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Abstract

This dissertation proposes convex optimization techniques for remote sensing data anal-
ysis. Remote sensing is a measurement technique to reveal the properties of target ma-
terials without getting close to them. Observed remote sensing data often suffer from
various severe degradations caused by the conditions of the measurement environments
and processes. These severe degradations adversely affect a wide range of tasks that pro-
vide information contributing to various applications. In addition, measurement costs are
often expensive, making it difficult to obtain large amounts of data. Therefore, it is es-
sential to analyze low-quality and small amounts of data to provide helpful information.
A promising approach is to formulate analysis tasks as optimization problems and then
solve the problems with optimization algorithms. For the further development of remote
sensing data analysis, it is essential to flexibly combine multiple data regularizations and
degradation characterizations for the designs of optimization problems and to automat-
ically construct algorithms for the optimization problems, i.e., to establish a framework
that can handle a wide range of all target data and tasks. The bottleneck in establishing
such a framework is due to parameters included in optimization problems and algorithms.
Since these parameters significantly affect the analysis performance and running time,
they need to be set appropriately. In terms of parameter settings, remote sensing data
analysis should be flexible and reliable to cope with the interdependence of parameters
within optimization problems (referred to as regularization parameters) and the difficulty
of determining parameters of optimization algorithms (referred to as stepsizes). To this
end, we establish novel convex optimization techniques for remote sensing data analysis
with the following two approaches. First, to eliminate the interdependence of regulariza-
tion parameters, we introduce constraint modeling of prior knowledge. The appropriate
parameters associated with constraints are invariant with the change of data regulariza-
tions and degradation characterizations. In addition, the constraint parameters for noise
characterization can be determined from the statistical information of noise. Second, we
develop a method that employs the structure of an optimization problem to resolve the
difficulty of determining stepsizes. This allows us to set the appropriate stepsizes for any
optimization problems. Furthermore, the explicit reflection of the structure of an opti-
mization problem improves the reliability of stepsize determination. In Chapter 3, we
design a general framework for handling various types of target images and novel char-
acterization for stripe noise, which is often present in remote sensing. Removing stripe
noise, i.e., destriping, from remote sensing images is an essential task in terms of visual
quality and subsequent processing. To establish a novel destriping framework, we formu-
late destriping as a nonsmooth convex optimization problem involving a general form of
image regularizations and the flatness constraint, which is a newly-introduced stripe noise
characterization. The constraint mathematically models that the intensity of each stripe
is constant along one direction, resulting in a strong characterization of stripe noise. To
solve the optimization problem, we also develop an efficient algorithm based on the pre-
conditioned primal-dual splitting algorithm (P-PDS). The effectiveness of our framework
is demonstrated through destriping experiments, where we comprehensively compare com-
binations of a variety of image regularizations and stripe noise characterizations using HS
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images and IR videos. In Chapter 4, we propose a method for designing stepsizes of P-
PDS, an efficient algorithm that solves nonsmooth convex optimization problems, called an
Operator norm-based design method of Variable-wise Diagonal Preconditioning (OVDP).
First, OVDP constructs diagonal stepsizes using (upper bounds) of the operator norms
of the linear operators included in optimization problems, thus explicitly reflecting their
structures. Furthermore, since OVDP takes a variable-wise preconditioning approach, it
keeps any proximity operator analytically computable. We also prove that our stepsizes
satisfy the convergence condition of P-PDS. Finally, we demonstrate the effectiveness and
usefulness of OVDP through applications for mixed noise removal of HS images, HS un-
mixing, and graph signal recovery. In Chapter 5, we introduce the constraint modeling and
the problem structure-based stepsize design to establish a novel noise-robust method of HS
unmixing, which is the process of decomposing an HS image into material-specific spectra
(endmembers) and their spatial distributions (abundance maps). Our method employs,
in addition to the two existing regularizations for abundance maps, regularizations for the
HS image reconstructed by mixing the estimated abundance maps and endmembers. This
strategy makes the unmixing process much more robust in highly noisy scenarios, under
the assumption that the abundance maps used to reconstruct the HS image with desir-
able spatio-spectral structure are also expected to have desirable properties. Furthermore,
with constraint modeling including our flatness constraint, our method is designed to ac-
commodate a wider variety of noise including stripe noise, which facilitates regularization
parameter settings. To solve the formulated optimization problem, we develop an efficient
algorithm based on P-PDS with our stepsizes design method based on the problem struc-
ture. Experiments on synthetic and real HS images demonstrate the advantages of our
method over existing methods.
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Chapter 1

Introduction

In this chapter, we will motivate to use convex optimization for remote sensing data
analysis, raise limitations of existing methods, and lead to the general objective of this
Ph.D. study. This chapter will be concluded by clarifying the contributions of this study
with its outline.

1.1 Background

Remote sensing is a measurement technique to reveal the properties of target materials
without getting close to them, in other words, to collect data on materials from places
that are difficult for people to enter [59]. With the development of various sensors, the
measurement methods used in remote sensing have become diverse. Therefore, attempts
have been made to reveal the properties of materials not only through visible information,
such as grayscale and RGB images (referred to as natural images in this dissertation) but
also through special measurement techniques. We raise some examples:

• hyperspectral (HS) imaging [102, 161], which reveals the spectral information of
materials by measuring a wide range of light wavelengths, including invisible spectra,
in fine detail;

• thermal infrared (IR) imaging [126,190], which visualizes the spatial distribution of
heat by measuring near-infrared light;

• synthetic aperture (SAR) radar measurement [59, 154], which provides satellite im-
age data without bad weather effects (especially clouds) by obtaining microwave
radiation.

Thanks to such helpful information, remote sensing can solve a wide range of problems
in academic fields such as geoscience and astronautics, industrial fields such as smart
agriculture and smart forestry, and even in other fields such as the rapid provision of
disaster information and environmental monitoring [34,171].

Measurement data observed by remote sensing are often contaminated by various se-
vere degradations (e.g., Gaussian-like random noise, Poisson noise, stripe noise, missing
or outliers) due to the conditions of the measurement environments and processes. These
severe degradations have a significant negative impact on the analysis that provides infor-
mation contributing to various applications through tasks such as classification, component
estimation, and target detection. In addition, the measurement costs are often expensive,
making it difficult to obtain large amounts of data. Therefore, it is essential to estab-
lish techniques for analyzing low-quality and small amounts of data to provide helpful
information.

1



There are numerous methods for analyzing remote sensing data; this paper classi-
fies them into two main categories: learning-based and optimization-based approaches.
The learning-based approach learns networks to capture data features (e.g., networks pro-
posed in [74, 99, 173]) and then uses them for analysis. In the context of natural image
analysis, the learning-based approach has allowed us to develop many effective analysis
methods [103, 181, 209]. Because of its effectiveness, the approach has been applied to
remote sensing data analysis, such as HS image analysis [37,151,166,213], IR video analy-
sis [38,214], and SAR image analysis [46,211]. The revolutionary aspect of this approach is
that it allows the automatic extraction of complicated features inherent in data by learn-
ing networks. However, learning effective networks requires a large amount of high-quality
training data. As mentioned in the last paragraph, such a large amount of high-quality
data is often unavailable in remote sensing data analysis. Therefore, the case where the
learning-based approach can be applied is very restricted.

On the other hand, the optimization-based approach has also been studied. In this
approach, analysis tasks are formulated as optimization problems, and then analysis re-
sults can be obtained by solving the optimization problems using optimization algorithms.
The optimization problems can explicitly incorporate prior knowledge, such as degrada-
tion models, complex measurement processes, and properties present in a variety of data,
allowing us to obtain helpful information from a very small amount of data while ap-
propriately handling severe degradation. Therefore, the optimization-based approach can
become a powerful tool for remote sensing data analysis.

1.2 Prior Arts

As mentioned above, optimization-based analysis consists of designing an optimization
problem and developing an optimization algorithm. Both have been developed to suit
specific target images and analysis tasks as follows.

1.2.1 Optimization Problem Aspects

To reflect prior knowledge in remote sensing data analysis, optimization-based methods
design optimization problems using functions where the more desirable the properties of
the input data are, the smaller their values are. The functions can be roughly classified
into two categories: those that capture the nature of data (called regularizations) and
those that characterize degradation (called degradation characterizations). A variety of
functions have been studied depending on the data and degradation types.

Regularizations

As an effective regularization, the total variation (TV) regularization has been used in
image data analysis because it can capture the spatial piecewise smoothness of image
data. Specifically, it is the sum of the absolute values of the differences of spatially adjacent
pixels of image data, taking smaller values as adjacent pixel values become more similar.
Based on this TV regularization, many regularizations have been proposed to specialize
in capturing the specific properties of each remote sensing data. In HS image analysis,
HTV [204] and SSTV [8] are known as they capture the spectral nature of HS images.
Based on them, more advanced regularizations have been studied, such as HSSTV [177]
and l0-l1HTV [184]. For video data analysis, video-TV regularizations are used, which
calculate not only spatial differences but also temporal differences [33,79,122]. In addition,
TV-based regularization has also been proposed for SAR image analysis [19,172].

Another regularization is based on low-rankness. In low-rank regularization, matrices
with a low-rank structure are created or found from data, and the nuclear norm, a function
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of a good convex relaxation of the rank function, was added to the objective functions of
optimization problems. For HS image analysis, to capture the spectral correlation, the
authors in [208] have modeled the matrix constructed by rearranging three-dimensional
data as a low-rank matrix. Furthermore, the analysis methods for time-series data, such
as video and time-series SAR data, have adopted low-rankness regularization for data
that do not change much over time [91,129]. In addition to matrices, regularizations that
capture tensor low-rankness have been also developed [55,60,84,119,175] because remote
sensing data are often higher dimensional than two dimensions (e.g., hyperspectral images,
IR video data, and time series SAR data).

Many other types of regularizations have been proposed, such as the discrete cosine
transform [96, 200], the wavelet transform [153], the combinations of those regulariza-
tions [11, 61, 75, 121, 128, 185]. In remote sensing data analysis, these regularizations are
used appropriately depending on analysis tasks and target data.

Degradation Characterizations

On the other hand, degradation characterization is also essential to improve remote sensing
data analysis. To handle degradations, an ℓ2-norm is often used to add a data fidelity
term to objective functions for observed data [8,33,36,39,60,61,79,117,128,185,204]. This
function is often used in analysis techniques for dealing with Gaussian-like random noise for
data analysis, including natural image analysis. In addition, other characterizations have
been proposed to model various types of degradations often contaminating remote sensing
data. To model noise with large values distributed sparsely, such as outliers and missing
values, an ℓ1-norm is incorporated in objective functions [8, 61, 128, 185]. In addition,
stripe noise, superimposed on remote sensing data with constant brightness values in one
spatial direction (see Chapter 3 for details), is modeled based on sparsity [185,208] (ℓ1-type
norms), low-rankness [39] (a nuclear norm), and smoothness [117] (a TV-type norm).

1.2.2 Optimization Algorithms Aspects

As mentioned above, many functions designed based on this wide variety of models are
incorporated into optimization problems. Most of them are convex to formulate analysis as
convex optimization problems. Convex optimization has good convergence properties and
thus provides stable analysis results. However, the convex optimization problems of remote
sensing data analysis often have complicated structures and contain non-differentiable
functions. This indicates that it is impossible to solve them in closed form or to apply an
algorithm that assumes that the objective function is differentiable (gradient descent type
algorithm), and thus the optimization is not straightforward.

Proximal splitting optimization algorithms have been used to solve the optimization
problem. Specifically, using alternating direction method of multipliers (ADMM)-type
algorithms [21,58,65], which iteratively updates variables to obtain a solution to the opti-
mization problem, many existing methods have developed specific algorithms solving their
optimization problems of the remote sensing data analysis tasks [8,33,36,39,60,61,75,79,
128,177,185,204]. However, ADMM-type algorithms require operator inversion computa-
tions (e.g., the inverses of linear operators, matrix inverses, and the generalized inverses
of matrices) within each iteration. Whether the operator inversions can be calculated effi-
ciently depends on their concrete forms. For complicated inversions, there are some cases
where imposing strong assumptions on the optimization problems makes the computations
efficient [33,75,79,128,177], but in many cases, this strategy is difficult to use. In addition,
an alternative proximal splitting optimization algorithm to ADMM, primal-dual splitting
(PDS)-type algorithms [32, 51, 148, 182] have attracted attention. PDS-type algorithms
efficiently solve non-smooth convex optimization problems because they do not require
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complicated inversion computations. Therefore, the algorithms have been increasingly
used to solve the optimization problems of remote sensing data analysis [6, 176,206,219].

1.3 Key Ingredients of Optimization-Based Analysis and
Limitations of Existing Methods

As mentioned in the previous section, optimization-based methods have evolved to adapt
to specific target data and analysis tasks. This evolution has enriched the methodology for
analysis tasks. However, for the further development of remote sensing data analysis, it
is essential to flexibly combine multiple regularizations and degradation characterizations
for the designs of optimization problems and to automatically construct algorithms for
the optimization problem, i.e., to establish a framework that can handle a wide range
of all target data and tasks. Such a framework allows us to easily utilize the knowledge
developed in each domain for the other analysis tasks of any target data, in other words,
to promote the mutual development of each remote sensing data.

The bottleneck in establishing such a framework is due to parameters included in
optimization problems and optimization algorithms. Since these parameters significantly
affect the analysis performance and running time, they need to be set appropriately. In
terms of this parameter setting, remote sensing data analysis should be flexible and reliable.

Flexibility is essential to accommodate the diversity of analysis conditions. In remote
sensing data analysis, it is necessary to acquire various types of information under a variety
of environments, including a variety of measurement methods to suit information to be
acquired, a wide range of analysis tasks for different applications, and various types and
intensities of degradations resulting from different sensors and light amounts. Establishing
a flexible method of parameter settings tailored to such diverse conditions can improve
the convenience of remote sensing data analysis.

Reliability plays an important role in ensuring the validity of information analyzed from
severely degraded data. Remote sensing data analysis must provide valid information to
help professional investigations or social problem-solving. This implies that the process
of information recovery needs to be explainable. With respect to parameter settings,
experimental or empirical determination (e.g., in such a way that data somehow look clean)
does not ensure the validity of the set values. Instead, appropriate value setting based
on, e.g., statistical properties, degradation models, and the structure of the optimization
problem, can significantly improve the reliability.

However, existing optimization-based methods of remote sensing data analysis do not
ensure the flexibility and reliability requirements: first, parameters are determined by
experimental trial and error; second, once parameters are determined, the same parameters
are used even if analysis conditions, such as noise intensity, change. This is due to the
following two issues with existing methods.

The parameters within optimization problems (referred to as regularization param-
eters) are interdependent. Existing studies have reflected prior knowledge into analysis
by including data-regularization functions and degradation characterization functions as
terms in the objective functions of optimization problems [8, 33, 36, 39, 60, 61, 79, 117, 128,
185,204]. The more such functions are included (i.e., the more properties to be captured),
the more regularization parameters are associated with them. Such parameters can be ad-
justed only by relative weighting. This implies that the mathematical information behind
the degradation is difficult to use for the adjustments. In addition, changing the analysis
task or the target data requires the use of different functions. In such cases, even if some
functions are not changed, the appropriate values of the parameters associated with them
will vary.

The optimization algorithm contains parameters (referred to as stepsizes) that are
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difficult to adjust. Existing studies have adopted stepsize-sensitive optimization algo-
rithms [6,8,33,36,39,60,61,75,79,128,176,177,185,204,206,219], that is, the convergence
speed of the algorithm varies with the stepsizes, and their appropriate values strongly
depend on the structure of a target optimization problem. The optimization problems of
remote sensing data analysis have a variety of structures due to the diversity of analy-
sis conditions. Therefore, there are no universal values as stepsizes, and they have been
manually adjusted according to a designed optimization problem.

1.4 General Objective of This Study

In this dissertation, we establish novel convex optimization techniques for remote sensing
data analysis. The discussion in the previous section brings us to the following research
question: Can we exploit degradation models, statistical information, and problem struc-
tures to determine appropriate values of parameters? To this end, we take the following
approaches.

First, to eliminate the interdependence of regularization parameters, we reflect prior
knowledge of remote sensing data analysis by modeling it as constraints rather than adding
functions to an objective function. Unlike the parameters of the objective function, the
parameters associated with the constraints can be determined independently of each other.
In other words, appropriate constraint parameters can be used even if the objective func-
tions or other constraint conditions change regarding the diversity of target data and
analysis tasks. In addition, the constraint parameters for noise characterization can be
determined from the statistical information of noise.

Next, we develop a method that employs the structure of an optimization problem in
order to resolve the difficulty of tuning the stepsizes of its optimization algorithm. This
allows us to determine the appropriate stepsizes for any optimization problem. In addition,
the explicit reflection of the structure of an optimization problem improves the reliability
of stepsize determination.

This dissertation is organized as follows. First, Chapter 2 gives mathematical prelim-
inaries for convex optimization and remote sensing data analysis. Next, Chapter 3 and
Chapter 4 describe the contents related to simplified parameter setting. The details are
as follows.

• Chapter 3: We design a general framework for handling various types of target im-
ages and novel characterization for stripe noise, which is often present in remote
sensing. Removing stripe noise, i.e., destriping, from remote sensing images is an
essential task in terms of visual quality and subsequent processing. Most existing
destriping methods are designed by combining a particular image regularization with
a stripe noise characterization that cooperates with the regularization, which pre-
cludes us from examining and activating different regularizations to adapt to various
target images. To resolve this, two requirements need to be considered: a general
framework that can handle a variety of image regularizations in destriping, and a
strong stripe noise characterization that can consistently capture the nature of stripe
noise, regardless of the choice of image regularization. To this end, we propose a
general destriping framework using a newly-introduced stripe noise characterization,
named flatness constraint, where we can handle various regularization functions in
a unified manner. Specifically, we formulate the destriping problem as a nonsmooth
convex optimization problem involving a general form of image regularization and
the flatness constraint. The constraint mathematically models that the intensity of
each stripe is constant along one direction, resulting in a strong characterization of
stripe noise. For solving the optimization problem, we also develop an efficient algo-
rithm based on the preconditioned primal-dual splitting algorithm (P-PDS), which
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is one of the PDS-type algorithms, and an existing stepsize design method. The ef-
fectiveness of our framework is demonstrated through destriping experiments, where
we comprehensively compare combinations of a variety of image regularizations and
stripe noise characterizations using HS images and IR videos.

• Chapter 4: We propose a method for designing stepsizes of P-PDS, an efficient algo-
rithm that solves nonsmooth convex optimization problems. To speed up the con-
vergence of P-PDS, a design method has been proposed to automatically determine
appropriate values of stepsizes from the problem structure. However, the existing
method has two limitations. One is that it directly accesses all elements of matri-
ces representing linear operators involved in a given problem, which is inconvenient
for handling linear operators implemented as procedures rather than matrices. The
other is that it takes an element-wise preconditioning approach, which turns certain
types of proximity operators into analytically intractable forms. To overcome these
limitations, we establish an Operator norm-based design method of Variable-wise
Diagonal Preconditioning (OVDP). First, OVDP constructs diagonal stepsizes us-
ing only (upper bounds) of the operator norms of linear operators, thus eliminating
the need for their explicit matrix representations. Furthermore, since OVDP takes a
variable-wise preconditioning approach, it keeps any proximity operator analytically
computable. We also prove that our stepsizes satisfy the convergence condition of
P-PDS. Finally, we demonstrate the effectiveness and usefulness of OVDP through
applications to mixed noise removal of HS images, HS unmixing, and graph signal
recovery.

Then, in Chapter 5, we take advantage of the above techniques to propose a method
of unmixing, which is an essential task of remote sensing data analysis. The details are as
follows.

• Chapter 5: We establish a novel noise-robust HS unmixing method using constraint
modeling and problem structure-based stepsize design. HS unmixing is the process
of decomposing an HS image into material-specific spectra (endmembers) and their
spatial distributions (abundance maps). Existing unmixing methods have two limi-
tations concerning noise robustness. First, if the input HS image is highly noisy, even
if the balance between sparse and piecewise-smooth regularizations for abundance
maps is carefully adjusted, noise may remain in the estimated abundance maps or
undesirable artifacts may appear. Second, existing methods do not explicitly account
for the effects of stripe noise, which is common in HS measurements, in their formula-
tions, resulting in significant degradation of unmixing performance when such noise
is present in the input HS image. To overcome these limitations, we propose a new
robust hyperspectral unmixing method based on constrained convex optimization.
Our method employs, in addition to the two regularizations for the abundance maps,
regularizations for the HS image reconstructed by mixing the estimated abundance
maps and endmembers. This strategy makes the unmixing process much more robust
in highly noisy scenarios, under the assumption that the abundance maps used to
reconstruct the HS image with desirable spatio-spectral structure are also expected
to have desirable properties. Furthermore, with constraint modeling including our
flatness constraint, our method is designed to accommodate a wider variety of noise
including stripe noise, which facilitates parameter settings. To solve the formulated
optimization problem, we develop an efficient algorithm based on P-PDS with our
stepsizes design method based on the problem structure. Experiments on synthetic
and real HS images demonstrate the advantages of our method over existing meth-
ods.
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Finally, we summarize the results obtained in this dissertation and give an outlook on
future research in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we give definitions and properties only for vectors. For matrices, change
ℓ2 norms and vector inner products to Frobenius norms and matrix inner products, re-
spectively.

2.1 Notations

Fundatmentals

We write the sets of real numbers and non-negative real numbers in R and R+, respectively.

Vectors

We denote vectors by lowercase bold letters (e.g., x). For a vector x, the i-th element of
x is written in xi or [x]i.

Matrices

Matrices are denoted by capitalized boldface letters (e.g., X), and the element at the
j-th row and i-th column of matrix X is denoted by Xj,i or [X]j,i. For X ∈ Rm×n, a
matrix X⊤ ∈ Rn×m is called the transpose of X if it satisfies [X⊤]i,j = [X]j,i for any

i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. We denote a matrix X ∈ Rm̃×ñ (m̃ =
∑M

j=1mj , ñ =∑N
i=1 ni) consisting of block matrices Xj,i ∈ Rmj×ni (j = 1, . . . ,M and i = 1, . . . , N) by

X = [Xj,i]1≤j≤M,1≤i≤N , i.e.,

[Xj,i]1≤j≤M,1≤i≤N :=


X1,1 X1,2 · · · X1,N

X2,1 X2,2 · · · X2,N
...

