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Chapter1
Introduction

This chapter reviews the background of this study (climate change and urbanization), identifies
research gaps, and sets the the study’s scope and objectives.

1.1 Global Climate Change

Global climate change is progressing at unprecedented rate with global surface temperature of
approximately 1.1 °C higher than 1850–1900 in 2011–2020. At the 2015 United Nations Climate
Change Conference (COP21), the Paris Agreement, which sets a target of limiting global warming
to 1.5 °C above pre-industrial level, was adopted. However, the latest state of knowledge reveals that
it is more than 50 % certain that global warming will reach 1.5 °C in 2021–2040 although it may
decline afterward in certain scenarios. In order to achieve the targets of the Paris Agreement, each
country can make its own nationally determined contribution (NDCs) to set of its climate-related
target. However, as of October 2021, the declared commitments and the actual implemented policies
might not be enough to limit warming below 2 °C (IPCC, 2023).

More than a century ago, the Swedish Nobel laureate Svante Arrhenius discovered that car-
bon dioxide is a driving factor for global warming. Specifically, Arrhenius found that doubling
atmospheric carbon dioxide (CO2) will lead to a 5 K increase in Earth’s surface temperature near
the Equator and a 6 K increase in high latitudes. Moreover, tripling CO2 will lead to increases
of 7 K and 9 K, respectively (Arrhenius, 1896). Since the industrial revolution, fossil fuels have
become an integral part of the modern society. The combustion of fossil fuels and other human
activities inevitably emit many greenhouse gases (GHGs) (including CO2, methane (CH4), and
nitrous oxide (N2O)) and eventually cause global warming.

However, it took many decades of research and debates after the discovery of the mechanism
until the scientific and political consensus that global warming is caused by human activities is
established. This development of consensus can be seen from the series of Assessment Reports (ARs)
published by the Intergovernmental Panel of Climate Change (IPCC), which regularly conducts
reviews of published research concerning climate change and summarizes research findings in
the ARs starting from the First Assessment Report (FAR) published in 1990 until the latest Sixth
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2 Introduction

Assessment Report (AR6) published from 2021 to 2023. The assessment about whether the observed
warming is human-caused in the ARs reads as follows.

• In the First Assessment Report (FAR): “The observed increase [0.3 to 0.6 °C of global mean
surface air temperature over the last 100 years] could be largely due to … natural [climate]
variability” (IPCC, 1992).

• In the Second Assessment Report (SAR): “[T]he balance of evidence suggests that there is a
discernible human influence on global climate” (IPCC, 1995).

• In the Third Assessment Report (TAR): “There is new and stronger evidence that most of the
warming observed over the last 50 years is attributable to human activities. … The observed
warming over the 20th century is unlikely to be entirely natural in origin” (IPCC, 2001).

• In the Fourth Assessment Report (AR4): “Most of the observed increase in global aver-
age temperatures since the mid-20th century is very likely [> 90 %] due to the observed
increase in anthropogenic GHG concentrations. It is likely [> 66 %] that there has been
significant anthropogenic warming over the past 50 years averaged over each continent (except
Antarctica)” (IPCC, 2007).

• In the Fifth Assessment Report (AR5): “Human influence [on the climate system] … is
extremely likely [95 to 100 %] to have been the dominant cause of the observed warming
since the mid-20th century” (IPCC, 2014).

• In the Sixth Assessment Report (AR6): “Human activities, principally through emissions of
greenhouse gases, have unequivocally [emphasis added] caused global warming, with global
surface temperature reaching 1.1 °C above 1850–1900 in 2011–2020” (IPCC, 2023).

In three decades, the language concerning the attribution of human activities to observed warming
has changed from the observed increase could be largely due to natural climate variability to
human activities have unequivocally caused global warming. This development in confidence of the
statement could not be possible without the efforts of the scientific community in the development
of advanced climate models and collection of large observation database.

Impacts of climate change is expected to be widespread among the atmosphere, ocean, cryo-
sphere, and biosphere. With high confidence, climate change is expected to have adverse impacts
on health and well-being (including heat, malnutrition, and harm from wildfire; mental health;
and displacement); cities, settlements, and infrastructure (inland flooding and associated damages,
flood/storm induced damages in coastal areas; and damages to infrastructure). Climate change
is also expected to cause changes in the terrestrial, freshwater and, ocean ecosystems with high
confidence. In terms of climate justice, communities which historically have little contribution
to the current climate change are disproportionately affected. At the end of this century, humans
may live in a world of 1 to 4 °C warming, depending on the pathway we decided to take and make
commitment for (IPCC, 2023). That is to say, even though global warming and climate change are
undesirable and may have devastating consequences, with determined efforts, the problem is still
within our control.
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1.2 Cities and Urbanization

While there is probably no definite answer to the question of when the first city came into its existence,
it is known that cities in Mesopotamia (parts of present-day Iran, Kuwait, Syria, and Turkey) formed
as early as the fourth millennium B.C. (Aruz, 2003). Since then, urbanization, in other words,
formation of cities and the aggregation of people to cities, has been an inseparable part of human
history. There are social science theories considering the process of urbanization as a byproduct of
economic development. But there are also arguments that urbanization is driven by technological
and institutional changes (for example, investments in health care, education, infrastructure) which
increase the surplus of food supplies to support nonagricultural urban population and improve the
resilience of densely populated urban settlements against infectious and parasitic diseases (Fox,
2012).

In modern history, urban population was about half of rural population in 1950 but became
equal to the rural population near 2006 and is projected to be twice the rural population in 2050.
World rural population has recorded almost no growth since the beginning of the millennium and is
expected to start declining (UN-Habitat, 2022). Therefore, it can be said that virtually all newly
born human are born in cities. The global annual rate of urban population in the 2015–2050 period
is 1.48 % but there is a large variance between regions. While the rate is only 0.39 % in more
developed regions, it is 2.09 % in less developed regions. Continental-wise, Africa has the highest
annual rate of 3.17 % (UN-Habitat, 2022).

While the exact definition of what is a city is still under discussion, recently, a method called
“Degree of Urbanization”, proposed by six international organizations, defining cities as settlements
with “population of at least 50 000 inhabitants in contiguous dense grid cells (> 1500 inhabitants
per km2)” was endorsed by the UN Statistical Commission in its 51st Session (Dijkstra et al., 2020).
When classified by size, cities in the category with largest size are called megacities—cities with
population of 10 million or more. The world had 33 megacities in 2018 and is expected to have 43
megacities by 2030 (UN DESA, 2018). These megacities are projected to house 8.8 percent of the
world population by 2030. These megacities are the investigation target of this study.

From a meteorological and climatological point of view, there is a distinctive phenomenon
called urban heat island (UHI) occurring in cities. UHI is the phenomenon that urban area are
warmer than its surrounding. Luke Howard first observed and recorded the abnormal warmth of
London seasonally and diurnally in the early 1800s (Oke et al., 2017, pp. 454–455). UHI has impact
on energy demand for heating and cooling, exacerbate risks to human under heatwaves, and affect
records of meteorological stations in urbanizing area which may worsen quality of inputs for global
background climate change study (Oke et al., 2017, p. 237; Fujibe, 2011; D. Li & Bou-Zeid, 2013).
The cause of UHI has long been thought to be due to the imperviousness of cities. Specifically,
because cities are more impervious (i.e., less greeny) than its rural surrounding, evaporative cooling
is reduced and sensible heat is enhanced. Consequentially, urban area becomes warmer (Oke, 1982).
However, recently, it was argued that UHI is due to aerodynamics roughness of cities. Specifically,
if an urban area is smoother than its surrounding, heat convection is less efficient in the urban
area than in the rural area, thus, UHI occurs. On the contrary, if the urban area is rougher than its
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surrounding, it may become a heat sink (Zhao et al., 2014). However, subsequent research argued
that the answer to the question of whether UHI is due to imperviousness or aerodynamics roughness
may vary due to attribution method. It is then suggested that variations of daytime UHI is caused by
the difference in the ability to evaporate water of urban and rural areas (D. Li et al., 2019). While it
may take more time for the scientific process to finally figure out the root cause of UHI, the current
state of knowledge agrees that change in land cover, building geometries, urban materials, and heat
released from human activities (so-called, anthropogenic heat) are driving factors of UHI and it
is possible to control UHI by adjusting those factors. Moreover, while UHI increases heat stress
risks to human and reducing UHI may reduce these risks, UHI should not be the sole focus of heat
mitigation study because the background climate can also be hazardous (Martilli et al., 2020).

1.3 Research Gaps

Because global climate change and urbanization are happening simultaneously and cities have
great concentration of population, it is important to understand the interaction between climate
change and urbanization so that future climate of cities can be better projected. Proper projection
of future climate is crucial for proper projection of climate-related risks and proposal of mitigation
and adaptation strategies. In the field of urban climatology, many studies have highlighted the
contribution of urban warming to warming trend at cities (Levermore et al., 2018; Varquez & Kanda,
2018; F. Wang et al., 2015). The aim of the field also includes understanding the past, present, and
future urban climate of cities (Adachi et al., 2012; Argüeso et al., 2014; Darmanto et al., 2019;
Doan et al., 2019; Giannaros et al., 2013; Lemonsu et al., 2013; Shen et al., 2023) and to project
heat-related risks to human (Cheung & Hart, 2014; Takahashi et al., 2007; Varquez et al., 2020).

Future climate projection at a global scale can be done by running general circulation mod-
els (GCMs) under various socioeconomical scenarios. However, using GCMs is not the default
choice for urban climatological study because of several reasons. Firstly, GCMs were not originally
designed targeting urban climatological research because cities occupy less than 3 % of total global
land area (Schneider et al., 2009; Zhou et al., 2015). For that reason, most existing global urban
climate projections are non-urban climate projection (Zhao et al., 2021). Attempts to include more
sophisticated urban representation in GCMs (D. Li et al., 2016) and to make multi-model projection
of global urban climates (Zhao et al., 2021) are relatively recent. Despite these recent advancements,
urbanization is still a process not considered explicitly in global climate projection. Secondly, even
though GCMs can study bulk property of urban areas, they cannot study urban climate in high
detail because urban extent is usually much smaller than the resolution of a GCM grid. In other
word, for GCMs, urban meteorological and climatological process is mostly a sub-grid process.
Increasing GCM spatial resolution is a direct solution but it is computationally impractical using
current technologies, with the exception of demonstration to showcase model capability (Miyamoto
et al., 2013).

In practice, regional climate models (RCM) coupled with urban surface models (Kusaka &
Kimura, 2004; Masson, 2000; Wouters et al., 2016) are more suitable for study at city scale.
They have been used to investigate urban heat island (H. Li et al., 2019; Varentsov et al., 2018),
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precipitation (Miao et al., 2011; Reder et al., 2022), and found potential in operational weather
forecasting (Hamdi et al., 2012). In addition, using RCM to downscale GCMs’ projection is one
method to project future city climate. Projection for cities around the world have been conducted
but there are some remaining issues, specifically on the following three points which will later
become the focus of this study.

1. There are three important factors in urban modeling which are the present and futuristic spa-
tially distributed projection of (1) urban morphological parameters (e.g., building height, plan
area index, and roughness length), (2) urban expansion, and (3) anthropogenic heat emission.
However, in past studies, these parameters were only partially considered. For example, one
global study (McCarthy et al., 2010) considered anthropogenic heat but not heterogeneous
urban morphological parameters nor urban expansion; a study for Tokyo (Adachi et al., 2012)
considered spatially varying anthropogenic emission but used constant urban morphological
parameters; a study for Sydney (Argüeso et al., 2014) considered urban expansion but com-
pletely ignore anthropogenic heat; a study for Hanoi (Doan et al., 2019) considered urban
expansion and anthropogenic heat but did not mention urban morphological parameters (e.g.,
building height and roughness length). That is to say, the three factors have been considered
more and more thoroughly, but they have not been considered fully yet.

2. It is not straightforward to generalize the methodologies of past studies due to their dependence
on locally available datasets. For example, the study for Sydney (Argüeso et al., 2014) used
local land use dataset, the study for Hanoi (Doan et al., 2019) used city future master plan,
and the study for Tokyo (Adachi et al., 2012) used national energy use dataset. These local
datasets are good for the concerned cities but they are not suitable for a multi-city study
because they have not been available publicly for many cities worldwide yet. Moreover, it is
difficult to collect and unite datasets of different format and not all cities have data and future
plan published for a specific year or period (e.g., the 2050s).

3. In relation to the issues 1 and 2, there is additionally a geographical bias in urbanization
and climate change study (Chapman et al., 2017). Specifically, while many studies were
conducted for European, North American, and Chinese cities, few were conducted for the
vulnerable South American and African cities. In addition to the geographical bias, the
review also pointed out that only 14% of reviewed articles examined the combined effect
of climate change and urban heat island and only 16% examined consequences to urban
population. Recently, more studies (Geleta et al., 2022; He et al., 2022) have been done to
address the geographical bias; however, the aforementioned issues (e.g., lack of consideration
of urbanization and/or anthropogenic heat) persist.

1.4 Research Scope and Objectives

This research aims at contributing to the scientific understanding of interaction between global
climate change and urbanization by attempting to filling in the aforementioned research gaps.
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Figure 1.1: Locations of the world’s 43 megacities. There are 7 megacities in developed countries
(red dots) and 36 megacities in developing countries (green dots).

Table 1.1: List of 43 megacities (UN DESA, 2018). The city code of each city is taken from the
IATA metropolitan area code or the code of a major international airport in the city.

City Code City Code City Code City Code

Ahmadabad AMD Delhi DEL Lahore LHE Osaka OSA
Bangalore BLR Dhaka DAC Lima LIM Paris PAR
Bangkok BKK Guangzhou CAN London LON Rio de Janeiro RIO
Beijing PEK Ho Chi Minh City SGN Los Angeles LAX Seoul SEL
Bogota BOG Hyderabad HYD Luanda LAD Shanghai SHA
Buenos Aires BUE Istanbul IST Manila MNL Shenzhen SZX
Cairo CAI Jakarta JKT Mexico City MEX São Paulo SAO
Chengdu CTU Karachi KHI Moscow MOW Tehran THR
Chennai MAA Kinshasa FIH Mumbai BOM Tianjin TSN
Chongqing CKG Kolkata CCU Nanjing NKG Tokyo TYO
Dar es Salaam DAR Lagos LOS New York NYC

To address all the three issues concerning high-resolution regional climate projection for
megacities identified in Section 1.3, the target of this research is to make high-resolution future
climate projections for megacities which

• cover all 43 megacities (Table 1.1 and Fig. 1.1) classified by the United Nations (including
African and South American cities, addressing issue 3),

• consider present and future spatially varying urban morphological parameters, urban expan-
sion, and anthropogenic heat emission (addressing issue 1),

• use only public databases and open source software for the projection (addressing issue 2),

• focus on two aspects of urban warming (global warming and urbanization-induced warming),
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• examine possible consequences to urban dwellers,

• publicize all global databases needed for climate projection of any cities of interest, not
limited to megacities.

1.5 Structure of this Dissertation

This dissertation is divided into seven chapters as described graphically in Fig. 1.2 and textually
follows.

• Chapter 1 (Introduction) reviews the background of this study (climate change and urbaniza-
tion), identifies research gaps, and sets the scope and objectives for this study.

• Chapter 2 (Research Framework) overviews the theoretical framework and methodology of
this study, including urban surface models, dynamical downscaling, and the pseudo-global
warming method.

• Chapter 3 (Construction of Supporting Datasets) summarizes the procedure of constructing
urban morphological parameters and anthropogenic heat dataset used as input for conducting
numerical simulations in this study.

• Chapter 4 (Future Climate of Megacities: Summer Month Case Study) reports the results
of a pilot study examining the feasibility of global meso-scale urban climate study for 43
megacities in a summer month (August).

• Chapter 5 (Future Climate of Megacities: Extension to Full Year) reports the results of a
full-scale global urban climate study and identify impacts of global climate change and
urbanization on exposure of megacity inhabitants to extreme warming.

• Chapter 6 (Future Climate of Megacities: Climate Extremes) examines possible interactions
between global climate change and urbanization under several instance of heatwaves, a type
of extreme weather events.

• Chapter 7 (Concluding Remarks) summarizes the main findings of this dissertation, identifies
limitations, and proposes possible direction for future research.
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Chapter 1: Introduction

Global climate change Cities and urbanization Research objective

Chapter 2: Research Framework

Urban surface models Urban parameters Climate downscaling techniques

Chapter 3: Construction of Supporting Datasets

Population Anthropogenic heat Urban morphological parameters

Study on typical climate

Chapter 4: Summer Month Case Study

August case study for 43 megacities

Chapter 5: Extension to Full Year

Full year study for 43 megacities

Chapter 6: Climate Extremes

Heatwaves investigation for 3 megacities

Chapter 7: Concluding Remarks

Main findings Limitations Future directions

Generalize

Extend to climate extremes

Figure 1.2: The structure of this dissertation.



Chapter2
Research Framework

This chapter overviews the theoretical framework and methodology of this study, including urban
surface models, dynamical downscaling, and the pseudo-global warming method.

2.1 Energy Balance of Urban Surfaces

To understand the climatology of cities, it is crucial to understand the exchange of energy between
urban surfaces and its surrounding (horizontal interaction) and the upper atmosphere (vertical
interaction). The energy exchange is depicted conceptually in Fig. 2.1 and mathematically in the
following equation of energy balance,

(2.1) 𝑄∗ + 𝑄𝐹 = 𝑄𝐻 + 𝑄𝐿𝐸 + Δ𝑄𝑆 + Δ𝑄𝐴,
in which

• 𝑄∗ is the net all-wave radiation which accounts for downwelling and upwelling shortwave
and longwave flux,

• 𝑄𝐹 is the anthropogenic heat flux, in other words, heat generated from human activities,

• 𝑄𝐻 is the sensible heat flux,

• 𝑄𝐿𝐸 is the latent heat flux, which resulted from evapotranspiration,

• Δ𝑄𝑆 is the change in the net energy stored in all urban structure (for example, building, roads,
ground, air),

• Δ𝑄𝐴 = 𝑄𝐴,in − 𝑄𝐴,out is the change in energy of the control volume due to advection, which
is usually ignored/avoided in practice by selecting or assuming a large and horizontally
homogenous urban surface (Oke et al., 2017, p. 159).

The net all-wave radiation 𝑄∗ can be expressed as

(2.2) 𝑄∗ = 𝐾↓ − 𝐾↑ + 𝐿↓ − 𝐿↑,
in which

9
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Figure 2.1: Energy balance of urban surface. (Source: Hrisko et al., 2020. © The Authors. Used
under CC BY 4.0.)

• 𝐾↓ is the downward shortwave flux from the Sun,

• 𝐾↑ is the upward shortwave flux due to reflection,

• 𝐿↓ is the downward longwave flux emitted from the upper air, cloud droplets, aerosol particles,
and others,

• 𝐿↑ is the upward longwave flux consisting of emitted the urban surface and reflected longwave
radiation.

For a flat surface, the reflected upward shortwave radiation 𝐾↓ is a direct function of 𝐾↓ expressed
as

(2.3) 𝐾↑ = 𝛼𝐾↓,
in which the albedo 𝛼 is a dimensionless physical quantity describing the reflectivity of the surface
with respect to shortwave radiation. Albedos for grass, fresh snow, and urban are 0.16–0.26,
0.80–0.90, and 0.09–0.23, respectively (Oke et al., 2017, p. 129).

Similarly, for a flat surface of temperature 𝑇, the upward longwave flux 𝐿↑ can be expressed as

(2.4) 𝐿↑ = 𝜀𝜎𝑇4 + (1 − 𝜀)𝐿↓,
in which 𝜀 (dimensionless) is the emissivity of the surface and 𝜎 ≈ 5.67 × 10−8 W m−2 K−4 is
the Stefan-Boltzmann constant. Most surfaces (with few exceptions such as coated windows and
(polished) metals) have emissivity greater than 0.9 (Oke et al., 2017, pp. 129–130) and are closed to
a black body (a body with an emissivity of unity). Consequently, most surfaces are good absorber
of longwave radiation because they reflect less than 10 % of incoming longwave radiation.

In Eq. (2.1), there is only one unnatural term which is the anthropogenic heat flux 𝑄𝐹. Unlike the
other terms, 𝑄𝐹 does not strictly emerge from the surface or pass through the surface. In modeling,𝑄𝐹 is occasionally added directly to surface sensible heat flux 𝑄𝐻. However, from experience, this
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method of direct addition may give very high surface and near-surface temperature in locations
with high 𝑄𝐹 such as power station. For that reason, considering the nature of 𝑄𝐹 which is mostly
excess heat from combustion that directly modifies the temperature of the air, 𝑄𝐹 can be converted
to the tendency of the temperature at the first level of atmosphere as in the following equation.

(2.5)
𝜕𝑇1,AH𝜕𝑡 = 𝑄𝐹𝜌𝑐𝑝𝑧1 ,

where

• 𝜕𝑇1,AH𝜕𝑡 (K s−1) is the in tendency of temperature at the first model level due to anthropogenic
heat. The tendency due to other factors should be calculated by other components of the
model,

• 𝑐𝑝 (J K−1 kg−1) is the specific heat capacity of air,

• 𝜌 (kg m−3) is the density of air,

• The product 𝜌𝑐𝑝 (J K−1 m−3) is also called the volumetric heat capacity of air,

• 𝑧1 (m) is the height of the first atmospheric level.

In this approach, it is assumed that all emitted anthropogenic heat will quickly rise to and heat up the
upper atmosphere. Furthermore, 𝑄𝐹 is not a component of the energy balance equation (Eq. (2.1)).
However, the energy balance of the surface is modified (indirectly) because hot air due to anthro-
pogenic heat can enhance convection which in turns can modify surface temperature, sensible heat
flux, and latent heat flux. This dissertation employs the latter approach in handling anthropogenic
heat.

In reality, the urban surface is not a flat and homogenous surface but a heterogenous surface
with three dimensional (3D) structures (mainly buildings) built on top. Hence, the urban surface
has multiple facets, which are exposed to differently to radiation. Incoming radiation is reflected
many times between different facets before finally get absorbed. Similarly, outgoing radiation is
also multi-reflected before finally escape to the upper atmosphere. While accounting for these 3D
properties of the urban surface has become the norm in the field of urban climatology; historically,
development of urban surface models has started from regarding the urban surface as a flat surface
nevertheless.

