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Machine learning super-resolution of laboratory CT images in all-solid-state 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• High-resolution X-ray CT imaging of all- 
solid-state batteries is discussed. 

• Synchrotron radiation CT images offer 
higher resolutions than lab CT images. 

• Super-resolution of lab CT achieved 
through machine learning. 

• RED-Net+PReLU generates synchrotron- 
like high-resolution images from lab CT 
images.  
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A B S T R A C T   

High-performance all-solid-state lithium-ion batteries require observation, control, and optimization of the 
electrode structure. X-ray computational tomography (CT) is an effective nondestructive method for observing 
the electrode structure in three dimensions. However, the limited availability of synchrotron radiation CT, which 
offers high-resolution imaging with a high signal-to-noise ratio, makes it difficult to conduct experiments and 
restricts the use of X-ray CT in battery development. Conversely, laboratory CT systems are widely available, but 
they use X-rays emitted from a metal target, resulting in lower image quality and resolution compared with 
synchrotron radiation CT. This study explores a method for achieving comparable resolution in laboratory CT 
images of all-solid-state batteries to that of synchrotron radiation CT. Our method involves using the synchrotron 
radiation CT images as training data for machine learning super-resolution. The results demonstrate that, by 
employing an appropriate machine learning algorithm and activation function, along with a sufficiently deep 
network, the image quality of laboratory CT becomes equivalent to that of synchrotron radiation CT.   

Introduction 

The transition from gasoline to electric vehicles is being heavily 
promoted to reduce CO2 emissions [1]. However, using conventional 
lithium-ion batteries causes both restricted driving range and slow 
charging, which hinder the widespread adoption of electric vehicles [2]. 

Fast charging decreases the concentration of lithium ions around the 
negative electrode, leading to overpotential and slow charging [3]. In 
addition, cooling mechanisms are necessary due to flammable organic 
electrolytes [4], which restrict the capacity and speed of electric vehi-
cles. Solid-state lithium-ion batteries that use inorganic solid electro-
lytes are a potential solution [5]. Only the lithium-ion is transported in 
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the solid electrolyte, enabling high-speed charging without the con-
centration over potential. Moreover, the solid electrolytes are thermally 
stable and, as a result, do not require cooling. Solid-state batteries can 
facilitate high-speed charging and the development of long-driving 
range electric vehicles. 

Existing all-solid-state lithium-ion batteries have yet to achieve 
performance equal to or greater than conventional lithium-ion batteries 
using organic electrolytes. There are various reasons for this, but one is 
the insufficient optimization of the three-dimensional structure of the 
electrodes [6–11]. In conventional lithium-ion batteries, a sheet is 
created with gaps between the active material particles for storing 
lithium ions, and the liquid electrolyte is injected into this sheet. This 
ensures good contact between the active material and the electrolyte 
and enables the formation of an ion transport network within the elec-
trode, resulting in high performance. In the case of all-solid-state lith-
ium-ion batteries, the electrolyte is a solid (powder), making it 
impossible to create electrodes in a similar manner to existing 
lithium-ion batteries. Instead, the electrodes are created by preparing a 
mixture of the active material and solid electrolyte as a powder, and 
then pressing this mixture. However, forming a good interface between 
the active material and electrolyte or a good lithium transport network 
of electrolytes is more difficult than in conventional lithium-ion batte-
ries using liquid organic electrolytes. For example, the aggregation of 
solid electrolyte particles can lead to the formation of a coarse network, 
increasing ion transport resistance within the electrode [6], while the 
aggregation of active material particles suppresses lithium diffusion 
within the active material, decreasing battery capacity [7]. Therefore, 
optimizing the electrode structure is vital in the practical application of 
all-solid-state batteries, and the development of electrode fabrication 
processes through detailed observations of the electrode structure is 
required. In particular, observations of the nano- and microscale 
three-dimensional fine structures inside all-solid-state batteries are 
necessary. 

