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Abstract

Let p be a prime number and q be some power of p. Let K be the localization of

some function field at a prime v. We define successive minimal bases (SMBs) for the free

Fq[t]/un-module ϕ[un] of un-division points of a Drinfeld Fq[t]-module ϕ over K, where u is

a monic irreducible element of Fq[t] and n is a positive integer. These SMBs share similar

properties to those of SMBs of the lattices associated to Drinfeld modules via the (Tate)

uniformizations. Especially, the valuations of the elements of an SMB are independent of

the choice of the SMBs, i.e., the valuations are invariants of ϕ[un]. If v is infinite, then

an exponential map eϕ and a lattice Λ are associated to the Drinfeld module ϕ via the

uniformization. For an SMB {ωi}i=1,...,r of Λ, we show that {eϕ(ωi/un)}i=1,...,r is an SMB

of ϕ[un]. Conversely, for an SMB {λi}i=1,...,r of ϕ[u
n] and a large enough n, we show that

{un logϕ(λi)}i=1,...,r is an SMB of Λ, where logϕ(λi) is the only preimage of λi under eϕ
with minimal valuation. When v is finite and ϕ has stable and bad reduction, we show

similar results.

On the practical side, we restrict ourselves to the case where ϕ is a rank r Drinfeld

Fq[t]-module over K such that ϕt(X) = tX+asX
qs+arX

qr ∈ K[X], where s is a positive

integer < r. Assume that u is not divisible by v. We first calculate the valuations of

elements of SMBs of ϕ[un] for all positive integer n. When s = 1 and deg(u) = 1, under

certain assumptions, we obtain the Herbrand ψ-funtion ofK(ϕ[u])/K and the action of the

wild ramification subgroup of the Galois group G(K(ϕ[u])/K) on an SMB of ϕ[u]. Next,

we assume r = 2 and allow u to have an arbitrary degree. Under certain assumptions, we

obtain the Herbrand ψ-function of K(ϕ[un])/K and the action of the wild ramification

subgroup of G(K(ϕ[un])/K) on an SMB of ϕ[un].

For a rank r Drinfeld Fq[t]-module ϕ over a function field F such that ϕt(X) =

tX+asX
qs+arX

qr ∈ F [X], we show a formula involving the J-height and the differential

height of ϕ. Finally, we define and calculate the conductor of ϕ at each prime of F and

show a function field analogue of Szpiro’s conjecture for rank 2 Drinfeld Fq[t]-modules

over F under a certain limited situation.
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Introduction

1. Notation

Let us introduce the notation used throughout this paper. Let A := Fq[t] be the

polynomial ring in t over the field Fq whose order is a power of a rational prime p. Let F

be a global function field which is a finite extension of the fraction field of A. An infinite

prime of F is a prime of F lying above the prime (1/t) of Fq(t). A finite prime of F is

a prime that is not infinite. Let K be the completion of F at a prime v. We also let

v denote the valuation associated to K normalized so that v(K×) = Z. Fix Ksep (resp.

Kalg) a separable (resp. algebraic) closure of K. For a Galois extension L of K within

Ksep/K, let G(L/K) denote the Galois group. Let Cv denote the completion of Kalg. If

v is an infinite prime, we also let C∞ denote Cv.

Let ϕ be a rank r Drinfeld A-module over K. For an element a in A, let ϕ[a] be the

A/a-module of a-division points in Ksep. It is a A/a-free module of rank r. Fix a finite

prime u of A, i.e., u is a monic irreducible polynomial in A and a positive integer n. The

main research objects in this paper are successive minimal bases of ϕ[un] defined below.

For a ∈ A and x ∈ ϕ[un], write a ·ϕ x := ϕa(x) for the action of a on x. Let Kn denote the

extension of K generated by elements in ϕ[un].

Let | − | denote one of the following functions.

(F1) If v is an infinite prime, we have the absolute value | − | on K which extends the

absolute value | − | = qdeg(−) on Fq((1t )). This absolute value may be extended to

C∞.

(F2) Assume that v is a finite prime of F and ϕ has stable reduction over K. If the

reduction of ϕ has rank r′, following [Gar02, Section 1], define a function | − | on
K by

for x ∈ K, |x| =


(−v(x))1/r′ v(x) < 0,

−v(x)1/r′ v(x) ≥ 0,

|0| = −∞ x = 0.

We may extend this function to Cv. This function is not an absolute value or a norm

on K. However, the ultrametric inequality holds. We still call |x| the norm of x.

The main definition is

4



2. RELATIONS BETWEEN SMBS OF ϕ[un] AND THOSE OF LATTICES 5

Definition 1.1. Let | − | denote the function in (F1) or (F2). We call a family of

elements {λi}i=1,...,r an SMB (successive minimal basis) of ϕ[un] if for each i, the elements

λ1, . . . , λi in ϕ[u
n] satisfy

(1) λ1, . . . , λi are A/u
n-linearly independent;

(2) |λi| is minimal among the values |λ| of elements λ in ϕ[un] such that λ1, . . . , λi−1, λ

are A/un-linearly independent.

In the definition of SMBs of ϕ[un], we have imitated the definition of SMBs of the

lattices Λ (defined below) (See [Tag92, Section 4] or [Gek19A, Section 3]). Note that

(1) in the definition implies that {λ1, . . . , λr} is an A/un-basis (or a generating set) of

ϕ[un].

It turns out that an SMB of ϕ[un] has the following properties.

Proposition 1.2. Let {λi}i=1,...,r be an SMB of ϕ[un].

(1) (Proposition 1.1.8) The sequence |λ1| ≤ |λ2| ≤ · · · ≤ |λr| associated to an SMB of

ϕ[un] is an invariant of ϕ[un], i.e., for any SMB {λ′i}i=1,...,r of ϕ[u
n], we have |λ′i| = |λi|

for all i.

(2) (Proposition 1.2.13 and 1.3.16) Assume that u is not divisible by the prime v, i.e.,

v(u) ≤ 0. Then we have ∣∣∣∣∑
i

ai ·ϕ λi
∣∣∣∣ = max

i
{|ai ·ϕ λi|}

for any ai ∈ A mod un.

(3) (Proposition 1.1.11) There exists an SMB {λ′i}i=1,...,r of ϕ[u
n+1] such that u ·ϕ λ′i = λi

for all i. The elements u ·ϕ λi for i = 1, . . . , r form an SMB of ϕ[un−1].

Here the properties (1) and (2) are similar to those of SMBs of lattices (See Propo-

sition 1.1.6 and 1.1.5). We remark that (2) essentially follows from similar properties

of SMBs of lattices (See Proposition 1.1.5 or [Tag92, Lemma 4.2]). We hope to know

whether the condition “v(u) ≤ 0” in (2) can be removed.

2. Relations between SMBs of ϕ[un] and those of lattices

If v is an infinite prime, let Λ denote the rank r A-lattice in C∞ and eϕ the exponential

function from C∞ to C∞ associated to ϕ via the uniformization. Here we consider Λ and

the domain of eϕ as A-modules via the natural embedding A→ C∞.

If v is a finite prime, we assume throughout this subsection that ϕ has stable reduction

and the reduction of ϕ has rank r′ ≤ r. Let ψ denote the rank r′ Drinfeld module over K

having good reduction, Λ the rank r− r′ A-lattice in Cv, and eϕ the exponential function

from Cv to Cv associated to ϕ via the Tate uniformization (See [Dri74, Section 7] or
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Section 1.1). Here we consider Λ and the domain of eϕ as A-modules via ψ, i.e., we have

the action of a on ω to be a ·ψ ω := ψa(ω) for any a ∈ A and any ω in Λ or Cv.

If v is a finite prime, let u−nΛ denote the A-module consisting of all roots of ψun(X)−ω
for all ω ∈ Λ. For any infinite or finite prime w, by the uniformization or the Tate

uniformization of ϕ, we have an isomorphism of A/un-modules

Eϕ : u−nΛ/Λ→ ϕ[un]

induced by eϕ. Hence one may expect that there are relations between SMBs of ϕ[un] and

those of Λ.

Let | − | denote the absolute value in (F1) (resp. the function in (F2)) if w is an

infinite prime (resp. a finite prime). Put |un|∞ = qdeg(u
n).

Theorem 2.1. (1) Let w be an infinite prime.

• (Theorem 1.2.3) Let {ωi}i=1,...,r be an SMB of Λ. Then the images eϕ(ωi/u
n) for

i = 1, . . . , r form an SMB of ϕ[un].

• (Corollary 1.2.12 (1)) Let l be a positive integer and {ηi}i=1,...,r an SMB of ϕ[ul].

Let {λi}i=1,...,r be an SMB of ϕ[un]. Assume that n satisfies |un|∞ > |ηr|/|η1|.
Under this assumption, for each i = 1, . . . , r, the element λi has only one preimage

under eϕ, denoted logϕ(λi), with absolute value < |ω| for any ω ∈ Λ \ {0}. Then
the family of elements {un logϕ(λi)}i=1,...,r ⊂ C∞ is an SMB of Λ.

(2) Let w be a finite prime.

• (Theorem 1.3.7) Let {ωi}i=1,...,r′ (resp. {ω0
i }i=r′+1,...,r) be an SMB of ψ[un] (resp.

Λ). Let ωi be a root of ψun(X)− ω0
i for i = r′ + 1, . . . , r. Then the images eϕ(ωi)

for i = 1, . . . , r form an SMB of ϕ[un].

• (Corollary 1.3.9 (1) and (2)) Let l be a positive integer and {ηi}i=1,...,r an SMB

of ϕ[ul]. Let {λi}i=1,...,r be an SMB of ϕ[un]. Assume that n satisfies |un|∞ >

|ηr|/|ηr′+1|. Under this assumption, for each i = 1, . . . , r, the element λi has

only one preimage under eϕ, denoted logϕ(λi), with absolute value < |ω| for any

ω ∈ Λ \ {0}. Then the family of elements {logϕ(λi)}i=1,...,r′ ⊂ Cv (resp. {un ·ψ
logϕ(λi)}i=r′+1,...,r ⊂ Cv) is an SMB of ψ[un] (resp. of Λ).

LetK(Λ) (resp. K(u−nΛ) andKn) denote the extension ofK generated by all elements

in Λ (resp. u−nΛ and ϕ[un]). By Theorem 2.1, we are able to show

Proposition 2.2. Let l be a positive integer and {ηi}i=1,...,r an SMB of ϕ[ul]. Let

{λi}i=1,...,r be an SMB of ϕ[un].

(1) (Corollary 1.2.12 (2)) If w is an infinite prime and n is large enough so that |un|∞ >

|ηr|/|η1|, then we have K(Λ) = Kn.

(2) (Corollary 1.3.9 (3)) If w is a finite prime and n is large enough so that |un|∞ >

|ηr|/|ηr′+1|, then we have K(u−nΛ) = Kn.
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The claim (1) is an effective version of [Mau19, Proposition 2.1].

3. Application to certain Drinfeld modules

Let K be a local field which is the completion of some global function field at a prime

v. For a positive integer r ≥ 2, let ϕ be a Drinfeld A-module over K (ϕ not necessarily

has stable reduction over K) such that

ϕt(X) = tX + asX
qs + arX

qr ∈ K[X],

where s and r are two positive integers satisfying s < r. Put

j =
a
(qr−1)/(q−1)
s

a
(qs−1)/(q−1)
r

.

Let u be a finite prime of A. As a preparation for the later results, we are to calculate

the valuations of the elements of the SMBs of ϕ[un] for each n in Chapter 2. With this

preparation, in Chapter 3, we are to study the ramification of K(ϕ[un])/K. The results

in Chapter 1 allow us to obtain Theorem 3.2 below.

3.1. The valuations of elements of SMBs of ϕ[un]. In Chapter 2, we first calcu-

late the valuations of the elements of ϕ[un] for the case where the prime u of A has degree

1 (See Section 1 of Chapter 2). When the prime u has arbitrary degree, the valuations of

elements in the SMBs are completely worked out for the cases where the prime v is infinite

prime or the prime v is finite satisfying v ∤ u (See Proposition 2.2.1 and Proposition 2.2.6).

For the case where u | v, the valuations are calculated under certain assumptions (See

Proposition 2.2.11). Assume ϕ has stable reduction over K when the prime v is finite.

For the lattice Λ (or the pair (ψ, Λ)) associated to ϕ via (Tate) uniformization, we also

calculate the valuations of SMBs of Λ and ψ[un].

3.2. Explicit actions of the wild ramification subgroup. In Chapter 3, we study

the ramification of K(ϕ[un])/K. We only know the result for certain limited cases. For

a positive integer n, let G(n)1 denote the wild ramification subgroup, i.e., the first lower

ramification subgroup, of Gal(K(ϕ[un])/K).

Assume s = 1 and deg(u) = 1. For the extensionK(ϕ[u])/K, we work out its Herbrand

ψ-function in Corollary 3.3.15 (3). We can describe the action of G(1)1 on ϕ[u] as follows:

Theorem 3.1 (Theorem 3.3.16). Let v be an infinite prime or finite prime. Let u be

a finite prime of A with deg(u) = 1 (we do not require v ∤ u). Assume r ≥ 3, s = 1 such

that ϕt(X) = tX + a1X
q + arX

qr . Let {ξi,1}i=1,...,r be an SMB of ϕ[un]. Assume p ∤ v(j)
and v(j) < v(u)q(qr−1−1)

q−1
. Let V denote the A/u-module A ·ϕ ξ1,1. Then the map

G(1)1 → V r−1; σ 7→ (σ(ξ2,1)− ξ2,1, . . . , σ(ξr,1)− ξr,1)



8 INTRODUCTION

is an isomorphism.

Note that the case where s | r is also included in this theorem. In fact, if s | r, up to a

constant field extension of K, we may consider ϕ as a Drinfeld Fqs [t]-module. We hope to

know either the Herbrand ψ-function or the action G(n)1 on ϕ[un] for n ≥ 2 when r ≥ 3.

Assume moreover r = 2 from now on. For an infinite prime v, in Section 5.1, we study

the action of G(n)1 on an SMB of ϕ[un] for large enough n. For this, we study the case

where deg(u) = 1 in Section 4. For a finite prime v ∤ u, in Section 5.2, we study the action

of G(n)1 on an SMB of ϕ[un] for any positive integer n. In summary, we have

Theorem 3.2. Assume r = 2 such that ϕt(X) = tX + a1X
q + a2X

q2 . Let u be a finite

prime of A with deg(u) = d. Let {λi}i=1,2 be an SMB of ϕ[un].

(1) (Theorem 3.5.2) Let v be an infinite prime. Assume v(j) < v(t)q and p ∤ v(j). Let m
be the integer such that v(j) ∈ (v(t)qm+1, v(t)qm). Put d = deg(u). Assume n ≥ m/d.

• Any element in G(Λ)1 fixes λ1;

• For a positive integer i, let A<i denote the subgroup of A consists of elements

with degree < i. Then the map

G(Λ)1 → A<m ·ϕ λ1; σ 7→ σ(λ2)− λ2

is an isomorphism of groups.

(2) (Theorem 3.5.5) Let v be a finite prime satisfying v ∤ u. Assume v(j) < 0, and p ∤ v(j).
• Any element in G(n)1 fixes λ1;

• There is an isomorphism of groups

G(n)1 → A ·ϕ λ1; σ 7→ σ(λ2)− λ2.

For the case where the valuation v(j) is large enough, we have

Proposition 3.3 (A special case of Lemma 3.6.1). Let v be an infinite prime or a finite

prime satisfying v ∤ u. Let ϕ be a rank r Drinfeld A-module over K such that ϕt(X) =

tX+asX
qs+arX

qr . For a degree 1 prime u′ of A not divisible by v, if v(j) ≥ v(u′)qs(qr−s−1)
q−1

,

the extension K(ϕ[un])/K is at worst tamely ramified such that G(n)1 is a trivial group.

Finally, we hope to know the ramification of K(ϕ[un])/K for an integer n and a finite

prime u of A (See Remark 3.3.17).

4. Analogues of results for elliptic curves

Let F be a global function field. Let ϕ be a Drinfed A-module over F such that

ϕt(X) = tX + asX
qs + arX

qr ∈ F [X].
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where s and r positive integers satisfying s < r. Put

j :=
a
(qr−1)/(q−1)
s

a
(qs−1)/(q−1)
r

.

Drinfeld modules can be considered as analogues of elliptic curves over a number field.

In this section, we introduce results that are analogues of those for elliptic curves over a

number field.

4.1. A formula involving two heights. In Section 1 of Chatper 4, we apply the

results in Chapter 2 to show a formula in Corollary 4.1.4 that can be regarded as a

relation between the differential height and the J-height of ϕ (See (54) and (55) for the

definition). The differential height and the J-height are respectively defined in [Tag92,

Section 5] and [BPR21, Section 2]. They are analogues of certain heights of elliptic

curves (See Remarks 4.1.1 and 4.1.2). Hence one may regard this formula as an analogue

of Silverman’s formula in [Sil86, Proposition 2.1]. We hope that there is a generalization

of the formula in Corollary 4.1.4 for arbitrary Drinfeld A-modules (See Remark 4.1.6).

4.2. An analogue of Szpiro’s conjecture. Section 4.2.1 is devoted to a review

of the conductors and Szpiro’s conjecture for elliptic curves over number fields. Then

for each prime v of F and a certain rank 2 Drinfeld module ϕ over Fv, we introduce an

analogue of these conductors for ϕ at v. Finally, we claim a numerical relation between

the J-heights and these analogues. This relation can be regarded to be an analogue of

Szpiro’s conjecture.

4.2.1. Review on conductors of elliptic curves. Let E be an elliptic curve over a local

number field K of residue characteristic p > 0. For a prime number ℓ ∤ p, let E[ℓ] denote
the vector space of the ℓ-division points of E. Let Gi (resp. G

y) denote the i-th lower

(resp. y-th upper) ramification subgroup of the Galois group of the extension K(E[ℓ])/K

generated by the ℓ-division points of E. Define the wild part of the conductor of E/K to

be the quantity

δ(E/K) :=

∫ +∞

0

#Gi

#G0

codimFℓ(E[ℓ]
Gi)di =

∫ +∞

0

codimFℓ(E[ℓ]
Gy)dy,

where E[ℓ]Gi is the subspace of elements of E[ℓ] fixed by Gi and E[ℓ]
Gy is similarly defined.

Define the tame part of the conductor to be

ε(E/K) := codimQℓ(Vℓ(E)
I(Ksep/K)) =


0, E has good reduction;

1, E has multiplicative reduction;

2, E has additive reduction.
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Here Vℓ(E) = lim←−E[ℓ
n]⊗Zℓ Qℓ denotes the rational ℓ-adic Tate module and I(Ksep/K) is

the inertia subgroup of the absolute Galois group of K. Put as in [Sil94, p. 380]

f(E/K) = δ(E/K) + ε(E/K)(1)

the conductor of E over K. The quantity f(E/K) is an integer independent of the choice

of ℓ.

Let E be an elliptic curve over a (global) number field F. The conductor of E/F is

the ideal f(E/F ) =
∏

p finite p
f(E/Fp) defined by all conductors of E/Fp, where Fp is the

completion of F at p. Here the product extends over all finite primes p of F. The conductor

measures the extent to which an elliptic curve has bad reduction.

There is another invariant, called the minimal discriminant, which measures how bad

the reduction is. The minimal discriminant D(E/F ) of E/F is the product of the minimal

discriminants of integral models of E/Fp for all finite primes p of F. Szpiro proposed a

conjecture (see [Szp90, p. 10] or [Sil94, Chapter IV, 10.6]) concerning a relation between

these two invariants. A stronger form of this conjecture was proposed by Lockhart-Rosen-

Silverman in [LRS93, Remark 5].

Conjecture 4.1. (1) Fix a number field F and a real positive number ε. Then there

exists a constant C(F, ε) such that: for any elliptic curve E over F, its minimal dis-

criminant D(E/F ) and its conductor f(E/F ) satisfy

NF/Q(D(E/F )) ≤ C(F, ε)(NF/Q(f(E/F )))
6+ε.

(2) (Stronger form) Put ftame(E/F ) :=
∏

p finite p
ε(E/Fp). Then there exists a constant

C(F, ε) such that for any elliptic curve E over F,

NF/Q(D(E/F )) ≤ C(F, ε)(NF/Q(f
tame(E/F )))6+ε.

The conductor f(E/K) of E over a local number field K is estimated by

Theorem 4.2 (Lockhart-Rosen-Silverman [LRS93], Brumer-Kramer [BK94]). Let K/Qp

be a local field with normalized valuation vK , and let E/K be an elliptic curve. Then

f(E/K) has an upper bound

f(E/K) ≤ 2 + 3vK(3) + 6vK(2).

See also [Sil94, Chapter IV,Theorem 10.4]. This estimate is very important for the

study of Szpiro’s conjecture since it implies that (1) and (2) in the above conjecture are

equivalent.

For an abelian variety A over a local number field K, its conductor f(A/K) is defined

in [LRS93, (12), (13)] (initially defined by Serre-Tate in [ST68, p. 500]). The definition

is similar to (1). Lockhart-Rosen-Silverman also proposed a “partial generalization of

Szpiro’s conjecture”.
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Conjecture 4.3 ([LRS93, (10)]). Let A be an abelian variety of dimension d over a

number field F. Put f(A/F ) :=
∏

p finite p
f(A/Fp). Let hFP(A/F ) denote the Faltings-Parshin

height of A/F. Then there are constants C1(F, d) and C2(F, d), depending only on F and

d, such that

hFP(A/F ) ≤ C1(F, d) · log|NF/Qf(A/F )|+ C2(F, d).

Szpiro’s conjecture for Q follows from the abc conjecture [Szp90, Section 2, Remar-

que]. Mochizuki [Mo21] announced the proof of the abc conjecture via the inter-universe

Teichmüller theory.

4.2.2. An analogue of Szpiro’s conjecture. Assume throughout this subsection that

the rank of ϕ is r = 2. We first define an analogue of the conductor above. The estimate

in Theorem 4.2 suggests that when working with Szpiro’s conjecture and its variant for

elliptic curves over a number field, one may ignore the contribution of wild ramification.

On the contrary, for the extensions generated by division points of Drinfeld modules, the

wild ramification can be made arbitrarily large. So it is worth investigating a relation

between the height and the wild part of the conductor of a Drinfeld module.

Rather than the vector space of division points, we consider the Gv-module Tu, where

Gv denotes the absolute Galois group of Fv. Since Gv is a profinite group, a definition

similar to that of “δ(E/K)” in (1) using lower ramification subgroups is not valid.

Using the notion of the upper ramification subgroups, we define for a rank 2 Drinfeld

A-module ϕ over K the quantity

fv(ϕ) :=

∫ +∞

0

(2− rankAuT
Gyv
u )dy

as an analogue of the wild part of the conductor δ(E/K) of an elliptic curve. Here Gy
v

denotes the y-th upper ramification subgroup of Gv. Note that the prime v can be infinite

or finite. In fact, the infinite part of a height (e.g. J-height) is not bounded. When we

want to relate the height to the conductor (as in Theorem 4.5) in the function field case,

we must define the conductors at infinite primes, unlike in the number field case.

Proposition 4.4 (Lemma-Definitions 4.2.1 and 4.2.2). Let ϕ be a rank 2 Drinfeld

A-module over F. Assume one of the following four cases happens

(1) v is infinite, v(j) < v(t)q, and p ∤ v(j).
(2) v is infinite and v(j) ≥ v(t)q;

(3) v is finite, p ∤ v(j), and v(j) < 0;

(4) v is finite, and v(j) ≥ 0.
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Then the integral fv(ϕ) is independent of the choice of the finite prime u used in the

definition of fv(ϕ) and we have

fv(ϕ) =



0 v(j) ∈ [v(t)q,+∞);

−v(j)+v(t)q
q−1

v(j) ∈ (−∞, v(t)q), p ∤ v(j),
v is infinite;0 v(j) ∈ [0,+∞);

−v(j)
q−1

v(j) ∈ (−∞, 0), p ∤ v(j), and q ̸= 2,
v is finite.

The cases (1) and (3) follow from Lemma 3.3. The other cases follow from Theorem 3.2.

For a prime v of F and the completion Fv, let deg(v) denote the degree of the residue

field of Fv over Fq. Put f(ϕ) :=
∑

v deg(v) · fv(ϕ) and we call it the global conductor of ϕ,

where the sum extends over all primes v of F.

The conductors for certain Drinfeld modules are determined by the j-invariant. We

obtain the following formula involving the global conductor of ϕ and the J-heights (See

(54) for definition) of ϕ. This formula can be regarded as an analogue of Conjecture 4.3.

Here the J-height is initially defined in Breuer-Pazuki-Razafinjatovo [BPR21] using the

j-invariants and can be regarded as a replacement of the Faltings-Parshin height in Con-

jecture 4.3.

Theorem 4.5 (Theorem 4.2.6). Let ϕ be a rank 2 Drinfeld A-module over F. For each

prime of F, assume that ϕ satisfies one of the four conditions in Proposition 4.4. Let

hJ(ϕ) denote the J-height of ϕ. Then we have the inequality

hJ(ϕ) ≤ f(ϕ) · q − 1

[F : Fq(t)]
+ q.

4.3. Remark on the contents. The results Chapter 1 are contained in [Hua23,

Sections 2, 3, and 4]. We slightly generalize the results in [AH22, Section 2 and Ap-

pendix] in Section 1 in Chapter 2. We slightly generalize certain results in [Hua23,

Section 5.1 and Section 6.1] in Section 2 in Chapter 2. In Section 2 of Chapter 3, we

slightly generalize [AH22, Proposition 3.2]. In Sections 1 and Section 6 of Chapter 3, we

slightly generalize the [AH22, Lemmas 3.4, 3.5, 3.17, and 3.18]. In Section 3, we show a

nontrivial generalization of [AH22, Lemmas 3.6] and derive Theorem 3.3.16 (the above

Theorem 3.1). The results in Section 4 are straightly taken from [AH22, Section 3.2]

and there is nothing new. The results in Section 5 are straightly taken from [Hua23,

Sections 5.2 and 6.2]. The results in [AH22, Section 3.3] are covered by Corollary 3.5.5

(the above Theorem 3.2 (2)). The formula Corollary 4.1.4 in Section 1 of Chapter 4 has

not appeared in the previous literature. The results in Section 2.2 is similar to those in

Section 2.1, but have not appeared in the previous literature. The results in Sections 2.1
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and 2.3 of Chapter 4 are taken from [Hua23, Sections 5.2, 6.2, and 6.3]. These result

extends those in [AH22, Section 4].
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CHAPTER 1

On successive minimal bases

We consider Drinfeld A-modules over a localization K of a global function field. In

Section 1, we first review the basics of the SMB of lattices. The rest of this section is

devoted to the basics of SMBs of ϕ[un]. In Section 2, we mainly show Theorem 1.2.3

(the infinite prime case of Theorem 2.1). For an element ωi of an SMB of the lattice

Λ associated to the Drinfeld module and an element ai in A with a limited degree, we

describe the absolute value of eϕ(aiωi) in Corollary 1.2.2 (1). This is the key result of this

section and its proof is inspired by that of [Gek19A, Lemma 3.4]. Section 3 consists of

finite prime analogues of the results in Section 2. The analogue of Corollary 1.2.2 (1) is

Corollary 1.3.6 (1).

1. Basics of SMBs

For an infinite prime v (resp. a finite prime v), let | − | denote the absolute value in

(F1) (resp. the function in (F2)) defined at the beginning of Section 1 in the Introduction.

1.1. SMBs of lattices. In this subsection, we recall first the basics of SMBs of

lattices and then the (Tate) uniformization of Drinfeld modules. Consider C∞ as an A-

module via the embedding A→ C∞. If v is a finite prime, consider Cv as an A-module via

a Drinfeld module ψ having good reduction of rank r′. The next lemma will be applied

implicitly in this paper.

Lemma 1.1.1. (1) If v is an infinite prime, we have |aω| = |a| · |ω| for any a ∈ A and

ω ∈ C∞.

(2) ([Gar02, Section 1]) Let v be a finite prime. Then we have |a ·ψ ω| = |a|∞ · |ω|, i.e.,
v(a ·ψ ω) = |a|r

′
∞ · v(ω) for any a ∈ A and any ω ∈ Cv having valuation < 0, where

|a|∞ = qdeg(a).

Proof. (1) is clear. We show (2). Put g = r′ · deg(a), a0 = a, and
∑g

i=0 aiX
qi =

ψa(X). As the Drinfeld module ψ has good reduction, we have v(ai) ≥ 0 and v(ag) = 0.

Hence the assumption v(ω) < 0 implies that the valuation v(agω
qg) is the strictly smallest

among v(aiω
qi) for all i. As v(ag) = 0, we have v(agω

qg) = qgv(ω), i.e., |aω| = |a|∞·|ω|. □

Let L be an A-lattice of rank r in C∞ or an A-lattice of rank r in Cv such that each

nonzero element in the lattice has valuation < 0.

14
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Definition 1.1.2 ([Tag92, Section 4] or [Gek19A, Section 3]). A family of elements

{ωi}i=1,...,r in L is called an SMB of L if for each i, the elements ω1, . . . , ωi satisfy

(1) ω1, . . . , ωi are A-linearly independent;

(2) |ωi| is minimal among the absolute values of elements ω in L such that ω1, . . . , ωi−1, ω

are A-linearly independent.

Remark 1.1.3. The condition Definition 1.1 (1) implies that {λi}i=1,...,r is a basis (or

a generating set) of ϕ[un]. However, if {ωi}i=1,...,r is a family of elements in L that satisfies

only the condition (1) in the above definition, then it is not necessarily a generating set.

Proposition 1.1.4. Let {ωi}i=1,...,r be a family of elements in L.

(1) This family is an SMB if and only if for each i, the elements ω1, . . . , ωi satisfy

• ω1, . . . , ωi are A-linearly independent;

• we have |ωi| = li, where

li = min

{
ρ ∈ R

∣∣∣∣∣ the ball in C∞ or Cv around 0 of radius ρ contains at least

i elements in L which are A-linearly independent

}
.

(2) The sequence |ω1| ≤ |ω2| ≤ · · · ≤ |ωr| for an SMB {ωi}i=1,...,r is an invariant of L,

i.e., for any SMB {ω′
i}i=1,...,r of L, we have |ωi| = |ω′

i| for all i.

Proof. As (2) immediately follows from (1), we only show (1). The first dot is the

same as Definition 1.1.2 (1). For “⇐,” we show that for A-linearly independent elements

ω1, . . . , ωi−1, ω in L, we have |ωi| ≤ |ω|. Assume conversely |ω| < |ωi|. We have |ω| < li,

which contradicts the definition of li. For “⇒,” we fix any i and show li = |ωi|. Clearly, we
have li ≤ |ωi| and l1 = ω1. Then we do induction. Assume lj = |ωj| for j < i. If li < |ωi|,
then there are A-linear independent elements µ1, . . . , µi ∈ Λ satisfying |µj| ≤ li < |ωi|
for j = 1, . . . , i. There exists k such that µk, ω1, . . . , ωi−1 are A-linear independent. For

otherwise, for each j there are some aj ∈ A such that ajµj are A-linear combinations

of all µ1, . . . , µi, and hence the elements ω1, . . . , ωi−1 generate a rank i free A-module,

which is absurd. As |µk| < |ωi|, the elements µk, ω1, . . . , ωi−1 being A-linear independence

contradicts Definition 1.1.2 (2). □

Proposition 1.1.5. In the proposition, we put aω := a ·ψ ω for any a ∈ A and

ω ∈ L when the prime v is finite. Let {ωi}i=1,...,r be a family of elements in L so that

|ω1| ≤ |ω2| ≤ · · · ≤ |ωr|. Then this family is an SMB of L if and only if

(1) ω1, . . . , ωr form an A-basis of L;

(2) we have |
∑

i aiωi| = maxi{|aiωi|} for any ai ∈ A.

Proof. ([Tag92, Lemma 4.2]) We show ⇒ . Let k be the largest index so that

|akωk| = maxi{|aiωi|}. Assume conversely |
∑

i aiωi| < |akωk|. Then there is an index
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j ̸= k so that |ajωj| = |akωk|. Let J denote the set of all these j. As |ωk| ≥ |ωj| for each
j ∈ J, there exist bj, cj ∈ A such that aj = akbj + cj with |bj|∞ > 1 and |cj|∞ < |ak|∞. If
we admit the claim ∣∣∣∣∑

j

bjωj + ωk

∣∣∣∣ < |ωk|,
then ω1, . . . , ωk−1,

∑
j bjωj+ωk beingA-linearly independent contradicts Definition 1.1.2 (2).

As for the claim, by |cj|∞ < |ak|∞, we have∣∣∣∣∑
j∈J

akbjωj + akωk

∣∣∣∣ = ∣∣∣∣∑
j∈J

ajωj + akωk

∣∣∣∣
=

∣∣∣∣∑
i

aiωi

∣∣∣∣ < |akλk|.
The desired inequality follows.

As for⇐, fixing a positive integer k < r, we know that |
∑

i aiωi| < |ωk| implies ai = 0

for i > k by the equation in (2). Hence we have |ωk| = lk and the proof follows from

Proposition 1.1.4 (1). □

For the subfield K of Cv, we say that L is G(Ksep/K)-invariant if each element in the

Galois group maps L into L. The following lemma concerns the extension generated by

elements in the lattice with the minimal norm.

Lemma 1.1.6. Let {ωi}i=1,...,r be an SMB of L such that ω1, . . . , ωs satisfies |ω1| =
· · · = |ωs| < |ωs+1|. Assume that

• the extension M of K generated by ωi for i = 1, . . . , s is separable;

• the lattice L is G(Ksep/K)-invariant.

Then the extension M/K is Galois and is at worst tamely ramified.

Proof. Let M̂ denote the Galois closure ofM/K so that M̂ is exactly the compositum

of ςM for all ς ∈ G(M̂/K). We have M̂ = M. Indeed, if M̂/M is nontrivial, there exists

some element ς ∈ G(M̂/K) such that ς(ωj) /∈ M for j to be one of 1, . . . , s. Note that

M contains the A-module
⊕

i=1,...,sAωi (here Aωi := {a ·ψ ωi | a ∈ A} if the prime v is

finite). As elements in A \
⊕

i=1,...,sAωi have strictly smaller valuations than that of ωi
for i = 1, . . . , s and Galois actions preserve valuations, this implies that ς(ωj) /∈ L. If ς
also denotes a preimage of ς under G(Ksep/K) → G(M̂/K), then ς(ωj) /∈ L contradicts

that L is G(Ksep/K)-invariant.

We show thatM/K is tamely ramified. Assume the converse so that the wild ramifica-

tion subgroup G(M/K)1 is nontrivial. Let vM denote the normalized valuation associated

to M. For σ to be a nontrivial element in G(M/K)1, we have for each i

1 ≤ vM(σ(ωi)ω
−1
i − 1).
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We also have σ(ωj) − ωj ̸= 0 for j to be one of 1, . . . , s. Note that vM(ωj) is the largest

among the valuations of all nonzero elements in L. As σ(ωj)− ωj ∈ L (L is G(Ksep/K)-

invariant), we have

vM(σ(ωj)ω
−1
j − 1) = vM(σ(ωj)− ωj)− vM(ωj) ≤ 0.

This gives a contradiction. □

Next, we briefly recall the uniformization and the Tate uniformization. If w is an

infinite prime, then the uniformization (See [Pap23, Section 5.2] for more details) asso-

ciates to the Drinfeld module ϕ a Gal(Ksep/K)-invariant A-lattice Λ and an exponential

function eϕ on C∞ such that for each a ∈ A, the following diagram commutes, and its

two rows are short exact sequences

Λ �
� //

a

��

C∞
eϕ //

a

��

C∞

ϕa
��

Λ �
� // C∞

eϕ // C∞.