2.2 Urban Surface Models

Urban surface models belong to a bigger group of land surface models (LSMs)—models that
simulate the exchange of energy, water, and occasionally other components of the atmosphere (for
example, CO2, NOx) between the surface of the Earth and the upper atmosphere. While urban
surface models in particular and LSMs in general can be used standalone, they are often used as a
sub-model of a larger weather or climate model.
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Figure 2.2: Major types of urban surface models. (Source: Garuma, 2018. © Elsevier. Used with
permission.)
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Slab models (Fig. 2.2(a)) are urban surface models in its simplest form. Slab models regard
urban surface as flat soil/vegetation surfaces with large heat capacity (to account for heat storage
in buildings), large roughness length (to account for drags), and/or small albedo. In slab models,
three dimensional features of urban surface are not explicitly modeled and are expected to be
(properly) implicitly modeled via the adjustment of the aforementioned parameters. Energy exchange
between the surface and the upper atmosphere occurs without any obstruction. While slab models
computational cheap, they were found to be unable to (1) capture heat storage of actual urban
surfaces, which extends from the ground to certain height, because the only modeled heat sink is
the ground; (2) capture drags due to buildings; (3) consider multi-reflection of radiation (Garuma,
2018). These drawbacks and the development of better urban surface models that incorporate
three dimensional urban structures have made slab models no longer the default methods for urban
climatological studies. However, it should be noted that slab models are still in used in the present,
for example, in the JULES-GL7 land surface model (Wiltshire et al., 2020) which is a component
of HadGEM3—a GCM member of the Coupled Model Intercomparison Project (CMIP).

A major advancement in the modeling of urban surface was the development of single-layer
urban canopy models (Fig. 2.2(b)) such as the single-layer urban canopy model of Kusaka et al.
(2001) and the Town Energy Balance scheme (TEB) of Masson (2000). While urban representation
is greatly simplified as two infinitely long buildings located on two sides of an infinitely long
road, important parameters that can capture the three-dimensional nature of urban surfaces such as
building height, roof width, and road width were employed. Temperature of three surfaces (road,
wall, and road) are simulated independently. The fluxes from three surfaces are then added up to get
the total flux from the urban surface to the upper atmosphere. The formation of the model and the
parameters make it possible for the models to account for influences of buildings to the flow and
the reduction of incoming and outgoing longwave and shortwave flux due to shading and reflection.
Single-layer urban canopy models were found to be better than slab models in modeling urban heat
island (because of better simulated nighttime cooling rate) (Kusaka et al., 2012), surface energy
balance (Shaffer et al., 2015), and temperature (Fallmann et al., 2013). However, it should be noted
that all of these improvements does not necessarily emerge together. With few parameters to tune,
low computational demand, and incorporation in well-known weather models such as WRF (Chen
et al., 2011), single-layer urban canopy models have become a widely used option for urban climate
modeling.

At higher complexity, there are multilayer urban canopy models (Fig. 2.2(c)) such as the BEP
model by Martilli et al. (2002) and others (Kondo et al., 2005; Krayenhoff et al., 2020). It should be
noted that while multilayer urban canopy models are more complex than single-layer urban canopy
models, they were developed almost in parallel with each other. In multilayer urban canopy models,
the canopy and the wall surface is sliced vertically into multiple layers and fluxes between these
layer are simulated. To fully utilize a multilayer model, the bigger atmospheric model should have
high vertical resolution close to the ground so that the urban canopy can be divided into multiple
layers (Chen et al., 2011). In other words, if the concerned quantity is only the total feedback of the
urban canopy to the upper atmosphere and close examination of the vertical profile of variables
within the urban canopy is not needed, multilayer urban canopy model should, theoretically, have
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Figure 2.3: Plan area index 𝜆𝑝

Wind

Figure 2.4: Frontal area index 𝜆𝑓
equal performance with the simpler single-layer counterparts. Inter-model comparisons have also
revealed that higher complexity does not necessarily lead to better performance (Best & Grimmond,
2013).

The most sophisticated urban surface models are building-resolving models (Fig. 2.2(d)). At this
complexity, high-resolution (in the order of meters) computation fluid dynamics (CFD) models (for
example, PALM, OpenFOAM, and other large-eddy simulation (LES) models) together with detailed
information of every single building are used so that air flow, heat fluxes in and out of all buildings
via all facets are resolved. They are capable of highly complicated tasks such as simulation of
dispersion of particles in cities and generation of detailed wind hazard maps during typhoon (Ahmad
et al., 2017; Karttunen et al., 2020; Takemi et al., 2019; Xie & Castro, 2009). These models are, in
general, very computationally expensive. Therefore, unlike the three simpler urban surface models,
building-resolving models are usually not coupled with atmospheric models in an online simulation.
However, they can be used to simulate flow in and above cities to figure out the aerodynamic
properties (for example, roughness length for momentum, zero-plane displacement height) of
cities (Inagaki et al., 2022; Kanda et al., 2013). These properties are then used as input parameters
for single-layer or multilayer urban canopy models coupled with larger weather models in online
simulations.

2.3 Parameters in Urban Surface Models

Similar to all other surface models, there are also parameters that must be set so that urban surface
models can perform its calculation. There are some common parameters that exist in all surface
models (for example, albedo, emissivity, and heat conductivity). Therefore, in this section, some
commonly used parameters which are specific to urban surface models in general and to single-urban
canopy models in particular will be discussed.

Building height 𝐻 (m) is probably the simplest parameters that can be used to describe the three
dimensional nature of urban surfaces. Average building height 𝐻avg is usually used but standard
deviation 𝜎𝐻, maximum building height 𝐻max, and probability distribution functions of building
height can also be used additionally.

Plan area index 𝜆𝑝 (dimensionless) is defined as the ratio of building footprints to the total
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Figure 2.5: A conceptual image of the logarithmic wind profile over an urban area.

ground surface area (see Fig. 2.3). This value describes how densely buildings are packed in the
area of interest.

Frontal area index 𝜆𝑓 (dimensionless) is defined similarly to the plan area index, frontal area
index refers to the ratio of the total area of building facets facing the wind to the total ground surface
area (see Fig. 2.4). By definition, 𝜆𝑓 is dependent on the direction of the incoming wind. In practice,
a database of 𝜆𝑓 for several wind directions is stored (for example, as in the US National Urban
Database and Access Portal Tool (NUDAPT) database (Ching et al., 2009)), or only a single value
of 𝜆𝑓 is used assuming that the area of interest has wind-direction-independent 𝜆𝑓. In a similar
manner, the vegetation fraction 𝜆𝑣 (dimensionless) which describes the vegetation cover of the
urban area of interest can also be defined.

When the atmosphere is neutrally stratified, mean wind speed 𝑢𝑧 (m/s) at a certain height 𝑧 (m)
above the ground follows the logarithmic profile (Fig. 2.5) as described mathematically as

(2.6) 𝑢𝑧 = 𝑢∗𝜅 ln 𝑧 − 𝑑𝑧0 ,
in which 𝑢∗ (m/s) and 𝜅 ≈ 0.4 are the friction velocity and the von Kármán constant, respectively.
The remaining two parameters in the equation are the roughness length for momentum 𝑧0 (m)
and the zero-plane displacement height 𝑑 (m), respectively. The roughness length 𝑧0 describes
how rough the surface the wind flow over is. The higher 𝑧0, the more slowly the mean wind speed
increases with height. On the other hand, the usage of the zero-plan displacement height is that,
when the roughness elements (for example, trees, buildings) are densely pack, from the view point
of the wind, it looks like the wind is flowing over a surface which is elevated from the actual ground
by the height 𝑑.

Sky view factor (SVF, dimensionless) refers to the fraction of radiative flux leaving the surface
at a certain point escapes from the canopy to the upper atmosphere (that is, the sky) (Oke et al.,
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Figure 2.6: Fisheye photographs generated from Google Street View (top), detected horizon
limitations (bottom), and respective Sky View Factors (bolded text) for four locations around the
globe. (Source: Middel et al., 2018. © The Authors. Used under CC BY-NC-ND 4.0.)

2017, pp. 22–23). A value of unity implies the non-existence of canopy and unobstructed passage of
fluxes. The smaller the value, the more fluxes are blocked. Intuitively, the larger portion of the sky
we can see, the higher the SVF. Quantitatively, the SVF can be measured by fisheye lens or spherical
cameras (Honjo et al., 2019; Steyn, 1980). Examples of SVFs for various locations calculated from
fisheye photographs generated from Google Street View are given in Fig. 2.6 (Middel et al., 2018).
Theoretically, the SVF is defined at every single point on the surface; thus, in practice, a spatial
average value may be used.

Anthropogenic heat flux 𝑄𝐹 (W/m2) refers to the heat generated by human activities. This
value can be prescribed in the model with a constant value and a diurnal variation pattern but can
also be inputted using actual measurement data or estimated datasets.

In reality, urban surfaces are highly heterogenous. Therefore, the aforementioned parameters
should be set to be varying with each grid. However, this has not always been the case. In the
particular example of widely-used single-layer urban canopy model implemented in the Weather
Research and Forecasting (WRF) model, urban land use are classified into three categories.

• Low intensity residential: An area which is less densely populated than high intensity residen-
tial areas. Land cover is 30–80 percent constructed materials and 20–70 percent vegetation.

• High intensity residential: An area which is highly developed with high population density.
Land cover is 80–100 percent constructed materials and less then 20 percent vegetation.

• Commercial, Industrial, Transportation: Infrastructure and highly developed areas which are
not high intensity residential.
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For each of the urban land use categories, a set of urban parameters is tabulated and set as input to the
model (Tewari et al., 2007). Because the tabulated parameters are certainly not universal, there have
been studies attempting to modify the table to meet their specific need (Giannaros et al., 2013; H. Li
et al., 2019). At the same time, there have been efforts to increase the number of categories. A notable
example is the concept of Local Climate Zones (LCZs), which has 10 urban categories (Stewart
& Oke, 2012), and the World Urban Database and Access Portal Tools (WUDAPT) which help
facilitating the sharing of LCZ map and urban morphological information (Ching et al., 2018). On
the other hand, there have also been efforts to create two dimensional maps of urban morphological
parameters (Ching et al., 2009; Darmanto et al., 2017; Kawano, 2018; H. Li et al., 2021). It
can be said that both the categorical and the two-dimensional mapping approaches are equally
scientifically meaningful and each has its own advantages and disadvantages. Specifically, the
mapping approach can faithfully capture urban surfaces but obtaining parameters for every single
grid can be challenging. On the contrary, it maybe less challenging to classify urban surfaces to
several categories and this information can be used to evaluate the impact of different class of
settlements to the regional climate; however, it is uncertain if the diverse urban surfaces on Earth
can be grouped into several categories. In this study, the mapping approach is selected because of
data availability.

2.4 Downscaling of Future Climate Projection for Urban
Climatological Studies

Global future climate projection are now, in general, made using general circulation models (GCMs).
They are numerical models based on a set of theoretically, semi-theoretically and/or experimentally
derived dynamical equations capable of simulating the Earth system. New generation of models are
capable of simulating not only the atmosphere and ocean but also the biosphere. Output from GCMs
play a crucial role in the Coupled Model Intercomparison Project (CMIP) which is an important
input for the IPCC to write its Assessment Reports (ARs). While powerful for global climate
modeling, GCMs are not quite a good candidate for regional urban climate modeling. Firstly, GCMs
were not designed targeting urban climatological research. GCMs was not designed to model urban
area because despite the large concentration of population in cities, cities occupy merely 0.2 to
2.7 % (varying among multiple estimates) of the total global land area (Schneider et al., 2009; Zhou
et al., 2015). Therefore, it can be expected that the direct effect of urban area to the climate system
is insignificant. Secondly, GCMs, in general, have coarse resolution in the order of hundreds of
kilometers. To give a comparison, Tokyo Metropolitan Area—the largest urban agglomeration
on Earth—only spans one hundred kilometers west-east and south-north. However, the coarse
resolution of GCMs is understandable because they aim at simulating the general characteristics
of the Earth system. Moreover, the resolution must be in balance with computational cost and
GCMs’ simulation time frame which can be decades, centuries, or even millennia. Note that even
though there are GCMs at extremely high resolution in the order of kilometers or finer (for example,
NICAM), but they are also extremely computational expensive, thus, unsuitable for practical and
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operational use at the moment. Therefore, it can be said that GCMs are not suitable for urban
climatological studies because GCMs at coarse resolution are cannot resolve cities (because cities
are too “small”) and GCMs at high resolution are too expensive.

Because of the above reason, climate projection for cities are usually done by downscaling
global climate projection produced by GCMs. Downscaling refers to the process of obtaining finer-
resolution information from coarse one. The two commonly used methods are statistical downscaling
and dynamical downscaling. Statistical downscaling refers to the process of using statistical tools
(for example, empirical relations, statistical models) to link large-scale atmospheric variables
(produced by GCMs) with regional-scale variables. The method can be used for downscaling of, for
example, temperature (Huth, 2002), wind (Gonzalez-Aparicio et al., 2017), precipitation (Tareghian
& Rasmussen, 2013), and extremes (Bürger et al., 2012). One strong advantage of statistical
downscaling is low computational load. However, disadvantages of statistical downscaling include
the lack/non-requirement of physical basis and the correctness of the assumption that known
statistical relations will remain valid in the future (Ekström et al., 2015). In recent years, machine
learning and deep learning approaches to downscaling are being increasingly developed (Oh et al.,
2022; Sachindra et al., 2018). They can also be considered a form of statistical downscaling. The
other commonly used method is dynamical downscaling. Dynamical downscaling feeds coarse
resolution GCMs-projected variables into numerical models (usually regional climate models
(RCMs)), consisting a set of physics-based equations that describe the state of the Earth system,
to predict variables at regional or local scales. An advantage of dynamical downscaling is the
ability to physically interpret its results because the models in use are physics-based and the validity
physics-based equations does not depend on the time of application. Disadvantages of dynamical
downscaling include high computational cost and uncertainty in model parameters (Martinez-García
et al., 2021). Dynamical downscaling will be discussed further because it is the method used in this
research.

Within dynamical downscaling, there are two commonly used approaches: direct downscal-
ing (Fig. 2.7(a)) and pseudo-global warming method (Fig. 2.7(b)). In direct downscaling, as its
name implied, output from one realization (a run) of GCM is directly used as the forcing for an
RCM simulation and local-scale variables are obtained from the RCM output. This is almost no
doubt about the logical soundness this method. However, practically, there are several issues. The
first problem is that, each GCM, when compared with the observation data from the real Earth, has
some biases in its output. Thus, when this output is used as the forcing for RCM, the output of
RCM will also carry this bias. This issue is demonstrated by Fig. 2.8 which compared the observed
annual average near-surface air temperature at Tokyo observation station and the annual average
near-surface air temperature simulated by five GCM members of CMIP6 taken at the grid closest to
the observation station. While the observation point in Tokyo is not meant to be representative of a
GCM grid with hundred-kilometer resolution, it can be seen from the figure that bias in GCM output
does exist (in the order of kelvins). Moreover, different GCMs don’t necessarily agree with each
other on the past climate of almost the same point on Earth even when the quantity in question is
historical annual average temperature, which has already happened and has a known value. GCMs
also show discrepancies even for the global average surface temperature, which is one of the most
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Figure 2.7: Two common methods for direct downscaling of global climate projections: (a) direct
downscaling and (b) pseudo-global warming (PGW) method.
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Figure 2.8: (a) Observed annual average near-surface air temperature at Tokyo observation station
operated by the Japan Meteorological Agency (JMA) and the annual average near-surface air
temperature simulated by five GCM members of CMIP6 taken at the grid closest to the observation
station. (b) Bias of the simulated values against the observed values.
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Figure 2.9: (a) Observed annual average near-surface air temperature at Tokyo observation station
and future projections of the annual average near-surface air temperature made by five GCM
members of CMIP6 taken at the grid closest to the observation station under the SSP5-8.5 scenario.
(b) Future pathways of near-surface air temperature obtained by applying the PGW method.

basic variable (Fig. 2.10). The similar disagreement among models can be seen in their future
projections (Fig. 2.9). However, it should be noted that while GCMs disagree on the exact value of
a quantity, they agree on the anomaly when compared with reconstructed (in other words, observed
or recorded) data (Fig. 2.10(b)) and also agree on the amplitude of variation (Fig. 2.9(b)). Therefore,
it can be said that every GCM gives some useful information. The second problem is that, similar
to bias, internal variability of the GCM also affect the output of RCM. The problems of bias and
internal variability can be addressed by running a large ensemble of RCM simulations forced by
many GCMs and many realizations. It can be expected that the large ensemble will help averaging
out bias and internal variability and make it possible to obtain the “true” of more precisely, the most
realistic downscaled climate signal. However, the large ensemble leads to the third practical issue
of direct downscaling which is high computational cost and high preparation cost because a huge
volume of GCM output needs be be downloaded, preprocessed, and then downscaled.

The other commonly used dynamical downscaling method is the pseudo-global warming (PGW)
method (Fig. 2.7(b)) (Kimura & Kitoh, 2007; Schär et al., 1996). In this method, the differences
between the GCM outputs in the future and a referenced present of multiple GCMs (and possibly
multiple realizations) are ensemble averaged and then superimposed on (in other words, added to) a
present reanalysis data to produce a “future” reanalysis data. This “future” reanalysis data is then
inputted into an RCM so that it can be downscaled to higher resolution. The added variables are
vertical profiles of wind speed (zonal and meridional), geopotential height and temperature; and the
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Figure 2.10: (a) Simulated global average surface temperature historically (1850–2014) and under
ssp585 scenario (2015–2100) by five GCM members of CMIP6. (b) Historical global average
surface temperature anomaly simulated by the five GCMs and reconstructed by the National Oceanic
and Atmospheric Administration (NOAA) (NOAA NCEI, 2024). Reference for the anomaly is the
1901–2000 average.

surface temperature (including sea surface temperature). Humidity are usually not added because
several reasons including (1) weak historical trend in relative humidity (Dai, 2006), (2) improperly
adding absolute humidity may risk over-saturating the atmosphere at low temperature (Brogli et al.,
2023), (3) it can be expected that RCM can solve for the new balance of water vapor based on the
Clausius-Clapeyron relation (Adachi & Tomita, 2020). Because the ensemble average of multiple
GCMs and realization is taken before the RCM is run, it can be expected that the downscaled output
carries little bias. As can be seen in Fig. 2.9, the projections of future annual average near-surface
air temperature for the grid near Tokyo differ by up to 5 °C among different GCMs. Even in direct
downscaling method, it is unlikely that these projections can be inputted directly to RCMs without
any bias correction because a 5 °C difference in mean temperature can lead to a completely different
climate regime. On the contrary, after applying the PGW method (in other words, moving these
projections close to the observed historical value), we can see that while the models disagree about
the exact value of the quantity in question, they almost agree in the trend and amplitude of the
variability of the quantity. By ensemble averaging the projection of all five models, we get a very
smooth (and possibly closest-to-the-mean) projection of the future of the quantity. In addition to
the bias-reduction benefit, computational cost is also greatly reduced by applying the PGW method.

In terms of disadvantages of PGW method, because the future simulation is essentially the
present simulation with some well-averaged modifications of the temperature, pressure, and wind
field, PGW method cannot capture large-scale intra- and inter-annual variability (for example,
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changes in frequency of El Niño). In other words, PGW method is unapplicable to answer questions
about meteorological events whose frequency will change because of climate change because
by the nature of the PGW simulation configuration, forcing inputted to the past/present and the
future simulations has nearly identical (horizontal) spectra. In addition, in contrast to the direct
downscaling method, it is not straightforward to see or prove the logical soundness of the PGW
method. However, in practice, it has been shown that except for the aforementioned unapplicable
cases, simulations using PGW method produced nearly identical output with the ones using direct
downscaling (Brogli et al., 2023; Yoshikane et al., 2012). The PGW method is now widely use
to evaluate the impact of warming on change in precipitation, temperature, snow under a warmer
climate (Hara et al., 2008; Schär et al., 1996; Yoshikane et al., 2012), change in intensity of events
(for example, heavy rain, cyclone) if they repeat in the future (Jyoteeshkumar Reddy et al., 2021;
Taniguchi & Sho, 2015), and change in frequency of extreme precipitation (Doan et al., 2022). The
last example may sound contradictory to the aforementioned inapplicability of the PGW methods
but it is not the case. Under a warmer climate, it can be expected that there will be more water vapor
in the atmosphere and non-extreme present rainfall may become extreme under that warmer climate.
For that reason, the PGW method can still be applied to investigate possible change in frequency
of extreme events under the assumption that there is no regime shift in the climatological forcing.
Therefore, the PGW method is suitable for narration or story-telling of climate change (Brogli et al.,
2023) in the sense that it is possible to compare a past event with its counterpart in a hypothesized
climate and evaluate changes in the event’s impact.

In the comparison between direct downscaling method and PGW method, it should also be
noted that even though the PGW method has the word “pseudo” in its name, it does not mean that
the PGW method is less real than the direct downscaling method. In the direct downscaling method,
even though the output of GCMs obtained by running a long simulation from the past to the future
are used as external forcing for RCM, there is no absolute guarantee that the future of the Earth
system will match what the GCMs predict. As mentioned before in the analysis of Figs. 2.8 and 2.9,
when in come to local climate, discrepancies among GCMs and between GCMs and observation are
huge. On the other hand, while the process of creating “future” reanalysis data for RCM simulation
in the PGW method is quite artificial, the “future” reanalysis data is not totally unreal because it is
based on past and present reanalysis data which is derived from observation of phenomena that
have actually happened on Earth. Therefore, once again, the PGW method is suitable for assessing
how a past event will look like in the future (Brogli et al., 2023). From all the above analysis, the
bottom line is that, there is no decisive factor that make the direct downscaling method superior to
the PGW method or vice versa.



