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Abstract

This dissertation is entitled “Transportation Systems Analysis with Angle: Modeling

and Empirical Studies” by Kota Nagasaki, submitted to the Department of Civil and

Environmental Engineering, School of Environment and Society in partial fulfillment

of the requirements for the degree of Doctor of Engineering at the Tokyo Institute of

Technology, March, 2024. The dissertation supervisor is Associate Professor Toru Seo,

Department of Civil and Environmental Engineering, Tokyo Institute of Technology. The

examiners are Associate Professor Toru Seo, Professor Yasunori Muromachi, Professor

Shinya Hanaoka, Professor Yuki Takayama, Associate Professor Takuya Oki (Tokyo

Institute of Technology) and Honorary Professor Yasuo Asakura (the University of

Tokyo).

This dissertation summarizes modeling and empirical studies of angular analysis for

transportation analysis. It consists of six chapters.

In Chapter 1, the background and objectives are summarized. Angle is a periodic value

and appears in various aspects of the world. In transportation, the direction in which a

traveler moves, the direction of the road, and the time of day are examples of angular

indicators. However, angular indicators are difficult to analyze mathematically due to

their periodicity. For this reason, angular indicators have not received much attention

in transportation. Nevertheless, modeling with angle can contribute to the transportation

systems analysis. In this dissertation, the author builds a framework for transportation

systems analysis with angle by applying directional statistics, which is statistics for

angular data. Specifically, behavior, temporal, and spatial transportation are modeled

from an angular perspective, and the features of the proposed models are empirically

analyzed using actual data.

In Chapter 2, related literature is reviewed and summarized. First, directional

statistics, which is statistics to analyze angles, is summarized. Specifically, the procedure

of angular data, drawing, probability distribution, and regression analysis in directional

statistics are explained, and examples of applications other than transportation are
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summarized. Next, the transportation analysis is classified into demand, supply, behavior,

and transportation states. The elementary analytical methods and the recent research on

each concept are summarized. In addition, studies that employed angular analysis for

each concept are reviewed.

In Chapter 3, a route choice model with an angular indicator was built and validated by

empirical studies. In discrete choice models, the turn angle is often described by setting

dummy variables as right/left turns or U-turns. However, the results vary depending on

the predetermined threshold value. In addition, although both behaviors are essentially

changes of travel direction, the two are rarely analyzed as continuous variables without

separating them. Therefore, the model describes route choice behavior with the angular

indicator, named the turning angle at an intersection. The route choice model is applied

to the actual route choice behavior of drivers observed in Tokyo. The results showed that

the angular indicator significantly affected drivers’ route choice behavior.

In Chapter 4, a model of the daily variation of traffic volume by converting time into

angle in order to represent periodicity was built. Since the time in a day is looped in

24 hours, conversion of the time into angles is necessary to describe the time variation.

Traffic volume varies with time and has two peaks: morning peak on the way to work

and evening peak on the way home. The shape of the two peaks is significantly different,

with the morning peak rising quickly and sharply while the evening peak is gentle. In

describing these variations in traffic volume over time using a probability distribution,

a circular distribution that can represent multimodality and flexible shapes must be

employed. Therefore, the mixture of Kato–Jones distribution that satisfies this property

was applied to the time variation of traffic volume. Furthermore, a quick and stable

estimation method for the mixed Kato–Jones distribution was built. The stability of the

estimation method was assessed and interpreted when the time variation was divided into

multiple parts.

In Chapter 5, a model that describes the states of OD demand for a certain direction by

the directional distribution of overall demand and the road network was built. Describing

the entire demand pattern within an area is difficult by conventional approaches. By
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aggregating the angles between the origin and destination of each demand, the overall

demand pattern can be quantitatively described. In addition, the relationship between

transportation states and the morphology of road network, such as whether the road

network is grid-like or not, is also difficult to describe using conventional methods. The

distribution of the direction of each road in an area can intuitively and quantitatively

describe the morphology of the road network. In this chapter, a novel descriptive model

that captures the transportation state by overall demand pattern and network morphology

is modeled. In addition, the proposed model is validated by transportation data for Tokyo.

In Chapter 6, achievements and future directions are summarized. The achievements

of this research are the establishment of a framework for transportation systems analysis

with angles by building models for each concept of transportation based on angle. In

addition, the proposed models are validated through empirical studies, and the potential

of transportation systems analysis with angles is revealed. The future directions include

more precise analysis using multidimensional angular variables.
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Chapter 1 Introduction

1.1 Background

Angle is a periodic value and appears in various aspects of the world. Angles are often

used to describe the direction of objects. For example, wind direction is a typical angular

indicator, which is the indicator described on the angular axis. In addition, time in a

day and date in a year can also be described in terms of angles because time and date

are looped in a day and a year, respectively. Therefore, they can correspond to angles

one-to-one.

Angles also appear in various aspects in transportation, which widely covers the

movement of people and geographical objects. Transportation consists of a complex

interplay of various factors. They can be classified roughly into four concepts: demand,

supply, behavior, and state. They are used with the following meanings throughout in this

dissertation.

Demand More specifically, collective demand. Collection of intention of movement to

achieve an activity.

Supply Links or networks and their performances used by transportation.

Behavior More specifically, individual choice behavior. The way an individual chooses

an action, such as route choice.

State The results of transportation from the demand, supply, and behavior of an

individual or a group, such as speed and travel time.

A diagram of these four concepts in transportation is shown in Fig. 1.1. In addition,

angles appeared in each concept are shown in Fig. 1.2. Angles appear in the demand,

supply, and behavior as they can describe the direction of objects, the direction in which

people move, and its change. Furthermore, since demand and state constantly changing,

they can be analyzed as angular indicators by converting the time variable into angular

1



Chapter 1 Introduction

(a) Demand (b) Supply

(c) Behavior (d) State

Figure 1.1: Four concepts in transportation.

variables.

Limited number of studies have analyzed transportation with angular indicators. A

few examples are studies explained route choice behavior with angular indicators (Dalton,

2003; Turner, 2007) and analyzed the road network and demand using angles (Mohajeri

and Gudmundsson, 2012; Boeing, 2019; Zhou, 2015). Moreover, intra-day traffic volume

variations and travelers’ seasonal variations have specific patterns of concentrating users

at certain periods (Transportation Research Board, 2000).

One reason for the limited number of studies with angular indicators is that despite the

versatility of angles, they are difficult to analyze mathematically due to their periodicity.

The traditional statistical methodology cannot be applied since the angles loop in 360

2
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Figure 1.2: Angles in transportation.

Figure 1.3: The discrepancies in the calculation of angle due to periodicity.

degrees or 2π radians. For example, the difference between π/4 and 7π/4 radians is not

3π/2 radians, but π/2 radians is appropriate due to its periodicity as shown in Fig. 1.3.

In addition, the usual method of calculating means for π/4 and 7π/4 radians results in π

radians, which is also counterintuitive. Because of the difficulty of mathematical analysis,

angular indicators have not been used frequently or correctly in transportation, which

requires mathematical analysis in general.

The directional statistics (Mardia and Jupp, 2000) is a branch of statistics that is

specifically developed to analyze angular data, which is the data described on the angular

axis. In directional statistics, angular data is treated as a unit vector with its angle. In

addition, probability distributions and regression methods that adjust for periodicity have

been developed. Some studies in other fields, such as meteorology (Bowers et al., 2000)

3
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or biology (Morales et al., 2004), have analyzed mathematically angular data by applying

directional statistics.

Modeling with angle can contribute to the transportation systems analysis, as it has

been successfully applied in other fields. Specifically, the following two contributions are

possible:

• Simplified description of phenomena

• Universal modeling without preset condition

First, angular indicators enable a simple description of some phenomena that

are difficult to represent with existing methods. Angular indicators can describe

aggregate patterns with only one-dimensional information. The description of the

positional relationship between two points, such as OD, requires at least two-dimensional

information of vertical and horizontal displacement. In some cases, only one-dimensional

information of the angle between two points is sufficient to understand a phenomenon.

For example, only the angular information is necessary to determine whether the demand

pattern is concentrated or not, or whether the road network is grid-like or not. Several

studies have shown that these representations can visually classify demand patterns

and road networks (Mohajeri and Gudmundsson, 2012; Boeing, 2019; Zhou, 2015).

On the other hand, to grasp these patterns without using angles, higher dimensional

information is required. In addition, quantifying the pattern of angular indicators

facilitates mathematical comparisons with other indicators.

Second, direct analysis with angles by using the techniques of directional statistics

enables modeling that is independent of preset conditions. Conventional studies with

angles have solved the periodicity of angular variables by discretizing them with dummy

variables or by cutting the angular axis and converting it to a linear axis. These approaches

produce different results depending on the preset thresholds. For example, Mohajeri and

Gudmundsson (2012) tried to estimate the angular distribution by extracting a specific

section of the angular axis instead of the entire axis to avoid problems caused by

periodicity. In the route choice model, Fosgerau et al. (2013) analyzed angle changes
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as dummy variables of right/left turns and U-turns. In addition, when analyzing time

series data over a day or a year, in some cases, converting the data to angles is better to

consider periodicity. For example, by estimating the time variation of traffic volume at a

given point as a probability distribution, drivers’ behaviors could be detected from easily

observable roadside traffic volume data. Conventional statistical methods cannot perform

this statistical analysis because they cannot represent the periodicity of time. In order to

model such time-varying data, it is indispensable to apply angular analysis, which can

represent periodicity.

1.2 Objectives

The primary objective of this dissertation is to build a framework for transportation

systems analysis with angle. Modeling with angle can contribute to the transportation

systems analysis, as it has been successfully applied in other fields. In order to maximize

the potential of angular analysis, the knowledge of directional statistics is used to leverage

it to the fullest extent.

Specifically, angle-based models are built for transportation phenomena at three

scales: traveler route choice behavior, within-day transportation dynamics, and area-wide

transportation state. Then, the features of the proposed models are empirically analyzed

using actual data.

This dissertation is organized as follows. Chapter 2 reviews the literature on related

topics to this dissertation: directional statistics, demand, supply, behavior, and state

in transportation. Chapter 3 builds a behavior model with the angle that deals with

individual route choice behavior with angular indicator, named turn angle. Chapter 4

builds a temporal transportation model with the angle that applies a mixture probability

density function of angles to daily variations in transportation. Chapter 5 builds a spatial

transportation model with angle that describes traffic state by two angular distributions

that describe overall demand pattern and network morphology. Finally, Chapter 6

concludes the achievements and future direction of the proposed methodology and angular
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Figure 1.4: The structure of this dissertation.

analysis in transportation. Fig. 1.4 illustrates the structure of this dissertation.
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This chapter reviews the literature on related topics to this dissertation. Section 2.1

summarizes the concept, probability distribution, regression model, and application of

directional statistics. Section 2.2, Section 2.3, Section 2.4, and Section 2.5 review

the existing studies for demand, supply, behavior, and state analysis in transportation,

respectively, which are the fundamental concepts in transportation. Each of them is

reviewed separately with conventional studies and studies using angles. Finally, Section

2.6 summarizes the reviews. Note that angles are written in radians unless otherwise

noted.

2.1 Directional statistics

2.1.1 Basis of directional statistics

(1) Preliminaries

Directional statistics (Mardia and Jupp, 2000) is the statistics for processing angular data.

Angular data has a periodicity that repeat once in 360 degrees or 2π radians.

Due to the periodicity, angular values 0 and 2π, or −π/4 and 7π/4 represent essentially

the same. This periodicity causes trouble in conventional statistical processing. For

example, the difference between π/4 and 7π/4 on a number line is 3π/2. However, since

−π/4 (rad) equals 7π/4 (rad), the angular difference between π/4 and 7π/4 derives two

different values: 3π/2 and π/2.

Directional statistics solves the problem of periodicity by regarding angular data as

a unit vector with its angle. In other words, the angular data of θ is processed as

(cos θ, sin θ)⊤ or z = eiθ = cos θ + i sin θ, where ⊤ means the transpose of vector. For

example, an angular data with π/3 and π are converted into (1/2,
√

3/2)⊤ and (−1, 0)⊤,
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respectively. This conversion is independent of the domain of the angles and always

results in the same vector. The difference in angles is obtained by taking the angle

between the two vectors, i.e., the inner product. In the case of π/4 and 7π/4, each vector

is (1/
√

2, 1/
√

2)⊤ and (1/
√

2,−1/
√

2)⊤. Since the inner product of the two vectors is

zero, the difference is θ with arccos θ = 0, i.e. θ = π/2.

(2) Mean and variance of angular data

Mean and variance are defined by employing composite vectors. Suppose that sample set

consists n angular samples θ j, where j = 1, 2, . . . , n. In this case, the composite vector of

all samples (C̄, S̄ )⊤ is calculated as

C̄ =
1
n

n∑
j=1

cos θ j, S̄ =
1
n

n∑
j=1

sin θ j. (2.1)

Therefore, the sample mean direction θ̄ is the solution of the equations

C̄ = R̄ cos θ̄, S̄ = R̄ sin θ̄, (2.2)

where R̄ is called the sample mean resultant length that is given by

R̄ = (C̄2 + S̄ 2)1/2. (2.3)

R̄ takes the value between 0 and 1. If the samples are concentrated around the sample

mean direction, the composite vector is larger and R̄ takes larger values. For consistency

with the usual statistics, the sample angular variance V is calculated by subtracting R̄ from

1, i.e.,

V = 1 − R̄. (2.4)

V takes the value between 0 and 1.

The mean and variance of π/4 and 7π/4 are taken as an example as shown in Fig. 2.1.

The composite vector of the two vectors is (2/
√

2, 0)⊤. The sample mean direction of

them is 0 and the sample angular variance is 1 − 1/
√

2 ≈ 0.293.
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Figure 2.1: Example of calculation of mean and variance for angular data.

(3) Drawing angular data

When depicting angular data, the periodicity should also be taken into account. The usual

histogram, in which both ends of the histogram are separated from each other, may not

be able to capture the trend of angular data correctly. For this reason, a rose diagram, a

circular graph with both ends of the histogram connected, is often used to depict angular

data. Fig. 2.2 shows examples of the usual histogram and rose diagram. In the usual

histogram without both edges connected, two peaks are seen, while in the rose diagram,

with both edges connected, only one peak can be clearly seen.

(4) Multidimensional angular descriptions

The procedure for angular data on the circle in R2 is discussed above. On the other hand,

there are also descriptions to process angular data of higher dimensions. First, angular

data with a p-dimensional direction is represented by a unit vector in p-dimensional

Euclidean space Rp. A typical example is the direction of a star seen from the earth,

which is 3-dimensional angular data. In addition, when p equals 2, the data is on the

circle described above. Next, the data with two independent angular data, such as the

wind direction at a given time, are represented as data on a torus. A torus is the surface

of a donut, which can have two independent angular axes as shown in Fig. 2.3. Finally,

the data with linear and angular axes, such as wind speed and direction, are represented
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(a) Usual histogram (b) Rose diagram

Figure 2.2: Examples of usual histogram and rose diagram.

Figure 2.3: Example of torus.

as data on a cylinder. The cylinder is the surface of the cylinder and can have a linear axis

and a angular axis independently as shown in Fig. 2.4.
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Figure 2.4: Example of cylinder.

2.1.2 Circular distribution

(1) Properties of circular distribution

In order to represent the periodicity of angles, a distribution function on angular axis f (θ)

must satisfy the following three properties.

1. f (θ) ≥ 0 everywhere on (−∞,∞)

2. f (θ) = f (θ + 2π) everywhere on (−∞,∞)

3.
∫ 2π

0
f (θ)dθ = 1

A distribution that satisfy these three properties is called circular distribution.
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(2) von Mises distribution

The von Mises distribution (von Mises, 1918) is the most representative circular

distribution. The probability density function of the von Mises distribution M(µ, κ) is

g(θ; µ, κ) =
1

2πI0(κ)
eκ cos (θ−µ), (2.5)

where I0 denotes the modified Bessel function of the first kind and order 0, which can be

defined as

I0(κ) =
1

2π

∫ 2π

0
eκ cos θdθ, (2.6)

where µ is the mean direction and κ is a parameter that manipulates concentration; the

larger the value, the sharper the peaks of the distribution. The ranges of parameters are

0 ≤ µ < 2π and κ ≥ 0, respectively. The shape of the distribution is unimodal and

symmetrical. The von Mises distribution has played a central role in directional statistics

because of its similarity to the normal distribution on the linear axis.

(3) Wrapped distribution

The wrapping is one of the ways to convert from a probability distribution on the linear

axis to a circular distribution. The wrapping corresponds a random variable x on the linear

axis to a random variable xw on the circular axis by

xw = x (mod 2π). (2.7)

Therefore, a wrapped distribution fw(θ) can be obtained from a probability density

function f (θ) by

fw(θ) =
∞∑

k=−∞

f (θ + 2πk). (2.8)

Many wrapped distributions have been proposed, such as the wrapped Poisson distribution

(Lévy, 1939) and the wrapped Normal distribution (de Haas-Lorentz, 2013). However,

most of them are difficult to handle because they include infinite series in their probability
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density functions. The wrapped Cauchy distribution (Lévy, 1939) is one of the wrapped

distributions whose probability density function can be described in a form that does

not include an infinite series. The probability density function of the wrapped Cauchy

distribution WC(µ, ρ) is

c(θ; µ, ρ) =
1

2π
1 − ρ2

1 + ρ2 − 2ρ cos (θ − µ)
, (2.9)

where µ is the mean direction and ρ is the mean resultant length. The ranges of parameters

are 0 ≤ µ < 2π and 0 ≤ ρ < 1, respectively. The shape of the distribution is unimodal and

symmetrical.

(4) Kato–Jones distribution

Kato–Jones distribution (Kato and Jones, 2015) is an extended distribution based on the

wrapped Cauchy distribution, and its probability density function is

gKJ(θ; µ, γ, λ, ρ) =
1

2π

{
1 + 2γ

cos(θ − µ) − ρ cos λ
1 + ρ2 − 2ρ cos(θ − µ − λ)

}
. (2.10)

The parameter µ and γ controls the location or mean direction, the concentration or the

mean resultant length, respectively. The parameters λ and ρ influence the skewness and

kurtosis of the distribution. The ranges of the parameters are 0 ≤ µ < 2π, 0 ≤ γ <

1, 0 ≤ ρ < 1, and 0 ≤ λ < 2π satisfying (ρ cos λ − γ)2 + (ρ sin λ)2 ≤ (1 − γ)2. Four

parameters allow for flexible representation of changes in distribution shape, including

kurtosis and skewness as shown in Fig. 2.5. In addition, the ease of parameter estimation

and interpretation are advantages of the Kato–Jones distribution. Note that the use of the

Kato–Jones distribution is recommended in recent review papers of Ley et al. (2021) and

Pewsey and Garcı́a-Portugués (2021) as a flexible circular distribution.

2.1.3 Regression

In regression, the periodicity of angular indicators must also be taken into account. There

are three types of regressions involving angular variables: (1) regression with angular
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(a) Difference by γ (b) Difference by ρ (c) Difference by λ

Figure 2.5: Difference in distribution shape by parameter values. The value of parameters is γ = 0.5, ρ =

0.5, λ = 0 if not noted.

inputs and linear outputs, (2) linear inputs and angular outputs, and (3) both inputs and

outputs angular, respectively. (2) was formulated in Fisher and Lee (1992) and Gill and

Hangartner (2010), and (3) was formulated in Downs and Mardia (2002), Kato et al.

