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Abstract

A Reidemeister torsion is a topological invariant of a differential manifold M , and
is defined from a linear representation of the fundamental group ofM . The torsion
has a long history and has been studied from several viewpoints of geometry and
topology with its applications. In a situation such that M has a boundary, there
are many existing studies to compute the torsions of some 3-manifolds. However, if
M has no boundary, there have not since been so many procedures to compute the
torsions, except for some surgery formulas. Here, the difficulty of the computation
is derived from a complexity of the cellular structure of the universal covering of
M .

In contrast, this paper establishes a new procedure for computing the twisted
Reidemeister torsions of orientable closed 3-manifolds with respect to SLn-represe-
ntations. The procedure is derived from some ideas in group cohomology. We
further suggest three normalizations of the torsions and compare the normalized
torsions with the preceding torsions. Moreover, we compute some twisted torsions
of some Seifert 3-manifolds over the 2-sphere. These results appear in [Wak21].

As a special case, we focus on the adjoint representations and determine the
adjoint Reidemeister torsion of a 3-manifold obtained by some Dehn surgery along
K, where K is either the figure-eight knot or the 52-knot. As in a vanishing
conjecture from mathematical physics, we consider a similar conjecture and obtain
a result, which claims that the conjecture holds for the 3-manifold. Here, the point
is that we apply Jacobi’s residue theorem to a sum of the torsions, and carefully
checked the condition available to the application. This result gives the first
supporting evidence in the case where M is closed and hyperbolic. Furthermore,
we also discuss the sum of the n-th powers of the adjoint torsions, and we show
an integrality of the sum in some cases. These results are shown in another paper
[Wak23].
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Chapter 1

Introduction

The (combinatorial) Reidemeister torsion is a topological invariant with respect
to a differential manifold M and a representation of its fundamental group. The
definition of the torsion uses basic notations of linear algebra and combinatorial
topology, as in triangulations, coverings, cellular chain complexes, etc.

The torsion was originally defined for a 3-dimensional manifold by K. Rei-
demeister [Rei35] with respect to a commutative representation, and the torsion
gave an application of the homeomorphism classification of 3-dimensional lens
spaces. There are some relationships and applications of the Reidemeister tor-
sion to other invariants, and the torsions of many M ’s are computed; see [Kod07,
Mil62, Nic03, Tur01] and references therein. More generally, given a represen-
tation ϕ : π1(M) → GLn(F) for some field F, we can define the torsion in the
local coefficients; the torsion is referred to as the twisted (Reidemeister) tor-
sion. Analogously, there are some applications of the twisted torsion to, e.g., the
Casson-invariant, Casson-Gordon invariant, and hyperbolic volumes; see [Joh,
KL99, MFP14].

While the computation of the twisted torsion is slightly more complicated,
there are some examples of computing the twisted torsions of M in the case
where M is a 3-manifold with a toroidal boundary as in a knot complement.
Meanwhile, if M is a closed 3-manifold, the previous computations of the torsions
of M often follow from Mayer-Vietoris arguments (see [KN20, Yam17]); there are
not so many examples of resulting computations of the twisted torsions.

In the paper [Wak21], we study a new procedure for computing the twisted Rei-
demeister torsions of closed 3-manifoldsM with respect to SLn(F)-representations
ϕ. The key is here that, in terms of the Heegaard diagram and “identity”, the
cellular chain complex of the universal covering space M̃ can be almost described
from π1(M) (Theorems 3.2.1 and 3.2.2). According to the description, we de-
fine a torsion and show that it is a topological invariant of a representation ϕ
(Theorems 3.3.2 and 3.3.4). In addition, we show that the invariant recovers the
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original torsion above up to signs (Theorem 3.3.5); while the original definition
had ambiguity of signs, our definition suggests a normalization of the torsion.
Furthermore, we define another normalized torsion if the Betti number of M is
larger than zero, and we show the invariance (Theorem 3.3.8).

As examples of the computation, we focus on two kinds of manifolds. In
Section 5.1, we compute the torsions of specific 3-manifolds Mn,m,ℓ defined for
n,m, ` ∈ N≥2, which are the Seifert manifolds over 2-sphere. In fact, as we
show in [Wak21], we compute all the twisted Reidemeister torsions of Mn,m,ℓ with
respect to all the SL2(C)-representations (Theorems 5.1.5 and 5.1.6). We compare
the resulting computations with the result of Kitano [Kit94] and the Brieskorn
manifolds (Proposition 5.1.1 and Remark 5.1.7). In Section 5.2, we apply our
procedure to compute all the adjoint Reidemeister torsions of some 3-manifolds
obtained by some Dehn-surgeries on the figure-eight knot and the 52-knot with
respect to all the irreducible SL2(C)-representations.

Let us explain the adjoint Reidemeister torsion in detail. Let g be the Lie
algebra of a semisimple complex Lie group G, and M be a connected compact
oriented manifold. Let Rirr

G (M) be the (irreducible) character variety, that is,
the set of conjugacy classes of irreducible representations π1(M) → G. Given a
homomorphism ϕ : π1(M) → G, we can define the adjoint (Reidemeister) torsion
τadφ (M) via the adjoint action G→ Aut(g), which lies in C× and is determined by
the conjugacy class of ϕ; see [Tur01] or Section 2 for details. When dimM = 2,
the torsion plays an interesting role as a volume form on the space Rirr

G (M), see
[Por97, Wit91]. In addition, if M is 3-dimensional and G = SL2(C), then some
attitudes of the torsions in Rirr

G (M) are physically observed from the viewpoint of
a 3D-3D correspondence, and some conjectures on the torsions are mathematically
proposed [BGPZ20, GKPZ20, GKY21].

The conjectures can be roughly described as follows. Suppose that dimM = 3
and M has a tori-boundary. For z ∈ C, the authors of [BGPZ20, GKPZ20,
GKY21] introduced a finite subset “tr−1

γ (z)” of Rirr
G (M) which is defined from

a boundary condition, and discussed the sum of the n-th powers of the twice
torsions, that is,

∑
φ∈tr−1

γ (z)(2τ
ad
φ (M))n ∈ C for n ∈ Z with n ≥ −1. Then, it is

conjectured [BGPZ20, GKPZ20, GKY21] that the sum lies in Z and, that if M is
hyperbolic and n = −1, then the sum is zero. This conjecture is sometimes called
the vanishing identity ; see [PY, TY, Yoo22] and references therein for supporting
evidence of this conjecture.

In this paper, we focus on the adjoint torsions in the case where M has no
boundary. According to [BGPZ20, GKPZ20, GKY21], it is seemingly reasonable
to consider the following conjecture:

Conjecture 1.0.1 (cf. [BGPZ20, GKPZ20, GKY21, Yoo23]). Take n ∈ Z with
n ≥ −1. Suppose that M is closed, and the set Rirr

G (M) is of finite order. Then,

2



CHAPTER 1. INTRODUCTION

the following sum lies in the ring of integers Z:∑
φ∈Rirr

G (M)

(2τadφ (M))n. (1.1)

Furthermore, if G = SL2(C), M is a hyperbolic 3-manifold, and n = −1, then the
sum (1.1) is zero.

This paper provides supporting evidence on Conjecture 1.0.1.

Theorem 1.0.2 [Wak23]. Let G be SL2(C), and K = 41 be the figure-eight knot.
Let n = −1. Then, for any integers p and q 6= 0, Conjecture 1.0.1 is true when
M = S3

p/1(41) and M = S3
1/q(41).

The outline of the proof is as follows. As mentioned above, Chapter 3 gives
some procedures for computing the adjoint torsions of 3-manifolds with boundary
are established (see, e.g., [DHY09, TY, Yoo22]), this paper employs a procedure
of computing the adjoint torsions of closed 3-manifolds, which is established in
[Wak21], and determine all the adjoint torsion (see Theorem 5.2.2). As in the
proof of the above supporting evidence [BGPZ20, GKPZ20, GKY21], we apply
Jacobi’s residue theorem (see Lemma 6.1.2) to the sum (1.1) and demonstrate
Theorem 5.2.2. Since it is complicated to check the condition for applying the
residue theorem, we need some careful discussion (see Sections 6.1.1–6.1.2)1. In
addition, in Section 6.2, we also discuss the conjecture with n > 0 and see that
some properties are needed to be addressed in future studies. Here, we analyze
the 22n+1-multiple of the conjecture with M = S3

2m/1(41); see Proposition 6.2.4.
To summarize, our procedure for computing the torsion is expected to be

applicable to other 3-manifolds and representations. In doing so, one may hope
that the procedure produces many examples of twisted torsions in a similar way,
which is a future problem.

This paper is organized as follows. In Chapter 2, we review Reidemeister
torsions of manifolds with linear representations. Chapter 3 reviews basic facts of
Heegaard decompositions and a description of π1(M) from a Heegaard diagram.

In Chapter 4, we see that the cellular chain complex of M̃ can be described from a
Heegaard splitting and an identity. Chapter 5 computes concretely some torsions
of some manifolds. Chapter 6 gives the proofs of giving supporting evidences of
the above conjectures. Chapter A is an appendix to explain the (taut) identity in
details.

Conventional terminology. Throughout this paper, for a commutative field F,
we use F× = F\{0} as a multiplicative group. We mean the group ring of a group

1As a private communication with S. Yoon [Yoo23], he tells us another proof of Conjecture
1.0.1 with M = S3

p/q(K) in generic condition. Here, we emphasize that, while the condition does
not contain the case (p, q) = (4m, 1) for some m ∈ Z, Theorem 1.0.2 deals with all p.
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G by Z[G]. The universal covering space of a connected CW complex X will be
denoted by X̃.
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Chapter 2

Review; twisted Reidemeister
torsions

In this chapter, we review algebraic torsions in Section 2.1, and the twisted Rei-
demeister torsion in Section 2.2. In Section 2.3, we recall the adjoint Reidemeister
torsion. Throughout this paper, we assume that any basis of a vector space is
ordered and of finite dimension.

2.1 Algebraic torsions

To review algebraic torsions, we need terminology. Let V be a d-dimensional
vector space over a field F, and let b = (b1, . . . , bd), c = (c1, . . . , cd) be two bases
of V . Then, there is a transition matrix P ∈ GLd(F), satisfying bi =

∑d
j=1 P(j,i)cj ,

where P(j,i) ∈ F is the (j, i)-th entry of P . We write [b/c] for the determinant of
P .

Let us define torsions. Consider a bounded chain complex

C∗ : 0 −→ Cm
∂m−→ Cm−1

∂m−1−→ · · · ∂1−→ C0 −→ 0

consisting of finite dimensional vector spaces over F. Assume that a basis ci of
Ci is given for each i. In a usual way, we use the common notation Zi = Ker(∂i),
Bi = Im(∂i+1), and Hi = Zi/Bi. The chain complex C∗ is said to be acyclic if Hi

is trivial for all i. We consider canonically the following exact sequences:

0 −→ Zi −→ Ci
∂i−→ Bi−1 −→ 0 (exact),

0 −→ Bi −→ Zi−→Hi −→ 0 (exact).
(2.1)

Let us fix B̃i−1 and H̃i which are the lifts of Bi−1 to Ci and Hi to Zi, respectively.
The above exact sequences give the following identifications:

Ci = Zi ⊕ B̃i−1 = Bi ⊕ H̃i ⊕ B̃i−1.

5



2.2. TWISTED REIDEMEISTER TORSIONS OF CW COMPLEXES

For each i, choose a basis bi of Bi, and fix its lift to Ci+1, and denote the lift by
b̃i. Similarly, choose a basis hi of Hi, and fix its lift to Zi, and denote the lift by
h̃i. Then, the union bi ∪ h̃i ∪ b̃i−1 is a basis of Ci. Set c∗ = (c0, c1, . . . , cm),h∗ =
(h0,h1, . . . ,hm). The torsion of C∗ is defined by

τ(C∗, c∗,h∗) :=
m∏
i=0

[bi ∪ h̃i ∪ b̃i−1/ci]
(−1)i+1 ∈ F×.

It is known that the torsion τ(C∗, c∗,h∗) does not depend on the choices of the
basis (b0,b1, . . . ,bm) and the lifts (b̃−1, b̃0, . . . , b̃m−1), (h̃0, h̃1, . . . , h̃m).

Remark 2.1.1. (i) The torsion τ(C∗, c∗,h∗) depends on the choices of c∗ and
h∗. In fact, if we choose such other bases c′∗ = (c′0, c

′
1, . . . , c

′
m) and h′

∗ =
(h′

0,h
′
1, . . . ,h

′
m), the following holds [Tur01, Remark 1.4.1]:

τ(C∗, c∗,h∗) = τ(C∗, c
′
∗,h

′
∗)

m∏
i=0

([ci/c
′
i][h

′
i/hi])

(−1)i+1
.

(ii) Supposing an acyclic complex C∗, we consider another chain complex of the
form

E∗(F, i) : · · · −→ 0 −→ F id−→ F −→ 0 −→ · · · .

Here, the left and right modules of F are of degree i and i + 1, and the
modules of other degrees are trivial. Let f be an arbitrary basis of F, and
let c′i be ci ∪ f and c′i+1 be ci+1 ∪ f . As seen in [Tur01, p.13–14], if we set
c′∗ = (c0, . . . , ci−1, c

′
i, c

′
i+1, ci+2, . . . , cm), then

τ(C∗, c∗) = τ(C∗ ⊕ E∗(F, i), c′∗).

2.2 Twisted Reidemeister torsions of CW complexes

To define the twisted Reidemeister torsions, we prepare some terminology. Let
X be a connected finite CW complex, and X̃ be the universal covering space.
When we regard the covering transformation of π1(X) on X̃ as a left action,
the cellular complex (C∗(X̃;Z), ∂̃∗) is made into a left Z[π1(X)]-module. Let
ϕ : π1(X) → SLn(F) be a representation, which yields the right action on Fn

defined by

Fn × π1(X) −→ Fn; (v, g) 7−→ ϕ(g−1) · v.