Chapter3
Construction of Supporting Datasets

In urban surface models, there are several commonly used parameters as discussed in Section 2.3.
One highlight of this research is the input of global urban anthropogenic heat map and urban
morphological parameters map (average building height 𝐻avg, plan area index 𝜆𝑝, frontal area
index 𝜆𝑓, roughness length for momentum 𝑧0, and zero-plane displacement height 𝑑) to the Weather
Research and Forecast (WRF) model for urban climate modeling. While all of these parameters are
measurable, existing observation network and campaign are not enough to create a global dataset of
these parameters derived purely from observation. Therefore, previous researchers have developed
(semi-)empirical methods to construct global database of these parameters (Dong et al., 2017;
Kawano, 2018; Khanh, 2019; Kiyomoto, 2018; Varquez et al., 2017, 2021). This dissertation
inherits the results of those studies for its urban climate study. While the focus of this dissertation is
not on the construction of these database, this chapter is dedicated to summarizing the methodology
of the previous studies so that future studies can quickly utilize the methodology when handling
new socioeconomic scenarios. The procedure summarized in this chapter can be applied to any
socioeconomic scenarios. However, this dissertation used only the dataset constructed for the SSP3
and RCP8.5 scenarios under CMIP5.

3.1 Adjustment Population Map Using Nighttime Lights

LandScan™ Global population dataset estimates ambient (that is, 24-hour average) population at
30 arc-second spatial resolution. The dataset was found to mainly indicate population of residential
areas. Using this population directly to estimate urban morphological parameters and anthropogenic
heat may lead to underestimation for commercial areas where ambient population is low. For that
reason, nighttime lights, which has higher intensity at commercial areas, were used to adjust the
population map before the calculation of urban morphological parameters and anthropogenic heat.

Specifically, Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime lights (Elvidge et al.,
2017) was used. The data is available monthly. Average radiance composite images (v1) from
the VIIRS Day/Night Band from the period January 2014 to March 2016 were resampled using
spatial averaging to the resolution of LandScan™. Ensemble average (specifically, 20 % trimmed
mean, that is, mean after discarding the lowest 20 % and the highest 20 %) of the images were then

23
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Figure 3.1: Concept of population density adjustment by nighttime lights. Red outliers are adjusted
to follow the solid black regression line. Only outliers with nighttime lights above a certain threshold
(300 in this case) is subjected to for adjustment. Note that the nighttime lights dataset used here is
not VIIRS but the Global Radiance Calibrated Nighttime Lights dataset. (a) Before adjustment.
(b) After adjustment. (Source: Dong et al., 2017. © The Authors. Used under CC BY-NC-ND 4.0.)

taken to produce a single nighttime lights dataset (hereinafter, nVIIRS). nVIIRS (nW cm−2 sr−1) is
expected to capture the general nighttime lights condition.

nVIIRS was then used to adjust the population density information calculated from LandScan™.
The concept of this process is shown in Fig. 3.1. In short, grids with nighttime lights disproportionate
to the population density are considered outliers. The population density of these outlier grids are
adjusted by using a linearly regressed function fit to the non-outlier grids’ data. The detail steps are
as follows.

1. Estimate a linear regression curve between both datasets within the same country boundary.

2. Using the Tukey’s method, detect outliers and calculate a second linear regression from the
non-outliers.

3. Population value at the outlier grids having nighttime light intensity above a certain threshold
(nighttime lights threshold) are replaced with a new population value calculated using the
second linear regression. However, adjustment is not applied if the adjusted population
exceeds 2.5 times the maximum of pre-adjusted population density of all grids in the country.

4. Repeat the process for all grids and countries.

The nighttime lights threshold was imposed to prevent over adjustment outside of commercialized
cities and to avoid the blooming effect of nighttime lights, For each country, the nighttime lights
threshold was set to be 50 nW cm−2 sr−1 (empirical value) or the 99.9th percentile of all nVIIRS
grids belong to that country, whichever is bigger. For the US, the threshold is fixed empirically
to 120 nW cm−2 sr−1. This approach of using percentile to set threshold allows consideration of
inter-country differences.
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3.2 Projection of Future Population

To estimate a 1 km future distribution of AHE, a 1 km spatial projection of population density for a
specified period is needed. Its projections must also be consistent with the known total projections
for each country (available from the SSP database). Distributed population projection was achieved
using two steps.

1. Extract 1 km urbanization probability for the future from a global urban growing projection
dataset.

2. Construct a model to downscale the country-level population projection into 1 km grids using
the projected urbanization probability and present population density distribution.

Specifically, GUGPS—a 30-arc-second spatial resolution global urban sprawling map (Zhou et al.,
2019)—was used as projection of future urban growth. The GUGPS map was created using the
SLEUTH model. For each year in the future, each grid has an integer probability value describing
its likelihood to be urbanized. It is assumed that the urbanization probability of each grid correlates
with the grid’s population growth rate.

To predict the distribution of future population density, a discretized form of the logistic
model (Morisita, 1965) was implemented for each grid of the same country as follows,

𝑃𝑛+1𝑖,𝑗 = (𝐴𝑛𝑖,𝑗 + 1) 𝑃𝑛𝑖,𝑗1 + 𝐵𝑛𝑖,𝑗𝑃𝑛𝑖,𝑗(3.1)

𝐴𝑛𝑖,𝑗 = exp (𝑟𝑛𝑖,𝑗) − 1(3.2)

𝐵𝑛𝑖,𝑗 = 𝐴𝑛𝑖,𝑗𝐾𝑛(3.3)

where 𝑃 refers to the population; 𝑛, 𝑖, and 𝑗 refers to the year (discrete), longitudinal, and latitudinal
coordinates, respectively. Parameters 𝑟 and 𝐾 are the natural population growth and the limiting
values for population growth for each grid, respectively. 𝐾 was set to the maximum population
density value of all grids within the same country for the year 2013. On the other hand, 𝑟 was
assumed to be a linear function of the urbanization probability 𝑓 𝑛𝑖,𝑗 outputted from SLEUTH using
the following equations,

(3.4) 𝑟𝑛𝑖,𝑗 = ⎧{⎨{⎩
𝑎𝑛𝑓 𝑛+1𝑖,𝑗 , 0 < 𝑓 𝑛𝑖,𝑗 < 100,𝑏𝑛𝑓 𝑛+1𝑖,𝑗 , 100 ≤ 𝑓 𝑛𝑖,𝑗.

where 𝑎 and 𝑏 are country-varying internal parameters for future years obtained by minimizing
the root-square difference of the country-level total estimated 𝑃𝑛𝑖,𝑗 for 𝑛 = 2001 (starting period),
2006, 2009, 2010, 2012 and their corresponding real values taken from LandScan™. An additional
constraint for the minimization was also set such that the absolute percentage error between the
country-level total of estimated 𝑃𝑛𝑖,𝑗 and those from the SSP dataset should not exceed 1 %. 𝑎 and 𝑏
were then recalculated for every decadal interval (i.e. 𝑎 and 𝑏 were set to the same value from the
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period 2041 to 2050). In terms of an optimization problem, it can be written as

(3.5)

minimize𝑎𝑛,𝑏𝑛 ∑𝑦∈𝑌(𝑖,𝑗)∈𝐶
(𝑃𝑦𝑖,𝑗 − 𝑃𝑦,LandScan𝑖,𝑗 )2

subject to
∣∣∣∣ ∑(𝑖,𝑗)∈𝐶 𝑃𝑛𝑖,𝑗 − 𝑃SSPDB𝐶 ∣∣∣∣/𝑃SSPDB𝐶 ≤ 1 %,

where

• 𝑌 = {2001, 2006, 2009, 2010, 2012} is the set of constraining years,

• 𝐶 is a set of coordinates of grids belonging to a target country,

• 𝑃SSPDB𝐶 is the population of country 𝐶 as projected in the SSP Database.

One exception to Eq. (3.1) is that, unpopulated grids (𝑃𝑛𝑖,𝑗 = 0) that will be affected by urban
sprawl (𝑓 𝑛+1𝑖,𝑗 > 0) was initialized with a 𝑃𝑛+1𝑖,𝑗 value of 10.

Finally, adjustment of the population map by nighttime lights (Section 3.1) were performed. No
future prediction of nighttime lights was conducted and the present nighttime lights dataset was
used because of two reasons: (1) It is uncertain how country-level indicators from SSP and urban
sprawl quantitatively relate with nighttime lights intensity. (2) Nighttime lights were mainly used
to adjust the population distribution to have more representation in commercial areas which are
assumed to not change up to the target future period.

3.3 Construction of Global Anthropogenic Heat Database

For each country, the total primary energy supply (TPES, symbol 𝐸𝑝, unit J) can be broken down
into total final energy consumption (TFEC) and energy loss. TFEC can be broken down further to
industrial and agriculture (IA) sector and commercial, residential, and transport (CRT) sector. Let
the ratio of IA sector energy consumption, CRT sector energy consumption, and the energy loss
within the TPES be 𝑅𝐼𝐴, 𝑅𝐶𝑅𝑇, and 𝑅𝐿 (𝑅𝐼𝐴 + 𝑅𝐶𝑅𝑇 + 𝑅𝐿 = 1), respectively. It is assumed that all
TPES will eventually be released to the atmosphere in the form of anthropogenic heat. Therefore,
the term anthropogenic heat and energy consumption will be used interchangeably. First, TPES
for each country must be obtained. Next, in order to build an hourly, monthly, spatially varying
anthropogenic heat database, TPES must be broken down to each grid, each month, and each hour.
Detail procedures are summarized in the following sections. Input datasets needed to construct the
anthropogenic heat database are listed in Table 3.1.

3.3.1 Total Primary Energy Supply

The total primary energy supply (TPES) for each country is estimated using data from the SSP
database released by the International Institute of Applied Systems Analysis (IIASA). Within the
database, there are variations among different models (AIM, GCAM4, IMAGE, and MESSAGE),
thus, ensemble average was taken. Two parameters were used to estimate 𝐸𝑝 for each country.
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Table 3.1: Input dataset for constructing the anthropogenic heat database for the present and the
future. Hyphen (-) in the Future column indicates that the corresponding parameter is assumed to
be the same as the present.

Present Future Resolution

GDP SSP database SSP database Country
TPEC SSP database SSP database Region
Energy intensity World Bank (2010 data) ­ Country
Energy balances IEA ­ Country
Nighttime lights VIIRS DNB Nighttime Lights ­ 30 arc­second
Combustion sources VIIRS Nightfire version 3.0 (Gravite) ­ Discrete
Population LandScan™ 2013 Future projection 30 arc­second
Air temperature NCEP/NCAR Reanalysis (2012 data) CMIP5 database Varying

1. Regional TPES (in other words, TPES of a economical region, consisting of multiple coun-
tries).

2. Country energy intensity 𝑚 (TJ per US$2011), which relates the energy consumption of a
country to its GDP. Higher 𝑚 means that more energy is needed to produce a unit of GDP.

From the two variables, regional TPES 𝐸𝑝,𝑟 was broken down to country TPES 𝐸𝑝,𝑐 by using
country energy intensity as the weighting factor.

(3.6) 𝐸𝑦,SSP𝑝,𝑐 = 𝐸𝑦,SSP𝑝,𝑟 × 𝑚2010𝑐 GDP𝑦𝑐/∑𝑐∈𝑟 𝑚2010𝑐 GDP𝑦𝑐 ,
where 𝑦, 𝑐, 𝑟 and SSP are year, country, region, and SSP scenario, respectively. Equation (3.6)
uses 2010 energy intensity because there was negligible changes in energy intensity from 2010 to
2015 (Varquez et al., 2021). It is also assumed that the energy intensity will remain the same for
the future projection.

3.3.2 Spatial Distribution of Total Energy Consumption

For each country, TPES must now be distributed spatially to all grids of the country. The annual
average anthropogenic heat 𝑄𝑓 −𝑦 of a grid is considered to be

(3.7) 𝑄𝑓 −𝑦 = 𝑄𝐿 + 𝑄𝐶𝑅𝑇 + 𝑄𝐼𝐴 + 𝑄𝑀 + 𝑄𝑝𝑜𝑖𝑛𝑡,
where

• 𝑄𝐿 is contribution of energy loss,

• 𝑄𝐶𝑅𝑇 is contribution of the CRT sector,

• 𝑄𝐼𝐴 is contribution of the IA sector,

• 𝑄𝑀 is contribution of human metabolism (not a part of TPES),



28 Construction of Supporting Datasets

• 𝑄𝑝𝑜𝑖𝑛𝑡 is contribution of point sources.

The total contribution of all point sources is set to be 10 % of TFEC. The reason of this attribution
is based on previous research (Ichinose et al., 1999; Lee et al., 2009). Then, the contribution of
point sources in a grid can be written as

𝑅𝑝𝑜𝑖𝑛𝑡 = 0.1(𝑅𝐶𝑅𝑇 + 𝑅𝐼𝐴),(3.8)

𝑄𝑝𝑜𝑖𝑛𝑡,𝑖,𝑗 = 𝑅𝑝𝑜𝑖𝑛𝑡 × 𝐸𝑝𝑇 × 𝑑𝑖,𝑗𝐴𝑖,𝑗 ∑ 𝑑𝑖,𝑗 ,(3.9)

where

• 𝐴𝑖,𝑗 is the area (in m2) of the grid,

• 𝑇 is the number of seconds in one year (that is, 365 × 24 × 60 × 60)

• 𝑑𝑖,𝑗 is the weighting factor to distribute the total contribution of point sources to each grid
which is discussed in detail in Section 3.3.5.

The contribution of energy loss and the IA sector is distributed to each grid as below.

𝑠 = 𝑅𝐿/(𝑅𝐿 + 𝑅𝐼𝐴),(3.10)

𝑄𝐿,𝑖,𝑗 = (𝑅𝐿 − 𝑠𝑅𝑝𝑜𝑖𝑛𝑡) × 𝐸𝑝𝑇 × 1∑ 𝐴𝑖,𝑗 ,(3.11)

𝑄𝐼𝐴,𝑖,𝑗 = (𝑅𝐼𝐴 − (1 − 𝑠)𝑅𝑝𝑜𝑖𝑛𝑡) × 𝐸𝑝𝑇 × 𝐴′𝑖,𝑗𝐴𝑖,𝑗 ∑ 𝐴′𝑖,𝑗 ,(3.12)

where

• 𝑠 is a factor to distribute the contribution of point sources between the energy loss and the IA
sector energy consumption. This is to account for the fact that point sources can appear in
both energy loss and the IA sector. For example, both steel mills and power plants are point
sources. However, while energy consumption of steel mills appears in the IA sector, loss
during power generation of power plants appears in the energy loss.

• 𝐴′𝑖,𝑗 is equal to 𝐴𝑖,𝑗 if the grid is populated and to 0 if the grid is unpopulated.

As can be inferred from the equations, energy loss is distributed equally to all grids within a country;
however, energy from the IA sector is distributed equally to populated grids only.

The contribution of the CRT sector is distributed as follow.

(3.13) 𝑄𝐶𝑅𝑇,𝑖,𝑗 = 𝑅𝐶𝑅𝑇 × 𝐸𝑝𝑇 × 𝑃𝑑,𝑖,𝑗𝐴𝑖,𝑗 ∑ 𝑃𝑑,𝑖,𝑗 ,
where 𝑃𝑑,𝑖,𝑗 is the nighttime lights adjusted population density of the grid. From the equation, it
can be inferred that energy from the CRT sector is distributed based on population density.

Human metabolism is considered to be a function of population density.

(3.14) 𝑄𝑀,𝑖,𝑗 = 𝑃𝑑,𝑖,𝑗 × 𝐻𝑀,
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Figure 3.2: Variation of human metabolism (𝐻𝑀) in a day plotted based on the explanation of Dong
et al. (2017).

where 𝐻𝑀 is the metabolism (in W) of a person. Dong et al. (2017) assumed, following a US
data (Sailor et al., 2015), that 𝐻𝑀 is 70 W during nighttime and 140 W during daytime and has a
5-hour linear transition between daytime and nighttime (Fig. 3.2).

3.3.3 Monthly Distribution of Anthropogenic Heat

The annual average anthropogenic heat of each grid must be now distributed to each month. The
general formulation is that the monthly average anthropogenic heat 𝑄𝑓 −𝑚 is

(3.15) 𝑄𝑓 −𝑚 = 𝑄𝑓 −𝑦 × 𝛽𝑚,
where 𝛽𝑚 is a weighting factor for the month 𝑚 defined as the following.

𝛼𝑚 = ∣𝑇𝑚 − 20∣ 𝑓𝑠 + 1,(3.16) 𝛽𝑚 = 𝛼𝑚∑ 𝛼𝑚/12,(3.17)

where

• 𝑓𝑠 is a sensitivity function which will be discussed below,

• 𝑇𝑚 is the month average temperature in °C.

The equations assume that energy usage is lowest when the monthly average is 20 °C.

Regarding the sensitivity, energy usage is known to be sensitive to temperature. From energy
usage data for US, Japanese cities, and London, two empirical equations for 𝑓𝑠 was obtained for
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warm months and for cool months (Dong et al., 2017).

𝑓𝑠 = ⎧{⎨{⎩
𝑓𝑠−𝑤, 𝑇𝑚 > 20 °C,𝑓𝑠−𝑐, otherwise,(3.18)

𝑓𝑠−𝑤 =
⎧{{{⎨{{{⎩
0.3, 𝑇𝑦 < 10 °C,0.002𝑇2𝑦 + 0.062𝑇𝑦 − 0.4495, 10 °C ≤ 𝑇𝑦 < 27 °C,2.8, otherwise,(3.19)

𝑓𝑠−𝑐 =
⎧{{{⎨{{{⎩
2.8, 𝑇𝑦 < 10 °C,−0.0063𝑇2𝑦 + 0.1063𝑇𝑦 + 2.2806, 10 °C ≤ 𝑇𝑦 < 27 °C,0.3, otherwise,(3.20)

where 𝑇𝑦 is the annual average temperature.

3.3.4 Hourly Distribution of Anthropogenic Heat

Similar to the break down from annual anthropogenic heat to monthly anthropogenic heat, the
break down from monthly anthropogenic heat to hourly anthropogenic heat is achieved by using a
weighting factor.

(3.21) 𝑄𝑓 −ℎ = 𝑄𝑓 −𝑚 × 𝛾ℎ,
where 𝛾ℎ is the weighting factor for the hour ℎ. Four groups of diurnal variation of AHE was derived
from the Tokyo bottom-up weekday AHE dataset of Moriwaki et al. (2008) as shown in Fig. 3.3.

3.3.5 Detection of High Heat­Emission Point Sources

There are several locations with very high anthropogenic heat emission without having neither
high population density nor high nighttime lights (e.g., manufacturing and power plants). These
locations are called point sources. Anthropogenic heat cannot be adequately distributed to these
point sources using only the population density adjusted by nighttime lights dataset (Section 3.1).
Therefore, some techniques are employed to detect point sources.

VIIRS-Nightfire is a product of VIIRS which contains information regarding the day-to-day
location of detected combustion sources. Data for the period from December 2017 to February
2018 of Version 3.0 (GRAVITE) of the VIIRS-Nightfire was used. Close-to-permanent combustion
sources was detected by the following procedure.

1. The geographical location (longitude and latitude) of the combustion sources are mapped
onto a 30-arc-second gridded map.

2. The number of days 𝑑𝑖,𝑗 each gridded is detected to contain a combustion source is counted.𝑑𝑖,𝑗 is used in Eq. (3.9) to distribute the total contribution of point sources to each grid.

3. Grids with no more than 3 days of detected combustion is discarded (in other words, 𝑑𝑖,𝑗 is
set to 0 if 𝑑𝑖,𝑗 ≤ 3) because they are considered to have temporary combustion events (e.g.,
biomass burning, moving heat sources, fire incidents).
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Figure 3.3: Hourly weighting factor of anthropogenic heat for each hour of the day in local time.
Patterns are chosen based the monthly average temperature. (a) 𝑇𝑚 < 12.4 °C, (b) 12.4 °C ≤ 𝑇𝑚 <16.95 °C, (b) 16.95 °C ≤ 𝑇𝑚 < 20.95 °C, (d) 𝑇𝑚 ≥ 20.95 °C. (Source: Dong et al., 2017. © The
Authors. Used under CC BY-NC-ND 4.0.)

3.4 Construction of Urban Morphological Parameters

In this section, if there is no further explanation, population refers to population adjusted by nighttime
lights (see Section 3.1).

3.4.1 Construction of Intermediate Datasets

Construction of Country Level GDP per Capita Dataset

Past data and future projections of country level GDP in 2005 US dollar and country population
under different Shared Socioeconomic Pathways (SSPs) were extracted from SSP database version 2.
As for the GDP, the projections by the Organization for Economic Co-operation and Development
(OECD) and the International Institute for Applied Systems Analysis (IIASA) was used. For both
future GDP and population, projections for SSP3 was used (C. & Lutz, 2017; Cuaresma, 2017;
Dellink et al., 2017; Riahi et al., 2017).

Because the database includes many projected values by many models, the ensemble mean of
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Figure 3.4: Dependency between the urban morphological parameters.

projected values among all models were taken as future GDP and population projections for each
country. Based on these information, country level GDP per capita was calculated and a gridded
dataset in which each grid cell contains the GDP per capita of the corresponding country was
constructed.

Construction of Gridded Administrative Division Level Population Dataset

From gridded population density dataset and first-level administrative division boundary dataset
(included in LandScan 2013™ dataset), a gridded dataset regarding population and population
density of administrative divisions was constructed. Even though the definition of first-level
administrative division varies from country to country (for example, prefecture in Japan, state in
the United States and India, province in Vietnam), for the sake of simplicity, hereinafter, first-level
administrative division is referred to as city. Each grid cell contains the following information about
the corresponding city:

• Total population,

• Maximum population density,

• Normalized population density (RPD) defined as the ratio between population density of the
grid and maximum population density among all the grids the city.

3.4.2 Construction of Global Urban Parameters Dataset

A gridded dataset of average building height (𝐻avg), plan area index (𝜆𝑝), frontal area index (𝜆𝑓),
roughness length (𝑧0) and zero-plane displacement height (𝑑) was constructed. The linkage between
the parameters are summarized in Fig. 3.4.

