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Abstract

Bipedal robots have the potential to significantly impact our lives by offering mobility

capabilities beyond our own. This thesis investigates the utilization of template models,

trajectory optimization techniques, biarticular muscles and various control techniques to

achieve walking gait of a 5-link bipedal robot through simulation studies. The well- known

spring-loaded inverted pendulum (SLIP) model is expanded to incorporate swing leg dy-

namics (SLIP-SL). Furthermore, the model is enhanced through the integration of variable

stiffness control (VSLIP-SL) to improve its robustness against external disturbances. Ad-

ditionally, the study demonstrates the effectiveness of passive biarticular muscles, an active

wobbling mass and the combination of the two in enhancing the robustness and efficiency of

bipedal robots. We propose a method that improves the terrain-blind walking on rough ter-

rain and further improve the performance by adding and tuning biarticular springs. Finally,

the VSLIP-SL model is employed to achieve gait patterns incorporating variable stiffness

biarticular muscles. We propose various controllers to achieve stable walking gaits based on

template models or trajectories obtained via trajectory optimization methods.

Key Words: legged robots, robot dynamics and control, bipedal robots, biarticular mus-

cles, variable stiffness, terrain-blind walking, template walking models
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Chapter 1

Introduction

Robots have become increasingly prevalent in various aspects of our lives. From industrial
settings where they assist in manufacturing processes to domestic environments where they
automate household chores such as vacuuming, robots have permeated numerous fields and
applications. While some robots are stationary, mobility plays a pivotal role in the majority
of robotics applications.

The ability of a robot to move detached from any base provides significant advantages and
expands its range of capabilities. Mobile robots possess the potential to navigate and op-
erate in different environments, thereby extending their utility and versatility. By enabling
movement, robots can access diverse locations, interact with objects and surroundings, and
perform tasks that require locomotion.

The desire for mobile robots is rooted in the observation that mobility is a fundamental
characteristic of many living organisms. In nature, organisms with the ability to move ex-
hibit a distinct advantage in terms of survival, exploration, and adaptation. Inspired by
this principle, the development of mobile robots seeks to emulate the benefits conferred by
movement, enabling robots to navigate and interact with their surroundings in a manner
that aligns with the behavior of living organisms.

The ability to move is undeniably valuable, prompting the question of how robots should
navigate their environments. There are numerous options to consider when determining the
most suitable locomotion method. Wheels, for instance, are well-suited for certain tasks
due to their stable and controllable movement on flat surfaces. However, they struggle with
discontinuous ground support like when climbing stairs. On the other hand, quad rotors or
drones provide the capability of flight but are vulnerable to significant damage from even
minor crashes. These examples merely scratch the surface, as researchers employ a range
of intriguing methods to construct mobile robots. Among these techniques, two-legged lo-
comotion stands out as particularly captivating. It closely mimics human movement and
offers a host of advantages, making it a compelling choice for various applications.

Bipedal locomotion offers several distinct advantages in robotics. Firstly, it enables robots
to maneuver effectively in narrow spaces, thanks to their ability to turn and navigate with
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agility. Additionally, bipedal robots excel in traversing terrains with uneven or discontin-
uous ground support, such as climbing stairs or navigating rocky slopes. Their versatile
locomotion capabilities allow for seamless transitions between different modes, including
walking, running, and even jumping, depending on the situational requirements.

One of the most significant advantages of bipedal robots is their compatibility with envi-
ronments designed for humans. By emulating human-like movement, bipedal robots are
well-suited for operating in environments such as offices, factories, and hospitals. This com-
patibility enhances their adaptability and facilitates seamless integration into human-centric
spaces.

In this thesis, we try to improve some aspects of bipedal walking in the hopes of contributing
to the process of having efficient, robust and fast bipedal robots help with dull, difficult and
dangerous jobs so we as humans can focus on more enjoyable and creative work. We test
our proposed methods on simulation studies. Our test bed is a 5-link bipedal robot model
that is constrained to the sagittal plane.

This work has 4 main contributions:

• Developing a simple yet robust template model for walking (Chapters 2 and 3)

• Investigating the effects of introducing biarticular compliant elements and a wobbling
mass on the walking performance through trajectory optimization studies (Chapters
4 and 5)

• Proposing a controller and bipedal robot design that improves the terrain-blind walk-
ing performance (Chapter 6)

• Proposing a controller that can control variable stiffness biarticular springs to increase
robustness (Chapter 7)

• Coming up with controllers that can achieve efficient/robust walking, using the tem-
plate models or optimal trajectories that were developed in this study (all the chapters
except Chapter 5)

1.1 Outline
This thesis consists of the below chapters, and its contents are organized as follows.

Chapter 2 Extending Spring Loaded Inverted Pendulum (SLIP) with Swing
Leg Dynamics (SLIP-SL)

This chapter details an extension to the SLIP model named spring loaded inverted pen-
dulum model with swing legs (SLIP-SL). SLIP-SL extends the SLIP model by introducing
swing leg dynamics while keeping its passive nature. This way, reference trajectories for
the center of mass and swing foot trajectories can be simultaneously obtained which was
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not possible with the SLIP. This makes implementation easier and it increases tracking
performance. We show how a variety of feasible two-phased walking trajectories can be
obtained for this template model using direct collocation optimization methods. It is also
shown through simulation studies that reference SLIP-SL trajectories can be used to control
a fully actuated bipedal robot with the proposed feedback linearization controller to reach
a stable cyclic gait.

Chapter 3 Variable Stiffness Spring Loaded Inverted Pendulum Model
with Swing Leg Dynamics (VSLIP-SL)

The robustness issue of the SLIP was addressed by swapping the leg springs with variable
stiffness ones in the variable SLIP (V-SLIP) model. The SLIP model with swing leg (SLIP-
SL) introduced swing leg dynamics to the SLIP by adding a massed leg and foot, and springs
to move them. In this chapter, we first propose a template model that combines the swing
leg dynamics and robustness solutions in a new model called "the variable stiffness SLIP
model with swing leg dynamics" (VSLIP-SL). Then, we go on to propose a controller for a
5-link fully actuated bipedal robot model that is based on the VSLIP-SL. The challenge of
the controller is to translate the variable stiffness responses of the VSLIP-SL to the 5-link
model, which does not have any compliant elements. We achieve this through an encoder-
decoder scheme and feedback linearization. It is shown by numerical simulations that we
are able to tackle the robustness issue on a template level.

Chapter 4 Effects of Passive Biarticular Muscles on Walking Performance
for Bipedal Robots

The first goal of this chapter is to investigate the effects of passive biarticular muscles on the
walking performance of a bipedal robot. Second goal is to achieve a stable walking gait with
the bipedal robot model that has these biarticular muscles. To achieve this, we first compare
the optimal trajectories of a default bipedal robot model with the same model that also has
biarticular springs. The comparison was made with respect to walking efficiency, speed and
minimum input torque requirements criteria using direct collocation methods. We show
that the model with biarticular muscles outperforms the default model in all the investi-
gated criteria and also proper parameters for the biarticular springs can be chosen using
the described optimization method. Then, we introduce a feedback+feedforward controller
to track the obtained optimal trajectories with a bipedal robot with biarticular muscles.
Through simulations, we show that using the proposed controller, stable walking gaits can
be achieved with good tracking performances.

Chapter 5 Effects of Active Wobbling Mass on Biped Robot’s Walking
Performance in Combination with Biarticular Springs

In other studies, it was shown that having an active wobbling mass (reaction mass) that
can move up and down inside torso can increase the walking performance such as average
walking velocity. In the previous chapter, we show that having biarticular springs that
are tuned via the simultaneous trajectory-parameter optimization process can improve the
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walking speeds too. In this chapter, we show that we can achieve faster walking speeds
by combining the passive biarticular springs with an active wobbling mass. This combined
model outperforms the nominal model, the model that has only biarticular muscles and the
model that only has a wobbling mass.

Chapter 6 Terrain-Blind Humanoid Walking on Rough Terrain with Tra-
jectory Optimization and Biarticular Springs

Trajectory optimization techniques to control biped walkers are becoming popular with im-
provements in available solvers. However, many of the proposed controllers assume that the
terrain is flat, causing the biped robot to easily fall when the assumption doesn’t hold. Hu-
mans can easily walk on rough terrain and there are a number of controllers that deal with
this issue through perception or sensing but necessary research to tackle this issue without
perception/sensing is still lacking. If the walking controller can deal with terrain changes
without perception/sensing (terrain-blind), this would ease the computational burden on the
controller and decrease the problems caused by errors in perception. This chapter proposes
a controller that can track the optimized trajectories while handling moderate changes in
terrain height. This was mainly achieved by our phase variable manipulation and utilization
of a second optimized trajectory that lands the robot safely. We have also improved the ro-
bustness of the robot mechanically, by adding passive biarticular muscles. Furthermore, we
investigated the effect of biarticular muscle parameters on robustness. Through simulation
studies, we show that our proposed controller with proper biarticular muscle parameters
can have a 5-link underactuated robot walk without falling on terrains with up to 6.47 cm
height changes.

Chapter 7 Walking Control of a 5-Link Underactuated Bipedal Robot with
Variable Stiffness Biarticular Springs Based VSLIP-SL

In Chapter 3, we’ve shown the effectiveness of the variable stiffness spring loaded inverted
pendulum model swing leg dynamics (VSLIP-SL) model. In Chapter 4, we have shown
that introduction of biarticular springs can significantly improve the walking performance.
In this chapter, we model a 5-link model that has biarticular springs whose stiffness can
be controlled. We propose a controller to achieve trajectory tracking while controlling the
spring stiffnesses. This controller is based on the variable stiffness responses of VSLIP-SL.
We show that this model can overcome external pushes thanks to the proposed controller
scheme.
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Chapter 2

Extending Spring Loaded Inverted
Pendulum (SLIP) with Swing Leg
Dynamics (SLIP-SL)

A plethora of techniques exist for controlling the locomotion of bipedal robots, offering re-
searchers a diverse array of options. One extensively utilized approach involves employing
an inverted pendulum model, augmented by the zero moment point (ZMP) criterion as
the template model[1][2]. Furthermore, a new method gaining traction revolves around the
derivation of optimal trajectories and inputs using various optimization techniques, subse-
quently employing them as reference values [3][4]. Additionally, researchers frequently em-
ploy simplistic models capable of mimicking key elements of human or animal gait, serving
as blueprint models for bipedal robot walking control. Among these template models, the
bipedal spring-loaded inverted pendulum (SLIP) model stands out as a widely embraced
choice [5][6]. The utilization of these distinct methodologies showcases the breadth and
depth of research endeavors aimed at advancing the control strategies employed in bipedal
robotics.

The Bipedal Spring-Loaded Inverted Pendulum (SLIP) model, illustrated in Figure 2.3,
comprises compliant legs and a point mass. This model operates passively, meaning it lacks
external inputs, and its motion is governed solely by mechanical parameters and initial
conditions. By carefully selecting these factors, a variety of trajectories can be achieved,
converging into a repetitive pattern known as a limit cycle. Notably, the Bipedal SLIP
model is capable of emulating the two-phased walking style observed in humans, as exten-
sively detailed in [7]. These two phases are called single stance phase and double stance
phase. In the single stance phase, only one leg is in contact with the ground and the other
leg is “swinging". And in the double stance phase, both feet are in contact with the ground.

Although the Bipedal Spring-Loaded Inverted Pendulum (SLIP) model is highly advanta-
geous and simplistic, it incorporates a significant assumption that deviates substantially
from human gait. Specifically, in the single stance phase, the swing leg is assumed to in-
stantaneously move to the appropriate touch-down position. Consequently, when utilizing
the bipedal SLIP model as a template for controlling a bipedal robot, it is unable to provide
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Figure 2.1: SLIP-SL Model in the single stance phase

the desired trajectories for the swing foot. Additional measures are therefore necessary to
achieve the motion of the swing leg. In an effort to address this limitation, Sharbafi et
al. proposed a conceptual model in [8] by combining the SLIP model with a segmented
leg. This hybrid model enables manages to incorporate the swinging motion, but it requires
the implementation of reference trajectories and a controller to achieve the desired motion.
Notably, the introduction of these control elements results in the model losing its passive
characteristics.

In this chapter, we propose an extended SLIP model from which reference center of mass
trajectories and swing foot trajectories can be obtained simultaneously. This model will be
called spring loaded inverted pendulum model with swing leg dynamics (SLIP-SL) which is
shown in Figure 2.1 and it will keep the passive property of the SLIP model.

SLIP-SL (Spring-Loaded Inverted Pendulum with Segmented Legs) model, also exhibits a
two-phase gait similar to the bipedal SLIP model. In the single stance phase, the SLIP-SL
model comprises of three massed elements and three springs to facilitate the movement
of these components. Importantly, the SLIP-SL model retains the passive nature of the
bipedal SLIP since it does not require any external inputs. In other words, by adding two
massed elements and two springs to the original SLIP model, the SLIP-SL model main-
tains its passive characteristics. To ensure feasible trajectories, it is essential to carefully
select appropriate spring parameters and initial conditions such as position and velocity. To
this end, we employ direct collocation methods [9] to simultaneously optimize the model’s
parameters and trajectory. Furthermore, we propose a feedback linearization controller to
track the obtained SLIP-SL trajectories using a 5-link fully actuated bipedal robot model.
Through simulation studies, we investigate the effectiveness of the proposed controller and
examine the SLIP-SL model’s suitability as a template for walking.

This chapter is organized as follows: Section 2.1 describes the dynamics of SLIP-SL and the
bipedal robot model, Section 2.2 details the optimization setup that is needed for finding
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feasible SLIP-SL trajectories, Section 2.3 introduces the proposed feedback linearization
controller and in Section 2.4 simulation results are presented and discussed.

2.1 Systems and Modeling
This section will begin by introducing the original bipedal SLIP model. Then, we introduce
the dynamic model of the extended SLIP model named SLIP-SL. Finally the model for the
bipedal robot will be introduced. Explanation of the SLIP model will be brief since there
are many works such as [5] that do an excellent job and going in depth on the matter. This
chapter will focus on the extended model and fully covers it but it is recommended to have
a basic knowledge of the SLIP model to be able to appreciate the extension of it.

2.1.1 Bipedal SLIP Model
The Bipedal Spring-Loaded Inverted Pendulum (SLIP) Model, depicted in Figure 2.3, is
comprised of a point mass and two legs made of springs with negligible mass. This model
emulates the two distinct phases observed in human walking, known as the single stance
and double stance phases. During the double stance phase, both feet are in contact with
the ground, and the spring-like legs exert forces on the point mass. The transition from the
single stance to the double stance phase occurs when the lift-off event is triggered. Lift-off
transpires when the trailing foot disengages from the ground, initiating the single stance
phase. This phase continues until the touch-down event, which transpires when the swinging
foot makes contact with the ground. The configuration of the touch-down depends on the
angle of attack α and the natural length of the spring L0. Following the touch-down event,
the SLIP model switches back to the double stance phase, and this cyclical process repeats
to achieve a walking motion, as illustrated in Figure 2.2. It is important to note that the
springs in the model can only contract and exert forces, as a leg in reality cannot pull us
towards the ground.

The Bipedal Spring-Loaded Inverted Pendulum (SLIP) model is a passive system, meaning
its motion is solely determined by its parameters, such as spring stiffness, angle of attack,
and initial conditions, including initial velocity. By adjusting these parameters and initial
conditions, various types of gaits can be achieved with this model, allowing for the genera-
tion of stable, human-like walking patterns characterized by double-peaked ground reaction
forces. The simplicity of the SLIP model has made it a popular choice among researchers,

Figure 2.2: SLIP, SLIP-SL and 5-link biped robot model phase transition diagram
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Figure 2.3: Bipedal SLIP Model

particularly for generating reference trajectories for the center of mass (CoM) position.

However, the SLIP model makes a significant assumption that the swing leg can instan-
taneously move to the required position for touch-down. This assumption is feasible for
the model because its legs are considered to be massless. Nevertheless, for real robots, the
swing leg motion needs to be physically moved in order to facilitate walking. Consequently,
when the SLIP model is used as a reference, additional steps are necessary to generate the
motion of the swing leg. Additionally, incorporating the swing leg motion on biped robot
that follows the SLIP model CoM trajectory can prove challenging and can even potentially
act as a disturbance.

To address these limitations, we propose the SLIP-SL model, which extends the SLIP model
by incorporating the dynamics of the swing leg during the single stance phase. This exten-
sion allows for a more comprehensive representation of the walking process, capturing the
essential swing leg motion alongside the CoM trajectory.

2.1.2 SLIP-SL model
The Spring-Loaded Inverted Pendulum model with Swing Leg (SLIP-SL), illustrated in Fig-
ure 2.1, exhibits a walking motion that can be visualized in Figure 2.4 over the course of a
complete step. Similar to its predecessor, the SLIP model, SLIP-SL operates in two distinct
phases. During the double stance phase, both SLIP-SL and SLIP models are identical in
their behavior.

However, what sets the SLIP-SL model apart from the SLIP model is the incorporation
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Figure 2.4: SLIP-SL Model

of swing leg dynamics during the single stance phase. This addition allows the SLIP-SL
model to account for the motion and behavior of the swing leg as it plays a crucial role in
generating a more realistic walking motion.

During the single stance phase, the SLIP-SL model consists of three massed elements: the
primary mass denoted as M , a massed swing leg, and a point mass representing the swing
foot. Additionally, there are three springs involved: a linear spring connecting M ’ to the
ground, a torsional spring connecting the point mass to the swing leg, and a linear spring
connecting the swing foot to the swing leg. This configuration allows the SLIP-SL model
to move these elements during the single stance phase.

After the touch-down event, when the swing foot makes contact with the ground, the SLIP-
SL model transitions to the double stance phase. In this phase, the SLIP-SL model in
the double stance phase consists of a point mass and two massless springs, resembling the
structure of the SLIP model during this phase.

In the single stance phase, equation of motion for the SLIP-SL model can be written as:

M̃ (q̃)¨̃q + C̃(q̃, ˙̃q) + G̃(q̃) = S̃τ̃ (2.1)
where q̃ = [xM , yM , θ, r]T are the generalized coordinates, M̃(q̃) ∈ R4×4 is an inertia matrix,
C̃(q̃, ˙̃q) ∈ R4 is a Coriolis and centrifugal terms vector, G̃(q̃) ∈ R4 is the gravity term,
τ̃ ∈ R3 are the resultant forces and torques due to springs and S̃ ∈ R4×3 is the appropriate
mapping matrix for them. These can be calculated as:

9



τ̃ =

k0,ss(L0,ss − Lst,ss)
kswLeg(θ0 − θ)
kswFoot(r0 − r)

 , (2.2)

where k0,ss, kswLeg and kswFoot are the stiffness values for the stance leg spring, the torsional
spring at the “hip" and the linear spring connecting the swing foot with the swing leg, re-
spectively and L0,ss, θ0 and r0 are the free positions of those springs where subscript “ss"
indicates the single stance phase. Lst is the length of the stance leg. xM and yM respectively
represent horizontal and vertical positions of the main mass, θ represents the angle of the
swing leg with respect to the vertical axis and r represents the distance between the end of
the swing leg and swing foot point which are represented in Figure 2.1.

In the double stance phase, dynamics of the SLIP-SL model can be written as:

m

[
ẍCoM
ÿCoM

]
= Fsw + Fst + mg, (2.3)

where

m = mM + mswLeg + mswFoot, (2.4)
indicates the total mass of the system, xCoM and yCoM are the horizontal and vertical po-
sitions of the center of mass and g = [0, −9.81]T is the gravitational acceleration. Forces
generated by the stance and swing leg springs can be calculated as:

Fst = k0,ds

(
L0,ds

Lst

− 1
)([

xCoM
yCoM

]
−
[
xfoot

0

])
, (2.5)

Fsw = k0,ds

(
L0,ds

Lsw

− 1
)([

xCoM
yCoM

]
−
[
x−

foot

0

])
, (2.6)

where subscript “ds" indicates the double stance phase. Definitions of xfoot can be seen in
Figure 2.4.

