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Dr. Stéphane Popinet of Sorbonne University for welcoming and hosting me in France

during my visiting research. I appreciate Liang Huang and Shaojie Wang for guiding me

during my internship at AMD. I also appreciate Dr. Xinxin Zhang, Dr. Xinlei Wang and

Shuliang Lu of ZenusTech for leading me into the fascinating field of computer graphics.

I want to give my special thanks to my girlfriend Wenyi Liu for coming to Japan to

accompany the study and life with each other. Thank you for giving me courage and

emotional support when I am depressed. Last but not least, I want to express my pro-

found gratitude to my parents. Thank you so much for raising me up and supporting me

spiritually in my life. During the years of studying abroad, thank you for bringing me

strength and for the financial support.



ii

This research was partly supported by a Grant-in-Aid for Scientific Research (S)

19H05613, from the Japan Society for the Promotion of Science (JSPS), and Joint Us-

age/Research Center for Interdisciplinary Large-scale Information Infrastructures (JH-

PCN), jh200018 and jh210013, and High Performance Computing Infrastructure (HPCI)

hp210129 projects, and JST SPRING, grant number JPMJSP2106. I thank the Global

Scientific Information and Computing Center, Tokyo Institute of Technology for use of

the computing resources of the TSUBAME 3.0 supercomputer and the Information Tech-

nology Center of Nagoya University for use of the computing resources of the Flow Type

II supercomputer.



iii

Abstract

In order to make the best use of the increasing computing performance of modern

processors, new demand on scalability is put forward for the numerical methods. In the

simulation of incompressible flow, the implicit Poisson solver usually accounts for a large

proportion of execution time, this fact motivates researchers to turn attention to explicit

methods for nearly incompressible flow at low Mach number. This thesis is devoted to

studying weakly compressible flow simulation for violent two-phase flows with high den-

sity ratio.

At first, an evolving pressure projection method for numerical computation of the

weakly compressible Navier-Stokes equations is proposed. Fully explicit time integration

is achieved using an independent pressure evolution equation. To damp the acoustic

wave in a weakly compressible fluid flow, the pressure evolution equation is iteratively

computed coupled with a projection step. By introducing the phase field model for in-

terface capturing, this solver can be directly applied to two-phase flow simulations using

a one-fluid model. Exact mass conservation is ensured by a finite-volume formulation of

the conservative phase field equation. The accuracy of present method is validated by

various two-phase flow benchmarks.

Then, a consistent and conservative formulation for mass and momentum transport

is proposed in the context of simulating incompressible two-phase flows by using weakly

compressible method. Coupled with the volume of fluid method for capturing interfaces,

the mass and momentum fluxes are evaluated in a consistent manner using the finite vol-

ume method. In addition, a special implementation of the pressure projection is devised

to avoid velocity-pressure decoupling on a collocated grid. The momentum conserving

property of the solver is demonstrated by solving realistic two-phase flow problems, in-

cluding the dam break and the liquid jet simulations.

Finally, to address the demand for high-performance large-scale simulation of two-

phase flows, the scalability and performance of two conservative weakly compressible

solvers on the multi-GPU cluster are evaluated. High-fidelity numerical results of milk

crown, dam break and jet atomization are produced. Spatially sparse data structures

including adaptive mesh refinement and spatial hash based sparse grid are implemented

on GPU to minimize the need for computing resources.
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Chapter 1

Introduction

1.1 Background

Derived from the continuity and conservation of mass, momentum and energy, the

Navier-Stokes equations are one of the predominant theories to describe the motion of

fluids. When a constant density is introduced through the incompressibility assumption,

the continuity equation of fluid becomes that the divergence of the flow velocity is zero.

The pressure gradient term in the momentum equation is merely a multiplier to enforce

the divergence-free constraint, based on which a pressure Poisson equation is usually

solved. Because of the elliptic-parabolic characteristics of the incompressible Navier-

Stokes equations, numerical computations that use fractional-step semi-implicit methods

have considerable complexity [1]. Moreover the solution algorithm has limited scalability

and poses a great challenge for distributed parallel computing [2–4]. On the other hand, if

slight compressibility, i.e., a weakly compressible fluid, is acceptable, the Poisson equation

can be replaced by an independent time evolution equation for pressure. The pioneering

work of Chorin on the artificial compressibility method (ACM) [5] has enabled a pressure

evolution equation to be derived from compressible Navier-Stokes equations under low

Mach number and isothermal conditions [6, 7]. This hyperbolic equation for pressure can

be explicitly advanced in time by using a local spatial stencil. It significantly benefits

scalability of computation in spite of the speed-of-sound restriction on the time step. A

comparison of various pressure evolution equations has been conducted to verify their

accuracy [8].

Traditionally, the artificial compressibility method is designed for incompressible Navier-

Stokes equations, since the term involving the time derivative of pressure vanishes in the

steady state, and this results in a divergence-free velocity field. For the unsteady-flow

problem, a dual-time stepping technique is used to update the pressure and velocity in

another pseudo time until converge to a quasi-steady state [9]. Although this treatment
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can completely remove the acoustic effect, it requires a large number of iterations, as

in the case of a Poisson solver. The GPU performance comparison of a weakly com-

pressible Navier-Stokes solver with LBM and dual-time stepping ACM has been reported

[10]. Weakly compressible fluid simulations have already been successfully applied to

flow around complex geometry [11], nested Cartesian grid [12], turbulent flow [13] and

two-phase flow [14].

Compared with the case of single phase flow, two-phase flow simulations should con-

sider the large density and viscosity difference across the interface. Moreover, the interface

undergoes severe topological deformations, including separation and merging. Various

methodologies exist in the past research to distinguish two immiscible fluids and repre-

sent the interface, such as the level set method [15], volume of fluid method [16], diffusive

interface method [17] and hybrid method [18]. A discussion and comparison of these

interface capturing methods can be found in a recent review [19]. Although the com-

putation of Navier-Stokes equations is almost unchanged in the framework of one-fluid

model through a coupling with an interface capturing equation [20], it is still challeng-

ing for numerical methods in terms of stability and accuracy. The slow convergence of

the implicit Poisson solver accounts for a large proportion of execution time, especially

when the density gradient of the two-phase flow leads to a non-constant coefficient in the

Poisson equation [21]. This fact has motivated researchers to examine explicit weakly

compressible Navier-Stokes solvers for two-phase flow simulations.

As a representative weakly compressible fluid model, the lattice Boltzmann method

(LBM), which originated from the mesoscale kinetic theory of gases, has been the subject

of a growing number of studies on two-phase flows [22–26]. While great progress has

been made for large density and viscosity ratios, the stability of LBM for two-phase

flows with large Reynolds number is still under investigation. A latest study introduces

a filter to the velocity field at the sacrifice of locality of LBM, and it has been shown

to work well for violent two-phase flows [26]. However, oscillations in pressure [23] and

velocity [25, 26] are observed during the simulations. A comparative study of LBM and

ACM has examined these oscillations in terms of acoustic waves [27]. Recently, a weakly

compressible, mass and momentum conservative model based on the entropically damped

artificial compressibility (EDAC) model is proposed for two-phase flow simulations [28].

It reports that a pressure diffusion term in the pressure evolution equation can reduce the

noise in the velocity divergence field. However, this model has to carefully switch off the

artificial pressure diffusion in the interfacial region of two-phase flows, but the overshoot

of pressure still exists in the vicinity of the interface.

Nevertheless, great difficulties arise when dealing with high density ratio between two

phases where the order of 103 is an upper limit for many of the existing solvers, typically

those that use the Navier-Stokes equations in non-conservative form. The situation be-
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comes worse if the motion of the interface is violent. The steep changes of in density and

momentum of the fluids across the interface also results in a discontinuity of the pressure

gradient, which can be problematic for an unspecialized numerical discretization.

To achieve a robust and accurate simulation of violent two-phase flows with a high

density ratio, a consistent formulation of mass and momentum transport is essential [29].

While a staggered grid system is commonly used for the spatial discretization of governing

equations, maintaining consistency becomes particularly complex due to the different

locations of mass and momentum control volumes. A classical solution is to compute the

volume fraction of fluids on a mesh twice as fine as the velocity-pressure staggered mesh.

This makes the mass flux through a small control volume directly available for calculating

the momentum flux through a large control volume, even if they do not fully coincide.

To reduce the computational overhead of solving an advection equation for the volume

fraction on sub-cells, some approaches manage to construct auxiliary volume fractions in

respective face-centered control volumes of the momentum, either by summing the PLIC-

reconstructed values in the sub-cells [30] or by shifting the original volume fractions of

two adjacent cells sharing the face by using Weymouth and Yue’s advection scheme [31].

While momentum transport can be made consistent with the auxiliary mass, it is not

conservative because of the discrepancy in the reconstructed interface. Instead of using

the volume fraction equation, another method synchronizes the face-centered density

with the level-set function after linearly interpolating the level-set function to the face

[32]. Recently, a phase-field model based transport scheme is developed by algebraically

modifying the momentum equation taking into consideration the artificial flux term in

the phase-field equation [33]. A different realization of consistent transport is presented

in [34] where a hybrid staggered/non-staggered grid is employed, and the control volume

of the momentum actually occupies two cells associated with the mass. And an identical

discrete operator is required for convection of both mass and momentum.

In contrast, a collocated grid is inherently suitable for evaluating convective fluxes of

momentum consistently with the mass, because both the density and velocities are defined

at the cell center. Since the pioneering work of Bussmann et al. [35], new numerical

methods for two-phase flow simulations on a collocated grid, where the consistent and

conservative momentum transport can be simply implemented, have been continuously

emerging [36–39]. Unlike in the case of a staggered grid, a crucial consideration for

ensuring a stable computation on a collocated grid is how to avoid velocity-pressure

decoupling. Various techniques, such as the projection filter [40] and double projection

[41], have been proposed to enhance the coupling and eliminate numerical modes in the

solution. A comparative study has also been reported on the stability and accuracy of

pressure projection methods on the collocated grid [42].
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1.2 Research Purpose

The two-phase flow solvers discussed above rely primarily on the incompressible

Navier-Stokes equations, which require an implicit solution to a pressure Poisson equa-

tion. However, iterative methods such as Jacobi, Gauss-Seidel, and SOR are known

for their slow convergence rates when applied to two-phase flows with a high density

contrast. To address this challenge, Krylov methods and multigrid preconditioners are

used to efficiently solve the Poisson equation with variable coefficients [32, 43]. Despite

their effectiveness, the complexity of these algorithms presents significant implementation

challenges, particularly on large-scale multi-node clusters. Alternatively, the hyperbolic-

parabolic system of weakly compressible Navier-Stokes equations offers excellent perfor-

mance and scalability for large-scale computing on multi-node supercomputers [44]. The

simple numerical scheme used for calculating the pressure evolution equation is flexible

and can be readily applied to both unstructured and adaptive Cartesian grids, as demon-

strated in [45, 46]. This stands in contrast to multigrid-based Poisson solvers, which may

be less versatile in their implementation.

Although the weakly compressible Navier-Stokes equations have been successfully

applied to two-phase flow simulations [14], several major problems remain. One is the os-

cillation of the velocity and pressure induced by the acoustic wave in weakly compressible

flows. Nevertheless, there has been little research aimed at achieving momentum conser-

vation and consistent transport in weakly compressible method for simulating incompress-

ible two-phase flows. The study based on the EDAC model solves the conservative-form

momentum equation in combination with an artificial mass-conservation equation derived

from the phase-field model [28]. However, the two-phase flow simulations in that study

are limited to moderate density ratios and low Reynolds numbers.

The first purpose of this research is to develop an accurate and robust weakly com-

pressible Navier-Stokes solver for two-phase flow simulations. The divergence-free con-

straint is not imposed. An evolving pressure projection method is proposed to damp the

acoustic wave. Because the overall algorithms have an explicit time integration, excellent

computational performance and scalability can be expected on multi-GPU clusters [47,

48].

The second purpose is to develop a weakly compressible Navier-Stokes solver with

a consistent and conservative formulation for momentum transport, which is lacking in

the research field of weakly compressible method for simulating incompressible two-phase

flows to the best of my knowledge. Meanwhile, a novel implementation of the evolving

pressure projection method is proposed to damp the acoustic wave, while enforcing the

coupling between the pressure and velocities on the collocated grid. The proposed solver

aims at providing a robust and accurate computation for violent two-phase flows with



1.2. RESEARCH PURPOSE 5

high density ratios. It also takes advantage of the hyperbolic-parabolic characteristics of

weakly compressible Navier-Stokes equations for a fully explicit time integration.

The third purpose is to evaluate the performance and scalability of the proposed con-

servative two-phase flow solvers on the multi-GPU cluster for large-scale parallel comput-

ing. The domain partition and communication overlapping techniques are implemented

to reduce the overhead and increase the throughput. The accuracy and stability of differ-

ent numerical schemes are validated by using high-resolution two-phase flow simulations.

To further minimize the need for computing resources, the sparse data structures includ-

ing adaptive mesh refinement (AMR) based on octrees and sparse grid based on spatial

hash are implemented with GPU parallel computing.





7

Chapter 2

Weakly Compressible Navier-Stokes

Solver

This chapter first introduces the mathematical model for weakly compressible Navier-

Stoke equations, the proposed evolving pressure projection method and two-phase flows.

Then the numerical discretization by finite difference method and finite volume method is

explained in details. Various single-phase and two-phase flow benchmarks are simulated

to validate the present solver.

2.1 Mathematical Model

2.1.1 Fluid Dynamic Equations

The Navier-Stokes equations for fluid flows including the continuity equation and the

momentum equation are
∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ + F , (2.2)

where u = (u, v, w) is the velocity vector, ρ the density, p the pressure and F the external

body force. The viscous stress tensor τ is given by

τ = −2

3
µ∇ · uI + µ

(
∇u+∇uT

)
, (2.3)

where µ is the dynamic viscous coefficient.

Under the assumption of incompressibility, the material derivative of density is con-

stant to 0, i.e.,
∂ρ

∂t
+ u · ∇ρ = 0. (2.4)
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The continuity equation is then reduced to the divergence-free condition of the velocity:

∇ · u = 0. (2.5)

This condition leads to a Poisson equation that has to be satisfied by the pressure and it

be discussed in the next subsection.

Through imposing the isothermal equation of state

dp

dρ
= c2s (2.6)

and introducing the assumption of small density fluctuation, i.e., δρ/ρ≪ 1, which implies

the low Mach number constraint [49]:

Ma = |u|max /cs ≪ 1, (2.7)

where the cs is an artificial speed of sound. By expanding Eq. (2.1) with δρ/ρ and

substituting dρ with the Eq. 2.6, it gives

∂p

∂t
+ u · ∇p+ ρc2s∇ · u = 0. (2.8)

Because the fluid velocity is much smaller than the sound speed, the material derivative

of pressure can be approximated as

∂p

∂t
+ u · ∇p ≈ ∂p

∂t
. (2.9)

Finally Eq. (2.8) comes to the original form of artificial compressibility method [50]:

∂p

∂t
+ ρc2s∇ · u = 0. (2.10)

It is worth noting that the entropically damped form of artificial compressibility

(EDAC) model [6] and general pressure equation (GPE) [7] contain a pressure diffusion

term νp∇2p in Eq. (2.10) and νp is a constant coefficient, which can damp the acoustic

wave. In this work, the evolving pressure projection method is proposed to deal with the

acoustic wave, see Section 2.1.2. The damping effect is discussed in Section 2.3.1. Since

the pressure advection term u · ∇p in EDAC is negligible, the pressure evolution equa-

tion used by us is exactly the same as the original form of the artificial compressibility

method.

2.1.2 Evolving Pressure Projection Method

Before explaining the evolving pressure projection method, the original projection

method proposed by Chorin [5] to simulate incompressible fluid is briefly recalled. First,
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an intermediate velocity u∗ is updated from un at time step n by solving the momentum

equation, Eq. (2.2), without the pressure gradient term,

u∗ − un

∆t
= −un · ∇un +

1

ρ
∇ · τ +

1

ρ
F n, (2.11)

where ∆t is a discretized time step. The intermediate velocity needs to be corrected by

a pressure projection step, which gives the solution at the next time step un+1:

un+1 − u∗

∆t
= −1

ρ
∇pn+1. (2.12)

After taking the divergence of both sides of Eq. (2.12) and enforcing the incompressible

condition ∇ · un+1 = 0, it becomes a Poisson equation for pressure:

∇ ·
(
1

ρ
∇pn+1

)
=

∇ · u∗

∆t
. (2.13)

In the case of a weakly compressible fluid, the governing equations are obtained from

the compressible Navier-Stokes equations, and they are valid when a low Mach number is

imposed. Since the divergence-free condition for the velocity field becomes unnecessary,

replacing the Poisson equation, Eq. (2.13), with the pressure evolution equation, Eq.