Here the exponential function is explicitly

eϕ : C∞ → C∞; ω 7→ ω
∏

µ∈Λ\{0}

(1− ω/µ)

and the coefficients of the polynomial ϕa(X) map to C∞ via the embedding K ↪→ C∞.

The commutativity of the right square in the diagram means eϕ(aω) = a ·ϕ eϕ(ω) for any
ω ∈ C∞.

Remark 1.1.7 (SMBs and isomorphic Drinfeld modules). For any b ∈ K×, we have

the Drinfeld module bϕb−1 isomorphic to ϕ. The uniformization associates to bϕb−1 the

lattice bΛ. If the family {ωi}i=1,...,r is an SMB of Λ, then {bωi}i=1,...,r is an SMB of bΛ.

If v is a finite prime of K, assume that ϕ has stable reduction and the reduction of ϕ

has rank r′ < r. According to [Dri74, Section 7] (See also [Pap23, Section 6.2]), there

are the following data associated to ϕ :

(1) A rank r′ Drinfeld A-module ψ over K has good reduction;

(2) A Gal(Ksep/K)-invariant A-lattice Λ has rank r− r′ with the A action induced by ψ.

Each element of Λ has valuation < 0.

(3) An analytic entire surjective homomorphism

eϕ : Cv → Cv; ω 7→ ω
∏

µ∈Λ\{0}

(1− ω/µ)
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such that for each a ∈ A, the following diagram commutes, and its two rows are short

exact sequences

Λ �
� //

ψa
��

Cv

eϕ //

ψa
��

Cv

ϕa
��

Λ �
� // Cv

eϕ // Cv.

The commutativity of the right square means eϕ(a ·ψ ω) = a ·ϕ eϕ(ω) for any ω ∈ Cv.

We call these data the Tate uniformization of ϕ.

1.2. SMBs of the module of un-division points. Let ϕ be a rank r Drinfeld A-

module over K. For a positive integer n and a finite prime u of A, this subsection concerns

with two basic properties of SMBs of ϕ[un].

Proposition 1.1.8. Let {λi}i=1,...,r be a family of elements in ϕ[un].

(1) Then this family is an SMB if and only if for each i, the elements λ1, . . . , λi satisfy

• λ1, . . . , λi are A/un-linearly independent;

• we have |λi| = li, where

li = min

{
ρ ∈ R

∣∣∣∣∣ the ball in Ksep around 0 of radius ρ contains at least

i elements in ϕ[un] which are A/un-linearly independent

}
.

(2) The sequence |λ1| ≤ |λ2| ≤ · · · ≤ |λr| is an invariant of ϕ[un].

Proof. (2) is straightly follows from (1). We then show (1). The “⇐” is straight-

forward. For “⇒,” the first dot in (1) is the same as Definition 1.1 (1). Clearly, we have

li ≤ |λi| for all i and l1 = |λ1|. Then we proceed by induction. We fix any i, assume

lj = |λj| for j < i, and show li = |λi|. We assume li < |λi| and find a contradiction. There

exists elements η1, . . . , ηi ∈ ϕ[un] such that η1, . . . , ηi are A/u
n-linearly independent and

|ηj| ≤ li < |λi| for j = 1, . . . , i.

Put ηj := un−1 ·ϕ ηj for j ≤ i and λj := un−1 ·ϕ λj for j < i. We claim that there is

some k such that ηk and λ1, . . . , λi−1 are A/u-linearly independent. Assume the inverse.

Then we have equations

bl ·ϕ ηl +
i−1∑
j=1

al,j ·ϕ λj = 0

for all l = 1, . . . , i, where al,j ∈ A mod u and bl ∈ A mod u with bl ̸≡ 0 mod u for each

l. Hence for each l, we obtain

ηl =
i−1∑
j=1

al,j/bl ·ϕ λj,

where each al,j/bl ∈ A mod u satisfies bl(al,j/bl) ≡ al,j mod u. Hence λ1, . . . , λi−1 gener-

ate an i-dimensional A/u-vector space, which is absurd.
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Next, we claim that ηk and λ1, . . . , λi−1 are A/un-linearly independent. Assume the

inverse and we have

ck ·ϕ ηk +
i−1∑
j=1

aj ·ϕ λj = 0,(2)

where each aj ∈ A mod un and ck ∈ A mod un with ck ̸≡ 0 mod un. We may write

ck = c′ku
m with m < n and c′k ∈ A not divisible by u. Then we have um | aj for all j < i,

for otherwise, by (2), we have
∑i−1

j=1 aju
n−m ·ϕ λj = 0 with aju

n−m ̸≡ 0 mod un for some

j. We may write aj = a′ju
m for a′j ∈ A. Hence we have by (2)

0 = cku
n−1−m ·ϕ ηk +

i−1∑
j=1

aju
n−1−m ·ϕ λj = c′k ·ϕ ηk +

i−1∑
j=1

a′j ·ϕ λj

with c′k ∈ A not divisible by u. This contradicts that ηk and λ1, . . . , λi−1 are A/u-linearly

independent. We have obtained A/un-linearly independent elements λ1, . . . , λi−1, ηk such

that |ηk| ≤ li < |λi|. This contradicts Definition 1.1.2 (2). □

In the remainder of this subsection, we construct an SMB of ϕ[un] for any positive

integer n.

Lemma 1.1.9. Let {λi}i=1,...,r be an SMB of ϕ[un]. For each i and a ∈ A with a ̸≡ 0

mod un, the element λi has the largest valuation among the roots λ of ϕa(X)−a ·ϕλi such
that λ ∈ ϕ[un].

Proof. Let λ be a root of ϕa(X)− a ·ϕ λi such that λ ∈ ϕ[un]. Assume v(λ) > v(λi).

It suffices to show that λ1, . . . , λi−1, λ are A/un-linearly independent because this implies

that the inequality v(λ) > v(λi) contradicts Definition 1.1 (2). Assume that there exists

bj ∈ A mod un with bi ̸≡ 0 such that bi ·ϕ λ +
∑

j<i bj ·ϕ λj = 0. Let c be the minimal

common multiple of a and bi such that c = b′ibi = a′a for some b′i and a
′ ∈ A. Consider

the equation b′i ·ϕ (bi ·ϕ λ+
∑

j<i bj ·ϕ λj) = 0. Since b′ibi ·ϕ λ = a′a ·ϕ λ = a′a ·ϕ λi = c ·ϕ λi,
we have

c ·ϕ λi +
∑
j<i

b′ibj ·ϕ λj = 0.(3)

We have un ∤ c, for otherwise one of a or bi is divisible by un. Hence the nonzero coefficients

in the equation (3) contradict that λ1, . . . , λi are A/u
n-linearly independent. □

Corollary 1.1.10. With the notation in the lemma, for each i and a ∈ A being a

power of u, the element λi has the largest valuation among the roots of ϕa(X)− a ·ϕ λi.

Proposition 1.1.11. Let {λi}i=1,...,r be an SMB of ϕ[un].
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(1) For each i, put λ′i to be a root of ϕu(X) − λi having the largest valuation. Then

{λ′i}i=1,...,r is an SMB of ϕ[un+1].

(2) The family of elements {u ·ϕ λi}i=1,...,r is an SMB of ϕ[un−1].

Proof. (1) We show that λ′1, . . . , λ
′
i are A-linear independent for any i. Assume con-

versely that there are aj ∈ A mod un+1 with ai ̸≡ 0 such that
∑i

j=1 aj ·ϕ λ′j = 0. For

j = 1, . . . , i, since u ·ϕ λ′j = λj and λ1, . . . , λi are A/u
n-linearly independent, we have

uaj ≡ 0 mod un+1 and hence un | aj. There are bj ∈ A with bi ̸≡ 0 mod u such that

aj = bju
n for all j. Hence

0 =
i∑

j=1

ai ·ϕ λ′i =
i∑

j=1

bju
n−1 ·ϕ λi

with biu
n−1 not divisible by un, which is absurd.

As for Definition 1.1 (2), we show v(λ′i) ≥ v(λ) for each λ ∈ ϕ[un+1] such that

λ′1, . . . , λ
′
i−1, λ are A/un+1-linearly independent. Notice u ·ϕ λ ∈ ϕ[un] and that the el-

ements λ1, · · · , λi−1, u ·ϕ λ are A/un-linearly independent. We have v(λi) ≥ v(u ·ϕ λ) as
{λi}i=1,...,r is an SMB of ϕ[un]. By Corollary 1.1.10, we know that v(λ′i) is the largest

among the valuations of roots of ϕu(X) − λi. By comparing the Newton polygons of

ϕu(X)− λi and ϕu(X)− u ·ϕ λ, this implies v(λ′i) ≥ v(λ).

(2) It is straightforward to check Definition 1.1 (1). Let λ be an element of ϕ[un−1] such

that u ·ϕ λ1, . . . , u ·ϕ λi−1, λ are A/un−1-linearly independent. To show |u ·ϕ λi| ≤ |λ|, we
assume conversely v(u ·ϕ λi) < v(λ). By comparing the Newton polygon of ϕu(X)−u ·ϕ λi
and ϕu(X) − λ, there is a root λ′ of ϕu(X) − λ such that v(λ′) > v(λi). We have λ′ ∈
ϕ[un] as all roots of ϕu(X) − λ belong to ϕ[un]. Similarly to the proof of (1), one shows

that λ1, · · · , λi−1, λ
′ are A/un-linearly independent. Hence the inequality v(λ′) > v(λi)

contradicts Definition 1.1 (2). □

We can find an SMB of ϕ[u] in the following way. Put

λ1,1 := an element in ϕ[u] \ {0} with the largest valuation and

λi,1 := an element in ϕ[u] \
⊕
j<i

(A/u) ·ϕ λj,1 with the largest valuation(4)

for i = 2, 3, . . . , r. Since A/u is a field, the elements λi,1 for i = 1, · · · , r are A/u-linearly

independent and form an SMB of ϕ[u]. Applying the proposition, we have

Corollary 1.1.12. Let {λi,1}i=1,...,r be an SMB of ϕ[u] defined above. Inductively, put

λi,j to be a root of ϕu(X)− λi,j−1 having the largest valuation for each i and each integer

j ≥ 2. Then for each positive integer n, we have that {λi,n}i=1,...,r is an SMB of ϕ[un].

Remark 1.1.13. For b ∈ K, we have the Drinfeld module bϕb−1 isomorphic to ϕ. If

{λi}i=1,...,r is an SMB of ϕ[un], then the family {bλi}i=1,...,r is an SMB of bϕb−1[un].
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2. Relations between SMBs, the infinite prime case

Let w denote an infinite prime, |− | the absolute value in (F1) and {ωi}i=1,...,r an SMB

of Λ throughout this section. For a positive integer n and a finite prime u of A, we study

the relations between SMBs of Λ and those of ϕ[un].

Lemma 1.2.1. Let a be an element in A. For ω =
∑

j ajωj ∈ Λ with aj ∈ A, let i be
an index so that |aiωi| = |ω|, i.e., |aiωi| = maxj{|ajωj|}. Assume deg(ai) < deg(a). Then

we have ∣∣∣eϕ (ω
a

)∣∣∣ = ∣∣∣eϕ (aiωi
a

)∣∣∣ .
Proof. We have

eϕ

(ω
a

)
=
ω

a

∏
µ∈Λ\{0}

(
1− ω

aµ

)
.

Its absolute value is ∣∣∣ω
a

∣∣∣ · ∏
µ∈Λ\{0}
|aµ|≤|ω|

∣∣∣∣1− ω

aµ

∣∣∣∣ .
For µ ∈ Λ satisfying |aµ| < |ω|, we have by the ultrametric inequality∣∣∣∣1− ω

aµ

∣∣∣∣ = ∣∣∣∣ ωaµ
∣∣∣∣ = ∣∣∣∣aiωiaµ

∣∣∣∣ = ∣∣∣∣1− aiωi
aµ

∣∣∣∣ .
Next, for µ ∈ Λ satisfying |aµ| = |ω| = |aiωi|, we show∣∣∣∣1− ω

aµ

∣∣∣∣ = ∣∣∣∣1− aiωi
aµ

∣∣∣∣ = 1.

It suffices to show

|ω − aµ| = |ω| and |aiωi − aµ| = |aiωi|.(5)

Since |ai| < |a|, we have µ belonging to
⊕

j<iAωj, for otherwise we have |aµ| ≥ |aωi| >
|aiωi| by Proposition 1.1.5 (2). Applying Proposition 1.1.5 (2) to |ω−aµ| and |aiωi−aµ|,
we obtain the desired equalities. □

Corollary 1.2.2. Let a be an element in A.

(1) For any i = 1, . . . , r and any ai ∈ A satisfying deg(ai) < deg(a), we have∣∣∣eϕ (aiωi
a

)∣∣∣ = ∣∣∣aiωi
a

∣∣∣ · ∏
µ∈Λ\{0}

|aµ|<|aiωi|

|aiωi|/|aµ|.

(2) For any positive integers i, j ≤ r, let ai and aj be elements in A with degrees strictly

smaller than that of a. Assume |ajωj| ≤ |aiωi|. Then∣∣∣eϕ (ajωj
a

)∣∣∣ ≤ ∣∣∣eϕ (aiωi
a

)∣∣∣ .



22 1. ON SUCCESSIVE MINIMAL BASES

(3) With the notation in the lemma, we have∣∣∣eϕ (ω
a

)∣∣∣ = max
j

{∣∣∣aj ·ϕ eϕ (ωj
a

)∣∣∣} .
(4) For any positive integer i ≤ r and b ∈ A satisfying deg(b) < deg(a), we have

|b| ·
∣∣∣eϕ (ωi

a

)∣∣∣ ≤ ∣∣∣b ·ϕ eϕ (ωi
a

)∣∣∣ .
Proof. (1) has been shown in the proof of the lemma. As for (2), by the assumption,

we have

{µ ∈ Λ | |aµ| < |ajωj|} ⊂ {µ ∈ Λ | |aµ| < |aiωi|}.(6)

If µ satisfies |aµ| < |ajωj|, we have |ajωj|/|aµ| ≤ |aiωi|/|aµ|. Combining this inequality

and (6), we have the desired inequality by (1). For (3), as a ·ϕ eϕ(ω) = eϕ(aω) for any

a ∈ A and any ω ∈ C∞, it remains to show∣∣∣eϕ (ω
a

)∣∣∣ = max
j

{∣∣∣eϕ (ajωj
a

)∣∣∣} .
This equality follows from Lemma 1.2.1 and (2). As for (4), note |ωi| < |bωi|. One can

show (4) similarly to the proof of (2). □

Theorem 1.2.3. For any finite prime u of A and any positive integer n, the family of

elements {eϕ(ωi/un)}i=1,...,r is an SMB of ϕ[un].

Proof. Put λi = eϕ(ωi/u
n) for all i. Note that ω1/u

n, . . . , ωr/u
n are A/un-linearly

independent as elements in u−nΛ/Λ. By the A/un-module isomorphism Eϕ : u−nΛ/Λ →
ϕ[un] induced by eϕ, we have that λ1, . . . , λr are A/u

n-linearly independent.

Fix a positive integer i ≤ r. To check Definition 1.1 (2), we show that |λi| is minimal

among the absolute values of elements in ϕ[un]\
⊕

j<i(A/u
n) ·ϕ λj (in ϕ[un]\{0} if i = 1).

Put λ =
∑

j aj ·ϕ λj with aj ∈ A mod un such that there is ak ̸≡ 0 for some k ≥ i. We

show |λi| ≤ |λ|. Without loss of generality, we assume that deg(aj) < deg(un) for any j.

Let l be an index so that |alωl| = |
∑

j ajωj|. By Corollary 1.2.2 (3), we have

|λ| = |al ·ϕ λl| .

As |akωk| ≤ |alωl|, Corollary 1.2.2 (2) implies∣∣∣eϕ (akωk
un

)∣∣∣ ≤ ∣∣∣eϕ (alωl
un

)∣∣∣ ,
hence |ak ·ϕ λk| ≤ |al ·ϕ λl|. As |ωi| ≤ |ωk|, Corollary 1.2.2 (2) also implies |λi| ≤ |λk|. By
Corollary 1.2.2 (4), we have |ak| · |λk| ≤ |ak ·ϕλk|. Combining the equality and inequalities,

we have

|λi| ≤ |λk| ≤ |ak| · |λk| ≤ |ak ·ϕ λk| ≤ |al ·ϕ λl| = |λ|.
□
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Remark 1.2.4. We have shown in the above proof that |λ1| is minimal among the

absolute values of nonzero elements in ϕ[un]. Let {λ′i}i=1,...,r be an SMB of ϕ[un]. By

Theorem 1.2.9 below, we can show that there exists an SMB {ω′
i}i=1,...,r on Λ such that

eϕ(ω
′
i/u

n) = λ′i for all i. Hence λ′1 has the minimal absolute value among elements in

ϕ[un] \ {0}.

Corollary 1.2.5. Let {λi}i=1,...,r be an SMB of ϕ[un].

(1) If n is large enough so that |un| ≥ |ωr|/|ω1|, then for i = 1, . . . , r, we have |λi| · |un| =
|ωi|.

(2) For any positive integer n, we have |λr|/|λ1| ≥ |ωr|/|ω1|.
(3) If n is large enough such that |un| > |ωr|/|ω1|, then we have |λi| < |ω1| for i = 1, . . . , r.

Proof. We show (1). Fix i to be one of 1, . . . , r. Corollary 1.2.2 (1) implies∣∣∣eϕ (ωi
un

)∣∣∣ = ∣∣∣ωi
un

∣∣∣ · ∏
µ∈Λ\{0}
|unµ|<|ωi|

|ωi|/|unµ|.(7)

For any µ ∈ Λ, we have

|unµ| ≥ |unω1| ≥ |ωr| ≥ |ωi|
by the hypothesis. Hence (7) implies∣∣∣eϕ (ωi

un

)∣∣∣ = ∣∣∣ωi
un

∣∣∣ .
By Theorem 1.2.3, the family {eϕ(ωi/un)}i=1,...,r is an SMB of ϕ[un]. Hence we have

|λi| =
∣∣∣eϕ (ωi

un

)∣∣∣ for any i(8)

by Proposition 1.1.8 (2). (1) follows. Notice that (7) implies∣∣∣eϕ (ω1

un

)∣∣∣ = ∣∣∣ω1

un

∣∣∣ and
∣∣∣eϕ (ωi

un

)∣∣∣ ≥ ∣∣∣ωi
un

∣∣∣ for any i.

(2) follows from (8). Since we know |λr| = |ωr|/|un| by (1), we have

|λi| ≤ |λr| = |ωr|/|un| < |ωr|/(|ωr|/|ω1|) = |ω1|

and (3) follows. □

Remark 1.2.6. By Corollary 1.2.5 (1) and (2), we have |λi| · |un| = |ωi| if n is large

enough so that |un| ≥ |λr|/|λ1|.

Put B := {ω ∈ C∞ | |ω| < |ω1|}. Since B ∩ Λ = ∅, the exponential function eϕ is

injective on B. For any ω ∈ C∞, we have

|eϕ(ω)| = |ω| ·
∏

µ∈Λ\{0}
|µ|≤|ω|

∣∣∣∣1− ω

µ

∣∣∣∣ .(9)
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Hence |eϕ(ω)| = |ω| for ω ∈ B. This implies eϕ(B) ⊂ B. Put C := eϕ(B). There is

an inverse logϕ : C → B of eϕ defined by a power series with coefficients in K and

eϕ : B ⇄ C : logϕ are inverse to each other (See [Pap23, Section 5.1]).

Lemma 1.2.7. (1) We have C ∩ ϕ[un] = B ∩ ϕ[un].
(2) We have the following maps which are inverse to each other

eϕ : B ∩ L⇄ B ∩ ϕ[un] : logϕ,

where

L :=

{∑
i

ai(ωi/u
n)

∣∣∣∣ ai ∈ A with deg(ai) < deg(un)

}
is a set of representatives of all elements in u−nΛ/Λ.

(3) For any λ ∈ B ∩ ϕ[un], we have | logϕ(λ)| = |λ|.

Proof. (1) We know C ∩ϕ[un] ⊂ B ∩ϕ[un], which implies #B ∩ϕ[un] ≥ #C ∩ϕ[un].
We show

#C ∩ ϕ[un] ≥ #B ∩ L ≥ #B ∩ ϕ[un] ≥ #C ∩ ϕ[un].
As eϕ is injective on L, we have #B ∩L ≤ #C ∩ ϕ[un] and it remains to show #B ∩L ≥
#B ∩ ϕ[un].

Put Bc := {ω ∈ C∞ | |ω| ≥ |ω1|}, which is complementary to B in C∞. Note that

{ωi}i=1,...,r is an SMB. For any ω =
∑

j aj(ωj/u
n) ∈ Bc ∩ L, there is an index i so that

|ω| = |aiωi|/|un|. By Lemma 1.2.1, we have |eϕ(ω)| = |eϕ(aiωi/un)|. By Corollary 1.2.2 (1),

we have

|eϕ(ω)| =
∣∣∣eϕ (aiωi

un

)∣∣∣ ≥ ∣∣∣aiωi
un

∣∣∣ = |ω| ≥ |ω1|.

Since we have shown |eϕ(ω)| ≥ |ω1| for any ω ∈ Bc∩L, we know eϕ(B
c∩L) ⊂ Bc∩ϕ[un].

As eϕ is injective on L, we have #Bc ∩ L ≤ #Bc ∩ ϕ[un]. Notice that the cardinal of L
and ϕ[un] are the same. We have #B ∩ L ≥ #B ∩ ϕ[un], as desired.

(2) The map eϕ : B ∩ L → B ∩ ϕ[un] is injective. It is also surjective since #B ∩ L =

#B ∩ ϕ[un]. Hence (2) follows.

(3) By (2), we have logϕ(λ) ∈ B∩L and eϕ(logϕ(λ)) = λ. Hence we have | logϕ(λ)| = |λ|
by (9). □

Remark 1.2.8. Do we have eϕ(B) = B?

Let {λi}i=1,...,r denote an SMB of ϕ[un]. Assume that the positive integer n is large

enough so that |un| > |ωr|/|ω1|. By Corollary 1.2.5 (3) and Lemma 1.2.7 (1), for each i,

we have λi ∈ B ∩ ϕ[un] = C ∩ ϕ[un] and we put ω′
i := logϕ(λi).

Theorem 1.2.9. The family {unω′
i}i=1,...,r is an SMB of Λ.

We need a lemma in the proof.



2. RELATIONS BETWEEN SMBS, THE INFINITE PRIME CASE 25

Lemma 1.2.10. Let {ηi}i=1,...,r be a family of elements in u−nΛ. It is an SMB of u−nΛ

if and only if {unηi}i=1,...,r is an SMB of Λ.

Proof of Lemma. For any ai ∈ A, we have∣∣∣∣∑
i

aiu
nηi

∣∣∣∣ = |un| · ∣∣∣∣∑
i

aiηi

∣∣∣∣.
Then the lemma follows from Proposition 1.1.5. □

Proof of Theorem. By Lemma 1.2.10, it suffices to show that the family of ele-

ments {ω′
i}i=1,...,r is an SMB of u−nΛ. To check the first dot in Proposition 1.1.4 (1), we

show that ω′
1, . . . , ω

′
r are A-linearly independent. Assume that there exist nonzero ai ∈ A

such that
∑

i aiω
′
i = 0. We may assume un ∤ ai for some i, for otherwise we divide both

sides of the equation
∑

i aiω
′
i = 0 by some power of u. Note that the map eϕ is A/un-

linear. As some ai satisfies ai ̸≡ 0 mod un and λ1, . . . , λr are A/u
n-linearly independent,

we have eϕ(
∑

i aiω
′
i) =

∑
i ai ·ϕ λi ̸= 0. This is absurd.

Next, we check the second dot in Proposition 1.1.4 (1). Let l1 ≤ l2 ≤ · · · ≤ lr be the

invariant of u−nΛ as in Proposition 1.1.4 (2). Fix i to be a positive integer ≤ r. It suffices

to show li = |ω′
i|. We have li ≤ |ω′

i|. Let us assume li < |ω′
i|. As λi ∈ B ∩ ϕ[un], we have

|ω′
i| = |λi| by Lemma 1.2.7 (3). Hence li < |ω′

i| = |λi| < |ω1|. By Proposition 1.1.4 (1),

there is an SMB {ηj}j=1,...,r of u−nΛ such that |ηi| = li < |ω1|. As |ηi| < |ω1|, we know

|eϕ(ηi)| = |ηi| from (9). We have

|eϕ(ηi)| = |ηi| = li < |ω′
i| = |λi|

and hence |eϕ(ηi)| < |λi|. On the other hand, note that {unηj}j=1,...,r is an SMB of Λ by

Lemma 1.2.10. By Theorem 1.2.3, the elements eϕ(ηj) for j = 1, . . . , r form an SMB of

ϕ[un]. By Proposition 1.1.8 (2), this contradicts |eϕ(ηi)| < |λi|. □

Finally, we give two applications of Theorem 1.2.3 and 1.2.9.

Proposition 1.2.11. If n is large enough so that |un| > |ωr|/|ω1|, then we have

K(Λ) = Kn,

where K(Λ) (resp. Kn) is the extension of K generated by all elements in Λ (resp. in

ϕ[un]).

Proof. (cf. the proof of [Mau19, Proposition 2.1]) Note that eϕ is given by a power

series with coefficients in K. For any x ∈ Ksep, we have eϕ(x) ∈ K(x) since the field

K(x) is complete. Since Eϕ : u−nΛ/Λ→ ϕ[un] is bijective, for any λ in ϕ[un], there exists

ω ∈ u−nΛ such that eϕ(ω) = λ. This implies K(λ) ⊂ K(ω) and Kn ⊂ K(Λ).

Note that logϕ is given by a power series with coefficients inK. For any y ∈ c∩Ksep, we

similarly have logϕ(y) ∈ K(y). Let {λi}i=1,...,r be an SMB of ϕ[un]. As |un| > |ωr|/|ω1|, by
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Theorem 1.2.9, the elements unω′
i for i = 1, . . . , r form an SMB of Λ, where ω′

i = logϕ(λi).

Since K(ω′
i) ⊂ K(λi) for each i, we have K(Λ) ⊂ Kn. □

Combining Corollary 1.2.5 (2), Theorem 1.2.9, and Proposition 1.2.11, we have

Corollary 1.2.12. Let l be a positive integer and {ηi}i=1,...,r an SMB of ϕ[ul]. Let

{λi}i=1,...,r be an SMB of ϕ[un]. If n is large enough so that |un| > |ηr|/|η1|, then we have

(1) the family {un logϕ(λi)}i=1,...,r is an SMB of Λ;

(2) K(Λ) = Kn.

Proposition 1.2.13. Let {λi}i=1,...,r be an SMB of ϕ[un]. We have∣∣∣∣∑
i

ai ·ϕ λi
∣∣∣∣ = max

i
{|ai ·ϕ λi|}

for any ai ∈ A mod un.

Proof. Without loss of generality, we assume deg(ai) < deg(un) for all i. Assume

first that n is large enough so that |un| > |λr|/|λ1| (Corollary 1.2.5 (2)). By Theo-

rem 1.2.9, the elements unω′
i for i = 1, . . . , r form an SMB of Λ, where ω′

i = logϕ(λi). By

Corollary 1.2.2 (3), we have∣∣∣∣eϕ(∑
i

aiω
′
i

)∣∣∣∣ = max
i
{|ai ·ϕ eϕ(ω′

i)|}.

As eϕ(
∑

i aiω
′
i) =

∑
i ai ·ϕ λi, the claim follows.

For any n, let n′ be an integer ≥ n so that |un′ | > |λr|/|λ1|. By Proposition 1.1.11 (1),

there is an SMB {λ′i}i=1,...,r of ϕ[u
n′
] such that un

′−n ·ϕ λ′i = λi for all i. Then the desired

equation for {λi}i=1,...,r follows from that for {λ′i}i=1,...,r. □

3. Relations between SMBs, the finite prime case

Let v denote a finite prime. Throughout this section, unless otherwise specified, as-

sume that ϕ has stable reduction and the reduction of ϕ has rank r′ < r. Let ψ and Λ

denote respectively the rank r′ Drinfeld A-module associated to ϕ and A-lattice of the

rank r−r′ associated to ϕ. Throughout this subsection, let {ω0
i }i=r′+1,...,r be an SMB of Λ.

Let | − | denote the function in (F2) and put |a|∞ := qdeg(a) for any a ∈ A. For a positive

integer n and a finite prime u of A, we study the relations between SMBs of ψ[un], those

of Λ, and those of ϕ[un].

Remark 1.3.1. For each Drinfeld A-module ϕ over K, there exists an element b in

some extension L of K which is at worst tamely ramified such that the Drinfeld module

bϕb−1 isomorphic to ϕ has stable reduction on L. For example, we can take L/K to

be K(ϕ[u])/K or its certain subextension. For an SMB {λi}i=1,...,r of ϕ[un], the family
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{bλi}i=1,...,r is an SMB of bϕb−1[un]. If bϕb−1 has bad reduction, for the Tate uniformization

(ψ′,Λ′) associated to bϕb−1, we may apply the results in this section to {bλi}i=1,...,r, the

SMBs of ψ′[un], and those of Λ′.

First, we are concerned with the valuations of the elements in the A-module u−nΛ,

i.e., the roots of ψun(X)− ω for all ω ∈ Λ.

Lemma 1.3.2. Let a be an element in A.

(1) Each root of ψa(X) has valuation ≥ 0. Moreover, all nonzero roots of ψa(X) have

valuation = 0 if and only if v(a) = 0.

(2) For a nonzero element ω ∈ Λ, each root of ψa(X)− ω has valuation < 0.

(3) An element ω ∈ a−1Λ belongs to ψ[a] if and only if it has valuation ≥ 0.

Proof. Put g := r′ · deg(a), a0 := a,
∑g

i=0 aiX
qi := ψa(X), and Pi = (qi, v(ai)) for

i = 0, . . . , g. As v(ai) ≥ 0 and v(ag) = 0, the segments in the Newton polygon of ψa(X)

have slopes ≤ 0. If v(a0) = 0, then the Newton polygon of ψa(X) consists of exactly one

segment P0Pg which has slope 0 (We will always omit the segment in the Newton polygon

with infinite slope). Hence each root of ψa(X) has valuation = 0. If v(a0) > 0, then the

left-most segment in the Newton polygon of ψa(X) has negative slope. Hence some root

of ψa(X) has valuation > 0.

As for (2), put Q := (0, v(ω)). As v(ω) < 0, v(ai) ≥ 0 for all i, and v(ag) = 0,

the Newton polygon of ψa(X) − ω consists of exactly one segment QPg whose slope is

−v(ω)/qg > 0. Hence (2) follows. From (1) and (2), we know (3). □

Fix a root ωi of ψun(X) − ω0
i for i = r′ + 1, . . . , r. The elements ωr′+1, . . . , ωr are

A-linearly independent. For all ai ∈ A, we have

|un|∞ ·
∣∣∣∣ r∑
i=r′+1

ai ·ψ ωi
∣∣∣∣ = ∣∣∣∣ r∑

i=r′+1

aiu
n ·ψ ωi

∣∣∣∣ = ∣∣∣∣ r∑
i=r′+1

ai ·ψ ω0
i

∣∣∣∣.
Hence, by Proposition 1.1.5, we have∣∣∣∣ r∑

i=r′+1

ai ·ψ ωi
∣∣∣∣ = max

i=r′+1,...,r
{|ai ·ψ ωi|}(10)

for any ai ∈ A.
In the remainder of this section, let {ωi}i=1,...,r′ be an SMB of ψ[un] and ωr′+1, . . . , ωr

be elements in u−nΛ defined as above. The family {ωi}i=1,...,r form an A/un-basis of

u−nΛ/Λ. Next, we study the relations between {ωi}i=1,...,r and SMBs of ϕ[un].
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Lemma 1.3.3. (1) For all ai ∈ A, we have∣∣∣∣∑
i

ai ·ψ ωi
∣∣∣∣ =

|
∑

i≤r′ ai ·ψ ωi| ≤ 0 all ai = 0 for i > r′;

|
∑

i>r′ ai ·ψ ωi| > 0 some ai ̸= 0 for i > r′.

(2) Let ai be elements in A for i = 1, . . . , r. Assume either v(u) = 0, or some ai is nonzero

for i > r′. Then we have ∣∣∣∣∑
i

ai ·ψ ωi
∣∣∣∣ = max

i
{|ai ·ψ ωi|}.

Proof. (1) Since
∑

i≤r′ ai·ψωi ∈ ψ[un], we have |
∑

i≤r′ ai·ψωi| ≤ 0 by Lemma 1.3.2 (3).

Since un ·ψ ωi for all i = r′+1, . . . , r are elements in Λ, we have |un|∞ · |ωi| > 0 and hence

|ai|∞ · |ωi| > 0 if ai is nonzero. Hence, by (10) and the ultrametric inequality, we have

|
∑

i ai ·ψ ωi| = |
∑

i>r′ ai ·ψ ωi| > 0 if some ai for i > r′ is nonzero. (1) follows.

(2) If some ai ̸= 0 for i > r′, the desired equality follows from (1) and (10). By

Lemma 1.3.2 (1), the assumption v(u) = 0 implies that the elements in ψ[un] have valu-

ation 0. Hence |
∑

i≤r′ ai ·ψ ωi| = 0 and |ai ·ψ ωi| = 0 for all i ≤ r′. The desired equality

similarly follows. □

Recall for any ω ∈ Cv, we have

eϕ(ω) = ω
∏

µ∈Λ\{0}

(
1− ω

µ

)
.

Its valuation is

v(eϕ(ω)) = v(ω) +
∑

µ∈Λ\{0}
v(µ)≥v(ω)

v

(
1− ω

µ

)
.(11)

For certain ω =
∑

i ai ·ψ ωi ∈ u−nΛ, we are to calculate |eϕ(ω)|.

Lemma 1.3.4. If ω =
∑

i≤r′ ai ·ψ ωi with ai ∈ A mod un, we have

|eϕ(ω)| = |ω|.

Proof. By (11), it suffices to show v(1− ω/µ) = 0 for each µ ∈ Λ. Notice v(ω) ≥ 0

by Lemma 1.3.3 (1). Since v(µ) < 0 for any µ ∈ Λ, we have v(1 − ω/µ) = 0 by the

ultrametric inequality. □

Lemma 1.3.5 (cf. Lemma 1.2.1). For ω =
∑

j aj ·ψ ωj ∈ u−nΛ, assume some aj for

j > r′ is nonzero. Let i be an integer > r′ so that |ω| = |ai ·ψ ωi| = maxj{|aj ·ψ ωj|} (By
Lemma 1.3.3 (2), such an i exists). Assume deg(ai) < deg(un). Then we have

|eϕ(ω)| = |eϕ(ai ·ψ ωi)|.
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Proof. By (11), it suffices to show

v

(
1− ω

µ

)
= v

(
1− ai ·ψ ωi

µ

)
for each µ ∈ Λ with v(µ) ≥ v(ω). If v(µ) > v(ω), then we have by the ultrametric

inequality that

v

(
1− ω

µ

)
= v

(
ω

µ

)
= v

(
ai ·ψ ωi
µ

)
= v

(
1− ai ·ψ ωi

µ

)
.

Next, we show

v

(
1− ω

µ

)
= v

(
1− ai ·ψ ωi

µ

)
= 0

if v(µ) = v(ω) = v(ai ·ψ ωi). It suffices to show

v(ω − µ) = v(ω) and v(ai ·ψ ωi − µ) = v(ai ·ψ ωi).

