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Abstract

Let p be a prime number and ¢ be some power of p. Let K be the localization of
some function field at a prime v. We define successive minimal bases (SMBs) for the free
F,[t]/u™module ¢[u"] of u™-division points of a Drinfeld FF,[t]-module ¢ over K, where u is
a monic irreducible element of F,[¢] and n is a positive integer. These SMBs share similar
properties to those of SMBs of the lattices associated to Drinfeld modules via the (Tate)
uniformizations. Especially, the valuations of the elements of an SMB are independent of
the choice of the SMBs, i.e., the valuations are invariants of ¢[u™]. If v is infinite, then
an exponential map e4 and a lattice A are associated to the Drinfeld module ¢ via the

uniformization. For an SMB {w;}i— » is an SMB

.........

.....

.....

with minimal valuation. When v is finite and ¢ has stable and bad reduction, we show
similar results.

On the practical side, we restrict ourselves to the case where ¢ is a rank r Drinfeld
FF,[t]-module over K such that ¢;(X) =tX +a, X7 +a, X9 € K[X], where s is a positive
integer < r. Assume that u is not divisible by v. We first calculate the valuations of
elements of SMBs of ¢[u"] for all positive integer n. When s = 1 and deg(u) = 1, under
certain assumptions, we obtain the Herbrand ¢-funtion of K (¢[u])/K and the action of the
wild ramification subgroup of the Galois group G(K (¢[u])/K) on an SMB of ¢[u]. Next,
we assume 7 = 2 and allow u to have an arbitrary degree. Under certain assumptions, we
obtain the Herbrand v-function of K(¢[u"])/K and the action of the wild ramification
subgroup of G(K (¢[u"])/K) on an SMB of ¢[u™].

For a rank r Drinfeld F,[t]-module ¢ over a function field F' such that ¢,(X) =
tX +a, X9 +a,X? € F[X], we show a formula involving the J-height and the differential
height of ¢. Finally, we define and calculate the conductor of ¢ at each prime of F' and
show a function field analogue of Szpiro’s conjecture for rank 2 Drinfeld F,[t]-modules

over F' under a certain limited situation.
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Introduction

1. Notation

Let us introduce the notation used throughout this paper. Let A := F[t] be the
polynomial ring in ¢ over the field F, whose order is a power of a rational prime p. Let F'
be a global function field which is a finite extension of the fraction field of A. An infinite
prime of F'is a prime of F' lying above the prime (1/t) of F,(¢). A finite prime of F' is
a prime that is not infinite. Let K be the completion of F' at a prime v. We also let
v denote the valuation associated to K normalized so that v(K*) = Z. Fix K5 (resp.
K*®#) a separable (resp. algebraic) closure of K. For a Galois extension L of K within
K /K, let G(L/K) denote the Galois group. Let C, denote the completion of K8, If
v is an infinite prime, we also let C., denote C,.

Let ¢ be a rank r Drinfeld A-module over K. For an element a in A, let ¢[a] be the
A/a-module of a-division points in K*P. It is a A/a-free module of rank r. Fix a finite
prime u of A, i.e., u is a monic irreducible polynomial in A and a positive integer n. The
main research objects in this paper are successive minimal bases of ¢[u"] defined below.
For a € A and = € ¢[u"], write a -,z = ¢,(z) for the action of a on z. Let K, denote the
extension of K generated by elements in ¢[u”|.

Let | — | denote one of the following functions.
(F1) If v is an infinite prime, we have the absolute value | — | on K which extends the
absolute value | — | = ¢%8(") on F,((1)). This absolute value may be extended to
Ceo.
(F2) Assume that v is a finite prime of F' and ¢ has stable reduction over K. If the
reduction of ¢ has rank 7/, following |[Gar02, Section 1], define a function | — | on
K by
(—v(@))" v(2) <0,
forz € K, |z[ = —v(2)/"  w(z) >0,
0l =—0c0 x=0.

We may extend this function to C,. This function is not an absolute value or a norm

on K. However, the ultrametric inequality holds. We still call |x| the norm of z.

The main definition is
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Definition 1.1. Let | — | denote the function in (F|1)) or (F2). We call a family of
elements {\; }i=1.., an SMB (successive minimal basis) of ¢[u"] if for each 4, the elements
Ay .., A in @[u”] satisfy
(1) Aq,..., A are A/u"-linearly independent;

(2) |\;| is minimal among the values |\| of elements A in ¢[u"] such that Ay, ... A1, A
are A/u"-linearly independent.

In the definition of SMBs of ¢[u"], we have imitated the definition of SMBs of the
lattices A (defined below) (See [Tag92l Section 4] or |[Gek19Al Section 3]). Note that
(1) in the definition implies that {A\;,..., A} is an A/u"-basis (or a generating set) of
Blu"].

It turns out that an SMB of ¢[u"] has the following properties.

Proposition 1.2. Let {\;}i=1,.» be an SMB of ¢[u"].

(1) (Proposition [L.1.8) The sequence [Ai] < [Xo| < --+ < |\ associated to an SMB of
o[u"] is an invariant of plu™], i.e., for any SMB {\;}i=1. . of p[u™], we have || = |\
for all 1.

(2) (Proposition |1.2.13|and [1.3.16)) Assume that u is not divisible by the prime v, i.e.,
v(u) < 0. Then we have

-----

‘Zai '¢)\i

= max{|a; ¢ \i| }

for any a; € A mod u".

.....

for alli. The elements u -4 N fori=1,...,r form an SMB of ¢[u"'].

Here the properties (1) and (2) are similar to those of SMBs of lattices (See Propo-

sition [1.1.6 and [1.1.5). We remark that (2) essentially follows from similar properties
of SMBs of lattices (See Proposition or [Tag92, Lemma 4.2]). We hope to know
whether the condition “v(u) < 07 in (2) can be removed.

2. Relations between SMBs of ¢[u"] and those of lattices

If v is an infinite prime, let A denote the rank r A-lattice in C,, and ey4 the exponential
function from C,, to C., associated to ¢ via the uniformization. Here we consider A and
the domain of ey as A-modules via the natural embedding A — C..

If v is a finite prime, we assume throughout this subsection that ¢ has stable reduction
and the reduction of ¢ has rank " < r. Let ¢ denote the rank ' Drinfeld module over K
having good reduction, A the rank r — " A-lattice in C,, and e, the exponential function
from C, to C, associated to ¢ via the Tate uniformization (See [Dri74, Section 7] or
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Section . Here we consider A and the domain of e, as A-modules via 1, i.e., we have
the action of @ on w to be a -y w = 1, (w) for any a € A and any w in A or C,.

If v is a finite prime, let u="A denote the A-module consisting of all roots of 1, (X)—w
for all w € A. For any infinite or finite prime w, by the uniformization or the Tate

uniformization of ¢, we have an isomorphism of A/u"-modules

Ep i u"ANJA — o[u"]
induced by e,. Hence one may expect that there are relations between SMBs of ¢[u™] and
those of A.

Let | — | denote the absolute value in (FI)) (resp. the function in (F2)) if w is an
infinite prime (resp. a finite prime). Put |[u"|o, = gd°®").

Theorem 2.1. (1) Let w be an infinite prime.

.....

.....