The following modified version of empirical equations for estimating 𝐻avg and 𝜆𝑝 proposed by
Varquez et al. (2017) were used

𝛼𝐻avg
= 2 × 10−11 × GRDPcity + 9.80(3.22a) 𝛽𝐻avg
= −2 × 10−12 × GRDPcity + 9.18(3.22b) 𝐻avg = 𝛼𝐻avg

× RPD + 𝛽𝐻avg
(3.22c)

where 𝑅𝑃𝐷 represent gridded normalized population density (defined in Section 3.4.1) and city
GRDP (Gross Regional Domestic Product) (GRDPcity) is estimated as

(3.23) GRDPcity = GDPPCcountry × 𝑃city
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where GDPPCcountry and 𝑃city are country level GDP per capita and total population of city, re-
spectively. The underlying assumption of Eq. (3.23) is that the city GRDP varies linearly with its
population.𝜆𝑝 is estimated as

(3.24) 𝜆𝑝 = −0.2532 × 𝑅𝑃𝐷2 + 0.4562 × 𝑅𝑃𝐷 + 0.1125.
Equation (3.24) is a parabola with the maximum of 0.318 at 𝑅𝑃𝐷0 = 0.90. Under the assumption
that an area with higher population density has higher 𝜆𝑝 than an area with lower population density,𝜆𝑝 for an area with 𝑅𝑃𝐷 > 𝑅𝑃𝐷0 were estimated to be the 𝜆𝑝 at 𝑅𝑃𝐷0.𝜆𝑓 was estimated from 𝜆𝑝 by the following equation proposed by Kanda et al. (2013):

(3.25) 𝜆𝑓 = 1.42𝜆2𝑝 + 0.4𝜆𝑝 (0.05 < 𝜆𝑝 < 0.45)
Zero-plane displacement height 𝑑 was estimated using the following equations proposed by

Kanda et al. (2013):

𝜎𝐻 = 1.05𝐻avg − 3.7(3.26a) 𝐻max = 12.51𝜎0.77𝐻(3.26b)

𝑋 = 𝜎𝐻 + 𝐻avg𝐻max
(0 ≤ 𝑋 ≤ 1)(3.26c) 𝑑𝐻max

= −0.17𝑋2 + (1.29𝜆0.36𝑝 + 0.17) 𝑋(3.26d)

where 𝜎𝐻 and 𝐻max are standard deviation of building height and maximum building height,
respectively.

Roughness length 𝑧0 was estimated using the following equations proposed by Kanda et al.
(2013):

𝑌 = 𝜆𝑝𝜎𝐻𝐻avg
(𝑌 ≥ 0)(3.27a) 𝑧0𝑧0,mac

= 20.21𝑌2 − 0.77𝑌 + 0.71(3.27b)

where 𝑧0,mac is estimated roughness length obtained from Macdonald equations (Macdonald et al.,
1998):

𝑑mac𝐻avg
= 1 + 𝐴−𝜆𝑝(𝜆𝑝 − 1)(3.28a)

𝑧0,mac𝐻avg
= (1 − 𝑑mac𝐻avg

) exp ⎛⎜⎝− (0.5𝛽𝐶𝐷𝜅2 (1 − 𝑑mac𝐻avg
) 𝜆𝑓)−0.5⎞⎟⎠(3.28b)

in which 𝐴 = 4.43, 𝛽 = 1.0, 𝐶𝐷 = 1.2 is the nominal drag coefficient of a cubical obstacle and𝜅 = 0.4 is the von Kármán constant.
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3.4.3 Post­Processing

Firstly, urban parameters for all grids with population density lower than 2000 people/km2 as
non-urban area were set to zero.

Secondly, due to decreasing population, urban parameters for certain areas in 2050 were es-
timated to be lower than that of 2010. However, this study assumed that even with decreasing
population, there would be no large-scale demolition of buildings causing decrease in urban pa-
rameters. Consequently, if a particular urban parameter for a grid cell in 2050 was estimated to be
lower than that in 2010, the value of 2010 was used instead.

3.5 Chapter Summary

In this chapter, the methodology established by previous studies to construct global present and future
population density, anthropogenic heat, and urban morphological database was summarized. The
information in this chapter can be used by future study to adjust the database to other socioeconomic
scenarios and pathways. The constructed parameter database will be used in the following chapters
for projecting the future climate of megacities.



Chapter4
Future Climate of Megacities: Summer

Month Case Study

4.1 Introduction

As mentioned before, there have been attempts to project future climate for individual cities around
the world (Adachi et al., 2012; Argüeso et al., 2014; Doan et al., 2016). These studies focused
on individual cities, some utilized locally available datasets such as land-use dataset (Argüeso
et al., 2014) and master plan for future urbanization (Doan et al., 2016). Furthermore, spatial
distribution of futuristic projections of urban morphological parameters were not considered in
many cases. Studies focused on cities in developing countries are still rare even though urbanization
is progressing rapidly in developing countries. The drawbacks of the past research became the
research gaps that this study attempts to fill in.

The study of Darmanto et al. (2019), while focused only on a single city, proposed a framework
that relies solely on publicly available global datasets, and therefore can be flexibly extended to any
region of interest. The purpose of this chapter is to modify and scale that approach to project future
climate for the world’s 43 megacities simultaneously at high resolution using publicly available
global datasets. Target for numerical simulation is the mean climate condition in August in the
2006–2015 period and the 2046–2055 period. For most megacities, August is a summer month,
which explains the title of this chapter. However, for a few megacities at mid- and high-latitude in
the Southern Hemisphere, August is a winter month.

The objective of this chapter is to

• verify the feasibility of our approach in simulating decade mean temperature for many cities
simultaneously,

• quantify the effect of urbanization on air temperature change at different spatial scale,

• investigate the effect of urbanization in non-urban areas surrounding urban areas.

A part of this chapter was published in scientific journals (Khanh et al., 2020, 2023a).

35
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Figure 4.1: Simulation methods to obtain decadal average August climate. (a) The direct method.
(b) The method used in this study.

4.2 Methodology

4.2.1 Meteorological Input

To know the average weather condition in a city in a certain month through out the present period
(2006–2015), a conventional method is to run a 10-year simulation and then ensemble average
the output data by month. However, this method (average after simulation, see Fig. 4.1(a)) is
computationally expensive, thus, we attempted to use a cheaper method (simulation after average,
see Fig. 4.1(b)). We explain in detail the process of obtaining the average weather condition for
August over 2016–2015 period. The process for other months of the year is similar. First, we
downloaded the National Centers for Environmental Prediction (NCEP) Final Operational Global
Analysis (FNL) dataset for all hours and all days in January in the 2006–2015 period. Next, for
each available hour of the day (00, 06, 12, and 18 UTC), we ensemble averaged all the FNL files
of that hour in all Januaries of the decade. This operation resulted in a set of four meteorological
input files which is enough for a one-day simulation. We regard this one day as a typical August
day of the decade. We then assumed that this typical day repeats for four consecutive days and
made four copies of the four meteorological input files so that we could run a four-day simulation.
The first day of simulation was for model spin-up and its output was discarded. The remaining
three-day simulation output was ensemble averaged to a one-day output which was used for further
analysis. This method was tested in previous studies (Narita et al., 2019; Varquez et al., 2018).
Practically, this method drastically reduce computational resources necessary to obtain decadal
average temperature. Instead of running ten years of simulation, only four days of simulation is
required. The rationale of this method can be summarized in the following points.

• By ensemble averaging the 10-year-long reanalysis dataset for a particular month, it can be
expected that all extreme events (for example, heatwaves, typhoons, cold spells) happened in
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those months will have negligible influence and the actual representative climatological and
meteorological feature of that month at that location can be obtained.

• Numerical weather models are essentially numerical partial differential equation (PDE)
solvers. Numerical models, in general, favor smooth and well-behaved functions over difficult
ones. It can be reasonably expected that if numerical models can simulate day-to-day weather
at an acceptable accuracy/precision, it can also handle the much smoother and well-behaved
the ensemble average input.

Meteorological input for simulation of future scenarios was constructed using the pseudo-global
warming (PGW) method using the RCP8.5 run of five General Circulation Model (GCM) members
(GFDL-ESM2M, IPSL-CM5A-LR, MIROC-ESM-CHEM, HadGEM2-ES, and NorESM1-M) of
the Coupled Model Intercomparison Project phase 5 (CMIP5) were used. Details about the PGW
method can be found in Chapter 2.

4.2.2 Urban Surface Boundary Consideration

For the present climate simulation, population density adjusted by nighttime lights were used to
modify the MODIS land cover type dataset (included by default in the WRF model) to put more
emphasis on urban land use. For the present simulation, all MODIS grids with the population count
of at least 1000 are assigned to urban category. For the future simulation, all MODIS grids with
the population density of at least 1000 per km2 are assigned to urban category. Distributed urban
morphological parameters and hourly varying global anthropogenic heat flux map was used. For
the future climate simulation, population density was projected by combining a logistic model with
a global urban sprawling map. Urban morphological parameters and anthropogenic heat flux map
were calculated by the same method with the present case. Details of the construction of these
parameters was discussed in detail in Chapter 3.

While this study does not attempt to attribute the change in temperature to each individual factor
quantitatively, below, we discuss possible contributions of each factor qualitatively.

• Anthropogenic heat causes change in air temperature based on the law of thermodynamics.
The effect of anthropogenic heat is known to be dependent on the season and the background
climate (Varquez et al., 2018; L. Wang et al., 2023).

• Increase in roughness length for momentum 𝑧0 slows down near-surface wind speed (Varquez
et al., 2015; X. Wang et al., 2009).

• Zero-plane displacement height 𝑑 impact is similar to the impact of changing topography. In
the WRF model, 𝑑 is added directly to the elevation as recommended (Kanda et al., 2013).

• Average building height 𝐻avg affects canopy wind speed. The canopy wind speed is scaled
down from the wind speed at the first model level. It increases with building height but
decreases with roughness length. Therefore, 𝐻avg can affect canopy wind speed, which will
in turn affects heat transfer efficiency from canopy surfaces.
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Table 4.1: Model setup

Domains One­way nesting with a fine domain (2 km resolution)
nested in a coarse domain (10 km resolution)

Sea surface temperature update Disable
Adaptive time step Enable
Microphysics New Thompson et al. scheme
Longwave radiation Rapid Radiative Transfer Model (RRTM) scheme
Shortwave radiation Goddard shortwave
Surface layer MM5 similarity
Land surface Noah land surface model
Urban surface Single layer urban canopy model with distributed urban

morphological parameters
Planetary boundary layer Mellor­Yamada Nakanishi and Nitto Level 2.5
Cumulus parameterization Kain­Fritsch scheme for the coarse domain

• Plan area index 𝜆𝑝 and frontal area index 𝜆𝑓 are used to calculate the sky view factor
(SVF) (Kanda et al., 2005). The relation between 𝜆𝑝, 𝜆𝑓 and SVF is not monotonous.
Increase in SVF allows more shortwave radiation to enter the canopy but also allows faster
radiative cooling. SVF is also used to calculate view factors and energy exchange between
different surfaces of the urban canopy with details explained in the original description of
the urban canopy model (Kusaka et al., 2001). Because of these complex interactions, it
cannot be conclude in one sentence if increase in 𝜆𝑝 and/or 𝜆𝑓 will cause increase/decrease
in near-surface air temperature.

4.2.3 Model Configuration

A modified version of the WRF model v3.3.1 coupled with the single-layer urban canopy model
was used (Kusaka & Kimura, 2004; Varquez et al., 2015). This modified version has improvements
to consider spatial variations in urban morphological parameters. Performance of the model was
verified in previous research (Darmanto et al., 2019; Varquez et al., 2015; Yucel et al., 2016).
Compared to the original single-layer urban canopy model (Kusaka & Kimura, 2004) which handles
three urban categories (low density residential, high density residential, and commercial), in this
modified version, each urban grid is modeled by five morphological parameters: average building
height (𝐻𝑎𝑣𝑔), plan area index (𝜆𝑝), frontal area index (𝜆𝑓), roughness length (𝑧0), and zero-plane
displacement height (𝑑). In addition, hourly spatially varying anthropogenic heat is emitted to
the first atmospheric level and is not a part of the urban canopy model calculation. Detailed
model setup is given in Table 4.1. The model code is available in GitHub (https://github.com/
TokyoTechGUC/WRF-distributed-urban). The sensitivity of the urban canopy model to urban
morphological parameters, in general, were confirmed in previous research (Z.-H. Wang et al., 2011).
The sensitivity of this specific modification of the model to the change of urban morphological
parameters, in particular, was also tested (Varquez, 2014). 41 set of domains were setup for 43 target
cities Guangzhou and Shenzhen, Rio de Janeiro and Sao Paulo were grouped into two groups because

https://github.com/TokyoTechGUC/WRF-distributed-urban
https://github.com/TokyoTechGUC/WRF-distributed-urban
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Table 4.2: Simulated scenarios.

Scenario Urbanization Climate forcing

Present present present
Intermediate present future
Future future future

Table 4.3: Root-mean-square error (RMSE, °C), bias (°C), standard error (SE, °C), and Pearson
correlation coefficient (𝑟) of simulated hourly 2 m air temperature. Note: RMSE2 = Bias2 + SE2.

RMSE Bias SE 𝑟
Overall 2.01 0.98 1.76 0.96

Daytime 2.31 1.51 1.74 0.95
Nighttime 1.52 0.26 1.50 0.97

Individual cities 0.55 to 3.93 ­2.11 to 3.58 0.54 to 2.56 0.81 to 0.99

of they are geographically close to each other. Each set of domain consists of a coarse domain
and a fine domain with the resolutions of 10 km and 2 km respectively. The option of updating sea
surface temperature at each input interval was turned off because of the short simulation period.
The domains are listed in Appendix B.

4.2.4 Simulated Scenarios

We conducted simulation for three scenarios as summarized in Table 4.2. The present scenario is the
basis for model verification and future projection. As for the future scenario, from the construction
of input consisting of the global urban sprawling map assuming uncontrolled urban expansion,
GDP and population growth projection under SSP3 characterized by high mitigation, adaptation
challenges (Riahi et al., 2017), and highest emission forcing RCP8.5, we assume that the simulated
future scenario represents the worst case scenario. There are also other studies using this coupling
of SSP3 and RCP8.5 (Gao et al., 2024; Salam et al., 2017; M. Wang et al., 2020)

The intermediate scenario considers the change in climate forcing but does not take urbanization
(urban sprawling and anthropogenic heat emission change) into consideration. This scenario is used
to evaluate the impact of urbanization.

4.3 Results and Discussions

4.3.1 Verification of Simulated Present Climate Condition

The simulated present climate condition was compared against the ensemble of observation data.
In detail, the simulated 2 m air temperature, which was available hourly, was compared against the
ensemble of corresponding observations. Observations from world wide stations were obtained
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Table 4.4: Mean and standard deviation of each domain’s spatial mean of change in daily mean 2 m
air temperature in intermediate scenario and future scenario with present scenario taken as the basis
of comparison, and urbanization effect which is obtained by subtracting the change in intermediate
scenario from the change in future scenario. Unit: °C.

Focus
Scenario Urbanization effect

Intermediate Future

Domain 1.79 ± 0.47 1.84 ± 0.49 0.05 ± 0.05
Old urban 1.82 ± 0.51 1.91 ± 0.51 0.09 ± 0.11
New urban 1.85 ± 0.50 2.13 ± 0.54 0.28 ± 0.13

from https://www.ogimet.com and only stations that reported data continuously in the 2006–2015
period were chosen. Refer to Appendix B for the number of stations available for each domain.

Validation result is summarized in Table 4.3. Overall, the model had a tendency to overestimate
2 m air temperature. However, comparing the bias in daytime and night time, it can be seen that the
tendency was significantly stronger in daytime than in night time. At the level of individual cities,
RMSEs and biases varied in larger ranges.

We concluded that the performance of the model in reproducing the present climate condition
is adequate because of the following reasons:

• The meteorological input was not historical data but the ensemble of historical data,

• Differences are expected when comparing simulated temperature of a model grid which is
spatial average with station data which is from point observation.

• Overall and in all breakdowns, Pearson correlation coefficient 𝑟 indicated that simulated and
observed 2 m air temperature were well-correlated,

• 76.1 % of simulated 2 m air temperature lay within one standard deviation of the corresponding
observed value and 97.8 % lay within two standard deviations,

• Our approach relied solely on publicly available global input datasets with no adjustments
made to adapt to any specific city.

We also concluded that the model is adequate for the following discussion about temperature
change between the present and the future because the influence of the bias should be minimized in
the difference, and for the discussion about urbanization effect because the effect arises from the
difference in urban morphological parameters and urban land use between the intermediate and
future scenario both of which have the same climate forcing.

4.3.2 Quantification of Urbanization Effect

Each domain’s spatial mean of change in daily mean 2 m air temperature under different view points
(whole domain, old urban, and new urban) is summarized in Table 4.4. Here we define an area

https://www.ogimet.com
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Figure 4.3: Spatial daily minimum and maximum 2 m air temperature in urban areas in August in
the present and future scenarios, and their difference. Domains are grouped by Köppen climate
classification (A: tropical, B: dry, C: temperate, D: continental) (Rubel & Kottek, 2010), domains
in the same group are sorted in lexicographical order. Unit: °C.
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Table 4.5: The time at which advected urbanization effect could be observed in local time.

Domain Time range Domain Time range

Buenos Aires 8:00 to 9:00 Kinshasa 7:00 to 8:00
Dar es Salaam 18:00 to 8:00 Lagos 22:00 to 5:00
Karachi 15:00 to 5:00 Luanda 17:00 to 21:00

as old urban if it is an urban area in the present and as new urban if it is not an urban area in the
present but it is an urban area in the future scenario. Note that urban shrinking or the replacement
of an urban cover to a non-urban surface was not assumed in this study.

When looking at the whole domain (in other words, at a large scale), the effect of urbanization
can still be observed, however, it is relatively insignificant compared to the global effects. This is
because in each domain, urban area covers only (13.2 ± 10.5) % of the whole domain size. Even
when all water bodies are excluded, the ratio is still only (17.2 ± 11.8) %.

Focusing on the old urban, the effects of urbanization becomes clearer with higher mean and
also more variance than the whole domain. The large variance is due to the fact that the development
in some old urban areas has been saturated (for example, Tokyo, Bangkok, and London) while it is
still progressing rapidly in some others (for example, Dar es Salaam, Buenos Aires, and Kinshasa)
as shown in Fig. 4.2.

The effect becomes clearest when looking at the new urban. The mean effect in the new
urban is significantly higher than that in the whole domain and the old urban. The contribution
of urbanization effect to the total temperature change in the new urban is (13.5 ± 5.9) %, which
is not negligible. This clear effect is explainable by the fact that the formation of the new urban
fundamentally changes the characteristics of land cover. Usually, the area of impermeable surface
increases and vegetation fraction decreases. Consequently, there is less latent heat and more sensible
heat, leading to the increase in air temperature.

Daily minimum and maximum temperature in urban areas in all domains in the present scenario,
the future scenario and the difference between the two scenarios are summarized in Fig. 4.3. In
26 out of 41 domains, the increase in daily minimum temperature is higher than the increase in
daily maximum temperature, implying a narrower diurnal temperature range (DTR) in the future.
However, no correlation could be identified between present temperature statistics and change in
DTR. In addition, the increase in daily maximum and minimum temperature is smallest in domains
with tropical climate and highest in domains with continental climate. Further investigation is needed
to understand mechanism of the difference between the increase of daily minimum temperature and
that of daily maximum temperature, and the difference in the increase due to climate classification.

4.3.3 Wind and Urbanization Effect on Non­Urban Areas

By visually inspecting the two-dimensional distribution of urbanization effect and wind map, we
found that in six domains (Luanda, Buenos Aires, Dar es Salaam, Karachi, Kinshasa, and Lagos), the
effect of urbanization can be observed downwind. Specifically, going from the intermediate scenario
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Figure 4.4: Urbanization effect advected by wind in different domains at different time averaged
throughout the simulation period. Coastline and inland water body boundary are depicted by black
line. Urban area boundary is depicted by green line. The effect is measured in °C, the unit of
horizontal and vertical axes is km, the time is local time. In each figure, the scales of the axes are
the same.
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present, intermediate, and future scenario (averaged throughout the simulation period), and the
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horizontal and vertical axes is km. In each figure, the scales of the axes are the same.
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to the future scenario, increase in air temperature was observed in non-urban areas (including water
body) downwind of urban areas. This increase should be due to the hot air advected from the urban
areas upwind.

For example, in Dar es Salaam (Fig. 4.4(a) and (b)), the phenomenon was observed clearly from
evening to sunrise. The long red tail did not originate from the surface directly beneath it because
the tail changed with wind direction and it lay on the ocean while both urbanization expansion and
increase in anthropogenic heat do not happen on the ocean and they have no dependency on wind
direction. As depicted in the figure, the urbanization effect could be advected by the wind up to
60 km downwind.

Fig. 4.5 shows the air temperature in Dar es Salaam and Karachi in the present, intermediate,
and future scenario at the time the phenomenon could be observed clearly. However, looking at
these temperature maps, no discernible difference could be seen. The phenomenon could not be
identified even when looking at the map of temperature difference between the present and the
future scenario due to its high uniformity. This justifies the necessity of simulating the intermediate
scenario in evaluating the effect of urbanization.

The time at which the phenomenon could be observed is summarized in Table 4.5. The time
varied but in general, the phenomenon could be observed from late afternoon to next day’s early
morning in August.

These domains share the same feature of having relatively simple wind patterns. Topography may
play a role but neither wind pattern nor topography is the decisive cause because the phenomenon
could be observed in Buenos Aires, which has relatively complex topography, but could not be
observed in Ho Chi Minh City, which is a flat river delta, very close to sea level, and also has a
simple wind pattern. This argument does not imply that the phenomenon does not exist in Ho Chi
Minh City and 34 other domains but the phenomenon, if exists, could not be visually identified.
Perhaps a systematic method to quantify this phenomenon is required. In addition, there are other
factors that cannot be analyzed within the scope of this study such as seasonal dependency.

4.4 Chapter Summary

In this chapter, we projected the 2 m air temperature change for 43 megacities in August between the
2006–2015 period (present period) and the 2046–2055 period (future period) using PGW method
under the assumptions of uncontrolled urban expansion, RCP8.5 emission forcing, and SSP3 which
we interpreted as the worst case scenario for the future.