2.1.3 Bipedal Robot Model
In this part, the dynamics of the 5-link bipedal robot will be introduced. This model con-
sists of 5 links which are connected to each other with revolute joints and it moves in the
sagittal plane. The model is fully actuated and has an ankle torque.

Dynamics of the bipedal robot in the single stance phase can be written as:

M (q)q̈ + C(q, q̇)q̇ + G(q) = Su, (2.7)
where q = [θ1, θ2, θ3, θ4, θ5]T ∈ R5 are the generalized coordinates, M(q) ∈ R5×5 is an in-
ertia matrix, C(q, q̇) ∈ R5×5 is a Coriolis and centrifugal terms matrix, G(q) ∈ R5 is the
gravity term, S ∈ R5×5 is the distribution matrix of actuation torques and u ∈ R5 are the
input torques. This model can be seen in Figure 2.5 with the description of generalized
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Figure 2.5: 5 link fully actuated robot model

coordinates and input torques (indicated with the red arrows).

Like the SLIP-SL model, bipedal robot model also has a two phased walking pattern. In the
single stance phase, only one foot is on the ground and other is doing the swinging motion.
Single stance phase ends and the system goes into the double stance phase when the swing
foot touches the ground.

When the swing foot contacts the ground, a collision occurs where the generalized mo-
mentum of the system changes discontinuously. This can be modeled by assuming that an
impulse force acts on the system to change the velocities while position is kept the same.
This can be expressed as:

M (q)∆q̇ = JT
c λimpact, (2.8)

where Jc ∈ R2×5 is a constraint Jacobian matrix that maps the joint velocities to the swing
foot velocity in horizontal and vertical directions. The generalized reaction forces in x and
y directions are indicated as λimpact = [λx

impact, λy
impact]T ∈ R2. Assuming that the impact is

inelastic, velocity of the swing foot touching the ground will become zero after the impact
which can be written as:

Jc(q)q̇+ = 0 ⇔ Jc(q)∆q̇ = −Jc(q)q̇−, (2.9)
where − superscript indicates the moment just before the impact and + just after the impact.
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By solving (2.8) and (2.9) for λimpact the following expression can be derived:

λimpact = −(JcM
−1JT

c )−1Jcq̇
−. (2.10)

By inserting λimpact into (2.8), we can obtain:

q̇+ = (I − M−1JT
c (JcM

−1JT
c )−1Jc)q̇−, (2.11)

which are the generalized velocities just after the impact. At the moment of impact, defini-
tions of the legs are also switched (swing leg becomes the stance leg and vice versa).

The system is now in the double stance phase where both feet are in contact with the
ground. To model this, a constraint force λds = [λx

ds, λy
ds]T ∈ R2 is added to keep the swing

foot on the ground. In the vertical direction, this constraint force can only push the robot
(λy

ds > 0). With the non-slip assumption, double stance phase dynamics can be modeled by
introducing the following constraint:

Jc(q)q̇ = 0. (2.12)
Using this constraint, dynamical equation of the double stance phase can be written as:

M (q)q̈ + C(q, q̇)q̇ + G(q) = Su + JT
c λds. (2.13)

The constraint force λds can be obtained by taking time derivative of equation (2.12) as:

Jcq̈ + J̇cq̇ = 0, (2.14)
and inserting it into (2.13) as follows:

λds = −(JcM
−1JT

c )−1(JcM
−1(Su − Cq̇ − G) + J̇cq̇). (2.15)

2.2 Direct Collocation Optimization
In this section, we will discuss the optimization process employed to determine periodic
trajectories for the SLIP-SL model. As a passive model, the gait of SLIP-SL is entirely
determined by its mechanical parameters and initial conditions. To identify suitable pa-
rameter values, Direct Collocation Methods [9] were employed.

Direct Collocation Methods handle the trajectory optimization problem by transforming
them into a format compatible with nonlinear programming (NLP) solvers. This is primar-
ily achieved through discretization, where the trajectory is divided into discrete segments.
By optimizing these segments, an overall optimal trajectory can be obtained. There are sev-
eral commercially available NLP solvers that efficiently handle these optimization problems.

The Direct Collocation Methods enabled the determination of periodic trajectories for the
SLIP-SL model, finding the proper parameter values that produce desired walking patterns.
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In this study, OpenOCL (Open Optimal Control Library) [10] will be used to solve the
trajectory optimization problem. This solver can handle the multi-phase trajectory opti-
mization problem. It can also optimize the chosen parameters while finding an optimal
trajectory. This is called simultaneous parameter-trajectory optimization.

Finding the global minimum is not guaranteed when using the direct collocation methods.
Global minimum is not easily found in a nonlinear problem with constraints such as 2.16.
The advantage of direct collocation over other optimization methods such as genetic algo-
rithms or learning based algorithms is that dynamics of the system can be embedded as
constraints to the optimization problem painlessly.

The optimization problem can be formulated as:

min
xi,p,Ti

2∑
i=1

(∫ Ti

Ti−1
Ji(xi(t), p)dt

)
for i ∈ {1, 2}

s.t. ẋi = fi(xi(t), p)
ri,k(xi(µi,k), p) ≤ 0,

(2.16)

where t ∈ [0, Ti] is the time, Ti is the end time of the respective phase, xi(t) is the state
trajectory, p are the parameters, Ji(x, p) are the path cost functions, fi(x, p) are the sys-
tem dynamics (described in Section 2.1.2) and ri,k(xi, p) are the grid-constraints. i = 1
represents the single stance phase and i = 2 represents the double stance phase for SLIP-SL
(T1 is when the touch-down happens at the end of “ss" and T2 is when the lift-off happens
at the end of “ds"). In this chapter, the Cost of Transport (CoT) [5] and a cost function
to keep the swing foot close to the ground was used. CoT is an indicator of the walking
efficiency and efficiency is increased as CoT becomes smaller.

We constrain the system with path, boundary and stage transition constraints such that the
solver finds feasible walking trajectories. Some of the constraints makes sure the resulting
gait is human like while others makes it realistic such as joint angular acceleration limits.
Path constraints are:

• Bounds were set for the parameters to be optimized:

15000 ≤ k0,i ≤ 16000 [N/m], i ∈ {ss, ds}
1 ≤ L0,ss ≤ 1.2 [m]
0 ≤ kswFoot ≤ 20000 [N/m]
0 ≤ kswLeg ≤ 15000 [Nm/rad]
0 ≤ θ0 ≤ 2π [rad]
− 10 ≤ r0 ≤ 10 [m]

(2.17)

• Stance leg spring in the single stance phase and both legs’ springs in the double stance
phase are always under contraction:
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Lst,ss ≤ L0,ss

Lst,ds ≤ L0,ds

Lsw,ds ≤ L0,ds

(2.18)

• Constraining the vertical position of CoM:

0 [m] ≤ yCoM ≤ 0.85 [m] (2.19)

• Swing foot is always above the ground during the single stance phase:

yswFoot ≥ 0 (2.20)

• Elliptic virtual obstacle must be avoided by the swing foot during the single stance
phase:

(
xswFoot − dobs

wobs

)2

+
(

yswFoot

hobs

)2
≥ 1, (2.21)

where dobs = xswFoot = 0 [m] is the horizontal position of the ellipse obstacle, wobs =
0.2 [m] and hobs = 0.04 [m] are width and height of the ellipse.

• Swing foot vertical velocity must be greater or equal to zero:

ẋswFoot ≥ 0 (2.22)

• Vertical acceleration of CoM should be negative in the single stance phase so that
system doesn’t try to lift the CoM up when there is only one leg on the ground:

ÿCoM,ss ≤ 0 [m/s2] (2.23)

Boundary constraints:

• Swing foot starts on the ground from a stationary position in the beginning of the
single stance phase and touches the ground at the end of the single stance phase:

yswFoot(0) = 0
ẋswFoot(0) = 0
ẏswFoot(0) = 0
yswFoot(T1) = 0

(2.24)

• Initial step length and the final step length should be same (for cyclic walking):

xfoot − x−
foot = x+

foot − xfoot (2.25)
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Figure 2.6: Snapshots of SLIP-SL’s one step where gray dot in the single stance phase
indicates the position of the point mass ‘M ’ and the circle indicates the position of CoM

• The initial position of the main mass relative to the stance foot should be the same
as the final one (for cyclic walking):

xstF oot,0 − xM(0) = xstF oot(T2) − xM(T2) (2.26)

• Constraints for cyclic walking:

yCoM(0) = yCoM(T2)
ẋCoM(0) = ẋCoM(T2)
ẏCoM(0) = ẏCoM(T2)

(2.27)

• At the stage transition, CoM position and velocity were constrained to be continuous.

• At the end of the double stance phase, swing leg should be ready to lift off, i.e. swing
leg spring should be at its free length:

Lsw,ds(T2) = L0,ds (2.28)

Parameters to be optimized are spring stiffness values k0,ss, k0,ds, kswFoot, kswLeg, their re-
spective free positions L0,ss, L0,ds, r0,θ0 and the initial conditions.

The optimization was conducted on MATLAB 2019b software by using 10 collocation points
for each stage. Resulting spring parameters can be seen in Figure 2.7 for various trajectories
and a snapshot of SLIP-SL’s one step can be seen in Figure 2.6 for a sample trajectory.
Trajectory ‘A’ from Figure 2.7 will be used as the reference in Section 2.4 where the step
size was also constrained to 0.25 [m] to avoid large ankle torques. The constant mechanical
parameters of SLIP-SL are given in Table 2.1.
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Table 2.1: SLIP-SL’s constant mechanical parameters

mM : 70 [kg] mswLeg : 7 [kg]
mswFoot : 3 [kg] Lthigh : 0.7 [m]
IswLeg = mswLegl

2
thigh/12 [kg · m2] IswFoot = mswFootL

2
thigh

Figure 2.7: Optimization results for various SLIP-SL trajectories. For the trajectory A,
step length was constrained to 0.25 [m] to get better ankle torques and this trajectory is the
one that was used as reference in Section 2.3. For B, C and D trajectories, average velocity
constraints were added. In this figure, resulting mechanical parameters, costs of transport
and step length are given as well as the SLIP-SL’s yCoM trajectory. In the plots on the right,
gray background means that the SLIP-SL is in double stance phase.
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2.3 Feedback Linearization Control
In this section, the proposed controller will be introduced so that 5 linked bipedal robot
model can track the reference SLIP-SL trajectories. The controller uses the feedback lin-
earization notion, in a similar manner to [11] where a total energy control approach was
used with the bipedal SLIP model. However, in this chapter, a trajectory tracking approach
will be used.

2.3.1 Single Stance Phase
For the control of the robot in the single stance phase, there are three main tasks: tracking
CoM trajectory xG ∈ R2, tracking swing foot trajectory ξ ∈ R2, controlling the trunk
orientation θ5 ∈ R. The velocities related to these tasks can be calculated as:

ẋt,ss = Jt,ss(q)q̇, (2.29)
where ẋt,ss = [ẋG, ξ̇, θ̇5]T is the velocity in the task space where subscript “ss" indicates the
single stance phase and Jt,ss(q) = [JG, Jξ, Jθ5 ]T are the combination of Jacobian matrices.
JG maps generalized velocities to the velocity of the center of mass, Jξ maps generalized
velocities to swing foot velocities and Jθ5 maps generalized velocity to the trunk’s angular
velocity. By taking the time derivative of Equation (2.29) and inserting the obtained q̈ into
Equation (2.7) we can get:

ẍt = Jt,ssM
−1(Su − Cq̇ − G) + J̇t,ssq̇. (2.30)

Inputs should be chosen as:

u = S−1
(
MJ−1

t,ss(ẍtd,ss − J̇t,ssq̇) + Cq̇ + G
)

, (2.31)
to get ẍt = ẍtd,ss. By choosing:

ẍtd,ss =


KPG

(xCoM,des − xCoM) + KDG
(ẋCoM,des − ẋCoM)

KPG
(yCoM,des − yCoM) + KDG

(ẏCoM,des − ẏCoM)
KPsw(xsw,des − xsw) + KDsw(ẋsw,des − ẋsw)
KPsw(ysw,des − ysw) + KDsw(ẏsw,des − ẏsw)

KPT
(θ5,des − θ5) + KDT

(−θ̇5)

 (2.32)

where KP and KD are the proportional and derivative gains for the controller and θ5,des

is the desired trunk angle, desired trajectories can be tracked. Desired trajectories will be
chosen as the SLIP-SL trajectories that were obtained in Section 2.2. In this study, the
desired trunk angle was chosen as θ5,des = π [rad].

2.3.2 Double Stance Phase
During the double stance phase, swing foot remains on the ground which means there is
one less task to be carried out. This means that some modifications should be made to the
single stance phase controller so that it can be used in the double stance phase. The task
space for the double stance phase then becomes:
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ẋt,ds =
[
ẋG

θ̇5

]
∈ R3. (2.33)

This reduction in dimension of the task space is somewhat problematic since we need to
determine 5 separate inputs but the dimension of ẋt,ds is 3 which means there is more than
one correct way to allocate the inputs. To calculate the proper inputs, the following equation
can be used:

q̇hip = Jhip,sw(qsw)q̇sw = Jhip,st(qst)q̇st, (2.34)
where Jhip, i(qi) is the jacobian matrix that maps the corresponding legs angular velocities,
q̇st = [θ̇1, θ̇2]T and q̇sw = [θ̇3, θ̇4]T , to the velocity of the hip. This holds since both foot are
on the ground during the double stance phase. From equation (2.34),

q̇st = J−1
hip,st(qst)Jhip,sw(qsw)q̇sw, (2.35)

can be obtained to get:

q̇ =

J−1
hip,stJhip,sw 02×1

I2×2 02×1
01×2 1


︸ ︷︷ ︸

Γ(q)

[
q̇sw
θ̇5

]
︸ ︷︷ ︸

q̇a

. (2.36)

After taking the time derivative of (2.36), then substituting the q̈ and q̇ terms from (2.36)
into (2.7) and multiplying with ΓT from left, following can be obtained:

Ma(q)q̈a + Ca(q, q̇)q̇a + Ga(q) = ua, (2.37)
where 

Ma = ΓT MΓ
Ca = ΓT (CΓ + M Γ̇)
Ga = ΓT G

ua = ΓT Su

(2.38)

Using a similar technique that was used for deriving (2.31):

ua = MaJ−1
t,ds(ẍtd,ds − J̇t,dsq̇a) + Caq̇a + Ga, (2.39)

can be found where ẍtd,ds should be chosen as:

ẍtd,ds =

 KPG
(xCoM, des − xCoM) + KDG

(ẋCoM − ẋCoM)
KPG

(yCoM, des − yCoM) + KDG
(ẏCoM, slipsl − ẏCoM)

KPT
(θ5,des − θ5) + KDT

(−θ̇5)

 . (2.40)

However, only ua ∈ R3 can be obtained in this way which only has dimension 3. What
we need to control the robot is u ∈ R5. One way to calculate u is by using the relation
ua = ΓT Su given in (2.38) as:

18



u = S−1

W −1Γ(ΓT W −1Γ)−1︸ ︷︷ ︸
(ΓT )+W

ua

 , (2.41)

where (ΓT )+W is the weighted matrix inverse operation. W ∈ R5×5 matrix can be used to
penalize high input torques such as the ankle torque but we selected it as identity matrix
for this chapter.

Controllers for the single and double stance phases are thus derived. Another important
aspect of the controller in tracking the SLIP-SL trajectories is the switching of phases
at the correct moments. When the biped robot is in the double stance phase and the
tracked trajectory goes into single stance phase, controller switches to the single stance
phase controller and commands the robot to lift its foot so it too can switch to the proper
phase.

2.4 Simulation Results and Discussion
we will assess the performance of the designed controller in accurately tracking the reference
SLIP-SL trajectories and evaluate the suitability of the SLIP-SL model as a template for
walking. The mechanical parameters of the 5-link robot utilized in the study are presented
in Table 2.3, while the chosen gain values for the controller are listed in Table 2.2. The
torque limits on the motors are set at 200; [Nm] to ensure safe operation.

To determine the optimal gain values for the controller, we employed a particle swarm opti-
mization (PSO) algorithm [12]. While stable gaits were initially attainable through manual
tuning, the utilization of the PSO algorithm allowed for the achievement of improved walk-
ing efficiency by obtaining more refined controller parameters.

Through this simulation study, our objective is to validate the effectiveness of the designed
controller in accurately tracking the desired SLIP-SL trajectories. Additionally, we aim to
demonstrate the suitability of the SLIP-SL model as a viable template for achieving stable
and efficient walking behaviors within the 5-link robot system.

The simulations were implemented in MATLAB 2020b’s Simulink environment with ode45
solver and variable step settings (absolute tolerance was set to 1e-8).

Figure 2.8 shows the resulting CoM trajectory and trunk orientation the controlled system

Table 2.2: Control Parameters

KPG
: 54 KDG

: 9
KPsw : 82 KDsw : 8
KPT

: 36 KDT
: 4
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Table 2.3: 5 Link Model Parameters

l1 = l4 : 0.48 [m] l2 = l3 : 0.48 [m] l5 : 0.48 [m]
m1 = m4 : 5 [kg] m2 = m3 : 5 [kg] m5 : 60 [kg]

Ii = mil
2
i /12 [kg · m2], i = 1, 2, 3, 4, 5

when the proposed controller is used. Figure 2.9 shows the swing foot trajectories and Fig-
ure 2.10 shows the input torques for the same system. It can be seen that the proposed
controller does a good job in tracking the reference trajectories of the SLIP-SL template,
which were obtained in Section 2.2. The reference SLIP-SL trajectories for the swing foot
would not be available if a template such as the popular SLIP was used.

It can be seen in Table 2.2 that relatively low gains were chosen for this study. Tracking
performance can be increased by using larger gains but since this model is fully actuated
and has an ankle torque, zero moment point (ZMP) condition must also be checked. ZMP
criterion states that if the center of pressure moves to the toe (or to the “outside" of the
foot), foot would rotate and system would be under actuated [13]. For this trajectory, center
of pressure stays within a 30 [cm] foot.

Figure 2.11 shows snapshots of one step of the 5 link models gait. to check the stability of
the gait, Poincaré map approach was considered [11]. The dimensions of the Poincaré map
were selected as the θP = atan2(ẏCoM, ẋCoM), yCoM and total energy of the 5 link model E
at the vertical leg orientation (VLO). VLO happens when CoM of the 5 link model is at
the same horizontal position as the stance foot. VLO was chosen as the Poincaré section
because the horizontal position doesn’t need to be considered at this point. Poincaré sta-
bility criterion indicates that if the return map converges to a fixed point, a hybrid system
with impact effects can be considered periodic [11]. Poincare Map for the controlled 5 link
model is shown in Figure 2.12. It can be seen that the gait converges to a stable point in
the section after a couple of steps which indicates stability.

The CoT value for the reference SLIP-SL trajectory was 0.7520 and this value is 0.7745
for the controlled 5 link robot. Also, the average velocity of the SLIP-SL trajectory was
0.7080 [m/s] and this value was 0.6974 [m/s] for the controlled system. These values being
very similar between the reference and the controlled model also indicates the validity of
the proposed controller. Cost of transport being slightly higher is expected because the 5
linked model needs to keep its body upright but SLIP-SL doesn’t have this issue.