(2.10), still has a solid grounding in physics. By taking the divergence of both sides of

Eq. (2.12) in derivative form, we have

∂ (∇ · u)
∂t

= −∇ ·
(
1

ρ
∇p
)
. (2.14)

Then, by substituting the velocity divergence term with Eq. (2.10), we arrive at the

second-order linear wave equation for pressure:

∂

∂t

(
1

ρc2s

∂p

∂t

)
= ∇ ·

(
1

ρ
∇p
)
, (2.15)

which can be further simplified in the case of a constant density in time and space:

∂2p

∂t2
= c2s∇2p. (2.16)

Because of its hyperbolic characteristics, the wave equation is much easier to treat

numerically than the elliptic-type Poisson equation. The evolving pressure projection

method is proposed to advance the numerical solutions of velocity and pressure to the

next time step. First, the pressure can be easily updated from pn:

p∗,0 − pn

∆t
= −ρc2s∇ · u∗. (2.17)

By substituting pn+1 in Eq. (2.12) with p∗,0, the intermediate velocity u∗ is corrected to

u∗∗,0. Next, the following iteration process is conducted for N steps:
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(i) compute the increment of pressure δp and update the temporary pressure p∗,i to

p∗,i+1,

δp = −ρc2s∇ · u∗∗,i∆t, (2.18)

p∗,i+1 = p∗,i + δp. (2.19)

(ii) update the velocity field u∗∗,i to u∗∗,i+1 by projecting the increment of pressure,

u∗∗,i+1 − u∗∗,i

∆t
= −1

ρ
∇δp. (2.20)

where the superscript i indicates the current step of the iteration and starts from 0. The

final solutions of velocity and pressure at step n+ 1 are given by

pn+1 = p∗,N , (2.21)

un+1 = u∗∗,N . (2.22)

The above method with two iterative steps can be simplified to a new pressure evo-

lution equation as follows:

∂p

∂t
+ ρc2s

[
∇ · u∗ −∇ ·

(
1

ρ
∇p
)
∆t

]
= 0. (2.23)

This hyperbolic equation for pressure can be explicitly advanced in time by using a local

spatial stencil. It significantly benefits scalability of computation in spite of the speed-

of-sound restriction on the time step. It is worth noting that the Eq. (2.23) reduces

to the Poisson equation when the speed of sound is infinite or when the evolution of

pressure converges with time. This means that in the limit case, the proposed method

will converge to the incompressible fluid flow. The assumption of an incompressible

fluid actually means an infinite speed of sound, thus, a pressure change anywhere will be

transmitted throughout the fluid immediately. As for the weakly compressible fluid under

consideration, the above evolving pressure projection method has a physical meaning

wherein the perturbation propagates at a finite sound speed for multiple times. This

model is expected to alleviate the undesirable effect of the acoustic wave and consequently

diminish the fluctuations in the velocity and pressure fields.

2.1.3 Conservative Phase Field Model

Modeling the moving interface accurately is crucial in simulation of two-phase flow.

Various numerical methods have been proposed, such as interface tracking by marking
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Figure 2.1: Volume fraction of a fluid component in cells.

points [51] and interface capturing by an indicator function of time and space [19]. The

interface capturing method has a strong capability to represent large topological changes

including separation and merging of the interface, it is more suitable for ubiquitous two-

phase flow phenomena in nature and industry.

A widely used one of the interface capturing methods is volume of fluid (VOF) [16],

which employs the volume fraction of one component f in a grid cell as the phase indicator

function, as illustrated in Fig. 2.1. However, it is numerically more convenient to deal

with a diffusive interface than the VOF quantity which has a discontinuity. Derived from

the free-energy theory of thin interface, the interface evolution is driven by imbalance

of chemical potential to minimize the free-energy function of the system in phase field

model. Compared with VOF, the phase field varies smoothly across interface.

A conservative phase field model [52] derived from the Allen-Cahn equation is used

in this thesis because it can exactly conserve the mass for incompressible two-phase flow

and avoid the computation of forth-order derivative in Cahn-Hilliard equation [53]. The

conservative Allen-Cahn equation governing the phase field function ϕ is

∂ϕ

∂t
+∇ · (ϕu) = ∇ ·

[
M

(
∇ϕ− 4ϕ(1− ϕ)

W
n

)]
, (2.24)

where M is the mobility, W is the width of interface and it is chosen to be 3∆x in this

thesis, n is the unit out-normal vector of interface. The typical values of phase field

function are defined as:

ϕ (x, t) =


0, light fluid

1, heavy fluid

0 ∼ 1, interface.

(2.25)
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Figure 2.2: Hyperbolic tangent profile of phase field function at equilibrium.

For a interface located at x0, the phase field function has a hyperbolic tangent profile in

the equilibrium state:

ϕ (x) =
1

2

[
1 + tanh

(
ψ(x)

W/2

)]
, (2.26)

where ψ(x) = x−x0 is a signed distance function of the interface. As shown in Fig. 2.2,

the interface profile is smoother by choosing a larger value of W . Mobility M is governed

by a non-dimensional Peclet number [54]:

Pe =
U0W

M
(2.27)

where U0 is a typical velocity of the fluid flow, and the value of Peclet number is 10 in

this thesis.

The convection-diffusion equation with a source term in conservative phase field model

is essentially a one-step conservative level set method [55]. Without the iteration step for

reinitialization of the interface profile, the boundedness of ϕ can be preserved by properly

choosing the free parameters M and W . It leads to an easy-to-implement method for

interface capturing with less computational cost than conservative level set method.

Although the phase field model has a satisfactory capability for interface capturing,

the signed distance function ψ, is superior for geometric representation of interface. In

order to calculate the interface normal and curvature with a better accuracy, the level

set method [56] is introduced as a complementary tool. The time evolution of ψ follows

the advection equation:
∂ψ

∂t
+ u · ∇ψ = 0. (2.28)

To keep the consistency with phase field function and also to maintain the property

of signed distance function, a coupling and re-initialization procedure is performed every
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several time steps. To begin with the level set function is converted from phase field

function by inverting Eq. (2.26) in a region near the interface:

ψ0(x) =
W

2
tanh−1(2ϕ(x)− 1) =

W

4
ln

(
ϕ(x)

1− ϕ(x)

)
, (2.29)

then a re-initialization equation is solved with enough number of iterations to correct

ψ0(x) to a signed distance function,

∂ψ

∂τ
+ S(ψ) (|∇ψ| − 1) = 0, (2.30)

where τ is the time step used for iteration and S(ψ) is a smoothed signed function:

S(ψ) =
ψ√

ψ2 + (|∇ψ|∆x)2
. (2.31)

Finally, the normal vector in Eq. (2.24) and curvature of interface are calculated using

the level set function:

n =
∇ψ
|∇ψ|

, (2.32)

κ = ∇ · n

=
ψ2
x(ψyy + ψzz) + ψ2

y(ψzz + ψxx) + ψ2
z(ψxx + ψyy)− 2(ψxψyψxy + ψyψzψyz + ψxψzψxz)

|∇ψ|3
.

(2.33)

2.1.4 One-Fluid Model for Two-Phase Flow

For a two-phase flow system under the framework of one-fluid model, the fluid prop-

erties such as density and viscosity coefficient can be evaluated as

ρ = ϕρh + (1− ϕ) ρl, (2.34)

µ = ϕµh + (1− ϕ)µl, (2.35)

where the physical properties of heavy and light fluids are indicated by the subscripts h

and l, respectively.

The external force term in Eq. (2.2) usually consists of two parts for two-phase flow.

One is the gravity Fg = ρg, another is the surface tension force Fst acting on the interface.

A density-scaled continuum surface force (CSF) model [57, 58] is applied in this thesis,

Fst has the following form:

Fst =
2ρ

ρh + ρl
σκ∇ϕ, (2.36)
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Figure 2.3: Acceleration by surface tension force across two-phase interface.

where σ is the coefficient of surface tension, κ is the curvature of interface. The density

scaling coefficient shifts the force to higher density region, resulting in a symmetrical

distribution of acceleration across the interface, as shown in Fig. 2.3, where a density

ratio ρh : ρl = 1000 : 1 is considered and ψ = 0 corresponds to the location of interface.

2.2 Numerical Methods

2.2.1 Spatial Discretization on Staggered Grid

A staggered grid system is used for spatial discretization, as illustrated in Fig. 2.4. It is

known that the staggered grid avoids the problem of the decoupling between velocity and

pressure, providing higher numerical stability. In a 2-dimensional uniform staggered cell[
i− 1

2
, i+ 1

2

]
×
[
j − 1

2
, j + 1

2

]
, the grid spacing is identical in different directions ∆x = ∆y.

The pressure p, phase field function ϕ and level set function ψ are defined on the center of

cell (i, j), surrounded by the velocity components (u, v) on their corresponding cell face.

This section presents numerical schemes used to discretize each term of the governing

equations, and extension to a 3-dimensional staggered grid is straightforward.

Finite difference method for fluid dynamic equations

The advection term in the momentum equation is crucial for an accurate and robust

numerical simulation. Although it is written in non-conservative form in Eq. (2.2), the

conservative form will be computed using a standard second-order central difference in

the simulation of the singe phase flow, to enable a fair comparison with the results of
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Figure 2.4: Configuration of staggered grid

Toutant [8],

∇ · (uu)i− 1
2
,j =

(
∂uu

∂x

)
i− 1

2
,j

+

(
∂vu

∂y

)
i− 1

2
,j

=
u2i,j − u2i−1,j

∆x
+

(
vi− 1

2
,j+ 1

2
ui− 1

2
,j+ 1

2

)2
−
(
vi− 1

2
,j− 1

2
ui− 1

2
,j− 1

2

)2
∆y

,

(2.37)

where the undefined velocities at the cell center and cell corner are linearly interpolated

from the nearest points, for example:

ui,j =
(
ui− 1

2
,j + ui+ 1

2
,j

)
/2, (2.38)

ui− 1
2
,j+ 1

2
=
(
ui− 1

2
,j + ui− 1

2
,j+1

)
/2, (2.39)

vi− 1
2
,j+ 1

2
=
(
vi−1,j+ 1

2
+ vi,j+ 1

2

)
/2. (2.40)

In the simulation of the two-phase flow with a high density and viscosity ratio,

especially when the flow becomes violent such as in a breaking wave, the above cen-

tral difference scheme usually becomes unstable. To enhance numerical stability, the

non-conservative form of the advection term is discretized using the third-order WENO

(Weighted Essentially Non-Oscillatory) scheme [59],

(u · ∇u)i− 1
2
,j = ui− 1

2
,j

(
∂u

∂x

)WENO

i− 1
2
,j

+ vi− 1
2
,j

(
∂u

∂y

)WENO

i− 1
2
,j

, (2.41)
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the v component at position
(
i− 1

2
, j
)
is also obtained by linear interpolation:

vi− 1
2
,j =

(
vi−1,j− 1

2
+ vi,j− 1

2
+ vi−1,j+ 1

2
+ vi,j+ 1

2

)
/4. (2.42)

The third-order WENO scheme requires a 4-point stencil depending on the upwind di-

rection:

(
∂u

∂x

)WENO

i− 1
2
,j

=

f
(
ui+ 1

2
,j, ui− 1

2
,j, ui− 3

2
,j, ui− 5

2
,j

)
, if ui− 1

2
,j > 0

f
(
ui− 3

2
,j, ui− 1

2
,j, ui+ 1

2
,j, ui+ 3

2
,j

)
, if ui− 1

2
,j ≤ 0,

(2.43)

where f(·) is a function to calculate the spatial derivative.

When the density of the fluid is only governed by the phase field model as in Eq. (2.34),

the left side of Eq. (2.2) cannot take into account the effect of the density difference near

the two-phase interface. If the advection term of the momentum equation is directly

solved using the WENO scheme for a non-conservative form, the momentum transport

may become inconsistent. This issue was investigated in [32] for density ratios up to

106. A density weighted advection scheme is employed to account for the large jump of

momentum around the interface. The spatial derivative of velocity in the advection term

is replaced by:
∂u

∂x
=

1

ρ

[
∂ (ρu)

∂x
− u

∂ρ

∂x

]
. (2.44)

Moreover, in the region far from two-phase interface where no density difference exists,

the computation on the right side of Eq. (2.44) is equivalent to the left side. The spatial

derivatives of momentum ρu and density ρ are computed robustly with the help of the

minmod limiter Ψ(r) = max [0,min (r, 1)] to switch between a high-order WENO scheme

and a first-order upwind scheme,

φx = φ1st
x +Ψ(r)

(
φWENO
x − φ1st

x

)
, (2.45)

where r is the smoothness indicator:

ri− 1
2
=


φ
i+1

2
−φ

i− 1
2

φ
i− 1

2
−φ

i− 3
2

, ui− 1
2
> 0

φ
i− 1

2
−φ

i− 3
2

φ
i+1

2
−φ

i− 1
2

, ui− 1
2
≤ 0.

(2.46)

The viscous stress term of the momentum equation in two-dimensional space can be

expanded as

∇ ·
[
µ
(
∇u+∇uT

)]
=

∂

∂x

[
2µ∂u

∂x

µ
(

∂u
∂y

+ ∂v
∂x

)]+ ∂

∂y

[
µ
(

∂v
∂x

+ ∂u
∂y

)
2µ∂v

∂y

]
, (2.47)
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and all terms can be discretized by the central difference scheme. Taking the x-direction

part as an example, we have

∂

∂x

(
2µ
∂u

∂x

)
i− 1

2
,j

=
2µi,j

(
∂u
∂x

)
i,j

− 2µi−1,j

(
∂u
∂x

)
i−1,j

∆x
, (2.48)

∂

∂y

[
µ

(
∂v

∂x
+
∂u

∂y

)]
i− 1

2
,j

=

µi− 1
2
,j+ 1

2

(
∂v
∂x

+ ∂u
∂y

)
i− 1

2
,j+ 1

2

− µi− 1
2
,j− 1

2

(
∂v
∂x

+ ∂u
∂y

)
i− 1

2
,j− 1

2

∆y
.

(2.49)

The undefined density and viscosity coefficient at the cell faces and corners are interpo-

lated from the nearest cell-center values in the same fashion as the interpolated velocities

in Eq. (2.38)(2.39)(2.40)(2.42).

For the computation of the acoustic part in Section 2.1.2, the central difference scheme

is used to discretize the pressure gradient term and velocity divergence term:(
∂p

∂x

)
i− 1

2
,j

=
pi,j − pi−1,j

∆x
, (2.50)

(∇ · u)i,j =
ui+ 1

2
,j − ui− 1

2
,j

∆x
+
vi,j+ 1

2
− vi,j− 1

2

∆y
. (2.51)

The discretization of the surface tension force should be consistent with the pressure

gradient term, with the purpose to balance pressure projection and external forces [60,

61],

Fst,(i− 1
2
,j) =

2ρi− 1
2
,j

ρh + ρl
σκi− 1

2
,j

ϕi,j − ϕi−1,j

∆x
, (2.52)

where the curvature at the cell face needs to be interpolated from the cell center κi− 1
2
,j =

(κi−1,j + κi,j) /2.

As a supplement, the pressure Poisson equation Eq. (2.13) is solved by using the

red/black successive over relaxation (SOR) method, which is suitable for parallel com-

puting [62].

Finite volume method for conservative Allen-Cahn equation

To satisfy the exact mass conservation in two-phase flow simulations, the conservative

Allen-Cahn equation is discretized by following the concept of the finite volume method.

The advection term in Eq. (2.24) is rewritten in flux form:

∇ · (uϕ)i,j =

[
(uϕ)i+ 1

2
,j − (uϕ)i− 1

2
,j

]
∆y +

[
(vϕ)i,j+ 1

2
− (vϕ)i,j− 1

2

]
∆x

∆x∆y
. (2.53)
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The phase field functions inside the advection flux are reconstructed by a third-order

MUSCL (Monotone Upstream-centered Schemes for Conservation Law) scheme [63] with

the minmod limiter.