-----

Under this assumption, for eachi = 1,... r, the element \; has only one preimage
under eg, denoted log,(N;), with absolute value < |w| for any w € A\ {0}. Then

~~~~~

A). Let w; be a root of hun(X) —w? fori=1"+1,...,r. Then the images es(w;)
fori=1,...,r form an SMB of ¢[u"].

-----

,,,,,

[0 /|mr41|. Under this assumption, for each i = 1,...,r, the element \; has
only one preimage under ey, denoted log,();), with absolute value < |w| for any
w € A\ {0}. Then the family of elements {log,(\i)}iz1,...w C C, (resp. {u" -y
log,(Ai) Yizr11,..r C Cy) is an SMB of ¥[u"] (resp. of A).

Let K(A) (resp. K(u~"A) and K,,) denote the extension of K generated by all elements
in A (resp. u= ™A and ¢[u"]). By Theorem we are able to show

.....

(1) (Corollary (2)) If w is an infinite prime and n is large enough so that |u"|s >
In-/|m|, then we have K(A) = K.

(2) (Corollary [1.3.9) (3)) If w is a finite prime and n is large enough so that |u"|s >
1nel /|11, then we have K(u™"A) = K,.
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The claim (1) is an effective version of [Maul9, Proposition 2.1].

3. Application to certain Drinfeld modules

Let K be a local field which is the completion of some global function field at a prime
v. For a positive integer r > 2, let ¢ be a Drinfeld A-module over K (¢ not necessarily

has stable reduction over K') such that
¢4 (X) = tX + a, X" +a, X7 € K[X],

where s and r are two positive integers satisfying s < r. Put
Q4 D/ (=D

I = e

Let u be a finite prime of A. As a preparation for the later results, we are to calculate
the valuations of the elements of the SMBs of ¢[u"] for each n in Chapter 2] With this
preparation, in Chapter [3| we are to study the ramification of K(¢[u"])/K. The results
in Chapter [1] allow us to obtain Theorem [3.2] below.

3.1. The valuations of elements of SMBs of ¢[u"]. In Chapter , we first calcu-
late the valuations of the elements of ¢[u"] for the case where the prime u of A has degree
1 (See Section |1] of Chapter . When the prime u has arbitrary degree, the valuations of
elements in the SMBs are completely worked out for the cases where the prime v is infinite
prime or the prime v is finite satisfying v { u (See Proposition and Proposition.
For the case where u | v, the valuations are calculated under certain assumptions (See
Proposition . Assume ¢ has stable reduction over K when the prime v is finite.
For the lattice A (or the pair (¢, A)) associated to ¢ via (Tate) uniformization, we also
calculate the valuations of SMBs of A and ¢[u"].

3.2. Explicit actions of the wild ramification subgroup. In Chapter[3]| we study
the ramification of K (¢[u"])/K. We only know the result for certain limited cases. For
a positive integer n, let G(n); denote the wild ramification subgroup, i.e., the first lower
ramification subgroup, of Gal(K (¢[u"])/K).

Assume s = 1 and deg(u) = 1. For the extension K (¢[u])/K, we work out its Herbrand
y-function in Corollary (3). We can describe the action of G(1); on ¢[u] as follows:

Theorem 3.1 (Theorem [3.3.16)). Let v be an infinite prime or finite prime. Let u be
a finite prime of A with deg(u) =1 (we do not require vt u). Assume r > 3, s =1 such

77777

and v(j) < %ﬁl*l). Let V' denote the A/u-module A -4 & 1. Then the map

G(l); =V o (0(&21) —&21, - -5 0(&1) — &)
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s an isomorphism.

Note that the case where s | r is also included in this theorem. In fact, if s | r, up to a
constant field extension of K, we may consider ¢ as a Drinfeld F[t]-module. We hope to
know either the Herbrand t-function or the action G(n); on ¢[u"] for n > 2 when r > 3.

Assume moreover r = 2 from now on. For an infinite prime v, in Section [5.1], we study
the action of G(n); on an SMB of ¢[u"] for large enough n. For this, we study the case
where deg(u) = 1 in Section[d] For a finite prime v { u, in Section 5.2}, we study the action
of G(n); on an SMB of ¢[u"] for any positive integer n. In summary, we have

Theorem 3.2. Assume r = 2 such that ¢y(X) = tX +a; X+ a, X7 . Let u be a finite
prime of A with deg(u) = d. Let {\;}iz12 be an SMB of ¢[u"].

(1) (Theorem Let v be an infinite prime. Assume v(j) < v(t)q and ptv(j). Let m
be the integer such that v(§) € (v(t)g™ ™, v(t)q™). Put d = deg(u). Assume n > m/d.

o Any element in G(A)y fizes \y;
e For a positive integer i, let A<t denote the subgroup of A consists of elements

with degree < i. Then the map
G(A)l — A<™ ) )\1, g — O'(/\Q) — /\2

s an isomorphism of groups.
(2) (Theorem Let v be a finite prime satisfying v { u. Assume v(j) < 0, and p {v(j).
o Any element in G(n), fizes Ay;
o There is an isomorphism of groups

G(n)l — A ‘b )\1; o+ U()\Q) — )\2.
For the case where the valuation v(j) is large enough, we have

Proposition 3.3 (A special case of Lemma|3.6.1)). Let v be an infinite prime or a finite
prime satisfying v t u. Let ¢ be a rank r Drinfeld A-module over K such that ¢.(X) =
tX +a, X9 +a, X9 . For a degree 1 prime u' of A not divisible by v, if v(j) > w,

q—1
the extension K(p[u™])/K is at worst tamely ramified such that G(n)y is a trivial group.

Finally, we hope to know the ramification of K(¢[u"])/K for an integer n and a finite

prime u of A (See Remark |3.3.17)).

4. Analogues of results for elliptic curves

Let F be a global function field. Let ¢ be a Drinfed A-module over F' such that

(X)) =tX + a, X" +a, X7 € F[X].
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where s and r positive integers satisfying s < r. Put
Q& =D/ a1

I @

Drinfeld modules can be considered as analogues of elliptic curves over a number field.
In this section, we introduce results that are analogues of those for elliptic curves over a

number field.

4.1. A formula involving two heights. In Section [I] of Chatper [4, we apply the
results in Chapter [2| to show a formula in Corollary that can be regarded as a
relation between the differential height and the J-height of ¢ (See and for the
definition). The differential height and the J-height are respectively defined in [Tag92]
Section 5] and [BPR21], Section 2]. They are analogues of certain heights of elliptic

curves (See Remarks [4.1.1{and [4.1.2). Hence one may regard this formula as an analogue

of Silverman’s formula in [Sil86) Proposition 2.1]. We hope that there is a generalization
of the formula in Corollary for arbitrary Drinfeld A-modules (See Remark [4.1.6)).

4.2. An analogue of Szpiro’s conjecture. Section is devoted to a review
of the conductors and Szpiro’s conjecture for elliptic curves over number fields. Then
for each prime v of F' and a certain rank 2 Drinfeld module ¢ over F),, we introduce an
analogue of these conductors for ¢ at v. Finally, we claim a numerical relation between
the J-heights and these analogues. This relation can be regarded to be an analogue of
Szpiro’s conjecture.

4.2.1. Review on conductors of elliptic curves. Let E be an elliptic curve over a local
number field K of residue characteristic p > 0. For a prime number ¢ { p, let E[¢] denote
the vector space of the (-division points of E. Let G; (resp. GY) denote the i-th lower
(resp. y-th upper) ramification subgroup of the Galois group of the extension K(E[(])/K
generated by the ¢-division points of E. Define the wild part of the conductor of E/K to
be the quantity

+oo #Gz
0 #GO

where E[(]% is the subspace of elements of E[{] fixed by G; and E[(]%" is similarly defined.
Define the tame part of the conductor to be

IE/K) =

“+o00
codimg, (E[(]%)di = / codimg, (E[(]*")dy,
0

0, FE has good reduction;
e(F/K) = codier(Vé(E)I(Ksep/K)) =41, FE has multiplicative reduction;

2, F has additive reduction.
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Here V,(E) = l&lE[f”] ®z, Q; denotes the rational ¢-adic Tate module and I(K5P/K) is
the inertia subgroup of the absolute Galois group of K. Put as in [Sil94. p. 380]

(1) f(E/K) =(E/K) + ¢(E/K)

the conductor of F over K. The quantity f(F£/K) is an integer independent of the choice
of ¢.

Let E be an elliptic curve over a (global) number field F. The conductor of E/F is
the ideal f(E/F) = T, fuite p/(E/Fe) defined by all conductors of E/F,, where F, is the
completion of F' at p. Here the product extends over all finite primes p of F. The conductor
measures the extent to which an elliptic curve has bad reduction.

There is another invariant, called the minimal discriminant, which measures how bad
the reduction is. The minimal discriminant D(E/F') of E/F is the product of the minimal
discriminants of integral models of E/F, for all finite primes p of F. Szpiro proposed a
conjecture (see [Szp90], p. 10] or [Sil94, Chapter IV, 10.6]) concerning a relation between
these two invariants. A stronger form of this conjecture was proposed by Lockhart-Rosen-
Silverman in [LRS93, Remark 5.

Conjecture 4.1. (1) Fiz a number field F' and a real positive number . Then there

exists a constant C(F,¢) such that: for any elliptic curve E over F, its minimal dis-
criminant D(E/F) and its conductor f(E/F) satisfy

Nr/o(D(E/F)) < C(F,e)(Npo(f(E/F)))***.
(2) (Stronger form) Put j*"(E/F) = ][, guite pe B/ Then there erists a constant
C(F,¢) such that for any elliptic curve E over F,
Nrjo(D(E/F)) < C(F,e)(Npo(f™™(E/F)))"*.
The conductor f(E/K) of E over a local number field K is estimated by
Theorem 4.2 (Lockhart-Rosen-Silverman [LRS93], Brumer-Kramer [BK94]). Let K/Q,

be a local field with normalized valuation vy, and let E/K be an elliptic curve. Then

f(E/K) has an upper bound
f(E/K) <24 3vk(3) + 6vk(2).

See also [Sil94, Chapter IV, Theorem 10.4]. This estimate is very important for the
study of Szpiro’s conjecture since it implies that (1) and (2) in the above conjecture are
equivalent.

For an abelian variety A over a local number field K its conductor f(A/K) is defined
in [LRS93| (12), (13)] (initially defined by Serre-Tate in [ST68, p.500]). The definition
is similar to . Lockhart-Rosen-Silverman also proposed a “partial generalization of
Szpiro’s conjecture”.
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Conjecture 4.3 (JLRS93| (10)]). Let A be an abelian variety of dimension d over a
number field F. Put f(A/F) = [, gnite plA/E)  Let hpp(A/F) denote the Faltings-Parshin
height of AJF. Then there are constants Cy(F,d) and Cy(F,d), depending only on F and
d, such that

hep(A/F) < C(F, d) - 1og|Nr/of(A/F)| + Co(F, d).

Szpiro’s conjecture for Q follows from the abc conjecture [Szp90l Section 2, Remar-
que|. Mochizuki [Mo21] announced the proof of the abc conjecture via the inter-universe
Teichmiiller theory.

4.2.2. An analogue of Szpiro’s conjecture. Assume throughout this subsection that
the rank of ¢ is r = 2. We first define an analogue of the conductor above. The estimate
in Theorem [4.2] suggests that when working with Szpiro’s conjecture and its variant for
elliptic curves over a number field, one may ignore the contribution of wild ramification.
On the contrary, for the extensions generated by division points of Drinfeld modules, the
wild ramification can be made arbitrarily large. So it is worth investigating a relation
between the height and the wild part of the conductor of a Drinfeld module.

Rather than the vector space of division points, we consider the G,-module T, where
G, denotes the absolute Galois group of F,. Since G, is a profinite group, a definition
similar to that of “6(F/K)” in (1)) using lower ramification subgroups is not valid.

Using the notion of the upper ramification subgroups, we define for a rank 2 Drinfeld
A-module ¢ over K the quantity

o0 Y
5(9) = /0 (2 — ranks, T9)dy

as an analogue of the wild part of the conductor 6(E/K) of an elliptic curve. Here GY
denotes the y-th upper ramification subgroup of GG,. Note that the prime v can be infinite
or finite. In fact, the infinite part of a height (e.g. J-height) is not bounded. When we
want to relate the height to the conductor (as in Theorem in the function field case,

we must define the conductors at infinite primes, unlike in the number field case.

Proposition 4.4 (Lemma-Definitions [4.2.1| and [4.2.2)). Let ¢ be a rank 2 Drinfeld
A-module over F. Assume one of the following four cases happens

(1) v is infinite, v(g) < v(t)q, and p1v(F).
(2) v is infinite and v(F) > v(t)g;

(3) v is finite, ptv(g), and v(j) < 0;

(4) v is finite, and v(j) > 0.
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Then the integral f,(¢) is independent of the choice of the finite prime u used in the
definition of §,(¢) and we have

! v(g) € [v(t)g, +oo); v 18 infinite;
(o) = | L ) € (—oo,v(t)a), piol),
’ v(g) € [0, +o0); v 1$ finite.
(59 v(h) € (—00,0), pios), andq+#2,

The cases (1) and (3) follow from Lemma [3.3] The other cases follow from Theorem [3.2]

For a prime v of F' and the completion F,, let deg(v) denote the degree of the residue
field of F, over F,. Put f(¢) :=)_, deg(v) - f,(¢) and we call it the global conductor of ¢,
where the sum extends over all primes v of F.

The conductors for certain Drinfeld modules are determined by the j-invariant. We
obtain the following formula involving the global conductor of ¢ and the J-heights (See
for definition) of ¢. This formula can be regarded as an analogue of Conjecture .
Here the J-height is initially defined in Breuer-Pazuki-Razafinjatovo [BPR21] using the
j-invariants and can be regarded as a replacement of the Faltings-Parshin height in Con-

jecture [£.3]
Theorem 4.5 (Theorem 4.2.6). Let ¢ be a rank 2 Drinfeld A-module over F. For each

prime of F, assume that ¢ satisfies one of the four conditions in Proposition [£4. Let
hs(¢) denote the J-height of ¢. Then we have the inequality
qg—1

h(9) <59) i oy

+q.

4.3. Remark on the contents. The results Chapter [I| are contained in [Hua23|
Sections 2, 3, and 4]. We slightly generalize the results in [AH22l Section 2 and Ap-
pendix] in Section [I| in Chapter . We slightly generalize certain results in [Hua23|
Section 5.1 and Section 6.1] in Section [2[ in Chapter . In Section [2] of Chapter |3, we
slightly generalize [AH22| Proposition 3.2]. In Sections [I] and Section [f] of Chapter [3, we
slightly generalize the [AH22| Lemmas 3.4, 3.5, 3.17, and 3.18]. In Section , we show a
nontrivial generalization of [AH22, Lemmas 3.6] and derive Theorem (the above
Theorem [3.1)). The results in Section [| are straightly taken from [AH22| Section 3.2]
and there is nothing new. The results in Section [5| are straightly taken from [Hua23|
Sections 5.2 and 6.2]. The results in [AH22| Section 3.3] are covered by Corollary
(the above Theorem (2)). The formula Corollary in Section (1| of Chapter /4] has
not appeared in the previous literature. The results in Section is similar to those in
Section 2.1 but have not appeared in the previous literature. The results in Sections
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and of Chapter {4 are taken from [Hua23|, Sections 5.2, 6.2, and 6.3]. These result
extends those in [AH22| Section 4].
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CHAPTER 1

On successive minimal bases

We consider Drinfeld A-modules over a localization K of a global function field. In
Section [T} we first review the basics of the SMB of lattices. The rest of this section is
devoted to the basics of SMBs of ¢[u”]. In Section [ we mainly show Theorem [1.2.3]
(the infinite prime case of Theorem [2.1). For an element w; of an SMB of the lattice
A associated to the Drinfeld module and an element a; in A with a limited degree, we
describe the absolute value of e,(a;w;) in Corollary (1). This is the key result of this
section and its proof is inspired by that of [Gek19Al Lemma 3.4]. Section [3| consists of
finite prime analogues of the results in Section 2 The analogue of Corollary (1) is

Corollary (1).
1. Basics of SMBs

For an infinite prime v (resp. a finite prime v), let | — | denote the absolute value in
(FfI)) (resp. the function in (F[2))) defined at the beginning of Section[l]in the Introduction.

1.1. SMBs of lattices. In this subsection, we recall first the basics of SMBs of
lattices and then the (Tate) uniformization of Drinfeld modules. Consider C,, as an A-
module via the embedding A — C.. If v is a finite prime, consider C, as an A-module via
a Drinfeld module 1 having good reduction of rank 7’. The next lemma will be applied
implicitly in this paper.

Lemma 1.1.1. (1) Ifv is an infinite prime, we have |aw| = |a| - |w| for any a € A and
w € Cq.

(2) ([Gar02, Section 1)) Let v be a finite prime. Then we have |a -y w| = |a|s - W], i.e.,
v(a -y w) = la|, - v(w) for any a € A and any w € C, having valuation < 0, where
o, = o),

PRrROOF. (1) is clear. We show (2). Put g =+ - deg(a), ap = a, and Y7_,a; X9 =
1 (X). As the Drinfeld module ¢ has good reduction, we have v(a;) > 0 and v(a,) = 0.
Hence the assumption v(w) < 0 implies that the valuation v(a,w?’) is the strictly smallest
among v(aw? ) for all i. As v(a,) = 0, we have v(a,w?) = ¢9v(w), i.c., [aw| = |a|o-|w|. O

Let L be an A-lattice of rank r in C,, or an A-lattice of rank r in C, such that each
nonzero element in the lattice has valuation < 0.

14
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Definition 1.1.2 ([Tag92, Section 4] or [Gek19Al Section 3]). A family of elements
{wi}iz1, » in L is called an SMB of L if for each 4, the elements wy, ..., w; satisfy
(1) wy,...,w; are A-linearly independent;
(2) |w;| is minimal among the absolute values of elements w in L such that wy, ..., w; 1, w

are A-linearly independent.

Remark 1.1.3. The condition Definition (1) implies that {A;}i=1,., is a basis (or

a generating set) of ¢[u"]. However, if {w;};—1 ., is a family of elements in L that satisfies

11111

only the condition (1) in the above definition, then it is not necessarily a generating set.

Proposition 1.1.4. Let {w;};—1.._, be a family of elements in L.

(1) This family is an SMB if and only if for each i, the elements wy, ..., w; satisfy
® wi,...,w; are A-linearly independent;

e we have |w;| = l;, where

li:min{pER

the ball in C, or C, around 0 of radius p contains at least
i elements in L which are A-linearly independent '

(2) The sequence |wi| < |wo| < -+ < |w,| for an SMB {w;}i—1..,» is an invariant of L,
i.e., for any SMB {w!}i—1,. , of L, we have |w;| = |w}| for all .

PROOF. As (2) immediately follows from (1), we only show (1). The first dot is the
same as Definition [I.1.2) (1). For “«<,” we show that for A-linearly independent elements
Wi, .., wi—1,w in L, we have |w;| < |w|. Assume conversely |w| < |w;|. We have |w| < [,
which contradicts the definition of ;. For “=" we fix any ¢ and show [; = |w;|. Clearly, we

have I; < |w;| and [; = wy. Then we do induction. Assume [; = |w;| for j < i. If [; < |w;],

then there are A-linear independent elements piy, ..., p; € A satisfying |u;] < I; < |wi
for 7 = 1,...,1. There exists k such that ug,ws,...,w; 1 are A-linear independent. For
otherwise, for each j there are some a; € A such that a;u; are A-linear combinations
of all py,...,u;, and hence the elements wy,...,w; 1 generate a rank i free A-module,
which is absurd. As |ug| < |w;|, the elements i, wy, . .., w;—1 being A-linear independence
contradicts Definition [1.1.2] (2). O

Proposition 1.1.5. In the proposition, we put aw = a -y w for any a € A and

w € L when the prime v is finite. Let {w;}i—1. ,» be a family of elements in L so that
lwi| < Jws| < -+ <|wy|. Then this family is an SMB of L if and only if

(1) wi,...,w, form an A-basis of L;

(2) we have | Y, aw;| = max;{|a;w;|} for any a; € A.

ProoF. ([Tag92, Lemma 4.2]) We show = . Let k be the largest index so that
lapwi| = max;{|a,w;|}. Assume conversely | ) . a;w;| < |agwi|. Then there is an index
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J # k so that |ajw;| = |axwy|. Let J denote the set of all these j. As |wi| > |w;| for each
J € J, there exist b;, c; € A such that a; = axb; + ¢; with |bj|oc > 1 and |¢j|ec < |ak|oo. If

we admit the claim
Z bjbdj + Wi
J
thenwy, ..., wp_1, . ; bjwj+wy being A-linearly independent contradicts Deﬁnitionm (2).

As for the claim, by |¢j|s < |ak|oo, We have

E agbjw; + arwy

jed

< |w/€|7

g a;w; + AW

jed

:’ E a;W;
A

< |ak/\k|

The desired inequality follows.
As for <, fixing a positive integer k& < r, we know that | ), a;w;| < |w| implies a; = 0

for i > k by the equation in (2). Hence we have |wi| = [ and the proof follows from
Proposition [L.1.4] (1). O

For the subfield K of C,, we say that L is G(K*®?/K)-invariant if each element in the
Galois group maps L into L. The following lemma concerns the extension generated by
elements in the lattice with the minimal norm.

Lemma 1.1.6. Let {w;}i=1..,» be an SMB of L such that wy,...,ws satisfies |wi| =
s = ws| < |wsy1]. Assume that

e the extension M of K generated by w; for1=1,...,s is separable;
o the lattice L is G(K*P/K)-invariant.

Then the extension M /K is Galois and is at worst tamely ramified.

PROOF. Let M denote the Galois closure of M /K so that M is exactly the compositum
of ¢M for all ¢ € G(]\//T/K) We have M = M. Indeed, if M/]\/[ is nontrivial, there exists
some element ¢ € G(]\//T/K) such that ¢(w;) ¢ M for j to be one of 1,...,s. Note that
M contains the A-module P,_; , Aw; (here Aw; == {a -y w; | a € A} if the prime v is
finite). As elements in A\ @,_, , Aw; have strictly smaller valuations than that of w;
for i = 1,...,s and Galois actions preserve valuations, this implies that ¢(w;) ¢ L. If ¢
also denotes a preimage of ¢ under G(K*?/K) — G(]/\/[\/K), then ¢(w;) ¢ L contradicts
that L is G(K*P/K)-invariant.

We show that M/ K is tamely ramified. Assume the converse so that the wild ramifica-
tion subgroup G(M/K); is nontrivial. Let vy denote the normalized valuation associated

to M. For o to be a nontrivial element in G(M/K);, we have for each i

1 < wvpy(o(w)w; ' —1).
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We also have o(w;) —w; # 0 for j to be one of 1,...,s. Note that vy/(w;) is the largest
among the valuations of all nonzero elements in L. As o(w;) —w; € L (L is G(K*?/K)-
invariant), we have

v (o (w)wy ' = 1) = vy (o(w;) — wy) — var(w;) < 0.
This gives a contradiction. 0
Next, we briefly recall the uniformization and the Tate uniformization. If w is an
infinite prime, then the uniformization (See [Pap23|, Section 5.2] for more details) asso-
ciates to the Drinfeld module ¢ a Gal(K*P/K)-invariant A-lattice A and an exponential

function ey on C such that for each a € A, the following diagram commutes, and its

two rows are short exact sequences

AC Cxo Coo

AC Coo Coo-

Here the exponential function is explicitly

ey Coo > Co; w—rw H (1—w/p)
peA\{0}

and the coefficients of the polynomial ¢,(X) map to C,, via the embedding K — C.
The commutativity of the right square in the diagram means e,(aw) = a -4 e4(w) for any
w € Cq.

Remark 1.1.7 (SMBs and isomorphic Drinfeld modules). For any b € K*, we have
the Drinfeld module b¢b~! isomorphic to ¢. The uniformization associates to bpb~! the
lattice bA. If the family {w;}i— » 1s an SMB of bA.

777777777

If v is a finite prime of K, assume that ¢ has stable reduction and the reduction of ¢
has rank 7" < r. According to [Dri74, Section 7] (See also [Pap23| Section 6.2]), there
are the following data associated to ¢ :

(1) A rank 7" Drinfeld A-module ¢ over K has good reduction;

(2) A Gal(K®*?/K)-invariant A-lattice A has rank r — 7" with the A action induced by .
Each element of A has valuation < 0.

(3) An analytic entire surjective homomorphism

e :C, =2 Cpy w—w H (1 —w/p)
neA\{0}
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such that for each a € A, the following diagram commutes, and its two rows are short

exact sequences

A>C, . ¢,
o o
A—sC, 2,

The commutativity of the right square means ey(a -y w) = a -4 e4(w) for any w € C,.

We call these data the Tate uniformization of ¢.

1.2. SMBs of the module of u"-division points. Let ¢ be a rank r Drinfeld A-
module over K. For a positive integer n and a finite prime u of A, this subsection concerns
with two basic properties of SMBs of ¢[u™].

Proposition 1.1.8. Let {\;}i=1,., be a family of elements in ¢p[u"].
(1) Then this family is an SMB if and only if for each i, the elements Ay, ..., \; satisfy
e \i,..., N are A/u™-linearly independent;
e we have |\;| = l;, where

the ball in K*® around 0 of radius p contains at least
[;=min<peR .

i elements in ¢[u"] which are A/u"-linearly independent
(2) The sequence |A\1| < [Xo| < -+ < |\ is an invariant of ¢lu"].

PROOF. (2) is straightly follows from (1). We then show (1). The “<” is straight-
forward. For “=-." the first dot in (1) is the same as Definition [1.1| (1). Clearly, we have
l; < |\ for all @ and I; = |A;|. Then we proceed by induction. We fix any 4, assume
l; = |\j| for j <4, and show [; = |\;|. We assume /; < |\;| and find a contradiction. There
exists elements 7y, ...,n; € ¢[u”] such that ny,...,n; are A/u™-linearly independent and
n;| <l <|N|forj=1,...,1.

n—1

Put n; == u"™" -4 n; for j <4 and A= ul g )\ for j < i. We claim that there is

some k such that 7, and Ay, ..., \i_; are A/u-linearly independent. Assume the inverse.

Then we have equations
i—1

b +Zal,j 4 Aj =0
j=1
foralll =1,...,7, where ¢;; € A mod v and b € A mod u with b; # 0 mod u for each
l. Hence for each [, we obtain

1—1
M= au;/bis X,
=1

where each a;;/b; € A mod u satisfies b;(a;;/b;) = a;; mod u. Hence A, .., \i_1 gener-

ate an i-dimensional A/u-vector space, which is absurd.
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Next, we claim that n, and Ay,..., \;_; are A/u"-linearly independent. Assume the

inverse and we have

i—1
(2) Choo T+ Y 59N =0,

j=1
where each a; € A mod v" and ¢, € A mod u” with ¢, # 0 mod u". We may write
cp = cu™ with m < n and ¢, € A not divisible by u. Then we have u™ | a; for all j < 1,
for otherwise, by , we have Z;;ll a;u""™ -y A; = 0 with a;u"™™ # 0 mod u" for some
J- We may write a; = aju™ for a}; € A. Hence we have by

—_

i—1 i—
0 — Ckun_l—m ‘¢ Mk + Z ajun—l—m ‘¢ )\] = C;g ‘¢ ﬁk‘ + a/;, ‘& )\J
j=1 J=1

with ¢, € A not divisible by u. This contradicts that 7, and A, ..., \;_; are A/u-linearly

independent. We have obtained A/u"-linearly independent elements Ay, ..., A;_1, 7 such
that |n| <1; < |\;]. This contradicts Definition [1.1.2] (2). O