This action gives rise to the right Z[π1(X)]-module structure on Fn. Define the
chain complex (Cφ

∗ (X), ∂∗) by

(Cφ
∗ (X), ∂∗) := (Fn ⊗Z[π1(X)] C∗(X̃;Z), idFn ⊗Z[π1(X)]∂̃∗).

6



CHAPTER 2. REVIEW; TWISTED REIDEMEISTER TORSIONS

Next, we establish a basis of each Cφ
i (X) as follows. Let (e1, . . . , en) be the

canonical basis of Fn, σi = {σi1, . . . , σirankCi(X;Z)} be the set of all oriented i-cells

of X, and {σ̃i1, . . . , σ̃irankCi(X;Z)} be the set of lifts of σij to X̃. Then, the tuple

ci := (e1 ⊗ σ̃i1,e2 ⊗ σ̃i1, . . . , en ⊗ σ̃i1, e1 ⊗ σ̃i2, e2 ⊗ σ̃i2, . . . , en ⊗ σ̃i2,

. . . , e1 ⊗ σ̃irankCi(X;Z), e2 ⊗ σ̃irankCi(X;Z), . . . , en ⊗ σ̃irankCi(X;Z))

provides a basis of Cφ
i (X).

When we fix a basis, hi, of Hφ
i (X) and h∗ = (h0,h1, . . . ,hdimX), the (ϕ-

twisted) Reidemeister torsion, τφ(X,h∗), is defined by

τφ(X,h∗) := τ(Cφ
∗ (X), c∗,h∗) ∈ F×/{±1}.

Remark 2.2.1. (i) If Cφ
∗ (X) is acyclic, and h∗ = ∅, then the torsion τφ(X,h∗)

is denoted by τφ(X).

(ii) Give a triangulation on a smooth closed manifoldM , and let us regard it as a
CW complex X. It is known that if Cφ

∗ (X) is acyclic, then the Reidemeister
torsion τφ(M) := τφ(X) does not depend on the choices of the triangulation
of M , the orientation of σij , and the lift σ̃ij ; see Theorem 6.1 of [Tur01,
Theorem 6.1].

2.3 Adjoint Reidemeister torsions

Let M be a connected oriented closed 3-manifold and G be a semisimple Lie
group with Lie algebra g. Let ϕ : π1(M) → G be a representation, that is, a
group homomorphism. Suppose that G injects SLn(C) for some n ∈ N.

First, we introduce the chain complex below (2.2). Choose a finite cellular

decomposition ofM , and consider the universal covering space M̃ with a structure
of a lift of the decomposition ofM . Since g is a Z[π1(M)]-module via the composite
of ϕ and the adjoint action G→ Aut(g), we have the chain complex of the form

(Cφ
∗ (M ; g), ∂∗) := (g⊗Z[π1(M)] C∗(M̃ ;Z), idg⊗Z[π1(M)]∂̃∗). (2.2)

Next, we define an ordered basis of Cφ
i (M ; g). Let σi = (σi,1, σi,2, . . . , σi,rankCi(M ;Z))

be a basis of Ci(M ;Z) derived from the i-cells. Then, σ̃i = (σ̃i,1, σ̃i,2, . . . , σ̃i,rankCi(M ;Z))

is a basis of the free Z[π1(M)]-module Ci(M̃ ;Z). Here, σ̃i,j is a lift of σi,j to M̃ .
Since g is semisimple, the killing form B is non-degenerate, and we can fix an
ordered basis B = (e1, e2, . . . , edimB) of g, which is orthogonal with respect to B.
Then the tuple

ci := (e1 ⊗ σ̃i,1,e2 ⊗ σ̃i,1, . . . , edimB ⊗ σ̃i,1, e1 ⊗ σ̃i,2, e2 ⊗ σ̃i,2, . . . , edimB ⊗ σ̃i,2,

. . . ,e1 ⊗ σ̃i,rankZ Ci(M ;Z), e2 ⊗ σ̃i,rankZ Ci(M ;Z), . . . , edimB ⊗ σ̃i,rankZ Ci(M ;Z))

7



2.3. ADJOINT REIDEMEISTER TORSIONS

provides an ordered basis of Cφ
i (M ; g) as desired.

We next consider the ordinal cellular chain complex C∗(M ;R) with the real
coefficient. From the Poincaré duality, we can naturally fix a homology orien-
tation oM of H∗(M ;R) =

⊕3
i=0Hi(M ;R). Let h∗ = (h0,h1,h2,h3) be a basis

of H∗(M ;R) such that the exterior product of h∗ coincides with oM . The sign-
refined Reidemeister torsion of C∗(M ;R) associated with σ∗ and h∗ lies in R×.
Let us define the sign

τM := sgn(τ(C∗(M ;R),σ∗,h∗)) ∈ {±1}.

Then, the adjoint Reidemeister torsion of M associated with ϕ is defined to be

τadφ (M) := (τM )dim g · τ(Cφ
∗ (M ; g), c∗) ∈ C×,

if Cφ
∗ (M ; g) is acyclic. If Cφ

∗ (M ; g) is not acyclic, then we define τadφ (M) to be

zero. As is known, the definition of τadφ (M) does not depend on the choices of the
orthogonal basis B, a finite triangulation of M , σ̃i, and hi, but depends only on
M and the conjugacy class of ϕ.

Let Rirr
G (M) be the irreducible character variety, that is, the set of conjugacy

classes of irreducible representations π1(M) → G. Finally, we give a criteria for
the acyclicity, which might be known:

Lemma 2.3.1. Assume that Rirr
G (M) is of finite order. Then, for any irreducible

ϕ : π1(M) → SL2(C), the associated cohomology H i
φ(M ; g) vanishes.

Proof. Since it is classically known [Wit91] that the first cohomology H1
φ(M ; g) is

identified with the tangent space of the variety Rirr
G (M), it vanishes by assumption;

by Poincaré duality, the second one does. Meanwhile, by definition, the zeroth
cohomology H0

φ(M ; g) equals the invariant part {a ∈ g | a · ϕ(g) = a for any g ∈
π1(M)}, which is zero by the irreducibility. Hence, the third one also vanishes by
Poincaré duality again.

In summary, on the condition of Conjecture 1.0.1, τadφ (M) is not zero, and we

can consider the inverse τadφ (M)−1.

8



Chapter 3

Results; invariants of
3-manifolds

We define the invariants of closed 3-manifolds in this chapter. In Section 3.1, we
recall Heegaard splittings, and presentations of fundamental groups. In Section
3.2, we observe a description of the cellular chain complex of the universal covering
space. Finally, in Section 3.3, we introduce other definitions of invariants in terms
of twisted torsions. These results are new things and obtained in [Wak21].

3.1 Heegaard splittings, and the presentation of the
fundamental group

In this section, let us review basic facts of Heegaard splittings and Heegaard dia-
grams. Hereafter, M means an orientable, connected, closed smooth 3-manifold.

A closed tubular neighborhood of a wedge product of g circles in R3 is called
a handlebody of genus g. We say H1 ∪f H2 which is homeomorphic to M to
be a Heegaard splitting of M , if both H1 and H2 are handlebodies, and f is an
orientation-reversing homeomorphism from ∂H1 to ∂H2. As is known, every M
admits a Heegaard splitting.

The Heegaard diagram of M is given as follows. Consider a given Heegaard
splitting H1 ∪f H2 and take simple closed curves α1, α2, . . . , αg ⊂ ∂H1 as illus-
trated in Fig. 3.1 (here, g is the genus ofH1 andH2). Letting β = {f(α1), . . . , f(αg)},
we call the pair (H2,β) the Heegaard diagram.

Let us observe a presentation of π1(M) from the Heegaard splitting H1 ∪f H2

as follows. A spine of the handlebody H is a graph K embedded in H such that
H\K is homeomorphic to ∂H×(0, 1]. Consider a spineK ofH2 which is composed
of a single vertex and oriented edges e1, . . . , eg. For each ei, choose an orientation-
preserving loop `i : [0, 1] → H2 whose image is the edge ei. Suppose that `i(0) =

9



3.2. CELLULAR CHAIN COMPLEXES OF COVERING SPACES

α1 α2 αg…
…
…
…

Figure 3.1: Simple closed curves α1, α2, . . . , αg

`i(1) = v0. If we view v0 as a basepoint for the fundamental group, each `i
descends to xi ∈ π1(H2). Since H2 is homotopy equivalent to K, the fundamental
group π1(H2) is a free group 〈x1, . . . , xg | 〉. Let (H2,β) , β = {β1, . . . , βg} be
a Heegaard diagram given from a Heegaard splitting H1 ∪f H2．Let us fix an
orientation of βi and a point bi ∈ βi, and choose an orientation-preserving loop
ki : [0, 1] → βi such that ki(0) = ki(1) = bi. Let ji : [0, 1] → H2 be a path from v0
to bi. Since the path composite j−1

i kiji is a closed curve starting from v0 in H2, it
determines an element ri of π1(H2). In summary, the van Kampen theorem can
lead to the following lemma:

Lemma 3.1.1 (see, e.g., [Sch02, §5]). For the above xi and ri, the fundamental
group π1(M) is isomorphic to the group presented by 〈x1, x2, . . . , xg | r1, r2, . . . , rg〉.

3.2 Cellular chain complexes of covering spaces

Take a Heegaard diagram (H2,β) of genus g. In this section, we observe the

description of the cellular chain complex of the universal covering space M̃ in
detail.

Recall the group presentation π1(M) ∼= 〈x1, . . . , xg | r1, . . . , rg〉 from Section
3.1. By thoughtfully considering the dual handles of M , the 0- and the 3-cell of
M are single, and the numbers of the 1- and the 2-cells of M are g. Therefore,
the cellular complex C∗(M̃ ;Z) of M̃ can be written as

0 −→ Z[π1(M)]
∂3

−−−→ Z[π1(M)]⊕g
∂2

−−−→ Z[π1(M)]⊕g
∂1

−−−→ Z[π1(M)] −→ 0. (3.1)

Let {a1, . . . , ag} and {b1, . . . , bg} denote the canonical bases of C1(M̃ ;Z) and

C2(M̃ ;Z) as left Z[π1(M)]-modules, respectively.

Let us explain a detailed description of the boundary maps ∂∗. For this, let
us review the Fox derivative and state Theorems 3.2.1 and 3.2.2. Let FI be a free
group generated by an index set I. For k ∈ I, we write xk for the generator, and
we define the Fox derivative [Fox53] to be a map ∂

∂xk
: FI → Z[FI ] satisfying the

10
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following rules:

∂xi
∂xk

= δi,k,
∂x−1

i

∂xi
= −x−1

i ,
∂(uv)

∂xk
= u

∂v

∂xk
+
∂u

∂xk
, for all u, v ∈ FI .

We also write ∂
∂xk

: Z[FI ] → Z[FI ] for the homomorphism obtained by linearly

extending ∂
∂xk

.

Then, ∂2 can be written as the Jacobian matrix of Fox derivatives. More
precisely,

Theorem 3.2.1 [Lyn50, §4 and §5]. ∂1(ai) = 1− xi and ∂2(bi) =
∑

j [
∂ri
∂xj

]aj.

Next, we will focus on ∂3. Let F be a free group 〈x1, . . . , xg | 〉 and P be a
free group 〈ρ1, . . . , ρg | 〉. We define the homomorphism

ψ : P ∗ F → F ; ψ(ρj) = rj , ψ(xi) = xi. (3.2)

An element s ∈ P ∗ F is called an identity if s ∈ Ker(ψ) and s can be written
as
∏r

m=1wmρ
ϵm
jm
w−1
m , where wm ∈ F, εm ∈ {±1}, and ρjm ∈ P . We also denote

wmρ
ϵm
jm
w−1
m by (rjm , wm)ϵm .

Theorem 3.2.2 [Sie80, Sie86]. For any M , there exists an identity WM such that

∂3(a) =
∑

j aµ
(
[ψ(∂WM

∂ρj
)]
)
bj establishes. Here, µ is the natural surjection from

F to π1(M).

The proof appears in Appendix A. We give two remarks:

Remark 3.2.3. (i) WM is not uniquely determined from π1(M), and it is
not easy to find WM . (However, an algorithm to find WM is discussed
in [HAMS93].) For instance, when M is a lens space L(p, q), π1(M) is
isomorphic to 〈x1 | xp1〉 ∼= Z/p. Let r := xp1. Then, WM is given by
WM = (r, 1)(r, xq1)

−1, which depends on q [Sie80, Sie86].

(ii) Let us roughly explain the main result of [Sie86]. It is known that the
identityWM satisfies a “taut” condition. Conversely, if a group presentation
〈x1, . . . , xg | r1, . . . , rg〉 and a taut identity W are given, then there is a 3-
manifoldM whose boundary map in (3.1) coincides with ∂∗ explained in the
above theorems.

3.3 Definitions; invariants with representations

In this section, we define invariants of 3-manifolds with representations. (We defer
the proofs of the theorems in this section into Chapter 4.)

11
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Hereinafter, we fix a representation ϕ : π1(M) → SLn(F). We write C∗(H2,β)
for the chain complex (3.1) in Section 3.2, and let di be dimZ[π1(M)]Ci(H2,β). Let
σi = (σi1, . . . , σ

i
di
) be the ordered standard basis of Ci(H2,β), and {e1, . . . , en}

be the ordered standard basis of Fn. Define cij,k to be ej ⊗ σik for arbitrary
1 ≤ j ≤ n, 1 ≤ k ≤ di. Then,

ci := (ci1,1, c
i
2,1, . . . , c

i
n,1, . . . , c

i
1,di

, ci2,di , . . . , c
i
n,di

) (3.3)

provides an ordered basis of Fn⊗Z[π1(M)]Ci(H2,β). Let c be the union (c0, c1, c2, c3).