(2008) and Kato and Jones (2010). Fig. 2.6(a) plots the data with the angular variable θ

and the linear variable y on the horizontal and vertical axes, respectively. Johnson and

Wehrly (1978) proposed a regression model using trigonometric functions to take into

account the periodicity of angles as

ŷ = α + β1 cos θ + β2 sin θ. (2.11)

Eq. (2.11) allows for regression with angular variables as explanatory variables as shown

in Fig. 2.6(b). In addition, higher-order regression is possible in the angular regression

model as well as polynomial regression in usual regression models as

ŷ = α +
K∑

k=1

βck cos kθ +
K∑

k=1

βsk sin kθ, (2.12)

where K is an external parameter, an integer that determines up to which degrees the

distributions are combined. The regression model enables the reflection of minor trends

in the sample by adding short-period trigonometric functions as Fourier series expansion.

14



Chapter 2 Literature Review

(a) Plot for regression (b) Result of regression

Figure 2.6: The plot and result of regression with angular inputs and linear outputs.

2.1.4 Application

Analysis with angles is effective in various fields and contributes to the understanding of

phenomena. A typical application of angular analysis is in meteorology, which focuses on

wind direction and other factors. Wind direction has historically been analyzed using the

findings of directional statistics because it provides rich angular data (Stephens, 1969).

Recently, more advanced directional statistical techniques have been applied to the study

of wind direction. Carta et al. (2008) proposed a probability density function on the

cylinder that simultaneously describes wind direction and wind speed and showed better

fits than existing models by case studies using actual weather data. Modlin et al. (2012)

and Jona-Lasinio et al. (2012) analyzed spatial-scale wind and wave direction data by a

hierarchical Bayesian model that incorporates temporal trends and wind autocorrelation,

and showed better fit than existing models. Lang et al. (2020) proposed a regression

model of angular input and output using regression tree and random forest, and applied

it to wind direction forecasting. The techniques of directional statistics have provided

significant advances in the analysis of meteorology.

In addition, directional statistics is often employed to analyze the direction of animal

movement. Many studies have applied the findings of directional statistics to random
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walks in animals and plants (Codling et al., 2008). Rivest et al. (2016) constructed a model

using the concept of random walk and regressed the direction of movement of animals

and plants on variables such as the travel distance traveled. Morales et al. (2004) and

McClintock et al. (2012) developed a model in which multiple random walk patterns can

switch and classify different behavior patterns. The model was applied to the movements

of elk and grey seals, and daily movements were classified into two categories: those with

large angle changes and short travel distances and those with long, straightforward travel

distances. These models focus on the movement of animals and are closely related to

transportation, which deals with the movement of people.

Analyses applying directional statistics are frequently performed in fields other than

those mentioned above. For example, bioinformatics research for probabilistic modeling

of protein structure (Boomsma et al., 2008), astrophysics research to find hints of dark

matter (Morgan et al., 2005), acoustics research on the human ability to detect sound

sources (McMillan et al., 2013), and image analysis for modeling three-dimensional

rotation with spherical functions (Esteves et al., 2018).

2.2 Demand in transportation

2.2.1 Conventional approach

(1) OD matrix

Transportation demand estimation and measurement are essential to the proper design of

transportation facilities. In particular, it is important to identify demand between arbitrary

locations.

OD matrix is The traditional method for describing demand between locations. This

method describes the demand between locations using a matrix whose (i, j) elements are

the demand between locations i and j.

The four step model (McNally, 2007) is a representative method for obtaining an

OD matrix. This model estimates how many people will flow to each transportation
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mode and route within an area. Each step is performed in the following order: trip

generation/concentration, mode assignment, distribution, and network assignment, or

trip generation/concentration, distribution, mode assignment, and network assignment.

Mode assignment and network assignment are explained in detail in Section 2.4. Trip

generation/concentration estimates the number of trips originating from a certain zone

and the number of trips destined for a certain zone. These are calculated based on

socioeconomic indicators such as the daytime and nighttime population of the zone. In

estimating the trips between zones, the gravity model (Anderson, 2011) or entropy model

(Wilson, 2011) is often used based on the generated and concentrated traffic volumes of

the two zones. The number of trips between each zone is summarized in an OD matrix.

These methods have shown some good results in the analysis of transportation demand

estimation.

Rather than estimating demand, there are also methods to measure demand. A national

travel survey is conducted every few years to gather information on trip objectives, start

time, age, gender, license status, and other characteristics (e.g., National Household

Travel Survey in U.S. (Santos et al., 2011)).

Many technologies can help estimate the demand by observing a part of the

movement. GPS data from mobile phones is rich demand data because many people

carry it all day (Huang et al., 2019). In addition, taxi, Uber and bike-sharing services

can also provide rich data with information on the location and time of the user (Yao

et al., 2018; Dong et al., 2018; Sathishkumar et al., 2020). In public transportation, IC

cards provide convenience to users and automatically obtain a massive amount of user

information, such as the origin and destination (Pelletier et al., 2011). Although these

data are not potential traffic demand because they observe the achieved movement, they

are used in many analyses in transportation planning.

(2) Demand analysis

Most studies on demand are focused on its forecasting and the reasons for its variation.

Toole et al. (2015) forecast travel demand using big data based on noisy mobile phones,
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geospatial data, and census data. Yao et al. (2018) proposed a method to forecast demand

from taxi demand data using the Deep Multi-View Spatial-Temporal Network (DMVST-

Net) framework to model both spatial and temporal relations, and showed that it is more

effective than existing methods. Eren and Uz (2020) reviewed the reasons for variations

in demand for bike sharing and categorized factors, such as environmental ones including

weather, location of the station, and age group.

(3) Variation of traffic volume

The traffic volume is defined as the number of vehicles traveling in certain time period,

such as 15 minutes, an hour or a day. The traffic volume varies depending on the time of

day and the season (Transportation Research Board, 2000). In particular, traffic volume is

large during the morning commute and evening return trip, and small during the midnight

period in a city. This trend results from commuters, who account for a large share of urban

transportation. Especially for commuting to work, the departure time choice is closely

related to the variation in a day, and a large amount of transportation is concentrated in

the wide time period around the start of the working (Arnott et al., 1990). In addition, in

tourist areas, the daily traffic volume varies depending on the season (Butler, 1998).

These variations have been confirmed by demand perspectives and traffic volume

observations. Furthermore, due to the importance of understanding trends in traffic

volume, many studies have been conducted to forecast traffic volume by time of day

or date (Smith and Demetsky, 1997; Vlahogianni et al., 2014; Lana et al., 2018; Hong,

2011).

(4) Demand visualization

Visualization of demand is discussed in several studies. Since there is no location

information in the OD matrix, another visualization method is preferred to capture

demand trends. Wood et al. (2010) drew the OD demand over a large area while

preserving the positional relationship between origin and destination by describing the
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OD as cells rather than vectors. Andrienko et al. (2017) reviewed methods for visualizing

demand and flow on the network, summarized various visualization methods and their

properties, and explained the importance of visual analytic in transportation.

2.2.2 Angular approach

For the analysis of variation of traffic volume, a study written in Korean has only

conducted the angular analysis, which used a mixed circular distribution to estimate the

daily variation of transportation (Na and Jang, 2011).

For visualization, Zhou (2015) clustered massive bike-sharing data in Chicago

spatiotemporally. In this study, each trip is described as the angle of a vector from the

origin to the user’s destination. The angles between the origin and destination of the flows

belonging to each cluster were tabulated, and differences in trends were found between

clusters and time. Hamedmoghadam et al. (2019) clustered the travel direction data of 16

million taxis by the characteristics of their origin and destination. The differences in the

characteristics of the travel direction and travel distance for each cluster were discussed.

Andrienko et al. (2016) proposed a visualization method using the direction of movement

as a way to abstract origin-destination movement data, which is high dimensional data.

They proposed several circular plotting methods and evaluated their visibility through

a questionnaire survey. In addition, they performed visualization of actual data and

discussed their advantages and disadvantages.

The angular analysis of demand is often used to visualize and classify trends in the

overall direction of movement of demand, which is challenging to identify in OD matrices

or plots on a map.
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2.3 Supply in transportation

2.3.1 Conventional approach

(1) Capacity of supply

Supply in transportation means the links and networks that the transportation uses, and

their performance (Button, 2010). Performance includes the capacity, which is the amount

of transportation that can flow per unit of time, and the frequency of operations in public

transportation. In vehicular transportation, supply refers the road or road network and its

performance, such as its capacity. These have been widely analyzed for a long time.

The capacity of a road depends on the number of lanes, lane width, design speed,

horizontal-vertical alignments, and other factors (Transportation Research Board, 2000).

It is difficult to determine the capacity analytically using these factors. Therefore, traffic

capacity is measured by observing actual transportation (Greenshields, 1935). In addition,

Fundamental Diagrams (FDs), which describe the relationship between transportation

density and flow, can also be used to calculate transportation capacity analytically. The

detail of FD is mentioned in Section 2.5.

In addition, the capacity of road networks has also been studied extensively (Yang

and H. Bell, 1998). The Macroscopic Fundamental Diagram (MFD), which describes

relationships between flow and density on the road network scale, is a particularly

successful theory with respect to the capacity of the road network (Geroliminis and

Daganzo, 2008). The capacity of the road network can be obtained from the density

and flow rate relationships at the road network scale in this model, as in the usual FD. The

detail of MFD is also mentioned in Section 2.5.

(2) Network analysis

In addition to capacity, there are many indicators that can evaluate the performance of

a road network. In particular, analyses based on network science (Barabási, 2013) have

been conducted with great success. In these analyses, road networks are represented
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as networks with intersections as nodes and roads between intersections as edges. This

representation has long been performed by Garrison (1960), Kansky (1963), and others,

however, the limited computational resources made complex analysis impossible. In

recent years, advances in computational and observational techniques have enabled

topology-based analysis of complex real-world road networks. For example, Latora and

Marchiori (2001) compared the shortest route lengths and linear distances between all

node pairs in a real road network to evaluate network efficiency. Boeing (2020) calculated

tabulation measures such as road density and intersection density within a region for

a network of 27,000 U.S. cities. Moreover, the vulnerability of the network is also

an important indicator. Jenelius et al. (2006) discussed the vulnerability of the entire

network by calculating an indicator of link importance based on the amount of increase

in travel costs when links are unavailable. Furthermore, centrality is one of the indicators

to measure the importance of a node or link, and has been applied in many transportation

network analyses. Lämmer et al. (2006) showed a clear hierarchical order of roads as

the frequency distribution of centrality based on travel time follows a power law. Crucitti

et al. (2006) evaluated the road networks of 18 cities by degree, closeness, straightness

and information centrality.

2.3.2 Angular approach

Angular indicators on the supply often focus on the direction of the road. This road

direction is referred to as orientation hereafter.

Swan and Sandilands (1995) is the first study to apply the rose diagram, a histogram in

directional statistics, to the visualization of road orientation. Mohajeri and Gudmundsson

(2012) focused on the orientation of the road network in Dundee, East Scotland. They

compared the road network with and without weighting by the length of the roads, and

also compared a rose diagram drawn from all the roads in the area and that of only

the named major roads. In addition, the city was divided into several parts and rose

diagrams were compared by district. In this study, the rose diagram is segmented into
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multiple angular zones when estimating the angular distribution. However, this method

is not a correct procedure for angular data. Boeing (2019) drew rose diagrams of the

orientation of each road in 100 cities around the world using the Open Street Map

road data. He calculated entropy from the rose diagram and proposed an indicator of

how close to the grid the city’s road network is. Then, he analyzed the trends of the

indicators by region, such as Asia and Europe, and perform regressions of these indicators.

Nagasaki et al. (2019) quantified the shape of the road network around the station using

the orientation of each road. They estimated the probability density function of the

distribution of orientation of all roads to quantify the road network, and clustered the

networks around stations using the parameters. Fig. 2.7 shows the examples of road

networks and corresponding rose diagrams. The left road network has a grid shape as a

whole, and each peak in the rose diagram is very sharp. On the other hand, the right road

network is partially grid-like, yet its inclination varies from place to place, and each peak

in the rose diagram are gentler than those in the left one.

2.4 Behavior in transportation

2.4.1 Conventional approach

(1) Discrete choice model

In the discrete choice model, it is assumed that an individual makes a choice with the

maximum utility from a set of alternatives (Train, 2009). The random utility Ui j of

individual i for alternative j is expressed as

Ui j = Vi j + εi j, (2.13)

where Vi j is the deterministic utility that can be systematically explained out of Ui j, and εi j

is an error term that includes the effects of unobserved factors and individual preferences.

Let j ∈ {1, 2} be the choice set, the probability pi(1) that individual i chooses alternative

j = 1 is expressed by the assumption that individual i chooses the alternative with the
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Figure 2.7: Examples of road networks and corresponding rose diagrams.

maximum utility as

pi(1) = Pr[Ui1 > Ui2] = Pr[Vi1 + εi1 > Vi2 + εi2]

= Pr[εi2 − εi1 > Vi1 − Vi2] = F[Vi1 − Vi2], (2.14)

where Pr[A] is the probability that event A occurs and F is the cumulative distribution

function of εi2 − εi1. A model that assumes a standard normal distribution for F is called

the probit model, and a model that assumes a Gumbel distribution is called the logit model.

In particular, the logit model with three or more alternatives is called the multinomial

logit model, and many extended models have been proposed, e.g., the nested logit model,

which solves the ratio problem of alternatives, and the mixed logit model, which can

express error terms more flexibly.
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(2) Route choice model

The discrete choice model is also used for route choice. However, the number of routes

on the network is uncountable. Therefore, a model that requires enumeration of a set

of alternatives is not directly applicable. Instead of a route-based model, a link-based

route choice model is proposed in which the traveler chooses a link at each intersection

(Fosgerau et al., 2013; Mai et al., 2015).

Note that these choice behaviors correspond to the mode assignment and network

assignment of the four step model mentioned in Section 2.2.

In vehicular route choice models, travel distance, tolls, and travel time have

traditionally been employed as utility functions (Yamamoto et al., 2002; Ben-Akiva

et al., 2004; Prato, 2009). In addition, the number of right/left turns and U-turns are

also regarded as essential factors. Duckham and Kulik (2003) proposed simplest path

that minimizes the number of turns from origin to destination. Fosgerau et al. (2013)

incorporates right/left turns and U-turns as dummy variables in the model validation.

Furthermore, many different factors have been incorporated into the function, such as

socio-economic characteristics (Ramming, 2001), information of traffic (Mahmassani and

Liu, 1999), and latent variables such as attitudes toward risk (Sun et al., 2012), memory,

spatial ability, and so on (Prato et al., 2012). These variables have been confirmed to

influence route choice behavior in many models and case studies.

(3) Departure time choice

The departure time choice is also a part of behavior in transportation. Travelers choose

a departure time based on congestion and a cost function for early or late arrivals to

arrive at their destination at the desired arrival time, such as the commute to work time.

These problems originated as single-bottleneck problems (Vickrey, 1969) and have been

extended to the analysis of multi-bottleneck networks (Kuwahara and Newell, 1987) and

multiple bottlenecks on a corridor (Akamatsu et al., 2015), and so on.
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Figure 2.8: Example of triangular FD.

(4) Fundamental Diagram

The car-following behavior on the road is a microscopic transportation behavior. Drivers

follow vehicles in front of them, and disturbances in the movement of one vehicle

propagate to the following vehicles. Pipes (1953) described this phenomenon using

differential equations, and Kometani and Sasaki (1958) developed a car-following model

that includes a delay time for the reaction. This model is the basis for the macroscopic

representation of transportation flow.

Based on this theory, a Fundamental Diagram (FD) describing the relationship

between flow, velocity, and density was developed. Greenshields (1935) plotted

the relationship between flow and density by observing actual transportation flows.

Thereafter, FDs were described theoretically using car-following model, and various

shapes of FDs have been proposed. One of the most widely used is the triangular FD

proposed by Newell (1993) as shown in Fig. 2.8. In the density region below the critical

density kc, flow q is linearly increasing with density k, and above kc, q is decreasing with

increasing k. The flow qc at critical density kc is called the maximum flow, and the blue

line below kc is called the free flow state, while the red line above kc is called the congested

state.
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2.4.2 Angular approach

Dalton (2003) experimentally observed subjects’ route choice behavior in a virtual reality

space and analyzed the human ability in terms of spatial comprehension. Each subject

travels through a complex road network without the information of a route for his/her

destination but the direction to the destination from the initial point. The experiment

results show that subjects do not make large turns at each intersection and choose the

straightest path possible in the direction of their destination. Turner (2007) proposed

shortest angular path model that minimizes the sum of turning angle from origin to

destination. He found some correlation between the observed link traffic on the London

road network and the betweenness centrality calculated by the model. Manley et al. (2015)

compared the routes between actually chosen routes and minimize some simple indicators

between an origin and destination by 677,411 route data obtained from 2,970 minicabs in

London. The comparison results showed that the route that minimizes the product of the

number of left-right turns and the travel distance was the most consistent with the route

actually chosen. In addition, the time-based model deviated more from the actual route

choice than the other models.

Akamatsu (1996) introduced a rotation angle, which is the angle formed between

links, in the traffic assignment model under the premise of the importance of considering

the geometric characteristics of routes. Subsequently, a method was developed to classify

paths based on the rotation angle, distinguishing whether they include cycles. This

approach ensured that only routes without cycles were reflected in the model. In this

model, the angle was used only to determine whether a cycle is included or not, and the

effect of the turning angle itself on route choice was not discussed.

Raveau et al. (2011) introduced an angular indicator called angular cost in the analysis

of metro users’ route choices. Angular cost is the difference between the direction of

the destination and the direction of travel after changing metro lines. The estimation of

the model using the data of metro users showed that angular cost significantly affects

the choice behavior. Antonini et al. (2006) analyzed the short-term movement choice
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behavior of pedestrians using a discrete choice model. They divided the pedestrian’s

movement into several segments based on distance and angle. The utility of choice

was modeled using distance, change in direction of travel, and angle to the direction

of the objective. They showed that the angle has a significant effect on the pedestrian’s

movement. Nakanishi and Fuse (2015) analyzed pedestrian traffic line with applying

directional statistics. They regarded traffic line as data consisting of the pedestrian’s

position and angle of moving direction at each time. A correlation between pedestrian

position and direction of travel was discovered by basic analysis of pedestrian trajectories

in front of ticket gates, and a regression model was constructed. Bongiorno et al. (2021)

developed a vector based model for route choice behavior of pedestrians on the network,

which includes both distance and direction to the destination of a pedestrian. The

proposed model showed better prediction of pedestrian routes in two cities with different

road networks than a probabilistic model only based on distance.

2.5 State in transportation

2.5.1 Conventional approach

(1) Variables and their relationships on a link

State in transportation is the result of demand, supply, and behavior. The following three

quantities are often used to describe transportation states.

flow q Number of vehicles traveling per unit of time.

density k Number of vehicles per unit distance.

speed v Average speed of vehicles.

In addition, their inverses, spacing s, headway h, and pace p, are sometimes used. Note

that the following relation must be satisfied.

q = kv. (2.15)
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Figure 2.9: The time space diagram.

Therefore, the degrees of freedom for these three variables are two. By using the FD

shown in Fig. 2.8, one variable gives the remaining two variables.