In the remainder of this subsection, we construct an SMB of ¢[u"] for any positive
integer n.

Lemma 1.1.9. Let {\;};=1.» be an SMB of ¢[u™]. For each i and a € A with a # 0
mod u”, the element \; has the largest valuation among the roots X of ¢o(X)—a-4\; such
that X € ¢[u”].

PROOF. Let A be a root of ¢o(X) — a4 A; such that A € ¢[u”]. Assume v(A) > v(\;).
It suffices to show that Ay,..., A\;_1, A are A/u"-linearly independent because this implies
that the inequality v(A) > v(\;) contradicts Definition (2). Assume that there exists
bj € A mod u" with b; # 0 such that b; .o A + Zj<i
common multiple of @ and b; such that ¢ = b.b; = a’a for some b, and o’ € A. Consider
the equation b} -4 (bi g A+ D, bj 4 Aj) = 0. Since bb; g A = d'a-g A =d'a-4 \i =4\,

we have

(3) C-¢ /\z + Z b;b] o) )‘j = 0.

j<u

bj -4 A\j = 0. Let ¢ be the minimal

We have u™ 1 ¢, for otherwise one of a or b; is divisible by u™. Hence the nonzero coefficients
in the equation (3| contradict that Ay,..., \; are A/u"-linearly independent. 0

Corollary 1.1.10. With the notation in the lemma, for each i and a € A being a

power of u, the element \; has the largest valuation among the roots of ¢pa(X) — a -4 A;.

Proposition 1.1.11. Let {\;};=1__, be an SMB of ¢[u"].
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(1) For each i, put X, to be a root of ¢,(X) — A\; having the largest valuation. Then

.....

.....

PROOF. (1) We show that A},..., A\l are A-linear independent for any i. Assume con-
versely that there are a; € A mod u™™! with a; # 0 such that > =145 ¢ Aj = 0. For
J = 1,...,%, since u -4 )\;. = Aj and Aq,..., \; are A/u"-linearly independent, we have

ua; = 0 mod u™*! and hence u™ | a;. There are b; € A with b; # 0 mod u such that

a; = bju” for all j. Hence

0= i&i ) )\; = ibju”_l ) )\Z
j=1 j=1

with b;u"~! not divisible by «™, which is absurd.

As for Definition (2), we show v(\,) > v(A) for each A € ¢[u""!] such that
Ny o M, A are A/u™!-linearly independent. Notice u -4y A € ¢[u"] and that the el-
ements Ar,---,\i_1,u 4 A are A/u"-linearly independent. We have v(\;) > v(u -4 A) as
among the valuations of roots of ¢,(X) — A;. By comparing the Newton polygons of
du(X) — N and ¢, (X) — w4 A, this implies v(\,) > v(A).

(2) It is straightforward to check Definition[L.1](1). Let A be an element of ¢[u"~!] such
that w ¢ Ap,...,u -4 A\i_1, A are A/u""!-linearly independent. To show |u -4 \;| < |A], we
assume conversely v(u -4 A;) < v(XA). By comparing the Newton polygon of ¢, (X) —u-4 A;
and ¢, (X) — A\, there is a root X' of ¢,(X) — A such that v(\) > v()\;). We have X' €
¢[u”] as all roots of ¢,(X) — A belong to ¢[u"]. Similarly to the proof of (1), one shows
that Ay, .-+, A\i_1, A are A/u"-linearly independent. Hence the inequality v(\) > v(\;)
contradicts Definition (2). O

We can find an SMB of ¢[u] in the following way. Put

A11 = an element in ¢[u] \ {0} with the largest valuation and
(4) Ai1 = an element in ¢[u] \ @(A/u) -» Aj1 with the largest valuation
j<i
for i =2,3,...,7. Since A/u is a field, the elements \;; for i =1,--- ,r are A/u-linearly
independent and form an SMB of ¢[u]. Applying the proposition, we have

Corollary 1.1.12. Let {\;1}iz1,...» be an SMB of ¢[u] defined above. Inductively, put
Aij to be a root of ¢,(X) — A j—1 having the largest valuation for each i and each integer

r is an SMB of ¢[u"].

Remark 1.1.13. For b € K, we have the Drinfeld module bpb~! isomorphic to ¢. If
{\i}iz1. . is an SMB of @[u"], then the family {bA;}i=1__, is an SMB of bgb~*[u"].

.....

-----

j > 2. Then for each positive integer n, we have that {\; ,}i—1

,,,,,
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2. Relations between SMBs, the infinite prime case

Let w denote an infinite prime, | — | the absolute value in ( and {w; }i=1,., an SMB
of A throughout this section. For a positive integer n and a finite prime u of A, we study
the relations between SMBs of A and those of ¢[u”].

Lemma 1.2.1. Let a be an element in A. For w =}, ajw; € A with a; € A, let i be

an index so that |a,w;| = |wl, i.e., |a;w;| = max;{|a;w;|}. Assume deg(a;) < deg(a). Then

eo ()] =1 (52

we have

PROOF. We have

Its absolute value is

’E‘ II - Y|
penfoy W
jaga| <o

For pu € A satisfying |au| < |w|, we have by the ultrametric inequality

1 w . w . a;W; — |1 a;W;
ap|  lap|  |ap | ap |
Next, for p € A satisfying |ap| = |w| = |a;w;|, we show
‘1—1 — B
ap ap
It suffices to show
(5) lw — ap| = |w| and |aw; — ap] = |a;w;l.

Since [a;| < [al, we have u belonging to €, _; Aw;, for otherwise we have |au| > |aw;| >

|a;w;| by Proposition (2). Applying Proposition [1.1.5] (2) to |w — au| and |aw; — apl,
we obtain the desired equalities. O

Corollary 1.2.2. Let a be an element in A.
(1) For anyi=1,...,r and any a; € A satisfying deg(a;) < deg(a), we have

‘% (azu@-)’ _ aiwz-). H |\aiwil/|apl-

a
peA\{o}
(2) For any positive integers i,j < r, let a; and a; be elements in A with degrees strictly

lap|<|a;w|

smaller than that of a. Assume |a;w;| < |a;w;|. Then

a;W; a;wW;
o (S =l ()]
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(3) With the notation in the lemma, we have

o (&) =ms oo ()

(4) For any positive integer i < r and b € A satisfying deg(b) < deg(a), we have

o (Do (D

PROOF. (1) has been shown in the proof of the lemma. As for (2), by the assumption,

[b] -

we have
(6) { e Al lap| <lajw;l} C {pe A |ap| < |aw}.

If p satisfies |ap| < |ajw;|, we have |a;w;|/|ap| < |a;w;|/|ap|. Combining this inequality
and (6)), we have the desired inequality by (1). For (3), as a -4 e4(w) = e4(aw) for any
a € A and any w € C,, it remains to show

oo (Ol = mpe{Jes G2}

This equality follows from Lemma and (2). As for (4), note |w;| < |bw;|. One can
show (4) similarly to the proof of (2). O

Theorem 1.2.3. For any finite prime v of A and any positive integer n, the family of
r is an SMB of ¢[u"].

elements {es(w;/u")}iza

-----

PRrROOF. Put \; = e4(w;/u™) for all i. Note that wy/u", ..., w,/u™ are A/u"-linearly
independent as elements in «~"A/A. By the A/u™-module isomorphism &, : u "A/A —
¢[u"] induced by ey, we have that Ay, ..., A\, are A/u"-linearly independent.

Fix a positive integer ¢ < r. To check Definition (2), we show that |);| is minimal
among the absolute values of elements in ¢[u"]\ @;_;(A/u™) 4 A; (in ¢[u"]\ {0} if i = 1).
Put \ = zj aj -4 Aj with a; € A mod u™ such that there is a; # 0 for some k£ > i. We
show |X;| < |A|. Without loss of generality, we assume that deg(a;) < deg(u™) for any j.
Let [ be an index so that [auw| = |}, a;w;|. By Corollary (3), we have

Al = lar - Al -
As |agwi| < |ajw|, Corollary (2) implies
)| < (22)
‘%( u" = |% u"

hence |ay, ¢ Ai| < |ai - Ai|. As |w;| < |wg|, Corollary (2) also implies |\;| < |Ax|. By
Corollary (4), we have |ag|- | x| < |ag -4 Ak|. Combining the equality and inequalities,
we have

Y

Al < Akl < k] - Akl < fak g Akl <ar-g M| = Al
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Remark 1.2.4. We have shown in the above proof that |A\;| is minimal among the

.....

,,,,,

es(wi/u™) = A, for all i. Hence A\| has the minimal absolute value among elements in
¢lu"] \ {0}.

Corollary 1.2.5. Let {\;}i=1...» be an SMB of ¢[u"].
(1) If n is large enough so that |u™| > |w,|/|wi|, then for i =1,...,r, we have |N;| - |u

n| —
jwsl.

(2) For any positive integer n, we have |\.|/|\1| > |wy|/|w1|-

(3) Ifn is large enough such that |u"| > |w,|/|w1], then we have |N;| < |wq| fori=1,... .

Proor. We show (1). Fix ¢ to be one of 1,...,r. Corollary (1) implies

Wi Wi n
(7) eo (S| =15 TT Jeil/lunsl
u u
neA\{0}
™ p] <[]

For any p € A, we have
upl = |u"wr] = fwr| > il

by the hypothesis. Hence implies

oo ()

(& —_— =
¢ un

w.
8 e (2

) n = Jeo (2
by Proposition [1.1.8] (2). (1) follows. Notice that implies
(o) = ] oo (52) 2 |55
ep (— )| =|— e | — —
(2) follows from (§)). Since we know |\,| = |w,|/|u"| by (1), we have
Al < ] = /16 < Jeorl /(Jwr] /|wn]) = fwn]

and (3) follows. O

Wws

ur

for any 17

and for any 1.

Remark 1.2.6. By Corollary (1) and (2), we have |\;| - [u™] = |w;] if n is large
enough so that |[u™| > |A\.|/|A1].

Put B := {w € Cy | |w| < |wi]|}. Since BN A = @, the exponential function ey is
injective on B. For any w € C,, we have

(9) o)l = lwl - ]

peA\{0}
|1l <[]

i
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Hence |ey(w)| = |w| for w € B. This implies e4(B) C B. Put C = ey(B). There is
an inverse logy, : €' — B of ¢, defined by a power series with coefficients in K and
eg : B = C :logy are inverse to each other (See [Pap23], Section 5.1}).

Lemma 1.2.7. (1) We have C N ¢[u"] = B N ¢[u"].
(2) We have the following maps which are inverse to each other
eg: BNLZ BNo[u"] : log,,

where
L= { Zai(wi/u”)
is a set of representatives of all elements in u "A/A.
(3) For any A € BN @[u"], we have |log,(N)| = |Al.

a; € A with deg(a;) < deg(un)}

PROOF. (1) We know C'N¢[u"] C BN¢[u"], which implies #B N ¢[u"] > #C N pu™].
We show
#CO N o] > #BN L > $#B N g[u"] > #C N g[u”].
As e, is injective on £, we have #B N L < #C N ¢[u”] and it remains to show #B N L >
4B 0 gfun).
Put B¢ := {w € Cy | |w| > |w1|}, which is complementary to B in C. Note that
{wi}iz1,. , is an SMB. For any w = Zj aj(w;/u™) € B¢N L, there is an index ¢ so that

lw| = |a;w;|/|u™]. By Lemmal|l.2.1} we have |es(w)| = |es(aw;/u™)|. By Corollary[1.2.2{(1),

we have
a;W;
eol)l = |es (5] 2 | %

Since we have shown |e,(w)| > |w;| for any w € B°NL, we know es(B°N L) C BN ¢[u”].
As ey is injective on £, we have #B°N L < #B° N ¢[u™]. Notice that the cardinal of £
and ¢[u"] are the same. We have #B N L > #B N ¢[u"], as desired.

(2) The map e, : BN L — BN ¢u"] is injective. It is also surjective since #B N L =
#B N ¢[u"]. Hence (2) follows.

(3) By (2), we have log,(\) € BNL and e4(log,(A)) = A. Hence we have |log, ()] = [

by @D O

Remark 1.2.8. Do we have e4(B) = B?

Wi

= [w] = |wi.

Let {\;}i=1,.. denote an SMB of ¢[u"]. Assume that the positive integer n is large
enough so that |u"| > |w,|/|w:|. By Corollary (3) and Lemma [1.2.7) (1), for each 4,
we have \; € BN ¢[u"] = C N ¢[u"] and we put w; := log,(\;).

Theorem 1.2.9. The family {u"w.}i=1,. , is an SMB of A.
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We need a lemma in the proof.
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Lemma 1.2.10. Let {n;}i=1,.
if and only if {u"n;}iz1.., is an SMB of A.

PrROOF OF LEMMA. For any a; € A, we have

Z a;u"n; Z Q;1;

Then the lemma follows from Proposition [1.1.5] U

=

PrROOF OF THEOREM. By Lemma [1.2.10] it suffices to show that the family of ele-
show that wi,...,w. are A-linearly independent. Assume that there exist nonzero a; € A
such that ), a;w; = 0. We may assume u” { a; for some i, for otherwise we divide both
sides of the equation ), a;w; = 0 by some power of u. Note that the map e, is A/u"-
linear. As some q; satisfies a; Z 0 mod u"™ and A,..., A, are A/u"-linearly independent,
we have e,(d ", a;w]) = Y. a; -4 A # 0. This is absurd.

Next, we check the second dot in Proposition m (1). Let [; <1y <--- <, be the
invariant of u™"A as in Proposition[I.1.4] (2). Fix i to be a positive integer < r. It suffices
to show [; = |wi|. We have [; < |w}|. Let us assume [; < |w}|. As \; € B N ¢[u"], we have
|wi] = |\;| by Lemma [1.2.7] (3). Hence l; < || = |\;| < |wi|. By Proposition [1.1.4] (1),
there is an SMB {n;},;=1,., of u=™A such that |n;| = [; < |w1]. As |n;| < |w1|, we know
leo(n;)| = |ns| from (O)). We have

leo(mi)| = Imil =l < |wil = |\

and hence |e4(n;)| < |Ai|. On the other hand, note that {u"n;};=1, ., is an SMB of A by

Lemma [1.2.10, By Theorem |1.2.3| the elements ey(n;) for j = 1,...,r form an SMB of
¢[u"]. By Proposition [1.1.§] (2), this contradicts |eg(m;)] < [Aq]. O

Finally, we give two applications of Theorem [1.2.3| and [1.2.9]

Proposition 1.2.11. If n is large enough so that |u™| > |w,|/|w|, then we have
K(A) = K,
where K(A) (resp. K,) is the extension of K generated by all elements in A (resp. in
plu"]).

PRrROOF. (cf. the proof of [Maul9, Proposition 2.1]) Note that e is given by a power
series with coefficients in K. For any x € K*P, we have e,(z) € K(x) since the field
K (z) is complete. Since &, : u™"A/A — ¢[u"] is bijective, for any A in ¢[u"], there exists
w € v "A such that egs(w) = A. This implies K(\) C K(w) and K, C K(A).

Note that log, is given by a power series with coefficients in K. For any y € cNK*?P, we

.....
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Theoremm the elements u"wj for i = 1,...,7 form an SMB of A, where w; = log,()\;).
Since K(w]) C K(\;) for each i, we have K(A) C K. O

Combining Corollary (2), Theorem [1.2.9] and Proposition [1.2.11] we have

-----

(1) the family {u™logy(\i)}i=1,...,r is an SMB of A;
(2) K(A) = K,,.

Proposition 1.2.13. Let {\;};=1.., be an SMB of ¢[u"]. We have

.....

‘Zai 'qs/\i

= max{]a; -4 \il}

for any a; € A mod u".

PrOOF. Without loss of generality, we assume deg(a;) < deg(u™) for all i. Assume
first that n is large enough so that |u"| > |A.|/|A\1| (Corollary (2)). By Theo-
rem m the elements u"w; for i = 1,...,7 form an SMB of A, where w; = log,(\;). By

Corollary (3), we have
co X ast )| = maxtla g calell)

7

As ey(D . aiwi) = . a; -4 Ai, the claim follows.
For any n, let n’ be an integer > n so that [u™| > |\,|/|\1|. By Proposition [1.1.11] (1),

,,,,,

, follows from that for {\,}i—1 . O

3. Relations between SMBs, the finite prime case

Let v denote a finite prime. Throughout this section, unless otherwise specified, as-
sume that ¢ has stable reduction and the reduction of ¢ has rank " < r. Let ¢ and A
denote respectively the rank r’ Drinfeld A-module associated to ¢ and A-lattice of the
rank r —1’ associated to ¢. Throughout this subsection, let {w?};—/1 1., be an SMB of A.
Let | — | denote the function in ( and put |a|s = ¢ for any a € A. For a positive
integer n and a finite prime u of A, we study the relations between SMBs of 1[u"], those
of A, and those of ¢[u"].

Remark 1.3.1. For each Drinfeld A-module ¢ over K, there exists an element b in
some extension L of K which is at worst tamely ramified such that the Drinfeld module
bpb~! isomorphic to ¢ has stable reduction on L. For example, we can take L/K to
be K(¢[u])/K or its certain subextension. For an SMB {\;},—1, of ¢[u"], the family

.....



3. RELATIONS BETWEEN SMBS, THE FINITE PRIME CASE 27

.....

SMBs of ¢'[u"], and those of A’.

First, we are concerned with the valuations of the elements in the A-module u™"A,
i.e., the roots of 1, (X) — w for all w € A.

Lemma 1.3.2. Let a be an element in A.

(1) Each root of ¥,(X) has valuation > 0. Moreover, all nonzero roots of 1,(X) have
valuation = 0 if and only if v(a) = 0.

(2) For a nonzero element w € A, each root of 1,(X) —w has valuation < 0.

(3) An element w € a='A belongs to vla] if and only if it has valuation > 0.

PROOF. Put g := 7' - deg(a), ag = a, >.0_ya; X" = ¢,(X), and P, = (¢’,v(a;)) for
i=0,...,9. As v(a;) > 0 and v(a,) = 0, the segments in the Newton polygon of ¢, (X)
have slopes < 0. If v(ag) = 0, then the Newton polygon of 1, (X) consists of exactly one
segment PP, which has slope 0 (We will always omit the segment in the Newton polygon
with infinite slope). Hence each root of 1,(X) has valuation = 0. If v(ag) > 0, then the
left-most segment in the Newton polygon of v, (X) has negative slope. Hence some root
of 1,(X) has valuation > 0.

As for (2), put @ = (0,v(w)). As v(w) < 0, v(a;) > 0 for all i, and v(a,) = 0,
the Newton polygon of 1,(X) — w consists of exactly one segment ()P, whose slope is
—v(w)/q° > 0. Hence (2) follows. From (1) and (2), we know (3). O

Fix a root w; of ¢ua(X) —w? for i@ = v + 1,...,r. The elements w,/,1,...,w, are

A-linearly independent. For all a; € A, we have

r

Z Qg o) Wi

i=r'+1

r

E a;u" -y w;

i=r'+1

r

> i)

i=r'+1

" oo - = =

Hence, by Proposition [1.1.5, we have

T
Z Qg oy Wi

i=r'+1

(10)

= e ey )

for any a; € A.

.....
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Lemma 1.3.3. (1) For all a; € A, we have

Zai o Wy

%

|Zi§r,ai wwi| <0 alla; =0 fori>1'

| D iap iy wi| >0 some a; # 0 fori> 1.

(2) Let a; be elements in A fori=1,...,r. Assume either v(u) = 0, or some a; is nonzero

for i > 1. Then we have

‘Zai ) Wy
i

PROOF. (1) Since ), a;-ypw; € Y[u"], wehave [ 3, a;-yw;| < 0by Lemmal(l.3.2/(3).

Since u" -y w; for all i ="+ 1,...,r are elements in A, we have |u"| - |w;| > 0 and hence

= rnla,x{\ai - Wi}

|ai]oo - |wi] > 0 if a; is nonzero. Hence, by and the ultrametric inequality, we have
| > ai g wil = >0, @iy wi| > 0 if some a; for 7 > 7’ is nonzero. (1) follows.

(2) If some a; # 0 for i > 7/, the desired equality follows from (1) and (10). By
Lemma [1.3.2] (1), the assumption v(u) = 0 implies that the elements in 1 [u"] have valu-
ation 0. Hence | > .., a; -y w;| = 0 and |a; -y w;| = 0 for all 4 < ¢/. The desired equality
similarly follows. B 0

Recall for any w € C,, we have

Its valuation is

(11) v(eg(w)) = v(w) + Z v (1 — E) :
i

For certain w =) . a; -y w; € u~™A, we are to calculate |es(w)].
Lemma 1.3.4. If w = Zigw a; -y w; with a; € A mod u", we have
leg(w)| = |w]-

Proor. By (1)), it suffices to show v(1 —w/u) = 0 for each p € A. Notice v(w) > 0
by Lemma [1.3.3] (1). Since v(p) < 0 for any p € A, we have v(1 — w/p) = 0 by the
ultrametric inequality. O

Lemma 1.3.5 (cf. Lemma[lL2.1). Forw =} a; -y w; € u™"A, assume some a; for
J > 1’ is nonzero. Let i be an integer > ' so that |w| = |a; -y wi| = max;{|a; -y w;|} (By
Lemma[L.3.3 (2), such an i exists). Assume deg(a;) < deg(u™). Then we have

leo(W)] = leg(ai -y wi)l-
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ProOOF. By , it suffices to show

U(l_&’):v(l__“i'w“i)
f I

for each p € A with v(p) > v(w). If v(u) > v(w), then we have by the ultrametric
inequality that

1-3) ) (25 6-252)
(1-3) o2 -

if v(p) = v(w) = v(a; -y w;). It suffices to show

Next, we show

v(w —p) =v(w) and v(a; -y wi — @) = v(a; -y w;).
As deg(a;) < deg(u™), we have

jw| = lai -y wil = lailoo - Jwi] < [u"|oc - |wi] = |w]

and hence |pu| = |w| < |[w?|. This implies p € EB;:,, Ay w?, for otherwise we have

|\ > |w?| by Proposition (2). Applying Lemmal[1.3.3](2) to |w—p| and |a; -y w; —
we obtain the desired equalities. O

Corollary 1.3.6 (cf. Corollary [1.2.2)). (1) With the notation in the lemma, we have
viegw)) =vw)+ > (v(w) —v(p).

peA\{0}
v(p)>v(w)

Particularly, for any i = 1,...,r and any a; € A\ {0} satisfying deg(a;) < deg(u"),
we have

v(eg(ai wwi)) = v(aipw)+ Y (vl w) —v().

peA{0}
v(p)>v(a;-pw;)

(2) For any positive integers i,j < r, let a; and a; be elements in A with degree strictly
smaller than that of u™. Assume |a;j -y w;| < |a; - w;|. Then

leg(aj o wi)| < leg(ai - wi)l.
(3) With the notation in the lemma, we have
leg(w)] = max{|a; -y eo(w;)[}-

(4) For any positive integer i = ' + 1,...,r and b € A satisfying deg(b) < deg(a), we
have
[blos -+ leg(wi)] < 104 eg(wi)l.
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PROOF. If i <1/, then we have v(ey(a; -y w;)) = v(a; -y w;) by Lemma([l.3.4] The rest
of (1) follows have been shown in the lemma. Similarly to the proof of Corollary (2)
(resp. (3)), the claim (2) (resp. (3)) follows from (1) (resp. the lemma and (2)).

We show (4). Note b -4 es(w;) = ey(b -y wi). By (1), the desired inequality in (4) is
equivalent to

w&~@wo+ 3 @w»—wmo
pneA\{0}
(12) o(p)>v(w;i)

>olb-pw)+ > (b w) —u(p).
peA\{0}
v(p)>v(bypwi)
By Lemma [1.1.1] (2), we may write the left in this inequality to be

obpw)+ Y (b w) = oy p).

neA\{0}
v(p)>v(wi)

Then follows from the inclusion
[u €y A v(beyp) > v(bywi)} C {1 e A v(u) > v(b-ywi)}.
O

Theorem 1.3.7 (cf. Theorem [L.2.3). For any finite prime u of A and any positive
» be the elements in u="A defined before Lemma L33 Then the
r is an SMB of ¢[u"].

integer n, let {w;}i—1

.....

.....

PRrROOF. Put \; = eg(w;) for all 7. Since wy,...,w, form an A/u"-basis of u="A/A,
their images under the A/u"-module isomorphism &, : u™"A/A — ¢[u"] are A/u"-linearly
independent.

We check Definition (2). Fix a positive integer i < 7. For A = 3, a; -4 A; with
aj € A mod u" such that A\y,..., \;_1, A are A/u"-linearly independent, we show |\;| <
|A]. Without loss of generality, we assume deg(a;) < deg(u™) for any j.

Assume first ¢ < r'. If a; = 0 for all j > 7/, the desired inequality follows from
we can apply Corollary [1.3.6) (1), and we have | > a; - w;| < |32 a5 ¢ Aj|. We know

1>, aj -y wj| > 0 from Lemmam (1). By Lemmam (1) and [1.3.4) we have |\;| =
lw;| < 0. Hence

INi| = |wi| <0< =

Zaj ) Wi

J

> ajg )

J
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As for the case i > r’ 4+ 1, note that there is a; # 0 for some k& > i as Ay, ..., \i_1, A
are A/u"-linearly independent. Similarly to the proof of Theorem |1.2.3] one can apply

Corollary (2), (3), and (4) to show the inequality |\;| < |A]. O
Corollary 1.3.8 (cf. Corollary [1.2.5). Let {\;}i=1.._» be an SMB of ¢[u"].

(1) If n is large enough so that [u"| > |w?|/|wl. ], then for i = 1,...,r, we have
il = il

(2) For any positive integer n, we have |Aq|/|Avi1] > |w?]/|wd 4.
(3) If n is large enough so that |u"|e > [w?]/|wl, ], then we have |\;| < |wd_ | for
1=1,...,7

PROOF. The equation |\;| = |w;| for i = 1,... 7' follows from Lemma|l.3.4] Similarly

to the proof of Corollary [1.2.5, one can apply Corollary (1), Theorem [1.3.7, and
Proposition [L.1.8 (2) to show the rest of the claims. O

Remark 1.3.9. By Corollary (1) and (2), we have | ;| - [u"| = |w;| if n is large
enough so that |[u™| > |A|/|Ar41]-

Put B = {w € C, | |w| < [w2,,]}. Since BN A = &, the exponential function e,
is injective on B. By (1)), we have |ey(w)| = |w| for w € B. This implies e4(B) C B.
Put €' := ey(B). There is an inverse log, : C' — B of e, defined by a power series with
coefficients in K and ey : B = C' : log, are inverse to each other (Although A is an A-
module via 1, the claims in [Pap23, Lemma 5.1.5] can be applied due to the discreteness
of A).

Lemma 1.3.10 (cf. Lemma[L.2.7). (1) We have C' N ¢[u"] = B N p[u"].
(2) We have the following maps which are inverse to each other
eg: BNLZ BNo[u"] : log,,

where
a; € A with deg(a;) < deg(u”)}

L= {Zaz s Wi

)

is a set of representatives of all elements in u="A/A.
(3) For any A € BN ¢[u"], we have |log,(A)| = |Al.

PROOF. We show #B N L > #B N ¢[u"]. Then following the proof of Lemma [1.2.7]
one can obtain the rest of the proof. Put B := {w € C, | |w| > |w¥,,|}, which is
complementary to B in C,. For any w = Zj a;-pw; € B°NL, there exists a; # 0 for some
j > 1, for otherwise we have |w| < 0 < |w?_,| by Lemma (1). By Corollary(1.3.6|(1),
we have

les(@)] 2 |w| = Jwp -
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Hence e,(B°N L) C BN @[u"]. As e, is injective on £, we have #B° N L < #B°N ¢lu™].
Notice that the cardinal of £ and ¢[u"] are the same. We have #BN L > #B N ¢[u"], as
desired. 0

Lemma 1.3.11. Let {\;}i—1
v(A) <0 fori>r'.

» be an SMB of ¢[u"]. We have v(\;) >0 fori <71’ and

-----
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lary [1.1.12] By Proposition [1.1.8] (2), we have v(\;) = v(A;,) for all i. It suffices to show
V(A ) >0 and v(Ayvy1,) < 0.

We first show v(A1) > 0 and v(A411) < 0. Put d = deg(u), up = u, Z:io w; X9 =
¢u(X), and P; == (¢',v(u;)) fori = 0,...,rd. As ¢ has stable reduction, we have v(u;) > 0
for all i, v(u,q) = 0, and v(u;) > 0 for all ¢ > 7’d. Hence the point P4 is a vertex of the
Newton polygon of ¢,(X). The segments on the left (resp. right) of P4 have slopes < 0
(resp. slopes > 0). Hence there are exactly ¢"'¢ roots with valuations > 0. Here 0 € ¢[u]
is considered to have valuation > 0.

We show v(A1) > 0 and v(Av41,1) < 0 by induction. By (), we have v(A11) > 0.
Fix a positive integer k£ < " and assume v(A; ;) > 0 for i < k. Then the elements \;; for
i < k generates an A/u-vector subspace of ¢[u] containing ¢*~4
¢ has stable reduction, for any a € A, all coefficients of ¢,(X) have valuation > 0. By
the ultrametric inequality, we have v(a -4 A;1) for any a € A mod u and ¢ < k. Hence all

many elements. Since

the elements in the vector subspace have valuations > 0. Since ¢*~P?4 < ¢"'¢ there are
elements in ¢lu] \ @,_,(A/u) -4 Ai1 having valuation > 0. By , we have v(Ag1) > 0. For
k = r'+ 1, we have the same inductive hypothesis as above. However, since g1 = ¢7'd,
each element in ¢u] \ @,_,(A/u) -¢ A1 has valuation < 0 and hence v(Ay41,1) < 0.
Next, we show v(A ) > 0 (resp. v(Avy1,) < 0) by induction. Assume v(Ayj_1) >0
(resp. v(Ap41,-1) < 0). By Corollary [1.1.12] the element A ; (resp. Ay415) is a root of
du(X) — Ay j—1 (vesp. ¢u(X) — A1 j—1) having the largest valuation. By the induction
hypothesis and the valuations of the coefficients of ¢, (X), the left-most segment in the
Newton polygon of ¢,(X) — A\ j—1 (vesp. ¢, (X) — Api1,;-1) has slope < 0 (resp. > 0).
Hence we have v(\,;) > 0 and v(A41,5) <O. O

Remark 1.3.12. Assume v { u. By the above proof, we have v();) = 0 and v(}\;) <0
fori=1,...,r and j ="+ 1,...,r. Similarly to Remark the element \; has the
maximal valuation among elements in ¢[u"] \ {0}. This may fail if v | u. Indeed, let ¢ be
a rank 2 Drinfeld A-module over K so that 0 < v(j) < voq. For a degree 1 finite prime
u of A, let {& ;}iz12 be an SMB of ¢[u’] for j > 1 obtained as in Corollary . By
Proposition [2.1.7] (JAH22, Proposition A.3 (1)]), we have v(&1,1) > v(&1,m)-
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Let {\i}i=1,.,» denote an SMB of ¢[u"]. Assume that the positive integer n is large

enough so that |u"|. > |w°|/|w%.|. By Corollary [1.3.8| (3) and Lemma [1.3.10] (1), for
g r r’+1 y y )

each 7, we have \; € BN ¢[u"] = C'N ¢[u"] and we put w; := log,(\;).

Theorem 1.3.13 (cf. Theorem [L.2.9). (1) The family of elements {w!}i—1
SMB of $[u"].
(2) The family of elements {u™ -y Wi }izp 11

77777

» is an SMB of A.

.....

PRrROOF. (1) To check Definition|1.1{(1), we show that the elements w; for i < r’ belong
to 1[u"] and are A/u"-linearly independent. By Lemma [1.3.10] (3) and Lemma[1.3.11] we
have v(w}) = v()\;) > 0 for ¢ < /. By Lemma [1.3.2] (3), this implies that w] € [u"] for
i < r'. Note that &, : u"A/A — ¢[u"] is an A/u"-module isomorphism induced by e,
and ey(w]) = N If ). a;ypw, = 0 with a; € A mod ", then we have ), , a;-¢\; = 0.