...
. . .

...
XM,1 XM,2 · · · XM,N

 . (2.1)

We then introduce (block) diagonal matrices. Let x ∈ Rn. Then, the matrix that has x
as its diagonal elements is denoted by

diag(x) =


x1 0

x2
. . .

0 xn

 (∈ Rn×n). (2.2)
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Similarly, for matrices X1 ∈ Rn1×m1 , . . . ,Xn ∈ Rnn×mn , the matrix that has X1, . . . ,Xn

as its diagonal blocks is written in

diag(X1, . . . ,Xn) =


X1 O

X2

. . .

O Xn

 (∈ Rm̃×ñ), (2.3)

where m̃ =
∑M

j=1mj and ñ =
∑N

i=1 ni.

Cube Data

In this dissertation, we handle cube data of size n1×n2×n3 (e.g., HS images, abundance
maps, and IR videos) in a vector form (x ∈ Rn1n2n3) or matrix forms (X ∈ Rn1×n2n3 or
X ∈ Rn1n2×n3). In all cases, the (i, j, k)-th element of the cube data is denoted by [x]i,j,k
and [X]i,j,k.

2.2 Selected Elements in Linear Algebra

In this dissertation, we denote linear operators by Fraktur letters (e.g., L). For a linear
operator L : Rm → Rn that acts on vectors, a matrix L ∈ Rn×m is called the representation
matrix of L if L satisfies that Lx = L(x) for any x ∈ Rm. We introduce some definitions
of linear operators.

Difinition 1 (Inner product). The inner product of two vectors x1,x2 ∈ Rn, denoted
⟨x1,x2⟩, is defined as

⟨x1,x2⟩ :=
n∑

i=1

[x1]i[x2]i. (2.4)

Similarly, the inner product of two matrices X1,X2 ∈ Rm×n is defined as

⟨X1,X2⟩ :=
n∑

i=1

m∑
j=1

[X1]i,j [X2]i,j . (2.5)

Difinition 2 (Adjoint operator). Let L : Rm → Rn be a linear operator. A linear operator
L∗ : Rn → Rm is called the adjoint operator of L if it satisfies that ⟨L(x),y⟩ = ⟨x,L∗(y)⟩
for any x ∈ Rm and y ∈ Rn. The representation matrix of L∗ is identical to L⊤.

We define an operator norm closely related to the convergence of a convex optimization
algorithm, which will be introduced later.

Difinition 3 (Norms induced by inner product). For vectors, the norm induced by the
inner product defined in Eq. (2.4) is called an ℓ2-norm ∥·∥2, which is defined as for x ∈ Rn

∥x∥2 :=
√
⟨x,x⟩ =

√√√√ n∑
i=1

x2i . (2.6)

For matrices, the norm induced by the inner product defined in Eq. (2.5) is called a
Frobenius norm ∥ · ∥F , which is defined as for X ∈ Rm×n

∥X∥F :=
√
⟨X,X⟩ =

√√√√ n∑
i=1

m∑
j=1

X2
i,j . (2.7)
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Difinition 4 (Operator norm). For a linear operator L that acts on vectors, the operator
norm ∥L∥op is defined by

∥L∥op := sup
x ̸=0

∥L(x)∥2
∥x∥2

. (2.8)

For a linear operator L that acts on matrices, the operator norm of L is defined by

∥L∥op := sup
X̸=O

∥L(X)∥F
∥X∥F

. (2.9)

For a representation matrix A, its operator norm satisfies

∥A∥op := sup
x ̸=0

∥Ax∥2
∥x∥2

= σ1(A), (2.10)

where σ1(A) is the maximum singular value of A.

Proposition 2.2.1 (The submultiplicity of an operator norm). Let L1 ◦ L2 be the com-
position of linear operators L1 and L2. The operator norm of L1 ◦ L2 satisfies that

∥L1 ◦ L2∥op ≤ ∥L1∥op∥L2∥op. (2.11)

This property is called the submultiplicity.

2.3 Selected Elements in Convex Optimization

Proper lower-semicontinuous convex functions play a central role in convex optimization.

Difinition 5 (Proper lower-semicontinuous convex function). A function f : Rn →
(−∞,+∞] is said to be proper lower-semicontinuous convex if dom(f) := {x ∈ Rn|f(x) <
∞} ≠ ∅, levα(f) := {x ∈ Rn | f(x) ≤ α} is closed for any α ∈ R and f(λx+ (1− λ)y) ≤
λf(x) + (1− λ)f(y) for any x,y ∈ Rn and for any λ ∈ (0, 1), respectively.

Then, we define Fenchel–Rockafellar conjugate functions, which also play an important
role in convex optimization.

Difinition 6 (Fenchel–Rockafellar conjugate function). Let f : Rn → (−∞,+∞] be a
proper lower-semicontinuous convex function. The Fenchel–Rockafellar conjugate function
of f is defined as

f∗(x) := max
y
⟨x,y⟩ − f(y). (2.12)

We introduce several typical examples of proper lower-semicontinuous convex func-
tions.

Example 1 (Norms).

(a) (an ℓp norm) ∥ · ∥p : Rn → R+ : x 7→ (
∑n

i |xi|p)1/p, where p ∈ [1,+∞).

(b) (an ℓ1 norm of a matrix) ∥ · ∥1 : Rn×m → R+ : X 7→
∑n

i=1

∑m
j=1 |Xi,j |.

(c) (a Frobenius norm) ∥ · ∥F : Rn×m → R+, which is defined in Eq. (2.7).

(d) (a mixed ℓ1,2-norm grouped by row) ∥X∥1,2,r : Rn×m → R+ : X 7→
∑

i

√∑
j X

2
i,j .

(e) (a mixed ℓ1,2-norm grouped by column) ∥X∥1,2,c : Rn×m → R+ : X 7→
∑

j

√∑
iX

2
i,j .

Next, we define convex sets, which are key tools for this study.
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Difinition 7 (Convex set). A set C ⊂ Rn is called convex if λx + (1 − λ)y ∈ C for any
x,y ∈ C and for any λ ∈ (0, 1).

We raise some useful examples of closed convex sets.

Example 2 (Useful closed convex sets).

(a) (An ℓp-ball) B
c
p,ε := {x ∈ Rn | ∥x− c∥p ≤ ε}, where ε ∈ R+, c ∈ Rn, and p ∈ [1,+∞).

(b) (A Frobenius-ball) BC
F,ε := {X ∈ Rn×m | ∥X−C∥F ≤ ε}, where ε ∈ R+, C ∈ Rn×m.

(c) (A nonnegative orthant) Rn
+.

(d) (Set consisting of one element) {a}, where a ∈ Rn.

(e) (The kernel of a linear operator) {x ∈ Rn | L(x) = 0}, where L : Rn → Rm is a linear
operator.

Indicator functions allow us to conveniently handle constrained convex optimization
problems.

Example 3. (The indicator function of a closed convex set) Let C ⊂ Rn be a nonempty
set. The indicator function of C is defined by

ιC : Rn → R̄ : x 7→

{
0, if x ∈ C;

+∞, otherwise.
(2.13)

If C is closed and convex, ιC is a proper lower-semicontinuous convex function.

Difinition 8 (Metric Projection onto a closed convex set). For any nonempty closed
convex set C ⊂ Rn, the metric projection onto C is defined by

PC : Rn → Rn : x 7→ argmin
y∈C

∥x− y∥2 (2.14)

Example 4 (Metric projection instances).

(a) (An ℓ2-ball)

PBc
2,ε
(x) :=

{
x, if x ∈ Bc

2,ε;

c+ ε(x−c)
∥x−c∥2 , otherwise.

(2.15)

(b) (An ℓ1-ball) PBc
1,ε
(x) can be calculated by efficient ℓ1-ball projection techniques [53].

(c) (A Frobenius-ball)

PBC
F,ε

(X) :=

{
X, if X ∈ BC

F,ε;

C+ ε(X−C)
∥X−C∥F , otherwise.

(2.16)

(d) (A nonnegative orthant)

[PRn
+
(x)]i =

{
xi, if xi ≥ 0;

0, otherwise.
(2.17)

(e) (Set consisting of one element)
P{a}(x) = a, (2.18)

for any x ∈ Rn.
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2.4 Proximal Tools and Algorithm

2.4.1 Basic Proximal Tools

Let us start with defining the proximity operator, which is a key tool in convex optimization
algorithms.

Difinition 9 (Proximity operator). Let f : RN → (−∞,+∞] be a proximable proper
lower-semicontinuous convex function andG ∈ RN×N be a symmetric and positive definite
matrix. The proximity operator of f relative to the metric induced by G is defined as

proxG,f (x) := argmin
y

1

2
⟨x− y,G(x− y)⟩+ f(y), (2.19)

where ⟨·, ·⟩ is the Euclidean inner product. If G is a positive scalar matrix, i.e., G = αI
(α > 0), the proximity operator is identical to the standard proximity operator relative to
the metric induced by I:

proxG,f (x) = proxI, 1
α
f (x) = argmin

y

1

2
∥x− y∥22 +

1

α
f(y). (2.20)

In this paper, the proximity operator relative to the metric induced by a positive matrix
that is not a scalar matrix is called the skewed proximity operator. In addition, the
proximity operator relative to the metric induced by I is simply called the proximity
operator and is denoted as

proxI, 1
α
f (x) = prox 1

α
f (x). (2.21)

If an efficient computation of the (skewed) proximity operator of f is available, we call f
(skew) proximable.

We would like to note that the standard proximity operators of some popular convex
functions, such as the mixed ℓ1,2-norm and the indicator functions of norm balls, have
analytic solutions but their computations are not completely separable element by element.
In such cases, even ifG is diagonal (with different elements), the computation of the skewed
proximity operator becomes difficult.

Proposition 2.4.1 (The generalization of Moreau’s identity [49, Theorem 3.1 (ii)]). Let
f : Rn → (−∞,+∞] be a proximable proper lower-semicontinuous convex function and f∗

be its Fenchel–Rockafellar conjugate function. Then, the following equation holds:

proxG,f∗(x) = x−G−1proxG−1,f (Gx). (2.22)

This equation indicates that the (skewed) proximity operator of f∗ is (skew) proximable if
the (skewed) proximity operator of f is (skew) proximable.

We introduce several examples of proximity operators that are often present in remote
sensing analysis.

Example 5 (The proximity operator of an ℓ1-norm). For any x ∈ Rn, the proximity
operator of ∥ · ∥1 with an index γ is given by for all i ∈ {1, . . . , n}

[proxγ∥·∥1(x)]i = sign(xi)max{|xi| − γ, 0}, (2.23)

which is the well-known soft-thresholding operation [56].
The skew proximity operator of an ℓ1-norm is not proximable in general. If its inducing

matrixG is a diagonal matrix, i.e.,G = diag(g), we can easily calculate the skew proximity
operator as

[proxG,γ∥·∥1(x)]i = sign(xi)max{|xi| − g−1
i γ, 0}. (2.24)
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Example 6. For any X ∈ Rn×m, the proximity operator of ∥ · ∥1,2,r with an index γ is
given by for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}

[proxγ∥·∥1,2,r(A)]i,j = max(1− γ√∑m
j=1 A

2
i,j

, 0)Ai,j . (2.25)

Example 7. For any X ∈ Rn×m, the proximity operator of ∥ · ∥1,2,c with an index γ is
given by for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}

[proxγ∥·∥1,2,c(A)]i,j = max(1− γ√∑n
i=1 A

2
i,j

, 0)Ai,j . (2.26)

Example 8 (The proximity of an indicator function). For any nonempty closed convex
set, the proximity operator of an index γ > 0 of the indicator function ιC coincides with
the metric projection onto C, i.e.,

proxγιC (x) = PC(x). (2.27)

2.4.2 Preconditioned Primal-Dual Splitting Algorithm (P-PDS) [148]

We consider a convex optimization problem of the following form:

min
x1,...,xN ,
y1,...,yM

N∑
i=1

fi(xi) +
M∑
j=1

gj (yj) s.t.



y1 =

N∑
i=1

L1,i(xi),

...,

yM =
N∑
i=1

LM,i(xi),

(2.28)

where fi : Rni → (−∞,+∞] and gj : Rmj → (−∞,+∞] are proximable proper lower-
semicontinuous convex functions, and Lj,i : Rni → Rmj is a linear operator (∀i = 1, . . . , N
and ∀j = 1, . . . ,M)1.

Let x = [x⊤
1 , . . . ,x

⊤
N ]⊤ ∈ Rñ (ñ =

∑N
i=1 ni), y = [y⊤

1 , . . . ,y
⊤
M ]⊤ ∈ Rm̃ (m̃ =

∑M
j=1mj),

f(x) =
∑N

i=1 fi(xi), g(y) =
∑M

j=1 gj(yj), and

L :=


L1,1 L1,2 · · · L1,N

L2,1 L2,2 · · · L2,N
...

...
. . .

...
LM,1 LM,2 · · · LM,N

 . (2.29)

P-PDS [148] computes an optimal solution of Prob. (2.28) by the following iterative pro-
cedures: ⌊

x(t+1) ← proxΓ−1
1 ,f (x

(t) − Γ1L
∗(y(t))),

y(t+1) ← proxΓ−1
2 ,g∗(y

(t) + Γ2L(2x
(t+1) − x(t))),

(2.30)

where Γ1 ∈ Rñ×ñ and Γ2 ∈ Rm̃×m̃ are symmetric and positive definite matrices called
stepsizes or preconditioners.

If Γ1 and Γ2 are block-diagonal matrices, that is, Γ1 = diag(Γ1,1, . . . ,Γ1,N ) and
Γ2 = diag(Γ2,1, . . . ,Γ2,M ) for matrices Γ1,1, . . . ,Γ1,N ,Γ2,1, . . . ,Γ2,M corresponding to

1The optimization problem is written using vectors, but P-PDS can handle optimization problems where
objective variables are matrices.
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x1, . . . ,xN ,y1, . . . ,yM , the procedures in (2.30) can be rewritten as the following equiva-
lent form: 

x
(t+1)
1 ← proxΓ−1

1,1,f1
(x

(t)
1 − Γ1,1

∑M
j=1 L

∗
j,1(y

(t)
j )),

...

x
(t+1)
N ← proxΓ−1

1,N ,fN
(x

(t)
N − Γ1,N

∑M
j=1 L

∗
j,N (y

(t)
j )),

y
(t+1)
1 ← proxΓ−1

2,1,g
∗
1
(y

(t)
1 + Γ2,1

∑N
i=1 L1,i(2x

(t+1)
i − x

(t)
i )),

...

y
(t+1)
M ← proxΓ−1

2,M ,g∗M
(y

(t)
M + Γ2,M

∑N
i=1 LM,i(2x

(t+1)
i − x

(t)
i )).

(2.31)

Compared with (2.30), the procedures in (2.31) can easily be calculated because it avoids
the computations of the skewed proximity operators and linear operators over the entire
variables.

Here, we introduce the convergence theorem of P-PDS.

Theorem 2.4.1 (Convergence of P-PDS [148, Theorem 1]). Let Γ1 and Γ2 be symmetric
and positive definite matrices satisfying∥∥∥∥Γ 1

2
2 ◦ L ◦ Γ

1
2
1

∥∥∥∥2
op

< 1. (2.32)

Then, the sequence (x
(t)
1 , . . . ,x

(t)
N ,y

(t)
1 , . . . ,y

(t)
M ) generated by (2.30) converges to an optimal

solution (x∗
1, . . . ,x

∗
N ,y∗

1, . . . ,y
∗
M ) of Prob. (2.28).

For the designs of Γ1 and Γ2, see Section ??.
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Chapter 3

Flatness Constraints and General
Framework for Remote Sensing
Image Destriping

3.1 Introduction

Remote Sensing Images such as hyperspectral (HS) images and infrared (IR) videos offer
various applications, including mineral detection, earth observation, agriculture, astro-
nomical imaging, automatic target recognition, and video surveillance [16, 20, 195]. Such
data, however, are often contaminated by stripe noise, which is mainly due to differ-
ences in the nonuniform response of individual detectors, calibration error, and dark cur-
rents [75,113,114]. Stripe noise not only degrades visual quality but also seriously affects
subsequent processing, such as HS unmixing [20, 123], HS classification [66, 78, 125, 158],
and IR video target recognition [108]. Therefore, stripe noise removal, i.e., destriping, has
been an important research topic in remote sensing and related fields.

In the past decades, a large number of destriping methods have been proposed. Filtering-
based approaches are widely used due to their simplicity [131, 164, 207]. They effectively
remove periodic stripe noise by truncating the specific stripe components in a Fourier or
wavelet data domain. However, these approaches are limited in use since they assume that
stripe noise is periodic and can be identified from the power spectrum. Deep learning-
based approaches have also been studied [37, 38, 100, 166, 167]. They can automatically
extract the nature of desirable data to remove stripe noise by learned neural networks, but
have difficulties, such as domain dependence, a lack of a learning dataset, and excessive
removal of image structures (e.g., textures and singular features) [92,115].

Among many destriping techniques, optimization-based approaches have received much
attention. In these approaches, desirable data and stripe noise are modeled by functions
that capture their nature, and then both are simultaneously estimated by solving an
optimization problem involving the functions. These approaches adopt some form of
regularization to characterize desirable data, including piecewise smoothness [8,33,36,43,
184,204], low-rankness [41,60,201,208,218], self-similarity [199], sparse representation [162,
187], and combinations of these regularizations [61,85].

The characterization of stripe noise is as essential as image regularization in destrip-
ing. Existing stripe noise characterizations can be roughly classified into a sparsity-based
model [42, 60, 201, 208, 218], a low-rank-based model [39, 80], and a total variation (TV)
model [57, 116, 117]. The first model relies on the fact that stripe noise in observed data
is (group) sparsely distributed. The second model characterizes stripe noise as low rank-
ness since stripe noise has a strong low-rank structure [39]. The third model captures the
vertical (or horizontal) smoothness of stripe noise using TV regularization.
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(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 3.1: Spatial flatness of stripe noise on HS image and IR video data. (a1) Striped
HS image data. (a2) Vertical gradient. (a3) Horizontal gradient. (b1) Striped IR video
data. (b2) Vertical gradient. (b3) Horizontal gradient.

Many of the existing destriping methods are designed by combining a particular image
regularization with a stripe noise characterization that cooperates with the regularization.
Since the function used for image regularization is often also used for stripe noise charac-
terization, these methods carefully select the function used for stripe noise characterization
so that it does not conflict with the adopted image regularization. For example, destriping
methods using the low-rank-based model employ TV as the image regularization [39], but
in the case of destriping methods with the TV model, only the horizontal TV is used to
regularize the image [57, 117] because the vertical TV is used to characterize the stripe
noise.

On the other hand, it would be very beneficial to establish a destriping framework
that can handle various image regularizations in a unified manner, so that we can select
a regularization that matches each target image of different nature. In fact, a number
of image regularization techniques have been proposed for remote sensing images. Typ-
ical examples are hyperspectral image regularization techniques based on spatio-spectral
smoothness and correlation [8, 60, 204, 208, 218]. In the case of video data, there are also
many regularization techniques that consider moving objects [40, 128, 180]. Combining
multiple regularizations is also a promising strategy [61,121].

In order to achieve the aforementioned unified framework, two requirements need to
be considered: 1) a general formulation and algorithm that can handle a variety of image
regularizations, and 2) a strong stripe noise characterization that can consistently capture
the nature of stripe noise, regardless of the choice of image regularization.

Based on the above discussion, this chapter proposes a general destriping framework
for remote sensing images. First, we formulate destriping as a constrained convex opti-
mization problem involving a general form of image regularization and a newly introduced
strong stripe noise characterization. Second, we develop an efficient algorithm based on
the diagonally-preconditioned primal-dual splitting algorithm (DP-PDS) [148], which can
automatically determine the appropriate stepsizes for solving this problem.

The main contributions of the chapter are as follows:
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(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 3.2: Temporal invariance of stripe noise on IR video data. (a1), (a2), and (a3) are
frames of a raw data. (b1), (b2), and (b3) are differences in the frames.

• (General framework) Our framework incorporates image regularization as a general
form represented by a sum of (possibly) nonsmooth convex functions involving linear
operators. This enables us to leverage various image regularizations according to
target images.

• (Effective characterization of stripe noise) The most common type of stripe noise has
a strong flat structure in the vertical or horizontal direction. As a typical example, a
band of a raw HS image, a frame of a raw IR video, and their vertical and horizontal
gradients are shown in Fig. 3.1, where we can see that the stripe component only
exists in the horizontal differences. This implies that stripe noise is flat in the vertical
direction. Therefore, we can capture the flatness by constraining its vertical gradient
to zero, named the flatness constraint. Moreover, stripe noise in videos is often time-
invariant. For example, IR videos are corrupted with time-invariant stripe noise due
to focal plane arrays [27,156]. Some frames of a raw IR video and their differences are
shown in Fig. 3.2, where we can see that the stripe noise is time-invariant because it
does not appear in the differences. For such data, we impose the flatness constraint
along the temporal direction in addition to the spatial constraint. Thanks to such a
strong characterization, our framework has a marked ability of stripe noise removal
that does not so much depend on what image regularization is adopted.

• (Automatic stepsize adjustment) Our algorithm can automatically adjust the step-
sizes based on the structure of the optimization problem to be solved. In general, the
appropriate stepsizes of PDS would be different depending on image regularizations,
meaning that we have to manually adjust them many times. Our algorithm is free
from such a troublesome task.

We demonstrate the effectiveness of our framework through destriping experiments,
where we comprehensively compare combinations of image regularizations and stripe noise
characterizations using HS images and IR videos.

The remainder of this chapter is organized as follows. Section 3.2 gives reviews the
existing sparsity-based, low-rank-based, and TV-based destriping models. Section 3.3
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presents the details of the proposed formulation and the solver. Experimental results and
discussion are given in Section 3.4. Finally, we summarize the chapter in Section 3.5.

