of logistic regression, the gradient of JR2(w) is

∂JR2(w)

∂w
=

N

∑
n=1

 ϕ0un
∂(tn−yn)2

∂w

+ϕ−1vn
∂(tn+1−yn)2

∂w

+ϕ1sn
∂(tn−1−yn)2

∂w


= −2

N

∑
n=1

 ϕ0unen

+ϕ−1vn(en + 1)
+ϕ1sn(en − 1)

 xnyn(1− yn)

(55)

Based on the gradient, one can use the popular momentum-based optimization, such as the popular
and efficient Adam algorithm [159], to obtain w∗,k in Eq.(54). The HQ-based optimization for RMEE is
summarized in Algorithm 2.

Algorithm 2 RMEE for robust classification

1: input:
training samples {(xn, tn)}N

n=1;
Gaussian kernel bandwidth h;
quantization weight Φ = (ϕ0, ϕ−1, ϕ1);

2: initialize:
model parameters w;

3: output:
model parameters w;

4: repeat
5: compute the prediction errors {en}N

n=1 at the current model parameter w;
6: update (un, vn, sn) with Eq.(53);
7: update w with Eq.(54);
8: until the parameter change is small enough or the number of iterations exceeds a predetermined

limit

3.3.2. Convergence Analysis

The convergence of HQ-based optimization can be easily proved as follows by

JR(wk−1, uk−1
n , vk−1

n , sk−1
n ) 6 JR(wk−1, uk

n, vk
n, sk

n)

6 JR(wk, uk
n, vk

n, sk
n)

(56)

in which the first inequality is established obviously according to Eq.(52)(53). To establish the second
inequality, i.e. JR(wk−1, uk

n, vk
n, sk

n) 6 JR(wk, uk
n, vk

n, sk
n), the following equivalent inequality is expected

with fixing (un, vn, sn) = (uk
n, vk

n, sk
n) as

JR2(wk−1) 6 JR2(wk) (57)

Hence, to guarantee the convergence of Algorithm 2, one could find it not necessary for w to achieve a
strict maximum in Eq.(54). In contrast, as long as one has JR2(wk−1) 6 JR2(wk) at every iteration in
training with fixing (un, vn, sn) = (uk

n, vk
n, sk

n), the inequality Eq.(56) can be established which ensures
the convergence of Algorithm 2. Therefore, for the optimization problem in Eq.(54), one only needs to
consider whether the new wk achieves a larger objective function value than the original wk−1, which
brings large convenience in practical implementation.
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3.3.3. Hyper-Parameter Determination

The kernel bandwidth h plays a vital role in Parzen-window-based methods. Since there is only
one kernel bandwidth, it can be determined by the conservative five-fold cross-validation method.
On the other hand, considering the determination of Φ, the optimal values should be the numbers of
regular samples, FN outliers, and FP outliers, corresponding to ϕ0, ϕ−1, and ϕ1, respectively. However,
this will be intractable unless one has a prior information about the outlier proportion. To determine
Φ without any prior information, the following empirical method is utilize to obtain an approximate
estimation of outlier proportion. One first uses an initial Φ′ = (ϕ′0, ϕ′−1, ϕ′1) = (N, 0, 0), i.e. ζ0 = 1 and
ζ−1 = ζ1 = 0 in ρ(e), and train the model by Algorithm 2, which means that one expects all samples
in the training dataset to achieve minor errors. This will give a resultant model parameter w, from
which one can obtain {en}N

n=1 belonging to the continuous interval (−1, 1). Then one estimates the
outlier proportion by assuming the correctly predicted samples, whose errors belong to (−0.5, 0.5), are
regular samples. On the other hand, the errors belonging to (−1,−0.5) and (0.5, 1) correspond to FN
and FP outliers, respectively. Formally, one has

ϕ′′0 = # {en ∈ (−0.5, 0.5)}
ϕ′′−1 = # {en ∈ (−1,−0.5)}
ϕ′′1 = # {en ∈ (0.5, 1)}

(58)

in which # {·} indicates counting the samples that meet the condition. Obviously ϕ′′0 + ϕ′′−1 + ϕ′′1 = N.
With the updated Φ′′ = (ϕ′′0 , ϕ′′−1, ϕ′′1 ), train the model again by Algorithm 2 and obtain the result of
RMEE.

The above procedure is in fact adaptive. When the training dataset does not contain outliers, it
can be supposed that almost all sample are classified well, which means ϕ′′−1 and ϕ′′1 will be of small
values. Thus in the following training with Φ′′, one will still expect almost all examples to achieve zero
errors. On the other hand, if there are outliers in training dataset, considerable errors will be outside
(−0.5, 0.5). Then, ϕ′′−1 and ϕ′′1 could reflect the outlier proportion to some extent, since higher outlier
proportion will generally lead to worse training results, i.e. larger ϕ′′−1 and ϕ′′1 . In addition, note that
RMEE with the initial weights Φ′ = (ϕ′0, ϕ′−1, ϕ′1) = (N, 0, 0) is actually equivalent to the C-Loss. Thus
RMEE can be regarded as a more generalized form of C-Loss.

3.4. Experiments

For performance comparison, it is principal to compare RMEE with QMEE to demonstrate the
necessity of the proposed restriction. Furthermore, the C-Loss is also involved in comparison, which
is a special case of RMEE, when Φ = (ϕ0, ϕ−1, ϕ1) = (N, 0, 0). In addition, the traditional CE loss is
involved as well. One might worry that there are too few algorithms for performance comparison. It
would be argued that:
1: There are a variety of approaches to realize robust classification, such as removing samples, relabeling
samples, weighting samples, etc. What most of these methods have in common is that, the desired
robustness is realized in the preprocessing stage before the model learns, rather than in the learning
processes. The proposed RMEE is a robust objective function for classification, which means RMEE
realizes robustness exactly in the learning process. Therefore, it is not necessary to compare RMEE
with those methods that achieve robustness outside the objective function. Even RMEE can be used
with these methods together.
2: What should exactly be compared with RMEE are those robust objective functions for classification,
among which C-Loss has been proved to be state-of-the-art. Unlike traditional bounded losses, which
are usually truncated by hard threshold [133,149], C-Loss is always differentiable, and its kernel size
could realize adaptive approximation to various norms in different ranges.

The most canonical performance indicator for classification tasks is the accuracy that is computed
by (TP+TN)/(TP+TN+FP+FN). In the following experiments, all the average accuracy are given by 100
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Monte-Carlo independent repetitions. Note that as suggested in [131], to evaluate the robustness for
different machine learning models, it is preferable to only contaminate training dataset with outliers,
and to keep the testing dataset from being contaminated. This policy has been widely recognized and
practiced in the robust machine learning literature. Therefore, in what follows, the outlier corruptions
are only implemented at the training datasets, while the testing datasets are unchanged.

3.4.1. Synthetic Dataset

First, a linear synthetic dataset is generated to evaluate the performance by a similar method as in
[143]. In this synthetic dataset, 1000 i.i.d. training samples and 1000 i.i.d. testing samples are randomly
generated with a standard Gaussian distribution xn ∼ N (0, ID), with a random true model parameter
w∗ ∼ N (0, ID), where ID is the unit matrix of dimension D. The dimension D for this dataset is set as
20. For all the samples, the labels are assigned 1 if xnw∗ > 0 by the discriminant function of Eq.(7), or 0
otherwise. The numbers of two classes are supposed to be equal because w∗ always passes through
the center of symmetrical Gaussian-distributed samples. In this way, a pure dataset is completed.

According to [131], generally speaking, attribute contamination has no tendency for samples of
different classes, because it usually occurs during the measurement process. Therefore, the samples of
two classes will sustain attribute contamination with equal probability. To contaminate the attribute
values of training samples with outliers, the attribute values of each training sample is corrupted by
the following noise

ε ∼ (1− θ)N (ε|0, Σsmall) + θN (ε|0, Σlarge) (0 6 θ 6 1) (59)

in which N (0, Σsmall) with a small variance is used to generate normal noises, while N (0, Σlarge) with
a large variance can generate outliers. Each noise enforced on the attribute values is sampled from
this corruption model, which means every training sample will be contaminated by outliers with the
probability θ, or it will be added with normal noise otherwise. For this synthetic dataset, to evaluate
the robustness, θ is increased from 0 to 1.0 with a step 0.05, Σsmall is set as 0.05Id, and Σlarge is assessed
with 5Id, 10Id, 20Id, 30Id, 50Id, 100Id, 200Id, 500Id, and 1000Id, respectively.

The results of accuracy are plotted in Fig. 11, where one can clearly observe that RMEE achieves
the highest accuracy under almost all conditions, which highlights the superiority of MEE for robust
classification when restricted by the proposed codebook.

3.4.2. EEG-Based Motor Imagery Dataset

Next, robustness of the proposed RMEE are evaluated on noisy EEG datasets. Considering the
potential non-linearity in the features extracted from the EEG signals, in this subsection, the extreme
learning machine (ELM) [160] model is utilized for performance evaluation, which is a supervised
single-hidden-layer neural network and initializes input weights and hidden layer biases randomly as
shown in Fig. 12. The robust variant of ELM based on C-Loss was proposed in [77]. The number of
nodes in the hidden layer is set as 50.

Two popular public EEG datasets are employed for performance comparison, including Dataset
IIb of BCI Competition IV and Dataset IIIa of BCI Competition III, respectively, both of which include
the EEG data of the motor imagery task, which is one of the most popular research topics in the BCI
community and has relatively higher requirements for algorithms [161,162]. A common diagram of
motor imagery experiment is illustrated in Fig. 13.

Considering robust feature extraction for noisy EEG data, robust CSP approach is effective. Hence,
the CSP-L1 is selected for feature extraction, which was proposed by reformulating the conventional
CSP method by the L1-norm and could realize admirable robustness in feature extraction for noisy
multi-channel EEG [163]. The first three spatial filters corresponding to the largest objective function
values are used, and vice versa. To say, each trial will be assigned with a 6-dimensional feature.
1) Dataset IIb of BCI Competition IV:
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Figure 11. Average classification accuracy of the synthetic dataset contaminated by attribute outliers.
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Figure 12. Schematic diagram of the extreme learning machine model.

The Dataset IIb of BCI Competition IV consists of EEG data from nine subjects with three bipolar
EEG channels, acquired from a binary motor imagery task, i.e. left hand and right hand. Three bipolar
recordings (C3, Cz, and C4) were recorded with sampling frequency of 250 Hz. The EEG signals were
bandpass filtered between 0.5 and 100 Hz with a 50 Hz notch filter enabled in recording. In addition,
the EEG segments are preprocessed using a 10-order Butterworth filter with cutoff frequencies 8 and 35
Hz. For each subject, five sessions are provided, whereby the first three sessions are for training while
the last two are for testing. The numbers of trials of each class for training and testing, respectively, are
summarized in Table 1. In this dataset, Subject 1, Subject 2, and Subject 3 are abandoned, because the
classification accuracy of these three subjects is even no more than 60% without any contamination,
which means the evaluation of robustness on these subjects is relatively meaningless.

For the contamination on EEG data, some training trials are selected randomly, which are replaced
with stochastic values of multivariate Gaussian distribution. Since each trial is normalized individually
in preprocessing, the covariance of multivariate Gaussian distribution will not make difference. The
contaminated trials proportion is increased from 0 to 0.5 with a step 0.05. The results of accuracy are
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Figure 13. Cue-based experiment paradigm of motor imagery experiments.

Table 1. Numbers of trials in Dataset IIb of BCI Competition IV.

Subject
No.

Training
Left

Training
Right

Testing
Left

Testing
Right

4 201 198 154 153
5 193 189 134 139
6 142 153 123 128
7 178 178 114 118
8 175 153 119 111
9 157 160 121 124

Table 2. Average classification accuracy of Dataset IIb of BCI Competition IV.

Contaminated
Trials Proportion 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Subject 4

CE 97.4788 90.8404 85.5993 79.5733 75.1922 69.4235 67.5472 64.8436 61.5049 63.0000 60.4821
C-Loss 97.2801 96.1889 96.2313 94.4723 90.6352 85.8046 82.7850 78.3779 67.5635 63.4886 63.8241
QMEE 97.3420 96.9479 96.4853 95.1107 88.4235 77.3746 73.4821 69.4235 64.7850 60.8469 55.1010
RMEE 97.6743 97.2476 96.7394 95.7492 92.9837 87.8893 83.4919 77.4137 67.7883 62.4267 61.4821

Contaminated
Trials Proportion 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Subject 5

CE 72.3663 69.0623 65.4982 63.6190 61.9487 59.7766 58.2051 57.8425 56.7473 54.3004 54.8425
C-Loss 71.2344 71.1941 69.3297 68.6740 68.2125 67.4176 65.1868 65.2637 61.5128 60.6007 57.8901
QMEE 71.7179 71.4029 69.7802 64.7912 63.7619 56.6410 56.0073 53.7546 53.2491 51.8828 52.1282
RMEE 71.7839 71.5421 70.7546 70.0476 69.2418 67.8498 65.0842 64.8388 60.4835 58.3480 57.5495

Contaminated
Trials Proportion 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Subject 6

CE 77.7450 74.1594 69.2988 66.5896 62.8964 58.2351 58.5578 57.3665 55.2869 54.4940 53.7211
C-Loss 78.0757 76.9801 74.9283 73.3785 71.5259 68.1036 65.0956 64.2550 60.7410 59.3904 59.0518
QMEE 77.0478 77.1594 74.1315 72.4303 71.7371 68.5179 65.7888 60.4143 55.8964 56.3147 56.1753
RMEE 78.5418 78.0757 75.4343 74.4263 72.3426 68.3785 65.3307 64.8327 60.2311 58.4861 58.1833

Contaminated
Trials Proportion 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Subject 7

CE 76.1853 74.6638 74.2629 71.6293 70.5647 71.1466 68.4397 66.9440 66.6810 63.1250 63.0388
C-Loss 77.0000 76.2371 76.0819 75.6250 75.0345 76.0259 74.0647 73.8017 71.3491 70.8362 66.6509
QMEE 75.7845 76.0474 75.8448 73.7845 70.9440 68.2845 64.7500 60.8491 57.6940 54.3879 55.2845
RMEE 76.7845 76.4440 76.2759 76.0086 75.3233 75.2457 75.0345 74.3664 71.0733 70.2845 65.9353

Contaminated
Trials Proportion 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Subject 8

CE 91.8087 91.0217 89.9130 85.8957 83.2522 80.1261 76.9304 70.0391 66.4826 63.3739 60.9435
C-Loss 92.2217 91.2435 91.7826 91.5478 90.3826 89.5739 86.3043 82.8565 79.1261 73.0043 70.3435
QMEE 92.1957 91.4957 90.5435 88.8435 84.4304 78.8913 72.5391 70.0087 66.1478 62.8696 58.3826
RMEE 92.1261 92.0826 92.0304 91.8435 91.0826 90.4391 87.7826 84.4870 81.4913 73.9826 71.8391

Contaminated
Trials Proportion 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Subject 9

CE 81.4816 76.9102 76.1102 75.0898 72.2980 69.4898 65.5347 65.3714 62.8531 61.6286 59.4939
C-Loss 81.2490 80.1061 79.8286 79.1102 78.6490 77.7959 75.4000 71.8286 65.4000 63.4245 61.4082
QMEE 80.9755 80.0082 79.5837 78.8367 76.4367 70.7837 60.8408 56.4857 53.4327 52.3388 52.3633
RMEE 81.1510 80.5388 80.0449 79.7429 79.0735 78.6857 77.0857 73.0776 66.5469 62.7837 60.4204

listed in Table 2, where the highest accuracy in each condition is marked in bold. One can obviously
find that the proposed RMEE achieves the largest number of the highest accuracy.
2) Dataset IIIa of BCI Competition III:

The Dataset IIIa of BCI Competition III consists of EEG data from 3 subjects with 60 EEG channels,
acquired from four different cued motor imagery tasks, i.e. left hand, right hand, both feet, and tongue.
Only the trials of left hand and right hand are considered. The EEG signals were sampled in 250 Hz,
with filtered between 1 and 50 Hz with Notch filter on. Since all trials are included in one session, the
entirety are divided randomly into training and testing parts, where 2/3 trials are for training while
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the other 1/3 trials are for testing. In preprocessing, the same conduct is operated as before. For each
subject, the numbers of trials of each class for training and testing, respectively, are summarized in
Table 3. The contamination of EEG data is similar to the previous EEG dataset, and the contaminated
trials proportion is increased from 0 to 0.5 with a step 0.05 as well. The corresponding results are
presented in Table 4, where one can observe that the proposed RMEE achieves the highest accuracy in
almost all cases for Subject 1 and Subject 3, whereas each criterion is approximate for Subject 2.