In this chapter, it was also shown that by using direct collocation optimization, various
SLIP-SL trajectories can be obtained (Figure 2.7) that resemble the walking gait. Cost of
transport tended to decrease when the average velocity of the gait was increased and step
length was not constrained but this kind of trajectories can be more demanding on the inputs
and they sometimes resulted in large ankle torques which was troubling for the ZMP crite-
rion. Also stiffness of the legs were limited to 15000 [Nm] ≤ k0,i ≤ 16000 [Nm], i ∈ {ds, ss}
to keep the CoM height within a certain range.
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Figure 2.8: Trajectory tracking results for CoM horizontal position, vertical position and
trunk orientation

This stiffness limits was chosen to have a similar height trends with [11] and [5] where k0 was
15696 [Nm]. It can be seen that k0,ss ̸= k0,ds for the given trajectories but it was possible
to find feasible trajectories with k0,ss = k0,ds, even with k0,ss = k0,ds = 15696 [Nm] but this
doesn’t really mean that linear leg springs were the same in single and double stance phase
since L0,ss ̸= L0,ds. The free length of the springs in the double stance phase was set to 1
[m] to be the same with [11] but L0,ss needs to be larger than this value to keep the CoM
high enough. If L0,ss was 1.0 [m], CoM would sag further than desired range in the single
stance phase.
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Figure 2.9: Trajectory tracking results for the swing foot

Figure 2.10: Motor torques
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Figure 2.11: Snapshots from a step of the 5 Link model

2.5 Conclusion
In this chapter, we have introduced a novel template model called SLIP-SL, which serves
as an extension to the well-established Spring-Loaded Inverted Pendulum (SLIP) model.
While the SLIP model is capable of generating reference trajectories for the center of mass
(CoM) that can mimic the two-phased walking observed in animals and humans, it lacks
the dynamics of the swing leg. Therefore, when utilizing the SLIP model as a template,
additional steps must be taken to obtain the reference trajectory for the swing foot, enabling
control of an actual robot.

Recognizing the importance of accounting for the swinging motion as a crucial aspect of
the walking gait, we have proposed the SLIP-SL model. This extension incorporates the
dynamics of the swing leg while maintaining the passivity of the original SLIP model. By
introducing swing leg dynamics into the SLIP-SL model, we provide a more comprehensive
representation of the walking process, allowing for a more accurate control of the actual
robot.

In order to achieve stable and cyclic walking with the passive SLIP-SL model, it is crucial
to determine the appropriate model parameters and initial conditions. We’ve demonstrated
that direct collocation methods are an effective approach for finding these parameters. This
step is significant due to the numerous parameters involved, and other exhaustive search
methods may not yield feasible results or convergence.

The application of direct collocation methods allows for the generation of diverse trajectories
with varying average velocities and center of mass (CoM) behaviors, all based on the same
underlying principles. This flexibility enables the exploration of different walking patterns
and behaviors for the SLIP-SL model.

To track the obtained reference trajectories we proposed a feedback linearization based con-
troller. Our simulation experiments shows that this controller can successfully guide a 5-link
biped robot to achieve a stable gait while adhering to the Zero Moment Point (ZMP) cri-
terion. These results further confirmed the suitability of the SLIP-SL model as a template
for walking robots.
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Figure 2.12: 2D section of the Poincaré Map where the numbers indicate the step number
(zoomed in version is shown in the right upper corner of the figure)

Overall, this research showcases the feasibility of using the SLIP-SL model to achieve stable
walking in bipedal robots, while also providing insights into the versatility and adaptability
of the SLIP-SL model for various walking patterns and behaviors.
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Chapter 3

Variable Stiffness Spring Loaded
Inverted Pendulum Model with
Swing Leg Dynamics (VSLIP-SL)

In Chapter 2, we’ve shown the effectiveness of the proposed SLIP-SL model. It was able
to simultaneously generate the center of mass (CoM) and swing leg trajectories that are
necessary components for controlling a bipedal robot model. This extended model is useful
but it still lack robustness against disturbances.

The ability of humans to adjust their leg stiffness to effectively mitigate disturbances has
been well-documented [14]. In an effort to capture this aspect of human locomotion, re-
searchers proposed an extension to the SLIP model known as Variable Leg Stiffness SLIP
(V-SLIP) in studies such as [15] and [16]. By incorporating variable leg stiffness into the
SLIP model, the V-SLIP model aimed to emulate the human capability to adapt leg stiffness
in response to disturbances. The proposed controller for the V-SLIP model demonstrated
its efficacy in successfully handling disturbances through the utilization of variable stiffness
responses.

However, it is important to acknowledge that the V-SLIP model, similar to the SLIP model,
does not consider the dynamics of the swing foot, which is a critical element in bipedal
gaits. The swing foot dynamics play a significant role in achieving stable and natural walk-
ing patterns. Thus, the inclusion of swing foot dynamics is crucial for developing more
comprehensive models of bipedal locomotion.

The objective of this chapter is twofold: firstly, to expand the V-SLIP model by incor-
porating swing leg dynamics, resulting in the development of a new model referred to as
VSLIP-SL (in other words, extend the SLIP-SL model to have variable stiffness). Secondly,
we will propose a controller for the higher-order bipedal robot model based on this extended
template. The bipedal robot model under consideration is a 5-link fully actuated system
devoid of compliant elements.

The primary challenge for the controller lies in translating the variable stiffness responses
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Figure 3.1: The main goal of this chapter is to reshape the dynamics of 5-link bipedal robot
model (on the right) so that it is as close as possible to the variable stiffness spring-loaded
inverted pendulum model with swing legs (VSLIP-SL, on the left)

obtained from the VSLIP-SL model into appropriate actuation torques for the bipedal robot.
To address this challenge, we propose a feedback linearization controller augmented with
an encoding-decoding scheme. This controller is intended to facilitate the mapping of the
variable stiffness characteristics of the VSLIP-SL model into effective torque inputs for the
actuators of the bipedal robot.

Through the integration of swing leg dynamics into the V-SLIP model and the design of
the proposed feedback linearization controller, we aim to enhance the capabilities of bipedal
robots in terms of achieving stable and robust walking patterns.

This chapter is organized as follows: Section 3.1 introduces the VSLIP-SL and 5-link bipedal
robot models, Section 3.2 introduces the proposed controllers and Section 3.3 presents the
simulation results.

3.1 Systems and Modeling
In this section, we will describe the variable stiffness spring loaded inverted pendulum model
with swing leg dynamics (VSLIP-SL) and the 5-link bipedal robot model and their dynamics.

3.1.1 VSLIP-SL Model
Like the human gait, VSLIP-SL’s walking consists of two phases: a single stance phase (SS)
where only one foot is in contact with the ground and a double stance phase (DS) where
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Figure 3.2: VSLIP-SL model in the double stance phase and the single stance phase

both legs are in contact with the ground.

The model is shown in the single stance phase configuration in Figure 3.1. In this phase,
it consists of three massed elements: a main point mass, a massed swing leg and another
point mass representing the swing foot. This model moves with the help of three springs.
The stance leg linear spring is connected to the ground and the vertical axis that passes
through the main mass, the torsional swing leg spring is connected between the main mass
and the swing leg, and the linear swing foot spring is connected between the swing leg and
the swing foot.

VSLIP-SL in the double stance phase is shown in Fig 3.2. Transition from single stance
phase to double stance phase happens when the swing foot touches the ground. This event
is called "the touch-down event". The position and the velocity of the center of mass (CoM)
is conserved during this transition. The model in the double stance phase is equivalent to
the traditional SLIP model. It consists of a single point mass representing the CoM and
two linear springs representing the legs. When the spring in the back reaches its free length,
lift-off event happens and the model goes back to the single stance phase. We assume that
we can control the stiffnesses of all the springs through the inputs ūss and ūds.

The dynamic model for the single support phase can be written as:

M (q̄)¨̄q + H (q̄, ˙̄q) = S̄ūss, (3.1)
where q̄ = [xM , yM , θ, r]T are the generalized coordinates, M (q̄) ∈ R4×4 is an inertia matrix,
H (q̄, ˙̄q) ∈ R4 is a Coriolis, centrifugal and gravity terms vector, ūss = [ū1, ū2, ū3]T ∈ R3

are the variable stiffness inputs that we have introduced for this study and S̄ ∈ R4×3 is the
appropriate mapping matrix for them.

The dynamic model for the double stance phase can be written as:
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Figure 3.3: 5-link fully actuated model. The inputs are indicated by the red arrows.

m

[¨̄xCoM
¨̄yCoM

]
− Fsw − Fst − mg = Būds, (3.2)

where m = mM + mswLeg + mswFoot is the total mass of the system, x̄CoM and ȳCoM are
the horizontal and vertical positions of the center of mass, g = [0, −9.81]T [m/s2] is the
gravitational acceleration, Fst is the force generated by the nominal stance leg spring and
Fsw is the force generated by the nominal swing leg spring. ūds = [ū4, ū5]T are the variable
stiffness terms for the double stance phase and B ∈ R2×2 is their mapping matrix.

A more detailed explanation for the SLIP-SL model (without the variable stiffness) can be
found in [17].

3.1.2 5-Link Bipedal Robot Model
The 5-link bipedal robot model used in this chapter can be seen in Figure 3.3. It has 5 links
which are connected with revolute joints. The model is constricted to the sagittal plane. It
has 5 actuators: 2 at the hip, 2 at the knees and 1 at the "ankle", meaning the system is
fully actuated. It is also a hybrid dynamical system; it switches between the single support
phase and the double support phase through the discrete touch-down and lift-off events.
This model is similar to the one used in [11] and in Chapter 2.
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The dynamic model of the 5-link model in the single stance phase can be written as:

M (q)q̈ + H(q, q̇) = Su (3.3)
where q = [θ1, θ2, θ3, θ4, θ5]T ∈ R5 are the generalized coordinates, M (q) ∈ R5×5 is the
inertia matrix, H(q, q̇) ∈ R5 is the Coriolis, centrifugal and gravitational terms vector,
S ∈ R5×5 is the distribution matrix of the inputs and u ∈ R5 are the input torques. The
description of the generalized coordinates and input torques can be seen in Figure 3.3.

When the swing foot touches the ground, a discrete collision event occurs and the model
goes to the double support phase. The generalized momentum of the model changes dis-
continuously. We model this by an impulsive impact force as:

M(q)∆q̇ = JT
c λimpact, (3.4)

where Jc ∈ R2×5 is a constraint Jacobian matrix that maps the joint velocities to the swing
foot velocity in horizontal and vertical directions. The generalized reaction forces in x and
y directions are indicated as λimpact = [λx

impact, λy
impact]T ∈ R2. Assuming that the impact is

inelastic, velocity of the swing foot touching the ground will become zero after the impact
which can be written as:

Jc(q)q̇+ = 0 ⇔ Jc(q)∆q̇ = −Jc(q)q̇−, (3.5)
where "−" indicates the moment just before the impact and "+" just after the impact. By
solving (3.4) and (3.5) for impact force, we can obtain:

λimpact = −(JcM
−1JT

c )−1Jcq̇
−. (3.6)

By inserting λimpact into (3.4), the generalized velocities just after the impact can be found
as:

q̇+ = (I − M−1JT
c (JcM

−1JT
c )−1Jc)q̇−, (3.7)

At the moment of impact, generalized velocities change discontinuously while position of
the model remains the same. However, we switch the definitions of the legs; after the
touch-down, the former swing leg becomes the stance leg and vice versa. This change in the
generalized coordinates can be formulated as:

x+ = fH(x−) (3.8)
where x = [qT , q̇T ]T .

To model the double stance phase, a constraint force λds = [λx
ds, λy

ds]T ∈ R2 is introduced
to keep the swing foot on the ground. With the non-slip assumption, double stance phase
dynamics can be written with the help of the constraint:

Jc(q)q̇ = 0. (3.9)
The dynamical model for the double stance phase can be written as:
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M (q)q̈ + H(q, q̇) = Su + JT
c λds. (3.10)

The constraint force λds can be obtained by taking the time derivative of equation (3.9)
and inserting it into (3.10) as follows:

λds = −(JcM
−1JT

c )−1(JcM
−1(Su − H) + J̇cq̇). (3.11)

One walking cycle is completed when the lift-off event happens at the end of the double
stance phase. This event occurs when the λy

ds > 0 condition is satisfied and the system goes
back to the single stance phase.

3.2 Control

3.2.1 VSLIP-SL Controller
Two different controllers will be designed for the two phases but the general idea remains the
same. In [15], a controller for the variable stiffness SLIP model was introduced. Controller
proposed in this section is an extension of this to our VSLIP-SL model.

For the single stance phase, let’s define the state as zss = [q̄T , ˙̄qT ]T . Then, we can write the
dynamics of the single stance phase given by equation (3.1) in the state space form as:

żss = fss(zss) + gss(zss)ūss, (3.12)
where gss = [g1, g2, g3] ∈ R8×3.

In the single stance phase, there are three springs and their stiffness can be controlled.
We want to control the vertical position of the main mass and the horizontal and vertical
positions of the swing foot. To achieve this, outputs should be chosen as:

Figure 3.4: Diagram of the 5-link bipedal robot controller based on the VSLIP-SL template
model
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h1 = yM − y∗
M(xM)

h2 = xsw − x∗
sw(xM)

h3 = ysw − y∗
sw(xM)

(3.13)

where the terms marked with "∗" are the reference trajectories.

To derive the controller, exact linearization via feedback for multi-input multi-output sys-
tems [18] will be used. Variable stiffness inputs for the single stance phase can be calculated
as:

ūss =

ū1
ū2
ū3

 = EA−1
ss


−L2

fssh1 − κdLfssh1 − κph1

−L2
fssh2 − κdLfssh2 − κph2

−L2
fssh3 − κdLfssh3 − κph3

 , (3.14)

Ass =

Lg1Lfssh1 Lg2Lfssh1 Lg3Lfssh1
Lg1Lfssh2 Lg2Lfssh2 Lg3Lfssh2
Lg1Lfssh3 Lg2Lfssh3 Lg3Lfssh3

 , (3.15)

where Lfhi, L2
fhi and Lgi

Lfhi denote the Lie-derivatives of the output functions along the
vector fields defined in (3.12) and κp, κd are constant controller gains. Ass matrix has
singularities when the swing leg and swing foot springs are at their free lengths (r = r0,
θ = θ0). This is why a regularization matrix E is needed. It is given by:

E =


1

ϵ1+1 0 0
0 1

ϵ2+1 0
0 0 1

ϵ3+1

 . (3.16)

The terms in the regularization matrix were chosen as ϵ1,2,3 = 10−7/det(Ass) in this study.
We follow the same procedure for the double stance phase. First, the state is defined as
zds = [xCoM, yCoM, ẋCoM, ẏCoM]T . Then, the dynamic equation (3.2) is written in the state
space form as:

żds = fds(zds) + gds(zds)ūds. (3.17)
where gds = [g4, g5]T ∈ R4×2.
In the double stance phase there are two variable stiffness springs, which means we have
two inputs. We want to control the vertical position and the horizontal velocity of CoM.
To achieve this, outputs should be chosen as:

h4 = yCoM − y∗
CoM(xCoM)

h5 = ẋCoM − ẋ∗
CoM(xCoM)

(3.18)

Again, by using the exact linearization via feedback, the controller for the double stance
phase can be found as:

ūds =
[
ū4
ū5

]
= A−1

ds

[
−L2

fds
h4 − κdLfdsh4 − κph4

−Lfdsh5 − κvh5

]
, (3.19)
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Ads =
[
Lg4Lfdsh4 Lg5Lfdsh4

Lg4h5 Lg5h5

]
. (3.20)

Note that the second row of Ads is different since h5 has a relative degree of 1 and h1, h2,
h3, h4 have relative degrees of 2. Ads does not have singularities when both spring legs are
in compression, which is already a necessary condition for a feasible SLIP-SL gait.

The reference trajectories, denoted as z∗
ss = [q̄∗, ˙̄q∗] and z∗

ds = [x∗
CoM, y∗

CoM, ẋ∗
CoM, ẏ∗

CoM], are
provided with an asterisk symbol to indicate that they represent the natural trajectories of
the SLIP-SL model, which do not involve any external inputs. These reference trajectories
are formulated as functions of xCoM, which increase monotonically, facilitating the compu-
tation of Lie derivatives.

In Visser et al.’s previous work [15], Fourier series expansion approximations were utilized to
generate reference terms based on numerical solutions of the template model. However, this
approach led to minor periodic deviations from the actual trajectory, even in the absence of
disturbances. In this chapter, we adopted a different approach. We directly incorporated
the numerical solution data obtained from the SLIP-SL model into the controller using
MATLAB’s symbolic toolbox, resulting in improved outcomes. For a detailed explanation
of the natural trajectory of the SLIP-SL model and its generation process, we refer readers
to [17].

3.2.2 5-Link Bipedal Robot Model Controller
The controller designed for the 5-link model faces the challenge of tracking the template
model while incorporating its variable stiffness responses. However, it is important to note
that the 5-link model does not possess any variable stiffness springs or compliant elements.
Controller diagram can be seen in Figure 3.4.

Given this constraint, the controller must utilize the available actuation torques effectively
to emulate the variable stiffness responses of the template model. This requires careful
design and coordination of the control inputs to approximate the desired variable stiffness
behavior. By appropriately modulating the torques applied to the joints of the 5-link model,
we aim to replicate the variable stiffness responses observed in the template model, thereby
achieving the desired walking patterns and behaviors.

For this purpose, we decided to use a joint trajectory tracking scheme via feedback lineariza-
tion. Feedback linearization was chosen because it is easy to implement and consistent with
the task. Keeping the equation of motion of the 5-link model in the single stance phase
(3.3) in mind, if we choose the inputs as:

u = S−1(Mq̈∗
ss + H), (3.21)

we can have q̈ = q̈∗
ss. Choosing
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q̈∗
ss =



θ̈∗
1 + Kp1(θ∗

1 − θ1) + Kd1(θ̇∗
1 − θ̇1)

θ̈∗
2 + Kp2(θ∗

2 − θ2) + Kd2(θ̇∗
2 − θ̇2)

θ̈∗
3 + Kp3(θ∗

3 − θ3) + Kd3(θ̇∗
3 − θ̇3)

θ̈∗
4 + Kp4(θ∗

4 − θ4) + Kd4(θ̇∗
4 − θ̇4)

θ̈∗
5 + Kp5(θ∗

5 − θ5) + Kd5(θ̇∗
5 − θ̇5)

 , (3.22)

will allow us to track the desired joint trajectories θ∗
i , θ̇∗

i and the inclusion of θ̈∗
i terms are

quite crucial since they will allow us to incorporate the variable stiffness responses that
the VSLIP-SL controller gives against disturbances. θ̈∗

i are calculated using the VSLIP-SL
dynamics (Equations (3.1) and (3.2)) and the decoder.

For the double stance phase, the controller needs to be modified. First, we will reduce the
order of the dynamical model since both legs are on the ground and are stationary. The
velocity of the hip can be calculated equivalently using the stance leg and swing leg gen.
coordinates as:

q̇hip = Jhip,sw(qsw)q̇sw = Jhip,st(qst)q̇st, (3.23)
where Jhip, i(qi) is the Jacobian matrix that maps q̇st = [θ̇1, θ̇2]T and q̇sw = [θ̇3, θ̇4]T to the
hip velocity. Equation (3.23) can be used to obtain:

q̇ =

J−1
hip,stJhip,sw 02×1

I2×2 02×1
01×2 1


︸ ︷︷ ︸

Γ(q)∈R5×3

[
q̇sw
θ̇5

]
︸ ︷︷ ︸

q̇a

. (3.24)

By taking the time derivative of (3.24), then substituting the resulting q̈ and q̇ terms into
(3.3) and multiplying with ΓT from the left, the following expression can be obtained:

Ma(q)q̈a + Ha(q, q̇) = ua, (3.25)
where Ma = ΓT MΓ, Ha = ΓT (M Γ̇q̇a + H) and ua = ΓT Su, is the reduced order model
for the double stance phase. If inputs are chosen as:

ua = Maq̈∗
dsHa, (3.26)

we can have qa = q̈ds. Choosing

q̈∗
ds =


θ̈∗

3 + Kp(θ∗
3 − θ3) + Kd(θ̇∗

3 − θ̇3)
θ̈∗

4 + Kp(θ∗
4 − θ4) + Kd(θ̇∗

4 − θ̇4)
θ̈∗

5 + Kp(θ∗
5 − θ5) + Kd(θ̇∗

5 − θ̇5)

 , (3.27)

will allow us to track the desired trajectories for θ3,4,5. To find the proper inputs corre-
sponding to the θ1,2, we can use the relation ua = ΓT Su:

u = S−1
(
(ΓT )+W ua

)
, (3.28)
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where (ΓT )+W = W −1Γ(ΓT W −1Γ)−1 is the weighted matrix pseudoinverse operation. W ∈
R5×5 matrix can be used to penalize high input torques such as the ankle torque but we
selected it as identity matrix for this chapter.