Quantification of urbanization effect indicated that the effect is observable but negligible at
large spatial scale, clearer in old urban area with large variance between saturated old urban and
rapidly developing old urban. The effect is clearest and significant in new urban area. We also
found that under certain conditions, urbanization effect in urban area can be advected by the wind
resulting urbanization effect in faraway non-urban areas.

The methods established in this chapter will be extended further in the next chapter to produce
full year projection.



Chapter5
Future Climate of Megacities: Extension

to Full Year

5.1 Introduction

In this chapter, the methodology established in the previous chapter is extended further to study
the impact of global warming and urbanization on the regional climate of the 43 megacities. As
cities are places with people, the analysis of this chapter focus on not only the regional climate
but also on how the regional climate and its change can affect megacity residents. We show that
urbanization can drastically speed up the warming in cities and significantly increase the number of
people facing extreme warming.

A part of this chapter was published in a scientific journal (Khanh et al., 2023a).

5.2 Methods

Similar to the previous chapter, we also study the worst-case scenario by coupling the Shared
Socioeconomic Pathways 3 (SSP3) and the Representative Concentration Pathway 8.5 (RCP8.5).
Hereinafter, for conciseness, we use 2010 and 2050 to refer to the 2006–2015 and the 2046–2055
decade, respectively. Our projection consists of two steps: estimating the warming between the
pre-industrial era and 2010 and projecting the warming between 2010 and 2050. The final projection
is the summation of the two steps.

We estimate the warming between the pre-industrial era (1850–1900) and 2010 (i.e., 2006–2015
decade) by ensemble averaging and time average the of near-surface air temperature variable (tas) of
five GCM members (GFDL-ESM2M, IPSL-CM5A-LR, MIROC-ESM-CHEM, HadGEM2-ES, and
NorESM1-M) of the Coupled Model Intercomparison Project 5 (CMIP5) for each period and then
take the difference between the two. We used the data from the historical run for the pre-industrial
period and from the RCP8.5 run for the 2006–2015 period. The estimated warming level for each
city is shown in Table A.1. We note that the choice of CMIP5 instead of the newer CMIP6 is to
maintain consistency with the assumptions of other datasets (Varquez et al., 2021; Zhou et al., 2019)
used in this study.

45
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Table 5.1: Simulation scenarios.

Scenario Urban surface Meteorological input

Present present present
Intermediate present future
Future future future

The methods for projecting the warming between 2010 and 2050 is the same as in Chapter 4
except that instead of only one simulation for August for each city and each scenario, 12 simulations
for 12 months were conducted.

Calculated urban morphological parameters are available on figshare (Khanh et al., 2021) and
summarized in Table A.1.

5.2.1 Simulation Scenarios

Similar to the previous chapter, we also constructed three simulation scenarios (Table 5.1). The
present scenario is used as hindcasting to evaluate model performance. The difference between
the present and the intermediate scenario is used to assess the impact of global warming and the
difference between the intermediate scenario and the future scenario is used to assess the impact of
urbanization. We conducted one simulation for each city, each month of the year, and each scenario
on the TSUBAME supercomputer.

5.3 Results and Discussion

5.3.1 Model Verification

The hindcasting result was verified against observation data downloaded from the NOAA Integrated
Surface Database (ISD) and shown in Table A.2. To save computational resources, we inputted the
ensemble average of historical weather data to the model, instead of using the common approach
of inputting historical weather data to the model and then ensemble averaging simulation outputs.
However, we obtained a good correlation between the simulated temperature and the ensemble
average of observed temperature. Additionally, model bias has little effect because we only consider
the difference between simulations. Thus, we conclude that the model performance is adequate for
further discussion.

5.3.2 Urbanization­InducedWarming

For conciseness, we use the term “urbanization” to refer to projected urbanization between 2010
and 2050, and use the term “warming level” to refer to the increase in air temperature from the pre-
industrial period. We project the spatial distribution of warming level in 2050 under two scenarios:
with and without urbanization. Here, urbanization covers urban expansion, population change,
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Figure 5.1: Kernel density estimate of 2 km by 2 km gridded warming level in 2050 (𝑇2050𝑠 −𝑇𝑝𝑟𝑒𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙) when urbanization between 2010 and 2050 is not considered (blue shaded area) and
when it is considered (orange shaded area) in each of the 43 megacities. The average projection of
five GCM members of CMIP5 is indicated by blue dots. Refer to Table 1.1 for city codes. Cities
are sorted in the ascending order of latitude (from top to bottom, then, from left to right). Trop,
Dry, Temp, and Con represents the Köppen climate classification of tropical, dry, temperate, and
continental, respectively (Beck et al., 2018). See also Fig. 5.3 for a detailed graphical explanation.

and economic growth which in turn induces changes in urban morphology and anthropogenic heat
emission in the model. The change in heat emission can be negative due to population decline.

The spatial distributions of the warming level in the 43 megacities are plotted using kernel
density estimators together with the mean projection of five GCM members of CMIP5 in Fig. 5.1.
In each city, the projection of the GCM members of CMIP5 can either fall on the left, on the right,
or in the two distributions. That is to say GCM projection of warming level may be either higher or
lower than downscaled RCM projection of warming level at urban areas. This difference suggests
that using only GCM to project warming level of cities may be insufficient. Without considering the
effect of urbanization, the spatial variance of warming level in the megacities are relatively small as
indicated by the narrow widths of the blue shaded areas in Fig. 5.1. However, when urbanization is
taken into account, the spatial distribution of warming level changes drastically. Together with the
growth of the cities, building coverage, building height, and energy usage increases. These factors
strengthen the urban heat island effect, making cities warm up faster than the regional and global
average. Moreover, because cities do not develop uniformly, the speed of warming varies from
location to location. In Fig. 5.1, the warming effect induced by urbanization is indicated by the shift
of the warming level distribution from the blue shaded area to the orange shaded area. For example,
using the rate of change of urban morphological parameters and anthropogenic heat emission
(Table A.1) as a proxy for the speed of urbanization, shifts to the right can be seen clearly in fast
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Figure 5.2: The first, second, and third quartiles (25th, 50th, and 75th percentiles) of the gridded
warming level in 2050 when urbanization is not considered (horizontal axis) and when it is considered
(vertical axis) in each of the 43 megacities. Thus, each city has three dots comparing the three
quartiles of the corresponding blue and orange distribution in Fig. 5.1.

growing cities such as Kinshasa, Lima, and Chengdu. On the contrary, for highly developed cities
that will be under population decline such as Tokyo, Osaka, and Seoul, incorporating projection of
energy usage change results in milder warming than the warming projection without considering
energy usage change (i.e., shifts to the left). Also in Fig. 5.1, the non-uniformity of the development
speed within each city is reflected in the large variance of the warming level distribution. The
warming level of all cities are listed in Appendix C.

Quantitatively, the average warming due to urbanization of each city varies from -0.17 to 0.40 °C
with the mean and standard deviation of 0.12 and 0.12 °C, respectively. This large variance reflects
the difference in urbanization speed among the cities. Additionally, the interquartile range of the
gridded warming projection incorporating the urbanization effect of each city varies from 0.08 to
0.35 °C with the mean value of 0.15 °C. These values demonstrate the difference in warming speed
even within the border of a single city. Comparing the quartiles of the gridded warming projection
(Fig. 5.2), we found that in general, the projection without consideration of urbanization is lower
than the projection with consideration of urbanization in all quartiles and the deviation grows as
we move from the lower quartile to the upper quartile. Specifically, the average deviation for the
first, second, and third quartiles are 0.08, 0.11, and 0.14 °C, respectively (see also Fig. 5.2). Thus,
without considering urbanization, heat-related risks maybe underestimated, especially when the
focus is on the upper quartile.
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Figure 5.3: Related to Fig. 5.1. Detailed explanation for Lahore (LHE). First, the spatial distribution
of the warming without and with urbanization in consideration is plotted in (a) and (b). White lines
depict the urban boundary in the present (a) and future (b). These boundaries are drawn based on
the land use dataset and they are not administrative boundaries. Next, the normalized histogram of
warming within the urban area and kernel density estimates are calculated and plotted in (c) and
(d). The distributions shown in Fig. 5.1 are the areas below kernel density estimates (the blue and
orange lines), the height of the two areas are adjusted to be the same for better visibility.

5.3.3 Warming and Megacity Dwellers

The number of megacity dwellers affected by a certain warming level is controlled by three factors:
present population, population growth, and urban warming. Urbanization is related to the last
two factors. In this section, we attempt to quantify the contribution of each of the three factors.
For concreteness and simplicity, we use 2.5 °C warming as an example to describe the calculation
method. First, we overlaid the present population map with the projected warming level without
urbanization map and counted the total number of people exposed to 2.5 °C warming (i.e., the
number of people living at grids that have 2.5 °C increase in temperature). This is the number of
people exposed to the warming assuming no population, urban, or energy usage growth (first row
of Table 5.2(a)). Thus, we regard it as the contribution of present population. Next, we overlaid the
future population map with the projected warming level without urbanization map and repeated
the count. This is the number of people exposed to the warming assuming population growth
but no urban or energy usage growth (thus, no urban warming; second row of Table 5.2(a)). The
difference between this number and the contribution of the present population is the contribution of
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Table 5.2: The number of people (million) in megacities exposed to various warming levels.

(a) The exposed population (million) under different considerations of urbanization. The plus sign (+)
indicates an included factor.

Factors Warming level

Present pop. Pop. growth Urban warming ≥ 2.0 °C ≥ 2.5 °C ≥ 3.0 °C ≥ 3.5 °C

+ 606 427 108 26
+ + 778 508 121 27
+ + + 778 612 226 53

(b) Contribution of each factor (million of people and percentage) into the exposure to
various warming levels.

Factor Warming level≥ 2.0 °C ≥ 2.5 °C ≥ 3.0 °C ≥ 3.5 °C

Present pop. 606 (78%) 427 (70%) 108 (48%) 26 (49%)
Pop. growth 172 (22%) 81 (13%) 13 (6%) 1 (2%)
Urban warming 0 (0%) 104 (17%) 105 (46%) 26 (49%)

Total 778 (100%) 612 (100%) 226 (100%) 53 (100%)

Table 5.3: Percentage of population in megacities affected by various warming levels. The base is
782 million people from 43 megacities in 2050.

Projection Warming level≥ 2.0 °C ≥ 2.5 °C ≥ 3.0 °C ≥ 3.5 °C

Without urban warming 99% 65% 15% 3%
With urban warming 100% 78% 29% 7%

population growth. Finally, we did the count for the future population map overlaid on the projected
warming level with urbanization map. This is the number of people exposed to the warming when
population growth and urban warming are both accounted (third row of Table 5.2(a)). Subtracting
the contribution of present population and population growth from this number, we obtained the
contribution of urban warming. As shown in Table 5.2(b), 612 million megacity dwellers are
projected to be exposed to 2.5 °C warming with the total figure broken down to three contributors
as: present population (427 mil., 70%), population growth (81 mil., 13%), and urban warming (104
mil., 17%)

Next, we focus on the impact of the urban warming factor. The projection of the number of
people exposed to different warming levels when urban warming is accounted/unaccounted for is
shown in Fig. 5.4 and Table 5.3. Regardless of the consideration of urban warming, almost 100%
of the population in megacities will be exposed to 2.0 °C warming. Without considering urban
warming, 65% of the population in megacities are already at risk of 2.5 °C warming. By considering
urban warming, another 13% of the megacity population will be at that risk. Focusing on extreme
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Figure 5.4: Warming level in 2050 (with and without consideration of urban warming) plotted
against the number of people who will experience it. The plot is smoothed by a Gaussian kernel
density estimator. The area under each curve represents 782 million people from 43 megacities in
2050.

warming of 3.0 and 3.5 °C, we found that the number of affected people is almost doubled when
urban warming is taken into account. Moreover, as shown in Table 5.2(b), the contribution of the
urban warming factor grows together with the extremeness of the warming level, from 0% in 2.0 °C
warming to 17% in 2.5 °C warming and 49% in 3.5 °C warming. Therefore, limiting urban warming
(e.g., finding optimal city layout, reducing anthropogenic heat) has a potential to reduce the number
of people affected by extreme warming. However, finding a mitigation is not in the scope of this
study. Note that all the numbers discussed so far are summations across all the megacities.

The estimation of the change in exposure has some uncertainties due to the uncertainty in estimat-
ing the annual average temperature change. The bootstrapping statistical method (scipy.stats.boot-
strap function of the SciPy library) was used to estimate the uncertainty of temperature change
and exposed population. The results of the exposed population at each warming level and its 95 %
confidence interval (CI) are shown in Fig. 5.5(a). The CIs have small width (well below 10 %) and
is the widest in the 3.0 to 3.5 °C warming range. This can be explained by the fact that under a
certain future scenario, the probability of both very weak warming and very strong warming are
low and the probability of close-to-the-middle warming level is higher. Therefore, the uncertainty
of exposure at very low and very high warming level are low and more uncertainty can be expected
at the medium warming level.

The above analysis can be broken down further to compare the difference between megacities
in developed (see Fig. 5.5(b)) and developing countries (see Fig. 5.5(c)). In developing countries, it
can be seen from Fig. 5.5(c) that the exposed population increases at almost all warming level when
urbanization is considered. One exception is around the 4.0 °C warming level (which can also be
seen in Fig. 5.4). Around this point, considering urbanization decreases exposed population. The
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(a) All megacities. This is the cumulative distribution func-
tion of Fig. 5.4.
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(b) Megacities in developed countries (𝑛 = 7).

1.5 2.0 2.5 3.0 3.5 4.0 4.5
T2050s − Tpreindustry (°C)

0%

20%

40%

60%

80%

100%
Ex

po
se

d 
po

pu
la

tio
n

W/o urban warming
W/ urban warming

(c) Megacities in developing countries (𝑛 = 36).

Figure 5.5: The percentage of population of megacities exposed to different warming levels with
95 % confidence intervals represented by the shaded areas.

reason is because Moscow (Russia) is considered a city in a developing country; however, future
projection of population and energy usage of Moscow is lower than the present. Consequentially,
the projected exposed population decreases when negative urbanization for Moscow is taken in to
account. In contrast to megacities in developing countries, megacities in developed countries (see
Fig. 5.5(b)) are expected to have population decline. Consequentially, when (negative) urbanization
is taken into account, the projected exposed population decreases. However, there is a crossing
point between the blue and the orange lines in Fig. 5.5(b) due to the fact megacities in the US
are projected to keep growing, unlike megacities in the other developed countries. The bottom
line of this analysis is that climatological analysis does not necessarily favor the socioeconomical
classification of developing and developed countries.

Another noteworthy point of the comparison between megacities in developed and developing
countries (Figs. 5.5(b) and 5.5(c), respectively) is that there are more uncertainties in the projection
for the group of megacities in developed countries than its developing counterpart. While there
may be many reasons (including meteorological, climatological, and socioeconomical reasons),
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Figure 5.6: Similar to Figs. 5.4 and 5.5(a) but with the projection of exposure by the 5 GCMs
(green block and line) added. Projection of GCMs is plotted using histogram because each city has
only one GCM data point. The lines for megacities (blue and orange lines) and the histogram both
represent 782 million people.

within this analysis, the main reason is the number of cities in each group and a mathematical
property of standard deviation. In statistics, it is known that if 𝑋1, 𝑋2, … , 𝑋𝑛 are independently
and identically distributed variables all with standard deviation of 𝜎, the mean 𝑋 of 𝑋𝑖 (in other
words, 𝑋 = (𝑋1 + 𝑋2 + … + 𝑋𝑛)/𝑛) will have the standard deviation of 𝜎/√𝑛. Because there are 7
megacities in developed countries and 36 megacities in developing countries, it is within expectation
that when the cities are aggregated together to groups in Figs. 5.5(b) and 5.5(c), the developed
country group will have roughly 2.3 times more uncertainty than the developing country group
(√36/7 ≈ 2.3). The uncertainty in the projection for developed countries can be reduced by reducing
the uncertainty in projection for individual city which can be achieved by, for example, conducting
simulation for more days of the year. However, this possible improvement is beyond the scope of
this study. This simple statistic analysis also shows that even though the uncertainty in projections
for a particular city may be large, if we look at many cities as a pack, or at all cities together as
in Fig. 5.5(a), some more certain conclusion may be derived. In addition, while it might be very
tempting to divide things into groups (developing vs developed, in this case), there might be better
analysis method.

We also attempt to compare the projection of exposure obtained by using temperature downscaled
by RCM (specifically, WRF model in this study) and by using temperature obtained directly from
the 5 GCMs of CMIP5 (after applying interpolation using the WRF Preprocessing System (WPS)).
The result is shown in Fig. 5.6. Because the GCMs have coarse resolution, the distribution drawn
using GCM data is also less smooth than the distribution drawn using downscaled data. This point
is within expectation. Figures 5.6(a) and 5.6(b) both show that the RCM without urban warming
distribution (blue) closely follows the GCM distribution (green). In Fig. 5.6(b), it can be seen
that exposure calculated using GCM can be lower or higher than the exposure calculated using
RCM without urban warming. This finding can be explained by the previous discussion of Fig. 5.1
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that GCM can give both lower and higher projection of future warming levels when compared
against RCM (with or without urban warming). Once again, this is because GCM mainly models
natural land use while RCM can model highly detailed regional climate with mixture of land use.
Furthermore, cities are, in many cases, warmer than its surrounding natural land due to urban heat
island. However, it does not mean that cities’ response to global warming will be stronger than
natural land’s response. Previous research has also pointed out the possibility that natural land may
warm up faster than cities (Lemonsu et al., 2013). At the moment, there is not enough information
to decide whether GCM or RCM projection is more trustworthy; however, both projections can be
used as references for further examination.

Next, we turn the discussion to the discussion of risks. Risk of climate change to human has
three components: hazard (a weather or climate event that can adversely affect people), vulnerability
(level of preparedness to the hazard), and exposure (the presence of people in places that could
be affected) (Oke et al., 2017, pp. 380–381; IPCC, 2012). For example, the risk of heat stroke for
megacity dwellers has three components: hazard (high air temperature), vulnerability (varying
with socioeconomic factors such as population pyramid and availability of cooling system), and
exposure (the number of people living at places with high air temperature). Our result indicates
that urban warming increases the number of people living at places with high air temperature, thus,
increases the exposure component. This may increase the risk of heat stroke in the future. However,
the increase in risk is not directly proportional to the increase in exposure because risk also depends
on the variation of the hazard component (for example, change in heat wave frequency (Lhotka
et al., 2018)) and the vulnerability component (for example, vulnerability is increased due to an
aging population but can be lowered by preventive measures (Luber & McGeehin, 2008)). The
same argument applies for other kind of heat-related risks; therefore, we conclude that without
considering urban warming, there is a possibility of underestimating heat-related risks for cities. A
comprehensive study accounting for many climatological and socioeconomical factors may be done
in the future to fully project future heat-related illness risks.

5.3.4 A Simple Estimation of the Relation Between Socioeconomic Factors and
UrbanWarming

As described in detailed in Chapter 3, anthropogenic heat (AH) and urban morphological parameters
in this study are all rooted in two socioeconomic factors: GDP and population (see also Fig. 3.4). To
be precise, there is a third socioeconomic factor which is energy usage; however, as will be shown
later, energy usage and GDP are closely linked. Therefore, in this section, we attempt to make
a simple first-order estimation of the link between socioeconomic factors (GDP and population)
and the average magnitude of urban warming. Ten megacities (Dar es Salaam, Kinshasa, Lagos,
London, Moscow, Osaka, Paris, Seoul, Shenzhen, and Tokyo) are excluded from this analysis due
to reasons discussed later (see the discussion for Fig. 5.9).
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Figure 5.7: Relation between primary energy consumption per capita (PECPC) and GDP per capita
(GDPPC) for 192 countries/regions worldwide in 2021 (OWID, 2024).

The Relation Between Energy Use per Person and GDP per Capita

We obtained the data of primary energy consumption per capita (PECPC, J/person) and GDP per
capita (GDPPC, US$2017) for 192 countries and region around the world (OWID, 2024). By a
simple linear regression (Fig. 5.7), it was found that the relation between the two quantities follows
a simple power law of

(5.1) PECPC = 𝛼 × GDPPC𝛽 (J/person).
where 𝛼 = 4.78×105 J/person and 𝛽 = 1.20 are empirical coefficients. Note that for the dimensional
analysis to make sense, the term GDPPC in Eq. (5.1) should be precisely GDPPC/1 US$2017
(in other words, numerical value without the unit) but we omit the division against the unit for
conciseness (Matta et al., 2011).

The Relation Between Urban Warming and Anthropogenic Heat

In this study, to account for the impact of urbanization both AH and urban morphological parameters
were modified. Previous research has also shown that both AH and urban morphological parameters
have strong contribution to urban temperature. For example, it was shown that air temperature
is positive correlated with 𝐻avg, 𝜆𝑝 and 𝜆𝑓 (Deng et al., 2023); urban heat island (UHI) intensity
is strongly correlated with gross building volume and city size (Y. Li et al., 2020); UHI intensity
is lower when roughness length is higher (Atkinson, 2003; Zhao et al., 2014); and the effect of
urban geometries to temperature is less than but comparable to the effect of AH in an idealized
setting (Atkinson, 2003). However, here, for simplicity, we assume that the magnitude of urban
warming is solely due to the change in AH, even though both AH and urban morphological
parameters were modified in the simulation.

Assuming a no wind and vertically well-mixed condition, the extent to which AH can heat up
the atmosphere is up to the the boundary layer height. Let ΔAH be the annual averaged change in
AH, Δ𝑇 is the annual averaged temperature change due to urban warming, and BLH be the harmonic
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Figure 5.8: Relation between the change in anthropogenic heat (ΔAH), boundary layer height (BLH)
and temperature change (Δ𝑇). Each point represent one megacity.

mean of the monthly-hourly diurnal profile of the boundary layer height simulated by the WRF model.
It can be expected that Δ𝑇 is proportional to ΔAH/ (BLH × 𝜌𝑐𝑝) where 𝜌𝑐𝑝 ≈ 1200 J m−3 K−1 is
the volumetric heat capacity of air. From Fig. 5.8, it can be seen that this relation is acceptably
valid and we have the following equation.