Table 3. Numbers of trials in Dataset IIIa of BCI Competition III.

Subject
No.

Training
Left

Training
Right

Testing
Left

Testing
Right

1 60 60 30 30
2 40 40 20 20
3 40 40 20 20

Table 4. Average classification accuracy of Dataset IIIa of BCI Competition III.

Contaminated
Trials Proportion 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Subject 1

CE 94.9167 90.3333 88.4167 86.6500 83.4500 80.5167 77.5667 73.5833 69.4833 67.6333 65.9167
C-Loss 95.0667 92.5833 91.3333 90.1667 89.7667 88.0333 87.4333 85.6000 81.8500 77.1833 73.8833
QMEE 94.6500 92.7500 91.5167 90.3333 89.1833 87.2833 83.9833 76.4333 65.7833 59.5667 58.1333
RMEE 94.6333 93.3167 91.9833 91.0333 90.1333 89.4000 88.7667 86.9333 84.2000 80.1000 76.7333

Contaminated
Trials Proportion 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Subject 2

CE 74.525 68.450 67.625 66.850 63.150 62.200 60.075 60.025 58.600 56.875 56.525
C-Loss 74.475 70.400 69.200 68.900 65.000 62.900 63.275 60.825 57.050 56.425 55.100
QMEE 73.225 70.975 67.525 67.100 62.800 59.625 58.150 58.475 57.675 55.050 54.925
RMEE 74.300 70.900 69.000 68.250 64.850 63.575 62.100 60.275 59.050 57.875 57.575

Contaminated
Trials Proportion 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Subject 3

CE 84.850 82.400 80.300 79.650 77.750 76.700 75.975 74.750 73.675 71.100 67.600
C-Loss 84.725 84.250 83.225 82.725 81.775 81.125 79.500 78.975 78.550 76.450 75.125
QMEE 83.975 83.875 82.925 81.825 79.525 76.200 73.325 70.450 68.200 65.525 62.950
RMEE 84.325 84.250 83.725 83.025 82.275 81.625 80.725 79.950 79.050 76.950 75.625

3.4.3. Machine Learning Benchmark Datasets

In order to further demonstrate the desirable robustness of the proposed RMEE in a wider range
of robust classification tasks, besides the toy examples and EEG datasets above, then some popular
benchmark datasets are selected from the UCI repository [164] and are contaminated artificially with
attribute outliers. The selected datasets are summarized in Table 5. For binary classification, the multi-
class datasets are transformed into several 2-class datasets. To make this transformation, a new dataset
is built that consists of the samples of one specific class, and the antagonistic label is assigned to the
other samples. Thus, a dataset of m classes is converted into m datasets of binary class, which is known
as one vs all. This helps analyze whether the classifier could extract effective pattern for each class. For
the benchmark datasets, 2/3 samples are randomly selected for training, and the other 1/3 samples
act as testing samples. Similarly, the ELM model is used under different learning criteria.

Table 5. Benchmark datasets summary.

No. Dataset Feature Class Ratio
1 Statlog (Australian Credit Approval) 14 383 : 307
2 Balance Scale (l. vs all) 4 337 : 288
3 Balance Scale (r. vs all) 4 337 : 288
4 BUPA Liver Disorders 6 200 : 145
5 Connectionist (Sonar, Mines vs. Rocks) 60 111 : 97
6 Iris (set. vs all) 4 100 : 50
7 Iris (vir. vs all) 4 100 : 50
8 Breast Cancer Wisconsin (Original) 9 458 : 241
9 Breast Cancer Wisconsin (Diagnostic) 30 357 : 212

10 Wholesale Customers 7 298 : 142

First, each dimension is normalized to zero-mean and unit-variance, so that the diagonal elements
of the covariance matrix of the training samples are all 1. Then, the corruption model of Eq.(59) is used
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similarly to contaminate the attribute values of training samples. θ is considered with 0, 20%, and 40%,
Σsmall is set as 0.05Id, and Σlarge is assessed with 20Id, 50Id, 100Id, 300Id, and 1000Id, respectively. The
average classification accuracy is listed in Table 6. Similarly, the highest accuracy in each condition is
marked in bold. One can observe as before that RMEE achieves the highest accuracy in most cases.

Table 6. Average classification accuracy of benchmark datasets contaminated by attribute outliers.

Dataset1 0% 20Id 50Id 100Id 300Id 1000Id Dataset2 0% 20Id 50Id 100Id 300Id 1000Id
20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%

CE 85.34 84.47 83.55 84.30 83.29 84.51 81.17 83.26 73.22 79.37 60.62 CE 94.69 91.88 87.10 90.29 83.45 88.95 76.58 81.79 63.40 66.69 55.49
C-Loss 86.09 85.96 84.57 85.79 84.89 85.97 84.37 85.02 82.26 84.50 77.21 C-Loss 94.21 94.00 92.49 93.64 91.12 93.83 88.85 91.94 82.96 87.31 67.05
QMEE 85.19 81.53 77.47 80.38 75.15 80.80 73.20 75.58 70.89 75.37 65.32 QMEE 93.81 90.01 77.54 86.68 74.09 84.04 71.51 80.33 66.70 75.63 60.87
RMEE 86.90 86.49 85.84 85.71 85.07 85.85 85.03 86.04 84.07 85.40 77.81 RMEE 94.21 94.98 92.84 94.51 92.00 94.60 89.55 93.58 83.33 90.07 67.93

Dataset3 0% 20Id 50Id 100Id 300Id 1000Id Dataset4 0% 20Id 50Id 100Id 300Id 1000Id
20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%

CE 94.93 92.02 86.81 90.85 82.44 89.13 75.14 81.13 63.26 65.92 55.15 CE 72.73 64.27 59.37 62.11 57.96 59.63 57.72 57.54 57.63 57.65 57.71
C-Loss 95.03 93.75 92.36 93.32 91.04 93.40 89.72 92.12 80.73 88.55 65.47 C-Loss 72.50 67.21 59.90 65.03 58.77 61.78 58.03 59.16 57.04 58.12 57.35
QMEE 94.38 93.00 81.92 90.97 78.25 87.61 76.77 83.10 70.60 80.63 60.83 QMEE 68.10 63.71 56.82 61.79 56.83 59.21 53.63 58.77 53.46 54.64 52.53
RMEE 95.12 94.70 92.98 94.06 91.96 93.88 90.12 93.38 81.18 89.65 65.76 RMEE 72.86 67.74 61.30 65.23 59.76 62.18 58.56 58.88 57.70 58.10 57.61

Dataset5 0% 20Id 50Id 100Id 300Id 1000Id Dataset6 0% 20Id 50Id 100Id 300Id 1000Id
20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%

CE 77.03 72.84 70.99 72.20 70.97 72.80 69.35 70.41 68.01 70.80 65.33 CE 99.78 99.62 99.44 99.78 97.12 99.76 91.86 97.76 73.32 83.24 67.96
C-Loss 77.75 74.17 74.62 74.28 74.20 74.23 73.90 72.61 72.54 72.99 69.30 C-Loss 99.52 99.02 97.06 98.24 97.78 97.06 97.44 97.70 93.96 96.64 78.18
QMEE 77.38 70.16 69.17 70.93 68.61 71.84 68.09 70.62 66.70 67.77 65.12 QMEE 99.06 96.72 86.30 95.70 85.34 93.94 84.94 89.32 83.94 89.42 79.58
RMEE 77.58 75.88 74.32 75.77 74.81 75.48 74.33 73.65 71.64 72.12 70.39 RMEE 99.04 97.64 96.12 97.96 95.70 97.28 96.06 97.62 95.24 94.68 79.40

Dataset7 0% 20Id 50Id 100Id 300Id 1000Id Dataset8 0% 20Id 50Id 100Id 300Id 1000Id
20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%

CE 96.24 92.16 88.86 90.44 83.66 89.78 77.24 83.26 70.08 72.40 67.66 CE 96.31 95.98 95.12 95.12 93.23 94.73 90.14 93.55 78.84 84.47 65.91
C-Loss 94.70 92.66 90.50 91.12 88.02 91.54 85.28 90.48 80.40 86.14 73.40 C-Loss 95.50 94.50 94.05 94.83 92.81 94.09 92.26 93.26 91.49 91.67 83.91
QMEE 95.00 90.98 84.08 90.66 82.54 88.58 80.64 85.72 76.36 80.58 70.10 QMEE 95.54 93.69 92.72 91.46 87.68 88.20 81.39 85.70 76.95 80.99 73.37
RMEE 95.04 93.18 91.48 91.96 88.28 91.94 85.70 91.40 80.54 88.68 71.20 RMEE 95.75 95.85 94.77 95.16 92.34 95.33 92.45 94.74 92.11 93.25 83.39

Dataset9 0% 20Id 50Id 100Id 300Id 1000Id Dataset10 0% 20Id 50Id 100Id 300Id 1000Id
20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%

CE 96.31 95.49 94.38 95.76 93.84 94.57 92.59 93.17 89.35 89.81 78.04 CE 90.68 86.93 81.14 84.90 76.01 81.65 71.87 75.54 68.67 69.27 67.77
C-Loss 95.89 95.22 93.79 95.83 94.63 95.07 94.32 94.27 92.34 93.86 90.38 C-Loss 90.21 87.30 82.01 86.06 82.50 85.71 80.71 83.59 72.93 77.14 68.21
QMEE 95.56 92.06 90.13 91.94 90.40 88.32 85.92 85.40 75.70 80.13 73.73 QMEE 89.99 78.47 78.27 77.90 73.16 77.88 70.52 77.45 65.42 71.45 61.16
RMEE 96.52 95.28 94.73 95.50 94.96 95.41 94.48 94.66 93.87 94.75 91.05 RMEE 89.92 87.47 82.73 86.54 80.07 85.37 80.90 83.20 73.03 78.05 68.46

3.5. Discussion

The purpose of this study is to achieve a decent realization of MEE for robust classification. QMEE
is regarded as a simplified execution that employs quantization technique to reduce computational
complexity. Nevertheless, as demonstrated in experimental results, QMEE fails to achieve expected
robustness. Particularly, in considerable situations of Fig. 11, and Table 6 QMEE even acquires worse
performance than conventional CE, which indicates that robust classification cannot be realized by
directly utilizing QMEE. The proposed RMEE in the present study is a special case of QMEE with the
predetermined codebook C = (0,−1, 1), which could optimize the error PDF p(e) towards the optimal
distribution ρ(e). Although QMEE exhibits a more generalized form, it would like to be stated it is
the larger generalization that deteriorates QMEE in noisy classification task. Proved by the extensive
experimental results, RMEE achieves obviously better performance than QMEE in noisy classification
which demonstrates superiority of the proposed restriction.

To further emphasize effectiveness and competence of the predetermined codebook C = (0,−1, 1)
compared to a data-driven one, the scenario from Section 3.4.1 is employed to investigate the final
training error distributions of QMEE and RMEE, respectively, with attribute contamination 200Id and
outlier proportion 0.5. The average histograms of the resultant training errors with 100 repetitive trials
are illustrated in Fig. 14. One can observe that the average error distribution achieved by QMEE is in a
considerably chaotic situation. To ascertain the occurrence, the 100 resultant error distributions are
categorized and plotted with the representative averages in the right half of Fig. 14. As one can find,
QMEE does occasionally realize the optimal three-peak distribution. To be specific, QMEE achieved
the expected consequence in 37 out of 100 repetitions. Nevertheless, in the remaining cases, it realized
miscellaneous double-peak error distribution. The essential reason is stated as before: such double-
peak error distributions all achieve minimum entropy. Consequently, QMEE cannot guarantee the
tendency of the learning results, which engenders inferior robustness in classification. By comparison,
the proposed RMEE realized the expected three-peak error distribution with minor fluctuations, which
highlights the necessity and validity of the proposed restriction.
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14
Figure 14. Average distribution histograms of the training errors. Upper left: error distribution achieved
by QMEE averaged by 100 trials; Lower left: error distribution achieved by RMEE averaged by 100
trials; Right half: six representative error distributions of QMEE among the 100 trials. The average
distributions and the corresponding standard deviations are calculated by manual categorization, and
the numbers on each subgraph denote the times that the corresponding situation has occurred.

Considering the determination of Φ for RMEE, as described in Section 3.3.3, RMEE actually uses
C-Loss initially to estimate the outlier proportion. To evaluate the exactness, the differences between
the estimated outlier proportions and true values are illustrated with three scenarios from Section 3.4.1
with attribute contamination 20Id, 50Id, and 200Id, respectively, in Fig. 15, based on 100 Monte-Carlo
repetitions. One observes that the respective curves of estimations and true values exhibit consistency
with relative precision.
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Figure 15. Estimated proportions of respective sample categories and true values. The true values
are expectations by calculation according to the contamination method. Note the lateral axis does not
denote the actual outlier proportion, because half of the added outliers are innocuous according to the
distribution. In the remaining adverse ones, the numbers of FN outliers and FP outliers are supposed
to be equivalent due to the distribution symmetry of the toy dataset and outliers.

4. Partial Maximum Correntropy Regression

From this section, this thesis begins to concentrate on the high-dimensional brain activity decoding
tasks, where the purpose is to solve the issues of “robustness” and “high-dimensional” simultaneously
by embedding robust ITL methods in existing brain decoding algorithms that can effectively solve the
high-dimensional problem. The first strategy to solve the high-dimensional issue is to project the high-
dimensional variables to a low-dimensional subspace while retaining as much information as possible
in the original space, i.e. the dimensionality reduction technique. The most famous algorithm for this
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strategy is the principal component analysis (PCA) algorithm, as introduced in Eq.(12). PCA employs a
linear projection on the dataset with maximizing the variance of the data after dimensionality reduction,
where a larger variance is considered to contain more information. The objective function of PCA can
be also interpreted to minimize the second order of the reconstruction error in the original space. Due
to the non-robust property of the conventional variance or second-order statistics, the original PCA
algorithm can be significantly deteriorated by non-Gaussian noises or outliers. To address this issue,
MCC and MEE have been utilized to reformulate the PCA algorithm for a more robust implementation
[85,157,165].

However, PCA algorithm was originally developed as a dimensionality reduction method for the
unsupervised learning scenario, which means there is no target to supervise the model parameter. As
one can see in Eq.(12), the model parameter for PCA is only learned from the covariate matrix. Despite
the successful application of PCA for supervised machine learning, such as the principal component
regression (PCR) [166], PCA may be not entirely appropriate for the supervised brain activity decoding
task, since the dimensionality reduction in PCA method does not take the target variable into account.
As a result, although the latent representations in the low-dimensional space acquired by PCA could
retain the maximal information from the original covariate matrix, the most relevant information in
the covariate data to the decoding task, i.e. the target variable, may be ignored and lost in the process
of dimensionality reduction.

For a better dimensionality reduction technique which can consider the covariate data and target
variable simultaneously, the partial least square (PLS) approach was proposed. Although this PLS
approach was initially developed for econometrics and chemometrics [167], it has emerged as a popular
method for neural imaging and decoding [98,168]. There are two major applications attainable by the
PLS approach. First, PLS can be utilized to analyze the correlation relationship between two arbitrary
random variables by projecting them to the same low-dimensional subspace and then computing the
shared information between them. The second implementation of PLS is for predicting a continuous
variable, i.e. regression. PLS-based regression, called PLSR, has been successfully applied to numerous
brain activity decoding tasks. In particular, PLSR is a popular method to accomplish the inter-correlated
and potentially high-dimensional ECoG decoding tasks to predict continuous variables from ECoG
signals as well as its various improved versions in the last decade [27,28,169–175]. For example, [27]
successfully predicted the three-dimensional continuous hand trajectories for two monkeys during
asynchronous food-reaching tasks from time–frequency features of subdural ECoG signals by PLSR
algorithm. They further showed the admirable prediction capability of PLSR in an epidural ECoG
study [28]. Recently, different strategies have been investigated to improve the decoding performance
of PLSR. For example, multi-way PLSR algorithms have been proposed as a generalization for tensor
analysis in the ECoG decoding tasks [28,172,174,176]. Moreover, regularization technique has been
used to penalize the objective function with an extra regularization term to achieve desirable prediction
[170,173,175].

PLSR solves a regression problem primarily with dimensionality reduction on both explanatory
matrix (input) and response matrix (output), in which the dimensionality-reduced samples (commonly
called as latent variables) for respective sets exhibit maximal correlation, thus structuring association
from input variable to output variable. However, the conventional PLSR algorithm and most existing
variants are in essence formulated by the least square criterion, which assigns superfluous importance
to the deviated noises. On the other hand, although ECoG signal usually exhibits a relatively higher
signal-to-noise ratio (SNR) than the non-invasive EEG recording, previous studies have revealed that
ECoG is also prone to be contaminated by physiological artifacts with pronounced amplitudes [52,177].
As a result, PLSR may be incompetent for noisy ECoG decoding tasks due to subnormal robustness.