3.2 Review of Existing Approaches

To estimate desirable data from the observed data contaminated by stripe noise and
random noise, we model the observation data as follows:

v = ū+ l̄+ n, (3.1)

where ū ∈ Rn1n2n3 is a desirable image of interest, l̄ ∈ Rn1n2n3 is stripe noise, n ∈ Rn1n2n3

is random noise, and v ∈ Rn1n2n3 is the observed data.
Under the model in (3.1), the destriping problem is often formulated as convex opti-

mization problems with the following form:

min
u,l

L∑
l=1

Rl(Llu) + λlJ(l) +
λn

2
∥v − (u+ l)∥22, (3.2)

where R1(L1(·)) : Rn1n2n3 → (−∞,+∞], . . . , RL(LL(·)) : Rn1n2n3 → (−∞,+∞] are reg-
ularization functions for imaging data with linear operators L1, . . . ,LL and functions
R1, . . . , RL, and J : Rn1n2n3 → (−∞,+∞] is a function characterizing stripe noise, re-
spectively. The positive scalars λl and λn are the hyperparameters. Depending on how
J is chosen, destriping models can be classified into the following three categories: the
(group-)sparsity-based model, the low-rank-based model, and the TV-based model.

The sparsity-based model has been used in a lot of methods. Among them, the method
proposed in [208] is known as a representative work. This method uses the ℓ1-norm as
J , which is a well-known sparsity measure. As mentioned, this model relies on the fact
that stripe noise is sparsely distributed in observed data. The method proposed in [85]
sets J to the mixed ℓ2,1-norm since each column of stripe noise is viewed as a group. The
mixed ℓ2,1-norm is the sum of the ℓ2-norm of each column vector, which groups stripe
noise by each column, and thus it is used for the characterization of stripe noise based on
group sparsity. The sparsity-based model results in efficient optimization due to its simple
modeling, but cannot fully capture the nature of stripe noise. Specifically, its destriping
performance strongly depends on image regularization, as will be shown in Section 3.4.3.

The low-rank-based model has been proposed in [39]. In [39], the authors revealed that
stripe noise only exists in the horizontal gradient component and that the rank of stripe
noise is one. Based on this observation, they adopted the nuclear norm for J , which is a
reasonable convex function that can evaluate the low-rankness of a matrix. In general, this
model outperforms the sparsity-based model. However, it conflicts with low-rank image
regularizations where the nuclear norm is employed [41,60,208,218].

The TV-based model [57, 117] adopted a TV term and a sparse term to capture the
one-directional smoothness of stripe noise. This model is also superior to the sparsity-
based model. However, the TV-based model weakens the TV regularization ability to
capture the vertical smoothness, as will be shown in Section 3.4.3.

3.3 Proposed Framework

The proposed framework involves a general form of regularization term and two types of
the flatness constraint. The choice of the specific image regularization and the removal
of the temporal flatness constraint are required to fit the nature of an observed image.
Depending on image regularization and the temporal flatness constraint, the DP-PDS-
based solver needs to be implemented. We illustrate a whole workflow for the proposed
framework in Fig. 3.3.
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Figure 3.3: A whole workflow of the proposed general destriping framework.

3.3.1 General Destriping Model With Flatness Constraint

In this section, we propose a general destriping model using the flatness constraint. As
mentioned, stripe noise l has the characteristic that the vertical/temporal gradient is zero,
i.e., {

Dvl = 0,

Dtl = 0,
(3.3)

where Dv : Rn1n2n3 → R(n1−1)n2n3 and Dt : Rn1n2n3 → Rn1n2(n3−1) are the vertical and
temporal difference operators with the Neumann boundary, which are defined as

[Dvl]i,j,k := [l]i,j,k − [l]i+1,j,k,


∀i ∈ {1, · · · , n1 − 1},
∀j ∈ {1, · · · , n2},
∀k ∈ {1, · · · , n3},

(3.4)

[Dtl]i,j,k := [l]i,j,k − [l]i,j,k+1,


∀i ∈ {1, · · · , n1},
∀j ∈ {1, · · · , n2},
∀k ∈ {1, · · · , n3 − 1}.

(3.5)

Using the flatness constraints in Eq. (3.3), we newly formulate destriping as the following
convex optimization problem:

min
u,l

L∑
l=1

Rl(Llu) + λ∥l∥1 s.t.


Dvl = 0,

Dtl = 0,

u+ l ∈ Bv
2,ε,

(3.6)

where λ > 0 is a hyperparameter, and Rl(Ll(·)) (∀l = 1, · · · , L) is a regularization term
with a proper semi-continuous convex proximable function Rl and a linear operator Ll.
The vertical and temporal gradients of stripe noise are constrained to zero by the first
and second constraint, which captures the vertical/temporal flatness of stripe noise. Ad-
ditionally, we impose the ℓ1-norm on l to exploit the sparsity of stripe noise. The third
constraint is an ℓ2 norm constraint with a radius ε for data fidelity to v given in (3.1).
The data-fidelity constraint has an important advantage over the standard additive data
fidelity in terms of facilitating hyperparameter settings, as addressed in [7,29,47,138,141].
If stripe noise is variant in the third direction such as HS images, we remove the second
constraint.

For data with horizontally featured stripe noise, as in images acquired by whiskbroom
scanning [117], we rotate the data 90 degrees in the spatial direction before optimization.
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Algorithm 1 The P-PDS algorithm for solving Prob. (3.6)

Input: v, λ, and ε
Output: u(t), l(t)

1: Initialize u(0), l(0),y
(0)
1 , . . . ,y

(0)
4 ;

2: t = 0;
3: while A stopping criterion is not satisfied do

4: u(t+1) ← u(t) − Γu(
∑L

l=1 L
⊤
l y

(t)
1,l + y

(t)
4 );

5: l′ ← l(t) − Γl(D
⊤
v y

(t)
2 +D⊤

t y
(t)
3 + y

(t)
4 );

6: l(t+1) ← proxΓ−1
l ,λ∥·∥1(l

′) by Eq. (2.24);

7: for t = 1, · · · , L do

8: y′
1,l ← y

(t)
1,l + Γy1,l

Ll(2u
(t+1) − u(t));

9: y
(t+1)
1,l ← y′

1,l − Γy1,l
proxΓy1,l

,Rl
(Γ−1

y1,l
y′
1,l);

10: end for
11: y

(t+1)
2 ← y

(t)
2 + Γy2Dv(2l

(t+1) − l(t));

12: y
(t+1)
3 ← y

(t)
3 + Γy3Dt(2l

(t+1) − l(t));

13: y
(t)
4 ← y

(t)
4 + Γ4(2(u

(t+1) + l(t+1))− (u(t) + l(t)));

14: y
(t+1)
4 ← y

(t)
4 − Γ4PBv

2,ε
(Γ−1

4 y
(t)
4 ) by Eq. (3.14);

15: t← t+ 1;
16: end while

3.3.2 Diagonally Preconditioned Primal-Dual Splitting Algorithm for
Solving the General Destriping Model

In this part, we introduce DP-PDS [148] to solve Prob. (3.6). DP-PDS (see Appendix),
which is a diagonally preconditioned version of the primal-dual splitting algorithm [32,51],
frees us from tedious stepsize settings. Moreover, the convergence speed of DP-PDS is
much faster in general than that of the original PDS algorithm.

To solve Prob. (3.6) with DP-PDS, we rewrite it into the following equivalent problem:

min
u,l,y1,1,...,y1,L,

y2,y3,y4

λ∥l∥1 +
L∑
l=1

Rl(y1,l) + ι{0}(y2) + ι{0}(y3) + ιBv
2,ε
(y4)

s.t.



y1,1 = L1u,
...

y1,L = LLu,

y2 = Dvl,

y3 = Dtl,

y4 = u+ l,

(3.7)

where ι{0} and ιBv
2,ε

are the indicator functions of {0} and Bv
2,ε, respectively. DP-PDS

computes the solution of Eq. (3.7) by updating primal variables (u and l) and dual variables
(y1,1, . . . ,y1,L,y2,y3, and y4) alternately.

The primal variables are updated as follows:

u(t+1) ← u(t) − Γu

(
L∑
l=1

L⊤
l (y1,l) + y4

)
, (3.8)

l(t+1) ← proxΓ−1
l ,λ∥·∥1

(
l(t) − Γl

(
D⊤

v y
(t)
2 +D⊤

v y
(t)
3 + y

(t)
4

))
, (3.9)
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where the constants Γu and Γl are stepsize parameters that are called preconditioners.
The preconditioners are given by the coefficients of the linear operations L1, . . . ,LL and
the difference operators Dv,Dt (see Eq. (4.5) in Section ?? for the detailed definitions).

Then, the dual variables are updated as follows:

y
(t+1)
1,l ←proxΓ−1

y1,l
,R∗

l

(
y
(t)
1 + Γy1,l

(
Ll

(
2u(t+1) − u(t)

)))
, (∀l = 1, · · · , L) (3.10)

y
(t+1)
2 ←proxΓ−1

y2
,ι∗{0}

(
y
(t)
2 + Γy2

(
Dv

(
2l(t+1) − l(t)

)))
, (3.11)

y
(t+1)
3 ←proxΓ−1

y3
,ι∗{0}

(
y
(t)
3 + Γy3

(
Dt

(
2l(t+1) − l(t)

)))
, (3.12)

y
(t+1)
4 ←proxΓ−1

y4
,ι∗
Bv
2,ε

(
y
(t)
4 + Γy4

(
2
(
u(t+1) + l(t+1)

)
−
(
u(t) + l(t)

)))
, (3.13)

where the constants Γy1,1 , . . . ,Γy1,L ,Γy2 ,Γy3 , and Γy4 are preconditioners that can be also
determined automatically (see Eq. (4.5) in Section ??). The skewed proximity operators in
Eq. (3.10) are efficiently computed because Rl is a skew proximable function. The skewed
proximity operator of ι{0} in Eqs. (3.11) and (3.12) are calculated as proxΓ,ι{0}(x) = 0

for any x ∈ R(n1−1)n2n3 . The skewed proximity operator of ιBv
2,ε

in Eq. (3.13) is not
proximable in general. In our method, all the diagonal entries of the preconditioner Γ4

are 1
2 . Hence, the operator proxΓ4,ιBv

2,ε

is easily calculated as

proxΓ4,ιBv
2,ε

(x) = proxI,2ιBv
2,ε

(x)

= PBv
2,ε
(x) =

{
x, if x ∈ Bv

2,ε,

v + ε(x−v)
∥x−v∥2 , otherwise.

(3.14)

Through these update steps, we obtain the solution of Prob. (3.6). We show the
detailed algorithms in Algorithm 1. We note that this algorithm can handle a nonconvex
optimization problem that contains the proximable nonconvex function such as the ℓ0-
norm and the rank function. However, its convergence, in this case, is not guaranteed.

In temporally variant stripe noise cases, such as an HS image, the temporal constraint
is removed. Following the change, the update step in (3.9) will be as follows:

l(t+1) ← proxΓ−1
l ,λ∥·∥1

(
l(t) − Γl

(
D∗

vy
(t)
2 + y

(t)
4

))
. (3.15)

Then, we remove the update step of y3 (line 9 of Algorithm 1).

3.3.3 Examples of Image Regularizations

We give some examples of image regularization
∑L

l=1Rl(Llu) in (3.6). First, let us consider
HTV [204]. Since the HTV is an image regularization for HS images, we adopt the
formulation that does not involve the temporal flatness constraint. The definition of HTV
is

∥u∥HTV :=
∑
i,j

√∑
k

[Dvu]2i,j,k + [Dhu]
2
i,j,k. (3.16)

Therefore, by letting

L1 = [D⊤
v D⊤

h ]
⊤, (3.17)

R1(y1,1) = ∥y1,1∥1,2 =
∑
i,j

√∑
k

[y1,1,1]2i,j,k + [y1,1,2]2i,j,k, (3.18)
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where y1,1 = [y⊤
1,1,1 y

⊤
1,1,2]

⊤, we can apply HTV to Prob. (3.6). The update of u is as
follows:

u(t+1) ← u(t) − Γu

(
D⊤

v y
(t)
1,1,1 +D⊤

h y
(t)
1,1,2 + y

(t)
4

)
, (3.19)

Let [z⊤1 z⊤2 ]
⊤ = proxΓy1,1 ,∥·∥1,2(y1,1), then each element is calculated as follows: for any

i ∈ {1, · · · , n1}, j ∈ {1, · · · , n2}, and k ∈ {1, · · · , n3}

[z1]i,j,k = max

1−
[gy1,1,1 ]i,j,k√∑

k′ [y1,1,1]2i,j,k′ + [y1,1,2]2i,j,k′
, 0

 [y1,1,1]i,j,k, (3.20)

[z2]i,j,k = max

1−
[gy1,1,2 ]i,j,k√∑

k′ [y1,1,1]2i,j,k′ + [y1,1,2]2i,j,k′
, 0

 [y1,1,2]i,j,k, (3.21)

where [g⊤
y1,1,1

g⊤
y1,1,2

]⊤ is the diagonal vector of Γy1,1 , i.e., Γy1,1 = diag([g⊤
y1,1,1

g⊤
y1,1,2

]⊤).

Preconditioners are determined as Γu = (diag(gD⊤
v
)+diag(gD⊤

h
)+I)−1, Γl = (diag(gD⊤

v
)+

I)−1, Γy1,1 = 1/2I, and Γy2 = 1/2I, where

[gD⊤
v
]i,j,k =

{
1, if i = 1, n1,

2, otherwise,
(3.22)

[gD⊤
h
]i,j,k =

{
1, if j = 1, n2,

2, otherwise,
(3.23)

for any i ∈ {1, · · · , n1}, j ∈ {1, · · · , n2}, and k ∈ {1, · · · , n3}. Finally, we obtain a solver
for Prob. (3.6) with HTV.

As another example of an IR video case, we consider ATV [33]. ATV is defined as

∥u∥ATV := ∥Dvu∥1 + ∥Dhu∥1 + ∥Dtu∥1. (3.24)

Therefore, we set L1 = Dv, L2 = Dh, L3 = Dt, and R1 = R2 = R3 = ∥ · ∥1 to apply ATV
to Eq. (3.7). Then, we update u as

u(t+1) ← u(t) − Γu

(
D⊤

v y
(t)
1,1 +D⊤

h y
(t)
1,2 +D⊤

t y
(t)
1,3 + y

(t)
4

)
. (3.25)

The proximity operator in line 9 of Algorithm 1 is calculated by Eq. (2.24). Preconditioners
are set as Γu = (diag(gD⊤

v
)+diag(gD⊤

h
)+diag(gD⊤

t
)+I)−1, Γl = (diag(gD⊤

v
)+diag(gD⊤

t
)+

I)−1, Γy1,1 = 1/2I, Γy1,2 = 1/2I, Γy1,3 = 1/2I, Γy2 = 1/2I, and Γy3 = 1/2I, where gD⊤
v

and gD⊤
t
are already defined in the HTV example and

[gD⊤
t
]i,j,k =

{
1, if k = 1, n3,

2, otherwise,
(3.26)

for any i ∈ {1, · · · , n1}, j ∈ {1, · · · , n2}, and k ∈ {1, · · · , n3}.

3.3.4 Computational Cost and Running Time

The complexities of Lines 4, 8, and 9 of Algorithm 1 depend on what image regularization
is adopted. When a specific image regularization is not given, we cannot have explicit
complexities. All operations of Lines 5, 6, 11, 12, 13, and 14 of Algorithm 1 have the
complexity of O(n1n2n3). Thus, the complexity for each iteration of the algorithm is the
larger of O(n1n2n3) or the one for the image regularization term.
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(a) (b)

Figure 3.4: Convergence analysis of DP-PDS for that is experimentally performed us-
ing two image regularizations. (a) HSI destriping using HTV (Eq. (5.4)). (b) IR video
destriping using ATV (Eq. (3.24)).

(a) Iteration = 20 (b) Iteration = 40 (c) Iteration = 60

Figure 3.5: Salinas destriping result of l(t) in each iteration with HTV (R: 140, G: 101,
B: 30).

We measured the actual running times using MATLAB (R2021a) on a Windows 10
computer with an Intel Core i9-10900 3.7GHz processor, 32GB of RAM, and NVIDIA
GeForce RTX 3090. The actual running times [s] and total iteration numbers were 13.47
and 932, 5.123 and 317, and 1.064 and 191 for Moffett Field destriping using HTV, Salinas
destriping using HTV, and Bats1 destriping using ATV, respectively. For the experimental
settings, see Sec. 3.4.3.

3.3.5 Convergence Analysis

The convergence of Algorithm 1 is guaranteed by the theorem 2.4.1. Moreover, we exper-
imentally confirm the convergence properties. We plotted the objective function values∑L

l=1Rl(Llu
(t)) + λ∥l(t)∥1 versus iterations t on the experiments using HTV and ATV in

Fig. 3.4, where our algorithm minimizes the objective function. Figure 3.5 shows Salinas
destriping results of l(t) in each iteration. From these results, we can see that the stripe
noise becomes flat along the vertical direction as the number of iterations is large. The
convergence speed of the stripe noise component depends on what image regularization is
adopted.
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Table 3.1: All Methods (Stripe Noise Characterization+Image Regularization Examined
in Our Experiments)

Image
regularization

Characterization of
stripe noise S [208] GS [85] LR [39] TV [57] FC

HTV (HS image) [204] [85] [39] [57] Ours
SSTV (HS image) [8] None None None Ours
ASSTV (HS image) [36] None None None Ours
TNN (HS image) [60] None None None Ours

SSTV+TNN (HS image) [61] None None None Ours
l0-l1HTV (HS image) [184] None None None Ours

ATV (IR video) [33] None None None Ours
ITV (IR video) [33] None None None Ours

ATV+NN (IR video) [121] None None None Ours

3.4 Experiments

In this section, we illustrate the effectiveness of our framework through comprehensive
experiments. Specifically, these experiments aim to show that

• Our flatness constraint accurately separates stripe noise from striped images,

• Our framework achieves good destriping performance on average, whatever image
regularizations are used.

The specific experimental procedure is as follows.

1. Select image regularizations to be used.

2. Develop DP-PDS-based solvers for all optimization problems that include all combi-
nations of the image regularizations and the stripe noise characterizations summa-
rized in Table 3.1.

3. Set some parameters such as the weight of image regularization, the gradient regu-
larization weight µ of the TV-based model, the data-fidelity parameter ε, and the
parameter of the sparse term λ. (Their detailed settings are given in each experi-
mental section).

4. Conduct destriping experiments using these solvers and parameters.

3.4.1 Image Regularizations and Stripe Noise Characterizations

In HS image experiments, we adopted Hyperspectral Total Variation (HTV) [204], Spatio-
Spectral Total Variation (SSTV) [8], Anisotropic Spectral-Spatial Total Variation (AS-
STV) [36], Tensor Nuclear Norm (TNN) [60], Spatial-Spectral Total Variation with Ten-
sor Nuclear Norm (SSTV+TNN) [61], and l0-l1 Hybrid Total Variation (l0-l1HTV) [184],
which are often used for HS image regularization. The parameters of ASSTV were
experimentally determined as the values that can achieve the best performance. The
parameter of SSTV+TNN was set to the values recommended in [61]. In IR video
experiments, we adopted Anisotropic Total Variation (ATV), Isotropic Total Variation
(ITV) [33], and Anisotropic Total Variation with Nuclear Norm (ATV+NN) [121], which
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are known as video regularization. HTV, SSTV, and ASSTV are smoothness-based reg-
ularizations, TNN is low-rank-based regularization, SSTV+TNN is the combination of
smoothness-based and low-rank-based regularizations, and l0-l1HTV is the combination
of two smoothness-based regularizations (SSTV [8] and L0 gradient projection [136]).
We compared the proposed flatness constraint (FC) with the sparsity-based model (S),
the group-sparsity-based model (GS), the low-rank-based model (LR), and the TV-based
model (TV). For convenience, we denote each method that combines a particular stripe
noise characterization and a particular image regularization short by connecting each name
with a hyphen. For example, the destriping method using the sparsity-based model and
HTV is denoted as S-HTV.

Table 3.1 summarizes all combinations of stripe noise characterizations and image
regularizations examined in our experiments, where we indicate reference numbers for
specific combinations that have been proposed in existing studies (”None” means that the
combination has not been considered yet).

3.4.2 Dataset Descriptions

We employed three HS image datasets and two IR datasets for experiments in simulated
and real noise cases. All images were normalized between [0, 1].

TheMoffett Field [1] was acquired by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) over the urban and rural area in Moffett Field, CA, USA, with a spatial
resolution of 20 m. This image consists of 224 spectral bands in the range of 400 − 2500
nm. After removing noisy bands, we used a sub-image of size 395 × 185 × 176 (Fig. 3.6
(a)) for experiments in simulated noise cases.

The Salinas [3] was collected by AVIRIS over the field area in Salinas Valley, CA, USA,
with a spatial resolution of 3.7 m. This image consists of 224 spectral bands in the range
of 400−2500 nm. After removing noisy bands, we used a sub-image of size 360×217×190
(Fig. 3.8 (a)) for experiments in simulated noise cases.

The Suwannee [4] acquired by AVIRIS over National Wildlife Reserves in the Gulf of
Mexico with a spatial resolution of 2 m. This image consists of 360 spectral bands in the
range of 395− 2450 nm. We used a sub-image of size 256 × 256× 360 (Fig. 3.13 (a)) for
experiments in real noise cases.

The Bats1 and Bats2 [2], which include hundreds of bats, were collected with three
FLIR SC6000 thermal infrared cameras at a frame rate of 125 Hz. For more detailed
descriptions, see also [195–197]. We used denoised and raw sub-images of size 256×256×50
(Figs. 3.7 (a) and 3.13 (b)) for experiments in simulated and real noise cases, respectively.

3.4.3 Experiments in Simulated Noise Cases

For the HS image destriping experiments, the parameter λ of each stripe noise characteri-
zation model summarized in Prob. 3.2 was set to a hand-optimized value, so as to achieve
the best MPSNR. For a fair comparison, we set ε to the oracle value, i.e., ε = ∥n∥2. As
quantitative evaluations, we employed the mean peak signal-to-noise ratio (MPSNR):

MPSNR =
1

n3

n3∑
k=1

10 log10
n1n2

∥uk − ūk∥22
, (3.27)

and the mean structural similarity overall bands (MSSIM) [188]:

MSSIM =
1

n3

n3∑
k=1

SSIM(uk, ūk), (3.28)
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where uk is the kth band of u. The larger these values are, the better the destriping

results are. The stopping criterion of Algorithm 1 was set as ∥u(t+1)−u(t)∥2
∥u(t)∥2

< 1.0× 10−4.