In contrast, a piecewise linear reconstruction is used to calculate the phase field func-

tion ϕi− 1
2
,j = (ϕi−1,j + ϕi,j) /2 for the anti-diffusion flux 4ϕ(1−ϕ)

W
n. The component of the

normal vector on a cell face is calculated using the level set function,

nx,(i− 1
2
,j) =

ψi,j − ψi−1,j

∆x
(2.54)

with the assertion of the signed distance property |∇ψ| = 1. The diffusion flux ∇ϕ is

discretized using a second-order central difference scheme, which is almost identical to

the scheme for the viscous stress term of the momentum equation.

In addition, the numerical methods in [64] is followed and the WENO scheme and

Godunov’s scheme are used to solve the advection equation and re-initialization equation

of the level set function.

2.2.2 Time Integration

A three-stage third-order strong stability-preserving Runge-Kutta (SSP-RK-3) scheme

[65] is applied to all temporal derivatives, except for those in the evolving pressure projec-

tion process where a first-order Euler scheme is employed. For a general time-marching

partial differential equation of a variable q,

∂q

∂t
= L(q), (2.55)

where L(·) is an operator relying on q, the SSP-RK-3 scheme uses the following formula-

tion to update qn+1 from qn:

q(1) = qn + L (qn)∆t, (2.56a)

q(2) =
3

4
qn +

1

4
q(1) +

1

4
L
(
q(1)
)
∆t, (2.56b)

qn+1 =
1

3
qn +

2

3
q(1) +

2

3
L
(
q(2)
)
∆t. (2.56c)

The time step ∆t in the present weakly compressible Navier-Stokes solver for two-

phase flow simulations is constrained by advection, propagation of the acoustic wave,

viscous stress, surface tension, and mobility in the phase field model. Thus, the following

conditions should be satisfied [14]:

∆t = min

CFLadv
∆x

|u|max

,CFLacs
∆x

cs
, svisc

∆x2

2Nd max
(

µh

ρh
, µl

ρl

) , ssf√ρh + ρl
2

∆x3

2πσ
, spf

∆x2

2dM

 ,

(2.57)
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×

(a) Velocity magnitude (b) Vorticity (c) Velocity divergence

Figure 2.5: Doubly periodic shear layers at t = 1 solved through un+1 = L (un, pn) and
pn+1 = L (un) without subiteration.

where Nd is the number of spatial dimensions. Safe coefficients CFLadv = CFLacs = 0.4,

svisc = ssf = spf = 0.1 are used in the simulations described below.

2.3 Numerical Results

2.3.1 Doubly Periodic Shear Layers

The first validation involves a single-phase flow problem from the reference [8]. In a

periodic unit square, the doubly periodic shear layers have initial velocities as follows:

u =

tanh [k (y − 0.25)] , y < 0.5

tanh [k (0.75− y)] , otherwise,
(2.58a)

v = δ sin [2π (x+ 0.25)] , (2.58b)

where the parameters k = 80 and δ = 0.05 are used. To reproduce the results in [8], the

same computational settings as in that study are used: density of fluid ρ = 1, viscous

coefficient µ = 10−4, Mach numberMa = 0.02 resulting in a speed of sound cs = 50, time

step ∆t = 10−5, and uniform grid with 512×512 cells. A second-order central difference is

used to discretize the advection term in the momentum equation, as mentioned in Section

2.2.1. Fig. 2.5 shows the velocity magnitude, vorticity, and velocity divergence field at

t = 1 when solving the weakly compressible Navier-Stokes equations with a traditional

procedure un+1 = L (un, pn) and pn+1 = L (un). The results are almost the same as in

[8] when the diffusion coefficient of pressure is 0.

Next, the evolving pressure projection method is applied to this computation. By

increasing the number of iterations from 2 to 10 and 20, the magnitude of the velocity

divergence decreases accordingly. Moreover, the velocity divergence caused by the acous-

tic wave in Fig. 2.5(c) is completely removed. Moreover, only the vortices of the shear
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(a) 2 iterations (b) 10 iterations (c) 20 iterations

Figure 2.6: Velocity divergence of doubly periodic shear layers at t = 1 solved by evolving
pressure projection method.

Table 2.1: L2 norm of velocity error at t = 0.1 in 2D Taylor-Green vortices.

Iterations 2 5 10 20 50 100

L2 error [×10−5] 5.59 4.45 3.79 3.32 3.07 3.00

layers appear in the velocity divergence field (Fig. 2.6). The proposed method thus has a

stronger effect of damping the sound wave and reducing the compressibility of the fluid.

2.3.2 Taylor-Green Vortices

In order to investigate how the present method affects the solution for the unsteady

flows, the two-dimensional Taylor-Green vortices problem in a periodic unit square is

computed with different numbers of iterations. Analytical solutions of velocities and

pressure are

u = cos (2πx) sin (2πy) e−
8π2

Re
t, (2.59a)

v = − sin (2πx) cos (2πy) e−
8π2

Re
t, (2.59b)

p = −1

4
(cos (4πx) + cos (4πy)) e−

16π2

Re
t. (2.59c)

The Reynolds number is set to be 10. The speed of sound is given by cs = U0/Ma =

1/0.05 = 20. Computation is performed on a 128 × 128 uniform grid. The L2 norm of

velocity error against analytical solutions at time t = 0.1 is listed in Table 2.1. It shows

a clear tendency that the error gradually decreases as the number of iterations increases.

10 iterations have made the error quite small, and the improvement is not significant

when the number of iterations is increased to 100.
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2.3.3 2D Static Droplet

A two-phase flow problem of two-dimensional static droplet is studied next. In this

problem, a circular droplet of diameter D = 1 is placed at the center of a 2× 2 domain.

The density of the liquid droplet is ρh = 1000, and the density of the surrounding gas

is ρl = 1. Both the droplet and the gas are inviscid, i.e., µh = µl = 0. This problem is

gravity-free, and only surface tension force is applied. The coefficient of surface tension

is σ = 1. Hence, the exact pressure difference between inside and outside the droplet can

be calculated with the Young-Laplace equation

∆pexact = σκ =
σ

D/2
= 2. (2.60)

In this computation, the domain is discretized by a 128 × 128 uniform grid. The

pressure field is initialized as p0(x) = ∆pexactϕ(x). The speed of sound is set to cs = 5,

and the time step is ∆t = 1.25 × 10−3. In this simulation and the others reported

below, the advection term in the momentum equation is computed using the density

weighted advection scheme. First, the proposed evolving pressure projection method is

compared with the traditional procedure for solving weakly compressible Navier-Stokes

equations, described in the previous section. The numbers of iterations for the evolving

pressure projection are 2 and 10. The pressure profiles over the horizontal line crossing

the center of the droplet are plotted in Fig. 2.7 after 30 time steps. While the traditional

method produces the largest oscillation in pressure, the present method suppresses the

oscillation by increasing the number of iterations. Moreover, the computed pressure

difference matches the theoretical value.

The velocity fields after 500 time steps are shown in Fig. 2.8. A spurious current

near the interface (black line in the figure) has been reported in numerous studies [66].

This current is caused by the pressure not being in balance with surface tension force.

In addition to this spurious current, the traditional method gives a chaotic velocity field,

which is due to the acoustic wave. In contrast, the evolving pressure projection method

removes almost all of the acoustic wave. Moreover, it makes the magnitude of the spurious

current comparable with the value obtained by solving the Poisson equation. When

attempting to damp the spurious current by introducing the viscous effect, the magnitude

of velocity fluctuations doesn’t decrease as the results of other studies [36, 38] even after

long-time simulations in the viscous time scale. This suggests that further improvements

can focus on the exact balance between the surface-tension force and pressure gradient

and also the reduction of discretization errors.
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Figure 2.7: Comparison of pressure profiles over the line crossing the center of droplet
after 30 time steps.

(a) Traditional (b) 10 iterations (c) Incompressible

Figure 2.8: Comparison of magnitudes of spurious current after 500 time steps in 2D
static droplet.

2.3.4 2D Single Rising Bubble

As illustrated in Fig. 2.9, a two-dimensional bubble rising benchmark is simulated

to verify the accuracy of the proposed method for two-phase flows. In this simulation,

a circular bubble is surrounded by liquid at rest. Two groups of physical properties

are examined (Table 2.2). The no-slip conditions are imposed on the top and bottom

enclosing walls, while slip conditions are imposed on the left and right sides.

First, the mesh dependency is checked using 128× 256 and 256× 512 grids. A typical

velocity, U0 = 0.5 and Mach number Ma = 0.1 are chosen. Thus, the speed of sound in

this computation is cs = 5. With 10 iterations for the evolving pressure projection, the

shapes of the bubble at t = 3 in case 1 and case 2 are shown in Fig. 2.10. While the

low- and high-resolution grids both generate the same shape for case 1, the result of the
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Figure 2.9: Schematic diagram of 2D bubble rising problem.

Table 2.2: Physical properties of 2D bubble rising problem.

Case ρh ρl µh µl g σ

1 1000 100 10 1 0.98 24.5
2 1000 1 10 0.1 0.98 1.96

higher resolution grid is in better agreement with the result in [67] for case 2. Therefore,

256× 512 grid is used in the subsequent computations.

Initialization of the pressure field is another important issue for weakly compressible

two-phase simulations. As we know, the pressure gradient in the static state is balanced

with the gravitational force and surface tension force. However, sometimes it is difficult to

generate such a pressure field artificially. If the pressure is simply set to ∇p = ρg where

the density ρ is calculated via the phase field function by Eq. 2.34, and the evolving

pressure projection method is not applied, the time variation of rising velocity in case 1

is plotted in Fig. 2.11. The benchmark data are those of Hysing et al.[68] (finite element

discretization and level set method) and those of Aland and Voigt [67] (finite element

discretization and Cahn-Hilliard model). Because of the initially unbalanced pressure

and relatively large Mach number, the acoustic wave causes an obvious oscillation in

the bubble rising velocity. In order to eliminate the impact of initial pressure field, the
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Figure 2.10: Bubble shapes at t = 3 on 128× 256 and 256× 512 grids.
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Figure 2.11: Rising velocity over time in case 1 with initial pressure ∇p = ρg and no
iteration.

pressure Poisson equation is solved for 5 time steps at the beginning of the simulation.

Alternatively, the proposed evolving pressure projection method can be used with enough

iterations at the beginning.

Through above investigations, the final results on the evolution of rising velocity

in case 1 and case 2 are plotted in Fig. 2.12 and Fig. 2.13. The velocity oscillation

is suppressed and tends to converge as the number of iterations for evolving pressure

projection increased. The results obtained using 10 iterations are in good agreement

with the Aland and Voigt benchmark [67] in both cases. This verifies that the present

method has sufficient accuracy.

The present weakly compressible flow solver is proposed as an alternative to those
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Figure 2.12: Rising velocity over time in case 1 with different number of iterations.
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Figure 2.13: Rising velocity over time in case 2 with different number of iterations.
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Figure 2.14: Phase field profile emphasized for ϕ < 0 and ϕ > 1 in case 2 with different
number of iterations.
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Figure 2.15: Schematic diagram of 2D dam break problem.

incompressible Navier-Stokes solvers where the pressure Poisson equation should be im-

plicitly treated. The purpose is to make the explicit computation for weakly compressible

N-S equations as close as possible to the incompressible flow limit. Therefore, the simula-

tion and experimental results of incompressible two-phase flows are used as a comparison

of the present method. Compressibility effects still exist in the simulation, as depicted in

Fig. 2.14, the region with phase field value ϕ > 1 and ϕ < 0 is emphasized. This result

shows the compressibility of fluids also decreases with increased number of iterations.

2.3.5 2D Dam Break

A two-dimensional dam break problem is solved to demonstrate the effect of the

proposed method on the velocity divergence field, since this sort of simulation shows

violent flows and complex two-phase interfaces. Following the experimental settings of

Hu and Sueyoshi [69], the initial water column has a width a = 0.2 m and height n2a =

0.4 m, located at the left and bottom of a rectangular tank of size 0.8 m × 0.6 m, as

illustrated in Fig. 2.15. The physical properties of the water and air are ρh = 998

kg/m3, ρl = 1.2 kg/m3, µh = 1.0 × 10−3 Pa·s, µl = 1.8 × 10−5 Pa·s, and surface tension

coefficient σ = 0.07275 N/m. The gravitational acceleration is g = 9.8 m/s2. The

computational domain is discretized on a 400 × 300 grid. The speed of sound is set as

cs = U0/Ma = 7/0.05 = 140 m/s. No-slip conditions are imposed on the enclosing walls.

In addition to the experimental results, the results of an incompressible solver (solve

pressure Poisson equation until it converges to |∇ · u| ∼ O (10−6)) are included as a

numerical reference. The field of the phase field function ϕ is depicted in Fig. 2.16. It

shows good agreement with the three-dimensional experiment, although the simulation
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= 0.18 = 0.39 = 0.52 = 0.99

Figure 2.16: Snapshots of water profile in 2D dam break. Experimental [69] (top) and
numerical results of incompressible solver (bottom).

is two dimensional. Then, the proposed method with 5, 20, and 100 iterations is used to

solve this problem. The velocity divergence fields are shown in Fig. 2.17 where the water

surface is represented by the black line. While the interface is in about the same position

as the one found by the incompressible solver, the magnitude of velocity divergence is

greatly reduced by increasing the number of iterations. The pressure variation is also

monitored at the point (0.8, 0.1) on the right wall. Less oscillations of pressure can be

observed in Fig.2.18 when the number of iterations increases. It proves that the variables

related to compressibility effects will converge with the number of iterations.

In Fig. 2.19, the height and front position of the water column are benchmarked

against the experimental data from [70] and [69]. Only the results obtained using 20

iterations are plotted because there is almost no difference among the results of the weakly

compressible solver with different iteration numbers and the incompressible solver within

the time period of the simulation. The non-dimensionalized time τ , T , height H and

front position Z are defined by

τ = t

√
g

a
, T = nτ, H =

h

n2a
, Z =

z

a
. (2.61)

The simulated height matches the experimental values, whereas the water front advances

a little faster in this simulation. Perhaps, this subtle discrepancy can be explained by

the neglect of the sidewall resistance in the two-dimensional simulation.

To quantitatively investigate the dependence of the required number of iterations on

Mach number, the convergence criterion is set as |∇ · u|max < 0.1 and test two cases with

Ma = 0.1 and 0.05. The number of iterations over time is plotted in Fig. 2.20. It is

reasonable that several peak values appear when the water accelerates rapidly and hits

the right and top walls. Under the restriction of the stability condition Eq. (2.57), a
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= 0.18 = 0.39 = 0.52 = 0.99

Figure 2.17: Velocity divergence in 2D dam break solved by present method with 5
iterations (top), 20 iterations (middle) and 100 iterations (bottom).

larger time step ∆t can be used to shorten the simulation time in the case of a higher

Mach number Ma = 0.1. However, the required number of iterations becomes much

larger if the compressibility error must be small.

Then the order of convergence of the present method is investigated at various situa-

tions of two-phase flows, the flow data of this 2D dam break simulation at time t = 0.18

s, 0.39 s, 0.52 s and 0.99 s is selected as the initial conditions, corresponding to the

snapshots in Fig. 2.16. Only one time step of computation is performed with same ∆t

by using present method for solving the pressure evolution equation and several classical

techniques for solving pressure Poisson equation. The residual of iteration is defined by

max |p∗,i+1 − p∗,i|. In all four cases shown in Fig. 2.21, the convergence rate of present

method is slower than the iterative methods for Poisson equation. However, it is well

known that the implicit computation of Poisson equation cannot take great advantage

of massively parallel computing on GPU, even if more sophisticated techniques such as

multi-grid method are implemented. In contrast, the present method benefits from the

explicit time integration and a local stencil, which make it inherently suitable for GPU

computing. Moreover, weakly compressible flow solver allows larger tolerance of veloc-

ity divergence, and a few iterations of the present method are enough to suppress the

compressibility effects.

Finally, a test of the computational efficiency is conducted by using this 2D dam break

problem. Mach number is set to be 0.05. The time step size ∆t in weakly compressible
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Figure 2.18: Time variation of pressure on the right wall of 2D dam break problem with
different number of iterations.