This section aims to investigate a robust implementation for PLSR by reformulating it with ITL
method. Since MCC has a simpler formulation than MEE, this section first considers how to use MCC
to propose a new robust version for PLSR. Recently, a rudimentary implementation of MCC for PLSR
has been investigated in [178], where MCC was employed in the process of dimensionality reduction.
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However, the proposed algorithm in [178] is limited in some respects. First, except for the MCC-based
dimensionality reduction, it remains acquiring the regression relations under the least square criterion.
Second, it only considers the dimensionality reduction for the explanatory matrix. Consequently, one
has to calculate the regression coefficients separately for each dimension of the response matrix, which
means it could be inadequate for multivariate response prediction.

By comparison, this section aims to realize a more comprehensive implementation of the MCC
framework in PLSR. The main contributions of this section are summarized as follows. First, the PLSR
algorithm is reformulated thoroughly with the MCC framework, that not only the dimensionality
reduction, but also the regression relations between the different variables are established by the MCC
framework. Second, both the explanatory matrix (input) and the response matrix (output) are treated
with MCC-based dimensionality reduction. As a result, the proposed algorithm is adequate for multi-
variate response prediction. Finally, for each reconstruction error and prediction error, a Gaussian
kernel function with an individual kernel bandwidth is utilized, where each kernel bandwidth could
be calculated from the corresponding set of errors directly.

4.1. Partial Least Square Regression

4.1.1. Conventional Partial Least Square Regression

First, a brief introduction for the conventional PLSR algorithm is given in what follows. Because
PLSR can predict multivariate target variable, in this section, one can assume that each observation for
the target is a L-dimensional vector, denoted by t = (t1, t2, · · · , tL) ∈ R1×L, and the matrix for all the
response variable with N observations can be expressed by T = (tT

1 , tT
2 , · · · , tT

N)
T ∈ RN×L, each row of

which is an individual L-dimensional target observation. Now, one can consider a dataset associated
with the explanatory matrix X ∈ RN×D and the response matrix T ∈ RN×L with N observations, in
which D and L denote the respective numbers of dimension for explanatory and response, respectively.
PLSR is an iterative regression algorithm which executes dimensionality reduction on explanatory
and response matrices simultaneously, so that the resultant latent variables in each iteration exhibit
maximal covariance. For the first iteration, the original matrices are employed as the current residual
matrices, i.e. X1 = X and T1 = T. PLSR calculates two projectors w1 ∈ RD and c1 ∈ RL to acquire the
corresponding latent variables, denoted as r1 = X1w1 and u1 = T1c1, by maximizing their covariance

max
‖w1‖2=‖c1‖2=1

rT
1 u1 = wT

1 XT
1 T1c1 (60)

This equation can be effectively solved by the singular value decomposition (SVD) on XT
1 T1. Then, one

computes the loading vector p1 on X1 by the least square criterion as

min
p1
‖X1 − r1pT

1 ‖2
2 ⇒ p1 = XT

1 r1/(rT
1 r1) (61)

thus organizing the regression relation from r1 to X1. PLSR also supposes a linear association from r1

to u1 by calculating a regression scalar b1 by the least square criterion as

min
b1
‖u1 − r1b1‖2

2 ⇒ b1 = uT
1 r1/(rT

1 r1) (62)

The residual matrices for the next iteration are updated by

X2 = X1 − r1pT
1 , T2 = T1 − b1r1cT

1 (63)

Such procedures are repeated by PLSR for the optimal number of factors S, which is usually selected
by cross validation. One can then collect the outcomes from each iteration, i.e. R = [r1, .., rS] ∈ RN×S,
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P = [p1, .., pS] ∈ RD×S, B = diag(b1, .., bS) ∈ RS×S, C = [c1, .., cS] ∈ RL×S. As a result, one rewrites
the decomposition of X and the predicted response T̂ as

X = RPT , T̂ = RBCT (64)

Thus, the prediction from X to T̂ is structured as

T̂ = XH (65)

in which H = PT+BCT ∈ RD×L, and PT+ is the pseudo-inverse of PT .
Maximizing the covariance between the latent variables in Eq.(60) could be rewritten as [179]

min
‖ws‖2=‖cs‖2=1

N

∑
n=1

 ‖xn
s − xn

s wswT
s ‖2

+‖tn
s − tn

s cscT
s ‖2

+‖xn
s ws − tn

s cs‖2

 (66)

where the subscript s denotes the s-th decomposition factor, while xn
s and tn

s denote the n-th samples in
the residual matrices Xs and Ts, respectively. One can observe from Eq.(66) that, PLSR adopts the least
square criterion not only to obtain the regression relations in Eq.(61-62), but also for the projectors ws

and cs. The connotation of Eq.(66) is interpreted as follows. The first and second terms in summation
are the quadratic reconstruction errors for input and output, respectively. The third term denotes the
quadratic prediction error for the n-th latent variables. Because each step for PLSR is based on the least
square criterion, the prediction from input to output may be deteriorated seriously by noises.

4.1.2. Regularized Partial Least Square Regression

The regularization techniques have been widely utilized to ameliorate the decoding performance
of the PLSR algorithm. For example, L1-regularization on the projectors was employed so as to obtain
sparse projectors, conducting the feature selection simultaneously [170]. The authors further extended
their study in [173], in which Sobolev-norm and polynomial penalization were introduced into PLSR
to strengthen the smoothness of the predicted response. Recently, the state-of-the-art regularized PLSR
was proposed by utilizing L2-regularization to find the regression relation between the latent variables
rs and us, so as to reduce the over-fitting risk of each latent variable on the desired response [175]. In
particular, for each decomposition factor, the scalar bs is acquired with an individual regularization
parameter λs as

min
bs
‖us − rsbs‖2

2 + λsb2
s ⇒ bs = uT

s rs/(rT
s rs + λs) (67)

Experimental results in [175] showed that the regularization method in Eq.(67) achieved better ECoG
decoding performance than regularizing the projectors.

Nevertheless, the regularized PLSR variants are still formulated from the non-robust least square
criterion, as a result, remaining prone to suffering the performance deterioration caused by the adverse
noises.

4.1.3. Partial Least Square Regression with MCC

Recently, a rudimentary MCC-based PLSR variant has been investigated in [178], named as MCC-
PLSR. For a univariate output, according to [178], the dimensionality reduction of Eq.(60) is equal to
its quadratic form

max
‖ws‖2=1

wT
s XT

s TsTT
s Xsws (68)
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which aims to maximize the quadratic covariance. [178] utilized a similar proposition as in the MCC-
based principal component analysis [157], proposing the following objective function

max
‖ws‖2=1

N

∑
n=1

kh(
√

tnT
s xn

s xnT
s tn

s − tnT
s xn

s wswT
s xnT

s tn
s ) (69)

from which one can calculate a robust projector ws. Then, one obtains the latent variables by rs = Xsws,
and acquires other model parameters similarly as in Eq.(61-65).

Despite the robust implementation of the projector ws in Eq.(69), the above MCC-PLSR algorithm
could be inadequate for the following reasons. First, except for the calculation of ws, the other model
parameters are still acquired under the least square criterion. Second, dimensionality reduction is not
considered for the output matrix. As a result, the prediction performance for a multivariate response
may be limited.

4.2. Partial Maximum Correntropy Regression

In what follows, a comprehensive reformulation of PLSR with the MCC framework is presented.
Compared with the existing MCC-PLSR, the proposed method aims to acquire each model parameter
by MCC. In addition, the generalization for multivariate response is also taken into account here. The
detailed mathematical derivations of the proposed method are given as follows, where the subscript s
denoting the s-th decomposition factor is omitted for the purpose of simplicity.

Substituting the least quadratic reconstruction errors and prediction errors in the conventional
PLSR of Eq.(66) with the maximum correntropy yields

max
‖w‖2=‖c‖2=1

N

∑
n=1

 khx (xn − xnwwT)

+kht(tn − tnccT)

+khr (xnw− tnc)

 (70)

where hx, ht, and hr are the Gaussian kernel bandwidths for X-reconstruction errors, T-reconstruction
errors, and the prediction errors, respectively.

Then one transforms the vectors (xn − xnwwT) and (tn − tnccT) into scalars since two projectors
w and c are unit-length vectors, i.e. wTw = cTc = 1,√

‖xn − xnwwT‖2 =
√

xnxT
n − xnwwTxT

n√
‖tn − tnccT‖2 =

√
tntT

n − tnccTtT
n

(71)

Subsequently, one obtains the following optimization problem to acquire the projectors

max
‖w‖2=‖c‖2=1

N

∑
n=1

 khx (
√

xnxT
n − xnwwTxT

n )

+kht(
√

tntT
n − tnccTtT

n )

+khr (xnw− tnc)

 (72)

After obtaining w and c, one could calculate the latent variables as in the conventional PLSR by
r = Xw and u = Tc. Then, to calculate the loading vector p and the regression coefficient b, one could
also adopt the MCC objective function by

max
p

N

∑
n=1

khp(xn − rnpT) (73)

max
b

N

∑
n=1

khb
(un − rnb) (74)
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in which rn and un denote the n-th elements for the latent variables r and u, respectively. hp and hb are
the corresponding kernel bandwidths. The residual matrices are then updated similarly as PLSR.

One repeats such procedures for the optimal number of factors and collects the acquired vectors
from each iteration to organize the matrices R, P, B, and C, as in the original PLSR. Finally, the predicted
response T̂ can be obtained from X by the regression relationship of Eq.(65). The above-mentioned PLSR
which is comprehensively reformulated based on the MCC, is named as partial maximum correntropy
regression (PMCR). Then the proposed PMCR algorithm is discussed with its optimization, convergence
analysis, and determination of hyper-parameters.

4.2.1. Optimization

Three optimization problems in Eq.(72-74) need to be addressed in PMCR. One can first consider
Eq.(72) for the calculation of the projectors w and c. Based on the HQ optimization method as described
in Theorem 2, Eq.(72) could be rewritten as

max
‖w‖2=‖c‖2=1

N

∑
n=1


sup{αn

xnxT
n−xnwwTxT

n
2hx

− g(αn)}
+ sup{βn

tntT
n−tnccTtT

n
2ht

− g(βn)}
+ sup{γn

(xnw−tnc)2

2hr
− g(γn)}

 (75)

where g(·) is the conjugate function as described in Theorem 2. {αn}N
n=1, {βn}N

n=1, and {γn}N
n=1 denote

three sets of introduced auxiliary variables, respectively. Thus, one can update (αn, βn, γn) and (w, c)
alternately to optimize Eq.(72) by

max
‖w‖2=‖c‖2=1,αn ,βn ,γn

J ,
N

∑
n=1


αn

xnxT
n−xnwwTxT

n
2hx

− g(αn)

+βn
tntT

n−tnccTtT
n

2ht
− g(βn)

+γn
(xnw−tnc)2

2hr
− g(γn)

 (76)

Since the HQ optimization is an iterative process, one can denote the k-th HQ iteration with the
subscript k. First, one can update the auxiliary variables with the current projectors (wk, ck) by

αn,k+1 = − exp(−xnxT
n − xnwwTxT

n
2hx

)

βn,k+1 = − exp(− tntT
n − tnccTtT

n
2ht

)

γn,k+1 = − exp(− (xnw− tnc)2

2hr
)

(n = 1, .., N)

(77)

Then, to optimize the projectors, one rewrites Eq.(76) by collecting the terms of projectors and omitting
the auxiliary variables as

max
‖w‖2=‖c‖2=1

Jp ,
N

∑
n=1

 ( γn
2hr
− αn

2hx
)xnwwTxT

n

+( γn
2hr
− βn

2ht
)tnccTtT

n

− γn
hr

xnwcTtT
n

 (78)

which is a quadratic optimization issue constrained by nonlinear condition. To optimize Eq.(78), there
exist enormous solutions in the literature, such as the sequential quadratic programming (SQP) which
has been widely utilized for nonlinear programming problems [180].
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After one obtains the projectors w and c, the latent variables are computed by r = Xw and u = Tc.
Then, Eq.(73-74) can be solved by the following iterative fixed-point optimization method with fast
convergence [81]

p = XTΨpr/(rTΨpr) (79)

b = uTΨbr/(rTΨbr) (80)

where Ψp and Ψb are N × N diagonal matrices with the diagonal elements (Ψp)nn = khp(xn − rnpT)

and (Ψb)nn = khb
(un − rnb), respectively. Since Ψp and Ψb are dependent on the current solutions p

and b, the updates in Eq.(79-80) are fixed-point equations. The comprehensive procedures for PMCR
are summarized in Algorithm 3.

Algorithm 3 Partial maximum correntropy regression

1: input:
explanatory matrix X and response matrix T;
number of decomposition factors S;

2: initialize:
X1 = X and Y1 = Y;

3: output:
prediction model T̂ = XH;

4: for s = 1, 2, .., S do
5: initialize the projectors by the conventional PLSR;
6: repeat
7: auxiliary-step: update (αn, βn, γn) with Eq.(77);
8: projector-step: update (ws, cs) with Eq.(78);
9: until the parameter change is small enough

10: compute latent variables rs = Xsws and us = Tscs;
11: compute ps and bs by the fixed-point method in Eq.(79-80);
12: update the residual matrices Xs+1 = Xs − rspT

s and Ts+1 = Ts − bsrscT
s ;

13: end for
14: organize the matrices R = [r1, .., rS], P = [p1, .., pS], B = diag(b1, .., bS), and C = [c1, .., cS];
15: compute H = PT+BCT

4.2.2. Convergence Analysis

For the regression relations p and b, one could find the detailed convergence analysis in [81]. The
convergence of the projectors w and c is mainly considered here for the optimization issue of Eq.(72).
Because correntropy is in nature an m-estimator [79], the local optimums of Eq.(72) will be sufficiently
close to the global optimum, which has been proved in a recent theoretical study [181]. Therefore, one
only needs to guarantee that Eq.(72) will converge to a local optimum with the HQ optimization.

If one has Jp(wk, ck) 6 Jp(wk+1, ck+1) when (αn, βn, γn) = (αn,k+1, βn,k+1, γn,k+1), Eq.(72) will
converge to a local optimum.

Proof: The convergence is proved as

J(wk, ck, αn,k, βn,k, γn,k)

6J(wk, ck, αn,k+1, βn,k+1, γn,k+1)

6J(wk+1, ck+1, αn,k+1, βn,k+1, γn,k+1)

(81)

in which the first inequality is guaranteed by the HQ mechanism, and the second inequality arises
from the assumption of the present proposition. �

One could observe that, to guarantee the convergence of Eq.(72), it is unnecessary to attain a strict
maximum of Eq.(78) at each projector-step in Algorithm 3. On the contrary, as long as the updated
projectors lead to a larger objective function Jp at each projector-step, Eq.(72) will converge to a local
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optimum. This brings a great convenience in practice that one only needs a few SQP iterations for the
projector-step. One could finish the projector-step once confirming an increase on Jp, thus accelerating
the convergence.

4.2.3. Hyper-Parameter Determination

There exist five Gaussian kernel bandwidths hx, ht, hr, hp, and hb, respectively, to be determined
for the proposed PMCR algorithm. In practice, it will be intractable to determine five hyper-parameters
by cross validation. To acquire a proper kernel bandwidth directly, one can employ the Silverman’s rule
[121] which was proposed for density estimation and has been successfully applied for ITL methods
[157]. Under the current errors with N observations, the kernel bandwidth is computed by

h = 1.06×min{σe,
R

1.34
} × (N)−1/5 (82)

in which σe is the standard deviation of the N errors, and R denotes the interquartile range.

4.3. Experiments

For the performance evaluation of the proposed PMCR algorithm, one synthetic dataset and one
real ECoG dataset were utilized, respectively. The proposed PMCR algorithm was compared with the
conventional PLSR, the state-of-the-art regularized PLSR (RPLSR) [175] described in Eq.(67), and the
rudimentary MCC-PLSR [178] described in Section 4.1.3. For evenhanded comparison, each method
used an identical number of factors which was selected by the conventional PLSR from five-fold cross-
validation. The maximal number of factors was set as 100.