Several methods have been developed for structural observations of 
all-solid-state batteries, including focused ion beam scanning electron 
microscopy (FIB-SEM) [12], ultra-small-angle X-ray scattering (USAXS) 
[13], and X-ray computational tomography (CT) [6,7,11,14]. FIB-SEM 
involves repeated cross-sectional cutting and SEM observation, allow-
ing for high-resolution three-dimensional observations down to the 
nanoscale [12]. However, as mentioned above, all-solid-state batteries 
are fabricated through compression molding, resulting in residual stress 
within the electrodes. This has led to concerns regarding the structural 
changes caused by stress release during cutting. USAXS is based on X-ray 
scattering, enabling nondestructive measurement of electrode struc-
tures. This technique has successfully measured the nanopore structure 
inside pressed solid electrolyte powders and is suitable for measuring 
nanoscale structures [13]. However, the output from these measure-
ments is limited to statistical information about the structure, and the 
complete structural information required to discuss all aspects of battery 
performance in three dimensions cannot be provided. X-ray CT obtains a 
three-dimensional structure through a reconstruction process from a 
series of X-ray transmission images obtained while rotating the sample 
[15]. This measurement method overcomes the challenges of FIB-SEM 
and USAXS as it can acquire nondestructive three-dimensional 
structures. 

There have been numerous structural observations of all-solid-state 
batteries using X-ray CT [6,7,11,14]. X-ray CT can be further classified 
into laboratory CT [16] and synchrotron radiation CT [17–19]. Both 
types obtain three-dimensional images by reconstruction from a series of 
X-ray transmission images, but they differ in the X-ray source used. 
Laboratory CT generates X-rays through electron collision with a metal 
target by accelerating thermally emitted electrons in a vacuum over a 
high-voltage range of 5–300 kV. X-rays can be emitted from compact 
devices with dimensions of less than 1 m; such devices are commonly 
found worldwide. However, the X-rays emitted from the metal target 
contain various wavelengths, and the intensity is weaker than that of 

synchrotron radiation CT. As a result, the contrast in the X-ray trans-
mission images is relatively low, longer exposure times are required, and 
the signal-to-noise ratio (SNR) of the CT images is reduced. Synchrotron 
radiation CT generates X-rays by storing electrons accelerated to several 
GeV in a synchrotron storage ring and oscillating the stored electrons 
using an undulator. By using high-energy electron beams to generate 
X-rays, high-intensity X-rays are produced. When combined with a 
crystal monochromator, X-rays with excellent single-wavelength char-
acteristics are generated. Using high-intensity and single-wavelength 
X-rays enables synchrotron radiation CT to capture images with high 
contrast and short exposure times. However, synchrotron radiation CT 
systems are large-scale devices (typical dimensions on the kilometer 
scale), and there are only a few such systems worldwide. Synchrotron 
radiation CT systems capable of observing all-solid-state battery elec-
trodes containing heavy metals such as cobalt using hard X-rays are 
limited to very few facilities, such as SPring-8 [18] and NSLS [19]. 

Synchrotron radiation CT can achieve high-resolution imaging even 
with the same voxel size as laboratory CT [20]. As mentioned above, this 
is because of their high-intensity X-rays with excellent 
single-wavelength characteristics, which result in CT images with a high 
SNR and increased effective resolution. However, the limited avail-
ability of synchrotron radiation CT systems makes it difficult to use them 
for battery development. Obtaining laboratory CT images with an 
equivalent high effective resolution to synchrotron radiation CT would 
facilitate the optimization of electrode structures in all-solid-state bat-
teries and promote their high-performance development. 

In recent years, research on super-resolution, which enhances the 
resolution of an image using machine learning techniques, has been 
actively conducted [21]. This approach involves training a neural 
network using high-resolution images as the training data, and then 
supplying low-resolution images as the input and generating 
high-resolution images as the output. Various network architectures, 
such as the Super-Resolution Convolutional Neural Network (SRCNN) 
[22], which can achieve super-resolution with a simple network struc-
ture, and Residual Encoder-Decoder Network (RED-Net) [23], which 
can achieve high-accuracy super-resolution by suppressing gradient loss 
through skip connection, have been proposed, and machine learning has 
been shown to be an effective method for super-resolution in numerous 
studies. Super-resolution technique of CT images with machine learning 
has been explored. Dreier et al. have successfully employed machine 
learning to enhance CT images captured in low-resolution mode of 
organic materials’ laboratory CT to achieve resolution comparable to 
those captured in high-resolution mode [24]. Similarly, Omori et al. 
have realized super-resolution for CT images of rock samples [25]. 
However, these studies need to improve in achieving resolutions beyond 
that of the laboratory CT images when using laboratory CT as the 
training data. To achieve resolutions surpassing those of laboratory CT 
through super resolution, it would be necessary to employ machine 
learning with synchrotron radiation CT, which inherently holds a 
potentially higher resolution than laboratory CT. Nevertheless, no prior 
research examples exist in this context. The application of machine 
learning-based super-resolution techniques trained by synchrotron ra-
diation CT has the potential to achieve an equivalent effective resolution 
in laboratory CT images as provided by synchrotron radiation CT 
images. 