30 CHAPTER 2. WEAKLY COMPRESSIBLE NAVIER-STOKES SOLVER

0 0.5 1 1.5 2

0.5

0.6

0.7

0.8

0.9

1

H

Experiment(Martin & Moyce)

Present

(a) Height of water column

0 0.5 1 1.5 2 2.5

T

0

0.5

1

1.5

2

2.5

3

3.5

4

Z

Experiment(Martin & Moyce)

Experiment(Hu & Sueyoshi)

Present

(b) Front position

Figure 2.19: Time variation of height and front position in 2D dam break.
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Figure 2.20: Number of iterations to satisfy |∇ · u|max < 0.1 when Ma = 0.1 and 0.05.

flow solver including GPE [8] and the present evolving pressure projection (EPP) methods

is governed by the speed of sound, but governed by the mobility of the phase-field model

in the incompressible flow solver with SOR method. The time to solution of physical time

t = 1 s on a Tesla V100 GPU is listed in Table 2.3. The present method takes relatively

longer time than GPE when 5 iterations are applied. But the computational efficiency

with 100 iterations is still much higher than the incompressible solver with SOR method.

Scalability on multiple GPUs of the present method is also promising, but it is remained

to be studied in future research.
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Figure 2.21: Comparison of the convergence rate of the present method with iterative
methods for Poisson equation.

Table 2.3: Comparison of time to solution using weakly compressible and incompressible
flow solvers in 2D dam break problem.

Method GPE
EPP

SOR
5 iterations 20 iterations 100 iterations

∆t [×10−6] 7.14 7.14 7.14 7.14 47.62
Time steps 140000 140000 140000 140000 21000

Computational time [s] 111.67 122.85 162.68 379.83 1653.55
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2.3.6 3D Oblique Coalescence of Two Bubbles

The capability of the present solver to accurately produce two-phase interface be-

havior is verified by simulating bubble dynamics in a real three-dimensional space. The

phenomena of oblique coalescence of two bubbles was studied experimentally by Brere-

ton and Korotney [71] and numerically by Annaland et al. [72]. In this simulation, two

spherical gas bubbles of diameter D = 0.01 m are initially placed in a quiescent liquid,

enclosed by a 4D × 4D × 8D domain. As illustrated in Fig. 2.22, the centers of the

bubbles are located at (2D × 2D × 2.5D) and (2.8D × 2D ×D). 20 grids are assigned

to the diameter D. The physical properties of the bubble dynamics are determined by

the dimensionless Morton number and Eötvös number:

Mo =
gµ4

h (ρh − ρl)

ρ2hσ
3

= 2× 10−4, (2.62a)

Eo =
(ρh − ρl) gd

2

σ
= 16. (2.62b)

The viscous coefficients and surface tension coefficient are determined with a density ratio

of 100, liquid and gas densities of ρh = 100 kg/m3 and ρl = 1 kg/m3 and gravitational

acceleration of g = 9.8 m/s2. As in the 2D bubble rising problem in Section 2.3.4, the

speed of sound is cs = U0/Ma = 0.5/0.1 = 5 m/s with 10 iterations for evolving pressure

projection. All walls have free-slip conditions.

The time evolutions of bubbles shapes are depicted in Fig. 2.23. The leading bubble

ascends upwards until the trailing bubble catches up. Meanwhile, the trailing bubble

undergoes a large deformation as it rises obliquely, and it eventually coalesces into the

leading bubble. The whole process is in good agreement with the results of previous

studies [71, 72].

2.3.7 3D Dam Break on a Wet Bed

To demonstrate the stability of the present method as a practical two-phase flow

solver, the problem of a three-dimensional dam break on a wet bed is solved. Experimental

studies on this problem have been reported by Stansby et al. [73] and Jánosi et al.

[74]. Numerical simulations of various dam break problems have also been reported [75].

The water tank considered measures 0.72 m × 0.12 m × 0.36 m and is discretized by a

576 × 96 × 288 uniform grid. Enclosed by a virtual baffle plate located at x = 0.15 m,

a water column with the same width and height is placed at the left side of the tank,

as shown in Fig. 2.24. The depth of the water on the flat bed is 0.018 m. Initially the

water and air are at rest. The same fluid properties as in the 2D dam break problem

in Section 2.3.5 are used in this computation. The speed of sound is cs = U0/Ma =
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Figure 2.22: Schematic diagram of 3D oblique coalescence of two bubbles problem.
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Figure 2.23: Time evolution of bubbles in 3D oblique coalescence of two bubbles.
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Figure 2.24: Schematic diagram of 3D dam break on a wet bed problem.

10/0.1 = 100 m/s and 20 iterations for evolving pressure projection are performed. No-

slip conditions are imposed on all walls.

The time evolution of the water surface till 1.2 seconds is depicted in Fig. 2.25. The

baffle plate is abruptly removed at the beginning of the simulation, and the water column

begins to collapse under gravity. A rolling surface of water over the wet bed appears at

t = 0.2 s and air bubbles mix into the water at t = 0.4 s. After the water crashes

against the downstream wall, a lot of droplets splash out at t = 0.6 s. As the water body

withdraws from the wall, the droplets in the air are integrated into the water. The results

obtained by the present method show a similar tendency to those of the Navier-Stokes

solver based on the characteristic method [14] and the filtered lattice Boltzmann method

[26]. Overall, the computation is very stable.
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Figure 2.25: Time evolution of water surface in 3D dam break on a wet bed.
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Chapter 3

Momentum Conservation for

Two-phase Flow

This chapter aims at a robust simulation of violent two-phase flows with high density

ratio. First a consistent and conservative formulation for momentum transport within

the finite-volume framework is introduced. Then a special treatment is employed to

avoid velocity-pressure decoupling on the collocated grid. The significant advantage of

a consistent and momentum-conserving solver is demonstrated by the two-phase flow

simulations in the presence of high density ratio.

3.1 Mathematical Model

The Navier-Stokes equations in conservative form for weakly compressible fluid under

isothermal condition can be written as:

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ ·

[
µ
(
∇u+∇uT

])
+ F , (3.1)

∂p

∂t
+ ρc2s∇ · u = 0, (3.2)

where u = (u, v, w) is the velocity vector, ρ the density, p the pressure, µ the dynamic

viscous coefficient, and F the external body force. cs is an artificial speed of sound, which

must be large enough to satisfy the low Mach number condition Ma = |u|max /cs ≪ 1.

The conservative form of the convection term in the momentum equation is crucial in the

present model.

Besides the conservative Allen-Cahn model introduced in Section 2.1.3, the volume of

fluid (VOF) method is also adopted for capturing the two-phase interface in this thesis.

For immiscible two phases without phase change, the volume fraction of a fluid phase f
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is purely advected by the motion of fluid, i.e., the material derivative of f is zero:

∂f

∂t
+ u · ∇f = 0, (3.3)

which is equivalent to the flux form

∂f

∂t
+∇ · (uf) = f∇ · u. (3.4)

Note that the right-hand side of Eq. (3.4) accounts for the change in volume fraction

due to fluid compressibility, and it vanishes when the fluid flow is incompressible. The

right-hand side term is neglected for two reasons. One is that the compressibility is small

enough at low Mach number to consider the fluid as being nearly incompressible. In

addition, since the continuity equation is not explicitly included in this model, the VOF

equation without the right-hand side also represents conservation of mass. Hence, the

VOF equation reduces to
∂f

∂t
+∇ · (uf) = 0. (3.5)

The one-fluid model for the simulation of two-phase flow described in Section 2.1.4 is

also used in the present solver. The only difference is that the phase-field function ϕ is

replaced by the volume fraction f .

3.2 Numerical Methods

3.2.1 Consistent Transport of Mass and Momentum

A collocated grid system is used for spatial discretization, which means all primitive

variables are defined at the center of each cell. The finite volume method (FVM) is used

to ensure numerical conservation of mass and momentum when calculating the convective

parts of Eq. (3.1) and (3.5). In the present method, the mass transport is first calculated

by solving the VOF equation.

In order to compute the advection term of Eq. (3.5) accurately in the presence of

steep change of volume fraction near a interface, geometric approach such as piecewise

linear interface calculation (PLIC) scheme and algebraic approach including THINC [76]

and its extensions to multiple dimensions such as THINC/WLIC [77] and unstructured

grid UMTHINC [78] have been proposed and widely studied.

The THINC/WLIC scheme [77], which has both good accuracy and simplicity of

implementation, is employed to algebraically evaluate the numerical flux of the volume

fraction function. The THINC (tangent of hyperbola for interface capturing) scheme [76]

uses a piecewise hyperbolic tangent function to represent the jump of volume fraction
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across the interface in one dimension:

Φi (x) =
1

2

(
1 + α tanh

(
β

(
x− xi− 1

2

∆x
− x̃i

)))
, (3.6)

where α = 1 for fi−1 < fi+1 and α = −1 for fi−1 > fi+1, the parameter β which

controls the steepness and thickness of the interface is chosen to be 2.5 here. x̃i repre-

sents the distance from the jump center of the interface, and it is determined by solving
1
∆x

∫ x
i+1

2
x
i− 1

2

Φi (x) dx = fi.

To extend the THINC scheme to multiple dimensions, the WLIC (weighted line in-

terface calculation) method reconstructs the interface by using a weighted average of

one-dimensional line interfaces along each axis of space. The weights depend on the in-

terface normal. When calculating the flux of the volume fraction FV in a certain axis

direction, only the line interface along this axis is reconstructed by the THINC scheme

and its flux is a spatial integration of Eq. (3.6). The fluxes of the line interfaces perpen-

dicular to this axis can be simply evaluated by using the 1st-order upwind scheme. For

example, the flux in the x-direction can be expressed as

FV
x,i+ 1

2
= ωx,iup

∫ x
i+1

2

x
i+1

2
−u

i+1
2
∆t

Φiup (x) dx+ (1− ωx,iup) fiupui+ 1
2
∆t, (3.7)

where iup = i for ui+ 1
2
> 0, and iup = i+1 for ui+ 1

2
≤ 0. The weight of the line interface

along the x-axis is calculated using the interface normal n = ∇f/ |∇f |:

ωx =
|nx|

|nx|+ |ny|+ |nz|
, (3.8)

where nx, ny and nz are three components of the normal vector in the x, y and z directions

respectively.

As illustrated in Fig. 3.1, the volume flux of the heavy phase FV,h
f and that of the

light phase FV,l
f crossing the cell face during ∆t are related as follows:

FV,l
f = uf∆t−FV,h

f , (3.9)

where the subscript f denotes an arbitrary cell face. uf is a face-centered advection

velocity, and its construction will be described in the next subsection. The total mass

flux FMass is obtained by summing the volume fluxes of the two-phase fluids multiplied

by their corresponding densities:

FMass
f = ρhFV,h

f + ρlFV,l
f . (3.10)
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,

,

Figure 3.1: Flux of the volume fraction across the cell face during ∆t.

Finally, the convection term of the momentum equation is calculated using Gauss’s

divergence theorem:∫∫∫
∇ · (ρu⊗ u) dV∆t =

∑
f

FMass
f UfAf

=
∑
f

(
ρhFV,h

f + ρlFV,l
f

)
UfAf ,

(3.11)

where Af represents the area of the cell face. Uf is the velocity at the cell face that is

reconstructed from the cell-centered velocities by a 3rd-order MUSCL scheme [63]. Since

the volume flux in the VOF equation is included in the momentum flux, the mass and

momentum transports are coupled by the above consistent formulation. Only by this

way, the solution of velocity is correct when extracting the velocity from the momentum

after solving the transport equations,

u =
ρu

ρ
. (3.12)

For comparison, an inconsistent formulation is also introduced. The convective part

of the momentum equation is replaced by a non-conservative form,

ρ

(
∂u

∂t
+ u · ∇u

)
= 0, (3.13)

and solved by the finite difference method with the 3rd-order WENO scheme [59]. Since

the time integration is directly implemented on the velocity rather than the momentum,

there is no need to worry about the abnormal solution caused by extracting the velocity

from the momentum via Eq. (3.12). In this approach, the mass transport and momentum

transport are independent at each time step.
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Figure 3.2: Interpolation of cell-centered velocities to faces.

3.2.2 Pressure Projection on Collocated Grid

The evolving pressure projection method described in Section 2.1.2 is also used in

this conservative solver. Considering the severe restriction of the time step imposed by

the speed of sound, there is a trade-off between the Mach number and the number of

iterations in order to accelerate the time-to-solution. In practice, it is found that 20

iterations in every time step are sufficient if the Mach number is smaller than 0.05, which

can be realized by dynamically adjusting the speed of sound as the simulation goes on.

To avoid pressure-velocity decoupling when the pressure projection is performed on

the collocated grid, the concept of approximate projection [79] is adopted. Imitating the

staggered grid system, a face-centered velocity field uf is constructed by linear interpo-

lation of the corresponding velocity components defined at the cell center, as illustrated

in Fig. 3.2. The external forces coming from the surface tension and gravity are first

applied to the face-centered velocities,

u∗
f =

u∗
c− + u∗

c+

2
+ ∆t

〈
F

ρ

〉n+1

f

, (3.14)

where u∗
c− and u∗

c+ are the intermediate cell-centered velocities at either side of the face.

The density ρf on the cell face is also linearly interpolated from the densities at the cell

centers. Then, the staggered pressure and velocities are iteratively corrected by using the

evolving pressure projection method. Finally, the cell-centered velocity uc is corrected

by averaging the pressure gradient and body forces from the cell faces to the cell center:

un+1
c = u∗

c +∆t

(〈
−∇p

ρ

〉n+1

f→c

+

〈
F

ρ

〉n+1

f→c

)
. (3.15)

Additionally, the corrected face-centered velocity will be used as the advection velocity,

which also appears in Eq. (3.9), in the next time step.
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3.2.3 Time Integration

The numerical solutions of governing equations are advanced from time step tn to

tn+1 = tn +∆t by using the fractional-step method, which proceeds as follows:

(1) Compute the consistent transport of mass and momentum by simultaneously solving

the convective parts of the VOF equation and the momentum equation based on

Eq. (3.6)-(3.11):

∂ϕ

∂t
= −∇ · (ϕu) , (3.16a)

∂ρu

∂t
= −∇ · (ρu⊗ u) . (3.16b)

A three-stage third-order strong-stability-preserving Runge-Kutta (SSP-RK-3) scheme

[65] is used for the explicit time integration of the transport equations.

(2) Compute the average density and viscosity with the updated VOF function by Eq.

(2.34) and (2.35).

(3) Explicitly solve the viscous part of Eq. (3.1) by using a first-order Euler forward

scheme for the time integration:

∂ρu

∂t
= ∇ ·

(
µ
(
∇u+∇uT

))
. (3.17)

(4) Construct the face-centered velocity and apply the external forces to the cell face

by using Eq. (3.14).

(5) Iteratively correct the face-centered velocity and pressure by using the evolving

pressure projection method, i.e., Eq. (2.17)-(2.20).

(6) Approximate projection and forcing for the cell-centered velocity by using Eq.

(3.15).

The algorithm described above can be easily switched to an inconsistent formulation

by replacing Eq. (3.16b) with Eq. (3.13). In this case, the Runge-Kutta scheme is still

used to integrate the non-conservative momentum convection equation in time, although

it is no longer coupled with the transport of the volume fraction, Eq. (3.16a). In addition,

the restriction imposed on time step ∆t is almost same as Eq. (2.57) except for the last

term which is associated with the conservative Allen-Cahn equation.
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Figure 3.3: Evolution of the shape of bubble during the rising process.

3.3 Numerical Results

3.3.1 Two-dimensional Rising Bubble

For the first validation, a non-violent two-phase flow problem is solved in order to

compare the numerical results with other benchmark data. The accuracy of the present

method is evaluated in a two-dimensional rising bubble simulation. At the beginning,

a circular bubble with diameter 0.5 is surrounded by still liquid in a 1 × 2 rectangular

domain. The center of the bubble is located at (0.5, 0.5). No-slip conditions are imposed

on the top and bottom enclosing walls, and slip conditions are imposed on the left and

right sides. The computation is performed on a 128 × 256 uniform grid. The physical

properties of fluids are initialized by the same parameters in Table 2.2 for two cases

respectively.

The evolution of the shape of the bubble until the ending time t = 3 is depicted in Fig.

