# T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

## 論文 / 著書情報 Article / Book Information

| 論題(和文)            | 間柱型粘弾性ダンパーの初期温度と性能低下を考慮した超高層建物の<br>応答評価 その 6 時刻歴応答解析結果に基づく等価減衰定数の評価手法                                                                                                                                                                                  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title(English)    | Response evaluation of high rise building considering initial<br>temperature and performance degradation of Stud-type VE damper<br>(Part6 Evaluation method of equivalent damping constants based on<br>the results of time history response analysis) |
| 著者(和文)            | 渡邊斐王羅, 西海隼, 佐藤大樹, Alex Shegay, 戸張涼太, 安永隼平, 植木<br>卓也, 森岡宙光                                                                                                                                                                                              |
| Authors(English)  | Hiora Watanabe, Hayato Nishiumi, Daiki Sato, Alex Shegay, Ryota<br>Tobari, Jumpei Yasunaga, Takuya Ueki, Hiromitsu Morioka                                                                                                                             |
| 出典(和文)            |                                                                                                                                                                                                                                                        |
| Citation(English) | ,,,pp. 365-366                                                                                                                                                                                                                                         |
| 発行日 / Pub. date   | 2023, 9                                                                                                                                                                                                                                                |
|                   | 一般社団法人 日本建築学会                                                                                                                                                                                                                                          |

 $\approx$ 

viscoelastic damper

間柱型粘弾性ダンパーの初期温度と性能低下を考慮した超高層建物の応答評価

その6 時刻歴応答解析結果に基づく等価減衰定数の評価手法

| 正会員 | ○渡邊斐王羅*1      | 同 | 西海 隼*1 | 同 | 佐藤大樹*1 |
|-----|---------------|---|--------|---|--------|
| 同   | Alex Shegay*1 | 同 | 戸張涼太*2 | 同 | 安永隼平*3 |
| 同   | 植木卓也*3        | 同 | 森岡宙光*3 |   |        |
|     |               |   |        |   |        |

| 間柱型粘弾性ダンパー | 長周期地震動  | 超高層建物  |
|------------|---------|--------|
| 性能低下       | 時刻歴応答解析 | 等価減衰定数 |

#### 1. はじめに

前報 1)~2)までに、粘弾性ダンパーの正弦波加振実験を行 い、繰り返し加振による粘弾性ダンパーの性能低下を近 似式を用いて評価した。加えて、粘弾性ダンパーの性能 低下を考慮した時刻歴応答解析を行い、建物応答の増大 を評価した。本報では、粘弾性ダンパーの性能低下を考 慮した場合の建物の等価減衰定数に着目し、その変動を 確認する。本報その6では、性能低下を考慮した時刻歴応 答解析結果に基づく等価減衰定数の評価手法を示し,本 報その7でその検討例を示す。

#### 2. 粘弾性ダンパーの概要

Fig.1に本報で用いる間柱型粘弾性ダンパーを示す。1つ の粘弾性体は面積 484×484 mm<sup>2</sup>, 厚さ 25 mm であり, 2 つの粘弾性パネルが連なっている。上下の支持部材は H 形鋼からなり、寸法はH-1100×300×16×28とする。また、 粘弾性ダンパーはせん断ひずみ γ<sub>d</sub>,温度 θ および振動数 f の依存性を有しており、Fig.2に示す解析モデルを用いる<sup>3)</sup>。

### 3. 性能低下を考慮した等価減衰定数の評価手法

性能低下を考慮しない場合の等価減衰定数の評価手法 は文献 4)で提案されており、性能低下を考慮した場合に おいては本報その 55に示されている。本報その 6 ではそ の手法に倣い、時刻歴応答解析結果に基づいて等価減衰 定数の評価を行う。以下に評価手順を示す。

(1) Fig.3 に示す多質点系等価せん断型モデルを用いて粘弾 性ダンパーの性能低下を考慮した時刻歴応答解析を行う。 せん断モデルの作成には文献 6)の手法を用いており、せ ん断モデルの妥当性は文献 7)で確認されている。

性能低下を考慮する解析手法は、本報その 4<sup>2)</sup>と同様の 簡易手法と精算手法を想定する。簡易手法は、性能低下 を考慮しない解析(以降,低下なし)を行い,地震入力 終了時 t = to までにダンパーが吸収したエネルギー量を元 に、本報その 3<sup>1)</sup>で提案した近似式より GAQ0i(to)と HAQi(to)を 算出し、等価せん断弾性率 Geqi および等価減衰定数 Heqi を 初期値から低下させて再度解析を行う手法である。精算