Motivated by the above discussion, this study attempted to achieve 
super-resolution of laboratory CT images using machine learning, with 
laboratory CT images as the input and synchrotron radiation CT images 
as the training data. The imaging target was the all-solid-state lithium- 
ion battery cathode with an electrolyte material of LPS glass and an 
active material of lithium cobalt oxide (LiCoO2). Initially, a comparison 
was made between laboratory CT images and synchrotron radiation CT 
images of the all-solid-state lithium-ion battery cathode. Subsequently, a 
search was conducted to find an appropriate network architecture and 
activation function to achieve super-resolution of laboratory CT images 
using synchrotron radiation CT images as the training data. As a result, 
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laboratory CT images with an equivalent effective resolution to that of 
synchrotron radiation CT were obtained through super-resolution. 
These findings are reported in the present paper. 

Experimental and machine learning procedures 

In this study, we created a cathode for a representative all-solid-state 
battery using LPS glass as the solid electrolyte and LiCoO2 as the active 
material. After punching the electrode using a hand punch, it was 
enclosed in a CT imaging jig for sealing, and CT imaging experiments 
were conducted. The CT imaging was performed using both a laboratory 
CT system and a synchrotron radiation CT system. Subsequently, the 
obtained CT images were subjected to a machine learning-based super- 
resolution technique to enhance the resolution of the laboratory CT 
images, with the synchrotron radiation CT images used as training data. 

Experimental procedures 

All-solid-state battery electrode for CT measurements 
An electrode for a representative all-solid-state battery cathode 

suitable for X-ray CT imaging was fabricated using LPS glass [26] as the 
solid electrolyte and LiCoO2 as the active material. The LPS glass was 
synthesized from Li2S (99.98 %, Sigma-Aldrich) and P2S5 (99 %, Merck). 
The Li2S and P2S5 were mixed at a Li2S-to-P2S5 ratio of 75:25 in an agate 
mortar. The resulting mixed powder (3 g) was sealed in a 50-ml zirconia 
pot along with ten zirconia balls of diameter 10 mm, ten zirconia balls of 
diameter 5 mm, and a grinding aid (0.2 ml of diethyl ether). Mechanical 
milling was performed at 300 rpm for 10 h by a planetary boll mill (Ito 
Seisakusho, LP-M2) with a rotation ratio of 2:1 to synthesize the LPS 
glass. 

The obtained LPS glass was mixed with LiCoO2 to create the elec-
trode composite material. LiCoO2 with an average particle size of 5 µm 
was mixed at a LiCoO2-to-LPS glass volume ratio of 70:30. The weighed 
LiCoO2 was sealed in a 50-ml zirconia pot with 30 g of zirconia balls (φ1 
mm) and mixed for 1 h using a rolling mill (AV-1, Asahi Rika Seisakujo) 
to obtain the electrode composite material. 

The obtained composite material was placed in a φ5 mm pellet die 
and pressed at 200 MPa using a hydraulic press to create a cathode with 
a thickness of 100 µm. The resulting cathode was punched using a hand 

punch (NOGAMI) to a diameter of 0.3 mm, and this was used as the 
sample for CT imaging. The sample size had a diameter of 0.3 mm to 
ensure sufficient X-ray transmission in the laboratory CT. The φ0.3 mm 
CT imaging sample was enclosed in a CT imaging jig with a low-dew- 
point internal condition (<− 80 ◦Cdp) to suppress the degradation and 
transformation of LPS glass in the electrode caused by moisture [7]. The 
entire sequence of operations for material synthesis, mixing, pressing, 
and loading into the jig was conducted inside a purged glove box (Miwa) 
filled with low-dew-point argon (<− 80 ◦Cdp). 