Fig. 2.9 shows the trajectory of several cars traveling in a certain spatio-temporal

region. This diagram is called a time-space diagram, with time on the horizontal axis and

position on the vertical axis, and is very important for visualizing transportation states.

The number of trajectories across horizontal and vertical lines of unit length corresponds

to flow and density, respectively. In addition, the slope of the trajectory corresponds to

the speed. To obtain the three variables satisfying Eq. (2.15), Edie et al. (1963) proposed

the following definition.

q(A) =
d(A)
|A|
, (2.16)

k(A) =
t(A)
|A|
, (2.17)

v(A) =
d(A)
t(A)
. (2.18)

where A is the region in the time-space diagram, d(A) is the total distance traveled by all

vehicles in A, t(A) is the total time spent by all vehicles in A, and |A| is the time–space

area of A.
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(2) Transportation network analysis

Once the transportation states of a road can be estimated, the cost of the traffic can be

calculated. Based on the cost per link, it is possible to assign the OD demand to each

mode and route. Wardrop (1952) defined the User Equilibrium (UE) in the assignment

when all travelers choose the route with the minimum cost based on complete information

as,

The journey times in all routes actually used are equal and less than those

that would be experienced by a single vehicle on any unused route.

This is called Wardrop’s first principle and is widely used in assignments. On the other

hand, the System Optimum (SO) is the state in which the traveler’s total travel time

is minimized. This is called Wardrop’s second principle and is also widely used in

assignments. In general, the UE and SO assignments are not matched, and individual

travelers can reduce their own costs in the SO condition. In addition, while these

assignments are static, dynamic assignments have also been extensively analyzed in order

to more closely describe realistic phenomena. For dynamic assignment, Dynamic System

Optimum (DSO), Dynamic User Optimum (DUO), and Dynamic User Equilibrium

(DUE) assignment principles have been proposed (Kuwahara and Akamatsu, 1993;

Merchant and Nemhauser, 1978; Kuwahara and Akamatsu, 1997).

(3) Area-based approach

An area-based transportation states model has also been proposed. The continuous

modeling approach (Beckmann, 1952) regards the areal traffic flow as a two-dimensional

flow and analytically obtains the traffic volume at an arbitrary point. It has the advantage

of handling fewer variables because it does not need to capture traffic flow for each road,

but it has problems in capturing actual transportation phenomena because it is difficult to

handle multiple OD pairs.

The Network Fundamental Diagram (NFD) (Mahmassani et al., 1984) is an extension

of the fundamental diagram defined on a link to the network scale. NFD can derive
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the relationships between flow, density, and velocity in a network scale using the same

procedure as FD, but it is not a universal model because it requires many constraints on

network geometry and transportation control and so on.

Geroliminis and Daganzo (2008) revealed the existence of a Macroscopic Fundamen-

tal Diagram (MFD) linking space-mean flow, density and speed based on transportation

data observed in Yokohama in Japan. Some conditions exist for the existence of an MFD,

and Geroliminis and Sun (2011) summarizes those conditions.

(4) Transportation state models

The transportation state is a dynamic phenomenon that changes temporally. Therefore,

dynamic models are often constructed in modeling transportation states. However, mod-

eling transportation phenomena dynamically sometimes involves significant obstacles in

formulation and implementation, and many static models have been proposed.

Transportation state analysis at a link scale is often modeled using the knowledge

of hydrodynamics, in which each individual vehicle or segment is regarded as a single

object. In this context, such analysis is usually referred to as “traffic flow analysis”. This

modeling allows the transportation flow on a link to be described from a macroscopic

perspective rather than focusing on individual vehicles. The kinematic wave theory

(Lighthill and Whitham, 1955) is a representative method for modeling transportation

flows on a link. This theory can precisely describe transportation phenomena such

as traffic congestion and queue generation and extension. As analytical methods for

this theory, the minimum envelop principle (Newell, 1993) and the variational theory

(Daganzo, 2005) have been proposed, and the cell transmission model (Daganzo, 1994)

has been proposed as a numerical method for the theory.

Transportation states analysis at a network scale is also important and widely analyzed

(Sheffi, 1985). In transportation network analysis, static traffic flow on a link or the

overall network performance is often focused on. For example, studies to identify critical

links based on the amount of change in travel time across the network (Scott et al.,

2006; Sullivan et al., 2010), studies analyzing the relationship between the impact of
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transportation accidents on the transportation network and the network features explained

by graph theory (Sun et al., 2018). In addition, some studies have aimed at achieving

SO states by imposing congestion pricing on transportation states in UE states (Yan and

Lam, 1996; De Palma and Lindsey, 2011). Furthermore, many studies focus on public

transportation as well as vehicular transportation (Daganzo, 2010; Farahani et al., 2013).

In addition, area scale transportation states have also been extensively analyzed

using the continuous modeling approach (Sasaki et al., 1990; Wong, 1998), the network

fundamental diagram (Williams et al., 1987), and MFD (Ji et al., 2014; Saeedmanesh

and Geroliminis, 2017; Dantsuji et al., 2022). These analysis methods allow to reduce

variables, improve computational efficiency, and understand dynamical macroscopic

transportation states by capturing transportation flows on a complex network from an

areal perspective.

2.5.2 Angular approach

In area-based studies, several studies have independently analyzed demand or supply

using angles, as described above. However, to the author’s knowledge, no studies have

used angles for transportation state analysis, which corresponds to the results of demand

and supply.

2.6 Summary

Directional statistics has developed as statistics for analyzing angles. It has been applied

to many fields, and contributed to the elucidation of phenomena, as described in Section

2.1. On the other hand, transportation has been analyzed from various aspects for a long

time, as described in Section 2.2 to Section 2.5.

For each aspect, the analysis by angle is conducted sparsely. Naturally, the analysis

with angle still leaves room for further development.

A method focusing on the direction of each demand has been developed, drawing rose
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diagrams to grasp and classify demand trends. However, no attempts have been made to

evaluate these trends quantitatively. Quantitative evaluation of demand trends can model

the relationship with traffic conditions. Nevertheless, no attempts have been made to

model traffic state using this idea as well quantitatively.

The effect of the turning angle on route choice behavior has been shown. However,

most analyses that evaluate the economic worth of angular change compared with

monetary or metric indices depend on a preset threshold value set by the analyst. Direct

use of angles is necessary to evaluate the impact of angle change with a universal method

that does not depend on a preset threshold value.

In addition, the analysis using knowledge of directional statistics, such as multidi-

mensional angular variables and regression analysis, has been conducted in many fields.

On the other hand, very few studies of this kind have been conducted in the field of

transportation. In particular, time series data used in the field of transportation seem to be

compatible with directional statistics, which deals with periodic indices.

In order to fulfill the three gaps mentioned above, this dissertation builds an angular

route choice model, a temporal traffic model, and a spatial traffic model, and investigates

the potential of transportation systems analysis with angle.
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Individual Route Choice Behavior

3.1 Introduction

The choice of explanatory variables is crucial for the route choice model. Therefore,

various explanatory variables are discussed in the literature (Prato, 2009). Among

geographic variables, metric indicators such as the length of links and routes are widely

used.

On the other hand, angular indicators are rarely used in the route choice model.

For example, indicators such as the direction in which the driver is currently heading

and the direction of the destination can be easily recognized by drivers. Dalton (2003)

experimentally observed subjects’ route choice behavior in a virtual reality space and

analyzed the human ability in terms of spatial comprehension. Each subject travels

through a complex road network without the information of a route for his/her destination

but the direction to the destination from the initial point. The experiment results show

that subjects do not make large turns at each intersection and choose the straightest path

possible in the direction of their destination.

In particular, the indicator of the change in direction between neighboring links, i.e.,

the turn angle, influences route choice behavior. Several studies have analyzed the effect

of turn angle on route choice. Duckham and Kulik (2003) proposed simplest path that

minimizes the number of turns from origin to destination. They showed that the simplest

path is 16% more traveled than the path that minimizes the travel distance. Turner (2007)

proposed shortest angular path model that minimizes the sum of turn angle from origin to

destination. He found some correlation between the observed link traffic on the London

This chapter is mainly based on the research with Prof. Toru Seo, published in EWGT 2023 (Nagasaki

and Seo, in press) and Journal of JSCE (Nagasaki and Seo, in press).
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road network and the betweenness centrality calculated by the model. Manley et al. (2015)

compared the routes between actually chosen routes and minimize some simple indicators

between an origin and destination by 677,411 route data obtained from 2,970 minicabs in

London. The comparison results showed that the route that minimized the product of the

number of left-right turns and the travel distance was the most consistent with the route

actually chosen. In addition, the time-based model deviated more from the actual route

choice than the other models. Raveau et al. (2011) introduced an angular indicator called

angular cost in the analysis of metro users’ route choices. Angular cost is the difference

between the direction of the destination and the direction of travel after changing metro

lines. The estimation of the model using the data of metro users showed that angular cost

significantly affects the choice behavior.

As described above, the behavior of the drivers’ angle change is often processed

as a dummy of a right/left turn or a U-turn. In this case, the analyst sets a threshold

value and regards any angular change greater than this as a right/left turn or a U-turn.

However, the results of the estimation are varied by the threshold of the dummy. In

contrast to discrete processing that sets a threshold value, continuous processing that uses

the turn angle directly enables analysis of angle-changing behaviors, such as a right/left

turns and a U-turn, independent of the threshold value setting. In addition, these models

reproduced the actual route choice better than models that minimize the travel distance

simply. However, there is no discussion of the ratio of the parameter of the travel distance

variables to that of the turn angle variable. Furthermore, there is no discrete route choice

model that employs turn angle on road network in a utility function. Raveau et al.

(2011) analyzed discrete choice model with introducing angular cost, however, this is

route choice model in metro. By using a distance variable in addition to the turn angle

in the utility function, the resistance to angle change relative to distance change can be

quantified from the ratio of the parameters.

The objective of this chapter is to build a route choice model on a network based on

angle. Specifically, the proposed route choice model incorporates the turn angle directly

in addition to the distance variable in the utility function. This model allows to evaluate
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the effect of angle change on route choice and the resistance of angle change compared

to distance change, independent of a preset threshold value. The chapter is organized as

follows. Section 3.2 describes a route choice model on a road network that uses angular

and distance indicators. Section 3.3 explains the data used to validate the model. In

Section 3.4, the results of estimating the parameters of the model in Section 3.3 using the

data in Section 3.2 are shown. In Section 3.5, the proposed model is compared with other

models. Section 3.6 concludes this chapter.

3.2 Route Choice Model

3.2.1 The definition of turn angle

It is assumed that the angle at which a driver turns at a point is θ and define it as the

difference of angles between the direction of travel before the turn and after the turn. Fig.

3.1 shows the definition of θ. The domain of θ is set to (−π, π]. Because angular variables

are periodic and difficult to handle, θ is converted to a non-periodic variable xθ by the

Eq. (3.1) (Hillier and Iida, 2005).

xθ = 1 − cos θ, (3.1)

This value is 0 when there is no turn, and 1 when the turn is square. A larger turn angle

results in a larger value of xθ. Taking the cosine of θ solves the discontinuity and makes it

a positive variable for all θ by subtracting it from 1.

3.2.2 Recursive Logit model

Recursive Logit model Fosgerau et al. (2013), which is one of the link-based route choice

models, is employed as the route choice model (hereafter referred to as the RL model).

In the RL model, drivers determine the next link a on the link k where drivers are, from

among the set of multiple links A(k) connected to link k. In other words, an individual n

maximizes the utility described by the sum of the instantaneous utility un(a|k) = vn(a|k)+
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Figure 3.1: The definition of the turn angle θ.

µεn(a) and expected downstream utility to his/her destination d denoted as

Vd
n (k) = E

[
max
a∈A(k)

vn(a|k) + Vd
n (a) + µεn(a)

]
, (3.2)

where vn(a|k) is a deterministic term, µ is a scale parameter, and εn(a) is a error term.

Link-based models have the advantage of low computational cost because they do not

require restrictions on the choice set. In addition, turn angle, which are calculated from

the angle of links, are compatible with link-based route choice models. For these reasons,

the RL model is used, which is a representative link-based route choice model.

The utility function v(a|k) of choosing the next link a on link k is defined as Eq. (3.3).

v(a|k) = βlxl(a) + βθxθ(a|k), (3.3)

where xl(a) is the length of link a (in meters), xθ(a|k) is the variable of the turn angle from

link k to the next link a, and βl and βθ are their parameters. xl(a) and xθ(a|k) can be easily

obtained by the information of road network. Because V(a|k) is less than or equal to 0

due to the property of RL model, βl and βθ are negative values.

3.2.3 Consideration

This model is very simple, using only link lengths and angles between neighboring links.

The reason for using link lengths instead of travel times is that it is difficult to calculate

accurate travel times in this analysis, which uses only probe data.
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In the link-based route choice model, travelers maximize the utility of the entire route

between the origin and destination. In other words, travelers minimize the sum of turn

angles and the sum of travel distance at each intersection based on each parameter. Since

drivers would be expected to take the shorter travel distance throughout the route choice

and not make many direction changes, both the parameter βl for the link length and the

parameter βθ for the turn angle variable are expected to be negative and significant.

The ratio of the two parameters βθ/βl can be regarded as the cost of converting

one right-angle turn into βθ/βl meter travel since xθ(a|k) = 1 for a right-angle turn.

Furthermore, this model can evaluate the effect of turn angles independent of preset

thresholds since it uses continuous variables rather than dummy variables. Therefore,

this model enables to evaluate the resistance of arbitrary turn angles, which is a unique

feature of this model.

Dalton (2003) suggested that the behavior of moving toward a direction close to the

direction of the destination is important in route choice. However, the purpose of this

model is to evaluate the effect of the turn angle on the route choice behavior, and to

obtain the ratio of the turn angle to the distance traveled. Furthermore, since the travel

distance between the origin and destination shortens when the moving direction is closer

to the direction of the destination at each intersection, this behavior is expected to be

substitutable with the travel distance variable. Therefore, a model with only turn angle

and travel distance is used.

3.3 Data

Vehicle trajectory data obtained within a 10 km square area in the southern part of Tokyo

on August 18, 2021 (Wed.) is used as route choice data. The vehicle’s position, speed,

and time are recorded when the vehicle travels 200 meters or the vehicle’s travel direction

changes by 45 degrees or more. Note that the threshold values for vehicles using the old

type of onboard device are 100 m and 22.5 degrees, respectively. The network data is

generated from only the trajectory data (Zhong et al., 2022; Zhong, 2023; Zhong et al.,
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2023). The following procedure was conducted to deal with the data.

1) Extract trips that pass through the region or are completed within the region from

the vehicle trajectory data.

2) The vehicle trajectory data extracted in the process 1) is used to form a road network

using the (Zhong et al., 2022; Zhong, 2023; Zhong et al., 2023) method, and map-

matching is performed. The data after map-matching is hereafter referred to as trip

data.

3) Delete the data before the first node and after the last node from each trip data,

making the first node the origin of the trip and the last node the destination of the

trip.

4) Delete trip data that passes through the same node more than once.

5) For each link, remove trip data that passes through links whose traffic volumes of

probe car in the day below 100.

6) Delete and replace links that obviously do not match reality in comparison with the

actual map, and reflect them in the trip data.

1) and 2) are used to obtain road network data and trip data (i.e., which link each vehicle is

traveling on) from the vehicle trajectory data alone. 3) clarifies the origin and destination

of the trip. 4) excludes data that obviously do not represent a normal route choice, such as

detours. 5) removes trip data that obviously passes through places where no roads exist.

6) is used to correct data that skipped several intersections. The road network generated

by the above procedure is shown in Fig. 3.2. The thickness of the links corresponds to the

daily traffic volume of the probe car. The number of nodes is 382, the number of links is

836, and the number of trips is 107,280. As described above, the method of Zhong et al.

can generate a network consisting of only those links that are important for route choice.

In addition, the actual road network is shown Fig. 3.3. In the area, arterial roads extend

radially from the city center in the northeast, and circular arterial roads are installed to

connect the radial roads.

In this method, links below a certain traffic volume are not reflected in the network
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Figure 3.2: Road network (horizontal axis: longitude, vertical axis: latitude)

Figure 3.3: Map of the subject area (GSI: Geographical Survey Institute map with author’s additions)

data, which causes some links to be unnaturally disconnected. In addition, some

intersections are represented by a single node. Therefore, the estimated parameters and

the simulation described below may not reflect the actual phenomenon.

Note that the turn angle θ is calculated from the difference between the angles of

the two endpoints of the link before and after the turn. For this reason, this chapter

ignores any curvature of road. In addition, the data around the origin and destination of
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Figure 3.4: Histogram of xl(a) (left) and xθ(a|k) (right)

the trajectory data has been deleted for the anonymization. Therefore, the right/left turn

behavior on the local streets near the origin and destination cannot be reflected, and βθ

may be overestimated.

3.4 Results

3.4.1 Basic Analysis

Histograms of all xl(a) and xθ(a|k) for the network data in Section 3.3 are shown in Fig.

3.4. The average of xl(a) is 405.4 m and the maximum is 2483.3 m. About 80% of the

links are distributed between 100 m and 500 m in length. xθ(a|k) is distributed around 0

and 2. This means that the links go straight and make U-turns. Since a directed graph

is used, U-turns are possible when links in both directions are connected between nodes,

and the corresponding frequencies around 2 are also high. In addition, the distribution

around 1, which means a right-angle turn, is also distributed to some extent, with about

20% distributed between 0.7 < xθ(a|k) < 1.3. Note that 0.7 < xθ(a|k) < 1.3 means a left-right

turn of approximately 70◦ to 110◦. Moreover, since xθ(a|k) is widely distributed from 0 to

2, drivers can make with some freedom of angular change. Therefore, the estimation of

βθ is not expected to be affected by the shape of the road network.
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Table 3.1: The estimation result.

Coefficient Std. err. t value

βl −1.545 × 10−3 1.225 × 10−5 −126.1

βθ −1.843 5.980 × 10−3 −308.2

The number of samples 107, 280

LL(β̂) −113, 711

3.4.2 Estimation results

The results of estimating the route choice model in Section 3.2 using the data in Section

3.3 are shown in Table 3.1. According to the t values, both parameters are significant.

The ratio of the parameters is βθ/βl ≈ 1193, which means that one right-left turn at a right

angle corresponds to a travel of about 1.2 km.

3.4.3 The degree of coincidence of route choice

As an indicator of the degree to which the obtained model reflects the actual route choice

behavior, the degree of coincidence COn is introduced given by Eq. (3.4) used in the

previous study (Manley et al., 2015).

COn =

∑
a∈Mn
δS

a xl(a)∑
a∈S n

xl(a)
, (3.4)

where S n is the set of all links in the route actually chosen on trip n. Mn is the set of

all links in the route obtained by the model on trip n. xl(a) is the length of link a, and δS
a

is a binary variable that is 1 if link a is included in S n and 0 otherwise. In other words,

COn is the sum of the lengths of the common links in the route obtained by the model and

actually chosen, divided by the total length of the route actually chosen. COn is 1 if the

route obtained by the model exactly matches the actual route choice.

Table 3.2 shows the distribution of COn for optimal routes along the model in all

107,280 trips. The optimal route is the route with the minimum cost weighted by the

travel distance from the origin to the destination and the turn angle, respectively.
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Table 3.2: The distribution of COn for the proposed model.