3.3. Since the present method is mass-conservative, and accurate enough for interface

reconstruction, the bubble trail in the case 2 is well captured in the results, which is

difficult for the level-set-based method [68]. Next, the rising velocity of the bubble is
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Figure 3.4: Rising velocity over time of the two-dimensional bubble.

compared with the results of Hysing et al. [68] and Aland and Voigt [67]. The latter

employs the finite element method for solving the Navier-Stokes and diffusive-interface

phase-field system. The rising velocity plotted in Fig. 3.4 shows good agreement in both

cases. Different from the previous study in Section 2.3.4, the iteration number is fixed and

the speed of sound is adjusted dynamically, as described in Section 3.2.2. There is almost

no oscillation in the velocity, which indicates that the proposed approach successfully

minimizes the effects of weak compressibility and the acoustic wave. Moreover, as both

references solve the incompressible Navier-Stokes equation, these comparative results

prove that the present solver can be used to accurately simulate an incompressible two-

phase flow.

3.3.2 Transport of a Heavy Droplet

The transport of a heavy droplet is a test that is often conducted in studies on

the momentum-conserving or consistent transport methods. Here, a circular droplet of

diameter D = 0.25 is placed at the center of a periodic unit square domain. The density

of the liquid droplet is ρh = 106, and the density of the surrounding gas is ρl = 1. Both

the droplet and the gas are inviscid, i.e., µh = µl = 0. This problem is free of the

gravity and surface tension force. In a disk area of diameter D+2∆x concentric with the

droplet, the velocities are initialized to u = 1, v = 1, while the fluid in the other region

is at rest. The droplet velocity is initialized in an area slightly larger than the droplet in

order to improve the results in the early stage of the simulation [31]. The computation

is performed on a 128× 128 uniform grid, correspondingly, 32 meshes are assigned to the

diameter of the droplet.

The droplet goes through a cycle of motion at t = 1 and returns to its original position.
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(a) Inconsistent (b) Consistent

Figure 3.5: Droplet shapes after a cycle of motion.
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Figure 3.6: Schematic diagram of the collapse of a water column.

Fig. 3.5 compares the droplet shapes obtained by the consistent and inconsistent methods

described in section 3.2.1. Although the density ratio 106 is very high and this problem is

dominated by convection of the heavy fluid, the droplet undergoes unphysical distortion if

the mass and momentum transports are inconsistent. In contrast, the consistent method

retains the circular shape. There is no significant deformation of the droplet. Hence, it is

necessary to use the consistent method when the density ratio between the two phases is

high. Or rather, the consistent method is always preferable for the two-phase simulation.
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(a) Inconsistent
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Figure 3.7: Zoom-ins on the front of a collapsing water column at t = 0.35 s.

3.3.3 Collapse of Water Column

The two-dimensional collapse of a water column, which is also known as dam break,

is simulated to demonstrate the importance of consistent transport on the stability of

the two-phase interface at high Reynolds number. The computation is initialized by

following the experimental setup of Lobovskỳ et al. [80]. A reasonable simplification to

a two-dimensional simulation is made based on the fact that the water surface profile is

almost the same in the breadth direction of the tank during the collapse process. The

initial water column has a width 0.6 m and height H = 0.3 m, located at the right

and bottom of a rectangular tank of size 1.61 m× 0.6 m. A schematic representation of

the water and domain is illustrated in Fig. 3.6. On the downstream vertical wall, four

pressure monitoring points are selected at the same position as in the experiment: 3 mm,

15 mm, 30 mm and 80 mm. The physical properties of the water and air are ρh = 997

kg/m3, ρl = 1.2 kg/m3, µh = 8.8733×10−4 Pa·s, µl = 1.8×10−5 Pa·s, and surface tension

coefficient σ = 0.072 N/m. The gravitational acceleration is g = 9.8 m/s2. Because of the

high Reynolds number 3.8× 106 reported in the experiment, the computational domain

is discretized on a relatively high-resolution grid that has 1610 × 600 cells in order to

extract the data more accurately in the flow field. No-slip conditions are imposed on the

enclosing walls.

In this simulation, the downstream distance of the domain is sufficiently long to

imitate a strong shear flow situation. The interface is unstable when there is a large ve-

locity difference across it with small perturbations between two fluids. This phenomenon

is known as Kelvin-Helmholtz instability (KHI). According to an analysis using linear

theory [81], gravity and surface tension force play a role in stabilizing the interface. Sub-

stituting typical parameters in the case of a collapsing water column into the formula for

the linear growth rate of KHI:

γ =

√
k2ρ1ρ2 (U1 − U2)

2

(ρ1 + ρ2)
2 − kg (ρ1 − ρ2)

ρ1 + ρ2
− k3σ

ρ1 + ρ2
, (3.18)
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(a) t = 0.16 s (b) t = 0.37 s

(c) t = 0.57 s (d) t = 1.17 s

Figure 3.8: Evolution of water surface profile: experiment [80] (top) and numerical results
of the consistent method (bottom).

where k is the wave number of the interface perturbation, yields a negative value within

the square root. Therefore, the Kelvin-Helmholtz instability shown in Fig. 3.7(a)

shouldn’t occur. In contrast, the consistent method more realistically reproduces the pro-

file of the water front, which compares favorably to the experiment and another numerical

simulation using the SPH method [82]. It reveals that solving the non-conservative mo-

mentum equation will result in that if the low-density fluid has a large velocity, it will

have a large impact on the movement of the high-density fluid.

The time evolution of the water surface obtained by the consistent method is compared

with the experimental snapshots in Fig. 3.8. Except in the early stage of collapse, which

is under the influence of the gate release, the surface profiles, water heights and front

positions are in good agreement. Fig. 3.9 shows the time variation of the impact pressure

at four monitoring points on the downstream wall in comparison with the sensor data

in the experiment. Non-dimensional time t∗ = t
√
g/H and pressure p/ (ρgH) are used,
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Figure 3.9: History of impact pressure obtained by the consistent method in comparison
with experimental values [80].

where ρ is the density of water and H is the initial height of the water column. The color

band in the figure represents the experimental data between the 2.5% and 97.5% percentile

levels of 100 tests. In Fig. 3.9(a), the rising point of the impact pressure measured in

the numerical simulation is a little ahead of that of the experiment. The peak pressure

is also higher. This can be explained by the fact that the water column is not subject

to resistance from the side wall in the two-dimensional simulation, and the water front

hits the lower corner of the tank earlier with a slightly higher speed. Nevertheless, the

simulation is in satisfactory agreement with the impact pressures measured by the four

sensors.

3.3.4 Three-dimensional rising bubble

To validate the conservative and consistent solver for realistic three-dimensional two-

phase flow simulations, the rising of a single bubble in a liquid under various conditions



3.3. NUMERICAL RESULTS 49

0.01 0.015 0.02 0.025 0.03

x

0.056

0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0.074

z

60 60 150

80 80 200

100 100 250

120 120 300

140 140 350

Figure 3.10: Effect of mesh resolution on the simulated bubble shape.

is simulated and the results are compared with the experiment conducted by Bhaga and

Weber [83]. The final bubble shapes are categorized based on the non-dimensional Eötvös

number, also known as the Bond number, and the Morton number:

Eo =
ρhgD

2

σ
, (3.19a)

Mo =
gµ4

h

ρhσ3
. (3.19b)

In this simulation, the density ratio and the viscosity ratio are set to 1000 and 100,

respectively. The liquid density is ρh = 1000 and the bubble density is ρl = 1. The

viscosities of the two phases are µh = 10−3 and µl = 10−5. The bubble diameter is D =

0.01. Once the Eötvös and Morton numbers are known, the gravitational acceleration g

and the surface tension coefficient σ can be determined accordingly. Reference numerical

simulations [72, 84] have shown that a computational domain with lateral dimensions of

four times the bubble diameter in the horizontal directions has a negligible boundary effect

on the rising bubble. Therefore, the domain is filled with quiescent liquid, measuring

0.04 × 0.04 × 0.1, with the bubble of diameter 0.01 centered at (0.02, 0.02, 0.02). Slip

boundary conditions are imposed on the enclosing domain.

Before comparing the results with experiment, the grid independence is examined.

The case with Eo = 116 and Mo = 41.1 is computed on several different uniform grids,

where the bubble diameter is resolved by 15 ∼ 35 grid cells. Figure 3.10 shows the

contour of the bubble shape on the central slice of the domain at the non-dimensional
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Table 3.1: Comparison of the terminal bubble shapes between experiment and simulation
under cases A1-A8.

Case Condition Experiment Simulation

A1
Eo = 8.67
Mo = 711

A2
Eo = 17.7
Mo = 711

A3
Eo = 32.2

Mo = 8.2× 10−4

A4
Eo = 243
Mo = 266

A5
Eo = 115

Mo = 4.63× 10−3

A6
Eo = 237

Mo = 8.2× 10−4

A7
Eo = 339
Mo = 43.1

A8
Eo = 641
Mo = 43.1

time τ = t/
√
D/g = 10. The present results show that a grid finer than 120× 120× 300

had no significant effect on the predicted bubble shape. Therefore, the 120 × 120 × 300

grid with a diameter of 30 cells is used for the following simulations.

The test cases listed in Table 3.1 and Table 3.2 cover almost all typical bubble shapes,
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Table 3.2: Comparison of the terminal bubble shapes between experiment and simulation
under cases B1-B8.

Case Condition Experiment Simulation

B1
Eo = 116
Mo = 848

B2
Eo = 116
Mo = 266

B3
Eo = 116
Mo = 41.1

B4
Eo = 116
Mo = 5.51

B5
Eo = 116
Mo = 1.31

B6
Eo = 116
Mo = 0.103

B7
Eo = 116

Mo = 4.63× 10−3

B8
Eo = 116

Mo = 8.60× 10−4
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Table 3.3: Physical parameters and fluid properties for jet in cross flow simulations.

Case
ρl

[kg/m3]
ρg

[kg/m3]
µl

[kg/(ms)]
µg

[kg/(ms)]
σ

[N/m]
Vl

[m/s]
Vg

[m/s]
q =

ρlV
2
l

ρgV 2
g

We =
ρgV

2
g d

σ
Re =

ρlV
2
l d

µl

1 118 1.18 0.000307 0.0000186 0.0708 51.45 54.8 88.2 40 15800
2 997 1.18 0.000894 0.0000186 0.0708 17.7 54.8 88.2 40 15800

including spherical, oblate ellipsoidal, oblate ellipsoidal cap, spherical cap, and skirted

shapes. The predicted bubble shapes using the consistent solver agree very well with the

experiment [83]. It is worth noting that cases A5, A6, B7, and B8 have relatively high

Reynolds numbers, and the motion of the bubble does not reach the steady state, making

the bubble easy to break up. Therefore, one of the snapshots in the simulation is just

selected to match the experiment. These phenomena are also observed in the reference

numerical computation [84].

3.3.5 Liquid Jet in Gas Cross-Flow

To demonstrate the stability of the present method as a practical two-phase flow

solver, the problem of a three dimensional jet in an air cross-flow is simulated. This is a

suitable validation of the importance of consistent transport and momentum conservation

when applied to realistic two-phase flows with a high density ratio and high Reynolds

number. Experimental studies on this problem have been reported in [85], and a numerical

study has been reported in [33].

The geometric and physical parameters follow the computation conditions described

in [33]. The domain size measures 2.0 cm × 1.5 cm × 3.5 cm and is discretized by the

256 × 192 × 448, 384 × 288 × 672 and 512 × 384 × 896 uniform grids with different

resolutions. The liquid nozzle of diameter 0.8 mm is placed on the bottom wall and

centered at (0.2 cm, 0.75 cm, 0 cm). The air blows in from the left boundary in the

positive x direction with a constant velocity Vg, and the liquid is injected from the nozzle

along the positive z direction with a constant velocity Vl. The physical properties are

listed in Table 3.3. In case 1, the density ratio is 100, while in case 2, the density ratio

corresponds to the actual value for water and air. However, the momentum ratio q,

Weber number and Reynolds number are the same for both cases, indicating that both

cases belong to the multimode breakup regime [85]. No-slip conditions are imposed on

the bottom wall zmin except for the nozzle. Outflow conditions are applied to the right

boundary xmax. Other walls at ymin, ymax and zmax have slip conditions.

Wu et al. [86] proposed the equation of the liquid column trajectory as

y/d =
√
π/Cd

√
q (x/d), (3.20)
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(a) 256× 192× 448 (b) 384× 288× 672 (c) 512× 384× 896

Figure 3.11: Inconsistent solver for case 1 of jet in cross flow simulation at t = 2.0× 10−3

s.

(a) 256× 192× 448 (b) 384× 288× 672 (c) 512× 384× 896

Figure 3.12: Consistent solver for case 1 of jet in cross flow simulation at t = 2.0× 10−3

s.
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(a) t = 0.5× 10−3 s (b) t = 1.0× 10−3 s

(c) t = 1.5× 10−3 s (d) t = 2.0× 10−3 s

Figure 3.13: Consistent solver for case 2 of jet in cross flow simulation at density ratio
corresponding to water and air.
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where the drag coefficient fitted by the experiment of Sallam et al. for the multimode

breakup regime is Cd = 4. Fig. 3.11 and Fig. 3.12 show the liquid surfaces at t =

2.0×10−3 s obtained by the inconsistent and consistent methods for case 1. By comparing

these results with the experimental results in the literature [85], it is obvious that the

consistent method gives more robust simulation results on the interface shape and the

trajectory of the jet. The results of the inconsistent method show that the jet column

breaks up within a short distance after leaving the nozzle, influenced by the air cross-

flow. Moreover, the droplets formed after break up are quickly blown downstream with

the air. Even after refining the mesh, the liquid column breakup characteristic obtained

by the inconsistent solver does not improve significantly. Such a phenomenon in the

numerical simulation is in line with expectations, if the mass and momentum transports

are inconsistent, the large momentum stored in the heavy fluid will leak into the light

fluid, causing the velocity of the light fluid to increase dramatically. In turn, the light

fluid with a high velocity will have a strong non-physical effect on the motion of the heavy

fluid.

Finally, the consistent method is used to compute case 2 on the finest uniform grid.

The time evolution of the jet interface till 2.0×10−3 s and the velocity field on the central

section of the computational domain are depicted in Fig. 3.13. The computation remains

stable, although the two-phase flow with a high density ratio becomes very turbulent.

The trajectory of the liquid column is also in good agreement with other numerical

simulations [33, 87] and an experimental study [85]. Considering the complexity of the

liquid jet phenomenon, further numerical simulation with much higher grid resolutions

are needed to better understand the formation and evolution of the jet structure.
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Chapter 4

Multi-GPU Scalability

This chapter first introduces two novel momentum-conserving weakly compressible

Navier-Stokes solvers with difference methods for interface capturing and curvature esti-

mation. Then the performance and scalability for the solvers are evaluated on multi-GPU

supercomputers. Several numerical results are presented to show the accuracy and fidelity

in large-scale two-phase flow simulations.

4.1 Conservative Solvers

4.1.1 Con-CAC-LS

The first conservative solver for two-phase flow simulation introduced here is referred

as Con-CAC-LS, which represents the combination of the conservative Navier-Stokes

equation, conservative Allen-Cahn equation and level-set method. This solver essentially

follows the finite volume framework designed in Chapter 3, except that the Conservative

Allen-Cahn model Eq. (2.24) is used to capture the gas-liquid interface. Different with

the VOF method, the volume flux crossing a cell face in the conservative Allen-Cahn

equation is given by

FV
f = ufϕ−M

(
∇ϕ− 4ϕ(1− ϕ)

W
n

)
, (4.1)

where the subscript f denotes an arbitrary cell face. uf is a face-centered advection

velocity. Then Eq. (4.1) can be substituted into Eq. (3.9) and Eq. (3.10) to evaluate the

mass flux.

In the Con-CAC-LS solver, the level-set method is coupled with the conservative

Allen-Cahn model by using the approach described in Section 2.1.3. And the level-set

function is also used to calculate the interface normal and curvature.
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4.1.2 Con-PLIC-HF

The second conservative solver combines the momentum equation Eq. (2.2), PLIC

and height function method. Therefore, it is referred as Con-PLIC-HF. In this solver,

the motion of the interface between two fluids is governed by the volume of fluid (VOF)

equation
∂f

∂t
+∇ · (uf) = f∇ · u, (4.2)

where f represents the volume fraction of the heavy fluid. Different with the conservative

Allen-Cahn equation Eq. 2.24, the above VOF equation is used as a substitute for

the continuity equation representing conservation of mass. Hence additional continuity

equations for phase 1 and phase 2 need to be solved simultaneously:

∂fiρi
∂t

+∇ · (ufiρi) = 0, (4.3)

where the subscript i ∈ {1, 2} indicates the quantities associated with phase i. Similarly,

the convective part of Eq. (3.1) is also split into two equations for phase 1 and phase 2,

respectively:
∂fiρiu

∂t
+∇ · (fiρiu⊗ u) = 0, (4.4)

The average density and momentum of the fluid can be obtained directly by summing

the two components as

f1 + f2 = 1, (4.5a)

f1ρ1 + f2ρ2 = ρ, (4.5b)

f1ρ1u+ f2ρ2u = ρu. (4.5c)

Fluid viscosity is still evaluated by Eq. (2.35) after replacing the phase-field function in

it with the volume fraction.