3.2.3 Encoder-Decoder
Now that we have defined the controllers for VSLIP-SL and the 5-link model, the remaining
problem is to connect them together. We will achieve this through the reference trajectories
indicated by "*" in equations (3.22) and (3.27).

In order to obtain θ̈∗
i , θ̇∗

i , θ∗
i terms from the reference VSLIP-SL trajectories and variable

stiffness responses ū, we first need to find the equivalent VSLIP-SL states for the 5-link
model at that instant. We will call this process “encoding".

For the single stance phase, this will be achieved by solving the

Fenc
x =


xCoM(q) − x̄CoM(q̄)
yCoM(q) − ȳCoM(q̄)

xsw(q) − x̄sw(q̄)
ysw(q) − ȳsw(q̄)

 = 0, (3.29)

set of equations to find appropriate q̄ = [xM, yM, θ, r]T values.

Then using the resulting q̄, we solve

Fenc
ẋ =


ẋCoM(q, q̇) − ˙̄xCoM(q̄, ˙̄q)
ẏCoM(q, q̇) − ˙̄yCoM(q̄, ˙̄q)

ẋsw(q, q̇) − ˙̄xsw(q̄, ˙̄q)
ẏsw(q, q̇) − ˙̄ysw(q̄, ˙̄q)

 = 0, (3.30)

for ˙̄q. Solving Fenc
x and Fenc

ẋ gives us the equivalent VSLIP-SL model to the current state
of the 5-link model. Using q̄ and ˙̄q, we can get the variable stiffness response ūss of the
VSLIP-SL controller (3.14).

For the double stance phase, we can directly use xCoM(q), yCoM(q), ẋCoM(q, q̇), ẏCoM(q, q̇)
values of the 5-link model because these are already the states of VSLIP-SL in double stance
phase. These can be used in (3.19) to obtain the ūds values.

Next step is obtaining the desired joint trajectories using these values. We call this process
“decoding". By solving the sets of nonlinear equations

Fdec
x =


x̄∗

CoM − xCoM(q∗)
ȳ∗

CoM − yCoM(q∗)
x̄∗

sw − xsw(q∗)
ȳ∗

sw − ysw(q∗)
θ∗

5 − π/2

 = 0, (3.31)
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Fdec
ẋ =



˙̄x∗
CoM − ẋCoM(q∗, q̇∗)

˙̄y∗
CoM − ẏCoM(q∗, q̇∗)
˙̄x∗

sw − ẋsw(q∗, q̇∗)
˙̄y∗
sw − ẏsw(q∗, q̇∗)

(θ̇5
∗)2

 = 0, (3.32)

Fdec
ẍ =



¨̄xCoM(q̄, ˙̄q, ūss,ds) − ẍCoM(q∗, q̇∗, q̈∗)
¨̄yCoM(q̄, ˙̄q, ūss,ds) − ÿCoM(q∗, q̇∗, q̈∗)

¨̄xsw(q̄, ˙̄q, ūss,ds) − ẍsw(q∗, q̇∗, q̈∗)
¨̄ysw(q̄, ˙̄q, ūss,ds) − ÿsw(q∗, q̇∗, q̈∗)

(q̈∗)T q̈∗

 = 0, (3.33)

consecutively, we can obtain the

q∗ = [θ∗
1, θ∗

2, θ∗
3, θ∗

4, θ∗
5]T , (3.34)

q̇∗ and q̈∗ to be used in the joint angle tracking controller for the 5-link model (3.21). In
the double stance phase, x̄∗

sw and ȳ∗
sw are set to the current position of the robot’s foot on

the ground and ˙̄x∗
sw, ˙̄y∗

sw, ¨̄xsw, ¨̄ysw are set to 0. The last row of (3.33) is to minimize the
control effort.

We use the fsolve function of Matlab with the "Levenberg-Marquardt" option for solving
sytems of nonlinear equations in this chapter.

3.3 Results and Discussion
In this sections, we share the simulation results for the proposed VSLIP-SL controller and
the 5-link model controller that is based on it. We conducted simulation studies in Matlab
SIMULINK environment with variable step ode45 solver with a max step size of 1e-3 and
an absolute tolerance of 1e-8.

3.3.1 VSLIP-SL Results
The parameters for the VSLIP-SL model and 5-link model are given in Table 3.1 and con-
troller parameters are given in Table 3.3.

Table 3.1: VSLIP-SL Parameters

5-Link Model
l1 = l4 : 0.55[m] l2 = l3 : 0.50[m] l5 : 0.30[m]

m1 = m4 : 4.75[kg] m2 = m3 : 5.25[kg] m5 : 60[kg]
Ii = mil

2
i /12[kg · m2], i = 1, 2, 3, 4, 5
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Figure 3.5: SLIP-SL trajectory tracking results when a disturbance force of Fdist = [50, 50]
[N] is applied between 2.0 secs and 2.1 secs

Table 3.2: 5-link Bipedal Robot Model Parameters

5-Link Model
l1 = l4 : 0.55[m] l2 = l3 : 0.50[m] l5 : 0.30[m]

m1 = m4 : 4.75[kg] m2 = m3 : 5.25[kg] m5 : 60[kg]
Ii = mil

2
i /12[kg · m2], i = 1, 2, 3, 4, 5

SLIP-SL was the original model with constant spring stifnesses. Figure 3.5 shows the tra-
jectory tracking results for the VSLIP-SL model when a disturbance force of Fdist = [50, 50]
[N] is applied between 2.0 secs and 2.1 secs. We can see that it can’t handle the external
disturbance and falls.

Figure 3.7 shows the trajectory tracking results and Figure 3.6 shows how the stiffness values
have changed for the VSLIP-SL model when a disturbance force of Fdist = [50, 50] [N] is
applied between 2.0 secs and 2.1 secs. We can see that it can recover after the external push
and converge back to its original trajectory.

3.3.2 5-link Bipedal Robot Results
The parameters for the 5-link model are given in Table 3.2 and controller parameters are
given in Table 3.3.
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Figure 3.6: VSLIP-SL spring stiffness changes when a disturbance force of Fdist = [50, 50]
[N] is applied between 2.0 secs and 2.1 secs

Figure 3.7: VSLIP-SL trajectory tracking results when a disturbance force of Fdist = [50, 50]
[N] is applied between 2.0 secs and 2.1 secs
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To test the robustness of the controller, a disturbance force of [−100, 0]T N is applied be-
tween 10.0 secs and 10.1 secs at the hip. The controller was able to handle the disturbance
and the 5-link model was able to continue its gait without falling.

Figure 3.8 shows the trajectory tracking results. We can see that the proposed controllers
performance in tracking the CoM and swing foot trajectory is quite good, even under the
effect of the disturbance. Inputs during this gait are given in Figure 3.10 and the snapshots
from it can be seen in Figure 3.9.

Cost of transport [5] for the reference SLIP-SL gait was 0.1907 with an average velocity
of 0.3061 [m/s]. The cost of transport for the 5-link model’s nominal trajectory using the
proposed controller is 0.3364 with an average velocity of 0.3116 [m/s]. A slightly higher
cost of transport is reasonable since SLIP-SL model does not have a body that it needs to
keep upright. We constrained the inputs to be between [−200, 200] [Nm]. The zero moment
point (ZMP) [2] stays within the virtual foot (ZMP remains in the [−0.10, 0.19] [m] region).
Average elapsed time for encoding is 3.3e-5 secs with a maximum of 1.9e-4 secs, and the
average elapsed time for decoding is 4.6e-4 secs with a maximum of 2.1e-3 secs.

Figure 3.11 shows the disturbance test results. We tested our controller with different
magnitudes of external forces shown on the figure (Fx and Fy). The area represent that the
bipedal robot was able to overcome that specific disturbance force. Left figure shows the
results when the VSLIP-SL controller is disabled i.e., set

θ̈∗
i = 0, (3.35)

in equations (3.22) and (3.27). Figure on the right shows the result of our proposed con-
troller. We can see that the area on the figure has significantly increased. This shows that
our proposed controller increases the robustness compared to the nominal controller.

Table 3.3: Controller Parameters

Kp1 = 835 Kd1 = 100 Kp2 = 370 Kd2 = 60
Kp3 = 445 Kd3 = 110 Kp4 = 550 Kd4 = 310
Kp5 = 375 Kd5 = 140 κp = 200 κd = 40 κv = 40
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Figure 3.8: Trajectory tracking results of the 5-link model. A disturbance force is applied
during the gray region

Figure 3.9: Snapshots from the 5-link model’s gait.
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Figure 3.10: Input torques of the 5-link model for tracking the VSLIP-SL trajectory.

(a) Without VSLIP-SL controller (b) With VSLIP-SL controller

Figure 3.11: Disturbance test results where a area represent that the biped robot was able
to overcome that external disturbance force
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3.4 Conclusion
In this chapter, we first added variable stiffness to SLIP-SL template model to make it
robust against disturbances. We called this new model VSLIP-SL. The significance of the
proposed model is that it can provide the reference CoM trajectory as well as the reference
swing foot trajectory while rejecting disturbances via its variable stiffness springs.

Subsequently, we proposed a controller for a 5-link fully actuated bipedal robot model,
which enabled the utilization of the variable stiffness responses from the VSLIP-SL model.
The main challenge lay in translating these variable stiffness responses into a model lacking
any compliant elements. To address this challenge, we introduced an encoder-decoder struc-
ture within the controller. This structure facilitated the mapping of the variable stiffness
responses to the actuation inputs of the 5-link robot model.

Through the implementation of the proposed controller, we successfully achieved the track-
ing of the reference SLIP-SL trajectories while effectively dealing with external disturbance
forces. This demonstrates the capability of the controller to leverage the variable stiffness
responses of the VSLIP-SL model, enabling the bipedal robot to exhibit robust and adaptive
walking behavior.
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Chapter 4

Effects of Passive Biarticular Muscles
on Walking Performance for Bipedal
Robots

Enhancing the efficiency of bipedal robots has been a continued focus in research, and
drawing inspiration from human anatomy has proven to be a valuable approach. While
the human locomotion system utilizes both monoarticular (acting on a single joint) and
biarticular (acting on multiple joints) muscles in a coordinated manner during walking, the
incorporation of biarticular muscles remains relatively unexplored in current legged robotics
applications.

Biarticular muscles play a significant role in human walking by providing mechanical ad-
vantages, energy optimization, and improved force transmission across multiple joints. By
exploiting the capabilities of biarticular muscles, bipedal robots have the potential to achieve
greater efficiency and performance, akin to their human counterparts.

Monoarticular muscles are connected to two links and can drive a single joint. On the other
hand, biarticular muscles are connected to two links separated by a third one and they can
drive two joints at the same time [19]. Biarticular muscles in the human leg are shown in a
simplified manner in Figure 4.1. Rectus Femoris (RF) and hamstrings (HA) are connected
between the upper body and the shank while gastrocnemius is connected between the thigh
and the foot.

Studies have highlighted the benefits of incorporating biarticular muscles into both robotic
and template walking systems. These studies have demonstrated the advantages of utilizing
biarticular muscles in various scenarios.

In the study conducted by Oh et al. [20], a two-link manipulator was used to compare the
performance of configurations with only monoarticular muscles versus configurations with
mono and biarticular muscles when performing the same task. The results showed that the
configuration with biarticular muscles required lower torques compared to the configuration
with only monoarticular muscles. This highlights the mechanical advantages provided by
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Figure 4.1: Simple human leg diagram showing the biarticular muscles

biarticular muscles, which can lead to improved energy efficiency and reduced torque re-
quirements in robotic systems.

Another study by Hosoda et al. [21] investigated the use of biarticular muscles in an
anthropomorphic jumping monopod with pneumatic actuators. They demonstrated that
biarticular muscles contribute to joint coordination during the jumping motion. They were
able to decouple trunk balancing and swinging tasks from the load carrying, allowing for
more efficient and controlled jumping performance. This decoupling was only made possible
because of the usage of series elastic actuated biarticular muscles.

Furthermore, the utilization of passive biarticular muscles for swing leg motion in a con-
ceptual walking model was demonstrated in the work by Sharbafi et al. [8]. This study
showcased the potential of biarticular muscles to realize the swinging motion of the leg,
further emphasizing their importance in achieving natural and coordinated walking gaits.

We’ve discussed the importance of the mechanical design of the biped robots. Another very
important component is the control method. It plays a crucial role in achieving stable and
efficient walking gaits. Researchers have explored various approaches to address the control
problem in bipedal locomotion.

In the study by Garofalo et al. [11], a simple template model called the bipedal spring-
loaded inverted pendulum (B-SLIP) was employed as a reference for generating a walking
gait. This template model provided a simplified representation of the walking dynamics,
and a feedback linearization controller was utilized to achieve stable walking. The feedback
linearization technique allowed for the translation of desired dynamics into control inputs,
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facilitating the tracking of the B-SLIP reference trajectories.

Another approach was presented in the work by Yano et al. [3], where an optimal trajec-
tory for a bipedal robot equipped with series elastic actuators was obtained using direct
collocation methods [9]. By formulating the trajectory optimization problem and employ-
ing direct collocation, an optimal trajectory that satisfies certain performance criteria was
derived. Subsequently, an input-output linearization control scheme was employed to track
this optimal trajectory, ensuring accurate trajectory following and stability.

Another important aspect for walking bipedal robots is the control method. There are a
variety of different approaches to this control problem. In [11], a simple template model
called bipedal spring loaded inverted pendulum was used as a reference to achieve a walk-
ing gait with the help of a feedback linearization controller. In [3], optimal trajectory of a
bipedal robot with series elastic actuators was found using direct collocation methods [9],
then this trajectory was tracked using input-output linearization control.

In this chapter, our focus was to examine the impact of passive biarticular muscles on the
performance of bipedal walking. To achieve this, we employed direct collocation optimiza-
tion methods to compare the performance of two models: the nominal model, which only
consists of monoarticular actuators, and the BA model, which incorporates passive biartic-
ular muscles (RF and HA).

We assessed the effects of passive biarticular muscles using three different criteria: walking
efficiency, walking speed, and minimum actuator torque requirements. By conducting anal-
yses, we aimed to determine the advantages and potential benefits of incorporating passive
biarticular muscles in bipedal locomotion.Furthermore, we employ optimization methods to
find suitable parameters for the biarticular springs for the criteria in question. We also aim
to provide a useful tool for determining optimal parameters for biarticular springs, further
improving the overall performance of the bipedal walking system.

Subsequently, we propose a controller that enables the achievement of a stable walking gait
with the bipedal robot model incorporating biarticular springs. The proposed controller
adopts a feedback-plus-feedforward structure, which facilitates the tracking of both the ref-
erence trajectories and the optimal inputs obtained through the optimization process. We
then test the performance of the proposed controller through simulation experiments.

This chapter is organized as follows: Section 4.1 deals with the modeling of the nominal and
BA models, in Section 4.2 simultaneous trajectory and parameter optimization methods are
explained and Section 4.3 introduces the proposed controller. Finally numerical simulation
results are presented and discussed in Section 4.4, followed by the conclusion in Section 4.5.
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Figure 4.2: Nominal Bipedal Robot Model

4.1 Systems and Modeling
In this section, dynamics of the nominal bipedal model and the model with passive biartic-
ular muscles (BA model) will be introduced.

4.1.1 Nominal model
The nominal robot model can be seen in Figure 4.2. This planar model consists of 5 links
which are connected to each other by revolute joints. It has five actuators, two at knees,
two at the hip and one on the “ankle". Dynamics of the nominal model can be written as

M (q)q̈ + C(q, q̇)q̇ + G(q) = Su, (4.1)
where q = [θ1, θ2, θ3, θ4, θ5]T ∈ R5 are the generalized coordinates, M(q) ∈ R5×5 is the
inertia matrix, C(q, q̇) ∈ R5×5 is the Coriolis and centrifugal terms matrix, G(q) ∈ R5 is
the gravitational terms, u ∈ R5 are the input torques and S ∈ R5×5 is the proper mapping
matrix for the inputs. States of this system will be denoted as:

x = [qT, q̇T]T. (4.2)
When the swing foot is above the ground, dynamics of the nominal model are described
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by Equation (4.1). When the swing foot eventually comes into contact with the ground, a
collision occurs. This collision results in a discontinuous change in the generalized coordi-
nates and velocities but the overall position of the model is not affected. The collision can
be modeled by assuming that an impulse force acts on the system at the moment of the
impact. The discontinuous change in the generalized momentum due to this impulse force
can be expressed as:

M (q)∆q̇ = JT
c λimpact, (4.3)

where Jc ∈ R2×5 is a constraint Jacobian matrix that maps the generalized velocities to the
swing foot velocity, λimpact ∈ R2 is the impulse force and ∆q̇ is the change in the generalized
velocities. Assuming that the impact is inelastic, velocity of the swing foot touching the
ground will become zero after the impact, which can be expressed as:

Jc(q)q̇+ = 0 ⇔ Jc(q)∆q̇ = −Jc(q)q̇−, (4.4)
where superscripts “−" expresses the moment just before the impact and “+" just after the
impact. By solving equations (4.3) and (4.4) together we can get:

q̇+ = (I − M−1JT
c (JcM

−1JT
c )−1Jc)q̇−, (4.5)

which gives the joint velocities after the impact. Definitions of the legs also change i.e. the
swing leg becomes the stance leg and vice versa.

Humans gait is two phased: a single stance phase and double stance phase. In the single
stance phase, only one foot is on the ground and the other foot is “swinging", whereas in the
double stance phase, both feet are in contact with the ground. In this chapter, we assume
an instantaneous double stance phase i.e. swing leg and stance leg switch instantaneously at
the moment of the impact and after the impact, swing leg lifts up from the ground without
interaction. The reset map that maps generalized coordinates just before the impact to
those just after the impact is given by:

x+ = fH(x−). (4.6)

4.1.2 Model with Biarticular Muscles (BA Model)
The model with passive biarticular muscles (springs) can be seen in Figure 4.3. This model
will also be referred to as the “BA model" for brevity. BA model is the same as the nominal
model but with the addition of lever arms attached to the torso and shank connected with
2 springs for each leg, representing rectus femoris (RF) and hamstrings (HA) muscles in
humans. rh and rk respectively represent the lever arm lengths of the hip and knee. We
will derive the torques resulting from RF and HA in the following parts.

