T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	風洞実験および CFD の風力を用いた超高層建物の応答比較 その 1 気 流特性および風力特性の比較
Title(English)	Comparison of response of high-rise buildings using wind tunnel tests and CFD wind forces Part 1 : About airflow and wind characteristics
著者(和文)	今野大輔, 沖村 将大, 佐藤 大樹, 田中 英之, 曽根 孝行, 渡井 一樹
Authors(English)	Daisuke Konno, Masahiro Okimura, Daiki Sato, Hideyuki Tanaka, Takayuki Sone, Kazuki Watai
出典(和文)	
Citation(English)	,,,pp. 141-142
発行日 / Pub. date	2023, 9

風洞実験および CFD の風力を用いた超高層建物の応答比較 その1 気流特性および風力特性の比較

			正云貝	しう 野 八輔 "	正云貝	們们 付八
風洞実験	CFD	超高層建物	同	佐藤 大樹*2	同	田中 英之
風力特性	気流特性		同	曽根 孝行*3	同	渡井 一樹

1. はじめに

近年の台風の激甚化や施工技術の発展に伴う建物のさ らなる高層化により、建物に作用する風力の増大が予想 されるため, 耐風設計の重要性が増している。 超高層建 物における風荷重の評価には、一般的には風洞実験が用 いられるが、近年の計算能力の著しい向上に伴い、建築 物の耐風設計への数値流体計算(以下 CFD)の実用化が 進められている。風洞実験では模型や装置の規模により 再現される現象に限界があるが、CFD は計算領域等に配 慮すれば、さまざまなスケールの事象が再現可能である¹⁾。 既往研究において大規模な Large Eddy Simulation(LES)によ る建築物の風荷重評価の検討が行われている^{例えば 2)}。しか し、これらは風洞実験と CFD の風圧係数の比較に留まる。 そこで本報では辺長比 B / D=1.0, アスペクト比 H / B= 5.0 (B, D: 建築物の幅, 奥行)の超高層建物を想定した 風洞実験および CFD から風力および応答の比較を行い, 応答へ影響する風力特性について分析し、風力の評価を 行う。本報その1では、気流特性および風力特性の比較を 行う。風力特性は、風力の平均成分を表す平均値、変動 成分を表す標準偏差に着目する。その際、風洞実験の値 を基準として CFD の値の大小関係を評価し、CFD の値と 風洞実験の値の比(CFD の値/風洞実験の値)も明記する。 なお,本報にて添え字の C は CFD の値, T は風洞実験の

2. 風洞実験概要³⁾

値を表す。

使用した模型は対象建物と同じH/B=5.0, B/D=1.0の 正方形角柱である。風向角は,正方形角柱の面に正対す る角度を 0°とし、反時計回りに 5°毎の 72 方向で計測した。 層風力の測定点は、9層とする。風洞実験は、閉鎖型回流 境界層風洞を用いて行った。実験気流は荷重指針4の地表 面粗度区分Ⅲの気流を目標に、スパイヤーとラフネスブ ロックを用いて作成した。風圧の測定には多点同時風圧 測定システムを使用した。風力係数および風圧係数を算 定するための基準速度圧は、ピトー管により測定された 境界層外の速度圧を平均風速の鉛直分布に基づき基準高 さでの速度圧に換算した値を用いている。また、収録さ れた風圧データはチューブ系の周波数応答特性に基づき 補正した。風圧実験の測定条件はサンプリング間隔 1000 Hz, データ数 65536 個 (測定時間 65.536 秒), ローパス フィルタ 500 Hz とした。

Comparison of response of high-rise buildings using wind tunnel tests and CFD wind forces

Part 1 : About airflow and wind characteristics

正会員	○今野 大輔*3	正会員	沖村 将大*1
同	佐藤 大樹*2	同	田中 英之*3
同	曽根 孝行* ³	同	渡井 一樹*3

3. CFD 概要⁵⁾

表1に CFD の計算手法を,表2に計算条件をそれぞれ 示す。表2の計算条件はCFD適用ガイド¹⁾を満たすものと なっている。流入境界条件として与えた変動風はスパイ ヤーやラフネスブロック等を再現した風洞モデルにおけ る別途計算にて生成した。モデルは風洞実験と同じH/B= 5.0, D/B=1.0を用いる。風圧のサンプリング位置は風洞 実験と同じ位置座標に設定し、サンプリング周波数も実 験と同じ1000 Hz とした。

表 1 計算手法

解法	有限差分法
計算コード	Kazamidori [®]
流体式	Navier–Stokes 方程式
乱流モデル	Large Eddy Simulation (LES)
SGS モデル	コヒーレント構造 Smagorinsky
空間離散化	2 次精度中心差分
時間進行法	3 次 Adams-Bashforth method
	Crank -Nicolson method
圧力解法	残差切除法
格子システム	不等間隔直交格子法

表 2 計算条件

計算領域	風方向および風直交方向:37.5B
	鉛直方向:5.25H
計算格子数	約 1500 万
最小格子幅	0.008 <i>B</i>
評価時間	実時間 10 分間相当×5 波
時間刻み	1.00E-5 秒
流入境界	別途計算した流入変動風 (図 1(a)(b))
	<i>U_H</i> = 10.0m/s
流出境界	移流境界条件
側・上方境界	勾配0条件
床・壁面境界	壁関数 (2 層モデル)