3.3.1 The even case of n

First, we consider the case where n is even.

Definition 3.3.1 [Wak21, Definition 5.1]. Let n ∈ N be even. If the chain com-
plex Fn ⊗Z[π1(M)] C∗(H2,β) is acyclic, we define the twisted torsion Tφ(M) to
be

Tφ(M) = τ(Fn ⊗Z[π1(M)] C∗(H2,β), c) ∈ F×.

Here, the right-hand side is the algebraic torsion in Section 2.1. If the chain
complex Fn⊗Z[π1(M)]C∗(H2,β) is not acyclic, the twisted torsion is defined to be
zero.

Theorem 3.3.2 [Wak21, Theorem 5.2]. Tφ(M) does not depend on the choice of
the Heegaard diagram (H2,β), but only depends on M and ϕ.

3.3.2 The odd case of n

Next, we consider the case where n is odd. According to [Tur01, Chapter III], let
us define (normalized) twisted torsions. For this, we consider the following vector
space over R:

H∗(M ;R) :=
3⊕

i=0

Hi(M ;R).

From the Poincaré duality, we can naturally fix an orientation of H∗(M ;R). If we
choose a basis h = (h0,h1,h2,h3) of H∗(M ;R), the torsion τ̌(C∗(M ;R),σ,h) ∈
R× is defined as follows: Let us denote C∗(M ;R) by C∗. We consider the residues
(mod2)

βi(C∗) :=

3∑
i=0

(−1)i dimHi(C∗), γi(C∗) := (−1)i
3∑

i=0

dimCi,

12
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N(C∗) :=

3∑
i=0

βi(C∗)γ(C∗),∈ Z/2Z.

Then, we set

τ̌(C∗(M ;R),σ,h) := (−1)N(C∗)τ(C∗,σ,h) ∈ R×.

Definition 3.3.3 [Wak21, Definition 5.3]. Let n ∈ N be odd. If the chain complex
Fn ⊗Z[π1(M)] C∗(H2,β) is acyclic, we define the (normalized) twisted torsion to be

Tφ(M) = sgn
(
τ̌(C∗(H2,β),σ,h)

)
· τ(Fn ⊗Z[π1(X)] C∗(H2,β), c) ∈ F×

If the chain complex Fn ⊗Z[π1(M)] C∗(H2,β) is not acyclic, the twisted torsion is
defined to be zero.

Theorem 3.3.4 [Wak21, Theorem 5.4]. Tφ(M) does not depend on the choice of
the Heegaard diagram (H2,β), but only depends on M and ϕ.

Our torsion Tφ(M) recovers the Reidemeister torsion τφ(M). To be precise,

Theorem 3.3.5 [Wak21, Theorem 5.5]. Suppose n ∈ N. Let X be a cellular
structure of M obtained by a triangulation of M . For the representation ϕ :
π1(M) → SLn(F), if Fn⊗Z[π1(M)]C∗(H2,β) is acyclic, then C

φ
∗ (X) is also acyclic

and

Tφ(M) = τφ(M) ∈ F×/{±1}.

3.3.3 Case of the Betti number b1(M) ≥ 1

In this subsection, we suppose b1(M) ≥ 1. Let us fix an SLn(F)-representation
ϕ : π1(M) → SLn(F) and a surjective homomorphism α : π1(M) → Z = {tm}m∈Z.
We write C∗ for the chain complex C∗(H2,β) of (3.1). Under this condition, we
will define the normalized torsion. The essential idea is based on [Kit15b, §5].

For p, q ∈ F[t±1], let us define the degrees of f(t) = p(t)/q(t) in the quotient
field F(t) as follows:

degf := degp− degq,

h-degf := (the highest degree of p)− (the highest degree of q),

l-degf := (the lowest degree of p)− (the lowest degree of q) ∈ Z.

Considering the tensor representation α⊗ϕ : π1(M) → GLn(F[t±1]), we introduce
the following terminologies:

τ0 := τ(Fn ⊗Z[π1(M)] C∗, c) ∈ F∗,

13
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d :=
1

2

(
(h-degτ(F(t)n ⊗Z[π1(M)] C∗, ĉ)− (l-degτ(F(t)n ⊗Z[π1(M)] C∗, ĉ)

)
∈ 1

2
Z.

Here, as in (3.3) c and ĉ are the canonical bases of Fn⊗Z[π1(M)]C∗ and F(t)n⊗Z[π1(M)]

C∗, respectively.

Definition 3.3.6. Let c̃ be the canonical basis of F(t1/2)n ⊗Z[π1(M)] C∗. If the

chain complex F(t1/2)n ⊗Z[π1(M)] C∗ is acyclic, we define the normalized twisted
torsion to be

T̃φ,α(M) :=
τn0
tnd

τ(F(t1/2)n ⊗Z[π1(M)] C∗, c) ∈ F(t1/2)∗.

If the chain complex F(t1/2)n ⊗Z[π1(M)] C∗ is not acyclic, the torsion is defined to
be zero.

Remark 3.3.7. As seen in [Mil66, Tur01, Mil62], the original definition was in the
quotient set F(t1/2)∗/{±1, tm/2}m∈Z; thus the above definition can be considered
as a normalization of the original one.

Theorem 3.3.8 [Wak21, Theorem 5.8] (cf. Theorem 4.5 and Lemma 5.3 in
[Kit15b]). T̃φ,α(M) does not depend on the choice of the Heegaard diagram (H2,β)
but depends only on M , ϕ, and α.

14



Chapter 4

Proofs of the statements in
Chapter 3

To prove the theorems in Chapter 3, we will review Heegaard moves and extended
Andrews-Curtis moves in Section 4.1. In Section 4.2, we accomplish the proofs.
This chapter is essentially based on Section 6 in [Wak21]; however, the author
noticed many minor typo misses in the section 6 and did not take appropriate
references; we here revise them.

4.1 Heegaard moves and Andrews-Curtis moves

Let us review Theorem 4.1.1 below. Let (H2,β) with β = {β1, . . . , βg} be a
Heegaard diagram. The following four transformations and the inverse operations
are called Heegaard moves of (H2,β); see Fig. 4.1:

(A) Replace β = {β1, . . . , βg} with β′ = {β′1, . . . , β′
g} where β and β′ are isotopic

to each other.

(B) Suppose that β1 and β2 is connected by an arc δ in ∂H2 \ (β1 ∪β2 ∪ · · · ∪βg).
Along a neighborhood of δ, take the connected sum β′1 of β1 with a parallel
copy of β2. For such β

′
1, replace β = {β1, . . . , βg} with β′ = {β′1, β2, . . . , βg}.

This operation is called a handleslide.

(C) Another diagram (H′
2,β

′) is called a stabilization of (H2,β), and (H2,β) is
called a destabilization of (H′

2,β
′) if

• H′
2 = H2∪hT , where T = S1×D2, and the attaching map h : D2

1 → D2
2

is a homeomorphism from a disk D2
1 ⊂ ∂H2 to a disk D2

2 ⊂ ∂T ,

• β′ = β ∪{βg+1}, where the simple closed curve βg+1 is contained in ∂T
and is a generator of π1(T ).
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Replace (H2,β) with such a (H′
2,β

′).

(D) If there is a homeomorphism H2 → H′
2, which maps β to β′, replace (H2,β)

with (H′
2,β

′).

↔

(A)，(D)

↔

(B)

↔

(C)

Figure 4.1: The Heegaard moves

The following theorem is well known as a theorem of Reidemeister-Singer:

Theorem 4.1.1 [Rei33] [OS04, Proposition 2.2]. Let (H2,β) and (H′
2,β

′) be Hee-
gaard diagrams of M . These two diagrams are related by a finite sequence of
Heegaard moves.

Next, we turn to discussing changes in the group presentation according to the
Heegaard moves. For this, we shall review extended Andrews-Curtis moves and
show Lemma 4.1.2. Suppose that a group presentation 〈x1, . . . , xm | r1, . . . rn〉 of
the group G is given. for some n,m ∈ N and some words r1, . . . , rn of xi’s. The
Andrews-Curtis moves [AC65] of the presentation are the following four operations
on the generators and relators:

(Ia) Replace a relator ri with r
−1
i .

(Ib) Replace a relator ri with wriw
−1 or rixjx

−1
j . Here, w is an arbitrary word

of x1, . . . , xm.

(Ic) Replace a relator ri with rirj where j 6= i.

(II) Add a new word y and a new relator y (That is, replace the presentation
with 〈x1, . . . , xm, y | r1, . . . , rn, y〉.)

Furthermore, the extended Andrews-Curtis moves (EAC-moves, for short) are
these moves together with the following:

(R) Replace xi with either xixj or xix
−1
j in all the relators for some i 6= j.

If two group presentations are related by a finite sequence of EAC-moves, then
the associated groups are isomorphic. However, the converse is not true. In fact,
the deficiency m− n is constant with respect to EAC-moves.
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We now see that each Heegaard move corresponds to an EAC-move in the
sense of presentations of π1(M). More precisely, the following lemma is widely
known (see, e.g., [Bag21, §1.2]):

Lemma 4.1.2. Fix two Heegaard diagrams (H2,β), (H′
2,β

′) of M and the asso-
ciated presentations of π1(M) as in Section 3.1. Then, these presentations are
related by a finite sequence of some EAC-moves.

Proof. By Theorem 4.1.1, it is sufficient to consider the case where the transfor-
mation of the presentation of π1(M) is each Heegaard move, corresponding to an
EAC-move.

First, we should check that the presentation of π1(M) up to the moves (R),(Ib)
is independent of the choice of the order and the orientations of {α1, . . . , αg}.
Regarding the order, if we replace αi by αj , then we may consider

(xi, xj)
(R)7−→ (xix

−1
j , xj)

(R)7−→ (xix
−1
j , xj(xix

−1
j ))

(Ib)7−→ (xjxi, xi)
(R)7−→ (xjxix

−1
i , xi),

which is equal to (xj , xi). On the other hand, regarding the orientations, if we
replace αi by α

−1
i , then we may consider

(xi, xj)
(R)7−→ (xixj , xj)

(R)7−→ (xixj , xj(xixj)
−1) = (xixj , x

−1
i )

(Ib)7−→

7→ (xjxi, x
−1
i )

(R)7−→ (xjxix
−1
i , x−1

i ) = (xj , x
−1
i ),

which is equal to (x−1
i , xj) by the former discussion.

Next, suppose that (H2,β) is transformed into (H′
2,β

′) by (A) or (D). For
simplicity, we can assume H2 = H′

2 and β = β′.

Let us observe the difference of the presentations obtained from (H2,β). For
each oriented edge ei, choose an orientation-preserving loop `i : [0, 1] → ei as in
Section 3.1. Each `i determines a generator xi of π1(H2, v0). For each βi, choose
bi ∈ βi and let ki : [0, 1] → βi and ji : [0, 1] → H2 be the paths in Section 3.1.
Since ri is given by the composite j−1

i kiji, ri does not depend on the choice of
ji. If we take another orientation of βi, ri is replaced with r−1

i . Therefore, this
corresponds to (Ia).

In addition, suppose that β1 is transformed into β′1 by the handleslide (B).
Let 〈x1, . . . , xg | r1, . . . , rg〉 be the group presentation given from the Heegaard
diagram before the move. After the move, r1 is transformed into one of r2r1,
r−1
2 r1, r1r2, or r

−1
1 r2. Therefore, the presentation after the move can be obtained

by applying (Ia) and (Ic).

Finally, if (H2,β) is transformed into (H2∪hT
2,β∪{βg+1}) by a stabilization

(C), the corresponding transformation of the group presentation can be regarded
as (II). To summarize, we complete the proof.
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4.2 Proofs of the theorems

For the proof of the theorems 3.3.2, 3.3.4, 3.3.5, and 3.3.8, we often use the
chain rule (4.1) of the Fox derivative [Fox53]. Let F ′ be a free group with basis
{y1, . . . , yg}, and let λ : F ′ → F be a group homomorphism. Then, the following
holds for any f ∈ Z[F ′]:

∂(λ(f))

∂xj
=
∑
k≤g

(
λ
( ∂f
∂yk

))∂(λ(yk))
∂xj

. (4.1)

Proof of Theorem 3.3.2. It is sufficient to prove that even if we change a Hee-
gaard diagram (H2,β) by a Heegaard move, Tφ(M) does not change where C∗ =
Fn⊗Z[π1(M)]C∗(H2,β) is acyclic. Let 〈x1, . . . , xg | r1, . . . , rg〉 be the group presen-
tation before applying the move. LetWM =

∏r
m=1wmρ

ϵm
jm
w−1
m =

∏r
m=1(rjm , wm)ϵm

be an identity in Theorem 3.2.2. For s = a0g0 + · · ·+ aℓgℓ, ai ∈ Z, gi ∈ π1(M), we
write s−1 for a0g

−1
0 + · · ·+ aℓg

−1
ℓ .

If we regard Ci = Fn ⊗Z[π1(M)] Ci(H2,β) as a vector space over F with the
basis ci, the boundary maps are represented by the following matrices:

∂1 =
(
E − ϕ(x−1

j )
)
, ∂2 =

(
ϕ([ ∂ri∂xj

]−1)
)
, ∂3 =

(
ϕ(µψ([∂WM

∂ρi
]))−1

)
.

Here, E is the (n× n)-identity matrix. We write [∂2](i,j) for the submatrix of ∂2
that consists of the entries collecting from the (ni+ 1)-th row to the (ni+ n)-th
row and from the (nj + 1)-th column to the (nj + n)-th column. Similarly, we
write [∂3]i for the submatrix that consists of entries collecting from the (ni+1)-th
row to the (ni + n)-th row. Throughout the proof, the chain complex (3.1), the
identity, and the torsion, corresponding to the diagram after applying the move,
will be denoted by C ′

∗, W
′
M , T ′

φ(M), respectively.
First, we show the invariance on the choice of orientations of βi, where rd is

replaced with r−1
d . Note the following equation:

∂(r−1
d )

∂xi
= −r−1

d

∂rd
∂xi

.