Here, RF and HA are two unidirectional linear springs that can generate force only in one
direction and they have the same set points. New variables representing the hip and knee
angles (φst

h (q), φst
k (q), φsw

h (q), φsw
k (q)) are indicated in Figure 4.3. Then, the potential
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Figure 4.3: Model with biarticular muscles (BA Model)

energy stored in biarticular springs can be calculated in a similar manner to [22] as:

Un = 1
2κ∆l2

n, n ∈ {sw, st}, (4.7)

where κ [N/m] is the stiffness of biarticular springs and ∆ln represents the deflection in the
respective spring which can be calculated as:

∆ln = rh(φn
h − φh0) − rk(φn

k − φk0), n ∈ {sw, st}. (4.8)
Resulting generalized spring forces can be derived from the potential energy as:

τn = −∂Un

∂q
, n ∈ {sw, st},

where

τst =


0

−κ rk∆lst
0
0

−κ rh∆lst

 , τsw =


0
0

κ rh∆lsw
κ rk∆lsw

−κ rh∆lsw

 , (4.9)

We define the lever arm ratio as r = rh/rk which is dimensionless. r was introduced because
in the optimization section (Section 4.2), mechanical parameters of the biarticular muscles
will be optimized simultaneously with the robot trajectory. By introducing a dimensionless
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r, we can obtain a ratio rather than a dimension, which will be practical if an experimental
system were to be designed and the actual dimensions of the lever arms can be adjusted
with respect to the general mechanical design of the robot. We define new variables with
this new notation as:

κ̄ = κr2
k, ∆l i = ∆li

rk

. (4.10)

After proper manipulations, Equation (4.1.2) can be rewritten with the new variables as

τst =


0

−κ̄∆lst
0
0

−κ̄∆lstr

 , τsw =


0
0

κ̄∆lswr
κ̄∆lsw

−κ̄∆lswr

 . (4.11)

Finally, dynamics of the BA model can be written as:

M (q)q̈ + C(q, q̇)q̇ + G(q) = Su + τ (q), (4.12)
where q, M(q), C(q, q̇), G(q), u, S are the same as in Equation (4.1) and

τ (q) = τsw(q) + τst(q), (4.13)
represents the torques generated by biarticular springs RF and HA. The biarticular spring
configuration can be seen in Figure 4.4. Springs are installed in a parallel manner, there is
no additional freedom between the BA spool and the joint. In other words, relative degree
of this model is also 2, like the default model.
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202
Figure 4.4: Biarticular springs are used in "parallel" configuration

4.2 Optimization
In this section, optimization setup for comparing the walking performances of the nominal
and BA model will be described. Walking performance will be compared with regards to
three criteria: walking efficiency, walking speed and minimum input torque requirements.
The results will be presented in Section 4.4.

Optimal trajectories for the nominal and BA models will be found using direct collocation
methods [9] and these results will be used to compare their performances. Direct collocation
methods can be used to solve trajectory optimization problems. These methods discretize
the continuous time problem and turns it into a form which can be solved by commercial
nonlinear programming solvers. In this chapter, OpenOCL [10] was used to solve the tra-
jectory optimization problem.

Optimization problem can be formulated as

min
x,u,p,T

∫ T

0
J(x(t), u(t), p)dt

s.t. ẋ = f(x(t), u(t), p)
rk(x(µk), p) ≤ 0,

(4.14)

where t ∈ [0, T ] is the time, x(t) is the state trajectory, u are the inputs, p are the parame-
ters, J(x, p) is the path cost function, f(x, p) is the system dynamics function (differential
equation) and rk(x, p) is the grid-constraints function and k ∈ {1, ..., N} are the grid points
(collocation points).
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We used similar constraints as [3] where a similar optimization study was conducted where
a comparison was made between the nominal model and a model that uses series elastic
actuation (SEA). The constraints for the optimization are set as follows:

• Constraining the relative knee joint angles so that they don’t bend backwards and
gaits are human-like:

95◦ < θ2 − θ1 < 112.5◦

270◦ < θ4 − θ3 < 360◦ (4.15)

• Upper body must remain straight:

80◦ < θ5 < 90◦ (4.16)

• The angular velocity of motors must not be over the desired limit:

|θ̇i| < 10 [rad/s], i ∈ {1, 2, 3, 4, 5} (4.17)

• Zero moment point should remain inside a 35 cm “foot" during the walking:

−0.1 [m] < xzmp < 0.25 [m] (4.18)

• The step length of the robot is set to be

0.25 [m] : xhip(T ) − xhip(0) = 0.25 [m] (4.19)

• Swing foot must start on the ground, touch the ground at the end time and it should
be above the ground in the intermediate grid points (1 < k < N):

ysw(0) = 0 [m]//ysw(T ) = 0 [m] (4.20)

• In order to have a periodic trajectory, states after the collision must be the same as
the initial states:

x(0) = fH(x(T )) (4.21)

• Mechanical parameters of the biarticular springs were constrained as:

0.01 < r < 5
0 [Nm] < κ̄ < 2000 [Nm]. (4.22)

• To prevent the swing foot from dragging on the ground, a virtual obstacle is placed
(Figure 4.5):

(
xsw − dobs

wobs

)2

+
(

ysw

hobs

)2
≥ 1, (4.23)
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Figure 4.5: Virtual obstacle to be avoided during optimization

where xsw and ysw are horizontal and vertical positions of the swing foot, dobs = 0 [m]
is the horizontal position of the elliptic obstacle (from the stance foot), wobs = 0.1 [m]
and hobs = 0.02 [m] are width and height of the ellipse.

• Swing foot velocity should always be positive in the intermediate grid points. (This is
to avoid swinging of the foot backwards before swinging it forward to make gaits more
natural. Sometimes, optimal solutions did this and it looks like this kind of swing
requires less max. torque)

Number of the grid points was chosen as N = 12 and degree of interpolating polynomial
as d = 3 for the optimization. For the nominal model, variables to be optimized were
x, ẋ, T and u. As for the BA model, x, ẋ, T , u with the addition of r and κ̄ are the
optimization variables. In the following subsections, criterion functions and methodology of
optimization will be explained for minimizing the specific resistance (SR), maximizing the
average velocity, and finding minimum input requirements.

4.2.1 Minimizing the specific resistance (SR)
First performance criteria was the walking efficiency and we have chosen the specific resis-
tance (SR) as the cost function. SR can be calculated as:

SR := p

Mgv
, p = 1

T

∫ T

0

5∑
i=1

|uiωi|dx, (4.24)
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T [secs] is the end time of one step, M [kg] is the total weight, g [m/s2] is the gravitational
term, v [m/s] is the average speed, p [J/s] is average input energy, ui [Nm] is the input
torque and ωi = θ̇i [rad/s] is the joint angular velocity. Robot’s walking becomes more
efficient as the SR value becomes smaller.

4.2.2 Maximizing the average velocity
Second performance criteria is how fast the model can move under the same constraints, i.e.
the average velocity of one step. For this criterion, we’ve added an additional constraint
|ui| < 50 [Nm], i ∈ {1, ..., 5}, which is a constraint on the input torques.

4.2.3 Finding minimum input requirements
A model having less minimum torque requirements is desirable since it would allow the use
of cheaper and smaller motors. To find the minimum torque requirements, an additional
constraint was added (one step should be completed in exactly 0.8 seconds: T = 0.8 [sec]) so
that all the resulting trajectories have the same average velocity. Then, we begin by adding a
torque constraint (ui < 50 [Nm]) and this limit was decreased by 0.1 [Nm] increments until
it became unfeasible. In this study, a torque limit was considered unfeasible if OpenOCL
was not able to find a feasible trajectory within 30,000 iterations. This can mean that there
is no feasible solutions or the solver fails to find one in a reasonable computational time but
both can be considered as unfeasible in a practical sense.

4.3 Control
In this section, a controller will be introduced which can be used to achieve stable walking
gaits with a bipedal robot that has the mentioned biarticular muscles. We will propose a
feedback+feedforward control to track the optimal joint trajectories obtained in Section 4.2.
Feedback part of the controller will make sure that errors in the joint trajectories are com-
pensated and the feedforward part will allow us to use the optimal input torques that were
obtained during the optimization. A block diagram of this controller can be seen in Figure
4.6.

The feedforward part of the controller is given by:

uff(t) =
[
uopt

1 (t), uopt
2 (t), uopt

3 (t), uopt
4 (t), uopt

5 (t)
]T

, (4.25)

where uopt
i , i ∈ {1, 2, 3, 4, 5} are the optimal input values for the reference trajectory. The

feedback part is:
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Figure 4.6: Block diagram of the controller

ufb(t) =



KP,1(θopt
1 (t) − θ1) + KD,1(θ̇opt

1 (t) − θ̇1)
KP,2(θopt

2 (t) − θ2) + KD,2(θ̇opt
2 (t) − θ̇2)

KP,3(θopt
3 (t) − θ3) + KD,3(θ̇opt

3 (t) − θ̇3)
KP,4(θopt

4 (t) − θ4) + KD,4(θ̇opt
4 (t) − θ̇4)

KP,5(θopt
5 (t) − θ5) + KD,5(θ̇opt

5 (t) − θ̇5)


, (4.26)

where θopt
i and θ̇opt

i are the reference joint angles and velocities of the reference trajectory
(the method for obtaining these trajectories was described in Section 4.2) and t is the
time from the beginning of the current step (time since the last impact). Since the direct
collocation has only 12 grid points, we linearly interpolated the reference trajectory to obtain
the intermediate values. If the time of one step becomes longer than the reference trajectory,
final value of the reference was used. The total control values is obtained as:

u = uff + S−1ufb. (4.27)

4.4 Results and Discussion
In Section 4.2, optimization study where the walking performance of the nominal model
was compared with the performance of a model that has passive biarticular muscles was
described. Results of the described optimization with respect to three different criteria are
presented in Table 4.1. We used default metrics of success for the optimization with Open-
OCL which can be seen in its documentation [10]. In this table, resulting average velocities,
specific resistance values, max torques, and mechanical parameters for the BA springs can
be seen.

Table 4.1 shows that with the use of biarticular springs, walking efficiency can be increased
significantly under the same constraints. For the optimized trajectories, SR value of the
nominal model is 0.05 and it is 0.02 for the BA model. It is also interesting to note that
the BA model can walk more efficiently while also achieving a faster average velocity than
the nominal model.
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Table 4.1: Optimization Results

Nom. Model BA Model

Min.
SR

Avg. Vel. [m/s] 0.25 0.30
SR 0.05 0.02

Max. Torque [Nm] 34.54 37.86
r - 1.65
κ̄ - 63.87

Max.
Avg.
Vel.

Avg. Vel. [m/s] 0.95 1.35
SR 0.35 0.43

Max. Torque [Nm] 50 50
r - 3.93
κ̄ - 75.48

Min.
Input
Req.

Avg. Vel. [m/s] 0.31 0.31
SR 0.13 0.07

Input Req. [Nm] 13.9 4.6
r - 2.13
κ̄ - 32.85

Use of passive biarticular muscles also helped the bipedal model achieve faster walking aver-
age velocities for the second optimization criterion. The trajectory that the solver found for
the nominal model had an average velocity of 0.95 [m/s] and with the addition of biarticu-
lar springs, this value was increased to 1.35 [m/s] under the same maximum motor torques
constraints. However, reaching a larger average velocity value for the BA model came at
the price of a larger SR.

For the final criteria, BA model once again outperformed the nominal model significantly.
The minimum torque limit that the solver was able to find feasible solutions for the nom-
inal model was 13.9 [Nm] and for the BA model, this was much lower at 4.6 [Nm]. Both
trajectories had the same average velocities as per the added constraint. SR value for the
BA model is again lower for this criterion.

If we take a look at the resulting biarticular spring parameters, it can be seen that the stiff-
ness value for finding the minimum input torque requirement was the smallest. We believe
that this is because larger BA stiffness values require larger inputs to control, as can be
seen in the resulting values for minimizing SR criterion. In the first criteria, even tough the
SR value is smaller for the BA model, the maximum torque value is larger so that torques
generated by the BA springs can be controlled.

Then, we conducted a simulation study to test the performance of the controller that was
proposed in Section 4.3. For the reference trajectory, we chose the resulting trajectory of op-
timization with minimizing SR criterion. Simulations were performed in Matlab SIMULINK
environment with ode45 solver and variable step settings (absolute tolerance was set to 1e-8).
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Figure 4.7: Snapshots of one step (BA Model)

Table 4.2: 5 Link Model Parameters

l1 = l4 : 0.48[m] l2 = l3 : 0.48[m] l5 : 0.48[m]
m1 = m4 : 5[kg] m2 = m3 : 5[kg] m5 : 60[kg]

Ii = mil
2
i /12[kg · m2], i = 1, 2, 3, 4, 5

The mechanical parameters of the model are presented in Table 4.2. Mechanical parameters
of the biarticular muscles were chosen as r = 1.65, κ̄ = 63.87 which are the optimization
results for minimizing SR. rh = 0.02 [m] was chosen arbitrarily with regards to the overall
size of the model.

We have tested two versions of the controller. In the first version, we set KP,i = 550,
KD,i = 40, i ∈ {1, ..., 5} in (4.26). This version of the controller has only two gain variables
and it is easy to tune by hand. In the second version, there are ten different gain variables
and we tuned them using a simple particle swarm optimization [12] algorithm with SR as
the criterion function to be minimized. Resulting gain values are presented in Table 4.3.

Using the controller with two gain variables, a stable tracking can be achieved with SR =
0.04 and an average velocity of 0.29 [m/s]. This SR value is still lower than that of the
nominal model’s optimized trajectory with respect to SR, but not very close to the optimal
SR value of the BA model. When the controller with individual gains for each joint (Table

Table 4.3: Controller Parameters

KP,1 = 445.3 KD,1 = 17.7
KP,2 = 307.3 KD,2 = 34.0
KP,3 = 90.4 KD,3 = 12.0
KP,4 = 18.6 KD,4 = 1.4
KP,5 = 275.2 KD,5 = 26.6
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Figure 4.8: Trajectory tracking results for the joint angles (BA Model)

4.3) was used, we were able to obtain a stable walking gait with SR = 0.03 and an average
velocity of 0.29 [m/s]. This SR value is much closer to the optimal value of SR = 0.02
but still slightly larger. This difference might be due to reference trajectory having only 12
grid points and the intermediate values were obtained using linear interpolation. Fitting a
higher order polynomial to the reference trajectory or increasing the number of grid points
can improve the tracking performance but optimizing with larger number of grid points are
harder to solve.

Figure 4.7 shows snapshots of one step and Figure 4.8 shows the trajectories of each joint
when the controller gain variables are chosen as in Table 4.3. It can be seen that tracking
performance is quite satisfactory.

Stability of this trajectory was tested using Poincaré stability criterion. The axes of the
Poincaré map were selected as the θP = atan2(ẏCoM, ẋCoM), yCoM and total energy of the
5 link model E. Poincaré section was chose as the vertical leg orientation (VLO) point.
VLO is when CoM of the 5 link model is directly above the stance foot (xCoM = xstance foot).
VLO was chosen as the Poincaré section because the horizontal position doesn’t need to
be considered at this point. Poincaré stability criterion indicates that if the return map
converges to a fixed point, a hybrid system with impact effects can be considered periodic
[13]. A two dimensional section of the Poincaré Map of the trajectory where the proposed
controller is used can be seen in Figure 4.9 where the return map converges to a stable point.
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Figure 4.9: 2D section of the Poincaré Map where the numbers indicate the step numbers

4.5 Conclusion
In this chapter, we conducted an optimization study to assess the walking performance of a
fully-actuated 5-link planar bipedal walker with and without biarticular springs. The goal
was to compare the performance of these two models based on several criteria, including
walking efficiency, walking speed, and minimum input torque requirements.

Through our optimization analysis, we observed that the model employing biarticular
springs (referred to as the BA model) consistently outperformed the nominal model in
all investigated criteria. Specifically, the BA model exhibited superior walking efficiency,
allowing for more efficient energy utilization during locomotion. Moreover, the BA model
achieved higher walking speeds compared to the nominal model, indicating enhanced overall
performance.

Another noteworthy advantage of the BA model was the reduced minimum input torque re-
quirements. By incorporating biarticular springs, the BA model could effectively distribute
forces and leverage the mechanical advantages of biarticular muscles, resulting in a more
compact and economical design. This aspect is particularly significant as it enables the
utilization of smaller motors, leading to potential cost savings and improved efficiency in
practical applications.

Subsequently, we introduced a feedback-plus-feedforward controller to achieve stable walk-
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ing gaits with the bipedal robot model equipped with passive biarticular muscles (referred
to as the BA model). The objective of the proposed controller was to accurately track the
reference trajectories obtained in the optimization phase.

Overall, the proposed controller provided a comprehensive control strategy for achieving
stable and accurate walking gaits with the bipedal robot model incorporating passive biar-
ticular muscles. By successfully tracking the reference optimal trajectories and achieving
similar SR values to the them, the controller demonstrated its efficacy in enabling the robot
to achieve the desired walking behaviors and maintain stability throughout the locomotion
process.
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Chapter 5

Effects of Active Wobbling Mass on
Biped Robot’s Walking Performance
in Combination with Biarticular
Springs

Human walking is characterized by pronounced arm movement during walking and running
motions. However, many bipedal robots and walking models ignore the arm-swing. This
motion is usually symmetric and is in sync with the walking motion. Amplitude of the arm
swing changes with respect to the walking speed. Amplitudes become larger as the walking
speed increases [23].

Arm swing is an integral part of human bipedal gait, arising mostly from passive movements,
which are stabilized by active muscle control and arm swinging during normal bipedal gait
most likely serves to reduce energy expenditure [24]. In [25], researchers suppressed the arm
movements of human subjects and found out that walking energy expenditure was signifi-
cantly increased.

Addition of arms can be used to increase walking stability and speed but having multiple
degree of freedom actuators attached to the torso might significantly increase the weight
due to additional actuators and links and also it increases the complexity of the walking
controller. To overcome these issues, researchers have investigated using the similarity be-
tween swinging arms in humans and the up-and-down motions of a reaction mass (wobbling
mass) Figure 5.1.

Rome et al. have shown that walking performance of humans with a heavy backpack is
improved by up-and-down motions of the backpack using elastic elements [26]. Tanaka et
al. have shown increasing walking speed of a combined rimless wheel that can be achieved
by using up-and-down motions of a wobbling mass [27]. In [23], it was numerically and
mathematically shown that a controlled wobbling mass was able to increase the converged
walking speed of 3-link bipedal robot model with arc-feet. We investigated the effects of the
wobbling mass in combination with rotational inerters and series elastic actuators through
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Figure 5.1: Analogy of swinging arms and wobbling mass

trajectory optimization studies and found that energy consumption can be reduced by 30%
[28].

In this chapter, we will investigate the effects of adding a controlled wobbling mass to the
torso of a 5-link underactuated bipedal robot on walking speeds. This will be done through
trajectory optimization studies. In Chapter 4, we’ve shown that adding biarticular springs
to the bipedal walking robot can improve energy efficiency, walking speed and minimum
torque requirements. In this chapter, we prose that using biarticular springs in combination
with a wobbling mass could further improve the walking speeds of a biped walker.

5.1 Systems and Modeling

5.1.1 Wobbling Mass
The wobbling mass is modeled as a point mass that can move up-down inside the torso
of the bipedal robot via a linear actuator (leadscrew actuator etc.). The movement of the
mass in constrained within the torso. Arm swing movement can be represented with the
movement of the wobbling mass a shown in Figure 5.2. We will model the input that moves
the wobbling mass as force and this will be represented by the uwm [N] term where "wm"
subscript indicate the "wobbling mass".

5.1.2 Bipedal Robot Model
In this chapter, we will conduct the trajectory optimization studies on a 5-link underactu-
ated bipedal robot model. This model is considered to be point-footed, i.e. there is no ankle
torque. It has 2 actuators on the knees and 2 actuators on the hip where the revolute joints
are positioned. Also, there are springs connected in a biarticular configuration between the
torso and the lower legs same as in Chapter 4. We consider the model to be constrained to
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Figure 5.2: Human arm swing motions (left figures) versus the up and down motion of the
wobbling mass inside the bipedal robot torso (right figures)

Figure 5.3: Human arm swing motions (left figures) versus the up and down motion of the
wobbling mass inside the bipedal robot torso (right figures)
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Model No. Wobbling mass Biarticular Springs
1 NO NO
2 YES, LOCKED NO
3 YES NO
4 NO YES
5 YES, LOCKED YES
6 YES YES

Table 5.1: Different models compared in this chapter where Model 1 is the nominal model
and model 6 is the proposed model

the saggital plane.

We will compare the walking speed performance of 6 different models shown in Table 5.1.
These model are the combinations of including or no includings biarticular muscles, includ-
ing or not including the wobbling mass, and locking or not locking for the cases we include
the wobbling mass.