COn The number of trips Ratio

0 4,460 4.16%

(0, 1) 17,141 15.98%

1 85,679 79.86%

In addition, the overall average was 89.95%. The results show that most of the trips

reproduced perfectly.

3.4.4 Discussion of the estimated results

According to the value of estimated parameters, one right-left turn at a right angle

corresponds to a travel of about 1.2 km. In addition, an angular change of 45 degrees

corresponds to a travel of 0.35 km.

In the case study done in Torino by Prato et al. (2012), one turn corresponds to a travel

of 0.26 km, and in the combined result of the case study of Borlänge by Fosgerau et al.

(2013) and Prato et al. (2012), one turn corresponds to a travel of 0.23 km. Although

the ratio of the parameters with the angle change in the right angle is larger than in the

previous studies, that in 45 degrees angular change, which is treated as a turn in the

previous studies, is close to that in the previous studies.

The results with the model that minimizes only the distance excluding the effect of the

turn angle are shown in Table 3.3. Comparing the two log-likelihood values for 3.1 and

3.3, the turn angle term improves the value of the log-likelihood function, indicating that

the model performance is improved.
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Table 3.3: The estimation result of the model without turn angle.

Coefficient Std. err. t value

βl −9.42 × 10−3 4.145 × 10−5 −227.3

The number of samples 107, 280

LL(β̂) −222, 092

3.5 Comparison with other models

3.5.1 Compared models

Compare the model proposed in this chapter (called Model A) with a route that minimizes

only the sum of the distance xl(a) (Model B), the sum of the turn angle variable xθ(a|k)

(Model C), and the product of the travel distance and the number of left-right turns (Model

D). In Model D, a left-right turn is considered to have been made when the value of xθ(a|k)

is greater than 0.5, i.e., when ±π/3 or more turns are made. About 60% of all cases where

the value of xθ(a|k) is 0.5 or more (Fig. 3.4). Model B is the commonly used model that

minimizes the travel distance, Model C is the shortest angular path proposed by Turner

(2007), and Model D is the best model proposed by Manley et al. (2015). In all models,

the routes were determined by a shortest path search based on the link costs along each

definition.

3.5.2 Comparison result

Table 3.4 shows the distribution of COn for each model. The average of COn of the

proposed Model A is the highest. However, the difference with Model B, which minimizes

the travel distance, is negligible.

The reason why COn is fairly high overall is that this model limits the region to

approximately 10 km square, and trips that use highways to go out of the region only

choose routes that use highways within the region, so that all routes are the same in all

models. In addition, the links and routes that were selected by only a few travelers were
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Table 3.4: The distribution and average of COn for each model.

The distribution of COn

Model 0 (0, 1) 1 The average of COn

A 4.16% 15.98% 79.86% 0.8995

B 4.10% 15.33% 80.57% 0.8991

C 4.16% 19.49% 76.35% 0.8749

D 4.50% 18.73% 76.77% 0.8668

removed during network generation. Therefore, COn may be overestimated because only

representative routes chosen by many travelers are used as route choice data. Furthermore,

even if a trip started or ended in the region, the data around the origin and destination of

the trip was deleted. COn is expected to change due to these causes as well.

On the other hand, COn is zero for some routes. Such routes deviated significantly

from the shortest route and from the route with the smallest angle change, and COn was

often zero in all models.

3.5.3 Detail comparison

First, a trip where Model A has the highest COn and the other three models have the lower

COn are shown in Fig. 3.5. The red line is the route actually chosen, the yellow line, the

green line, and the blue line are the optimal route for Model A, Model B, and Models

C and D, respectively (the same is shown in the following figures). Note that the color

distinction is not made between Models C and D, because the optimal routes for the ODs

presented in this comparison were all identical for Models C and D.

The optimal route for Model A consists of two left-right turns and shortens the travel

distance between origin and destination, while the optimal route for Model B consists

of four left-right turns and shortens the travel distance further. On the other hand, the

optimal routes in Models C and D connect the origin and destination points with only one

right turn, but are slightly more detouring. The travel distance for each route is 11,482
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Figure 3.5: Example where only COn in Model A equals 1.

m for Model A, 11,046 m for Model B, and 12,434 m for Models C and D, with Models

C and D taking a large detour. In addition, the sum of the variables for the turn angles

is 3.045 for the route of Model A, 4.039 for Model B, and 2.308 for Models C and D.

Model B sacrifices the angular variable to achieve the shortest route, while Models C and

D take large detours to reduce the sum of angular variables. Furthermore, for the values

of the utility functions substituting the parameters estimated in Section 3.4, the route for

Model A is −23.35, Model B is −24.51, and Models C and D are −23.46. By reducing

the sum of both the travel distance and the angular variables for the turn angle, the route

of Model A is obtained. In fact, only the route of Model A is chosen between this origin

and destination.

Next, a trip where Model B has the smallest COn and the other three models COn

equal to 1 is shown in Fig. 3.6. The optimal routes for Models A, C, and D are those that

make two left-right turns near the origin and halfway between the origin and destination,

while the optimal route for Model B is one that makes four left-right turns and shortens

the travel distance between the origin and destination. The travel distance for routes A,

C, and D is 13,584 m, while that for Model B is 12,738 m. In addition, the sum of the
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Figure 3.6: Example where only COn in Model B is small.

variables for the turn angles is 2.261 for the routes of Models A, C, and D and 4.279 for

the route of Model B. The route in Model B is not a good choice in terms of Models A, C,

and D because it makes a total of four left-right turns to achieve the shortest route. Only

routes A, C, and D are route choices between this origin and destination.

Finally, a trip with COn equal to 1 for Model B and lower COn for the other models is

shown in Fig. 3.7. Model A and Model B are taking different links in the eastern part of

the region. In Model A, a slightly detouring route is optimal to make only two left-right

turns, one near the origin and the other near the destination. In addition, for Models C

and D, the best route is the one that makes much detour to make only one left-right turn

near the destination. The travel distance for each route is 9,338 m for Model B, 9,656

m for Model A, and 11,983 m for Models C and D. On the other hand, the sum of the

variables for the turn angles is 5.233 for the route of Model B, 4.529 for Model A, and

3.818 for Models C and D. Furthermore, for the values of the utility functions substituting

the parameters estimated in Section 3.4, are −24.07 for the route of Model B, −23.26 for

the route of Model A, and −25.55 for the routes of Models C and D. The actual route
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Figure 3.7: Example where only COn in Model B is large.

chosen between these origin and destination points was consistent with that of Model B.

However, Model A can reproduce a similar route to the actually chosen route, although

models with only angular variables or models that minimize the number of turns, the

optimal route and the route actually used are very different.

3.5.4 Consideration of comparison

Model A, which considers both turn angle and travel distance, represents actual route

choice behavior quite well. However, Model B, which minimizes only the travel distance,

performs almost as well. Based on the current analysis, it cannot be concluded that Model

A is overall superior to Model B.

Fig. 3.8 shows the plot of the sum of xθ(a|k) on the horizontal axis and the sum of xl(a)

on the vertical axis for the OD pairs with different COn in Model A and Model B for

the actual route choice. The color of the points is determined by the model with larger

COn. The number of points is 135. When the sum of the xθ(a|k) variables for the actual

route choice is greater than 3, i.e., when the number of right/left turns near the right angle
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Figure 3.8: The example of optimal route in each model

exceeds two to three, COn of Model A among almost all OD pairs is inferior to that of

Model B. This suggests that the proposed model may not capture route choice behavior,

such as making multiple right and left turns to get to the main road near the origin and

destination. In other cases, Model A is more accurate than Model B. Furthermore, by

introducing a turn angle variable, unnatural routes that make multiple left-right turns in

order to minimize the travel distance are unlikely to be selected. If the formulation of the

utility function is modified to take these points into account, it is expected that a more

accurate model can be built that incorporates angles and distances more appropriately.

3.6 Conclusions

In this chapter, a variable for turn angle was introduced to route choice behavior on the

network to examine how directional changes at intersections within the road network

affect driver route choice behavior. The author built a model in which the utility function

is a linear combination of a variable for travel distance. The model parameters were

estimated from the route choice behavior data obtained from the probe data, and it was

confirmed that the turn angle variable strongly influenced route choice behavior. In

the case study, it was observed that directional changes significantly affect route choice
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behavior, with a single left or right turn equivalent to an additional travel distance of

approximately 1.2 km. In addition, the proposed model was compared with a model

based only on travel distance, a model based only on turn angle, and a model based only

on the number of turns. The proposed model reproduced the actual route choice behavior

with more accuracy than the other models.

In this analysis, it is impossible to distinguish whether the behavior of reducing

the angle change is caused by the driver or by other factors such as the navigation

system. Although Dalton (2003) suggests that the angle change is reduced as an inherent

human behavior, the behavior of drivers on the road network has not yet been analyzed.

Comparing behavior differences by vehicle type or trip purpose using this analysis method

may help to understand drivers’ inherent resistance to angle change.

In this model, the estimated parameters were applied to the data of the target area to

measure the reproducibility of the route. As a result, the degree of coincidence of route

COn may have been overestimated. The validity of the model can be evaluated more

accurately by estimating parameters in other areas and time periods using the model, and

by validating more robust reproducibility such as cross-validation. This is one of the

future tasks of this chapter.

Since the angle change is described only by the cosine term in this case, the distinction

between a right turn and a left turn is not taken into account. In addition, since only a first-

order cosine term is used, the angle changes of going straight and turning left/right, and

turning right/left and making a U-turn are equally 1 different on the variables. However,

these two angle changes are considered to be very different in nature. To express these

differences in the variables, a possible solution is to add a sine or cosine term of first or

higher order (Johnson and Wehrly, 1978). This would allow a more detailed analysis of

the sensitivity of the angular change and the traveler’s choice behavior.

Although only travel distance and turn angle were used as variables, other variables,

such as a dummy of arterial roads and the number of lanes, further allow us to examine

turn angle’s influence on actual route choice behavior. In addition, it is possible to

construct a route choice model using only angular indicators, where the turn angle is
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considered as a micro angle indicator in route choice and the angle of heading toward the

destination as much as possible is considered as a macro angle indicator. This may enable

a deeper consideration of the influence of angular indicators on drivers’ route choice

behavior.

In addition, since this model used a discrete choice model, it is possible to calculate

the route choice probability for all users. Using the route choice probabilities, the model

can be developed into an assignment problem.
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Chapter 4 Temporal Transportation Model with

Angle: Daily Variation of Traffic

Volume

4.1 Introduction

Traffic volume is one of the most essential variables in the transportation engineering field.

In addition, it is easy to observe by installing a traffic counter and counting the number of

vehicles passing by at the observation site. Many traffic counters exist along the arterial

roads in Japan and other countries and the traffic flow data are accumulated day by day

(Leduc et al., 2008; Anacleto et al., 2013). These data are mainly utilized so far in the

following two manners. The first is the evaluation of road performance, or throughput,

i.e., the maximum number of vehicles the road can accommodate within a unit time (Edie

et al., 1963; Transportation Research Board, 2000). This value is represented in units of

vehicles per hour, for example. If more vehicles than this value come to the road, traffic

congestion occurs. The second is so-called “traffic state estimation”, which comprises

the three essential variables: the traffic flow rate, the average vehicle density, and the

average vehicle speed. Understanding the relationship among these three variables is

quite important to predict traffic congestion that is spread along the road network (Muñoz

et al., 2003; Wang and Papageorgiou, 2005).

The traffic volume varies depending on the time of day (Transportation Research

Board, 2000). In particular, traffic volume is large during the morning commute and

evening return trip, and small during the midnight period in a city. Many studies have

been conducted to forecast traffic volume with the characteristics of daily variation of

This chapter is mainly based on the research with Prof. Wataru Nakanishi, and Prof. Yasuo Asakura,

published in Journal of JSCE (Nagasaki et al., 2023), and the research with Prof. Shogo Kato, Prof. Wataru

Nakanishi, and Prof. M. C. Jones, in arXiv preprint (Nagasaki et al., 2022).
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traffic volume (Smith and Demetsky, 1997; Vlahogianni et al., 2014; Lana et al., 2018;

Hong, 2011). However, when analyzing daily variation, time should be converted into

angles because the time axis has periodicity.

On the other hand, the utilization of probability distribution of the daily variation of

traffic volume also contains potential for understanding traffic phenomena. For example,

traffic will be classified according to characteristics based on traffic count data, which

is easy to obtain. In general, in order to determine the purpose of traffic on a road,

not only stationary data such as traffic count data but also other data such as vehicle

trajectory, questionnaire surveys, and person trip data are necessary. On the other hand,

by fitting a probabilistic model with multiple components, it is possible to classify the

traffic by characteristics based on only traffic count data. Additionally, it is useful for the

verification and validation of microscopic traffic simulations that deal with each vehicle

as an agent. To the best of the authors’ knowledge, no study except one written in Korean

(Na and Jang, 2011) estimates the probability distribution of traffic volume.

However, the complexity and periodicity of daily variation of traffic makes the

estimation of stochastic models quite difficult. Traffic volume is generally determined

by the dynamic system of the interaction between the supply side (how many vehicles the

road can accommodate) and the demand side (how many drivers wish to use the road).

Due to this complexity, the distribution of traffic volume in a day is not expected to be

unimodal nor symmetric. Generally, the timestamp of each vehicle’s passing does not

follow a Poisson process because of some bottlenecks such as traffic congestion and traffic

lights (Daganzo, 1997). Actually, it is empirically bimodal and asymmetric in weekdays

(explained in detail in Section 4.2). In addition, if we consider an average weekday, time

is periodic and should be represented as points on a circle.

Employing a mixture distribution on the circle, where individual components can

represent the complex distribution shapes, is essential for estimating a probabilistic model

of daily variation of traffic volume. Some mixtures of circular distributions have been

proposed in the literature. The most attention has been paid to mixtures of von Mises

distributions (e.g., (Wallace and Dowe, 2000; Mooney et al., 2003; Banerjee et al., 2005;
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Mulder et al., 2020)). The components of these mixtures, the von Mises distributions,

are symmetric distributions with two parameters controlling location and mean resultant

length. Recently, Miyata et al. (2020) discussed mixtures of sine-skewed distributions

whose components can adopt mildly asymmetric shapes. However, none of these existing

models are appropriate for the traffic data because one of the clusters in the data is strongly

skewed. Therefore, for the modeling of the data, it seems reasonable to consider the

distributions of Kato and Jones (2015) as possible components of the mixtures because

these distributions can control a wide range of skewness and kurtosis.

Based on the above, the objective of this chapter is to build a model of daily

variation of traffic volume by converting time into angles in order to represent periodicity.

Specifically, the daily variation of traffic volume is modeled as a probability distribution

on a circle. The mixture of the Kato–Jones distributions, which is a circular distribution

capable of representing complex distribution shapes, is employed to apply a probabilistic

model that solves the problems of complexity and periodicity of the variation. In addition,

the author contributes a method of parameter estimation for mixtures of Kato–Jones

distributions as there is no established method thus far.

The chapter is organized as follows. The traffic count data of interest are introduced

in Section 4.2. The mixtures of the distributions of Kato and Jones (2015) are defined,

which are applied to the traffic data, and investigate basic properties of the mixtures and

their components in Section 4.3. Two methods for parameter estimation for the proposed

mixtures are presented in Section 4.4. A simulation study is conducted to compare the

two proposed methods for parameter estimation in Section 4.5. The proposed mixtures

are applied to the traffic data using the proposed inferential methods in Section 4.6. The

interpretation of the estimated model is also discussed. The fit of the proposed mixtures

to the data is compared with the fits of some other mixture models in Section 4.7. Finally,

Section 4.8 concludes the chapter.
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4.2 Data

First, the author briefly explain about traffic counters in general. Traffic counters record

the timestamps of all vehicles passing. Many counters are installed along the arterial roads

in Japan, often at intervals of one kilometer. Usually, these data are aggregated to 1- or

5-minute vehicle counts. Then, the aggregated data are utilized for traffic control such as

detecting congestion and providing information to drivers. On the other hand, the data

without aggregation is used in this chapter, the data being raw timestamps, to model the

probability of a vehicle passing at each particular time. In particular, this chapter focuses

on the averaged distribution for weekdays. Then, the time axis is circular; 0:00 (0 a.m.)

and 24:00 (12 p.m.) represent the same time, and 1:00 (1 a.m.) and 23:00 (11 p.m.) are

not 22 hours apart, but only 2 hours apart. To consider these characteristics accurately,

the concept of directional statistics is employed.

Concretely, the data of a traffic counter provided by the Hanshin Expressway Co. Ltd.,

Japan via personal communication is used. Specifically, the data are obtained at the 20.4

kilopost of the Kobe route, Hanshin Expressway. Fig. 4.1 shows a map of the target area

including the location of the traffic counter and the Kobe route of the Hanshin Expressway.

The background map is based on a Digital Map by the Geospatial Information Authority

of Japan. The Kobe route exists in the Osaka metropolitan area and connects two large

cities, Osaka and Kobe. The Osaka metropolitan area is the second largest megacity in

Japan following the Tokyo metropolis and its population is around 20 million. Osaka city

is the main city of the Osaka metropolitan area with a population of around 2.8 million.

Kobe city is the second largest city in the area with a population of 1.5 million and is

located about 30 km west of Osaka city.

The counter records the timestamps of vehicles passing in the direction from Kobe to

Osaka. The data period is 46 weekdays; from June 6th to July 7th and from August 22nd

to October 10th in 2016. It is not unnatural to aggregate data for all weekdays because

the distribution of weekday traffic is generally similar (Transportation Research Board,

2000). A histogram of the data of the summation of all 46 days is shown in Fig. 4.2. The
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Figure 4.1: Map of target area including the location of the traffic counter and the Kobe route of the

Hanshin Expressway. The background map is based on a Digital Map by the Geospatial

Information Authority of Japan.

Figure 4.2: A histogram of the data for the summation of all 46 weekdays.

bin width is set as 1 hour for this figure.

The total number of observed vehicles for 46 days is 1,121,262, which equals 24,375

per day on average. Here, the histogram has two peaks at around 7:00 and 15:00. It

is assumed that the former peak represents the morning rush hour and the latter does

the evening rush hour, from Kobe to Osaka, as the data are for weekdays. Note that
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all recorded traffics are in the same direction (i.e., from Kobe to Osaka). It means that

vehicles commuting to their office and returning home are observed only once in the

morning or evening.

In addition, the peak in the morning is higher and sharper than that in the evening.

Also, each peak has an asymmetric shape. For example, as many commuters should arrive

at their offices in Osaka at around the same time, typically, at 8:30 or 9:00, the histogram

of the morning peak suggests a negatively-skewed shape. A model that cannot represent

flexible shapes cannot describe the shape and characteristics of traffic data adequately.

To fully represent the characteristics of this distribution, a mixture of probability density

functions that allows a flexible shape is necessary. Hereafter, it is assumed that the

data follow IID property. Although this might be a strong assumption, it seems to be

acceptable from the transportation engineering viewpoint for following reasons. First,

if there is no congestion and all vehicles run by their desirable speed, the traffic flow is

usually regarded as independent (Transportation Research Board, 2000). Majority of the

applied data belong to this situation. Next, even though there is a speed decline, almost

all of “congestions” in this data is not serious ones; all vehicles run at least 20 or 30

[km/h] and no complete stop is observed. In addition, they have enough gap between the

following and successive vehicles such as 5 to 10 [m]. In the transportation engineering

field, this is called “stagnation” and distinguished from congestion. It should be noted that

each driver can somehow choose their speed in the stagnation (Brackstone et al., 2009).