From Proposition A.0.1, W ′
M can be obtained by replacing all rd inWM with r−1

d .
Therefore, the boundary maps ∂′1, ∂

′
2, ∂

′
3 of C ′

∗ are represented by the following
matrices:

∂′1 = ∂1,

[∂′2](i,j) =

{
[∂2](i,j) if j 6= d,

−ϕ([∂rd∂xi
]−1)ϕ(rd) = −[∂2](i,d) if j = d,

[∂′3]i =

{
[∂3]i if i 6= d,

−[∂3]d if i = d.
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Let Ei,j(γ) be the elementary (n× n)-matrix over Z[π1(M)] whose (i, j)-th entry
is γ ∈ Z[π1(M)]. We can represent the boundary maps of C ′

∗ by the following
matrices:

∂′2 = ∂2Ed,d(−1), ∂′3 = Ed,d(−1)∂3.

Therefore, if we identify C ′
2 with C2 by the isomorphism corresponding to the basis

transformation represented by Ed,d(−1), then C ′
∗ coincides with C∗. Noticing that

det (ϕ(Ed,d(−1))) = (−1)n and Remark 2.1.1(i), we have

T ′
φ(M) = τ(C ′

∗, c
′) = τ(C∗, c)

3∏
i=0

[c′i/ci]
(−1)i+1

= (det (ϕ(Ed,d(−1))))−1τ(C∗, c) = (−1)nτ(C∗, c) = Tφ(M).

The invariance for (Ib) is obvious.
Now, regarding a handleslide (B), we may focus on only the case where r1 is

changed to r2r1. Note the following equality:

∂(r2r1)

∂xi
=
∂r2
∂xi

+ r2
∂r1
∂xi

.

It follows from Proposition A.0.1 that W ′
M can be obtained by replacing all the

terms (rjm , wm) in WM satisfying rjm = r1 with (r2, wm)−1(r2r1, wm). Therefore,
by (4.1), the boundary maps ∂′1, ∂

′
2, ∂

′
3 of C

′
∗ are regarded as the following matrices,

respectively:

∂′1 = ∂1,

[∂′2](i,j) =

{
[∂2](i,j) if j 6= 1,

ϕ([∂r2∂xi
]−1) + ϕ(r−1

2 )ϕ([∂r1∂xi
]−1) = [∂2](i,2) + [∂2](i,1) if j = 1,

[∂′3]i =

{
[∂3]i if i 6= 1,

−[∂3]2 + [∂3]1 if i = 1.

If we identify C ′
∗ with the chain complex C ′

∗(H2,β), then the boundary maps are
considered to be the following matrices:

∂′2 = ∂2E1,2(1), ∂′3 = (E1,2(1))
−1∂3. (4.2)

Therefore, if we identify C ′
2 and C2 by the isomorphism corresponding to the basis

transformation represented by E1,2(1), then C
′
∗ coincides with C∗. Since ϕ is an

SLn(F)-representation, det (ϕ(E1,2(1))) = 1. By Remark 2.1.1(i), we get

T ′
φ(M) = τ(C ′

∗, c
′) = τ(C∗, c)

3∏
i=0

[c′i/ci]
(−1)i+1

= (det (ϕ(E1,2(1))))
−1τ(C∗, c) = τ(C∗, c) = Tφ(M).
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Next, we show the invariance for the stabilization (C). The stabilization adds
the new generator y and the new relator y. Let σ1y be a 1-cell corresponding
to the generator y, and σ2y be a 2-cell corresponding to the relator y. Fix the

lifts of σ1y and σ2y to M̃ , and denote those by σ̃1y and σ̃2y . Then, c′1 := c1 ∪
{e1 ⊗ σ̃1y , e2 ⊗ σ̃1y , . . . , en ⊗ σ̃1y} is an (ordered) basis of C ′

1. Similarly, we can take
c′2 := c2 ∪ {e1 ⊗ σ̃2y , e2 ⊗ σ̃2y , . . . , en ⊗ σ̃2y} as an basis of C ′

2. Proposition A.0.1
implies W ′

M = WM (y, y)(y, 1)−1. Thus, the boundary maps ∂′1, ∂
′
2, ∂

′
3 of C ′

∗ are
represented by the following matrices:

∂′1 =
(
E − ϕ(x−1

1 ) · · · E − ϕ(x−1
g ) E − ϕ(y−1)

)
=
(
∂1 O

)
, (4.3)

∂′2 =

(
∂2 O
O E

)
, (4.4)

∂′3 =

(
∂3
O

)
. (4.5)

Therefore, C ′ = C ⊕
(⊕n

i=1E∗(F, 1)
)
. Hence, by Remark 2.1.1(ii), Tφ(M) =

τ(C∗, c) = τ(C ′
∗, c

′) = T ′
φ(M).

Finally, we show the invariance on (R). In this case, the generators (xi, xj) are
replaced to (xixj , xj) or (xix

−1
j , xj). Notice from (4.1) the following equality:

∂rj

∂(xix
±1
j )

=
∂rj
∂xi

± ∂rj
∂xj

.

Here, we use the chain rule (4.1). Since W ′
M is obtained from WM following the

replacement, as the boundary maps ∂′2, ∂
′
3 of C ′

∗ are represented by the following
equalities (similar to the case (Ic)) or (4.2):

∂′1 = ∂1ϕ(Ei,j(±1)), ∂′2 = (ϕ(Ei,j(±1)))−1∂2, ∂′3 = ∂3.

Hence, similar to (4.5), we obtain the invariance of the torsion as required.

Similarly, the proofs of Theorems 3.3.4 and 3.3.8 are given as follows:

Proof of Theorem 3.3.4. Let n be odd. We denote the term sgn
(
τ̌(C∗(M ;R),σ,h)

)
by τ̌ and denote the torsion τ(Fn ⊗ C∗(H2,β), c) by T for short. The changes of
the values T , τ̌ by reversing the orientations of βd, ed and by Heegaard moves are
as follows (the details can be easily checked as in the proof of Theorem 3.3.2). By
(A) and (D), it is clear that T and τ̌ do not change. By reversing the orientation
of βd, we have T 7→ (−1)nT and τ̌ 7→ −τ̌ . By reversing the orientation of ed, we
have T 7→ (−1)nT and τ̌ 7→ −τ̌ . By (B) and (C), T and τ̌ do not change. In
summary, by the definition of Tφ(M), the invariance is proved.
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Proof of Theorem 3.3.8. First of all, the twisted torsion does not depend on hi

by Remark 2.1.1(i). We denote the torsion τ(F(t1/2)n ⊗Z[π1(M)] C∗, c) by T . The
changes of T , τ0, d by reversing the orientations of βd, ed and by Heegaard moves
are as follows (the details can be easily checked as in the proof of Theorem 3.3.2).
By (A) and (D), it is clear that T , τ0, and d do not change. By reversing the
orientation of βd, we have T 7→ (−1)nT , τ0 7→ −τ0, and d 7→ d. By reversing the
orientation of ed, we have T 7→ tn degα(−xd)T , τ0 7→ τ0, and d 7→ d + degα(−xd).
By (B) and (C), T , τ0, and d do not change. In summary, by the definition of
T̃φ,α(M), the invariance is proved.

Proof of Theorem 3.3.5. The acyclicity is obvious from (3.1). Let S be a triangu-
lation of M . Let us take a closed tubular neighborhood U of the 1-skeleton S(1),
and let V be the closure of M \ U . These U and V are handlebodies, and it is
well known that M = U ∪V gives a Heegaard splitting (see, for example, [OS04]).
Let (H2,β) be the corresponding Heegaard diagram.

We can regard U as the 0- and 1-handles of M and V as dual handles of U of
2- and 3-handles of M . Let K be a spine of V . When we take a maximal tree T
of S(1), we can choose the maximal tree T ∗ of K as the dual handle of T .

Then, we can define the CW structure induced on the quotient space M/(T ∪
T ∗) by passage T ∪ T ∗ as a single point. Note that the 0-cell and the 3-cell are
single and that the cellular complex of M/(T ∪ T ∗) is identified with C∗(H2,β).
Thus, Theorems 3.3.2 and 3.3.4 deduce

Tφ(M) = τφ(M/(T ∪ T ∗)) ∈ F×/{±1}.

Therefore, if the invariance for the operation crushing any edge in the maximal
tree is proved, then we have the desired equality τφ(M) = τφ(M/(T ∪ T ∗)) =
Tφ(M). Let X be the CW complex before applying this operation, and X ′ be
that after applying the operation. We write C∗ and C ′

∗ for the cellular complex

C∗(X̃;Z) and C∗(X̃ ′;Z), respectively. Assume that C ′
∗ is represented as follows:

C ′
∗ : 0 −→ C ′

3

∂′
3−→ C ′

2

∂′
2−→ C ′

1

∂′
1−→ C ′

0 −→ 0.

By carefully observing the cellular complex with local coefficients, we can verify
that C∗ is represented by the following matrices:

C∗ : 0 −→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0 −→ 0,

Ci = C ′
i⊕Z[π1(M)], ∂3 =

(
∂′3 ∗
O id

)
, ∂2 =

(
∂′2 ∗
∗ 0

)
, ∂1 =

(
∂′1 ∗
O id

)
.

That is, C∗ is chain isomorphic to C ′
∗ ⊕E∗(F, 0)⊕E∗(F, 2). By Remark 2.1.1(ii),

we have

τφ(M) = τ(Fn ⊗Z[π1(M)] C∗, c) = τ(Fn ⊗Z[π1(M)] C
′
∗, c

′)

= τ(Fn ⊗Z[π1(M)] C∗(H2,β), c
′) = Tφ(M) ∈ F×/{±1}.
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Here, c and c′ are bases of Cφ
∗ (X) and Cφ

∗ (X
′) as in Section 2.2, respectively.

Thus, c and c′ are related by a finite sequence of Remark 2.1.1. To summarize,
we complete the proof.

(Additional remark) In the paper [Wak21] or the proof of Theorem 3.3.5, we
discuss the torsions up to sings. However, if ϕ is a adjoint representation, we can
define the normalized torsion, which does not depend on the choices of the finite
cellular decomposition, as mentioned in Section 2.3; thus, following the proof, we
can show the same equality Tφ(M) = τφ(M) in C without omitting sings.
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Chapter 5

Examples of computation

In this chapter, we compute the torsions of some closed 3-manifolds with re-
spect to SL2(C)-representations. Section 5.1 focuses on some Seifert 3-manifolds
Mn,m,ℓ defined for three integers n,m, ` ≥ 2, and compute all the twisted Reide-
meister torsions of Mn,m,ℓ. Section 5.2 considers some 3-manifolds M obtained
by some Dehn-surgeries on the figure-eight knot and the 52-knot, and computes
all the adjoint Reidemeister torsions of M with respect to all irreducible SL2(C)-
representations. Throughout this chapter, we assume that G = SL2(C).

5.1 Some Seifert 3-manifolds

In this section, we focus on 3-dimensional manifolds discussed in [Sie86, p.127]
and compute the twisted torsions. Let n,m, ` ≥ 2 be integers. Sieradski considers
the group presentation 〈g, h | s, r〉, where r = (gh)nh−m, s = (hg)ng−ℓ, and he
constructs a taut identity W = (1, r)(h, r)−1(1, s)(g, s)−1. Consequently, accord-
ing to Remark 3.2.3(ii), there is a certain 3-manifold M = Mn,m,ℓ such that the
presentation of π1(M) obtained by the algorithm in Section 3.1 turns out to be

〈g, h | (hg)ng−ℓ, (gh)nh−m〉.

Moreover, we show the homeomorphism type of the manifold Mn,m,ℓ:

Proposition 5.1.1. The manifoldMn,m,ℓ is homeomorphic to the Seifert 3-manifold
over the 2-sphere of the form

M(0; (1, 0); (n,−1), (m,−1), (`, 1))).

Furthermore, if −m` + n` + nm = ±1, then Mn,m,ℓ is homeomorphic to the
Brieskorn manifold Σ(`,m, n), which is defined by

Σ(`,m, n) = {(z1, z2, z3) ∈ C3 | zℓ1 + zm2 + zn3 = 0, |z1|2 + |x2|2 + |z3|2 = 1}.
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Proof. It is well known (see [Kit94, §3]) that the fundamental group of

M(0; (1, 0); (`,−1), (m,−1), (n, 1))

has the presentation

〈x, y, z, h | h central, xℓh−1 = ymh−1 = znh = xyz = 1〉. (5.1)

Here, let us eliminate the generators z and h by the relations z−1 = xy, h−1 = zn.
Namely, we can verify that the correspondence x 7→ g, y 7→ h, z 7→ (gh)−1, h 7→ gℓ

defines an isomorphism from (5.1) to π1(Mn,m,ℓ). The required homeomorphism
immediately follows from a rigidity theorem for Seifert fiber spaces in [Sco83].

For the latter part, suppose −m` + n` + nm = ±1. Then, π1
(
Σ(`,m, n)

)
is

isomorphic to (5.1); see [Kho07, §1]. Therefore, by the work of Scott again,Mn,m,ℓ

is homeomorphic to Σ(`,m, n).

For instance, the latter assumption in Proposition 5.1.1 establishes for (n,m, `)
= (k, 2k + 1, 2k − 1) where k ≥ 3, and

(n,m, `) = (2, 7, 3), (3, 11, 4), (3, 13, 4), (3, 8, 5), (4, 19, 5), (5, 17, 7), etc.