We generated the three types of degraded images:

(i) HS images with vertical stripe noise,

(ii) IR videos with time-invariant vertical stripe noise,

(iii) HS images with vertical stripe noise and white Gaussian noise.

In the IR video experiments, we only consider stripe noise because Gaussian-like random
noise does not appear in raw IR video data [164, 207]. For the variety of experiments,
we considered the following five types of intensity ranges of stripe noise: [−0.2, 0.2],
[−0.25, 0.25], [−0.3, 0.3], [−0.35, 0.35], and [−0.4, 0.4]. The standard deviation of white
Gaussian noise was set to 0.05.

Tables 3.2 and 3.3, 3.4 and 3.5, and 3.6 and 3.7 list the MPSNR and MSSIM values in
Case (i), Case (ii), and Case (iii), respectively. The best and second-best values are high-
lighted in bold and underlined, respectively. The proposed FC achieved the best/second-
best MPSNR and MSSIM values in most cases. S and GS performed worse overall. LR and
TV performed better than S and GS. However, the performance of LR and TV is signifi-
cantly degraded in the cases where they are combined with a low-rank image regularization
(LR-TNN) and TV image regularizations (TV-SSTV and TV-ASSTV), respectively.

Figures 3.6, 3.7, and 3.8 depict the Moffett field destriping results in Case (i) using
SSTV, the Bats1 destriping results in Case (ii) using ATV, and the Salinas destriping
results in Case (iii) using TNN, respectively. Figure 3.9 plots their band-wise or frame-
wise PSNRs and SSIMs. In the 95th-band results of Figs. 3.9 (a) and 3.9 (b), the PSNRs
and SSIMs of S-SSTV, GS-SSTV, and LR-SSTV dropped to 30 [dB] and 0.7, respectively.
This is because S-SSTV, GS-SSTV, and LR-SSTV excessively smoothened the spectral
signatures around the band. In the magnified areas of Figs. 3.6 (c), 3.6 (d), and 3.6 (e),
we see that the land shapes of the red and green bands are removed as Gaussian and
stripe noise. TV-SSTV also resulted in the low PSNRs and SSIMs of the band 95 and
eliminated some edges in addition to the stripe noise (see Fig. 3.6 (f)). S-ATV, GS-ATV,
LR-ATV, and TV-ATV removed bats as stripe noise, resulting in poor performance (see
Figs. 3.7 (c), 3.7 (d), 3.7 (e), and 3.7 (f)). Figures 3.9 (c) and 3.9 (d) show that the PSNRs
and SSIMs of S-ATV, GS-ATV, LR-ATV, and TV-ATV vary according to frame numbers.
The reason is that the results are worse as the number of unrestored bats increases. In
contrast, FC-SSTV recovers the land shapes and edges (see Fig. 3.6 (f)) and FC-ATV
accurately removed stripe noise, leading to high PSNRs and SSIMs. The SSIM results for
Figs. 3.9 (e) and 3.9 (f) were better for LR than FC and TV, but the PSNRs were better
for FC and TV than LR. In particular, from 30 to 150 bands, FC and TV achieved 10 [dB]
better PSNRs and 0.01 worse SSIMs than LR. In the magnified area of the stripe noise by
LR-TNN (Fig. 3.8 (e)), the yellow line appears along with a field shape. This indicates
that LR-TNN restores the image structure but does not recover the contrast. The three
results verify that FC consistently achieves high performance due to its accurate capturing
ability for stripe noise.

Figure 3.10 shows the means of MPSNRs and MSSIMs in each noise case. In Case (i),
LR and FC accurately captured stripe noise, leading to better performances than TV. In
Case (ii), FC achieved the best performance. This is because FC captures the temporal
flatness while the other characterizations do not. In Case (iii), LR captured horizontal
lines as a stripe noise component to remove Gaussian noise by the intersections between
vertical stripe noise and the horizontal lines, leading to worse results. On the other hand,
TV and FC obtained better results than LR without capturing the horizontal lines.
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Figure 3.11 plots the means of MPSNRs and MSSIMs in each stripe noise intensity.
LR dropped its MPSNRs as the stripe noise intensities increased. This is due to the fact
that LR removes the meaningful image components as stripe noise components if stripe
noise intensity is high. The MPSNRs and MSSIMs of TV did not decrease depending on
the stripe noise intensities but were lower than FC overall. Compared with these existing
stripe noise characterizations, FC accurately eliminated stripe noise, resulting in high
destriping performances regardless of the stripe noise intensity.

Figure 3.12 shows the means of MPSNRs and MSSIMs in each image regularization.
FC resulted in 0.5 [dB] worse MPSNRs than LR for the ASSTV and SSTV+TNN cases.
This is because FC-ASSTV and FC-SSTV+TNN stop the iterations before the stripe noise
components satisfy the flatness constraint, leading to slightly dropping their MPSNRs and
MSSIMs. On the other hand, FC did obtain a 2 [dB] better MPSNR and 0.05 better
MSSIM than LR for the TNN case. Compared with TV, the performances of FC were
similar for HTV, TNN, SSTV+TNN, and l0-l1HTV and better for SSTV and ASSTV.
Moreover, FC stably performed better than the other characterizations for ATV, ITV,
and ATV+NN. These reveal that our framework achieves good performance on average,
whatever image regularizations are used.
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Table 3.2: MPSNRs of the HS Image Destriping Results in Case (i)

Image data
Range of Regularization MPSNR

stripe noise function S [208] GS [85] LR [39] TV [57] FC

[−0.2, 0.2]

HTV 28.70 32.00 38.29 37.65 37.35
SSTV 36.09 36.34 38.61 36.69 41.00
ASSTV 36.92 38.92 41.64 37.29 39.29
TNN 21.78 25.48 16.24 28.36 28.36

SSTV+TNN 32.95 34.54 39.04 37.58 37.61
l0-l1HTV 36.66 35.96 41.53 38.52 39.92

[−0.25, 0.25]

HTV 28.51 31.63 37.17 37.21 36.92
SSTV 35.84 36.10 37.75 36.55 40.78
ASSTV 36.79 38.69 40.87 37.18 38.82
TNN 22.75 24.79 24.86 28.25 28.25

SSTV+TNN 32.66 34.26 37.89 37.21 37.25
l0-l1HTV 36.38 35.70 40.87 38.39 39.69

[−0.3, 0.3]

HTV 28.41 31.46 36.37 37.07 36.78
SSTV 35.73 35.96 36.90 36.39 40.55

Salinas ASSTV 36.70 38.62 40.35 37.11 38.76
TNN 22.30 24.06 24.19 28.04 28.04

SSTV+TNN 32.53 34.14 37.13 37.13 37.14
l0-l1HTV 36.25 35.57 40.16 38.24 39.52

[−0.35, 0.35]

HTV 28.34 31.38 36.07 36.84 36.62
SSTV 35.60 35.86 35.86 36.10 40.07
ASSTV 36.52 38.38 39.68 36.95 38.54
TNN 21.83 23.36 23.59 27.36 27.36

SSTV+TNN 32.47 34.17 36.71 37.04 37.14
l0-l1HTV 36.10 35.45 39.31 38.02 39.23

[−0.4, 0.4]

HTV 28.28 31.27 35.02 36.82 36.65
SSTV 35.68 35.96 35.49 36.14 40.16
ASSTV 36.57 38.52 39.68 37.02 39.09
TNN 21.36 22.68 15.51 26.35 26.35

SSTV+TNN 32.44 34.14 36.41 37.13 37.25
l0-l1HTV 36.26 35.53 38.56 38.30 39.60

[−0.2, 0.2]

HTV 27.95 29.32 36.88 36.07 36.18
SSTV 35.33 35.97 38.69 36.17 40.91
ASSTV 30.45 32.68 44.31 35.05 38.99
TNN 24.51 26.26 22.06 35.54 35.54

SSTV+TNN 32.63 35.14 39.94 37.38 38.00
l0-l1HTV 35.51 35.14 41.24 37.77 39.17

[−0.25, 0.25]

HTV 27.62 29.19 36.36 36.06 36.19
SSTV 35.39 36.05 37.86 37.32 41.07
ASSTV 30.37 32.59 44.07 33.76 38.97
TNN 23.9 25.44 31.71 35.74 35.74

SSTV+TNN 32.57 35.29 39.50 37.34 38.02
l0-l1HTV 35.56 35.24 40.36 37.75 39.25

[−0.3, 0.3]

HTV 27.18 29.05 35.72 35.96 36.07
SSTV 35.10 35.79 36.93 35.85 40.84

Moffett Field ASSTV 38.31 39.59 43.53 34.81 38.85
TNN 23.33 24.65 30.66 36.59 36.41

SSTV+TNN 32.33 35.04 38.72 37.28 37.95
l0-l1HTV 35.28 34.93 39.85 37.69 39.02

[−0.35, 0.35]

HTV 27.20 28.96 35.27 35.83 35.93
SSTV 35.10 35.80 36.42 37.01 40.47
ASSTV 30.27 32.46 43.10 33.67 38.78
TNN 22.80 23.94 30.32 36.73 36.75

SSTV+TNN 32.31 34.95 38.36 37.13 37.71
l0-l1HTV 35.34 34.91 39.33 37.65 38.99

[−0.4, 0.4]

HTV 26.98 28.80 34.47 35.57 35.67
SSTV 34.96 35.61 35.57 35.61 40.27
ASSTV 30.29 32.47 42.75 34.83 38.96
TNN 22.27 23.26 20.39 35.91 36.75

SSTV+TNN 32.14 34.74 37.24 37.09 37.66
l0-l1HTV 35.13 34.74 38.24 37.36 38.60
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Table 3.3: MSSIMs of the HS Image Destriping Results in Case (i)

Image data
Range of Regularization MSSIM

stripe noise function S [208] GS [85] LR [39] TV [57] FC

[−0.2, 0.2]

HTV 0.7601 0.8980 0.9835 0.9937 0.9929
SSTV 0.9344 0.9411 0.9628 0.9266 0.9751
ASSTV 0.9656 0.9756 0.9922 0.9646 0.9900
TNN 0.3230 0.5227 0.4913 0.9589 0.9589

SSTV+TNN 0.9285 0.9276 0.9889 0.9735 0.9799
l0-l1HTV 0.9515 0.9429 0.9877 0.9655 0.9837

[−0.25, 0.25]

HTV 0.8309 0.8949 0.9825 0.9930 0.9925
SSTV 0.9340 0.9407 0.9587 0.9264 0.9775
ASSTV 0.9652 0.9753 0.9918 0.9644 0.9791
TNN 0.4181 0.4739 0.9335 0.9480 0.9480

SSTV+TNN 0.9263 0.9260 0.9852 0.9737 0.9798
l0-l1HTV 0.9502 0.9412 0.9873 0.9651 0.9833

[−0.3, 0.3]

HTV 0.8292 0.8929 0.9817 0.9928 0.9924
SSTV 0.9328 0.9393 0.9509 0.9248 0.9764

Salinas ASSTV 0.9648 0.9797 0.9914 0.9640 0.9789
TNN 0.6844 0.7069 0.9224 0.9179 0.9179

SSTV+TNN 0.9252 0.9250 0.9839 0.9736 0.9796
l0-l1HTV 0.9492 0.9402 0.9868 0.9647 0.9831

[−0.35, 0.35]

HTV 0.8281 0.8916 0.9815 0.9925 0.9922
SSTV 0.9301 0.9374 0.9312 0.9216 0.9743
ASSTV 0.9638 0.9736 0.9905 0.9632 0.9781
TNN 0.3349 0.3871 0.9051 0.8355 0.8355

SSTV+TNN 0.9252 0.9257 0.9824 0.9727 0.9794
l0-l1HTV 0.9485 0.9393 0.9858 0.9641 0.9825

[−0.4, 0.4]

HTV 0.8268 0.8898 0.9796 0.9922 0.9931
SSTV 0.9287 0.9360 0.9353 0.9218 0.9726
ASSTV 0.9638 0.9742 0.9950 0.9633 0.9898
TNN 0.3015 0.3521 0.3331 0.7340 0.7339

SSTV+TNN 0.9238 0.9227 0.9865 0.9731 0.9799
l0-l1HTV 0.9488 0.9387 0.9857 0.9648 0.9833

[−0.2, 0.2]

HTV 0.6351 0.7237 0.9199 0.9165 0.9139
SSTV 0.8926 0.8952 0.9285 0.8825 0.9535
ASSTV 0.8418 0.8898 0.9847 0.9222 0.9691
TNN 0.4283 0.5301 0.4766 0.9390 0.9390

SSTV+TNN 0.8682 0.8857 0.9479 0.9465 0.9481
l0-l1HTV 0.8984 0.8834 0.9551 0.9269 0.9429

[−0.25, 0.25]

HTV 0.6216 0.7201 0.9151 0.9165 0.9144
SSTV 0.8960 0.8998 0.9218 0.9092 0.9580
ASSTV 0.8411 0.8886 0.9840 0.9111 0.9703
TNN 0.3846 0.4781 0.7496 0.9342 0.9342

SSTV+TNN 0.8701 0.8909 0.9450 0.9477 0.9498
l0-l1HTV 0.9025 0.8878 0.9526 0.9303 0.9466

[−0.3, 0.3]

HTV 0.6100 0.7135 0.9014 0.9133 0.9107
SSTV 0.8871 0.8919 0.9005 0.8711 0.9548

Moffett Field ASSTV 0.9672 0.9689 0.9819 0.9201 0.9691
TNN 0.3546 0.4308 0.7108 0.8873 0.8786

SSTV+TNN 0.8634 0.8851 0.9342 0.9464 0.9487
l0-l1HTV 0.8936 0.8795 0.9410 0.9243 0.9399

[−0.35, 0.35]

HTV 0.6100 0.7135 0.9014 0.9133 0.9107
SSTV 0.8871 0.8919 0.9005 0.9045 0.9548
ASSTV 0.8399 0.8875 0.9819 0.9087 0.9691
TNN 0.3450 0.4308 0.7108 0.8873 0.8786

SSTV+TNN 0.8634 0.8851 0.9342 0.9464 0.9487
l0-l1HTV 0.8972 0.8801 0.9421 0.9268 0.9420

[−0.4, 0.4]

HTV 0.5959 0.7015 0.8820 0.9039 0.9014
SSTV 0.8816 0.8871 0.8789 0.8634 0.9498
ASSTV 0.8408 0.8878 0.9763 0.9187 0.9691
TNN 0.2867 0.3602 0.3424 0.8848 0.8935

SSTV+TNN 0.8563 0.8801 0.9179 0.9415 0.9425
l0-l1HTV 0.8886 0.8749 0.9254 0.9169 0.9321
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Table 3.4: MPSNRs of the IR Destriping Results in Case (ii)

IR video data
Range of Regularization MPSNR

stripe noise function S [208] GS [85] LR [39] TV [57] FC

[−0.2, 0.2]
ATV 30.15 30.48 34.85 29.97 36.53
ITV 30.15 30.53 34.26 29.98 36.53

ATV+NN 30.18 30.50 34.76 29.98 35.28

[−0.25, 0.25]
ATV 30.02 30.44 32.09 29.98 36.82
ITV 30.02 30.44 33.45 29.99 36.87

ATV+NN 30.06 30.44 33.87 29.99 35.36

[−0.3, 0.3]
ATV 31.89 32.36 38.67 31.76 41.94

Birds1 ITV 31.90 32.37 37.85 31.82 42.13
ATV+NN 31.90 32.37 34.96 31.91 41.73

[−0.35, 0.35]
ATV 31.78 32.23 35.84 31.63 40.70
ITV 31.78 32.37 34.88 31.68 40.54

ATV+NN 31.82 32.39 35.69 31.98 40.69

[−0.4, 0.4]
ATV 31.43 31.91 34.58 31.19 39.10
ITV 31.43 31.91 34.99 31.27 39.38

ATV+NN 31.37 31.85 34.48 31.36 38.98

Table 3.5: MSSIMs of the IR Destriping Results in Case (ii)

IR video data
Range of Regularization MSSIM

stripe noise function S [208] GS [85] LR [39] TV [57] FC

[−0.2, 0.2]
ATV 0.9532 0.9540 0.9955 0.9400 0.9956
ITV 0.9532 0.9524 0.9935 0.9414 0.9957

ATV+NN 0.9531 0.9530 0.9951 0.9486 0.9951

[−0.25, 0.25]
ATV 0.9526 0.9540 0.9771 0.9399 0.9956
ITV 0.9525 0.9540 0.9936 0.9410 0.9959

ATV+NN 0.9528 0.9538 0.9950 0.9485 0.9951

[−0.3, 0.3]
ATV 0.9541 0.9552 0.9945 0.9420 0.9953

Birds1 ITV 0.9539 0.9551 0.9939 0.9430 0.9954
ATV+NN 0.9539 0.9551 0.9775 0.9504 0.9953

[−0.35, 0.35]
ATV 0.9539 0.9548 0.9914 0.9422 0.9955
ITV 0.9539 0.9553 0.9844 0.9424 0.9958

ATV+NN 0.9540 0.9554 0.9909 0.9503 0.9956

[−0.4, 0.4]
ATV 0.9537 0.9541 0.9899 0.9378 0.9954
ITV 0.9537 0.9541 0.9840 0.9393 0.9956

ATV+NN 0.9536 0.9540 0.9900 0.9467 0.9953
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Table 3.6: MPSNRs of the HS Image Destriping Results in Case (iii)

HSI
Range of Regularization MPSNR

stripe noise function S [208] GS [85] LR [39] TV [57] FC

[−0.2, 0.2]

HTV 29.16 29.30 31.05 31.08 31.08
SSTV 33.55 33.91 34.60 34.89 34.49
ASSTV 28.93 28.98 29.11 28.83 28.96
TNN 24.10 24.35 15.83 26.52 26.52

SSTV+TNN 32.38 32.95 34.63 34.64 33.84
l0-l1HTV 35.58 35.90 37.10 37.09 37.17

[−0.25, 0.25]

HTV 28.74 29.10 30.68 30.98 30.98
SSTV 33.01 33.59 34.16 34.39 34.39
ASSTV 28.86 28.92 29.03 28.79 28.94
TNN 23.34 23.89 23.67 26.40 26.40

SSTV+TNN 31.63 32.49 34.14 34.39 33.51
l0-l1HTV 35.12 35.28 36.71 36.91 36.99

[−0.3, 0.3]

HTV 28.35 28.97 30.36 30.94 30.94
SSTV 32.63 33.39 33.73 36.14 34.34

Salinas ASSTV 28.80 28.89 28.98 28.77 28.92
TNN 22.43 23.78 23.15 26.30 28.30

SSTV+TNN 31.14 32.24 33.79 34.29 33.41
l0-l1HTV 34.80 34.85 36.35 36.84 36.92

[−0.35, 0.35]

HTV 28.03 28.86 30.17 30.90 30.90
SSTV 32.30 33.17 33.22 34.20 34.20
ASSTV 28.74 28.85 28.91 28.75 28.91
TNN 21.50 23.69 22.69 26.10 26.10

SSTV+TNN 30.84 32.10 33.58 34.22 33.37
l0-l1HTV 34.49 34.50 36.00 36.72 36.80

[−0.4, 0.4]

HTV 27.69 28.73 30.12 30.88 30.88
SSTV 32.17 33.17 32.99 34.60 34.31
ASSTV 28.70 28.84 28.86 28.73 28.90
TNN 21.55 23.47 15.26 25.54 25.54

SSTV+TNN 30.58 31.99 33.25 34.22 33.38
l0-l1HTV 34.39 34.31 35.58 36.86 36.94

[−0.2, 0.2]

HTV 27.44 28.04 29.01 29.10 29.15
SSTV 33.51 33.90 34.35 33.78 34.35
ASSTV 27.08 28.00 28.02 28.00 28.18
TNN 23.91 25.50 21.41 31.29 31.29

SSTV+TNN 32.40 33.19 34.78 33.85 33.92
l0-l1HTV 33.98 34.60 35.90 35.76 35.92

[−0.25, 0.25]

HTV 27.22 27.69 28.82 29.19 29.14
SSTV 33.16 33.68 34.05 34.37 34.37
ASSTV 27.05 27.96 27.98 27.97 28.17
TNN 23.85 25.42 28.70 31.23 31.23

SSTV+TNN 32.03 32.94 34.61 33.79 33.90
l0-l1HTV 33.74 34.20 35.66 35.74 35.91

[−0.3, 0.3]

HTV 26.96 27.38 28.56 29.05 29.12
SSTV 32.71 33.36 33.55 33.52 34.27

Moffett Field ASSTV 25.98 26.15 26.04 27.94 26.14
TNN 23.77 25.36 28.18 30.97 30.97

SSTV+TNN 31.59 32.57 34.23 33.65 33.79
l0-l1HTV 33.39 33.74 35.35 35.63 35.80

[−0.35, 0.35]

HTV 26.73 27.11 28.34 29.15 29.11
SSTV 32.60 33.39 33.30 34.32 34.31
ASSTV 27.01 27.92 27.93 27.94 28.16
TNN 23.75 25.39 27.97 31.38 31.38

SSTV+TNN 31.34 32.43 34.18 33.67 33.79
l0-l1HTV 33.30 33.62 35.14 35.70 35.87

[−0.4, 0.4]

HTV 26.40 26.79 27.94 28.93 29.05
SSTV 32.31 33.14 32.85 33.43 34.19
ASSTV 26.98 27.90 27.89 27.93 28.16
TNN 23.72 25.26 20.13 31.41 31.41

SSTV+TNN 30.93 32.09 33.65 33.52 33.63
l0-l1HTV 33.01 33.19 34.64 35.53 35.71
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Table 3.7: MSSIMs of the HS Image Destriping Results in Case (iii)

HSI
Range of Regularization MSSIM

stripe noise function S [208] GS [85] LR [39] TV [57] FC

[−0.2, 0.2]

HTV 0.8371 0.8371 0.8717 0.8698 0.8698
SSTV 0.8643 0.8770 0.8910 0.8772 0.8913
ASSTV 0.6669 0.6268 0.6473 0.6613 0.6648
TNN 0.5456 0.4218 0.4802 0.8662 0.8662

SSTV+TNN 0.8893 0.9153 0.9382 0.9209 0.9097
l0-l1HTV 0.9384 0.9401 0.9523 0.9480 0.9483

[−0.25, 0.25]