As deg(ai) < deg(un), we have

|ω| = |ai ·ψ ωi| = |ai|∞ · |ωi| < |un|∞ · |ωi| = |ω0
i |

and hence |µ| = |ω| < |ω0
i |. This implies µ ∈

⊕i−1
j=r′+1A ·ψ ω0

j , for otherwise we have

|µ| ≥ |ω0
i | by Proposition 1.1.5 (2). Applying Lemma 1.3.3 (2) to |ω−µ| and |ai ·ψ ωi−µ|,

we obtain the desired equalities. □

Corollary 1.3.6 (cf. Corollary 1.2.2). (1) With the notation in the lemma, we have

v(eϕ(ω)) = v(ω) +
∑

µ∈Λ\{0}
v(µ)>v(ω)

(v(ω)− v(µ)) .

Particularly, for any i = 1, . . . , r and any ai ∈ A \ {0} satisfying deg(ai) < deg(un),

we have

v(eϕ(ai ·ψ ωi)) = v(ai ·ψ ωi) +
∑

µ∈Λ\{0}
v(µ)>v(ai·ψωi)

(
v(ai ·ψ ωi)− v(µ)

)
.

(2) For any positive integers i, j ≤ r, let ai and aj be elements in A with degree strictly

smaller than that of un. Assume |aj ·ψ ωj| ≤ |ai ·ψ ωi|. Then

|eϕ(aj ·ψ ωj)| ≤ |eϕ(ai ·ψ ωi)|.

(3) With the notation in the lemma, we have

|eϕ(ω)| = max
j
{|aj ·ϕ eϕ(ωj)|}.

(4) For any positive integer i = r′ + 1, . . . , r and b ∈ A satisfying deg(b) < deg(a), we

have

|b|∞ · |eϕ(ωi)| ≤ |b ·ϕ eϕ(ωi)|.
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Proof. If i ≤ r′, then we have v(eϕ(ai ·ψ ωi)) = v(ai ·ψ ωi) by Lemma 1.3.4. The rest

of (1) follows have been shown in the lemma. Similarly to the proof of Corollary 1.2.2 (2)

(resp. (3)), the claim (2) (resp. (3)) follows from (1) (resp. the lemma and (2)).

We show (4). Note b ·ϕ eϕ(ωi) = eϕ(b ·ψ ωi). By (1), the desired inequality in (4) is

equivalent to

|b|r′∞ ·
(
v(ωi) +

∑
µ∈Λ\{0}
v(µ)>v(ωi)

(
v(ωi)− v(µ)

))

≥ v(b ·ψ ωi) +
∑

µ∈Λ\{0}
v(µ)>v(b·ψωi)

(
v(b ·ψ ωi)− v(µ)

)
.

(12)

By Lemma 1.1.1 (2), we may write the left in this inequality to be

v(b ·ψ ωi) +
∑

µ∈Λ\{0}
v(µ)>v(ωi)

(
v(b ·ψ ωi)− v(b ·ψ µ)

)
.

Then (12) follows from the inclusion

{b ·ψ µ ∈ b ·ψ Λ | v(b ·ψ µ) > v(b ·ψ ωi)} ⊂ {µ ∈ Λ | v(µ) > v(b ·ψ ωi)}.

□

Theorem 1.3.7 (cf. Theorem 1.2.3). For any finite prime u of A and any positive

integer n, let {ωi}i=1,...,r be the elements in u−nΛ defined before Lemma 1.3.3. Then the

family of elements {eϕ(ωi)}i=1,...,r is an SMB of ϕ[un].

Proof. Put λi := eϕ(ωi) for all i. Since ω1, . . . , ωr form an A/un-basis of u−nΛ/Λ,

their images under the A/un-module isomorphism Eϕ : u−nΛ/Λ→ ϕ[un] are A/un-linearly

independent.

We check Definition 1.1 (2). Fix a positive integer i ≤ r. For λ =
∑

j aj ·ϕ λj with

aj ∈ A mod un such that λ1, . . . , λi−1, λ are A/un-linearly independent, we show |λi| ≤
|λ|. Without loss of generality, we assume deg(aj) < deg(un) for any j.

Assume first i ≤ r′. If aj = 0 for all j > r′, the desired inequality follows from

{ωj}j=1,...,r′ being an SMB of ψ[un] and Lemma 1.3.4. If aj ̸= 0 mod un for some j > r′,

we can apply Corollary 1.3.6 (1), and we have |
∑

j aj ·ψ ωj| ≤ |
∑

j aj ·ϕ λj|. We know

|
∑

j aj ·ψ ωj| ≥ 0 from Lemma 1.3.3 (1). By Lemma 1.3.3 (1) and 1.3.4, we have |λi| =
|ωi| < 0. Hence

|λi| = |ωi| < 0 ≤
∣∣∣∣∑

j

aj ·ψ ωj
∣∣∣∣ = ∣∣∣∣∑

j

aj ·ϕ λj
∣∣∣∣.
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As for the case i ≥ r′ + 1, note that there is ak ̸= 0 for some k ≥ i as λ1, . . . , λi−1, λ

are A/un-linearly independent. Similarly to the proof of Theorem 1.2.3, one can apply

Corollary 1.3.6 (2), (3), and (4) to show the inequality |λi| ≤ |λ|. □

Corollary 1.3.8 (cf. Corollary 1.2.5). Let {λi}i=1,...,r be an SMB of ϕ[un].

(1) If n is large enough so that |un|∞ ≥ |ω0
r |/|ω0

r′+1|, then for i = 1, . . . , r, we have

|λi| = |ωi|.
(2) For any positive integer n, we have |λr|/|λr′+1| ≥ |ω0

r |/|ω0
r′+1|.

(3) If n is large enough so that |un|∞ > |ω0
r |/|ω0

r′+1|, then we have |λi| < |ω0
r′+1| for

i = 1, . . . , r.

Proof. The equation |λi| = |ωi| for i = 1, . . . , r′ follows from Lemma 1.3.4. Similarly

to the proof of Corollary 1.2.5, one can apply Corollary 1.3.6 (1), Theorem 1.3.7, and

Proposition 1.1.8 (2) to show the rest of the claims. □

Remark 1.3.9. By Corollary 1.3.8 (1) and (2), we have |λi| · |un| = |ωi| if n is large

enough so that |un| ≥ |λr|/|λr′+1|.

Put B := {ω ∈ Cv | |ω| < |ω0
r′+1|}. Since B ∩ Λ = ∅, the exponential function eϕ

is injective on B. By (11), we have |eϕ(ω)| = |ω| for ω ∈ B. This implies eϕ(B) ⊂ B.

Put C := eϕ(B). There is an inverse logϕ : C → B of eϕ defined by a power series with

coefficients in K and eϕ : B ⇄ C : logϕ are inverse to each other (Although Λ is an A-

module via ψ, the claims in [Pap23, Lemma 5.1.5] can be applied due to the discreteness

of Λ).

Lemma 1.3.10 (cf. Lemma 1.2.7). (1) We have C ∩ ϕ[un] = B ∩ ϕ[un].
(2) We have the following maps which are inverse to each other

eϕ : B ∩ L⇄ B ∩ ϕ[un] : logϕ,

where

L :=

{∑
i

ai ·ψ ωi
∣∣∣∣ ai ∈ A with deg(ai) < deg(un)

}
is a set of representatives of all elements in u−nΛ/Λ.

(3) For any λ ∈ B ∩ ϕ[un], we have | logϕ(λ)| = |λ|.

Proof. We show #B ∩ L ≥ #B ∩ ϕ[un]. Then following the proof of Lemma 1.2.7,

one can obtain the rest of the proof. Put Bc := {ω ∈ Cv | |ω| ≥ |ω0
r′+1|}, which is

complementary to B in Cv. For any ω =
∑

j aj ·ψ ωj ∈ Bc∩L, there exists aj ̸= 0 for some

j > r′, for otherwise we have |ω| < 0 < |ω0
r′+1| by Lemma 1.3.3 (1). By Corollary 1.3.6 (1),

we have

|eϕ(ω)| ≥ |ω| ≥ |ω0
r′+1|.
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Hence eϕ(B
c ∩L) ⊂ Bc ∩ ϕ[un]. As eϕ is injective on L, we have #Bc ∩L ≤ #Bc ∩ ϕ[un].

Notice that the cardinal of L and ϕ[un] are the same. We have #B ∩L ≥ #B ∩ ϕ[un], as
desired. □

Lemma 1.3.11. Let {λi}i=1,...,r be an SMB of ϕ[un]. We have v(λi) ≥ 0 for i ≤ r′ and

v(λi) < 0 for i > r′.

Proof. For a positive integer j, let {λi,j}i=1,...,r be an SMB of ϕ[uj] as in Corol-

lary 1.1.12. By Proposition 1.1.8 (2), we have v(λi) = v(λi,n) for all i. It suffices to show

v(λr′,n) ≥ 0 and v(λr′+1,n) < 0.

We first show v(λr′,1) ≥ 0 and v(λr′+1,1) < 0. Put d := deg(u), u0 := u,
∑rd

i=0 uiX
qi :=

ϕu(X), and Pi := (qi, v(ui)) for i = 0, . . . , rd. As ϕ has stable reduction, we have v(ui) ≥ 0

for all i, v(ur′d) = 0, and v(ui) > 0 for all i > r′d. Hence the point Pr′d is a vertex of the

Newton polygon of ϕu(X). The segments on the left (resp. right) of Pr′d have slopes ≤ 0

(resp. slopes > 0). Hence there are exactly qr
′d roots with valuations ≥ 0. Here 0 ∈ ϕ[u]

is considered to have valuation > 0.

We show v(λr′,1) ≥ 0 and v(λr′+1,1) < 0 by induction. By (4), we have v(λ1,1) ≥ 0.

Fix a positive integer k ≤ r′ and assume v(λi,1) ≥ 0 for i < k. Then the elements λi,1 for

i < k generates an A/u-vector subspace of ϕ[u] containing q(k−1)d many elements. Since

ϕ has stable reduction, for any a ∈ A, all coefficients of ϕa(X) have valuation ≥ 0. By

the ultrametric inequality, we have v(a ·ϕ λi,1) for any a ∈ A mod u and i < k. Hence all

the elements in the vector subspace have valuations ≥ 0. Since q(k−1)d < qr
′d, there are

elements in ϕ[u]\
⊕

i<k(A/u) ·ϕλi,1 having valuation ≥ 0. By (4), we have v(λk,1) > 0. For

k = r′+1, we have the same inductive hypothesis as above. However, since q(k−1)d = qr
′d,

each element in ϕ[u] \
⊕

i<k(A/u) ·ϕ λi,1 has valuation < 0 and hence v(λr′+1,1) < 0.

Next, we show v(λr′,n) ≥ 0 (resp. v(λr′+1,n) < 0) by induction. Assume v(λr′,j−1) ≥ 0

(resp. v(λr′+1,j−1) < 0). By Corollary 1.1.12, the element λr′,j (resp. λr′+1,j) is a root of

ϕu(X)− λr′,j−1 (resp. ϕu(X)− λr′+1,j−1) having the largest valuation. By the induction

hypothesis and the valuations of the coefficients of ϕu(X), the left-most segment in the

Newton polygon of ϕu(X) − λr′,j−1 (resp. ϕu(X) − λr′+1,j−1) has slope ≤ 0 (resp. > 0).

Hence we have v(λr′,j) ≥ 0 and v(λr′+1,j) < 0. □

Remark 1.3.12. Assume v ∤ u. By the above proof, we have v(λi) = 0 and v(λj) < 0

for i = 1, . . . , r′ and j = r′ + 1, . . . , r. Similarly to Remark 1.2.4, the element λ1 has the

maximal valuation among elements in ϕ[un] \ {0}. This may fail if v | u. Indeed, let ϕ be

a rank 2 Drinfeld A-module over K so that 0 < v(j) < v0q. For a degree 1 finite prime

u of A, let {ξi,j}i=1,2 be an SMB of ϕ[uj] for j ≥ 1 obtained as in Corollary 1.1.12. By

Proposition 2.1.7 ([AH22, Proposition A.3 (1)]), we have v(ξ1,1) > v(ξ1,m).
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Let {λi}i=1,...,r denote an SMB of ϕ[un]. Assume that the positive integer n is large

enough so that |un|∞ > |ω0
r |/|ω0

r′+1|. By Corollary 1.3.8 (3) and Lemma 1.3.10 (1), for

each i, we have λi ∈ B ∩ ϕ[un] = C ∩ ϕ[un] and we put ω′
i := logϕ(λi).

Theorem 1.3.13 (cf. Theorem 1.2.9). (1) The family of elements {ω′
i}i=1,...,r′ is an

SMB of ψ[un].

(2) The family of elements {un ·ψ ω′
i}i=r′+1,...,r is an SMB of Λ.

Proof. (1) To check Definition 1.1 (1), we show that the elements ω′
i for i ≤ r′ belong

to ψ[un] and are A/un-linearly independent. By Lemma 1.3.10 (3) and Lemma 1.3.11, we

have v(ω′
i) = v(λi) ≥ 0 for i ≤ r′. By Lemma 1.3.2 (3), this implies that ω′

i ∈ ψ[un] for
i ≤ r′. Note that Eϕ : u−nΛ/Λ → ϕ[un] is an A/un-module isomorphism induced by eϕ
and eϕ(ω

′
i) = λi. If

∑
i≤r′ ai ·ψω′

i = 0 with ai ∈ A mod un, then we have
∑

i≤r′ ai ·ϕλi = 0.

This implies ai ≡ 0 mod un and hence the desired linear independence.

As {λi}i=1,...,r is an SMB of ϕ[un], we can straightforwardly check Definition 1.1 (2)

using Lemma 1.3.4.

(2) Similarly to (1), we can apply Lemma 1.3.11, 1.3.10 (3), 1.3.2 (3) to show ω′
i /∈ ψ[un]

such that un ·ψ ω′
i for i > r′ belong to Λ. We check the two dots in Proposition 1.1.4 (1).

Let us show that ω′
r′+1, . . . , ω

′
r are A-linearly independent first. If there exist ai ∈ A such

that
∑

i>r′ ai ·ψ ω′
i = 0, we can show ai ≡ 0 mod un for all i similarly to (1). Assume

ai ̸= 0 for some i. Let m be the integer such that um | ai for all i > r′ and um+1 ∤ ai for
some i. Then there exist bi ∈ A such that ai = biu

m for all i > r′ and bi ̸≡ 0 mod u for

some i. Hence
∑

i>r′ bi ·ψ ω′
i is a root of ψum(X) and we denote this root by ω. On the

other hand,

un ·ψ ω =
∑
i>r′

bi ·ψ (un ·ψ ω′
i) ∈ Λ.

Since Λ ∩ ψ[um] = 0, we have un ·ψ ω = 0 and hence ω ∈ ψ[un]. By (1), there exist bi ∈ A
mod un for i ≤ r′ such that ω =

∑
i≤r′ bi ·ψ ω′

i. This equality implies

0 = eϕ

(∑
i>r′

bi ·ψ ω′
i −
∑
i≤r′

bi ·ψ ω′
i

)
=
∑
i>r′

bi ·ϕ λi −
∑
i≤r′

bi ·ϕ λi.

As some bi ̸≡ 0 mod un, this is absurd.

Finally, we check the second dots in Proposition 1.1.4 (1). Put lr′+1 ≤ · · · ≤ lr to

be invariant of Λ as in Proposition 1.1.4 (2). Fix i to be a positive integer satisfying

r′ < i ≤ r. It suffices to show li = |un ·ψ ω′
i|. We have li ≤ |un ·ψ ω′

i|. Let us assume

li < |un ·ψ ω′
i|. Since λi ∈ B ∩ ϕ[un], we have |ω′

i| = |λi| by Lemma 1.3.10 (3). Hence

li/|un|∞ < |ω′
i| = |λi| < |ω0

r′+1|. By Proposition 1.1.4 (1), there is an SMB {η0j}j=r′+1,...,r

of Λ such that |η0i | = li. Let ηj be a root of ψun(X)− η0j for all j (cf. the definition of ωj
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before Lemma 1.3.3). As |ηi| = li/|un|∞ < |ω0
r′+1|, we have |eϕ(ηi)| = |ηi| by (11). This

implies

|eϕ(ηi)| = |ηi| = li/|un|∞ < |ω′
i| = |λi|.

By Theorem 1.3.7, the elements eϕ(ω
′
j) for j = 1, . . . , r′ and eϕ(ηj) for j = r′ + 1, . . . , r

form an SMB of ϕ[un]. By Proposition 1.1.8 (2), this contradicts |eϕ(ηi)| < |λi|. □

Proposition 1.3.14 (cf. Proposition 1.2.11). If n is large enough such that |un|∞ ≥
|ω0
r |/|ω0

r′+1|, then we have

K(u−nΛ) = Kn,

where K(u−nΛ) (resp. Kn) is the extension of K generated by all elements in u−nΛ (resp.

in ϕ[un]).

Proof. Note that eϕ is given by a power series with coefficients in K and it induces

an isomorphism Eϕ : u−nΛ/Λ → ϕ[un]. Similarly to the proof of Proposition 1.2.11, one

can show Kn ⊂ K(u−nΛ).

Note that logϕ is given by a power series with coefficients in K. For any y ∈ C ∩Ksep,

we have logϕ(y) ∈ K(y). Let {λi}i=1,...,r be an SMB of ϕ[un]. As |un|∞ > |ω0
r |/|ω0

r′+1|,
by Theorem 1.3.13, the families {ω′

i}i=1,...,r′ and {un ·ψ ω′
i}i=r′+1,...,r are respectively the

SMB of ψ[un] and Λ, where ω′
i = logϕ(λi). Since K(ω′

i) ⊂ K(λi) for each i, it suffices to

show that ω′
i for all i form a generating set of u−nΛ. For any ω ∈ u−nΛ, it is a root of

ψun(X) − un ·ψ ω. Note un ·ψ ω ∈ Λ. Since {un ·ψ ω′
i}i=r′+1,...,r is an SMB of Λ, we have

un ·ψ ω =
∑

i>r′ ai ·ψ (un ·ψ ω′
i) for some ai ∈ A. Hence

∑
i>r′ ai ·ψ ω′

i is also a root of

ψun(X) − un ·ψ ω. Since {ω′
i}i=1,··· ,r′ is an SMB of ψ[un], we have

∑
i>r′ ai ·ψ ω′

i − ω =∑
i≤r′ ai ·ψ ω′

i for some ai ∈ A mod un, i ≤ r′ and the claim follows. □

Combining Corollary 1.3.8 (2), Theorem 1.3.13, and Propostion 1.3.14, we have

Corollary 1.3.15 (cf. Corollary 1.2.12). Let l be a positive integer and {ηi}i=1,...,r

an SMB of ϕ[ul]. Let {λi}i=1,...,r be an SMB of ϕ[un]. If n is large enough such that

|un|∞ > |ηr|/|ηr′+1|, then we have

(1) the family {logϕ(λi)}i=1,...,r′ is an SMB of ψ[un];

(2) the family {un ·ψ logϕ(λi)}i=r′+1,...,r is an SMB of Λ;

(3) K(u−nΛ) = Kn.

Proposition 1.3.16 (cf. Proposition 1.2.13). Let ϕ be a Drinfeld A-module over K

(not necessarily have stable reduction). Assume v(u) = 0, i.e., u is not divisible by the

prime w. Let {λi}i=1,...,r be an SMB of ϕ[un]. Then we have∣∣∣∣∑
i

ai ·ϕ λi
∣∣∣∣ = max

i
{|ai ·ϕ λi|}

for any ai ∈ A mod un.
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Proof. We first show the claim for the case where ϕ has stable reduction such that the

reduction has rank < r. Assume that n is large enough such that |un|∞ > |ω0
r |/|ω0

r′+1|. By
Theorem 1.3.13, the families {ω′

i}i=1,...,r′ and {un ·ψω′
i}i=r′+1,...,r are respectively an SMB of

ψ[un] and Λ, where ω′
i = logϕ(λi).Without loss of generality, we assume deg(ai) < deg(un).

Assume that ai is nonzero for some i > r′. By Corollary 1.3.6 (3), we have∣∣∣∣eϕ(∑
i

ai ·ψ ω′
i

)∣∣∣∣ = max
i
{|ai ·ϕ eϕ(ω′

i)|}.

As eϕ(
∑

i ai ·ψω′
i) =

∑
i ai ·ϕλi, the claim follows. If ai = 0 for all i > r′, then

∑
i≤r′ ai ·ψω′

i

belongs to ψ[un]. By Lemma 1.3.2 (1), we have |
∑

i≤r′ ai ·ψ ω′
i| = 0 and |ai ·ψ ω′

i| = 0 for

all i ≤ r′. The desired equality follows from Lemma 1.3.4. Similarly to the proof of

Proposition 1.2.13, the case where n is arbitrary follows from the case where n is large

enough.

If ϕ does not have stable reduction, there exists b in some extension of K that is at

worst tamely ramified such that the Drinfeld module bϕb−1 has stable reduction. If bϕb−1

has good reduction, then each element in bϕb−1[un] has valuation 0 (Lemma 1.3.2 (1)).

In this case, the claim trivially follows. If the reduction of bϕb−1 has rank r′ < r, then we

have ∣∣∣∣∑
i

ai ·bϕb−1 bλi

∣∣∣∣ = max
i
{|ai ·bϕb−1 bλi|}.

We can rewrite the equation to be∣∣∣∣∑
i

b(ai ·ϕ λi)
∣∣∣∣ = max

i
{|b(ai ·ϕ λi)|},

where b(ai ·ϕ λi) denotes the usual multiplication of b and ai ·ϕ λi in Ksep. This equation

is equivalent to

v

(∑
i

b(ai ·ϕ λi)
)

= min
i
{v(b(ai ·ϕ λi))}.

This equation is

v(b) + v

(∑
i

ai ·ϕ λi
)

= v(b) + min
i
{v(ai ·ϕ λi)}.

Hence the claim follows. □

We have assumed above that any Drinfeld module has stable reduction. For a Drin-

feld A-module ϕ over K which does not have stable reduction, it turns out that ϕ is

isomorphic to a Drinfeld module having stable reduction over an at worst tamely ramified

subextension of K(ϕ[u])/K with w ∤ u.
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Proposition 1.3.17. Let ϕ be a rank r Drinfeld A-module over K (not necessarily have

stable reduction). Let u be a finite prime of A with v ∤ u. Assume that ϕ is isomorphic

to a Drinfeld module having stable reduction over some extension of K and the reduction

has rank r′ < r. Let {λi}i=1,...,r be an SMB of ϕ[u]. Then bϕb−1 has stable reduction over

K(λ1) for b = λ−1
1 and the extension K(λ1)/K is at worst tamely ramified.

Proof. For ϕt(X) = tX +
∑r

i=1 aiX
qi ∈ K[X]. Put vi = v(ai) for i = 1, . . . , r. Let

M be a tamely ramified extension of K of degree qr
′ − 1. Let b be an element in M with

valuation v(b) =
vr′

qr′−1
. Then bϕb−1 has stable reduction on M. The family {bλi}i=1,...,r is

an SMB of bϕb−1[u].

Let ψ and Λ denote the Drinfeld A-module having good reduction and the lattice

associated to ϕ via the Tate uniformization. The elements of ψ[u] has valuation 0 by

Lemma 1.3.2 (1). Then eϕ maps an SMB {ωi}i=1,...,s of ψ[u] to the first r′ elements of an

SMB of ϕ[u] (Theorem 1.3.7) and v(eϕ(ωi)) = v(ωi) = 0 for i = 1, . . . , s (Lemma 1.3.4).

We may take bλ1 to be eρ(ω1)
1. Hence v(bλ1) = 0 and v(λ1) = − vr′

qr′−1
. AsM(b−1eρ(ω1)) ⊂

M(ω1) and M(ω1)/M is unramified, the extension K(λ1)/K is at worst tamely ramified.

The Drinfeld module bρb−1 with b ∈ K(λ1) and v(b) = − vs
qs−1

is isomorphic to ρ and have

stable reduction over K(λ1). □

1Indeed, by Corollary 1.1.12, we can find an SMB {λ̂i}i=1,...,r of ϕ[un] for a large enough n so

that bλi = un−1 ·bϕb−1 λ̂i for i = 1, . . . , r and we could apply Theorem 1.3.13 to {λ̂i}i=1,...,r. If we take

{ωi}i=1,...,r′ to be
{
un−1 ·ψ

(
logbϕb−1(λ̂i)

)}
i=1,...,r′

, then eϕ maps {ωi}i=1,...,r′ to {bλi}i=1,...,r′ , as desired.



CHAPTER 2

Valuations of SMBs of ϕ[un]

Let K be a local field which is the completion of some global function field at a prime

v. For a positive integer r ≥ 2, let ϕ be a Drinfeld A-module over K such that

ϕt(X) = tX + asX
qs + arX

qr ∈ K[X],

where s and r are two positive integers satisfying s < r. Put

j :=
a
(qr−1)/(q−1)
s

a
(qs−1)/(q−1)
r

.

We call it the j-invariant of ϕ.

In Section 1, for a degree 1 finite prime u of A, we calculate the valuations of elements

of ϕ[un]. In Section 2, for a finite prime u of A with arbitrary degree, we apply the results

in Chapter 1 to the Drinfeld module ϕ to obtain the results similar to those in Section 1.

Explicitly, under certain conditions 1, we calculate the valuations of SMBs of ϕ[un].When

v is an infinite prime or ϕ has potentially bad reduction, for the lattice Λ (or the pair

(ψ, Λ)) associated to ϕ via the (Tate) uniformization, we also calculate the valuations of

SMBs of Λ and ψ[un].

1. Valuations of elements in ϕ[un] with deg(u) = 1

Let u be a finite prime of A with degree 1 throughout this subsection. Let v also

denote the valuation on K so that the uniformizer of K has valuation 1. Let v0, vs, and

vr denote respectively the valuations of the coefficients u, as, and ar of ϕu(X). We have
v(u) = v0 < 0 v is infinite;

v(u) = v0 = 0 v is finite and v ∤ u;

v(u) = v0 > 0 v is finite and v | u.

(13)

For each j ∈ Z, put

αj :=
v0q

js(qr−s − 1)

q − 1
.

1If the prime v is infinite, to obtain the valuations of SMBs of ϕ[un], we assume either that n is large

enough or v(j) ̸= v0q
js(qr−s−1)
q−1 for j ∈ Z≥1. See Proposition 2.2.1 and Corollary 2.2.3. If the prime v is

finite, we require either v(u) = 0 or v(ar) > v(u) > 0. See Proposition 2.2.6 and 2.2.11.

37
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As in Corollary 1.1.12, let {ξi,j}i=1,2 be an SMB of ϕ[uj] for each positive integer j. In

this section, we are to obtain the valuations of ξi,j for all i, j so that we can obtain the

valuations of all elements in ϕ[un].

1.1. Valuations of elements in ϕ[u]. Put P0 := (1, v0), Ps := (qs, vs), and Pr :=

(qr, vr). We define µ(P,Q) to be the slope of the segment PQ for P, Q ∈ R2. We have

µ(P0, Ps) =
vs−v0
qs−1

, µ(P0, Pr) =
vr−v0
qr−1

, and

µ(P0, Ps)− µ(P0, Pr) =
v(j)(q − 1)− v0qs(qr−s − 1)

(qs − 1)(qr − 1)
.

Note

α1 =
v0q

s(qr−s − 1)

q − 1
.

We see that µ(P0, Ps) < µ(P0, Pr) if and only if v(j) < α1. If v(j) < α1, then the Newton

polygon of ϕu(X) is P0PsPr having exactly two segments P0Ps and PsPr (We omit the

segment with infinite slope). We have

µ(P0, Ps) =
vs − v0
qs − 1

and µ(Ps, Pr) =
vr − vs

qs(qr−s − 1)
.

There are qs roots (resp. qs(qr−s− 1) roots) of ϕ[u] having valuations ≥ −µ(P0, Ps) (resp.

equal to −µ(Ps, Pr)). By (4), we have

v(ξi,1) =

−µ(P0, Ps) = −vs−v0
qs−1

i = 1, . . . , s;

−µ(Ps, Pr) = − vr−vs
qs(qr−s−1)

i = s+ 1, . . . , r.
(14)

In the next few subsections, we calculate the valuations of ξi,j for all i = 1, . . . , r and

j ≥ 1 following Corollary 1.1.12. It turns out that the different valuations of u in (13)

lead to different results.

1.2. Infinite prime cases. Now v(u) = v0 < 0. We resume the notations in the

previous subsection. We have the following lemma.

Lemma 2.1.1. Let v be an infinite prime and n a positive integer. For each i =

1, . . . , r, put Qi,n := (0, v(ξi,n)). Assume v(j) < α1. Let m be the integer such that v(j) ∈
(αm+1, αm].

(1) Fix i to be one of 1, . . . , s. For n ≥ 1, we have

v(ξi,n) = −
(
v0(n− 1)− v0

qs − 1
+

vs
qs − 1

)
.

Then the Newton polygon of ϕu(X)−ξi,n is Qi,nP0PsPr having exactly three segments.
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(2) Fix i to be one of s+ 1, . . . , r. We have that

v(ξi,n) =


−
(

vs
qs − 1

− v(j)(q − 1)

qns(qs − 1)(qr−s − 1)

)
1 ≤ n ≤ m;

−
(
v0(n−m) +

vs
qs − 1

− v(j)(q − 1)

qms(qs − 1)(qr−s − 1)

)
n ≥ m+ 1.

If 1 ≤ n ≤ m− 1, then the Newton polygon of ϕu(X)− ξi,n is Qi,nPsPr having exactly

two segments. If n ≥ m, then the Newton polygon of ϕu(X)−ξi,n is Qi,nP0PsPr having

exactly three segments.

Proof. We show (1). Put µnk := µ(Qi,n, Pk) for k = 0, s, r. We first show that the

Newton polygon of ϕu(X)− ξi,1 is Qi,1P0PsPr having exactly three segments. We have

µ1
0 = v0 +

vs − v0
qs − 1

, µ1
s =

vs +
vs−v0
qs−1

qs − 0
, µ1

r =
vr +

vs−v0
qs−1

qr − 0
.

We calculate

µ1
0 − µ1

s =
v0(q

s − 1)

qs
< 0,

µ1
s − µ1

r =
v(j)(q − 1)− v0(qr−s − 1)

qr(qs − 1)
< 0.

Hence P0 is a vertex of the Newton polygon. By the argument in Section 1.1, the Newton

polygon has the desired form. Assume that (1) for n − 1 is valid. Then the valuation

of ξi,n is calculated by −µn−1
0 = −v0 + v(ξi,n−1). We show that the Newton polygon of

ϕu(X)− ξi,n is Qi,nP0PsPr having exactly three segments. We have

µn0 = v0 − v(ξi,n), µns =
vs − v(ξi,n)
qs − 0

, µnr =
vr − v(ξi,n)
qr − 0

.

We calculate

µn0 − µns =
v0n(q

s − 1)

qs
< 0,

µns − µnr =
v(j)(q − 1) + v0(q

r−s − 1)((n− 1)(qs − 1)− 1)

qr(qs − 1)
< 0.

Then P0 is a vertex of the Newton polygon. By the argument in Section 1.1, the Newton

polygon has the desired form.

We check (2). Now i is one of 1, . . . , s. It is straight to check that the value v(ξi,1)

coincides with the one in (14). Let us consider the Newton polygon of ϕu(X)− ξi,n. Put
µnk = µ(Qi,n, Pk) for k = 0, r, s. (µnk differs from the one in the proof of (1)). For n = 1,

we have

µ1
0 = v0 +

vr − vs
qs(qr−s − 1)

, µ1
s =

vs +
vr−vs

qs(qr−s−1)

qs − 0
, µ1

r =
vr +

vr−vs
qs(qr−s−1)

qr − 0
.
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We calculate

µ1
0 − µ1

s =
−v(j)(q − 1) + v0q

2s(qr−s − 1)

q2s(qr−s − 1)
,

µ1
s − µ1

r =
v(j)(q − 1)

qs+r
< 0.

If v(j) ∈ (α2, α1), we have µ
1
0 < µ1

s and hence P0 is a vertex of the Newton polygon. In this

case, the Newton polygon is Qi,1P0PsPr having exactly three segments by the argument

in Section 1.1. If v(j) ≤ α2, we have µ
1
0 ≥ µ1

s and the Newton polygon is Qi,1PsPr having

exactly two segments.

Assume that (2) for n− 1 is valid. If n ≤ m− 1, the valuation of ξi,n is

−µn−1
s = −vs − v(ξi,n−1)

qs − 0
= −

(
vs

qs − 1
− v(j)(q − 1)

q(n+1)s(qs − 1)(qr−s − 1)

)
.

Next, we determine the Newton polygon of ϕu(X)− ξi,n. We have

µn0 = v0 − v(ξi,n), µns =
vs − v(ξi,n)
qs − 0

, µnr =
vr − v(ξi,n)
qr − 0

.(15)

We calculate

µn0 − µns =
−v(j)(q − 1) + v0q

(n+1)s(qr−s − 1)

q(n+1)s(qr−s − 1)
,(16)

µns − µnr =
v(j)(q − 1)(qns − 1)

qns+r(qs − 1)
< 0.(17)

Since n ≤ m − 1, we have µn0 ≥ µns . This implies that Qi,nPs is the first segment of the

Newton polygon and the Newton polygon is Qi,nPsPr having exactly two segments.

When n = m, we have the same inductive hypothesis as above and v(ξi,m) = −µm−1
s .

However, we have µm0 < µms by (16). Thus P0 is a vertex of the Newton polygon of

ϕu(X)− ξi,m by (17). By the argument in Section 1.1, the Newton polygon is Qi,mP0PsPr
having exactly three segments.

If n ≥ m + 1, then the valuation of ξi,n is calculated by −µn−1
0 = −v0 + v(ξi,n−1).

We show that the Newton polygon of ϕu(X) − ξi,n is Qi,nP0PsPr having exactly three

segments. We have µn0 , µ
n
s , and µ

n
r as in (15). We calculate

µn0 − µns =
−v(j) + v0(q

r−s − 1)(n−m)qms + v0
q(m+1)s(qr−s−1)

q−1

q(m+1)s

q − 1

qr−s − 1
< 0,

µns − µnr =
v(j)(q − 1)(qms − 1) + v0(n−m)(qs − 1)qms(qr−s − 1)

qms+r(qs − 1)
< 0.

Then P0 is a vertex of the Newton polygon. By the argument in Section 1.1, the Newton

polygon has the desired form. □
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For the rn elements ξi,j for i = 1, . . . , r and j = 1, . . . , n, the next proposition claims

that they form a basis of the rn-dimensional Fq-vector space ϕ[un] and can be arranged

with respect to their valuations.

Proposition 2.1.2. Let v be an infinite prime and n a positive integer. Assume

v(j) < α1. Let m be the integer such that v(j) ∈ (αm+1, αm]. Then the elements ξi,j for

i = 1 . . . , r and j = 1, . . . , n form a basis of the Fp-vector space ϕ[un]. Fix k to be one of

1, . . . , s, and l to be one of s+ 1, . . . , r. If n ≤ m, then we have

v(ξk,n) > v(ξk,n−1) > · · · > v(ξk,1) ≥ v(ξl,n) > v(ξl,n−1) > · · · > v(ξl,1),(18)

where the equality holds if and only if n = m and v(j) = αm. If n ≥ m+ 1, then we have

v(ξk,n) > v(ξk,n−1) > · · · > v(ξk,n−m+1)

≥ v(ξl,n) > v(ξk,n−m)

≥ v(ξl,n−1) > v(ξk,n−m−1)

≥ · · ·

≥ v(ξl,m+1) > v(ξk,1)

≥ v(ξl,m) > v(ξl,m−1) > · · · > v(ξl,1),

(19)

where each equality holds if and only if v(j) = αm. For any ξ =
∑

i,j aijξi,j ∈ ϕ[un] with
aij ∈ Fq, we have

v(ξ) = min
i,j
{v(aijξi,j)}.