5.1.1 Results

First, we will show the following lemmas for classifying SL2(C)-representations.
(The proofs of all the statements in this subsection will appear in the next sub-
section.) In what follows, the field F is assumed to be the complex field C.

Lemma 5.1.2. Let α ∈ C× \ {±1}, and y 6= 0 or z 6= 0. Then, two matrices

A =

(
α 0
0 α−1

)
, B =

(
x y
z w

)
∈ SL2(C) satisfy

(AB)n = Bm, (BA)n = Aℓ (5.2)

if and only if the following conditions hold:

(IA) αℓ = βm = γn ∈ {±1},

(IB) x =
α−1(β + β−1)− (γ + γ−1)

α−1 − α
, w =

(γ + γ−1)− α(β + β−1)

α−1 − α
.

Here, β, β−1 are the eigenvalues of B, and γ, γ−1 are the eigenvalues of AB.

Lemma 5.1.3. Two matrices A =

(
α 1
0 α−1

)
, B =

(
x y
z w

)
∈ SL2(C) satisfy

(5.2) if and only if there exists β ∈ {±1} satisfying the following conditions:

(IIA) α ∈ {±1}，αℓ = βm = (αβ)n,
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(IIB) m 6= n，` = mn(m− n)−1,

(IIC) x = w = β，y = αβn(m− n)−1, z = 0.

Proposition 5.1.4. For any nontrivial homomorphism ϕ : π1(M) → SL2(C),
there exist matrices A,B satisfying the conditions (IA) and (IB) in Lemma 5.1.2,
or (IIA), (IIB) and (IIC) in Lemme 5.1.3, and the homomorphism ϕ′ : π1(M) →
SL2(C) defined by ϕ′(g) = A and ϕ′(h) = B is conjugate to ϕ.

Proof. It is straightforwardly proved by using Jordan decomposition of ϕ′(g) =
A.

For i ∈ {1, 2}, let ϕi
α : π1(M) → SL2(C) be a representation such that ϕi

α(g) =
A and ϕi

α(h) = B satisfy the following conditions: when the eigenvalues of B (and
AB, resp.) are β, β−1 (and γ, γ−1, resp.),

(ϕ-I) A =

(
α 0
0 α−1

)
if i = 1, and α, β, γ satisfy the conditions (IA), (IB) in

Lemma 5.1.2.

(ϕ-II) A =

(
α 1
0 α−1

)
if i = 2, and α, β, γ satisfy the conditions (IIA), (IIB),

(IIC) in Lemma 5.1.3.

Let (H2,β) be a Heegaard diagram of M , and let X be the corresponding CW
structure of M . Then, the torsion with respect to ϕ is computed as follows:

Theorem 5.1.5. For α ∈ C∗ \ {±1}, let ϕ1
α be a representation given by (ϕ-I).

Suppose y 6= 0 or z 6= 0. Then, αℓ = βm = γn ∈ {±1}, and the following holds:

(i) If αℓ = βm = γn = −1, then C
φ1
α

∗ (X) is acyclic, and the torsion is
computed as

Tφ1
α
(M) = − 4αβγ

(α− 1)2(β − 1)2(γ − 1)2
∈ C×.

(ii) If αℓ = βm = γn = 1, then C
φ1
α

∗ (X) is not acyclic.

Theorem 5.1.6. For α ∈ C, let ϕ2
α be a representation given by (ϕ-II). Then,

α, β ∈ {±1}, and the followings hold:

(iii) If α = −1 or β = −1, then Cφ
∗ (X) is acyclic and the torsion is computed

as

Tφ(M) =


`2/16 if α = 1, β = −1,

m2/16 if α = −1, β = 1,

n2/16 if α = β = −1.
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(iv) If α = β = 1, then Cφ
∗ (X) is not acyclic.

Remark 5.1.7. More generally, Kitano [Kit94] has completely computed all the
twisted torsions of any acyclic irreducible SL2(C)-representations of any Seifert
manifolds. We can verify the result (i) is equal to that of Kitano. However,
we point out that our procedure has advantages to compute the torsions of re-
ducible SL2(C)-representations and to compute the torsions of other (e.g., adjoint)
SL2(C)-representations.

5.1.2 Proofs of Theorems 5.1.5 and 5.1.6

We prepare the following lemma to prove Lemmas 5.1.2 and 5.1.3.

Lemma 5.1.8. Take r ∈ N and C ∈ GL2(C). Let c, d ∈ C be the eigenvalues of
C, and E be the (2× 2)-identity matrix. Then,

Cr =


cr − dr

c− d
C − crd− cdr

c− d
E, if c 6= d,

rcr−1C − (r − 1)crE, if c = d.

Proof. It immediately follows from the Cayley-Hamilton theorem and the induc-
tion on r.

If A,B ∈ SL2(C) satisfy (5.2), we obtain

Aℓ = (BA)n = B(AB)nB−1 = BBmB−1 = Bm. (5.3)

Proof of Lemma 5.1.2. We claim that the eigenvalues β, β−1 of B are distinct.
In fact, if we assume β = β−1, then Bm is not diagonalizable, which contradicts

Bm = Aℓ =

(
aℓ 0
0 a−ℓ

)
. Thus, β 6= β−1, i.e. β 6= ±1. According to Lemma 5.1.8,

we have

Aℓ = Bm =
βm − β−m

β − β−1
B − βm−1 − β1−m

β − β−1
E.

From the (1, 2)-th and (2, 1)-th entries, we have βm = β−m, i.e. β2m = 1. Then,

Aℓ = Bm = −β
m−1 − β1−m

β − β−1
E = −β

m−1 − β1+m

β − β−1
E = βmE

yields αℓ = βm. By observing the eigenvalues γ, γ−1 of AB, we can similarly show
γ 6= ±1 and αℓ = γn. In summary, we obtain (IA).
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Note that the sum of the eigenvalues of B (and AB) coincides with the sum
of the diagonal components of B (and AB, respectively). Thus, we have

x+ w = β + β−1, αx+ α−1w = γ + γ−1,

which leads to (IB). The “if” part is proven.
Conversely, the “only if” part can be checked by calculating Aℓ, Bm, (AB)n,

(BA)n with Lemma 5.1.8.

Proof of Lemma 5.1.3. Let the matrices A,B ∈ SL2(C) satisfy (5.2). Then A is
written as

Aℓ =

(
αℓ `αℓ−1

0 αℓ

)
, (5.4)

and α2 = xw− yz = 1 follows from detA = detB = 1. For the eigenvalues β, β−1

of B ∈ SL2(C), we have β = β−1. Indeed, if β 6= β−1, then Bm is diagonalizable,
and Aℓ is not diagonalizable, which means a contradiction.

Next, let us prove z = 0. By Lemma 5.1.8, Bm = mβm−1B − (m− 1)βmE. If
z 6= 0, then Aℓ = Bm implies βm−1 = 0, which contradicts β 6= 0. Therefore, we
have z = 0.

Since β = β−1 and z = 0 as above, it follows that

Bm =

(
β y
0 β

)m

=

(
βm mβm−1y
0 βm

)
,

(AB)n =

(
αβ αy + β
0 αβ

)n

=

(
(αβ)n n(αβ)n−1(αy + β)

0 (αβ)n

)
.

By these equalities, (5.4), and Aℓ = Bm = (AB)n, we obtain

αℓ = βm = (αβ)n, `αℓ−1 = mβm−1y = n(αβ)n−1(αy + β).

Thus, we have m 6= n, ` = nm(m − n)−1. Furthermore, by α2 = β2 = 1, we get
y = α−1β`m−1 = αβn(m− n)−1, which means the “if” part.

The “only if” part can be shown by following the reverse process of the above
calculation.

Proofs of Theorems 5.1.5 and 5.1.6. We denote π1(M) by π1. Since the iden-
tity is given by WM = (1, r)(h, r)−1(1, s)(g, s)−1, the chain complex C∗(X̃;Z) =
C∗(H2,β) can be written as

C∗(H2,β) : 0 → Z[π1]
∂3−→ Z[π1]⊕ Z[π1]

∂2−→ Z[π1]⊕ Z[π1]
∂1−→ Z[π1] → 0,

∂1 = (1− g, 1− h), ∂2 =

(
∂s
∂g

∂s
∂h

∂r
∂g

∂r
∂h

)
, ∂3 =

(
µ ◦ ψ(∂WM

∂ρ1
)

µ ◦ ψ(∂WM
∂ρ2

)

)
.
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Here,

∂r

∂g
=

∂((hg)ng−ℓ)

∂g
= h

n−2∑
i=0

(gh)i − h(gh)n−1
ℓ−1∑
j=1

g−j ,

∂s

∂h
=

∂((gh)nh−m)

∂h
= g

n−2∑
i=0

(hg)i − g(hg)n−1
m−1∑
j=1

h−j ,

∂r

∂h
=

∂((hg)ng−ℓ)

∂h
=

n−1∑
i=0

(gh)i,

∂s

∂g
=

∂((gh)nh−m)

∂g
=

n−1∑
i=0

(hg)i,

µ ◦ ψ
(
∂WM

∂ρ1

)
= rhr−1h−1 − rhr−1h−1sgs−1 = 1− g,

µ ◦ ψ
(
∂WM

∂ρ2

)
= 1− rhr−1 = 1− h.

Under the identification of C2 ⊗ Z[π1] with C2 through the isomorphism defined
by

C2 ⊗ Z[π1] −→ C2;

(
u
v

)
⊗
∑
γ∈π1

aγγ 7→
∑
γ∈π1

aγϕ(γ)
−1

(
u
v

)
,

the chain complex Cφ
∗ (X) = C2 ⊗Z[π1] C∗(X̃;Z) is represented by the following

matrices:

Cφ
∗ (X) : 0 −→ C2 ∂φ

3−→ C4 ∂φ
2−→ C4 ∂φ

1−→ C2 −→ 0,

∂φ1 = (E −A−1, E −B−1), ∂φ2 =

(
Sg Sh
Rg Rh

)
, ∂φ3 =

(
E −A−1

E −B−1

)
. (5.5)

Here,

Sg =
n−2∑
i=0

(B−1A−1)iB−1 −
ℓ−1∑
j=1

Aj(B−1A−1)
n−1

B−1,

Rh =

n−2∑
i=0

(A−1B−1)iA−1 −
m−1∑
j=1

Bj(A−1B−1)
n−1

A−1,

28



CHAPTER 5. EXAMPLES OF COMPUTATION

Sh =

n−1∑
i=0

(B−1A−1)
i
, Rg =

n−1∑
i=0

(A−1B−1)
i
.

From now on, let {e(4)1 , e
(4)
2 , e

(4)
3 , e

(4)
4 } and {e(2)1 , e

(2)
2 } be the canonical bases of C4

and C2, respectively. Set c0 = c3 = (e
(2)
1 , e

(2)
2 ) and c1 = c2 = (e

(4)
1 , e

(4)
2 , e

(4)
3 , e

(4)
4 ).

Let us calculate the twisted torsions in the two cases (i) and (iii).
The case of (i) Assume y 6= 0. We first discuss ∂φ1 . By (5.5), let b01 =

∂φ1 (e
(4)
1 ) =

(
1− α−1

0

)
, b02 = ∂φ1 (e

(4)
2 ) =

(
0

1− α

)
. The set of these two is a basis

of Bφ
0 (X) = Im ∂φ1 = C2 since α 6= ±1. Note that Hφ

0 (X) = C2/Bφ
0 (X) = 0.

If we take b0 = (b01, b
0
2), then b̃0 = (e

(4)
1 , e

(4)
2 ), and by rank-nullity theorem,

dimZφ
1 (X) = 2, where Zφ

1 (X) = Ker ∂φ1 .
Next, we examine ∂φ2 . By Lemma 5.1.8,

Aj =

(
α−j 0
0 αj

)
, Bj =

βj − β−j

β − β−1
B − βj−1 − β1−j

β − β−1
E,

(B−1A−1)j =
γj − γ−j

γ − γ−1
B−1A−1 − γj−1 − γ1−j

γ − γ−1
E,

(A−1B−1)j =
γj − γ−j

γ − γ−1
A−1B−1 − γj−1 − γ1−j

γ − γ−1
E.

Using the above equalities and Lemma 5.1.2, with the help of a computer program
of Mathematica, we can obtain

Sg =

(
2α(βγ+α2βγ−α(β+γ+βγ(−2+β+γ)))

(α2−1)β(γ−1)2
2γy

(γ−1)2

2(αβ−γ)(βγ−α)(γα−β)(αβγ−1)
(α2−1)β2(γ−1)2γy

−2βγ−2α2βγ+2α(β+γ+βγ(−2+β+γ))
α(α2−1)β(γ+1)2

)
,

Rg =

(
2(βγ−α(1+β2)γ+α2β(1+(−1+γ)γ)

(α2−1)β(γ−1)2
2γy

α(γ−1)2

2(αβ−γ)(βγ−α)(γα−β)(αβγ−1)
(α2−1)β2(γ−1)2γy

2αγ+2αβ2γ−2β(1+γ(−1+α2+γ))
(α2−1)β(γ−1)2

)
,

where ∂φ2 =

(
Sg Sh
Rg Rh

)
. We can show that the rank of ∂φ2 is 2 and that b1

is a basis of Bφ
1 (X) = Im ∂φ2 when we take b11 = ∂φ2 (e

(4)
1 ), b12 = ∂φ2 (e

(4)
2 ), and

b1 = (b11, b
1
2). Note that b̃1 = (e

(4)
1 , e

(4)
2 ) and that dimZφ

1 (X) = dimBφ
1 (X) leads

to Hφ
1 (X) = Zφ

1 (X)/Bφ
1 (X) = 0.