Laboratory X-ray CT measurements 
The laboratory CT imaging was performed using the nano 3DX 

(Rigaku). Fig. 1(a) shows a schematic diagram of the laboratory CT 
system. Thermal electrons generated from the filament were accelerated 
and collided with a molybdenum electrode at an accelerating voltage of 
44 kV, resulting in the generation of X-rays through the reverse- 
Compton effect. The molybdenum electrode was employed in the 
rotating anode mode, allowing for variations in the irradiated area by 
the electron beam, thus suppressing molybdenum depletion from heat 
and enabling stable X-ray irradiation. The emitted X-ray spectrum, 
shown in the center of Fig. 1(a), exhibits peaks at 17.4 and 19.6 keV 
corresponding to the molybdenum Kα and Kβ lines, as well as a broad 
spectrum of continuous X-rays with a maximum of around 25 keV. These 
X-rays were irradiated into the sample in the CT imaging jig, and the 
transmitted X-rays were converted into visible light by a scintillator. The 
transmitted images were then magnified and projected onto an imaging 
sensor using a microscope, capturing the transmitted images. The pixel 
size of the transmitted images was 310 nm. Each transmitted image was 
acquired with a 30-s exposure, and the sample was rotated by 180◦ in 
increments of 1000 steps to obtain a series of transmitted images. The 
total imaging time was 500 min. The CT images were reconstructed from 
the series of transmitted images, and the voxel size of the CT images was 
310 nm × 310 nm × 310 nm. 

Synchrotron radiation X-ray CT measurements 
Synchrotron radiation X-ray CT imaging was performed using the 

micro-CT system in the BL20XU beamline of the large-scale SPring-8 
synchrotron facility [27]. Fig. 1(b) shows a schematic diagram of the 
system. Electrons were accelerated up to 8 GeV and introduced into the 

Fig. 1. Schematics of (a) laboratory X-ray CT system and (b) synchrotron radiation X-ray CT system.  
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storage ring, where a current of 100 mA was maintained at 8 GeV. X-rays 
were emitted by oscillating the electrons using an undulator installed in 
the storage ring. The emitted X-rays passed through a monochromator 
consisting of opposing silicone single-crystal plates cooled by liquid 
nitrogen, allowing only 20 keV X-rays to be extracted. These X-rays were 
irradiated onto the sample in the CT imaging jig. The transmitted X-rays 
were converted into visible light by a scintillator, similar to the labo-
ratory CT system, and then magnified and projected onto an image 
sensor to obtain the transmitted images. The pixel size of the transmitted 
images was 495 nm. The difference in pixel size between laboratory CT 
and synchrotron radiation CT is due to using different X-ray sources, 
each with optimized optics and cameras. Each transmitted image was 
acquired with a 50-ms exposure, and the sample was rotated by 180◦ in 
increments of 1000 steps to obtain a series of transmitted images. The 
total imaging time was 1 min. The CT images were reconstructed from 
the series of transmitted images, and the voxel size of the CT images was 
495 nm × 495 nm × 495 nm. 

Machine learning procedures 

The super-resolution of laboratory CT images was achieved using 
machine learning with synchrotron radiation CT images as the training 
data. Because of the different voxel sizes in the laboratory CT (310 nm ×
310 nm × 310 nm) and synchrotron radiation CT (495 nm × 495 nm ×
495 nm), the voxel size of all CT images was standardized to 600 nm ×
600 nm × 600 nm using linear interpolation. The voxel size of 600 nm ×
600 nm × 600 nm was selected to minimize the effective resolution 
reduction due to linear interpolation while keeping the memory size 
within the range feasible on a consumer GPU. Fig. 2 shows the labora-
tory and synchrotron radiation CT images before and after linear 
interpolation. The image quality degradation of synchrotron radiation 
CT image due to linear interpolation is negligibly slight. The converted 
CT images had a size of 512 × 512 × 200 voxels. Although CT images are 
three-dimensional, directly applying super-resolution to the three- 
dimensional images would result in massive amounts of data and 
network sizes that cannot be processed with commercially available 
GPUs. Therefore, super-resolution processing was performed on the 512 
× 512 two-dimensional cross-sectional images obtained by slicing the 
3D images. Of the 200 cross-sectional CT images, 180 were used as 
training data and the remaining 20 were used as validation data. The 
images produced by the machine learning technique correspond to the 
validation data. The Neural Network Console (Sony) machine learning 