This implies a; = 0 mod u" and hence the desired linear independence. B
using Lemma [1.3.4

(2) Similarly to (1), we can apply Lemma|1.3.11] {1.3.10](3), [1.3.2((3) to show w] & 1[u"]
such that u” -, w} for i > 7’ belong to A. We check the two dots in Proposition [1.1.4] (1).
Let us show that w/,,,...,w, are A-linearly independent first. If there exist a; € A such

that >, . a; -y wj = 0, we can show a; = 0 mod u" for all i similarly to (1). Assume
a; # 0 for some 4. Let m be the integer such that u™ | a; for all i > 7" and u™*! } a; for
some i. Then there exist b; € A such that a; = b;u™ for all ¢ > " and b; 20 mod u for
some 4. Hence )
other hand,

iy Di =y wi is a root of 1,m(X) and we denote this root by w. On the

u"” ~¢w:Zbi 2 (u” 'wwg) € A.

i>r’
Since A Ny[u™] = 0, we have u" -, w = 0 and hence w € Y[u"]. By (1), there exist b, € A
mod u" for i <7’ such that w =}, b; -y w;. This equality implies

0:%(2@ pw = Y b -Wg) = bitghi— Y bivg A
i>r/ i<r! i>r! i<r'
As some b; Z 0 mod ", this is absurd.

Finally, we check the second dots in Proposition m (1). Put Ly < -+ < I, to
be invariant of A as in Proposition m (2). Fix i to be a positive integer satisfying
r’ < i < r. It suffices to show I; = |u" -y wi|. We have [; < |u" -, wi|. Let us assume
li < |u™ -y wi|. Since \; € B N ¢[u"], we have |w]| = |\;| by Lemma (3). Hence

,,,,,

of A such that |?| = ;. Let n; be a root of ¢, (X) —n? for all j (cf. the definition of w;
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before Lemma [1.3.3)). As |n;| = ;/|u"]e < |wpi |, we have |eg(n;)] = |m:| by . This
implies

leg(mi)] = Imil = Li/|u"|oo < |wil = [Ai]-
By Theorem m, the elements ey(w}) for j = 1,...,7" and ey(n;) for j =" +1,...,r
form an SMB of ¢[u"]. By Proposition (2), this contradicts |es(n;)| < |\il- O

Proposition 1.3.14 (cf. Proposition [I.2.11)). If n is large enough such that |u™|s >

|w?|/|w? 1|, then we have

K(u™A) = K,,
where K(u™"A) (resp. K,,) is the extension of K generated by all elements in u="A (resp.
in Gu"]).

PROOF. Note that e, is given by a power series with coefficients in K and it induces
an isomorphism &y : u "A/A — ¢[u"]. Similarly to the proof of Proposition one
can show K,, C K(u™"A).

Note that log, is given by a power series with coefficients in K. For any y € C'N K*P,

.....

..........

SMB of ¥ [u"] and A, where w; = log,(A;). Since K (w;) C K();) for each i, it suffices to
show that w, for all ¢ form a generating set of v "A. For any w € u™"A, it is a root of
yn(X) — u™ -y w. Note u” - w € A. Since {u” -y wi}izy41,..» is an SMB of A, we have
u oy w = Y0y (U -y wp) for some a; € A. Hence )., a; -y wj is also a root of
Pyn(X) — u™ -y w. Since {wi}i=y,.. » is an SMB of ¥[u"], we have ) .,
Y iem i -y w; for some a; € A mod u”, i <1’ and the claim follows. O

Combining Corollary (2), Theorem [1.3.13 and Propostion [1.3.14] we have

.....

/
P g Wy — W=

.....

.....
-----

(3) K(u™A) = K,.

Proposition 1.3.16 (cf. Proposition [1.2.13). Let ¢ be a Drinfeld A-module over K
(not necessarily have stable reduction). Assume v(u) = 0, i.e., u is not divisible by the
» be an SMB of ¢[u™]. Then we have

Zai o Ai

prime w. Let {\;}i=1

,,,,,

= max{|a; -3 Ai|}

for any a; € A mod u".
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Proor. We first show the claim for the case where ¢ has stable reduction such that the
reduction has rank < r. Assume that n is large enough such that |u"|s > [w?|/|wY 4] By

..........

Y[u"] and A, where w; = log,(\;). Without loss of generality, we assume deg(a;) < deg(u").
Assume that a; is nonzero for some i > r’. By Corollary (3), we have

%(Z e “’5) ‘ = max{la; -5 eo()]}-
i

Asey(d ", ai-pwi) = >, ai-¢Ni, the claim follows. If a; = 0 for all ¢ > 7/, then >, , a; -y w;
belongs to ¥[u"]. By Lemmam (1), we have | >, ., a; -y wi| = 0 and |a; - w17| = 0 for
all ¢ < r’. The desired equality follows from Lemma [1.3.4] Similarly to the proof of
Proposition [1.2.13] the case where n is arbitrary follows from the case where n is large
enough.

If ¢ does not have stable reduction, there exists b in some extension of K that is at
worst tamely ramified such that the Drinfeld module bgpb~! has stable reduction. If bpb~?
has good reduction, then each element in bpb~'[u"] has valuation 0 (Lemma [1.3.2] (1)).
In this case, the claim trivially follows. If the reduction of bgpb~! has rank r’ < r, then we

have
‘ Zai “bpb—1 b)\z = mzax{\ai “bpb—1 b)\Z’}

We can rewrite the equation to be

Z b(ai ¢ Ai) | = max{[b(a; - Ai)[},

where b(a; - A;) denotes the usual multiplication of b and a; -4 A; in K. This equation
is equivalent to

v ( Z b(a; - )\i)) = min{o(b(a; -4 X))}

This equation is

v(b) +v ( Z a; -4 )\i) = 0(b) +minfv(a; -4 A)}-

7

Hence the claim follows. O

We have assumed above that any Drinfeld module has stable reduction. For a Drin-
feld A-module ¢ over K which does not have stable reduction, it turns out that ¢ is

isomorphic to a Drinfeld module having stable reduction over an at worst tamely ramified
subextension of K (¢[u])/K with w 1 w.
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Proposition 1.3.17. Let ¢ be a rank r Drinfeld A-module over K (not necessarily have
stable reduction). Let u be a finite prime of A with v {wu. Assume that ¢ is isomorphic
to a Drinfeld module having stable reduction over some extension of K and the reduction

.....

K(\) for b= A" and the extension K(\)/K is at worst tamely ramified.

PROOF. For ¢,(X) = tX + Y7, a; X9 € K[X]. Put v; = v(a;) for i = 1,...,7. Let
M be a tamely ramified extension of K of degree ¢" — 1. Let b be an element in M with
valuation v(b) = qf,’i - Then bgb~" has stable reduction on M. The family {bA;}i=
an SMB of bgb™! [u].

Let ¢ and A denote the Drinfeld A-module having good reduction and the lattice

associated to ¢ via the Tate uniformization. The elements of ¥ [u] has valuation 0 by

- 1S

-----

.....

SMB of ¢[u] (Theorem [1.3.7)) and v(es(w;)) = v(w;) =0 fori=1,...,s (Lemma [1.3.4).
We may take bA; to be ep(wl)ﬂ Hence v(bA\1) = 0 and v(\) = —q:’,’il. As M(b'e,(wy)) C

M (wy) and M (wq)/M is unramified, the extension K (A;)/K is at worst tamely ramified.
The Drinfeld module bpb™" with b € K(\;) and v(b) = — 27 Is isomorphic to p and have

1
stable reduction over K (A;). O

Hndeed, by Corollary |1.1.12] we can find an SMB {Xi}izl 77777 » of gb[u”‘ for a large enough n so
that bA; = u™ ™1 1 \; for i = 1,...,r and we could apply Theorem |1.3.13| to {Xi}l-zl - If we take

.....

,,,,,,,,,
.....



CHAPTER 2

Valuations of SMBs of ¢[u"]

Let K be a local field which is the completion of some global function field at a prime
v. For a positive integer r > 2, let ¢ be a Drinfeld A-module over K such that

oi(X) =tX +a, X" +a, X" € K[X],

where s and r are two positive integers satisfying s < r. Put
a1/ (a=1)
S

I @

We call it the j-invariant of ¢.

In Section [T} for a degree 1 finite prime u of A, we calculate the valuations of elements
of ¢[u"]. In Section [2] for a finite prime u of A with arbitrary degree, we apply the results
in Chapter [I] to the Drinfeld module ¢ to obtain the results similar to those in Section [I}
Explicitly, under certain conditions E|, we calculate the valuations of SMBs of ¢[u™]. When
v is an infinite prime or ¢ has potentially bad reduction, for the lattice A (or the pair

(1, A)) associated to ¢ via the (Tate) uniformization, we also calculate the valuations of
SMBs of A and ¢[u"].

1. Valuations of elements in ¢[u"] with deg(u) =1

Let u be a finite prime of A with degree 1 throughout this subsection. Let v also
denote the valuation on K so that the uniformizer of K has valuation 1. Let vq, vs, and
v, denote respectively the valuations of the coefficients u, as, and a, of ¢,(X). We have

v(u) =19 <0 v is infinite;
(13) v(u) =vp =0 w is finite and v { u;
v(u) =v9 >0 v is finite and v | u.

For each j € Z, put

o qujs(qr—s _ 1)
j = p— .
1f the prime v is infinite, to obtain the valuations of SMBs of o[u"], we assume either that n is large
vog’*(¢"""—1)

qg—1

finite, we require either v(u) = 0 or v(a,) > v(u) > 0. See Proposition [2.2.6| and 2.2.11l
37

enough or v(j) # for j € Z>1. See Proposition [2.2.1| and Corollary [2.2.3 If the prime v is
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As in Corollary [1.1.12] let {&; ;}i—12 be an SMB of ¢[u?] for each positive integer j. In
this section, we are to obtain the valuations of ¢; ; for all 7, j so that we can obtain the
valuations of all elements in ¢[u"].

1.1. Valuations of elements in ¢[u]. Put Py := (1,v), Ps = (¢°,vs), and P, =
(q",v,). We define u(P,Q) to be the slope of the segment PQ for P, Q € R?. We have
w(Py, Ps) = 7;1;_7’10, p(Py, Pr) = “==2 and

qr_l Y

v(g)(q—1) —vog®(¢"° — 1)'

M(P07 Ps) - N(POv PT) - (qs _ 1)(qr _ 1)

Note
_ U0q8<qr—s _ 1)

qg—1
We see that (P, Ps) < u(Py, P-) if and only if v(j) < ay. If v(g) < a1, then the Newton
polygon of ¢, (X) is PyPsP, having exactly two segments PyP; and P,P. (We omit the
segment with infinite slope). We have

Qg

Vs — Vg Uy — Vs
and p(Py, P) = —2r Y
¢ —1 ’ (g —1)

There are ¢° roots (resp. ¢°(¢"~° — 1) roots) of ¢[u] having valuations > —u(P,, Ps) (resp.
equal to —u(Ps, P)). By (), we have

M(P07PS) -

_u(P07 Ps) = vsS:vo 1= 1a S5
(14) v(&in) = -1 .
—M(PS,PT):—% Z:S—i-l,...,?”.
In the next few subsections, we calculate the valuations of §; ; for all i =1,...,r and

j > 1 following Corollary [1.1.12] It turns out that the different valuations of u in ((13))
lead to different results.

1.2. Infinite prime cases. Now v(u) = vy < 0. We resume the notations in the
previous subsection. We have the following lemma.

Lemma 2.1.1. Let v be an infinite prime and n a positive integer. For each 1 =
L...,r put Qipn = (0,0(&,)). Assume v(F) < ay. Let m be the integer such that v(j) €
(1, Q-

(1) Fiz i to be one of 1,...,s. Forn > 1, we have

o(gin) == (sl - 1) = 0o ).

Then the Newton polygon of ¢u(X) =& n is QinFPoPs P, having exactly three segments.
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(2) Fiz i to be one of s+ 1,...,r. We have that

v v(g)(g—1) .

T e )
7 Vs v(7)(q —

_ Uo(n—m)+qs_1_qms(qs_l)(qr_s_l)) n>m+ 1.

If1 <n <m-—1, then the Newton polygon of ¢,(X) — &, is QinPs P, having exactly
two segments. If n > m, then the Newton polygon of ¢ (X)—& n is QinPoPsP, having
exactly three segments.

Proor. We show (1). Put u} = pu(Qin, Px) for k = 0,s,r. We first show that the
Newton polygon of ¢, (X) — &1 is Qi1 P Ps P, having exactly three segments. We have

1 Vs — Vg 1 Vs + 1;55__@10 1 Uy + 'qus—_'Ul()
Ho U0+qs_1>:us qs_o y Moy qr_o
We calculate
s —1
= = =D <
(g —1) — T=s 1
pl -l = v(J)(g—1) —wolyg ) <0
q"(¢° — 1)

Hence Fj is a vertex of the Newton polygon. By the argument in Section [I.1], the Newton
polygon has the desired form. Assume that (1) for n — 1 is valid. Then the valuation
of &, is calculated by —ug~" = —vy + v(&,,1). We show that the Newton polygon of
Ou(X) — & 18 Qi PoPs P, having exactly three segments. We have

n Vs — U(gi,n) n Uy — U(gi,n) '

Ho = Vo _U(éi,n)u Hs = qs—_o, u, = 70
We calculate
-1
g =y = M= <
. _1 T*S_l _1 3_1 _1
b = v(g)(q — 1) +volq )((n—1)(¢" = 1) — 1) <0,

¢ (¢° —1)
Then F, is a vertex of the Newton polygon. By the argument in Section |1.1} the Newton
polygon has the desired form.

We check (2). Now ¢ is one of 1,...,s. It is straight to check that the value v(&; 1)
coincides with the one in (14). Let us consider the Newton polygon of ¢, (X) — & ,. Put
wp = w(Qin, Py) for k = 0,r,s. (up differs from the one in the proof of (1)). For n = 1,
we have

1 n Up — Vg Us_'_vr;vsl UT+117;+3U51)
o= U0+ s = o fly =
‘ ¢*(q— — 1)
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We calculate

—v(g)(g—1 +00¢%(¢" % — 1
,u(l)—,ui: ()( 2s)r_$0 ( )’
q* (g —1)

v(d)g—1)
qs-i-r

py = py = <0.

Ifv(j) € (a,aq), we have pf < ul and hence Py is a vertex of the Newton polygon. In this
case, the Newton polygon is Q);1FyFPs P, having exactly three segments by the argument
in Section (1.1} If v(j) < ag, we have pf > u! and the Newton polygon is Q; 1 P, P, having
exactly two segments.

Assume that (2) for n — 1 is valid. If n <m — 1, the valuation of ; ,, is

et B (n e )
’ ¢° =0 ¢ =1 (g = 1)(¢* = 1)
Next, we determine the Newton polygon of ¢,(X) —&;,,. We have

n n Vs — U gi,n n Ur — U £i,n
(15) po =vo — V(&) Hy = #, fy = ﬁ

We calculate

(16) fo — py = g s (g — 1) ’
v(d)(g—1(¢™ - 1)
¢t (g = 1)
Since n < m — 1, we have g > p. This implies that );,,Ps is the first segment of the

(17) py — py = <0.

Newton polygon and the Newton polygon is Q; ,, Ps P, having exactly two segments.

When n = m, we have the same inductive hypothesis as above and v(;,,) = —p™ L.
However, we have pj' < p* by . Thus F, is a vertex of the Newton polygon of
Gu(X) =& m by . By the argument in Section , the Newton polygon is Q; ,, PoPs P,
having exactly three segments.

If n > m + 1, then the valuation of &;, is calculated by —pdt = —vg + V(&in—1)-
We show that the Newton polygon of ¢, (X) — &, is Q;,PoPsP, having exactly three
segments. We have p, p, and g as in . We calculate

q(m+1)s(qr—sil)

n o —v(g) +vo(¢"* — 1)(n — m)q™ + vy = g—1
Ho = Hs = q(m+1)s qrs — 1
v(@) g —1)(@™ = 1) +v(n—m)(¢" = 1)g™ (¢ — 1)

g 1)

Then P is a vertex of the Newton polygon. By the argument in Section [1.1], the Newton

<0,

Ly = My = < 0.

polygon has the desired form. O
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For the rn elements & ; for ¢ =1,...,7 and j = 1,...,n, the next proposition claims
that they form a basis of the rn-dimensional F,-vector space ¢[u"] and can be arranged
with respect to their valuations.

Proposition 2.1.2. Let v be an infinite prime and n a positive integer. Assume
v(g) < aq. Let m be the integer such that v(j) € (m+1,Qm]. Then the elements & ; for
i=1...,randj=1,....,n form a basis of the F,-vector space ¢p[u"™]|. Fix k to be one of
1,...,s, and [ to be one of s+ 1,...,r. If n < m, then we have

(18) V() > V(pn_1) > -+ > 0(&1) = v(&n) > v(§na1) > > 0(&0),

where the equality holds if and only if n = m and v(j) = Q. If n > m+ 1, then we have

,U(gk,n) > U(gk,TLfl) > > U(gk,nfmqtl)
U(sl,n> > U(gk,n—m)
U(fl,n—l) > U(gk,n—m—l)

v

v

(19)

v

Y]

V(& mt1) > 0(Ek1)
V(&m) > v(§ma1) > - > v(§),

where each equality holds if and only if v(J) = au. For any & =3, ;a;;&; € ¢lu"] with

v

a;; € Fy, we have
v(§) = Hllijn{v(aijfi,j)}-

PRrROOF. The inequalities and follow from

(1) v(& 1) >v(& ) fori=1,...,rand j > 1;

(2) v(&pa) > v(&y) fork=1,...,s,l=s+1,...,r, and j < m, where the equality holds
if and only if j = m and v(J) = a;

(3) v(&kj+1) = V(& jam) > V(&) for k=1,...,s,l=5+1,...,r,and j=1,...,n —m,
where the equality holds if and only if v(j) = a,.

These inequalities follow from Lemma [2.1.1} e.g., the left and the right inequalities of (3)

are equivalent to v(J) < ay, and v(j) > @41, respectively.

.....

for some b; € A mod u™ and we may assume deg(b;) < deg(u™). As deg(u) = 1, for each

. . . . -1 :
t=1,...,r, there exist a;; € F, satisfying b, = Z;‘l:o a;;u’ and hence
£ = Z @ij&in—j-
i=1,...,r
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Moreover, &, ; for all 7, j are F -linearly independent, for otherwise, &; ,, for all i are A/u"-
linearly independent. By Proposition [1.2.13] we have

v(§) = min {v(b; -y &)}

i=1,...,

By the inequality (1)), we have v(b; -4 &) = minj{v(a;& n—;)} and hence
v(§) = Hl.lijn{v(aijgi,nfj>}~
0

Let us look at the case where v(g) € [y, +00). There are claims similar to Lemma
and Proposition [2.1.2]

Proposition 2.1.3. Let v be an infinite prime and n a positive integer. Assume
v(g) € [aq, +00).
(1) Fiz i to be one of 1,...,r. We have
(€)= = (snln = 1) + =0
Put Q, = (0,v(&.)). Then the Newton polygon of ¢,(X) — & is QnPoP,. having
exactly two segments.

(2) The roots & j fori =1,...,r and j = 1,...,n form a basis of the F-vector space
¢[u”]. For n > 1 and each i, we have

U(&i,n) > U(gi,nfl) > > U(fi,l)-

For any x =3, ;a;;& j € du”] with a;; € Fy, we have

v(z) = ﬂg’ijn{v(az’j&,j)}-

PRrOOF. Similarly to the proof of Lemma (1), we can prove (1) by induction on

n. We put u} == (Qn, Py) for k =0, s, . The calculations below are enough for the proof
of (1)

—v(@)(g—1) + (¢ —2¢°+ 1)

¢*(q" — 1)
vo(qg" — 1
-t ==
q
For an integer n > 1, we have by the induction hypothesis
n o —0()(@—1) +u(¢" —2¢° + 1) +ug(¢® — 1)(¢" — 1)(n — 1)
Mo — Hg = qs(qr _ 1) )

N(l)_ui: <0,

n n von(q’” — ]‘)
o = Hr == <0.

The proof of (2) is similar to that of Proposition [2.1.2] O
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1.3. Finite prime cases with v { u. We have the following claims similar to

Lemma [2.1.1] Proposition|2.1.2] and Proposition As in Section[L1.1] put Py = (1, vp),
Py = (qsavs)a and P, = (qravr)-

Proposition 2.1.4. Let v be a finite prime satisfying v | u and n a positive integer.

(1) Fix k to be one of 1,...,s, and l to be one of s+ 1,...,r. If v(j) <0, we have
Vs
0(&kn) = -1
Vs v(9)(qg—1

U(fl,n) - < s T ns s(])(q T‘—Z > :

¢ —1 q¢=(¢—1(¢*-1)
Put Q;n = (0,v(&,)) fori=1,...,r. Then for each i, the Newton polygon of ¢, (X)—
&in 15 QinPsP. having exactly two segments.

Moreover, the elements & ; foralli =1,...,r and j =1,...,n form a basis of the

[F,-vector space ¢p[u™]. Then we have

V(&km) = V(km-1) = - = (k1) > v(&n) > v(En-1) > > v(&0)-
For any § =3, 5 a;;&i; € dlu] with a;; € Fy, we have

v(§) = Hl.l’ijn{v<aij§i,j)}'

(2) Fiz i to be one of 1,...,r. If v(j) > 0, we have

Uy
U(é-%n) - _qr _ 1
Put @ = (0,v(&)). Then for each i, the Newton polygons of ¢,(X) — &.n are QPs
having ezactly one segment. The roots & ; for alli=1,...,r and j =1,...,n form

a basis of the F,-vector space of ¢[u"].

PROOF. The claims for the valuations and the Newton polygons are proved by induc-
tion on n. For those in (1), put uf’" = p(Qkn, P;) and ,uli’" = (Qn, P;) for i = 0,s,7.
The following calculations are enough for the proof (It turns out these calculations can

be obtained by replacing the vy in the proof of Lemma with 0). We have
o —v)g—1)

l,1 .
o' — bt =0; o — K= gy
. d A
ki oen_ V)@ —1) an v()(q — 1)
/'687 - /'L'f'7 T — < O, l’l — l71 A B ——— .
q"(¢° — 1) e = Hr qstr <0

For an integer n > 1, we have by the induction hypothesis
kn ke o V@@ —1)
po'" — i = 0; Ho = Hs™ = ntDys(gs — | >0
. and q q
kn _ o kn _ w 0 I ! v(g)(¢" —1)(g—1)
Mg My = (S 1 <\, lus’n — ILLT’n = < 0.
¢ (¢° = 1) ¢t (g® = 1)
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As for the claims of valuations and Newton polygons in (2), put u; = u(Q, P;) for i =
0,s,r. We have

fo — fr =0,
v(j)(qg—1)

s — My — — < 0.

e =i = (g = 1)

It remains to show all §; ; form an F,-basis of ¢[u"] and v(§) = min; j{v(a;;&;)}. The
proof is similar to that of Proposition but we apply Proposition [1.3.16| instead. [

1.4. Finite prime cases with v | u. For each integer j < 1, we have

. vg (¢ 1)
J q-— 1 .

We have the following claims similar to Lemma [2.1.1]

Lemma 2.1.5. Let v be a finite prime satisfying v | u and n a positive integer. Put
Py = (1,v9), Ps = (¢°,vs), P, = (q",v), and Q;, = (0,v(&;)) fori=1,....r.
(1) Assume 0 < v(j) < ay. Let m be the integer such that v(J) € [—(m-1), ¥—(m—2))-

(i) Fiz i to be one of 1,...,s. We have
Vo Us
(n—l)s( s _ ]_) s 1
) dnhe(g q '
W) v o(j)lg ~ 1) o,

— — > 1.
q(mfl)er(nfm)r(qs _ 1) q(nfm)r<qr _ 1)(qs _ 1) q— 1 nzm+

If n <m—1, then the Newton polygon of ¢u(X) =& is QinPsP, having exactly
two segments. If n > m, then the Newton polygon of ¢,(X) — &n is QinP;
having exactly one segment.

1<n<m;

(i) Fiz i to be one of s+ 1,...,r. Forn > 1, we have

 wie-n
U(éi,n) - q(n—l)fr—i-s(qr—s _ 1)(q7’ — 1) qr — 1

The Newton polygon of ¢u(X) — & is QinPy having exactly one segment.
(2) Assume v(j) < 0. Fix k to be one of 1,...,s, and l to be one of s+ 1,...,r. We have

U Us
U(gkm,) = q(nfl)s(oqs . 1) - qs _ 17
U(fl,n) = s U(J)<q ~ 1) B =

(¢ =@ -1) ¢-1
If v(g) < 0, then for each i, the Newton polygon of ¢u(X) — & is QinPsPr hav-
ing exactly two segments. If v(j) = 0, then the Newton polygon of ¢u(X) — &kn
(resp. du(X) —&n) 18 QunPs Py (resp. QunP,) having exactly two segments (resp. one
segment).
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PROOF. Similarly to the proof of Lemma (1), we can prove the lemma by induc-
tion on n. For (i) of (1), we put uf = p(Q;n, Px) for k = 0,s,r. The calculations below
are enough for the proof of (i). We have

s —1
ph -t = =D
1 v g—1) =g —1)
Hs — Ky = (s .
q¢'(¢° — 1)

For an integer 1 < n < m, we have by the induction hypothesis

n n ,Uo<qns _ 1)

Ho — Hs = T >0,

/Ln . ILLn — U(J)(q - 1) o UO(qT_S - 1)
s r qr(qs o 1) q(n—l)s—i-r(qs _ 1)

The inequality p — p; < 0 holds if and only if v(j) < a_¢,—1). This is the case if

n=1,...,m—1 and we have > holds if n = m,m +1,.... For n > m + 1, we have by
the induction hypothesis

My — My = (qs _ 1)q(n+1fm)r +too {1 (qs — 1)q(m*1)s+(n+17m)r = 07

w41 (¢—D(-1)
(20) pg — iy =v(J) (qs(qr — 1) | qeermr(gr — 1)(g5 — 1))

vo(q"* — 1)
q(mfl)s+(n+lfm)r(qr — 1)((]5 — 1) .

Put

W g=1 volg"™ — 1)
f(.?) '— U(J)qs(qr _ 1) q(m—l)s+(n+1—m)7’(qr _ 1)<qs — 1)'

Notice > f(7). We have f(3) > 0 if and only if

vlg"™"—1) 1
q(m—l)s(q _ 1) q(n—m)r—i-r—s(qs _ 1) ’

v(g) >

As this inequality holds, we have > 0.
As for (ii) of (1), now ¢ is one of s+ 1,...,7. We put puj == (Qin, Px) for k =0,s,7.

The calculations below are enough for its proof. We have

vlg ™ = 1)g"™** —v(g)g—1)
qr+s(qrfs _ 1)

) (g — 1
/JJ;_/JJ}«:M>O
qr+s

Ho — 11y = >0,
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For an integer n > 1, we have by the induction hypothesis

,un . lun _ UO(qTis B 1)an+s — U(J)(C] — 1) >0
0 r qrn-l—s(qr—s _ ]_) ’

oD (1 1y,

qr _ 1 qs anJrs

Finally, we show the result in (2) by induction on n. Put u¥" = 1(Qs,, P,) and

,ué’” = p(Qun, P;) for i = 0, s,r. The calculations below are enough for the proof of (2).
We have

( s 1
po' — bt =g (q - > > 0;
) r—s and
bl kel = v(g)(g—1) —wvo(¢" —1) <0,
k q"(q¢° — 1)
1111 v(g)(qg—1)
Ho — Mg =V — 57—~ > O;
0 ( _)(qQS(ql’") s _ 1)
g v@a=1)
k/’Ls — M = q$+7’ S 0.

Here pbt — pubt = 0 if and only if v(j) = 0. For an integer n > 1, we have by the induction
hypothesis

( k ns _ 1

l,l/o,n _ ngn — /UO — > 07

) n—1)s r—s and

e _ VD DI )
(7 " q(n—l)é‘—l—r(qs _ 1) )
( .

n mo_ v(7)(g—1) ‘

/"LO ILLS - UO q(n+1)s r—s __ 1) > O,

\ qr(qs - ]_) an

Here pl" — k™ = 0 if and only if v(j) = 0. O
The next result concerns the case v(J) > ay.
Lemma 2.1.6. Let v be a finite prime satisfying v | u and n a positive integer. Assume

v(j) € [o1, +00). Fizi to be one of 1,...,r. We have

Vo Ur
V(Gin) = - .
<§7 ) q(n—l)r(qr _ 1) qr — 1
Put Q,, = (0,v(&.)). Then the Newton polygons of ¢,(X) — & are Q, P, having exactly

one segment.
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PROOF. Similarly to the proof of Lemma (1), we can prove the lemma by induc-
tion on n. We put uf = (Qin, Px) for k = 0,s,r. The following calculations are enough
for the proof. We have

qg —1
ué—uiZUO( " )>0,

11 v@le—=1) wlg-1)
W Tl =0le =) glg —1) N

For an integer n > 1, we have

. N an -1
Ho = Hy = Y0 qnr - O’

n n U(])(q - 1) UO(qris - 1)
s My = - > 0.
H H qs<q7" _ ]_) qrn—s(qr _ 1)

Similar to Proposition [2.1.2] we have the next proposition.

Proposition 2.1.7. Let v be a finite prime satisfying v | u and n a positive integer.
Fiz k to be one of 1,...,s, and [ to be one of s+ 1,...,r.

(1) Assume 0 < v(j) < ay. Let m be the integer such that v(j) € [_(m-1), @—(m—2)). Fiz

k to be one of 1,...,s, and | to be one of s+ 1,...,r. If n < m, we have

V(&) > 0(&k2) > > 0(Ekn) > (&) > v(&2) > > (&)
If n > m+ 1, we have
U(&k1) > V(&) > - > v(Ekm)
>0(&1) = 0(Erm+1)

>v(&§,2) 2 V(Ekmsa)

> ...
>U(€l,n—m) Z U(gk’,n)
>’U(€l,nfm+l) > U(fl,nferQ) > > v(&l,n)y

where each equality holds if and only if v(J) = a_(m_1).
(2) Assume v(j) < 0. We have

0(&k1) > 0(Er2) > -0 > (&) > v(&n) 2= 0(En-1) = > v(&),

where each equality holds if and only if v(j) = 0.
(3) Assume v(j) > ay. We have

V(&) = (&) > v(&r2) = v(&2) > - > v(&kn) = V(En)-
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(4) The elements & j fori=1,...,r and j =1,...,n form a basis of the F,-vector space
olum]. For any & =3, ; ai;&; € ¢lu"] with a;; € Fy, we have

v(§) = Hl.l’ijn{v(aijgi,j)}'

PrOOF. We show (1). The two inequalities follow from
o v(&;) >v(& ) fori=1,...,rand j > 1;
o v(&n) > v(§,) for k =1,...,s,l =s+1,...,r,and j > n —m + 1. Note
V(Ekn) > V(Ein—m+1) if and only if v(F) < a_(m_2);
o V(&pmrj—1) > V(&) > v(€kmyj) for 5 =1,...,n —m, where the equality holds
if and only if v(j) = a—(m-1).
These inequalities follow from Lemma [2.1.5] e.g., the left and the right inequalities in the
third dot are equivalent to v(j) < a_(m-2) and v(§) > a_(m_1), respectively. The claims
(2) and (3) follow similarly to (1).
Similarly to the proof of Proposition we can show the first claim in (4). We show
v(€) = min,; j{v(a;;& )} for the case where v(g) € (0,4 ). By the ultrametric inequality,
it suffices to show when v(j) = a_(m—_1) that

(21) v(a&j + b€k mti) = v(&5) = v(€kmej), fora,beFyand j=1,...,n—m.

Notice a&; 1 + b m+1 is a root of ¢, (X) — b . By Lemma (1), we know that the
Newton polygon of ¢, (X) — b€, has exactly one segment. This shows for j =1. We
show by induction on j. Assume for positive integers j — 1. Notice a&; j + b m+;
is a root of ¢, (X) — a&j—1 — b€k mtj—1 and v(a& j—1 + bkmtj—1) = V(Ekmsj—1). The
Newton polygon of ¢, (X) — a& j—1 — b m+j—1 is the same as that of ¢, (X) — &k mj—1.
By Lemma (1), we know that the Newton polygon of ¢,(X) — a& j_1 — bk m+j—1
has exactly one segment. The desired equality hence follows.

The proofs of the cases where v(j) < 0 and v(j) > oy similarly follow. O

2. Valuations of elements of SMBs of the lattice and of ¢[u"]

If v is an infinite prime, then by the uniformization, there is a rank r A-lattice A
associated to ¢. If v is a finite prime and ¢ has stable reduction and the reduction is bad,
then by the Tate uniformization, there is a rank s Drinfeld A-module ¢ and rank r — s
A-lattice A associated to ¢, where A acts on A via 1. Let u be a finite prime of A with
deg(u) = d for an arbitrary integer d. Our goal is to determine the valuations of elements
of SMBs of A, [u"], and ¢[u"] in terms of v(t), v(u), vs = v(as), and v, = v(a,).