This directly means that the arrival timing is mainly decided by some randomness caused

by each vehicle and driver.

4.3 Model

4.3.1 Kato–Jones distribution

This section builds models that can represent flexible shapes adaptable to the data. As

shown in Fig. 4.2, the variation of data has two features: bimodality and different degrees
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of skewness and kurtosis in the peaks of the morning and evening rush hours. Therefore,

a mixed distribution with the component as the distribution whose skewness and kurtosis

can be flexibly adjusted should be introduced. The Kato–Jones distribution (Kato and

Jones, 2015) is one of the circular distributions with the desirable properties. Its density

function is given by

gKJ(θ; µ, γ, λ, ρ) =
1

2π

{
1 + 2γ

cos(θ − µ) − ρ cos λ
1 + ρ2 − 2ρ cos(θ − µ − λ)

}
, 0 ≤ θ < 2π, (4.1)

where the ranges of the parameters are 0 ≤ µ < 2π, 0 ≤ γ < 1, 0 ≤ ρ < 1, and 0 ≤ λ < 2π

satisfying (ρ cos λ−γ)2+ (ρ sin λ)2 ≤ (1−γ)2. In addition, ρ and λ can be converted to the

circular skewness and kurtosis of Batschelet (1981) by β̄2 = ργ sin λ and ᾱ2 = ργ cos λ,

respectively. The Kato–Jones distribution can be reparametrized to have the following

density with the parameters µ, γ, ᾱ2 and β̄2:

g∗KJ(θ; µ, γ, ᾱ2, β̄2)

=
1

2π

[
1 + 2γ2 γ cos(θ − µ) − ᾱ2

γ2 + ᾱ2
2 + β̄

2
2 − 2γ{ᾱ2 cos(θ − µ) + β̄2 sin(θ − µ)}

]
. (4.2)

where 0 ≤ µ < 2π, 0 ≤ γ < 1, and (ᾱ2, β̄2) , (γ, 0) satisfy (ᾱ2 − γ
2)2 + β̄2

2 ≤ γ
2(1 −

γ)2. Thanks to this formulation of the density function, all the parameters can be clearly

interpreted: the parameters µ, γ, ᾱ2 and β̄2 control the mean direction, mean resultant

length, circular kurtosis and circular skewness, respectively. Note that the formulation of

Eq. (4.1) is used in parallel because it is convenient for estimating the distribution.

This distribution has three benefits to introduce as the distribution for the traffic

data. First, the Kato–Jones distribution is easily interpreted as mentioned above.

The mean direction, mean resultant length, circular kurtosis and circular skewness are

fundamental statistics in directional statistics, and the correspondence between them and

the parameters is very useful for interpretation.

Second, the Kato–Jones distribution is a flexible unimodal distribution that can

provide a wide range of skewness and kurtosis. As can be seen in Fig. 2.5, the degrees

of skewness and kurtosis of the Kato–Jones distribution can be widely controlled by

parameters. Unimodality is also important to interpret each component of the mixture.
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Finally, parameter estimation for the Kato–Jones distribution is straightforward by

method of moments. This is due to the property that trigonometric moments and

probability density function of the Kato–Jones distribution Eq. (4.1) can be expressed in

simple and closed form. This property allows for analytical estimation by the method of

moments. In addition, since the estimators by the method of moments and the maximum

likelihood estimation are consistent estimator, the maximum likelihood estimator can

be obtained by numerically maximizing the likelihood function using the parameters

estimated by the method of moments as the initial values.

Note also that the use of the Kato–Jones distribution is recommended in recent

review papers of Ley et al. (2021) and Pewsey and Garcı́a-Portugués (2021) as a flexible

distribution on the circle.

4.3.2 Mixture of Kato–Jones distribution

The mixture distribution of Kato–Jones distribution of Eq. (4.1) is formulated as

f (θ) =
1

2π

m∑
k=1

πk gKJ(θ; µk, γk, λk, ρk), 0 ≤ θ < 2π, (4.3)

where m ∈ N is the number of the components of the mixture and 0 < π1, . . . , πm < 1 are

the weights of the components satisfying
∑m

k=1 πk = 1. The parameters of each component,

namely, µk, γk, ρk and λk, are defined as in Eq. (4.1).

On the other hand, the mixture distribution based on Eq. (4.2) is

f (θ) =
m∑

k=1

πk g∗KJ(θ; µk, γk, ᾱ2k, β̄2k). (4.4)

ᾱ2k and β̄2k are defined as in Eq. (4.2). The number of parameters for the mixture is 5m−1.

Note that the mixture of Kato–Jones distribution is called MoKJ hereafter.

4.4 Estimation

Since the traffic volume data has two peaks, fitting is performed using MoKJ, which can

represent a multimodality. In the estimation of the distribution, as in the usual Kato–Jones
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distribution, the method of moments is employed first, and the obtained parameters

are used as initial values to achieve maximum likelihood estimation. However, the

formulation of Eq. (4.3) contains redundant parameters, which can cause trouble during

optimization calculations. Therefore, the reparameterization is described first, followed

by a discussion of the method of moments and maximum likelihood estimation.

4.4.1 Reparameterization

First alternative expressions for the densities of Kato–Jones distributions and their mixture

is introduced. The formulation of Eq. (4.1) can be converted by reparameterization as

gKJ(θ; µ, γ̄, ρ, λ)

= π′ ·
1

2π

{
1 + 2γ̄

cos(θ − µ) − ρ cos λ
1 + ρ2 − 2ρ cos(θ − µ − λ)

}
+
(
1 − π′

) 1
2π
, (4.5)

where π′ = γ/γ̄ (∈ (0, 1]) and γ̄ = (1− ρ2)/{2(1− ρ cos λ)} is the upper bound of the range

of γ for given ρ and λ. The mixture of Eq. (4.5) distributions is described as

f (θ) =
1

2π

m∑
k=1

π′k · gKJ(θ; µk, γ̄k, ρk, λk) +
π′m+1

2π

=
1

2π

m∑
k=1

π′k

{
1 + 2γ̄k

cos(θ − µk) − ρk cos λk

1 + ρ2
k − 2ρk cos(θ − µk − λk)

}
+
π′m+1

2π
, (4.6)

where π′k = πkγk/γ̄k (k = 1, . . . ,m), π′m+1 = 1−
∑m

k=1 π
′
k, and γ̄k = (1−ρ2

k)/{2(1−ρk cos λk)}.

This implies the mixture Eq. (4.3) can be divided into a mixture of Kato–Jones submodels

gKJ(µk, γ̄k, λk, ρk) and a uniform distribution. The formulation Eq. (4.6) suggests that πk

and γk cannot be uniquely determined in parameter estimation because the information on

both parameters is contained in the single parameter π′k. The number of free parameters

in Eq. (4.6) is actually 4m since γ̄k is determined by ρk and λk, which reduces m − 1 free

parameters compared to Eq. (4.3). With this parameterization, it is possible to prove the

identifiability of the mixtures.
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4.4.2 Modified method of moments

Let random variables Θ1, . . . ,Θn be independent and identically distributed from the

reparametrized mixture Eq. (4.6). Denote the parameters of the mixture Eq. (4.6) by

Ψ = (µ1, . . . , µm, ρ1, . . . , ρm, λ1, . . . , λm, π
′
1, . . . , π

′
m+1).

In this case, the pth trigonometric moment of Θ j is given by

E(eipΘ j) =
m∑

k=1

π′kγ̄k (ρkeiλk)−1
{
ρkei(µk+λk)

}p
, p ∈ N, (4.7)

where i is the imaginary unit (Kato and Jones, 2015).

In the usual method of moments estimation, the parameters satisfying Eq. (4.8) are

regarded as estimators.

1
n

n∑
j=1

eipΘ j =

m∑
k=1

π′kγ̄k (ρkeiλk)−1
{
ρkei(µk+λk)

}p
, (4.8)

for some selected values of p. Eq. (4.8) means equating the theoretical trigonometric

moments Eq. (4.7) to empirical ones. However, estimated ρk and λk by Eq. (4.8) are not

guaranteed to always be in the domain.

Therefore, consider the following function that takes the difference between theoreti-

cal trigonometric moments and empirical ones.

ETM(Ψ) ≡
q∑

p=1

w(p)

∣∣∣∣∣∣∣1n
n∑

j=1

eipΘ j − E(eipΘ)

∣∣∣∣∣∣∣
2

=

q∑
p=1

w(p)

∣∣∣∣∣∣∣1n
n∑

j=1

eipΘ j −

m∑
k=1

π′kγ̄k (ρkeiλk)−1
{
ρkei(µk+λk)

}p∣∣∣∣∣∣∣
2

,

where q ∈ N and w(p) is a function used to weight the lower-order moments to stabilize

the estimation. This function can also be expressed as

ETM(Ψ) =
q∑

p=1

w(p)
[{1

n

n∑
j=1

cos pΘ j −

m∑
k=1

π′kγ̄k · ρ
p−1
k cos (pµk + (p − 1)λk)

}2
+

{1
n

n∑
j=1

sin pΘ j −

m∑
k=1

π′kγ̄k · ρ
p−1
k sin (pµk + (p − 1)λk)

}2]
.
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When ETM equals 0 within the domain, the estimator coincides with the moment

estimator. On the other hand, the estimator that minimizes ETM within the domain is

the parameter that is closest to the moment estimator within the domain, although it does

not match the moment estimator.

Therefore, a modified method of moments estimator Ψ̂ is defined as the minimizer of

ETM as

Ψ̂ = argmin
Ψ∈Ω

ETM(Ψ), (4.9)

where Ω is the parameter space of Ψ.

The result of the estimation depends on the choice of q and w(p). Since the mixture

Eq. (4.6) has essentially 4m free parameters, there are potentially multiple solutions to the

equation ETM(Ψ̂) = 0 for q < 2m. To avoid this potential problem, it is recommended to

assume q ≥ 2m and, in this analysis, q = 2m is assumed. As for the choice of the weight

function w(p), w(p) = cp(0 < c < 1) was adopted in this data analysis to place much more

importance on the low-order trigonometric moments than on the high-order ones.

The modified method of moments aggregates the data into multiple moment values,

which makes the optimization computation faster. However, since ETM is not a convex

function, it is necessary to minimize from many initial values to obtain the parameter.

4.4.3 Maximum likelihood estimation

Next, the maximum likelihood estimation is discussed. The log-likelihood function for

the sample (θ1, . . . , θn) is given by

ℓ(Ψ) = C +
n∑

j=1

log

 m∑
k=1

π′k

{
1 + 2γ̄k

cos(θ j − µk) − ρk cos λk

1 + ρ2
k − 2ρk cos(θ − µk − λk)

}
+ π′m+1

 , (4.10)

where C = −n log(2π). As is the case for p = 1, there is no closed form expression for the

maximum likelihood estimator for MoKJ. Therefore, the EM algorithm (McLachlan and

Krishnan, 2007) is employed as a numerical approach to obtain the maximum likelihood

estimator. The following algorithm is established:
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1. Take an initial value Ψ(0), where

Ψ(0) = (µ(0)
1 , . . . , µ

(0)
m , ρ

(0)
1 , . . . , ρ

(0)
m , λ

(0)
1 , . . . , λ

(0)
m , π

′(0)
1 , . . . , π

′(0)
m+1).

2. For r = 1, . . . ,N, compute the following until the value of Ψ(N) is virtually

unchanged from Ψ(N−1):

π′(r)
k =

1
n

n∑
j=1

w(r−1)
k j , π

′(r)
m+1 = 1 −

m∑
k=1

π′(r)
k ,

(
µ(r)

k , λ
(r)
k , ρ

(r)
k

)
= argmax

(µk ,λk ,ρk)

 n∑
j=1

w(r−1)
k j log

{
gKJ(θ j; µk, γ̄k, λk, ρk)

} , (4.11)

where k = 1, . . . ,m and

w(r−1)
k j =

π′(r−1)
k gKJ(θ j; µ

(r−1)
k , γ̄(r−1)

k , λ(r−1)
k , ρ(r−1)

k )∑m
h=1 π

′(r−1)
h gKJ(θ j; µ

(r−1)
h , γ̄(r−1)

h , λ(r−1)
h , ρ(r−1)

h ) + π′(r−1)
m+1 /(2π)

.

3. Record Ψ̂(N) as the maximum likelihood estimate of Ψ.

The calculation of the likelihood function requires a long computation time when the

data size is large. Therefore, an initial value that is close to the maximum likelihood

estimation is desirable. The estimator by the modified method of moments is close to

the maximum likelihood estimator due to its consistency. Therefore, it is suitable for the

initial value of maximum likelihood estimation.

4.5 Simulation study

The performance of the modified method of moments estimation and the maximum

likelihood estimation by EM algorithm is compared via a Monte Carlo simulation study.

Random samples of sizes n = 50, 100, 500, 1000, and 5000 were generated from the

estimated distribution whose parameters are shown in Table 4.4(b). For each sample size,

r = 2000 samples were generated.

For comparison of the two estimators, the generalized mean squared error is employed

that is defined by det (Σ), where Σ = E{(ξ̂ − ξ)(ξ̂ − ξ)⊤} and ξ̂ is an estimator of ξ =
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(µ1, µ2, ρ1, ρ2, λ1, λ2, π
′
1, π
′
2)⊤. An estimate of the generalized mean squared error is given

by replacing Σ by its sample analogue Σ̂ = r−1∑r
j=1 (ξ̂ j − ξ)(ξ̂ j − ξ)⊤, where the ξ̂ j’s,

j = 1, ..., r, are the estimates from the r simulation samples. It is also considered the

estimated relative generalized mean squared error of the estimate via the modified method

of moments with respect to the maximum likelihood estimate, which is defined as

̂RGMSE =
det (Σ̂MM)
det (Σ̂ML)

.

Here, Σ̂MM and Σ̂ML are sample estimates of the mean squared error matrices of modified

method of moments estimation and maximum likelihood estimation, respectively.

For numerical optimization of ETM, the scipy.optimize.minimize package in Python

with SLSQP method is employed Jones et al. (2001); Kraft (1988). This method is a kind

of quasi-Newton method and enables us to solve the constrained optimization problem.

In this analysis, the optimization of ETM is terminated when the difference in the value

of ETM between two successive steps is lower than 1 × 10−10. The initial values of µk,

ρk and λk are random samples from the uniform distribution on the intervals [0, 2π), [0, 1)

and [0, 2π), respectively. Also, those of π′1, π′2 and π′3 are in [0, 1) and π′1 + π
′
2 + π

′
3 = 1.

For this sampling, two random values are drawn from the uniform distribution on [0, 1)

and the smaller one is regarded as r1 and the other as r2. Then, π′1 = r1, π′2 = r2 − r1, and

π′3 = 1 − r2 are calculated. Furthermore, the moment weight parameter c in w(p) is set to

0.9 because the experiments suggest that estimates with small c are not stable with regard

to fitting the data.

100 estimates are obtained via this process and the estimate whose value of ETM is

smallest is set as the initial value for the maximum likelihood estimation. For numerical

optimization in the M-step, namely, Step 2 in the EM algorithm the same Python package

as in the optimization of ETM is employed. In this analysis, each M-step is terminated

when the difference of the value of the objective function between two successive

iterations is lower than 1 × 10−6. Also, the whole EM algorithm is terminated when the

difference of the log-likelihood function between two successive M-steps is lower than

n × 10−6. In both estimates, it is assumed that µ̂1 < µ̂2.
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Table 4.1: The values of det (Σ̂MM), det (Σ̂ML) and ̂RGMSE.

n n = 50 n = 100 n = 500 n = 1000 n = 5000

det (Σ̂MM) 5.35 × 10−9 7.00 × 10−10 2.70 × 10−13 4.25 × 10−15 4.01 × 10−20

det (Σ̂ML) 5.05 × 10−8 6.41 × 10−9 3.56 × 10−12 1.33 × 10−14 1.23 × 10−22

̂RGMSE 0.106 0.109 0.076 0.322 325.3

Figure 4.3: Plot of the value of det (Σ̂MM) (bold) and det (Σ̂ML) (dotted) in simulation study.

Table 4.1 shows the value of det (Σ̂MM), det (Σ̂ML) and ̂RGMSE for each sample size. In

addition, Fig. 4.3 shows the trend of the change of the value of det (Σ̂MM) and det (Σ̂ML) in

different sample sizes. As the sample size n increases, the value of det (Σ̂MM) and det (Σ̂ML)

decreases. The value of the det (Σ̂MM) at n = 50 is smaller than det (Σ̂ML), however, the

value of the det (Σ̂MM) at n = 5000 is larger than det (Σ̂ML) because the degree of decline in

value with respect to sample size is greater for det (Σ̂ML) than for det (Σ̂MM). Therefore, the

values of ̂RGMSE are smaller than 1 for n ≤ 1000 and larger for n = 5000. These results

imply modified moments estimation is preferable for estimation from a small number

of samples in terms of ̂RGMSE. On the other hand, maximum likelihood estimation is

preferable for estimation from a large number of samples such as the data in this chapter.

Note that modified moments estimation yields not only an estimate but also a good initial

value for maximum likelihood estimation. Although the value of ̂RGMSE is relatively
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large for n = 5000, the very small value of det (Σ̂MM) for n = 5000 indicates that the

estimate via the modified moments estimation still has reasonable performance as the

initial value for maximum likelihood estimation. Therefore, modified moments estimation

is useful to obtain the maximum likelihood estimates efficiently for a large sample size as

well as small and medium sample sizes.

It is noted that the degree of decline of the det (Σ̂) with respect to sample size depends

on the estimation method. Therefore, for n = 500, the value of ̂RGMSE is slightly

smaller than for n = 100. The tendency for ̂RGMSE to not increase monotonically is also

observed in the unimodal Kato–Jones distribution (Kato and Jones, 2015, Supplementary

Material).

4.6 Application

4.6.1 Application of modified method of moments estimation

The proposed inferential methods are applied to the traffic count data of interest. The

number of samples is 1,121,262, as mentioned in Section 4.2. In this section, the number

of components is fixed to two because two main peaks are recognized in the histogram

(see Section 4.7 for results for other numbers of components). The conditions of the

modified method of moments estimation are the same as in the previous section.

Table 4.2: Parameter estimates associated with the modified method of moments estimation.

(a) Initial value

k µk ρk λk π′k

1 2.2755 0.5322 4.9979 0.0316

2 3.9458 0.8131 2.0455 0.2331

3 0.7353

(b) Estimated parameter

k µ̂k ρ̂k λ̂k π̂′k

1 2.7514 0.7322 5.3162 0.4543

2 4.0106 0.1947 1.1589 0.4820

3 0.0637

The optimization is carried out for 10,000 initial values. Fig. 4.4 and Table 4.2 show

the best result in the sense that the value of ETM is the smallest among 10,000 estimations.
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Figure 4.4: Plot of the densities of the reparametrized mixture Eq. (4.6) (bold) and its components (dashed)

estimated via the modified method of moments estimation.