Proof. The inequalities (18) and (19) follow from

(1) v(ξi,j+1) > v(ξi,j) for i = 1, . . . , r and j ≥ 1;

(2) v(ξk,1) ≥ v(ξl,j) for k = 1, . . . , s, l = s+1, . . . , r, and j ≤ m, where the equality holds

if and only if j = m and v(j) = αm;

(3) v(ξk,j+1) ≥ v(ξl,j+m) > v(ξk,j) for k = 1, . . . , s, l = s+ 1, . . . , r, and j = 1, . . . , n−m,
where the equality holds if and only if v(j) = αm.

These inequalities follow from Lemma 2.1.1, e.g., the left and the right inequalities of (3)

are equivalent to v(j) ≤ αm and v(j) > αm+1, respectively.

As {ξi,n}i=1,...,r is an SMB of ϕ[un], for any element ξ in ϕ[un], we have ξ =
∑r

i=1 bi ·ϕξi,n
for some bi ∈ A mod un and we may assume deg(bi) < deg(un). As deg(u) = 1, for each

i = 1, . . . , r, there exist aij ∈ Fq satisfying bi =
∑n−1

j=0 aiju
j and hence

ξ =
∑

i=1,...,r
j=0,...,n−1

aijξi,n−j.
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Moreover, ξi,j for all i, j are Fq-linearly independent, for otherwise, ξi,n for all i are A/un-

linearly independent. By Proposition 1.2.13, we have

v(ξ) = min
i=1,...,r

{v(bi ·ϕ ξi,n)}.

By the inequality (1), we have v(bi ·ϕ ξi,n) = minj{v(aijξi,n−j)} and hence

v(ξ) = min
i,j
{v(aijξi,n−j)}.

□

Let us look at the case where v(j) ∈ [α1,+∞). There are claims similar to Lemma 2.1.1

and Proposition 2.1.2.

Proposition 2.1.3. Let v be an infinite prime and n a positive integer. Assume

v(j) ∈ [α1,+∞).

(1) Fix i to be one of 1, . . . , r. We have

v(ξi,n) = −
(
v0(n− 1) +

vr − v0
qr − 1

)
.

Put Qn = (0, v(ξi,n)). Then the Newton polygon of ϕu(X) − ξi,n is QnP0Pr having

exactly two segments.

(2) The roots ξi,j for i = 1, . . . , r and j = 1, . . . , n form a basis of the Fq-vector space

ϕ[un]. For n ≥ 1 and each i, we have

v(ξi,n) > v(ξi,n−1) > · · · > v(ξi,1).

For any x =
∑

i,j aijξi,j ∈ ϕ[un] with aij ∈ Fq, we have

v(x) = min
i,j
{v(aijξi,j)}.

Proof. Similarly to the proof of Lemma 2.1.1 (1), we can prove (1) by induction on

n. We put µnk := µ(Qn, Pk) for k = 0, s, r. The calculations below are enough for the proof

of (1)

µ1
0 − µ1

s =
−v(j)(q − 1) + v0(q

r+s − 2qs + 1)

qs(qr − 1)
< 0,

µ1
0 − µ1

r =
v0(q

r − 1)

qr
< 0.

For an integer n > 1, we have by the induction hypothesis

µn0 − µns =
−v(j)(q − 1) + v0(q

r+s − 2qs + 1) + v0(q
s − 1)(qr − 1)(n− 1)

qs(qr − 1)
,

µn0 − µnr =
v0n(q

r − 1)

qr
< 0.

The proof of (2) is similar to that of Proposition 2.1.2. □
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1.3. Finite prime cases with v ∤ u. We have the following claims similar to

Lemma 2.1.1, Proposition 2.1.2, and Proposition 2.1.3. As in Section 1.1, put P0 = (1, v0),

Ps = (qs, vs), and Pr = (qr, vr).

Proposition 2.1.4. Let v be a finite prime satisfying v | u and n a positive integer.

(1) Fix k to be one of 1, . . . , s, and l to be one of s+ 1, . . . , r. If v(j) < 0, we have

v(ξk,n) = −
vs

qs − 1
,

v(ξl,n) = −
(

vs
qs − 1

− v(j)(q − 1)

qns(qs − 1)(qr−s − 1)

)
.

Put Qi,n = (0, v(ξi,n)) for i = 1, . . . , r. Then for each i, the Newton polygon of ϕu(X)−
ξi,n is Qi,nPsPr having exactly two segments.

Moreover, the elements ξi,j for all i = 1, . . . , r and j = 1, . . . , n form a basis of the

Fq-vector space ϕ[un]. Then we have

v(ξk,n) = v(ξk,n−1) = · · · = v(ξk,1) > v(ξl,n) > v(ξl,n−1) > · · · > v(ξl,1).

For any ξ =
∑

i,j aijξi,j ∈ ϕ[un] with aij ∈ Fq, we have

v(ξ) = min
i,j
{v(aijξi,j)}.

(2) Fix i to be one of 1, . . . , r. If v(j) ≥ 0, we have

v(ξi,n) = −
vr

qr − 1
.

Put Q = (0, v(ξi,n)). Then for each i, the Newton polygons of ϕu(X) − ξi,n are QP2

having exactly one segment. The roots ξi,j for all i = 1, . . . , r and j = 1, . . . , n form

a basis of the Fq-vector space of ϕ[un].

Proof. The claims for the valuations and the Newton polygons are proved by induc-

tion on n. For those in (1), put µk,ni := µ(Qk,n, Pi) and µl,ni := µ(Ql,n, Pi) for i = 0, s, r.

The following calculations are enough for the proof (It turns out these calculations can

be obtained by replacing the v0 in the proof of Lemma 2.1.1 with 0). We have
µk,10 − µk,1s = 0;

µk,1s − µk,1r =
v(j)(q − 1)

qr(qs − 1)
< 0,

and


µl,10 − µl,1s =

−v(j)(q − 1)

q2s(qr−s − 1)
> 0;

µl,1s − µl,1r =
v(j)(q − 1)

qs+r
< 0.

For an integer n > 1, we have by the induction hypothesis
µk,n0 − µk,ns = 0;

µk,ns − µk,nr =
v(j)(q − 1)

qr(qs − 1)
< 0,

and


µl,n0 − µl,ns =

−v(j)(q − 1)

q(n+1)s(qs − 1)
> 0;

µl,ns − µl,nr =
v(j)(qns − 1)(q − 1)

qns+r(qs − 1)
< 0.
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As for the claims of valuations and Newton polygons in (2), put µi = µ(Q,Pi) for i =

0, s, r. We have

µ0 − µr = 0,

µs − µr =
v(j)(q − 1)

qs(qr − 1)
< 0.

It remains to show all ξi,j form an Fq-basis of ϕ[un] and v(ξ) = mini,j{v(aijξi,j)}. The
proof is similar to that of Proposition 2.1.2 but we apply Proposition 1.3.16 instead. □

1.4. Finite prime cases with v | u. For each integer j ≤ 1, we have

αj :=
v0q

js(qr−s − 1)

q − 1
.

We have the following claims similar to Lemma 2.1.1.

Lemma 2.1.5. Let v be a finite prime satisfying v | u and n a positive integer. Put

P0 = (1, v0), Ps = (qs, vs), Pr = (qr, vr), and Qi,n = (0, v(ξi,n)) for i = 1, . . . , r.

(1) Assume 0 < v(j) < α1. Let m be the integer such that v(j) ∈ [α−(m−1), α−(m−2)).

(i) Fix i to be one of 1, . . . , s. We have

v(ξi,n) =


v0

q(n−1)s(qs − 1)
− vs
qs − 1

1 ≤ n ≤ m;

v0
q(m−1)s+(n−m)r(qs − 1)

− v(j)(q − 1)

q(n−m)r(qr − 1)(qs − 1)
− vr
qr − 1

n ≥ m+ 1.

If n ≤ m−1, then the Newton polygon of ϕu(X)− ξi,n is Qi,nPsPr having exactly

two segments. If n ≥ m, then the Newton polygon of ϕu(X) − ξi,n is Qi,nPr
having exactly one segment.

(ii) Fix i to be one of s+ 1, . . . , r. For n ≥ 1, we have

v(ξi,n) =
v(j)(q − 1)

q(n−1)r+s(qr−s − 1)(qr − 1)
− vr
qr − 1

.

The Newton polygon of ϕu(X)− ξi,n is Qi,nPr having exactly one segment.

(2) Assume v(j) ≤ 0. Fix k to be one of 1, . . . , s, and l to be one of s+1, . . . , r. We have

v(ξk,n) =
v0

q(n−1)s(qs − 1)
− vs
qs − 1

,

v(ξl,n) =
v(j)(q − 1)

qns(qs − 1)(qr−s − 1)
− vs
qs − 1

.

If v(j) < 0, then for each i, the Newton polygon of ϕu(X) − ξi,n is Qi,nPsPr hav-

ing exactly two segments. If v(j) = 0, then the Newton polygon of ϕu(X) − ξk,n
(resp. ϕu(X)− ξl,n) is Qk,nPsPr (resp. Ql,nPr) having exactly two segments (resp. one

segment).
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Proof. Similarly to the proof of Lemma 2.1.1 (1), we can prove the lemma by induc-

tion on n. For (i) of (1), we put µnk := µ(Qi,n, Pk) for k = 0, s, r. The calculations below

are enough for the proof of (i). We have

µ1
0 − µ1

s =
v0(q

s − 1)

qs
> 0,

µ1
s − µ1

r =
v(j)(q − 1)− v0(qr−s − 1)

qr(qs − 1)
.

For an integer 1 < n < m, we have by the induction hypothesis

µn0 − µns =
v0(q

ns − 1)

qns
> 0,

µns − µnr =
v(j)(q − 1)

qr(qs − 1)
− v0(q

r−s − 1)

q(n−1)s+r(qs − 1)
.

The inequality µns − µnr < 0 holds if and only if v(j) < α−(n−1). This is the case if

n = 1, . . . ,m − 1 and we have ≥ holds if n = m,m + 1, . . . . For n ≥ m + 1, we have by

the induction hypothesis

µn0 − µnr =
v(j)(q − 1)

(qs − 1)q(n+1−m)r
+ v0

(
1− qr − 1

(qs − 1)q(m−1)s+(n+1−m)r

)
> 0,

µns − µnr = v(j)

(
q − 1

qs(qr − 1)
+

(q − 1)(qr−s − 1)

q(n+1−m)r(qr − 1)(qs − 1)

)
(20)

− v0(q
r−s − 1)

q(m−1)s+(n+1−m)r(qr − 1)(qs − 1)
.

Put

f(j) := v(j)
q − 1

qs(qr − 1)
− v0(q

r−s − 1)

q(m−1)s+(n+1−m)r(qr − 1)(qs − 1)
.

Notice (20) > f(j). We have f(j) > 0 if and only if

v(j) >
v0(q

r−s − 1)

q(m−1)s(q − 1)
· 1

q(n−m)r+r−s(qs − 1)
.

As this inequality holds, we have (20) > 0.

As for (ii) of (1), now i is one of s + 1, . . . , r. We put µnk := (Qi,n, Pk) for k = 0, s, r.

The calculations below are enough for its proof. We have

µ1
0 − µ1

r =
v0(q

r−s − 1)qr+s − v(j)(q − 1)

qr+s(qr−s − 1)
> 0,

µ1
s − µ1

r =
v(j)(q − 1)

qr+s
> 0.
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For an integer n > 1, we have by the induction hypothesis

µn0 − µnr =
v0(q

r−s − 1)qnr+s − v(j)(q − 1)

qrn+s(qr−s − 1)
> 0,

µns − µnr =
v(j)(q − 1)

qr − 1

(
1

qs
− 1

qnr+s

)
> 0.

Finally, we show the result in (2) by induction on n. Put µk,ni := µ(Qk,n, Pi) and

µl,ni := µ(Ql,n, Pi) for i = 0, s, r. The calculations below are enough for the proof of (2).

We have 
µk,10 − µk,1s = v0

(
qs − 1

qs

)
> 0;

µk,1s − µk,1r =
v(j)(q − 1)− v0(qr−s − 1)

qr(qs − 1)
< 0,

and


µl,10 − µl,1s = v0 −

v(j)(q − 1)

q2s(qr−s − 1)
> 0;

µl,1s − µl,1r =
v(j)(q − 1)

qs+r
≤ 0.

Here µl,1s −µl,1r = 0 if and only if v(j) = 0. For an integer n > 1, we have by the induction

hypothesis 
µk,n0 − µk,ns = v0

(
qns − 1

qns

)
> 0,

µk,ns − µk,nr =
v(j)(q − 1)q(n−1)s − v0(qr−s − 1)

q(n−1)s+r(qs − 1)
< 0,

and


µl,n0 − µl,ns = v0 −

v(j)(q − 1)

q(n+1)s(qr−s − 1)
> 0;

µl,ns − µl,nr =
v(j)(q − 1)

qr(qs − 1)

(
1− 1

qns

)
≤ 0.

Here µl,ns − µl,nr = 0 if and only if v(j) = 0. □

The next result concerns the case v(j) ≥ α1.

Lemma 2.1.6. Let v be a finite prime satisfying v | u and n a positive integer. Assume

v(j) ∈ [α1,+∞). Fix i to be one of 1, . . . , r. We have

v(ξi,n) =
v0

q(n−1)r(qr − 1)
− vr
qr − 1

.

Put Qn = (0, v(ξi,n)). Then the Newton polygons of ϕu(X)− ξi,n are QnPr having exactly

one segment.
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Proof. Similarly to the proof of Lemma 2.1.1 (1), we can prove the lemma by induc-

tion on n. We put µnk := (Qi,n, Pk) for k = 0, s, r. The following calculations are enough

for the proof. We have

µ1
0 − µ1

r = v0

(
qr − 1

qr

)
> 0,

µ1
s − µ1

r =
v(j)(q − 1)

qs(qr − 1)
− v0(q

r−s − 1)

qr(qr − 1)
> 0.

For an integer n > 1, we have

µn0 − µnr = v0

(
qnr − 1

qnr

)
> 0,

µns − µnr =
v(j)(q − 1)

qs(qr − 1)
− v0(q

r−s − 1)

qrn−s(qr − 1)
> 0.

□

Similar to Proposition 2.1.2, we have the next proposition.

Proposition 2.1.7. Let v be a finite prime satisfying v | u and n a positive integer.

Fix k to be one of 1, . . . , s, and l to be one of s+ 1, . . . , r.

(1) Assume 0 < v(j) < α1. Let m be the integer such that v(j) ∈ [α−(m−1), α−(m−2)). Fix

k to be one of 1, . . . , s, and l to be one of s+ 1, . . . , r. If n ≤ m, we have

v(ξk,1) > v(ξk,2) > · · · > v(ξk,n) > v(ξl,1) > v(ξl,2) > · · · > v(ξl,n).

If n ≥ m+ 1, we have

v(ξk,1) > v(ξk,2) > · · · > v(ξk,m)

>v(ξl,1) ≥ v(ξk,m+1)

>v(ξl,2) ≥ v(ξk,m+2)

> · · ·

>v(ξl,n−m) ≥ v(ξk,n)

>v(ξl,n−m+1) > v(ξl,n−m+2) > · · · > v(ξl,n),

where each equality holds if and only if v(j) = α−(m−1).

(2) Assume v(j) ≤ 0. We have

v(ξk,1) > v(ξk,2) > · · · > v(ξk,n) > v(ξl,n) ≥ v(ξl,n−1) ≥ · · · ≥ v(ξl,1),

where each equality holds if and only if v(j) = 0.

(3) Assume v(j) ≥ α1. We have

v(ξk,1) = v(ξl,1) > v(ξk,2) = v(ξl,2) > · · · > v(ξk,n) = v(ξl,n).
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(4) The elements ξi,j for i = 1, . . . , r and j = 1, . . . , n form a basis of the Fq-vector space

ϕ[un]. For any ξ =
∑

i,j aijξi,j ∈ ϕ[un] with aij ∈ Fq, we have

v(ξ) = min
i,j
{v(aijξi,j)}.

Proof. We show (1). The two inequalities follow from

• v(ξi,j) > v(ξi,j+1) for i = 1, . . . , r and j ≥ 1;

• v(ξk,n) > v(ξl,j) for k = 1, . . . , s, l = s + 1, . . . , r, and j ≥ n − m + 1. Note

v(ξk,n) > v(ξl,n−m+1) if and only if v(j) < α−(m−2);

• v(ξk,m+j−1) > v(ξl,j) ≥ v(ξk,m+j) for j = 1, . . . , n −m, where the equality holds

if and only if v(j) = α−(m−1).

These inequalities follow from Lemma 2.1.5, e.g., the left and the right inequalities in the

third dot are equivalent to v(j) < α−(m−2) and v(j) ≥ α−(m−1), respectively. The claims

(2) and (3) follow similarly to (1).

Similarly to the proof of Proposition 2.1.2, we can show the first claim in (4). We show

v(ξ) = mini,j{v(aijξi,j)} for the case where v(j) ∈ (0, α1). By the ultrametric inequality,

it suffices to show when v(j) = α−(m−1) that

v(aξl,j + bξk,m+j) = v(ξl,j) = v(ξk,m+j), for a, b ∈ Fq and j = 1, . . . , n−m.(21)

Notice aξl,1 + bξk,m+1 is a root of ϕu(X)− bξk,m. By Lemma 2.1.5 (1), we know that the

Newton polygon of ϕu(X)− bξk,m has exactly one segment. This shows (21) for j = 1.We

show (21) by induction on j. Assume (21) for positive integers j−1. Notice aξl,j+ bξk,m+j

is a root of ϕu(X) − aξl,j−1 − bξk,m+j−1 and v(aξl,j−1 + bξk,m+j−1) = v(ξk,m+j−1). The

Newton polygon of ϕu(X) − aξl,j−1 − bξk,m+j−1 is the same as that of ϕu(X) − ξk,m+j−1.

By Lemma 2.1.5 (1), we know that the Newton polygon of ϕu(X) − aξl,j−1 − bξk,m+j−1

has exactly one segment. The desired equality hence follows.

The proofs of the cases where v(j) ≤ 0 and v(j) ≥ α1 similarly follow. □

2. Valuations of elements of SMBs of the lattice and of ϕ[un]

If v is an infinite prime, then by the uniformization, there is a rank r A-lattice Λ

associated to ϕ. If v is a finite prime and ϕ has stable reduction and the reduction is bad,

then by the Tate uniformization, there is a rank s Drinfeld A-module ψ and rank r − s
A-lattice Λ associated to ϕ, where A acts on Λ via ψ. Let u be a finite prime of A with

deg(u) = d for an arbitrary integer d. Our goal is to determine the valuations of elements

of SMBs of Λ, ψ[un], and ϕ[un] in terms of v(t), v(u), vs = v(as), and vr = v(ar).

2.1. Infinite prime cases. Let v be an infinite prime. For any positive integer j,

let {ξi,j}i=1,...,r denote an SMB of ϕ[tj]. In Lemma 2.1.1 and Proposition 2.1.3, we have
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determined the valuations v(ξi,j) for all i, j. As in Section 1, put for any positive integer

j ≥ 1

αj :=
v0q

js(qr−s − 1)

q − 1
,

where v0 := v(t). If v(j) < α1, let m be the integer satisfying v(j) ∈ (αm+1, αm]. Now the

condition |tn| ≥ |ξr,n|/|ξ1,n| in Remark 1.2.6 reads −v0n ≥ −v(ξr,n) + v(ξ1,n). For n ≥ m,

this inequality is equivalent to

−v0n ≥ −v0(m− 1) +
v0

qs − 1
− v(j)(q − 1)

qms(qs − 1)(qr−s − 1)
.

For any n ≥ m, the inequality |tn| ≥ |ξr,n|/|ξ1,n| holds. If v(j) ≥ α1, for a fixed positive

integer n, the valuations v(ξi,n) for i = 1, . . . , r are the same. Hence the condition |tn| ≥
|ξr,n|/|ξ1,n| is fulfilled for any positive integer n.

Proposition 2.2.1. Put v0 := v(t). Let {ωi}i=1,...,r be an SMB of Λ and {λi}i=1,...,r an

SMB of ϕ[un].

(1) If v(j) < α1 and m is the integer such that v(j) ∈ (αm+1, αm], we have

v(ωk) = v0 +
v0

qs − 1
− vs
qs − 1

for k = 1, . . . , s and

v(ωl) = v0m+
v(j)(q − 1)

qms(qs − 1)(qr−s − 1)
− vs
qs − 1

for l = s+ 1, . . . , r.

For n ≥ m/d and i = 1, . . . , r, we have |un| > |ωr|/|ω1| and v(λi) = v(ξi,nd) =

−v0nd+ v(ωi).

(2) Fix i to be one of 1, . . . , r. If v(j) ≥ α1, we have

v(ωi) = v0 +
v0

qr − 1
− vr
qr − 1

.

For n ≥ 1, we have v(λi) = v(ξi,nd).

We note that when r = 2, Chen-Lee has obtained the valuations v(ω1) and v(ω2) above

in [CL13, Theorem 3.1 and Corollary 3.1]. One may also recover Gekeler’s formula for

“1-sparse Drinfeld A-modules” in [Gek19B, Proposition 3.2] (See also the rank 2 case in

[Pap23, Proposition 5.5.8]).

Proof. The claims of v(ωi) for i = 1, . . . , r follow from Remark 1.2.6, Corollary 1.2.5 (1),

and the arguments before the proposition. Then the claims of v(λk) and v(λl) are proved

by Corollary 1.2.5 (1). □

We also calculate the valuations of a ·ϕ λi for any a ∈ A and i = 1, . . . , r.
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Lemma 2.2.2. Assume v(j) ∈ (αm+1, αm) for a positive integer m. Let n be an integer

≥ m/d and {λi}i=1,...,r an SMB of ϕ[un]. Fix k to be one of 1, . . . , s, and l to be one of

s+ 1, . . . , r. Then we have

v(tj ·ϕ λk) = v(ξk,nd−j) and v(t
j ·ϕ λl) = v(ξl,nd−j) for 1 ≤ j < nd.

Proof. We show the result for λl by induction. The proof of the result for λk is

similar. By Proposition 2.2.1 (1), we have v(λl) = v(ξl,nd). To know v(t ·ϕ λl) = v(tλl +

asλ
qs

l + arλ
qr

l ), we calculate

v(tλl)− v(asλq
s

l ) =
v0q

ms(qr−s − 1)((qs − 1)(nd−m) + 1)− v(j)(q − 1)

qms(qr−s − 1)
,

v(asλ
qs

l )− v(arλ
qr

l ) = v0q
s(qr−s − 1)(nd−m) +

v(j)(q − 1)(q(m−1)s − 1)

q(m−1)s(qs − 1)
.

Here v(asλ
qs

l ) − v(arλ
qr

l ) ≥ 0 if and only if nd = m = 1. The case nd = m = 1 is not

included in the claim and hence v(asλ
qs

l )− v(arλ
qr

l ) < 0. We havev(tλl)− v(asλ
qs

l ) > 0 nd = m;

v(tλl)− v(asλq
s

l ) < 0 nd > m.

Hence

v(t ·ϕ λl) =

v(asλ
qs

l ) = v(ξl,m−1) nd = m;

v(tλl) = v(ξl,nd−1) nd > m.

Assume that the result for j − 1 is valid. Put λ′l := tj−1 ·ϕ λl. If j ≤ nd−m, to know

v(t ·ϕ λ′l), we calculate

v(tλ′l)− v(asλ
′qs
l ) = v0((q

s − 1)(nd− j + 1−m) + 1)− v(j)(q − 1)

qms(qr−s − 1)
< 0,

v(asλ
′qs
l )− v(arλ′q

r

l ) = v0(q
r − qs)(nd− j + 1−m) +

v(j)(q − 1)

qs − 1

(
1− 1

q(m−1)s

)
< 0.

Hence we have v(t ·ϕ λ′l) = v(tλ′l) = v(ξ2,nd−j). As for the case j > nd − m, to know

v(t ·ϕ λ′l), we calculate

v(tλ′l)− v(asλ
′qs
l ) = v0 −

v(j)(q − 1)

q(nd−j+1)s(qr−s − 1)
> 0,

v(asλ
′qs
l )− v(arλ′q

r

l ) =
v(j)(q − 1)

qs − 1

(
1− 1

q(nd−j)s

)
< 0.

Hence v(t ·ϕ λ′l) = v(asλ
′qs
l ) = v(ξl,nd−j), and the result for λl follows. □

Corollary 2.2.3. Assume v(j) ∈ (αm+1, αm) for a positive integer m. Fix k to be one

of 1, . . . , s, and l to be one of s+ 1, . . . , r. For n ∈ Z≥1, let {λi}i=1,...,r an SMB of ϕ[un].
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(1) Assume n ≥ m/d. For any a ∈ A with deg(a) < nd, we have

v(a ·ϕ λk) = v(tdeg(a) ·ϕ λk) = v(ξk,nd−deg(a)),(22)

v(a ·ϕ λl) = v(tdeg(a) ·ϕ λl) = v(ξl,nd−deg(a)).(23)

(2) Assume n ≥ m/d. For λ ∈ ϕ[un] having valuation ≥ v(ξk,nd−m+1), there exists some

bi ∈ A for i = 1, . . . , r with deg(bi) < m such that
∑s

i=1 bi ·ϕ λi = λ.

(3) Let n be an arbitrary positive integer. We have

v(λk) = v(ξk,nd) and v(λl) = v(ξl,nd).

Proof. By Proposition 2.1.2, we have

v(ξk,j) > v(ξl,nd) for j = nd, nd− 1, · · · , nd−m+ 1,(24)

v(ξi,j+1) > v(ξi,j) for i = 1, . . . , r and positive integers j < nd.(25)

For (1), by (25) and the lemma, we have v(tdeg(a) ·ϕ λk) < v(tj ·ϕ λk) for any positive

integer j < deg(a). Hence the desired equality follows from the ultrametric inequality.

The equation for λl follows in the same way.

We show (2). As {λi}i=1,...,r is an SMB of ϕ[un], there exist bi ∈ A mod un such that

λ =
∑r

i=1 bi ·ϕ λi. We may assume that all bi have degree < deg(un) = nd. To show bi = 0

for i > s, assume conversely bl′ ̸= 0 for some l′ > s. By (23) and (25), we have

v(bl′ ·ϕ λl′) = v(tdeg(bl′ ) ·ϕ λl′) = v(ξl′,nd−deg(bl′ )
) ≤ v(ξl′,nd) = v(λl′).

By Proposition 1.2.13, we have

v(λ) = min
i=1,...,r

{v(bi ·ϕ λi)}.(26)

Hence v(λ) ≤ v(bl′ ·ϕ λl′) ≤ v(λl′) = v(λl). On the other hand, by (24), we have v(λ) ≥
v(ξk,nd−m+1) > v(ξl,nd) = v(λl), which is a contradiction. By (22), for each i ≤ s, we have

v(bi ·ϕ λi) = v(tdeg(bi) ·ϕ λi) = v(ξi,nd−deg(bi)).

By (26), the element bi satisfies v(bi ·ϕ λi) ≥ v(λ) ≥ v(ξi,nd−m+1) = v(ξk,nd−m+1). Then

(25) implies deg(bi) < m.

As for (3), if nd < m, we can find an SMB {λ′i}i=1,...,r of ϕ[u
n+m] by Proposition 1.1.11

satisfying λi = um ·ϕ λ′i. Then (3) straightforwardly follows from (1). □

Remark 2.2.4. Assume v(j) ∈ (αm+1, αm). Let n be a positive integer. The elements

tj ·ϕ λi for i = 1, . . . , r and 0 ≤ j < nd form an Fq-basis of ϕ[un] as a vector space.

Moreover, by the equation v(tj ·ϕ λi) = v(ξi,nd−j), the elements tj ·ϕ λi for all i and j
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can be arranged with respect to their valuations as in Proposition 2.1.2. To see that the

family {tj ·ϕ λi}i,j is a basis, assume that we have∑
i=1,...,r

j=0,...,nd−1

aij(t
j ·ϕ λi) = 0,

where aij ∈ Fq and some aij are nonzero. Notice that the left of this equation equals to∑
i=1,...,r

ai ·ϕ λi = 0,

where ai =
∑nd−1

j=0 aijt
j. As some ai ̸= 0, the equality implies λi are A/u

n-linear dependent,

a contradiction.

Remark 2.2.5. Assume v(j) ∈ [α1,+∞). Let n be a positive integer and {λi}i=1,...,r

an SMB of ϕ[un]. For i = 1, . . . , r, we claim that

v(tj ·ϕ λi) = v(ξi,nd−j) for j = 1, . . . , nd− 1.

The proof of this claim is similar to that of Lemma 2.2.2. In fact, if the claim for

λ′i := tj−1 ·ϕ λi is valid for j = 1, . . . , nd − 1, then the following calculation is enough to

show the result for tj ·ϕ λi

v(tλ′i)− v(asλ
′qs
i ) = v0(q

s − 1)(nd− j) + v0q
s(qr−s − 1)− v(j)(q − 1)

qr − 1
< 0,

v(tλ′i)− v(arλ
′qr
i ) = v0(q

r − 1)(nd− j).

By Proposition 2.1.3, for i = 1, . . . , r, we also have for any a ∈ A with deg(a) < nd that

v(a ·ϕ λi) = v(tdeg(a) ·ϕ λi) = v(ξi,nd−deg(a)).

2.2. Finite prime cases. Let v be a finite prime such that v(u) ≥ 0. Assume that

ϕ has stable reduction and the reduction is bad such that vs = 0 and v(j) < 0. Let

{ξi,j}i=1,...,r denote an SMB of ϕ[tj] throughout this subsection. In Proposition 2.1.4

and Lemma 2.1.5 (2), we have determined the valuations v(ξi,j) for i = 1, . . . , r and

all positive integers j. Since v(ξr,n) = v(ξs+1,n) for any positive integer n, the condition

|tn| ≥ |ξr,n|/|ξs+1,n| in Remark 1.3.9 always holds.

Proposition 2.2.6 (cf. Proposition 2.2.1). Assume v(u) = 0. For a positive integer n,

let {ωi}i=1,...,s be an SMB of ψ[un], {ω0
i }i=1,...,r−s an SMB of Λ, and {λi}i=1,...,r an SMB

of ϕ[un]. Fix k to be one of 1, . . . , s, and l to be one of s+ 1, . . . , r. Then for any positive

integer n, we have

v(ωk) = v(λk) = 0, v(ω0
l−s) =

v(j)(q − 1)

(qs − 1)(qr−s − 1)
, and v(λl) =

v(j)(q − 1)

qnds(qs − 1)(qr−s − 1)
.
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Proof. The results for ω0
l−s and λl follow from the value v(ξl,n) and Corollary 1.3.8 (1).

As for the equation v(ωk) = v(λk) = 0, as in the proof of Lemma 1.3.2, we can show that

the Newton polygon of ψun(X) is P0Pnds having exactly one segment with slope 0, where

P0 = (1, 0) and Pnds = (qnds, 0). As ωk for k = 1, . . . , s are nonzero roots of ψun(X), hence

v(ωk) = 0. The valuation v(λk) for k = 1, . . . , s follows from Lemma 1.3.4. □

Lemma 2.2.7. Assume v(u) = 0. Let n be a positive integer and {λi}i=1,...,r an SMB

of ϕ[un]. Fix l to be one of s+ 1, . . . , r. Then we have

v(tj ·ϕ λl) = v(ξl,nd−j) for 1 ≤ j < nd.

Proof. Similar to Lemma 2.2.2, we apply Proposition 2.1.4 (1) to show the result.

If the claim for λ′l := tj−1 ·ϕ λl is valid (One may take j = 1 and the base case for the

induction is obtained), then the calculations below are enough to show the result for tj ·ϕλl

v(tλ′l)− v(asλ
′qs
l ) = − v(j)(q − 1)

q(nd−j+1)s(qr−s − 1)
> 0,

v(asλ
′qs
l )− v(arλ′q

r

l ) =
v(j)(q − 1)

qs − 1

(
1− 1

q(nd−j)s

)
< 0.

□

Corollary 2.2.8. Assume v(u) = 0. Let n be a positive integer and {λi}i=1,...,r an SMB

of ϕ[un]. Fix k to be one of 1, . . . , s and l to be one of s + 1, . . . , r. For any a ∈ A with

deg(a) < nd, we have

v(a ·ϕ λk) = 0,

v(a ·ϕ λl) = v(tdeg(a) ·ϕ λl) = v(ξl,nd−deg(a)).

Proof. As the condition of Theorem 1.3.13 is fulfilled, the family {ωi}i=1,...,s :=

{logϕ(λi)}i=1,...,s is an SMB of ψ[un]. We have that a ·ψ ωk is a root of ψun(X) and hence

v(a ·ψ ωk) = 0 (In the proof of Proposition 2.2.6, we have seen that all roots of ψun(X)

have valuation 0). Lemma 1.3.4 implies v(a ·ϕ λk) = v(a ·ψ ωk) = 0.

By Proposition 2.1.4, we have v(ξl,j+1) > v(ξl,j) for 1 ≤ j < nd. Using the ultrametric

inequality and Lemma 2.2.7, this implies the result for a ·ϕ λl. □

Let us assume v(u) > 0, i.e., v | u then.

Lemma 2.2.9. Let α denote the rank s Drinfeld A-module over K determined by

αt(X) = tX + asX
qs ∈ K[X] so that v(as) = 0 and α has good reduction over K (We

have v(as) = 0 as ϕ has bad reduction over K). Let au,i denote the coefficients of αu(X)

such that uX +
∑d

i=1 au,iX
qis = αu(X). Then we have

v(au,d) = 0 and v(au,i) = v(u) for i < d.
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Proof. Put Q := qs. Let K ′ denote the extension of K generated by all Q−1-th roots

of the unity and some b ∈ Ksep with bQ−1 = as. We have C = bαb−1 as Drinfeld FQ[t]-
modules over K ′, where C denotes the Carlitz FQ[t]-module. Put u0 := u,

∑d
i=0 uiX

Qi :=

Cu(X), and Pi := (Qi, v(ui)) for i = 0, . . . , d. By the explicit formula of ui in [Pap23,

Corollary 5.4.4] (initially given by Carlitz), we have v(ui) = v(u) for i = 0, . . . , d− 1 and

v(ud) = 0. As

Cu(X) = (bαb−1)u(X) = uX +
s∑
i=1

au,ib
−(Qi−1)XQi ,

the result follows. □

Lemma 2.2.10. Assume vr > v(u) > 0. The leftmost segment in the Newton polygon

of ϕu(X) is P0Pds, where P0 := (1, v(u)) and Pds := (qds, 0). Here we omit the segment

with the infinite slope.

Proof. Admit the notations in Lemma 2.2.9. We have

ϕu(X) = uX +
d∑
i=1

au,iq
si +

∑
i=r+as+br
a,b∈Z≥0

i≤dr

biX
qi ,

for some bi ∈ K. For each bi, we have ar | bi. This implies that v(bi) ≥ vr > v(u). By

Lemma 2.2.9, we have v(au,i) = v(u) for i < d and v(au,d) = 0. Hence the leftmost segment

in the Newton polygon of ϕu(X) has the desired form. □

Proposition 2.2.11. Assume vr > v(u) > 0. For a positive integer n, let {ωi}i=1,...,s

be an SMB of ψ[un], {ω0
i }i=1,...,r−s an SMB of Λ, and {λi}i=1,...,r an SMB of ϕ[un]. Fix k

to be one of 1, . . . , s, and l to be one of s + 1, . . . , r. Then for any positive integer n, we

have v(ω0
l−s) and v(λl) as in Proposition 2.2.6 and

v(ωk) = v(λk) =
v(u)

(qds − 1)q(n−1)ds
.