Considering the performance indicators for the evaluation, three typical measures for regression
tasks were utilized: i) Pearson’s correlation coefficient (r) as defined by

r =
Cov(T̂, T)√

Var(T̂)Var(T)
(83)

where Cov(·, ·) and Var(·) denote the covariance and variance, respectively, and ii) root mean squared
error (RMSE) which is computed by

RMSE =

√√√√ 1
N

N

∑
n=1
‖t̂n − tn‖2 (84)

in which t̂n and tn denote the n-th observations for the prediction T̂ and the target T, respectively, and
iii) mean absolute error (MAE) which represents the average L1-norm distance

MAE =
1
N

N

∑
n=1
‖t̂n − tn‖ (85)

4.3.1. Synthetic Dataset

1) Dataset Description:
First, an inter-correlated, high-dimensional, and noisy synthetic example was considered, where

various PLSR methods were assessed with different levels of contamination. 300 i.i.d latent variables
r ∼ U(0, 1) were generated randomly for training and testing, respectively, in which U denotes the
uniform distribution, and the dimension of r was set as 20. A hypothesis from the latent variable to the
explanatory and response variables was generated to produce the matrices of X and T. To be specific,
the transformation matrices were generated with arbitrary values of the standard normal distribution.
The latent variables r were multiplied with a 20× 500 transformation matrix, resulting in a 300× 500
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explanatory matrix for input. Similarly, a 20× 3 transformation matrix was used to acquire a 300× 3
response matrix for output. Thus, one predicted the multivariate responses from the 500-dimensional
explanatory variables with 300 training samples, and then evaluated the performance on the other 300
testing samples.

Considering the contamination for the synthetic dataset, similarly as before, the explanatory data
will be contaminated. To be specific, a certain proportion (from 0 to 1.0 with a step 0.05) of the training
samples were randomly selected with equal probability, the inputs of which were then replaced by
noises with large amplitude. For the distribution of the noise, a zero-mean Gaussian distribution with
large standard deviation was utilized to imitate outliers, for which 30, 100, and 300 were considered,
respectively.
2) Results:

Each PLSR algorithm was evaluated with 100 Monte-Carlo repetitive trials, and the regression
performance indicators are illustrated in Fig. 16, where the results have been averaged across three
dimensions of the output. One could observe from Fig. 16 that, for all the three different noise standard
deviations, the proposed PMCR algorithm achieved superior prediction performance compared with
the other existing methods consistently for r, RMSE, and MAE, respectively, in particular when the
training dataset suffered considerable contamination.
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Figure 16. Regression performance of the inter-correlated, high-dimensional, and contaminated
synthetic dataset under different noise standard deviations with noise levels from 0 to 1.0. (a): noise
standard deviation = 30, (b): noise standard deviation = 100, and (c): noise standard deviation = 300.
The performance indicators were acquired from 100 Monte-Carlo repetitive trials and averaged across
three dimensions of the output. The proposed PMCR algorithm realized better performance than the
existing PLSR algorithms consistently for r, RMSE, and MAE, in particular when the training set was
contaminated considerably.

The number of decomposition factors S plays a vital role in PLSR methods, denoting the iteration
numbers to decompose the input and output matrices. Since it usually causes a notable effect on the
results, additionally, the performance was evaluated with respect to the number of factors for each
method. To this end, the above synthetic dataset with the noise standard deviation 100 under three
different noise levels 0.2, 0.5, and 0.8 was utilized. The prediction results for each method are presented
in Fig. 17 with 100 repetitive trials, with respect to the number of decomposition factors. One observes
that, not only the proposed PMCR eventually achieved superior regression performance with the
optimal number of factors, but also it realized rather commendable performance with a small number
of factors. For example, when the noise level was equal to 0.5, the proposed PMCR achieved its optimal
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performance with no more than 20 factors. By comparison, for the other methods, when the number of
factors was larger than 20, their performances remained promoting significantly. One can also observe
a similar result in other two noise levels. This suggests that, PMCR can abstract substantial information
with a rather small number of factors from training samples in a noisy regression task.
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Figure 17. Regression performance of the synthetic dataset with noise standard deviation being 100
under three different noise levels with the number of factors increasing from 1 to 100. (a): noise level
= 0.2, (b): noise level = 0.5, and (c): noise level = 0.8. The performance indicators were obtained
from 100 repetitive trials and averaged across three dimensions of the output. The proposed PMCR
algorithm not only acquired better prediction results than the other algorithms ultimately with the
optimal number of factors, but also achieved admirable regression performance with a small number
of factors.

4.3.2. ECoG Dataset

To further demonstrate the superior robustness of the PMCR algorithm in real-world brain activity
decoding, each PLSR algorithm was evaluated by the publicly available Neurotycho ECoG dataset
which was initially proposed in [28].
1) Dataset Description:

Two Japanese macaques, denoted by Monkey B and C, respectively, were commanded to track
foods with the right hands, during which the continuous three-dimensional trajectories of right hands
with the sampling rate of 120Hz were recorded by an optical motion capture instrument. For both
Monkey B and C, ten recording sessions were performed, and each recording session lasted 15 minutes.
Two macaques were in advance implanted with customized 64-channel ECoG electrodes on the left
hemisphere, which covered the regions from the prefrontal cortex to the parietal cortex. ECoG signals
were recorded simultaneously during each session with a sampling rate of 1,000 Hz. In accordance
with [28], for each recording session, the data of the first ten minutes was used to train a prediction
model, while the data of the remaining five minutes was used to evaluate the prediction performance
of the trained model. The schemes of the experiments and ECoG electrodes are shown in Fig. 18 (a)
and (b), respectively.
2) Decoding Paradigm:

For ECoG feature extraction, an identical offline decoding paradigm as in [28] was utilized. First,
ECoG data was pre-processed with a tenth-order Butterworth bandpass filter with cutoff frequencies
from 1 to 400 Hz, and then re-referenced by the common average referencing (CAR) method. Three-
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dimensional trajectories of the right wrist were down-sampled to 10 Hz, thus, leading to 9000 samples
in one session (10Hz×60sec×15min). The three-dimensional position was predicted from the ECoG
signals during the previous one second. To extract the features of ECoG signals, the time–frequency
representation was used. To be specific, for the time point t, the ECoG signals at each electrode from t -
1.1 s to t were processed by Morlet wavelet transformation. Ten center frequencies ranging from 10 to
120 Hz with equal spacing on the logarithmic scale were considered for the wavelet transformation,
overlaying the frequency bands which are most relevant to motion tasks [28]. Time–frequency feature
was then resampled at ten temporal lags with a 0.1 s gap (t - 1 s, t - 0.9 s,..., t - 0.1 s). Thus, the input
of each sample exhibited a 6400-dimensional vector (64 channels×10 frequencies×10 temporal lags),
and the output was the three-dimensional position of the right hand. As a result, a regression model
would be trained with 6000 samples (the first ten minutes) to fit the three-dimensional output from
the 6400-dimensional input, and then evaluated by the other 3000 testing samples (the remaining five
minutes). The decoding paradigm is illustrated in Fig. 18 (c).
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Figure 18. Experimental protocol of the Neurotycho ECoG dataset and decoding paradigm to
evaluate the robustness of the different PLSR algorithms. (a): The macaque retrieved foods in a
three-dimensional random location, during which the body-centered coordinates of the right wrists
and the ECoG signals were recorded simultaneously. (b): Both Monkey B and C were implanted with
64-channel epidural ECoG electrodes on the contralateral (left) hemisphere, overlaying the regions
from the prefrontal cortex to the parietal cortex. Ps: principal sulcus, As: arcuate sulcus, Cs: central
sulcus, IPs: intraparietal sulcus. (a) and (b) were reproduced from [28], which provides the details of
this public dataset. (c): Decoding diagram from ECoG signals to three-dimensional trajectories. The
training ECoG signals are contaminated to assess the robustness of different algorithms.

3) Contamination:
To evaluate the robustness of different algorithms in the practical ECoG decoding task, the ECoG

signals were artificially contaminated by outlier to simulate the detrimental artifact. To be specific,
a certain proportions, 0 (no contamination), 10−3, and 10−2, of the training ECoG samplings were
randomly selected and corrupted by outliers which obeyed a zero-mean Gaussian distribution with
the variance 50 times that of the signals for the corresponding channel. As stated in [52], blink-related
artifacts were remarkably found in ECoG signal that exhibited much larger amplitudes than a normal
ECoG recording. Hence, the above method was utilized to generate artificial artifacts to contaminate
the ECoG signals.
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Note that, for this ECoG dataset, the “Noise Level” signifies the ratio of the contaminated ECoG
samplings which is different from the ratio of the deteriorated samples among 6000 training samples.
The ratio of the affected training samples can be evidently larger than the indicated noise level, since
one contaminated ECoG sampling would deteriorate several time windows in feature extraction. For
example, when the noise level is 10−3, the deteriorated proportion of the training samples is (0.6645
±0.0089). Furthermore, how the noise influences the time–frequency feature is illustrated in Fig. 19.
One could obviously find the heavy-tailed characteristic from the feature noises, which is in particular
intractable for the least square criterion.

15

(a)

(b)

Figure 19. Distributions and scalograms of the time–frequency feature noises resulting from the
ECoG sampling contamination. (a): noise level = 10−3 (the deteriorated proportion of training set
= 0.6645 ± 0.0089), (b): noise level = 10−2 (the deteriorated proportion of training set ≈ 1). The
time–frequency feature noises were calculated by subtracting the training datasets which were obtained
from acoustic and contaminated ECoG signals, respectively. The distributions were averaged by 20
sessions of Monkey B and C, while the scalograms were averaged across all electrodes. The peaks of
distributions are truncated to emphasize the heavy-tailed characteristic.

4) Spatio-spectro-temporal Pattern:
Investigating how the spatio-spectro-temporal weights in the regression model contribute to the

entirety can help study the neurophysiological pattern. Each element of the trained regression model
H can be denoted by Hch,freq,temp, which corresponds to the ECoG electrode ‘ch’, the frequency ‘freq’,
and the temporal lag ‘temp’. Thus, one can calculate the spatio-spectro-temporal contributions by the
ratio between the summation of absolute values of each domain and the summation of absolute values
of the entire model

Wc(ch) =
∑freq ∑temp |Hch,freq,temp|

∑ch ∑freq ∑temp |Hch,freq,temp|
(86)

W f (freq) =
∑ch ∑temp |Hch,freq,temp|

∑ch ∑freq ∑temp |Hch,freq,temp|
(87)

Wt(temp) =
∑ch ∑freq |Hch,freq,temp|

∑ch ∑freq ∑temp |Hch,freq,temp|
(88)

in which Wc(ch), W f (freq), and Wt(temp) express the contributions of the ECoG electrode ‘ch’, the
frequency ‘freq’, and the temporal lag ‘temp’, respectively.
5) Results:
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Table 7. Prediction results of each algorithm on the Neurotycho ECoG dataset under three noise levels
0, 10−3, and 10−2, respectively. The results are given in mean±deviation, where the optimal results
under each condition are marked in bold. The proposed PMCR realized the optimal results consistently,
except for the Y-position under the noise level 0. For each result, (∗) is marked if there exists statistically
significant difference between the indicated one and the optimal result in the corresponding condition,
according to a paired t-test (p < 0.05).

X-position

algorithm PLSR RPLSR MCC-PLSR PMCR

noise
level

0

r 0.4378±0.0933 (∗) 0.4550±0.0925 (∗) 0.4598±0.0942 (∗) 0.4679±0.0947

RMSE 0.9287±0.0810 (∗) 0.9037±0.0653 (∗) 0.8954±0.0809 (∗) 0.8835±0.0786

MAE 0.7026±0.0640 (∗) 0.6872±0.0530 (∗) 0.6749±0.0628 (∗) 0.6658±0.0651

10−3

r 0.3334±0.1165 (∗) 0.3558±0.1132 (∗) 0.3684±0.1127 (∗) 0.3873±0.1274

RMSE 0.9729±0.0652 (∗) 0.9543±0.0648 (∗) 0.9397±0.0728 (∗) 0.9276±0.0705

MAE 0.7291±0.0756 (∗) 0.7174±0.0689 (∗) 0.7092±0.0786 (∗) 0.6987±0.0759

10−2

r 0.1524±0.1399 (∗) 0.1713±0.1353 (∗) 0.1926±0.1342 (∗) 0.2238±0.1382

RMSE 1.0249±0.1105 (∗) 1.0022±0.1097 (∗) 0.9845±0.1129 (∗) 0.9681±0.1094

MAE 0.7655±0.1428 (∗) 0.7485±0.1383 (∗) 0.7396±0.1392 (∗) 0.7246±0.1397

Y-position

algorithm PLSR RPLSR MCC-PLSR PMCR

noise
level

0

r 0.5426±0.1019 (∗) 0.5582±0.1026 0.5547±0.1017 0.5549±0.1022

RMSE 0.8483±0.0969 (∗) 0.8198±0.0951 0.8246±0.0948 0.8233±0.0952

MAE 0.6487±0.0762 (∗) 0.6304±0.0796 0.6362±0.0744 0.6358±0.0759

10−3

r 0.4114±0.1309 (∗) 0.4284±0.1285 (∗) 0.4425±0.1302 (∗) 0.4602±0.1296

RMSE 0.9188±0.0963 (∗) 0.8962±0.0958 (∗) 0.8795±0.0979 (∗) 0.8608±0.1002

MAE 0.6960±0.1007 (∗) 0.6849±0.1014 (∗) 0.6631±0.0983 (∗) 0.6539±0.1021

10−2

r 0.2084±0.1514 (∗) 0.2206±0.1489 (∗) 0.2593±0.1502 (∗) 0.2723±0.1537

RMSE 0.9781±0.1143 (∗) 0.9542±0.1117 (∗) 0.9306±0.1159 0.9294±0.1146

MAE 0.7354±0.1028 (∗) 0.7173±0.1077 (∗) 0.7086±0.1105 0.7043±0.1042

Z-position

algorithm PLSR RPLSR MCC-PLSR PMCR

noise
level

0

r 0.6320±0.0324 (∗) 0.6395±0.0328 (∗) 0.6482±0.0359 0.6504±0.0372

RMSE 0.7968±0.0281 (∗) 0.7814±0.0293 (∗) 0.7747±0.0296 (∗) 0.7628±0.0275

MAE 0.6181±0.0222 (∗) 0.6102±0.0280 (∗) 0.6055±0.0241 0.5989±0.0265

10−3

r 0.4875±0.0708 (∗) 0.4935±0.0701 (∗) 0.5158±0.0857 (∗) 0.5259±0.0814

RMSE 0.9272±0.0712 (∗) 0.9129±0.0682 (∗) 0.8958±0.0742 (∗) 0.8834±0.0738

MAE 0.6932±0.0800 (∗) 0.6894±0.0814 (∗) 0.6804±0.0852 (∗) 0.6645±0.0782

10−2

r 0.2399±0.1185 (∗) 0.2456±0.1173 (∗) 0.2615±0.1148 (∗) 0.2803±0.1186

RMSE 1.0168±0.0804 (∗) 0.9917±0.0785 (∗) 0.9605±0.0842 (∗) 0.9485±0.0809

MAE 0.7532±0.0883 (∗) 0.7429±0.0892 (∗) 0.7208±0.0893 0.7146±0.0887

First, each algorithms was evaluated with the uncontaminated ECoG signals. Accordingly, when
the noise level was zero, the average performance indicators were obtained by 20 acoustic sessions
(Monkey B and C). Then each session was contaminated with 5 repetitive trials. Thus, for each noise
level, each algorithm was evaluated for 100 times (20 sessions × 5 repetitive trials). Table 7 presents
the performance indicators for each algorithm with the noise levels 0, 10−3, and 10−2, respectively. In
each row of a specific condition, the optimal result is marked in bold. Moreover, the other results are
marked with (∗) if there exists a statistically significant difference between the current result and the
optimal result under each condition. One could observe in Table 7 that, the proposed PMCR realized
the optimal prediction results consistently, except the Y-axis under noise level 0. On most conditions,
PMCR outperformed the other methods with statistically significant difference. One can observe that,
when the noise level was 0, PMCR achieved better results than the other algorithms for X-axis and
Z-axis. One major reason is, in the acoustic sessions, the motion-related artifacts have been evidently
found in the ECoG signals [28], which further demonstrates the necessity of utilizing PMCR in real-
world ECoG decoding tasks.

In addition, how the neurophysiological patterns for different algorithms were influenced by the
sampling noises is studied. The differences between the spatial, the spectral, and the temporal weights
which were respectively acquired from the acoustic and the contaminated sessions are shown in Fig.
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20 under the noise level 10−3. The regression model concerning Monkey B’s Z-position was used here.
The influence is also quantified by computing the summation of the absolute values of the difference
between the patterns that were attained from the acoustic and the contaminated sessions, respectively.
To be specific, ∑ |Wc(ch)−W ′c(ch)|, ∑ |W f (freq)−W ′f (freq)|, and ∑ |Wt(temp)−W ′t (temp)| express
the pattern deterioration for the spatial, the spectral, and the temporal patterns, respectively, where
Wc(ch), W f (freq), and Wt(temp) were obtained by the acoustic sessions, and W ′c(ch), W ′f (freq), and
W ′t (temp) were obtained by the contaminated sessions. One observes from Fig. 20 that, the proposed
PMCR algorithm realized the minimal pattern deterioration for each domain. This further demonstrates
the robustness of PMCR in noisy ECoG decoding tasks.
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Figure 20. Spatio-spectro-temporal contributions of the prediction model for Monkey B’s Z-position
under noise levels 0 and 10−3. (a): spatial patterns, (b): spectral patterns, and (c): temporal patterns.
For each domain, the quantitative deterioration is calculated by the absolute value summation of the
difference between the original and the deteriorated patterns. The original patterns Wc(ch), W f (freq),
and Wt(temp) were averaged across the 10 acoustic sessions of Monkey B, while the deteriorated
patterns W ′c(ch), W ′f (freq), and W ′t (temp) were averaged across 50 trials (10 sessions of Monkey B × 5
repetitive trials). The proposed PMCR achieved the minimal deterioration for each domain.