As one of the geometric VOF methods, the piecewise linear interface calculation

(PLIC) method approximates the interface in each interfacial cell as a line in two dimen-

sions or a plane in three dimensions, as illustrated in Fig. 4.1(a). The linear interface is

defined by the equation

n · x = α, (4.6)

where α is a constant that enforces the volume fraction cut by the interface is f . Here,

the interface normal n = ∇f/ |∇f | is computed by the mixed Youngs-centered (MYC)

method [88]. The first step of PLIC method is the interface reconstruction, i.e., to

determine α given the volume fraction f and normal vector n. Since the orthogonal grid

is used for discretization, instead of the root-finding algorithm, analytical expressions

can be employed to find α with much cheaper computation [89]. Then, as illustrated in
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=

(a) Interface reconstruction (b) Flux calculation

Figure 4.1: PLIC method.

Fig. 4.1(b), the volume flux across the cell face is calculated by the geometric relation

to advect the reconstructed interface, which is the inverse of the previous problem. The

analytical method [89] is also used to find the volume fraction f in the rectangular cell

given n and α of the linear interface.

The Weymouth & Yue method [90] is used to solve the VOF equation Eq. (4.2),

where the multi-dimensional advection of Eq. (3.5) is split into a series of one-dimensional

advection problem. Moreover, the velocity divergence term cannot be neglected in one

dimension even if the velocity is divergence free in two or three dimensions. Take the

two-dimensional case as an example, the Weymouth & Yue advection scheme solves the

following two equations in succession:

∂f

∂t
+
∂ (uf)

∂x
− fc

∂u

∂x
, (4.7a)

∂f

∂t
+
∂ (vf)

∂y
− fc

∂v

∂y
, (4.7b)

where the cell-centered value fc is treated explicitly by using the f from the previous

time step:

fc =

1, if f > 0.5

0, else.
(4.8)

To enforce the no overfilling or over-emptying condition for the volume fraction, another

restriction is imposed on the time step as

∆t

Nd∑
d=1

∣∣∣∣ ud∆xd

∣∣∣∣ < 1

2
. (4.9)
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(b) Under-resolved interface

Figure 4.2: Height function for curvature estimation.

In order to make the transport of mass and momentum consistent with that of volume

fraction, Eq. (4.3) and Eq. (4.4) are also solved by the dimensional-splitting method. The

density and momentum at the cell face are reconstructed by the Bell–Collela–Glaz (BCG)

second-order upwind scheme [38, 91]. To couple the transport equations, the numerical

fluxes of mass and momentum are evaluated through multiplying the reconstructed value

by the flux of volume fraction FV which is computed by the PLIC method:

FfiYi
= Yi,advFfi , (4.10)

where Yi = (ρi, ρiu) and Yi,adv represents the reconstructed quantities at the cell face by

the BCG scheme. FfiYi
denotes the amount of mass and momentum transported across

the cell face during the time step. As illustrated in Fig. 4.1(b), the volume flux of the

phase 1 Ff1 and that of the phase 2 Ff2 are related as follows:

Ff1 = uf∆t−Ff2 . (4.11)

In the case of geometric VOF method, it is straightforward to apply the height function

method [92] for the estimation of interface curvature. As illustrated in Fig. 4.2(a),

depending on the orientation of interface normal, the height function is obtained by

summing up the volume fraction in a column or row. In the case of |ny| > |nx| in two
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Table 4.1: Comparison between Con-CAC-LS and Con-PLIC-HF solvers.

Solver Con-CAC-LS Con-PLIC-HF

Interface capturing Conservative Allen-Cahn model PLIC-VOF method
Curvature Level-set function Height function

Transport variables ϕ, ψ, ρu f, fiρi, fiρiu
Convection term 3rd order MUSCL scheme 2nd order BCG scheme
Time integration 3rd order Runge-Kutta method 2nd order direction-splitting method

Viscous term
2nd order central difference scheme (space)
1st order forward Euler method (time)

Surface tension Density-scaled CSF model
Pressure term Evolving pressure projection method

dimensions, the height function H is calculated by

Hi+s =
3∑

t=−3

fi+s,j+t, s = −1, 0, 1. (4.12)

And the curvature can only be validly calculated at the interfacial cell which means

3 ≤ Hi < 4. To estimate the curvature at this cell, a 3 × 7 stencil around this cell is

required. Then, the curvature is obtained by

κ =
Hxx

(1 +H2
x)

3/2
. (4.13)

In the case of three dimensions, the formulation is

κ =
Hxx +Hyy +HxxH

2
y +HyyH

2
x − 2HxyHxHy(

1 +H2
x +H2

y

)3/2 . (4.14)

A situation where the interface is under-resolved by the low mesh resolution is often

encountered in practice, since the stencil for calculating the height function is quite long.

As illustrated in Fig. 4.2(b), although the central cell contains the interface with the same

geometry as that of Fig. 4.2(a), the estimated curvature has a very large error compared

to the correct value. Therefore, the values of volume fraction should be modified when the

under-resolved interface is detected. The approach to enforce a local monotonic variation

of volume fraction [93] is employed in this work. An improved height function technique is

adopted here with a filtered discretization of the partial derivatives of the height function

[93], which has a better accuracy than the standard central difference scheme.

Table 4.1 summarizes the main features of two solvers. Except for the differences

in the interface capturing, curvature estimation and transport equations, Con-CAC-LS

solver use a 3rd order RK for time integration, while the Con-PLIC-HF is solved by a

direction-split forward Euler method. The viscous term is treated explicitly, and a density

scaled continuum surface force model is used to calculate the surface tension in both two

solvers.
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Figure 4.3: Thread hierarchy in CUDA programming.

4.2 Performance and Scalablity on GPUs

4.2.1 Basics of GPU Computing

In recent years, the use of GPU as computational accelerator has attracted wide

attention. Powerful computing performance and high bandwidth for data transfer are

the main features of GPU. At the same time, general programming environments such

as OpenCL and CUDA (Compute Unified Device Architecture) have emerged, which

greatly promote the application of GPU in many fields including scientific computing. In

the field of high performance computing, multi-node GPU clusters have appeared in a

large number of TOP 500, Graph 500 and Green 500 lists.

Stencil-based numerical methods such as the finite volume method naturally fit the

framework of CUDA which is the programming interface on GPU. As shown in Fig. 4.3,

to perform parallel computing on the background grid, blocks are allocated to take charge

of their corresponding region of the grid. A certain number of threads inside every block

will execute calculating commands simultaneously. Since thousands of CUDA cores are

available in a GPU, it is flexible to arrange blocks and threads. Index of a thread is defined

in a vector threadIdx with three components, so the block composed of threads can be

one-dimensional, two-dimensional or three-dimensional, and the size of each dimension of

each thread block is defined by the variable blockDim. Although the number of threads

in a thread block is limited, a kernel function in CUDA can be executed by multiple

blocks of the same size. The structure composed of blocks is called grid. The grid of

blocks can also be one-dimensional, two-dimensional or three-dimensional. The index of

block in the grid is defined by vector blockIdx. Fig. 4.3 illustrates an example for block
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Whole domain Subdomains

(a) 1D partition

Whole domain Subdomains

(b) 3D partition

Figure 4.4: Domain partition for multi-GPU computation.

index in 2D grid and thread index in 2D block. Finally, when one thread is assigned for

one grid point, the index of grid points (i, j, k) to be computed can be obtained by

i = blockIdx.x ∗ blockDim.x+ threadIdx.x;

j = blockIdx.y ∗ blockDim.y + threadIdx.y;

k = blockIdx.z ∗ blockDim.z + threadIdx.z.

(4.15)

Besides the thread hierarchy, there is memory hierarchy in CUDA programming.

Every thread has its own local memory (registers), while shared memory is accessible by

all threads in one block. And the global memory of GPU is visible to to all blocks and

threads. More details about code optimization such as coalesced access of global memory

and calculating occupancy are explained in [94].

The idea for parallel computing on multiple GPUs is to decompose the whole com-

putational domain into several subdomains, each of them is computed by one GPU re-

spectively, as shown in Fig. 4.4. However, in practical problems, the subdomains are

not completely independent of each other. The common situation is that the data at

boundaries of adjacent subdomain need to be accessed. A common approach for data

communication between GPUs is the message passing interface (MPI). While only point-

ers to CPU (host) memory is accepted in a regular MPI implementation, the buffers for

communication allocated in the device memory of GPU can be passed by using CUDA-

aware MPI. CUDA-aware MPI not only simplifies the programming but also has the

potential to accelerate the communication if GPUDirect P2P or RDMA is supported.

An effective approach to improve the performance of multi-GPU computation is hid-

ing the communication time [47], which is realized by overlapping the kernel execution

for inner cells and the data transfer for outer cells of the subdomain. With the help of

CUDA stream technique, the outer cells that account for only a small fraction of the
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Figure 4.5: Strong scaling of Con-CAC-LS with 1D domain partition (overlapping).

total number of grids are first computed by the CUDA stream with the higher priority.

And the computing kernel for inner cells is launched with a low-priority stream. Once

the computation of the high-priority stream is completed, the communication process

for outer cells is performed simultaneously with the inner computation. The overlapping

technique has been implemented for the program with 1D domain partition which cor-

responds to Fig. 4.4(a). Currently, the 3D domain partition program corresponding to

Fig. 4.4(b) does not support overlapping communication and computation due to the

complexity of programming.

In this work, the NVIDIA Tesla V100 SXM2 on the FLOW Type II supercomputer

is used to perform all of the computation. NVLink and InfiniBand EDR are deployed in

this supercomputer for the intra-node and inter-node connection, respectively. The HPC

SDK 21.2 is employed to compile the MPI+CUDA program.

4.2.2 Performance of Con-CAC-LS

In this section, the strong scaling, which concerns the speedup for a fixed problem

size with respect to the number of processors, is evaluated for the present multi-GPU

solvers. The performance is measured by the mega cells update per second (MCUPS).

In the case of 1D domain partition with the overlapping technique, the amount of com-

putation of each subdomain keeps decreasing as the number of GPUs increases, but the

amount of data communication does not change. Hence the communication cannot be

hidden anymore. As shown in Fig. 4.5, the computational performance does not increase

proportionally with the number of GPUs. Moreover, different domain shapes with the

same total number of meshes also affect the performance of 1D domain partition. The
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Figure 4.6: Comparison between 1D do-
main partition (overlapping) and 3D do-
main partition (non-overlapping) for the
strong scaling of Con-CAC-LS on a 512 ×
512× 512 grid.
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Figure 4.7: Comparison between 1D do-
main partition (overlapping) and 3D do-
main partition (non-overlapping) for the
strong scaling of Con-CAC-LS on a 1024×
1024× 1024 grid.

results show that strong scaling from 4 to 16 GPUs achieves even ideal performance in

the rectangular domain, but behaves much worse in the cubic domain.

Fig. 4.6 and Fig. 4.7 show the comparison between 1D domain partition and 3D do-

main partition for the strong scaling of Con-CAC-LS in the cubic domain with different

resolutions. Although the overlapping technique is not implemented in the program with

3D domain partition, the 3D partition demonstrates better scalability and higher perfor-

mance on a large number of GPUs. This significant advantage comes from the variation of

the surface area-to-volume ratio with the number of GPUs at different partitioning meth-

ods. When the computational domain is partitioned in multiple dimensions at the same

time, each subdomain not only decreases in computation with smaller volume, but also

decreases in data communication with smaller surface area instead of remaining constant

as in the one-dimensional partition.

4.2.3 Performance of Con-PLIC-HF

For the dimensional-splitting method used in the transport part of the Con-PLIC-

HF, the pattern of data communication is optimized accordingly. When the transport

equation is solved in a certain dimension, data communication is performed only in the

direction of this dimension. The strong scaling of Con-PLIC-HF with 3D domain par-

tition in Fig. 4.8 and Fig. 4.9. Compared to Con-CAC-LS, Con-PLIC-HF has almost

identical scalability but with higher overall performance. Although Con-PLIC-HF solves

more transport equations, on the one hand, the analytical method greatly simplifies the

computation of the interface geometry reconstruction, and on the other hand, it does not
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Figure 4.8: Comparison between Con-
PLIC-HF and Con-CAC-LS with 3D do-
main partition (non-overlapping) for the
strong scaling on a 512× 512× 512 grid.
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Figure 4.9: Comparison between Con-
PLIC-HF and Con-CAC-LS with 3D do-
main partition (non-overlapping) for the
strong scaling on a 1024×1024×1024 grid.

use the higher-order Runge-Kutta time integration, which multiplies the computational

effort, as Con-CAC-LS does.

4.3 Numerical Results

4.3.1 Rayleigh-Taylor Instability

The first numerical result is to discuss the mesh dependency of the two-phase flow

simulation. A classical two-phase flow phenomenon known as Rayleigh-Taylor instability

is simulated. The computation conditions described in a reference paper [95] is followed

here. Initially the heavy fluid with density ρh = 1.225 is placed on top of the light

fluid with density ρl = 0.1694. The viscosity of both fluids is µh = µl = 0.00313. The

two-phase interface is horizontally positioned at the center of a 1× 4 rectangular domain

and perturbed with a cosine wave of amplitude 0.05. This problem is free of the surface

tension force, and only the gravity g = 9.81 is applied. At the beginning, the fluid in the

whole domain is at rest. Slip conditions are imposed on the enclosing walls.

The interface location of the Rayleigh-Taylor instability at t = 0.9 is depicted in Fig.

4.10 with four different mesh resolutions including 64 × 256, 128 × 512, 256 × 1024 and

512× 2048. Because Con-PLIC-HF produces identical interfaces on the 256× 1024 and

512× 2048 grids, it is regarded as the mesh-independent result and choose this interface

profile as the reference solution. However, Con-CAC-LS only becomes consistent with

the reference solution on the 512 × 2048 grid. The results indicate that Con-PLIC-HF

has a better mesh convergence than Con-CAC-LS and is more accurate when the mesh
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Figure 4.10: Interface location of the Rayleigh-Taylor instability at t = 0.9 predicted by
Con-CAC-LS (red line), Con-PLIC-HF (blue line) and the reference solution (black line)
with different mesh resolutions.
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Figure 4.11: Comparison of the evolution of total kinetic energy in the drop oscillation.

resolution is low.

4.3.2 Drop Oscillation with Surface Tension Force

Next, a drop oscillation problem driven by surface tension force is investigated. This

problem is widely used to verify the accuracy of surface force models. The same com-

putational setting as in [96, 97] is used, where a 202 square region is discretized by the

128× 128, 256× 256, 512× 512, 1024× 1024 uniform grid. The initial drop interface is

an ellipse defined by the equation,

(x− 10)2 /9 + (y − 10)2 /4 = 1. (4.16)

The density and viscosity of the drop are 1 and 0.01 respectively, and the fluid outside the

drop has density 0.01 and viscosity 5 × 10−5. This problem is gravity-free, only surface

tension force is applied. The surface tension coefficient is σ = 1. At the beginning, the

fluid in the whole domain is at rest. Slip conditions are imposed on the enclosing walls.

The evolution of the total kinetic energy 1
2

∫
ρ |u|2 dV of the computational domain

with the two solvers at difference mesh resolutions is plotted in Fig. 4.11. The frequencies

of the oscillation obtained by both solvers are basically the same and are close to the

values reported in the references [96, 97]. However, the curvature inside a narrow band

of interface estimated by the Con-CAC-LS solver has a lot of overshoot and undershoot,

as shown in Fig. 4.12. In contrast to this, the curvature calculated by the Con-PLIC-HF

solver at the interfacial cells varies smoothly and coincides with the shape of the ellipse.

The numerical results indicate the Con-PLIC-HF solver has better mesh convergence and

accuracy compared to the Con-CAC-LS solver as illustrated in Fig. 4.11 when the effect

of surface tension exists.
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Figure 4.12: Interface curvature estimated by Con-CAC-LS solver.