Response evaluation of high rise building considering initial temperature and performance degradation of Stud-type VE damper (Part6 Evaluation method of equivalent damping constants based on the results of time history response analysis)



Fig.1 Stud-type viscoelastic damper [unit : mm]



Fig.3 Shear model

手法は、解析ステップごとに算出されるダンパーのエネ ルギー吸収量から Glaei(t)および Hlai(t)を算出し, ステップ ごとに Geqi および Heqi を低下させながら解析を行う手法で ある。

(2) 時刻歴応答解析による各層の擬似ダンパーの最大変形  $\delta_{dsi}(t_{mi})$ と厚さ  $d_{dsi}$  から最大せん断ひずみ  $\gamma_{dsi}(t_{mi})$ を次式で算 出する。ここで、(tmi)とは i 層のダンパーの変形が最大と なる時刻 $t = t_{mi}$ の値であることを示す。

$$\gamma_{dsi}(t_{mi}) = \delta_{dsi}(t_{mi})/d_{dsi} \tag{1}$$

(3) 擬似ダンパーの等価剛性K<sub>deqsi</sub>,付加系の等価剛性K<sub>aeqsi</sub> およびシステムの等価剛性 Keqsi をそれぞれ式(2)~(4)で算 出する。

$$K_{deqsi} = \frac{A_{dsi} \cdot \overline{G}_{eq}}{d_{dsi}} \cdot {}_{G\lambda_{\gamma i}} \cdot {}_{G\lambda_{\theta}} \cdot {}_{G\lambda_{f}} \cdot {}_{G\lambda_{\Omega \theta i}}(t_{mi})$$
(2)

$$K_{aeqsi} = \frac{K_{bsi} K_{deqsi}}{K_{bsi} + K_{deqsi}} \tag{3}$$

$$K_{eqsi} = K_{fsi} + K_{aeqsi} \tag{4}$$

ここで, Ĝ<sub>ea</sub>は温度 20℃, 振動数 0.33 Hz, せん断ひずみ

WATANABE Hiora, NISHIUMI Hayato, SATO Daiki, Alex SHEGAY, TOBARI Ryota, YASUNAGA Jumpei, UEKI Takuya, MORIOKA Hiromitsu 100%における粘弾性ダンパーの等価せん断弾性率(= 0.641 N/mm<sup>2</sup>) である。また,  $_{c\lambda_{\theta}}$ ,  $_{c\lambda_{f}}$ ,  $_{c\lambda_{\eta}}$  はそれぞれ等価せん断弾性率の温度補正係数,振動数補正係数およびせん断ひずみ補正係数であり,それぞれ式(5)~(7)で定義される<sup>8)</sup>。

$$_{G\lambda_{\theta}} = -9.029 \times 10^{-5} \times \theta^{2} - 1.668 \times 10^{-2} \times \theta + 1.3697$$
(5)

$${}_{G}\lambda_{f} = 1.1836 + 0.3813 \times \log_{10} f_{f}$$
(6)

$${}_{G}\lambda_{\gamma i} = 0.42960 + 2.6355 e^{-\frac{\gamma_{dsi}(t_{mi})}{0.65317} + 5.5626 e^{-\frac{\gamma_{dsi}(t_{mi})}{0.10130}}}$$
(7)

ここで、振動数  $\int_{f} t_1 T_f$ の逆数とした。

(4) 最大応答での定常振幅時における *i* 層の 1 次等価減衰 定数 <sub>1 ξeqimax</sub> を次式で算出する。

$${}_{1}\xi_{eqimax} = \frac{\Delta W_{si}}{4\pi W_{si}}$$
(8)

ここで、 $W_{si}$ は各層の弾性ひずみエネルギー、 $\Delta W_{si}$ は各層の1 サイクルの吸収エネルギーであり、それぞれ式(9)、(10)で表される。

$$W_{si} = \frac{Q_{fsimax}^2}{2K_{eqsi}}$$
(9)

$$\Delta W_{si} = A_{dsi} \cdot d_{dsi} \left( E_{1i} + E_{2i} + E_{3i} + E_{4i} \right)$$
(10)