4.4. Discussion

This section aims to propose a new robust version for PLSR using the MCC framework, which is
named as PMCR. Similarly as the existing PLSR methods, the proposed PMCR decomposes the input
matrix and the output matrix iteratively for S decomposition factors. The crucial differences of PMCR
are stated in what follows. First, the objective function regarding the projectors ws and cs in Eq.(72) can
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be considered as a generalized form of the conventional PLSR in Eq.(66), and is also closely related to
the calculation in MCC-PLSR of Eq.(69) under specific conditions. As proved in [79], maximizing the
correntropy between two variables, if the kernel bandwidth tends to infinity, is equal to minimizing
their quadratic Euclidean distance. Hence, if one assumes hx, ht, hr → ∞, the projector calculation of
PMCR will degenerate to the conventional PLSR. Then, the differences between MCC-PLSR and the
proposed PMCR are discussed as follows. For a univariate response, the projector c for dimensionality
reduction regarding the response could be ignored. Thus, one can rewrite the dimensionality reduction
in PMCR of Eq.(72) as

max
‖w‖2=1

N

∑
n=1

(
khx (

√
xnxT

n − xnwwTxT
n ) + khr (xnw− tn)

)
(89)

which could be regarded as a generalized form for the quadratic error minimization as

min
‖w‖2=1

N

∑
n=1

(
‖xn − xnwwT‖2 + ‖xnw− tn‖2

)
⇔ max

‖w‖2=1
wTXTT (90)

which is essentially equal to the conventional PLSR for univariate output. By comparison, MCC-PLSR
adopts the MCC framework for the quadratic covariance of Eq.(68), which can be written as

min
‖w‖2=1

N

∑
n=1
‖tT

n xn − tT
n xnwwT‖2 ⇔ max

‖w‖2=1
wTXTTTTXw (91)

which is the special case of MCC-PLSR when the kernel bandwidth in Eq.(69) tends to infinity. Thus,
the connection between PMCR of Eq.(72) and MCC-PLSR of Eq.(69) could be interpreted as in what
follows. One can observe that, the starting points of PMCR and MCC-PLSR are different. The proposed
PMCR begins from the original covariance maximization, while MCC-PLSR was proposed from the
quadratic covariance. Therefore, it would be argued that the proposed PMCR is a more rational robust
version for PLSR. Moreover, note that the above discussion is given under the premise of a univariate
output, which is only a special case of degradation for PMCR. One the other hand, considering the
calculations of the loading vector ps and the regression coefficient bs, the proposed PMCR utilizes the
MCC in Eq.(73-74), while the conventional PLSR and MCC-PLSR use the least square criterion. As
mentioned above, Eq.(73-74) can be also regarded as generalized forms of square error minimization.
In summary, the proposed PMCR is more generalized than the conventional PLSR and MCC-PLSR.

In addition, advantages and disadvantages of the proposed PMCR are also discussed as follows.
The essential benefit of utilizing the PMCR algorithm in a noisy ECoG decoding task is the conspicuous
robustness with respect to the noises, as was demonstrated with extensive experiments in Section 4.3.
Further, mathematically the proposed PMCR is more generalized than the conventional PLSR and
MCC-PLSR. As was mentioned above, the conventional PLSR and MCC-PLSR could be regarded as
special cases of the proposed PMCR under specific conditions. In particular, compared to MCC-PLSR,
the proposed PMCR takes into account the dimensionality reduction for the response matrix. Hence,
PMCR could realize better prediction performance for multivariate response. However, PMCR might
suffer the performance degradation resulting from inadequate kernel bandwidths that are calculated
by the Silverman’s rule of Eq.(82). Although the experimental results demonstrated empirically that, the
proposed PMCR could perform efficiently with the kernel bandwidths acquired by Eq.(82), it may be
difficult to guarantee that the Silverman’s rule can always provide adequate bandwidths. Therefore, a
better way to determine the kernel bandwidth is supposed to be investigated in the future works. On
the other hand, the proposed PMCR is effective to deal with outliers, while it may be inadequate for
multi-modal-distributed noise because MCC utilizes only one kernel function for each reconstruction
error. To address this issue, it will be promising to use MEE to reformulate the PLSR algorithm.
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5. Correntropy-Based Automatic Relevance Determination

In addition to the dimensionality reduction techniques, the sparse learning is another effective
approach to address the high-dimensional problem by employing a reduced set of covariates for the
prediction task. For regression task, conventional LS criterion based regression Eq.(4-6) is only effective
for well-posed cases. In the high-dimensional situation, i.e. D > N, the LS solution Eq.(6) will be ill-
posed which results in poor generalization performance. Similarly, in a high-dimensional classification
task, directly utilizing binomial MLE of Eq.(10) or CE loss minimum of Eq.(11) will also lead to poor
generalization to new testing samples. A useful solution is to select a subset of covariates and prune
those less important features, called sparse learning. In the final model parameter, many components
will be zero so that the corresponding dimensions are pruned. The sparse model has been increasingly
attractive for brain decoding because the selected features could indicate the spatio-temporal patterns
relevant to the specific cognitive tasks [99,101,102,182].

The idealized sparse model is realized by minimizing the L0-regularized cost function

w∗ = arg min
w

Ep(e) [Le] + λ‖w‖0 (92)

in which Le is an arbitrary loss function with respect to the prediction error e. λ is a hyper-parameter
tuning the regularization strength, and ‖w‖0 is the L0-norm of w denoting the number of non-zero
components in w. Compared to empirical risk minimization (ERM) which only contains loss function,
Eq.(92) is called structural risk minimization (SRM) which further considers the balance between the
model’s complexity against its success at fitting the training data. Because solving Eq.(92) is NP-hard,
L0-norm is usually replaced with its tightest convex relaxation L1-norm [183] which leads to the famous
LASSO algorithm [184,185]

w∗ = arg min
w

Ep(e) [Le] + λ‖w‖1 (93)

which has been well studied for sparse learning [186–189]. However, the hyper-parameter λ is usually
a nuisance which would require manual tuning or time-consuming cross-validation.

An alternative approach to realize a sparse machine learning model is to employ a sparse prior
distribution on the model parameters and update the model parameter from the Bayesian perspective.
In essence, L1-regularization is equivalent to utilizing a Laplacian prior distribution [184]. In addition,
the EP-GIG prior has been also investigated for sparse regression in a Bayesian framework [190]. This
section mainly concentrates on the automatic relevance determination (ARD) technique [191] which
is a hierarchical sparse prior and has proved to be more adequate than the Laplacian prior (equally
L1-regularization) for feature selection [183]. A notable advantage of the ARD technique is that one
does not need to adjust the regularization parameter manually [186], i.e., “adaptive sparseness”. ARD-
based sparse models have been widely utilized for brain activity decoding, including EEG decoding
[192–195], fMRI decoding [33,99,196–198], and current source density analysis [199–201]. Nevertheless,
existing sparse Bayesian learning models are formulated from conventional likelihood functions, such
as the non-robust Gaussian and binomial likelihoods, which will result in poor robustness with respect
to non-Gaussian noises or outliers.

On the other hand, as introduced before, MCC is highly efficient for noisy data analysis [79,80,82,
83], which has been also used for robust sparse learning integrating with L1-regularization [202–204]
or other regularization terms [205,206]. However, as mentioned above, these regularization terms need
a careful tuning on regularization hyper-parameters. This section aims to investigate how to introduce
MCC-based robust learning into the ARD-based sparse Bayesian learning framework, such that MCC
can be implemented with “adaptive sparseness”.

5.1. Automatic Relevance Determination for Sparse Learning

The automatic relevance determination (ARD) technique was originally proposed in [207], which
has been receiving growing attention with the proposal of relevance vector machine (RVM) [208–210], a
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Bayesian treating of support vector machine (SVM). In what follows, the ARD technique was reviewed
briefly with its implementation in sparse Bayesian regression and classification.

First, consider the regression scenario here. Based on the assumption of a linear regression model
of Eq.(3), the classical approach is to suppose a zero-mean Gaussian distribution for the noise term ε

ε ∼ N (ε|0, σ2) (94)

in which the noise variance is denoted by σ2. Based on the data generation assumption of Eq.(3), one
can obtain the distribution for the target variable t by

p(t|x, w, σ2) = N (t|xw, σ2) (95)

which is a Gaussian distribution over t with mean xw and variance σ2. By a finite dataset {(xn, tn)}N
n=1

and the i.i.d assumption, one can write the probability for the whole dataset, i.e. the likelihood function,
by

p(t|w, σ2) =
N

∏
n=1

p(tn|xn, w, σ2) = (2πσ2)−N/2 exp{− 1
2σ2 ‖t− Xw‖2} (96)

in which the dependence upon the covariate matrix X is omitted for simplicity. One could obviously
observe that the MLE solution of Eq.(96) is equivalent to the least square criterion of Eq.(5).

ARD assigns a prior distribution for the model parameter w with a hierarchical form. Specifically,
ARD utilizes a zero-mean and anisotropic Gaussian distribution for each entry of the model parameter
w by

p(w|a) =
D

∏
d=1

p(wd|ad) =
D

∏
d=1
N (wd|0, a−1

d ) (97)

in which each wd is assumed with a Gaussian distribution of zero mean and variance a−1
d . The hyper-

parameter a = (a1, a2, · · · , aD) which denotes the inverse variances for w is called relevance parameter,
controlling the possible range for corresponding wd. Each relevance parameter ad is then assumed by
the non-informative Jeffreys hyper-prior (which is actually an improper prior since its integral is infinite
and thus it is not normalizable) [211]

p(a) =
D

∏
d=1

p(ad) =
D

∏
d=1

a−1
d (98)

The prior distribution for noise variance σ2 is usually assumed to be non-informative as well

p(σ2) = (σ2)−1 (99)

By defining the likelihood function in Eq.(96) and the prior distributions in Eq.(97-99), one can
write analytically the posterior distribution over w by

p(w|t, a, σ2) =
p(t|w, σ2)p(w|a)

p(t|a, σ2)

=
p(t|w, σ2)p(w|a)∫
p(t|w, σ2)p(w|a)dw

= (2π)−D/2|Σ|−1/2 exp{−1
2
(w− µ)TΣ−1(w− µ)}

(100)

in which the covariance and mean for w are computed by

Σ = (σ−2XTX + A)−1

µ = σ−2ΣXTt
(101)
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with A = diag(a1, a2, · · · , aD). To obtain the whole posterior distribution

p(w, a, σ2|t) = p(w|t, a, σ2)p(a, σ2|t) (102)

one could observe that the hyper-parameter posterior distribution could be denoted by p(a, σ2|t) ∝
p(t|a, σ2)p(a)p(σ2). Utilizing the non-informative hyper-priors, one only need to optimize a and σ2 so
that the marginal likelihood p(t|a, σ2) is maximized

p(t|a, σ2) =
∫

p(t|w, σ2)p(w|a)dw

=(2π)−D/2|σ2I + XA−1XT |−1/2 exp{−1
2

tT(σ2I + XA−1XT)−1t}
(103)

To maximize Eq.(103), setting the differentiation to zero yields the following update

ad =
γd

µ2
d

(104)

in which µd is the d-th component of µ and γd is defined by γd , 1− adΣdd with Σdd the d-th diagonal
element of Σ. σ2 is updated by

σ2 =
‖t− Xµ‖2

N −∑D
d=1 γd

(105)

Updating (101)(104)(105) alternately, one can obtain the maximum a posteriori (MAP) estimations for all
the unknown variables. In particular, during the inference, those ad which correspond to irrelevant
features will diverge to arbitrarily large numbers, so that the probability density of the corresponding
wd focuses at the origin, thus pruning the irrelevant features and realizing sparse regression.

The above-described optimization involves maximization of marginal likelihood p(t|a, σ2) Eq.(103),
which is known as the type-II maximum likelihood [211]. Furthermore, the model could be optimized in
other ways. For example, Expectation-Maximum (EM) could be employed by regarding the relevance
parameter a as the hidden variables [186]. One could also use the variational Bayesian (VB) method
with surrogate function to approximate the posterior distribution for each random variable [210]. Due
to the inadequate assumption of Gaussian-distributed noise in Eq.(94), this conventional ARD-based
sparse regression may suffer significant performance degeneration in a realistic non-Gaussian scenario,
in particular in the presence of outliers [79,83,89,212].

On the other hand, to realize sparse classification, ARD has also been successfully implemented.
In particular, ARD was introduced into the logistic regression model in [99], named as sparse logistic
regression (SLR) algorithm. The notable difference for ARD-based regression and classification is that,
the likelihood function will be different. For example, the likelihood function for logistic regression
has been given previously in Eq.(9), and also rewritten here

p(t|w) =
N

∏
n=1

p(tn|w) =
N

∏
n=1

ytn
n (1− yn)

1−tn (106)

where the dependence upon the covariate X is also omitted. However, one can find that it would be
intractable to derive an analytical posterior distribution as in regression

p(w|t, a) =

∫
p(t|w)p(w|a)p(a)da∫ ∫
p(t|w)p(w|a)p(a)dadw

(107)

which is because the likelihood function of Eq.(106) is not the conjugate function with the ARD priors
as defined in Eq.(97-99). To realize the MAP estimation for ARD-based logistic regression, [99] used
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the variational inference [213] approach to approximate the true posterior distribution. To be specific,
to infer the posterior distribution for w, variational inference defines the following free energy function

F(q(w, a)) , −Eq(w,a)

[
log

p(t, w, a)
q(w, a)

]
= −

∫
q(w, a) log

p(t, w, a)
q(w, a)

dadw (108)

in which q(w, a) is an approximation for the true joint posterior distribution p(w, a|t). When the free
energy F(q(w, a)) is minimized, the Kullback-Leibler divergence between q(w, a) and p(w, a|t) will
be also minimized, which means a maximal similarity between them, so that the approximation to
p(w, a|t) can be realized. To accomplish the free energy minimization, one could further assume the
conditional independence between w and a by q(w, a) = qw(w)qa(a). Thus, the free energy becomes

F(qw(w)qa(a)) = −
∫

qw(w)qa(a) log
p(t, w, a)

qw(w)qa(a)
dadw (109)

By doing so, one can minimize the free energy alternately with respect to qw(w) and qa(a) by

w-step: log qw(w) = Eqa(a) [log p(t, w, a)] + const

a-step: log qa(a) = Eqw(w) [log p(t, w, a)] + const
(110)

Despite the exceptional capability for feature selection, SLR may suffer a significant performance
degradation resulting from noises in practice. The MAP estimation of Eq.(107) can be rewritten by
integration as

p(w|t) = p(t|w)p(w)

p(t)
∝ p(t|w)p(w) (111)

in which p(t) is a constant that is usually called evidence, and p(w) =
∫

p(w|a)p(a)da indicates the
prior distribution for w by integrating out a. Since the logarithm is a monotonically increasing function,
MAP is equal to

max p(w|t)⇔ max log p(w|t)
⇔ max log p(t|w) + log p(w)

(112)

from which one can find the log likelihood function term log p(t|w) which is actually equivalent to the
non-robust CE loss as shown in Eq.(10-11). As demonstrated in Section 3.4, this binomial assumption
or equally the CE loss function exhibits poor robustness in noisy classification tasks.

5.2. Correntropy-Based Sparse Logistic Regression

To ameliorate the inadequate robustness of ARD-based sparse Bayesian learning, an investigation
of how to employ robust MCC method in a Bayesian learning framework is explored. First, this section
focuses on the SLR algorithm and discusses if it can be possible to replace the non-robust likelihood
function with the MCC objective function. Since C-loss can outperform CE loss significantly in a noisy
classification task, this proposal is supposed to be effective intuitively by using MCC instead of the log
likelihood log p(t|w).