(5.2) Δ𝑇 = 𝛾𝜌𝑐𝑝 × ΔAH
BLH (K).

where

• 𝛾 = 1.79 × 103 s is an empirical coefficient,

• Δ𝜓 = 𝜓2050s − 𝜓2010s for any quantity 𝜓.

In a closed system, 𝛾 should be equal to the integration time because of heat accumulation. However,
in this system, 𝛾 is approximately 30 minutes. Therefore, it can be interpreted that the impact
of anthropogenic heat lasts for about 30 minutes before dissipating. Factors that can affect the
magnitude of 𝛾 include wind, urban geometries, and other atmospherical factors not considered
explicitly in this section.

As a side note, for a set, harmonic mean refers to the reciprocal of the arithmetic mean of the
reciprocals of the set’s elements, In mathematical terms, the harmonic mean 𝐻(𝑋) of 𝑋1, 𝑋2, … , 𝑋𝑛
is

(5.3) 𝐻(𝑋) = [𝑋−11 + 𝑋−12 + … + 𝑋−1𝑛𝑛 ]−1 .
The Relation Between Anthropogenic Heat and GDP

Assuming that AH is proportional to primary energy consumption and inversely proportional to the
surface area from which AH is emitted (for example, area of a city), we have the following relation
by applying Eq. (5.1) for each city.

(5.4) AH ∝ 𝛼 × GDPPC𝛽 × 𝑃/𝐴,
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Figure 5.9: Relation between 𝛼 × Δ (GDPPC𝛽 × 𝑃) /𝐴 and ΔAH.

where

• 𝑃 (people) is the city’s population,

• 𝐴 (m2) is the surface area of the city. Note that while city area changes with time, we can
consider 𝐴 to be a constant by setting it to the projected future city area and let the AH fluxes
from current non-urban grids to zero.

Taking the difference between the values in the 2010s (the present) and the 2050s (the future) we
have the following relation,

(5.5) ΔAH ∝ 𝛼 × Δ (GDPPC𝛽 × 𝑃) /𝐴,
Next, we examine the validity of Eq. (5.5) by using GDP, population, and AH data from the

same source as in the simulation setup. As can be seen Fig. 5.9(a), the relation is acceptably valid
for 33 megacities. The exception to the relation are 3 rapidly developing megacities (Dar es Salaam,
Kinshasa, and Lagos) and 7 cities with saturated development (London, Moscow, Osaka, Paris,
Seoul, Shenzhen, and Tokyo). For that reasons, the 10 cities are excluded from the analysis in
this section. One side note is that, for Shenzhen domain, the part with saturated development and
projected decline in energy usage is the Hong Kong Special Administrative Region. The Shenzhen
city in Mainland China is still projected to grow. However, because of the proximity of the two
administrative divisions, it was not possible to separate the two entities in the simulation. After
excluding the 9 cities, we found a good correlation between the left and the right hand sides of
Eq. (5.4) as in Fig. 5.9(b). Hence, we have the following equation.

(5.6) ΔAH = 𝜁𝛼 × Δ (GDPPC𝛽 × 𝑃) /𝐴 (W/m2).
where 𝜁 = 1.34 × 10−8 s−1 is an empirical coefficients. Ideally, 𝜁 should be 3.17 × 10−8 s −1 ≈1/(365 × 24 × 60 × 60 s), which is the inverse of the number of seconds in a year. The empirical 𝜁
is smaller than the ideal 𝜁 but the orders of magnitude of the two match each other.
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Figure 5.10: The relation between GDP per capita (GDPPC), population (𝑃), city area (𝐴), mean
boundary layer height (𝐵𝐿𝐻), and temperature 𝑇. Dark and light shaded area indicate 0.05 and
0.10 °C derivation from the regression line, respectively.

The Relation Between Socioeconomic Factors and Urban Warming

By combining Eqs. (5.2) and (5.6), we can get a rough estimation of future urban warming (see
Fig. 5.10). The relation is

(5.7) Δ𝑇 = 𝜂𝜌𝑐𝑝 × 𝛼 × Δ (GDPPC𝛽 × 𝑃)𝐴 × BLH (K).
where 𝜂 = 2.79 × 10−5 (dimensionless) is an empirical coefficient. Note that to avoid propagation
of errors due to multiple rounds of regression, this relation is obtained by fitting a linear equation to
the data points in Fig. 5.10 instead of substituting Eq. (5.6) to Eq. (5.2) to get 𝜂 = 𝛾𝜁 = 2.40 × 10−5.
However, it can be confirmed that the 𝜂 obtained by substitution is closed to 𝜂 obtained by direct
fitting. This equation can be interpreted as: temperature change due to socioeconomic development
is proportional to the change in energy usage (the numerator of the second factor of Eq. (5.7) with
the unit of J) and inversely proportional to the volume in which the extra energy can disperse (the
denominator of the second factor of Eq. (5.7) with the unit of m3).

As can be seen in Fig. 5.10, even though the estimation was made with a highly simplified
bulk model, ignoring wind and the impact of all urban morphological parameters, the performance
is remarkable. Specifically, the RMSE is 0.0807 °C, Furthermore, 14 cities (42 %) and 27 cities
(81 %) have actual values of Δ𝑇 deviate less than 0.05 °C and 0.10 °C from the model’s prediction,
respectively. The 6 cities that deviate by at least 0.10 °C are Ahmadabad, Chengdu, Chongqing,
Karachi, Lahore, and Luanda. It can be expected that these deviations can be explained by the
excluded factors such as wind and urban morphological parameters. Note that in such a case,
the coefficient 𝜂 will change. In this relation, there is one parameter which is more difficult to
obtain than the other parameters which is the boundary layer height. The direct way is to conduct a
simulation or an observation, but because this relation only aims at rough estimation, output from
reanalysis datasets (for example, NCEP FNL and ERA5) should suffice.
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5.4 Chapter Summary

In this chapter, we projected the future climate of 43 megacities in the 2046–2055 decade under
the worst-case scenario of RCP8.5 and SSP3 with consideration of changing urban morphological
parameters and anthropogenic heat emission due to urbanization. The major findings are

• In the time frame of 40 years (2010s to 2050s), the effect of urbanization has small mean
compared to the effect of global climate change. However, urbanization effect varies signif-
icantly from location to location even within the border of one city. Therefore, the spatial
variance of the urbanization effect is possibly more important than the mean.

• 78% of megacity population (612 million people) may be exposed to 2.5 °C warming, in
which 17% is due to urban warming induced by urbanization from the 2010s to the 2050s.
Therefore, urbanization effect should be included in projections of future heat-related illness
risks because the effect may increase the risks.

• A simple, first-order relation was derived to connect socioeconomic factors with the magnitude
of urban warming. The magnitude is proportional to the change of GDP and population but
inversely proportional to the city size and the atmospheric boundary layer height.





Chapter6
Future Climate of Megacities: Climate

Extremes

6.1 Introduction

In the previous chapters, the average features of future climate of megacities were discussed. In
this chapter, extending from the methods and findings of previous chapters, we turn our eyes to
extreme weather events. While there are many extreme events to be named (heatwaves, cold spells,
typhoons, and floods), this chapter’s focus is on heatwaves, especially 2022 heatwaves.

In 2022, intense heat waves occur all around the world. Temperature surpassed 40 °C, broke
records in many places, severely affected human health, infrastructures, and economic activi-
ties (NASA Earth Observatory, 2022). Previous research revealed that urban area are affected more
severely by heat waves than rural areas (D. Li & Bou-Zeid, 2013). As climate change progresses,
it has been projected that in the future, heat waves might occur more frequently (Lhotka et al.,
2018). Projection at global, regional scale (Perkins-Kirkpatrick & Gibson, 2017) and projection for
individual cities (Lemonsu et al., 2014) have been done. However, there is currently a lack of studies
covering many cities worldwide with diverse background and lack of consideration of futuristic
urbanization projection (e.g., projection of change in anthropogenic heat driven by socioeconomic
scenarios).

For that reason, in this chapter, we attempt to project three heat waves events occurred in 2022
in three megacities—Delhi (India), London (UK), and Tokyo (Japan)—to the future (the 2050s)
under the worst case scenario (SSP3 coupled with RCP8.5). As an improvement from the previous
chapters which only use global projections from the Coupled Model Intercomparison Project phase
5 (CMIP5), in this chapter, we also use global projections from the newly released CMIP6. The
targets of this chapter are:

• projecting the general characteristics of the heat wave events if they reoccur in the future,

• quantifying the contribution of urbanization,

• quantifying the significance of the choice global climate projections (i.e., CMIP5 vs CMIP6).

61
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Delhi (514) London (539) Tokyo (1371)

Figure 6.1: Analysis domains (a part of domain 2). The number in the brackets following each city
name is the number of urban grids (purple shaded).

A part of this chapter was published in a scientific journal (Khanh et al., 2023b).

6.2 Methodology

A modified version of the Weather Research and Forecast (WRF) model v4.3.1 that can considered
spatially varying urban morphological parameters and spatiotemporally varying anthropogenic heat
was used (Khanh et al., 2023a). Note that in previous chapters, a modified version of the WRF
model v3.3.1 was used. Those modifications were patched to the newer version of the official WRF
model (v4.3.1) so that the code can be incorporated to the official model and made available to
the research community. Simulation were conducted for Tokyo (2022/06/24–2022/07/02), Delhi
(2022/04/06–2022/04/11) and London (2022/07/17–2022/07/19) with the first simulation days used
for model spin-up and were excluded from all analysis. Model configuration is described below.

Each city was simulated using two domains with one-way nesting: 10 km resolution (101-by-101
grids) and 2 km resolution (101-by-101 grids for Delhi and London and 151-by-151 grids for Tokyo).
The two domains are concentric and centered at 28.6° N 77.1° E, 51.5° N 0.2° W, and 35.5° N
140.0° E for Delhi, London, and Tokyo, respectively (see also Fig. 6.1).

Unlike the previous chapters which utilized the FNL reanalysis dataset (six-hour temporal
resolution, 1° spatial resolution), in this chapter, the ERA5 reanalysis dataset with higher spa-
tiotemporal resolutions (hourly temporal resolution, 0.25° spatial resolution) was supplied as initial
and boundary conditions to the model for the present climate forcing cases. PGW method was
applied similar to the previous chapters. For cases with CMIP5 forcing, five GCM members (rcp8.5
runs of GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M)
were used. For cases with CMIP6 forcing, five GCM members (ssp5-8.5 runs of GFDL-ESM4,
HadGEM3-GC31-MM, IPSL-CM6A-LR, MIROC6, NorESM2-MM) were used. Even though the
CMIP5 members and the CMIP6 members are not exactly the same, they are of the same family and
the CMIP6 members are newer version of the CMIP5 members. Here, we note that in CMIP6, there
are two scenarios SSP3-7.0 and SSP5-8.5 (SSP3-8.5 does not exist in CMIP6). However, our urban
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Figure 6.2: Comparison between spatial average of hourly anthropogenic heat between the present
and the future.

Table 6.1: Simulation scenarios. Each scenario name has two characters: the first character represent
climate forcing (P, 5, and 6 for present, CMIP5, and CMIP6, respectively), and the second character
represent urbanization (P and F for present and future, respectively).

Scenario Climate forcing Urbanization

PP Present Present
PF Present Future
5P CMIP5 Present
5F CMIP5 Future
6P CMIP6 Present
6F CMIP6 Future

morphological dataset and anthropogenic heat dataset were constructed under SSP3 and RCP8.5
assumptions of CMIP5. Therefore, for the cases with CMIP6 forcing, when choosing GCMs, we
prioritize the match of radiative forcing (RCP8.5) over the match of socioeconomic pathways (SSP5
and SSP3).

Spatially varying urban morphological parameters were estimated from population, nighttime
lights, and gross domestic product (GDP) as in a previous study(Khanh et al., 2023a). The AH4GUC
present and future global 1 km hourly anthropogenic heat dataset(Varquez et al., 2021) was also
inputted to the model (Fig. 6.2). We note that the AH4GUC dataset was generated for the 2010s and
2050s decade under assumption of CMIP5 instead of the newer CMIP6. However, we use this dataset
in this study because at the moment, there is no equivalent dataset under the assumption of CMIP6.
Two urbanization scenarios were considered (present and future). The difference between the two
scenarios is only in the change of anthropogenic heat. We did not change the urban morphological
parameters between the present and the future cases. Similar to a previous research (Khanh et al.,
2023a), we modified the MODIS land use dataset included in the WRF model package by setting
all grids with population count of at least 1000 to urban category. The same land use dataset is used
for all simulations (i.e., no future land use projection is considered).

With three climate forcing scenarios (present, future under CMIP5, future under CMIP6) and
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Figure 6.3: Comparison between observed air temperature (orange lines) and simulated near surface
air temperature (blue lines).

two urbanization scenarios (present, future), six simulations were conducted for each cities as in
Table 6.1.

6.3 Results and Discussion

6.3.1 Model Verification

Simulation results (scenario PP) were verified against observation data downloaded from the
NOAA Integrated Surface Database (ISD) (Indira Gandhi International Airport station for Delhi,
Heathrow station for London, and Tokyo station for Tokyo). Comparison between hourly observed
air temperature and near surface hourly simulated air temperature (air temperature at the first level
of WRF model; hereinafter, air temperature) is shown in Fig. 6.3. Even though observation data was
point observation and simulation data is 2 km by 2 km grid value, it can be seen that the the model
capture well diurnal variation and peaks. The Pearson correlation coefficient is 0.93, 0.95, and 0.86,
root mean square error is 2.22, 2.58, and 1.81 °C, respectively for Delhi, London, and Tokyo. In
this study, we mainly focus on the difference between simulation cases, thus, it is expected model
bias will be minimized by subtraction. To get a reliable projection of future temperature (in terms
of actual value, not increment), bias correction is necessary; however, it is not in the scope of this
study. From the above analysis, we conclude that the model has adequate performance to study the
concerned heat wave events.

6.3.2 Overall Projection

In this section, we give an overall projection of the heat wave events into the future by comparing
scenario PP and scenario 6F. In Fig. 6.4, we compare the present and projected future average daily
low/high temperature and nighttime/daytime mean temperature over the heat wave periods for the
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Figure 6.4: Comparison between present (scenario PP) and projected future (scenario 6F) average
daily low/high temperature and nighttime/daytime mean air temperature over the heat wave periods
for Delhi, London, and Tokyo. Slanting dashed lines connect points with equal sum of x- and y-axis,
which can be used to read projected future temperature.

three cities. We found that if similar heat wave events happen in the future, all temperature indices
will be higher than the present by 0.8, 1.1, and 1.5 °C on average in Tokyo, London, and Delhi,
respectively.

6.3.3 Effects of Urbanization

Under the simulation configuration of this study, the effect of urbanization (i.e., changing anthro-
pogenic heat) can be estimated in three different ways by comparing scenario PP with PF, 5P with
5F, or 6P with 6F. Let the urbanization effect extracted by those comparison be UP, U5, and U6,
respectively. By comparing UP, U5, and U6 together, we can judge whether or not the effect of
urbanization is influenced by background climate conditions. Specifically, if UP, U5, and U6 are
all equals to each other, we can conclude that urbanization effect is independent from background
climate conditions. On the contrary, if the three differs, there is a mechanism that suppresses or
enhances urbanization effect. In this study, we focus specifically on air temperature change at
urban areas (i.e., grids classified as urban in the model, see Fig. 6.1). We will first discuss general
characteristics of the effect and then discuss the interaction between urbanization and background
climate.

General Characteristics of Urbanization Effect

Time average of urbanization effect (UP, U5, and U6) over the heat wave periods at each urban
grid was calculated. The spatial distribution of the time average is shown in Fig. 6.5 in the form of
kernel density estimation, separately for daytime and nighttime. In addition, spatial map of the time
average of the UP, U5, and U6 ensemble was taken. The spatial average and standard deviation
of that map for each city is shown in Table 6.2. The number of urban grids in each city is shown
in Fig. 6.1. Overall, urbanization effect in Tokyo and London are negative because of projected
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Figure 6.5: Comparison between urbanization effects evaluated under different background climate
conditions in daytime (solid lines) and nighttime (dashed lines). The lines represent the spatial
distribution (kernel density estimation) of time average of urbanization effect at each urban grid
over the heat wave periods.

Table 6.2: Ensemble-spatial average and standard deviation of urbanization effect daytime and
nighttime. Unit: 10−2 °C.

Daytime Nighttime
Mean SD Mean SD

Delhi 9.3 5.6 21.0 10.5
London ­1.7 0.7 ­4.5 2.9
Tokyo ­6.9 3.8 ­11.6 6.9
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Figure 6.6: Similar to Fig. 6.5 but the average daytime/nighttime temperature change at each grid is
normalized by the average daytime/nighttime anthropogenic heat change at that grid. Normalization
is only done for grids with |Δ𝐴𝐻| ≥ 1 W/m2. The number of grids satisfying the criterion is noted
as 𝑛𝑑𝑎𝑦 and 𝑛𝑛𝑖𝑔ℎ𝑡.
decline in anthropogenic heat due to declining population; the reverse is true for Delhi, where
population and anthropogenic heat are both projected to be increasing.

From Fig. 6.5 and Table 6.2, it can be seen that in all three cities, the urbanization effect has
larger mean (in terms of absolute value) and variance in nighttime than in daytime. Among the
three cities, the mean value of urbanization effect is largest in Delhi at nighttime (0.21 °C), which
is significant in the total warming at nighttime of 1.68 °C (Fig. 6.4). Depending on the location,
the magnitude of urbanization effect is between −0.5 and 0.5 °C, with larger magnitude found in
nighttime. This finding reaffirms findings from previous research (Darmanto et al., 2019; Khanh
et al., 2023a) that urbanization effect has large spatial variance. We note that while the previous
research considered changes in both anthropogenic heat and urban morphological parameters, this
study only considers the first factor.

To better explain the effect of anthropogenic heat, we normalize the average daytime/nighttime
temperature change at each grid by the average daytime/nighttime anthropogenic heat change at
that grid and plotted it in Fig. 6.6, which describes how much temperature changes per unit of
anthropogenic heat. Note that normalization is only done for grids with change in anthropogenic
heat of at least 1 W/m2 to avoid unwanted amplification of sensitivity due to division by near-zero
value. The purpose of normalization is to investigate sensitivity of air temperature to anthropogenic
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Table 6.3: Difference between the means of UP, U5, and U6 at daytime and nighttime. Unit: 10−2 °C.
Statistical significant derived from the Kolmogorov-Smirnov test is indicated by * (𝑝 < 0.05) and **

(𝑝 < 0.01).

U5 ­ UP U6 ­ UP U6 ­ U5

Day Delhi 0.0 ­0.3 ­0.3
London ­0.1 0.6** 0.7**

Tokyo 2.3** 4.1** 1.8**

Night Delhi ­0.5 ­0.7** ­0.2**

London 0.9** ­0.2** ­1.1**

Tokyo 1.0** 2.3** 1.3**

heat, a linear relation between the two quantities is not implied. Similar to the analysis of pre-
normalized temperature change (Fig. 6.5), it can be seen that urbanization effect is stronger and
more heterogeneous in nighttime than in daytime. This can be explained by the fact that during
daytime, stronger near surface wind and higher boundary layer allows anthropogenic heat to disperse
both horizontally and vertically, making both absolute magnitude and variance of urbanization
effect smaller than during nighttime. It can be seen in Fig. 6.6 that the distributions at nighttime
has long right tail. We inspected two-dimensional maps (not shown) of sensitivity visually and
found that grids with high sensitivity tends to be in relatively less densely populated areas. One
possible hypothesis for this phenomenon is that these areas have less buildings, thus, have smaller
heat capacity, consequently, become more sensitive to anthropogenic heat. This hypothesis can be
tested in future research by long term simulation of real atmospheric conditions or ideal simulations.
It should be note that because anthropogenic heat is advected by wind and interacts with other
components of the atmosphere, change in one location might be due to not only local anthropogenic
heat change but also due to city-scale anthropogenic heat change and other factors. Therefore, this
sensitivity analysis should be interpreted with care.

Urbanization–Background Climate Interaction

As shown in Fig. 6.5, UP, U5, and U6 have similar distributions in daytime and similar distributions
in in nighttime; however, the distributions do not completely overlap. In this section, we check
whether or not the difference in the distributions are statistically significant. We use the Kolmogorov-
Smirnov test for goodness of fit to test if the distributions of urbanization effect are identical. The
result is summarized in Table 6.3. There are statistical evidence that the effect of urbanization
is not independent from background climate forcing except for Delhi in daytime. The difference
between the means of UP, U5, and U6 are in the order of 10−3 to 10−2 °C. Comparing the difference
between the means (in Table 6.3) to the means (in Table 6.2) for Tokyo and London (daytime and
nighttime), we found that the maximum difference is 20 to 59 % of the corresponding means in
terms of magnitude, therefore, nonnegligible. However, the difference between the means is about
two orders of magnitude smaller than the means for Delhi. This finding suggests that the effect of
changing anthropogenic heat varies significantly with background climate for Tokyo and London, but
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Figure 6.7: Spatial distribution of average daytime/nighttime temperature over the heat wave events
in the present (scenario PP), under CMIP5 forcing (scenario 5F), and under CMIP6 forcing (scenario
6F).

negligible for Delhi, for the concerned heat wave events. We note that the dependency/independency
discussed here is limited to the context of the analyzed heat wave events.

6.3.4 Future Climate Forcing: CMIP5 and CMIP6

Next we examine if the choice of climate forcing (CMIP5 or CMIP6) has significant influence on the
projected future heat wave events. We compare the spatial distribution of average daytime/nighttime
temperature over the heat wave events under present (scenario PP), CMIP5 (scenario 5F), and
CMIP6 forcing (scenario 6F) for the three cities. The result is shown in Fig. 6.7.

Similar to the investigation of urbanization effect, we conducted the Kolmogorov-Smirnov
statistical test to check if the temperature distribution under CMIP5 and CMIP6 forcing are identical.
We found that the difference between CMIP5 and CMIP6 was statistically significant for all cities
in daytime and for Tokyo in nighttime (𝑝 < 0.01), and insignificant for Delhi and London at
nighttime (𝑝 ≥ 0.05). In the statistical significant cases, the mean difference between CMIP5
and CMIP6 was (in absolute magnitude) between 0.22 and 0.31 °C. One hypothesis for this
difference is that numerical models (GCMs) have been updated. Moreover, CMIP5 was based on
Representative Concentration Pathways (RCP, for example, RCP8.5) while CMIP6 was based on
Shared Socioeconomic Pathways (SSP) coupled with radiative forcing (for example, SSP3-8.5).
Therefore, it can be expected that CMIP5 and CMIP6 future projections are different as previous
research has also pointed out (Hamed et al., 2022).