4. 気流特性の比較

図 1(a)に風洞実験および CFD の平均風速 Uz を示す。同 図に黒線で荷重指針⁴に基づき算出した Uz を併記する。 縦軸は風速の測定高さ Z を実験模型および CFD 解析モデ ル頂部高さHで基準化した高さとする。図 1(a)から Uzcは 荷重指針の値および Uzr と精度よく一致している。図 1(b) に風洞実験および CFD の乱れ強さ Leを示す。同図に黒線

> KONNO Daisuke, OKIMURA Masahiro, SATO Daiki, TANAKA Hideyuki, SONE Takayuki, WATAI Kazuki

で荷重指針⁴⁾に基づき算出した I_Z を併記する。図 1(b)より, I_{ZC} は上層で荷重指針の値を上回るが概ね一致し, I_{ZT} とは 下層で少し小さいが,概ね一致する。

5. 層風力の比較

5.1 風力概要

本報では、高さH = 200 m、B = D = 40 mの超高層建物 を対象とした 10 質点せん断型モデルを用いる。建物モデ ルの詳細は本報その2を参照されたい。

風力は、風洞実験および CFD により得られた層風力係 数データを対象建物における基準風速 36 m/s での再現期間 500 年風力へ変換を行った。なお、小地形の影響、季節 係数および風向係数の影響は考慮していない。また、風 向角は 0°とし、1 組につき 10 質点分の波形を 0.05 秒刻み 14000 (700 s) ステップとし、5 組ずつ取り出した。なお、 取り出した風力の前後の 50 s に時刻歴応答解析における過 渡応答の影響を避けるためのエンベロープを設けている ため、中間の 600 s で風力特性の評価を行う。図 2(a)に風 方向、(b)に風直交方向における振動数 f での風力のパワー スペクトル密度(風方向: $S_{FD}(f)$,風直交方向: $S_{FL}(f)$) を示す。なお、図中の破線は建物の 1 次固有振動数 $_1f$ を 表す。以降、風力評価は 5 波それぞれを入力した場合のア ンサンブル平均 (Ave.) とし、エラーバーは 5 波の標準偏 差 (Std.) を表す。

*1 東京工業大学 大学院生

- *2東京工業大学科学技術創成研究院 准教授・博士(工学)
- *3 株式会社竹中工務店

5.2 風方向風力の平均値

図3に風洞実験および CFD による風方向風力の平均値 \overline{F} を示す。図3より、 $\overline{F_c}$ は $\overline{F_T}$ より小さいが、その比($\overline{F_c}/\overline{F_T}$)は最も差の大きい10層目で0.93であり、差はほとんどないと考える。

5.3 風力の標準偏差

図 4(a)(b)にそれぞれ風方向および風直交方向における風 洞実験および CFD による風力の標準偏差 σ_F を示す。図 4(a)より,風方向における σ_{FC} は σ_{FT} より大きく,その比 (σ_{FC}/σ_{FT})は最も差の大きい8層目で1.30である。図 4(b) より,風直交方向における σ_{FC} は σ_{FT} より小さく,その比 (σ_{FC}/σ_{FT})は最も差の大きい1層目で0.73である。

6. まとめ

本報その1では検討に用いる CFD と風洞実験の概要を 示したのち, CFD と風洞実験の気流特性および風力特性 について比較した。以下にまとめを示す。

- ・CFD の平均風速および乱れ強さは荷重指針および風洞実 験の値と概ね一致する。
- ・CFD の風方向風力の平均値は風洞実験の値より小さいが, 差はあまりない。
- ·CFD の風力の標準偏差は、風洞実験の値と比べ、風方向 で大きく、風直交方向で小さい。

本報その2 では CFD の風力と風洞実験の風力による応 答の大小関係の確認と風力からの分析を行う。

参考文献

- 1)日本建築学会,建築物荷重指針を活かす設計資料 2-建築物の風応答・風荷 重評価/CFD 適用ガイド-, 2017
- 2) 酒井佑樹,野津剛,伊藤靖晃,田村哲郎: "複雑表面形状を有する高層建築物の隅角部の風荷重評価のためのLES",第25回風工学シンポジウム論文集, pp.241-246,2018
- 3) 平塚紘基, 佐藤大樹, 田中英之:変動風力を受ける超高層制振建物の弾塑性 風応答予測 その1風洞実験気流特性および風力特性に関する検討,日本建 築学会関東支部研究報告集, pp.313-316, 2021.3
- 4) 日本建築学会:建築物荷重指針・同解説, 2015
- 5) 沖村将大, 佐藤大樹, 田中英之, 曽根孝行, 渡井一樹, 畔上泰彦:風洞実験 および CFD より得られた風力を用いた超高層建物の時刻歴応答解析 その 1 気流特性および風力特性の比較,日本建築学会関東支部研究報告集, I, pp.493-496, 2023.2

謝辞はその2にまとめて示す。

*1Graduate Student, Tokyo Institute of Technology

- *²Associate Prof., IIR, Tokyo Institute of Technology, Dr. Eng.
- *3 Takenaka Corporation