To be specific, because the likelihood measures the probability that the prediction is equal to the
target output, comparably, one could employ the robust correntropy instead to measure the similarity
between prediction and desired output, motivated by the splendid robustness of MCC. Therefore, the
correntropy similarity between the prediction and target V(t, y) is utilized, in which y is the predicted
probability as computed by Eq.(8), to substitute the non-robust log likelihood log p(t|w). The superior
robustness of maximizing the correntropy V(t, y), or using C-loss for classification, has been verified
on ordinary logistic regression model and radial basis function network with extensive experimental
results in [75,136], while also is demonstrated in Section 3.4.
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To coordinate the correntropy term V(t, y) to the Bayesian derivation of SLR, one could rewrite
the log joint distribution log p(t, w, a) by decomposition

log p(t, w, a) = log p(t|w) + log p(w|a) + log p(a) (113)

from which one can also find the non-robust log p(t|w). Here, a correntropy-based pseudo log joint
distribution log pc(t, w, a) is proposed by

log pc(t, w, a) , V(t, y) + log p(w|a) + log p(a) (114)

where pc(t, w, a) is called pseudo joint distribution since one finds its integration over all values cannot
be normalized to be one. y is the collection of the predicted probability y = (y1, y2, · · · , yN)

T ∈ RN×1.
By defining the novel pseudo joint distribution pc(t, w, a), the free energy minimization of Eq.(109)

is reformulated by

min−
∫

qw(w)qa(a) log
pc(t, w, a)

qw(w)qa(a)
dadw (115)

Similarly, one can acquire the following alternate optimization

w-step: log qw(w) = Eqa(a) [log pc(t, w, a)] + const

a-step: log qa(a) = Eqw(w) [log pc(t, w, a)] + const
(116)

Computing the expectation and omitting the constant in w-step, one obtains

log qw(w) =
1
N

N

∑
n=1

exp(− (tn − yn)2

2h
)− 1

2
wTAw (117)

where A = diag(a1, a2, · · · , aD). However, one can find that qw(w) cannot be expressed by any forms
of an arbitrary distribution, and thus the distribution for w remains unclear. To address this issue,
w-step is further approximated by the Laplacian approximation method by

log qw(w) ≈ log qw(w∗)−
1
2
(w−w∗)T H(w∗)(w−w∗) (118)

in which w∗ denotes the maximum point of log qw(w), and H(w∗) is the negative Hessian matrix of
log qw(w) at w∗. Thus, qw(w) is approximated with a Gaussian distribution by

qw(w) ≈ N (w|w∗, S(w∗)) (119)

where S(w∗) , H(w∗)−1. The gradient of log qw(w) with respect to model parameter w is given by

∂ log qw(w)

∂w
=

1
Nσ2

N

∑
n=1

exp(− e2
n

2h
)enyn(1− yn)xn −Aw (120)

The Hessian matrix of log qw(w) is given by

∂2 log qw(w)

∂w∂wt =
1

Nh

N

∑
n=1

xT
n

{
exp(− e2

n
2h

)

[
(

e2
n
h
− 1)y2

n(1− yn)
2 + enyn(1− yn)(1− 2yn)

]}
xn −A

(121)
For a-step, given qw(w) ≈ N (w|w∗, S(w∗)), one can obtain

log qa(a) = −
1
2

D

∑
d=1

(ad(w∗2d + s2
d) + log ad) (122)
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where w∗ is the posterior mean acquired from the w-step, and s2
d is the d-th diagonal element in S(w∗).

qa(a) could be regarded to obey the following Gamma distribution

qa(a) =
D

∏
d=1

qad(ad) =
D

∏
d=1

Γ(a∗d ,
1
2
) (123)

in which Γ(a∗d , 1
2 ) is the Gamma distribution with the degree of freedom being 1

2 and the expectation
being a∗d that is

a∗d =
1

w∗2d + s2
d

(124)

The reformulated ARD-based sparse logistic regression with the correntropy learning framework,
proposed as above, is named as CSLR. Then, the optimization for w-step and a-step will be discussed.
In w-step, log qw(w) of Eq.(117) is in essence equal to an L2-regularized MCC-based logistic regression.
Although this is a non-convex problem because of the integration of sigmoid function and Gaussian
kernel function, it is acceptable to obtain a local optimum for w-step, because it has been proved that
any local optimums of regularized m-estimation are sufficiently close to the global optimum [214] and
correntropy is exactly a robust formulation of the Welsch m-estimator [79]. To acquire a local optimum
for w-step, one can similarly utilize the HQ technique which has been discussed in detail in Section
3.3.1. Considering the update for a, one can use the following rule to accelerate the convergence

a∗d =
1− a∗ds2

d
w∗2d

(125)

which is motivated by the effective number of parameters [191].
CSLR executes the w-step and a-step alternately, updating the model parameters and relevance

parameters. During the model training, the relevance parameters of the irrelevant features can diverge
to infinity, that the probability density of corresponding model parameters is distributed at zero, thus
pruning irrelevant features and obtaining a sparse classifier. In practice, one could set an upper limit,
such as 108. If ad exceeds the upper limit, the corresponding features will be pruned in the subsequent
model training. The proposed CSLR for robust sparse classification is summarized in Algorithm 4.

Algorithm 4 CSLR for robust sparse classification

1: input:
training samples {(xn, tn)}N

n=1;
Gaussian kernel bandwidth h;
threshold for relevance parameter amax;

2: initialize:
model parameters wd (d = 1, · · · , D);
relevance parameters ad (d = 1, · · · , D);

3: output:
model parameters wd (d = 1, · · · , D)

4: repeat
5: w-step: update wd according to HQ technique;
6: a-step: update ad according to Eq.(125);
7: if ad > amax then
8: adjust the corresponding model parameters to zero and prune the corresponding features

from the samples in the following iterations
9: end if

10: until the parameter change is small enough or the number of iterations exceeds a predetermined
limit
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5.3. Experiments

For performance evaluation, the proposed CSLR algorithm was evaluated with a synthetic dataset,
an EEG-based motor imagery dataset, and an fMRI-based visual reconstruction dataset, respectively,
and was compared to the baseline, the original SLR algorithm. 108 was used as the threshold concerning
the relevance parameter amax for both CSLR and SLR. The attributes were normalized such that each
dimension was of mean 0 and variance 1 before utilizing the classification algorithms. The maximum
iteration number for free energy maximization was set as 300 for both CSLR and SLR.

The kernel bandwidth h is an important hyper-parameter for the proposed CSLR. For the synthetic
dataset, five-fold cross-validation method was utilized to select a proper kernel size for each condition
from the following twenty values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2, 4, 7, 10,
30, and 100, which exhibited the highest average classification accuracy on the validation set. Then,
each value was evaluated separately with the synthetic example by which the best value was decided
and used for the subsequent real data analysis.

5.3.1. Synthetic Dataset

1) Dataset Description:
First, a noisy and high-dimensional synthetic dataset was considered with which CSLR and SLR

algorithms were evaluated in respect of classification accuracy and feature selection. 300 i.i.d training
samples and 300 i.i.d. testing samples are randomly generated with 500-dimensional multivariate
standard normal distribution. The true solution was a 500-dimensional vector, where only the first five
components were relevant to the label while the other 495 components were equal to zero

w∗ = [

500-dimensional︷ ︸︸ ︷
w∗1 , w∗2 , · · · , w∗5 , 0, 0, 0, 0, · · · , 0︸ ︷︷ ︸

495 components

]T (126)

where the non-zero components were separately subject to the univariate standard normal distribution.
For each sample, the label was assigned 1 if the product between the corresponding attribute and w∗

was larger than 0, otherwise assigned 0. Thus, one is supposed to train the classifiers with 300 training
samples by 500 features, and evaluate them on the other 300 testing samples.

Considering the contamination for this synthetic dataset, two corruption models were utilized
according to [215], as shown in Fig. 21. The sample contamination indicates that undivided samples
are corrupted while the arbitrary contamination means any arbitrary elements in the attribute matrix
may be corrupted. To contaminate the data, a certain proportion of samples or elements are randomly
selected and their attributes are replaced with the zero-mean Gaussian distributed noises with the
following different standard deviations: 0.1, 0.3, 0.7, 1.0, 2.0, and 3.0. Similarly as before, only the 300
training samples were corrupted in this synthetic dataset. For both sample and arbitrary contamination,
the proportion of the corrupted samples/elements was increased from 0 to 1.0 with a step 0.05.
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Figure 21. Two corruption models were utilized for the synthetic dataset: (a) sample contamination (b)
arbitrary contamination. The attribute matrix X is the collection of all xn, each row of which represents
an individual sample.
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2) Results:
CSLR and SLR were evaluated with 100 Monte-Carlo repetitions on this synthetic dataset. First,

the average classification accuracy for sample contamination and arbitrary contamination is illustrated
in Fig. 22 (a) and (b), respectively. As one could observe in Fig. 22, for both sample contamination and
arbitrary contamination, the proposed CSLR outperformed the original SLR algorithm significantly
when the training data suffered corruption under each noise standard deviation.
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Figure 22. Classification accuracy on the noisy and high-dimensional synthetic example under two
different contamination models: (a) sample contamination (b) arbitrary contamination. The results are
averaged across 100 Monte-Carlo repetitions, where the error bar indicates the corresponding standard
deviation.

In addition, the capability of each algorithm for feature selection was also evaluated. The feature
selection can be regarded as an unbalanced binary classification, in which there were 5 relevant features
and 495 irrelevant features. The sparse classifiers would select features in the model training, which
would be regarded relevant to the classification task, while the other pruned features were considered
to be irrelevant. Thus, one could evaluate the feature selection results with the true relevant/irrelevant
labels. For this unbalanced binary classification, a comprehensive performance indicator, F1-score, was
utilized which is the harmonic mean of Precision and Recall. The expressions of Precision, Recall, and
F1-score are given by

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2× Precision× Recall
Precision + Recall

(127)

where the confusion matrix for the feature selection is shown in Fig. 23 for the calculations of TP, FP,
and FN.
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Figure 23. Confusion matrix for feature selection, which exhibits an unbalanced binary classification (5
relevant features vs 495 irrelevant features). ‘Relevant’ is supposed as ‘positive’, while ‘Irrelevant’ is
supposed as ‘negative’.
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Similarly, the identical synthetic dataset was used to evaluate the feature selection results with 100
Monte-Carlo repetitions. The number of selected features and F1-score for each algorithm are shown in
Fig. 24 with sample and arbitrary corruption, respectively, where the noise standard deviation was set
as 1.0. As one can see in Fig. 24, CSLR always selected fewer features than SLR with both sample and
arbitrary contamination. More importantly, CSLR achieved a higher F1-score for the feature selection
than SLR under most noise proportions.
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Figure 24. Number of selected features and F1-score for feature selection: (a) sample contamination (b)
arbitrary contamination. The error bar denotes the standard deviation. The average results and the
corresponding standard deviations are obtained from 100 Monte-Carlo repetitions. The noise standard
deviation was set as 1.0.

To study the effects of the kernel bandwidth h, evaluated each candidate value was evaluated
with sample and arbitrary contamination, respectively, where the noise standard deviation was set as
1.0. The average classification accuracy and feature selection F1-score of each kernel bandwidth are
illustrated in Fig. 25, obtained from 100 Monte-Carlo repetitions. One could find an apparent effect of
kernel bandwidth on the proposed CSLR. In particular, one could observe that the kernel bandwidth
0.4 achieved the highest classification accuracy with sample corruption, and the highest F1-score for
feature selection in both sample and arbitrary contamination. However, in arbitrary contamination,
when the kernel bandwidth is larger than 0.5, the classification accuracy achieved the maximum
consistently. Therefore, a rather conservative kernel bandwidth 0.5 will be used for the subsequent
real data analysis.

5.3.2. EEG-Based Motor Imagery Dataset

1) Dataset Description:
Ten healthy subjects were involved in this experiment. Their brain activities during the experiment

were recorded by a 64-channel EEG recording system at 2048 Hz. A customized GVS instrument was
used in parallel to induce the sensory feedback. In the experiment, the subjects were required to keep
their eyes closed and to imagine the motions (forward/backward), with random voice-based cues.
After 3-second cue period, the GVS instrument started to stimulate the subjects with four directions
for 0.5 second: forward/backward/left/right. Then, the subjects rested for 3 seconds with a beep
cue. A schematic diagram of one trial is illustrated in Fig. 26. Each subject participated in 6 sessions,
where each session consisted of 60 trials. Thus, the data of each subject contained 360 trials. For each
subject, the directions of the GVS-induced sensory feedback were identical with the imagined motion
directions for 180 trials, while were inconsistent for the other 180 trials. One is supposed to predict
whether the direction of motor imagery is consistent with the GVS-induced sensory feedback: match
or mismatch. One can find a comprehensive description of this dataset in [195].
2) Decoding Paradigm:

To achieve the application for real-time BCI system, the EEG data was used for decoding analysis
with a rather raw state for this experiment [194,195], where the absolute magnitudes of EEG recording
were employed as the classification features. In this EEG decoding task, an identical decoding paradigm
as in [194,195] was employed as follows.

1. First, the EEG recordings were down-sampled to 512 Hz.
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Figure 25. Classification accuracy and F1-score for feature selection of each kernel bandwidth with
respect to the noise proportion: (a) sample contamination (b) arbitrary contamination. The results were
averaged across 100 Monte-Carlo repetitions. The noise standard deviation was set as 1.0.
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Figure 26. Schematic diagram of EEG-based motor imagery experiment with GVS-induced sensory
feedback.

2. For each subject, the 360 trials were reordered randomly with their labels within respective
class(match/mismatch).

3. The reordered dataset was separated, the first 80% defined as training, while the remaining
20% as testing. Thus, for either class, the first 144 trails were employed for training while the
remaining 36 trails were utilized as testing data. The training and testing trials for each class
were further combined to form the eventual dataset.

4. The absolute magnitude of the EEG recording during the GVS period was used as feature for
each 100 ms duration (0–0.1 s, 0.1–0.2 s, 0.2-0.3 s, 0.3–0.4 s, 0.4–0.5 s).

5. As a result, there were 288 training samples (80%) and 72 testing samples (20%) with 3,264
features (64 channels × 51 samplings during 100 ms). The classifiers were trained on the training
data and were evaluated on the testing set. Both training and testing data exhibited a balanced
class distribution.

6. Step 2–Step 5 were implemented by 20 repetitions to summarize the results.

3) Results:
The average classification accuracy in each 100 ms decoding window is shown in Fig. 27 for each

subject from 20 repetitions. The whiskers represent the corresponding standard deviations. It was also
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examined whether there existed statistically significant difference between the accuracy obtained by
CSLR and SLR, respectively, according to a paired t-test with p < 0.01. Among the 50 conditions in
total (10 subjects×5 decoding windows), the proposed CSLR achieved statistically higher classification
accuracy in 44 conditions. Additionally, the average classification accuracy across a total of 10 subjects
in each decoding window and across all decoding windows is shown in Table 8. The higher accuracy
under each decoding window is marked in bold. One can observe that the proposed CSLR achieved
higher average accuracy than SLR under each decoding window and across all the decoding windows
as well with statistically significant difference.
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Figure 27. Classification accuracy on the EEG-based motor imagery dataset with GVS-induced sensory
feedback. The results are averaged across 20 repetitions, where the whiskers denote the standard
deviations. ‘∗’ indicates statistically significant difference according to a paired t-test (p < 0.01).

Furthermore, the the spatial patterns for the classification models acquired by CSLR and SLR were
studied, respectively, by calculating how much each channel contributed to the whole classification
model. The element of the trained model parameter can be denoted by wch,temp which corresponds to
the EEG channel “ch” and the sampling time “temp”. The spatial contribution for the channel “ch”,
denoted by W(ch), is calculated by the ratio between the summation of the absolute values of model
parameters, which correspond to the current channel, and the whole classification model

W(ch) =
∑temp ‖wch,temp‖

∑ch ∑temp ‖wch,temp‖
(128)
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Table 8. Average classification accuracy across ten subjects in each decoding window and across
all decoding windows with different classification algorithms. ‘∗’ indicates statistically significant
difference according to a paired t-test (p < 0.01).