2.1. Infinite prime cases. Let v be an infinite prime. For any positive integer j,
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determined the valuations v(§; ;) for all 7, j. As in Section , put for any positive integer
J=>1
_ ,qujs(qT—S _ 1)

qg—1
where vy == v(t). If v(J) < a1, let m be the integer satisfying v(j) € (a1, am]. Now the
condition [t"| > |&.n]/|€1,n] in Remark reads —von > —v(&,.,) + v(&1,). For n > m,
this inequality is equivalent to

j - )

g > (1) 4 W __v)a=)

-1 (@ —-1)(¢g—=-1)

For any n > m, the inequality [t"| > |&,.,|/|&1n| holds. If v(g) > aq, for a fixed positive

integer n, the valuations v(;,,) for i = 1,...,r are the same. Hence the condition [t"] >
&l /1€1.0| s fulfilled for any positive integer n.

Proposition 2.2.1. Put vy = v(t). Let {w;}i=1,..., be an SMB of A and {\;}i=1,., an
SMB of ¢[u"].
(1) If v(g) < aq and m is the integer such that v(j) € (Qm+1, |, we have
v(wg) = vy + qsvil — qsvjl fork=1,...,s and
v(d)(g—1) Us
v(wy) = vom + — forl=s+1,...,r
( l) 0 qms(qs _ 1)(q7‘75 _ 1) qs -1
Forn > m/d and i = 1,...,r, we have |u"| > |w,|/|wi| and v(N\;) = v(&na) =
—vond + v(w;).
(2) Fiz i to be one of 1,...,r. If v(j) > oy, we have
o Vo N Uy
v(wl)—vo—qu_l 71

Forn > 1, we have v(\;) = v(& na)-

We note that when r = 2, Chen-Lee has obtained the valuations v(w;) and v(ws) above
in [CL13, Theorem 3.1 and Corollary 3.1]. One may also recover Gekeler’s formula for
“I-sparse Drinfeld A-modules” in [Gek19Bl Proposition 3.2] (See also the rank 2 case in
[Pap23| Proposition 5.5.8]).

PRrOOF. The claims of v(w;) fori = 1,. .., r follow from Remark|1.2.6, Corollary (1),
and the arguments before the proposition. Then the claims of v(\g) and v()\;) are proved

by Corollary (1). O

We also calculate the valuations of a -4 A\; for anya € Aandi=1,...,r.
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Lemma 2.2.2. Assume v(j) € (i1, m) for a positive integer m. Let n be an integer
> m/d and {\;}i=1..» an SMB of ¢[u"]. Fiz k to be one of 1,...,s, and l to be one of
s+1,...,r. Then we have

v(tj 6 M) = V(Epna—j) and v(tj o A1) =0 na—j) for 1 <j < nd.

.....

Proor. We show the result for \; by induction. The proof of the result for A\, is
similar. By Proposition [2.2.1] (1), we have v(\;) = v(§,4). To know v(t -4 \;) = v(tA +
asz\?s + a,ﬂ/\?r), we calculate
vog™ (¢ = D((¢" = D)(nd —m) + 1) —v(5)(¢ — 1)

1) /
v(@) (g =" —1)
gm=Vs(gr —1)
Here v(a A\ ) — v(a, A ) > 0 if and only if nd = m = 1. The case nd = m = 1 is not
included in the claim and hence v(a;\’ ) — v(a, A\l ) < 0. We have

v(t\) — v(as)\?s) =

v(as)\?s) — v(ar)\;f) =voq°(¢""° = 1)(nd — m) +

v(tA) — v(as)\?s) >0 nd=m;
v(tA) —v(a\) <0 nd > m.
Hence
v(a ) = v(§m-) nd=m;
v(tN) = (& na—1) nd > m.
Assume that the result for j — 1 is valid. Put \] == #~1 -, A\, If j < nd — m, to know

v(t -4 A}), we calculate

’U(t ) >\l) =

v(tA) = v(a N ) =vo((¢° — 1)(nd — j+1—m) + 1) — % <0,
v(aN") = v(aX") = volg" = ¢*)(nd — j +1—m) + ‘Wq)s((i; . (1 - q(m—ll)'s) <0.

Hence we have v(t -4 \}) = v(tA]) = v({2na—;). As for the case j > nd — m, to know
v(t -4 A), we calculate

v(i)(g—1)
glnd=i+Ds(gr=s — 1)

v(a ") —v(a N ) = vl —1) (1 I . ) < 0.

g — 1 q(nd—j)s

V(tA]) — v(a ") = vy — >0,

Hence v(t -4 ) = v(as\ ) = v(&na—;), and the result for \; follows. O

Corollary 2.2.3. Assume v(j) € (Qmy1,m) for a positive integer m. Fiz k to be one
of 1,...,s, and l to be one of s+ 1,...,r. Forn € Z>y, let {\;}i=1..» an SMB of ¢[u™].

.....
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(1) Assume n > m/d. For any a € A with deg(a) < nd, we have

(22) v(a - Ae) = V(D 4 Ap) = 0(Exnd-deg(@):
(23) v(a g M) = v(t* ) 4 X)) = 0(Ena-des(a)):
(2) Assume n > m/d. For \ € ¢[u"] having valuation > v(§kng—m+1), there exists some

bie A fori=1,...,r with deg(b;) < m such that Y ;_; b; - i = \.
(3) Let n be an arbitrary positive integer. We have

V(M) = 0(&pna) and v(Ar) = V(& na)-

Proor. By Proposition [2.1.2, we have

(24) V(&) > v(&na) for j =nd,nd—1,--- ,nd—m+1,

(25) v(&j+1) > v(&;) for i = 1,...,r and positive integers j < nd.

For (1), by and the lemma, we have v(t3@ ., \;) < v(#/ -4 \;,) for any positive
integer j < deg(a). Hence the desired equality follows from the ultrametric inequality.
The equation for \; follows in the same way.

We show (2). As {A;}iz1.., is an SMB of ¢[u”], there exist b; € A mod u" such that
A=>""_ 1 bi-¢Ai. We may assume that all b; have degree < deg(u™) = nd. To show b; =0
for i > s, assume conversely by # 0 for some I’ > s. By and , we have

v(by g M) = v(tdel) . N) = V(&1 ma—deg(by)) < V(Erna) = v(Ar).

By Proposition [1.2.13] we have

(26) o(\) = min {v(b; -4 \)}.

i=1,...,

Hence v(A) < v(by ¢ Avr) < v(Ar) = v(A;). On the other hand, by (24), we have v()) >

V(€ nd—m+1) > V(& na) = v(\;), which is a contradiction. By , for each i < s, we have
U(bZ ) )\z) = ?J(tdeg(bi) ) )\z) = 'U(gi,ndfdeg(bi))-

By , the element b; satisfies v(b; -y \;) > v(A) > V(& na—m+1) = V(§knd—m+1). Then
implies deg(b;) < m.

-----

satisfying A; = u™ -4 \.. Then (3) straightforwardly follows from (1). O

Remark 2.2.4. Assume v(j) € (@m+1, ). Let n be a positive integer. The elements
t/ ey N fori=1,....,rand 0 < j < nd form an F -basis of ¢[u"] as a vector space.
Moreover, by the equation v(# -4 \;) = v(& na—;), the elements 7 -4, \; for all 7 and j
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can be arranged with respect to their valuations as in Proposition [2.1.2] To see that the
family {#/ -, \;};; is a basis, assume that we have

Z aij(tj ) )\1) = 0,

where a; = E;ﬁgl aijt’. As some a; # 0, the equality implies ); are A/u™-linear dependent,

a contradiction.

Remark 2.2.5. Assume v(j) € [a1,+00). Let n be a positive integer and {\;}i=1, .,
an SMB of ¢[u"]. For i =1,...,r, we claim that

V(t g Ni) = 0(Eina—y) for j=1,...,nd — 1.

The proof of this claim is similar to that of Lemma [2.2.2, In fact, if the claim for
o=t ., )\ is valid for j = 1,...,nd — 1, then the following calculation is enough to
show the result for 7 -5 \;

voq®(q"* = 1) —v(j)(g — 1)
q-—1

v(t\)) — v(asx\;qs) =vo(¢° — 1)(nd — j) + <0,

v(t\) — v(a,N) = vo(q" — 1) (nd — j).
By Proposition [2.1.3 for i = 1,...,r, we also have for any a € A with deg(a) < nd that
v(a g Ai) = U(tdeg(a) ‘¢ Ai) = V(i nd—deg(a))-

2.2. Finite prime cases. Let v be a finite prime such that v(u) > 0. Assume that
¢ has stable reduction and the reduction is bad such that vs = 0 and v(j) < 0. Let
and Lemma (2), we have determined the valuations v(&; ;) for i« = 1,...,r and
all positive integers j. Since v(§,,) = v(€s41.,) for any positive integer n, the condition
[t > [&rnl/|€s41.n] in Remark always holds.

Proposition 2.2.6 (cf. Proposition 2.2.1]). Assume v(u) = 0. For a positive integer n,
of ¢p[u™]. Fix k to be one of 1,...,s, and l to be one of s+ 1,...,r. Then for any positive
integer n, we have

v(@)(g—1)
(¢° =g —1)’

v(@)(g - 1)
(¢ =g —=1)

v(we) = v(\) =0, v(w) ) = and v(\) =
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PROOF. The results for w) , and \; follow from the value v(§;,,) and Corollary (1).
As for the equation v(wy) = v(\g) = 0, as in the proof of Lemma[1.3.2] we can show that
the Newton polygon of (X)) is PyP,4s having exactly one segment with slope 0, where
Py = (1,0) and P4, = (¢"%,0). As wy, for k = 1,..., s are nonzero roots of 1,»(X), hence
v(wg) = 0. The valuation v(\;) for k =1,..., s follows from Lemma [1.3.4] O

Lemma 2.2.7. Assume v(u) = 0. Let n be a positive integer and {\;}i=1
of ¢[u™]. Fiz l to be one of s+ 1,...,r. Then we have

.....

v(t 5 N) = 0(Epaj) for 1 < j < nd.

PROOF. Similar to Lemma [2.2.2] we apply Proposition [2.1.4] (1) to show the result.
If the claim for A} = #/~1 -, \; is valid (One may take j = 1 and the base case for the
induction is obtained), then the calculations below are enough to show the result for t7-4\,

1q° U(J)(q - 1)
v(tA]) —v(as\") = _q(ndfjJrl)s(qrfs —1) >0,

v(aNT) = v(a N ) = v —1) (1 _ , ) < 0.

q — 1 q(nd—j)s

Corollary 2.2.8. Assume v(u) = 0. Let n be a positive integer and {\; }i—1, ..
of plu"]. Fix k to be one of 1,...,s and l to be one of s+ 1,...,r. For any a € A with
deg(a) < nd, we have

’U(CL ) )\k) = O,

v(a - M) = vt -y \) = v(& nd—deg(a))-

.....

77777

v(a -y wy) = 0 (In the proof of Proposition [2.2.6 we have seen that all roots of 1y (X)
have valuation 0). Lemma implies v(a -4 A\) = v(a -y wi) = 0.

By Proposition [2.1.4] we have v(§;41) > v(&,;) for 1 < j < nd. Using the ultrametric
inequality and Lemma [2.2.7] this implies the result for a -4 A;. O

Let us assume v(u) > 0, i.e., v | u then.

Lemma 2.2.9. Let o denote the rank s Drinfeld A-module over K determined by
a(X) = tX + a, X7 € K[X] so that v(as) = 0 and o has good reduction over K (We
have v(as) = 0 as ¢ has bad reduction over K). Let a,; denote the coefficients of o, (X)
such that uX + 320 4, X7 = a,(X). Then we have

V(ayq) =0 and v(ay;) = v(u) fori <d.
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PROOF. Put Q := ¢°. Let K’ denote the extension of K generated by all () — 1-th roots
of the unity and some b € K*P with b9~! = a,. We have C' = bab™! as Drinfeld Fg|t]-
modules over K’, where C' denotes the Carlitz Fg[t]-module. Put uy = u, Z?:o w; X9 =
Cu(X), and P, := (Q*,v(u;)) for i = 0,...,d. By the explicit formula of u; in [Pap23]
Corollary 5.4.4] (initially given by Carlitz), we have v(u;) = v(u) for i =0,...,d — 1 and
v(ug) = 0. As

Cu(X) = (bab™ )y (X) =uX + > a, b @ VXY,
i=1
the result follows. O

Lemma 2.2.10. Assume v, > v(u) > 0. The leftmost segment in the Newton polygon
of ¢pu(X) is PyPys, where Py = (1,v(u)) and Py = (¢%,0). Here we omit the segment
with the infinite slope.

PROOF. Admit the notations in Lemma [2.2.91 We have

d
Gu(X) = uX + Zaqui + Z b X7,
=1 i=r+as+br
a,bEZZO
i<dr

for some b; € K. For each b;, we have a, | b;. This implies that v(b;) > v, > v(u). By
Lemmal2.2.9, we have v(a,;) = v(u) for i < d and v(a, ) = 0. Hence the leftmost segment
in the Newton polygon of ¢, (X) has the desired form. 0

7777777777

to be one of 1,...,s, and l to be one of s+ 1,...,r. Then for any positive integer n, we
have v(w? ) and v(N) as in Proposition 226 and
v(u)
<qu _ 1)q(n—1)ds'
PROOF. Following the proof of Proposition [2.2.6| we can obtain the claim for v(wj_,)
and v(\;).
Next, we show the claim for v(\;) and then the claim for v(wy) follows from Lemmal(l.3.4}

v(wg) = v(Ag) =

Lemma [2.2.10, there are ¢% — 1 roots of ¢,(X) having valuation q“;g—lj)l. The other roots
v(u)

qu_l
fori=1,...,s. Put Q; = (0,v(\;;)). By induction on j, we can show that the leftmost

segment in the Newton polygon of ¢,(X) — \;; is Q;Pus with Py, = (¢%,0) such that
v(Nij) = (% The result hence follows. O

qu_l)qjds

of ¢,(X) have valuations co or < 0. As in Lemma |1.3.11] we can show v(\;1) =




2. VALUATIONS OF ELEMENTS OF SMBS OF THE LATTICE AND OF ¢[u"] 55

Remark 2.2.12. If s = 1, then 9 is isomorphic to the Carlitz A-module so that
the claim in the proposition can be proved without requiring the condition v, > v(u)
(See [Hua23| Proposition 6.1]). If s | 7, we may consider ¢ as a Drinfeld Fg[t]-module of
rank /s over K’, where ) := ¢° and K’ is the extension of K generated by all Q) — 1-th
roots of unity. Hence v is isomorphic to the Carlitz Fg|t]-module. Similarly, the condition

v, > v(u) can be also dropped.



CHAPTER 3

On the extension generated by u"-torsion points

Let K be alocal field which is the completion of some (global) function field at a prime
v. Let v also denote the normalized valuation such that v(K*) = Z. In the applications
of Krasner’s lemma, we use the absolute value | — | on K*P given by ¢~*7). Let ¢ be a
rank r Drinfeld A-module over K such that

(X)) =tX +a, X" +a,X7 € K[X],

where s and r are two positive integers satisfying s < r. The j-invariant of ¢ is defined to
be

7D/ (a=1)

RN T VI TE

For a finite prime u of A and a positive integer n, let K,, = K(¢[u"]) denote the extension
of K generated by all u"-torsion points of ¢. Based on the results in Chapter 2, we are
concerned with the ramification of K, /K.

In Section [I] when w is an arbitrary degree 1 finite prime of K and v(j) < a1 =

vog(g""t-1)
0 =

as X7 +tX; (2)if v { u, then K, is the compositum of extensions of K,, by roots of certain

, we apply Krasner’s lemma to show: (1) K(¢[u]) contains the splitting field of

degree ¢° polynomials. Section [2[ is devoted to a review of the (Herbrand) 1-function,
where we also prove a result concerning the y-function of the extension generated by a
certain polynomial with degree equal to a power of ¢. In Section [3| we study the extension
K, /K in the case s = 1. Under certain assumptions, we will obtain the ¥-function of K7 /K
and the action of the wild ramification subgroup G(K;/K); of G(K;/K) on an SMB of
¢[u] when the prime w is an arbitrary degree 1 finite prime of A.

Throughout Sections [4] and [f, For an infinite prime v, in Section [5.1, we obtain
the i-function of K, /K and the action of the wild ramification subgroup G(K,/K);
of G(K,,/K) on an SMB of ¢[u"] for large enough n (n is large enough so that K(¢[u"]) =
K(A) as in Corollary [1.2.12)). For this, we first study the case where deg(u) = 1 in Sec-
tion [4] For a finite prime v, in Section 5.2 we study the action of G(K,/K); on an SMB
of ¢[u"] for any positive integer n when v { u.

we restrict ourselves to the case r = 2. If the prime v is infinite, in Section [ under
certain assumptions, when deg(u) = 1. We extend these results to the case where deg(u) >
1 in Section 5.1} In Section [5.2] we obtain similar results when v is a finite prime.

56
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In Section @ when u is a finite prime of A satisfying v 1 u, we show that for a rank
r Drinfeld A-module p such that the Newton polygon of p,(X) has exactly one segment,
the extension K (p[u"])/K is at worst tamely ramified.

1. Applications of Krasner’s lemma

Fix a finite prime u of A with degree 1. We first prepare a lemma concerning a
subextension of the extension generated by u-torsion points of a Drinfeld A-module over
K.

Assume v t u. For any positive integer n, the extension K, /K, is generated by roots
of polynomials ¢, (X) — &, where {& ,,}i=1,..» is an SMB of ¢[u"]. By the calculations in
Section in Chapter 2| we know that the Newton polygon of ¢,(X) — &, has two or
more segments, and hence the polynomial is reducible. For each polynomial ¢, (X) —&; .,
we are to find a polynomial with a smaller degree and apply Krasner’s lemma to show that

its roots generate the same extension as the one generated by the roots of ¢, (X) — & 1.

1.1. On subextension of the extension generated by u-torsion points. Let u
be a finite prime of A with degree 1 (We admit the case where v | u in this subsection).
Let p be a rank r Drinfeld A-module such that

pu(X) =uX +Y aX? € K[X].

k=1
Put
vo = v(u) and vg == v(ay) for each k =1,... r.
Let {1} k=1, be an SMB of p[u] (following Corollary. There is a unique integer
s such that for any positive integer j < s and any integer k£ > s, we have

(27> Vs — Vg S Uj'—UO and Vs — Vg Uk—’UO'
¢—1" ¢—1 ¢—-1 ¢ -1

The segment determined by the points (1,v9) and (¢°,vs) is the first segment of the
Newton polygon of p,(X). By an argument similar to the one in Lemma [1.3.11} we know
that v(&1) = —e—pfork=1,...,s We first study the extension of K generated by &1
for k < s. Put

(X)) =[] (X —a- &) € K[X].

k<s
akequ

Here we have ¢(X) € K[X] by [Neu99, Chapter II, Proposition 6.4]. Let K, denote the
extension of K generated by all roots of 1(X). It equals the extension of K generated by
all &1 for k < s.



58 3. ON THE EXTENSION GENERATED BY u"-TORSION POINTS

Lemma 3.1.1. Let v be an infinite prime or a finite prime. Let s be the integer defined
above. Put n(X) = uX + > ,_, ap X7 Let K, denote the extension of K generated by
all roots of n(X). Then Ky = K,).

PROOF. Let x, 21, %, ..., 242 be all nonzero roots of (X). Let 2 for j = 1,...,¢°~1
denote all nonzero roots of n(X). By (27), the Newton polygon of (X ) has one segment

(omit the one with infinite slope) and every nonzero root has valuation —%=. If we can

show that there exists some index i such that |z — xj| < |z — 2| for all j # 4, then
Krasner’s lemma (See [Neu99, p.152]) implies that K(z}) C K(x). Consider

q°—1 s
n(x)=a,-x H(m — ) = Zakmqk +ux = —Zakqu.
j=1 k=1 k>s

Here the rightmost equality follows from p,(x) = 0. Notice

_ k_ ) _ k_
) (as ! Z arx? 1) > min {v (as Laga? 1) } )
k>s

k>s
The inequality % > 15;5_—_”10 in implies
ue(@® = 1) > vy(¢" — 1) = vo(¢" — 1) +volg® — 1).
For each k # s, we have

(v — v0)(¢" — 1)

-1 -1y _ _ .
v(a; apx ) Vg + Uk pra
s k_l_ k_1 s _ 1 k_l s k_l
> —u, + vs(q ) — volg ) + volq ) n vo(q ) uslg )
qs — 1 qs — 1 qs _ 1
= —(vs — vp)-
This implies
Tt
T -] = it S o= | <
k=1 k>s

There must be some x; such that |z — z}| < ¢ @1 = 2] — 2} for j # 4, as desired.
vs —vQ

There exists a root x}, of n(X) satistying |z} — z;| < g 1. As |z, — x| = g1, we

have |z; — | = ¢'@1 . This implies x). # x}. Hence for any root of n(X), there exists a
root of (X)) so that the absolute value of the difference of these roots < qvq%lo Let x vary
within the roots of ¢(X). We have K (2),..., 20, ;) C K(z,71,...,2¢2), i.e., K C Ky.
Conversely, the conjugates of x are x; for some j but |z — z}| < |z — z;| = g1, Apply
Krasner’s lemma again and K, C K,, follows. 0
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We apply the lemma to the Drinfeld module ¢ defined above. Let {&;1}i—1, » be an
SMB of ¢[u] and put

(X)) =[] (X —a- &) € K[X].

k<s
a,€F,
Corollary 3.1.2. Put
(28) n(X) = a; X" +uX.

Let v be an infinite or finite prime. Assume v(j) < %. Let Ky and K, be
respective the extension of K generated by the roots of ¥(X) and those of n(X). Then
Ky =K,

We can choose an element b € K, with v(b) = “=¢ to modify ¢,(X), so that the
coefficient of X1 is 1:
(29) D(X) = b, X7 + X7 +byX = b(pu(X/b))
with & = b7 /as. Then v(by) = 0, and

—v(j)(q—1) +vog°(¢"° — 1)
¢ —1

(30) U(br> = > 0.

1.2. Infinite primes. Let v be an infinite prime and u a finite prime of A with

-----

positive integer j obtained as in Corollary [1.1.12] Put

JS(r—S __ 1
vy = v(t),vs = v(as), v, =v(a,), and o; = Yo (4 : ) for j > 1.
q J—

We will follow the notations for the Newton polygons in Chapter [2]

Lemma 3.1.3. Assume v(j) < ;. Let m be the integer satisfying v(j) € (m1, Q.
Fiz k to be one of 1,...,5 and l to be one of s+ 1,...,r. Then we have & 41 € K, for
n>1and & 41 € K, forn>m, i.e.,

K, (&png1) = Ky, forn>1 and K,,(§,,41) = K, for n > m.

PROOF. By Lemma [2.1.1] (1), for n > 1, the Newton polygon of ¢,(X) — &, is
QrnPoPs P, having exactly three segments, where Qi = (0,v(&kn)), Po = (1,v0), Ps =
(¢°,vs), and P. = (¢",v,). Here, as in Chapter , by “the Newton polygon of ¢, (X)—&,, is
QrnPoPsP,”, we mean that the Newton polygon of ¢, (X)—&,, consists of three segments
We see that & 41 is the only root of ¢, (X) — &, whose valuation is —p(Qg ., o). Here,
as in Chapter , 1(Qk.n, Po) denotes the ratio of the segment @y, Fy. Thus due to [Neu99,
Chapter II, Proposition 6.4], we know (X — & nq1) € K,[X] and thus & 41 € K,. One
can show & ,+1 € K, for n > m in the same way. O
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We now study the extension K, ,1/K, for 1 <n < m — 1. It is the extension of K,
generated by all roots of ¢, (X)—¢ for all £ € ¢[u"]. It is also the extension of K, generated
by &ne1 for I = s+ 1,...,r. Hence it is the compositum of extensions K, /K,, where
for each | = s+1,...,r, the extension K, /K, is generated by the roots of ¢, (X) — &.,.
We are to show that for each [ = s+ 1,...,r, the extension K, /K, is generated by the
roots of a degree ¢° polynomials.

Assume v(J) < a;. Let m be the integer satisfying v(J) € (mt1, @m). Fix [ to be one
of s+ 1,...,7. We can choose an element b € K, (K, is defined in Corollary [3.1.2) with
v(b) = =% to modify ¢, (X) — &n, n(X), and n(X) — &, so that the coefficient of X?
is 1:

(X)) =0, X7 + X7 + b X + ¢ = (9u(X/b) — &)
with ¥ = b7 /a,. Then

v(§)(g— 1) — o™V (g — 1)
¢"(q* = 1)(¢"* — 1) ’

(31) v(cin) =

v(by) = 0, and

ofpy) - =D 20

We obtain modifications
H(X) = X7 1 boX = B (n(X/b))

(32) ;
H (X)) = X7 + 0o X + 1 = V' (n(X/b) — &)

of 1(X) and 5(X) — .
In [KLO04| Proposition 3], Kolle and Schmid applied Krasner’s lemma to study unram-
ified or tamely ramified extensions of a number field. Roughly speaking, their proposition
claims that two polynomials yield the same field extension if their Newton polygons are
the same. The following lemma is an analogue for certain wildly ramified extensions.

Lemma 3.1.4. Assume v(j) < ag. Let m > 2 be the integer such that v(j) €
(i1, Q. If 1 < m < m, then any root & of the polynomial n(X) — &, satisfies

Kn<€/) = Kl,n7
where K, is the extension of K,, generated by all roots of ¢,(X) — & p.

PrROOF. By Proposition the roots of ¢, (X)—& ., whose valuations equal v(&,41)
are & i1 + Zzzl aiéy for all ai € F,. Due to [Neu99, Chapter II, Proposition 6.4], we
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have

H <X — &1 — Zakka) € K,[X].

k=1

(Note that this polynomial and n(X) — &, have the same Newton polygon.) The field
K, is the splitting field of this polynomial. Then we are reduced to showing K, (') =
K, (& n41). Put @ == 0§ 1. Let o for i = 1,...,¢* denote the roots of H;,(X). The
difference b¢’ — x belongs to K, C Kj, as it is a root of H(X). Since K, (z}) = K, (b{') =
K, (&), it suffices to show K, (z}) = K, (x) for some i.

If there exists i such that |z — x| < |z} — 2| for all j # i, then we apply Krasner’s
lemma and obtain K, (r;) C K,(r). We have |z — 2| = 1 for all i # j since x; — 2’ is a
nonzero root of H(X). It suffices to find a suitable root x} of H; ,,(X) such that |z —z}| < 1.
To know |z — x}|, we consider the valuation of

s

q
H, . (z) = H(x —2}) =27 + box + ¢ = —bp1?

i=1
where the rightmost equality comes from ®;,(x) = 0. By and (31]), we have
v(b,x?) = v(b,) + v(c1n)q "
1 ) qr—s
= —v(7)(g—1 (1——)—@(]’”).
qs -1 ( ( )( ) qsn(qrfs _ 1) 0

As v(g) < 0 and vy < 0, we have

3 ez (-0 (TS ) o

which induces

qS
H(ac —z;)| <1
i=1
Hence there exists some i to be one of 1,...,¢° such that |z — z}| < 1.

Conversely, all conjugates of x = b ,41 are of the form b(& 41 + Y 5 axéi1) for
ap € F,. If a;, # a), for some k, then

b(&’nﬂ + Z ak&c,l) - b(ﬁl,nﬂ + Z G;ka,1> | =1.
k=1 k=1

Since |x — z}| < 1, Krasner’s lemma implies K,,(&§,41) C K, (2}) = K, (§). O
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2. Basics of Herbrand y-functions

Throughout this section, let K be a complete discrete valuation field of characteristic
p so that the residue field is a perfect field. Let us recall the definition of the (Her-
brand) 1-function 11k for a finite Galois extension L/K of a complete valuation field of
characteristic p. Let GY denote the y-th upper ramification subgroup of the Galois group
G(L/K) of L/K. By the ¢-function of L/K, we mean the real-valued function on the

interval [0, +00) defined as
Yy #GO
P y) = / dr.
/i (Y) e
We extend 91,k to [—1,400) by letting ¥ /x(y) = y if =1 <y < 0. Then ¢k is a
continuous and piecewise linear function on [—1,400). If ¢/ is linear on some interval
[a,] C [~1,00), then we have G* = GY = Gy, () for y € (a,b]. By the (maximal) lower

ramification break of L /K, we mean the real number v, /x (y), where y > 0 is the maximal

real number such that GY # 1. By the wild ramification subgroup of L/K, we mean the
first lower ramification subgroup G, which is equal to the union of GY for y > 0.

Lemma 3.2.1 (see e.g., [FV02, Chapter III, (3.3)]). Let L/M and M/K be finite Ga-
lois extensions. Then

¢L/K = wL/M o wM/K-

Assume that K contains F,, where ¢ is a power of p. Let vx denote the normalized
valuation associated to K so that vg(K*) = Z. For a positive integer s, put
s—1
FX) = X7 +> @ X? +aX € K[X]

k=1

such that ”K(“’“,g:lK(“) > _”ji(f) for k=1,...,s—1, ie., the Newton polygon of f(X)/X
q q

has exactly one segment. The extension generated by the roots of the polynomial f(X)—c

for certain ¢ € K plays a key role in this chapter. To obtain its -function, we will

need the following fact. It is a slight generalization of the function field case of [FV02|

Chapter I1II, Proposition 2.5] (cf. [AH22, Proposition 3.2]).

Proposition 3.2.2. Let f(X)—c be the polynomial above. Let F' and L denote respec-
tively the splitting field of f(X) and that of f(X) — c¢. Put v. = vk(c) and v, = vk(a).

—Ve
qs

segment and R := ;’5381 — v, > 0. Then

(1) The extension of F/K is at worst tamely ramified.

Assume p 1 v. and < Vg — Ve S0 that the Newton polygon of f(X) — ¢ has exactly one

(2) We have a composition of field extensions

K—F—L.
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Moreover, the extension L/F is totally ramified of degree q¢° and generated by one root

x of f(X) —c. We have an isomorphism
g:G(L/F)—=V; o~ o(r)—ux,

where V=T is the Fy-vector space consisting of the roots of f(X).
(3) Let e denote the ramification index of F/K. The v-function of L/ K is

(7 -1 <y <0;
Vrr(y) = g ey, 0<y<R;
eq®y — (¢° — 1)eR, R <uy.
PROOF. Let M be an extension of K with ramification index ¢°— 1. We can take some

b € M such that v(b) = 5% With ¥ = b, modify f(X) to be

¢°—1"

s—1
AX) = XT3 0 X0 b X =0 F(X/).
k=1
We have
va(q¢* — ¢)

] >0fork=1,...,s—1.
q° —

vi (bg) = 0 and vk (by) = vk (ax) —

Thus f1(X) is a monic polynomial whose reduction is separable. By Hensel’s lemma
[Pap23, Corollary 2.4.5], the extension of M generated by the roots of f(X) is unramified.
Hence the extension of K generated by the roots of f(X) is at worst tamely ramified.
This shows (1).

For (2), note that the difference of any two roots of f(X) — ¢ is a root of f(X). The
field F is contained in L and L is the extension of F' generated by one root of f(X)—c. As
the polynomial f(X) is additive, it root form an IF,-vector space of dimensional s, denoted
V. Let « be a root of f(X) — c. For any 0 € G(L/F), the difference o(x) — x is a root
of f(X) and hence we obtain a map g : G(L/F) — V; 0 — o(x) — x. The element o is
determined by o(z) since = generates L/F. Hence the map g is injective. This implies that
#G(L/F) < ¢°. As the Newton polygon of f(X) — ¢ has exactly one segment, we have