HTV 0.8317 0.8354 0.8702 0.8696 0.8696
SSTV 0.8575 0.8757 0.8882 0.8917 0.8917
ASSTV 0.6643 0.6260 0.6471 0.6600 0.6638
TNN 0.4505 0.7146 0.8511 0.8549 0.8549

SSTV+TNN 0.8738 0.9103 0.9370 0.9194 0.9072
l0-l1HTV 0.9360 0.9357 0.9518 0.9474 0.9476

[−0.3, 0.3]

HTV 0.8247 0.8338 0.8688 0.8695 0.8695
SSTV 0.8495 0.8727 0.8817 0.9090 0.8910

Salinas ASSTV 0.6624 0.6256 0.6468 0.6591 0.6632
TNN 0.3678 0.7004 0.8421 0.8311 0.8311

SSTV+TNN 0.8611 0.9067 0.9362 0.9185 0.9058
l0-l1HTV 0.9337 0.9318 0.9513 0.9472 0.9474

[−0.35, 0.35]

HTV 0.8166 0.8323 0.8680 0.8693 0.8693
SSTV 0.8392 0.8668 0.8649 0.8881 0.888
ASSTV 0.6608 0.6251 0.6463 0.6586 0.6628
TNN 0.3066 0.6758 0.8276 0.7774 0.7774

SSTV+TNN 0.8527 0.9047 0.9349 0.9179 0.9052
l0-l1HTV 0.9306 0.9281 0.9501 0.9468 0.9471

[−0.4, 0.4]

HTV 0.8098 0.8309 0.8599 0.8688 0.8688
SSTV 0.8370 0.8671 0.8686 0.8730 0.8898
ASSTV 0.6598 0.6251 0.6460 0.6581 0.6623
TNN 0.6607 0.6198 0.3181 0.6978 0.6978

SSTV+TNN 0.8462 0.9029 0.9347 0.9173 0.9046
l0-l1HTV 0.9304 0.9266 0.9500 0.9471 0.9474

[−0.2, 0.2]

HTV 0.6387 0.6467 0.7043 0.7153 0.7275
SSTV 0.8421 0.8466 0.8574 0.8317 0.8548
ASSTV 0.6118 0.6327 0.6353 0.6234 0.6290
TNN 0.5512 0.6240 0.4698 0.8581 0.8581

SSTV+TNN 0.8413 0.8406 0.8933 0.8783 0.8698
l0-l1HTV 0.8778 0.8812 0.9060 0.9008 0.9022

[−0.25, 0.25]

HTV 0.6269 0.6294 0.6977 0.7291 0.7278
SSTV 0.8339 0.8436 0.8519 0.8565 0.8564
ASSTV 0.6112 0.6320 0.6339 0.6222 0.6284
TNN 0.5477 0.6203 0.7184 0.8506 0.8506

SSTV+TNN 0.8312 0.8364 0.8910 0.8799 0.8715
l0-l1HTV 0.8738 0.8747 0.9039 0.9023 0.9037

[−0.3, 0.3]

HTV 0.6092 0.6125 0.6834 0.7120 0.7256
SSTV 0.8175 0.8317 0.8337 0.8241 0.8497

Moffett Field ASSTV 0.4805 0.4871 0.4838 0.6195 0.4870
TNN 0.5427 0.6138 0.6822 0.8387 0.8387

SSTV+TNN 0.8138 0.8235 0.8820 0.8754 0.8669
l0-l1HTV 0.8615 0.8600 0.8926 0.8958 0.8972

[−0.35, 0.35]

HTV 0.5994 0.6024 0.6790 0.7279 0.7271
SSTV 0.8170 0.8348 0.8309 0.8548 0.8542
ASSTV 0.6087 0.6303 0.6319 0.6207 0.6277
TNN 0.5379 0.6006 0.6643 0.8403 0.8403

SSTV+TNN 0.8629 0.8605 0.8932 0.9012 0.9025
l0-l1HTV 0.8629 0.8605 0.8932 0.9012 0.9025

[−0.4, 0.4]

HTV 0.5807 0.5871 0.6603 0.7071 0.7210
SSTV 0.8069 0.8263 0.8150 0.8222 0.8472
ASSTV 0.6073 0.6280 0.6283 0.6184 0.6257
TNN 0.5359 0.5713 0.3164 0.8293 0.8293

SSTV+TNN 0.7939 0.8127 0.8670 0.8710 0.8630
l0-l1HTV 0.8504 0.8472 0.8777 0.8926 0.8939
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(b) Observation (c) S [208] (d) GS [85]
(35.10, 0.8871) (35.79, 0.8919)
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(e) LR [39] (f) TV [57] (g) FC
(36.93, 0.9005) (35.85, 0.8711) (40.84, 0.9548)

Figure 3.6: Moffett field destriping results in Case (i) with SSTV (R: 126, G: 95, B: 74).
The MPSNR and MSSIM of our FC are highlighted in bold.
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(b) Observation (c) S [208] (d) GS [85]
(31.89, 0.9541) (32.36, 0.9552)
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(e) LR [39] (f) TV [57] (g) FC
(38.67, 0.9945) (31.76, 0.9420) (41.94, 0.9953)

Figure 3.7: Birds1 destriping results in Case (ii) with ATV. The MPSNR and MSSIM of
our FC are highlighted in bold.
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(b) Observation (c) S [208] (d) GS [85]
(22.43, 0.3678) (23.78, 0.7004) (23.15, 0.8421)
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(e) LR [39] (f) TV [57] (g) FC
(23.15, 0.8421) (28.30, 0.8311) (28.30, 0.8311)

Figure 3.8: Salinas destriping results in Case (iii) with TNN (R: 140, G: 101, B: 30). The
MPSNR and MSSIM of our FC are highlighted in bold.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Band-wise or frame-wise PSNRs and SSIMs. Note that these are not MPSNRs
and MSSIMs. (a) and (b) are the PSNRs and SSIMs of the Moffett field destriping results
in Case (i) using SSTV. (c) and (d) are the PSNRs and SSIMs of the Birds1 destriping
results in Case (ii) using ATV. (e) and (f) are the PSNRs and SSIMs of the Salinas
destriping results in Case (iii) using TNN.
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Figure 3.10: The means of MPSNRs and MSSIMs in each noise case.

Figure 3.11: The means of MPSNRs and MSSIMs in each stripe noise intensity range
[−η, η].
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(a) (b)

(c) (d)

Figure 3.12: The means of MPSNRs and MSSIMs in each image regularization. (a): The
means of MPSNRs in the HS image experiments. (b): The means of MSSIMs in the HS
image experiments. (c): The means of MPSNRs in the IR video experiments. (d): The
means of MSSIMs in the IR video experiments.
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(a) (b)

Figure 3.13: HS image and IR video data used for experiments in real noise cases. (a)
Suwannee (an HS image depicted by a false-color image of R: 357, G: 275, B: 120). (b)
Birds2 (an IR video).

3.4.4 Experiments in Real Noise Cases

In the real noise-case experiments, the parameter λ (Tab. 3.1) for each method was deter-
mined manually to balance the tradeoff between the visual quality (e.g., over-smoothed or
not) and destriping performance (e.g., stripe noise is sufficiently removed or not). For the
data fidelity parameter ε, we adjusted it to an appropriate value after empirically estimat-
ing the intensity of the noise in the real data. Specifically, it was set to 200 for Suwannee

and 0 for Bats2. The stopping criterion of Algorithm 1 was set as ∥u(t+1)−u(t)∥2
∥u(t)∥2

< 1.0×10−4.

We show the Suwannee destriping results for a real noise case in Figs. 3.14 and 3.15.
The destriping result by S-HTV (Fig. 3.14 (a1)) includes residual stripe noise. The results
by S-SSTV (Fig. 3.14 (a2)), GS-SSTV (Fig. 3.14 (b2)), S-ASSTV (Fig. 3.14 (a3)), GS-
ASSTV (Fig. 3.15 (b3)), S-TNN (Fig. 3.15 (a4)), GS-TNN (Fig. 3.15 (b4)), and S-l0-l1HTV
(Fig. 3.15 (a6)) have brighter areas than the original image (Fig. 3.13 (a)), and some of the
land shapes in the magnified areas were removed as the stripe noise components. These
suggest that S and GS are less capable of capturing the vertical continuity of stripe noise.
LR-ASSTV (Fig. 3.14 (c3)) recovered the narrow river that lies along with the vertical
direction in the magnified areas. On the other hand, LR-SSTV (Fig. 3.14 (c2)) and LR-
TNN (Fig. 3.15 (c4)) removed part of the global structure in the image as stripe noise. This
may be due to the fact that LR allows for changes in the overall luminance level so that it
does not prevent spectral oversmoothing caused by the image regularizations. In the results
by TV-SSTV (Fig. 3.14 (d2)), TV-ASSTV (Fig. 3.14 (d3)), TV-SSTV+TNN (Fig. 3.15
(d5)), and TV-l0-l1HTV (Fig. 3.15 (d6)), the land shape was also partially removed as
stripe noise. For example, TV-ASSTV (Fig. 3.14 (d3)) completely removed the narrow
river in the magnified area. This is because there is a conflict between SSTV, ASSTV,
SSTV+TNN, and l0-l1HTV, used as image regularizations, and TV, used as a stripe noise
characterization. Compared with these existing stripe noise characterizations, for FC-
HTV, FC-SSTV, FC-TNN, FC-l0-l1HTV, its strong ability of stripe noise characterization
allows us to achieve desirable destriping. However, our results do not satisfy the flatness
constraint and slightly include land shapes in the stripe noise components only for FC-
ASSTV and FC-SSTV+TNN (Figs. 3.14 (e3) and 3.15 (e5)). This indicates that FC-
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ASSTV

E
st
im

a
te
d
H
S
im

a
g
e

S
tr
ip
e
n
o
is
e

(a3) S [208] (b3) GS [85] (c3) LR [39] (d3) TV [57] (e3) FC

Figure 3.14: HSI destriping results in real noise cases (R: 357, G: 275, B: 120). The
top rows and bottom rows are the estimated HS images and the estimated stripe noise,
respectively.

ASSTV and FC-SSTV+TNN need more iterations to preclude the land shapes from their
stripe noise components.

Figure 3.16 shows the destriping results of the IR video Bats2. S and TV removed bats
(moving objects) as stripe noise. This is because the stripe noise components (Figs. 3.16
(a1), 3.16 (a2), 3.16 (a3), 3.16 (d1), 3.16 (d2), and 3.16 (d3)) have sparse or vertical
smoothness properties. GS and LR performed better than S and TV, but some of the
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Figure 3.15: HSI destriping results in real noise cases (R: 357, G: 275, B: 120) using TNN,
SSTV+TNN, and l0-l1HTV. The top rows and bottom rows are the estimated HS images
and the estimated stripe noise, respectively.

bats were regarded as stripe noise components (see Figs. 3.16 (b1), 3.16 (b2), 3.16 (b3),
3.16 (c1), 3.16 (c2), and 3.16 (c3)). In contrast to these stripe noise characterizations, our
FC, when combined with any of the image regularizations, removed only the stripe noise
while maintaining the bats (see Figs. 3.16 (e1), 3.16 (e2), and 3.16 (e3)).
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Figure 3.16: IR video destriping results in real noise cases.

3.4.5 Comparison With A Deep Learning-Based Method

We compare our framework with a deep learning-based method [166] 1, where we adjust
the parameter so as to achieve the best MPSNR. As observed images, the Moffett Field
and Salinas degraded by stripe noise with [−0.3, 0.3] and Gaussian noise with σ = 0.05
are used. Figure 3.17 shows the destriping results, which validate the effectiveness of
our framework compared to a deep learning-based method. The method in [166] did not

1The code is available at https://github.com/acecreamu/deep-hs-prior.
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(a) (b) (c)
(MPSNR, MSSIM) (20.03, 0.5271) (35.80, 0.8972)

(d) (e) (f)
(MPSNR, MSSIM) (23.71, 0.8059) (36.92, 0.9474)

Figure 3.17: Comparison with a deep learning-based method [166]. (a) and (d) are ground-
truth images of theMoffett Field and Salinas, respectively. (b) and (e) are denoising results
of [166]. (c) and (f) are denoising results of our framework (FC-l0-l1HTV).

recover edges and objects (Figs. 3.17 (b) and (e)), leading to worse MPSNRs and MSSIMs.
This is due to the limitation of deep learning-based methods in capturing textures and
singular features, as also mentioned in [92,115].

3.4.6 Discussion

From the above experiments, we summarize the advantages and limitations of our frame-
work as follows:

• FC accurately captures various intensities of stripe noise for any target images with-
out image components.

• In particular, FC eliminates high intensities of stripe noise.

• Our framework consistently removes stripe noise, whatever image regularizations are
combined.

• When using some image regularization such as ASSTV and SSTV+TNN, our frame-
work requires many iterations to converge.

3.5 Concluding Remarks

In this paper, we have proposed a general destriping framework for remote sensing images.
Specifically, we formulated the destriping as a convex optimization problem equipped with
the flatness constraint. Thanks to the strong characterization of stripe noise, our frame-
work is compatible with various regularization functions and achieves effective destriping.
Then, we develop a solver for the problem based on DP-PDS, which allows us to avoid

43



stepsize adjustment. Through destriping experiments using HS image and IR video data,
we found that our framework is advantageous on average compared to existing meth-
ods, whatever image regularizations are used. For future work, our framework needs an
extension to consider the various degradations such as the spectral variability and the
effectiveness demonstration in remote sensing image applications such as classification,
unmixing, compressed sensing reconstruction, and target recognition.
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Chapter 4

Problem Structure-Based Stepsize
Design via Variable-Wise Diagonal
Preconditioning for Primal-Dual
Splitting

4.1 Introduction

Many signal estimation and processing problems, such as denoising, interpolation, decom-
position, and reconstruction, have been resolved by casting them as convex optimization
problems [48,146] of the form in (2.28). Here, we write down it again:

min
x1,...,xN ,
y1,...,yM

N∑
i=1

fi(xi) +
M∑
j=1

gj (yj) s.t.



y1 =

N∑
i=1

L1,i(xi),

...,

yM =
N∑
i=1

LM,i(xi),

(4.1)

where fi : Rni → (−∞,+∞] and gj : Rmj → (−∞,+∞] are proximable proper lower-
semicontinuous convex functions, and Lj,i : Rni → Rmj is a linear operator (∀i = 1, . . . , N
and ∀j = 1, . . . ,M). The variables x1, . . . ,xN represent estimated signals or components,
and y1, . . . ,yM are auxiliary variables for splitting.

As a method for solving Prob. (4.1), a primal-dual splitting method (PDS) [32] has
attracted attention [35, 52, 70, 73, 97, 101, 127, 137, 140] due to its simple implementation
without operator inversions.1 To improve the convergence speed of PDS, a preconditioned
PDS (P-PDS) has been studied [118, 148, 189, 202]. P-PDS is a generalization of the
standard PDS, where the scalar-valued stepsizes of PDS are replaced by (positive definite)
matrix-valued preconditioners. The theoretical convergence of P-PDS is established in
a primal-dual space equipped with a skewed metric, which is determined by the linear
operators involved in the optimization problem and the preconditioners used (see [51,141,
148] for details). Preconditioning can be viewed as the selection of an appropriate metric
for optimization algorithms and is a crucial long-standing issue not only in P-PDS but
also in various proximal algorithms [14,50].

The appropriate preconditioners that accelerate the convergence of P-PDS vary greatly
depending on the structure of the target optimization problem (see Section 3.4 for detailed

1This algorithm has been generalized by Condat [51] and Vu [182], where smooth convex functions are
optimized by using their Lipschitzian gradients.
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examples). To automatically determine such preconditioners, the authors in [148] have
proposed a diagonal-preconditioner design method. The elements of the diagonal precon-
ditioners consist of the row/column absolute sum of the elements of the explicit matrices
representing the linear operators Lj,i in (4.1), and thus the resulting diagonal elements of
the preconditioners can be different for each element in one variable.

Although this design method determines reasonable diagonal preconditioners, there
exist two limitations that are considerable in real-world applications. First, the method is
difficult to apply in the case where (some of) the linear operators Lj,i in Prob. (4.1) are not
implemented as explicit matrices because it requires access to the entire elements of the
matrices to construct the preconditioners. We often encounter such situations, especially in
imaging applications, where the linear operators are implemented not as explicit matrices
but as procedures that compute forward and adjoint operations in an efficient manner, e.g.,
difference operators [22, 31] and frame transforms [24, 98, 145]. Second, some proximable
functions fi and gj are not completely separable for each element of the input variables
xi and yj , e.g., mixed norms and the indicator functions of norm balls [45]. For such
functions, the element-wise preconditioning might make the functions non-proximable.

To address the above issues, we propose an Operator-norm-based design method of
Variable-wise Diagonal Preconditioning (OVDP). Specifically, we introduce a new general
form of P-PDS preconditioners, and then propose specific preconditioners based on this
general form. We also prove that the sequence generated by P-PDS with OVDP converges
to an optimal solution of Prob. (4.1).

Our method has two features preferred in many real-world applications. First, our
preconditioners can be computed from (upper bounds of) the operator norms of the linear
operators Lj,i, meaning that our method does not need their explicit matrix represen-
tations. This is because (upper bounds of) the operator norms are often known or can
be estimated without matrix implementation for typical linear operators used in signal
processing applications, including the ones mentioned above. Second, the elements of the
diagonal preconditioners obtained by our method take the same value for all the elements
of each variable, i.e., variable-wise preconditioning. This maintains the proximablity of
the functions fi and gj in Prob. (4.1).

Comprehensive experiments are conducted by applying our method to three signal es-
timation problems: mixed noise removal of hyperspectral images, hyperspectral unmixing,
and graph signal recovery. By discussing the convergence in these three optimization prob-
lems, which have very different structures, we demonstrate the effectiveness and usefulness
of our method.

This chapter is organized as follows. Section 4.2 gives reviews of existing preconditioner
design methods. In Section 4.3, we present OVDP and prove the convergence theorem
of P-PDS with OVDP. Their applications to mixed noise removal hyperspectral images,
hyperspectral unmixing, and graph signal recovery are given in Section 4.4. Finally, we
conclude the chapter in Section 4.5.

4.2 Existing Preconditioner Design Methods

4.2.1 Scalar Preconditioning (SP)

The standard PDS [32] can be recovered by setting the preconditioners to be scalar ma-
trices, i.e.,

Γ1 = γ1I,Γ2 = γ2I. (4.2)

The parameters γ1 and γ2 are positive scalars that satisfy (2.32), that is,

γ1γ2 ∥L∥2op < 1. (4.3)
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In practice, the parameter γ2 is often set as

γ2 =
1

µ2
SPγ1

, (4.4)

where µSP is an upper bound of ∥L∥op. Since ∥L∥op < µSP , the parameters γ1 and γ2
in (4.4) satisfy the inequality in (4.3). We note that the parameter γ1 needs to be manually
adjusted for accelerating the convergence of P-PDS.

4.2.2 Row/Column Absolute Sum-Based Element-Wise Precondition-
ing (ASP)

Let Lj,i be the representation matrix of Lj,i. The authors of [148] present a design method
for constructing the preconditioners Γ1 = diag(Γ1,1, . . . ,Γ1,N ) and Γ2 = diag(Γ2,1, . . . ,Γ2,M )
as follows:

Γ1,i =diag

(
1

σi,1
, . . . ,

1

σi,ni

)
, (∀i = 1, . . . , N),

Γ2,j =diag

(
1

τj,1
, . . . ,

1

τj,mj

)
, (∀j = 1, . . . ,M), (4.5)

where

σi,l =
M∑
j=1

mj∑
k=1

|[Lj,i]k,l|, (∀l = 1, . . . , ni),

τj,l =

N∑
i=1

ni∑
k=1

|[Lj,i]l,k|, (∀l = 1, . . . ,mj). (4.6)

Each Γ1,i (or Γ2,j) is a diagonal matrix consisting of the row/column absolute sums of the
elements of Lj,i (see [148, Lemma 2]). This means that the diagonal elements of one Γ1,i

(and Γ2,j) may take different values, i.e., the diagonal elements of the preconditioners will
be different for each element for one variable in (4.1).

4.2.3 Positive-Definite Preconditioning (PDP)

The authors in [118] proposed to determine the preconditioners as

Γ1 = τI,Γ2 =
1

τ
(LL⊤ + θI)−1, (4.7)

where L is the representation matrix of L and τ > 0 is a parameter. Since the precon-
ditioners in (4.7) are not block-diagonal matrices in general, P-PDS with them results in
the procedures given in (2.30).

If the number of dual variables is two (M = 2), the preconditioners are set as

Γ1 =
τ

2
I, Γ2 =

[
Γ2,1 O
O Γ2,2

]
, (4.8)

where

Γ2,j =
1

τ

(
N∑
i=1

Lj,iL
⊤
j,i + θI

)−1

, (∀j = 1, 2). (4.9)

Since Γ1 and Γ2 in (4.8) are block-diagonal matrices, P-PDS with them can solve the
Prob. (4.1) by the procedures given in (2.31).

We note that the parameters τ and θ affect the convergence speed of P-PDS. Therefore,
the parameters τ and θ need to be manually adjusted.
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4.3 Proposed Operator Norm-Based Variable-Wise Diago-
nal Preconditioning (OVDP)

This section is devoted to the establishment of a novel diagonal preconditioning method,
OVDP, for P-PDS. First, we introduce a general form of our preconditioners as follows:
for all i = 1, . . . , N and j = 1, . . . ,M

Γ1,i = Γ1,iI =
1∑M

j=1 µ
2−β
j,i

I,

Γ2,j = Γ2,jI =
1∑N

i=1 µ
β
j,i

I, (β ∈ [0, 2]) (4.10)

where each µj,i is an upper bound of the operator norm of each Lj,i, i.e.,

µj,i ∈ [∥Lj,i∥op ,∞). (4.11)

By changing the choice of β, OVDP gives three design ways.

• If we choose β = 0, the preconditioners by OVDP (OVDP1) become

Γ1,i =
1∑M

j=1 µ
2
j,i

I, Γ2,j =
1

N
I. (4.12)

• If we choose β = 1, the preconditioners by OVDP (OVDP2) become

Γ1,i =
1∑M

j=1 µj,i

I, Γ2,j =
1∑N

i=1 µj,i

I. (4.13)

• If we choose β = 2, the preconditioners by OVDP (OVDP3) become

Γ1,i =
1

M
I, Γ2,j =

1∑N
i=1 µ

2
j,i

I, (4.14)

Remark 4.3.1 (Two Features of Our Method).