Equation of motion of this model with biarticular springs and wobbling mass can be written
as:

Mwm(qwm)q̈wm + Hwm(qwm, q̇wm) = Swmuwm + τwm(qwm), (5.1)
where

qwm = [qT, xwm]T ∈ R6, (5.2)
are the generalized coordinates and

q = [θ1, θ2, θ3, θ4, θ5]T, (5.3)
Mwm(qwm) ∈ R6×6 is the inertia matrix, Hwm(q, q̇) ∈ R6 is the Coriolis, centrifugal and
gravitational terms vector, Swm ∈ R6×5 is the distribution matrix of the inputs,

uwm = [uT, uwm]T ∈ R5, (5.4)
where

u = [u2, u3, u4, u5]T, (5.5)
are the inputs. u2,3,4,5 [Nm] are torques and uwm [N] is a force. τwm ∈ R6 represents the
torques generated by the biarticular springs. τwm can be expanded as:

τwm = B(τst + τsw), (5.6)
where subscripts “st" and "sw" respectively represent the "stance leg" which is the leg that
is in contact with the ground and the other leg called the "swing leg". B is that matrix that
maps the biarticular spring torques to the model with wobbling mass coordinates:
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B =


1 0

. . .
0 1
0 . . . 0

 ∈ R6×5. (5.7)

We calculate the biarticular spring torques in the same manner as [29] where the partial
derivative of the potential energy stored in the springs is taken with respect to the general-
ized coordinates, resulting in:

τst =


0

−κ rk∆lst
0
0

−κ rh∆lst

 , τsw =


0
0

κ rh∆lsw
κ rk∆lsw

−κ rh∆lsw

 , (5.8)

where κ [N/m] is the biarticular spring stiffness, rh [m] and rk [m] are the lever arm lengths
with subscripts "h" and "k" referring to "hip" and "knee".

∆ln = rh(φn
h − φh0) − rk(φn

k − φk0), n ∈ {sw, st}, (5.9)
are the deflection of the respective spring where.

φsw
h = θ5 − θ3
φsw

k = θ4
φst

h = θ5 − π
φst

k = π − θ2

. (5.10)

We introduce the lever arm ratio r = rh/rk, and new spring constant term κ̄ = κ r2
k and

deflection

∆l̄n = ∆ln
rk

, (5.11)

so that we can search for r and κ̄ [Nm] instead of the rh, rk and κ [N/m] during trajectory
optimization. Equation (5.8) can be rewritten using these new terms.

Equation (5.1) models the single stance phase (when one foot is on the ground and the other
is doing the swinging motion). When the swing foot contacts the ground (touch-down), an
impact occurs and model goes to a double stance phase where both foot are on the ground.
In this chapter, we assume an instantaneous double stance phase i.e. swing leg and stance
leg switch instantaneously at the moment of the impact and after the impact, swing leg lifts
up from the ground without interaction (lift-off). The reset map is given by:

x+ = fH(x−). (5.12)
where x ∈ {xnom, xwm}.
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Figure 5.4: State transition

Table 5.2: 5-link bipedal robot model with a wobbling mass mechanical parameters

l1 = l4 : 0.48 [m] l2 = l3 : 0.48 [m] l5 : 0.48 [m]
m1 = m4 : 5 [kg] m2 = m3 : 5 [kg] m5 : 60 [kg]

mwm = 5 [kg]
Ii = mil

2
i /12 [kg · m2], i = 1, 2, 3, 4, 5

xnom = [qT, q̇T]T
or

xwm = [qT
wm, q̇T

wm]T
(5.13)

depending on the model. During this event, position of the robot remains the same, only
the swing leg and stance leg are swapped but velocities change discontinuously [29]. State
transition diagram is shown in Figure 5.4.

Model whose dynamics described by Equation (5.1) corresponds to Model 6. Models with-
out biarticular muscles can be described by setting the spring stiffness value to zero (κ = 0).

Model 1’s (nominal model) dynamics are described by:

M(q)q̈ + H(q, q̇) = Su. (5.14)
For the locked wobbling mass models, we use the nominal modals equation of motion (Equa-
tion 5.14) but add the weight of the wobbling mass to the torso’s weight:

m5,wml = m5 + mwm, (5.15)
where subscript "wml" means "wobbling mass locked". We set the parameters for this model
as shown in Table 5.2. Biarticular spring stiffness κ [N/m] and lever arm ration r terms will
be obtained via the simultaneous trajectory and parameter optimizations.
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5.2 Simultaneous Trajectory and Parameter Opimiza-
tion

In this section, we will describe the optimization setup that was used in obtaining the ref-
erence trajectories for regular walking and stepping-down motions using direct collocation
method [9]. These methods turn the continuous time problem into discrete one which then
can be handled by nonlinear programming solvers. In this chapter, OpenOCL [10] was used
to solve the trajectory optimization problem.

For the nominal model or the wobbling mass locked model, optimization problem can be
formulated as:

min
x,uwm,p,T

∫ T

0
L(t, x(t), uwm(t), p)dt

s.t. ẋ = f(x(t), u(t), p)
r(x, t, p) ≤ 0,

(5.16)

where t ∈ [0, T ] is the time, x(t) is the state trajectory, u(t) are the inputs, p are the
parameters, L(x(t), uwm(t), p) is the path cost function, f(x(t), p) is the system dynamics
function (differential equation) and r(x, t, p) are the constraint functions.

The dynamic constraints and the inequality constraints are realized on grid points (colloca-
tion points). Number of the grid points was chosen as N = 12 and degree of interpolating
polynomial as d = 3 for the optimization.

The cost function was set to:

L(t) = T. (5.17)
in order to maximize the average walking speed under actuation torque constraints.

We determined a set of constrains so that resulting trajectory is a human-like walking gait:

• Constraining the relative knee joint angles to achieve human-like gaits:

5◦ < θ2 < 22.5◦

270◦ < θ4 < 345◦ (5.18)

• Upper body must remain straight:

80◦ < θ5 < 90◦ (5.19)

• The angular velocity of motors must not be over the desired limit:

|θ̇i| < 10 [rad/s], i ∈ {1, 2, 3, 4, 5} (5.20)
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• Center of mass of the robot should always be moving with positive velocity in the x
direction:

ẋCoM(t) > 0 [m/s] (5.21)

• Setting a lower bound for virtual stance leg angle α’s velocity to keep it monotonically
increasing (we set the lower bound to 0.3 [rad/s] rather than to 0 [rad/s] in order to
have some safety margin in the case of blind walking in rough terrain):

α̇ > 0.3 [rad/s] (5.22)

• The step length of the robot is set to be 0.25 [m]

• Swing foot related constraints: ysw(0) = ysw(T ) = 0 [m], ysw(0 < t < T ) > 0 [m],
ẏsw(T ) < −0.2 [m/s], ẋsw(T ) < 0 [m/s], ẋsw(t < T ) > 0 [m/s]

• The trajectory must be periodic: x(0) = fH(x(T )) (fH is the reset map in Equation
5.12)

• Mechanical parameters of the biarticular springs were constrained as:

0.01 ≤ r ≤ 5
0 [Nm] ≤ κ̄ ≤ 2000 [Nm] (5.23)

• Swing foot must avoid a virtual elliptic obstacle (prevents foot dragging and keeps to
swing leg from contacting the ground early on rough terrains):

(
xsw(t) − dobs

wobs

)2

+
(

ysw(t)
hobs

)2

≥ 1, (5.24)

where xsw and ysw are horizontal and vertical positions of the swing foot, dobs = 0 [m]
is the horizontal position of the elliptic obstacle (from the stance foot), wobs = 0.2 [m]
and hobs = 0.05 [m] are the width and height of the ellipse.

• Wobbling mass must stay withing the torso:

0 ≤ xwm ≤ l5 [m] (5.25)

• Constraining the input torques:

ui < 50 [Nm], i ∈ {2, 3, 4, 5} (5.26)

5.3 Results and Discussion
The trajectory optimization results are shown in Table 5.3 where specific resistance (SR) is
a walking efficiency term that is defined in more detail in [38]. Energy efficiency increases
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Model No. WM BA SR Avg.Vel. [m/s]
1 NO NO 0.62 0.71
2 LOCKED NO 0.44 0.69
3 YES NO 0.56 0.74
4 NO YES 0.41 1.03
5 LOCKED YES 0.38 0.95
6 YES YES 0.47 1.19

Table 5.3: Trajectory optimization results for maximizing average velocity

as SR becomes smaller. We can see that model that was able to move the fastest under the
same constrains was the one that utilizes the active wobbling mass and biarticular springs
together. This might indicate that arm swing plays an important role in achieving faster
walking speeds in human gait.

The fastest trajectory that moves the nominal model (nominal model doesn’t have biartic-
ular springs or a wobbling mass, Model #1) has converged at 0.71 [m/s] average walking
velocity. When we add a locked wobbling mass to the nominal model (Model #2), walking
speed decreased by 3.4 %. This is reasonable since the locked wobbling mass just increases
the total weight of the system which which makes it more difficult on the actuators that
have a maximum torque output of 50 [Nm].

When we add a wobbling mass that can move up and down to the nominal model, walking
speed increased to 0.74 [m/s], which is a 3.8 % increase. This shows that wobbling mass
can increase the walking speed by itself. However, this increase is much less than that was
found in Hanazawa et al. [23]. They were able to increase the walking speed of a 3-link
model from 0.59 [m/s] to 0.73 [m/s] which is a 23.7 % increase. However, they used a 2.5
[kg] wobbling mass for a 15 [kg] robot whereas we used a 5 [kg] wobbling mass for a 80 [kg]
robot. This might indicate that wobbling mass is more effective in increasing the walking
speed as its ratio to the robot mass is increases.

By adding only biarticular springs to the nominal model, walking speed increased by a
44.7 % to 1.03 [m/s]. Table 5.4 shows the biarticular spring parameters that the solver
outputs for corresponding trajectories. Again, just adding a locked wobbling mass reduced
the converged average velocity, however it is still faster than the nominal model. When we
use biarticular springs in combination with wobbling mass (Model #6), the top speed was
achieved at 1.19 [m/s]. This is a 66.9 % increase compared to the nominal model.

Now, let’s compare the performance between the model that have biarticular springs. By
adding wobbling mass, average walking velocity increased from 1.03 [m/s] for Model #3
to 1.19 [m/s] for Model #6. This is a 15.3 % increase. This increase was just 3.8 % for
the models without biarticular springs. It seems that wobbling mass is more effective in
increasing the walking speeds for systems that have compliant elements and/or biarticular
springs.
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Model No. κ̄ [Nm] r
4 247.96 2.07
5 204.13 2.02
6 332.02 2.17

Table 5.4: Biarticular muscle parameteres obtained from simulatenous trajectory and pa-
rameter optimizations

Figure 5.5: Resulting trajectories for Model #3

5.3.1 Resulting Trajectories
Figure 5.5 shows resulting trajectories resulting from the direct collocation optimization.
Figure 5.6 shows the inputs used to achieve these trajectories and Figure 5.7 shows some
snap-shots from the gait.

Figure 5.8 shows resulting trajectories resulting from the direct collocation optimization.
Figure 5.9 shows the inputs used to achieve these trajectories and Figure 5.10 shows some
snap-shots from the gait.
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Figure 5.6: Resulting inputs for Model #3

Figure 5.7: Resulting walking snap-shots for Model #3
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Figure 5.8: Resulting trajectories for Model #6

Figure 5.9: Resulting inputs for Model #6
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Figure 5.10: Resulting walking snap-shots for Model #6
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Chapter 6

Terrain-Blind Humanoid Walking on
Rough Terrain with Trajectory
Optimization and Biarticular Springs

Human gait is efficient and very robust but bipedal robots are yet to mimic this success.
One reason why bipedal robots have a hard time operating in real-world environments is
because of rough terrains such as gravel roads, farming fields, forests etc. This is why in this
chapter, we tried to improve the robustness of a 5-link underactuated bipedal robot when
it moves in unknown (blind walking) rough terrain via the addition of passive biarticular
muscles along with our proposed controller based on optimized trajectories.

Trajectory optimization techniques are commonly used for bipedal robots because they can
provide optimal or locally optimal gaits to the chosen cost functions. They are increasingly
gaining interest due to the improvements in computational power and commercially available
solvers that can handle constrained non-linear problems. In [30], non-linear programming
with basic splines was utilized to solve the trajectory optimization problem of a biped robot
with series elastic actuators by assuming a fixed-base model. In [31], a library of optimal
trajectories were used to achieve speed tracking in the 3D actuated robot ATRIAS. Opti-
mization code used to generate the trajectories that make up the gait library is explained in
[32] where they used direct transcription methods to utilize nonlinear programming solvers.

In [33], direct collocation methods were used to find an optimal trajectory for a template
model called spring-loaded inverted pendulum model with swing legs. Then the reference
trajectories from the resulting template model was used to control a 5-link fully actuated
robot. Studies mentioned above show the effectiveness of trajectory optimization methods
in achieving bipedal gait but they all assume the walking occurs on a flat surface and the
robustness of these methods are questionable.

One important factor of robustness for biped robots is their ability to walk over uneven
or rough terrain. There are many proposed controllers that tackle the walking on known
uneven terrain issue but the ability to overcome changes in ground height without perceiv-
ing the environment is still an open research problem. If a robot is able to walk on rough
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Figure 6.1: 5-link underactuated bipedal robot model where the inputs are indicated with
red arrows

terrain blindly, it would ease the burden on the controller of handling this issue and reduce
the problems caused by inaccurate perception. In [34], a one step adaptation strategy based
on an actuated dual-SLIP template model was proposed, so that humanoid robot can walk
on rough terrain without perceiving it for terrain variations of ±5 cm.

One way to tackle the robustness issue is to do it on a mechanical level, namely by adding
compliant elements. For example in [35], they found that the series elastic compliance has a
stronger impact compared to the parallel one. Also, it is indicated that a stiffer leg increases
efficiency but reduces the robustness.

However, compliant elements are usually implemented in monoarticular fashion or as series
elastic actuation. Monoarticular muscles are connected to two links and can drive a single
joint. On the other hand, biarticular muscles are connected to two links separated by a third
one and they can drive two joints at the same time [19]. There are studies that indicate the
benefits of these under-studied biarticular muscles.

In [36], the important contributions of biarticular muscles to trajectory control, stiffness
control, and output control that take place at the extremities were illustrated. In [37], it
is shown that the biarticular muscle mechanism they use in the robotic leg contributes to
improved force capacity in such a way that the total output performance is maintained while
individual actuator requirements are reduced. It was shown in [21] that biarticular muscles
contribute to muscle coordination when performing a jumping motion.
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We showed in a previous study that walking efficiency, walking speed and minimum input
torque requirements can be significantly improved by using passive biarticular muscles [29].
This study was conducted using trajectory optimization methods and it illustrated that
different stiffness values were needed for different optimization goals.

This chapter focuses on terrain-blind walking based on optimized trajectories of a 5-link
underactuated (point-footed) biped robot equipped with biarticular muscles. The primary
contributions of this chapter includes:

• Proposing a controller that can handle walking on a terrain with random height vari-
ations using reference trajectories without perception/sensing and validating it on
simulation experiments. We achieved this by using different reference trajectories for
walking and stepping-down.

• Investigating the effects of passive biarticular muscles on a bipedal robot’s ability to
walk in rough terrain and how different physical parameters of these biarticular springs
can effect the robustness.

This chapter is organized as follows. Section 6.1 describes the robot model. Section 6.2
describes the optimization setup that was used to obtain the reference trajectories. Section
6.3 describes the proposed controller and in Section 6.4 we present our results.

6.1 Systems and Modeling
In this section, we will describe the 5-link underactuated bipedal robot model used in this
chapter and our method of generating random rough terrains.

6.1.1 Bipedal Walker with Biarticular Spring
The robot model and the notations that are used to describe it can be seen in Figure 6.1.
This planar model consists of 5 links representing the lower leg, the upper leg and the torso.
Model is underactuated and point-footed (no ankle torque). It has 2 actuators on the knees
and 2 on the hip where the revolute joints are positioned. Also, there are springs connected
in a biarticular configuration between the torso and the lower legs.

Equation of motion of this model can be written as:

M(q)q̈ + H(q, q̇) = Su + τ(q), (6.1)
where q = [θ1, θ2, θ3, θ4, θ5]T ∈ R5 are the generalized coordinates, M(q) ∈ R5×5 is the
inertia matrix, H(q, q̇) ∈ R5 is the Coriolis, centrifugal and gravitational terms vector,
S ∈ R5×4 is the distribution matrix of the inputs, u = [u2, u3, u4, u5]T ∈ R4 are the input
torques and τ ∈ R5 represents the torques generated by the biarticular springs. τ can be
expanded as:
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τ = τst + τsw, (6.2)
where subscripts “st" and “sw" respectively represent the “stance leg" which is the leg that
is in contact with the ground and the other leg called the “swing leg".

We calculate the biarticular spring torques in the same manner as [29] where the partial
derivative of the potential energy stored in the springs is taken with respect to the general-
ized coordinates, resulting in:

τst =


0

−κ rk∆lst
0
0

−κ rh∆lst

 , τsw =


0
0

κ rh∆lsw
κ rk∆lsw

−κ rh∆lsw

 , (6.3)

where κ [N/m] is the biarticular spring stiffness, rh [m] and rk [m] are the lever arm lengths
with subscripts “h" and “k" referring to “hip" and “knee".

∆ln = rh(φn
h − φh0) − rk(φn

k − φk0), n ∈ {sw, st}, (6.4)
are the deflection of the respective spring. Terms related to biarticular springs are indicated
in Figure 4.3.

We introduce the lever arm ratio r = rh/rk, and new spring constant term κ̄ = κ r2
k and

deflection:

∆l̄n = ∆ln
rk

, (6.5)

so that in Section 6.2, we can search for r and κ̄ [Nm] instead of the rh, rk and κ [N/m].
Equation (6.3) can be rewritten using these new terms.

Equation (6.1) models the single stance phase (when one foot is on the ground and the other
is doing the swinging motion). When the swing foot contacts the ground (touch-down), an
impact occurs and model goes to a double stance phase where both foot are on the ground.
In this chapter, we assume an instantaneous double stance phase i.e. swing leg and stance
leg switch instantaneously at the moment of the impact and after the impact, swing leg lifts
up from the ground without interaction (lift-off). The reset map is given by:

x+ = fH(x−). (6.6)
where x = [qT, q̇T]T. During this event, position of the robot remains the same, only the
swing leg and stance leg are swapped but velocities change discontinuously [29].

In this chapter, we also compare the performance of our model with the default bipedal
model (model without the biarticular springs). Default model can be achieved by setting
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the spring stiffness values to zero in Equation 6.1. Throughout this chapter, the surface is
considered rigid with sufficient friction to allow the movement.

6.1.2 Walking on soft ground
We also wanted to test our proposed controller on "soft" ground. Many difficult terrains can
be not only non-even but also soft. To do this, we need to use "floating base" coordinate
system:

qf = [xst, yst, θ1, θ2, θ3, θ4, θ5]T ∈ R7 (6.7)
where xst and yst are the horizontal and vertical positions of the stance foot. Equation of
motion of the floating base system can be written as:

Mf(qf)q̈f + Hf(qf, q̇f) = Sfu + τf(qf) + JTλ, (6.8)
where J is the Jacobian matrix that maps the generalized coordinates to the stance foot
horizontal and vertical position and λ are the forces that act on the stance foot. Rest of
the terms are the modified versions of those described in Equation (6.1). Given

λ = [λx, λy]T, (6.9)
we set λx to be the constraint force that stops the foot from slipping in the horizontal
direction and the reaction force of the "soft" ground acts in the horizontal direction. We
modeled the soft ground force as:

λy = max(kground(yground − yst), 0) − dgroundẏst (6.10)
where kground is the stiffness and dground is the damping of the ground. yground is the ground
height and it is equal to 0 for the flat terrain and can vary for the rough terrain.
In section 6.1.1, the contact with the ground was modeled as inelastic collision, i.e. the
swing foot came to a stop instantaneously after the moment of impact. However, for the
soft ground model, impact is modeled as elastic.