Proof. Following the proof of Proposition 2.2.6, we can obtain the claim for v(ω0
l−s)

and v(λl).

Next, we show the claim for v(λk) and then the claim for v(ωk) follows from Lemma 1.3.4.

For any positive integer j, let {λi,j}i=1,...,r be an SMB of ϕ[uj] as in Corollary 1.1.12. By

Lemma 2.2.10, there are qds − 1 roots of ϕu(X) having valuation v(u)
qds−1

. The other roots

of ϕu(X) have valuations ∞ or < 0. As in Lemma 1.3.11, we can show v(λi,1) = v(u)
qds−1

for i = 1, . . . , s. Put Qj := (0, v(λi,j)). By induction on j, we can show that the leftmost

segment in the Newton polygon of ϕu(X) − λi,j is QjPds with Pds = (qds, 0) such that

v(λi,j) =
v(u)

(qds−1)qjds
. The result hence follows. □
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Remark 2.2.12. If s = 1, then ψ is isomorphic to the Carlitz A-module so that

the claim in the proposition can be proved without requiring the condition vr > v(u)

(See [Hua23, Proposition 6.1]). If s | r, we may consider ϕ as a Drinfeld FQ[t]-module of

rank r/s over K ′, where Q := qs and K ′ is the extension of K generated by all Q− 1-th

roots of unity. Hence ψ is isomorphic to the Carlitz FQ[t]-module. Similarly, the condition

vr > v(u) can be also dropped.



CHAPTER 3

On the extension generated by un-torsion points

Let K be a local field which is the completion of some (global) function field at a prime

v. Let v also denote the normalized valuation such that v(K×) = Z. In the applications

of Krasner’s lemma, we use the absolute value | − | on Ksep given by q−v(−). Let ϕ be a

rank r Drinfeld A-module over K such that

ϕt(X) = tX + asX
qs + arX

qr ∈ K[X],

where s and r are two positive integers satisfying s < r. The j-invariant of ϕ is defined to

be

j :=
a
(qr−1)/(q−1)
s

a
(qs−1)/(q−1)
r

.

For a finite prime u of A and a positive integer n, let Kn = K(ϕ[un]) denote the extension

of K generated by all un-torsion points of ϕ. Based on the results in Chapter 2, we are

concerned with the ramification of Kn/K.

In Section 1, when u is an arbitrary degree 1 finite prime of K and v(j) < α1 =
v0q(qr−1−1)

q−1
, we apply Krasner’s lemma to show: (1) K(ϕ[u]) contains the splitting field of

asX
qs+tX; (2) if v ∤ u, thenKn+1 is the compositum of extensions ofKn by roots of certain

degree qs polynomials. Section 2 is devoted to a review of the (Herbrand) ψ-function,

where we also prove a result concerning the ψ-function of the extension generated by a

certain polynomial with degree equal to a power of q. In Section 3, we study the extension

K1/K in the case s = 1. Under certain assumptions, we will obtain the ψ-function ofK1/K

and the action of the wild ramification subgroup G(K1/K)1 of G(K1/K) on an SMB of

ϕ[u] when the prime u is an arbitrary degree 1 finite prime of A.

Throughout Sections 4 and 5, For an infinite prime v, in Section 5.1, we obtain

the ψ-function of Kn/K and the action of the wild ramification subgroup G(Kn/K)1
of G(Kn/K) on an SMB of ϕ[un] for large enough n (n is large enough so that K(ϕ[un]) =

K(Λ) as in Corollary 1.2.12). For this, we first study the case where deg(u) = 1 in Sec-

tion 4. For a finite prime v, in Section 5.2, we study the action of G(Kn/K)1 on an SMB

of ϕ[un] for any positive integer n when v ∤ u.
we restrict ourselves to the case r = 2. If the prime v is infinite, in Section 4, under

certain assumptions, when deg(u) = 1.We extend these results to the case where deg(u) >

1 in Section 5.1. In Section 5.2, we obtain similar results when v is a finite prime.

56
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In Section 6, when u is a finite prime of A satisfying v ∤ u, we show that for a rank

r Drinfeld A-module ρ such that the Newton polygon of ρt(X) has exactly one segment,

the extension K(ρ[un])/K is at worst tamely ramified.

1. Applications of Krasner’s lemma

Fix a finite prime u of A with degree 1. We first prepare a lemma concerning a

subextension of the extension generated by u-torsion points of a Drinfeld A-module over

K.

Assume v ∤ u. For any positive integer n, the extension Kn+1/Kn is generated by roots

of polynomials ϕu(X)− ξi,n where {ξi,n}i=1,...,r is an SMB of ϕ[un]. By the calculations in

Section 1.1 in Chapter 2, we know that the Newton polygon of ϕu(X) − ξi,n has two or

more segments, and hence the polynomial is reducible. For each polynomial ϕu(X)− ξi,n,
we are to find a polynomial with a smaller degree and apply Krasner’s lemma to show that

its roots generate the same extension as the one generated by the roots of ϕu(X)− ξi,n−1.

1.1. On subextension of the extension generated by u-torsion points. Let u

be a finite prime of A with degree 1 (We admit the case where v | u in this subsection).

Let ρ be a rank r Drinfeld A-module such that

ρu(X) = uX +
r∑

k=1

akX
qk ∈ K[X].

Put

v0 := v(u) and vk := v(ak) for each k = 1, . . . , r.

Let {ξk,1}k=1,...,r be an SMB of ρ[u] (following Corollary 1.1.12). There is a unique integer

s such that for any positive integer j < s and any integer k > s, we have

vs − v0
qs − 1

≤ vj − v0
qj − 1

and
vs − v0
qs − 1

<
vk − v0
qk − 1

.(27)

The segment determined by the points (1, v0) and (qs, vs) is the first segment of the

Newton polygon of ρu(X). By an argument similar to the one in Lemma 1.3.11, we know

that v(ξk,1) = −vs−v0
qs−1

for k = 1, . . . , s. We first study the extension of K generated by ξk,1
for k ≤ s. Put

ψ(X) :=
∏
k≤s
ak∈Fq

(X − ak · ξk,1) ∈ K[X].

Here we have ψ(X) ∈ K[X] by [Neu99, Chapter II, Proposition 6.4]. Let Kψ denote the

extension of K generated by all roots of ψ(X). It equals the extension of K generated by

all ξk,1 for k ≤ s.
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Lemma 3.1.1. Let v be an infinite prime or a finite prime. Let s be the integer defined

above. Put η(X) := uX +
∑s

k=1 akX
qk . Let Kη denote the extension of K generated by

all roots of η(X). Then Kψ = Kη.

Proof. Let x, x1, x2, . . . , xqs−2 be all nonzero roots of ψ(X). Let x′j for j = 1, . . . , qs−1
denote all nonzero roots of η(X). By (27), the Newton polygon of η(X) has one segment

(omit the one with infinite slope) and every nonzero root has valuation −vs−v0
qs−1

. If we can

show that there exists some index i such that |x − x′i| < |x′i − x′j| for all j ̸= i, then

Krasner’s lemma (See [Neu99, p.152]) implies that K(x′i) ⊂ K(x). Consider

η(x) = as · x
qs−1∏
j=1

(x− x′j) =
s∑

k=1

akx
qk + ux = −

∑
k>s

akx
qk .

Here the rightmost equality follows from ρu(x) = 0. Notice

v

(
a−1
s

∑
k>s

akx
qk−1

)
≥ min

k>s

{
v
(
a−1
s akx

qk−1
)}

.

The inequality vk−v0
qk−1

> vs−v0
qs−1

in (27) implies

vk(q
s − 1) > vs(q

k − 1)− v0(qk − 1) + v0(q
s − 1).

For each k ̸= s, we have

v(a−1
s akx

qk−1) = −vs + vk −
(vs − v0)(qk − 1)

qs − 1

> −vs +
vs(q

k − 1)− v0(qk − 1) + v0(q
s − 1)

qs − 1
+
v0(q

k − 1)

qs − 1
− vs(q

k − 1)

qs − 1

= −(vs − v0).

This implies ∣∣∣∣∣
qs−1∏
k=1

(x− x′i)

∣∣∣∣∣ =
∣∣∣∣∣a−1
s

∑
k>s

akx
qk−1

∣∣∣∣∣ < qvs−v0 .

There must be some x′i such that |x− x′i| < q
vs−v0
qs−1 = |x′i − x′j| for j ̸= i, as desired.

There exists a root x′k of η(X) satisfying |x′k − xj| < q
vs−v0
qs−1 . As |xj − x| = q

vs−v0
qs−1 , we

have |xj − x′i| = q
vs−v0
qs−1 . This implies x′k ̸= x′i. Hence for any root of η(X), there exists a

root of ψ(X) so that the absolute value of the difference of these roots < q
vs−v0
qs−1 . Let x vary

within the roots of ψ(X). We have K(x′1, . . . , x
′
qs−1) ⊂ K(x, x1, . . . , xqs−2), i.e., Kη ⊂ Kψ.

Conversely, the conjugates of x are xj for some j but |x− x′i| < |x− xj| = q
vs−v0
qs−1 . Apply

Krasner’s lemma again and Kψ ⊂ Kη follows. □
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We apply the lemma to the Drinfeld module ϕ defined above. Let {ξi,1}i=1,...,r be an

SMB of ϕ[u] and put

ψ(X) :=
∏
k≤s
ak∈Fq

(X − ak · ξk,1) ∈ K[X].

Corollary 3.1.2. Put

η(X) := asX
qs + uX.(28)

Let v be an infinite or finite prime. Assume v(j) < v0qs(qr−s−1)
q−1

. Let Kψ and Kη be

respective the extension of K generated by the roots of ψ(X) and those of η(X). Then

Kψ = Kη.

We can choose an element b ∈ Kη with v(b) = vs−v0
qs−1

to modify ϕu(X), so that the

coefficient of Xq is 1:

(29) Φ(X) = brX
qr +Xqs + b0X := b′(ϕu(X/b))

with b′ = bq
s
/as. Then v(b0) = 0, and

v(br) =
−v(j)(q − 1) + v0q

s(qr−s − 1)

qs − 1
> 0.(30)

1.2. Infinite primes. Let v be an infinite prime and u a finite prime of A with

degree 1. As in Section 1.1 in Chapter 2, let {ξi,j}i=1,...,r denote an SMB of ϕ[uj] for each

positive integer j obtained as in Corollary 1.1.12. Put

v0 := v(t), vs := v(as), vr := v(ar), and αj :=
v0q

js(qr−s − 1)

q − 1
for j ≥ 1.

We will follow the notations for the Newton polygons in Chapter 2.

Lemma 3.1.3. Assume v(j) < α1. Let m be the integer satisfying v(j) ∈ (αm+1, αm].

Fix k to be one of 1, . . . , s and l to be one of s + 1, . . . , r. Then we have ξk,n+1 ∈ Kn for

n ≥ 1 and ξl,n+1 ∈ Kn for n ≥ m, i.e.,

Kn(ξk,n+1) = Kn for n ≥ 1 and Kn(ξl,n+1) = Kn for n ≥ m.

Proof. By Lemma 2.1.1 (1), for n ≥ 1, the Newton polygon of ϕu(X) − ξk,n is

Qk,nP0PsPr having exactly three segments, where Qk,n = (0, v(ξk,n)), P0 = (1, v0), Ps =

(qs, vs), and Pr = (qr, vr). Here, as in Chapter 2, by “the Newton polygon of ϕu(X)−ξk,n is
Qk,nP0PsPr”, we mean that the Newton polygon of ϕu(X)−ξk,n consists of three segments

Qk,nP0, P0Ps, and PsPr. Recall that we obtain {ξi,n+1}i=1,...,r following Corollary 1.1.12.

We see that ξk,n+1 is the only root of ϕu(X)− ξk,n whose valuation is −µ(Qk,n, P0). Here,

as in Chapter 2, µ(Qk,n, P0) denotes the ratio of the segment Qk,nP0. Thus due to [Neu99,

Chapter II, Proposition 6.4], we know (X − ξk,n+1) ∈ Kn[X] and thus ξk,n+1 ∈ Kn. One

can show ξl,n+1 ∈ Kn for n ≥ m in the same way. □
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We now study the extension Kn+1/Kn for 1 ≤ n ≤ m − 1. It is the extension of Kn

generated by all roots of ϕu(X)−ξ for all ξ ∈ ϕ[un]. It is also the extension ofKn generated

by an SMB {ξi,n+1}i=1,...,r of ϕ[u
n+1]. By Lemma 3.1.3, the extensionKn+1/Kn is generated

by ξl,n+1 for l = s + 1, . . . , r. Hence it is the compositum of extensions Kl,n/Kn, where

for each l = s+ 1, . . . , r, the extension Kl,n/Kn is generated by the roots of ϕu(X)− ξl,n.
We are to show that for each l = s+ 1, . . . , r, the extension Kl,n/Kn is generated by the

roots of a degree qs polynomials.

Assume v(j) < α1. Let m be the integer satisfying v(j) ∈ (αm+1, αm]. Fix l to be one

of s + 1, . . . , r. We can choose an element b ∈ Kη (Kη is defined in Corollary 3.1.2) with

v(b) = vs−v0
qs−1

to modify ϕu(X)− ξl,n, η(X), and η(X)− ξl,n, so that the coefficient of Xq

is 1:

Φl,n(X) = brX
qr +Xqs + b0X + cl,n := b′(ϕu(X/b)− ξl,n).

with b′ = bq
s
/as. Then

v(cl,n) =
v(j)(q − 1)− v0qs(n+1)(qr−s − 1)

qsn(qs − 1)(qr−s − 1)
,(31)

v(b0) = 0, and

v(br) =
−v(j)(q − 1) + v0q

s(qr−s − 1)

qs − 1
> 0.

We obtain modifications

H(X) := Xqs + b0X = b′(η(X/b))

Hl,n(X) := Xqs + b0X + cl,n = b′(η(X/b)− ξl,n)
(32)

of η(X) and η(X)− ξl,n.
In [KL04, Proposition 3], Kölle and Schmid applied Krasner’s lemma to study unram-

ified or tamely ramified extensions of a number field. Roughly speaking, their proposition

claims that two polynomials yield the same field extension if their Newton polygons are

the same. The following lemma is an analogue for certain wildly ramified extensions.

Lemma 3.1.4. Assume v(j) ≤ α2. Let m ≥ 2 be the integer such that v(j) ∈
(αm+1, αm]. If 1 ≤ n < m, then any root ξ′ of the polynomial η(X)− ξl,n satisfies

Kn(ξ
′) = Kl,n,

where Kl,n is the extension of Kn generated by all roots of ϕu(X)− ξl,n.

Proof. By Proposition 2.1.2, the roots of ϕu(X)−ξl,n whose valuations equal v(ξl,n+1)

are ξl,n+1 +
∑s

k=1 akξk,1 for all ak ∈ Fq. Due to [Neu99, Chapter II, Proposition 6.4], we
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have ∏
ak∈Fq

for k=1,...,s

(
X − ξl,n+1 −

s∑
k=1

akξk,1

)
∈ Kn[X].

(Note that this polynomial and η(X) − ξl,n have the same Newton polygon.) The field

Kl,n is the splitting field of this polynomial. Then we are reduced to showing Kn(ξ
′) =

Kn(ξl,n+1). Put x := bξl,n+1. Let x
′
i for i = 1, . . . , qs denote the roots of Hl,n(X). The

difference bξ′− x′i belongs to Kη ⊂ K1, as it is a root of H(X). Since Kn(x
′
i) = Kn(bξ

′) =

Kn(ξ
′), it suffices to show Kn(x

′
i) = Kn(x) for some i.

If there exists i such that |x − x′i| < |x′i − x′j| for all j ̸= i, then we apply Krasner’s

lemma and obtain Kn(x
′
i) ⊂ Kn(x). We have |x′i − x′j| = 1 for all i ̸= j since x′i − x′j is a

nonzero root of H(X). It suffices to find a suitable root x′i of Hl,n(X) such that |x−x′i| < 1.

To know |x− x′i|, we consider the valuation of

Hl,n(x) =

qs∏
i=1

(x− x′i) = xq
s

+ b0x+ cl,n = −brxq
r

,

where the rightmost equality comes from Φl,n(x) = 0. By (30) and (31), we have

v(brx
qr) = v(br) + v(cl,n)q

r−s

=
1

qs − 1

(
−v(j)(q − 1)

(
1− qr−s

qsn(qr−s − 1)

)
− v0qr

)
.

As v(j) < 0 and v0 < 0, we have

v(brx
qr) ≥ 1

qs − 1

(
−v(j)(q − 1)

(
qr − qs − qr−s

qs(qr−s − 1)

)
− v0qr

)
> 0,(33)

which induces ∣∣∣∣∣
qs∏
i=1

(x− x′i)

∣∣∣∣∣ < 1.

Hence there exists some i to be one of 1, . . . , qs such that |x− x′i| < 1.

Conversely, all conjugates of x = bξl,n+1 are of the form b(ξl,n+1 +
∑s

k=1 akξk,1) for

ak ∈ Fq. If ak ̸= a′k for some k, then∣∣∣∣∣b
(
ξl,n+1 +

s∑
k=1

akξk,1

)
− b
(
ξl,n+1 +

s∑
k=1

a′kξk,1

)∣∣∣∣∣ = 1.

Since |x− x′i| < 1, Krasner’s lemma implies Kn(ξl,n+1) ⊂ Kn(x
′
i) = Kn(ξ

′). □
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2. Basics of Herbrand ψ-functions

Throughout this section, let K be a complete discrete valuation field of characteristic

p so that the residue field is a perfect field. Let us recall the definition of the (Her-

brand) ψ-function ψL/K for a finite Galois extension L/K of a complete valuation field of

characteristic p. Let Gy denote the y-th upper ramification subgroup of the Galois group

G(L/K) of L/K. By the ψ-function of L/K, we mean the real-valued function on the

interval [0,+∞) defined as

ψL/K(y) =

∫ y

0

#G0

#Gr
dr.

We extend ψL/K to [−1,+∞) by letting ψL/K(y) = y if −1 ≤ y ≤ 0. Then ψL/K is a

continuous and piecewise linear function on [−1,+∞). If ψL/K is linear on some interval

[a, b] ⊂ [−1,∞), then we have Gb = Gy = GψL/K(y) for y ∈ (a, b]. By the (maximal) lower

ramification break of L/K, we mean the real number ψL/K(y), where y ≥ 0 is the maximal

real number such that Gy ̸= 1. By the wild ramification subgroup of L/K, we mean the

first lower ramification subgroup G1, which is equal to the union of Gy for y > 0.

Lemma 3.2.1 (see e.g., [FV02, Chapter III, (3.3)]). Let L/M and M/K be finite Ga-

lois extensions. Then

ψL/K = ψL/M ◦ ψM/K .

Assume that K contains Fq, where q is a power of p. Let vK denote the normalized

valuation associated to K so that vK(K
×) = Z. For a positive integer s, put

f(X) = Xqs +
s−1∑
k=1

akX
qk + aX ∈ K[X]

such that vK(ak)−vK(a)
qk−1

≥ −vK(a)
qs−1

for k = 1, . . . , s− 1, i.e., the Newton polygon of f(X)/X

has exactly one segment. The extension generated by the roots of the polynomial f(X)−c
for certain c ∈ K plays a key role in this chapter. To obtain its ψ-function, we will

need the following fact. It is a slight generalization of the function field case of [FV02,

Chapter III, Proposition 2.5] (cf. [AH22, Proposition 3.2]).

Proposition 3.2.2. Let f(X)−c be the polynomial above. Let F and L denote respec-

tively the splitting field of f(X) and that of f(X) − c. Put vc := vK(c) and va := vK(a).

Assume p ∤ vc and −vc
qs

< va − vc so that the Newton polygon of f(X)− c has exactly one

segment and R := vaqs

qs−1
− vc > 0. Then

(1) The extension of F/K is at worst tamely ramified.

(2) We have a composition of field extensions

K F L.
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Moreover, the extension L/F is totally ramified of degree qs and generated by one root

x of f(X)− c. We have an isomorphism

g : G(L/F )→ V ; σ 7→ σ(x)− x,

where V ∼= Fsq is the Fq-vector space consisting of the roots of f(X).

(3) Let e denote the ramification index of F/K. The ψ-function of L/K is

ψL/K(y) =


y, −1 ≤ y ≤ 0;

ey, 0 ≤ y ≤ R;

eqsy − (qs − 1)eR, R ≤ y.

Proof. LetM be an extension of K with ramification index qs−1.We can take some

b ∈M such that v(b) = −va
qs−1

. With b′ = bq
s
, modify f(X) to be

f1(X) = Xqs +
s−1∑
k=1

bkX
qk + b0X := b′f(X/b).

We have

vK(b0) = 0 and vK(bk) = vK(ak)−
va(q

s − qk)
qs − 1

≥ 0 for k = 1, . . . , s− 1.

Thus f1(X) is a monic polynomial whose reduction is separable. By Hensel’s lemma

[Pap23, Corollary 2.4.5], the extension ofM generated by the roots of f(X) is unramified.

Hence the extension of K generated by the roots of f(X) is at worst tamely ramified.

This shows (1).

For (2), note that the difference of any two roots of f(X) − c is a root of f(X). The

field F is contained in L and L is the extension of F generated by one root of f(X)−c. As
the polynomial f(X) is additive, it root form an Fq-vector space of dimensional s, denoted

V. Let x be a root of f(X) − c. For any σ ∈ G(L/F ), the difference σ(x) − x is a root

of f(X) and hence we obtain a map g : G(L/F ) → V ; σ 7→ σ(x) − x. The element σ is

determined by σ(x) since x generates L/F. Hence the map g is injective. This implies that

#G(L/F ) ≤ qs. As the Newton polygon of f(X) − c has exactly one segment, we have

vF (x) = evc/q
s, where vF denotes the normalized valuation associated to F and e denotes

the ramification index of F/K. As p ∤ e, p ∤ vc, we have #G(L/F ) = qs. Therefore, the

extension L/F is a totally ramified Galois extension of degree qs. The map G(L/F )→ V

is surjective as the cardinal of G(L/F ) is equal to that of V. As each element G(L/F )

fixes each element of V, the map g is a morphism.

We show (3). Let πL be a uniformizer of L. For a nontrivial element σ in G(L/F ), as

σ(x)/x is a unit of L (here x is a root of f(X)− c), we have

σ(x)/x = uF ϵ
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for some ϵ ∈ 1 + (πL) (the first higher unit group of L) and some uF in the unit group of

F. Notice

σ2(x)/x = σ(xuF ϵ)/x = uFσ(ϵ)σ(x)/x = u2Fσ(ϵ)ϵ,

σ3(x)/x = σ(xu2Fσ(ϵ)ϵ)/x = u2Fσ
2(ϵ)σ(ϵ)σ(x)/x = u3Fσ

2(ϵ)σ(ϵ)ϵ and so on.

As the Galois group of L/F is isomorphic to the Fq-vector space of dimensional s, the

Galois group element σ has order p. We have

1 = σp(x)/x = upF

p−1∏
k=0

σk(ϵ).

This implies upF ≡ 1 mod (πL). As p-th power map is injective on the residue field of L,

we have uF ≡ 1 mod (πL). Hence uF ∈ 1 + (πF ), where πF is a uniformizer of F. We

know that σ(x)/x ∈ 1+(πL). Hence there exists some uL in the unit group of L and some

positive integer b such that

σ(x)/x ≡ (1 + uLπ
b
L) mod (πL)

b+1.(34)

From (2), we know vL(x) = evc and is prime to qs (vL denotes the normalized val-

uation associated to L). Hence there exist integers i, j satisfying vL(x
iπjF ) = 1. Here i

is not divisible by p. The element xiπjF is a uniformizer of L. By [Se79, Chapter IV,

Proposition 5], to know the ψ-function of L/F, we need to know vL(σ(x
iπjF )/x

iπjF − 1)

for all nontrivial Galois group elements σ. By (34), we know

σ(xiπjF )/x
iπjF ≡ (1 + uLπ

b
L)
i ≡ 1 + iuiLπ

b
L mod (πL)

b+1.

On the other hand, as vL(σ(x)− x) = vaeqs

qs−1
for any nontrivial σ, we know b = vL(σ(x)−

x)− vL(x) = eR. The ψ-functions of F/K and L/F are respectively

ψF/K(y) =

y, −1 ≤ y ≤ 0;

ey, 0 ≤ y,
and ψL/F (y) =

y, −1 ≤ y ≤ eR;

qsy − (qs − 1)eR, eR ≤ y.

By Lemma 3.2.1, we obtain the ψ-function ψL/K as the proposition describes. □

3. The extension K1/K with s | r

Throughout this section, let ϕ be a Drinfeld A-module over K such that

ϕt(X) = tX + asX
qs + arX

qr ∈ K[X],

where s and r are positive integers satisfying s | r. Let u be a finite prime of A with degree

1 and v0 = v(u) (We also consider the case where v | u). Put

α1 :=
v0q

s(qr−s − 1)

q − 1
.
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In this section, we study the ramification of K1/K = K(ϕ[u])/K. Assume v(j) < α1.

We know that Kψ/K generated by ξ1,1 equals Kη/K generated by all roots of η(X) =

asX
qs+tX in Corollary 3.1.2. Thereafter, to avoid confusion with the “ψ” in the Herbrand

ψ-function, we use Kη instead of Kψ. As Kη/K is at worst tamely ramified, it is enough

for us to study the ramification of K1/Kη.

Note that the field Kη contains (qs − 1)-th roots of unity and hence the field Fqs . As
s | r, we may consider ϕ as a rank r/s Drinfeld Fqs [t]-module over Kη, and hence it suffices

to obtain the results for the case where s = 1. In the rest of this section, assume s = 1

so that ϕt(X) = tX + a1X
q + arX

qr , α1 = v0
q(qr−1−1)

q−1
, and Kη/K is the splitting field of

a1X
q + tX,

3.1. Decomposition of K1/Kη. In this subsection, we are to study the subexten-

sions of K1/Kη. Let us prepare a lemma.

Lemma 3.3.1. Let r be a positive integer ≥ 2. Put Sr :=
qr−1−1
q−1

, Y2(X) := Xq+Xq−1+

· · ·+X, and Yj+1(X) := Y2(X)
(
Yj(X)q + 1

)
for all positive integers j ≥ 2. Then we have

Yr(X) =
∑qSr

i=1X
i and Yr(X) =

∑r
i=2 Y

Si
2 .

Proof. We show the equations by induction on r. Notice S2 = 1. The second equation

can be shown straightforwardly. As for the first equation, if r = 3, then

Y3(X) = (Xq + · · ·+X)
(
(Xq + · · ·+X)q + 1

)
= (Xq + · · ·+X)(Xq2 +Xq(q−1) + · · ·+Xq + 1) =

q2+q∑
i=1

X i.

Assume that the first equation is valid for r − 1. We have

qSr∑
i=1

X i = (Xq + · · ·+X)
(
Xq(Sr−1) +Xq(Sr−2) + · · ·+Xq + 1

)
= Y2(X)

(
(XSr−1 +XSr−2 + · · ·+X)q + 1

)
As Sr − 1 = qSr−1, we know from the assumption that

qSr∑
i=1

X i = Y2(X)
(
(Yr−1)

q + 1
)
= Yr(X).

□

Put Zr(X) :=
∑r

i=2X
Si so that Yr(X) = Zr(Y2(X)). We have Z2(X) = X.

Lemma 3.3.2. For a integer r ≥ 2, let ϕ be a rank r Drinfeld A-module over K such

that ϕt(X) = tX + a1X
q + arX

qr ∈ K[X]. Assume v(j) < α1. Let KZ be the extension of
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Kη generated by all roots of

Z(X) := Zr(X)− β with β = ua−1
r ξ1−q

r

1,1 .

Let K ′
1 be the extension of KZ generated by all roots of the degree q polynomials

Hγ(X) = Xq − γX − γ for all roots γ−1 of Z(X).

Then

• K ′
1/Kη is a subextension of K1/Kη;

• K1/K
′
1 is a compositum of Kummer extensions.

Proof. Put b = ξ−1
1,1 in the definition of Φ(X) in (29) so that any element in Fq is

a root of Φ(X). We have that Xq −X =
∏

a∈Fq(X − a) divides Φ(X). Let Θ(X) be the

polynomial such that Θ(X)(Xq −X) = Φ(X). As Φ(1) = 0, we have −b0 − br = 1. Note

b0/br = β. We have

Θ(X) = br

(
Xq(qr−1−1) +Xq(qr−1−2)+1 +Xq(qr−1−3)+2 + · · ·+Xq−1 − β

)
,

whose roots generate K1/Kη. We consider Θ(X) := (XqSr +XqSr−1+ · · ·+X)−β so that

Θ(Xq−1) = Θ(X). Let L denote the subextension of K1/Kη generated by its roots. Then

K1/L is generated by the (q − 1)-st roots of x for all x ∈ L satisfying Θ(x) = 0, which

implies that K1/L is a compositum of Kummer extensions. If we can show L = K ′
1, then

two dots in the claim are proved.

Put Y2(X) = Xq +Xq−1 + · · · +X. By Lemma 3.3.1, we have Θ(X) = Yr(X) − β =

Z(Y2(X)). Hence L/KZ is generated by all roots of the polynomials

Xq + · · ·+X − γ−1 for all roots γ−1 of Z(X).

We prove L = K ′
1 by showing that the extension L/Kη is generated by all roots of Hγ(X)

for all γ. Notice

q∑
i=1

X i =
X(Xq − 1)

X − 1
=
X(X − 1)q

X − 1
= X(X − 1)q−1.

We have Y2(X + 1)− γ−1 = Xq +Xq−1 − γ−1. Then

Hγ(X) = −γXq ·
(
Y2

(
1

X
+ 1

)
− γ−1

)
.(35)

Thus L = K ′
1, as desired. □

Notice v(β) = −v(br) < 0 (See (30) for v(br)). The Newton polygon of Z(X) has

exactly one segment determined by the points (0,−v(br)) and (Sr, 0). Hence a root of
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Z(X) has valuation

c := −−v(j) + α1

Sr
.(36)

If v(j) < α1, then c < 0. Put C := q−c. We have C > 1.

Remark 3.3.3. For a integer r ≥ 3, let ϕ be a rank r Drinfeld Fq[t]-module over

K such that ϕt(X) = tX + a1X
q + arX

qr ∈ K[X]. We have shown that all roots of

Xq − γX − γ for all roots γ−1 of Yr(X) − β generates K ′
1/KZ . The extension K ′

1/KZ

contains a subextension K0
Z/KZ generated by all roots of polynomials Xq − γX with γ−1

varying within all roots of Z(X). Let γ−1
1 and γ−1

2 be two different roots of Z(X). Let Kγ1

be the extension of K0
Z generated by all roots of Hγ1(X). If p ∤ v(j), as v(γ) = −v(j)+v0qSr

Sr
,

we have p ∤ v(γ1) = −c. By Proposition 3.2.2, the extension Kγ1/K
0
Z is a degree q

wildly ramified extension. Hence if w is the normalized valuation associated to Kγ1 such

that w = Qv for some positive integer Q, then we have q | Q. As w(γ2) = −Qc, this
implies p | w(γ2). Hence one can not apply Proposition 3.2.2 to study the extension of

Kγ1 generated by the roots of Hγ2(X). Therefore, it may be hard to study K ′
1/KZ as an

extension generated by the roots of Yr(X)− β.

3.2. An alternative polynomial generating the same extension. We will con-

tinue to use the notation in Section 3.1. Throughout this subsection, for a integer r ≥ 3,

let ϕ be a rank r Drinfeld A-module over K such that

• ϕt(X) = tX + a1X
q + arX

qr ∈ K[X];

• for the valuation v(j) of the j-invariant of ϕ, we have v(j) < α1.

Put Ẑ(X) := XSr − β. In this subsection, we are to show that the roots of Ẑ(Y2(X
q−1))

also generate K1/KZ . The Newton polygons of Z(X) and Ẑ(X) are the same. It turns

out that we can obtain the ψ-function of K1/KZ by considering this extension as the one

generated by the roots of Ẑ(Y2(X
q−1)) in Section 3.3.

Following [KL04, Proposition 3], we may show that the extension KZ/Kη equals the

extension generated by the roots of Ẑ(X).

Lemma 3.3.4. Put Ẑ(X) = XSr − β. Let KẐ be the extension of Kη generated by the

roots of Ẑ(X).

(1) The extension KZ/Kη equals the extension of Kη generated by all roots of Ẑ(X).

(2) For each root x of Z(X), there exists a unique root x′ of Ẑ(X) such that |x − x′| =
C−qr−2+1. For roots x1 different from x and x′1 different from x′, we have |x − x′1| =
|x1 − x′| = C.

Proof. We show (1). Let x, x1, . . . , xSr−1 be all roots of Z(X). Let x′j for j = 1, . . . , Sr

denote the roots of Ẑ(X). We first show |x − xj| = C for any j and |x′i − x′j| = C for
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j ̸= i. We have Z ′(X) =
∏Sr−1

j=1 (X − xj) = SrX
Sr−1 + Sr−1X

Sr−1−1 + · · ·+ 1. Consider

Z ′(x) =
Sr−1∏
j=1

(x− xj) = Srx
Sr−1 + Sr−1x

Sr−1−1 + · · ·+ 1.

As |x| = C > 1, we have ∣∣∣∣∣
Sr−1∏
j=1

(x− xj)

∣∣∣∣∣ = |xSr−1|.

By the ultrametric inequality, we have |x−xj| ≤ |x|. The above equation implies |x−xj| =
|x| = C for any j. We have Ẑ ′(X) = SrX

Sr−1 and hence

Sr−1∏
j=1

(x′i − x′j) = Ẑ ′(x′i) = Srx
′Sr−1
i .

This implies ∣∣∣∣ Sr−1∏
j=1

(x′i − x′j)
∣∣∣∣ = |x′i|Sr−1.

As the Newton polygon of Ẑ(X) is the same as that of Z(X), we have |x′i| = |x′j| = C.

Similarly we have |x′i − x′j| = |x′i| = C for j ̸= i.

If we can show for some index i that |x − x′i| < C = |x′i − x′j| for all j ̸= i, then

Krasner’s lemma implies Kη(x
′
i) ⊂ Kη(x). To know |x− x′i|, consider

Z(x) =
Sr∏
i=1

(x− x′i) = xSr − β = xSr−1 + xSr−2 + · · ·+ xS2 ,

where the rightmost equation follows from Z(x) = Zr(X) − β = 0. By (36), we have

v(x) = c and |x| = C > 1. Hence∣∣∣∣∣
Sr∏
j=1

(x− x′j)

∣∣∣∣∣ = |xSr−1 + · · ·+ xS2| = |xSr−1 | = CSr−1 .(37)

There exists an index i such that |x− x′i| ≤ C
Sr−1
Sr < C, as desired.

There exists a root x′k of Z(X) satisfying |x′k − xj| < C. As |xj − x| = C, we have

|xj − x′i| = C. This implies x′k ̸= x′i. Hence for any root of Ẑ(X), there exists a root of

Z(X) so that the absolute value of the difference of these roots < C. Let x vary within

the roots of Z(X). We have K(x′1, · · · , x′Sr) ⊂ K(x, x1, . . . , xSr−1). Hence KZ ⊂ KẐ . As

|x− x′i| < C = |x− xj| for all j, we can similarly show that KZ ⊂ KẐ .