ここで、 $Q_{fsimax}$  は擬似フレームに作用する最大層せん断力 である。また、本報の粘弾性ダンパーは 4 要素モデル (Fig.2) であり、式(10)中の  $E_{1i}$ ,  $E_{2i}$ ,  $E_{3i}$ ,  $E_{4i}$  は各層の 4 要素それぞれのエネルギー吸収量を各層の粘弾性ダンパ ーの体積で除した値である。ここでは、2 サイクル目以降 の定常振動を想定して、 $E_{1i}$ ,  $E_{2i}$ ,  $E_{3i}$ ,  $E_{4i}$  をそれぞれ式 (11)~(14)で算出する <sup>9</sup>。

$$E_{1i} = 0 \tag{11}$$

$$E_{2i} = 2 \cdot G_{p1i} \cdot l_1 \left\{ 2 \cdot \gamma_{dsi}(t_{mi}) - l_1 \left( 2 - e^{-\frac{\gamma_{dsi}(t_{mi})}{l_1}} \right) \left( 1 - e^{-\frac{2\gamma_{dsi}(t_m)}{l_1}} \right) \right\}$$
(12)

$$E_{3i} = 2 \cdot G_{p2i} \cdot l_2 \left\{ 2 \cdot \gamma_{dsi}(t_{mi}) - l_2 \left( 2 \cdot e^{-\frac{\gamma_{dsi}(t_{mi})}{l_2}} \right) \left( 1 - e^{-\frac{2\gamma_{dsi}(t_{mi})}{l_2}} \right) \right\}$$
(13)

$$E_{4i} = \frac{2\pi^2 f v}{1 + (2\pi f v)^2} \cdot g'_{vi} \cdot \gamma^2_{dsi}(t_{mi})$$
(14)

ここで,  $G_{p1i}$ ,  $G_{p2i}$ は最大せん断ひずみによる減衰の低減 係数であり,最大せん断ひずみ  $\gamma_{dsi}(t_{mi})$ で定常振動した場合, それぞれ式(15), (16)で算出される<sup>3)</sup>。

$$G_{p1i} = \left\{ \theta_p + (1 - \theta_p) e^{-\frac{\gamma_{dsi}(t_{mi})}{a_p}} \right\} \cdot g_{p1i}^{'}$$
(15)

$$G_{p2i} = \left\{ \theta_p + (1 - \theta_p) e^{-\frac{\gamma_{dsi}(t_{mi})}{\alpha_p}} \right\} \cdot g'_{p2i}$$
(16)

 $l_1$ ,  $l_2$ , v,  $g'_{vi}$ ,  $\theta_p$ ,  $a_p$ ,  $g'_{p1i}$ ,  $g'_{p2i}$ は粘弾性体の材料定数で あり<sup>3</sup>),特に $g'_{vi}$ ,  $g'_{p1i}$ ,  $g'_{p2i}$ は粘弾性ダンパーの初期温度, 性能変動によって変化し,それぞれ次式で表される<sup>10</sup>。

$$g'_{vi} = {}_{G}\lambda_{\theta} \cdot {}_{H}\lambda_{\theta} \cdot X_i \cdot Y_i \cdot g_v \tag{17}$$

$$g'_{n1i} = {}_{G}\lambda_{\theta} \cdot {}_{H}\lambda_{\theta} \cdot X_{i} \cdot Y_{i} \cdot g_{n1}$$
(18)

$$g'_{n2i} = {}_{G}\lambda_{\theta} \cdot {}_{H}\lambda_{\theta} \cdot X_i \cdot Y_i \cdot g_{n2}$$
(19)

ここで、 $g_{v}$ ,  $g_{p1}$ ,  $g_{p2}$  は粘弾性ダンパーの初期温度 20℃かつ性能変動がない場合の材料定数である<sup>3)</sup>。また、 $\mu \lambda_{\theta}$ は等