vr(x) = ev./q®, where vr denotes the normalized valuation associated to F' and e denotes
the ramification index of F//K. As pte, p{v., we have #G(L/F) = ¢°. Therefore, the
extension L/F is a totally ramified Galois extension of degree ¢*. The map G(L/F) — V
is surjective as the cardinal of G(L/F) is equal to that of V. As each element G(L/F)
fixes each element of V, the map ¢ is a morphism.

We show (3). Let 7y, be a uniformizer of L. For a nontrivial element ¢ in G(L/F), as
o(x)/z is a unit of L (here x is a root of f(X) — ¢), we have

o(z)/z = upe
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for some € € 1+ () (the first higher unit group of L) and some upg in the unit group of
F. Notice

o?(z)/x = o(xupe)/z = upa(e)o(x)/z = ubho(e)e,

) /z = o(zuro(e)e)/z = ubha®(e)o(e)a(x) /x = ujo?(e)o(e)e and so on.

Q

As the Galois group of L/F is isomorphic to the F,-vector space of dimensional s, the
Galois group element o has order p. We have

1 =oP(z)/x = ub Hak(e).

This implies v} =1 mod (7). As p-th power map is injective on the residue field of L,
we have up = 1 mod (7). Hence up € 1+ (7wp), where 7p is a uniformizer of F. We
know that o(x)/x € 1+ (7). Hence there exists some uy, in the unit group of L and some
positive integer b such that

(34) o(x)/r = (1 +urgmh) mod (7).

From (2), we know vy (z) = ev. and is prime to ¢° (v denotes the normalized val-

uation associated to L). Hence there exist integers i, j satisfying vL(:L‘iﬁfp) = 1. Here 17

is not divisible by p. The element z'r, is a uniformizer of L. By [Se79, Chapter IV,
Proposition 5], to know the v-function of L/F, we need to know v (o(zin))/zim) — 1)
for all nontrivial Galois group elements o. By , we know

b

o(x'mh) /a'my = (L+ugmy) = 1+ dupry,  mod (m)"t.

On the other hand, as v(o(x) —z) = Z‘fff for any nontrivial o, we know b = vy (o(x) —

x) —vr(z) = eR. The ¢-functions of F//K and L/F are respectively

y, —l1<y<0 Y —l<y<eR;
Vr/r(y) = and ¢ r(y) =
ey, 0<y, ¢y —(¢" —1)eR, eR<y.
By Lemma [3.2.1], we obtain the -function ¢,k as the proposition describes. 0

3. The extension K,;/K with s |r
Throughout this section, let ¢ be a Drinfeld A-module over K such that
o (X) =tX +a, X" +a, X7 € K[X],

where s and r are positive integers satisfying s | 7. Let u be a finite prime of A with degree
1 and vy = v(u) (We also consider the case where v | u). Put

S(g"% — 1
a ::qu (q )
qg—1
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In this section, we study the ramification of K;/K = K(¢[u])/K. Assume v(j) < .
We know that K, /K generated by & ;1 equals K, /K generated by all roots of n(X) =
a; X% +tX in Corollary . Thereafter, to avoid confusion with the “¢)” in the Herbrand
y-function, we use K, instead of K. As K, /K is at worst tamely ramified, it is enough
for us to study the ramification of K;/K,,.

Note that the field K, contains (¢° — 1)-th roots of unity and hence the field Fys. As
s | r, we may consider ¢ as a rank r/s Drinfeld F[t|-module over K,, and hence it suffices
to obtain the results for the case where s = 1. In the rest of this section, assume s = 1
so that ¢¢(X) = tX +a; X9+ a, X9, a; = v q(q;:ll—l)’ and K, /K is the splitting field of
a X1+ tX,

3.1. Decomposition of K;/K,. In this subsection, we are to study the subexten-

sions of K;/K,. Let us prepare a lemma.

Lemma 3.3.1. Let r be a positive integer > 2. Put S, = %, Yo(X) = X4 X971+
o+ X, and Vi (X) = Ya(X)(Y;(X)14 1) for all positive integers j > 2. Then we have
Yo(X) = X8 X and Y(X) = 21, Vs

PrRoOOF. We show the equations by induction on r. Notice Sy = 1. The second equation
can be shown straightforwardly. As for the first equation, if » = 3, then

V3(X) = (X4 + X)(X9+ -+ X)7+1)

= (X4 + X)X XD p L X1 =) X
i=1
Assume that the first equation is valid for » — 1. We have
qSr
ZXi = (X9 + ---—I—X)(Xq(ST_l) 4+ X952 Lo X1 4 1)
i=1

=Y (X) (X T+ X724+ X))+ 1)

As S, —1=¢S,_1, we know from the assumption that

iXi = Yo (X)((Y,-1)? + 1) = Y, (X).

Put Z,.(X) = >_1_, X% so that Y,.(X) = Z,.(Y2(X)). We have Z(X) = X.

Lemma 3.3.2. For a integer r > 2, let ¢ be a rank r Drinfeld A-module over K such
that ¢(X) = tX + a; X7+ a, X7 € K[X]. Assume v(j§) < ay. Let Kz be the extension of
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K, generated by all roots of
Z2(X) = Z,(X) — B with 8 = ua, &1 .
Let K be the extension of Kz generated by all roots of the degree q polynomials
H,(X) = X% —~yX —~ for all roots v of Z(X).

Then

o K|/K, is a subextension of K;/K,;
o Ki/K! is a compositum of Kummer extensions.

PROOF. Put b = & in the definition of ®(X) in so that any element in F, is
a root of ®(X). We have that X? — X =[],z (X — a) divides ®(X). Let ©(X) be the
polynomial such that O(X)(X?— X) = ®(X). As &(1) = 0, we have —by — b, = 1. Note
bo/b, = B. We have

O(X) =b, <Xq(q”1—1) 4 XTI =24 el T =342 Ly el 5) ’

whose roots generate K;/K,. We consider ©(X) = (X% + X ~1 ... 4 X) — 3 so that
O(X71) = O(X). Let L denote the subextension of K, /K, generated by its roots. Then
K, /L is generated by the (g — 1)-st roots of z for all z € L satisfying ©(x) = 0, which
implies that K;/L is a compositum of Kummer extensions. If we can show L = K, then
two dots in the claim are proved.

Put Y3(X) = X7+ X9' + ... + X. By Lemma [3.3.1] we have (X) = V,(X) — 8 =
Z(Y5(X)). Hence L/K is generated by all roots of the polynomials

X%+ ...+ X — 57! for all roots v+ of Z(X).

We prove L = K7 by showing that the extension L/K,, is generated by all roots of H,(X)
for all ~. Notice

q
COX(X1-1)  X(X —1) o
X' = - — X(X — 1)L,
S =MD XDy

We have Ya(X +1) — ! = X7+ X971 — 471 Then
1
(35) i) = =27 (v (g +1) =)
Thus L = K7, as desired. O

Notice v() = —v(b.) < 0 (See for v(b,)). The Newton polygon of Z(X) has
exactly one segment determined by the points (0, —v(b,)) and (S,,0). Hence a root of
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Z(X) has valuation

—v(j) + o
Sy '

If v(j) < aq, then ¢ < 0. Put C' := ¢~¢. We have C' > 1.

(36) ci=—

Remark 3.3.3. For a integer » > 3, let ¢ be a rank r Drinfeld F,[t]-module over
K such that ¢;(X) = tX + a; X9 + a, X9 € K[X]. We have shown that all roots of
X9 — ~vX — v for all roots vy of Y,(X) — 8 generates K|/K. The extension K|/Kj
contains a subextension K% /K, generated by all roots of polynomials X? —yX with y~!
varying within all roots of Z(X). Let v; ' and ;! be two different roots of Z(X). Let K.,
be the extension of K9 generated by all roots of H,, (X). If p{ v(7), as v(y) = %foq‘%,
we have p { v(y1) = —c. By Proposition [3.2.2] the extension K., /K% is a degree ¢
wildly ramified extension. Hence if w is the normalized valuation associated to K,, such
that w = Qu for some positive integer @), then we have ¢ | Q. As w(y2) = —Qc, this
implies p | w(72). Hence one can not apply Proposition to study the extension of
K., generated by the roots of H,,(X). Therefore, it may be hard to study K{/K, as an

extension generated by the roots of Y,.(X) — f.

3.2. An alternative polynomial generating the same extension. We will con-
tinue to use the notation in Section 3.1 Throughout this subsection, for a integer r > 3,
let ¢ be a rank r Drinfeld A-module over K such that

o o(X)=tX +a; X9+ a, X7 € K[X];

e for the valuation v(j) of the j-invariant of ¢, we have v(j) < ay.
Put Z(X) = X5 — 3. In this subsection, we are to show that the roots of Z(YQ(X‘?_l))
also generate K;/Kz. The Newton polygons of Z(X) and Z\(X) are the same. It turns
out that we can obtain the i-function of K; /K7 by considering this extension as the one
generated by the roots of 2(1/'2()(‘1_1)) in Section .

Following [KLO04, Proposition 3|, we may show that the extension K/K, equals the
extension generated by the roots of Z (X).

Lemma 3.3.4. Put E(X) = X — 3. Let K be the extension of K, generated by the
roots of Z(X)
(1) The extension K /K, equals the extension of K, generated by all roots of E(X)
(2) For each root z of Z(X), there exists a unique root &' of Z(X) such that |z — 2|

C=7*+1. For roots x, different from x and &, different from ', we have |z — !
|I‘1 — ZL'/| = O

ProOF. Weshow (1). Let x,x1,..., 75,1 beallroots of Z(X). Let 2’ for j = 1,..., 5,
denote the roots of Z(X). We first show |z — zj| = C for any j and |z} — 2| = C for
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j #i. We have Z/(X) = HfTII(X —z;) =S X5 1+ 8,1 X571 ... + 1. Consider
Sp—1
Z'(x) = H (x —zj) = S + S, ™ L
=1
As |z| = C > 1, we have
Sp—1

I -

J=1

= |x5r’1|.

By the ultrametric inequality, we have |z —x;| < |z|. The above equation implies |z —z;| =
|z| = C for any j. We have Z'(X) = S, X% ~! and hence

Sr—1

1 (=) =Z'(z}) = S,

=1

This implies

= a5t

ljl'—l‘

As the Newton polygon of Z\(X) is the same as that of Z(X), we have |z}| = |2} = C.
Similarly we have |r; — 2| = |z}| = C for j # i.

If we can show for some index i that |z — xj| < C = [z} — 2| for all j # i, then
Krasner’s lemma implies K, (x}) C K,(z). To know |z — x|, consider

Sy
Z(x) = [z = al) =2 = = a5 4 2% 4 4 0™,
i=1
where the rightmost equation follows from Z(z) = Z,.(X) — 8 = 0. By , we have
v(z) = cand |z| = C > 1. Hence

Sr

J=1

(37) — |:ES7‘71 + e + ZL‘S2| — |I.Sr71| — C’S»,—fl'

There exists an index ¢ such that |z — 2| < C 5t < C, as desired.

There exists a root zj, of Z(X) satistying |z}, — z;| < C. As |z; — x| = C, we have
|z; — x| = C. This implies z, # z. Hence for any root of E(X), there exists a root of
Z(X) so that the absolute value of the difference of these roots < C. Let x vary within
the roots of Z(X). We have K(,---,2% ) C K(z,21,...,25,-1). Hence Kz C Kj. As
|z — )| < C = |z — ;] for all j, we can similarly show that Ky C K.

As for (2), one equation is already proved above. Similarly, as |x; — 2’| = C for j # i,
we have [r — 2| = C. Hence 7] is the only root of Z(X) such that |z — 2/| < C. By ,
we have |z — x| = CSr—1=5r+1 = C=a" 1, O
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Lemma [3.3.4] (1) implies that the extension K /K is at most tamely ramified. Alter-
natively, in the above proof, we have shown that |z — z;| = |z| for two different roots x
and z; of Z(X). For an element 0 € G(K;/K,), we have that o(z) = z; for some j if o
does not fix x. The equality |z — ;| = |z| in the proof implies that v((o(x) — x)/z) = 0.
Let x vary within the roots of Z(X). We know that the wild ramification subgroup of the
extension K /K, is trivial. Hence the extension K;/K, is at worst tamely ramified.

The next corollary is concerned with Galois actions. Let Vz and V3 denote respectively
the set of roots of Z(X) and those of Z(X). By Lemmam (2), for each root x of Z(X),
we have found a unique root 2’ of Z(X) satisfying |z —a/| = C~%**!. This defines a map
fz : Vz — V. Note that the Galois group G(Kz/K,) permutes both V; and V3.

Corollary 3.3.5. The map fz is a bijection and is compatible with the G(Kz/K,)-
action, i.e., if v — ', then o(x) maps to o(x').

PROOF. Note that the polynomials Z(X) and Z(X) have the same degree. The
bijectivity follows from Lemma (2). As for the compatibility, if x maps to 2/, i.e.,
|z — 2| = C~7°*1 we have |o(z) — o(a')| = |o(z — 2/)] = C~9 ! as o preserves the
absolute value. Then o(x) maps to o(2') as o(z') is the only root of Z(X) satisfying
o(z) — o(z)| = C—7 "1, O

Lemma 3.3.6. Fiz a root v~ ' of Z(X) and put v~ = fz(v7') (fz in the above

corollary).

(1) Let K, and K. be respectively the extension of Kz generated by all roots of H.(X)
and those of H,/(X). Then we have K, = K./. Especially, the extension K{/K, equals
the extension of Kz generated by all roots of the polynomials Hy/(X) = X9 —+'X —+/
for v warying within roots of Z\(X)

(2) For each root x of Hy(X), there exists a unique root ' of H./(X) such that |x — 2’| =
C~4". For each root x1 different from z and each root x) different from z', we have
|z — 2| = |2, — 2| = C 7.

As |y] = C~! < 1, the Newton polygons of H,(X) and H,/(X) are the same and both
have exactly one segment determined by the points (0,v(v)) and (g,0). Hence the roots
of these two polynomials have absolute value C' X7

PROOF. We show (1). The root v/t = f(y7') of Z(X) satisfies
=T =

Note |y| = C~!. We have

'r7271

y=9l=C"
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We are to show that the extension K, of K, generated by the roots of H,(X) equals the
extension K, of K generated by the roots of H,/(X). This is enough to claim (1).

Let z,21,...,2,1 be all roots of H,(X). Let z} for i« = 1,...,q denote the roots
of H,/(X). Since the difference of two roots of H,(X) is a root of X7 — vX, we have
|z —z;| = |7|ﬁ = C . Similarly, we have |r; — 2| = C T for j # 1. If there
exists an index 4 such that |z — x| < |z} — 2| for j # 4, then Krasner’s lemma implies

Kz(x}) € Kz(x). Consider

() = [[te —ah) =7 = 7o =4 = (2 =)o+ (=),

(38) =y —yl=Cc"""

241

Hence there exists an index ¢ such that |z —2}| < C7 ¢ < C T = |z} — 2| for j # i.
By Kranser’s lemma, this shows Kz(x}) C Kz(x).
1 1
There exists a root zj, of H, (X) satisfying |z}, —x;| < C"« 1. As |z; — 2| = C a1, we

have |z; — z}| = C~a1. This implies z) # x}. Hence for any root of H.,/(X), there exists
1
a root of H,(X) so that the absolute value of the difference of these root < C'~a1. We
1

have K (zy,... ;) C K(z,71,...,741). Hence Ky C K. As |z — x| < C7aT = [z — ]
for all j, we can similarly show that K., C K.

As for (2), one equatlion is already proved above. Similarly, as [2;—2}| = C~ i for Jj# 1@',
we have |r — 2| = C” . Hence xj is the only root of H,/(X) such that |z — zj| < C™ 5.
By , we have |z — x| = C~¢". O

Put ©(X) = Z(Y3(X)) (as in the proof of Lemma [3.3.1)) and O(X) = Z(Ya(X)).

Corollary 3.3.7. Let § be a root of ©(X).

(1) There exists a root &' of @(X) such that |0 — ¢'| = o,
2) Let o for j=1,...,q—1 be roots of Yo(X) — Yo(&') different from §'. Then |0 — 6| =
j j
O, Let d; for j =1,...,q—1 be roots of Yo(X) — Y2(9) different from 6. Then
q—2
|0/ — §;] = C'ata=D.
(3) For any root §" of @(X) such that Y5(8") # Y2(8"), we have |6 — 0"| = Ci. For any
root 01y of ©(X) such that Ya(6(1)) # YQ(i), we have |0' — 0(1y| = Ci. .
4) Fiz 6. The element &' is the only root of ©(X) satisfying |6 —&'| = C™9 T4, Fiz §'.
(4) y ying
The element § is the only root of ©(X) satisfying |8’ — 0| = Ccma L
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PROOF. Put z == (6 —1)~!. By , the element z is a root of H,(X), where v~ is
a root of Z(X) with v~! = Y3(9). As |z| = |7|% — C7 < 1, we have
1
15| = ‘—+1‘ = Cn.
T
Hence |§ — 1| = |4].
For v~!' = fz(y~'), by Lemma [3.3.6] for the root = of H,(X), there exists a unique
root ' of H, (X) satistying |z — 2| = C~7 . Put §' := % + 1. Then

r—2

(-1 = (@ -1 =lz—a|=C""1
As |2| = Wﬁ — (i< 1, we have |§' — 1] = |§'| = C'. Hence
6 -8 =C™ "t

and (1) follows.
We show the first claim of (2) and the second claim similarly follows. Let 2 for

j=1,...,q9 — 1 denote the roots of H,/(X) different from 2'. Put ¢} = 4 + 1 for all j.
These ¢} are roots of Y5(X) — Y5(¢') different from ¢’. We have [0} — 1| = [0}] = C7. As

x' — 2, is a nonzero root of X9 — ' X, we have |2/ — 2| = C~7 1. Since
_ _ 1
(8 = 1) = (& =) =o' —a)| =Ca T,

we have
q—2

|5/—5;‘ = (ala—1) |
As |0 —¢'| = CIT < C’fl(qq;fl), we have
0 — 65| = max{[d — &'|, [¢' = 0}|} = |§" — 0% = Cata=.

and this shows (2).

We show the first claim of (3) and the second claim similarly follows. Let 6” be as
in the claim such that Y5(d”) is a root of Z(X) different from Y3(d’). In the proof of
Lemma , we have shown [Y5(d") — Y2(0")| = C. Let 67 for j =1,...,q be the roots of
Y5(X) — Y2(6") such that §” = 6]. We also have

q

Yo(d') — Ya(0") = [ (6" = ).

i=1

Hence

=C.

q
[I6 -a)
j=1
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For each j, as |§'| = [07] = C'7, we have |0 — (5”| < |§'| and the above equation implies
6" = 67| = 10"| = Ca. As 6 -0 =C"7" +7 < 7, we have |6 — 67| = max{|d — ¢'|,|0" —
5!} = C.,

(4) follows from (1), (2), and (3). O

Let Vg and Vs denote respectively the set of roots of ©(X) and those of @( X). By
Lemmas |3.3.1} [3.3.4} and [3.3.6] the extension K/K,, is either generated by the elements
in the set Vi, or the elements in the set V. By Corollary |3.3.7] _, we have found for each
root § of ©(X) a unique root § of @(X) satisfying |0 — | = C~7’*%. This defines
a map fg : Vg — Vg. Note that the Galois group G(K]/K,) permutes both Vg and
V5. Following the proof of Corollary , we can apply Corollary (4) to show the
following result.

Corollary 3.3.8. The map fg is bijective and is compatible with the G(K1/K,)-action.

Lemma 3.3.9. Fiz § to be a root of ©. Put §' = f5() and v = Y5(0). Let K5 and
Ky denote respectively the extensions of K. (See Lemma generated by all roots of
X1 —§ and those of X971 —§'.

(1) We have K5 = Ky . Especially, the extension K,/K] equals the extension of K{ gen-

erated by all roots of X971 — &' for all &' € V.

(2) For each root x of X97' — ¢, there erists a unique root x’ of X%t — § such that
|z — /| = C~ T E1, For a root xy of X1 — 6 different from x and a root ¥, of

1
X971 — ¢ different from 2', we have |x — | = |z, — 2’| = C'a-1.

The Newton polygons of X971 —§ and X9~! — ¢’ are the same and both have exactly
one segment determined by the points (0,v(d)) = (0,¢/q) and (¢ — 1,0).

PrOOF. If K5 = Ky, we let 0 vary within the roots of Vg and the second claim of (1)
follows. We show K5 = K.

Let x,21,...,24-2 be all roots of X! — 4. Let 2} for i = 1,...,q — 1 denote the
roots of X771 — §. We first show |z — z;| = C@@ D and |z} — 2| = C'@@ 1. Notice
(X9 —6)|xmp = Hg;f(x —x;) = (¢ — 1)z72. We have

q—2
I

As |z| = |z;| = Cq(qI*U this implies |z — z;| = |z| = C'a@ 1. Notice (X =) | xar =
"N — ) = (g — 1)}, We have

7j=1

= |z|"*.
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As |1m;| = |z}| = C’q<q1*1>, we have |z} — 2| < |z}|. This equation implies |z} — 2| = |z}| =
(Cala=1) |
If we can show for some ¢ that |z —x}| < Cia D = |z} — ;| for all j # i, then Kranser’s

lemma implies K, (z;) C K, (z). Consider

(39)

. ) ) _d"2 2 1 , ,
There is some index i such that |z — 2| < C~ T Ta@ 1 < 1 < Ca@ 1 for any j # i, as

desired. We have Ky = K, (2') C K, () = K5. As |z — 2}] < Cian = |z — z;| for any 7,
we have Ks C Ky by Kranser’s lemma.
As for (2), for each j =1,...,q¢ — 2, we have

lz; — 2] = max{|z; — x|, |v — 2}|} = Cﬁ,
v — 2| = max{|z — &, |o} — a}|} = CTT .

Hence 2 is the only root of X9~ ! — ¢’ such that |z — z}| < O, By , we have

_or—2,2_ (g—2) _r—2, 1
‘x—x;’ =C Ty a1 = (' q +q—1‘

Put ©(X) = (X7 1) (as in the proof of Lemma [3.3.1) and © = @(Xq_l).

Corollary 3.3.10. Let = be a root of ©(X) and x' be one root of @(X) satisfying
|z — | = c
(1) For any root x" of(:)(X) such that |9t —2"17t| = CTT as in Corollary|3.3.7| (2), we
—2
have |[x—2"| =1 or C@ . For any root x1y of ©(X) such that |x‘(11_)1—a:’q_1| = CaleD,
we have |xq) — 2’| =1 or O,
(2) For any root =" of ©(X) such that |19~ — z"17!| = C7 as in Corollary (3), we
1
have |x — 2" | = C«@=D. For any root x(2) of O(X) such that |$‘(12_)1 — 27 = C%, we
have |x @) — a'| = letic=s
(3) The element 2’ is the only root of ©(X) satisfying |z — 1’| = C~7 "+, The element
r— 1
x 18 the only root of ©(X) satisfying |z’ — x| = C™* e
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PROOF. We show the first claim of (1) and the second claim similarly follows. Let

for j =1,...,q — 1 denote different roots of X971 — 2”971 so that 2/ = 2”. Consider
qg—1
(Xq—l o $1/q—1)|X:x _ H($ _ x;/) _ xq—l N xl/q—l‘
=1
We have
q—1 .
(40) H z—al)| =z — 2" = Ciateo,
7j=1

—2
There is an index ¢ such that |z — 2| < O 7. As |z} — 2| = C'@ T for J # i (in the
proof of Lemma |3.3.9)), we have for j # i

|z —x '| = max{|x — x|, |z} x;'|} — O,

By , we have |z — 2| = 1. If 2/ = 2", we have |z —2"| = 1, or else |z — 2| = C@.
(1) follows.

We show the first claim of (2) and the second claim similarly follows. Let x’ for

j=1,...,q — 1 denote different roots of X971 — 2/"4~! 50 that 2}’ = 2””. Consider
qg—1
(Xq—l o 33/Hq_1)|X::c _ H(x . .73;//) _ .CIZq_l _ x///q—l‘
j=1
We have
q—1
1
(41) H(SE )| = |at = 2" = Ca.
j=1

Note that the absolute value of each root of ©(X) and of ©(X) is Ca@ . We have
1
|z — 27| < |z[. Then |} implies |z — 27| = Cat=D for all j. (2) follows.
(3) follows from (1), (2), and Lemma[3.3.9 (2). O

Let V and V denote respectively the set of roots of ©(X) and that of ©(X). By the
proof of Lemma the set V' consists of elements & 1€ for € € ¢[u] having valuation
v(&.1), where {&1}i=1,...» is an SMB of ¢[u] and [ is one of 2,...,r. By Lemma , the
elements in this set V' also generate the extension K;/K,. We have found for each root z
of ©(X) a unique root 2’ of O(X) satisfying |z — 2| = C7 *+21. This defines a map
f:V — V. Note that the Galois group G(K,/K,) permutes both V' and V. Following the
proof of Corollary , we can apply Corollary (3) to show the following result.

Theorem 3.3.11. The map f : V — V is bijective and compatible with the G(K1/K,)-
action.
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3.3. The Herbrand ¢-function of K;/K. We will continue to use the notations
in previous subsections. Throughout this subsection, for a integer r > 3, let ¢ be a rank r
Drinfeld A-module over K such that
o (X)) =tX +a; X"+ a, X7 € K[X];
e for the valuation v(j) of the j-invariant of ¢, we have v(j) < ay.

In this subsection, we will work out the (Herbrand) v-function of K;/K. In Lemma|3.3.2]
we have the decomposition of K;/K

K K, Ky K} K .

The extensions K;/K and K;/K/ are tamely ramified and their ¢-functions are clear.

We are to work out the i-function of the extension Ki/K.
q'rfl_l
q—1

¢ via the Frobenius map of F,—1 over F, so that {{ = (. For each positive integer j > 1,
q q 1

Let ¢ be a primitive S,-th root of unity (Here S, = ). Let ¢; be the preimage of

let (41 denote the preimage of (; via the Frobenius map so that C]‘? 1 = (. For an integer

.j Z 17 put é-] = Hi::l Ck
Let us prepare a lemma.

Lemma 3.3.12. For an integer j satisfying 0 < 7 < S, — 1 and an integer s satisfying
]SSSST_LPUt
1 J=0;
<s—j i i .
Zﬂzz‘;z‘..zijzo (R ij J >0,

such that Ags = 1. For j >0 and s > j+ 1, let 6541 = (570, ;)74 be the preimage of
(I A, via the Frobenius map. Then for j >0 and s > j + 1, we have

As,j =

(42) Agj = 0501 = (1= &v1) A
The elements A, ; and d; ;41 for all s and j appearing in the lemma belong to Fyr-1.
PROOF. For the case 5 = 0, the desired equation is
I-G=0-)d+a++G7).
Assume that j is a positive integer then. The term J, ;41 equals

<s—j

s—j i2 CijJrl
1 2 1

192>+ 2154120
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The left of equals

<s—j <s—j L\
i i S=Jj—tj41 pla—ij41 i =41
> G| - > G Co G [T¢
11221520 1922054120 k=1

<iy

=1 > aeq

i1=0 i3> >i;>0

j+1 Tj+1
o (Me) aeg)
k=1

where the last sum extends over indices s —j—%;41,%2—%j41, 43441, - - - , 1 — 141 satisfying
§—J]28—7 = %41 = lg —ljqp1 > 13 — ljp1 = -+ > 15 — 4541 > 0.

By replacing the indices s — j — 441,92 — %41, -+, 45 — L1, 4541 With 41,%0,... 75,8 —7 — 11,

we have that the left of equals (Recall &4, = [T45) G)

s—J <iy <iy
2. > @ ZC Al o @
i1=0 ig2>+-21;2>0 11=0 1> >1;>0
<i1
- ZC ;+{ “) Z C;Q"'Cf
i1=0 192>-+-21;2>0
s—j—1 s—j—i1—1 <iy
) . ) i
W) =g qu( 5 5) S @),
i1=0 1=0 i9>->i;>0

We note that ?1 in the leftmost sum in does not take s — j for if ©; = s — j, then
(1-— 55':1 ') = 0. We have

s—j—1s—j—1—i1 <1
l l +i
E)=0-&a) | D Z GGl D @t
=0 = in>->i;>0
1 pin+l +1
1 . §]+1 (Z C“+ i2+ C“ ]l+1>
where the last sum extends over indices i; + 1,72 +(, ..., ¢; + [, [ satisfying

By replacing indices 41 + I, ..., ¢; + [, with ¢,...,%;,%;41, we have

s—j—1

" _ (1 _ §j+1) Z 2 . <—7z]<—2,7+1 7

112092215 154120
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which is the right of . 0

We continue to use the notations in the previous lemma. For an integer j > 1, let §;
be as above. Put &, := 0.

Proposition 3.3.13. Let v~ be a root of Z\(X) Then the extension K{/Ky equals
K ' /K. Here we define K, ' /Ky in the following manner.
o The extension K%/ Kz is generated by all roots of the polynomials X4 — ('vX for
i=0,1,...,5. — 1, which is a compositum of Kummer extensions.
o Put xg:=1. For 0 < k <r — 2, put inductively xx,1 to be a root of

HO(X) = X7 — (F7X — (*(1 = &)ymy € KY[X).
For 0 <k <r—2, the extension K§+1/K§ 15 generated by Tpiq.

This proposition claims that Kj/Ky is the composition

Ky K K} K2 K2 K;y'=—K|.

Let vz denote the normalized valuation corresponding to K% for k = 0,...,r — 2. As
ptu(yxy) = %)fo” and the Newton polygon of H®(X) = H,(X) has exactly one seg-
ment, we can apply Proposition to the polynomial H®(X) € K%[X]. It turns out
that p { vz1(yz1) and the Newton polygon of HM(X) has exactly one segment. Hence
we can apply Proposition to HY(X) € KL[X]. It turns out that p { vza(yzs) and
the Newton polygon of H® (X) has exactly one segment. Hence we can apply Proposi-
tion again and so on. The 1-function of Kj /K% eventually follows.

PROOF. Fix a root v~! of E(X) The roots of E(X) are (*y ' for s =0,1,...,5,. — 1.
By Lemma [3.3.6] (1), the extension K]/K is generated by all roots of all polynomials
Hean(X) = X7 — (®yX — (®y for all s. Note that for any s, the difference of two roots of
Hes (X) is a root of X9 — (*vX. The field K5 is contained in K].

To show the proposition, put inductively zj, =1 and

Heen (X) k=0and 0<s<S, —1;

(44) HY
He (X 4300, 0,505) k>0and k<s <8 1,

¢sy

(X) =

where z’; is a root of ngi(X) for each j =1,..., k. We claim

(45) Hé’? (X)=XT"= v X —C (1= &) Asgpyay for k<s< S, — 1.

0l
Admit this claim. We show K| = K . This claim implies that Hél,z)v(X ) equals
H®(X) for each k = 0,...,r — 2. Hence for each k, we have 2}, = z41 € K. By
, we know that the extension K5 /K% equals the extension of K% generated by the
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roots of Her., (X). Hence the extension K, ' of K equals the one generated by the roots
of polynomials Hex, (X) for k = 0,...,r—2. Hence the extension K| /K is generated by
all roots of polynomials Hes (X) for s =r—1,...,5,—1. For each s > r—1, the extension
of K, generated by the roots of the polynomial Hes,(X) equals the one generated by
the roots of Hg;;l) (X). As (,—; is a S,-th root of unity, we have

r—1 r—2 v
é-rfl == HC@ == HC,?Z_l =1.
=1 =0
Hence

HEOY = X9 — X = (1= 1) Agyorvar
= X=X