As for (2), one equation is already proved above. Similarly, as |x′i− x′j| = C for j ̸= i,

we have |x− x′j| = C. Hence x′i is the only root of Ẑ(X) such that |x− x′i| < C. By (37),

we have |x− x′i| = CSr−1−Sr+1 = C−qr−2+1. □



3. THE EXTENSION K1/K WITH s | r 69

Lemma 3.3.4 (1) implies that the extension KZ/K is at most tamely ramified. Alter-

natively, in the above proof, we have shown that |x − xj| = |x| for two different roots x

and xj of Z(X). For an element σ ∈ G(KZ/Kη), we have that σ(x) = xj for some j if σ

does not fix x. The equality |x− xj| = |x| in the proof implies that v((σ(x)− x)/x) = 0.

Let x vary within the roots of Z(X). We know that the wild ramification subgroup of the

extension KZ/Kη is trivial. Hence the extension KZ/Kη is at worst tamely ramified.

The next corollary is concerned with Galois actions. Let VZ and VẐ denote respectively

the set of roots of Z(X) and those of Ẑ(X). By Lemma 3.3.4 (2), for each root x of Z(X),

we have found a unique root x′ of Ẑ(X) satisfying |x−x′| = C−qr−2+1. This defines a map

fZ : VZ → VẐ . Note that the Galois group G(KZ/Kη) permutes both VZ and VẐ .

Corollary 3.3.5. The map fZ is a bijection and is compatible with the G(KZ/Kη)-

action, i.e., if x 7→ x′, then σ(x) maps to σ(x′).

Proof. Note that the polynomials Z(X) and Ẑ(X) have the same degree. The

bijectivity follows from Lemma 3.3.4 (2). As for the compatibility, if x maps to x′, i.e.,

|x − x′| = C−qr−2+1, we have |σ(x) − σ(x′)| = |σ(x − x′)| = C−qr−2+1 as σ preserves the

absolute value. Then σ(x) maps to σ(x′) as σ(x′) is the only root of Z(X) satisfying

|σ(x)− σ(x′)| = C−qr−2+1. □

Lemma 3.3.6. Fix a root γ−1 of Z(X) and put γ′−1 := fZ(γ
−1) (fZ in the above

corollary).

(1) Let Kγ and Kγ′ be respectively the extension of KZ generated by all roots of Hγ(X)

and those of Hγ′(X). Then we have Kγ = Kγ′ . Especially, the extension K
′
1/KZ equals

the extension of KZ generated by all roots of the polynomials Hγ′(X) = Xq−γ′X−γ′

for γ′ varying within roots of Ẑ(X).

(2) For each root x of Hγ(X), there exists a unique root x′ of Hγ′(X) such that |x− x′| =
C−qr−2

. For each root x1 different from x and each root x′1 different from x′, we have

|x− x′1| = |x1 − x′| = C− 1
q−1 .

As |γ| = C−1 < 1, the Newton polygons of Hγ(X) and Hγ′(X) are the same and both

have exactly one segment determined by the points (0, v(γ)) and (q, 0). Hence the roots

of these two polynomials have absolute value C− 1
q .

Proof. We show (1). The root γ′−1 = f(γ−1) of Z(X) satisfies

|γ−1 − γ′−1| = C−qr−2+1.

Note |γ| = C−1. We have

|γ − γ′| = C−qr−2−1.
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We are to show that the extension Kγ of KZ generated by the roots of Hγ(X) equals the

extension Kγ′ of KZ generated by the roots of Hγ′(X). This is enough to claim (1).

Let x, x1, . . . , xq−1 be all roots of Hγ(X). Let x′i for i = 1, . . . , q denote the roots

of Hγ′(X). Since the difference of two roots of Hγ(X) is a root of Xq − γX, we have

|x − xj| = |γ|
1
q−1 = C− 1

q−1 . Similarly, we have |x′i − x′j| = C− 1
q−1 for j ̸= i. If there

exists an index i such that |x − x′i| < |x′i − x′j| for j ̸= i, then Krasner’s lemma implies

KZ(x
′
i) ⊂ KZ(x). Consider

Hγ′(x) =

q∏
i=1

(x− x′i) = xq − γ′x− γ′ = (γ − γ′)x+ (γ − γ′).

As |x| = C− 1
q < 1, we have∣∣∣∣∣

q∏
i=1

(x− x′i)

∣∣∣∣∣ = |γ − γ′| = C−qr−2−1.(38)

Hence there exists an index i such that |x− x′i| ≤ C− qr−2+1
q < C− 1

q−1 = |x′i− x′j| for j ̸= i.

By Kranser’s lemma, this shows KZ(x
′
i) ⊂ KZ(x).

There exists a root x′k of Hγ(X) satisfying |x′k−xj| < C− 1
q−1 . As |xj −x| = C− 1

q−1 , we

have |xj − x′i| = C− 1
q−1 . This implies x′k ̸= x′i. Hence for any root of Hγ′(X), there exists

a root of Hγ(X) so that the absolute value of the difference of these root < C− 1
q−1 . We

have K(x′1, . . . , x
′
q) ⊂ K(x, x1, . . . , xq−1). Hence Kγ′ ⊂ Kγ. As |x−x′i| < C− 1

q−1 = |x−xj|
for all j, we can similarly show that Kγ ⊂ Kγ′ .

As for (2), one equation is already proved above. Similarly, as |x′i−x′j| = C− 1
q for j ̸= i,

we have |x − x′j| = C− 1
q . Hence x′i is the only root of Hγ′(X) such that |x − x′i| < C− 1

q .

By (38), we have |x− x′i| = C−qr−2
. □

Put Θ(X) = Z(Y2(X)) (as in the proof of Lemma 3.3.1) and ÊΘ(X) := Ẑ(Y2(X)).

Corollary 3.3.7. Let δ be a root of Θ(X).

(1) There exists a root δ′ of ÊΘ(X) such that |δ − δ′| = C−qr−2+ 2
q .

(2) Let δ′j for j = 1, . . . , q− 1 be roots of Y2(X)−Y2(δ′) different from δ′. Then |δ− δ′j| =
C

q−2
q(q−1) . Let δj for j = 1, . . . , q − 1 be roots of Y2(X) − Y2(δ) different from δ. Then

|δ′ − δj| = C
q−2
q(q−1) .

(3) For any root δ′′ of ÊΘ(X) such that Y2(δ
′) ̸= Y2(δ

′′), we have |δ − δ′′| = C
1
q . For any

root δ(1) of Θ(X) such that Y2(δ(1)) ̸= Y2(δ), we have |δ′ − δ(1)| = C
1
q .

(4) Fix δ. The element δ′ is the only root of ÊΘ(X) satisfying |δ − δ′| = C−qr−2+ 2
q . Fix δ′.

The element δ is the only root of Θ(X) satisfying |δ′ − δ| = C−qr−2+ 2
q .
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Proof. Put x := (δ − 1)−1. By (35), the element x is a root of Hγ(X), where γ−1 is

a root of Z(X) with γ−1 = Y2(δ). As |x| = |γ|
1
q = C− 1

q < 1, we have

|δ| =
∣∣∣∣1x + 1

∣∣∣∣ = C
1
q .

Hence |δ − 1| = |δ|.
For γ′−1 = fZ(γ

−1), by Lemma 3.3.6, for the root x of Hγ(X), there exists a unique

root x′ of Hγ′(X) satisfying |x− x′| = C−qr−2
. Put δ′ := 1

x′
+ 1. Then∣∣(δ − 1)−1 − (δ′ − 1)−1

∣∣ = |x− x′| = C−qr−2

.

As |x′| = |γ′|
1
q = C− 1

q < 1, we have |δ′ − 1| = |δ′| = C
1
q . Hence

|δ − δ′| = C−qr−2+ 2
q

and (1) follows.

We show the first claim of (2) and the second claim similarly follows. Let x′j for

j = 1, . . . , q − 1 denote the roots of Hγ′(X) different from x′. Put δ′j :=
1
x′j

+ 1 for all j.

These δ′j are roots of Y2(X) − Y2(δ′) different from δ′. We have |δ′j − 1| = |δ′j| = C
1
q . As

x′ − x′j is a nonzero root of Xq − γ′X, we have |x′ − x′j| = C− 1
q−1 . Since∣∣(δ′ − 1)−1 − (δ′j − 1)−1

∣∣ = |x′ − x′j| = C− 1
q−1 ,

we have

|δ′ − δ′j| = C
q−2
q(q−1) .

As |δ − δ′| = C−qr−2+ 2
q < C

q−2
q(q−1) , we have

|δ − δ′j| = max{|δ − δ′|, |δ′ − δ′j|} = |δ′ − δ′j| = C
q−2
q(q−1) .

and this shows (2).

We show the first claim of (3) and the second claim similarly follows. Let δ′′ be as

in the claim such that Y2(δ
′′) is a root of Z(X) different from Y2(δ

′). In the proof of

Lemma 3.3.4, we have shown |Y2(δ′)− Y2(δ′′)| = C. Let δ′′j for j = 1, . . . , q be the roots of

Y2(X)− Y2(δ′′) such that δ′′ = δ′′1 . We also have

Y2(δ
′)− Y2(δ′′) =

q∏
j=1

(δ′ − δ′′j ).

Hence ∣∣∣∣∣
q∏
j=1

(δ′ − δ′′j )

∣∣∣∣∣ = C.
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For each j, as |δ′| = |δ′′j | = C
1
q , we have |δ′ − δ′′j | ≤ |δ′| and the above equation implies

|δ′ − δ′′j | = |δ′| = C
1
q . As |δ − δ′| = C−qr−2+ 2

q < C
1
q , we have |δ − δ′′j | = max{|δ − δ′|, |δ′ −

δ′′j |} = C
1
q .

(4) follows from (1), (2), and (3). □

Let VΘ and VÁΘ denote respectively the set of roots of Θ(X) and those of ÊΘ(X). By

Lemmas 3.3.1, 3.3.4, and 3.3.6, the extension K ′
1/Kη is either generated by the elements

in the set VΘ, or the elements in the set VÁΘ. By Corollary 3.3.7, we have found for each

root δ of Θ(X) a unique root δ′ of ÊΘ(X) satisfying |δ − δ′| = C−qr−2+ 2
q . This defines

a map fΘ : VΘ → VÁΘ. Note that the Galois group G(K ′
1/Kη) permutes both VΘ and

VÁΘ. Following the proof of Corollary 3.3.5, we can apply Corollary 3.3.7 (4) to show the

following result.

Corollary 3.3.8. The map fΘ is bijective and is compatible with the G(K ′
1/Kη)-action.

Lemma 3.3.9. Fix δ to be a root of Θ. Put δ′ = fΘ(δ) and γ = Y2(δ). Let Kδ and

Kδ′ denote respectively the extensions of Kγ (See Lemma 3.3.6) generated by all roots of

Xq−1 − δ and those of Xq−1 − δ′.
(1) We have Kδ = Kδ′ . Especially, the extension K1/K

′
1 equals the extension of K ′

1 gen-

erated by all roots of Xq−1 − δ′ for all δ′ ∈ VÁΘ.
(2) For each root x of Xq−1 − δ, there exists a unique root x′ of Xq−1 − δ′ such that

|x − x′| = C−qr−2+ 1
q−1 . For a root x1 of Xq−1 − δ different from x and a root x′1 of

Xq−1 − δ′ different from x′, we have |x− x′1| = |x1 − x′| = C
1

q(q−1) .

The Newton polygons of Xq−1 − δ and Xq−1 − δ′ are the same and both have exactly

one segment determined by the points (0, v(δ)) = (0, c/q) and (q − 1, 0).

Proof. If Kδ = Kδ′ , we let δ vary within the roots of VÁΘ and the second claim of (1)

follows. We show Kδ = Kδ′ .

Let x, x1, . . . , xq−2 be all roots of Xq−1 − δ. Let x′i for i = 1, . . . , q − 1 denote the

roots of Xq−1 − δ′. We first show |x − xj| = C
1

q(q−1) and |x′i − x′j| = C
1

q(q−1) . Notice

(Xq−1 − δ)′|X=x =
∏q−2

j=1(x− xj) = (q − 1)xq−2. We have∣∣∣∣∣
q−2∏
j=1

(x− xj)

∣∣∣∣∣ = |x|q−2.

As |x| = |xj| = C
1

q(q−1) , this implies |x − xj| = |x| = C
1

q(q−1) . Notice (Xq−1 − δ′)′|X=x′i
=∏q−2

j=1(x
′
i − x′j) = (q − 1)x′q−2

i . We have∣∣∣∣∣
q−2∏
j=1

(x′i − x′j)

∣∣∣∣∣ = |x′i|q−2.
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As |x′i| = |x′j| = C
1

q(q−1) , we have |x′i − x′j| ≤ |x′i|. This equation implies |x′i − x′j| = |x′i| =
C

1
q(q−1) .

If we can show for some i that |x−x′i| < C
1

q(q−1) = |x′i−x′j| for all j ̸= i, then Kranser’s

lemma implies Kγ(x
′
i) ⊂ Kγ(x). Consider

q−1∏
i=1

(x− x′i) = xq−1 − δ′ = δ − δ′.

As |δ − δ′| = C−qr−2+ 2
q , we have∣∣∣∣∣

q−1∏
i=1

(x− x′i)

∣∣∣∣∣ = C−qr−2+ 2
q .(39)

There is some index i such that |x − x′i| ≤ C− qr−2

q−1
+ 2
q(q−1) < 1 < C

1
q(q−1) for any j ̸= i, as

desired. We have Kδ′ = Kγ(x
′) ⊂ Kγ(x) = Kδ. As |x− x′i| < C

1
q(q−1) = |x− xj| for any j,

we have Kδ ⊂ Kδ′ by Kranser’s lemma.

As for (2), for each j = 1, . . . , q − 2, we have

|xj − x′i| = max{|xj − x|, |x− x′i|} = C
1

q(q−1) ,

|x− x′j| = max{|x− x′i|, |x′i − x′j|} = C
1

q(q−1) .

Hence x′i is the only root of Xq−1 − δ′ such that |x− x′i| < C
1

q(q−1) . By (39), we have

|x− x′i| = C−qr−2+ 2
q
− (q−2)
q(q−1) = C−qr−2+ 1

q−1 .

□

Put Θ(X) = Θ(Xq−1) (as in the proof of Lemma 3.3.1) and Θ̂ := ÊΘ(Xq−1).

Corollary 3.3.10. Let x be a root of Θ(X) and x′ be one root of Θ̂(X) satisfying

|x− x′| = C−qr−2+ 1
q−1 .

(1) For any root x′′ of Θ̂(X) such that |xq−1−x′′q−1| = C
q−2
q(q−1) as in Corollary 3.3.7 (2), we

have |x−x′′| = 1 or C
1

q(q−1) . For any root x(1) of Θ(X) such that |xq−1
(1) −x′q−1| = C

q−2
q(q−1) ,

we have |x(1) − x′| = 1 or C
1

q(q−1) .

(2) For any root x′′′ of Θ̂(X) such that |xq−1− x′′′q−1| = C
1
q as in Corollary 3.3.7 (3), we

have |x− x′′′| = C
1

q(q−1) . For any root x(2) of Θ(X) such that |xq−1
(2) − x′q−1| = C

1
q , we

have |x(2) − x′| = C
1

q(q−1) .

(3) The element x′ is the only root of Θ̂(X) satisfying |x−x′| = C−qr−2+ 1
q−1 . The element

x is the only root of Θ(X) satisfying |x′ − x| = C−qr−2+ 1
q−1 .
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Proof. We show the first claim of (1) and the second claim similarly follows. Let x′′j
for j = 1, . . . , q − 1 denote different roots of Xq−1 − x′′q−1 so that x′′1 = x′′. Consider

(Xq−1 − x′′q−1)|X=x =

q−1∏
j=1

(x− x′′j ) = xq−1 − x′′q−1.

We have ∣∣∣∣∣
q−1∏
j=1

(x− x′′j )

∣∣∣∣∣ = |xq−1 − x′′q−1| = C
q−2
q(q−1) .(40)

There is an index i such that |x− x′′i | ≤ C
q−2

q(q−1)2 . As |x′′i − x′′j | = C
1

q(q−1) for j ̸= i (in the

proof of Lemma 3.3.9), we have for j ̸= i

|x− x′′j | = max{|x− x′′i |, |x′′i − x′′j |} = C
1

q(q−1) .

By (40), we have |x− x′′i | = 1. If x′′i = x′′, we have |x− x′′| = 1, or else |x− x′′| = C
1

q(q−1) .

(1) follows.

We show the first claim of (2) and the second claim similarly follows. Let x′′′j for

j = 1, . . . , q − 1 denote different roots of Xq−1 − x′′′q−1 so that x′′′1 = x′′′. Consider

(Xq−1 − x′′′q−1)|X=x =

q−1∏
j=1

(x− x′′′j ) = xq−1 − x′′′q−1.

We have ∣∣∣∣∣
q−1∏
j=1

(x− x′′′j )

∣∣∣∣∣ = |xq−1 − x′′′q−1| = C
1
q .(41)

Note that the absolute value of each root of Θ(X) and of Θ̂(X) is C
1

q(q−1) . We have

|x− x′′′j | ≤ |x|. Then (41) implies |x− x′′′j | = C
1

q(q−1) for all j. (2) follows.

(3) follows from (1), (2), and Lemma 3.3.9 (2). □

Let V and V̂ denote respectively the set of roots of Θ(X) and that of Θ̂(X). By the

proof of Lemma 3.3.2, the set V consists of elements ξ−1
1,1ξ for ξ ∈ ϕ[u] having valuation

v(ξl,1), where {ξi,1}i=1,...,r is an SMB of ϕ[u] and l is one of 2, . . . , r. By Lemma 3.3.9, the

elements in this set V̂ also generate the extension K1/Kη. We have found for each root x

of Θ(X) a unique root x′ of Θ̂(X) satisfying |x − x′| = C−qr−2+ 1
q−1 . This defines a map

f : V → V̂ . Note that the Galois group G(K1/Kη) permutes both V and V̂ . Following the

proof of Corollary 3.3.5, we can apply Corollary 3.3.10 (3) to show the following result.

Theorem 3.3.11. The map f : V → V̂ is bijective and compatible with the G(K1/Kη)-

action.
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3.3. The Herbrand ψ-function of K1/K. We will continue to use the notations

in previous subsections. Throughout this subsection, for a integer r ≥ 3, let ϕ be a rank r

Drinfeld A-module over K such that

• ϕt(X) = tX + a1X
q + arX

qr ∈ K[X];

• for the valuation v(j) of the j-invariant of ϕ, we have v(j) < α1.

In this subsection, we will work out the (Herbrand) ψ-function of K1/K. In Lemma 3.3.2,

we have the decomposition of K1/K

K Kη KZ K ′
1 K1 .

The extensions KZ/K and K1/K
′
1 are tamely ramified and their ψ-functions are clear.

We are to work out the ψ-function of the extension K ′
1/KZ .

Let ζ be a primitive Sr-th root of unity (Here Sr =
qr−1−1
q−1

). Let ζ1 be the preimage of

ζ via the Frobenius map of Fqr−1 over Fq so that ζq1 = ζ. For each positive integer j ≥ 1,

let ζj+1 denote the preimage of ζj via the Frobenius map so that ζqj+1 = ζj. For an integer

j ≥ 1, put ξj :=
∏j

k=1 ζk.

Let us prepare a lemma.

Lemma 3.3.12. For an integer j satisfying 0 ≤ j ≤ Sr− 1 and an integer s satisfying

j ≤ s ≤ Sr − 1, put

∆s,j :=

1 j = 0;∑≤s−j
i1≥i2≥...≥ij≥0 ζ

i1
1 · · · ζ

ij
j j > 0,

such that ∆s,s = 1. For j ≥ 0 and s ≥ j + 1, let δs,j+1 = (ζs−j∆s,j)
−q be the preimage of

ζs−j∆s,j via the Frobenius map. Then for j ≥ 0 and s ≥ j + 1, we have

∆s,j − δs,j+1 = (1− ξj+1)∆s,j+1.(42)

The elements ∆s,j and δs,j+1 for all s and j appearing in the lemma belong to Fqr−1 .

Proof. For the case j = 0, the desired equation is

1− ζs1 = (1− ζ1)(1 + ζ1 + · · ·+ ζs−1
1 ).

Assume that j is a positive integer then. The term δs,j+1 equals

ζs−j1

 ≤s−j∑
i2≥···≥ij+1≥0

ζ i22 · · · ζ
ij+1

j+1

 .
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The left of (42) equals ≤s−j∑
i1≥···≥ij≥0

ζ i11 · · · ζ
ij
j

−
 ≤s−j∑
i2≥···≥ij+1≥0

ζ
s−j−ij+1

1 ζ
i2−ij+1

2 · · · ζ ij−ij+1

j

(
j+1∏
k=1

ζk

)ij+1


=

 s−j∑
i1=0

≤i1∑
i2≥···≥ij≥0

ζ i11 ζ
i2
2 · · · ζ

ij
j


−

∑ ζ
s−j−ij+1

1

(
j+1∏
k=1

ζk

)ij+1

ζ
i2−ij+1

2 · · · ζ ij−ij+1

j

 ,

where the last sum extends over indices s−j−ij+1, i2−ij+1, i3−ij+1, . . . , ij−ij+1 satisfying

s− j ≥ s− j − ij+1 ≥ i2 − ij+1 ≥ i3 − ij+1 ≥ · · · ≥ ij − ij+1 ≥ 0.

By replacing the indices s−j− ij+1, i2− ij+1, . . . , ij− ij+1, ij+1 with i1, i2, . . . , ij, s−j− i1,
we have that the left of (42) equals (Recall ξj+1 =

∏j+1
k=1 ζk) s−j∑

i1=0

ζ i11

 ≤i1∑
i2≥···≥ij≥0

ζ i22 · · · ζ
ij
j

−
 s−j∑
i1=0

ζ i11 ξ
s−j−i1
j+1

 ≤i1∑
i2≥···≥ij≥0

ζ i22 · · · ζ
ij
j


=

s−j∑
i1=0

ζ i11
(
1− ξs−j−i1j+1

) ≤i1∑
i2≥···≥ij≥0

ζ i22 · · · ζ
ij
j


= (1− ξj+1)

s−j−1∑
i1=0

ζ i11

(
s−j−i1−1∑

l=0

ξlj+1

) ≤i1∑
i2≥···≥ij≥0

ζ i22 · · · ζ
ij
j

 ,(43)

We note that i1 in the leftmost sum in (43) does not take s − j for if i1 = s − j, then
(1− ξs−j−i1j+1 ) = 0. We have

(43) = (1− ξj+1)

s−j−1∑
i1=0

s−j−1−i1∑
l=0

ζ i1+l1 ζ lj+1

 ≤i1∑
i2≥···≥ij≥0

ζ i2+l2 · · · ζ ij+lj


= (1− ξj+1)

(∑
ζ i1+l1 ζ i2+l2 · · · ζ ij+lj ζ lj+1

)
,

where the last sum extends over indices i1 + l, i2 + l, . . . , ij + l, l satisfying

s− j − 1 ≥ i1 + l ≥ i2 + l ≥ · · · ≥ ij + l ≥ l ≥ 0.

By replacing indices i1 + l, . . . , ij + l, l with i1, . . . , ij, ij+1, we have

(43) = (1− ξj+1)

 s−j−1∑
i1≥i2≥···≥ij≥ij+1≥0

ζ i11 ζ
i2
2 · · · ζ

ij
j ζ

ij+1

j+1

 ,
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which is the right of (42). □

We continue to use the notations in the previous lemma. For an integer j ≥ 1, let ξj
be as above. Put ξ0 := 0.

Proposition 3.3.13. Let γ−1 be a root of Ẑ(X). Then the extension K ′
1/KZ equals

Kr−1
Z /KZ . Here we define Kr−1

Z /KZ in the following manner.

• The extension K0
Z/KZ is generated by all roots of the polynomials Xq− ζ iγX for

i = 0, 1, . . . , Sr − 1, which is a compositum of Kummer extensions.

• Put x0 := 1. For 0 ≤ k ≤ r − 2, put inductively xk+1 to be a root of

H(k)(X) := Xq − ζkγX − ζk(1− ξk)γxk ∈ Kk
Z [X].

For 0 ≤ k ≤ r − 2, the extension Kk+1
Z /Kk

Z is generated by xk+1.

This proposition claims that K ′
1/KZ is the composition

KZ K0
Z K1

Z K2
Z · · · Kr−2

Z Kr−1
Z K ′

1 .

Let vZ,k denote the normalized valuation corresponding to Kk
Z for k = 0, . . . , r − 2. As

p ∤ v(γx0) = −v(j)+α1

Sr
and the Newton polygon of H(0)(X) = Hγ(X) has exactly one seg-

ment, we can apply Proposition 3.2.2 to the polynomial H(0)(X) ∈ K0
Z [X]. It turns out

that p ∤ vZ,1(γx1) and the Newton polygon of H(1)(X) has exactly one segment. Hence

we can apply Proposition 3.2.2 to H(1)(X) ∈ K1
Z [X]. It turns out that p ∤ vZ,2(γx2) and

the Newton polygon of H(2)(X) has exactly one segment. Hence we can apply Proposi-

tion 3.2.2 again and so on. The ψ-function of K ′
1/K

0
Z eventually follows.

Proof. Fix a root γ−1 of Ẑ(X). The roots of Ẑ(X) are ζsγ−1 for s = 0, 1, . . . , Sr− 1.

By Lemma 3.3.6 (1), the extension K ′
1/KZ is generated by all roots of all polynomials

Hζsγ(X) = Xq − ζsγX − ζsγ for all s. Note that for any s, the difference of two roots of

Hζsγ(X) is a root of Xq − ζsγX. The field K0
Z is contained in K ′

1.

To show the proposition, put inductively x′0 := 1 and

H
(k)
ζsγ(X) :=

Hζsγ(X) k = 0 and 0 ≤ s ≤ Sr − 1;

Hζsγ

(
X +

∑k
j=1 δs,jx

′
j

)
k > 0 and k ≤ s ≤ Sr − 1,

(44)

where x′j is a root of H
(j−1)

ζj−1γ
(X) for each j = 1, . . . , k. We claim

H
(k)
ζsγ(X) = Xq − ζsγX − ζs (1− ξk)∆s,kγxk for k ≤ s ≤ Sr − 1.(45)

Admit this claim. We show K ′
1 = Kr−1

Z . This claim implies that H
(k)

ζkγ
(X) equals

H(k)(X) for each k = 0, . . . , r − 2. Hence for each k, we have x′k+1 = xk+1 ∈ Kk+1
Z . By

(44), we know that the extension Kk+1
Z /Kk

Z equals the extension of Kk
Z generated by the
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roots of Hζkγ(X). Hence the extension Kr−1
Z of K0

Z equals the one generated by the roots

of polynomials Hζkγ(X) for k = 0, . . . , r−2. Hence the extension K ′
1/K

r−1
Z is generated by

all roots of polynomials Hζsγ(X) for s = r−1, . . . , Sr−1. For each s ≥ r−1, the extension
of Kr−1

Z generated by the roots of the polynomial Hζsγ(X) equals the one generated by

the roots of H
(r−1)
ζsγ (X). As ζr−1 is a Sr-th root of unity, we have

ξr−1 =
r−1∏
i=1

ζi =
r−2∏
i=0

ζq
i

r−1 = 1.

Hence

H
(r−1)
ζsγ = Xq − ζsγX − ζs (1− ξr−1)∆s,r−1γxr−1

= Xq − ζsγX

for each s ≥ r − 1. This implies that the extension of Kr−1
Z generated by the roots of

polynomials Hζsγ(X) for s ≥ r − 1 is trivial. The equality K ′
1 = Kr−1

Z follows.

It suffices to show the claim in (45). The case k = 0 is clear and hence x′1 = x1. As

for the case k = 1, notice ζsxq1 − ζsγx1 − ζsγ = 0. Then

H
(1)
ζsγ(X) = Hζsγ(X + δs,1x1) = Hζsγ(X + ζs1x1)

= (X + ζs1x1)
q − ζsγ(X + ζs1x1)− ζsγ

= Xq − ζsγX + ζsxq1 − ζsγ − ζsζs1γx1
= Xq − ζsγX + ζs(1− ζs1)γx1

= Xq − ζsγX + ζs(1− ζ1)

(≤s−1∑
i≥0

ζ i1

)
γx1

= Xq − ζsγX + ζs(1− ξ1)∆s,1γx1.

Hence the case k = 1 follows.

Assume the claim for k − 1, i.e., we have for k − 1 ≤ s ≤ Sr − 1 that

H
(k−1)
ζsγ (X) = Xq − ζsγX − ζs (1− ξk−1)∆s,k−1γxk−1.

This implies x′k = xk. By (44), we have

H
(k)
ζsγ(X) = H

(k−1)
ζsγ (X + δs,kxk) for k ≤ s ≤ Sr − 1.

Hence

H
(k)
ζsγ(X) = (X + δs,kxk)

q − ζsγ(X + δs,kxk)− ζs (1− ξk−1)∆s,k−1γxk−1

= Xq − ζsγX + δqs,kx
q
k − ζ

s (1− ξk−1)∆s,k−1γxk−1 − ζsδs,kγxk.
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As xk is a root of H
(k−1)

ζk−1γ
(X), we have

0 = δqs,kH
(k−1)

ζk−1γ
(xk)

= (ζs−k+1∆s,k−1)
(
xqk − ζ

k−1γxk − ζk−1 (1− ξk−1) γxk−1

)
= δqs,kx

q
k − ζ

s (1− ξk−1)∆s,k−1γxk−1 − ζs∆s,k−1γxk.

Hence

H
(k)
ζsγ(X) = Xq − ζsγX + ζs(∆s,k−1 − δs,k)γxk−1.

For s ≥ k, to show H
(k)
ζsγ(X) equals the one in (45), it suffices to show

∆s,k−1 − δs,k = (1− ξk)∆s,k.

This has been proved in Lemma 3.3.12. □

Note that the Newton polygons of Z(X) and Ẑ(X) are the same. By (36), for a root

γ−1 of Ẑ(X), we have

v(γ) =
−v(j) + α1

Sr
.

Lemma 3.3.14. Resume the notations in Proposition 3.3.13. Fix k to be one of

1, . . . , r − 1. The Newton polygon of H(k−1)(X) has exactly one segment determined by

the points (0, v(γxk−1)), (q, 0) ∈ R2. We have

v(xk) = v(γ)

(
1

q
+

1

q2
+ · · ·+ 1

qk

)
.

Proof. We may show the claims by induction on k. As v(γ) > 0, the Newton polygon

of H(0)(X) = Hγ(X) has exactly one segment, and hence v(x1) =
v(γ)
q
. We assume that

the claims are valid for k − 1. Put Qk−1 := (0, v(γxk−1)), P0 = (1, v(γ)), and P1 = (q, 0).

The slope of Qk−1P0 is
v(γ)− v(γxk−1)

1− 0
= −v(xk−1).

The slope of Qk−1P1 is
0− v(γxk−1)

q − 0
= −v(xk−1)−

v(γ)

qk

and is smaller. Hence the Newton polygon of H(k−1)(X) is Qk−1P1. Then

v(xk) = v(γ)

(
1

q
+

1

q2
+ . . .+

1

qk

)
.

The claim follows. □

By Lemma 3.3.9, the extension K1/Kη is also the extension generated by the roots of

Θ̂(X) = Ẑ(Y2(X
q−1)). Hence we can apply Proposition 3.3.13 to obtain the ψ-function of

the extension K1/Kη (and hence the one of K1/K) as follows:
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Corollary 3.3.15. For the valuation v(j) of the j-invariant of ϕ, assume p ∤ v(j). Put

R :=
v(γ)

q − 1
=
−v(j) + α1

qr−1 − 1
.

(1) The extension K ′
1/K

0
Z is a totally ramified extension of degree qr−1.

(2) The ψ-function of K ′
1/K

0
Z is

ψK′
1/K

0
Z
(y) =

y, −1 ≤ y ≤ EZR;

qr−1y − (qr−1 − 1)EZR, EZR ≤ y.

(3) Put EZ to be the ramification index of K0
Z/K, e the ramification index of K1/K

′
1, and

E := eEZ . The ψ-function of K1/K is

ψK1/K(y) =


y, −1 ≤ y ≤ 0;

Ey, 0 ≤ y ≤ R;

Eqr−1y − (qr−1 − 1)ER, R ≤ y.

Proof. Let vZ,k denote the normalized valuation associated toKk
Z for k = 0, . . . , r−1.

We have vZ,0 = EZv. As K
0
Z/K is at worst tamely ramified, we know that EZ is not

divisible by p. As p | α1 and p ∤ v(j), we have p ∤ vZ,0(γ). Note the Newton polygon

H(0)(X) = Hγ(X) has exactly one segment. Apply Proposition 3.2.2 to the extension

K1
Z/K

0
Z generated by a root of the polynomial Hγ(X).We know that the extensionK1

Z/K
0
Z

is a totally ramified Galois extension of degree q. Notice

vZ,0(γ)q

q − 1
− vZ,0(γ) = EZR.

We also know from Proposition 3.2.2 the ψ-function of K1
Z/K

0
Z

ψK1
Z/K

0
Z
(y) =

y, −1 ≤ y ≤ EZR;

qy − (q − 1)EZR, EZR ≤ y.

We claim that for each k = 0, . . . , r − 2, the extension Kk+1
Z /Kk

Z is totally ramified

Galois of degree q. We show this by induction and the base case has been proved above.

The induction hypothesis implies that vZ,k = qkvZ,0. By Lemma 3.3.14, we have

vZ,k(γxk) = EZ · (1 + q + · · ·+ qk) · v(γ),

which is not divisible by p. We also have that the Newton polygon of H(k)(X) has exactly

one segment. Apply Proposition 3.2.2. The extension Kk+1
Z /Kk

Z is totally ramified Galois

of degree q, as desired. Hence (1) follows. Note

vZ,k(γ)q

q − 1
− vZ,k(γxk) =

vZ,0(γ)q
k+1

q − 1
− vZ,0(γ)(q

k+1 − 1)

q − 1
= EZR.
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We also know from Proposition 3.2.2 that the ψ-function of Kk+1
Z /Kk

Z is the same as

that of K1
Z/K

0
Z . Then (2) follows from Lemma 3.2.1. Notice K1/K

′
1 is at worst tamely

ramified. (3) follow. □

Resume the assumptions and notations in Corollary 3.3.15. As K1/K
′
1 is tamely

ramified (See Lemma 3.3.1), the natural projection G(K1/K
0
Z) → G(K ′

1/K
0
Z) induces

an isomorphism G(K1/K
0
Z)1
∼= G(K ′

1/K
0
Z)1. As K0

Z/K is tamely ramified, we have

G(K1/K
0
Z)1 = G(K1/K)1. By the ψ-functions, we replace the indices as

G(K1/K)1 = G(K1/K)ER = G(K1/K
0
Z)ER

∼= G(K ′
1/K

0
Z)EZR.(46)

Theorem 3.3.16. For a integer r ≥ 3, let ϕ be a rank r Drinfeld A-module over K

such that ϕt(X) = tX + a1X
q + arX

qr ∈ K[X], v(j) < α1, and p ∤ v(j). Let u be a degree

one prime of A with degree 1 and K1 = K(ϕ[u]). Let {ξi,1}i=1,...,r be an SMB of ϕ[u]. Let V

be the 1-dimensional Fq-vector space generated by ξ1,1. Then each element in G(K1/K)1
fixes ξ1,1 and there is an isomorphism

g : G(K1/K)1 → V r−1; σ 7→ (σ(ξ2,1)− ξ2,1, . . . , σ(ξr,1)− ξr,1).