While the choice of CMIP5 or CMIP6 has statically significant influence on the projected future
heat wave events, it can be seen clearly from Fig. 6.7 that the difference between CMIP5 and CMIP6
is much less than the difference between CMIP5/CMIP6 and the present. Moreover, we note that
the minimum between CMIP5 and CMIP6 indicates that if these heat wave events repeat in the
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future, air temperature will be 1.41, 0.99 and 0.83 °C hotter in daytime and 1.68, 0.88 and 0.69 °C
hotter in nighttime for Delhi, London, and Tokyo respectively, on average. In other words, heat
waves in the future is projected to be much hotter than in present, regardless of the choice of the
older CMIP5 forcing or the newer CMIP6 forcing.

6.4 Chapter Summary

In this study, we attempted to project three heat waves event occurred in 2022 in three megacities—
Delhi (India), London (UK), and Tokyo (Japan)—into the future (the 2050s) with consideration
of different global climate forcing (CMIP5 and CMIP6) and futuristic projection of urbanization
driven on socioeconomic changes under the worst-case scenario (SSP3 coupled with RCP8.5). The
main findings are

1. Similar future heat waves will be approximately 0.8 to 1.5 °C hotter than the present. Average
through the heat wave period, spatial mean of daily maximum temperature may reach 42, 36,
and 35 °C (no bias correction) in Delhi, London, and Tokyo, respectively.

2. Urbanization (i.e., anthropogenic heat change) have stronger impact on the heat waves in
nighttime than in daytime. In Delhi, urbanization may add 0.21 °C to nighttime temperature,
on average. On the other hand, decreasing energy usage due to population decline in London
and Tokyo may cool nighttime temperature down by 0.05 and 0.12 °C, on average, respectively.

3. Urbanization effect has large spatial variance. Absolute magnitude at certain locations in the
cities may reach 0.50 °C.

4. Urbanization effect varies (statistically significantly) between different background climate
(present, CMIP5, CMIP6), suggesting the existence of complex interaction between back-
ground climate condition and anthropogenic heat.

5. The choice of CMIP5 or CMIP6 as future climate forcing has statistically significant impact on
the projection. However, the difference between CMIP5 and CMIP6 is much less significant
than the difference between CMIP5/CMIP6 and the present.

Finally, to generalize the initial investigation results of this case-study, long-term and/or ideal
simulation needs to be conducted.



Chapter7
Concluding Remarks

7.1 Main Findings

This dissertation expand the current state of knowledge concerning the future regional climate of the
world’s 43 megacities by conducting future climate projection for the megacities at high resolution
with realistic projection of local urbanization from the 2010s to the 2050s. The main findings of the
climate projection are summarized as follows.

1. The effect of urbanization (in other words, temperature increase due to urbanization) is
observable but may be negligible at large spatial scale. The effect is clearer in existing urban
areas but large variance exists between saturated existing urban areas and rapidly developing
ones. The effect is clearest and significant in new urban areas.

2. Under certain conditions, urbanization effect in an urban area can be advected by the wind,
causing observable urbanization effect in rural areas far from the urban area.

3. In the time frame of 40 years (2010s to 2050s), the effect of urbanization has small mean
compared to the effect of global climate change. However, urbanization effect varies signif-
icantly from location to location even within the border of one city. Therefore, the spatial
variance of the urbanization effect is possibly more important than the mean.

4. 78% of megacity population (612 million people) may be exposed to 2.5 °C warming, in
which 17% is due to urban warming induced by urbanization from the 2010s to the 2050s.
Therefore, urbanization effect should be included in projections of future heat-related illness
risks because the effect may increase the risks.

5. A simple, first-order relation was derived to connect socioeconomic factors with the magnitude
of urban warming (Eq. (5.7)). The magnitude is proportional to the change of GDP and
population but inversely proportional to the city size and the atmospheric boundary layer
height. This relation can be used to quickly estimate the magnitude of urban warming without
doing numerical simulation.

71
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This dissertation also projected three heatwaves in 2022 happened in three megacities (Delhi,
London, and Tokyo) to the 2050s to identify possible hazards of similar events in the future. The
main findings for the concerned heatwaves are as follow.

1. Similar future heat waves will be approximately 0.8 to 1.5 °C hotter than the present. Increase
of anthropogenic heat due to increasing population in Delhi can worsen heatwaves. The
opposite is true for London and Tokyo due to decreasing population and energy demand.

2. Urbanization effect varies (statistically significantly) between different background climate
(present, CMIP5, CMIP6), suggesting the existence of complex interaction between back-
ground climate condition and anthropogenic heat.

3. The choice of CMIP5 or CMIP6 as future climate forcing has statistically significant impact on
the projection. However, the difference between CMIP5 and CMIP6 is much less significant
than the difference between CMIP5/CMIP6 and the present.

7.2 Limitations and Recommendations for Future Research

Limitations and possible future research directions to address those limitations are as follows.

1. Because of limited computational resources, instead of conducting simulations for the full
actual ten years, we conducted simulations using ensemble averaged monthly reanalysis data.
Future study may develop other computational cheap methods to obtain decadal average of
many meteorological variables and compare the performance of these methods against the
direct simulation method.

2. We only made projection for the worst-case scenario while projections for other scenarios
are equally important. In contrast to the worse-case scenario which gives the upper bound of
the impact, best scenario gives the lower bound. The lower bound can be used to determine
if the problem is still under control and to determine the minimum investment needed to
protect megacities and megacity residences from global climate change and urbanization.
Setting of climate change scenarios has been revised continuously from AR4 (A1, B1, etc.) to
AR5 (RCP1.9, RCP8.5, etc.) and to the most recent AR6 (SSP1-1.9, SSP5-8.5, etc.) thanks
to the advance in the collective knowledge of humanity. Thus, the scenario presented in
this dissertation may become obsolete in the future. However, the important point is that
the framework proposed can be used for the variety of setting. Specifically, projections for
various scenarios can be done by adjusting the projections of urbanization and future energy
usage inputted to weather and climate models. Moreover, coupling with integrated assessment
models which examine the interaction between energy, climate, and socioeconomics system
such as GCAM can give more flexibility to experiment design.

3. Only one urbanization pathway (uncontrolled urban sprawl) was considered in this study.
Even though uncertainty due to different urbanization pathways is significant smaller than the
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uncertainty due to emission scenarios or GCM projections in the case of a mature metropo-
lis (Kusaka et al., 2016), the uncertainty for rapidly developing megacities in developing
countries is unknown. Future research may explore many possibilities of urbanization (sparse
city, compact city, interconnected of satellite cities) and evaluate their impacts.

4. Under the setting of this research, the term “impact of urbanization” should be read in full
as “impact of urbanization projected under the future climate forcing of RCP8.5”. In reality,
urbanization and global warming happens simultaneously, unlike the two-step process (first
global warming and then urbanization) presented here.

5. Except in Chapter 6, we utilized climate boundaries from CMIP5 datasets for consistency
with urbanization scenarios and anthropogenic heat derived from past studies. However,
given a generalized methodology presented herein, the findings may be advanced further
by considering additional urbanization and climate-change scenarios, such as the newest
available CMIP6 datasets.

6. The anthropogenic heat dataset used in this study currently has only two decadal average
(the 2010s and the 2050s) and assumes mean conditions. However, in reality, when extreme
weather events such as heatwaves or cold spells happen, it can be expected that the anthro-
pogenic heat pattern will be drastically different from the mean condition. Thus, future study
may also consider developing methods that can generate more anthropogenic heat maps for
various weather conditions. For example, electricity consumption due to air conditioning
can be estimated using building energy models (Nakajima et al., 2023). In addition, building
materials database and estimation methods for energy usage from other sectors should also be
developed. Finally, adjustment will be needed to ensure that the summation of the adaptive
anthropogenic heat map is consistent with the projected total global/national energy usage.

7. In terms of potential impact of global and urban warming to megacity dwellers, this study
only projected the change in exposure. For a complete projection of risks, information about
the change in hazard and vulnerability together with expert knowledge in human health are
required (Varquez et al., 2020). This is a shortcoming that needs to be addressed so that
megacities have enough information to prepare mitigation and adaptation.

8. Because this study uses regional climate model, all identified impacts of global warming
and urbanization are regional impacts. However, as the climate system is inherently complex
and chaotic, there are possibilities of teleconnection. In other words, urbanization in one
regional may cause changing climate in another distant region. Future research may explore
this possibility by combining regional climate research with global climate research.

9. This study only consider one direct impact of urbanization which is the change of building
geometries and anthropogenic heat. However, in reality, urbanization has many indirect
impacts such as the conversion of distant natural land to farmland to support increasing
non-agricultural urban population. In addition, decreasing population may cause demolition
of buildings and increase in bare soil or green space in the future. The indirect impacts
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of urbanization and the possibility of de-urbanization are both not considered in this study.
Future research may consider this research direction. Nevertheless, it is noteworthy that
considering both direct and indirect impacts of urbanization will require a future simulation
that has a lot of parameters changed from the present simulation. Care should be taken because
changing many parameters at once may produce chaotic, complex, and incomprehensible
results.

10. This study shows the possibility of modeling regional climate of many cities worldwide with
highly detailed urban representation. However, we did not attempt to evaluate the contribution
of each urban morphological factors to the temperature change. Future research may address
this shortcoming to produce better guideline for urban planning.

The model and global datasets used in this study has been published for free and unrestricted
usage. Using our model and global datasets, further research can be done for many cities worldwide,
not limited to megacities, to

• investigate the effect of urbanization on meteorological variables other than temperature (for
example, humidity, wind speed, and precipitation) and other extreme weather events (for
example, cold spells, and typhoons),

• investigate the dependency of urban warming on climate forcing, climate zone, and atmo-
spheric circulation regimes,

• analyze variations and similarities of urban warming among different cities,

• project various consequences of warming to human (for example, change in thermal comfort,
heat-related risks, mosquito-borne diseases risks (Messina et al., 2019)).

This study shows the feasibility of and advocates for regional climate study at global scale using
a unified approach. However, study focusing on individual cities with fine tune will remain very
important to adapt to specific needs that the method used in this study cannot cover. They will also
serve as reinforcement for further development of this global approach. Nevertheless, we hope that
our approach of using open source model and freely available global datasets will be especially
useful for studying developing regions with little data available. We expect that along with global
climatological research focusing on the whole globe and urban climatological research focusing on
individual cities, more research examining city-scale phenomena from a global point of view will
be conducted.
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Table A.1: Average values of urban morphological parameters and anthropogenic heat emisison (AHE) in the 2010s and 2050s, and warming level in the
2010s (Δ𝑇2010𝑠 = 𝑇2010𝑠 − 𝑇𝑝𝑟𝑒𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙) of the 43 megacities. The value in the 2050s are given in percentage increase from the value in the 2010s. Note
that because present and future city boundaries are different, the spatial average values are taken within the present city boundary for a fair comparison.
Refer to Table 1.1 for city codes.

City 𝐻𝑎𝑣𝑔 (m) 𝜆𝑝 𝜆𝑓 𝑧0 (m) 𝑑 (m) AHE (W/m2) Δ𝑇2010𝑠
2010 Δ2050 2010 Δ2050 2010 Δ2050 2010 Δ2050 2010 Δ2050 2010 Δ2050 (°C)

AMD 7.18 4.9% 0.11 3.1% 0.07 3.0% 0.49 10.8% 8.29 7.5% 3.56 108.1% 1.07
BKK 6.68 6.8% 0.11 6.4% 0.08 5.5% 0.56 13.1% 7.77 11.9% 5.14 3.1% 1.11
BLR 8.24 22.9% 0.13 1.9% 0.10 1.1% 0.96 41.6% 11.28 31.9% 4.66 126.7% 1.19
BOG 9.91 18.5% 0.17 14.6% 0.13 19.3% 1.16 41.6% 14.24 28.5% 9.25 49.0% 1.17
BOM 7.53 9.8% 0.11 0.3% 0.08 0.4% 0.59 21.1% 9.12 14.5% 5.14 109.3% 0.99
BUE 9.95 22.6% 0.16 12.9% 0.12 15.8% 1.03 45.0% 14.09 32.0% 10.44 77.9% 0.80
CAI 8.44 4.3% 0.14 2.8% 0.10 2.2% 0.77 7.0% 11.20 6.3% 8.78 23.6% 1.10
CAN 5.18 5.6% 0.08 0.3% 0.06 0.1% 0.30 15.4% 4.88 10.3% 3.76 120.5% 0.64
CCU 6.29 3.2% 0.09 1.5% 0.06 1.2% 0.38 9.5% 6.60 5.7% 2.37 110.8% 0.83
CKG 5.68 3.5% 0.08 1.4% 0.06 1.5% 0.34 11.3% 5.64 6.9% 5.73 127.3% 0.60
CTU 5.85 6.2% 0.09 0.1% 0.06 0.1% 0.37 19.2% 5.96 11.1% 5.24 130.0% 0.73
DAC 5.91 3.1% 0.08 2.9% 0.06 1.4% 0.34 5.0% 5.92 5.8% 1.62 1.2% 0.73
DAR 7.46 47.2% 0.12 63.5% 0.09 69.7% 0.63 119.7% 9.04 85.6% 1.91 1729.5% 1.01
DEL 8.29 7.5% 0.13 3.8% 0.09 3.0% 0.74 14.0% 10.82 10.5% 4.23 110.5% 1.00
FIH 9.08 24.5% 0.14 31.8% 0.10 36.1% 0.87 56.2% 12.23 39.2% 3.14 1127.8% 1.17
HYD 8.82 14.9% 0.13 1.0% 0.09 0.9% 0.81 34.0% 11.61 21.3% 4.88 118.3% 1.21
IST 8.93 13.0% 0.14 9.2% 0.10 9.8% 0.89 25.9% 12.23 19.0% 11.64 17.5% 1.02
JKT 7.45 8.4% 0.11 8.0% 0.07 3.2% 0.51 9.9% 8.49 14.4% 3.55 97.2% 1.02
KHI 9.21 32.5% 0.15 32.4% 0.11 36.4% 0.95 65.5% 12.70 48.1% 6.71 143.8% 1.11
LAD 9.36 39.4% 0.15 48.5% 0.12 50.0% 1.06 64.3% 13.25 56.3% 4.78 145.8% 0.92
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Table A.1: (Cont.)

City 𝐻𝑎𝑣𝑔 (m) 𝜆𝑝 𝜆𝑓 𝑧0 (m) 𝑑 (m) AHE (W/m2) Δ𝑇2010𝑠
2010 Δ2050 2010 Δ2050 2010 Δ2050 2010 Δ2050 2010 Δ2050 2010 Δ2050 (°C)

LAX 6.72 3.0% 0.10 4.4% 0.07 2.5% 0.45 4.2% 7.32 4.7% 14.31 39.5% 0.82
LHE 7.75 11.8% 0.12 11.7% 0.08 8.0% 0.63 16.2% 9.69 16.8% 3.73 72.3% 0.90
LIM 8.06 17.6% 0.14 12.2% 0.10 13.3% 0.83 39.4% 10.40 29.9% 5.99 38.1% 1.21
LON 8.30 6.1% 0.12 0.7% 0.08 0.5% 0.68 11.6% 10.47 8.5% 12.01 ­17.4% 0.99
LOS 7.27 31.1% 0.11 38.9% 0.08 35.1% 0.55 58.5% 8.67 50.6% 2.50 1968.0% 0.83
MAA 7.02 2.9% 0.10 1.3% 0.07 0.8% 0.44 6.1% 7.98 4.2% 3.58 114.7% 0.96
MEX 9.54 19.1% 0.16 10.5% 0.12 11.1% 1.04 34.0% 13.64 26.2% 10.08 100.2% 1.19
MNL 7.68 16.9% 0.12 18.8% 0.09 19.3% 0.65 36.6% 9.72 27.3% 3.24 39.2% 0.90
MOW 7.98 5.9% 0.12 0.2% 0.08 0.1% 0.63 11.9% 9.88 8.3% 23.19 ­28.9% 1.29
NKG 7.56 26.8% 0.11 0.0% 0.08 0.0% 0.70 55.0% 9.31 40.0% 9.28 126.8% 0.75
NYC 5.08 6.1% 0.07 6.8% 0.06 4.0% 0.27 14.9% 3.90 17.4% 14.64 36.6% 1.27
OSA 8.58 0.1% 0.14 0.1% 0.10 0.2% 0.80 0.4% 11.51 0.1% 14.80 ­37.5% 0.86
PAR 8.32 5.0% 0.13 2.9% 0.09 2.5% 0.76 9.2% 10.75 7.3% 15.15 ­6.6% 1.15
PEK 7.14 3.3% 0.11 0.2% 0.08 0.1% 0.53 6.5% 8.52 4.9% 5.94 122.5% 0.93
RIO 7.53 7.7% 0.12 6.3% 0.09 6.1% 0.63 16.1% 9.33 13.3% 6.36 42.5% 1.01
SAO 8.85 13.2% 0.14 7.5% 0.10 8.5% 0.81 26.2% 11.74 19.5% 8.95 41.8% 1.05
SEL 8.31 2.3% 0.13 1.3% 0.09 1.1% 0.73 3.7% 10.80 3.1% 25.98 ­33.1% 0.80
SGN 6.52 13.8% 0.10 12.6% 0.08 8.9% 0.55 20.5% 7.72 21.8% 3.43 133.9% 0.93
SHA 7.17 4.6% 0.11 0.2% 0.08 0.1% 0.53 10.5% 8.58 6.9% 6.08 123.9% 0.72
SZX 6.46 5.6% 0.10 1.3% 0.07 1.2% 0.42 14.6% 6.86 9.8% 12.93 ­25.4% 0.66
THR 8.55 10.9% 0.14 7.7% 0.10 6.8% 0.89 18.0% 11.64 16.1% 22.45 28.6% 0.99
TSN 7.30 4.3% 0.11 0.2% 0.08 0.2% 0.61 8.6% 8.99 6.1% 7.73 122.5% 0.90
TYO 9.04 0.1% 0.15 0.1% 0.10 0.1% 0.87 0.2% 12.25 0.1% 16.15 ­37.4% 0.92
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Table A.2: Verification of hindcasting simulation including the number of observations (n), root-
mean-square error (RMSE), bias, and Pearson correlation coefficient (r). Each observation is the
ensemble average of observed temperatures at one station, one time of the day, and one month
throughout the 2006–2015 decade. Stations are grouped to urban and non-urban stations using
the MODIS land use dataset, which is also inputted to the WRF model. Shenzhen (SHE) and São
Paulo (SAO) are covered by Guangzhou (GUA) and Rio de Janeiro (RIO) domains, respectively.
Refer to Table 1.1 for city codes. Station locations are shown in Appendix B.

Urban stations Non­urban stations

City n RMSE Bias r n RMSE Bias r

AMD 96 1.54 0.90 0.98 0
BKK 1176 1.26 0.43 0.93 672 0.97 ­0.12 0.95
BLR 166 1.29 ­0.49 0.95 0
BOG 288 2.80 2.44 0.96 144 1.18 ­0.41 0.87
BOM 192 1.63 0.88 0.96 0
BUE 755 2.58 1.12 0.98 141 2.48 0.17 0.95
CAI 288 2.07 ­0.28 0.98 0
CAN 1632 2.36 1.81 0.96 384 1.95 1.43 0.97
CCU 220 1.99 0.77 0.96 27 1.85 ­0.39 0.97
CKG 288 2.31 1.70 0.98 0
CTU 288 2.29 2.02 0.99 96 2.49 2.05 0.98
DAC 215 2.47 1.36 0.95 0
DAR 288 1.00 0.38 0.97 280 1.17 ­0.56 0.95
DEL 384 2.26 1.17 0.98 0
FIH 576 2.21 1.17 0.86 0
HYD 96 1.27 0.81 0.98 0
IST 228 2.23 ­1.00 0.98 0
JKT 840 1.38 0.83 0.96 0
KHI 288 2.03 ­0.17 0.96 0
LAD 214 1.23 0.83 0.98 0
LAX 144 2.71 ­1.60 0.96 0
LHE 384 2.86 1.42 0.99 126 2.76 0.94 0.98
LIM 288 1.76 1.51 0.96 0
LON 1440 2.39 ­0.52 0.98 864 2.01 ­0.67 0.98
LOS 630 0.95 0.21 0.93 0
MAA 96 1.43 0.12 0.95 0
MEX 280 2.01 ­0.98 0.93 84 1.41 0.39 0.96
MNL 1242 1.13 0.38 0.91 762 1.05 0.12 0.93
MOW 384 2.65 ­1.03 0.99 576 3.09 ­1.47 0.99
NKG 384 2.64 1.77 0.98 0
NYC 408 2.37 0.17 0.98 568 2.17 0.05 0.98
OSA 3216 1.77 1.16 0.99 1308 1.57 0.95 0.99
PAR 1440 2.29 ­0.11 0.99 1484 2.05 ­0.39 0.99
PEK 288 2.50 0.97 0.99 0
RIO 2892 1.98 0.83 0.91 685 1.50 0.64 0.95
SEL 1536 2.01 0.45 0.99 672 1.67 0.61 0.99
SGN 288 1.69 1.33 0.95 0
SHA 672 1.95 1.14 0.99 384 1.34 ­0.28 0.99
THR 480 2.09 ­0.22 0.99 288 2.17 ­0.06 0.99
TSN 264 2.59 1.48 0.99 288 2.51 0.84 0.99
TYO 5451 2.08 1.55 0.99 972 1.58 0.78 0.98



AppendixB
Simulation Domain Configuration

Simulation was conducted with a fine domain (2 km resolution) nested in a coarse domain (10 km
resolution). Data analysis (except for model verification) was performed for only a part of the fine
domain because the minimum recommended domain size of 100 grids by 100 grids is much larger
than the actual size of many cities. Analysis domains were chosen to capture metropolitan areas
rather than the administrative borders of cities.