• Our preconditioners can be calculated by only using (upper bounds of) the operator
norms of the linear operators Lj,i. This implies that OVDP does not require direct
access to the elements of the explicit matrices representing Lj,i as long as some µi,j

are available.

• In addition, the diagonal elements of one Γ1,i take the same value (Γ2,j as well),
i.e., our method is a variable-wise preconditioning method, which maintains the
proximability of the functions in Prob. (4.1).

Before showing the convergence theorem of P-PDS with OVDP defined in (4.10), we
give the following lemma on matrix decomposition.

Lemma 4.3.1. An arbitrary matrix A ∈ Rm×n can be decomposed into matrices B and
C (i.e., A = BC) that satisfy for any β ∈ [0, 1]

∥B∥op = ∥A∥1−β
op (= σ1(A)1−β),

∥C∥op = ∥A∥βop (= σ1(A)β). (4.15)

The proof is in Appendix.
Then, the following theorem guarantees the convergence of P-PDS with OVDP.
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Algorithm 2 P-PDS with OVDP for solving (4.1)

Input: x
(0)
1 , . . . ,x

(0)
N ,y

(0)
1 , . . . ,y

(0)
M

Output: x
(t)
1 , . . . ,x

(t)
N ,y

(t)
1 , . . . ,y

(t)
M

1: Initialize t = 0;
2: Set Γ1,1, . . . ,Γ1,N ,Γ2,1, . . . ,Γ2,M as in (4.10);
3: while A stopping criterion is not satisfied do
4: for i = 1, · · · , N do

5: x′
i ←

∑M
j=1 L

∗
j,i(y

(t)
j );

6: x
(t+1)
i ← proxΓ−1

1,i ,fi
(x

(t)
i − Γ1,ix

′
i);

7: end for
8: for j = 1, · · · ,M do

9: y′
j ←

∑N
i=1 Lj,i(2x

(t+1)
i − x

(t)
i );

10: y
(t+1)
j ← proxΓ−1

2,j ,g
∗
j
(y

(t)
j + Γ2,jy

′
j);

11: end for
12: t← t+ 1;
13: end while

Theorem 4.3.2. If the preconditioners are set as (4.10), then the following inequality
holds: ∥∥∥∥Γ 1

2
2 ◦ L ◦ Γ

1
2
1

∥∥∥∥2
op

≤ 1. (4.16)

Proof. Since Γ1 and Γ2 are positive-definite and diagonal, their powers of one-half are

Γ
1
2
1 = diag

(
Γ

1
2
1,1, . . . ,Γ

1
2
1,N

)
,

Γ
1
2
2 = diag

(
Γ

1
2
2,1 . . . ,Γ

1
2
2,M

)
. (4.17)

By matrix multiplication and Eq. (4.17), we have

Γ
1
2
2 ◦ L ◦ Γ

1
2
1 =

[
Γ

1
2
2,j ◦ Lj,i ◦ Γ

1
2
1,i

]
1≤i≤N,1≤j≤M

. (4.18)

For all x = [x⊤
1 , . . . ,x

⊤
N ]⊤ ∈ Rñ, the triangle inequality yields∥∥∥∥Γ 1

2
2 ◦ L ◦ Γ

1
2
1 x

∥∥∥∥2
2

≤
M∑
j=1

N∑
i=1

∥∥∥∥Γ 1
2
2,j ◦ Lj,i ◦ Γ

1
2
1,ixi

∥∥∥∥2
2

. (4.19)

Since Lj,i (i = 1, . . . , N, j = 1, . . . ,M) can be represented by matrices, from Lemma 4.3.1,

there exist linear operators L
β
2
j,i and L

1−β
2

j,i that satisfy for any β ∈ [0, 2],

Lj,i = L
1−β

2
j,i ◦ L

β
2
j,i,

∥L
1−β

2
j,i ∥op = ∥Lj,i∥

1−β
2

op ,

∥L
β
2
j,i∥op = ∥Lj,i∥

β
2
op . (4.20)
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Thus, it follows, from Eq. (4.20) and the definition and the submultiplicity of operator
norms, that

Eq. (4.19) =
M∑
j=1

N∑
i=1

∥∥∥∥∥Γ 1
2
2,j ◦ L

1−β
2

j,i ◦ L
β
2
j,i ◦ Γ

1
2
1,ixi

∥∥∥∥∥
2

2

≤
M∑
j=1

Γ2,j

N∑
i=1

Γ1,i ∥Lj,i∥2−β
op ∥Lj,i∥βop ∥xi∥22 . (4.21)

By applying the inequality
∑M

j=1 x
2
j ≤ (

∑M
j=1 xj)

2 for any positive real numbers x1, . . . , xM
and the Cauchy-Schwarz inequality to the right hand side of Eq. (4.21), we obtain

Eq. (4.21) ≤
M∑
j=1

Γ2,j

(
N∑
i=1

√
Γ1,i ∥Lj,i∥

1−β
2

op ∥Lj,i∥
β
2
op ∥xi∥2

)2

≤
M∑
j=1

Γ2,j

(
N∑
i=1

∥Lj,i∥βop

)(
N∑
i=1

Γ1,i ∥Lj,i∥2−β
op ∥xi∥22

)
. (4.22)

Then, from the definitions of Γ2,j and Γ1,i in (4.10), we have Γ2,j
∑N

i=1 ∥Lj,i∥βop ≤ 1 for

any j = 1, . . . ,M and Γ1,i
∑M

j=1 ∥Lj,i∥2−β
op ≤ 1 for any i = 1, . . . , N , which yields

Eq. (4.22) ≤
M∑
j=1

N∑
i=1

Γ1,i ∥Lj,i∥2−β
op ∥xi∥22

=

N∑
i=1

Γ1,i

 M∑
j=1

∥Lj,i∥2−β
op

 ∥xi∥22

≤
N∑
i=1

∥xi∥22 = ∥x∥
2
2 . (4.23)

Therefore, we finally obtain∥∥∥∥Γ 1
2
2 ◦ L ◦ Γ

1
2
1

∥∥∥∥2
op

= sup
x ̸=0

∥Γ
1
2
2 ◦ L ◦ Γ

1
2
1 x∥22

∥x∥22
≤ ∥x∥

2
2

∥x∥22
= 1.

□

Remark 4.3.3. To guarantee the convergence of P-PDS, inequality (2.32) has to be strict,
but inequality (4.16) is not. However, we do not observe any convergence issue of P-PDS
with our preconditioners in the experiments (see Section IV). This is because, our method
separates L variable by variable and sums up the upper bounds of the operator norms,

resulting in setting preconditioners such that ∥Γ
1
2
2 ◦L ◦Γ

1
2
1 ∥2op < 1 in almost all real-world

applications.

Theorem 4.3.2 asserts that our preconditioners defined in (4.12), (4.13), and (4.14)
satisfy the convergence condition of P-PDS in (2.32). Therefore, P-PDS with OVDP
generates sequences that converge to an optimal solution of Prob. (4.1).

Here, each µj,i is determined in the following manner.

• If the operator norm ∥Lj,i∥op is known, we set µj,i to ∥Lj,i∥op.

• If ∥Lj,i∥op is unknown, we set µj,i to some known or computable upper bound of
∥Lj,i∥op.
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Table 4.1: Features of Existing Methods and Our Method (Highlighted in Bold).

Methods
Parameters requiring Maintaining Avoiding access to
manual adjustment proximability representation matrices

SP [32] γ1 ✓ ✓
ASP [148] None. × ×
PDP [118] τ × ✓
OVDP1 None. ✓ ✓
OVDP2 None. ✓ ✓
OVDP3 None. ✓ ✓

Table 4.2: Stopping Criteria.

Applications Stopping criteria

Mixed noise removal RMSE < 0.005
Unmixing RMSE < 0.01

Graph signal recovery RMSE < 0.001

(a1) Iteration vs RMSE (b1) Iteration vs Residual (c1) Iteration vs MPSNR

(a2) Computational time vs RMSE (b2) Computational time vs Residual (c2) Computational time vs MPSNR

Figure 4.1: Convergence profiles of the mixed noise removal experiments. (a): Itera-
tions/computational time versus RMSE. (b): Iterations/computational time versus Resid-
ual. (c): Iterations/computational time versus MPSNR. Note that applying P-PDS with
ASP (green dotted line) to Prob. (4.27) is not practical in terms of implementation (the
linear operators Dv, Dh, and Db are not usually implemented as explicit matrices).

• If the linear operator is the composition of two linear operators A andB whose operator
norms (or their upper bounds) are known (∥A∥op ≤ αA, ∥B∥op ≤ αB), we set µj,i to
αAαB, which is an upper bound of ∥A ◦B∥op due to the submultiplicity in (2.11).

Finally, we show the detailed procedures of P-PDS with OVDP in Algorithm 2.
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4.4 Experiments and Discussion

In this section, we apply our OVDP to three signal estimation problems: mixed noise
removal of hyperspectral images, hyperspectral unmixing, and graph signal recovery.
Through these applications, we illustrate the effectiveness and usefulness of our method
as follows:

• P-PDS with OVDP is fast on average to obtain an optimal solution of the target
optimization problem.

• The preconditioners by OVDP can be easily calculated by using operator norms
even if the target optimization problem involves linear operators implemented not
as explicit matrices.

• P-PDS with OVDP is efficiently computed by avoiding the computations of skewed
proximity operators.

4.4.1 Experimental Setup

We compared OVDP with three existing preconditioner design methods (see Tab. 4.1): the
Scalar Preconditioning (SP) [32] in (4.2), the row/column Absolute Sum-based element-
wise Preconditioning (ASP) [148] in (4.5), and the Positive-Definite Preconditioning
(PDP) [118] in (4.7) and in (4.8). Note that the preconditioners by SP and PDP have
parameters (γ1, τ , θ) to be adjusted manually. For SP, we set γ1 and γ2 in (4.2) as
γ1 = 1, 0.1, 0.01, 0.001, and as in (4.4). The parameter τ in (4.7) and in (4.8) was set as
τ = 1, 0.1, 0.01, 0.001. The parameter θ in (4.7) and in (4.8) was set as θ = 0.01, which
is recommended in [118]. To calculate skewed proximity operators in the iterations of P-
PDSs with ASP and PDP, we used the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [13] initialized with a zero vector.

To check the convergence of P-PDS, we used the Root Mean Square Error (RMSE):

RMSE(x
(t)
1 , . . . ,x

(t)
N ) :=

√√√√∑N
i=1 ∥x

(t)
i − x∗

i ∥22∑N
i=1 ni

, (4.24)

and the residual of the function values:

Residual(x
(t)
1 , . . . ,x

(t)
N )

:=

∣∣∣∣∣∣
 N∑

i=1

fi(x
(t)
i ) +

M∑
j=1

gj

(
N∑
i=1

Lj,i(x
(t)
i )

)−
 N∑

i=1

fi(x
∗
i ) +

M∑
j=1

gj

(
N∑
i=1

Lj,i(x
∗
i )

)∣∣∣∣∣∣ ,
(4.25)

where x∗
1, . . . ,x

∗
N are oracle solutions. However, such oracle solutions are not available

in the experiments, and therefore, we generated pseudo-oracle solutions by the following
procedures. We calculated the results through 100, 000 iterations of P-PDS with all the
methods in advance, and then selected the best ones among them.

Tab. 4.2 shows the stopping criteria with RMSE as the threshold used in the ex-
periments. Since convergence speeds are different depending on problems, reasonable
criteria are also different. To determine reasonable criteria, we employed normalized error
(∥x(t+1) − x(t)∥2/∥x(t)∥2), which is often used as stopping criteria in real-world applica-
tions. Based on the normalized error, we set the stopping criteria as the RMSE values
such that ∥x(t+1) − x(t)∥2/∥x(t)∥2 < 10−5.

52



(a) MPSNR [dB] (b) 14.37 [dB] (c) 34.60 [dB] (d) 34.62 [dB]

(e) 35.45 [dB] (f) 34.81 [dB] (g) 34.66 [dB] (h) 34.62 [dB]

Figure 4.2: Mixed noise removal results. (a): The ground truth HS image. (b): The
observed HS image. (c): The HS image estimated by P-PDS with SP [32] (γ1 = 0.1).
(d): The HS image estimated by P-PDS with ASP [148]. (e): The HS image estimated by
P-PDS with PDP [118] (τ = 0.1). (f): The HS image estimated by P-PDS with OVDP1
(Ours). (g): The HS image estimated by P-PDS with OVDP2 (Ours). (h): The HS image
estimated by P-PDS with OVDP3 (Ours).

4.4.2 Application to Mixed Noise Removal of Hyperspectral Images

Hyperspectral (HS) images often suffer from various noises, such as random noise, outliers,
missing values, and stripe noise, due to environmental and sensor issues [210, 217, 218].
These noises seriously degrade the performance of subsequent processing, such as HS
unmixing [68], classification [10], and anomaly detection [170]. Therefore, removing mixed
noise from HS images is a crucial preprocessing. Popular mixed noise removal methods
adopt the Spatio-Spectral Total Variation (SSTV) regularization [8,61,75,85,132,174,184],
which models the spatial piecewise smoothness and the spectral correlations of HS images.

Problem Formulation

Consider that an observed HS image (of size N1 ×N2 ×N3) v ∈ RN1N2N3 is given by

v = ū+ s̄+ l̄+ n, (4.26)

where ū, s̄, l̄, and n are the true HS image of interest, sparsely distributed noise (e.g.
outliers and missing values), stripe noise, and random noise, respectively. Based on this
observation model, the SSTV-regularized mixed noise removal problem is formulated as
the following convex optimization problem:

min
u,s,l
∥Dv(Db(u))∥1 + ∥Dh(Db(u))∥1 + λ∥l∥1

s.t.


Dv(l) = 0,

s ∈ B0
1,ηs ,

u+ s+ l ∈ Bv
2,ε,

(4.27)
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(a1) Iteration vs RMSE (b1) Iteration vs Residual (c1) Iteration vs SNR

(a2) Computational time vs RMSE (b2) Computational time vs Residual (c2) Computational time vs SNR

Figure 4.3: Convergence profiles of the unmixing experiments. (a): Itera-
tions/computational time versus RMSE. (b): Iterations/computational time versus Resid-
ual. (c): Iterations/computational time versus SNR.

where Dv, Dh, and Db are the vertical, horizontal, and spectral difference operators,
respectively, with the Neumann boundary condition. To reduce computing resources,
these difference operators are usually implemented not as matrices but as the following
procedures:

[Dv(x)]i,j,k :=

{
[x]i,j,k − [x]i+1,j,k, if i < N1;

0, otherwise,
(4.28)

[Dh(x)]i,j,k :=

{
[x]i,j,k − [x]i,j+1,k, if j < N2;

0, otherwise,
(4.29)

[Db(x)]i,j,k :=

{
[x]i,j,k − [x]i,j,k+1, if k < N3;

0, otherwise,
(4.30)

where [x]i1,i2,i3 is the value of x at a location (i1, i2, i3). Here, ∥ · ∥1 is the ℓ1 norm, and
Bv

2,ε and B0
1,ηs are the ℓ2 and ℓ1 norm balls, respectively given by

Bv
2,ε :=

{
x ∈ RN1N2N3

∣∣ ∥v − x∥2 ≤ ε
}
,

B0
1,ηs :=

{
x ∈ RN1N2N3

∣∣ ∥x∥1 ≤ ηs
}
. (4.31)

The term ∥Dv(Db(u))∥1 + ∥Dh(Db(u))∥1 is the SSTV regularization. The positive value
λ is a balancing parameter between the SSTV regularization and the sparse noise term.
The hard constraint guarantees the ℓ2 data-fidelity to v with the radius ε ≥ 0.2

2The original SSTV-regularized denoising formulation proposed in [8] incorporates an ℓ2 data-fidelity
term as a part of the objective function, whereas the formulation in (4.27) imposes data fidelity as an
ℓ2-ball constraint. These two formulations are essentially the same with appropriate hyperparameters, but
a constrained formulation like (4.27) is preferred in experimental comparison and real-world applications
because it facilitates hyperparameter settings as adopted, e.g., in Refs. [7, 47, 137,138,141].
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Table 4.3: The Preconditioners by OVDP for Mixed Noise Removal.

Γ1,1 Γ1,2 Γ1,3 Γ2,1 Γ2,2 Γ2,3 Γ2,4

OVDP1 1
33I I 1

5I
1
3I

1
3I

1
3I

1
3I

OVDP2 1
9I I I 1

4I
1
4I

1
33I

1
3I

OVDP3 1
33I

1
33I

1
33I

1
33I

1
33I

1
33I

1
33I

By using the indicator function (see Eq. (2.13)) of Bv
2,ε, Prob. (4.27) is reduced to

Prob. (4.1) through the following reformulation:

min
u,s,l,

z1,z2,z3,z4

ιB0
1,ηs

(s) + λ∥l∥1 + ∥z1∥1 + ∥z2∥1 + ι{0}(z3) + ιBv
2,ε
(z4)

s.t.


z1 = Dv(Db(u)),

z2 = Dh(Db(u)),

z3 = Dv(l),

z4 = u+ s+ l.

(4.32)

Applying Algorithm 2 to Prob. (4.32), we can compute an optimal solution of Prob. (4.27).
Here, since it is satisfied that ∥Dv ◦ Db∥op ≤ 4, ∥Dh ◦ Db∥op ≤ 4,3 and ∥I∥op = 1, the
preconditioners designed by OVDP are given in Tab. 4.3.

Experimental Results and Discussion

For SP, µSP in (4.4) was set as
µSP =

√
39, (4.33)

because the following inequality holds due to the inequality of the operator norms of block
matrices [18]: ∥∥∥∥∥∥∥∥


Dv ◦Db O O
Dh ◦Db O O

O O Dv

I I I


∥∥∥∥∥∥∥∥
2

op

≤ ∥Dv ◦Db∥2op + ∥Dh ◦Db∥2op + ∥Dv∥2op + 3 ∥I∥2op
< 42 + 42 + 22 + 3× 12 = 39, (4.34)

where O is a zero operator.
We also derived the preconditioners in (4.5), for (4.32). Let us remark that since Dv,

Dh, and Db in (4.32) are not usually implemented as explicit matrices, applying ASP
to (4.32) is not practical in real-world applications. Let x ∈ Rn1n2n3 be a vectorized data
cube and [x]i1,i2,i3 be the value of x at a location (i1, i2, i3). Then the preconditioners are

Γ1,1 = diag(g1),Γ1,2 = I,Γ1,3 = diag(g2),

Γ2,1 = Γ2,2 =
1

4
,Γ2,3 =

1

2
,Γ2,4 =

1

3
I. (4.35)

3These are derived from ∥Dv∥op ≤ 2, ∥Dv∥op ≤ 2, ∥Dv∥op ≤ 2 [30], and the submultiplicity of operator
norms (Eq. (2.11))
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Here, g1 ∈ RN1N2N3 and g2 ∈ RN1N2N3 are given as follows:

[g1]i1,i2,i3 =



1
9 , if i1 ∈ I1 and i2 ∈ I2 and i3 ∈ I3;
1
3 , if i1 ∈ E1 and i2 ∈ E2 and i3 ∈ E3;
1
4 , if i3 ∈ E3 and ((i1 ∈ E1 and i2 ∈ I2) or (i1 ∈ I1 and i2 ∈ E2)) ;
1
5 , if i1 ∈ E1 and i2 ∈ E2 and i3 ∈ I3;
1
7 , otherwise,

(4.36)

[g2]i1,i2,i3 =

{
1
3 , if i1 ∈ I1;
1
2 , otherwise,

(4.37)

where Im and Em for m = 1, 2, 3 are {2, . . . , nm − 1} and {1, nm}, respectively. In this
case, the skewed proximity operators are separable and thus have analytical solutions.
This indicates that P-PDS with ASP does not require FISTA.

As the ground truth HS image, we used Moffett Field [1] of size 120× 120× 176. The
observed image was generated by adding white Gaussian noise with the standard deviation
σ = 0.05 and Salt & Pepper noise with the ratio ps = 0.1. The parameters λ, ηs, and
ε were set to 0.005, 0.5 ∗ 0.95 ∗ ps ∗ N1N2N3, and 0.95σ

√
(1− ps)N1N2N3, respectively.

For the quantitative evaluation of image qualities, we used the Mean Peak Signal-to-Noise
Ratio (MPSNR):

MPSNR(u(t)) :=
1

N3

N3∑
b=1

10 log10

(
N1N2

∥ūb − u
(t)
b ∥22

)
, (4.38)

where ūb and u
(t)
b are the bth band of the ground-truth image ū and the estimated image

u(t).
Figure 4.1 plots iterations versus RMSE, Residual, and MPSNR and computational

time versus RMSE, Residual, and MPSNR, respectively. In terms of iterations (Figs. 4.1
(a1), (b1), and (c1)), P-PDSs with SP (γ1 = 0.01), SP (γ1 = 0.001), PDP (τ = 0.01), and
PDP (τ = 0.001) were very slow, and P-PDSs with SP (γ1 = 1), SP (γ1 = 0.1), ASP, PDP
(τ = 1), PDP (τ = 0.1), OVDP2, and OVDP3 were fast. For P-PDS with OVDP1 , the
evolution of the MPSNR values was slightly slow, but the convergence of the RMSE and
Residual values was not. In terms of computational time (Figs. 4.1 (a2), (b2), and (c2)),
although P-PDSs with SP, ASP, and OVDP have the same computational complexity per
iteration in O-notation, P-PDS with ASP took longer than P-PDSs with SP and OVDP.
When computing the analytic solutions of the proximity operators, P-PDSs with SP and
OVDP require the multiplication of a scalar and a vector, while P-PDS with ASP requires
the element-wise multiplication of two vectors. Since the latter takes longer to run than the
former, P-PDS with ASP was longer in running time. P-PDSs with PDP were very slow
because they require the iterative algorithm to calculate the skewed proximity operator.

Figure 4.2 shows the denoising results and the MPSNR values [dB] obtained by P-PDS
with SP (γ1 = 0.1), ASP, PDP (τ = 0.1), OVDP1, OVDP2, and OVDP3. The algorithm
was run until satisfying the stopping criterion or reaching 10000 iterations. We can see
that all results are almost the same in terms of the MPSNR and the visual qualities.