Proof. By (46), we have G(K1/K)1 = G(K1/K
0
Z)ER. Note ξ1,1 ∈ Kη ⊂ K0

Z . Hence

each element of G(K1/K)1 fixes ξ1,1.

Let vK1 denote the normalized valuation corresponding to K1. By Corollary 3.3.15, we

have vK1 = Eqr−1v. Let σ be an element in G(K1/K)1 = G(K1/K)ER. Fix i to be one of

2, . . . , r. We have

vK1

(
σ(ξi,1)− ξi,1

ξi,1

)
≥ ER > 0.

By Proposition 2.1.3, each element in ϕ[u]\V has valuation v(ξi,1). Hence if σ(ξi,1)−ξi,1 /∈
V, we have v(σ(ξi,1) − ξi,1) = v(ξi,1) and this implies vK1

(
σ(ξi,1)−ξi,1

ξi,1

)
= 0, which is a

contradiction. Therefore σ(ξi,1)− ξi,1 ∈ V.
For a nontrivial element σ ∈ G(K1/K)1 = G(K1/Kη)1 (Note that Kη/K is at most

tamely ramified), as ξ2,1, . . . , ξr,1 generates K1/Kη, there exists some index i = 2, . . . , r

such that σ(ξi,1)− ξi,1 ̸= 0. This implies that g is injective. By Corollary 3.3.15 and (46),

the cardinality of G(K1/K)1 is q
r−1. As the cardinal of V r−1 is qr−1, this map is surjective.

Let σ′ be an element in G(K1/K)1. Put ai = (σ(ξi,1)−ξi,1)/ξ1,1 and a′i = (σ′(ξi,1)−ξi,1)/ξ1,1
for i = 2, . . . , r. As σ, σ′ ∈ G(K1/K)1 = G(K1/Kη)1, we know that σ and σ′ both fix ξ1,1.

Hence, for each i, we have

σ′σ(ξi,1) = σ′(σ(ξi,1)) = σ′(ξi,1 + aiξ1,1) = ξi,1 + (ai + a′i)ξ1,1.

This shows that this map is a morphism and hence an isomorphism. □
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Remark 3.3.17. Let u be a finite prime of A with arbitrary degree. We hope

to know the ψ-function of K(ϕ[un])/K, the action of the wild ramification subgroup

G(K(ϕ[un])/K)1 on ϕ[un], or the rank of ϕ[un]G
y
(cf. Corollary 4.2.5). Here Gy denotes

the y-th upper ramification subgroup of the absolute Galois group of K.

Example 3.3.18. Let v be a prime of A and u a finite prime of A with deg(u) = 1. For

each integer i with p ∤ i, consider the Drinfeld Fq[t]-module ϕ(i) over Fq(t)v characterized
by

ϕ
(i)
t (X) = tX + ti(q

r−1−1)(q−1)Xq + (t+ 1)−
q(qr−1−1)

q−1 Xqr .

It has potentially good reduction over Fq(t)v if v ̸= t. The j-invariant of ϕ(i) is

j(i) := ti(q
r−1)(qr−1−1) · (t+ 1)

q(qr−1−1)
q−1 .

(1) If the prime v is infinite, then v(j(i)) < α1 if and only if i > 0. The ramification break

ER of K1/K in Corollary 3.3.15 equals Ei(qr−1). Hence ER can be arbitrarily large.

(2) If v ̸= t, then the extension K1/K is at worst tamely ramified as ϕ has potentially

good reduction over Fq(t)v. If v = t and i ≥ 0, then ϕ has good reduction. If i < 0,

then ϕ has potentially stable reduction and the reduction over some extension of K

is bad. The ramification break ER in Corollary 3.3.15 equals −Ei(qr− 1). Hence ER

can be arbitrarily large.

3.4. The action of the wild ramification subgroup of K ′
1/KZ on the gen-

erators. This subsection is a supplement to the previous section. There is no appli-

cation of this subsection in this paper. By Theorem 3.3.16 and (46), we have that

G(K ′
1/K

0
Z)
∼= Fr−1

q . Our goal is to study the Galois action of G(K ′
1/K

0
Z) on the field

extension generators x1, . . . , xr−1 of the extension K ′
1/K

0
Z . For this, we prepare a lemma.

We continue to use the notations in Lemma 3.3.12 and Proposition 3.3.13.

Lemma 3.3.19. Let ζ
1
q−1 be a primitive (qr−1−1)-st root of unity such that (ζ

1
q−1 )q−1 =

ζ. Let γ
1
q−1 denote a root of Xq−1 − γ. Define inductively µk,l for k = 0, 1, . . . , r − 1 and

l = 0, 1, . . . , r − 1 as follows:

(1) µk,0 = 0 for all k and µ0,l = 0 for all l;

(2) µ1,1 := γ
1
q−1 and µ1,l = 0 for l ≥ 2;

(3) µk+1,l := µk,l−1ζ
1
q−1 + ξkµk,l for all k = 1, . . . , r − 2 and l ≥ 1.

Fix a ∈ Fq, k to be one of 0, . . . , r − 2, and l to be one of 0, . . . , r − 1. Put

H
(k)
a,l (X) := Xq − ζkγX − ζk(1− ξk)γaµk,l.

Then aµk+1,l is a root of this polynomial.

We have µk,1 = γ
1
q−1
∏k−1

i=1 ξi for k = 2, . . . , r − 1 and µk,k = ζ
k−1
q−1 γ

1
q−1 for k ≥ 1. We

also have µk,l = 0 for l > k.
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Proof. If l > k + 1 or l = 0, then the lemma claims that 0 is a root of Xq − ζkγX.
This is valid and we assume 1 ≤ l ≤ k + 1 then. We show these cases using induction on

k and l. We first show the following claims as the base case.

(i) aµk+1,1 is a root of H
(k)
a,1(X) for k = 0, . . . , r − 2;

(ii) aµk+1,k+1 is a root of H
(k)
a,k+1(X) = Xq − ζkγX for k = 0, . . . , r − 2.

The proofs of (ii) and the case k = 0, 1 of (i) are straightforward. As for (i), we need to

show for k ≥ 2(
aγ

1
q−1

k∏
i=1

ξi

)q

− ζkγ

(
aγ

1
q−1

k∏
i=1

ξi

)
− ζk(1− ξk)γa

(
γ

1
q−1

k−1∏
i=1

ξi

)
= 0.

Note aq = a, ξq1 = ζ, and ξqi = ζξi−1 for i ≥ 2. The left of this equation equals

ζkγ
q
q−1a

(
k−1∏
i=1

ξi

)
− ζkγ

q
q−1a

(
k∏
i=1

ξi

)
− ζkγ

q
q−1 (1− ξk)a

(
k−1∏
i=1

ξi

)

= ζkγ
q
q−1a

(
(1− ξk)

(
k−1∏
i=1

ξi

)
− (1− ξk)

(
k−1∏
i=1

ξi

))
= 0 (as desired).

Fix k and l to be integers satisfying 2 ≤ k ≤ r − 2 and 1 ≤ l ≤ k. Assume

H
(i−1)
1,j (µi,j) = 0 for integers i, j satisfying i ≤ k and j ≤ l. We show

H
(k)
a,l (aµk+1,l) = (aµk+1,l)

q − ζkγ(aµk+1,l)− ζk(1− ξk)γaµk,l = 0.

By the definition of µk+1,l, we need to show

aq(µk,l−1ζ
1
q−1 + ξkµk,l)

q − ζkγa(µk,l−1ζ
1
q−1 + ξkµk,l)− ζk(1− ξk)γaµk,l = 0.

As aq = a, it suffices to show

(µk,l−1ζ
1
q−1 + ξkµk,l)

q − ζkγ(µk,l−1ζ
1
q−1 + ξkµk,l)− ζk(1− ξk)γµk,l = 0.

Note ξqk = ζξk−1. The left of this desired equation equals

(µk,l−1ζ
1
q−1 + ξkµk,l)

q − ζkζ
1
q−1γµk,l−1 − ζkγµk,l

= ζ
q
q−1
(
µqk,l−1 − ζ

k−1γµk,l−1

)
+ ζξk−1µ

q
k,l − ζ

kγµk,l.(47)

By H
(k−1)
1,l−1 (µk,l−1) = 0, we have

µqk,l−1 − ζ
k−1γµk,l−1 = ζk−1(1− ξk−1)γµk−1,l−1.

By H
(k−1)
1,l (µk,l) = 0, we have

µqk,l = ζk−1γµk,l + ζk−1(1− ξk−1)γµk−1,l.
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Hence

(47) = ζ
q
q−1 ζk−1(1− ξk−1)γµk−1,l−1 + ζξk−1

(
ζk−1γµk,l + ζk−1(1− ξk−1)γµk−1,l

)
− ζkγµk,l.

Note µk,l = µk−1,l−1ζ
1
q−1 + ξk−1µk−1,l for k ≥ 2 and l ≥ 1. We have

(47)/ζkγ = ζ
1
q−1 (1− ξk−1)µk−1,l−1 + ξk−1

(
µk−1,l−1ζ

1
q−1 + ξk−1µk−1,l

)
+ ξk−1(1− ξk−1)µk−1,l −

(
µk−1,l−1ζ

1
q−1 + ξk−1µk−1,l

)
= 0 (as desired).

□

As the polynomial Xq − ζkγX is additive, we have

Corollary 3.3.20. Let a = (a1, . . . , ar−1) be an element of the Fq-vector space Fr−1
q .

Put

Mk,a :=
r−1∑
l=1

alµk,l

for k = 0, . . . , r − 1. Then for any k = 0, . . . , r − 2, we have that Mk+1,a is a root of

H(k)
a (X) := Xq − ζkγX − ζk(1− ξk)γMk,a.

We are ready to state

Theorem 3.3.21. For an integer k and an element a ∈ Fr−1
q , define Mk,a as in Corol-

lary 3.3.20. Let γ
1
q−1 denote a root of Xq−1 − γ.

(1) Fix j to be one of 1, . . . , r − 1. For an element σ ∈ G(Kj
Z/K

j−1
Z ), let σ denote an

extension of this element to G(K ′
1/K

j−1
Z ). Then there exists an element

a = (0, . . . , 0, aj, aj+1, . . . , ar−1) ∈ Fr−1
q

satisfying that for each k = 1, . . . , r − 1, we have

σ(xk)− xk = Mk,a.

(2) The map

G(K ′
1/K

0
Z)→ Fr−1

q ;σ 7→ a,

where a satisfies σ(xr−1)− xr−1 = Mr−1,a, is an isomorphism.

Proof. We show (1) by induction on k. For i = 1, . . . , j− 1, as xi ∈ Kj−1
Z , the action

σ(xi) is trivial. By Proposition 3.2.2 (See the proof of Corollary 3.3.15), there exists some

aj ∈ Fq such that

σ(xj)− xj = ajζ
j−1
q−1γ

1
q−1 = ajµj,j.
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Note µj,l = 0 for l = j + 1, . . . , r − 1. The equation in (1) is valid for k = j. Assume that

the equation in (1) is valid for 1, . . . , k (some k ≥ j) and some a ∈ Fr−1
q . Since xk+1 is a

root of

H(k)(X) = Xq − ζkγX − ζk(1− ξk)γxk,

the element σ(xk+1) is a root of

σH(k)(X) := Xq − ζkγX − ζk(1− ξk)γσ(xk)

= Xq − ζkγX − ζk(1− ξk)γ (xk +Mk,a) .

By Corollary 3.3.20, Mk+1,a is a root of H
(k)
a (X). Hence the sum xk+1 +Mk+1,a is a root

of σH(k). On the other hand, the element σ(xk+1) is a root of σH(k) and hence

σ(xk+1) = xk+1 +Mk+1,a + aζ
k
q−1γ

1
q−1 = xk+1 +Mk+1,a + aµk+1,k+1

for some a ∈ Fq. We may replace a with (0, . . . , 0, aj, aj+1, . . . , ak, ak+1+a, ak+2, . . . , ar−1)

so that

σ(xk+1)− xk+1 = Mk+1,a,

as desired.

As for (2), the map is injective as x1, . . . , xr−1 are generators of the extension K
′
1/K

0
Z .

Corollary 3.3.15 implies that the cardinal of G(K ′
1/K

0
Z) is qr−1 and hence the map is

surjective. As Ẑ(X) = XS −β for Sr =
qr−1−1
q−1

, the field KZ contains Sr-th roots of unity.

As K0
Z/KZ generated by all roots of Xq − γX for γ−1 varying within the roots of Ẑ(X),

the field K0
Z contains qr−1 − 1-st roots of unity. Hence any element in G(K ′

1/K
0
Z) fixes

Mk,a ∈ K0
Z for any k and any a ∈ Fr−1

q . Let σ′ be an element of G(K ′
1/K

0
Z) such that

σ′(xk)− xk = Mk,a′ for each k. We have

σ′σ(xk) = σ′(σ(xk)) = σ′(xk +Mk,a)

= xk +Mk,a +Mk,a′ = xk +Mk,a+a′ .

This shows that this map is a morphism and hence an isomorphism. □

4. The ψ-function of Kn/K with r = 2 and deg(u) = 1 and v being infinite

Let v be an infinite prime and u a finite prime of A with degree 1. Throughout this

section, let ϕ be a rank 2 Drinfeld A-module over K such that ϕt(X) = tX + a1X
q +

a2X
q2 ∈ K[X]. Put v0 = v(t) and v1 = v(a1). Now, we have αn = v0q

n (Section 1.2 in

Chapter 2). Assume v(j) < α1 = v0q. Let m be the positive integer such that v(j) ∈
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(αm+1, αm], i.e., v(j) ∈ (v0q
m+1, v0q

m]. By Lemma 2.1.1, we have

v(ξ1,n) = −
(
v0(n− 1)− v0

q − 1
+

v1
q − 1

)
and

v(ξ2,n) =


−
(

v1
q − 1

− v(j)

qn(q − 1)

)
1 ≤ n ≤ m;

−
(
v0(n−m) +

v1
q − 1

− v(j)

qm(q − 1)

)
n ≥ m+ 1.

(48)

For each positive integer n, we are to work out the Herbrand ψ-function of the extensions

Kn/K and the action of G(Kn/K) on ϕ[un] when v(j) < v0q.

By Lemma 3.3.2, we can decompose the extension K1/K into

K Kη K0
Z K ′

1 K1.

Here Kη/K is generated by the roots of a1X
q + tX. The extension K0

Z/Kη is generated

by the roots of Xq − γX with γ = u−1arξ
qr−1
1,1 so that v(γ) = −v(j) + v0q (Note that

Z2(X) = X). The extension K ′
1/Kη is generated by all roots of Hγ(X) = Xq − γX − γ.

The extension K1/K
′
1 is generated by all roots of Xq−1−δ, where δ varies within the roots

of Hγ(X).

Let E be the integer such that Eq is the ramification index of K1/K. We then apply

Lemma 3.2.1 and Proposition 3.2.2 to obtain the ψ-functions of Kn/K for all n. We first

work out the ψ-functions of K1/K and Kn+1/Kn as follows.

Lemma 3.4.1. Assume v(j) < v0q and p ∤ v(j). Let m be the integer satisfying

v(j) ∈ (v0q
m+1, v0q

m).

(1) Let e and EZ be respectively the ramification index of K1/K
′
1 and of K0

Z/K. Then we

have E = eEZ and is not divisible by p. The ψ-function of K1/K is

ψK1/K(y) =


y, −1 ≤ y ≤ 0;

Ey, 0 ≤ y ≤ R1;

Eqy − (q − 1)ER1, R1 ≤ y,

where R1 :=
−v(j)+v0q

q−1
.

(2) (i) For 1 ≤ n ≤ m, the ramification index of Kn/K is Eqn;

(ii) For 1 ≤ n ≤ m− 1, we have

ψKn+1/Kn(y) =

y, −1 ≤ y ≤ ERn+1;

qy − (q − 1)ERn+1, ERn+1 ≤ y,

where Rn+1 :=
−v(j)+v0qn+1

q−1
.
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Proof. We show (1). Due to Lemma 3.3.2, the extension K1/K is decomposed into

the tower

K K0
Z K ′

1 K1.

The extension K0
Z/K is tamely ramified with the ramification index to be EZ . Hence

p ∤ EZ and we have

ψK0
Z/K

(y) =

y, −1 ≤ y ≤ 0;

EZy, 0 ≤ y.

The extension K1/K
′
1 is a compositum of Kummer extensions and hence at worst tamely

ramified. We have p ∤ e and

ψK1/K′
1
(y) =

y, −1 ≤ y ≤ 0;

ey, 0 ≤ y.

Let vZ denote the normalized valuation associated to K0
Z so that vZ = EZv. We have

vZ(γ) = EZ(−v(j) + v0q). As vZ(γ) > 0 and p ∤ vZ(γ), we can apply Proposition 3.2.2

to Hγ(X) ∈ K0
Z [X]. Hence K ′

1/K
0
Z is a degree q totally ramified Galois extension. This

implies E = eEZ . The ψ-function of K ′
1/K

0
Z is

ψK′
1/K

0
Z
(y) =

y, −1 ≤ y ≤ EZR1;

qy − (q − 1)EZR1, EZR1 ≤ y.

By Lemma 3.2.1, the ψ-function of K1/K follows.

We show (i) of (2). The case n = 1 is known. Assume that (i) is valid for a positive

integer n ≤ m−1. To show that Kn+1/K has ramification index Eqn+1, it suffices to show

that the ramification index of Kn+1/Kn is q. By Lemma 3.1.4, the extension Kn+1/Kn is

generated by a root of H2,n(X) = Xq + b0X + c2,n in (32). By (31), we have

v(c2,n) =
v(j)− v0qn+1

qn(q − 1)
.

Let vKn denote the valuation associated to Kn so that vKn = Eqnv. As p ∤ v(j), we know

p ∤ vKn(c2,n). Note that vKn(c2,n) < 0 (as n + 1 ≤ m) and vKn(b0) = 0. We can apply

Proposition 3.2.2 to H2,n(X) ∈ Kn[X]. Hence Kn+1/Kn is a degree q totally ramified

Galois extension and this shows (i). We also know from Proposition 3.2.2 that

ψKn+1/Kn(y) =

y, −1 ≤ y ≤ ERn+1;

qy − (q − 1)ERn+1, ERn+1 ≤ y,

and (ii) of (2) follows. □



88 3. ON THE EXTENSION GENERATED BY un-TORSION POINTS

With the notation and assumptions in this lemma, we have the decomposition of

Kn/K for 1 ≤ n ≤ m,

K
EZ
K0
Z

q
K ′

1

e
K1

q
K2 · · · Kn−1

q
Kn ,

where each number indicates the ramification index of the corresponding extension. Let

vKn denote the normalized valuation associated to Kn. We have vKn = Eqnv for n =

1, . . . ,m and vKn = vKm for n ≥ m.

Due to Lemma 3.2.1, we can show by induction that

Lemma 3.4.2. Assume v(j) < v0q and p ∤ v(j). Let m be the integer satisfying

v(j) ∈ (v0q
m+1, v0q

m). Put Rn = −v(j)+v0qn
q−1

for any positive integer n as in Lemma 3.4.1.

Then for n ≤ m, we have

ψKn/K(y) =



y, −1 ≤ y ≤ 0;

Ey, 0 ≤ y ≤ Rn;

E
(
qjy −

∑j−1
i=0 q

i(q − 1)Rn−i
)
,

Rn−j+1 ≤ y ≤ Rn−j

for j = 1, . . . , n− 1;

E
(
qny −

∑n−1
i=0 q

i(q − 1)Rn−i
)
, R1 ≤ y.

Assume the conditions in Lemma 3.4.2 in the rest of this subsection. We are to consider

the wild ramification subgroup of G(K1/K) and how this group acts on the generators

ξ1,1, ξ2,1 of K1/K. By Lemma 3.4.1 (1) and Proposition 3.2.2, we know

G(K1/K)1 = G(K1/K)ER1 = G(K1/K
0
Z)ER1

∼= G(K ′
1/K

0
Z)EZR1

∼= Fq.(49)

For an element σ ∈ G(K1/K)ER1 , note that σ is characterized by σ(ξ2,1) because the

isomorphism (49) indicates that σ fixes ξ1,1 ∈ K0
Z . Then we have

vK1(σ(ξ2,1)− ξ2,1) = vK1(σ(ξ2,1)ξ
−1
2,1 − 1) + vK1(ξ2,1)

≥ ER1 + vK1(ξ2,1)

= E

(
v0q − v1q
q − 1

)
= vK1(ξ1,1).

From σ(ξ2,1) − ξ2,1 ∈ ϕ[u] and v(ξ1,1) > v(ξ2,1), we have σ(ξ2,1) = ξ2,1 + a · ξ1,1 for some

a ∈ Fq. This defines a morphism

G(K1/K)ER1 → Fq; σ 7→ a,

which is injective. Comparing the cardinalities of the domain and codomain, we conclude

that this map is an isomorphism.

For an integer 2 ≤ l ≤ m, let us consider the wild ramification subgroup of G(Kl/Kl−1)

and how this group acts on the generator ξ2,l of Kl/Kl−1 (note that ξ1,l ∈ Kl−1 by
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Lemma 3.1.3). We know from Lemma 3.4.1 (ii) and Proposition 3.2.2 that G(Kl/Kl−1)1 =

G(Kl/Kl−1)ERl
∼= Fq. For an element σ ∈ G(Kl/Kl−1)ERl , we have

vKl(σ(ξ2,l)− ξ2,l) = vKl(σ(ξ2,l)ξ
−1
2,l − 1) + vKl(ξ2,l)

≥ ERl + vKl(ξ2,l)

= −Eql · v1 − v0
q − 1

= vKl(ξ1,1),

which shows σ(ξ2,l) = ξ2,l + a · ξ1,1 for some a ∈ Fq. This defines an isomorphism

G(Kl/Kl−1)ERl → Fq; σ 7→ a.

We now work out the action of the wild ramification subgroup of G(Kn/K) on

ξ1,n, ξ2,n ∈ ϕ[un] for infinite primes.

Theorem 3.4.3. Let v be an infinite prime. Assume v(j) < v0q and p ∤ v(j). Let m
be the integer such that v(j) ∈ (v0q

m+1, v0q
m).

(1) For integers l and n satisfying 1 ≤ l ≤ m and l ≤ n, put Rl
n := ψKn/K(Rl). We

set K0 := K. Then the natural projection G(Kn/Kl−1) → G(Kl/Kl−1) induces an

isomorphism G(Kn/Kl−1)Rln
∼= G(Kl/Kl−1)Rll

∼= Fq. Let σl,a for a ∈ Fq be the element

in G(Kl/Kl−1)Rll characterized by

σl,a(ξ1,l) = ξ1,l and σl,a(ξ2,l) = ξ2,l + a · ξ1,1.

Denote σl,a ∈ G(Kn/Kl−1)Rln again its image under the isomorphism. Then σl,a(ξ1,n) =

ξ1,n and σl,u(ξ2,n) = ξ2,n + a · ξ1,n−l+1.

(2) The wild ramification subgroup G(Km/K)1 of Km/K is isomorphic to Fmq .

Proof. (1) We first show the results for l = 1. The case n = 1 is known. Assume (1)

for n−1. If n ≥ m+1, then Kn = Kn−1 by Lemma 3.1.3, so the claim follows similarly as

in the case n ≤ m. Assume n ≤ m.We have G(Kn/K)R1
n
∩G(Kn/Kn−1) = G(Kn/Kn−1)R1

n

by [Se79, Chapter IV, Proposition 2]. As the ramification break of Kn/Kn−1 is ERn and

ERn < R1
n, we have G(Kn/K)R1

n
∩G(Kn/Kn−1) = 1. Notice G(Kn/K)R1 = G(Kn/K)R1

n
.

Hence G(Kn/K)R1 = G(Kn/K)R1G(Kn/Kn−1)/G(Kn/Kn−1). By [Se79, Chapter IV,

Proposition 14], we have an isomorphismG(Kn/K)R1 ∼= G(Kn−1/K)R1 . By the ψ-functions,

this is the isomorphism G(Kn/K)R1
n
∼= G(Kn−1/K)R1

n−1
. The first claim follows.

As for the Galois action, by induction hypothesis, we know ϕu(σ1,a(ξ1,n) − ξ1,n) = 0

and thus σ1,a(ξ1,n) − ξ1,n ∈ ϕ[u]. Similarly, we have σ1,a(ξ2,n) − ξ2,n − a · ξ1,n ∈ ϕ[u]. So
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σ1,a(ξ1,n)− ξ1,n = a′ · ξ1,1 + a′′ · ξ2,1 for a′, a′′ ∈ Fq. If a′′ ̸= 0, we obtain

R1
n ≤ vKn(σ1,a(ξ1,n)ξ

−1
1,n − 1) = vKn(σ1,a(ξ1,n)− ξ1,n)− vKn(ξ1,n)

= vKn(ξ2,1)− vKn(ξ1,n)

=
E

q − 1

(
v(j)qn−1 + v0((n− 1)qn+1 − nqn)

)
< 0,

which is a contradiction. Similarly, we can show a′ = 0 and thus σ1,a(ξ1,n) = ξ1,n. For

σ1,a(ξ2,n), we have

vKn(σ1,a(ξ2,n)− ξ2,n)

= vKn(σ1,a(ξ2,n)ξ
−1
2,n − 1) + vKn(ξ2,n)

≥ R1
n + vKn(ξ2,n)

=
E

q − 1

(
−v(j)− v0((n− 1)qn+1 − nqn)

)
− Eqn

(
v1

q − 1
− v(j)

qn(q − 1)

)
= Eqn

(
−v0(n− 1)− v1 − v0

q − 1

)
= vKn(ξ1,n).

(50)

Since v(ξ1,n) > v(ξ1,1) > v(ξ2,1) by Proposition 2.1.2, we have σ1,u(ξ2,n) = ξ2,n + a · ξ2,n.
Then we show the case for all l. We again use induction. Similar to the proof in the

case l = 1, we have the isomorphism G(Kn/Kl−1)Rln
∼= G(Kn−1/Kl−1)Rln−1

by Rl
n > ERn.

We can show σl,a(ξ1,n)− ξ1,n, σl,a(ξ2,n)− ξ2,n − a · ξ1,n−l+1 ∈ ϕ[u]. Calculations similar to

those in the case l = 1 show that they vanish.

(2) From Lemma 3.4.2, the wild ramification subgroupG(Km/K)1 is equal toG(Km/K)ERm .

By (1), it is generated by {σl,a | 1 ≤ l ≤ m, a ∈ Fq}. For a basis {ξ1,m, . . . , ξ1,1, ξ2,m, . . . , ξ2,1}
of ϕ[um] with the order according to the valuations, we can identify each σl,a as the rep-

resentation matrix (
Im 0

a · Am,l Im

)
with respect to this basis. Here Im denotes them×m identity matrix and Am,l is them×m
matrix defined by (δi,j−l+1)ij with the Kronecker delta δ. This gives a monomorphism

G(Km/K)ERm → GL2m(Fq). Clearly, its image is isomorphic to the abelian group Fmq . □

5. On the extension generated by un-torsion points with arbitrary deg(u)

Throughout this section, let ϕ be a rank 2 Drinfeld A-module overK such that ϕt(X) =

tX + a1X
q + a2X

q2 ∈ K[X]. Let u be a finite prime of A satisfying v ∤ u with degree d,

where d is an arbitrary positive integer. Fix a positive integer n. Let {λi}i=1,2 be an SMB

of ϕ[un]. Let Kn denote the extension of K generated by the elements of ϕ[un]. We are to

work out the action of wild ramification subgroup G(Kn/K)1 of G(Kn/K) on {λi}i=1,2

under certain assumptions.
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Let us begin with a lemma.

Lemma 3.5.1 (cf. Lemma 1.1.6). Assume v ∤ u. Let n be any positive integer. Let

{λi}i=1,2 be an SMB of ϕ[un]. Let σ be an element of G(Kn/K)1 which is not the unit.

Then we have σ(λ1) = λ1 and σ(λ2) ̸= λ2.

Proof. Let vKn denote the normalized valuation associated to Kn. We have

1 ≤ vKn(σ(λ1)λ
−1
1 − 1) = vKn(σ(λ1)− λ1)− vKn(λ1).

By Remarks 1.2.4 and 1.3.12, the valuation vKn(λ1) is the largest among the valuations

of all elements in ϕ[un] \ {0}. As σ(λ1)− λ1 is an element in ϕ[un], we have

vKn(σ(λ1)− λ1)− vKn(λ1) ≤ 0 if σ(λ1)− λ1 ̸= 0.

Hence σ(λ1)− λ1 = 0.

As λ1 and λ2 are generators of ϕ[un] as an A/un-module, they generate the extension

Kn/K. This implies that σ(λ2)− λ2 ̸= 0. □

5.1. Infinite prime. Let v be an infinite prime and Λ the lattice associated to ϕ

via the uniformization. Put v0 = v(t) and v1 = v(a1). Assume v(j) < v0q and p ∤ v(j).
Let m be the positive integer such that v(j) ∈ (v0q

m+1, v0q
m). By Proposition 2.2.1 (now

αinf
j in Section 1.2 in Chapter 2 equals v0q

j), we know that if n ≥ m/d, the condition

“|un| > |ωr|/|ω1|” in Proposition 1.2.11 will be fulfilled and we have

Kn = K(Λ) = K(ϕ[tm]).(51)

We are to work out the action of the ramification subgroup of G(K(Λ)/K) on an SMB

of ϕ[un] for n ≥ m/d.

Theorem 3.5.2 (cf. Theorem 3.4.3). Assume v(j) < v0q and p ∤ v(j). Let m be the

integer such that v(j) ∈ (v0q
m+1, v0q

m). Let n be an integer ≥ m/d and {λi}i=1,2 an SMB

of ϕ[un]. Put G(Λ) := G(K(Λ)/K). For a positive integer i, let A<i denote the subgroup

of A consists of elements with degree < i.

(1) Any element in G(Λ)1 fixes λ1;

(2) Then the map

g : G(Λ)1 → A<m ·ϕ λ1; σ 7→ σ(λ2)− λ2
is an isomorphism.

(3) Put Ri :=
−v(j)+v0qi

q−1
for 1 ≤ i ≤ m. Let G(Λ)Ri denote the upper Ri-th ramification

subgroup of G(Λ). Then the restriction

g : G(Λ)Ri → A<i ·ϕ λ1

is an isomorphism for 1 ≤ i ≤ m.
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Proof. (1) has been shown in Lemma 3.5.1.

(2) By (51), the ψ-function of K(Λ)/K is the one in Lemma 3.4.2, i.e., we have

ψK(Λ)/K = ψK(ϕ[tm])/K .

As in Theorem 3.4.3, put Ri
m = ψK(Λ)/K(Ri) for i = 1, . . . ,m and we have

Ri
m = −v(j)E 1

q − 1
− v0Eqm

(
m− i− 1

q − 1

)
.

We show σ(λ2) − λ2 ∈ A<m ·ϕ λ1 for an element σ in G(Λ)1 = G(Λ)Rmm (the equality

follows from Lemma 3.4.2). Clearly σ(λ2)−λ2 ∈ ϕ[un]. By Corollary 2.2.3 (2), an element

of ϕ[un] having valuation ≥ v(ξ1,nd−m+1) belongs to the Fq-vector space A<m ·ϕλ1 (see (48)
for v(ξi,j)). Hence it suffices to show v(σ(λ2)− λ2) ≥ v(ξ1,nd−m+1). By Proposition 2.2.1,

we have v(λi) = v(ξi,nd). Let vΛ denote the normalized valuation associated to K(Λ). We

have vΛ = Eqmv. Consider

vΛ(σ(λ2)− λ2) = vΛ(σ(λ2)λ
−1
2 − 1) + vΛ(λ2)

≥ Rm
m + vΛ(λ2)

= −v(j)E 1

q − 1
− v0Eqm

(
− 1

q − 1

)
− Eqm

(
v0(nd−m) +

v1
q − 1

− v(j)

qm(q − 1)

)
= −Eqm

(
v0(nd−m) +

v1 − v0
q − 1

)
= vΛ(ξ1,nd−m+1).

Hence we have a map

g : G(Λ)1 → A<m ·ϕ λ1; σ 7→ σ(λ2)− λ2.

Next, we show that g is an isomorphism. The map is injective since λ1 and λ2 generate

K(Λ)/K and σ(λ1) = λ1 for any σ ∈ G(Λ)1. By Theorem 3.4.3, we know G(Λ)1 ∼= Fmq .
As qm is also the cardinal of A<m ·ϕ λ1, the map is bijective. It suffices to show that this

map is a morphism. For any σ ∈ G(Λ)1, we have that σ fixes λ1 and σ(λ2)− λ2 = b ·ϕ λ1
for some b ∈ A. Hence for any σ′, σ ∈ G(Λ)1, we have

σ′(σ(λ2)− λ2) = σ(λ2)− λ2.

This implies

σ′(σ(λ2))− λ2 = σ′(σ(λ2))− σ′(λ2) + σ′(λ2)− λ2
= σ′(σ(λ2)− λ2) + σ′(λ2)− λ2
= σ(λ2)− λ2 + σ′(λ2)− λ2,

which shows that the map is a morphism.
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(3) Note G(Λ)Ri = G(Λ)Rim . We show that g : G(Λ)Rim → A<i ·ϕ λ1 is an isomorphism

for each 1 ≤ i ≤ m. By Corollary 2.2.3 and Proposition 2.1.2, the vector space A<i ·ϕ λ1
consists of elements of ϕ[un] having valuation ≥ v(ξ1,nd−i+1). For i to be one of 1, . . . ,m

and σ to be a nontrivial element in G(Λ)Rim , we have

vΛ(σ(λ2)− λ2) = vΛ(σ(λ2)λ
−1
2 − 1) + vΛ(λ2)

≥ Ri
m + vΛ(λ2)

= −v(j)E 1

q − 1
− v0Eqm

(
m− i− 1

q − 1

)
− Eqm

(
v0(nd−m) +

v1
q − 1

− v(j)

(q − 1)

)
= −Eqm

(
v0(nd− i) +

v1 − v0
q − 1

)
= vΛ(ξ1,nd−i+1).

This implies that g(G(Λ)Rim) ⊂ A<i ·ϕ λ1. As the cardinal of G(Λ)Rim and A<i ·ϕ λ1 are

both qi, the map g induces an isomorphism

g : G(Λ)Rim → A<i ·ϕ λ1

for each i. □

5.2. Finite prime. Let v be a finite prime. Assume that ϕ has stable reduction such

that a1 = 0 and v(j) < 0. Let ψ and Λ respectively denote the Drinfeld module having

good reduction and the lattice associated to ϕ via the Tate uniformization. Let {ω1} be
an SMB of ψ[un], {ω0

2} an SMB of Λ, and ω2 a root of ψun(X)−ω0
2. By Proposition 2.2.6,

we have v(ω1) = 0 and v(ω0
2) =

v(j)
q−1

.We first study the action of Gal(Ksep/K) on ω1, ω2 ∈
u−nΛ/Λ. Using the Gal(Ksep/K)-isomorphism Eϕ : u−nΛ/Λ → ϕ[un], we then work out

the action of Gal(Ksep/K) on ϕ[un].

Let L be the extension ofK generated by the elements in Λ and L(ψ[un]) the extension

of L generated by the elements in ψ[un]. Let Ln denote K(u−nΛ) which is the extension of

K generated by elements in u−nΛ. As the condition “|un|∞ > |ω0
r |/|ω0

r′+1|” in Section 3 in

Chapter 1 is fulfilled for any positive integer n, by Proposition 1.3.14, we have Kn = Ln

for any positive integer n.

Lemma 3.5.3. The extension L/K is at worst tamely ramified.