Classifier EEG Channels
Decoding Window (s)

0-0.1 (∗) 0.1-0.2 (∗) 0.2-0.3 (∗) 0.3-0.4 (∗) 0.4-0.5 (∗) Average (∗)
SLR All 64 Channels 75.75±5.12 79.38±4.70 81.03±4.82 80.74±4.70 79.18±5.35 79.22±5.28

CSLR All 64 Channels 84.15±3.90 84.32±3.65 83.62±3.79 84.08±3.72 83.66±3.77 83.97±3.77

The spatial contribution for each EEG channel is illustrated in Fig. 28 (a) for SLR and CSLR, respectively,
averaged across a total of ten subjects and the five decoding windows. Furthermore, the top 5 EEG
channels with the maximal spatial contributions are shown in black circles while the other top 16 EEG
channels are presented in gray circles in Fig. 28 (b) and (c) for SLR and CSLR, respectively. To further
demonstrate the superior capability of feature selection for CSLR, the EEG data from the respective top
5 channels was used under the same decoding paradigm with the generic logistic regression algorithm
without any sparse priors. Average accuracy across all subjects is listed in Table 9. One can observe that
even by the elementary MLE-based logistic regression without any sparse priors, the top 5 channels
selected by CSLR showed significantly higher accuracy in three decoding windows and also showed
significant difference for the average across all the decoding windows.
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Figure 28. Spatial patterns obtained by SLR and CSLR in EEG-based motor imagery dataset with
GVS-induced sensory feedback. The contribution of each EEG channel W(ch) is shown in (a), sorted
in descending order according to the spatial contribution by SLR. The top 5 EEG channels with the
maximal spatial contributions are plotted in black circles, while the other channels with the top 16
spatial contributions are plotted in gray circles for SLR in (b) and CSLR in (c), respectively.

Table 9. Average classification accuracy across ten subjects in each decoding window and across all
decoding windows with the generic logistic regression algorithm and the top 5 EEG channels selected by
different sparse classifiers. ‘∗’ is statistically significant difference according to a paired t-test (p < 0.01).

Classifier EEG Channels
Decoding Window (s)

0-0.1 (∗) 0.1-0.2 (∗) 0.2-0.3 0.3-0.4 0.4-0.5 (∗) Average (∗)
generic logistic regression top 5 channels selected by SLR 79.86±4.94 84.04±3.72 83.78±3.90 83.64±3.75 83.37±4.15 82.94±4.37

generic logistic regression top 5 channels selected by CSLR 81.10±4.07 84.24±3.82 83.84±3.89 83.64±3.64 83.69±3.91 83.30±4.04

5.3.3. fMRI-Based Visual Reconstruction Dataset

1) Dataset Description:
The subject was watching visual images consisting of 10×10 square patches. Every patch was

either a homogeneous gray area or flickering at 6Hz. The brain activity of the subject was recorded
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simultaneously by fMRI signals. This dataset consists of 2 sessions: one random image session and
one figure image session. In the random image session, the shown images were formed in stochastic
patterns. 440 different random images in total were presented to the subject. Each stimulus block lasted
6s, followed with a 6s rest period. In the figure image session, there were 3 types of figure images:
geometric, alphabet letter layout 1, and alphabet letter layout 2. Each type had 40 blocks totally. Each
stimulus block lasted 12s, followed by 12s rest. For geometric images, five shapes were presented 8
times. For alphabet letter layout 1, five letters were presented 8 times. For alphabet letter layout 2, ten
letters were presented 4 times. The preprocessing for fMRI data was identical to the original study.
In the following analysis, V1 and V2 regions were utilized to reconstruct the images, in which 1,698
voxels in total were involved. More details of the experiment can be found in [33] and this dataset is
publicly available http://brainliner.jp/data/brainliner/Visual_Image_Reconstruction.
2) Decoding Paradigm:

The random image session was used to train reconstruction models with different classifiers while
the figure image session was utilized to evaluate the reconstruction performance. Similarly as in [33], a
linear combination of local image decoders was used to reconstruct the 10× 10 images by a local image
basis of size 1 × 1. Accordingly, for a 10 × 10 image, 100 individual binary classifiers will be trained
for each pixel, which predicted if the pixel was flickering or a gray area. Then the predicted contrast
values of each pixel were combined as the final reconstruction with the combination coefficients, which
were obtained by 10-fold cross-validation in the random image session. A total of 440 random images
were separated equally into nine training groups and one validation group. The local decoders with
100 classifiers were trained on the nine training groups. Then, one could calculate the non-negative
combination coefficients by minimizing the sum of the square error between the true and the predicted
validation group. The eventual combination coefficients were averaged by the cross validations. Then,
one can retrain the local decoders with all 440 random images and integrated them by the combination
coefficients to reconstruct the visual stimulus for the figure image session.
3) Results:

CSLR and SLR were evaluated separately with the above-mentioned decoding paradigm. The
reconstructed images of figure image session are illustrated in Fig. 29 (a) by each type, in comparison
to the original visual stimulus. Further, the spatial correlation and mean squared error (mse) between
the original and the reconstructed visual stimulus were quantified for each figure image category in
Fig. 29 (b). One can observe that, the proposed CSLR achieved higher spatial correlation while lower
mse than SLR with statistically significant difference according to a paired t- test with p < 0.01.

In addition, the feature selection was considered in this fMRI dataset as well. For the ultimate 100
local decoders which were trained by 440 random images to reconstruct the figure image, the number
of selected features for each decoder (classifier) was counted. Further, for the selected features (voxels),
the percentage of V1 voxels for each decoder was defined by computing the ratio between the number
of the selected V1 voxels and that of all selected voxels. The results are shown by boxplot in Fig. 30.
One observes that CSLR selected fewer features for fMRI decoding than SLR while it was more likely
to select the voxels from the V1 region which has the largest contributions to the visual reconstruction
task according to [33].

5.4. Discussion

The proposed CSLR was demonstrated by the experimental results to achieve higher classification
accuracy in noisy and high-dimensional decoding tasks. In the synthetic dataset, CSLR realized nearly
identical classification accuracy as SLR when there was no contamination in the data. After artificial
contamination was added in the attribute matrix, especially when the noise standard deviation is larger
than 0.4 for sample contamination and all the noise standard deviations for arbitrary contamination,
one sees in Fig. 22 that significant performance degradation happened to SLR even though the noise
proportion is equal to 0.05. In contrast, the proposed CSLR realized much less performance degradation
than SLR when the dataset was corrupted. Overall, in this noisy high-dimensional toy dataset, except

http://brainliner.jp/data/brainliner/Visual_Image_Reconstruction
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(a)

reconstructed by SLR reconstructed by CSLR

5 geometric images
(each presented 8 times)

reconstructed by SLR reconstructed by CSLR

5 alphabet letters in layout 1
(each presented 8 times)

10 alphabet letters in layout 2
(each presented 4 times)

reconstructed by SLR reconstructed by CSLR

(b)

Figure 29. Diagrammatic results on the fMRI-based visual stimulus reconstruction dataset: (a) The
comparison between the original and the reconstructed visual stimulus by CSLR and SLR, respectively,
for three different categories in the figure image session. For each category, a total of 40 images were
presented to the subject and then reconstructed by the fMRI signals. The bottom rows illustrate the
average reconstructed visual images for each kind of the presented figure images. (b) The spatial
correlation (upper) and mean squared error (bottom) between the original and the reconstructed visual
stimulus for each category, averaged across the corresponding 40 stimulus blocks. The error bars
indicate the standard deviations. ‘∗’ means statistically significant difference according to a paired
t-test with p < 0.01.

for when the noise proportion is equal to zero or close to 1.0, the proposed CSLR almost always showed
better results than SLR. Next, for the EEG data, CSLR achieved statistically higher accuracy than SLR
for 44 conditions among a total of 50 scenarios (10 subjects × 5 decoding windows), while also realized
higher average accuracy in the remaining 6 conditions though without significant difference (Fig. 27).
In summary, the average classification accuracy for all subjects and decoding windows was improved
by 4.75% (Table 8). Finally, one can observe from the fMRI-based visual reconstruction results in Fig.
29 that, the reconstructed images by CSLR are usually more legible and closer to the original stimulus.
Quantitatively, CSLR achieved higher spatial correlation while lower mse than SLR with statistically
significant difference.

On the other hand, CSLR can select a more informative set of features. In Fig. 24, the number of
selected features by SLR is 12.66±2.25 without contamination, while is 4.40±0.96 for CSLR, which is
closer to the true number of the five relevant features. Meanwhile, CSLR achieved considerably higher
F1-score in feature selection (0.708±0.101 vs 0.443±0.105) than SLR. When the data was contaminated,
the number of selected features and F1-score were obviously affected for SLR, while CSLR effectively
suppressed the negative effects of corruption by comparison. For the EEG dataset, one could see the
spatial patterns in Fig. 28. Both SLR and CSLR assigned large weights for mainly three Brodmann
areas: BA9 (dorsolateral prefrontal cortex, e.g. AF3, AF4, AFz, F3, F5), BA10 (anterior prefrontal cortex,
e.g. Fp1, Fp2, Fpz, AF7) and BA39 (angular gyrus, e.g. P3, P4, P5, P6). These regions are all potentially
related to the GVS-based prediction error decoding in which BA9 and BA10 are involved in cognitive
processes, while BA9 and BA39 are responsible for spatial imagery [216,217]. It would be difficult to
determine which spatial pattern is more precise because the GVS-based prediction error decoding is a
rather new paradigm and the physiological mechanism has yet been fully explored. To investigate
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Figure 30. Feature selection for the eventual 100 local decoders: (a) number of selected voxels (b)
percentage of V1 voxels. ‘∗’ means statistically significant difference according to a paired t-test with
p < 0.01.

which EEG spatial pattern is more meaningful, the top 5 EEG channels by SLR and CSLR were assessed
by a generic logistic regression model, respectively. Even though by a totally identical classification
algorithm, the top 5 EEG channels from CSLR achieved significantly higher accuracy in three decoding
windows and for the average across all decoding windows (Table 9), which suggests that the top 5
channels of CSLR contained more valid information for the decoding task. For the fMRI dataset, the
voxels from V1 and V2 regions were utilized for visual decoding. As reported in [33], only using the
V1 voxels revealed the best reconstruction, indicating that V1 region contains the most dependable
information for visual reconstruction. Hence, for a good feature selection, V1 voxels should be the
majority in the selected voxels. Compared to SLR, the proposed CSLR selected a significantly higher
percentage of V1 voxels (Fig. 30), which means CSLR was more likely to select the more informative
V1 voxels than SLR.

5.5. Rethinking the Data Assumption under MCC

Although MCC has successfully realized a significant improvement on robustness for ARD-based
SLR algorithm for sparse classification, it would be insightful to investigate why MCC can be utilized as
a robust substitute for the conventional non-robust likelihood functions. To make such an investigation,
here, consider the MCC objective function for linear regression model with a finite dataset {(xn, tn)}N

n=1

w = arg max
w

1
N

N

∑
n=1

exp(− (tn − xnw)2

2h
)

= arg max
w

1
N

N

∑
n=1

exp(− e2
n

2h
)

(129)

Since the denominator N will be fixed by a known dataset, it can be omitted. By doing so, one can find
that MCC will be equivalent to a multiplication form through an exponential function

w = arg max
w

N

∑
n=1

exp(− e2
n

2h
)

= arg max
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N

∏
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exp{exp(− e2
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(130)



Doctoral Thesis 2023, LI Yuanhao, Tokyo Institute of Technology 62 of 80

which can be extraordinarily regarded as a likelihood function maximum if one assumes independence
for each tn and defines the following PDF for the noise distribution

C(e|0, h) , exp{exp(− e2

2h
)} (131)

in which C(e|0, h) is defined as a correntropy-aware PDF over e with the zero mean and the shape
parameter h. Utilizing such an assumption on the noise distribution, one can obtain the PDF of t by
p(t|x) = C(t|xw, h). Hence, assuming the independence for tn, one can find the MLE based on the
defined PDF C will be equivalent to the original MCC by Eq.(130).

It is important to discuss the property of the defined error assumption C(e|0, h). Unsurprisingly, it
is not a “well-defined” PDF since one sees that its integral is infinite, thus, being an improper distribution
[211]. Even more, when e is far from the origin, the probability density defined by C(e|0, h) is close
to 1, rather than a normal case 0, which seems to be a deviant PDF. Nevertheless, it is empirically
verified that such a deviant MCC-aware noise distribution can largely improve the robust property
for an ARD-based sparse regression model. Some examples for C(e|0, h) are shown in Fig. 31 with
different h values. A further discussion for this deviant noise assumption is given in Section 5.5.3.
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Figure 31. MCC-aware noise distribution C(e|0, h) with different h values.

5.5.1. MCC-ARD for Robust Sparse Regression

Based on the MCC-aware noise assumption C(e|0, h), one can derive the MCC-based regression
with the ARD technique under a Bayesian inference framework for high-dimensional case. In detail,
based on Eq.(131), the likelihood function can be written by

p(t|w, h) =
N

∏
n=1
C(tn|xnw, h)

=
N

∏
n=1

exp{exp(− (tn − xnw)2

2h
)}

(132)

Similarly, one can find that the utilization of the MCC-aware likelihood function in Eq.(132) would
obstruct the analytical derivation for the posterior distribution p(w|t, a, h), since MCC-aware likelihood
function is not conjugate with the Gaussian priors p(w|a) of Eq.(97). Therefore, to realize the MAP
estimation, one can adopt the variational inference approach as in Section 5.2.

In detail, to realize a similar variational inference as in Eq.(115), one can first write the following
log joint distribution by

log p(w, a, t, h) = log p(t|w, h) + log p(w|a) + log p(a)

=
N

∑
n=1

exp(− (tn − xnw)2

2h
)− 1

2
wTAw− 1

2
log |A|+ const

(133)
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Gathering the relevant terms with respect to w and a, one then obtains

log qw(w) =
N

∑
n=1

exp(− (tn − xnw)2

2h
)− 1

2
wTEqa(a) [A]w

log qa(a) = −
1
2

D

∑
d=1

adEqw(w)

[
w2

d

]
− 1

2

D

∑
d=1

log ad

(134)

Similarly, the Laplacian approximation is necessary for the following approximation on log qw(w)

log qw(w) ≈ log qw(w∗)−
1
2
(w−w∗)T H(w∗)(w−w∗) (135)

in which the negative Hessian matrix of log qw(w), denoted by H(w), is different from the logistic
regression model, which is expressed by

H(w) = −∂2 log qw(w)

∂w∂wT = −1
h

N

∑
n=1

xT
n

{
exp(− e2

n
2h

)(
e2

n
h
− 1)

}
xn +Eqa(a) [A] (136)

One can observe that w-step in MCC-ARD regression is actually equal to L2-regularized MCC-based
regression with the current a values of Eq.(134), which can be effectively optimized by the fixed-point
update with fast convergence [81]

w = (XTΨX + A)−1XTΨt (137)

in which Ψ is a N×N diagonal matrix with the diagonal element Ψnn = exp(−e2
n/2h). After obtaining

the maximum point w∗ for log qw(w), the relevance parameters a could be optimized identically as in
Section 5.2. Thus, MCC-ARD for robust sparse regression is summarized in Algorithm 5.

Algorithm 5 MCC-ARD for robust sparse regression

1: input:
training samples {(xn, tn)}N

n=1;
Gaussian kernel bandwidth h;
threshold for relevance parameter amax;

2: initialize:
model parameter wd (d = 1, · · · , D);
relevance parameter ad (d = 1, · · · , D);

3: output:
model parameter wd (d = 1, · · · , D)

4: repeat
5: w-step: update w according to Eq.(137);
6: a-step: update a according to Eq.(125);
7: if ad > amax then
8: set the corresponding wd to zero and prune this dimension in the following updates
9: end if

10: until the number of iterations is larger than an upper limit or the parameter change is small enough

5.5.2. Simulations

The proposed MCC-ARD algorithm for robust sparse regression was evaluated by a noisy and
high-dimensional synthetic dataset, and compared with the conventional ARD-based sparse regression
as introduced in Section 5.1 (denoted by LS-ARD). It was also compared with the L1-regularized MCC
[202–204] (MCC-L1) optimized with an EM method [186,189]. The kernel bandwidth h for both MCC-
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ARD and MCC-L1 are selected by cross validation, while the latter utilizes another cross validation for
regularization parameter λ. The pruning threshold amax is set as 106 for both LS-ARD and MCC-ARD.

A noisy and high-dimensional synthetic dataset was generated with the following method. 300
i.i.d training samples and 300 i.i.d testing samples were generated randomly by the 1000-dimensional
standard normal distribution. The target variable was obtained by the linear regression assumption
and a sparse true solution w∗ as

w∗ = [

1000-dimensional︷ ︸︸ ︷
w∗1 , w∗2 , · · · , w∗30, 0, 0, 0, 0, · · · , 0︸ ︷︷ ︸

970 components

]T (138)

which is a 1000-dimensional vector where only the first 30 dimensions are non-zero components while
the other 970 components are zero. The non-zero elements were randomly generated from the standard
normal distribution. To assess the robustness of each algorithm, the following noise distribution is
used on the model output

ε ∼ (1− θ)N (ε|0, 0.05) + θL(ε|0, τ) (0 6 θ 6 1) (139)

in which L(ε|0, τ) denotes the Laplace distribution over ε with zero mean and the scale parameter τ

to imitate outliers, and θ means the proportion of outliers among the additive noise. The following
values were considered for the outlier scale parameter τ: 2, 5, and 10, indicating increasing strengths
for the outliers. The outlier proportion θ is increased from 0 to 1.0 with a step 0.05. The regression
performance is evaluated by two classical regression performance indicators, correlation coefficient
(r) and root mean squared error (RMSE), as defined in Eq.(83-84). The regression performance of
each algorithm with 100 Monte-Carlo repetitions is presented in Fig. 32. One could observe that, the
proposed MCC-ARD outperforms the conventional LS-ARD largely by significantly higher r and lower
RMSE, when the high-dimensional data is contaminated by the non-Gaussian noises under each scale
parameter τ. One further perceives that the proposed MCC-ARD achieves higher r than the existing
MCC-L1 under each scale parameter τ, and lower RMSE for τ = 2 and 5. MCC-ARD and MCC-L1

realize similar RMSE when τ = 10. When τ becomes larger than 10, the conclusion of performance
comparison is analogous to the case when τ is equal to 10. Note that, the proposed MCC-ARD method
only has one hyperparameter h to be tuned, while MCC-L1 needs to tune two vital hyper-parameters,
namely, the kernel size h and the regularization parameter λ.