Finally, let us discuss ∂φ3 . If we take vectors of the forms

b21 = ∂φ2 (e
(2)
1 ) =

 b01
1− w
1 + z

 , b22 = ∂φ2 (e
(2)
2 ) =

 b02
1 + y
1− x

 ,
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then b2 = (b21, b
2
2) provides a basis of Bφ

2 (X) = Im ∂φ3 . Note that b̃2 = (e
(2)
1 , e

(2)
2 ),

and Hφ
2 (X) = Zφ

2 (X)/Bφ
2 (X) = 0 follows from dimZφ

2 (X) = dimBφ
2 (X).

From this, we have

Tφ(M) = [b3, b̃2/c3][b2, b̃1/c2]
−1[b1, b̃0/c0][b0, b̃−1/c0]

−1

= det (b̃2)(det (b2, b̃1))
−1 det (b1, b̃0)(det(b0))

−1

= det

(
1 0
0 1

)
det

1− α−1 0 1 0
0 1− α 0 1

1− w 1 + y 0 0
1 + z 1− x 0 0


−1

det

(Sg)(1,1) (Sg)(1,2) 1 0
(Sg)(2,1) (Sg)(2,2) 0 1
(Rg)(1,1) (Rg)(1,2) 0 0
(Rg)(2,1) (Rg)(2,2) 0 0

 det

(
1− α−1 0

0 1− α

)−1

= − 4αβγ

(α− 1)2(β − 1)2(γ − 1)2
∈ C×.

We use the relations of Lemma 5.1.2 for the last equation.

In the case where z 6= 0, the proof can be given in the same way.

The case of (iii) We assume α = 1 and β = −1. Concerning the boundary
map ∂φ1 , it follows from (5.5) that

∂φ1 =

(
1− α 1 1− β y
0 1− α 0 1− β

)
=

(
0 1 2 y
0 0 0 2

)
.

By Bφ
0 (M) = Im ∂φ1 = C2, we can take a basis b0 = (e

(2)
1 ,

(
y
2

)
) of B0. Note that

b̃0 = (e
(4)
2 , e

(4)
4 ) and dimZφ

1 (X) = dim (Ker ∂φ1 ) = 2 by rank-nullity theorem.

Next, to describe ∂φ2 , we shall notice that

Aj =

(
αj −jαj−1

0 αj

)
=

(
1 −j
0 1

)
, Bj =

(
βj jyβj−1

0 βj

)
= (−1)j

(
1 −jy
0 1

)
,

(B−1A−1)j = (A−1B−1)j =

(
αβ −αy − β
0 αβ

)j

= (−1)j
(
1 j(1− y)
0 1

)
.

By these equalities and the relations in Lemma 5.1.3, it can be calculated with
the help of a computer program in Mathematica that

Sg =

(
mn
n−m

mn(m(n−2)+2n)
2(m−n)2

0 mn
n−m

)
, Sh = Rg =

(
0 mn

2(m−n)

0 0

)
, Rh =

(
0 0
0 0

)
.

30



CHAPTER 5. EXAMPLES OF COMPUTATION

Therefore, we can show that the rank of ∂φ2 is 2, and b1 is a basis of Bφ
1 (X) =

Im ∂φ2 when we select

b11 = ∂φ2 (e
(4)
1 ) =


mn
n−m

0
0
0

 , b12 = ∂φ2 (e
(4)
2 ) =


mn(m(n−2)+2n)

2(m−n)2
mn
n−m
mn

2(m−n)

0

 ,

and b1 = (b11, b
1
2). We can take b̃1 = (e

(4)
1 , e

(4)
2 ). Note that dimBφ

1 (X) = 2 =
dimZφ

1 (X) yields Hφ
1 (X) = Zφ

1 (X)/Bφ
1 (X) = 0, and dimZφ

2 (X) = dim ∂φ2 = 2.
Likewise, regarding ∂φ3 , it follows from (5.5) that

∂φ3 =


1− α 1
0 1− α

1− β y
0 1− β

 =


0 1
0 0
2 y
0 2

 .

Therefore, by choosing

b21 = ∂φ3 (e
(2)
1 ) =


0
0
2
0

 , b22 = ∂φ3 (e
(2)
2 ) =


1
0
y
2

 ,

and setting b2 = (b21, b
2
2), we can regard b2 as a basis of Bφ

2 (X) = Im ∂φ3 . We can

take b̃2 = (e
(2)
1 , e

(2)
2 ). Note that dimBφ

2 (X) = 2 = dimZφ
2 (X) implies Hφ

2 (X) =
Zφ
2 (X)/Bφ

2 (X) = 0, and Hφ
3 (X) = Zφ

3 (X) = 0.

For b0, b1, b2, b3(= ∅), b̃−1(= ∅), b̃0, b̃1 and b̃2, we obtain

Tφ(M) = [b3, b̃2/c3][b2, b̃1/c2]
−1[b1, b̃0/c0][b0, b̃−1/c0]

−1

= det (b̃2)(det (b2, b̃1))
−1 det (b1, b̃0)(det(b0))

−1

= det

(
1 0
0 1

)
det

0 1 1 0
0 0 0 1
2 n

n−m 0 0

0 2 0 0


−1

det


mn
n−m

mn(m(n−2)+2n)
2(m−n)2 0 0

0 mn
n−m 1 0

0 mn
2(m−n) 0 0

0 0 0 1

 det

(
1 y
0 2

)−1

= `2/16 ∈ C×.

Here, we use the relations of Lemma 5.1.3 for the third equation.

31



5.2. 3-MANIFOLDS OBTAINED BY SOME DEHN-SURGERIES

In the case where α = −1, β = 1 or α = β = −1, it can be calculated similarly.
Thus, we will omit writing the details.

The cases of (ii) and (iv) The non-acyclicity can be proved by computing
the homology Hφ

∗ (X) in the same way as in (i) and (iii).

5.2 3-manifolds obtained by some Dehn-surgeries

For p/q ∈ Q and a knot K in S3, let S3
p/q(K) be the closed 3-manifold obtained

by (p/q)-Dehn surgery on K. In this section, we assume that M is one of S3
p/1(41)

and S3
1/q(41) for some integers p, q 6= 0.

According to [Nos22a], we can give the group presentations of π1(M) as fol-
lows:

π1(S
3
p/1(41))

∼= 〈x1, x2,m |mx1x2m−1x−1
1 ,mx2x1x2m

−1x−1
2 , [x1, x2]m

p〉,

π1(S
3
1/q(41))

∼= 〈x1, x2,m,m′ |mx1x2m−1x−1
1 ,mx2x1x2m

−1x−1
2 ,

m[x1, x2]
q,m′[x1, x2]

−1〉.

(5.6)

Here, [x, y] is xyx−1y−1. Let g be the number of generators of the group presen-
tation above. Replace m by x3, m

′ by x4, and let ri denote the i-th relator in

(5.6). Under the identification of g⊗Z[π1(M)] with g = {
(
u v
w −u

)
|u, v, w ∈ C}

through the isomorphism defined by

g⊗ Z[π1(M)] −→ g; ν ⊗
∑
γ∈π1

aγγ 7→
∑
γ∈π1

aγϕ(γ)νϕ(γ)
−1,

the chain complex Cφ
∗ (M : g) = g ⊗Z[π1(M)] C∗(M̃ ;Z) is represented by the fol-

lowing matrices:

Cφ
∗ (M ; g) : 0 → g

∂3−→ gg
∂2−→ gg

∂1−→ g → 0.

We now describe the differentials ∂∗ in detail. Let F and P be the free groups
〈x1, . . . , xg | 〉 and 〈ρ1, . . . , ρg | 〉, respectively. Let ψ : P ∗ F → F be a homo-
morphism defined by (3.2), and µ be the natural surjection from F to π1(M).
According to [Nos22a, §3.1], we can describe ∂∗ by the words of the presentations
(5.6) as follows: let WM ∈ P ∗ F be

ρ1·x1ρ2x−1
1 ·(x1x2x−1

1 )ρ−1
1 (x1x2x

−1
1 )−1·([x1, x2])ρ−1

2 ([x1, x2])
−1·ρ−1

4 ·m′ρ3m
′−1·ρ4·ρ−1

3 ,

if M = S3
p/1(41). Let WM ∈ P ∗ F be

ρ1·x1ρ2x−1
1 ·(x1x2x−1

1 )ρ−1
1 (x1x2x

−1
1 )−1·([x1, x2])ρ−1

2 ([x1, x2])
−1·ρ−1

4 ·m′ρ3m
′−1·ρ4·ρ−1

3 ,
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if M = S3
1/q(41). Then, WM is an identity satisfying Theorem 3.2.2, and each ∂∗

can be written as the matrices

∂1 = (1− xj)j=1,...,g , ∂2 =

(
∂rj
∂xi

)
i,j=1,...,g

, ∂3 = µ ◦ψ
(
∂W

∂ρi

)
i=1,...,g

, (5.7)

where ∂∗
∂∗ is Fox derivative. Although each entry of the matrices is described in

Z[π1(M)], we regard the entry as an automorphism of g via the adjoint action.

5.2.1 Results

C

Re1−1

Im √
−1

−
√
−1

D

Figure 5.1: D ⊂ C

To state Proposition 5.2.1 and Theorem 5.2.2 in this
subsection, let us consider a domain D in C of the
form

D := {a ∈ C | |a| < 1}
∪ {a ∈ C | Im(a) > 0, |a| = 1} ∪ {−

√
−1},

as in Figure 5.1, and define the polynomial QM (x) ∈
Z[x] by setting

QM (x) :=

{
1− xp−4 + xp−2 + 2xp + xp+2 − xp+4 + x2p, if M = S3

p/1(41),

1− x2q − x4q−1 − 2x4q − x4q+1 − x6q + x8q, if M = S3
1/q(41).

(5.8)

Let Q−1
M (0) denote the zero set of the polynomial QM .

Proposition 5.2.1 [Wak23, Proposition 3.1]. Let M = S3
p/1(41) or M = S3

1/q(41)

for some integers p, q 6= 0. If p 6= 0, then there is a bijection ΦM : Rirr
G (M) →

Q−1
M (0) ∩D. Here, for [ϕ] ∈ Rirr

G (M), we define

ΦM ([ϕ]) := (The eigenvalue of ϕ(m) that lies in D \ {±
√
−1}),

when the eigenvalues of ϕ(m) are not ±
√
−1. If ε

√
−1 ∈ Q−1

M (0) for some ε ∈
{±1}, Φ−1

M (ε
√
−1) is a representation ϕ defined by

ϕ(m) =

(
ε
√
−1 0
0

√
−1

)
, ϕ(x1) =

(
1
4(−1 + ε

√
5) 1

1
8(−5− ε

√
5) 1

4(−1 + ε
√
5)

)
.

If p = 0 and M = S3
p/1(41), there is a bijection ΦM : Rirr

G (M) → {±
√
−1,±(1 −

√
5)/2}.
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Proof. Let M = S3
p/1(41) with p 6= 0. For an irreducible representation ϕ :

π1(M) → SL2(C), take x, y, z, w ∈ C so that ϕ(x1) =

(
x y
z w

)
and xw−yz = 1.

We first claim that ϕ(m) is diagonalizable. In fact, if not so, we may suppose

ϕ(m) =

(
η b
0 η

)
for some b ∈ C× and η ∈ {±1}. Since ϕ(r1) = E, we have

ϕ(x2) = ϕ(x1)ϕ(m)−1ϕ(x1)ϕ(m) =

(
1− ηbwz −b

(
bwz + ηw2 − η

)
ηbz2 b2z2 + ηbwz + 1

)
. (5.9)

It follows from (5.9) that

ϕ(r3) = ϕ(x1)ϕ(x2)ϕ(x1)
−1ϕ(x2)

−1ϕ(m)p

= ηp

 b
4
z
4
+ηb

3
wz

3

− b
2
z
2
(
x
2
+ yz − 2

)
+ ηbz(w − x) + 1

∗

−ηb3z4 − b2z3(w + x) − η2bz2
−b

4
pz

4
+ ηb

3
z
3
(−pw − px − w)

− b
2
z
2
(
2p + w

2
+ yz

)
+ ηbz(x − w) + 1

 .

Then, the condition ϕ(r3) = E and b 6= 0 leads to z = 0. By substituting z = 0
into ϕ(r2), we obtain

E = ϕ(r2) = ϕ(m)ϕ(x2)ϕ(x1)ϕ(x2)ϕ(m)−1ϕ(x2)
−1 =

(
x y − ηb

(
w3 − 2w + x

)
0 w

)
.

Thus, x = w = 1 and y = 0; therefore, ϕ(x1) and ϕ(x2) are upper triangular
matrices, which leads to a contradiction to the irreducibility.

By the above claim, we may suppose ϕ(m) =

(
a 0
0 a−1

)
for some a ∈ D.

Since we consider ϕ up to conjugacy, we may suppose y = 1. Thus, z = xw − 1.
Since ϕ(r1) = ϕ(r2) = ϕ(r3) = E, with the help of a computer program of
Mathematica, we have

x =
1 + a2 − a4 + η(1− 2a2 − a4 − 2a6 + a8)1/2

2(1− a2)
,

z = −1− 3a2 + a4 + η(1− 2a2 − a4 − 2a6 + a8)1/2

2(a2 − 1)2
,

w =
−1 + a2 + a4 + η(1− 2a2 − a4 − 2a6 + a8)1/2

2a2(a2 − 1)
,

(5.10)

and QM (a) = 0 when a 6= ±
√
−1. Here, we fix a branch of the (1/2)-th power on

C× \ R, and define the signs η ∈ {±1} by setting

η =

{
+1, if − 1 + a2 + 2a4 + a6 − a8 + 2ap+4 = (a4 − 1)(1− 2a2 − a4 − 2a6 + a8)1/2,

−1, if − 1 + a2 + 2a4 + a6 − a8 + 2ap+4 = −(a4 − 1)(1− 2a2 − a4 − 2a6 + a8)1/2.
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When a = ±
√
−1, we have x = (−1 + ε

√
5)/4, z = (−5 − ε

√
5)/8, w = (−1 +

ε
√
5)/4 for some ε ∈ {±1} by the condition ϕ(r1) = ϕ(r2) = ϕ(r3) = E. In

summary, the map ΦM is well-defined and injective. Finally, we can easily show
the surjectivity of ΦM by following the reverse process of the above calculation.