The domain configuration for each cities are drawn in the following pages. Cities are listed in
lexicographical order. The maps were downloaded from Google Maps.

71°E 71.5°E 72°E 72.5°E 73°E 73.5°E 74°E

21.5°N

22°N

22.5°N

23°N

23.5°N

24°N

24.5°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

72.4°E 72.55°E 72.7°E 72.85°E

22.8°N

22.9°N

23°N

23.1°N

23.2°N

Analysis domain
Ahmadabad

76°E 76.5°E 77°E 77.5°E 78°E 78.5°E 79°E

11.5°N

12°N

12.5°N

13°N

13.5°N

14°N

14.5°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

77.35°E 77.5°E 77.65°E 77.8°E

12.7°N

12.8°N

12.9°N

13°N

13.1°N

13.2°N
Analysis domain

Bangalore

98°E 99°E 100°E 101°E 102°E 103°E

12°N

13°N

14°N

15°N

16°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

100.2°E 100.4°E 100.6°E 100.8°E

13.5°N

13.65°N

13.8°N

13.95°N

14.1°N

14.25°N
Analysis domain

Bangkok

115°E 115.5°E 116°E 116.5°E 117°E 117.5°E 118°E

39°N

39.5°N

40°N

40.5°N

41°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

116°E 116.2°E 116.4°E 116.6°E 116.8°E
39.6°N

39.7°N

39.8°N

39.9°N

40°N

40.1°N

Analysis domain

Beijing

75.5°W 75°W 74.5°W 74°W 73.5°W 73°W 72.5°W
3°N

3.5°N

4°N

4.5°N

5°N

5.5°N

6°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

74.35°W 74.2°W 74.05°W 73.9°W

4.4°N

4.5°N

4.6°N

4.7°N

4.8°N

Analysis domain
Bogota

61°W 60°W 59°W 58°W 57°W 56°W

36°S

35°S

34°S

33°S

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

58.8°W 58.5°W 58.2°W 57.9°W
35.1°S

34.95°S

34.8°S

34.65°S

34.5°S

34.35°S

Analysis domain

Buenos Aires
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29.5°E 30°E 30.5°E 31°E 31.5°E 32°E 32.5°E
28.5°N

29°N

29.5°N

30°N

30.5°N

31°N

31.5°N
Domain 1

Domain 2
Analysis domain

Urban station
Non-urban stat.

30.8°E 31°E 31.2°E 31.4°E

29.8°N

29.9°N

30°N

30.1°N

30.2°N

Analysis domain

Cairo

103°E 104°E 105°E 106°E

29°N

29.5°N

30°N

30.5°N

31°N

31.5°N

32°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

103.5°E 103.75°E 104°E 104.25°E 104.5°E
30.15°N

30.3°N

30.45°N

30.6°N

30.75°N

30.9°N

31.05°N
Analysis domain

Chengdu

78.5°E 79°E 79.5°E 80°E 80.5°E 81°E 81.5°E 82°E

11.5°N

12°N

12.5°N

13°N

13.5°N

14°N

14.5°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

79.9°E 80.05°E 80.2°E 80.35°E
12.7°N

12.8°N

12.9°N

13°N

13.1°N

13.2°N

13.3°N

Analysis domain
Chennai

105°E 105.5°E 106°E 106.5°E 107°E 107.5°E 108°E
28°N

28.5°N

29°N

29.5°N

30°N

30.5°N

31°N
Domain 1

Domain 2
Analysis domain

Urban station
Non-urban stat.

106.3°E 106.45°E 106.6°E 106.75°E

29.3°N

29.4°N

29.5°N

29.6°N

29.7°N

Analysis domain

Chongqing

37.5°E 38°E 38.5°E 39°E 39.5°E 40°E 40.5°E
8.5°S

8°S

7.5°S

7°S

6.5°S

6°S

5.5°S

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

39°E 39.15°E 39.3°E 39.45°E

7.1°S

7°S

6.9°S

6.8°S

6.7°S

6.6°S

Analysis domain

Dar es Salaam

75.5°E 76°E 76.5°E 77°E 77.5°E 78°E 78.5°E

27.5°N

28°N

28.5°N

29°N

29.5°N

30°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

76.8°E 77°E 77.2°E 77.4°E 77.6°E
28.2°N

28.3°N

28.4°N

28.5°N

28.6°N

28.7°N

28.8°N

28.9°N

Analysis domain

Delhi

89°E 89.5°E 90°E 90.5°E 91°E 91.5°E 92°E

22.5°N

23°N

23.5°N

24°N

24.5°N

25°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

90.1°E 90.25°E 90.4°E 90.55°E 90.7°E
23.4°N

23.5°N

23.6°N

23.7°N

23.8°N

23.9°N

24°N

24.1°N

Analysis domain

Dhaka

110°E 111°E 112°E 113°E 114°E 115°E 116°E 117°E
19°N

20°N

21°N

22°N

23°N

24°N

25°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

112.8°E 113°E 113.2°E 113.4°E 113.6°E

22.65°N

22.8°N

22.95°N

23.1°N

23.25°N

23.4°N

Analysis domain
Guangzhou

105°E 106°E 107°E 108°E 109°E

9°N

10°N

11°N

12°N

13°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

106.4°E 106.6°E 106.8°E 107°E

10.6°N

10.7°N

10.8°N

10.9°N

11°N

11.1°N

Analysis domain

Ho Chi Minh City

77°E 77.5°E 78°E 78.5°E 79°E 79.5°E 80°E

16°N

16.5°N

17°N

17.5°N

18°N

18.5°N

19°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

78.25°E 78.4°E 78.55°E 78.7°E

17.2°N

17.3°N

17.4°N

17.5°N

17.6°N

Analysis domain

Hyderabad

27.5°E 28°E 28.5°E 29°E 29.5°E 30°E 30.5°E

40°N

40.5°N

41°N

41.5°N

42°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

28.5°E 28.75°E 29°E 29.25°E 29.5°E

40.8°N

40.9°N

41°N

41.1°N

41.2°N

41.3°N
Analysis domain

Istanbul

105°E 106°E 107°E 108°E 109°E

8°S

7°S

6°S

5°S

4°S

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

106.6°E 106.8°E 107°E 107.2°E

6.75°S

6.6°S

6.45°S

6.3°S

6.15°S

6°S

Analysis domain

Jakarta
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65°E 66°E 67°E 68°E 69°E

23°N

24°N

25°N

26°N

27°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

66.8°E 67°E 67.2°E 67.4°E

24.7°N

24.8°N

24.9°N

25°N

25.1°N

Analysis domain

Karachi

14°E 14.5°E 15°E 15.5°E 16°E 16.5°E 17°E
6°S

5.5°S

5°S

4.5°S

4°S

3.5°S

3°S

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

15.15°E 15.3°E 15.45°E 15.6°E
4.7°S

4.6°S

4.5°S

4.4°S

4.3°S

4.2°S

4.1°S

Analysis domain

Kinshasa

86°E 87°E 88°E 89°E 90°E 91°E

21°N

22°N

23°N

24°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

87.8°E 88°E 88.2°E 88.4°E 88.6°E

22.35°N

22.5°N

22.65°N

22.8°N

22.95°N

23.1°N
Analysis domain

Kolkata

1°E 2°E 3°E 4°E 5°E
4°N

5°N

6°N

7°N

8°N

9°N
Domain 1

Domain 2
Analysis domain

Urban station
Non-urban stat.

3°E 3.25°E 3.5°E 3.75°E

6.15°N

6.3°N

6.45°N

6.6°N

6.75°N

6.9°N

Analysis domain

Lagos

73°E 74°E 75°E 76°E

30°N

30.5°N

31°N

31.5°N

32°N

32.5°N

33°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

74°E 74.2°E 74.4°E 74.6°E
31.1°N

31.2°N

31.3°N

31.4°N

31.5°N

31.6°N

31.7°N

31.8°N
Analysis domain

Lahore

79°W 78°W 77°W 76°W 75°W

14°S

13°S

12°S

11°S

10°S

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

77.2°W 77.05°W 76.9°W 76.75°W 76.6°W

12.45°S

12.3°S

12.15°S

12°S

11.85°S

11.7°S
Analysis domain

Lima

1.5°W 1°W 0.5°W 0° 0.5°E 1°E 1.5°E
50.4°N

50.7°N

51°N

51.3°N

51.6°N

51.9°N

52.2°N

52.5°N
Domain 1

Domain 2
Analysis domain

Urban station
Non-urban stat. 0.6°W 0.3°W 0° 0.3°E

51.2°N

51.3°N

51.4°N

51.5°N

51.6°N

51.7°N

Analysis domain

London

121°W 120°W 119°W 118°W 117°W 116°W 115°W
31°N

32°N

33°N

34°N

35°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

118.75°W 118.5°W 118.25°W 118°W 117.75°W

33.6°N

33.75°N

33.9°N

34.05°N

34.2°N

Analysis domain

Los Angeles

11.5°E 12°E 12.5°E 13°E 13.5°E 14°E 14.5°E 15°E
10.5°S

10°S

9.5°S

9°S

8.5°S

8°S

7.5°S

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

13.05°E 13.2°E 13.35°E 13.5°E 13.65°E

9.2°S

9.1°S

9°S

8.9°S

8.8°S

8.7°S

8.6°S

Analysis domain
Luanda

119°E 120°E 121°E 122°E 123°E
12°N

13°N

14°N

15°N

16°N

17°N
Domain 1

Domain 2
Analysis domain

Urban station
Non-urban stat.

120.7°E120.85°E 121°E 121.15°E121.3°E

14.25°N

14.4°N

14.55°N

14.7°N

14.85°N

15°N

Analysis domain

Manila

100.5°W 99.5°W 99°W 98.5°W 98°W 97.5°W

18°N

18.5°N

19°N

19.5°N

20°N

20.5°N

21°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

99.4°W 99.2°W 99°W 98.8°W

19.2°N

19.3°N

19.4°N

19.5°N

19.6°N

19.7°N

19.8°N

Analysis domain
Mexico City

36°E 36.5°E 37°E 37.5°E 38°E 38.5°E 39°E

55°N
55.25°N

55.5°N
55.75°N

56°N
56.25°N

56.5°N
56.75°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

37.2°E 37.5°E 37.8°E 38.1°E

55.5°N

55.6°N

55.7°N

55.8°N

55.9°N

56°N

Analysis domain

Moscow
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71°E 72°E 73°E 74°E 75°E

17°N

18°N

19°N

20°N

21°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

72.7°E 72.85°E 73°E 73.15°E 73.3°E
18.8°N

18.9°N

19°N

19.1°N

19.2°N

19.3°N

19.4°N

19.5°N

Analysis domain

Mumbai

117°E 118°E 119°E 120°E

30.5°N

31°N

31.5°N

32°N

32.5°N

33°N

33.5°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

118.6°E 118.75°E 118.9°E

31.9°N

32°N

32.1°N

32.2°N

32.3°N

32.4°N
Analysis domain

Nanjing

77°W 76°W 75°W 74°W 73°W 72°W 71°W 70°W

38°N

39°N

40°N

41°N

42°N

43°N
Domain 1

Domain 2
Analysis domain

Urban station
Non-urban stat.

74.5°W 74°W 73.5°W 73°W

40.5°N
40.65°N
40.8°N

40.95°N
41.1°N

41.25°N

Analysis domain

New York

133°E 134°E 135°E 136°E 137°E 138°E

33°N

34°N

35°N

36°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

134.5°E 135°E 135.5°E

34.2°N

34.35°N

34.5°N

34.65°N

34.8°N

34.95°N

35.1°N
Analysis domain

Osaka

0.5°E 1°E 1.5°E 2°E 2.5°E 3°E 3.5°E
47.7°N

48°N

48.3°N

48.6°N

48.9°N

49.2°N

49.5°N

49.8°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

1.8°E 2.1°E 2.4°E 2.7°E

48.5°N

48.6°N

48.7°N

48.8°N

48.9°N

49°N

49.1°N

Analysis domain

Paris

49.5°W 48°W 46.5°W 45°W 43.5°W 42°W 40.5°W

27°S

26°S

25°S

24°S

23°S

22°S

21°S

20°S

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

44°W 43.5°W 43°W 42.5°W
23.25°S

23.1°S

22.95°S

22.8°S

22.65°S

22.5°S

Analysis domain

Rio de Janeiro

49.5°W 48°W 46.5°W 45°W 43.5°W 42°W 40.5°W

27°S

26°S

25°S

24°S

23°S

22°S

21°S

20°S

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

47°W 46.75°W 46.5°W 46.25°W

23.9°S

23.8°S

23.7°S

23.6°S

23.5°S

23.4°S

23.3°S
Analysis domain

São Paulo

125°E 126°E 127°E 128°E 129°E

36°N

36.5°N

37°N

37.5°N

38°N

38.5°N

39°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

126.6°E 126.8°E 127°E 127.2°E

37.2°N

37.3°N

37.4°N

37.5°N

37.6°N

37.7°N

37.8°N
Analysis domain

Seoul

119°E 120°E 121°E 122°E 123°E

29°N

30°N

31°N

32°N

33°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

121°E 121.25°E 121.5°E 121.75°E

30.75°N

30.9°N

31.05°N

31.2°N

31.35°N

31.5°N

Analysis domain

Shanghai

110°E 111°E 112°E 113°E 114°E 115°E 116°E 117°E
19°N

20°N

21°N

22°N

23°N

24°N

25°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

113.8°E 114°E 114.2°E 114.4°E

22.2°N

22.35°N

22.5°N

22.65°N

22.8°N

22.95°N

Analysis domain

Shenzhen



Simulation Domain Configuration 95

50°E 51°E 52°E 53°E
34°N

34.5°N

35°N

35.5°N

36°N

36.5°N

37°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

50.75°E 51°E 51.25°E 51.5°E 51.75°E
35.4°N

35.5°N

35.6°N

35.7°N

35.8°N

35.9°N

Analysis domain

Tehran

115°E 116°E 117°E 118°E 119°E 120°E
37°N

38°N

39°N

40°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

117°E 117.25°E 117.5°E 117.75°E

38.7°N

38.85°N

39°N

39.15°N

39.3°N

Analysis domain

Tianjin

138°E 139°E 140°E 141°E 142°E

34°N

35°N

36°N

37°N

Domain 1
Domain 2
Analysis domain

Urban station
Non-urban stat.

139.2°E 139.5°E 139.8°E 140.1°E 140.4°E

35.25°N

35.4°N

35.55°N

35.7°N

35.85°N

36°N

36.15°N

Analysis domain

Tokyo





AppendixC
Maps of Global Warming and

Urbanization Effect

The spatial maps of global warming in the 2050s (in reference to the preindustrial level) and
urbanization effect projected for the 43 megacities are listed in this section. Cities are sorted in
lexicographical order. Color scales are different among the cities.

Global warming (GW) GW + urbanization effect Urbanization effect

2.7

3.0

3.3

3.6

°C

0.2

0.1

0.0

0.1

0.2

°C

Ahmadabad

Global warming (GW) GW + urbanization effect Urbanization effect

2.6

2.8

3.0

3.2

°C
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0.1

0.0

0.1

0.2
°C

Bangalore

Global warming (GW) GW + urbanization effect Urbanization effect

2.50

2.75

3.00

°C

0.1

0.0

0.1

°C

Bangkok
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Global warming (GW) GW + urbanization effect Urbanization effect

3.0

3.3

3.6

3.9

°C

0.2

0.0

0.2

°C

Beijing

Global warming (GW) GW + urbanization effect Urbanization effect

2.8

3.0

3.2

°C

0.2

0.1

0.0

0.1

0.2
°C

Bogota

Global warming (GW) GW + urbanization effect Urbanization effect

2.00

2.25

2.50

2.75
°C

0.4

0.2

0.0

0.2

0.4

°C

Buenos Aires

Global warming (GW) GW + urbanization effect Urbanization effect
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°C
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0.0

0.2

°C

Cairo

Global warming (GW) GW + urbanization effect Urbanization effect
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3.00

3.25

°C

0.4

0.2

0.0

0.2

0.4
°C

Chengdu



Maps of Global Warming and Urbanization Effect 99

Global warming (GW) GW + urbanization effect Urbanization effect

2.4

2.6

2.8

3.0
°C

0.2

0.0

0.2

°C

Chennai

Global warming (GW) GW + urbanization effect Urbanization effect

2.25

2.50

2.75

3.00

°C

0.4

0.2

0.0

0.2

0.4
°C

Chongqing

Global warming (GW) GW + urbanization effect Urbanization effect

2.5

3.0

3.5

°C

0.4

0.2

0.0

0.2

0.4

°C

Dar es Salaam

Global warming (GW) GW + urbanization effect Urbanization effect

2.8

3.2

3.6

4.0

°C

0.50

0.25

0.00

0.25

0.50

°C

Delhi

Global warming (GW) GW + urbanization effect Urbanization effect

2.4

2.8

3.2

°C

0.4

0.2

0.0

0.2

0.4
°C

Dhaka



100 Maps of Global Warming and Urbanization Effect

Global warming (GW) GW + urbanization effect Urbanization effect

2.25

2.50

2.75

3.00

°C

0.1

0.0

0.1

°C

Guangzhou

Global warming (GW) GW + urbanization effect Urbanization effect

2.4

2.7

3.0

°C

0.2

0.1

0.0

0.1

0.2
°C

Ho Chi Minh City

Global warming (GW) GW + urbanization effect Urbanization effect

2.8

3.0

3.2

3.4
°C

0.10

0.05

0.00

0.05

0.10

°C

Hyderabad

Global warming (GW) GW + urbanization effect Urbanization effect

2.8

3.2

3.6

°C

0.2

0.1

0.0

0.1

0.2

°C

Istanbul

Global warming (GW) GW + urbanization effect Urbanization effect

2.4

2.8

3.2

°C

0.4

0.2

0.0

0.2

0.4

°C

Jakarta



Maps of Global Warming and Urbanization Effect 101

Global warming (GW) GW + urbanization effect Urbanization effect

3.00

3.25

3.50

3.75
°C

0.4

0.2

0.0

0.2

0.4

°C

Karachi

Global warming (GW) GW + urbanization effect Urbanization effect

2.75

3.00

3.25

3.50

°C

0.4

0.2

0.0

0.2

0.4

°C

Kinshasa

Global warming (GW) GW + urbanization effect Urbanization effect

2.0

2.4

2.8

3.2

°C

0.2

0.0

0.2

°C

Kolkata

Global warming (GW) GW + urbanization effect Urbanization effect

2.4

2.7

3.0

3.3

°C

0.5

0.0

0.5

°C

Lagos

Global warming (GW) GW + urbanization effect Urbanization effect

2.8

3.2

3.6

4.0

°C

0.50

0.25

0.00

0.25

0.50

°C

Lahore



102 Maps of Global Warming and Urbanization Effect

Global warming (GW) GW + urbanization effect Urbanization effect

2.6

2.7

2.8

°C

0.2

0.1

0.0

0.1

0.2

°C

Lima

Global warming (GW) GW + urbanization effect Urbanization effect

2.4

2.8

3.2

°C

0.2

0.1

0.0

0.1

0.2
°C

London

Global warming (GW) GW + urbanization effect Urbanization effect

2.8

3.2

3.6

°C

0.2

0.0

0.2

°C

Los Angeles

Global warming (GW) GW + urbanization effect Urbanization effect

2.4

2.7

3.0

3.3

°C

0.2

0.1

0.0

0.1

0.2

°C

Luanda

Global warming (GW) GW + urbanization effect Urbanization effect

2.00

2.25

2.50

2.75

°C

0.2

0.1

0.0

0.1

0.2

°C

Manila



Maps of Global Warming and Urbanization Effect 103

Global warming (GW) GW + urbanization effect Urbanization effect

2.75

3.00

3.25

°C

0.2

0.1

0.0

0.1

0.2

°C

Mexico City

Global warming (GW) GW + urbanization effect Urbanization effect

3.6

4.0

4.4

4.8
°C

0.1

0.0

0.1

°C

Moscow

Global warming (GW) GW + urbanization effect Urbanization effect

2.50

2.75

3.00

3.25
°C

0.1

0.0

0.1

°C

Mumbai

Global warming (GW) GW + urbanization effect Urbanization effect

2.8

3.0

3.2

3.4
°C

0.2

0.0

0.2

°C

Nanjing

Global warming (GW) GW + urbanization effect Urbanization effect

3.5

4.0

4.5

°C

0.2

0.0

0.2

°C

New York



104 Maps of Global Warming and Urbanization Effect

Global warming (GW) GW + urbanization effect Urbanization effect

2.4

2.7

3.0

3.3

°C

0.1

0.0

0.1

°C

Osaka

Global warming (GW) GW + urbanization effect Urbanization effect

2.4

2.8

3.2

3.6

°C

0.2

0.1

0.0

0.1

0.2
°C

Paris

Global warming (GW) GW + urbanization effect Urbanization effect

2.0

2.4

2.8

3.2

°C

0.10

0.05

0.00

0.05

0.10

°C

Rio de Janeiro

Global warming (GW) GW + urbanization effect Urbanization effect

2.6

2.8

3.0

3.2
°C

0.2

0.0

0.2

°C

Seoul

Global warming (GW) GW + urbanization effect Urbanization effect

2.7

3.0

3.3

3.6
°C

0.2

0.0

0.2

°C

Shanghai



Maps of Global Warming and Urbanization Effect 105

Global warming (GW) GW + urbanization effect Urbanization effect

1.6

2.0

2.4

2.8
°C

0.2

0.0

0.2

°C

Shenzhen

Global warming (GW) GW + urbanization effect Urbanization effect

2.0

2.4

2.8

°C

0.1

0.0

0.1

°C

São Paulo

Global warming (GW) GW + urbanization effect Urbanization effect

3.0

3.3

3.6

3.9

°C

0.4

0.2

0.0

0.2

0.4

°C

Tehran

Global warming (GW) GW + urbanization effect Urbanization effect

3.25

3.50

3.75

°C

0.4

0.2

0.0

0.2

0.4
°C

Tianjin

Global warming (GW) GW + urbanization effect Urbanization effect

2.0

2.4

2.8

°C

0.2

0.1

0.0

0.1

0.2
°C

Tokyo