6.1.3 Generating the rough terrain
We randomly generated rough terrains to test the performance of the proposed controller.
First, numbers between 0 and 1 were randomly generated for every 0.1 [m] interval of the
track length to generate a seed. Then the seed is multiplied with δ ∈ [0 : 0.001 : 0.1 [m]]
to set the maximum height of the terrain where δ = 0 [m] is the flat terrain. Some sample
terrains generated this way can be seen in Fig 6.2. We linearly interpolate for intermediary
points in the terrain.

By increasing δ we can monotonically increase the difficulty of a certain terrain seed. This
means that the controller will be able to handle the terrain with increasing δ. How the
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Figure 6.2: Sample of randomly generated rough terrains (δ = 0.05 [m])

terrain looks for different values of δ can be seen in Figure 6.3.

Figure 6.3: Effect of increasing δ on the terrain

77



6.2 Optimization
In this section, we will describe the optimization setup that was used in obtaining the ref-
erence trajectories for regular walking and stepping-down motions using direct collocation
method [9]. These methods turn the continuous time problem into discrete one which then
can be handled by nonlinear programming solvers. In this chapter, OpenOCL [10] was used
to solve the trajectory optimization problem.

Optimization problem can be formulated as

min
x,u,p,T

∫ T

0
L(x(t), u(t), p)dt

s.t. ẋ = f(x(t), u(t), p)
r(x, t, p) ≤ 0,

(6.11)

where t ∈ [0, T ] is the time, x(t) is the state trajectory as defined in Section 6.1.1, u(t) are
the inputs, p are the parameters, L(x(t), u(t), p) is the path cost function, f(x(t), p) is the
system dynamics function (differential equation) and r(x, t, p) are the constraint functions.
The dynamic constraints and the inequality constraints are realized on grid points (colloca-
tion points). Number of the grid points was chosen as N = 24 and degree of interpolating
polynomial as d = 3 for the optimization.

We want to obtain two different trajectories for walking on rough terrain. First one is called
the “walking trajectory" and this is the reference for our controller most of the time. This
would be the only trajectory needed if the gait was to be performed on an even terrain.
However, while walking on uneven terrain and when the robot reaches the end of the pro-
vided reference walking trajectory without managing to touch the ground due to terrain
roughness, we need an additional reference trajectory to safely land the robot. To address
this, we will also generate a “stepping-down" trajectory. If the next touch-down position is
higher than the ground level, “walking trajectory" can handle it to a certain degree.

Figure 6.4: Snap-shots of resulting walking trajectory and stepping-down trajectory where
red links are the stance leg and blue links are the swing leg
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The cost function for the walking and stepping-down trajectories are identical and set to

L(x(t), u(t), p) = u(t)Tu(t). (6.12)
For the two trajectories, we need to determine a set of constrains so that resulting trajectory
is a human-like walking gait. Some constraints for the two trajectories are different but the
common ones are:

• Constraining the relative knee joint angles to achieve human-like gaits: 5◦ < θ2 <
22.5◦, 270◦ < θ4 < 345◦

• Upper body must remain straight: 80◦ < θ5 < 90◦

• The angular velocity of motors must not be over the desired limit: |θ̇i| < 10 [rad/s], i ∈
{1, 2, 3, 4, 5}

• Center of mass of the robot should always be moving with positive velocity in the x
direction: ẋCoM(t) > 0 [m/s]

• Setting a lower bound for virtual stance leg angle α’s velocity to keep it monotonically
increasing (we set the lower bound to 0.3 [rad/s] rather than to 0 [rad/s] in order to
have some safety margin in the case of blind walking in rough terrain): α̇ > 0.3 [rad/s]

• The step length of the robot is set to be 0.25 [m]
Snap-shots from resulting walking and stepping-down trajectories are shown in Figure 6.4.

6.2.1 Walking Trajectory
The constraints for the walking trajectory are set as follows:

• Swing foot related constraints: ysw(0) = ysw(T ) = 0 [m], ysw(0 < t < T ) > 0 [m],
ẏsw(T ) < −0.2 [m/s], ẋsw(T ) < 0 [m/s], ẋsw(t < T ) > 0 [m/s]

• The trajectory must be periodic: x(0) = fH(x(T )) (fH is the reset map in Equation
6.6)

• Mechanical parameters of the biarticular springs were constrained as: 0.01 ≤ r ≤ 5
and 0 [Nm] ≤ κ̄ ≤ 2000 [Nm].

• Swing foot must avoid a virtual elliptic obstacle (prevents foot dragging and keeps to
swing leg from contacting the ground early on rough terrains):

(
xsw(t) − dobs

wobs

)2

+
(

ysw(t)
hobs

)2

≥ 1, (6.13)

where xsw and ysw are horizontal and vertical positions of the swing foot, dobs = 0 [m]
is the horizontal position of the elliptic obstacle (from the stance foot), wobs = 0.2 [m]
and hobs = 0.05 [m] are the width and height of the ellipse.

Optimization variables for this trajectory are x, ẋ, T , u, r and κ̄.

79



Figure 6.5: The controller diagram

6.2.2 Stepping-down Trajectory
The stepping-down trajectory takes over where the walking trajectory left off at t = T and
does a stepping down motion while trying to keep the step length the same. The constraints
for the stepping-down trajectory are set as follows (terms related to this trajectory are
indicated with Ĺ̂ notation):

• Stepping-down trajectory continues from the end point of the walking trajectory:
x̂(0) = x(T )

• Swing foot related constraints: −0.11 [m]≤ ŷsw(T̂ ) ≤ −0.1 [m], ˙̂ysw(T̂ ) < −0.2 [m/s],
˙̂xsw(T̂ ) < 0 [m/s]

This trajectory uses the same biarticular spring parameters obtained in “walking trajectory"
optimization and variables are x̂, ˙̂x, T̂ , û. Here we set the step down height to be about
10 cm which can be adjusted depending on the task or terrain.

6.3 Control
In this section, we will introduce a controller that can handle blind walking on uneven
terrain using the reference trajectories generated by direct collocation optimization. We
will use a feedback linearization scheme for trajectory tracking. The model has 5 degrees
of freedom but only 4 joints are controlled (point-foot model) resulting in underactuation.
Because of this, we will formulate all the reference trajectories as a function of the virtual
stance leg angle α as the phase variable (Figure 6.1) to stabilize the system. Phase variable
based implementations have been shown to be more robust compared to time based ones [31].

In the optimization part, α was constrained to be monotonically increasing. Reference tra-
jectories are indicated by the ∗ term where θ∗

i (α) is the reference joint angle and θ̇∗
i (α) is the

reference angular velocity for the ith joint. Since direct collocation just outputs the results
at collocation points, we linear interpolate for the in-between values.

The single stance phase ends when the swing foot contacts the ground (touch-down) and
begins when it ceases contact with it (lift-off). In this chapter, double stance phase is an
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instantaneous event as mentioned in Section 6.1.

Reference walking trajectory obtained in Section 6.2 is defined in α ∈ [α∗(0),α∗(T )] where
α∗(T ) is the virtual stance leg angle at the end of the trajectory where swing foot contacts
the ground. Using a predefined trajectory for walking on rough terrain is tricky because
reference is defined for a certain range of α. If the α is within the defined range in the
beginning of the single stance phase, reference walking trajectory can be used without any
modifications. However, the single stance phase could begin with a lift-off virtual stance leg
angle that is out of the defined range (αLO < α∗(0) or αLO > α∗(T )) because of the random
ground height. For the αLO < α∗(0) case, we use the modified α,

α̂ = α + aα + b

a = α∗(0) − αLO

αLO − αmerge ,

b = −aαmerge

(6.14)

for obtaining reference trajectories θ∗
i (α̂), θ̇∗

i (α̂). This makes sure α is in the defined range
and linearly merges to the original one at αmerge. αmerge was chosen as the middle colloca-
tion point (k = 12). If αLO > α∗(T ) at the beginning of the single stance phase, the gait is
considered to have failed.

Another difficulty that can occur when walking on rough terrain is when the robot reaches
the end of the reference walking trajectory but the expected touch-down condition (ysw ≤
yground) is not satisfied (α > α∗(T )). This is when the reference trajectory switches from
“walking" to “stepping-down" and just tries to reach the ground with the swing foot while
keeping the same step-length (and satisfying the other constraints).

A diagram of the controller can be seen in Figure 6.5. The reference trajectory generator
sends the appropriate robot configuration as the reference according to the current α. We
use feedback linearization to track actuated joint trajectories. Inputs can be chosen as:

u = (TM−1S)−1(v + TM−1(H − τ)), (6.15)
to linearize the system given in Equation (6.1) where T ∈ R4×5 is the task space matrix
that maps the generalized coordinates to the actuated ones and

v = Kpy + Kdẏ, (6.16)

y =


θ∗

2(α) − θ2
θ∗

3(α) − θ3
θ∗

4(α) − θ4
θ∗

5(α) − θ5

 . (6.17)

Kp and Kd are the proportional and derivative gains and are set to same values for each
actuated joint.
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Table 6.1: 5 Link Model Parameters

l1 = l4 : 0.48 [m] l2 = l3 : 0.48 [m] l5 : 0.48 [m]
m1 = m4 : 5 [kg] m2 = m3 : 5 [kg] m5 : 60 [kg]

Ii = mil
2
i /12 [kg · m2], i = 1, 2, 3, 4, 5

6.4 Results and Discussion
In this section, we will present the results when the trajectories obtained in Section 6.2 are
used in the controller proposed in Section 6.3 on the robot model described in Section 6.1,
where biarticular muscle parameters are set to those obtained by direct collocation optimiza-
tion. We also investigate the effects of different biarticular muscle parameter combination’s
effect on robustness.

Simulations were performed in Matlab SIMULINK environment with variable step ode45
solver, max step size of 1e-3 and an absolute tolerance of 1e-8. The physical parameters of
the robot are provided in Table 6.1.

6.4.1 Walking on flat terrain
Figure 6.6 shows the proposed controller’s performance on a flat terrain. We can see that
tracking performance is quite good for this under-actuated system. Gains were set to
Kp = 9700 and Kd = 220 for this simulation. As mentioned in Section 6.2, biarticular
spring parameters were also optimized as they were also set as optimization parameters.
We set them to resulting r = 1.8173 and κ̄ = 29.8220 [Nm] values for this gait. Average
velocity was 0.61 [m/s].

6.4.2 Walking on rough terrain
Now, we will present the performance of the controller when the 5-link model is set to walk
blindly (without any information of the terrain height changes) on the randomly gener-
ated terrains described in Section 6.1.3. Gains and the biarticular spring parameters are
kept the same as those mentioned in Section 6.4.1. Terrain difficulty was set to δ = 0.05 [m].

Figure 6.7 shows some snap shots from this gait. Trajectory tracking performance of the
proposed controller can be seen in Figure 6.8. Trajectory tracking performance is still quite
good considering the unknown terrain height changes the robot has to handle. It can be
seen that the duration of a single step is not constant anymore and depends on the terrain.
Figure 6.9 shows the trajectory of the virtual stance leg angle during this gait. In this figure,
it is easier to see that the duration of a step is not constant. Also, we can see that α can go
out of the reference trajectory bounds (shown by the dotted lines). When α goes above the
dotted line (α > α∗(T )), the controller switches the reference to stepping-down trajectory
and when α starts below the dotted line, the modification described in Equation 6.14 is
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Figure 6.6: Trajectory tracking results on flat terrain
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Figure 6.7: Snap-shots from walking on a rough terrain with δ = 0.05 [m] (Biarticular
muscles were not shown on this figure to reduce visual clutter)

triggered. Overall, we can see that the proposed controller can handle walking on random
rough terrain with good trajectory tracking performance. Average velocity was 0.442 [m/s]
for this gait.

6.4.3 Effect of biarticular muscle parameters on rough terrain
walking

We wanted to see the effect of different biarticular spring parameters on robustness, espe-
cially for the blind-walking on rough terrain case. In our model, biarticular springs have
two parameters that can be adjusted: the lever arm ratio r and spring constant κ̄.

Our metric of robustness is the maximum δ parameter the robot can handle, i.e. δ̄. We
introduced how the random rough terrain was generated in Section 6.1.3 and terrain diffi-
culty increased as δ parameter was increased. Figure 6.10 shows the resulting δ̄ values in
a 3D plot for combinations of r = [1, 1.2, 1.4, ..., 5] and κ̄ = [0, 5, 10, 15, ..., 200] [Nm]. For
each combination, we start with δ = 0 (flat terrain) and run the walking simulation. If the
robot is successful at walking in the terrain for 10 seconds without falling, it is considered
a successful walk and we increase δ by 0.001 [m] and run the simulation again. We do
this until the robot can’t handle the terrain difficulty anymore and the maximum δ value
it can handle is recorded as δ̄ and is shown in the figure. Figure 6.10 is the average result
of simulation experiments in 10 different random terrain (4 of them are shown in Figure 6.2).
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Figure 6.8: Trajectory tracking results on rough terrain with δ = 0.05 [m]

Figure 6.9: Virtual stance leg angle α when walking on rough terrain with δ = 0.05
[m]. The dotted lines show the upper and lower limits of the reference walking trajectory
α∗ ∈ [α∗(0),α∗(T )]
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Figure 6.10: Effects of different biarticular spring parameter combinations on robustness to
terrain difficulty. Vertical axis shows δ̄ which is the maximum terrain difficulty the model
with indicated parameter combination can handle. Larger δ̄ means it is more robust.

In Figure 6.10, κ̄ = 0 corresponds to a model without biarticular springs (we call this the
default model) where τ = 0 in Equation (6.1). We can see that by adding biarticular
springs, the robot can handle rougher terrains for some spring parameter combinations.
The maximum terrain roughness that the default model could handle was δ = 4.49 [cm]. It
can be seen that there are a lot of r and κ̄ combinations that can surpass this value and
make the system more robust for blind-walking on rough terrain. The maximum value was
reached with a parameter combination of r = 2.2, κ̄ = 105 [Nm], the robot was able to
handle a terrain with δ = 6.47 [cm] which is a 44.098% increase compared to the default
model. Figure 6.11 shows the same results for fixed r values in a 2D plot which is a bit
more easier to read.

These are the average values for walking on different random terrains. For one of the ter-
rains, robot was able to increase its δ̄ value from 0.0500 [m] for the default model to 0.0960
[m] by using biarticular muscles with r = 2, κ̄ = 130 [Nm] which is a 92% increase. The
smallest maximum increase for a single terrain was from δ̄ = 0.05 [m] for the default model
to δ̄ = 8.3 [cm] for the model with biarticular muscles which is a 66% increase. We can
see that adding biarticular springs always ended up increasing the robustness for different
random terrain. The reason for values for single terrains being larger than the average value
is that different biarticular spring parameter settings perform better for different terrain.
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Figure 6.11: This figure shows the same results presented in Figure 6.10 but for fixed r
values

However, we can also see that for larger r and κ̄ values, the robot can’t even walk on even
terrain (shown by the dark blue region in Figure 6.10). This is because the biarticular mus-
cles generate large torques that actuators can’t handle(there is a ± 200 [Nm] torque limit
on the actuators).

We have also investigated the efficiency of walking for different biarticular spring parameters
that was used in this chapter. Specific resistance (SR) [38]

SR := p

Mgv
, p = 1

T

∫ T

0

5∑
i=2

|uiωi|dx, (6.18)

was chosen as the efficiency indicator where T [secs] is the end time of one step, M [kg]
is the total weight of the robot, g [m/s2] is the gravitational term, v [m/s] is the average
speed and p [J/s] is the average input energy. A smaller SR value means that the gait
is more energy-efficient. When walking on flat ground, SR = 0.27 for the default model
(κ̄ = 0), SR = 0.18 for the BA model with spring parameters obtained from the optimiza-
tion (κ̄ = 29.82 [Nm], r = 1.82) and SR = 0.65 for the BA model with most robust spring
parameters (κ̄ = 105 [Nm], r = 2.2) values were obtained. This shows that for different cri-
terion, best pair of parameters are different. Biarticular muscles can increase the efficiency
as shown in [29] but if we want to make the robot more robust, some efficiency must be
sacrificed. Best way would be to adjust the parameters according to the environment and
the task. For example, κ̄ can be changed by introducing a stiffness adjustment mechanism
as in [39] and r can be adjusted by a variable radius mechanism as in [40].
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Figure 6.12: 1/SR values for different biarticular spring parameter combinations

6.4.4 Increasing terrain-blind walking and efficiency simultane-
ously

In Section 6.4.3, we only looked for the biarticular spring parameter combinations that in-
creased the robustness. Figure 6.12 shows 1/SR values for δ = 2.5 [cm]. If we compare this
with Figure 6.10, it can be seen that the "robust" regions doesn’t necessarily coincide with
the "efficient" region.

We can come up with a different criteria to increase robustness and efficiency simultaneously.
First, let’s define the normalized performance indicators as:

δ̄∗ = δ̄

δ̄(κ̄ = 0)
(6.19)

SR∗ = SR
SR(κ̄ = 0)) . (6.20)

Then, we can come up a criteria that makes sure both the efficiency and robustness is
increased the simultaneously compared to default model as:

min(δ̄∗ − 1,
1

SR∗ − 1). (6.21)

Figure 6.13 shows the combined criteria results. Max value of δ̄∗ = 1.42 was reached at
r = 2.2 and κ̄ = 105 [N/m] as per Section 6.4.3. Max value of 1/SR∗ = 1.18 is reached
where r = 2.2 and κ̄ = 15 [N/m]. Maximum value of the combined criteria is 49.18 e-3
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Figure 6.13: Results of the combined criteria given in Equation (6.21)

where r = 2.6 and κ̄ = 15 [N/m]. δ̄∗ = 1.05 and SR∗ = 1.15 at this point.

6.4.5 Walking on soft ground
We designed our controller for rigid uneven terrain but in real life, ground being soft can
cause a lot of problems too. We wanted to see if the proposed controller can handle the soft
ground case. Figure 6.14 shows the trajectory tracking results and Figure 6.15 shows the
stance foot trajectory when walking on soft but flat ground with kground = 90 [N/mm] and
dground = 10 [Ns/m] parameters. It can be seen that the proposed controller can handle soft
ground up to some degree. However, it can’t handle softer ground, for example when we
set kground = 60 [N/mm], we couldn’t achieve a stable gait. Additional modifications to the
controller might be necessary to increase the robustness for the soft ground case.
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Figure 6.14: Trajectory tracking results for soft ground walking where kground = 90 [N/mm]
and dground = 10 [Ns/m]
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Figure 6.15: Trajectory tracking results for soft ground walking where kground = 90 [N/mm]
and dground = 10 [Ns/m]

6.5 Conclusions
In this chapter, we proposed a controller that can use optimized trajectories to traverse
through rough terrain without perception/sensing. To achieve this, we used a reference
stepping-down trajectory in addition to the reference walking trajectory and also by mod-
ifying the phase variable (α) of the reference trajectories when necessary. We also showed
how we have obtained these trajectories using direct collocation trajectory optimization.
Through simulation experiments, it was shown that a 5-link underactuated biped robot
model was able to handle random rough terrain with height changes up to 4.49 cm on av-
erage.

Using this controller, we also investigated the effects of passive biarticular muscles on robust-
ness. It was shown that adding biarticular springs can significantly increase the performance
for terrain-blind walking on rough terrain. Model with biarticular muscles was able to han-
dle a terrain with 6.47 cm height change on average which is a significant increase compared
to the default model. We also investigated how different biarticular spring parameters effect
the robustness and found that adding biarticular muscles increased the robustness unless a
really stiff spring was chosen or lever arm ratio was set too high. Our study shows that a
spring constant of κ̄ = 105 [Nm] and lever arm ratio of r = 2.2 gave the best performance.