Proof. We know that Λ is an A-lattice via ψ and is G(Ksep/K)-invariant. As L/K

is a subextension of K1/K, we have that L/K is separable. Then the desired claim follows

from Lemma 1.1.6. □
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Theorem 3.5.4 (cf. Theorem 3.5.2). Let ϕ be a rank 2 Drinfeld A-module over K

having stable reduction such that v(j) < 0. Assume p ∤ v(j). Let n be any positive integer.

Put R := −v(ω0
2) =

−v(j)
q−1

.

(1) There is an isomorphism

G(Ln/L(ψ[u
n]))→ ψ[un]; σ 7→ σ(ω2)− ω2.

(2) Let E be the ramification index of L/K. The (Herbrand) ψ-function of the extension

Ln/K is

ψLn/K(y) =


y, −1 ≤ y ≤ 0;

Ey, 0 ≤ y ≤ R;

qndEy − (qnd − 1)ER, R ≤ y.

Proof. Let vL denote the normalized valuation associated to L.We have vL = Ev. As

the extension L(ψ[un])/L is unramified, we may also denote by vL the normalized valuation

associated to L(ψ[un]). The field Ln is the splitting field of ψun(X) − ω0
2 over L(ψ[un]).

Note that the difference between two roots of ψun(X) − ω0
2 belongs to ψ[un]. Hence the

extension Ln/L(ψ[u
n]) is generated by ω2. As E is not divisible by p (Lemma 3.5.3), we

have p ∤ ER = vL(ω
0
2). Applying Proposition 3.2.2 to ψun(X) − ω0

2 ∈ L(ψ[un])[X], we

know that the map G(Ln/L(ψ[u
n]))→ ψ[un]; σ 7→ σ(ω2)− ω2 is an isomorphism.

(2) By Lemma 3.5.3, we have the ψ-function of L/K to be

ψL/K(y) =

y, −1 ≤ y ≤ 0;

Ey, 0 ≤ y.

The ψ-function of L(ψ[un])/L is ψL(ψ[un])/L(y) = y.Applying Proposition 3.2.2 to ψun(X)−
ω0
2 ∈ L(ψ[un]), we have

ψLn/L(ψ[un])(y) =

y, −1 ≤ y ≤ ER;

qndy − (qnd − 1)ER, ER ≤ y,

and the desired ψ-function follows from Lemma 3.2.1. □

In the reminder of this subsection, let ϕ be a rank 2 Drinfeld A-module over K, which

does not necessarily have stable reduction over K. By Proposition 1.3.17, we have that ϕ

is isomorphic to a Drinfeld module having stable reduction over K(λ1,1), where {λi,1}i=1,2

is an SMB of ϕ[u] and K(λ1,1)/K is at worst tamely ramified. Let ψ and Λ denote

respectively the Drinfeld module having good reduction and the lattice associated to the

Drinfeld module having stable reduction via the Tate uniformization. Let L denote the

extension of K(λ1,1) generated by the elements in Λ. By Lemma 1.1.6, the extension L/K

is at worst tamely ramified. For a positive integer n, we have Kn = Ln.
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Corollary 3.5.5. Let ϕ be a rank 2 Drinfeld A-module over K such that

ϕt(X) = tX + a1X
q + a2X

q2 ∈ K[X],

which does not necessarily have stable reduction over K. Assume p ∤ v(j).

(1) Let E be the ramification index of L/K. The ψ-function of the extension Kn/K is

ψKn/K(y) =


y, −1 ≤ y ≤ 0;

Ey, 0 ≤ y ≤ R;

qndEy − (qnd − 1)ER, R ≤ y.

(2) Let {λi}i=1,2 be an SMB of ϕ[un]. Then each element in G(n)1 fixes λ1 and there is

an isomorphism

G(Kn/K)1 → A ·ϕ λ1; σ 7→ σ(λ2)− λ2.

Proof. Apply Theorem 3.5.4 (2) with K in the theorem being K(λ1,1) and we obtain

the ψ-function of Kn/K(λ1,1). As K(λ1,1)/K is at worst tamely ramified, its ψ-function

is clear. Then (1) follows from Lemma 3.2.1.

We show (2). Note that L(ψ[un])/K is at worst tamely ramified. By the ψ-function

of Ln/K, we have the equation of the higher ramification subgroups

G(Kn/K)1 = G(Ln/K)1 = G(Ln/K)ER = G(Ln/L(ψ[u
n])).

By Proposition 1.3.17, the Drinfeld module bϕb−1 for b = λ−1
1,1 has stable reduction over

K(λ1,1). By Theorem 1.3.13, the element logϕ(bλ1) forms an SMB of ψ[un] and the element

un ·ψ logϕ(bλ2) forms an SMB of Λ. Apply Theorem 3.5.4 (1) with ω1 = logϕ(bλ1) and ω2 =

logϕ(bλ2). We have σ(logϕ(bλ1)) = logϕ(bλ1) for any σ ∈ G(Kn/K)1 and an isomorphism

G(Kn/K)1 → ψ[un]; σ 7→ σ(logϕ(bλ2))− logϕ(bλ2).

Note ψ[un] = A·ψω1. The map Ebϕb−1|ψ[un] : ψ[un]→ A·bϕb−1bλ1 induced by the exponential

map eϕ is an isomorphism. Indeed, it is injective as ψ[un]∩Λ = {0}. Since the sets ψ[un]
and A ·bϕb−1 bλ1 both have cardinal qnd, we have the surjectivity. By this isomorphism,

we obtain σ(bλ1) = bλ1 and σ(logϕ(bλ2)) − logϕ(bλ2) maps to σ(bλ2) − bλ2. The desired

isomorphism is the composition

G(Kn/K)1 → ψ[un]
Ebϕb−1

−→ A ·bϕb−1 bλ1
b−1·−−→ A ·ϕ λ1; σ 7→ σ(λ2)− λ2.

□
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6. Tamely ramified extensions

Let ρ be a rank r Drinfeld A-module over K such that (as in Section 1.1)

ρt(X) = tX +
r∑

k=1

akX
qk ∈ K[X].

Put

v0 := v(t) and vk := v(ak) for each k = 1, . . . , r.

Lemma 3.6.1. Let v be an infinite prime or a finite prime, and u a finite prime of A

satisfying v ∤ u. Assume for k = 1, . . . , r − 1 that

vr − v0
qr − 1

≤ vk − v0
qk − 1

.

(1) The extension K(ρ[u])/K is at worst tamely ramified. The ramification index of

K(ρ[u])/K divides qr − 1.

(2) • If v is an infinite prime, then we have K(ρ[un]) = K(ρ[u]) for any n.

• If v is a finite prime, then K(ρ[un])/K(ρ[u]) is unramified for any n.

Let u be a finite prime of A with arbitrary degree and v ∤ u. Let us apply the lemma

to the case ρ = ϕ. If the prime v is infinite and v(j) ≥ α1 = v0qs(qr−s−1)
q−1

, we have that

K(ϕ[u])/K is at worst tamely ramified and K(ϕ[un]) = K(ϕ[u]). Moreover, if the prime

v is finite satisfying v ∤ u and v(j) ≥ 0, then we have that K(ϕ[u])/K is at worst tamely

ramified and K(ϕ[un])/K(ϕ[u]) is unramified.

Proof. We show the result for the case where v is an infinite prime. Assume deg(u) =

1. Let M be an extension of K with the ramification index being eM/K = qr − 1. We can

take b ∈M such that v(b) = vr−v0
qr−1

. With b′ = bq
r
/ar, modify ρu(X) to be

P(X) = Xqr +
r−1∑
k=1

bkX
qk + b0X := b′ρu(X/b).

The valuations of v(b0) and v(bk) are respectively

0 and
1

qk − 1

(
vk − v0
qk − 1

− vr − v0
qr − 1

)
for k = 1, . . . , r − 1.

Thus P(X) is a monic polynomial whose reduction is separable. By Hensel lemma [Pap23,

Corollary 2.4.5], we know the extension M(ρ[u]) of M generated by all roots of P(X) is

unramified. As K(ρ[u])/K is a subextension of M(ρ[u])/K, the ramification index of

K(ρ[u])/K divides the ramification index eM(ρ[u])/K = eM/K = qr − 1. Under the present

assumption, (1) follows.

As the Newton polygon of ρu(X) has exactly one segment (still assume deg(u) = 1),

all elements of an SMB of ρ[u] have the same valuation. By Corollary 1.2.12, we have
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K(ρ[u]) = K(Λ). Hence K(Λ)/K is at worst tamely ramified with the ramification index

dividing qr − 1. For any element a of A with positive degree, we have K(ρ[a]) = K(Λ).

This shows (1) and the first dot of (2).

Now we deal with the case where the prime v is finite. Let M be a tamely ramified

extension of K with ramification index qr − 1. For b ∈ M with v(b) = vr
qr−1

, as bρb−1

has good reduction, we have that M(ρ[u])/M is unramified by the Néron-Ogg-Safarevich

criterion (See [Pap23, Theorem 6.3.1]). Similarly to the infinite prime case, (1) follows.

As v ∤ u, each element in bρb−1[u] has valuation 0 (cf. Lemma 1.3.2). As multiplying

b establishes an isomorphism ρ[u] → bρb−1[u], each element of ρ[u] has valuation −vr
qr−1

.

Hence ρ is isomorphic to a Drinfeld module having good reduction over K(ρ[u]). Apply

the Néron-Ogg-Safarevich criterion to the Drinfeld module bρb−1 with b ∈ K(ρ[u]) with

v(b) = vr
qr−1

. The extension K(ρ[un])/K(ρ[u]) is unramified and the second dot of (2)

follows. □

Let v be an infinite prime or a finite prime. Let u be a finite prime of A with degree

1. Assume for k = 1, . . . , r − 1 that

vr − v0
qr − 1

<
vk − v0
qk − 1

.

We finish this section by determining the ψ-function of K(ρ[u])/K under the above as-

sumption. By Lemma 3.6.1 (1), the extension K(ρ[u])/K is at worst tamely ramified.

Hence determining the ψ-function of K(ρ[u])/K is equivalent to determining the ram-

ification index. By the proof of Lemma 3.6.1, if the prime v is infinite, then we have

K(Λ) = K(ρ[u]) = K(ρ[a]), where Λ is the lattice associated to ρ and a is an arbitrary

element in A having positive degree. Hence we also obtain the ψ-functions of K(Λ)/K

and K(ρ[a])/K in this case.

It seems natural to ask whether there is an analogue of Lemma 3.1.1. Namely, does

K(ρ[u]) contain the splitting field of some binomial whose terms come from ρu(X)? This

is answered affirmatively in the following lemma.

Lemma 3.6.2. Assume for k = 1, . . . , r − 1 that

vr − v0
qr − 1

<
vk − v0
qk − 1

.(52)

Put η(X) = arX
qr+uX. Let Kη denote the extension of K generated by all roots of η(X).

We claim K(ρ[u]) = Kη.

By this claim, if v(j) > α1 =
qs(qr−s−1)

q−1
, the extension K(ϕ[u])/K is generated by the

roots of arX
qr + uX.

Proof. The proof of this claim is carried out by the strategy used in that of Lemma 3.1.1.

We give an outline. Let x and xj for j = 1, . . . , qr − 2 be all nonzero roots of ρu(X). Let
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x′j for j = 1, . . . , qr − 1 denote all nonzero roots of η(X). We have v(x′j) = −vr−v0
qr−1

for all

j. Since

η(x) = ar · x
qr−1∏
j=1

(x− x′j) = arx
qr + ux =

r−1∑
k=1

akx
qk ,

we have ∣∣∣∣∣
qr−1∏
j=1

(x− x′j)

∣∣∣∣∣ =
∣∣∣∣∣a−1
r

r−1∑
k=1

akx
qk−1

∣∣∣∣∣ ≤ max{|a−1
r akx

qk−1|}.

By (52), we have vk > v0 + (vr−v0)(qk−1)
qr−1

for each k = 1, . . . , r − 1. This implies for

k = 1, . . . , r − 1

v(a−1
r akx

qk) = −vr + vk −
(vr − v0)(qk − 1)

qr − 1
> −(vr − v0).

Hence ∣∣∣∣∣
qr−1∏
j=1

(x− x′j)

∣∣∣∣∣ < qvr−v0 .

There exists some x′i such that |x− x′i| < q
vr−v0
qr−1 . Put x′ := x′i and rearrange the index so

that x′ and x′j for j = 1, . . . , qr − 2 are different nonzero roots of η(X). We have

|x− x′| < |x′ − x′j| = |x− xj| = q
vr−v0
qr−1 for all j.

By Krasner’s lemma, we have K(x′i) = K(x). Similarly, for j to be one of 1, . . . , qr − 2,

there exists x′′ to be one of x′, x′1, . . . , x
′
qr−2 such that |xj − x′′| < q

vr−v0
qr−1 . As |xj − x′| =

max{|xj − x|, |x− x′|} = q
vr−v0
qr−1 , we have x′′ ̸= x′. Let x vary within the nonzero roots of

ρu(X) and the equality Kη = K(ρ[u]) follows. □

Proposition 3.6.3. Assume for k = 1, . . . , r − 1 that

vr − v0
qr − 1

<
vk − v0
qk − 1

.

The ramifications index of K(ρ[u])/K is qr−1
n

with n = gcd(v(u/ar), q
r − 1).

Proof. Assume for the moment that K contains Fqr so that the extension Kη/K is

Kummer. By replacing ρ with some isomorphic Drinfeld A-module ρ′ over K with the

leading coefficient of ρ′u(X) having sufficiently negative valuation, we may assume that

v(u/ar) > 0. Note that n is unchanged under replacing ρ with ρ′. There exists some α′ ∈ K
with v(α′) = n such that Kη = K( qr−1

√
α′) and the subextension K( n

√
α)/K of Kη/K is

unramified (see [Bir67, Section 2, Lemma 6]). Put α = n
√
α′. As v(α) = 1, the extension

K(
qr−1
n
√
α)/K(α) is totally ramified with degree qr−1

n
. Therefore, the ramification index

of K1/K equals qr−1
n
.
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For general K, considering the compositum KFqr and the compositum K(ρ[u])Fqr
instead of K and K(ρ[u]) respectively, and using the fact that any residue field extension

is unramified, we obtain the same result on the ramification index. □

Example 3.6.4. [For results in Sections 4, 5, 6] Let v be a prime of A and u be a

finite prime of A. Put Kn := K(ϕ[un]). For the Drinfeld A-modules ϕ(i) over Fq(t)v for

integers p ∤ i in Example 3.3.18, we have

ϕ
(i)
t (X) = tX + ti(q−1)2Xq + (t+ 1)−qXq2 .

The j-invariant of ϕ(i) is

j(i) := ti(q
2−1)(q−1) · (t+ 1)q.

(1) For v to be an infinite prime, if i > 0, then the ramification break R1 of Kn/K (in

Theorem 3.5.2) for any n equals i(q2 − 1). If i ≤ 0, the extension Kn/K is at worst

tamely ramified (Lemma 3.6.1).

(2) Let u be a finite prime of A with u ̸= v. If v = t and i < 0, then ϕ has potentially

stable reduction and the reduction over some extension of K is bad. The ramification

break R (in Theorem 3.5.4) of Kn/K equals −i(q2 − 1). If v ̸= t or i > 0, then ϕ

has potential good reduction and the extension Kn/K is at worst tamely ramified

(Lemma 3.6.1).



CHAPTER 4

Height functions, conductors, and Szpiro conjecture

Let F be a global function field. Let ϕ be a Drinfeld A-module over F such that

ϕt(X) = tX + asX
qs + arX

qr ∈ F [X],(53)

where s and r are two positive integers satisfying s < r. The j-invariant of ϕ is

j :=
a
(qr−1)/(q−1)
s

a
(qs−1)/(q−1)
r

.

The heights of ϕ measure the arithmetic complexity of ϕ. Applying Proposition 2.2.1 with

the local field taking Fv and v being an infinite prime of F, we obtain a formula that

can be regarded as a relation between the J-height and the differential height of ϕ in

Section 1. In Section 2, using the results in Section 5 and 6 in Chapter 3 (and admitting

the assumptions in these results), we define and calculate the conductor of ϕ at each

prime v of F when r = 2. Finally, we show that there is a numerical relation between

the J-heights and the conductors of certain rank 2 Drinfeld A-modules. The obtained

numerical relation might be regarded as an analogue of Szpiro’s conjecture for function

fields.

1. Height functions

Let MF (resp. M f
F and M∞

F ) denote the set of all primes (resp. all finite primes and

all infinite primes) of F. For each prime v ∈ M f
F , let deg(v) denote the degree of the

residue field of Fv over Fq. Put F0 := Frac(A) = Fq(t). Following [BPR21], put

hJ(ϕ) :=
1

[F : F0]

∑
v∈MF

deg(v) ·max{−v(j), 0}(54)

to be the J-height 1 of ϕ.

Remark 4.1.1. For a prime v of F, let | − |v denote the absolute value of Fv either

satisfying |u|v = q−deg(u) for the finite prime u of A divisible by v (this is the case where

1In [BPR21], the J-height of ϕ is defined to be

d(q − 1)

(qs − 1)(qr − 1)
· 1

[F : F0]

∑
v∈MF

deg(v) ·max{−v(j), 0},

where d is the least common multiple of qi − 1 for i = 1, . . . , r.

100
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the prime v is finite) or being the extension of qdeg(−) (this is the case where the prime v

is infinite). Then we have

hJ(ϕ) =
1

[F : F0]

∑
v∈MF

[Fv : F0,v] · logmax{|j|v, 0},

where F0,v is the completion of F0 at the prime of F0 lying below v. On the other hand,

let E be an elliptic curve over a number field N and jE its j-invariant. For a prime w of

N, let | − |w denote the absolute value of the local field Nw either satisfying |p|w = p−1

for p divisible by w or being the extension of the absolute value of R. Let MN denote the

set of all primes of N. Following [Sil94, (10)], put

h(jE) :=
1

[N : Q]

∑
w∈MN

[Nw : Qw] logmax{|jE|w, 0},

where Qw = Qp for p to be the prime number divisible by w if w is a finite prime or

Qw = R if w is an infinite prime. One may consider the J-height of a Drinfeld A-module

as an analogue of h(jE).

For each infinite prime v of F, let Λv be the A-lattice associated to ϕ as a Drinfeld

module over Fv via the uniformization and {ωv,i}i=1,...,r an SMB of Λv. Following [Tag92,

Section 5.3 and (5.9.1)], define the differential height of ϕ to be

hd(ϕ) :=
1

[F : F0]

( ∑
v∈M f

F

deg(v)
q − 1

(qs − 1)(qr − 1)

(
max{−v(j), 0} − vr

qs − 1

q − 1

)

+
∑
v∈M∞

F

deg(v)
1

r
(v(ωv,1)s+ v(ωv,r)(r − s))

)
.

(55)

Remark 4.1.2. Resume the above notations. Define the covolume of Λv to be

D(Λv) :=
r∏
i=1

|ωi|v

We may write (by the product formula)

hd(ϕ) =
1

[F : F0]

(
q − 1

(qs − 1)(qr − 1)

∑
v∈M f

F

[Fv : F0,v] logmax{|j|v, 0}

−
∑
v∈M∞

F

[Fv : F0,v]

(
log |ar|1/(q

r−1)
v + logD(Λv)

1/r

))
.

Assume that E/N has everywhere stable reduction. Let η(z) denote the Dedekind eta

function defined on the upper half plane of C and put ∆(z) = (2π)−12η(z)24. By [Sil86,
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Proposition 1.1 and (10)], the Faltings-Parshin height of E/N equals to

h(E/N) =
1

[N : Q]

(
1

12

∑
w∈M f

N

[Nw : Qw] logmax{|j|w, 0}

−
∑

w∈M∞
K

[Nw : R]
(
log |∆(τw)|1/12 + log Im(τw)

1/2

))
.

Notice that Im(τw) is the volume of the parallelogram in C spanned by 1 and τw. One

may consider the differential height of a Drinfeld A-module as an analogue of the Faltings

height. The differential height has a similar behavior to that of the Faltings-Parshin

height (See [Tag92, Section 5] and [Wei18, Theorem 5.3]).

Put v0 := v(t). By Proposition 2.2.1 and the product formula, we can obtain the value

of hd(ϕ) in terms of v0 and v(j) for all primes v of F.

Lemma 4.1.3. Let M<α1
F denote the set of infinite primes v of F such that v(j) < v0q

and M≥v0q
F := MF \M<v0q

F . For each prime v ∈ M<α1
F , let mv denote the positive integer

such that v(j) ∈ (αm+1, αm]. Then we have

[F : F0] · hd(ϕ) =
∑

v∈M f
F∪M

<α1
F

deg(v)
q − 1

(qs − 1)(qr − 1)
max{−v(j), 0}

+
∑

v∈M<α1
F

deg(v)
1

r

(
v0

qss

qs − 1
+ v0mv(r − s) +

v(j)(q − 1)(r − s)
qsmv(qs − 1)(qr−s − 1)

)

+
∑

v∈M≥α1
F

deg(v)
v0q

r

qr − 1
.

Let M
[α1,0)
K denote the set of infinite primes v of K such that v(j) ∈ [α1, 0). By (54),

we have

[F : F0]
q − 1

(qs − 1)(qr − 1)
hJ(ϕ) =

∑
v∈M f

F∪M
<α1
F ∪M [α1,0)

F

deg(v)
q − 1

(qs − 1)(qr − 1)
max{−v(j), 0}.

Hence we have the following corollary.

Corollary 4.1.4. With the notations above, we have

hd(ϕ) =
q − 1

(qs − 1)(qr − 1)
hJ(ϕ) +

1

[F : F0]

(
C1(ϕ) + C2(ϕ) + C3(ϕ)

)
,
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where

C1(ϕ) :=
∑

v∈M [α1,0)
K

deg(v)
q − 1

(qs − 1)(qr − 1)
v(j),

C2(ϕ) :=
∑

v∈M<α1
F

deg(v)
1

r

(
v0

qss

qs − 1
+ v0mv(r − s) +

v(j)(q − 1)(r − s)
qsmv(qs − 1)(qr−s − 1)

)
, and

C3(ϕ) :=
∑

v∈M≥α1
F

deg(v)v0
qr

qr − 1
.

Remark 4.1.5. For an elliptic curve E over a number field N, a relation between

h(jE) and h(E/N) has been claimed by Silverman (See [Sil86, Proposition 2.1]). The

above corollary may be regarded as its analogue.

Remark 4.1.6. For arbitrary Drinfeld A-module over F, it is natural to consider the

relation between its J-height and its differential height. As the above corollary heavily

relies on Lemma 4.1.3 and hence on the calculations in Chapter 2, the assumption ϕt(X) =

tX + asX
qs + arX

qr is essential. We guess that an explicit formula between the J-height

and the differential height is intricate. On the other hand, similarly to Silverman’s formula

involving h(jE) and h(E/N), finding an inequality involving these two heights might be

a more feasible approach.

2. Conductors and Szpiro’s conjecture

For a rank 2 Drinfeld A-module ϕ over F, let us first define and calculate the conductor

of ϕ at each prime of F in Section 2.1 using the results in Section 5 in Chapter 3. Using

these calculations, we then show the formula involving the conductors of ϕ and the J-

height in Section 2.3. In Section 2.2, we apply the results in Section 3 of Chapter 3 to

calculations similar to those in Section 2.1.

2.1. Definition of the conductors. For a prime v of F, put K := Fv and ϕ a rank

2 Drinfeld A-module over K throughout this subsection. For a finite prime u of A, by

the u-adic Tate module Tu of ϕ, we mean the rank 2 free Au-module lim←−n ϕ[u
n], where

the projective limit is defined using the morphisms ϕu : ϕ[un+1] → ϕ[un] for all integers

n ≥ 1.

Lemma-Definition 4.2.1. Let v be an infinite prime. Put v0 = v(t). Assume that

one of the following two cases happens

(C1) v(j) < v0q and p ∤ v(j);
(C2) v(j) ≥ v0q.



104 4. HEIGHT FUNCTIONS, CONDUCTORS, AND SZPIRO CONJECTURE

Write Gy for the y-th upper ramification subgroup of the Galois group G(Ksep/K). For

any finite prime u of A, put

fv(ϕ) :=

∫ ∞

0

(
2− rankAuT

Gy

u

)
dy.

Then we have

(1) the value fv(ϕ) is independent of the choice of u;

(2) fv(ϕ) =


−v(j)+v0q

q−1
if (C1) happens;

0 if (C2) happens.

Define the conductor of ϕ at v to be the integral fv(ϕ).

Proof. We will show (2) for any finite prime u of A and (1) straightforwardly follows.

By Corollary 1.1.12, there is an SMB {λi,n}i=1,2 of ϕ[un] for each integer n ≥ 1 such

that u ·ϕ λi,n+1 = λi,n for i = 1, 2. The tuples (λ1,n)n≥1 and (λ2,n)n≥1 form an Au-basis of

Tu.

Assume (C1) happens. By (51), i.e., K(ϕ[un]) = K(Λ) = K(ϕ[tm]) for n ≥ m/d,

the action of Gy on ϕ[un] factors through G(Λ)y for any y > 0. Here G(Λ) denotes

G(K(Λ)/K). Notice G(Λ)1 =
⋃
y>0G(Λ)

y. For any element σ ∈ G(Λ)1, by Lemma 3.5.1,

σ fixes uj ·ϕ λ1,n = λ1,n−j for any non-negative integer j < n. Hence σ fixes (λ1,n)n≥1. By

Theorem 3.5.2 (2), if σ is not the unit and n ≥ m/d, then it nontrivially acts on λ2,n and

hence nontrivially acts on (λ2,n)n≥1. As G(Λ)
R1 ̸= {e} and G(Λ)y = {e} for y > R1 (by

Lemma 3.4.2), we have rankAuT
Gy

u = 1 if 0 < y ≤ R1 and = 2 if y > R1. We have

fv(ϕ) =

∫ R1

0

1dy =
−v(j) + v0q

q − 1
.

For the case (C2), we have K(Λ) = K(ϕ[un]) for any n ≥ 1 (by Proposition 2.2.1 (2),

we can apply Proposition 1.2.13). The action of Gy on ϕ[un] for any n ≥ 1 and any y > 0

factors through G(Λ)y. By Lemma 3.6.1 (1), we have G(Λ)y = {e} if y > 0. The result

for the case (C2) immediately follows. □

Lemma-Definition 4.2.2. Let v be a finite prime. Assume that one of the following

two cases happens

(C1) v(j) < 0 and p ∤ v(j) such that the reduction of ϕ over some extension of K has

rank 1;

(C2) v(j) ≥ 0 such that ϕ has potentially good reduction.

Write Gy for the y-th upper ramification subgroup of the Galois group G(Ksep/K). For

any finite prime u of A not divisible by v, put

fv(ϕ) :=

∫ ∞

0

(
2− rankAuT

Gy

u

)
dy.
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Then we have

(1) the value fv(ϕ) is independent of the choice of u.

(2) fv(ϕ) =


−v(j)
q−1

(C1) happens;

0 (C2) happens.

Define the conductor of ϕ at v to be the integral fv(ϕ).

Proof. We will show (2) for any finite prime u of A and (1) straightforwardly follows.

By Corollary 1.1.12, there is an SMB {λi,n}i=1,2 of ϕ[un] for each integer n ≥ 1 such

that u ·ϕ λi,n+1 = λi,n for i = 1, 2. The tuples (λ1,n)n≥1 and (λ2,n)n≥1 form an Au-basis of

Tu. The action of Gy on ϕ[un] for any n ≥ 1 and any y > 0 factors through G(n)y. Here

G(n) denotes the Galois group of the extension K(ϕ[un])/K.

Assume (C1) happens. By Corollary 3.5.5 (1), we have G(n)y = G(n)1 for any 0 <

y ≤ −v(j)
q−1

and = {e} for y > −v(j)
q−1

. By Corollary 3.5.5 (2), for any n ≥ 1 and 0 < y ≤ −v(j)
q−1

,

any nontrivial element in G(n)y fixes λ1,n and nontrivially acts on λ2,n. Any element of

G(∞)y = lim←−nG(n)
y for 0 < y ≤ −v(j)

q−1
fixes λ1,n for n ≥ 1 and hence fixes (λ1,n)n≥1.

Any nontrivial element of G(∞)y nontrivially acts on λ2,n for some n ≥ 1 and hence

nontrivially acts on (λ2,n)n≥1. Note that G
y acts on Tu via G(∞)y. Hence rankAuT

Gy

u = 1

if 0 < y ≤ −v(j)
q−1

and = 2 if −v(j)
q−1

< y. We have

fv(ϕ) =

∫ −v(j)
q−1

0

1dy =
−v(j)
q − 1

.

For the case (C2), by Lemma 3.6.1, we have G(n)y = {e} for any y > 0 and n ≥ 1.

Hence Gy fixes λi,n for i = 1, . . . , r and any n ≥ 1. The case (2) follows. □

Corollary 4.2.3. Let v be a prime of F. Let ϕ be a rank 2 Drinfeld A-module over Fv.

Put v0 = v(t). Then we have

fv(ϕ) =



0 v(j) ∈ [v0q,+∞);

−v(j)+v0q
q−1

v(j) ∈ (−∞, v0q) and p ∤ v(j),
v is infinite;0 v(j) ∈ [0,+∞);

−v(j)
q−1

v(j) ∈ (−∞, 0), p ∤ v(j),
v is finite.

2.2. On the free submodule fixed by the higher ramification subgroups.

Put K = Fv. Let ϕ be a rank r Drinfeld A-module over K such that

ϕt(X) = tX + a1X
q + arX

qr ∈ K[X].

Let Gy denote the y-th upper ramification subgroup of the Galois group G(Ksep/K). In

this subsection, similar to Section 2.1, we apply the results in Section 3 in Chapter 3 to

study ϕ[u]G
y
for y > 0.
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Lemma 4.2.4. Let u be a finite prime of A with degree 1. Put v0 := v(u). Assume

v(j) < α1 = v0q(qr−1−1)
q−1

and p ∤ v(j). Put R := −v(j)+α1

qr−1−1
. Write Gy for the y-th upper

ramification subgroup of the Galois group G(Ksep/K). Then for any 0 < y ≤ R, we have

rankA/uϕ[u]
Gy = 1.

Proof. Let {ξi,1}i=1,...,r be an SMB of ϕ[u]. For λ ∈ ϕ[u], we have λ =
∑r

i=1 aiξi,1 for

some ai ∈ Fq. The group Gy acts on ϕ[u] via G(K1/K)y. By Corollary 3.3.15, we have

G(K1/K)y = G(K1/K)1 for 0 < y ≤ R. We are to show σ(λ) = λ for any σ ∈ G(K1/K)1
if and only if a2 = · · · = ar = 0.

As any element in G(K1/K)1 fixes ξ1,1 (Theorem 3.3.16), the “if” part follows. We

show the “only if” part. By Theorem 3.3.16, the map

g : G(K1/K)1 → V r−1; σ 7→ (σ(ξ2,1)− ξ2,1, . . . , σ(ξr,1)− ξr,1).

is an isomorphism, where V denotes the A/u-vector space generated by ξ1,1. For each

i = 2, . . . , r, let σi denote the preimage of the vector in V r−1 whose (i− 1)-st component

is ξ1,1 and other components are 0. Assume ai ̸= 0 for some i ≥ 2. Then there exist some

bi ∈ Fq for i = 2, . . . , r such that
∑r

i=2 aibi ̸= 0. Then the element
∏r

i=2 σ
bi
i does not fix λ

and the claim follows. □

Note G(K1/K)y = {e} for y > R. Similarly to Lemma-Definitions 4.2.1 and 4.2.2, by

the above lemma, we have

Corollary 4.2.5. Resume the notations in the above lemma. We have∫ ∞

0

(
r − rankA/uϕ[u]

Gy
)
dy = R.

Especially, the value of this integral is independent of the choice of u.

2.3. An analogue of Szpiro’s conjecture. For a global function field F, let ϕ be

a rank 2 Drinfeld A-module over F. Let MF denote the set of all primes of F. Let deg(v)

denote the degree of the residue field of Fv over Fq. We define the global conductor of the

Drinfeld module ϕ to be

f(ϕ) :=
∑
v∈MF

deg(v) · fv(ϕ).

We have the following statement by Lemma-Definition 4.2.1 and 4.2.2.
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Theorem 4.2.6. Put v0 := v(t). Let ϕ be a rank 2 Drinfeld A-module over F such that

for each prime v of F, its j-invariant j satisfies
either

(
v(j) < v0q and p ∤ v(j)

)
,

or v(j) ≥ v0q
if v is infinite;

either
(
v(j) < 0 and p ∤ v(j)

)
,

or v(j) ≥ 0
if v is finite.

Then

hJ(ϕ) ≤ f(ϕ) · q − 1

[F : Fq(t)]
+ q.(56)

Proof. We know from Corollary 4.2.3 that

f(ϕ) =

∑
v∈Mf

F

deg(v) ·max

{
−v(j)
q − 1

, 0

}
+

 ∑
v∈M∞

F

deg(v) ·max

{
−v(j) + v0q

q − 1
, 0

} .

Let fv and ev denote respectively the absolute residue degree and the absolute ramification

index of v. We have

q − 1

[F : Fq(t)]
f(ϕ)− hJ(ϕ)

=
1

[F : Fq(t)]
∑
v∈M∞

F

deg(v) (max {−v(j) + v0q, 0} −max {−v(j), 0})

≥ 1

[F : Fq(t)]
∑
v∈M∞

F

deg(v) · v0q =
1

[F : Fq(t)]
∑
v∈M∞

F

fv · ev · (−deg(t)q) = −q,

where we use the extension formula in the last equality. This shows the theorem. □

Although the conditions in the theorem seem strict, it is not hard to find infinitely

many rank 2 Drinfeld modules fulfilling these conditions.

Example 4.2.7. Consider for each i ≥ 2 with p ∤ i the Drinfeld Fq[t]-module ϕ(i) over

Fq(t) defined by ϕ
(i)
t (X) := tX + tiXq + Xq2 . It has good reduction at all finite primes.

The j-invariant of ϕ(i) is j(i) = ti(q+1). The J-height of ϕ(i) equals to i(q + 1). At the only

infinite prime v, we have the conductor fv(ϕ
(i)) = i(q+1)−q

q−1
. The global conductor of ϕ(i)

equals to i(q+1)−q
q−1

. This family is an example that the conductor can be arbitrarily large.

Note that the equality in (56) holds.
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Example 4.2.8. For the Drinfeld Fq[t]-module ϕ(i) over Fq(t) for each integer i with

p ∤ i in Example 3.6.4, we have its j-invariant

j(i) := ti(q
2−1)(q−1) · (t+ 1)q.

We have

(1) For each infinite prime v of A, we have

fv(ϕ
(i)) =

0 i ≤ 0;

i(q2 − 1) i > 0.

For each finite prime v of A, we have

fv(ϕ
(i)) =

−i(q2 − 1) v = t and i < 0;

0 v ̸= t or i ≥ 0.

Hence

f(ϕ(i)) =

−i(q2 − 1) i < 0;

i(q2 − 1) i ≥ 0.

(2) We have

hJ(ϕ
(i)) =

−i(q2 − 1)(q − 1) i < 0;

i(q2 − 1)(q − 1) + q i ≥ 0.

The conductors and the J-height of ϕ(i) for all i can be arbitrarily large. Note the

strict inequality in (56) holds if i < 0.
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[Tag92] Y. Taguchi, Semi-simplicity of the Galois representations attached to Drinfel’d modules over

fields of ”infinite characteristics”, J. Number Theory 44 (1993), no. 3, 292–314.

[Wei18] F.-T. Wei, On Kronecker terms over global function fields, Invent. Math. 220 (2020), no. 3,

847–907.