Table 4.3: Values of the empirical and theoretical trigonometric moments (t.m.’s) and squares of their

differences in the best result.

empirical t.m. theoretical t.m. square of difference

cosine p = 1 −3.29 × 10−1 −3.29 × 10−1 2.95 × 10−14

p = 2 −7.07 × 10−2 −7.07 × 10−2 5.64 × 10−15

p = 3 9.46 × 10−2 9.46 × 10−2 3.07 × 10−15

p = 4 −1.61 × 10−2 −1.61 × 10−2 8.35 × 10−15

sine p = 1 −1.23 × 10−1 −1.23 × 10−1 2.81 × 10−14

p = 2 −1.18 × 10−1 −1.18 × 10−1 1.21 × 10−13

p = 3 1.29 × 10−2 1.29 × 10−2 4.21 × 10−16

p = 4 6.97 × 10−2 6.97 × 10−2 7.43 × 10−16

Table 4.3 provides the values of the empirical and theoretical trigonometric moments. The

solid line in Fig. 4.4 represents the estimated density of the mixture and the dashed lines

refer to the estimated densities of the components. The same convention will be used in

the following figures of fitted densities. The value of ETM is 7.06 × 10−13 and that of

the log-likelihood function is −1,840,939. As shown in the right column of Table 4.3,
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the difference between the values of empirical and theoretical trigonometric moments

of all the degrees are approximately 0, which means that this result is very close to the

result of ordinary method of moments estimation. Nonetheless, it is generally needed

the proposed modified method of moments to ensure that the parameters are within their

ranges, as explained in Section 4.4. Actually, when the number of components m is set

to be greater than two, much larger values of ETM are obtained for some cases and the

ordinary method of moments estimates are out of range for some parameters. Also, the

estimated densities in Fig. 4.4 fit fairly well to the histogram. The sharp and negatively

skewed peak around π/2 is represented by the component with k = 1, while the gentle

peak around 3π/2 is modelled by the component with k = 2.

The computation time for 10,000 trials is about 14 sec. The calculation was run on

a Windows 10 computer with an Intel Core i9-12900 processor running at 3.20 GHz

using 64.0 GB of RAM. Furthermore, about 25% of 10,000 trials converge to almost

the same value as the best result. In this case, 10,000 initial values were used to

verify the performance of the modified method of moments estimation. The estimates

that provide the smallest value of ETM can be obtained from 25% of the initial values,

which implies that estimation from a much smaller number of initial values (e.g., 100)

would be sufficient.

Note that the modified method of moments estimation is carried out to obtain a good

initial value for maximum likelihood estimation that is more appropriate for such a large

sample size as discussed in Section 4.5.

4.6.2 Maximum likelihood estimation

The EM algorithm is carried out by setting the initial values as the best estimates from the

modified method of moments to achieve the maximum likelihood estimation efficiently.

This choice of the initial values seems reasonable because of the large sample size of the

data and the consistency of the modified method of moments estimator and maximum

likelihood estimator. The conditions of the maximum likelihood estimation are the same
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Figure 4.5: Plot of the densities of the reparametrized mixture Eq. (4.6) (bold) and its components (dashed)

estimated via the EM algorithm.

as in the previous section except for the threshold for the termination of EM algorithm,

which is set to 1. This threshold is set by the following reasoning. Since the number of

samples in this chapter is more than 1,000,000, the absolute value of the log-likelihood

function is expected to be of that order of magnitude. Thus, the threshold 1 is regarded as

small enough to claim convergence.

Table 4.4: Parameter estimates associated with the maximum likelihood estimation for the reparametrized

mixture Eq. (4.6) via the EM algorithm.

k µ̂k ρ̂k λ̂k π̂′k

1 2.7572 0.7266 5.3136 0.4536

2 4.0107 0.1970 1.1895 0.4825

3 0.0639

The result of the EM algorithm is shown in Fig. 4.5 and Table 4.4. It takes just two

steps to terminate the EM algorithm. The value of ETM increases along with that of the

log-likelihood during the EM algorithm. The difference between the parameter estimates

by the modified method of moments and those by the maximum likelihood estimation
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is not much. This implies that the modified method of moments estimate is close to the

maximum likelihood estimate, the estimate produced by another consistent estimator.

In addition, the standard errors for the parameter estimates by the modified method of

moments and those by the maximum likelihood estimation are calculated. The standard

errors for the parameter estimates by the modified method of moments is calculated by

the bootstrap method (Davison and Hinkley, 1997) and those by the maximum likelihood

estimation is calculated by the Fisher information matrix for the log-likelihood function

due to computation time.

Table 4.5: The value of standard errors for the parameter estimates by the modified method of moments

and those by the maximum likelihood estimation.

k µ̂k ρ̂k λ̂k π̂′k

the modified method of moments 1 5.77 × 10−2 2.46 × 10−2 1.87 × 10−1 8.91 × 10−3

2 5.74 × 10−2 2.47 × 10−2 1.90 × 10−1 5.92 × 10−3

3 6.59 × 10−2

the maximum likelihood estimation 1 6.36 × 10−3 3.50 × 10−3 2.88 × 10−2 3.27 × 10−3

2 6.82 × 10−3 1.98 × 10−3 9.03 × 10−3 3.76 × 10−3

3 3.30 × 10−3

The results are shown in Table 4.5. For all parameters, the values of standard error for

the parameter estimates by the maximum likelihood estimation are smaller than those by

the modified method of moments. The values of standard error for the parameter estimates

by the maximum likelihood estimation are in between the order of the second and third

power of 10, and those by the modified method of moments are in between the order of

the one and third power of 10.

As for the computation time, it takes 93 sec. for the EM algorithm although only two

M-steps are conducted in the calculation. The calculation environment is the same as that

of the previous subsection. Compared to the modified method of moments that takes only

about 14 sec. for 10,000 trials, the EM algorithm requires a much longer time. Therefore,

setting the initial value close to the maximum likelihood estimator is necessary to achieve

the maximum likelihood estimation by the EM algorithm in a feasible computation time.
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Figure 4.6: Plot of the estimated densities of the recovered mixture Eq. (4.3) (bold) and their components

(dashed).

The proposed modified method of moments is one possible solution for this purpose.

Although two parameter estimation methods are introduced in this chapter, the

maximum likelihood estimation is preferred in terms of mean squared error of the

estimators and usage for model comparison. The modified method of moments is

useful to obtain a good initial value for the maximum likelihood estimation with a short

computation time for large sample sizes.

Table 4.6: Maximum likelihood estimates for the mixture with the recovered original parameterization Eq.

(4.3).

k µ̂k γ̂k ρ̂k λ̂k π̂k

1 2.7572 0.3751 0.7267 5.3136 0.4845

2 4.0107 0.4855 0.1970 1.1895 0.5155

Here, the parameters are estimated in the form of the mixture of two Kato–Jones

distributions and the uniform distribution (Table 4.4(b) and Eq. (4.6). Actually, this

mixture of three components can be regarded as the estimated model. Nonetheless, it
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is also able to reparameterize and recover the estimates of the original parameters Eq.

(4.3) as discussed in Section 4.4. As it is initially aimed to estimate the mixture of two

components, the latter is employed in the following. The maximum likelihood estimates

obtained via the EM algorithm (Fig. 4.5 and Table 4.4) are recovered to µ̂k, γ̂k, ρ̂k, λ̂k and

π̂k as shown in Fig. 4.6 and Table 4.6. The shapes of the two estimated components with

k = 1, 2 in Table 4.4 slightly change by adding the restored uniform component with

k = 3.

In addition, µ̂k, γ̂k, ρ̂k, λ̂k are reparameterized into µ̂k, γ̂k, ˆ̄α2k,
ˆ̄β2k for interpretation

because ˆ̄α2k and ˆ̄β2k can be interpreted as the circular skewness and kurtosis of Batschelet

(1981) as mentioned in Section 4.3. The recovered parameters are reparameterized as

shown in Table 4.7. The discussion of parameter is carried out only for the parameter in

Table 4.7 because the ease of interpretation for ˆ̄α2k and ˆ̄β2k.

Table 4.7: Maximum likelihood estimates for the reparametrized mixture Eq. (4.4).

k µ̂k γ̂k ˆ̄α2k
ˆ̄β2k π̂k

1 2.7572 0.3751 0.1542 -0.2248 0.4845

2 4.0107 0.4855 0.0356 0.0888 0.5155

4.6.3 Discussion

Here, the interpretation of the estimated models with the recovered parameterizations Eq.

(4.4) given in Table 4.7 is discussed. As shown in Fig. 4.6, the densities of the mixture fit

fairly well to the histogram for the entire day, such as the sharp peak in the morning and

the gentle peak in the evening. The numerically calculated morning mode and evening

mode of the whole distribution of the mixture are 7:32 and 15:56, respectively.

The two components divide the mixture into 48.5% and 51.5% as denoted by each

value of πk. Each peak roughly represents the morning and evening traffic. The peak of

the component with k = 1 is sharp and negatively skewed. Its mean, µ̂1, is around 10:32,

and its mode is around 7:28 (Kato and Jones, 2015, Supplementary Material). The mode

of the component with k = 1 is close to the morning mode of the mixture because the
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component with k = 1 is dominant around the morning. The shape is characterized by

large ˆ̄α21 and negatively large ˆ̄β21. On the other hand, the peak of the component with

k = 2 is gentle and positively skewed. Its mean, µ̂2, is around 15:19, and its mode is

around 16:37. The mode of the component with k = 2 and the evening mode of the

mixture is apart because the tail of the component with k = 1 is contained even in the

evening part of the mixture. The shape is characterized by small ˆ̄α22 and positively small
ˆ̄β22.

The interpretation of each component around its peak can be done straightforwardly.

The peak period of the component with k = 1 is from 7:00 to 8:00, and its shape is

remarkably sharp and quick-rising, which is described by large ˆ̄α21 and negatively large
ˆ̄β21. This is explained by the actual situation that many drivers would like to arrive in

central Osaka around the same time, like 8:30 and 9:00, which is the typical start time for

working in Japan. On the other hand, the peak period of the component with k = 2 is from

15:00 to 19:00, and its shape is gradual and positively skewed, which is described by small

ˆ̄α22 and positively small ˆ̄β22. This may be because drivers do not have to leave their office

at the same time, which is different from morning hours. Perhaps, some of them decide

to make their departure time earlier or later than peak hour to avoid traffic congestion.

Actually, the difference of span of peak periods between commuting to and returning

from work has been confirmed (Alexander et al., 2015). In addition, the positively skewed

shape may imply that they also avoid returning home too late.

These interpretations are made by focusing on the shape around the mode of each

peak. It is more difficult to understand the traffic flow volume around the tails of both

components. For example, the first component still has a moderate probability at around

16:00, which cannot be included in the morning rush hour. Moreover, the interpretation of

the complex crossing points of each component seen early in the morning is impossible.

One possible explanation is that the first component represents the outward trip that

includes morning commuting, commercial vehicle, and so on. For example, many

commercial vehicles travel from Kobe to Osaka during the daytime. In addition, some

people make their first trip in the evening because they work at night or go shopping.
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People who work at night are more likely to use their vehicles for commuting than those

who work in the daytime as public transport is not operating after midnight. These could

explain the first component having a larger probability than the second component after

around 22:00. Similarly, the second component represents the day’s return trips, including

evening commuting. As round and migration trips during the daytime, for example, may

be included in the second component, it already has a moderate value even in the morning

hours. Note that outward and return trips are observed only once because all recorded

traffics are in the same direction.

Finally, the results are compared with some phenomena that are typically mentioned

in the traffic engineering field. First, the difference in the value of ˆ̄α2 between the two

components is consistent with the concept of departure time choice in traffic engineering

(Noland and Small, 1995). In general, drivers choose their departure time by estimating

backward from the time they want to arrive. Alexander et al. (2015) indicates that

many drivers depart within short periods in the morning (i.e., traffic is concentrated),

while drivers depart within longer periods in the evening and later. Second, 30% of

Hanshin Expressway users are for commercial purposes (Hanshin Expressway, 2017, (in

Japanese)). If it is assumed that people make outward commercial trips after they start

working, the tail of the first components around noon is likely to contain commercial

vehicles at a certain level. Therefore, the aforementioned interpretation that the first

component is for the outward trips of the day and the second one is for the return trips

is reasonable to some extent. Note that the share of heavy vehicles on this road is 13.6%

in total and less than 30% even in the midnight period, although one might expect that

the freight traffic are the main component during midnight. Therefore, no peak for freight

traffic in the midnight period are found in the histograms, nor are such peaks found in the

estimated model.

Since these discussions are only derived from traffic volume data, it is necessary

to further develop the interpretations by combining data such as trip purpose data

and origin and destination data. In addition, combining with other data, such as the

spatio-temporal distribution of demand discussed in Chapter 5 provides substantiation for
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the interpretation of each component. Nonetheless, it would be the contribution of this

chapter that the proposed model that only uses traffic volume information is consistent

with various concepts used in traffic engineering.

4.7 Comparison with other models

4.7.1 Mixtures of other distributions

Other multimodal distributions are compared with the proposed model in terms of

practicability and fit. The distributions considered here are the mixture of von Mises

distributions (MovM), the mixture of wrapped Cauchy distributions (MowC), the mixture

of sine-skewed von Mises distributions (MossvM) and the mixture of sine-skewed

wrapped Cauchy distributions (MosswC) whose densities are given by

fMovM(θ) =
m∑

k=1

πk

2πI0(κk)
exp(κk cos(θ − µk)),

fMowC(θ) =
m∑

k=1

πk

2π
1 − ρ2

k

1 + ρ2
k − 2ρk cos (θ − µk)

,

fMossvM(θ) =
m∑

k=1

πk(1 + λk sin(θ − µk))
2πI0(κk)

exp(κk cos(θ − µk)),

fMosswC(θ) =
m∑

k=1

πk

2π
1 − ρ2

k

1 + ρ2
k − 2ρk cos (θ − µk)

(1 + λk sin(θ − µk)),

respectively, where µk ∈ [0, 2π) is the mean direction, κk ∈ [0,∞) and ρk ∈ [0, 1] is a

concentration parameter, λk ∈ [−1, 1] is a skewing parameter, I0(·) is the modified Bessel

function of the first kind and order zero, m ∈ N is the number of components of the

mixture and 0 < π1, . . . , πm < 1 are the weights of the components satisfying
∑m

k=1 πk = 1.

The number of free parameters for MovM and MowC are 3m − 1 and that for MossvM

and MosswC are 4m − 1. These distributions are popular mixtured discussed, (e.g., in

Wallace and Dowe, 2000; Mooney et al., 2003; Banerjee et al., 2005; Mulder et al., 2020;

Miyata et al., 2020). Note that the mixture of sine-skewed wrapped Cauchy is a submodel
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of proposed model (Kato and Jones, 2015, Supplementary Material).

The 50-folds cross-validation is conducted to compare the performance of the

proposed model with that of four existing models. The cross-validated log-likelihood

is employed as the criterion for comparison (Smyth, 2000). The number of components

is set to two as in the proposed model.

Table 4.8: The average value of cross-validated log-likelihood function in 50-folds cross validation for

MovM, MowC, MossvM, MosswC and proposed model.

model log-likelihood function

proposed -36818.5

MovM -37059.4

MowC -37731.7

MossvM -37026.3

MosswC -36855.3

Table 4.8 shows the average value of cross-validated log-likelihood function for each

model. The proposed model’s predictive performance is superior to the other models

because the value for proposed model is the largest. In contrast to the proposed model

that allows varying values of kurtosis and skewness, MovM and MowC do not allow

both, while MossvM and MosswC do not allow varying kurtosis. In terms of the number

of parameters, MovM and MowC have m less than the proposed model, and MossvM and

MosswC have the same. The proposed model is superior to the other models in terms

of predictive performance because the proposed model can vary its shape flexibly with a

small number of parameters.

4.7.2 The proposed mixture with more than two components

The mixed Kato–Jones distributions Eq. (4.4) whose number of components m is more

than two are estimated. In this subsection, models with m ≤ 6 are discussed because of

stability of estimation; estimation for the model with m > 6 was carried out but the results

were unstable. Recall that the histogram shows two peaks that can be interpreted as shown
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above and the assumption of more than two peaks is not necessarily insightful from the

transport engineering viewpoint. As such, the main purpose of this subsection is not to

find the most accurate number of components but to find out what shapes of distributions

will be obtained.

The 50-folds cross-validations for the proposed model whose number of components

m from 2 to 6 are conducted. The conditions for the estimation are the same as those in

Section 4.5.

Table 4.9: The average value of cross-validated log-likelihood function in 50-folds cross validation for

proposed model whose number of components m from 2 to 6.

m log-likelihood function

2 -36818.5

3 -36818.7

4 -36808.6

5 -36817.6

6 -36820.2

Table 4.9 shows the average value of cross-validated log-likelihood function for each

number of components. The model whose number of components m = 4 is the best

because the value for proposed model is the largest. The plot and value of the parameter

for the estimated model whose number of components m = 4 are shown in Fig. 4.7 and

Table 4.10. Note that the number of bins in Fig. 4.7 is 96 (i.e., the width of the bin equals

15 minutes) for visualization.

In the results of m = 4, two prominent components with k = 1, 2 have a large value

of π̂k. As well as the results of m = 2, the components with k = 1, 2 represent the peak

around π/2 and 3π/2, respectively. However, the component with k = 2 for m = 4 is not

skewed compared to the component with k = 2 for m = 2 shown in Fig. 4.6. Not only the

component with k = 2 but also that with k = 4 in the results of m = 4 represent the shape

between 3π/2 and 2π that is represented by only one component with k = 2 in the results

of m = 2. In addition, the component with k = 3 has a small value of π̂3 and represents

the small peak around 16:00 seen in the histogram.

76



Chapter 4 Temporal Transportation Model with Angle

Figure 4.7: Plot of maximum likelihood fits of the densities with the numbers of components m = 4.

The components with k = 3, 4 may not be meaningful from the transport engineering

viewpoint; they only represent the trivial peak along with the improvement of the value

of the log-likelihood function. The interpretation of the parameters for these smaller

components is difficult with only the traffic volume data. Some additional information

such as each vehicle’s origin, destination, and trip purpose may help the interpretation for

the parameters.

Table 4.10: Maximum likelihood estimates of the parameters of Kato–Jones mixtures Eq. (4.4) whose

numbers of components m = 4.

k µ̂k γ̂k ˆ̄α2k
ˆ̄β2k π̂k

1 2.6665 0.4376 0.2128 -0.2452 0.3855

2 3.7380 0.5065 0.0076 0.0225 0.4907

3 4.3642 0.4887 0.3402 -0.2284 0.0285

4 5.2889 0.6037 0.2628 -0.2166 0.0952
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4.8 Conclusions

In this chapter, the probability distribution of the daily variation of traffic volume is

estimated. The mixture of Kato–Jones distributions is employed, which can provide a

wide range of skewness and kurtosis for each component. To estimate the parameters of

these distributions, the modified method of moments developed. This method ensures

that the estimated parameters always belong to the parameter space. Then the maximum

likelihood method for the proposed mixture was established using the EM algorithm.

The proposed method was applied to some traffic counter data from Japan. As a result,

the data were classified into two components, which were interpreted as the outward and

return trip. Some reasonable explanations for these components are suggested, that the

difference in the shapes of the components might be caused by the different behaviours

underlying the commuting trips between morning and evening hours. In addition, the

modified method of moments was seen to allow for fast calculation and provided a

reasonable initial value for maximum likelihood estimation. With this initial value, the

EM algorithm provided reasonable maximum likelihood estimates.