software was used, and each network described in this paper was trained 
for 2000 epochs. The calculations were performed using GeForce RTX 
4090 (Nvidia) GPUs. The SRCNN [22] and RED-Net [23] networks were 
employed. Since the ReLU function is used in the SRCNN and Red-NET 
proposing studies, in this paper, the ReLU [28] activation function was 
used unless otherwise specified. 

Fig. 3 shows the structures of the neural networks used in this study. 
Both are convolutional neural networks that connect convolutional 
layers with activation functions. SRCNN sequentially connects con-
volutional layers and activation functions. Increasing the depth of the 
SRCNN involves inserting additional layers in the feature extraction 
network. In contrast, RED-Net consists of an encoder and a decoder, with 
MaxPooling and UnPooling layers used to change the resolution and 
incorporate skip connections. 

The similarity between the data obtained by super-resolution of 
laboratory CT images using machine learning and synchrotron radiation 
CT images was evaluated using the peak SNR (PSNR). The PSNR was 
calculated using the ImageMagick image analysis software. The PSNR 
measures the similarity between images and is expressed in dB. Higher 
PSNR values indicate a higher degree of similarity between images. In 
this study, a higher PSNR indicates successful super-resolution of the 
laboratory CT images. 

Results and discussion 

This section compares laboratory CT images and synchrotron radi-
ation CT images of an all-solid-state battery cathode to investigate their 
respective imaging characteristics. Subsequently, the super-resolution of 
laboratory CT is performed using machine learning with SRCNN and 
RED-Net, with the synchrotron radiation CT images serving as training 
data. The super-resolution characteristics of each method and the 
techniques employed to achieve satisfactory super-resolution are then 
discussed. 

Comparison of laboratory X-ray CT images and synchrotron radiation X- 
ray CT images 

Fig. 4 shows a laboratory CT image (Fig. 4(a)) and a synchrotron 
radiation CT image (Fig. 4(b)) of the same region of an all-solid-state 
battery cathode. The left-hand images in each panel represent the 
overall view, while the right-hand panels display an enlarged image. The 
all-solid-state battery cathode consists of three components: cathode 
active material, solid electrolyte, and voids. Among these, the active 
material (with the highest X-ray absorption rate) appears as a bright 
white region, the solid electrolyte (with an intermediate X-ray absorp-
tion rate) appears as a gray region, and the voids (with a low X-ray 
absorption rate) appear as black regions in the CT images. 

By comparing the overall views (left-hand panels of Fig. 4(a) and 
(b)), it is evident that the synchrotron radiation CT exhibits higher 
contrast than the laboratory CT. The PSNR of the laboratory CT image to 
the synchrotron radiation CT image is 12.8 dB. This value reflects the 
significant degradation of image quality in the laboratory CT compared 
with the synchrotron radiation CT [29]. As mentioned earlier, this is 
because the synchrotron radiation CT uses highly monochromatic X-rays 
generated by an undulator and a monochromator, enabling the clear 
output of X-ray absorption rates of the sample as brightness in the CT 
images. When comparing the details (right-hand panels of Fig. 4(a) and 
(b)), the higher contrast of synchrotron radiation CT compared with 
laboratory CT is clear, similar to the overall views. However, in the 
laboratory CT, the image appears blurry, making it difficult to observe 
fine structures on the order of 1 µm, whereas synchrotron radiation CT 
captures these fine structures. Despite the voxel size during acquisition 
being smaller in the laboratory CT (310 nm × 310 nm × 310 nm) than in 
the synchrotron radiation CT (495 nm × 495 nm × 495 nm), the latter 
has a better ability to capture detailed structures. This is attributable to 
the use of high-intensity X-rays in synchrotron CT, which allows for the 

Fig. 2. Laboratory and synchrotron radiation CT images of raw image and after 
the linear interpolation. 
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acquisition of transmission images with a high SNR for CT 

reconstruction, resulting in CT images with high SNR. The shorter 
acquisition time of synchrotron radiation CT (1 min) compared with 
laboratory CT (500 min) reduces the sample displacement caused by 
temperature changes during imaging, leading to a reduction in drift 
artifacts [30]. 