4.4.3 Application to Hyperspectral Unmixing

An HS image is a three-dimensional data cube that consists of two-dimensional spatial
information and one-dimensional spectral information. Compared to grayscale or RGB
images, HS images offer more than several hundred bands, each of which contains specific
unique wavelength characteristics of materials such as minerals, soils, and liquids. Due to
the trade-off between spatial resolution and wavelength resolution, HS sensors do not have
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Figure 4.4: Abundance maps of HS unmixing results. (a): The ground truth abundance
maps. (b): The abundance maps estimated by P-PDS with SP [32] (γ1 = 0.001). (c):
The abundance maps estimated by P-PDS with ASP [148]. (d): The abundance maps
estimated by P-PDS with PDP [118] (τ = 0.01). (e): The abundance maps estimated by
P-PDS with OVDP1 (Ours). (f): The abundance maps estimated by P-PDS with OVDP2
(Ours). (g): The abundance maps estimated by P-PDS with OVDP3 (Ours).

a sufficient spatial resolution, resulting in containing multiple components (called endmem-
bers) in a pixel [95], which is referred to as a mixel. The process of decomposing the mixels
into endmembers and their abundance maps is called unmixing. Unmixing has been ac-
tively studied in the remote sensing field because of its indispensability for analyzing HS
images [68, 124]. One of the popular unmixing methods is the constrained collaborative
sparse regression problem [87], which has attracted attention as an optimization-based
strategy for HS unmixing [9, 183,205].

Problem Formulation

Let vi ∈ RN3×1 represent an N3-dimensional ith pixel vector of an HS image with N3

spectral bands and E = [e1, . . . , em] ∈ RN3×m be an endmember matrix that denotes a
spectral library with m spectral signatures. The pixel vi can be modeled as the following
form of linear combination:

vi = Eai + ni, (4.39)

where ai ∈ RN3×1 is an abundance map. Introducing the extended endmember ma-
trix Ẽ = diag(E, . . . ,E) ∈ RN1N2N3×N1N2m, we can express an observed HS image v =
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(a1) Iteration vs RMSE (b1) Iteration vs Residual (c1) Iteration vs PSNR

(a2) Computational time vs RMSE (b2) Computational time vs Residual (c2) Computational time vs PSNR

Figure 4.5: Convergence profiles of the graph singal recovery experiments. (a): Itera-
tions/computational time versus RMSE. (b): Iterations/computational time versus Resid-
ual. (c): Iterations/computational time versus PSNR.

[v⊤
1 , . . . ,v

⊤
N1N2

]⊤ as

v = Ẽa+ n. (4.40)

Based on the above model, the constrained collaborative sparse regression problem of
unmixing is formulated as the following convex optimization problem:

min
a
∥a∥1,2 s.t.

{
Ẽa ∈ Bv

2,ε,

a ∈ RN1N2N3
+ .

(4.41)

The first term is the mixed ℓ1,2 norm, which is defined by

∥a∥1,2 =
m∑
e=1

√√√√N1N2∑
i=1

[ai]2e. (4.42)

The first constraint serves as data-fidelity with the v-centered ℓ2-ball of the radius ε > 0.4

The second constraint enforces a to belong to the nonnegative orthant RN1N2N3
+ .

By using the indicator functions (see Eq. (2.13)) of Bv
2,ε and RN1N2N3

+ , Prob. (4.41) is
reduced to Prob. (4.1) via the following reformulation:

min
a,z1,z2

∥a∥1,2 + ιBv
2,ε
(z1) + ιRN1N2N3

+
(z2)

s.t.

{
z1 = Ẽa,

z2 = a.
(4.43)

Applying Algorithm 2 to Prob. (4.43), we can obtain an optimal solution of Prob. (4.41).
Since the functions ∥ · ∥1,2 and ιBv

2,ε
are not separable for each element of the input

variable, an iterative algorithm is needed for the calculation of their skewed proximity
operators relative to the metric induced by the preconditioners of ASP and PDP. Here,
the preconditioners designed by OVDP are as in Tab. 4.4.

4The original constrained collaborative sparse regression formulation proposed in [87] incorporates an
ℓ2 data-fidelity term as a part of the objective function, whereas the formulation in (4.41) imposes data
fidelity as an ℓ2-ball constraint. The reason is similar to the case of the mixed noise removal experiment.
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Table 4.4: The Preconditioners by OVDP for Unmixing.

Γ1,1 Γ2,1 Γ2,2

OVDP1 1

∥Ẽ∥2op+12
I I I

OVDP2 1

∥Ẽ∥op+1
I 1

∥Ẽ∥op
I I

OVDP3 1
2I

1

∥Ẽ∥2op
I I

Experimental Results and Discussion

For SP, µSP in (4.4) was set as

µSP =
√
∥Ẽ∥2op + 1, (4.44)

because the following inequality holds due to the inequality of the operator norms of block
matrices [18]: ∥∥∥∥[ẼI

]∥∥∥∥2
op

≤ ∥Ẽ∥2op + ∥I∥2op = ∥Ẽ∥2op + 1. (4.45)

For PDP, the preconditioners in (4.8) were used since the number of dual variables is two.
As the ground truth HS image, we used the urban dataset5, which has been widely used

in the field of HS unmixing. The image consists of 307×307 pixels with 210 spectral bands.
In the image, six main endmembers can be observed in the scene: asphalt road, grass, tree,
roof, metal, and dirt. The observed data was generated by adding white Gaussian noise
with the standard deviation σ = 0.05. The parameter ε was set to 0.9σ

√
N1N2N3. For

the quantitative evaluation of image qualities, we used the Signal-to-Noise Ratio (SNR) 6:

SNR(a(t)) := 10 log10

(
∥ā∥2

∥a(t) − ā∥2

)
, (4.46)

where a(t) and ā are the estimated and ground true abundance maps, respectively.
Figure 4.3 plots iterations versus RMSE, Residual, and SNR and computational time

versus RMSE, Residual, and SNR, respectively. In terms of iterations (Figs. 4.3 (a1),
(b1), and (c1)), P-PDS with PDP was very slow in all parameter cases. P-PDSs with SP
(γ1 = 1), OVDP2, and OVDP3 were slightly slow, but P-PDSs with SP (γ1 = 0.1) and
ASP were not. P-PDSs with SP (γ1 = 0.01), SP (γ1 = 0.001), and OVDP1 were fast. In
terms of computational time (Figs. 4.3 (a2), (b2), and (c2)), P-PDS with SP and OVDP
were similar to the results with respect to iterations. P-PDSs with ASP and PDP were
very slow because they require the iterative algorithm to calculate the skewed proximity
operator in each iteration of P-PDS. At first glance, the curves generated by P-PDSs with
PDP (τ = 1, 0.1, and 0.001) may appear to converge to different SNRs. This is because
they take enormous amounts of time to converge (in fact, the convergence times are too
enormous to measure). Therefore, they do not converge to different SNRs.

Figure 4.4 shows the unmixing results and the SNR values [dB] obtained by P-PDS with
SP (γ1 = 0.001), ASP, PDP (τ = 0.01), OVDP1, OVDP2, and OVDP3. The algorithm
was run until satisfying the stopping criterion or reaching 10000 iterations. We can see
that all results are almost the same in terms of the SNR and the visual qualities.

5http://www.tec.army.mil/Hypercube
6This evaluation metric is often referred to as the signal to reconstruction error in the literature of HS

unmixing (e.g., [87, 183,205]).
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(a) PSNR [dB] (b) 5.72 [dB] (c) 21.13 [dB] (d) 21.12 [dB]

(e) 21.12 [dB] (f) 21.14 [dB] (g) 21.12 [dB] (h) 21.12 [dB]

Figure 4.6: Graph signal recovery results. (a): The ground truth signal. (b): The observed
graph signal. (c): The graph signal estimated by P-PDS with SP [32] (γ1 = 0.1). (d):
The graph signal estimated by P-PDS with ASP [148]. (e): The graph signal estimated by
P-PDS with PDP [118] (τ = 1). (f): The graph signal estimated by P-PDS with OVDP1
(Ours). (g): The graph signal estimated by P-PDS with OVDP2 (Ours). (h): The graph
signal estimated by P-PDS with OVDP3 (Ours).

4.4.4 Application to Graph Signal Recovery

Graphs explicitly represent the irregular structures of data [143, 159, 165], such as traffic
and sensor network data, geographical data, mesh data, and biomedical data. The signals
on the irregular structures are called graph signals. Similar to classical signal processing,
sampling of graph signals [178] is a leading research topic due to its numerous promising
applications, for example, sensor placement, filter bank designs, traffic monitoring, and
semi-supervised learning. In graph signal recovery, which reconstructs original graph sig-
nals from sampled graph signals, it is assumed that graph signals have some properties,
such as smoothness. The smoothness of graph signals can be captured by graph total vari-
ation type regularizations [17, 69, 142], which have been applied to various graph signal
processing tasks [104,109].

Problem Formulation

We consider signals on weighted directed graphs G = (V, E ,W) with a vertex set V =
{1, . . . , NG}, an edge set E ⊆ V ×V, and a weighted matrix W ∈ RNG×NG . The value Wi,j

is designed to be large if the relation between vertices i and j is strong. Graph signals are
typically assumed to be smooth with respect to the graph G. Based on the assumption,
graph signal recovery methods often adopt the graph total variation (GTV) [17,165]:

∥x∥GTV := ∥DGx∥1,2 =
NG∑
i=1

∥yi∥2, (4.47)

where DG is the graph difference operator defined as follows. Let DGx = [y⊤
1 , . . . ,y

⊤
NG

],
then each yi consists of the weighted differences between the graph signal value xi at
an ith vertex and the graph signal values xj (∀j ∈ N (i) := {k ∈ V |Wi,k ̸= 0}) at its
connected vertices N (i), i.e.,

[yi]j := (xj − xi)Wi,j , (∀j ∈ N (i)). (4.48)
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Table 4.5: The Preconditioners by OVDP for Graph Signal Recovery.

Γ1,1 Γ2,1 Γ2,2

OVDP1 1
∥DG∥2op+12

I I I

OVDP2 1
∥DG∥op+1I

1
∥DG∥op

I I

OVDP3 1
2I

1
∥DG∥2op

I I

By weighting the difference between xi and xj by Wi,j , GTV can capture the graph signal
smoothness that the difference of graph signal values is small as the relation of their
vertices is strong.

Consider that an observed graph signal v ∈ RMG is modeled by

v = Φū+ n, (4.49)

where ū ∈ RNG , n ∈ RMG , and Φ ∈ {0, 1}MG×NG are the true graph signal of interest,
random additive noise, and the sampling matrix, respectively. Based on this observation
model, the GTV regularized graph signal recovery problem is formulated as the following
convex optimization problem [17]:

min
u
∥DGu∥GTV s.t.Φu ∈ Bv

2,ε. (4.50)

The hard constraint guarantees the ℓ2 data fidelity to the observed signal v with the radius
ε.

By using the indicator function (see Eq. (2.13)) of Bv
2,ε, Prob. (4.50) is reduced to

Prob. (4.1) via the following reformulation:

min
u,z1,z2

∥z1∥1,2 + ιBv
2,ε
(z2)

s.t.

{
z1 = DGu,

z2 = Φu.
(4.51)

Applying Algorithm 2 to Prob. (4.51), we can compute an optimal solution of Prob. (4.50).
Since the function ∥·∥1,2 is not separable for each element of the input variable, an iterative
algorithm is needed for the computation of their skewed proximity operators relative to the
metric induced by the preconditioners of ASP and PDP in (4.5). Here, the preconditioners
designed by OVDP are given as in Tab. 4.5. According to [17], an upper bound of the
operator norm ∥DG∥op can be derived by

∥DG∥op ≤ 2max
i∈V

∑
j∈V

(W 2
i,j +W 2

j,i). (4.52)

An upper bound of the norm of the sampling matrix is one, i.e., ∥Φ∥op = 1.

Experimental Results

For SP, µSP in (4.4) was set as

µSP =
√
∥DG∥2op + 1, (4.53)

because the following inequality holds due to the inequality of the operator norms of block
matrices [18]: ∥∥∥∥[DG

Φ

]∥∥∥∥2
op

≤ ∥DG∥2op + ∥Φ∥
2
op ≤ ∥DG∥2op + 1. (4.54)
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The preconditioners by ASP in (4.5) for Prob. (4.50) are

[Γ1,1]i,i =
1∑NGNG

j=1 |Wi,j |+
∑MG

k=1Φk,i

, (∀i = 1, . . . , NG),

[Γ2,1]i,i =
1

2
∑NG

j=1 |Wj,i|
, (∀i = 1, . . . , NGNG),

[Γ2,2]i,i = 1, (∀i = 1, . . . ,MG). (4.55)

For PDP, the preconditioners in (4.8) were used since the number of dual variables is two.
We constructed a random sensor graph G by using GSPBox [147], then generated a

noiseless piece-wise smooth graph signal on the graph with NG = 2000 vertices. The ob-
served graph signal was obtained by adding white Gaussian noise with 0.1 of the standard
deviation σ and by sampling it with 0.2 of the sampling rate (MG = 0.2NG). The param-
eter ε was set as ε = 0.9σ

√
MG . For the quantitative evaluation of recovery qualities, we

used the Peak Signal-to-Noise Ratio (PSNR):

PSNR := 10 log10

(
NG

∥ū− u(t)∥22

)
, (4.56)

Figure 4.5 plots iterations versus RMSE, Residual, and PSNR and computational time
versus RMSE, Residual, and PSNR, respectively. In terms of iterations (Figs. 4.5 (a1),
(b1), and (c1)), P-PDSs with SP (γ1 = 0.001) and PDP (τ = 0.001) were very slow.
P-PDSs with SP (γ1 = 1), PDP (τ = 0.01), OVDP3 were not slow but not fast. P-PDSs
with SP (γ1 = 0.1), SP (γ1 = 0.01), ASP, PDP (τ = 1), PDP (τ = 0.1), OVDP1, and
OVDP2 were fast. In terms of computational time (Figs. 4.5 (a2), (b2), and (c2)), P-PDS
with SP and OVDP were similar to the results with respect to iterations. P-PDSs with
ASP and PDP were very slow because they require the iterative algorithm to calculate
the skewed proximity operator.

Figure 4.6 shows the recovery results and the PSNR values [dB] obtained by P-PDS
with SP (γ1 = 0.1), ASP, PDP (τ = 1), OVDP1, OVDP2, and OVDP3. The algorithm
was run until satisfying the stopping criterion or reaching 10000 iterations. We can see
that all results are almost the same in terms of the PSNR and the visual qualities.

4.4.5 Discussion

For discussion based on numerical values, we compare the number of iterations (Tab. 4.6)
and running time (Tab. 4.7) to satisfy the stopping criteria in Tab. 4.2.

The appropriate value of the parameter for SP (γ1) varied depending on the optimiza-
tion problem and were 0.1 for mixed noise removal, 0.01 and 0.001 for unmixing, and 0.1
and 0.01 for graph signal recovery. If γ1 is adjusted appropriately, as in the case of the
unmixing experiments (γ1 = 0.01 and 0.001), P-PDS with SP can converge faster than
the automatic preconditioner design methods (ASP and OVDP). However, no parameter
results in fast convergence for any optimization problem, and the convergence might be
extremely slow, such as at 0.01 and 0.001 for mixed noise removal, at 1 for unmixing, and
at 0.001 for graph signal recovery. Therefore, γ1 needs to be manually adjusted according
to each problem.

P-PDS with ASP was the best in terms of the average number of iterations, and P-PDS
with PDP (τ is adjusted) resulted in a small number of iterations to converge for both
graph signal recovery and mixed noise removal. However, for the unmixing experiments,
P-PDS with PDP required a more significant number of iterations to converge than P-
PDS with SP (γ1 = 0.01 and 0.001) and OVDP. We speculate that this is because the
optimization problem of unmixing is relatively complicated; it involves an endmember
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matrix, while the optimization problems of mixed noise removal and graph signal recovery
only include relatively simple difference operators and random sampling matrices in their
optimization problems. Although P-PDSs with ASP and PDP were fast in the number
of iterations, they took a much longer running time to converge. This is due to the fact
that they require iterative algorithms such as FISTA to compute the skewed proximity
operator in each iteration of P-PDS. Incidentally, since the internal iterations of FISTA
vary depending on the task and parameters (e.g., τ), the execution time of P-PDS may
be long relative to the number of iterations to convergence. For example, P-PDS with
PDP (τ = 1) required fewer iterations but a longer running time than P-PDS with PDP
(τ = 0.1). In addition, P-PDS with ASP took a very long running time per iteration in
the graph signal recovery experiment, while it took a short running time in the unmixing
experiments.

P-PDSs with OVDP achieved good convergence speed in both the number of iterations
and the running time thanks to a diagonal preconditioning technique based on the prob-
lem structure. In addition, they maintain the proximability of the functions, resulting in
fast running time. P-PDS with OVDP2 was fast on average in the number of iterations.
Moreover, P-PDS with OVDP2 produced the fastest result in terms of running time for
the mixed noise removal experiment. P-PDS with OVDP1 was faster than P-PDS with
OVDP2 and OVDP3 for the unmixing and graph signal recovery experiments. Further-
more, the preconditioners of OVDP can be easily calculated in the mixed noise removal
case whose optimization problem incorporates the linear operators implemented not as
explicit matrices.

These results indicate the following conclusions.

• SP and PDP are effective for cases where preconditioners are easily adjusted. In
particular, PDP is very effective for cases where the structure of an optimization
problem is simple and the calculation of an inner iteration is efficient.

• ASP is applicable to the cases where the structure of an optimization problem is
simple, the calculation of an inner iteration is efficient, and the optimization problem
only contains linear operators implemented as the represented matrix.

• Our OVDP can determine effective preconditioners regardless of whether or not the
above conditions are satisfied. Specifically, for the signal estimation problem that
can be handled by ASP, our OVDP was several hundred times faster than ASP.

• In addition, P-PDS with our OVDP required fewer iterations on average than P-
PDSs with SP or PDP, which require manual adjustments.

4.5 Concluding Remarks

We have proposed OVDP, which automatically and easily designs preconditioners in a
variable-wise manner when a given optimization problem incorporates linear operators
represented not as explicit matrices. We also proved the convergence of P-PDS with
OVDP. Applications of our method to three signal estimation tasks have been provided
with experimental comparison, where we have shown that our method achieved the fast
convergence speed on average and raised the examples of signal processing tasks that
OVDP is effective to be applied.
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Chapter 5

Robust Hyperspectral Unmixing
Using Mixed Noise Constraint
Modeling and Problem
Structure-Based Stepsize Design

5.1 Introduction

Hyperspectral (HS) images are three-dimensional cube data consisting of two-dimensional
spatial and one-dimensional spectral information. Compared to grayscale or RGB images,
HS images provide more than several hundred bands, each of which contains specific unique
wavelength characteristics of materials such as minerals, soils, and liquids. Therefore,
HS images have various applications, such as ecology, mineralogy, biotechnology, and
agriculture [34, 68, 120, 179]. Due to the trade-off between spatial resolution and spectral
resolution, HS sensors do not have a sufficient spatial resolution, resulting in containing
multiple components (called endmembers) in a pixel [95], which is referred to as a mixel.
The process of decomposing the mixel into endmembers and their abundance maps is called
unmixing. Unmixing has been actively studied in the remote sensing field because it is
essential for HS image analysis [20,123] and other applications, such as denoising [152,216]
and data fusion [111,203].

Unmixing methods fall into two categories according to their assumptions: non-blind
and blind unmixing. Non-blind unmixing methods estimate abundance maps from a given
endmember library. Endmembers in the library are potentially much larger in number
than endmembers included in real HS images, i.e., its corresponding abundance maps
become sparse. On the other hand, blind unmixing methods simultaneously estimate
an endmember library and abundance maps, allowing us to obtain the abundances of
endmembers whose spectral libraries are unknown.

For blind unmixing, nonnegative matrix factorization-based approaches [63, 64, 106]
and learning-based approaches [77,144,150] have attracted attention. Nonnegative matrix
factorization-based methods design and solve an optimization problem that incorporates
the functions of the product of an endmember matrix and an abundance map matrix.
When solving the optimization problem, they take an approach that iterates alternate
updates of the two matrices: updating the endmember library matrix by solving the
subproblem with the abundance map matrix fixed, updating the abundance maps by
solving the subproblem with the endmember library matrix fixed using some non-blind
unmixing method. Learning-based methods often involve the following steps: extraction of
initial endmembers from an input HS image, estimation of corresponding initial abundance
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maps by some non-blind unmixing methods, and then learning of sophisticated unmixing
and reconstruction networks based on this information. Therefore, non-blind unmixing is
a fundamental task that must precede blind unmixing. Henceforth, non-blind unmixing
will simply be referred to as unmixing.

Although very accurate unmixing can be achieved using state-of-the-art methods if a
noise-free HS image is available, real-world HS images are often contaminated by various
types of noise such as Gaussian noise, outliers, missing values, and stripe noise due to
environmental factors and sensor failures. Such noise obviously has a negative impact
on unmixing performance and needs to be dealt with appropriately. The simplest way
is a two-step approach, where noise is first removed from a given HS image beforehand,
followed by unmixing. However, such methods are also likely to remove even important
spectral information. It is therefore essential to develop a method that can simultaneously
separate noise (without affecting spectral information) during the unmixing process, which
we refer to as noise-robust unmixing.

Many noise-robust unmixing techniques explicitly model noises and then take the ap-
proach of solving optimization problems that incorporate functions characterizing abun-
dance maps. Based on the fact that HS images consist of a small fraction of the endmem-
bers in a library, the methods in [86,87,105,110,155,163] employ a sparse regularization.
Abundance maps are also piecewise smooth because neighboring pixels often have the
same endmembers. To capture the nature, the methods in [9, 88, 183, 186, 212] adopt a
combination of sparse and piecewise-smooth regularizations. In addition, the methods
in [149, 151, 215] estimate abundance maps using a regularization based on deep neural
networks, and the methods in [81, 82, 194] adopt a combination of sparse and low-rank
regularizations.

As we have discussed, various studies have been carried out to mitigate the effects of
noise in unmixing, but there are still two limitations in terms of robustness to noise. The
first is that the performance of unmixing is severely degraded when the input HS image
is contaminated with high levels of noise. The second is that existing unmixing methods
cannot adequately deal with stripe noise.