On the other hand, the feature selection for this synthetic dataset is also considered in the presence
of outliers. Similarly as in Section 5.3.1, the feature selection problem can be regarded as an unbalanced
classification task with the relevant/irrelevant label for each feature. The F1-score as defined in Eq.(127)
was used to evaluate the quality for feature selection. Fig. 33 illustrates the number of selected features
and F1-score of feature selection for each algorithm.

One observes that when the data is contaminated by the outliers, the number of selected features
by MCC-ARD is closer to the ground truth of 30 relevant features, compared with the conventional
LS-ARD and existing MCC-L1. Notably MCC-ARD reveals significantly higher F1-score in the feature
selection than other two algorithms in the presence of outliers, showing exceptional feature selection
capability in a noisy and high-dimensional scenario. Even more, MCC-ARD also gives higher F1-score
without outlier contamination (proportion=0).

5.5.3. Discussion: MCC-Aware Noise Assumption

It is indispensable to discuss if the MCC-aware noise assumption C(e|0, h) of Eq.(131) is adequate
to be utilized in a robust regression model from a Bayesian perspective. Conventionally, an improper
distribution, referring to a non-normalizable PDF, can be only permitted for a prior distribution (and
the resultant posterior distribution) in a traditional Bayesian regime [211]. The likelihood function
(equally the noise distribution) has for the first time been supposed with such a deviant distribution
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Figure 32. Correlation coefficient (r) and root mean squared error (RMSE) with the noisy and high-
dimensional dataset under different outlier proportions and scale parameters.
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Figure 33. Number of selected features and F1-score of each regression algorithm.

C(e|0, h), which does not even converge to 0 far from the origin. To verify the validity of such a deviant
noise assumption, one can define the following noise distribution

C ′(e|0, h) , exp{exp(− e2

2h
)} − 1 (140)

which is a simple translation of C(e|0, h) towards the horizontal axis, and can be proved a normalizable
PDF by elementary derivation, as illustrated in Fig. 34. By this proper noise distribution, one can make
a similar derivation as in Section 5.5.1, and compare the experimental results utilizing the identical
synthetic dataset from Section 5.5.2. As is illustrated in Fig. 35, for each outlier scale parameter, the
deviant MCC-ARD outperforms evidently the proper one. In particular, when the outlier scale parameter
is 10, the proper MCC-ARD even achieves similar results with the conventional LS-ARD, showing poor
robustness compared with the deviant one. Therefore, the validity of the MCC-aware deviant noise
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Figure 34. Comparison between deviant C(e|0, h) and proper C ′(e|0, h).
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Figure 35. Correlation coefficient (r) and root mean squared error (RMSE) for the MCC-ARD regression
algorithms which are derived by the proper C ′(e|0, h) and the deviant C(e|0, h), respectively.

distribution C(e|0, h) of Eq.(131) is empirically proved. The robustness of C(e|0, h) can be interpreted
heuristically as follows.

The prominent characteristic of the deviant C(e|0, h) is that, its probability density acquires the
maximum at the origin while it converges to 1 when e→ ∞. In a usual noise assumption, e.g. Gaussian
distribution, the probability density converges to 0 when e is arbitrarily large, which seems to be a
reasonable hypothesis. However, if a dataset is in particular prone to adverse outliers, this hypothesis
would be unreliable, because some errors with large values do happen, indicating non-zero probability
density even though far from the origin. By comparison, the deviant C(e|0, h) exactly assumes non-zero
density for the arbitrarily large error. Thus, it can be argued that the MCC-aware C(e|0, h) is a more
rational noise assumption when the dataset is prone to outliers, as demonstrated by the simulation
results.

6. Conclusion & Future Works

6.1. Conclusion

This thesis aims to realize a better brain activity decoding performance by addressing the problem
where the conventional learning criteria for machine learning may be significantly deteriorated by the
non-Gaussian noises or outliers inherent in the brain recordings from existing measurement techniques.
The main motivation of this thesis is the ITL framework, which adopts information-theory descriptors
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to formulate the objective functions for machine learning models. In particular, two popular learning
criteria, namely MEE and MCC, were utilized in this thesis to propose robust brain decoding algorithms
to improve the decoding performance for real-world noisy brain recordings. First, this thesis considers
the noisy classification task. It was found that the optimal error distribution for a noisy classification
scenario exhibits a three-peak distribution, for which the original MEE (or QMEE) is supposed to reveal
satisfactory robustness, whereas they showed unexpected instability. By investigating the reason, this
thesis proposed a new learning criterion for robust classification, which is a special case of QMEE with
a restricted codebook, thus named by RMEE. For the proposed RMEE, the discussions for optimization
and convergence analysis are given. In performance evaluation, first, RMEE based logistic regression
showed better robustness in the synthetic dataset. For noisy EEG datasets, RMEE based ELM achieved
the highest accuracy in most cases. In addition, RMEE based ELM realized promising performance in
other benchmark datasets as well. Then, this thesis also takes another issue for brain activity decoding,
the high-dimensional problem, into account, by studying how to embed the robust ITL approach into
the existing algorithms for the high-dimensional brain decoding task. First, this thesis investigated a
robust implementation for the dimensionality reduction based decoding algorithm, for which a novel
robust variant for PLSR algorithm was proposed by reformulating the non-robust least square criterion
by the sophisticated MCC framework. The proposed PMCR algorithm implements the decomposition
for input and output simultaneously, and acquires each model parameter with MCC. The experimental
results with the synthetic dataset and Neurotycho ECoG dataset demonstrate that, the proposed PMCR
could outperform the existing PLSR algorithms, revealing promising robustness for high-dimensional
and noisy ECoG decoding. Subsequently, this thesis discussed the integration of MCC with the feature
selection strategy to realize robust and sparse brain decoding. To be specific, MCC was integrated with
the sparse Bayesian learning approach and ARD method for adaptive sparseness. The proposed CSLR
algorithm was evaluated on different noisy and high-dimensional classification scenarios, including a
toy example, the EEG decoding task, and the fMRI-based visual decoding task. Experimental results
demonstrated that CSLR can realize better classification accuracy and feature selection for brain activity
decoding tasks. Furthermore, this thesis exposed the inherent noise assumption under the MCC-based
regression and derived an explicit MCC-aware noise assumption C(e|0, h). By integrating this MCC-
aware noise assumption and the ARD method, MCC-based robust regression can be also implemented
with the “adaptive sparseness”. The proposed MCC-ARD algorithm for robust sparse regression realized
superior regression performance and feature selection in a noisy and high-dimensional scenario. The
corresponding works presented in this thesis were published in [136,218–220]. The proposed methods
are summarized in Fig. 36 with their applicable conditions.

16

Noisy brain 
activity decoding

low-dimensional 
problem

high-dimensional 
problem

correlated 
features

non-correlated 
features

dimensionality 
reduction

sparse 
learning

PMCR (Section 4)

CSLR/MCC-ARD 
(Section 5)

regression

classification

Existing ITL methods 
(MCC/MEE/QMEE)

RMEE (Section 3)

Figure 36. Summary of the proposed methods with their applicable conditions.

6.2. Future Works

Further improvements for the proposed algorithms in this thesis will be also discussed as in what
follows.

For the proposed RMEE learning criterion for robust classification, the first interesting future
work is how to estimate a more accurate estimation of the real outlier proportion without any prior
information. Although the empirical method utilized in Section 3.3.3 realized a rather accurate result,
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it needs to be analyzed with more theoretical guarantees. As categorized in [78], classifiers are divided
into regression-like and non-regression-like ones where prediction error is of continuous and discrete
value, respectively. For the regression-like classifiers, such as a wide variety of neural network models
for classification, it is argued that the proposed RMEE could be a promising alternative for those tasks
prone to severe noises, since its effectiveness has been verified on the ELM model. On the other hand,
the implementation of RMEE for non-regression-like classifiers needs further exploration. For example,
in the decision trees and the {0, 1}-label context, the prediction is discrete 0 or 1, and hence one obtains
discrete error e ∈ {0,−1, 1}, but not e ∈ (−1, 1) that belongs to a continuous interval as in this thesis.
Whether the proposed RMEE can achieve satisfactory performance for non-regression-like classifiers
requires further studies.

For the proposed PMCR algorithm, it exhibits the supplementary potential for further performance
improvements with regularization techniques, as well as in the existing regularized PLSR algorithms.
For example, L1-regularization could be utilized in Eq.(72) to encourage sparse and robust projectors.
In addition, if one requires better smoothness on the predicted output, polynomial or Sobolev-norm
penalization could be utilized in PMCR. Moreover, L2-regularization could be utilized for Eq.(74) to
decrease the over-fitting risk considering the regression scalar bs. In addition, the multi-way PLSR is
an important generalization for this algorithm, which establishes the regression relationship between
tensor variables with dimensionality reduction by tensor factorization technique. In the literature, the
multi-way PLSR was usually reported to achieve superior decoding capability than the generic PLSR
algorithm in the brain decoding task, where the spatio-spectro-temporal feature is organized with the
tensor form. Essentially, the multi-way PLSR decomposes the input and output under the least square
criterion by minimizing the Frobenius-norm [221]. Therefore, the multi-way PLSR is also prone to the
performance deterioration caused by noises. Extending the PMCR algorithm to multi-way application
can probably improve the prediction performance further. Promisingly, MCC has been demonstrated
effective for tensor variable analysis in a recent study [222].

Another fundamental problem regarding the performance improvement for noisy brain activity
decoding is the brain recording noise. Although the clear definition and statistical properties for the
brain recording noise could help to develop more advanced denoising or robust decoding algorithms,
it would be difficult to give a conclusion regarding the properties of the brain recording noise, because
different kinds of artifacts may happen at the same time, thus being fused with each other. In addition,
some experiments might be more prone to artifacts since eye movements or muscle movements are
involved in some tasks. A common way to evaluate the effectiveness of robust decoding algorithms for
noisy brain recordings is to artificially contaminate the brain data with outliers, because the real-world
artifacts usually exhibit larger amplitudes than normal samplings [87,89,163]. Similar to the relevant
literature, Section 3 and Section 4 utilized artificial outliers to contaminate the brain recordings for the
performance comparison across different algorithms. However, this contamination might be inaccurate
to simulate real-world brain recording noises. Therefore, in Section 5, this thesis employed the original
brain recordings directly, without any artificial contamination. This further emphasizes the necessity
and effectiveness of robust decoding for real-world noisy brain data analysis. In future works, direct
evaluation on original brain recordings should be considered first for performance comparison across
different algorithms.

In addition, two other important discussions are presented as follows for the future works.

6.2.1. Multi-Class Classification

This thesis proposed two robust classification methods. The first method is the RMEE learning
criterion which can be used in various classification models, while the second one is the CSLR algorithm
which is effective for robust and sparse classification in the high-dimensional scenario. However, these
two methods were only considered for the binary classification in this thesis which may seriously limit
their applications for real-world scenarios. Therefore, a discussion for their generalization to the multi-
class case is given as follows.
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Consider the multi-class cases in which there exist C different potential labels to be classified. One
is supposed to utilize individual models parameters for each class. To be specific, the class c will have
an individual linear discriminant function

fc(x, wc) =
D

∑
d=1

wc
dxd = xwc (c = 1, · · · , C) (141)

where wc denotes the model parameter for c-th class. Thus, one can calculate the probability that the
n-th sample belongs to c-th class through the softmax function by

yc
n , p(tn = c) =

exp( fc(x, wc))

∑C
k=1 exp( fk(x, wk))

(c = 1, · · · , C) (142)

In multi-class case, one commonly utilizes the one-hot coding for label expression, e.g. tn = (1, 0, · · · , 0)
if n-th sample belongs to the first class. Similarly, one can obtain the prediction by yn = (y1

n, · · · , yC
n ).

Thus, the prediction error becomes a C-dimensional vector by subtraction en = tn− yn ∈ RC. Extended
from binary case, one can imagine that in multi-class cases errors are distributed on a high-dimensional
cube ranging between (−1, 1). In this way, the implementations of RMEE and CSLR for a multi-class
scenario can refer to those studies that applied MEE or MCC to multi-dimensional errors. Multi-class
classifiers can further improve the brain activity decoding performance. For example, multiscale local
image decoders were proved to show better visual reconstruction results in [33] than only utilizing the
decoder of 1 × 1 size, by combining 1 × 1, 1 × 2, 2 × 1, and 2 × 2 decoders. Since the decoders for the
other scales require multi-class classification, in the future works, multi-class CSLR algorithm will be
proposed and implemented with the multiscale decoders.

6.2.2. Determination for Kernel Bandwidth

Another important topic for MEE and MCC is the kernel bandwidth determination. In this thesis,
the kernel bandwidth h is selected by the cross validation method or computed by the Silverman’s rule.
Cross validation may be time-consuming if the dataset exhibits a large size, while Silverman’s rule may
lead to a less proper kernel bandwidth as mentioned in [202,203]. To explore a better way to determine
the kernel bandwidth, the Bayesian learning framework may be a good motivation.

To be specific, it will be interesting to investigate how to treat the kernel bandwidth as a random
variable so that one can integrate h with the Bayesian perspective and optimize it automatically in the
process of Bayesian inference. For example, here the robust and sparse regression based on MCC-ARD
can be rethought by treating the kernel bandwidth h as a random variable. Suppose that h is assigned
with the non-informative hyper-prior, then the log joint distribution is written by

log p(w, a, t, h)

= log p(t|w, h) + log p(w|a) + log p(a) + log p(h)

=
N

∑
n=1

exp(− (tn − xnw)2

2h
)− 1

2
wTAw− 1

2
log |A| − log h + const

(143)

Accordingly, the variational inference becomes

log qw(w) = Eqa(a)qh(h) [log p(w, a, t, h)] =
N

∑
n=1

Eqh(h)

[
exp(− e2

n
2h

)

]
− 1

2
wTEqa(a) [A]w (144)

log qa(a) = Eqw(w)qh(h) [log p(w, a, t, h)] = −1
2

D

∑
d=1

adEqw(w)

[
w2

d

]
− 1

2

D

∑
d=1

log ad (145)
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log qh(h) = Eqw(w)qa(a) [log p(w, a, t, h)] =
N

∑
n=1

Eqw(w)

[
exp(− (tn − xnw)2

2h
)

]
− log h (146)

where, however, one can find that the expectations with respect to the correntropy term in log qw(w)

and log qh(h) is pretty hard to compute analytically. Thus, some other approximations are essential to
treat the kernel bandwidth h as a random variable. In the future works, this will be investigated more
in depth, thus realizing “adaptive robustness”.

6.3. A Wider Prospect for Brain Activity Decoding

Finally, a wider prospect for brain activity decoding is discussed in what follows. One could find
that almost all the machine learning models in this thesis are limited to the linear formulation which
may be insufficient to realize good enough brain decoding performance. However, how to design non-
linear while informative features has been a difficult question for a long time, i.e. feature engineering.
A good news is, the development of deep learning models can provide a powerful tool for non-linear
feature extraction and pattern recognition. A conventional brain decoding framework usually predicts
the linear feature of target from a linear representation of brain recordings. By comparison, one could
employ a non-linear representation for either input or output. For example, instead of reconstructing
the original visual stimulus, [198] utilized a convolutional neural network (CNN) model for feature
extraction on the visual stimulus, and then predicted the CNN-based visual features from fMRI signals,
thus realizing a much more complicated visual decoding task than [33]. Moreover, the deep generative
models have been recently used for visual reconstruction that have been trained previously on a large
number of naturalistic images [36–38]. It will be of large potential to investigate how to propose more
advanced brain decoding framework with a motivation from the recent developments of the computer
vision or natural language processing, since vision and language are two significant cognitive functions
for human brains. The recently developed large language model, such as GPT, will be big inspiration
for future studies about human brain.
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