Super-resolution with SRCNN 

Fig. 5 illustrates the laboratory CT image (Fig. 5(a), Lab. CT), the 
laboratory CT image after super-resolution using SRCNN (Fig. 5(b)–(e)), 
and the synchrotron radiation CT image (Fig. 5(f), S.R. CT). For each 
laboratory CT image and super-resolution processed image, the PSNR 
with respect to the synchrotron radiation CT image is indicated. In this 
figure, only the enlarged images from the right-hand column of Fig. 4 are 
shown. 

As mentioned in the previous section, the laboratory CT image has a 
lower resolution than the synchrotron radiation CT, with a PSNR of 12.8 
dB. When super-resolution is applied using the SRCNN without addi-
tional networks, as shown in Fig. 5(b), there is some improvement in 
contrast, but fine structures (<1 µm) cannot be restored, resulting in a 
PSNR of 15.6 dB. This means that the SRCNN failed feature extraction. 
Even with the addition of layers to the network, enabling more complex 
image processing (Fig. 5(c)–(e)), these fine structures are not restored. 
Moreover, the contrast decreases because of the additional network 
layers, resulting in a PSNR of less than 15.6 dB. Adding layers to the 
network increases the complexity of potential processing. However, the 
SRCNN failed the fracture extraction without the additional networks, 
and the learning efficiency decreases as the number of parameters 
grows. As a result, the absence of additional networks yields the highest 

Fig. 3. Convolutional neural networks for super-resolution used in this study: (a) SRCNN, (b) RED-NET.  

Fig. 4. X-ray CT image of all-solid-state battery cathode with (a) laboratory X- 
ray CT system and (b) synchrotron radiation X-ray CT system. 

Fig. 5. Super-resolution of laboratory X-ray CT image by SRCNN.  
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PSNR. The reason for the failure of the feature extraction in SRCNN 
would be that the current dataset of training data (180 CT slice images) 
might not be enough to achieve super-resolution using SRCNN. The best 
way to increase the super-resolution accuracy is to increase the amount 
of the training dataset. However, as mentioned in the introduction, there 
are only a few high-performance synchrotron radiation facilities 
worldwide, and it is challenging to obtain sufficient teacher data. One 
possible approach is introducing pre-training into the SRCNN, which 
may improve super-resolution accuracy even with a small amount of 
training data. 

Super-resolution with RED-Net 

Fig. 6 shows the laboratory CT image (Fig. 6(a)), the super-resolution 
laboratory CT image processed using RED-Net (Fig. 6(b)–(f)), and the 
synchrotron radiation CT image (Fig. 6(g)). Similar to Fig. 5, the PSNR 
values with respect to the synchrotron radiation CT image are indicated 
above each image, and only the enlarged images from the right-hand 
column of Fig. 4 are shown. The super-resolution achieved by RED- 
Net, which consists of a three-layer encoder and decoder and pro-
cesses images from 512 × 512 pixels down to 128 × 128 pixels for 
coarse-graining, is shown in Fig. 6(b). The contrast improvement is 
similar to that of SRCNN (Fig. 5(b)), with a PSNR of 15.6 dB. Increasing 
the network depth from three layers to six layers results in the restora-
tion of finer detail, as shown in Fig. 6(b)–(e), improving the PSNR to 
22.4 dB. However, deepening the network structure to seven layers 
(Fig. 6(f)) produces an image similar to that of the six-layer case (Fig. 6 
(e)), and the PSNR decreases to 22.1 dB. Processing up to seven layers 
effectively coarse-grains the image to 8 × 8 pixels. In this case, although 
a global structure is extracted, the battery does not have such large-scale 
structures. Therefore, deepening the network structure to seven layers 
does not effectively extract more features, resulting in a similar pro-
cessing outcome to that of the six-layer case. 