Figure 4.13: Interface curvature estimated by Con-PLIC-HF solver.

4.3.3 Drop Impacting on a Thin Liquid Film

To demonstrate the accuracy of the present methods in resolving three-dimensional in-

terface topology, the problem of a drop impacting on a thin liquid film is solved and a clas-

sical phenomenon known as milk crown is reproduced. This problem has been extensively

studied by numerical simulation, experiment and theoretical analysis [yarin2006drop].

The water tank considered measures 60 mm× 60 mm× 20 mm. Considering the symme-

try of this computation, only a quarter of the water tank is calculated and discretized by

a 768 × 768 × 512 uniform grid. The depth of the thin liquid film is 0.82 mm. Initially

the liquid film and air are at rest. A droplet of diameter D = 7.04 mm is falling with

the speed of V = 1.61 m/s. As a consequence, the diameter of the drop is resolved by

about 90 grid cells. The physical properties of the liquid and gas are ρh = 1000 kg/m3,

ρl = 1 kg/m3, µh = 1.0× 10−3 Pa·s, µl = 1.0× 10−5 Pa·s, and surface tension coefficient

σ = 0.07275 N/m. The Weber number is We = ρhDV
2/σ = 250 in this case. No-slip
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(a) t = 2 ms

(b) t = 16 ms

(c) t = 32 ms

Figure 4.14: Results of 3D drop impacting on liquid film by Con-CAC-LS solver.
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(a) t = 2 ms

(b) t = 16 ms

(c) t = 32 ms

Figure 4.15: Results of 3D drop impacting on liquid film by Con-PLIC-HF solver.
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conditions are imposed on all walls. This computation is performed on 18 V100 GPUs.

The time evolution of the liquid surface is depicted in Fig. 4.14 and Fig. 4.15 for

two solvers, respectively. By comparing the results, Con-PLIC-HF solver can resolve the

fingering structure of the interface very well. On the other hand, Con-CAC-LS solver

produces a lot of splashing drops and the free rim also breaks up. But these phenomena

should not occur at this low Weber number case. As for the computational efficiency,

it takes 6 hours 40 minutes for Con-PLIC-HF solver and 12 hours 30 minutes for Con-

CAC-LS solver to complete the simulation.

4.3.4 Dam Break on a Wet Bed

To demonstrate the stability of the present solver as a practical two-phase flow solver,

the problem of a three-dimensional dam break on a wet bed is simulated. Experimental

studies on this problem have been reported by Stansby et al. [73]. The low-resolution

simulation is also reported in Section 2.3.7 and my previous work [98]. The water tank

considered measures 0.72 m× 0.12 m× 0.36 m and is discretized by a 1536× 256× 768

uniform grid. Enclosed by a virtual baffle plate located at x = 0.15 m, a water column

with the same width and height is placed at the left side of the tank, as shown in Fig.

4.16(a). The depth of the water on the flat bed is 0.018 m. Initially the water and air are

at rest. The physical properties of the water and air are ρh = 998 kg/m3, ρl = 1.2 kg/m3,

µh = 1.0 × 10−3 Pa·s, µl = 1.8 × 10−5 Pa·s, and surface tension coefficient σ = 0.07275

N/m. The gravitational acceleration is g = 9.8 m/s2. No-slip conditions are imposed on

all walls.

The time evolution of the water surface is depicted in Fig. 4.16 and Fig. 4.17. The

virtual baffle plate is abruptly removed at the beginning of the simulation, and the water

column begins to collapse under gravity. A rolling surface of water over the wet bed

appears at t = 0.2s and air bubbles mix into the water at t = 0.4s. After the water

crashes against the downstream wall, a lot of droplets splash out at t = 0.6s. In this

simulation, the high mesh resolution makes it possible to reproduce small-scale bubbles

and droplets realistically.

4.3.5 Liquid Jet in Gas Cross-flow

The last simulation presented in this chapter is a three-dimensional liquid jet in gas

cross-flow. This problem has been studied in a existing literature [87] and also used by us

to verify the importance of consistent transport and momentum conservation [99]. The

jet column predicted by a non-conservative method will break up within a short distance

after leaving the nozzle, affected by the gas cross-flow. And the droplets formed after
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(a) t = 0s

(b) t = 0.2s

(c) t = 0.4s

(d) t = 0.6s

Figure 4.16: Time evolution of water sur-
face in 3D dam break on a wet bed simu-
lated by Con-CAC-LS.

(a) t = 0s

(b) t = 0.2s

(c) t = 0.4s

(d) t = 0.6s

Figure 4.17: Time evolution of water sur-
face in 3D dam break on a wet bed simu-
lated by Con-PLIC-HF.



74 CHAPTER 4. MULTI-GPU SCALABILITY

(a) t = 0.2ms (b) t = 0.4ms

(c) t = 0.6ms (d) t = 0.8ms

Figure 4.18: Time evolution of liquid jet surface in gas cross-flow simulated by Con-CAC-
LS.
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(a) t = 0.2ms (b) t = 0.4ms

(c) t = 0.6ms (d) t = 0.8ms

Figure 4.19: Time evolution of liquid jet surface in gas cross-flow simulated by Con-
PLIC-HF.
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breaking up are quickly blown to the downstream region with the gas. On the contrary,

the conservative solver can produce more accurate simulation results on the interface

shape and trajectory of the jet.

The computational domain size measures 2.0 cm× 1.5 cm× 3.5 cm and is discretized

by a 1024 × 768 × 1792 uniform grid. The liquid nozzle of diameter 0.8 mm is placed

on the bottom wall and centered at (0.2 cm, 0.75 cm, 0 cm). The gas blows in from the

left boundary in the positive x direction with a constant velocity Vg, and the liquid is

injected from the nozzle along the positive z direction with a constant velocity Vl. The

physical properties are same as the Case 2 in Table 3.3, which corresponds to the actual

value for water and air. No-slip conditions are imposed on the bottom wall zmin except

for the nozzle. The outflow conditions are applied to the right boundary xmax. Other

walls at ymin, ymax and zmax have the slip conditions. This computation is performed on

42 V100 GPUs.

Numerical results for the time evolution of the liquid jet are depicted in Fig. 4.18

and Fig. 4.19. It can be seen from the figure that Con-PLIC-HF maintains the water

jet pattern and trajectory better. In this large-scale simulation with the Con-PLIC-HF

solver, a great number of liquid drops with different sizes are successfully resolved. The

trajectory of the liquid column is also in good agreement with other numerical simulations

and an experimental study [85].
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Chapter 5

Spatially Sparse Grid Structure on

GPU

This chapter briefly introduces the implementation of complex data structure for

sparse volumetric representation of the computational domain with GPU computing.

The data structures are designed to have a flexible topology and efficient data access for

fluid simulations.

5.1 Adaptive Mesh Refinement

5.1.1 Data Structure and Algorithms in AMR

Along with the progress of computer technology like GPU, the study on implemen-

tation of complicated algorithms on advanced architecture of hardware is demanded. In

the simulation of fluid flow, wide range of spatial scales are often encountered, including

shocks in compressible flows, interfaces between immiscible liquids, turbulence intermit-

tency, boundary layers and vorticity generation near solid boundaries. A straightforward

solution is to adjust the mesh resolution to follow the evolution of flow structure, which

is the so-called adaptive mesh refinement. In this thesis, a block-structured cell-centered

AMR algorithm is implemented on GPU. The overall design and several important tech-

niques are introduced here.

The smallest entity used to assign computational task is called a block, which is a

cube composed of three dimensional cells. The computational domain is decomposed into

blocks of different sizes in AMR. A data structure based on the forest of octrees (quadtrees

in 2D) is implemented, as shown in Fig. 5.1(a). A block in a lower hierarchical level of

octree can be subdivided into eight (four in 2D) smaller blocks of equally size in a higher

level in the refining process. Conversely, Eight children blocks in a higher level will be
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(a) Forest of quadtrees

(b) Space filling curve

Figure 5.1: Tree-Based Block-Structured AMR.

merged to one parent block in a lower level in the coarsening process. As a consequence,

the effective blocks are actually the leaves in the forest of octrees. They are stored in

the order following a space filling curve manner [100]. The Morton curve which is one

of space filling curves can be constructed by depth first search (DFS) of the whole forest

of octrees. The computational grid corresponding to the octrees is illustrated in Fig.

5.1(b), where the 2:1 balance between neighboring blocks is satisfied, i.e., the maximum

allowable difference of level is 1 between neighboring blocks. The approach to enforce the

2:1 balancing condition is briefly introduced here. When a block meets the refinement

criterion and is going to be refined, all neighboring blocks that have a lower depth in the

octree are refined. In contrast, when a block doesn’t meet the refinement criterion and is

going to be coarsened, the coarsening process shouldn’t executed if any of its neighboring

block has a higher depth.

In actual implementation, the structures of octrees and the information of computa-

tional blocks are managed separately, while some informations of the latter are generated

from the former such as the neighbor list of each block. However, simulation data is never

stored in the structure of octrees. Same as the Daino framework [101], the tree structure

is set on host memory and managed by CPU, All the data of grid blocks are stored on

device memory and the stencil computation is performed by GPU.

The search of neighbors is realized through an ingenious design of the binary index of
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Figure 5.2: Binary index of leaf nodes of trees in AMR.

nodes of trees, as illustrated in Fig. 5.2. The binary index is composed of two in 2D or

three in 3D unsigned integers, and each corresponds to a spatial dimension. Considering

a parent node with index my node id, it has 8 children nodes in three dimensions. For

the ith child where i ∈ [0, 7], the binary index child node id is calculated by

child node id.x = (my node id.x << 1)|(i&1);
child node id.y = (my node id.y << 1)|((i >> 1)&1);

child node id.z = (my node id.z << 1)|((i >> 2)&1).

(5.1)

According to this pattern, for example, the binary index of a neighbor node at same level

in the positive direction of x axis is obtained by adding 1 to my node id.x.

5.1.2 Interpolation for Cell-Centered Data

As described in previous subsection, when a block is to be refined, every cell in this

block will be subdivided into 4 in 2D or 8 in 3D smaller cells. Data in these fresh cells

should be set artificially. In this thesis, volumetric formulation for the cell-centered data

is adopted, hence a linear interpolation scheme that satisfies the conservation law can be

constructed as follows:

f f = f c + (rf − rc) · ∇f c, (5.2)

where the superscripts r and c represent the fine cell and coarse cell, respectively. rf

and rf are the positional vectors of cell centers, as illustrated in Fig. 5.3. ∇f c is the

local gradient of data in coarse cells, which can be calculated by the central difference

scheme. This interpolation scheme works as distributing the data in coarse cell to fine

cells according to the gradient.
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Figure 5.3: Interpolation for cell-centered data in mesh refinement.

(a) Before interpolation (b) After interpolation

Figure 5.4: Interpolation for a smooth periodic profile from 16× 16 grid to 32× 32 grid.
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Figure 5.5: L1 error of present interpolation scheme.

To verify the effectiveness and accuracy of this interpolation scheme, a refinement test

is shown here. In a periodic unit square, the data to be interpolated is initialized by the

following profile:

f(x, y) = sin(2πx) cos(2πy). (5.3)

where x, y ∈ [0, 1]. If the initial mesh has a size of N ×N , the size of resulting mesh after

interpolation will be 2N × 2N . An example of interpolating the data in 16× 16 grid to

32 × 32 grid is depicted in Fig. 5.4. The profile of data becomes much smoother after

interpolation. Based on the difference between the values obtained by interpolation and

the analytical values given by Eq. (5.3), the L1 error of present interpolation scheme can

be plotted as function of mesh resolution, as shown in Fig. 5.5.

When a block is to be coarsened, the data located at center of a coarse cell should be

calculated by its corresponding fine cells. According to the conservation law in volumetric

formulation, the identity is expressed as:

f c(rc)∆V
c =

n−1∑
i=0

f f (rf )∆V
f , (5.4)

where ∆V c and ∆V f are the volumes of a coarse cell and a fine cell. n = 4 in 2D and

8 in 3D. ∆V c = n∆V f is another identity. Therefore, f c can be easily constructed by

taking the average of f f in fine cells:

f c(rc) =
1

n

n−1∑
i=0

f f (rf ). (5.5)

In the flow simulation with immersed object, two criteria are used to judge whether a

block is to be refined or coarsened. The first criterion is the distance to the solid object,
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GPU memory pool

(a) Initial

GPU memory pool

(b) Coarsen

GPU memory pool

(c) Refine

GPU memory pool

(d) Defragmentation

Figure 5.6: Management of GPU memory during mesh adaptation.

which is given by the level set function ψ, while the second criterion is based on the norm

of the local vorticity vector |∇ × u|/|u|max.

5.1.3 GPU-Based AMR Implementation

In present block-structured AMR, one block may have 8 × 8 × 8 inner cells and 2

outer layers of halo cells. And the simulation data of cells belonging to the same block

is continuous in global memory. It is reasonable to assign one CUDA block of threads to

process one AMR block. Hence the amount of CUDA blocks is equal to the number of

leaves in the forest of octrees. The difficulty of GPU-based AMR implementation mainly

lies in the management of memory when mesh adaptation occurs. New memory space is

required when a block is refined to multiple children blocks, while other memory spaces

may be idle due to children blocks are merged into a block. The strategy for memory

management is briefly explained in this section.

As shown in Fig. 5.6(a), this tree begins with 7 leaves, with 3 leaves in level 1 and 4

leaves in level 2. The data in each block is arranged in order of space filling curve in the

memory pool. When those 4 blocks in higher level are coarsened to 1 block in lower level,

data of this new block will occupy the memory space of its first child block, shown in

Fig. 5.6(b), while the memory spaces of another 3 blocks become unused. In Fig. 5.6(c),

another block in level 1 is refined to 4 blocks in level 2. Because there is not always a
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(a) Copy (b) Explosion (c) Coalescence

Figure 5.7: Communications for distribution functions of LBM at the boundaries of
blocks.

continuous space in the middle of the memory pool to insert data in 4 new blocks, the

data of blocks generated by refinement is always stored in the end of memory pool, A

larger memory space can be reallocated if necessary. However, after many refinements

and coarsening, the memory pool will be flooded with idle space and become fragmented.

Hence a defragmentation operation is required to organize the memory pool, as shown

in Fig. 5.6(d). This is achieved by storing all blocks in order of space filling curve in a

newly allocated memory pool, then release the space of previous one.

To effectively fetch the data from neighboring blocks used for stencil computation,

three kinds of communication at the boundaries of blocks are performed in every compu-

tational step. Similar to the approach described in [45], the halo region is constructed for

each block with two layers of cells. For the sake of brevity, only communication across

face of neighboring blocks is explained here, more details on the data transfer across edge

and corner of the cubic block can be found in [102]. Copy process (see Fig. 5.7(a)) is

used for the communication between neighboring blocks at same level. Boundary data

in a block are directly sent to the halo layer of its neighbor. Explosion process (see Fig.

5.7(b)), i.e., the coarse-to-fine communication, sends necessary parts of the coarse block

to the halo layers of finer neighbors. Some coarse cells must be sent to more than one

fine neighbor. The distribution functions are homogeneously distributed to correspond-

ing fine cells. In contrast to copy and explosion processes, coalescence process (see Fig.

5.7(c)) reads data from the finer block and writes data into the halo region of the coarse

block. An averaging operation is performed for distribution functions of finer cells when
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Figure 5.8: Dam break simulation with
adaptive mesh refinement.

Figure 5.9: Drop splashing simulation with
adaptive mesh refinement.

merged to a coarse cell.

5.2 Numerical Simulation with AMR

Two numerical examples of two-phase flow simulations by using the conservative solver

with adaptive mesh refinement are presented in this section. Currently, AMR computa-

tion is only supported on single GPU.
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Figure 5.10: Sparse grid for the region of interest.

The fist example is the dam break on a wet bed. The same problem setting as Sec-

tion 4.3.4. To accommodate the geometry of the computational domain which measures

0.72 m× 0.12 m× 0.36 m, 6× 1× 3 tree roots are assigned to the forest of octrees. The

minimum and maximum level (depth) of octrees are 1 and 3, respectively. It means the

computational domain is discretized by a minimum of 96 × 16 × 48 meshes and a max-

imum of 384 × 64 × 192 meshes. The refinement criterion is set as the distance to the

two-phase interface. The interface evolution along with mesh adaptation is depicted in

Fig. 5.8.