According to the cross-validated log-likelihood function, the model whose number of

components m = 4 is the best model. However, the interpretation of the trivial components

in the model are difficult thus far. As future work, further consideration of missing factors

that generate third and later components may be necessary. Some additional information

such as each vehicle’s origin, destination, and trip purpose would be useful for this.
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Chapter 5 Spatial Transportation Model with

Angle: Traffic State by Travel

Directions

5.1 Introduction

Traffic congestion occurs when the supply of road network is insufficient compared to

demand at urban-scale levels. Therefore, the relationship between supply and demand has

been extensively investigated in the literature. Specifically, the impact of the topology of

network (i.e., connectivity) on transportation state has been widely studied (Sheffi, 1985;

Yang and H. Bell, 1998; Yin and Ieda, 2001; Farahani et al., 2013; Rempe et al., 2016;

Sun et al., 2018). Alternatively, simpler area-based approaches that focus on aggregated

transportation state over a wide area have also been employed, such as the continuous

modeling approach (Beckmann, 1952; Sasaki et al., 1990; Wong, 1998) and the network

or macroscopic fundamental diagram (Mahmassani et al., 1984; Williams et al., 1987;

Daganzo and Geroliminis, 2008; Ji et al., 2014; Saeedmanesh and Geroliminis, 2017).

These topology- or area-based approaches have been highly successful in providing

valuable insights into urban-level transportation state analysis. For example, it has been

observed that roads in urban centers experience higher congestion as a result of their

higher accessibility , which can be evaluated by betweenness centrality. Furthermore,

the implementation of detour routes has been shown to reduce overall travel time.

Additionally, the capability of throughput of demand depends on traffic volume (i.e.,

fundamental diagram) at the network level, which does not depend on demand patterns

(Daganzo and Geroliminis, 2008).

However, these approaches encounter challenges in explaining some phenomena. For

This chapter is mainly based on the research with Prof. Toru Seo, in arXiv preprint (Nagasaki and Seo,

2023).
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example, although it is possible to quantify the transportation state of each path, providing

a comprehensive explanation of their sensitivity to the overall demand pattern is difficult.

Moreover, it is challenging to clarify the relationships between state and the physical

characteristics of the road network, such as whether it follows a grid pattern or not.

These can be easily described by adding the variable of “angle”. It appears on the

demand side as each origin-destination (OD) pair associated with a traveler also possesses

an angle. The pattern of demand can be captured by aggregating the individual OD angles.

On the supply side, the shape of a road network can be characterized by the distribution

of the angles or orientation of each road in the network, which can be called morphology

of road networks. Analyzing transportation state by specifically focusing on these angles

could potentially offer insights and contribute to a better understanding of transportation

dynamics.

In concrete, an angle-based approach may offer certain advantages over topology-

or area-based approaches. For example, by representing travel demand using angles, it

becomes easier to describe the relationship of that particular demand within the overall

demand pattern. This could potentially enable a more comprehensive explanation of state

sensitivity to demand patterns. Furthermore, it could facilitate describing the relationship

between the physical shape of the road network, characterized by angular indicators, and

transportation dynamics. By considering angles, a deeper understanding of how the road

network’s geometry influences state could be attained.

However, angular indicators are difficult to analyze mathematically due to its

periodicity as mentioned in Chapter 2. To overcome the difficulty, the field of statistics has

developed a specialized branch known as Directional Statistics (Mardia and Jupp, 2000),

which is designed to analyze angular data. However, its application to transportation

research, particularly in the context of traffic state analysis, remains limited.

There have been several studies that have utilized angular indicators to describe

various aspects of road traffic. For example, Boeing (2019) and Nagasaki et al. (2019)

employed a rose diagram, which is a histogram for angular data, to depict the distribution

of road orientations within a road network. These studies focused on describing
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the physical shape of the road network (i.e., morphology) rather than the traditional

approach of analyzing the network based on connectivity relationships between nodes

(i.e., topology). On the other hand, Zhou (2015) analyzed massive bike-sharing data

in Chicago by employing a rose diagram to visualize the direction of the trip. In this

study, each trip is described as the angle of a vector from the origin to the user’s

destination. However, no studies have investigated transportation state with employing

angular analysis in both the demand and supply sides.

In this context, the aim of this chapter is to build a novel descriptive model that

captures the transportation state by two angular distributions: the direction of demand

and the shape of the road network. The proposed model utilizes directional statistical

methodology to predict direction-dependent transportation state based on the angular

distributions of supply and demand. To validate the model, actual traffic data from Tokyo

is utilized.

The chapter is organized as follows. Section 5.2 describes a state model with angular

distribution and details of two distributions, the estimation process, and the expected

property of the model. Section 5.3 describes a case study on the actual road network with

the actual data and the interpretation of the results. Section 5.4 concludes this chapter.

5.2 Model

5.2.1 Overview

In the proposed model, the author aim to capture the state for travel in a specific direction

θ ∈ [0, 2π) by the angular distribution of demand and the road network.

Let c(θ) represent the state for travel in the direction θ within a given area, d(θ)

denote the angular distribution of demand, and n(θ) do the angular distribution of the

road network.

Here, c(θ) is expected to be influenced by demand and road network at angles different

from θ itself. For example, high demand in the north-south direction or insufficient road
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network development in the north-south direction may result in congestion in the east-

west direction. The aim is to build a model that accounts for such complexities. However,

as a pioneering study in state analysis using angles, this chapter proposes a simplified

model to demonstrate the concept.

5.2.2 State model

To account for the influence of demand and road network characteristics on state levels

c(θ) in different directions, two additional variables are introduced, ϕ ∈ [−π, π) and η ∈

[−π, π). These variables allow us to describe c(θ) in terms of the demand distribution at

angles different from θ, denoted by d(θ+ϕ), and the road network characteristics at angles

different from θ, denoted by n(θ + η).

Furthermore, the impact of these factors on c(θ) is expected to depend on the

differences in angle, ϕ, and η. When ϕ and η are close to zero, the effect on c(θ) is

anticipated to be significant. Conversely, when ϕ and η are around ±π, indicating opposite

directions, the effect is expected to be smaller. At ±π/2, indicating orthogonal directions,

there may be a special effect due to the presence of intersections at right angles.

To incorporate these influences into the model, α(ϕ) and β(η) are introduced that

manipulate the degree of impact on c(θ) based on the values of ϕ and η.

By considering these variables and functions, the proposed model aims to capture the

complex relationship between state, demand distribution, road network characteristics,

and the angular differences between them.

Based on the above, c(θ) can be described as

c(θ) =
∫
ϕ

∫
η

f
(
d(θ + ϕ)α(ϕ), n(θ + η)β(η)

)
dηdϕ. (5.1)

Here, it is expected that d(θ) and n(θ) intricately influence c(θ). For simplicity, d(θ) and

n(θ) are assumed to affect c(θ) independently as the simplest case. Then, Eq. (5.1) can be

converted to a linear combination of d(θ) terms and n(θ) terms as

c(θ) =
∫
ϕ

d(θ + ϕ)α(ϕ)dϕ +
∫
η

n(θ + η)β(η)dη + γ, (5.2)
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where γ is a constant term.

Here, it is difficult to handle the α(ϕ) and β(η) because these variables are angles.

Therefore, the following transformation is performed to achieve linear regression with

angle variables (Johnson and Wehrly, 1978).

α(ϕ) =
K∑

k=1

(αck cos kϕ + αsk sin kϕ),

β(η) =
K∑

k=1

(βck cos kη + βsk sin kη), (5.3)

where K is an external parameter, an integer that determines up to which degrees the

distributions are combined. As with the Fourier series expansion, employing the terms

with higher degrees K allows us to obtain a finer distribution of α(ϕ) and β(η).

Substituting Eq. (5.3) into Eq. (5.2) gives

c(θ) =
∫
ϕ

{
d(θ + ϕ)

K∑
k=1

(αck cos kϕ + αsk sin kϕ)
}
dϕ

+

∫
η

{
n(θ + η)

K∑
k=1

(βck cos kη + βsk sin kη)
}
dη + γ. (5.4)

If each distribution is discrete rather than continuous, then

c(θ) =
∑
ϕ∈Φ

{
d(θ + ϕ)

K∑
k=1

(αck cos kϕ + αsk sin kϕ)
}

+
∑
η∈H

{
n(θ + η)

K∑
k=1

(βck cos kη + βsk sin kη)
}
+ γ. (5.5)

where Φ and H are the set of values of the difference between the representative point of

each bin of the discretized angular distribution of demand d and the road network n and

θ, respectively. The parameters to be estimated are αck, αsk, βck, βsk and γ. Note that this

model is a linear regression model. The estimation method is discussed later.

Fig. 5.1 describes the conceptual diagram of the model. In the proposed state model,

c(θ) represents the state, while d(θ) and n(θ) correspond to the angular distributions of

demand and road network, respectively.
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Figure 5.1: Conceptual diagram of the model.

Considering that c(θ) can be influenced by the entire distribution of d(θ) and n(θ), the

model incorporates the effects of these distributions based on the values of ϕ and η. To

quantify this influence, functions α(ϕ) and β(η) are introduced, representing the degrees

of influence depending on the values of ϕ and η.

Overall, this state model describes c(θ) for each trip using the distributions of d(θ)

and n(θ) within the target area as explanatory variables, along with α(ϕ) and β(η) as

corresponding parameters. By considering these factors, the model aims to capture the

complex relationship between state, demand distribution, road network characteristics,

and the influence of angular differences.

5.2.3 Specification

The proposed model does not restrict the method of deriving c(θ), d(θ) and n(θ). This

section introduces an example of a method for deriving them.
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(1) State

Typical examples of indicators for traffic state include flow, speed, and density. Speed

and its inverse, known as pace, which can be easily obtained from vehicle trajectory

data, are easily applicable for representing the traffic state of a trip in a particular

direction. Alternatively, direction dependent traffic states can be described by introducing

an direction variable into the spatio-temporal domain, using the method described in

Chapter 2.5.

(2) Demand

The calculation of d(θ) relies on data containing origin and destination information. d(θ)

is obtained by aggregating the directions from the origin to the destination for demand

within the target area. The origin and destination points can also be the coordinates of

entering or exiting the target area rather than the origin and destination points of the entire

trip. Therefore, if trajectory data is used to derive c(θ), the data can be used as demand

data. However, note that demand, in this case, is only the observed traffic volume, which

is different from the actual travel demand.

(3) Network

The angular distribution of the road network n(θ) is the aggregate of the angles that the

roads face, called orientation, within the target area (Boeing, 2019; Nagasaki et al., 2019).

In this distribution, the peak is sharper when many roads are oriented in a particular

direction, like a grid network of roads as shown in the left of Fig. 5.2. When the road

network is not a grid, the peaks are gradual, and the skirts are higher, as shown in the

right of Fig. 5.2. The large number of roads oriented in a particular direction can be

regarded as a high capacity to serve demand in that direction. In addition, by applying

corrections based on the number of lanes or road types for each road, it is possible to

represent the performance differences among road characteristics. Therefore, this method

is a suitable distribution for n(θ), the supply indicator in this analysis.
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Figure 5.2: Example of n(θ) and corresponding road networks for a 1 km radius area. Maps exported from

digital national land information by Ministry of Land, Infrastructure, Transport and Tourism.

Note that these distributions can be transformed into continuous circular distributions

easily by employing the distributions used in directional statistics and their estimation

methods (Nagasaki et al., submitted).

5.2.4 Estimation

The parameters to be estimated in the model are αck, αsk, βck, βsk and γ. In addition, K is

an external parameter that determines the fine granularity of the estimated α(ϕ) and β(η)

and needs to be determined a priori before the estimation. A larger K may provide a better

estimate; however, it is not recommended because of the interpretability of the estimation

results.

Eq. (5.4) and Eq. (5.5) are linear regression models and their parameters are obtained
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by the least squares method. Eq. (5.5) can be transformed as

c(θ) =
K∑

k=1

{
αck

∑
ϕ∈Φ

d(θ + ϕ) cos kϕ + αsk

∑
ϕ∈Φ

d(θ + ϕ) sin kϕ

+βck

∑
η∈H

n(θ + η) cos kη + βsk

∑
η∈H

n(θ + η) sin kη
}
+ γ. (5.6)

The parameters can be estimated by performing a linear regression with the given d(θ) and

n(θ) and the trigonometric values substituted, and the state indicator c(θ) as the objective

function.

In addition, by substituting the estimated αck, αsk, βck and βsk into Eq. (5.3), the

distributions α(ϕ) and β(η) of the magnitude of the effect of d(θ + ϕ) and n(θ + η) on

c(θ) by the values of ϕ and η can be obtained. The shape of the distributions provides a

quantitative indication of the magnitude to which demand in a given direction is affected

by other direction demand and road, e.g., orthogonal.

Note that if the distribution of the road network is point symmetric like Boeing (2019),

i.e., all roads are aggregated in both directions, then the distribution of β(η) is also point

symmetric. Therefore, the terms βck and βsk can be deleted in the case k is odd.

5.2.5 Discussion

This model is a simple state model using the angular distribution of demand and road

network. The parameters to be estimated are αck, αsk, βck, βsk for each degree k. However,

the interpretation of the model is enhanced by examining the shape of the α(ϕ) and β(η)

distributions formed by these parameters. In addition, the change in state c(θ) when

the angular characteristics of demand or network change can be facilitated by using the

estimated parameters α(ϕ) and β(η).

Because various factors cause the transportation phenomenon, the distribution of α(ϕ)

and β(η) could be complicated and multimodal. Some expected results are: (1) α(0) is

expected to be positive because much demand in the same direction is expected to cause

more congestion in that direction. (2) β(0) is expected to be negative because the lack of
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road construction in a given direction is expected to cause congestion in demand toward

that direction.

5.3 Case Study

5.3.1 Data and variables

The case study was conducted in the vicinity of the Tokyo metropolitan area. The data

used to derive c(θ) and d(θ) were obtained from vehicle trajectory data collected between

July 12, 2021 (Monday) and July 16, 2021 (Friday). Hereafter, the penetration rate of

probe vehicle is assumed to be uniform within the region.

All trips that enter or commence in the area within a time period are reflected in d(θ)

and c(θ) is derived from that pace. For each trip, the start and end times are determined

when the probe car enters or exits the target area, or when the car commences or concludes

a trip within the area. The duration of the trip is calculated as the difference between these

times, resulting in the trip time (in seconds). c(θ) is computed as the ratio of travel time

to the distance covered (in kilometers) for each trip. On the other hand, d(θ) represents

the aggregate of the angles formed between the origin and destination of each trip.

To ensure data quality, the top 10% of c(θ) values were excluded, as some trips

were deemed ongoing despite the vehicle staying in one location for an extended period.

Similarly, the bottom 10% of c(θ) values were omitted due to their apparent high speeds.

The network distribution n(θ) was derived using OpenStreetMap. The analysis

focused on major roads classified as ”motorway”, ”trunk”, ”primary”, and ”secondary”.

The capacity is assumed to be equal for all roads, i.e., n(θ) is calculated using only the

road lengths.

Both d(θ) and n(θ) were normalized frequencies represented as discrete histograms

with 32 bins. The parameter K was set to 8 for improved interpretability.

Four case studies were conducted. Cases 1 and 2 are the 8:00 a.m. and 6:00 p.m. trip

data for a 10 km square area located north of the center of Tokyo. Cases 3 and 4 are the
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Figure 5.3: The map of the road network and the distributions (upper left) of c(θ) (bottom left), d(θ) (bottom

right), and n(θ) (upper right) for Case 1 (North of the center of Tokyo in morning). The map

exported from OpenStreetMap.

8:00 a.m. and 6:00 p.m. trip data for a 10 km square area located west of the center of

Tokyo. The map of the road network and the distributions of c(θ), d(θ), and n(θ) for each

case are shown in Fig. 5.3, Fig. 5.4, Fig. 5.5 and Fig. 5.6.

For Case 1 and Case 2, d(θ) is higher in the south direction toward the center of Tokyo

and in the opposite direction to the north. In addition, c(θ) in these directions is small

because of the motorways. n(θ) has a significant peak in the north-south direction due to

the large number of roads in that direction. For Case 3 and Case 4, d(θ) is higher in the east

direction toward the center of Tokyo and in the opposite direction to the west. However,

c(θ) is generally large because there are no motorways in the area. n(θ) has a significant

peak in the east-west direction due to the large number of roads in that direction.
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Figure 5.4: The map of the road network and the distributions (upper left) of c(θ) (bottom left), d(θ) (bottom

right), and n(θ) (upper right) for Case 2 (North of the center of Tokyo in evening). The map

exported from OpenStreetMap.

5.3.2 Estimation results

The distributions of α(ϕ) and β(η) estimated in each case are shown in Fig. 5.7. The value

of R2, F-statistic, Prob(F-statistic) are shown in Table 5.1, Table 5.2, Table 5.3 and Table

5.4. Note that α(ϕ) and β(η) are calculated by only the 5% significant parameters. In each

case, the number of parameters that are 5% significant out of a total of 16 αck and αsk is

15, 13, 8 and 9, respectively. In addition, the number of parameters that are 5% significant

out of a total of 8 βck and βsk is 5, 8, 7 and 5, respectively.

Estimated parameters for each model are shown in Table 5.5, Table 5.6, Table 5.7 and

Table 5.8. “∗” means 5% significant.

According to the value of Prob(F-statistic), all models are significant, and each

parameter, including the constant term γ, is also working significantly.
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Figure 5.5: The map of the road network and the distributions (upper left) of c(θ) (bottom left), d(θ) (bottom

right), and n(θ) (upper right) for Case 3 (West of the center of Tokyo in morning). The map

exported from OpenStreetMap.

Table 5.1: Case 1 results.

Value

Number of samples 10322

R2 0.278

F-statistic 247.9

Prob(F-statistic) 0.000

In addition, the heatmaps of correlation matrix for all cases are shown in Fig. 5.8.

According to the heatmaps, there is a strong correlation between αk and αk of the same

degree for all case studies. On the other hand, there is no correlation within αk and βk,

and between αk and βk of different orders.
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Figure 5.6: The map of the road network and the distributions (upper left) of c(θ) (bottom left), d(θ) (bottom

right), and n(θ) (upper right) for Case 4 (West of the center of Tokyo in evening). The map

exported from OpenStreetMap.

Table 5.2: Case 2 results.

Value

Number of samples 8494

R2 0.168

F-statistic 107.1

Prob(F-statistic) 0.000

5.3.3 Discussion

The distribution depicted in Fig. 5.7 illustrates the impact of d(θ + ϕ) and n(θ + η) values

on c(θ). In Case 1, for instance, if d(θ) is 0.1, c(θ) increases by approximately 20, whereas

if d(θ+π) is 0.1, c(θ) decreases by approximately 30. However, it is unlikely that demand
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Figure 5.7: The distribution of α(ϕ) and β(η) estimated in each case.

in the opposite direction would decrease congestion. On the contrary, it is reasonable to

assume that such demand would have no impact on congestion, rather than reducing it.

This discrepancy arises from the possibility of α(ϕ) having negative values, inherent to

the characteristics of the model. Therefore, it is natural to interpret α(ϕ) not based on its

value but rather by its incremental change from the smallest value.