For the image segmentation of the all-solid-state battery cathode CT 
images using U-Net, the PReLU activation function results in better ac-
curacy than the ReLU function [31]. PReLU is an activation function 
with a gradient in the negative region, addressing the issue of output 
values and gradients becoming zero with ReLU, which can lead to 
learning stagnation [32]. Given the similarity in structure between 
RED-Net and U-Net, switching the activation function from ReLU to 
PReLU in RED-Net with a six-layer network structure has the potential to 
achieve higher-accuracy super-resolution. Fig. 7 shows the laboratory 
CT image (Fig. 7(a)), synchrotron radiation CT image (Fig. 7(b)), the 
super-resolution laboratory CT image processed using RED-Net with the 
ReLU activation function (Fig. 7(c)), and the super-resolution laboratory 
CT image processed using RED-Net with the PReLU activation function 
(Fig. 7(d)). Although the image processed with the ReLU function (Fig. 7 
(c)) reproduces fine structures to some extent, there are slight differ-
ences in fine structure compared with the synchrotron radiation CT 
image (Fig. 7(b)). However, the image processed with the PReLU func-
tion (Fig. 7(d)) closely resembles the synchrotron radiation CT image, 
and it is difficult to distinguish any differences. In this case, the PSNR 
value exceeds 30 dB. Considering that a PSNR of 30 dB or above is 
generally acceptable in CT images [29], it can be concluded that 

practical super-resolution can be achieved using RED-Net with the 
PReLU activation function. 

Finally, Fig. 8 shows the overall view of the experimental laboratory 
CT image (Fig. 8(a)), the super-resolution laboratory CT image pro-
cessed by RED-Net with PReLU (Fig. 8(b)), and the synchrotron radia-
tion CT image (Fig. 8(c)) of various CT images. While Fig. 7 provided a 
detailed verification using enlarged images, Fig. 8 demonstrates that 
RED-Net with PReLU produces satisfactory images in terms of the 
overall view. At this scale, distinguishing between the super-resolution 
images processed by RED-Net with PReLU (Fig. 8(b)) and the synchro-
tron radiation CT image (Fig. 8(c)) becomes extremely difficult. 

From the results presented above, it is evident that machine learning- 
based super-resolution of laboratory CT images using RED-Net with 
PReLU, guided by synchrotron radiation CT, produces high-resolution 
images from laboratory CT that are comparable to those of synchro-
tron radiation CT. 

Conclusions 

Nondestructive high-resolution 3D structural measurements of all- 
solid-state lithium-ion batteries can be achieved using synchrotron ra-
diation CT, which generates high-energy and single-wavelength beams. 
However, the number of synchrotron radiation CT systems capable of 
such measurements is limited, imposing constraints on their active use 
in battery research. Although laboratory X-ray CT systems are widely 
available, they suffer from the weak and multi-wavelength 

Fig. 6. Super-resolution of laboratory X-ray CT image by RED-Net.  

Fig. 7. Super-resolution of laboratory X-ray CT image by RED-Net with ReLU 
and PReLU. 
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characteristics of metal X-rays, resulting in relatively low resolution. 
Therefore, in this study, we attempted to achieve the super-resolution of 
laboratory X-ray CT images of all-solid-state batteries through machine 
learning using synchrotron radiation CT as the training data. The results 
show that the SRCNN is ineffective in achieving super-resolution with 
the present data because the feature extraction fails. 

On the other hand, RED-Net successfully achieves super-resolution 
through effective feature extraction with the encoder and decoder net-
works. In addition, RED-Net produces a significant increase in PSNR 
when the PReLU activation function replaces the ReLU activation 
function. Applying PReLU to a six-layer RED-Net enables super- 
resolution of laboratory CT images with a PSNR of more than 30 dB to 
the synchrotron radiation CT image. As a result, high-resolution 
enhancement comparable to synchrotron radiation CT can be achieved 
with laboratory CT. 
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