\*<sup>2</sup> JFE シビル

価減衰定数の温度補正係数であり、次式で定義される 8。

 $H_{\theta}^{\lambda} = -2.108 \times 10^{-4} \times \theta^{2} + 5.958 \times 10^{-3} \times \theta + 0.9652$  (20) X<sub>i</sub>, Y<sub>i</sub> は粘弾性ダンパーの性能変動による材料定数の補正 係数であり、それぞれ次式で算出される<sup>10</sup>。

$$X_{i} = {}_{G}\lambda_{\Omega\theta i}(t_{mi})$$

$$\left\{1-0.026784({}_{H}\lambda_{\Omega i}^{2.2481}(t_{mi})-1)({}_{H}\lambda_{\Omega i}(t_{mi})-1.3666)\right\}$$

$$Y_{i} = {}_{H}\lambda_{\Omega i}(t_{mi})$$

$$\left\{1+0.026784({}_{H}\lambda_{\Omega i}^{2.2481}(t_{mi})-1)({}_{H}\lambda_{\Omega i}(t_{mi})-1.3666)\right\}$$

$$(21)$$

ここで、 $G\lambda_{\Omega\thetai}(t_{mi})$ ,  $H\lambda_{\Omegai}(t_{mi})$ は精算手法の場合、時刻  $t_{mi}$ まで の各層のダンパーの累積エネルギー吸収量を履歴面積か ら算出し、各層の  $G\lambda_{\Omega\thetai}(t_{mi})$ ,  $H\lambda_{\Omegai}(t_{mi})$ を算出した値である。 低下なしの場合は各層で  $G\lambda_{\Omega\thetai}(t_{mi})$ ,  $H\lambda_{\Omegai}(t_{mi}) = 1.0$ とし、簡 易手法の場合は低下なしの結果から得られた  $G\lambda_{\Omega\thetai}(t_0)$ ,  $H\lambda_{\Omegai}(t_0)$ を用いることで、精算手法と同様に算出することが できる。

(5) <sub>1</sub>*ξ<sub>eqimax</sub>* に最大振幅時の等価減衰定数を積分平均値に変換する係数(積分平均係数) *A* を乗じて,近似的に各層の等価減衰定数の積分平均値を評価する。擬似フレームのみの *j* 次固有周期を用いて振動数を算出した場合の *i* 層の積分平均係数 *iA<sub>i</sub>* および等価減衰定数の積分平均値 1*ξ<sub>eqi</sub>* はそれぞれ式(23), (24)で表される<sup>4</sup>。

$${}_{j}\Lambda_{i} = \frac{0.0598(K_{bsi}/K_{fsi})^{0.226} \cdot \gamma_{dsi}(t_{mi})}{(K_{deqsi}^{*}/K_{fsi})^{0.465} \cdot (1/{}_{j}T_{i})^{0.535}} + \frac{0.682(K_{bsi}/K_{fsi})^{0.140}}{(K_{deqsi}^{*}/K_{fsi})^{0.228}}$$
(23)  
$${}_{1}\xi_{eqi} = {}_{1}\xi_{eqimax} \cdot {}_{1}\Lambda_{i}$$
(24)

ここで, K<sup>\*</sup><sub>deqsi</sub> は温度および振動数, 性能変動による剛性の変化を考慮したせん断ひずみ 100%時の粘弾性ダンパーの等価剛性であり, 次式で表される。

$$K_{deqsi}^{*} = \frac{A_{dsi} \cdot \widetilde{G}_{eq}}{d_{dsi}} \cdot {}_{G} \lambda_{\theta} \cdot {}_{G} \lambda_{f} \cdot {}_{G} \lambda_{\Omega \theta i}(t_{mi})$$
(25)

(6) 各層の1 次等価減衰定数 <sub>1</sub>*ζ*<sub>eqi</sub> を弾性ひずみエネルギー *W*<sub>si</sub>で重み付けし,建物全体の1 次等価減衰定数 <sub>1</sub>*ζ*<sub>eq</sub> を次式 で算出する。

$${}_{1}\xi_{eq} = {}_{1}\xi_{0} + \frac{\sum_{i=1}^{N} {}_{1}\xi_{eqi} \cdot W_{si}}{\sum_{i=1}^{N} W_{si}}$$
(26)

#### 4. まとめ

本報その6では、粘弾性ダンパーの繰り返し加振による 性能低下を考慮した建物の等価減衰定数を時刻歴応答解 析結果に用いて評価する方法を示した。本報その7では、 実際に建物モデルを用いた検討例を示す。

参考文献は本報その7に合わせて示す。

<sup>\*&</sup>lt;sup>1</sup> Tokyo Institute of Technology

<sup>\*&</sup>lt;sup>2</sup> JFE Civil Engineering & Construction Corporation

<sup>\*3</sup> JFE Steel Corporation