Across all cases, α(ϕ) is positive and exhibits significant magnitudes near ϕ = 0. This

outcome aligns with expectations, as it indicates that a high volume of demand in the

same direction leads to increased congestion in that specific direction. Furthermore, α(ϕ)

is significantly small around ϕ = π, which is also expected, as demand in the opposite

direction is unlikely to affect congestion.
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Table 5.3: Case 3 results.

Value

Number of samples 3127

R2 0.166

F-statistic 38.59

Prob(F-statistic) 0.000

Table 5.4: Case 4 results.

Value

Number of samples 2677

R2 0.165

F-statistic 32.86

Prob(F-statistic) 0.000

However, the overall shape of α(ϕ) differs between Case 1 and Case 2, despite

the same target area. Although the distributions of the two d(θ) in Fig. 5.3 and Fig.

5.4 are not significantly different, the shape of c(θ) in the southern direction differs.

This discrepancy can be attributed to the heavy traffic towards central Tokyo during

the morning peak period, resulting in congestion even for travelers using motorways.

Conversely, congestion is reduced in the evening due to less crowded motorways and

faster travel speeds. These factors contribute to the differing shapes of α(ϕ) in Case 1 and

Case 2.

In the comparison between Case 3 and Case 4, the trend is line symmetric around

ϕ = 0. This may be due to the demand for commuting in the morning and returning home

in the evening being in opposite directions, resulting in a linear symmetry of d(θ).

In Cases 1, 3 and 4, α(ϕ) generally exhibits high values near ϕ = 0, contrasting with

the highly oscillatory α(ϕ) observed in Case 2. This discrepancy can be attributed to the

distribution of demand in directions other than the peak, as seen in d(θ) for Cases 1, 3 and

4.
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Table 5.5: Estimated parameters of Case 1.

Coefficient Std. err. t value Coefficient Std. err. t value

γ 137.58 0.52 ∗263.58

αc1 216.36 5.79 ∗37.37 αs1 43.72 6.93 ∗6.31

αc2 -16.86 2.04 ∗-8.26 αs2 22.59 1.92 ∗11.75

αc3 48.72 12.54 ∗3.89 αs3 89.02 11.74 ∗7.58

αc4 2.27 0.46 ∗4.93 αs4 -7.05 0.44 ∗-15.99

αc5 -58.45 6.72 ∗-8.70 αs5 59.25 6.88 ∗8.62

αc6 -18.11 4.49 ∗-4.04 αs6 5.05 5.05 1.00

αc7 45.1 14.33 ∗3.15 αs7 138.76 14.23 ∗9.75

αc8 -18.96 2.03 ∗-9.34 αs8 15.20 2.08 ∗7.30

βc2 -13.70 1.18 ∗-11.56 βs2 8.93 1.12 ∗8.00

βc4 45.84 3.18 ∗14.43 βs4 24.61 3.16 ∗7.78

βc6 3.84 1.15 ∗3.35 βs6 2.10 1.08 1.95

βc8 -0.34 1.77 -0.19 βs8 -20.79 1.75 ∗-11.9

Additionally, β(0) is negative in Case 3 and Case 4, whereas it is positive in Case 1

and Case 2. This contradicts initial expectations, as it suggests that congestion occurs

when the road network aligns with travel demand. This discrepancy may caused by the

differences between the diagonal motorway and the many east-west, north-south, and

west-oriented roads. While c(θ) in the diagonal direction is smaller due to the presence

of the motorway, n(θ) in that direction is also lower compared to other directions. Hence,

β(0) is positive in Cases 1 and 2.

Furthermore, when comparing β(η) in Case 1 and Case 2, the impact of the road

network on state exhibits similar shapes during both morning and evening periods. This

finding aligns with the results of Daganzo and Geroliminis (2008), indicating that the road

network’s influence on state follows a similar pattern regardless of demand patterns.

However, the shapes of β(η) in Case 3 and Case 4 are significantly different. In
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Table 5.6: Estimated parameters of Case 2.

Coefficient Std. err. t value Coefficient Std. err. t value

γ 122.51 0.61 ∗202.45

αc1 176.85 33.97 ∗5.21 αs1 -264.15 31.55 ∗-8.37

αc2 -39.93 2.39 ∗-16.69 αs2 -7.02 2.24 ∗-3.13

αc3 118.86 84.20 1.41 αs3 857.92 76.55 ∗11.21

αc4 -6.32 0.34 ∗-18.67 αs4 -0.10 0.37 -0.26

αc5 -183.21 50.87 ∗-3.60 αs5 139.63 51.10 ∗2.73

αc6 -48.26 4.54 ∗-10.64 αs6 17.65 5.08 ∗3.47

αc7 225.38 57.00 ∗3.95 αs7 72.50 60.37 1.20

αc8 -33.20 2.30 ∗-14.41 αs8 18.87 2.32 ∗8.12

βc2 -22.17 1.44 ∗-15.37 βs2 -10.25 1.35 ∗-7.60

βc4 62.81 3.74 ∗16.81 βs4 19.86 3.67 ∗5.41

βc6 6.52 0.98 ∗6.64 βs6 7.96 0.95 ∗8.41

βc8 6.16 1.73 ∗3.57 βs8 -27.54 1.69 ∗-16.26

Cases 1, 2 and 4, β(η) exhibits four peaks, which could be attributed to the road network

distribution n(θ) also having four peaks. However, Case 3 displays eight peaks in β(η),

although n(θ) has four peaks. In addition, the four peaks of β(η) in Case 1 and Case 2

are equally spaced, whereas those in Case 4 are not. This is due to smaller pace c(θ)

in the east-west direction, where there are many roads, but larger pace c(θ) in the other

directions. In addition, the small β(η) in the ±π/2 direction is a different result from Case

1 and Case 2. The interpretation of these differences in shape remains elusive at present.

Furthermore, the magnitudes of α(ϕ) and β(η) differ by approximately tenfold. This

indicates that demand has a stronger influence on state than the shape of the road network.
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Table 5.7: Estimated parameters of Case 3.

Coefficient Std. err. t value Coefficient Std. err. t value

γ 213.22 0.70 ∗304.66

αc1 126.15 8.22 ∗15.35 αs1 103.58 10.02 ∗10.34

αc2 -21.72 2.33 ∗-9.33 αs2 -4.70 2.70 -1.74

αc3 12.31 16.10 0.76 αs3 -7.70 17.30 -0.45

αc4 -8.38 1.33 ∗-6.32 αs4 -3.22 1.39 ∗-2.31

αc5 58.17 36.68 1.59 αs5 47.46 35.92 1.32

αc6 -1.80 4.44 -0.41 αs6 -11.60 4.31 ∗-2.69

αc7 62.79 30.64 ∗2.05 αs7 43.56 30.24 1.44

αc8 -25.01 5.36 ∗-4.67 αs8 0.08 5.29 0.01

βc2 -11.38 1.24 ∗-9.17 βs2 -3.23 1.44 ∗-2.25

βc4 -9.99 1.76 ∗-5.68 βs4 -6.75 1.89 ∗-3.57

βc6 -13.33 4.93 ∗-2.71 βs6 1.59 5.08 0.31

βc8 -13.67 5.48 ∗-2.49 βs8 -22.25 5.64 ∗-3.95

5.4 Conclusions

This chapter built a novel descriptive model that describes the transportation state

by overall demand pattern and network morphology. The proposed model describes

direction-dependent transportation state using the two angular distributions using the

Directional Statistical methodology. In concrete, the model describes state using the

angular distribution of demand, described by the direction of origin and destination of

trips in the target area, and the angular distribution of the road network, described by the

direction in which all roads are oriented. To incorporate the two angular distributions

into the model, the shape of the angular distribution is transformed into a cosine term

and a sine term using directional statistics. This made it possible to describe state with

a simple linear regression model with angular indicators. Furthermore, a case study of

the proposed model was conducted in the Tokyo Metropolitan Area. The model worked
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Table 5.8: Estimated parameters of Case 4.

Coefficient Std. err. t value Coefficient Std. err. t value

γ 197.48 0.74 ∗266.35

αc1 143.77 12.98 ∗11.08 αs1 -87.44 12.72 ∗-6.88

αc2 -31.32 2.85 ∗-11.00 αs2 2.30 3.47 0.66

αc3 29.94 23.00 1.30 αs3 21.41 25.79 0.83

αc4 -9.87 1.38 ∗-7.17 αs4 -7.01 1.47 ∗-4.78

αc5 23.02 54.38 0.42 αs5 -85.00 54.50 -1.56

αc6 -6.35 2.91 ∗-2.18 αs6 2.18 2.91 0.75

αc7 9.13 41.08 0.22 αs7 -79.11 41.32 -1.91

αc8 -16.39 5.61 ∗-2.92 αs8 -14.31 5.61 ∗-2.55

βc2 -26.94 2.45 ∗-10.97 βs2 3.07 3.00 1.02

βc4 -13.23 1.89 ∗-7.01 βs4 -10.09 2.02 ∗-4.99

βc6 -9.23 8.12 -1.14 βs6 16.43 8.23 ∗2.00

βc8 -7.72 4.61 -1.67 βs8 -16.31 4.70 ∗-3.47

significantly in the case study.

The current model has several problems, such as multicollinearity and difficulty in

interpretation of the results. Improving the proposed model involves integrating it with

existing traffic theories and models while concurrently improving the interpretability and

statistical robustness of the model.

To the author’s knowledge, this is the first attempt to describe transportation state

using angular indicators with Directional Statistics. Therefore, there is still room for

further development. First, the connection to well-established concepts in transportation

researches, such as Macroscopic Fundamental Diagram (Daganzo and Geroliminis, 2008)

would be worth investigating. Second, a dynamic model that introduces a time term could

be developed by extending this result. Time loops in 24 hours so that it can be described

as angles (Nagasaki et al., submitted). The data with two angular axes, demand and time,
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 5.8: ”The heatmap of the correlation matrices for the estimated parameters in each case..

can be described by a torus, which is a doughnut-shaped surface. The establishment

of more advanced models using the latest findings in directional statistics is one of the

development directions of this research.
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Angle is a concept that describes the direction of an object or a looping time axis.

On the other hand, transportation covers the arrangement of geographic objects such

as road networks and the movement of people and its dynamics. Although both seem

compatible, only few attempts have been made to address transportation from an angular

perspective. This dissertation modeled the transportation systems with angle from three

aspects: behavior, temporal state, and spatial state. This chapter summarizes the main

conclusions of this dissertation and shows the possible future directions of transportation

systems analysis with angle.

6.1 Achievements

Chapter 2 reviewed concepts of angular analysis and studies related to this dissertation.

First, directional statistics is summarized, which is statistics to analyze angles.

Specifically, the procedure of angular data, drawing of data, probability distribution, and

regression analysis in directional statistics are explained, and examples of applications

other than transportation are summarized. Angular analysis has contributed to many

fields, and many of these analyses have focused on the movement of animals. Next,

the transportation analysis is classified into demand, supply, behavior, and transportation

states. The elementary analytical methods and the recent research on each concept are

summarized. In addition, studies that employed angular analysis for each concept were

reviewed. There were several studies on each concept that used angles. However, some of

them did not analyze the angles correctly. Moreover, no studies discussed the state from

both supply and demand perspectives by angle.

In Chapter 3, a route choice model with angular variables was built and validated

by empirical studies. In discrete choice models, right/left turns and U-turns are often
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described by setting dummy variables. However, the results vary depending on the

predetermined threshold value. In addition, although both behaviors are essential changes

in travel direction, they are rarely analyzed as continuous variables without separating

them. Therefore, drivers’ route choice behavior on the network was modeled using turn

angles at each intersection. The route choice model was applied to drivers’ actual route

choice behavior in Tokyo. The results showed that the angular indicator significantly

affected drivers’ route choice behavior. In particular, a 90-degree angular change (i.e.,

a right-angle left-right turn) corresponds to a travel distance of approximately 1.2 km.

In addition, this model enables the evaluation of the resistance of arbitrary turn angles,

a unique feature of this model. An angular change of 45 degrees corresponds to

approximately 0.35 km, similar to previous studies using right/left turn dummies. The

proposed model was compared with models that minimize only the distance, only the

turn angle, and the number of turns and distance, showing that the proposed model more

accurately reflects actual route choice behavior.

In Chapter 4, a model of the daily variation of traffic volume by converting time into

angle in order to represent periodicity was built. Since the time in a day is looped in 24

hours, conversion of the time into angles is necessary to describe the variation depending

on time. Traffic volume varies with time and has two peaks: morning peak on the way

to work and evening peak on the way home. The shape of the two peaks is significantly

different, with the morning peak rising quickly and sharply while the evening peak is

gentle. In describing these variations in traffic volume over time using a probability

distribution, a circular distribution that can represent multimodality and flexible shapes

must be employed. Therefore, the mixture of Kato–Jones distribution that satisfies this

property was applied to the time variation of traffic volume. The modified method of

moments based on the usual method of moments is proposed for a quick and stable

estimation method for the mixed Kato–Jones distribution. This estimation method can

obtain estimate within the parameter domain that is almost the same as the estimator

of the method of moments, with a small computational cost. In addition, because it

is a consistent estimator, it can be helpful as an initial value in maximum likelihood
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estimation, which requires numerical optimization. The stability of the estimation method

was assessed and interpreted when the time variation was divided into multiple parts.

Thanks to the model’s flexibility to represent complex distribution shapes, the temporal

variations in traffic volume can be divided into two clusters with reasonable accuracy.

The two clusters can be interpreted as commuting and returning trips within a day. The

possibility of investigating transportation using only pulse data, which is easy to obtain,

was indicated.

In Chapter 5, a model that describes the states of OD demand for a certain direction by

the demand pattern and the network morphology for the entire area was built. Describing

the entire demand pattern within an area is difficult by conventional approaches. By

aggregating the angles between the origin and destination of each demand, the overall

demand pattern can be quantitatively described. In addition, the relationship between

transportation states and the morphology of road networks, such as whether the road

network is grid-like or not, is also difficult to describe using conventional methods. The

distribution of the direction of each road in an area can intuitively and quantitatively

describe the morphology of the road network. In this chapter, the transportation states of

demand in a given direction were regressed on the angular distributions of the overall

demand pattern and the morphology of the road network. Regressions with angular

variables require the use of methods that take into account periodicity. In addition,

the proposed model was validated by transportation data for Tokyo. The features of

the proposed model, including its consistency with existing transportation theory, are

discussed based on the results of the empirical analysis.

Modeling using angles in three scales: behavior, temporal state, and spatial state, is

performed, and a framework for transportation analysis with angle is built. Based on the

modeling and empirical analysis above, two possibilities for the transportation systems

analysis with angles are suggested.

• Investigating phenomena that are difficult to describe with existing methods

• Providing a new perspective on transportation analysis
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First, the analysis with angles suggested the possibility of capturing transportation

phenomena that are difficult to describe with existing methods. For example, the

relationships between the overall demand patterns, the physical shape of the road network,

and transportation states targeted in Chapter 5 are difficult to analyze concisely using

existing methods. The possibility of quantitatively description this relationship was

suggested by describing the overall demand pattern and the physical shape of the

road network in terms of angles and performing a regression using the knowledge of

directional statistics, as proposed in Chapter 5. In addition, capturing the share of types

of transportation from only the traffic volume at a certain point suggested in Chapter 4 is

very difficult with the existing analysis.

Second, analysis with angles can provide a new perspective on the existing

transportation analysis. The behavior of angle change in route choice targeted in Chapter

3 has been performed using dummy variables in previous studies. By describing changes

in direction, such as left-right turns, in terms of angles, behaviors suggested in previous

analyses can be captured more precisely. In addition, Chapter 4 shows that the analysis of

only traffic volume data at a certain location, which is easily available, can be interpreted

commonly with existing traffic analysis methods such as departure time selection. The

analysis using data other than traffic volume can potentially analyze transportation

phenomena from different perspectives with consistency with existing interpretations.

In conclusion, a new framework for the transportation systems analysis with angles

built in this dissertation has the potential to provide results that can be interpreted similarly

to existing methods, simultaneously allowing for a more simplified analysis of phenomena

that are difficult to describe with existing methods, and this dissertation has shown some

of these possibilities.

6.2 Future directions

The usefulness and potential of angle-based transportation analysis are indicated from

Chapter 3 to Chapter 5. This section presents technical tasks and future directions of
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transportation systems analysis with angle to leverage angular analysis to the fullest extent

based on the achievements in this dissertation.

6.2.1 Technical tasks of transportation systems analysis with angle

Technical tasks to be addressed in the future are listed below.

Incorporation of heading angle and other factors in route choice behavior

Chapter 3 used only the turn angle as the angular variable in the utility function.

Among angular indicators, the direction in which the driver is heading and the

direction to the destination may also likely be easily recognized indicators. In

addition, the behavior of desiring to head in the direction of the destination has been

shown in previous works (Dalton, 2003). By incorporating these two variables,

the impact of angular variables on route choice behavior can be analyzed from

a different perspective. In addition, to analyze the economic impact of angular

variables, a utility function incorporating a time variable must be developed.

Sensitivity analysis of angular indicators in route choice behavior

Since the angle change is described only by the cosine term in Chapter 3, the

distinction between a right turn and a left turn is not taken into account. In addition,

since only a first-order cosine term is used, the angle changes of going straight and

turning left/right and turning right/left and making a U-turn are equally 1 different

on the variables. However, these two angle changes are considered to be very

different in nature. To express these differences in the variables, a possible solution

is to add a sine or cosine term of first or higher order (Johnson and Wehrly, 1978).

This would allow a more detailed analysis of the sensitivity of the angular change

and the traveler’s choice behavior.

6.2.2 Future directions of transportation systems analysis with angle

For more meaningful transportation systems analysis with angles, analysis from the

unique perspective of angular indicators should be conducted. The future directions of
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transportation systems analysis with angle based on these objectives listed below.

Integration with other transportation data in temporal state analysis

Chapter 4 showed the possibility of interpreting traveler behavior to some extent,

even using only traffic volume data. Combining the traffic volume data with

other data such as departure time and origin and destination may explore a more

comprehensive analysis. Moreover, the angular demand distribution discussed in

Chapter 5 can help the interpretation of each component. For example, it may be

possible to interpret each distribution further or the components with m = 3 or

more. In addition, the potential of combinations with conventional transportation

theories, such as departure time choice (Noland and Small, 1995), are also possible.

Derivation of the theoretical model of spatial transportation model

Chapter 5 built a regression model of transportation state using two angular

distributions of demand and road network. A theoretical model based on this

idea could be developed. For example, an area-based transportation model with

angles could be developed by mathematically describing transportation states given

a simple network and demand based on existing transportation theory. In addition,

simulations using a toy network can be performed to observe the phenomenon more

straightforwardly. This study used much noise data, making the fitting result worse

and the interpretation difficult. Describing area-based transportation states with

angles through simulation or theory is one of the future directions.

Introducing a higher dimension of angular analysis

In this dissertation, angular indicators were used only in one dimension, which

means the angle on a circle. On the other hand, there are also descriptions to

process angular data of higher dimensions. Among them, the application of a torus

(Fig. 2.3) with two angular axes and a cylinder (Fig. 2.4) with a linear axis and

an angular axis has a wide range of applications. For example, the simultaneous

application of direction and time of demand discussed in Chapter 4 and Chapter 5

is possible using a torus. In other words, dynamic transportation phenomena can be

represented using angles. In addition, the direction and travel distance of demand

105



Chapter 6 Conclusions

can be analyzed using cylinders. Higher-order angular data description helps model

complex transportation phenomena.
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