This study showed that biarticular springs in combination with our proposed controller
can handle terrain-blind walking. Being able to handle terrain variations without percep-
tion/sensing would truly ease the burden on the high level controller, computation times
would decrease and failures due to errors in perception could be mitigated.
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As a follow-up to this work, we would like to achieve a velocity tracking scheme with our
controller and work on improving the robustness. In [41], we showed that having variable
stiffness on a SLIP model can significantly increase the robustness against external pushes.
Now with this chapter, we showed that different biarticular muscle parameters may fare
better for different terrain and parameters that provide better robustness do not necessarily
provide the best walking efficiency. Also in another future study, we would like to see if
we can further improve the overall robustness and efficiency by having variable stiffness
biarticular muscles and adjustable lever-arm ratio via an adjustment mechanism and an
accompanying controller.
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Chapter 7

Walking Control of a 5-Link
Underactuated Bipedal Robot with
Variable Stiffness Biarticular Springs
Based VSLIP-SL

Including compliance is crucial for virtually every legged system with multiple moving parts.
It plays a vital role in ensuring reliability, inherent stability, safety, efficient energy uti-
lization, and adaptability to various environments. By incorporating compliance, legged
systems can enhance their overall performance and address key factors related to their de-
pendability and functionality [42].

Compliance is ubiquitous is biological lifeforms and most of them control the compliance of
their muscles to react to certain situations. Humans coactivate theis antagonistic muscles to
regulate their impedance [43]. Another study showed that humans learn to stabilize unsta-
ble dynamics using the skilful and energy-efficient strategy of selective control of impedance
geometry [44].

But is achieving a variable stiffness spring possible? One simple way this can be achieved is
by using the variable lever arm principle illustrated in Figure 7.1. The stiffness is adjusted
by adjusting the mechanical advantage of a lever arm. Researchers have developed a new
actuator with adjustable stiffness called AwAS [45]. This actuator can regulate the joint
stiffness through a wide range with minimum energy consumption by means of a small motor.

Another means of achieving variable stiffness is through the use of antagonistically arranged
pneumatic artificial muscles. In [46] they were able to control the position and stifness of
the ankle joint of an exoskeleton via this sort of actuators.

Biarticular springs were shown to improve a different key walking performance indicators
such as walking efficiency, walking speed, minimum torque requirements [29] and walking
on rough terrain [47]. Thus, we will try to combine biarticular springs with variable stiff-
ness control. We will focus on developing a controller that can respond to disturbances by

93



Figure 7.1: Analogy of swinging arms and wobbling mass

changing the stiffness of the legs and not focus on the design of compliant element whose
stiffness can be controller. We assume that we can control the stiffness value of the springs
without delay and without changing its free position.

In this chapter, we will devise a controller that controls the stiffnesses of biarticular springs
to make the biped walker robust against disturbances such as external pushes. This con-
troler will be based on the variable stiffness spring loaded inverted pendulum model with
swing leg dynamics (VSLIP-SL) [41]. This template model reacts to the deviations from
the originial trajectory by adjust its spring stiffness and we will convert these responses to
stiffness change in biarticular springs via a potential energy ratio scheme (Figure 7.2).
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Figure 7.2: Analogy of swinging arms and wobbling mass
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7.1 Systems and Modeling
The robot model and the notations that are used to describe it can be seen in Figure 7.2.
This planar model consists of 5 links representing the lower leg, the upper leg and the torso.
The model has 2 actuators on the knees and 2 on the hip where the revolute joints are po-
sitioned. There are springs connected in a biarticular configuration between the torso and
the lower legs. We assume that we can change the stiffnesses of these biarticular springs,
meaning we have 2 additional inputs, making this system over-actuated.

7.1.1 Single Stance Phase
Equation of motion of this model can be written as:

M(q)q̈ + H(q, q̇) = Su + τ (uba) , (7.1)
where,

q = [θ1, θ2, θ3, θ4, θ5]T ∈ R5, (7.2)
are the generalized coordinates, M(q) ∈ R5×5 is the inertia matrix, H(q, q̇) ∈ R5 is the
Coriolis, centrifugal and gravitational terms vector, S ∈ R5×4 is the distribution matrix of
the inputs,

u = [u2, u3, u4, u5]T ∈ R4, (7.3)
are the input torques [Nm] and τ (uba) ∈ R5 represents the torques [Nm] generated by the
biarticular springs where

uba =
[

ust
usw

]
, (7.4)

are the variable stiffness inputs [N/m]. τ can be expanded as:

τ (uba) = τst(ust) + τsw(usw), (7.5)
where subscripts “st" and “sw" respectively represent the “stance leg" which is the leg that
is in contact with the ground and the other leg called the “swing leg".

We calculate the biarticular spring torques in the same manner as [29] where the partial
derivative of the potential energy stored in the springs is taken with respect to the general-
ized coordinates, resulting in:

τst =


0

−(κ + ust) rk∆lst
0
0

−(κ + ust) rh∆lst

 , τsw =


0
0

(κ + usw) rh∆lsw
(κ + usw) rk∆lsw

−(κ + usw) rh∆lsw

 , (7.6)
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Figure 7.3: Phase transition graph for the variable stiffness BA model

where κ [N/m] is the biarticular spring stiffness, rh [m] and rk [m] are the lever arm lengths
with subscripts “h" and “k" referring to “hip" and “knee".

∆ln = rh(φn
h − φh0) − rk(φn

k − φk0), n ∈ {sw, st}, (7.7)
are the deflection of the respective spring. Biarticular springs angles can be calculated as:

φsw
h = θ5 − θ3
φsw

k = θ4
φst

h = θ5 − π
φst

k = π − θ2

. (7.8)

When the swing foot touches the ground in the single stance phase (the touch down event),
the model goes into the double support phase and when the swing foot lifts off from the
ground in the double support phase (the lift off event), the model goes back in to the single
support phase (Figure 7.3). When the swing leg hits/contacts the ground in the single
stance phase, a collision occurs where the generalized momentum of the system changes
discontinuously. One way to model this is to assume that an impulse force acts on the
system to change velocities discontinuosly while position of the system is not affected. This
can be expressed as:

M(q)∆q̇ = JT
c λimpact, (7.9)

where Jc ∈ R2×5 is a constraint Jacobian matrix that maps the joint velocities to swing
foot velocity in horizontal and vertical directions where generalized reaction forces in those
directions are given as λimpact ∈ R2. Assuming that the impact is inelastic, velocity of the
swing foot touching the ground will become zero after the impact which can be expressed
as:

Jc(q)q̇+ = 0 ⇔ Jc(q)∆q̇ = −Jc(q)q̇−, (7.10)
where superscripts − expresses the moment just before the impact and + just after the
impact. By solving equations (7.9) and (7.10) together to solve for λimpact we can get:

λimpact = −(JcM−1JT
c )−1Jcq̇−. (7.11)

By inserting λimpact into equation (7.9), we can obtain:

q̇+ = (I − M−1JT
c (JcM−1JT

c )−1Jc)q̇−, (7.12)
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which gives the joint velocities after the impact. Please note that after the impact, definitions
of the legs also change i.e. the swing leg becomes the stance leg and vice versa and the joint
angles and velocities are remapped accordingly. The reset map is given by:

x+ = fH(x−). (7.13)
where x = [qT, q̇T]T.

7.1.2 Double Stance Phase
After the touch down event, the swing leg becomes the stance leg and the previous stance
leg becomes the new swing leg. It is assumed that the new swing foot remains on the
ground without sliding until its vertical velocity becomes positive. This non-slip constraint
is achieved by introducing a constraint to the dynamic equation of the single stance phase
Equation (7.1):

Jc(q)q̇ = 0. (7.14)
This constraint keeps the swing foot on the ground while the model is in the double stance
phase but since the ground can only push the robot (it can’t pull), the vertical component
of this constraint force should always be positive, i.e. λy

DS > 0. The constraint term should
be added to equation of motion of single stance phase (Equation (7.1)) in order to obtain
equation of motion of double stance phase:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Su + τ (uba) + JT
c λDS. (7.15)

The constraint force λDS can be obtained by taking time derivative of equation (7.14) as:

Jcq̈ + J̇cq̇ = 0, (7.16)
and inserting it into (7.15) as follows:

λDS = −(JcM−1JT
c )−1(JcM−1(Su + τ (uba) − Cq̇ − G) + J̇cq̇). (7.17)

7.2 Control
In this section, we will introduce to two controllers that we have used to achieve bipedal
walking with variable stiffness biarticular springs. First controller is responsible for tracking
the reference joint trajectories while the variable stiffness controller helps it overcome the
deviations from trajetory. Figure 7.4 shows the controller diagram.

Reference joint trajectories and the variable stiffness controller is based on the varible stiff-
ness spring-loaded inverted pendulum (VSLIP-SL) model [41].
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Figure 7.4: Controller diagram for the variable stiffness BA model

7.2.1 Trajectory Tracking Controller
In this section, proposed controllers will be introduced for the 5-link bipedal robot model
with variable stiffness biarticular springs. Single stance phase controller uses the feedback
linearization control to track the reference joint angles obtained via an encoder-decoder
scheme similar to [41]. In the double stance phase, we’ve found that a simple PD controller
is enough to achieve a satisfactory tracking results.

7.2.1.1 Single stance phase

We use feedback linearization to track actuated joint trajectories. Inputs can be chosen as:

u = (TM−1S)−1(v + TM−1(H − τ (uba))), (7.18)
to linearize the system given in Equation (7.1) where T ∈ R4×5 is the task space matrix
that maps the generalized coordinates to the actuated ones and

v = Kpy + Kdẏ, (7.19)

y =


θ∗

2(α) − θ2
θ∗

3(α) − θ3
θ∗

4(α) − θ4
θ∗

5(α) − θ5

 . (7.20)

Kp and Kd are the proportional and derivative gains and are set to same values for each
actuated joint. Reference trajectories indicated by "*" superscript are obtained using the
Decoder 7.2.2.

7.2.1.2 Double stance phase

For the double stance phase, we use a simple PD controller. Since this phase is relatively
short, this controller works quite well.
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u = v, (7.21)
where v was given in Equation (7.19).

7.2.2 Encoder-Decoder
Now that we have defined the controllers for VSLIP-SL and the 5-link model, the remaining
problem is to connect them together. We will achieve this through the reference trajectories
indicated by * in Equation (7.20).

For the single stance phase, encoding will be done by solving the following for q̄ = [xM, yM, θ, r]T :

Fenc
x =


xCoM(q) − x̄CoM(q̄)
yCoM(q) − ȳCoM(q̄)

xsw(q) − x̄sw(q̄)
ysw(q) − ȳsw(q̄)

 = 0. (7.22)

Then using the resulting q̄ to solve

Fenc
ẋ =


ẋCoM(q, q̇) − ˙̄xCoM(q̄, ˙̄q)
ẏCoM(q, q̇) − ˙̄yCoM(q̄, ˙̄q)

ẋsw(q, q̇) − ˙̄xsw(q̄, ˙̄q)
ẏsw(q, q̇) − ˙̄ysw(q̄, ˙̄q)

 = 0, (7.23)

for ˙̄q. Solving Fenc
x and Fenc

ẋ gives us the equivalent VSLIP-SL model to the current state of
the 5-link model. Using q̄ and ˙̄q, we can get the response ūSS of the VSLIP-SL controller
given by Equation (3.14).

For the double stance phase, we can directly use xCoM(q), yCoM(q), ẋCoM(q, q̇), ẏCoM(q, q̇)
values of the 5-link model because these are already the states of VSLIP-SL in double stance
phase. These can be used as inputs to the VSLIP-SL controller given in Equation (3.19) to
obtain the ūDS values.

Next step is obtaining the desired joint trajectories using these values (decoding). By solving
the sets of nonlinear equations

Fdec
x =


x̄∗

CoM − xCoM(q∗)
ȳ∗

CoM − yCoM(q∗)
x̄∗

sw − xsw(q∗)
ȳ∗

sw − ysw(q∗)
θ∗

5 − π/2

 = 0, (7.24)

Fdec
ẋ =



˙̄x∗
CoM − ẋCoM(q∗, q̇∗)

˙̄y∗
CoM − ẏCoM(q∗, q̇∗)
˙̄x∗

sw − ẋsw(q∗, q̇∗)
˙̄y∗
sw − ẏsw(q∗, q̇∗)

(θ̇5
∗)2

 = 0, (7.25)
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consecutively, we can obtain the q∗ = [θ∗
1, θ∗

2, θ∗
3, θ∗

4, θ∗
5]T and q̇∗ to be used in the joint

angle tracking controller for the 5-link model (Equations (7.18) and (7.21)). In the dou-
ble stance phase, x̄∗

sw and ȳ∗
sw are set to the current position of the robot’s foot on the ground.

We use the fsolve function of Matlab with the "Levenberg-Marquardt" option for solving
sytems of nonlinear equations in this paper.

7.2.3 Variable Stiffness Controller
We can find the variable stiffness responses of the VSLIP-SL controller by using the outputs
of the encoder q̄ and ˙̄q. The task of the variable stiffness controller of the 5-link biped robot
is to convert these responses to stiffness changes of the stance and swing leg biarticular
springs. This will be done based on the potential energy change of VSLIP-SL.

VSLIP-SL has nominal stiffness values kstLeg, kswLeg, kswFoot and kDS. Given the current
state of the VSLIP-SL

q̄SS = [xM, yM, θ, r]T
or

q̄DS = [xCoM, yCoM]T
(7.26)

we can calculate the nominal potential energy stored in the springs. Nominal potential
energies for single stance phase are:

PEnom.
st, SS = 1

2kstLeg∆l2
st, SS (7.27)

PEnom.
sw, SS = 1

2kswLeg∆θ2 + 1
2kswFoot∆r2 (7.28)

where ∆lst, SS, ∆θ and ∆r are the deflections in the respective springs.

Nominal potential energies for double stance phase are:

PEnom.
st, DS = 1

2kDS∆l2
st, DS (7.29)

PEnom.
sw, DS = 1

2kDS∆l2
sw, DS (7.30)

where ∆lsw, DS and ∆lsw, DS are the deflections in the respective springs.

We can calculate the potential energy stored in the variable springs in the VSLIP-SL in a
similar manner. Potential energies stored in the variable stiffness springs for single stance
phase are:

PEvar.
st, SS = 1

2(kstLeg + ū1)∆l2
st, SS (7.31)
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PEvar.
sw, SS = 1

2(kswLeg + ū2)∆θ2 + 1
2(kswFoot + ū3)∆r2 (7.32)

where ∆lst, SS, ∆θ and ∆r are the deflections in the respective springs.

Nominal potential energies for double stance phase are:

PEvar.
st, DS = 1

2(kDS + ū4)∆l2
st, DS (7.33)

PEvar.
sw, DS = 1

2(kDS + ū5)∆l2
sw, DS (7.34)

where ∆lsw, DS and ∆lsw, DS are the deflections in the respective springs.

We can then obtain the ratio between the potential energy stored in the legs with nominal
stiffnesses and variable stiffnesses:

pi = PEvar.
i

PEnom.
i

, i ∈ {st, sw}. (7.35)

This gives an idea of the VSLIP-SL’s control effort. p > 1 means that the respective springs
became more stiff and p < 1 means the controller made them more compliant. We can use
this ratio to adjust our biarticular spring stiffnesses by simply using:

ui = C pi κ, i ∈ {st, sw} (7.36)
where C is a “reduction" constant. We need this because VSLIP-SL can only respond to
external pushed via its variable stiffness responses, whereas the biped model can respond
via changing its biarticular spring stiffnesss values and by its actuators that input torque
to the system. Because the 5-link model has additional actuators and controller, we reduce
the variable stiffness response using this ratio. We set C = 0.5 in this study.

7.3 Simulation Results
We simulated walking using the proposed controller on MATLAB/Simulink. The model
parameters are shown in Table 7.1. Controller gains were set as:

Kp = 1000, Kd = 75 (7.37)

Table 7.1: 5 Link Model Parameters

l1 = l4 : 0.48 [m] l2 = l3 : 0.48 [m] l5 : 0.48 [m]
m1 = m4 : 5 [kg] m2 = m3 : 5 [kg] m5 : 60 [kg]

Ii = mil
2
i /12 [kg · m2], i = 1, 2, 3, 4, 5

κ = 75 [N/mm], r = 2
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Figure 7.5: Trajectory tracking, no disturbance

Figure 7.5 shows the trajectory tracking results, Figure 7.6 input motor torques and Figure
7.7 how the controller adjusted the biarticular spring stiffnesses during the gait when there
is no disturbance.

Then, we tried pushin the system with an impulse disturbance force of Fdist. = [−100, 0] [N]
at 10 second mark. Figure 7.5 shows the trajectory tracking results, Figure 7.6 input motor
torques and Figure 7.7 how the controller adjusted the biarticular spring stiffnesses during
the gait for the case with disturbance.

We can see that the controller can overcome the disturbance and keep the robot walking.
Note that the walking fails when we disable the variable stiffness controller for Fdist.=[−100,0]
[N] at 10 second mark which shows the effectiveness of the controller.
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Figure 7.6: Motor torque inputs, no disturbance

Figure 7.7: Biarticular muscle stiffness changes, no disturbance
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Figure 7.8: Trajectory tracking with Fdist. = [−100, 0] [N] at 10 second mark disturbance

Figure 7.9: Motor torque inputs with Fdist. = [−100, 0] [N] at 10 second mark
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Figure 7.10: Biarticular muscle stiffness changes with Fdist. = [−100, 0] [N] at 10 second
mark
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Chapter 8

Conclusion on Future Prospects

This work focused on improving the walking performance and robustness of biped walking
robots. Various nonlinear control techniques, trajectory optimization techniques were em-
ployed throughout the thesis and their effectiveness was shown via simulations.

Spring-loaded inverted pendulum (SLIP) model is a well-known model in the field that can
mimic the walking gait of an human. This simple model can be used as a base to achieve
walking in bipedal robots but it lacks swing leg dynamics. In Chapter 2, we extend the SLIP
model with swing leg dynamics while keeping its passive nature via our proposed spring-
loaded inverted pendulum model with swing leg dynamics (SLIP-SL). We also show that
this model can be used to control a 5-link fully actuated model via our propsed feedback
linearization controller.

We further extend the SLIP-SL model by adding variable stiffness capability and an accom-
panying controller. This makes the template model robust against disturbances. Our idea
is that if we make the template robust, the bipedal robot model that uses it in its controller
will be more robust too. We then propose a controller that can embed the variable input
responses in its actuator torques.

In Chapter 4, we investigate the effects of adding compliant elements in biarticular con-
figuration to a 5-link bipedal robot model. We ran some trajectory optimization studies
for various criteria. Results show that adding passive biarticular muscles improves the per-
formance for all tested criteria, namely energy efficiency, maximum average velocity and
in reducing motor torque requirements. We also propose a controller that can track the
trajectories obtained in the optimization step. This controller can be used to reach a stable
walking in a 5-link fully actuated bipedal robot model while having similar specific resis-
tance values to the optimal trajectory.

In 5, we show that a active wobbling mass in torso when used in combination with the
passive biarticular muscles can increase the maximum average walking speed of a 5-link
point foot (underactuated) biped walking robot.

In 6, we propose method that enable a 5-link biped walker to walk on rough terrain without
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any cameras or sensors that perceive the environment (terrain-blind walking). The pro-
posed controller enables the biped robot to walk on terrains with up to 4.49 cm terrain
height changes. We show that by adding biarticular muscles and tuning the stiffness and
lever arm ratios properly, the height changes that the biped robot can handle is increased
to 6.47 cm.

Finally, in Chapter 7 we assume a 5-link underactuated biped robot with variable stiffness
biarticular springs. We propose a controller that can track the reference trajectories from
the VSLIP-SL model while also mapping its variable stiffness responses to the biarticular
spring stiffnesses. We show that the proposed controller can have the model reach a stable
gait and can overcome external pushes.

As future work, we would like to investigate the effects of walking on soft-ground such as
agricultural fields. We would like to see if the wobbling mass can improve terrain-blind
walking performance. As this study usually investigated the steady-state walking gait, a
robust and efficient control methods should be investigated where the robot can transition
from standing-walking-running modes in a smooth manner. Finally, we would like the test
the proposed methods on an real-life bipedal robot.
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