for each s > r — 1. This implies that the extension of K7 ' generated by the roots of
polynomials Hes, (X) for s > 7 — 1 is trivial. The equality K} = K7 ' follows.
It suffices to show the claim in (45)). The case k = 0 is clear and hence x] = 1. As
for the case k = 1, notice (52 — (*yx1 — (*y = 0. Then
HY) (X) = Heen (X + 6,121) = Heeo (X + Gy
= (X + Gz1)" = Cv(X + ) — Cy
= X=X + ] =y = Gy
= X7 =y X+ (1= )y
<s—1
= X=X+ C(1-G) (Z Ci) VI

i>0

= X=X 4+ C(1 —&)As 1y

Hence the case k = 1 follows.
Assume the claim for £ — 1, i.e., we have for k — 1 < s < S, — 1 that

HE D (X) = X9— X = (1= &) Aggmrvzis.

¢Sy
This implies x}, = ;. By , we have

HY (X) = HE V(X + 6, pay) for k< s < S, — 1.

Hence

Hé’zzy(X) = (X + 5s7k$k)q - CS’V(X + 5s7kl'k) — CS (1 — {k_l) A57k_1’}/l‘k_1
= X1 = X 400,77 — C (1= &) As 171 — COs kYT
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As x4, is a root of Hg,iji(X), we have

0= (5ng2’,2:111($/<)
= (¢ A1) (2] — My — TN = Gea) )
=007l — (1= &1) As k171 — CAg 17T
Hence
HE (X) = X7 = X + ¢ (Aot — 0ap) V0ot
For s > k, to show Hék)V(X ) equals the one in , it suffices to show
Agg1 =05 = (1= &) Agp
This has been proved in Lemma (3.3.12] 0
Noti that the Newton polygons of Z(X) and Z(X) are the same. By (36)), for a root
v~ of Z(X), we have
—v(j) +
S, '
Lemma 3.3.14. Resume the notations in Proposition B3I3l Fiz k to be one of

1,...,7 — 1. The Newton polygon of H¥=1(X) has exactly one segment determined by
the points (0,v(yxr_1)), (¢,0) € R?. We have

o) = v(7) (1+i2+---+i).

¢ q q*

v(y) =

PrOOF. We may show the claims by induction on k. As v(7y) > 0, the Newton polygon
of HO(X) = H,(X) has exactly one segment, and hence v(z;) = #. We assume that
the claims are valid for k — 1. Put Qr—1 = (0,v(yxr-1)), Po = (1,v(7)), and P, = (¢,0).
The slope of Qr_1F, is

v(y) = v(ye-1)

T—0 = —v(xp_1).
The slope of Qr_1P; is
0 —v(yrg_y) v(y)
I R G s

and is smaller. Hence the Newton polygon of H*~Y(X) is Q_; P;. Then
1 1 1
v(xg) = v -+ —=+...+=).
(oo d
The claim follows. 0J

By Lemma [3.3.9] the extension K;/K,, is also the extension generated by the roots of
O(X) = Z(Ya(X7™)). Hence we can apply Proposition [3.3.13 to obtain the ¢-function of
the extension K;/K, (and hence the one of K;/K) as follows:
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Corollary 3.3.15. For the valuation v(j) of the j-invariant of ¢, assume p tv(g). Put

v(y)  —v(g) + a1

R:: =
¢g—1 ¢'-1

(1) The extension K|/KY is a totally ramified extension of degree q" 1.
(2) The -function of Ki/KY is

Y, -1 <y < EzR;

(] /K, (y) =
¢ 'y—(¢"'—=1)EzR, EzR<y.

(3) Put Ez to be the ramification index of K /K, e the ramification index of K1/K, and
E = eEy. The ¥-function of K1/K 1is

¢K1/K(?J) =9 Ly, 0<y<R,
Eq¢~'y— (¢ ' —1)ER, R<y.

PROOF. Let vz denote the normalized valuation associated to K% for k =0,...,r—1.
We have vz = Ezv. As K% /K is at worst tamely ramified, we know that E, is not
divisible by p. As p | oy and p { v(j), we have p 1 vzo(7). Note the Newton polygon
H®(X) = H,(X) has exactly one segment. Apply Proposition m to the extension
K7,/ K generated by a root of the polynomial H,(X). We know that the extension K7 /K?
is a totally ramified Galois extension of degree g. Notice

vz0(7)4
qg—1
We also know from Proposition the 1-function of K./K?

— UZ’O(')/) = EzR

wK;/Kg(y) =
qy—(¢—1)EzR, Ez;R<y.

We claim that for each k£ = 0,...,r — 2, the extension KZ“ /K% is totally ramified
Galois of degree q. We show this by induction and the base case has been proved above.
The induction hypothesis implies that vz = QkUZ,0~ By Lemma |3.3.14] we have

vzr(var) = Ez - (L+q+ - +¢") -v(y),

which is not divisible by p. We also have that the Newton polygon of H*)(X) has exactly
one segment. Apply Proposition m The extension K5 /K% is totally ramified Galois
of degree ¢, as desired. Hence (1) follows. Note

k+1 E+1 _q
Uz,k(’}/l)q R vz vz0()(g ) _ E,R.
q pR—

q—1 qg—1
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We also know from Proposition that the t-function of K5 /K% is the same as
that of K /KY. Then (2) follows from Lemma [3.2.1, Notice K;/K] is at worst tamely
ramified. (3) follow. O

Resume the assumptions and notations in Corollary [3.3.15] As K;/K] is tamely
ramified (See Lemma [3.3.1), the natural projection G(K,/KY) — G(K;/KY%) induces
an isomorphism G(K;/KY); & G(K;/K%);. As KY/K is tamely ramified, we have
G(K,/KY), = G(K;/K);. By the ¢-functions, we replace the indices as

(46) G(K1/K), = G(K1/K)pr = G(K1/Ky)pr = G(K|/Ky)p, k-

Theorem 3.3.16. For a integer r > 3, let ¢ be a rank r Drinfeld A-module over K
such that ¢;(X) =tX +a; X7+ a, X7 € K[X], v(§) < a1, and ptv(F). Let u be a degree
one prime of A with degree 1 and Ky = K(¢[u]). Let {&1}iz1,.» be an SMB of ¢[u]. Let V
be the 1-dimensional F -vector space generated by & 1. Then each element in G(K;/K);

-----

fizes £11 and there is an isomorphism
9:GKi/Kh =Vl e (0(&1) — & 0(&1) — &)

PROOF. By , we have G(K1/K); = G(K1/KY)gr. Note &1 € K, C K. Hence
each element of G(K;/K); fixes & ;.

Let v, denote the normalized valuation corresponding to K. By Corollary [3.3.15] we
have vg, = Eq"'v. Let o be an element in G(K;/K); = G(K,/K)gg. Fix i to be one of
2,...,r. We have

VK, <%) > ER > 0.
i1

By Proposition [2.1.3] each element in ¢[u]\ V has valuation v(&; ). Hence if 0/(&;1) — &1 ¢
V, we have v(c(&1) — &1) = v(&,1) and this implies vg, (%) = 0, which is a
contradiction. Therefore o(§;1) — &1 € V.

For a nontrivial element 0 € G(K;/K); = G(K;/K,); (Note that K, /K is at most

tamely ramified), as &21,...,&.1 generates K;/K,, there exists some index i = 2,...,r

such that o(&; 1) — &1 # 0. This implies that g is injective. By Corollary and ,
the cardinality of G(K;/K); is ¢"~'. As the cardinal of V"1 is ¢"~!, this map is surjective.
Let o’ be an element in G(K,/K),. Put a; = (0(&1)—&1) /&1 and @) = (0/(&1)—&i1)/&1a
fori=2,...,r Aso,0' € G(K,/K), = G(K1/K,)1, we know that ¢ and ¢’ both fix &; ;.

Hence, for each 7, we have

od'o(&1) =0'(0(&1)) =0 (&1 + ai&in) =& + (a; + @) q.

This shows that this map is a morphism and hence an isomorphism. 0
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Remark 3.3.17. Let u be a finite prime of A with arbitrary degree. We hope
to know the t-function of K(¢[u"])/K, the action of the wild ramification subgroup
G(K(¢[u™])/K)1 on ¢[u"], or the rank of ¢[u"]" (cf. Corollary 4.2.5). Here GY denotes
the y-th upper ramification subgroup of the absolute Galois group of K.

Example 3.3.18. Let v be a prime of A and u a finite prime of A with deg(u) = 1. For
each integer i with p {4, consider the Drinfeld F,[t]-module ¢V over F,(t), characterized
by

S (X) = X 4 (@ DD xo (g4 1) X
It has potentially good reduction over F(t), if v # t. The j-invariant of ¢(®) is
49 = pila" =11 =1) (t+ 1)%11_1)
(1) If the prime v is infinite, then v(3) < oy if and only if i > 0. The ramification break

ER of K;/K in Corollary equals Ei(q" —1). Hence ER can be arbitrarily large.
(2) If v # t, then the extension K;/K is at worst tamely ramified as ¢ has potentially

good reduction over F,(t),. If v = ¢ and ¢ > 0, then ¢ has good reduction. If i < 0,

then ¢ has potentially stable reduction and the reduction over some extension of K

is bad. The ramification break E'R in Corollary equals —Ei(¢" —1). Hence ER

can be arbitrarily large.

3.4. The action of the wild ramification subgroup of K{/K; on the gen-
erators. This subsection is a supplement to the previous section. There is no appli-
cation of this subsection in this paper. By Theorem and , we have that
G(K{/KY) = F;~'. Our goal is to study the Galois action of G(K{/K}) on the field
extension generators z1,. .., 2, of the extension Kj/KY. For this, we prepare a lemma.
We continue to use the notations in Lemma |3.3.12 and Proposition [3.3.13

Lemma 3.3.19. Let Cq%l be a primitive (¢" ' —1)-st root of unity such that (QFll)q_l =
(. Let ’yﬁ denote a root of X9' — ~. Define inductively jg; for k =0,1,...,r — 1 and
l=0,1,...,r —1 as follows:
(1) pgo =0 for all k and po; =0 for all I;
(2) pq = 7?11 and py; =0 forl > 2;
(3) pet1y = ,uk,l_qu%l + &ty for allk =1,...,r—2 and l > 1.
Fiza € Fy, k to be one of 0,...,7 =2, and [ to be one of 0,...,r — 1. Put

k
HY(X) = X1~ ¢*yX — ¢F(1 — &)rapu.
Then ap41, 15 a root of this polynomial.

We have pi;1 = ’yq%1 Hf:_f EGlor k=2,...,r—1and ppy = (%79—% for k> 1. We
also have p;; = 0 for [ > k.
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PROOF. If | > k+ 1 or [ = 0, then the lemma claims that 0 is a root of X9 — (¥~ X.
This is valid and we assume 1 <[ < k + 1 then. We show these cases using induction on
k and [. We first show the following claims as the base case.

(1) apg41,1 is a root of Hakl(X) for k=0,...,r—2;

(X)=X9—CFyX for k=0,...,r —2.

The proofs of (ii) and the case k = 0,1 of (i) are straightforward. As for (i), we need to
show for k > 2

k
(awiiH&) —Cv(avq1H£z> F1-& w(vqu&)—O
i=1

Note a? = a, {] = ¢, and & = (&1 for i > 2. The left of this equation equals

k-1 k
i (H&)—c’wq"la(H@) ¢y (1 = &a (H@)
k—1
zc’qula<1—5k (Ha) (1-&) (Hf))

=0 (as desired).

(ii) aptg+1 k41 is a root of Ha 1

Fix k and [ to be integers satisfying 2 < k <r —2 and 1 <[ < k. Assume
H(l 1)(,u”) = 0 for integers i, j satisfying ¢ < k and j < [. We show

Hc(zlfl)(auk+1,l) = (aprs10)? — CFy(aprsrs) — CF(1 — &)yapw, = 0.
By the definition of ji441,, we need to show
a9 (111 CTT + Gt — CPya(iung 1 (7T + Enping) — CF(1 — E)vapng = 0.
As a? = a, it suffices to show
(#k,l—lfq%l + &) — Ckv(ﬂk,Z—qu%l + Eeping) — CF(1 — &) yprs = 0.

Note & = (&—1. The left of this desired equation equals

(,Uk,lflcq_% + Epir)? — Ckgrll’ﬂlk,lq — Fypeg
(47) = ¢t (pd = M) + Caml, — g,
By Hg’fl__ll) (tg1—1) = 0, we have

HZ,Z_l — "My = TN = o) Y- 101
By Hg’fl_l)(,um) = 0, we have

MZ,Z = Ckilfﬂik,l + Ckﬂ(l — &)Y Hk—1,1-
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Hence
9 g _ _
= (1M = G- rm1 + G (CF g + TN = Gem) 1) — Cypg-

Note py; = uk,l,l,lcﬁ + &1 ptk—1, for k> 2 and [ > 1. We have
./C Y= Cq T(1 — &1 k1,01 + ke 1(Mk 1l— 1Cq U+ S [l 1z>

1
+ &1 (1 — &1 i1 — (Mk—1,l—1§q*1 + fk—Wk:—Ll)
=0 (as desired).

As the polynomial X7 — (¥yX is additive, we have

Corollary 3.3.20. Let a = (ay,...,a,-1) be an element of the F,-vector space ]Fg_l.
Put

r—1
Mg, = Z ayfig,l
fork=20,....,r—1. Then for any k =0, .. .l,:rl— 2, we have that My15 is a root of
HP(X) = X1 = Py X = ¢*(1 = &) My
We are ready to state

Theorem 3.3.21. For an integer k and an element a € F;fl, define My, as in Corol-
lary 3320l Let 70%1 denote a root of X9t — .
(1) Fiz j to be one of 1,...,7 — 1. For an element o € G(K}/K} "), let o denote an

extension of this element to G(K/| /K% "). Then there exists an element
a=1(0,...,0,a;,0j41,...,0,_1) € szl
satisfying that for each k =1,...,r — 1, we have
o(zg) — o, = Mg 4.

(2) The map
G(K1/Kz) = F o= a,
where a satisfies 0(x,—1) — Tr—1 = M,_1 4, s an isomorphism.
PROOF. We show (1) by induction on k. Fori=1,...,j—1, as z; € K, ', the action

o(x;) is trivial. By Proposition [3.2.2] (See the proof of Corollary |3.3.15) m there exists some
a; € IF, such that

Jj—=1 _1_
o(zj) — x5 = a;CoTyTT = a;puy ;.
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Note pj; =0for I =j+1,...,r — 1. The equation in (1) is valid for k = j. Assume that
the equation in (1) is valid for 1,...,k (some k > j) and some a € F;,~". Since ;4 is a
root of

H®(X) = X9 = ("X = ¢F(1 = &)y,

the element o(xyy1) is a root of

oHW(X) = X9 = (FyX = ¢*(1 = &)yo ()
= X7~ Py X — CF(1 = &)y (mp + My) -

By Corollary |3.3.20, M1, is a root of Hék)(X). Hence the sum @j41 + Myy1, is a o0t
of cH®). On the other hand, the element o (z;1) is a root of cH®*) and hence

k1
0(Tpy1) = Tyt + Mpg1q +alTy7T = 2340 + Mpg1, + Qg1 e

for some a € F,. We may replace a with (0,...,0,a;,aj41,. .., Q1+ Q, Qgy2, - - ., Qr_1)
so that

0(Tpt1) — g1 = Miy1qs

as desired.

As for (2), the map is injective as 1, ..., x,_; are generators of the extension K|/KY.
Corollary implies that the cardinal of G(K]/KY) is ¢" ' and hence the map is
surjective. As Z(X) = X% —pfor S, = ’1;_11_1, the field K, contains S,-th roots of unity.
As K%/K, generated by all roots of X? — 4X for 4~ varying within the roots of Z(X),
the field K% contains ¢"~' — 1-st roots of unity. Hence any element in G(K;/KY) fixes
My, € K% for any k and any a € F;~". Let o’ be an element of G(K{/K}) such that

o' (zy) — xp = My for each k. We have

o'o(xy) = o'(o(wr)) = o' (z), + My )

=T + Mk@ + Mk,g/ = x5 + Mk,g—i—g"

This shows that this map is a morphism and hence an isomorphism. 0

4. The ¢-function of K,/K with r =2 and deg(u) =1 and v being infinite

Let v be an infinite prime and u a finite prime of A with degree 1. Throughout this
section, let ¢ be a rank 2 Drinfeld A-module over K such that ¢y(X) = tX + a; X? +
a; X9 € K[X]. Put vy = v(t) and v; = v(ay). Now, we have o, = vyq" (Section in
Chapter [2). Assume v(j) < a; = voq. Let m be the positive integer such that v(j) €
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Qs @), 6, 0(5) € (v0g™ ", v0g™]. By Lemma 11} we have

1%§Ln)=:—-<v001—-1)—» U ) and

g—1 qg—1
48 B v v(J) ) n<m:
" wen) =4 T e

L v(J)
¢—1 q*q-1)
For each positive integer n, we are to work out the Herbrand -function of the extensions
K, /K and the action of G(K,,/K) on ¢[u"] when v(j) < voq.

By Lemma , we can decompose the extension K;/K into

— | vo(n —m) + ) n>m+ 1.

K K, K9 K! K.

Here K, /K is generated by the roots of a; X% + ¢X. The extension K%/K, is generated
by the roots of X7 — X with v = u_largfjfl so that v(y) = —v(j) + vog (Note that
Zy(X) = X). The extension K{/K, is generated by all roots of H,(X) = X7 —~vX — .
The extension K /K] is generated by all roots of X9~! —§, where § varies within the roots
of H,(X).

Let E be the integer such that Eq is the ramification index of K;/K. We then apply
Lemma and Proposition to obtain the ¢-functions of K,,/K for all n. We first
work out the ¥-functions of K;/K and K, /K, as follows.

Lemma 3.4.1. Assume v(j) < voq and p 1 v(j). Let m be the integer satisfying
v(g) € (vog™ ", v0g™).
(1) Let e and Ez be respectively the ramification index of K1/K| and of K%/K. Then we
have E = eEy and is not divisible by p. The v-function of K1/K is

Ys —1<y<0;
Vi, /x(Y) = Ey, 0<y< Ry
Eqy—(q—1)ER;, R <y,
where Ry = w.
(2) (i) For 1 <n <m, the ramification indezx of K,/ K is Eq™;
(ii) For 1 <n <m —1, we have

Ui, ) = —1 <y < ERp1;
Knt1/Kn =

qy— (q—1)ER,.1, ER,u <v,
where Ry, = —wdtvod" ™

q—1
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ProOF. We show (1). Due to Lemma [3.3.2] the extension K;/K is decomposed into
the tower

K — K% — K| — K.

The extension K%/K is tamely ramified with the ramification index to be E;. Hence
p1 Ez and we have
Vo i (y) =
Ezf% 0 S Y.
The extension K; /K is a compositum of Kummer extensions and hence at worst tamely
ramified. We have p { e and

¢K1/K;(?J) =
ey, 0<uy.

Let vz denote the normalized valuation associated to K% so that v; = Ezv. We have
vz(7) = Ez(—v(J) + voq). As vz(y) > 0 and p { vz(7), we can apply Proposition [3.2.2]
to H,(X) € KY[X]. Hence K|/K} is a degree ¢ totally ramified Galois extension. This
implies £ = eE,. The 1-function of Kj/KY is

Y —1<y< EzRy;

VK /K (y) =
qu—(¢—1)EzRy, EzR; <u.

By Lemma [3.2.1] the ¢-function of K;/K follows.

We show (i) of (2). The case n = 1 is known. Assume that (i) is valid for a positive
integer n < m—1. To show that K, /K has ramification index Eq"*!, it suffices to show
that the ramification index of K, 1/K, is ¢. By Lemma the extension K, /K, is
generated by a root of Hy ,,(X) = X9+ byX + g, in . By , we have

v(g) — vog"

q"(q—1)

Let vk, denote the valuation associated to K, so that vk, = Eq™v. As ptv(F), we know

U(C2,n) =

p 1 vk, (can). Note that vg, (c2,) < 0 (as n+1 < m) and vk, (by) = 0. We can apply
Proposition to Hopn(X) € K,[X]. Hence K, 41/K, is a degree ¢ totally ramified
Galois extension and this shows (i). We also know from Proposition that

Y, _1 S ) S ERn—l—l;
Vi /K (Y) =
qy— (¢ —1)ER,11, ERn1 <,

and (ii) of (2) follows. O



88 3. ON THE EXTENSION GENERATED BY u"-TORSION POINTS

With the notation and assumptions in this lemma, we have the decomposition of
K,/K for 1 <n <m,

KEZK%iK{ifQiKQ—“'— ot — K,

where each number indicates the ramification index of the corresponding extension. Let
vk, denote the normalized valuation associated to K,. We have vk, = Eq"v for n =
1,...,m and vk, = vk, for n > m.

Due to Lemma [3.2.1] we can show by induction that

Lemma 3.4.2. Assume v(j) < voq and p 1 v(j). Let m be the integer satisfying
v(7) € (vog™", voq™). Put R, = w for any positive integer n as in Lemma B4l
Then for n < m, we have

(

Ey, 0 <y < Ry;

Vi, i (y) = . L Ry ji1 <y < R,
E(¢y — X1 d'(g — D Ru),

forg=1,...,n—1;

n n—1
\E(q"y— > d'(q—1)Rny), Ri<y.
Assume the conditions in Lemmal[3.4.2in the rest of this subsection. We are to consider

the wild ramification subgroup of G(K;/K) and how this group acts on the generators
11,8, of K1/K. By Lemma[3.4.1] (1) and Proposition [3.2.2] we know

(49) G(K1/K) = G(K1\/K)pr, = G(K1/Ky)pr, = G(K{/Ky)p,r, = F,.

For an element ¢ € G(K;/K)gg,, note that o is characterized by o(&21) because the
isomorphism indicates that o fixes ;1 € KY. Then we have

Vi (0(€2,1) — &21) = Vi, (0(&2,1)61 — 1) + vk, (€2,1)
> ERy + vk, (52,1)
Voq — v
= (%) = v (61.0)
From o(&1) — €21 € ¢lu] and v(&11) > v(&a1), we have o(&21) = €21 + a - &1 for some
a € [F,. This defines a morphism

G<K1/K)ER1 —>Fq; o — a,

which is injective. Comparing the cardinalities of the domain and codomain, we conclude
that this map is an isomorphism.

For an integer 2 < [ < m, let us consider the wild ramification subgroup of G(K;/K; 1)
and how this group acts on the generator &; of K;/K;_; (note that &, € K;_1 by
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Lemma(3.1.3). We know from Lemma (ii) and Proposition that G(K;/K;—1)1 =
G(Ki/Ki—1)gr, = F,. For an element 0 € G(K;/K;_1)gr,, we have

Vi, (0(620) — &21) = vi (0(E20)65) — 1) + vk (€20)
> ER; + vk, (&)
) V1 — Vo

— _Ed
q q—1

= Uk, (5171)7
which shows o (&2;) = &oy + a - &1 for some a € F,. This defines an isomorphism
G(Kl/Klfl)E‘Rl —)IFq, o — Q.

We now work out the action of the wild ramification subgroup of G(K,/K) on
&1my Ean € @[u”] for infinite primes.

Theorem 3.4.3. Let v be an infinite prime. Assume v(j) < voq and p tv(j). Let m

be the integer such that v(j) € (vog™ ", vog™).

(1) For integers | and n satisfying 1 < 1 < m and | < n, put R, = ¢k, /k(R;). We
set Ky = K. Then the natural projection G(K,/K,—1) — G(K;/K,_1) induces an
isomorphism G(K,/K;_1)p = G(Kl/Kl_l)Rﬁ =TF,. Let 0y, for a € F, be the element
in G(Ki/Ki_1)p: characterized by

010(&11) = &1y and 014(E21) =&+ a - &1

Denote 01, € G(K,,/Ki_1) g again its image under the isomorphism. Then 014(§1,n) =

fl,n and Ul,u(fQ,n) = 52,n +a- fl,nfl+1~
(2) The wild ramification subgroup G(K,,/K)1 of Kn/K is isomorphic to Fy".

PRrROOF. (1) We first show the results for [ = 1. The case n = 1 is known. Assume (1)
forn—1.If n > m+1, then K,, = K,,_1 by Lemma/|3.1.3] so the claim follows similarly as
in the case n < m. Assume n < m. We have G(K,,/K)p NG (K, /K1) = G(K,/Kn-1) g1
by [Se79), Chapter IV, Proposition 2]. As the ramification break of K, /K, is ER,, and
ER, < R}, we have G(K,,/K)pm NG(K,/K,_1) = 1. Notice G(K,/K)™ = G(K,/K)p .
Hence G(K,/K)™ = G(K,/K)"G(K,/K,-1)/G(K,/K,-1). By [SeT9, Chapter IV,
Proposition 14], we have an isomorphism G(K, /K)® =~ G(K,,_,/K)f . By the ¢-functions,
this is the isomorphism G(K,,/K)ry = G(K,-1/K)g . The first claim follows.

As for the Galois action, by induction hypothesis, we know ¢, (01 4(§1.0) — &1.0) = 0
and thus 01,(&1,) — &1 € @[u]. Similarly, we have 01 ,(&2,) — &2 — a - &1 € @[u]. So
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Oralin) —&n=20-&1+d" &, ford, a” € F,. If a” # 0, we obtain
erz < UKn(ULa(fl,n)ff,qlz - 1) = UKn(Ul,a(fl,n) - fl,n) — VK, (fl,n)
= vk, (§2,1) — K, (§1,0)

g ? T (v(@)g" +wo((n = 1" —ng")) <0,

which is a contradiction. Similarly, we can show o’ = 0 and thus oy 4(£1,) = &1, For
01.4(&2.n), we have
UK, (01,0(§2n) — E2n)
= vk, (01a(€2n)00 — 1) + vk, (E2.0)
> R, + vk, (E2n)
E

= -1 <—U<J’>—vo<<n—1>q”+1—nqn>>—Eq"(qvl - )

V1 — Vo

= Eq" (—vo(n —1) - 1 ) = Uk, (§1m).

Since v(&1.,) > v(€11) > v(€21) by Proposition 2.1.2) we have 01 ,(&2.,) = &o.n + @ - Eon.
Then we show the case for all [. We again use induction. Similar to the proof in the

case [ = 1, we have the isomorphism G(K,/K;_1)p = G(Kn—l/Kl—l)Rg_l by Rl > ER,.

We can show 0;,(£1.0) — &1ms 01a(E2n) — 2.0 — @ - E1n—i+1 € Plu]. Calculations similar to

those in the case [ = 1 show that they vanish.

(2) From Lemmal[3.4.2} the wild ramification subgroup G(K,,/K); is equal to G(K.,/K) gr,, -
By (1), it is generated by {01, |1 <1 <m, a € F }. For abasis {&1m, .-, &11:2ms -+ -, &21}
of ¢[u™] with the order according to the valuations, we can identify each o, as the rep-

L, 0
a - Am,l [m

with respect to this basis. Here I,,, denotes the m xm identity matrix and A, ; is the mxm

resentation matrix

matrix defined by (J;,_i4+1);; with the Kronecker delta 6. This gives a monomorphism
G(Km/K)EgR,, — GLom(F,). Clearly, its image is isomorphic to the abelian group F*. [

5. On the extension generated by u"-torsion points with arbitrary deg(u)

Throughout this section, let ¢ be a rank 2 Drinfeld A-module over K such that ¢,(X) =
tX + a; X7+ a; X9 € K[X]. Let u be a finite prime of A satisfying v  u with degree d,
where d is an arbitrary positive integer. Fix a positive integer n. Let {);}i=1 2 be an SMB
of ¢p[u"]. Let K,, denote the extension of K generated by the elements of ¢[u"]. We are to
work out the action of wild ramification subgroup G(K,/K); of G(K,/K) on {\;}iz12

under certain assumptions.
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Let us begin with a lemma.

Lemma 3.5.1 (cf. Lemma [1.1.6). Assume v t u. Let n be any positive integer. Let
{A\i}iz12 be an SMB of ¢[u"]. Let o be an element of G(K,,/K), which is not the unit.
Then we have o(A1) = A1 and o(Xg) # Ag.

PROOF. Let vk, denote the normalized valuation associated to K. We have

1 S UKn(O'(/\l)/\l_l — ].) = UKn(O'()\l) — )\1) — UKn(Al)-

By Remarks [1.2.4] and [1.3.12] the valuation vk, (A1) is the largest among the valuations
of all elements in ¢[u”] \ {0}. As o(A;) — Ay is an element in ¢[u"], we have

UKn(O'()\l) — )\1) — UKn<)\1) S 0 if O'()\l) — )\1 7£ 0.

Hence o(A1) — A\ = 0.
As A1 and Ay are generators of ¢[u"] as an A/u"-module, they generate the extension
K, /K. This implies that o(\2) — A # 0. O

5.1. Infinite prime. Let v be an infinite prime and A the lattice associated to ¢
via the uniformization. Put vy = v(t) and v; = v(a;). Assume v(j) < vog and p { v(J).
Let m be the positive integer such that v(j) € (vog™"™, v9¢™). By Proposition m (now
Oéijnf in Section in Chapter [2| equals voq’), we know that if n > m/d, the condition

“lu" > |wy|/|w1]” in Proposition |1.2.11| will be fulfilled and we have
(51) K, = K(A) = K([t™]).

We are to work out the action of the ramification subgroup of G(K(A)/K) on an SMB
of ¢[u"] for n > m/d.

Theorem 3.5.2 (cf. Theorem B.4.3)). Assume v(j) < voq and p t v(J). Let m be the
integer such that v(§) € (vog™ ™, voq™). Let n be an integer > m/d and {\;}i—12 an SMB
of ¢[u"]. Put G(A) == G(K(A)/K). For a positive integer i, let A< denote the subgroup
of A consists of elements with degree < i.

(1) Any element in G(A)y fizes Aq;
(2) Then the map
g:G(A)y = A"y N5 o= a(Xg) — Ag

s an isomorphism.

(3) Put R; = %ﬁ”oqi for 1 <i < m. Let G(A)T denote the upper R;-th ramification
subgroup of G(A). Then the restriction

g: G = A%\

s an isomorphism for 1 <i < m.
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PROOF. (1) has been shown in Lemma [3.5.1]
(2) By (51)), the ¢-function of K(A)/K is the one in Lemma i.e., we have

Vr(A)/K = VK(gltm) /K-

As in Theorem put R, =k (R;) for i =1,...,m and we have
R = —U(J)E# —voEq™ <m —i— q—%) :

We show o(A2) — Ay € AS™ -4 Ay for an element o in G(A); = G(A)gm (the equality
follows from Lemma [3.4.2). Clearly o(A\2) — A2 € ¢[u"]. By Corollary 2.2.3)(2), an element
of ¢[u"] having valuation > v(&; pa—m+1) belongs to the F -vector space A<™ -4 \; (see (48))
for v(&;;)). Hence it suffices to show v(c(X2) — A2) > v(€1,nd—m+1)- By Proposition [2.2.1]
we have v(\;) = v(&; na). Let v denote the normalized valuation associated to K (A). We

have vy = Eq™v. Consider
uA(0(A2) = Ao) = va(0(M)A5" = 1) 4+ va(No)
Z Rz + ’UA(/\Q)

qg—1 qg—1
— Eq™ (vo(nd— m) + LU v(d) )
¢g—1 qm(g—1)
v — v
= —FEq¢" <v0(nd —m)+ ; — 10) = VA (&1 nd—mt1)-

Hence we have a map
g:G(A)y = A"y XNy o= o(Ae) — A
Next, we show that ¢ is an isomorphism. The map is injective since A\; and Ay generate
K(A)/K and o(\y) = A for any o € G(A);. By Theorem [3.4.3, we know G(A); = F".
As ¢™ is also the cardinal of A<™ -, Ay, the map is bijective. It suffices to show that this
map is a morphism. For any o € G(A);, we have that o fixes \; and g(A3) — Ao =b -4\

for some b € A. Hence for any o/, 0 € G(A);, we have
' (0(A2) — X2) = a(X2) — Na.
This implies
o'(0(X2)) = Ade = 0'(0(A2)) — 0'(A2) + 0'(A2) — A
o'(0(A2) = A2) + ' (A2) — As
=0(A) — X+ 0'(X2) — Ag,

which shows that the map is a morphism.
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(3) Note G(A)i = G(A)p: . We show that g : G(A)gi — A<"-4 Ay is an isomorphism
for each 1 <1i < m. By Corollary and Proposition [2.1.2] the vector space A<" -4\
consists of elements of ¢[u"] having valuation > v(&; pa—i+1). For i to be one of 1,...,m
and o to be a nontrivial element in G(A)gi , we have

ua(0(X2) = A2) = va(0(A) A" — 1) + va(A2)
Z R;n + UA()\Q)

V1 — Vg
qg—1

= —FEq" (vo(nd — 1)+ ) = UA(§1nd—it1)-
This implies that g(G(A)r: ) C A<" -4 Ai. As the cardinal of G(A)g: and A< -, Ay are
both ¢, the map ¢ induces an isomorphism

g:G(N)g — Ay N

for each 1. O

5.2. Finite prime. Let v be a finite prime. Assume that ¢ has stable reduction such
that a; = 0 and v(j) < 0. Let ¢ and A respectively denote the Drinfeld module having
good reduction and the lattice associated to ¢ via the Tate uniformization. Let {w;} be
an SMB of 9[u"], {3} an SMB of A, and wy a root of 1,» (X) —wd. By Proposition [2.2.6]