The second example is the drop splashing on a thin liquid film. Similar to the problem

setting of Section 4.3.3, the domain size is slight smaller with 40 mm× 40 mm× 20 mm.

Therefore, the forest contains 2 × 2 × 1 octrees. The minimum and maximum level of

each octree are 2 and 5, respectively. And the level 2 corresponds to a 64× 64× 32 grid

and the level 5 corresponds to a 512 × 512 × 256 grid. The numerical result is depicted

in Fig. 5.9.

5.3 Sparse Grid Based on Spatial Hash

Another type of spatially sparse volumetric data structure is the sparse grid rep-

resented by VDB [103], which is wide used in the field of computer graphics for the

simulation and rendering of visual effects. Since the octree is generally deep with many

levels, the traversal of trees and dereferencing pointers are costly. In contrast, the VDB

data structure uses a shallow tree with 4 levels and large branching factor instead of the 8

branched limited by the octree. Every leaf node in VDB is a block consisting of 8× 8× 8
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Figure 5.11: Blocks of sparse grid in smoke simulation.

cells which is named as voxel in VDB. Different with the octree based adaptive grid, all

of the blocks have the same size. A SPGrid data structure is proposed to model an adap-

tive octree grid as a pyramid of sparse uniform grids to avoid the overhead of data access

associated with octree structure [104]. Based on the VDB framework, SIMD-accelerated

[105] and GPU-accelerated [106] fluid simulations have been presented.

In this thesis, a sparse grid based on spatial hash is implemented on GPU for fluid

simulation. Each block is stored as an entry in the hash table. As illustrated in Fig.

5.10, the blocks of a sparse grid are only allocated in the region of interest. The data in a

cell can be access with indices just like the dense uniform grid but actually realized by a
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Figure 5.12: Smoke simulation with sparse grid.

hash query. There is no tree structure and spatially varying resolution, so that the stencil

computation can be easily conducted without any interpolations. More details of GPU

implementation and optimization for the hash table can be found in the references [107,

108]. The hash table is maintained dynamically by inserting and removing the blocks

according to the topology change of the sparse grid.
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A numerical example of smoke simulation by using the sparse grid on GPU is presented

here. Besides solving the Navier-Stokes equations for fluid flow, the advection-diffusion

equations are also solved to transport the smoke concentration s and temperature T :

Ds

Dt
= ks∇ · ∇s, (5.6a)

DT

Dt
= kT∇ · ∇T, (5.6b)

where ks and kT are non-negative diffusion constants. The buoyancy b related to the

smoke is evaluated by the Boussinesq approximation [109] as

b = [αs− β (T − Tamb)] g, (5.7)

where α and β and constant coefficients, Tamb is the ambient temperature and g is the

gravity acceleration.

A smoke flow past sphere is simulated where the emitter of smoke at the bottom is

a cylinder with diameter 0.1 m and height 0.03 m. The sphere has a diameter of 0.2 m.

The mesh resolution is 0.005 m. The dynamical topology of sparse grid in the simulation

is depicted in Fig. 5.11. And the volume rendering for smoke is shown in Fig. 5.12.

There are more than 10 thousand of blocks and 5 million cells in the last snapshot.
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Chapter 6

Conclusions

6.1 Summary

This thesis presents a novel evolving pressure projection method to solve weakly com-

pressible Navier-Stokes equations. This iteration of the pressure evolution and the pro-

jection for the velocity correction can effectively eliminate the acoustic wave affecting

traditional simulations of a weakly compressible fluid and thus suppresses the pressure

and velocity oscillations. The numerical stability is enhanced by employing a staggered

grid system with finite-difference discretization. For a two-phase flow simulation with the

one-fluid model, this solver is completed by using the conservative Allen-Cahn equation

to capture the interface, which is solved with the finite volume method to exactly guaran-

tee mass conservation. Moreover, the two-phase flow with a high density ratio is handled

by adopting a density-weighted advection scheme which improves the consistency of the

mass and momentum transport in the finite-difference method. In all benchmark tests

for single and two-phase flows, including shear layers, decaying vortices, droplet, bubbles,

and dam break, the capability of the proposed method to damp the acoustic wave and

suppress oscillations is validated. As demonstrated by the simulation of 2D dam break,

the proposed weakly compressible Navier-Stokes solver offers 10x speedup in comparison

to an incompressible solver employing SOR method. According to the benchmark tests,

using 20 iterations to solve the pressure evolution equation results in a negligible loss in

accuracy.

On the basis of developing the evolving pressure projection method for solving weakly

compressible Navier-Stokes equations, a conservative and consistent momentum transport

method is proposed for simulating incompressible two-phase flows. To achieve consistent

transport of mass and momentum, this method employs a collocated grid system on

which the finite volume discretization is straightforward to simultaneously solve the VOF

and momentum equation in conservative form. A simple consistent formulation can be
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constructed by calculating the momentum flux with the help of the volume flux in the

VOF equation. The new implementation of the evolving pressure projection method also

effectively couples the pressure and velocity on the collocated grid, thereby enhancing

the numerical stability of the present solver. The proposed method’s ability to preserve

momentum conservation at an arbitrary high density ratio is substantiated through var-

ious benchmark tests for two-phase flows, encompassing rising bubble, transport of a

heavy droplet, oscillating drop, collapsing water column, and jet in a cross flow. The

conservative and consistent method ensures accurate and physically realistic results by

conserving momentum and accounting for the interactions between the phases. This is

particularly important for simulating violent two-phase flows with high density ratios,

where momentum transfer between the phases can have a significant impact on the be-

havior of the complex interfacial dynamics. While non-conservative inconsistent solver

is not applicable to two-phase flow with density ratio higher than 1000, the proposed

momentum-conserving solver remain stable at a density ratio of 106. In addition to

its simplicity and efficiency in calculating pressure evolution equations, the momentum-

conserving weakly compressible Navier-Stokes solver serves as a robust and high-fidelity

tool for two-phase flow simulations.

Then, the multi-GPU computation for simulating two-phase flows is conducted with

the original momentum-conserving weakly compressible Navier-Stokes solvers which are

fully explicit and inherently parallel. Con-CAC-LS that involves conservative Allen-

Cahn equation and level-set method and Con-PLIC-HF that involves PLIC and height

function method are proposed under the principle of consistent transport and momentum

conservation. The PLIC-VOF method exhibits an average numerical error reduction of

64.7% compared to the conservative Allen-Cahn model for two-phase interface capturing.

For multi-GPU computation, the strong scaling with two types of domain partition is

evaluated and a better scalability is exhibited by the 3D partition. The technique for

overlapping communication and computation is implemented and discussed. The parallel

efficiency of the proposed solver achieves 97.8% on 16 GPUs and 55.6% on 64 GPUs in

the strong scaling of 1D partition, while it achieves 90.4% on 64 GPUs and 72% on 128

GPUs in the strong scaling of 3D partition method. The scaling test also shows that

Con-PLIC-HF has a overall higher performance. After demonstrating the superior mesh

convergence of Con-PLIC-HF through simulations of the Rayleigh-Taylor instability and

the droplet oscillation, this solver is used for large-scale simulations of milk crown, dam

break and liquid jet atomization problems. In these two-phase flow computations with

high density ratio and high Reynolds number, high-fidelity results are presented with

detailed reproduction of the complex interface structures. The simulations have shown

the excellent applicability of the present solver.

Finally, the sparse data structure including adaptive mesh refinement and sparse
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grid are introduced in this thesis. The GPU based algorithms are briefly explained.

The numerical examples including two-phase flows and smoke simulations are presented.

Both AMR and sparse grid can effectively reduce the amount of grid cells for storage and

computation, hence minimize the need for computing resources. AMR is more suitable

for interfacial flows because it only refines the mesh resolution near the interface and

other region has a coarse mesh. Sparse grid allocates a uniform grid to the region of

interest. It is free of any spatial interpolation and the traversal of complex tree structure.

These features make the sparse grid a popular choice in the field of computer graphics.

In future research, a further extension of the momentum-conserving two-phase flow

solver to large-scale multi-GPU simulation with adaptive mesh refinement [101, 110] and

sparse grid can be expected. The solver can also be applied to study more complex

multiphase flows such as phase change and viscoelastic fluids.

6.2 Originality

• This thesis proposes an accurate and efficient weakly compressible N-S stokes solver

based on the evolving pressure projection method;

• The momentum-conserving solvers for simulating high density contrast two-phase

flow is proposed. The choices of interface capturing and curvature estimation meth-

ods are also discussed;

• The present work evaluates the multi-GPU performance and scalability of the orig-

inal solvers and demonstrated the high-fidelity large-scale simulation of gas-liquid

two-phase flows.

The proposed solvers offer several advantages. First, weakly compressible Navier-

Stokes solvers are easier to implement and potentially faster since they avoid the need

to implicitly solve large systems of equations. Second, the evolving pressure projection

method prevents pressure and velocity oscillations in the simulation of two-phase flows,

improving the stability and accuracy of the solvers. Third, the present solver ensures

consistent and conservative mass and momentum transport, which is crucial for simulating

violent two-phase flows with high density ratios. Lastly, the methods are designed to scale

on multi-GPU clusters, making them well-suited for large-scale simulations.

However, there are also several disadvantages to consider. The time step size is

restricted by the speed of sound, requiring more computation steps to complete a sim-

ulation. Additionally, the methods will need further testing against a wider range of

problems and conditions, such as non-isothermal flow and aerodynamics. The drawbacks

of individual solvers, like Con-CAC-LS, have been discussed in the corresponding section.
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Appendix A

Comparison of Interface Capturing

Methods

This appendix compares the three interface capturing methods for two-phase flow used

in this thesis, including the conservative Allen-Cahn model (CAC) introduced in Section

2.1.3, the THINC/WLIC method introduced in Section 3.2.1 and the PLIC method intro-

duced in Section 4.1.2. These three methods belong to the categories of diffuse-interface

method, algebraic VOF, and geometric VOF, respectively [19]. The famous Rider and

Kothe benchmarks for the interface capturing method are calculated in this appendix

[111, 112]. Same time step size is used by three method with CFL = 0.1 for a fair

comparison.

A.1 2D Single Vortex

The first test is a two-dimensional single vortex problem. A circle of radius 0.15 is

centered at (0.5, 0.75) in a unit domain. The time-dependent velocity field is given by

u = 2 sin2 (πx) sin (πy) cos (πy) cos

(
πt

T

)
, (A.1a)

v = −2 sin (πx) cos (πx) sin2 (πy) cos

(
πt

T

)
, (A.1b)

where the period T = 8. The results of the interface evolution on 128×128 grid calculated

by the CAC, THINC/WLIC and PLIC methods are depicted in Fig. A.1 and Fig. A.2.

The results on 256 × 256 grid are depicted in Fig. A.3 and Fig. A.4. The circle is

stretched to a thin and long filament at t = 0.5T , then it reverses to its initial location

at t = T .
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(a) CAC (b) THINC/WLIC (c) PLIC

Figure A.1: Interface in 2D single vortex on 128× 128 grid at t = 0.5T .

(a) CAC (b) THINC/WLIC (c) PLIC

Figure A.2: Interface in 2D single vortex on 128× 128 grid at t = T .

(a) CAC (b) THINC/WLIC (c) PLIC

Figure A.3: Interface in 2D single vortex on 256× 256 grid at t = 0.5T .
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(a) CAC (b) THINC/WLIC (c) PLIC

Figure A.4: Interface in 2D single vortex on 256× 256 grid at t = T .

Table A.1: Numerical errors and convergence orders for the single vortex test.

∆x
CAC THINC/WLIC PLIC

L1 error Order L1 error Order L1 error Order

1/64 5.49× 10−1 - 1.77× 10−1 - 2.55× 10−1 -
1/128 1.27× 10−1 2.11 5.26× 10−2 1.75 3.28× 10−2 2.96
1/256 2.74× 10−2 2.22 1.73× 10−2 1.61 8.58× 10−3 1.93
1/512 3.90× 10−3 2.81 8.33× 10−3 1.05 1.47× 10−3 2.54

To quantify the numerical errors of the interface capturing methods used in this thesis,

the L1 error is defined as

L1 error =

∑
i,j |ϕi,j − ϕexact|∑

i,j |ϕexact|
, (A.2)

where the exact solution ϕexact is the phase-field and VOF functions at the beginning.

And the final solution of the phase-field and VOF functions at t = T is used to eval-

uate the accuracy. Table A.1 shows the L1 error and convergence order for the CAC,

THINC/WLIC, and PLIC methods. Overall, the PLIC method exhibits higher accuracy

and convergence order compared to the other methods.
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(a) CAC (b) THINC/WLIC (c) PLIC

Figure A.5: Interface in 3D deformation field on 128× 128× 128 grid at t = 0.5T .

(a) CAC (b) THINC/WLIC (c) PLIC

Figure A.6: Interface in 3D deformation field on 128× 128× 128 grid at t = 0.75T .

(a) CAC (b) THINC/WLIC (c) PLIC

Figure A.7: Interface in 3D deformation field on 128× 128× 128 grid at t = T .
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(a) CAC (b) THINC/WLIC (c) PLIC

Figure A.8: Interface in 3D deformation field on 256× 256× 256 grid at t = 0.5T .

(a) CAC (b) THINC/WLIC (c) PLIC

Figure A.9: Interface in 3D deformation field on 256× 256× 256 grid at t = 0.75T .

(a) CAC (b) THINC/WLIC (c) PLIC

Figure A.10: Interface in 3D deformation field on 256× 256× 256 grid at t = T .
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A.2 3D Deformation Field

The second test is a three-dimensional deformation problem. A sphere of radius 0.15

is centered at (0.35, 0.35, 0.35) in a unit domain. The 3D deformation field is given by

u = 2 sin2 (πx) sin (2πy) sin (2πz) cos

(
πt

T

)
, (A.3a)

v = − sin (2πx) sin2 (πy) sin (2πz) cos

(
πt

T

)
, (A.3b)

w = − sin (2πx) sin (2πy) sin2 (πz) cos

(
πt

T

)
, (A.3c)

where the period T = 3. The results of the interface evolution on the 128 × 128 grid

calculated by three methods are depicted in Fig. A.5, Fig. A.6 and Fig. A.7. The results

on the 256× 256 grid are depicted in Fig. A.8, Fig. A.9 and Fig. A.10. Both the 2D and

3D results demonstrate a better accuracy of the PLIC method for interface capturing,

while the conservative Allen-Cahn model is less accurate with the same mesh resolution.
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[12] Alejandro Figueroa and Rainald Löhner. “Postprocessing-based interpolation schemes

for nested Cartesian finite difference grids of different size”. In: International Jour-

nal for Numerical Methods in Fluids 89.6 (2019), pp. 196–215.

[13] Adam Kajzer and Jacek Pozorski. “Application of the Entropically Damped Ar-

tificial Compressibility model to direct numerical simulation of turbulent channel

flow”. In: Computers & Mathematics with Applications 76.5 (2018), pp. 997–1013.

[14] Shintaro Matsushita and Takayuki Aoki. “A weakly compressible scheme with a

diffuse-interface method for low Mach number two-phase flows”. In: Journal of

Computational Physics 376 (2019), pp. 838–862.

[15] Stanley Osher and James A Sethian. “Fronts propagating with curvature-dependent

speed: algorithms based on Hamilton-Jacobi formulations”. In: Journal of compu-

tational physics 79.1 (1988), pp. 12–49.

[16] Cyril W Hirt and Billy D Nichols. “Volume of fluid (VOF) method for the dynamics

of free boundaries”. In: Journal of computational physics 39.1 (1981), pp. 201–225.

[17] Daniel M Anderson, Geoffrey B McFadden, and Adam A Wheeler. “Diffuse-

interface methods in fluid mechanics”. In: Annual review of fluid mechanics 30.1

(1998), pp. 139–165.

[18] Mark Sussman and Elbridge Gerry Puckett. “A coupled level set and volume-of-

fluid method for computing 3D and axisymmetric incompressible two-phase flows”.

In: Journal of computational physics 162.2 (2000), pp. 301–337.

[19] Shahab Mirjalili, Suhas S Jain, and Micheal Dodd. “Interface-capturing meth-

ods for two-phase flows: An overview and recent developments”. In: Center for

Turbulence Research Annual Research Briefs (2017), pp. 117–135.
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