In the remaining cases of M = S3
0/1(41) and M = S3

1/q(41), the proofs can be
shown in similar ways. Thus, we omit the details.

Theorem 5.2.2 [Wak23, Theorem 3.2]. Let p 6= 0 and q 6= 0. For a ∈ Q−1
M (0)∩D

as in Proposition 5.2.1, we denote the representative SL2(C)-representation of
Φ−1
M (a) by ϕa. Then, the adjoint Reidemeister torsion of M with respect to ϕa is

computed as follows:

τadφa
(M) = −4−p+(−2+p)a2+2pa4+(2+p)a6−(4+p)a8+2pa4+p

2(a2−1)3(1+a2)
,

if M = S3
p/1(41), a /∈ {±

√
−1}.

(5.11)

τadφa
(M) = 1

8(10 + ap
√
−5) if M = S3

p/1(41), a ∈ {±
√
−1}. (5.12)

τadφa
(M) = −a6q(−1+4q+(1−2q)a2q+2(1+a)a4q+(1+2q)a6q−(1+4q)a8q)

2(a4q−1)3(1−2a2q−a4q−2a6q+a8q)
,

if M = S3
1/q(41).

(5.13)

Proof. Under the identification of g ∼= C3, we can concretely describe each ∂i
as the matrices according to (5.7) and the description of ΦM in the proof of
Proposition 5.2.1. Applying the τ -chain method in [Tur01, §2.1] to the chain
complex C∗

φ(M ; g), with the help of a computer program of Mathematica, we can

directly obtain the resulting τadφa
(M).

Remark 5.2.3. (i) While this paper deals with the adjoint torsion via adjoint
action, the classical twisted Reidemeister torsion of M = S3

p/q(41) with re-

spect to the SL2(C)-representation was computed in [Kit15a].

(ii) When M = S3
p/1(41), the torsion τadφa

(M) in the quotient set C/{±1} was

computed by [OT19]. The advantage of Theorem 5.2.2 is that the sign of
the torsion is recovered; thus, we can compute the sum of τadφa

(M)n’s, as is
seen later.

(iii) We can easily check that τadφa−1
(M) = τadφa

(M) ∈ C× by using the relation

QM (a) = 0 when a 6= ±
√
−1, and that QM (±

√
−1) = 0 with M = S3

p/1(41)
if and only if p is divisible by 4.

(iv) If p = 0, that is M = S3
0/1(41), then we can similarly compute τadφa

(M)

as 5/4, 5/4, 5, and 5 with respect to a =
√
−1, −

√
−1, (1 −

√
5)/2, and

−(1−
√
5)/2, respectively.
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5.2.2 Surgeries on the 52-knot

We compute the adjoint torsions of M = S3
1/q in the case where K is 52-knot.

Since the outline of the discussion in this subsection is almost the same as that
in the case of the figure-eight knot, we now roughly describe the discussion.

As in (5.6), the fundamental group π1(S
3
1/q(52)) is known to be presented as

π1(M) ∼= 〈x1, x2,m,m′ |mx21x−1
2 m−1x−2

1 ,mx−1
2 m−1x−1

1 x2,m[x21, x
−1
2 ]q,m′[x21, x

−1
2 ]−1〉.

Recall the free groups F , P , and the homomorphism ψ in Section 3.2. Let W ∈
P ∗ F be

ρ1 · x21ρ2x−2
1 · (x21x−1

2 x−1
1 )ρ−1

1 (x21x
−1
2 x−1

1 )−1·

(x21x
−1
2 x−2

1 x2)ρ
−1
2 (x21x

−1
2 x−2

1 x2)
−1 ··ρ−1

4 ·x4ρ3x−1
4 ·ρ4 ·ρ−1

3 .

Then, each ∂∗ can be written as in (5.7) according to [Nos22a, §3.1]. Let QM (x)
be the polynomial of the form

1−x−2x2q−x4q−1−2x4q+x6q−1+x8q−2x10q−1−x10q−2x12q−1−x14q−2+x14q−1.

The same statement in Proposition 5.2.1 holds for M = S3
1/q(52) and q 6= 0,

namely, Rirr
G (M) is bijective to Q−1

M (0) ∩ D. For a ∈ Q−1
M (0) ∩ D, let us denote

the representative SL2(C)-representation of Φ−1
M (a) by ϕa as in Proposition 5.2.1.

Then, the adjoint torsion τadφa
(M) can be computed as

τadφa
(M) = −P (a)/(2a2(a2 − 1)4)

with the help of a computer program of Mathematica. Here, P (a) ∈ Z[a] is a
polynomial defined by setting

1− 2q + a(28q + 2) + a2(3− 42q) + a3(36q − 8) + a4(2− 20q)

+ a2q
(
(4q − 1)a−1 + 18q − 3 + (3− 32q)a+ (4− 54q)a2 − 2a3 + (8q − 1)a4

)
+ a4q

(
(1− 4q)a−1 − 10q + (−8q − 3)a+ (38q − 4)a2 + (5− 34q)a3 + (1− 10q)a4

)
+ a6q

(
(10q − 1)a−1 + (18q + 2)a+ (7− 56q)a+ (74q − 8)a2 + 10qa3

)
+ a8q

(
(14q − 3)a−1 + 18q + (9− 76q)a− 3a2 + (16q − 3)a3

)
+ a10q

(
(24q − 2)a−1 + (1− 10q)a+ (2− 52q)a+ (−18q − 1)a2

)
+ a12q

(
(4q − 1)a−2 + 8qa−1 + 5− 62q + (56q − 6)a+ (2− 6q)a2

)
.
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Chapter 6

The conjecture on the adjoint
torsions

In this chapter, we discuss Conjecture 1.0.1 when G = SL2(C). Section 6.1 focus
on the case where n = −1, andM = S3

p/1(41) orM = S3
1/q(41). The main purpose

of Section 6.1 is to prove Theorem 1.0.2. Section 6.2 deals with the case of n > 0.

6.1 The conjecture with n = −1

As preliminaries of the proof of Theorem 1.0.2, we prepare two lemmas in Section
6.1.1, and give the proof of the theorem in Section 6.1.2.

6.1.1 Two key lemmas

Let QM (x) ∈ Z[x] be the polynomial (5.8). We prepare two lemmas:

Lemma 6.1.1 [Wak23, Lemma 3.4]. Define a polynomial κp(x) ∈ Z[x] by setting

κp(x) =


(1 + x)2, if p = 2m+ 1,
(1 + x2)2, if p = 4m,
1, if p = 4m+ 2,

for some m ∈ Z. Then, QM (x) with M = S3
p/1(41) is divisible by κp(x), and

the quotient QM (x)/κp(x) has no repeated roots. Furthermore, QM (x) with M =
S3
1/q(41) is divisible by (1 + x)2, and the quotient QM (x)/(1 + x)2 also has no

repeated roots.

Proof. The required statement with |p| ≤ 4 and |q| ≤ 4 can be directly shown,
we may assume |p| ≥ 5 and |q| ≥ 5. We first focus on the case M = S3

p/1(41). By

a computation of dn

dxn (QM (x)) |x=b with b = ±1,±
√
−1, we can easily verify the
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multiplicity of QM (x); thus, QM (x) is divisible by κp(x), and QM (x)/κp(x) is not
divisible by x± 1 and x2 + 1.

Next, we suppose a repeated root a ∈ C of QM (x) with a 6= ±1,±
√
−1. Then,

QM (a) = 0 and Q′
M (a) = 0, which are equivalent to

1− ap(a−4 + a−2 + 2 + a2 − a4) + (ap)2 = 0, (6.1)

(p− 4)a−4 + (p− 2)a−2 + 2p+ (p+ 2)a2 − (p+ 4)a4 = −2pap. (6.2)

Applying (6.2) to (6.1) to kill the term ap, we equivalently have

(1+a)2(1+a2)2
(
p2−16+(16−2p2)a2−(36+p2)a4+(16−2p2)a6+(p2−16)a8

)
= 0.

Since a2 6= ±1, the last term as a quartic equation can be solved as

a2 =
p2 − 8 + 2ηp

√
p2 − 15 + ε

√
(40− 3p2 + 2ηp

√
p2 − 15)(p2 − 24 + 2ηp

√
p2 − 15)

2p2 − 32
,

for some ε, η ∈ {±1}. In particular, for any k ∈ N, we can obtain a formula of the
k-th power ak as a linear combination of 1, a, a2, . . . , a7. However, when k = p+4,
the coefficients in the combination contradict (6.2). In summary, QM (x)/κp(x)
has no repeated roots as required.

On the other hand, if M = S3
1/q(41), we can easily show that QM (x) is di-

visible not by (1 + x)3 but by (1 + x)2. Similarly, we suppose a repeated root
a of QM (x) with a 6= ±1. Then, QM (a) = Q′

M (a) = 0. We can easily see
QM (1/a) = Q′

M (1/a) = 0 by reciprocity of QM . Thus, we obtain (x−4qQM )′(a) =
(x−4qQM )′(1/a) = 0, which are equivalent to

2(1 + a) = (2q + 1)a2q + (−2q + 1)a−2q − (4q + 1)a4q − (−4q + 1)a−4q, (6.3)

2(1+ a−1) = (2q+1)a−2q +(−2q+1)a2q − (4q+1)a−4q − (−4q+1)a4q. (6.4)

Since a−4qQM (a) = 0 is equivalent to

2(1 + a)2(1 + a−1) = 4(a4q − a2q − a−2q + a−4q), (6.5)

the substitution of (6.3) and (6.4) into (6.5) gives the equation

(1−b)2(1+b)2(−1+2b+b2+2b3−b4+16q2−16bq2+36b2q2−16b3q2+16b4q2) = 0,

(6.6)

where we replace a2q by b. If ω2q = ±1 and ω ∈ C, we can easily check QM (ω) 6= 0
by definition. Thus, aq is a solution of the quartic equation in (6.6) and does not
lie in Q, for any q ∈ Z. Let F/Q be the field extension by the quartic equation.
By definition, F does not contain a and 2+ a+ a−1, which contradicts (6.5) since
|q| > 4. In summary, QM (x)/(1 + x)2 has no repeated roots as required.
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Next, we should mention a slight modification of Jacobi’s residue theorem:

Lemma 6.1.2 [Wak23, Lemma 3.5]. Fix η ∈ {0, 1, 2} and ε ∈ {1, 2}. Suppose a
polynomial k(x) ∈ Q[x] such that k(x) has no repeated roots and k(0) 6= 0. Take
another polynomial g(x) ∈ Q[x] such that deg(g) ≤ deg(k) − εη − 2. Then, the
following sum is zero:

∑
a∈k−1(0)

(1 + aε)ηg(a)
d
dx((1 + xε)ηk(x))|x=a

= 0. (6.7)

Proof. If η = 0, the statement is Jacobi’s residue theorem exactly (see, e.g., [TY,
Section 6]). Thus, we may suppose η = 2. Note that the derivative of (1+xε)ηk(x)
is ηε(1+xε)η−1k(x)+(1+xε)ηk′(x). Hence, the left hand side of (6.7) is computed
as
∑

a∈k−1(0) g(a)/k
′(a), which is equal to zero by the residue theorem.

6.1.2 Proof of Theorem 1.0.2

We suppose n = −1 and give the proof of Theorem 1.0.2. Recall the fact that
M = S3

p/1(41) and M = S3
1/q(41) are hyperbolic if and only if |p| ≥ 5 and |q| ≥ 2,

respectively.

First, we focus on the case where p ≥ 5 and M = S3
p/1(41), and p is not

divisible by 4. From the definition of QM (x) and Theorem 5.2.2, we can easily
verify

1

τadφa
(M)

=
2(1− a2)3(1 + a2)ap−5

Q′
M (a)

for any a ∈
(
Q−1

M (0) ∩D
)
\{±

√
−1}. (6.8)

If p − 2 is divisible by 4, we replace g(x) and k(x) by 2(1 − x2)3(1 + x2)xp−5

and QM (x), respectively. Then, Lemma 6.1.2 with η = 0 deduces to the required
conclusion as

0 =
∑

a∈Q−1
M (0)

g(a)

Q′
M (a)

=
∑

a∈Q−1
M (0)

1

τadφa
(M)

= 2
∑

a∈Q−1
M (0)∩D

1

τadφa
(M)

=
∑

φ∈Rirr
G

2

τadφ (M)
.

(6.9)

Here, the second, third, and fourth equalities immediately follow from (6.8), Re-
mark 5.2.3 (iii), and Proposition 5.2.1, respectively. Meanwhile, when p− 1 is di-
visible by 2, we replace g(x) and k(x) by 2(x−1)(x4−1)xp−5 and QM (x)/(1+x)2,
respectively. Then, we can readily show similar equalities to (6.9).

We further discuss the case of p/4 ∈ Z. By Lemma 6.1.1, QM (x)/(1+ x2) lies
in Z[x], and has no double roots. We let g(x) and k(x) be 2(1 − x2)3xp−5 and
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6.1. THE CONJECTURE WITH N = −1

QM (x)/(1 + x2), respectively. By Lemma 6.1.2 with η = 1 and ε = 2, we have

0 =
∑

a∈k−1(0)

g(a)

k′(a)
=

g(
√
−1)

k′(
√
−1)

+
g(−

√
−1)

k′(−
√
−1)

+
∑

a∈Q−1
M (0)∩D\{±

√
−1}

2

τadφa
(M)

=
32

√
−1

20− p2
+

∑
a∈Q−1

M (0)∩D\{±
√
−1}

2

τadφa
(M)

=
2

τadφ√
−1
(M)

+
2

τadφ−
√
−1
(M)

+
∑

a∈Q−1
M (0)∩D\{±

√
−1}

2

τadφa
(M)

=
∑

a∈Q−1
M (0)∩D

2

τadφa
(M)

=
∑

φ∈Rirr
G

2

τadφ (M)
,

which is the required vanishing identity. Here, the second, fourth, and sixth
equalities follow from (6.8), Theorem 5.2.2, and Proposition 5.2.1, respectively.