we have v(w;) = 0 and v(w)) = %. We first study the action of Gal(K®*P/K) on wy,ws €
u"A/A. Using the Gal(K®®P/K)-isomorphism £ : v "A/A — ¢[u"], we then work out
the action of Gal(K*P/K) on ¢[u"].

Let L be the extension of K generated by the elements in A and L(¢[u"]) the extension
of L generated by the elements in ¢ [u"]. Let L,, denote K (u~"A) which is the extension of
K generated by elements in v~ "A. As the condition “[u"|« > |w?|/|wd . ,|” in Section [3in
Chapter (1] is fulfilled for any positive integer n, by Proposition [1.3.14] we have K, = L,
for any positive integer n.

Lemma 3.5.3. The extension L/K is at worst tamely ramified.

PrROOF. We know that A is an A-lattice via ¢ and is G(K*P/K)-invariant. As L/K
is a subextension of K /K, we have that L/K is separable. Then the desired claim follows
from Lemma [LT.6 O
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Theorem 3.5.4 (cf. Theorem B.5.2)). Let ¢ be a rank 2 Drinfeld A-module over K
having stable reduction such that v(g) < 0. Assume p t v(g). Let n be any positive integer.
Put R = —v(w)) = _q”T({).

(1) There is an isomorphism

G(Ln/ L)) — $[u"]; o — o(ws) — wo.

(2) Let E be the ramification index of L/K. The (Herbrand) v -function of the extension
L,/K is

YL,k (y) = 4 Ey, 0<y<R;
¢“Ey — (¢ —1)ER, R<y.

PrROOF. Let vy, denote the normalized valuation associated to L. We have v, = Ev. As
the extension L(t[u"])/L is unramified, we may also denote by vy, the normalized valuation
associated to L(w[u"]). The field L, is the splitting field of 1, (X) — w) over L(t[u™]).
Note that the difference between two roots of 1, (X) — w9 belongs to ¥[u"]. Hence the
extension L,,/L(1)[u"]) is generated by ws. As E is not divisible by p (Lemma [3.5.3)), we
have p { ER = v (w). Applying Proposition to yn(X) — wd € L(¢[u"])[X], we
know that the map G(L,/L([u"])) = ¥[u"]; 0+ o(wz) — wy is an isomorphism.

(2) By Lemma [3.5.3] we have the -function of L/K to be

y, —l=sy<0
Yk (y) =
By, 0<y.
The ¢)-function of L(v[u"])/ L is Y1 pun)) L (y) = y. Applying Proposition 0 Yyn (X)) —
wy € L(y[u"]), we have

UL, L) (Y) =
"y — (¢"*—1)ER, ER <y,

and the desired i-function follows from Lemma |3.2.1] O

In the reminder of this subsection, let ¢ be a rank 2 Drinfeld A-module over K, which
does not necessarily have stable reduction over K. By Proposition [1.3.17, we have that ¢
is isomorphic to a Drinfeld module having stable reduction over K (A1), where {\;1}i—12
is an SMB of ¢[u] and K(A;)/K is at worst tamely ramified. Let ¢ and A denote
respectively the Drinfeld module having good reduction and the lattice associated to the
Drinfeld module having stable reduction via the Tate uniformization. Let L denote the
extension of K (A1) generated by the elements in A. By Lemma[1.1.6] the extension L/K
is at worst tamely ramified. For a positive integer n, we have K,, = L,,.
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Corollary 3.5.5. Let ¢ be a rank 2 Drinfeld A-module over K such that
G (X) = tX + o, X+ ax X7 € K[X],

which does not necessarily have stable reduction over K. Assume p1{v(j).

(1) Let E be the ramification index of L/K. The v-function of the extension K, /K is

Y, -1 <y <0;
wkn/K(y) =9 by, 0<y<Rh,
¢“Ey— (" —1)ER, R<y.

(2) Let {\i}iz12 be an SMB of ¢[u™]. Then each element in G(n), fives Ay and there is

an isomorphism

G(Kn/K)l — A ‘b /\1, g U()\Q) — )\2.

PRrROOF. Apply Theorem [3.5.4] (2) with K in the theorem being K (X11) and we obtain
the ¢-function of K, /K (A\11). As K(A11)/K is at worst tamely ramified, its ¢-function
is clear. Then (1) follows from Lemma [3.2.1]

We show (2). Note that L(¢[u"])/K is at worst tamely ramified. By the ¢-function
of L,/ K, we have the equation of the higher ramification subgroups

G(Kn/E) = G(Ln/K)1 = G(Ln/K)pr = G(Ln/L([u"])).

By Proposition |1.3.17, the Drinfeld module bgb~! for b = )\1_% has stable reduction over
K(A11). By Theorem|1.3.13), the element log,(bA;) forms an SMB of 1)[u"] and the element
u" -y log, (bA2) forms an SMB of A. Apply Theoremm (1) with wy = log,(bA1) and wy =
log,(bA2). We have o (log,(bA1)) = log,(bA;) for any o € G(K,/K); and an isomorphism

G(K,/K)1 — ¥u"]; 0w o(log,(bA2)) — log,(bA2).

Note ¢[u™] = A-ywi. The map Eppp-1|yun) : Y[u"] = A-pgp-10A1 induced by the exponential
map e, is an isomorphism. Indeed, it is injective as ¢[u"] N A = {0}. Since the sets ¢ [u"]
and A 4,1 bA; both have cardinal ¢, we have the surjectivity. By this isomorphism,
we obtain o(bA;) = bA; and o(log,(b)2)) — log,(bAz) maps to o (bAa) — bAg. The desired
isomorphism is the composition

'gb¢b*1

G(Kn/K)l — 1&[’&”] — A "bpb—1 b)\l bi; A ) )\1, g t— 0'()\2) — )\2.



96 3. ON THE EXTENSION GENERATED BY u"-TORSION POINTS
6. Tamely ramified extensions

Let p be a rank r Drinfeld A-module over K such that (as in Section [1.1)

pe(X) =tX + ) a,X? € K[X].
k=1
Put

vo = v(t) and vy, == v(ay) for each k =1,...,7.

Lemma 3.6.1. Let v be an infinite prime or a finite prime, and u a finite prime of A
satisfying v { u. Assume for k=1,...,r —1 that
Up — Vg < Uk_UO'
¢—17 ¢"-1

(1) The extension K(p[u])/K is at worst tamely ramified. The ramification index of
K(p[u])/K divides q" — 1.
(2) e Ifw is an infinite prime, then we have K(plu"]) = K(p[u]) for any n.
e Ifv is a finite prime, then K(p[u™])/K (p[u]) is unramified for any n.

Let u be a finite prime of A with arbitrary degree and v t u. Let us apply the lemma
to the case p = ¢. If the prime v is infinite and v(j) > a; = %
K(¢[u])/K is at worst tamely ramified and K(¢p[u"]) = K(¢p[u]). Moreover, if the prime
v is finite satisfying v { u and v(g) > 0, then we have that K(¢[u])/K is at worst tamely

ramified and K (¢[u"])/K(p[u]) is unramified.

, we have that

PRrROOF. We show the result for the case where v is an infinite prime. Assume deg(u) =
1. Let M be an extension of K with the ramification index being e x = ¢" — 1. We can
take b € M such that v(b) = %=. With b = b?" /a,, modify p,(X) to be
r—1
P(X) = X7 + Y 0 X7 40X = Vp,(X/).
k=1

The valuations of v(by) and v(by) are respectively

1 (vk—vo Uy — Vg

T — )fork:zl,...,r—l.
q_

0 and
an o1 o1

Thus P(X) is a monic polynomial whose reduction is separable. By Hensel lemma [Pap23],
Corollary 2.4.5], we know the extension M (p[u]) of M generated by all roots of P(X) is
unramified. As K(p[u])/K is a subextension of M (p[u])/K, the ramification index of
K(p[u])/K divides the ramification index eys(pp))/x = em/xk = ¢" — 1. Under the present
assumption, (1) follows.

As the Newton polygon of p,(X) has exactly one segment (still assume deg(u) = 1),
all elements of an SMB of p[u] have the same valuation. By Corollary we have
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K(p[u]) = K(A). Hence K(A)/K is at worst tamely ramified with the ramification index
dividing ¢" — 1. For any element a of A with positive degree, we have K(p[a]) = K(A).
This shows (1) and the first dot of (2).

Now we deal with the case where the prime v is finite. Let M be a tamely ramified
extension of K with ramification index ¢" — 1. For b € M with v(b) = q}’jl, as bpb~!
has good reduction, we have that M (p[u])/M is unramified by the Néron-Ogg-Safarevich

criterion (See [Pap23|, Theorem 6.3.1]). Similarly to the infinite prime case, (1) follows.
As v t u, each element in bpb~'[u] has valuation 0 (cf. Lemma [1.3.2)). As multiplying
b establishes an isomorphism plu] — bpb~'[u], each element of p[u] has valuation

N
Hence p is isomorphic to a Drinfeld module having good reduction over K (p[u]). Apply
the Néron-Ogg-Safarevich criterion to the Drinfeld module bpb~* with b € K(p[u]) with

v(b) = =*—. The extension K(p[u"])/K(plu]) is unramified and the second dot of (2)

-1

follows. O

Let v be an infinite prime or a finite prime. Let u be a finite prime of A with degree
1. Assume for k =1,...,r — 1 that
Up — vy U — g
¢ -1 g1
We finish this section by determining the ¢-function of K(p[u])/K under the above as-
sumption. By Lemma [3.6.1] (1), the extension K(p[u])/K is at worst tamely ramified.
Hence determining the t-function of K(p[u])/K is equivalent to determining the ram-

ification index. By the proof of Lemma [3.6.1] if the prime v is infinite, then we have
K(A) = K(p[u]) = K(pla]), where A is the lattice associated to p and a is an arbitrary
element in A having positive degree. Hence we also obtain the t-functions of K(A)/K
and K (p[a])/K in this case.

It seems natural to ask whether there is an analogue of Lemma Namely, does
K(p[u]) contain the splitting field of some binomial whose terms come from p,(X)? This
is answered affirmatively in the following lemma.

Lemma 3.6.2. Assume fork=1,...,r —1 that

Ur — Uy U — Vo

¢—1 ¢ -1

Putn(X) = a, X7 +uX. Let K, denote the extension of K generated by all roots of n(X).
We claim K(p[u]) = K,,.

(52)

By this claim, if v(7) > oy = %, the extension K (¢[u])/K is generated by the
roots of a, X9 + uX.

PROOF. The proof of this claim is carried out by the strategy used in that of Lemma/|3.1.1}
We give an outline. Let x and z; for j =1,...,¢" — 2 be all nonzero roots of p,(X). Let
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zj for j=1,...,¢" — 1 denote all nonzero roots of n(X). We have v(z}) = —“= for all
j. Since
q"—1 r—1
n(zr)=a, x H (x — @) = a,a7 +ux = Zakqu,
j=1 k=1
we have
q"—1 r—1
k k
H (x —2%)| = |a; " Zak:)sq Y < max{|a; tapz? |}
j=1 k=1
By , we have v, > vy + (”’”_Z?.# for each £ = 1,...,r — 1. This implies for
k=1,....,r—1
k
, - ~1
v(a;lakqu) = —Up + U — (v ;0)_(611 ) > —(v, — V).

Hence

< @',

g1
j=1

. Yr—vg .
There exists some x; such that |z — x}| < ¢ . Put 2’ := 2, and rearrange the index so

that 2’ and 2’ for j =1,...,¢" — 2 are different nonzero roots of n(X). We have

2 — 2| < |2’ — 2| =[x — 2y = g for all j.
By Krasner’s lemma, we have K(z}) = K(x). Similarly, for j to be one of 1,...,¢" — 2,
there exists 2" to be one of o', 2,..., 2}, , such that [v; — 2| < ¢ 71 . As |z; —2'| =

max{|z; — x|, |z — 2'|} = g1, we have 2" # 2/, Let x vary within the nonzero roots of
pu(X) and the equality K, = K(p[u]) follows. O

Proposition 3.6.3. Assume fork=1,...,r —1 that
Ur — Vg V. — Vo

-1 g1
The ramifications index of K(p[u])/K is ©= with n = ged(v(u/a,),q" —1).

n

PROOF. Assume for the moment that K contains F,r so that the extension K, /K is
Kummer. By replacing p with some isomorphic Drinfeld A-module p’ over K with the
leading coefficient of p,(X) having sufficiently negative valuation, we may assume that
v(u/a,) > 0. Note that n is unchanged under replacing p with p’. There exists some o/ € K
with v(a’) = n such that K, = K(“ v/a’) and the subextension K({/a)/K of K, /K is
unramified (see [Bir67, Section 2, Lemma 6]). Put o = ¥/a’. As v(a) = 1, the extension
K( T V@) /K(a) is totally ramified with degree qTT_l. Therefore, the ramification index
of K1/K equals £,
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For general K, considering the compositum KF, and the compositum K (p[u])F,-
instead of K and K (p[u]) respectively, and using the fact that any residue field extension
is unramified, we obtain the same result on the ramification index. O]

Example 3.6.4. [For results in Sections , Eﬂ Let v be a prime of A and u be a
finite prime of A. Put K, = K(¢[u"]). For the Drinfeld A-modules ¢ over F,(t),, for

integers p 14 in Example [3.3.18] we have
A(X) = tX 470X 4 (£ 41)7IX7
The j-invariant of ¢ is
GO = £ila®=1)(g=1) (t+ 1)

(1) For v to be an infinite prime, if ¢ > 0, then the ramification break R; of K,/K (in
Theorem [3.5.2)) for any n equals i(¢? — 1). If ¢+ < 0, the extension K, /K is at worst
tamely ramified (Lemma [3.6.1]).

(2) Let u be a finite prime of A with u # v. If v = ¢t and i < 0, then ¢ has potentially
stable reduction and the reduction over some extension of K is bad. The ramification

break R (in Theorem 3.5.4) of K, /K equals —i(¢*> — 1). If v # ¢ or i > 0, then ¢

has potential good reduction and the extension K, /K is at worst tamely ramified

(Lemma [3.6.1).



CHAPTER 4

Height functions, conductors, and Szpiro conjecture

Let F' be a global function field. Let ¢ be a Drinfeld A-module over F' such that
(53) (X)) =tX + a, X? +a, X7 € F[X],

where s and r are two positive integers satisfying s < r. The j-invariant of ¢ is
=D/ =)

I @

The heights of ¢ measure the arithmetic complexity of ¢. Applying Proposition with
the local field taking F, and v being an infinite prime of F, we obtain a formula that
can be regarded as a relation between the J-height and the differential height of ¢ in
Section [1} In Section [2] using the results in Section [5] and [6] in Chapter [3] (and admitting
the assumptions in these results), we define and calculate the conductor of ¢ at each
prime v of F' when r = 2. Finally, we show that there is a numerical relation between
the J-heights and the conductors of certain rank 2 Drinfeld A-modules. The obtained
numerical relation might be regarded as an analogue of Szpiro’s conjecture for function
fields.

1. Height functions

Let My (resp. ML and M) denote the set of all primes (resp. all finite primes and
all infinite primes) of F. For each prime v € ML, let deg(v) denote the degree of the
residue field of F, over F,. Put F := Frac(A) = F,(¢). Following [BPR21], put

1
(54) hy(9) = deg(v) - max{—v(j), 0}
[F . FQ] Ug/;F
to be the J-height [[ of ¢.
Remark 4.1.1. For a prime v of F, let | — |, denote the absolute value of F, either

satisfying |u|, = ¢~ 98® for the finite prime u of A divisible by v (this is the case where

I [IBPR21], the J-height of ¢ is defined to be

d(qg—1) 1 .
. deg(v) - max{—v(3),0},
@O 1) R 2 doe) max(=ed).0)
vEMp
where d is the least common multiple of ¢¢ — 1 fori =1,...,r.

100



1. HEIGHT FUNCTIONS 101
the prime v is finite) or being the extension of gdes=) (this is the case where the prime v
is infinite). Then we have

1
[F . F()]

Z [F, : Fo,) - logmax{|j|,,0},

’UEMF

hJ(¢) =

where Fj, is the completion of Fj at the prime of Fj lying below v. On the other hand,
let £/ be an elliptic curve over a number field N and jg its j-invariant. For a prime w of
N, let | — |, denote the absolute value of the local field N, either satisfying |p|, = p~!
for p divisible by w or being the extension of the absolute value of R. Let My denote the
set of all primes of N. Following [Sil94) (10)], put

1

hie) = g 2 s Qullogmaxjslu, 0},

where Q,, = Q, for p to be the prime number divisible by w if w is a finite prime or
Qu = R if w is an infinite prime. One may consider the J-height of a Drinfeld A-module
as an analogue of h(jg).

For each infinite prime v of F, let A, be the A-lattice associated to ¢ as a Drinfeld
module over F), via the uniformization and {w,;};—1__, an SMB of A,. Following [Tag92|
Section 5.3 and (5.9.1)], define the differential height of ¢ to be

_ 1 qg—1 . q°—1
hd<¢) — [F : FO] < Z deg<v) (qs _ 1)(qr _ 1) (maX{_U(J)vo} — Ur qg—1 )

vEMIf,

+ Z deg(v)%(v(wvyl)s + v(wy ) (r — 3)))

veEME®

(55)

Remark 4.1.2. Resume the above notations. Define the covolume of A, to be
D(Ay) =[] lwilu
i=1

We may write (by the product formula)

1 qg—1 . .
ha(¢) = F ) ((qs (g =D vg;f [Fy, : Fyu)logmax{|j|,,0}

- Y[R Ry (10g a1/ D ¢ 1ogD<Av>”’">>'
veM}"

Assume that F/N has everywhere stable reduction. Let 7(z) denote the Dedekind eta
function defined on the upper half plane of C and put A(z) = (27)~*n(2)**. By [Sil86),
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Proposition 1.1 and (10)], the Faltings-Parshin height of E/N equals to

h(E/N) = m (% Zf [Ny : Qy] logmax{|j|w, 0}
- Y s RGP + log ()2 ).

Notice that Im(7,) is the volume of the parallelogram in C spanned by 1 and 7,. One
may consider the differential height of a Drinfeld A-module as an analogue of the Faltings
height. The differential height has a similar behavior to that of the Faltings-Parshin
height (See [Tag92, Section 5] and [Weil8| Theorem 5.3]).

Put vy == v(t). By Proposition and the product formula, we can obtain the value
of hy(¢) in terms of vy and v(j) for all primes v of F.

Lemma 4.1.3. Let Mz*' denote the set of infinite primes v of F such that v(j) < voq
and ME”O‘I = Mp \ Mz"%. For each prime v € Ms*', let m, denote the positive integer

such that v(j) € (1, m). Then we have

PR he) = Y dea() = max{—0(3).0)
Voo i) —s)
+ve%<:a1 deg(mr( g1 ot qu”(qs—l)(qr‘s—l))
v0q"
+ %;ald g(mqr_1

Let Ml[?l’o) denote the set of infinite primes v of K such that v(j) € [a1,0). By ,
we have

: a1 = eg(v ¢—1 max{—v(j
PRl o)=Y dea(o) s ma{—0(3). )

veMELUMS UML)
Hence we have the following corollary.

Corollary 4.1.4. With the notations above, we have

Pal) = () + T (C1(0) + Cal) + Cofe),
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= eg(v ¢—1 v(g
Ol(qb) = UE]\%LO) d g( )(qs _ 1)(qr _ 1) (-7)7

K

1 sg v(7 —1)(r—s
Cy(9) == Z deg(v); (Uo qsq_ : + vomy (1 — 5) + qsmig(égq_ 1)227—5 _)1))7 and

Remark 4.1.5. For an elliptic curve E over a number field N, a relation between
h(jr) and h(E/N) has been claimed by Silverman (See [Sil86l Proposition 2.1]). The
above corollary may be regarded as its analogue.

Remark 4.1.6. For arbitrary Drinfeld A-module over F' it is natural to consider the
relation between its J-height and its differential height. As the above corollary heavily
relies on Lemmal4.1.3]and hence on the calculations in Chapter[2] the assumption ¢;(X) =
tX +a, X7 +a,X9 is essential. We guess that an explicit formula between the J-height
and the differential height is intricate. On the other hand, similarly to Silverman’s formula
involving h(jg) and h(E/N), finding an inequality involving these two heights might be
a more feasible approach.

2. Conductors and Szpiro’s conjecture

For a rank 2 Drinfeld A-module ¢ over F), let us first define and calculate the conductor
of ¢ at each prime of F in Section [2.1] using the results in Section [ in Chapter [3| Using
these calculations, we then show the formula involving the conductors of ¢ and the J-
height in Section 2.3 In Section [2.2], we apply the results in Section [3] of Chapter [3| to

calculations similar to those in Section .11

2.1. Definition of the conductors. For a prime v of F, put K = F, and ¢ a rank
2 Drinfeld A-module over K throughout this subsection. For a finite prime u of A, by
the u-adic Tate module T}, of ¢, we mean the rank 2 free A,-module lim ¢[u"], where
the projective limit is defined using the morphisms ¢, : ¢[u™"t] — ¢[u"] for all integers
n > 1.

Lemma-Definition 4.2.1. Let v be an infinite prime. Put vy = v(t). Assume that

one of the following two cases happens

(C1) v(g) < voq and ptv(j);
(C2) v(j) = voq.
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Write GY for the y-th upper ramification subgroup of the Galois group G(K*P/K). For
any finite prime u of A, put

fu() = /000 (2 — rank,, T") dy.

Then we have
(1) the value §,(¢) is independent of the choice of u;

@ty =4 o W(CL) happens
0 if (C2) happens.

Define the conductor of ¢ at v to be the integral f,(¢).

ProOOF. We will show (2) for any finite prime u of A and (1) straightforwardly follows.

By Corollary there is an SMB {\;,, }iz12 of ¢[u"] for each integer n > 1 such
that u -4 \jny1 = \ip for i = 1,2. The tuples (A1 ,)n>1 and (Ao )p>1 form an A,-basis of
T,.

Assume (C1) happens. By (51)), i.e., K(¢[u"]) = K(A) = K(¢[t™]) for n > m/d,
the action of GY on ¢[u"] factors through G(A)Y for any y > 0. Here G(A) denotes
G(K(A)/K). Notice G(A)1 = U,~o G(A)?. For any element o € G(A), by Lemma m,
o fixes u -4 A\, = A1 ,—; for any non-negative integer j < n. Hence o fixes (A1,,)n>1. By
Theorem [3.5.2] (2), if o is not the unit and n > m/d, then it nontrivially acts on Ay, and
hence nontrivially acts on (Ag,,)n>1. As G(A)™ £ {e} and G(A)Y = {e} for y > R, (by
Lemma [3.4.2), we have rank,, TS =1if 0 < y < Ry and = 2 if y > R;. We have

Ry o .
fo() = /0 ldy = —v(qg)_+1 b

For the case (C2), we have K(A) = K(¢[u"]) for any n > 1 (by Proposition 2.2.1] (2),
we can apply Proposition . The action of G¥ on ¢[u"] for any n > 1 and any y > 0
factors through G(A)Y. By Lemma [3.6.1] (1), we have G(A)Y = {e} if y > 0. The result
for the case (C2) immediately follows. O

Lemma-Definition 4.2.2. Let v be a finite prime. Assume that one of the following

two cases happens

(C1) v(g) < 0 and p 1 v(g) such that the reduction of ¢ over some extension of K has
rank 1;
(C2) v(g) > 0 such that ¢ has potentially good reduction.

Write GY for the y-th upper ramification subgroup of the Galois group G(K*?/K). For
any finite prime u of A not divisible by v, put

fo(e) = /OOO (2 — ranks, T") dy.
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Then we have
(1) the value §,(¢) is independent of the choice of w.

@) §.(6) = _(IUT({) (C1) happens;
0 (C2) happens.

Define the conductor of ¢ at v to be the integral f,(¢).

Proor. We will show (2) for any finite prime u of A and (1) straightforwardly follows.

By Corollary there is an SMB {\; ,}i—12 of ¢[u"] for each integer n > 1 such
that u -4 \jny1 = \ip for i = 1,2. The tuples (A1 ,,)n>1 and (Ao )n>1 form an A,-basis of
T,. The action of GY on ¢[u"] for any n > 1 and any y > 0 factors through G(n)Y. Here
G(n) denotes the Galois group of the extension K(¢[u"])/K.

Assume (C1) happens. By Corollary [3.5.5 (1), we have G(n)? = G(n); for any 0 <
y < =29 and = {e} for y > ( . By Corollary|3.5.5/(2), forany n > land 0 <y < — (1),
any nontr1v1a1 element in G( )y fixes A1, and nontrivially acts on Ay,. Any element of
G(o0)Y = l&nn G(n)Y for 0 < y < q”(J fixes Ay, for n > 1 and hence fixes (A1 )n>1-
Any nontrivial element of G(oc0)? nontrivially acts on A, for some n > 1 and hence
nontrivially acts on ()\Qn)n>1 Note that GY acts on T, via G(o0)¥. Hence rank s, TS" = 1

1f0<y< and—21f <y We have
=e) )
q—1 v J
)= [ 1ay=""9)
o _
For the case (C2), by Lemma [3.6.1} we have G(n)Y = {e} for any y > 0 and n > 1.
Hence GY fixes \;,, for i =1,...,r and any n > 1. The case (2) follows. O

Corollary 4.2.3. Letv be a prime of F. Let ¢ be a rank 2 Drinfeld A-module over F,.

Put vg = v(t). Then we have

([0 v(g) € [vog, +00); v is infinite;
(o) — 3 L 09) € (=00 v0g) and p f o)
0 v(g) € [0, +00); v is finite.
\ ;”T({) v(g) € (—00,0),ptv(g),

2.2. On the free submodule fixed by the higher ramification subgroups.
Put K = F,,. Let ¢ be a rank r Drinfeld A-module over K such that
o (X) =tX + a1 X"+ a, X7 € K[X].

Let GY denote the y-th upper ramification subgroup of the Galois group G(K*?/K). In
this subsection, similar to Section [2.1] we apply the results in Section [3|in Chapter [3| to
study @[u]®” for y > 0.
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Lemma 4.2.4. Let u be a finite prime of A with degree 1. Put vy = v(u). Assume
v(g) < a; = %}171) and p 1 v(j). Put R = %. Write GY for the y-th upper
ramification subgroup of the Galois group G(K®P/K). Then for any 0 <y < R, we have

rank 4, ¢[u]’ = 1.

-----

some a; € F,. The group GY acts on ¢[u| via G(K;/K)Y. By Corollary we have
G(K,/K)Y = G(K,/K); for 0 <y < R. We are to show o(\) = A for any 0 € G(K;/K);
if and only if ap =--- =a, = 0.

As any element in G(K;/K); fixes &1 (Theorem [3.3.16)), the “if” part follows. We
show the “only if” part. By Theorem [3.3.16] the map

g:G(K/K) — Vil o (0(&21) — &1, -5 0(&1) — &)

is an isomorphism, where V' denotes the A/u-vector space generated by & ;. For each
i=2,...,7, let ; denote the preimage of the vector in V"' whose (i — 1)-st component
is &1 and other components are 0. Assume a; # 0 for some ¢ > 2. Then there exist some
b € F, for i =2,...,r such that 3.7_, a;b; # 0. Then the element [[/_, o does not fix A
and the claim follows. O

Note G(K/K)¥ = {e} for y > R. Similarly to Lemma-Definitions and [4.2.2 by

the above lemma, we have

Corollary 4.2.5. Resume the notations in the above lemma. We have

/ (r — ranka,,0[u]") dy = R.
0
Especially, the value of this integral is independent of the choice of u.

2.3. An analogue of Szpiro’s conjecture. For a global function field F, let ¢ be
a rank 2 Drinfeld A-module over F. Let Mg denote the set of all primes of F. Let deg(v)
denote the degree of the residue field of F, over IF;. We define the global conductor of the
Drinfeld module ¢ to be

f(@) = > deg(v) - fu(9).

vEMp

We have the following statement by Lemma-Definition 4.2.1| and [4.2.2]
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Theorem 4.2.6. Put vy = v(t). Let ¢ be a rank 2 Drinfeld A-module over F' such that
for each prime v of F, its j-invariant j satisfies
either (v(j) < voq and p{v(3)),

or v(j) > voq
either (v(]) <0 andp)(v(j))»
orv(g) >0

if v is infinite;
if v s finate.

Then

(56) B0 < 50) - g 0

PROOF. We know from Corollary that

o) =1 > deg(v)-max{;%@, 0}

1
UEM};
+ Z deg(v) -max{w, 0}
veEMp®

Let f, and e, denote respectively the absolute residue degree and the absolute ramification
index of v. We have

qg—1
f(¢) = hu(9)
[F: TFy(t)]
1 . .
= > deg(v) (max {—v(j) + vog, 0} — max {—v(j), 0})
RO
1 1
> 3 deg(v) g = e S fo- o - (—deg(t)g) = —q.
[F : IF(I(t)] ’UEM}D;‘O [F : FQ(t>] ’UGM}?—‘O
where we use the extension formula in the last equality. This shows the theorem. 0

Although the conditions in the theorem seem strict, it is not hard to find infinitely
many rank 2 Drinfeld modules fulfilling these conditions.

Example 4.2.7. Consider for each i > 2 with p{i the Drinfeld F,[t]-module ¢ over
[F,(t) defined by qﬁgi)(X ) = tX +t'X9+ X7 It has good reduction at all finite primes.
The j-invariant of ¢ is @ = #(@+Y)_ The J-height of ¢() equals to i(¢ + 1). At the only
infinite prime v, we have the conductor f§,(¢”) = %. The global conductor of ¢
equals to %. This family is an example that the conductor can be arbitrarily large.
Note that the equality in holds.
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Example 4.2.8. For the Drinfeld F[t]-module ¢ over F,(¢) for each integer i with
p 1 in Example [3.6.4) we have its j-invariant

GO = @Dl (1),
We have
(1) For each infinite prime v of A, we have
0 1 < 0;
i(?—1) i>0.

fv<¢(i)) =

For each finite prime v of A, we have

—i(¢*—1) v=tandi<O0;

fv(qb(i)) =
0 v#tore>0.
Hence
(o) = —i(g> = 1) i <0;
i(¢>—1) 1>0.
(2) We have
hy(6®) = —i(¢* = 1)(g— 1) 1 <0

(¢ =1)(g—1)+q i=0.
The conductors and the J-height of ¢ for all i can be arbitrarily large. Note the
strict inequality in holds if 7 < 0.
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