Next, we focus on the case of q ≥ 2 and M = S3
1/q(41). Similarly to (6.8), we

can show

1

τadφa
(M)

=
2(a4q − 1)3(a4q − (a2 + a+ 1)a2q−1 + 1)

d
dx(x

4q+1QM (x))|x=a

for any a ∈ Q−1
M (0)∩D.

(6.10)

By a Euclidean Algorithm, we can choose a polynomial h(x) ∈ Q[x] such that

2(x4q − 1)3(x4q − (x2 + x+ 1)x2q−1 + 1) ≡ x4q+1h(x) (modulo QM (x)),

and degh(x) < 8q − 2. Recall from Lemma 6.1.1 that QM (x) is divisible by
(1 + x)2; thus so is h(x). In summary, we can define polynomials g(x) and k(x)
to be h(x)/(1 + x)2 and QM (x)/(1 + x)2, respectively. Then, Lemma 6.1.2 with
η = 2 and ε = 1 readily leads to the same equalities as (6.9).

The proof of the cases of p ≤ −5 and q ≤ −2 can be shown in the same
manner; so we here do not carry out the detailed proof.

Finally, in the remaining cases of |p| ≤ 4 for M = S3
p/1(41), we can obtain the

following by a direct calculation:∑
φ∈Rirr

G (M)

1

τadφ (M)
=

{
2, if p ∈ {0,±1,±2,±3},
8, if p ∈ {±4}.

For example, we now discuss the detail in the case p = 4 for M = S3
p/1(41).

The roots of QM (x) = x2 + 2x4 + x6 = 0 are x = ±
√
−1. By Theorem 5.2.2,

we have τadφ√
−1
(M) = (5 − 2

√
5)/4 and τφad

−
√
−1
(M) = (5 + 2

√
5)/4, leading to∑

φ∈Rirr
G (M) τ

ad
φ (M)−1 = 8. Similarly, the computations in the other cases run

well.
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Remark 6.1.3. When we replace the figure-eight knot with 52-knot, and letting
M = S3

1/q(52), we can show that Theorem 1.0.2 is true for any integers q 6= 0. The
proof can be shown in the same fashion as Section 6.1.2. However, the concrete
substitutions of g(x) and k(x) into Lemma 6.1.2 are slightly complicated. For this
reason, we do not go into detailed proof in this paper.

Incidentally, we give comments on the caseM = S3
p/1(52) with p ∈ Z. With the

help of a computer program, we can similarly obtain the polynomial QM (x) and
determine the associated torsions τadφ (M). However, the resulting computation of

τadφ (M) is more intricate; we do not describe the details. More generally, to show
Conjecture 1.0.1 with M = S3

p/q(K) for other (twist) knots K, we might need
other ideas. This is a subject for future analysis.

6.2 The conjecture with n > 0

We end this paper by discussing Conjecture 1.0.1 with n > 0. Hereafter, we
assume that Rirr

G (M) is of finite order for G = SL2(C) and a 3-manifold M as
above. We abbreviate τadφ (M) as τφ.

First, it is almost obvious that the sum (1.1) is a real number: precisely,

Proposition 6.2.1 [Wak23, Proposition 5.1]. Let n ∈ Z. The imaginary part of
the sum

∑
φ∈Rirr

G (M) τφ
n is zero.

Proof. For a homomorphism ϕ : π1(M) → G, we denote by ϕ̄ the conjugate
representation. Then, τφ̄ = τφ by definition. Since we can select representatives
ϕ1, . . . , ϕm, ϕ1, . . . , ϕm, η1, . . . , ηn of Rirr

G (M) such that [ηi] = [ηi] ∈ Rirr
G (M), the

imaginary part is zero as required.

Furthermore, we will discuss the rationality of the sum (1.1), with G = SL2(C).
For a subfield F ⊂ C, let Rirr

SL2(F )(M) be the set of the conjugacy classes of all

irreducible representations π1(M) → SL2(F ).

Proposition 6.2.2 [Wak23, Proposition 5.2]. Let F/Q be a Galois extension
with embedding F ↪→ C. Suppose that the inclusion Rirr

SL2(F )(M) ⊂ Rirr
SL2(C)(M) is

bijective as a finite set, and is closed under the Galois action of Gal(F/Q). Then,
for any n ∈ Z, the sum

∑
φ∈Rirr

G (M) τ
n
φ is a rational number.

Proof. By definition, τφ ∈ F×, and the map τ• : R
irr
SL2(F )(M) → F× is Gal(F/Q)-

equivariant. Thus, the sum lies in the invariant part FGal(F/Q). Hence, by
FGal(F/Q) = Q, the sum (1.1) lies in Q as desired.

Corollary 6.2.3 [Wak23, Corollary 5.3]. Suppose that p is even, and is relatively
prime to q. Let K be a twist knot, and M be S3

p/q(K). Then, for any n ∈ Z, the
sum

∑
φ∈Rirr

G (M) τ
n
φ is a rational number.
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Proof. As is shown in [Nos22b, Section 2], there is a Galois extension F/Q satis-
fying the condition in Proposition 6.2.2.

Meanwhile, the integrality of the sum (1.1) withM = S3
p/q(K) remains a future

problem. When K is either 41- or 52-knot, we know the resulting computation of
τadφ (M) by Theorem 5.2.2. Accordingly, it is not so hard to check numerically the

conjecture from the computation of τadφ (M) for some small p, q.
However, we give the proof of the conjecture multiplied by 22n+1 with M =

S3
2m/1(41). Precisely,

Proposition 6.2.4 [Wak23, Proposition 5.4]. As in Theorem 1.0.2, let M =
S3
2m/1(41). If n > 1, then the 8-fold sum 2

∑
φ∈Rirr

G (M)(8τφ)
n is an integer.

Proof. Since the proof with |2m| ≤ 4 is a direct computation, we may suppose
|2m| > 4. We can easily verify integral coefficient polynomials h(x), k(x) ∈ Z[x]
such that

QM (x)

(1− x2)3
= h(x) +

m2 − 2m+ 3

1− x2
+

4m

(1− x2)2
+

4

(1− x2)3
,

QM (x)

1 + x2
= k(x) +

2(1 + (−1)m−1)

1 + x2
.

By Girard–Newton formula, the sums
∑

α∈Q−1
M (0)∩D h(α)

n and
∑

α∈Q−1
M (0) k(α)

n

are integers; thus,
∑

α∈Q−1
M (0)∩D 8n(1 + α2)−n and

∑
α∈Q−1

M (0)∩D 8n(1 + α2)−3n+ε

are integers, where ε ∈ {1, 2, 3}. Recall from Theorem 5.2.2 the value of the
torsion τφa for a ∈ Q−1

M (0) ∩D; by the Euclidean Algorithm, we can show

2τφa = `(a)+
6 + 2m− 2m2 −m3

1− a2
+
−6 + 6m+ 2m2

(1− a2)2
+

−4m

(1− a2)3
+
m(−1 + (−1)m)

2(1 + a2)

(6.11)

for some `(a) ∈ Z[a]. Thus, the sum 2
∑

φ∈Rirr
G (M)(8τφ)

n is equal to
∑

a∈Q−1
M (0)(8τφa)

n

by Proposition 5.2.1, and is a sum of the above sums
∑

α∈Q−1
M (0)∩D 8n(1±α2)−3n+ε.

Thus, it is an integer as required.

Similarly, we can show the same claim in the cases of M = S3
(2m+1)/1(41) and

M = S3
1/q(41); however, it seems not easy to reduce the 2-torsion in the sum and

to replace (8τφ)
n by (2τφ)

n.
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Appendix A

Construction of identities from
a 3-manifold

We explain the identity referred to in Theorem 3.2.2 in detail. There is nothing
new in this section since the discussion essentially follows from [Sie80, Sie86,
Tro62].

As in Section 3.1, let us fix the group presentation 〈x1, . . . , xg | r1, . . . , rg〉 of
G = π1(M), where M is a closed 3-manifold. Then, we can naturally consider
the 2-dimensional CW complex XG such that π1(XG) ∼= G with a single 0-cell, g
1-cells, and g 2-cells.

Next, we now construct qs : S2 → XG from the identity s as follows. Let us
assume that s =

∏n
m=1wmρ

ϵm
jm
w−1
m ∈ P ∗ F and that ρjm , wm can be written in

ρjm = x
ϵm,1

m,1 · · ·xϵm,ℓm
m,ℓm

, wm = x
ηm,1

m,1 · · ·xηm,km
m,km

, (εi,j , ηi,j ∈ {±1}).

For each wmρ
ϵm
jm
w−1
m , take the labeled `m-gon Djm , and prepare the segment Im =

[0, km] of length km. Divide Im = [0, km] into km intervals of length 1, and label
the intervals x

ϵm,1

m,1 , . . ., x
ϵm,km
m,km

in order (and orient each of the intervals according
to εm,i). In addition, attach {km} ∈ Im to the first vertex of Djm , and take

the one-point union of I1, . . . , In joining at {0}. Suppose that w′
m : Im → X

(1)
G

is a cellular map which realizes the word wm where X
(1)
G is the 1-skeleton of

XG. By construction of XG, note that the relator rjm means the attaching map
ym : Djm → XG. These maps define the cellular map

ps : ∪n
m=1

(
Im ∪Djm

)
−→ XG (A.1)

(see Fig. A.1). Since ∪n
m=1

(
Im ∪Djm

)
is homotopy equivalent to a disk D2 (by

taking a tubular neighborhood of Ij), it can be regarded as the continuous pair

map ps : (D
2, S1) → (XG, X

(1)
G ). Here, let us consider the long exact sequence of
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relative homotopy groups:

0 = π2(X
(1)
G ) −→ π2(XG)

proj−→ π2(XG, X
(1)
G )

∂−→ π1(X
(1)
G ) −→→ π1(XG).

By the definition of the identity, ∂([ps]) is equal to zero. Therefore, by the ex-
actness, ps is uniquely lifted to qs : S2 → XG up to homotopy, and this is the
required qs.

Let us consider the opposite discussion in a sense. For each m, prepare the
labeled `m-gon disk Djm and the segment Im = [0, km] of length km which is
divided into km intervals of length 1. To recover the cellular map (A.1), let us
introduce some concepts.

(1) A self-bijection

I : ∪n
m=1{(m, 1), . . . , (m, `m)} → ∪n

m=1{(m, 1), . . . , (m, `m)}

is called a syllable if xI(i,j) = xi,j ∈ F and εi,j = −εI(i,j) ∈ {±1}.

(2) For a syllable I, consider the following equivalence on the disjoint union
tn
i=1Dri : that is, we identify the intervals with labeling xi,j with the intervals

with labeling xI(i,j).

(3) A cellular map (A.1) is called taut if there is a syllable I such that the
quotient space tn

i=1Dri/ ∼ of tn
i=1Dri under the above equivalence ∼ is home-

omorphic to S2, and if there are continuous maps

λm : [0, km] → tn
i=1∂Dri/ ∼ , κm : [0, `m] → ∂Drm/ ∼

satisfying the following condition (*).

... ..........

Dj1 Dj2

{0}

I1 I2

In

Djn

ps
−−−−→

XG

x1

x2

xg

r1

Figure A.1: The map ps
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APPENDIX A. CONSTRUCTION OF IDENTITIES FROM A 3-MANIFOLD

(*) For each m, the image λm([i−1, i]) of the interval [ki−1, ki] coincides with
an interval with labeling xm,i compatible with the orientations, and κm([j −
1, j]) coincides with the j-th side of Drm compatible with the orientations.
Furthermore, λm(km) = λm(0) = κm(`m) is satisfied.

Conversely, for a given taut cellular map (A.1), it is easy to construct the
identity s.

Now, we explain the construction of the identity WM . By Morse theory, XG is
homotopy equivalent to the CW complex that is given by removing a single 3-cell
e3 from M . The cellular structure of ∂(M \ e3) is given by 1- and 2-handles of
XG, and it can be confirmed that the attaching map τ : S2 →M \e3 is realized as
a taut cellular map. Consequently, the identity WM associated with τ is defined.

Proof of Theorem 3.2.2. For an identity s, we can construct the map qs as above.
Regarding qs as an attaching map of D3, let Y be XG ∪qs D

3. According to

[Tro62, Section 2.4], it is known that the boundary map ∂3 : C3(Ỹ ) → C2(Ỹ ) of

the cellular chain complex may be written as ∂3(a) =
∑

j aµ
(
[ψ ∂s

∂ρj
]
)
bj . Thus, if

we substitute WM for s, we obtain the required theorem.

In addition, by the construction ofWM , it is not difficult to prove the following
proposition, which plays a key role in the proofs in Section 3.3.

Proposition A.0.1. (1) If we reverse the orientation of βi, then WM is trans-
posed to another identity W ′

M which is obtained by replacing the factors
(ri, w)

ϵ of WM with (r−1
i , w)−ϵ.

(2) If we apply a handleslide which replaces the relator ri with rjri, then WM is
transposed to another identity W ′

M which is obtained by replacing the factors
(ri, w)

ϵ of WM with (rj , w)
−ϵ(rjri, w)

ϵ.

(3) If we apply a stabilization which adds the generator xg+1 and the relator rg+1,
then WM is transposed to WM (rg+1, xg+1)(rg+1, 1)

−1.
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