As reviewed in the previous subsection, many existing unmixing methods use a combi-
nation of sparse and piecewise-smooth regularization to characterize the abundance maps.
However, as shown in Fig. 5.1, balancing these regularizations becomes very difficult when
unmixing HS images contaminated with high levels of noise. In fact, if the weight of the
sparse regularization is increased, a large amount of noise remains in the estimated abun-
dance maps. Conversely, if the weight of the piecewise-smooth regularization is increased,
the estimated abundance maps will contain many inappropriate components that are not
present in the original HS image. In existing methods, adjusting the weights to avoid both
problems is a very sensitive and tedious task.

To resolve this difficulty, we focus on the regularizations for the HS image reconstructed
by mixing the estimated abundance maps and the endmembers, which we call image-
domain regularizations, in addition to the regularizations for the abundance maps. Our
assumption is the following: if the reconstructed HS image has desirable properties in
its spatio-spectral structure, then the estimated abundance maps used for reconstruction
should also have desirable properties. Therefore, we believe that incorporating spatio-
spectral regularization for HS images into the unmixing formulation can improve the
unmixing performance in high-noise situations where abundance maps are difficult to
estimate using existing methods. Fortunately, in the context of HS image restoration,
many effective HS image regularizations have been studied [8, 76, 174, 177, 184, 204, 208].
By adopting them as image-domain regularizations, we can robustify the unmixing process
under highly-noisy scenarios.

Regarding the second limitation, existing unmixing methods mainly deal with Gaus-
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Figure 5.1: Difficulties in dealing with high intensity noise in unmixing.

sian noise and sparse noise. However, in addition to these noises, actual HS images are
often contaminated with stripe noise, mainly due to external disturbances and calibra-
tion errors [28, 117, 132]. Since stripe noise is non-Gaussian and non-sparse, it cannot be
handled by existing methods, leading to performance degradation in unmixing.

Based on the above discussion, we propose robust hyperspectral unmixing using image-
domain regularization (RHUIDR). We formulate the unmixing problem as a constrained
convex optimization problem. In order to solve the optimization problem, we develop an ef-
ficient algorithm based on the preconditioned primal-dual splitting method (P-PDS) [148]
with an operator-norm-based stepsize selection method [135]. In terms of the features of
RHUIDR, the contributions of the chapter can be summarized as follows.

1. (Robust to high levels of noise): RHUIDR employs not only the abundance map
regularizations but also image-domain regularizations, which robustify the unmixing
process under highly-noisy scenarios.

2. (Robust to mixed noise including stripe noise): By explicitly modeling three types
of noise (Gaussian noise, sparse noise, and stripe noise) as in (5.9), RHUIDR can
adequately handle mixed noise, including stripe noise, which is difficult to handle in
existing methods.

3. (Easy to adjust hyperparameters): In the formulated optimization problem, we model
data-fidelity and noise terms as hard constraints instead of adding them to the
objective function. This type of constrained formulation decouples interdependent
hyperparameters into independent ones, thus facilitating parameter settings, which
will be detailed in Sec. 5.3.1.
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Figure 5.2: Illustration of the proposed method, i.e., RHUIDR.

4. (Avoiding adjusting stepsizes): Unlike the optimization algorithms used in existing
unmixing methods, our P-PDS-based algorithm can automatically determine the
appropriate stepsizes based on the problem structure.

Experiments on synthetic and real HS images demonstrate the advantages of RHUIDRover
existing methods.

The chapter is organized as follows. In Section 5.2, we introduce mathematical tools.
In Section 5.3, we explain the proposed method, RHUIDR, with its formulation and algo-
rithm. In Section 5.4, we conduct experiments to show the superiority of RHUIDR over
the existing methods. Finally, we conclude the chapter in Section 5.5.

5.2 Preliminaries

5.2.1 Regularizations for an HS Image

This section introduces the regularizations for an HS image H ∈ Rl×n1n2 . Let Dv :
Rl×n1n2 → Rl×n1n2 , Dh : Rl×n1n2 → Rl×n1n2 , and Db : Rl×n1n2 → Rl×n1n2 be respectively
vertical, horizontal, and spectral difference operators, which are given by

[Dv(H)]i,j,k :=

{
[H]i+1,j,k − [H]i,j,k, if i < n1;

0, otherwise,
(5.1)

[Dh(H)]i,j,k :=

{
[H]i,j+1,k − [H]i,j,k, if j < n2;

0, otherwise,
(5.2)

[Db(H)]i,j,k :=

{
[H]i,j,k+1 − [H]i,j,k, if k < l;

0, otherwise.
(5.3)

Then, HTV [204], SSTV [8], and HSSTV [177] are defined by

HTV(H) := ∥D(H)∥1,2,c, (5.4)

SSTV(H) := ∥D(Db(H))∥1, (5.5)

HSSTV(H) := ∥Cω(H)∥1, (5.6)

68



where D is the spatial difference operator:

D(H) :=

[
Dv(H)
Dh(H)

]
, (5.7)

and Cω is a combination of spatial and spatio-spectral difference operators with a balancing
parameter ω > 0:

Cω(H) :=

[
D(Db(H))
ωD(H)

]
. (5.8)

HTV captures spectral correlations by promoting the sparsity of spatial differences
grouped by the spectral direction. SSTV captures piecewise smoothness in the spatial
and spectral directions by using the composite operator of the spatial and spectral differ-
ences (spatio-spectral difference). However, it does not sufficiently evaluate direct spatial
piecewise smoothness, resulting in residual noise and artifacts. HSSTV promotes both
spatio-spectral and direct spatial smoothness, and thus is a more powerful regularization
in general.

5.3 Proposed Method

A general diagram of the proposed method, RHUIDR, is shown in Fig. 5.2. In the follow-
ing, we first introduce an observation model with three types of noise. Based on the model,
we then formulate the unmixing problem as a constrained convex optimization problem.
Finally, we describe a P-PDS-based algorithm to efficiently solve the optimization problem
with its computational complexity.

5.3.1 Problem Formulation

Let E ∈ Rl×m, Ā ∈ Rm×n, N̄ ∈ Rl×n, S̄ ∈ Rl×n, and L̄ ∈ Rl×n be a given endmember
library, a true abundance matrix, Gaussian noise, sparse noise, and stripe noise, respec-
tively. Consider the following observation model:

V = EĀ+ N̄+ S̄+ L̄. (5.9)

Note that this model explicitly deals with stripe noise as an additive component L̄. Based
on Eq. (5.9), we formulate an unmixing problem as the following constrained convex
optimization problem:

min
A,S,L

∥A∥1,2,r + λ1∥D(A)∥1 + λ2R(K(EA)) + λ3∥L∥1,

s.t.


A ∈ Rm×n

+ ,

EA+ S+ L ∈ BV
F,ε,

S ∈ B1,η,

Dv(L) ∈ {O},

(5.10)

where λ1 > 0, λ2 > 0, and λ3 > 0 are hyperparameters that balance each term. The
first term is the joint-sparse regularization that evaluates the row sparsity of abundance
maps A. The second term promotes the piecewise smoothness of A. The first constraint
guarantees the non-negativity of A. Note that we do not explicitly adopt the abundance
sum-to-one constraint. This is because, in real-world situations, the abundance sum-to-
one constraint tends to be a strong assumption for LMM-based unmixing because the
spectral signatures are often affected by a positive scaling factor that varies from pixel to
pixel [86].
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Table 5.1: Specific Function R and Linear Operator K in Each Rconstructed-Image Reg-
ularization

Regularizations R K

HTV (Eq. (5.4)) ∥ · ∥1,2,c D
SSTV (Eq. (5.5)) ∥ · ∥1 D ◦Db

HSSTV (Eq. (5.6)) ∥ · ∥1 Cω

Table 5.2: Stepsizes γ1, γ2, γ3, and γ4 for Each Algorithm That Solves An Optimization
Problem Incorprating Each Reconstructed-Image Regularization.

Regularizations γ1 γ2 γ3 γ4

HTV (Eq. (5.4)) 1
9+9σ1(A)2

1 1
5

1
3

SSTV (Eq. (5.5)) 1
9+33σ1(A)2

1 1
5

1
3

HSSTV (Eq. (5.6)) 1
9+(33+8ω2)σ1(A)2

1 1
5

1
3

The third term is the regularization of the reconstructed HS image. This image-domain
regularization allows us to avoid the sensitive adjustment of λ1. In this chapter, we focus
on three image-domain regularizations: HTV in (5.4), SSTV in (5.5), and HSSTV in (5.6).
In each case, R and K are defined as shown in Tab. 5.1. By further generalizing the third
term, RHUIDR can incorporate other regularizations proposed, e.g., in [174,184].

The second constraint serves as data-fidelity to the observed HS image V with the
Frobenius norm ball BV

F,ε with the center V and radius ε. The third constraint evaluates
the sparsity of S. As described in the third contribution, using such constraints instead of
data-fidelity and sparse terms makes it easy to adjust hyperparameters since the param-
eters can be determined based only on noise intensity. Indeed, this kind of constrained
formulation has played an important role in facilitating the parameter setup of signal re-
covery problems [7, 47, 137, 138, 141]. The detailed setting of these parameters ε and η is
shown in Sec. V-B.

The fourth term controls the intensity of stripe noise L and the fourth constraint
captures the vertical flatness property by imposing zero to the vertical gradient of L. The
term and constraint accurately characterize stripe noise [132]. Therefore, our method can
estimate abundance maps from HS images contaminated by mixed noise including stripe
noise.

5.3.2 Optimization Algorithm

To solve Prob. (5.10) by an algorithm based on P-PDS, we need to transform Prob. (5.10)
into Prob. (2.28). First, using the indicator functions, Prob. (5.10) are rewritten as
follows:

min
A,S,L

∥A∥1,2,r + λ1∥D(A)∥1 + λ2R(K ◦E(A)) + λ3∥L∥1

+ ιRm×n
+

(A) + ιBV
F,ε

(EA+ S+ L)

+ ιB1,η(S) + ι{O}(Dv(L)), (5.11)

where K ◦ E is the composite operator of K and E, i.e., K ◦ E(A) = K(EA). Introducing
auxiliary variables Z1, Z2, Z3, Z4, and Z5, we can transform Prob. (5.11) into the following
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Algorithm 3 A P-PDS-based algorithm for solving Prob. (5.10)

Input: V, E, λ1, λ2, λ3, ε, and η
Output: A(t), S(t), L(t)

1: Initialize A(0), S(0), L(0), Z
(0)
1 , Z

(0)
2 , Z

(0)
3 , Z

(0)
4 , and Z

(0)
5 ;

2: Set γ1, γ2, γ3, and γ4 as in Tab. 5.2;
3: while until a stopping criterion is satisfied do

4: A′ ← A(t) − γ1(Z
(t)
1 +D∗(Z

(t)
2 ) +E⊤(K∗(Z

(t)
3 )) +E⊤Z

(t)
4 );

5: A(t+1) ← PιRm×n
+

(A′) by (2.17);

6: S′ ← S(t) − γ2Z
(t)
4 ;

7: S(t+1) ← proxγ2ιB1,η
(S′) by the method in [53];

8: L′ ← L(t) − γ3(Z
(t)
4 +D∗

v(Z
(t)
5 ));

9: L(t+1) ← proxγ3λ3∥·∥1(L
′) by (2.23);

10: Z′
1 ← Z

(t)
1 + γ4(2A

(t+1) −A(t));

11: Z
(t+1)
1 ← Z′

1 − γ4prox 1
γ4

∥·∥1,2,r
(
Z′
1

γ4
) by (2.25);

12: Z′
2 ← Z

(t)
2 + γ4D(2A(t+1) −A(t));

13: Z
(t+1)
2 ← Z′

2 − γ4proxλ1
γ4

∥·∥1
(
Z′
2

γ4
) by (2.23);

14: Z′
3 ← Z

(t)
3 + γ4K(E(2A(t+1) −A(t)));

15: Z
(t+1)
3 ← Z′

3 − γ4proxλ2
γ4

R
(
Z′
3

γ4
) by (2.23) or (2.26);

16: Z′
4 ← Z

(t)
4 + γ4(2(EA(t+1) + S(t+1) + L(t+1))− (EA(t) + S(t) + L(t)));

17: Z
(t+1)
4 ← Z′

4 − γ4prox 1
γ4

ι
BV
F,ε

(
Z′
4

γ4
) by (2.16);

18: Z′
5 ← Z

(t)
5 + γ4Dv(2L

(t+1) − L(t));

19: Z
(t+1)
5 ← Z′

5 − γ4prox 1
γ4

ι{O}
(
Z′
5

γ4
) by (2.18);

20: t← t+ 1;
21: end while

equivalent problem:

min
A,S,L,
Z1,...,Z5

ιRm×n
+

(A) + ιB1,η(S) + λ3∥L∥1 + ∥Z1∥1,2,r

+ λ1∥Z2∥1 + λ2R(Z3) + ιBV
F,ε

(Z4) + ι{O}(Z5)

s.t.



Z1 = A,

Z2 = D(A),

Z3 = K ◦E(A),

Z4 = EA+ S+ L,

Z5 = Dv(L).

(5.12)

Finally, by defining f1(A) = ιRm×n
+

(A), f2(S) = ιB1,η(S), f3(L) = λ3∥L∥1, g1(Z1) =

∥Z1∥1,2,r, g2(Z2) = λ1∥Z2∥1, g3(Z3) = λ2R(Z3), g4(Z4) = ιBV
F,ε

(Z4), and g5(Z5) =

ι{O}(Z5), Prob. (2.28) is reduced to Prob. (5.12), i.e., Prob. (5.10).
The algorithm for solving Prob. (5.10) is summarized in Algorithm 3. The linear

operator K in steps 4 and 14, and the function R in step 15 depend on what regularization
is adopted, as shown in Tab. 5.1.
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Table 5.3: Computational Complexities of Each Operation.

Operations O-notation

EA, (E ∈ Rl×m and A ∈ Rm×n) O(nml)

D(A), (A ∈ Rm×n) O(nm)

D(H), (H ∈ Rl×n) O(nl)

K(H),


K = D, (H ∈ Rl×n)

K = D ◦Db, (H ∈ Rl×n)

K = Cω, (H ∈ Rl×n)

O(nl)

proxγ1ιRm×n
+

(A), (A ∈ Rm×n) O(nm)

proxγ2ιB1,η
(S), (S ∈ Rl×n) O(nl log nl)

proxγ3λ3∥·∥1(L), (L ∈ Rl×n) O(nl)

prox 1
γ4

∥·∥1,2,r
(Z1), (Z1 ∈ Rm×n) O(nm)

proxλ1
γ4

∥·∥1
(Z2), (Z2 ∈ R2m×n) O(nm)

proxλ2
γ4

R
(Z3),


R = ∥ · ∥1,2,c, (Z3 ∈ R2l×n)

R = ∥ · ∥1, (Z3 ∈ R2l×n)

R = ∥ · ∥1, (Z3 ∈ R4l×n)

O(nl)

prox 1
γ4

ι
BV
F,ε

(Z4), (Z4 ∈ Rl×n) O(nl)

Based on Eq. (4.12), the stepsizes of Algorithm 3 are given as

γ1 =
1

∥I∥2op+∥D∥2op+∥K◦E∥2op+∥E∥2op
, γ2 =

1
∥I∥2op

,

γ3 =
1

∥I∥2op+∥Dv∥2op
, γ4 =

1
3 . (5.13)

An identity matrix of any size satisfies ∥I∥op = 1. The operator norm ∥E∥op is equal to
its maximum singular value σ1(E). The operator norms of the other linear operators are
not easily obtained1, but they are suppressed by ∥Dv∥op ≤ 2, ∥Db∥op ≤ 2, ∥D∥op ≤ 2

√
2,

∥K ◦ E∥op ≤ ∥K∥op∥E∥op, ∥D ◦ Db∥op ≤ ∥D∥op∥Db∥op, and ∥Cω∥op ≤
√
32 + 8ω2. By

substituting these upper bounds into Eq. (4.12), the specific stepsizes are given as shown
in Tab. 5.2. This stepsizes design method allows us to avoid the stepsize adjustment for
Algorithm 3.

5.3.3 Computational Complexity

In general, the computational complexity of our algorithm varies depending on what func-
tion and linear operator are used as an image-domain regularization. Our method adopts
three image-domain regularizations: HTV, SSTV, and HSSTV. The computational com-
plexities of linear operators and functions including all the image-domain regularizations
are given in Tab. 5.3. From these results, we derive the computational complexities of
each step as follows:

• The complexities of Steps 4, 14, and 16 are O(nml).

1Note that the difference operators are not implemented as matrices. Therefore, we cannot easily obtain
the singular values of the matrices representing the difference operators.
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Table 5.4: Noise Taken Into Account by Each Method.

Methods Gaussian noise Sparse noise Stripe noise

CLSUnSAL [87] ✓ - -

JSTV [9] ✓ ✓ -

RSSUn-TV [183] ✓ - -

LGSU [163] ✓ - -

UnDIP [151] ✓ - -

MdLRR [194] ✓ - -

RHUIDR (Ours) ✓ ✓ ✓

• The complexities of Steps 5, 10, 11, 12, and 13 are O(nm).

• The complexities of Steps 6, 8, 9, 15, 17, 18, and 19 are O(nl).

• The complexity of Step 7 is O(nl log nl).

Therefore, the complexity for each iteration of the algorithm is O(nlmax{m, log nl}).

5.4 Experiments

We demonstrate the effectiveness of the proposed non-blind unmixing method, i.e., RHUIDR
through comprehensive experiments using two synthetic and two real HS images. Specifi-
cally, these experiments aim to validate that

• RHUIDR achieves good unmixing performance due to image-domain regularizations,

• RHUIDR is robust to mixed noise, including stripe noise.

As described in the introduction, existing unmixing methods are classified into blind and
non-blind, depending on whether the endmember library is given or not. Due to the
different assumptions and the fact that blind unmixing methods require a non-blind un-
mixing step to obtain an initial estimate, it is difficult to fairly compare non-blind unmix-
ing methods with blind ones. Therefore, we compare RHUIDR with five state-of-the-art
non-blind unmixing methods: the collaborative sparse unmixing by variable splitting and
augmented lagrangian (CLSUnSAL) [87], the hyperspectral unmixing using joint-sparsity
and total variation (JSTV) [9], the row-sparsity spectral unmixing via total variation
(RSSUn-TV) [183], the local-global-based sparse regression unmixing (LGSU) [163], the
hyperspectral unmixing using deep image prior (UnDIP) [151], and the multidimensional
low-rank representation-based sparse hyperspectral unmixing (MdLRR) [194]. Tab. 5.4
shows the types of noise taken into account by these methods.

5.4.1 Data Description

We used four datasets for experiments. In all datasets, their endmember libraries were
composed of the spectral signatures of the endmembers in ground-truth HS images and
other spectral signatures. This is to simulate the real-world situation where we give an
endmember library by including more spectral signatures than the components of the
target HS image, as assumed in many references of non-blind unmixing.

73



Table 5.5: SRE, RMSE, Ps, MPSNR, and MSSIM in the Experiments Using Synth 1.

Noise
Evaluation
Target

Measures
Methods

CLSUnSAL JSTV RSSUn-TV LGSU UnDIP MdLRR RHUIDR RHUIDR RHUIDR
[87] [9] [183] [163] [151] [194] (HTV) (SSTV) (HSSTV)

Case 1
Abundance

SRE 16.50 12.95 11.39 16.59 0.58 17.98 27.22 27.02 26.99
RMSE 0.0590 0.0840 0.0992 0.0608 0.3414 0.0524 0.0173 0.0177 0.0177
Ps 0.68 0.56 0.53 0.64 0.18 0.66 0.92 0.92 0.92

Reconstructed MPSNR 41.26 39.94 39.70 41.19 11.80 41.90 46.09 44.49 46.26
HS image MSSIM 0.9771 0.9706 0.9693 0.9754 0.4659 0.9821 0.9936 0.9906 0.9940

Case 2
Abundance

SRE 12.81 7.83 7.13 12.73 0.88 16.71 21.85 21.84 22.12
RMSE 0.0889 0.1424 0.1530 0.0923 0.3302 0.0588 0.0318 0.0318 0.0308
Ps 0.55 0.41 0.40 0.52 0.19 0.63 0.80 0.80 0.81

Reconstructed MPSNR 36.13 34.51 34.42 35.39 12.68 36.07 38.86 37.91 39.19
HS image MSSIM 0.9322 0.9114 0.9101 0.9213 0.4138 0.9327 0.9660 0.9585 0.9692

Case 3
Abundance

SRE 11.42 11.97 5.72 10.72 0.87 13.84 26.40 26.04 26.07
RMSE 0.1018 0.0931 0.1720 0.1138 0.3305 0.0802 0.0190 0.0197 0.0196
Ps 0.53 0.53 0.36 0.49 0.18 0.58 0.91 0.90 0.91

Reconstructed MPSNR 33.82 39.02 31.94 32.73 13.36 33.25 45.43 43.64 45.58
HS image MSSIM 0.9026 0.9641 0.8688 0.8821 0.3607 0.8943 0.9926 0.9885 0.9930

Case 4
Abundance

SRE 9.20 10.87 3.47 7.18 0.68 9.79 25.76 25.61 25.81
RMSE 0.1275 0.1045 0.2088 0.1614 0.3378 0.1232 0.0205 0.0208 0.0203
Ps 0.46 0.51 0.29 0.39 0.21 0.47 0.89 0.89 0.90

Reconstructed MPSNR 30.73 38.20 28.88 29.28 13.11 29.75 43.69 42.38 43.97
HS image MSSIM 0.8505 0.9573 0.8003 0.8115 0.3799 0.8259 0.9884 0.9844 0.9894

Case 5
Abundance

SRE 10.68 7.86 4.85 9.61 0.56 12.04 23.85 23.71 24.00
RMSE 0.1096 0.1418 0.1860 0.1264 0.3424 0.0965 0.0252 0.0255 0.0247
Ps 0.50 0.43 0.34 0.46 0.16 0.53 0.82 0.82 0.84

Reconstructed MPSNR 32.93 35.52 31.16 31.81 11.64 32.37 41.33 40.13 41.76
HS image MSSIM 0.8908 0.9338 0.8534 0.8649 0.4211 0.8790 0.9850 0.9792 0.9870

Case 6
Abundance

SRE 9.79 5.83 4.16 8.10 0.99 11.05 20.13 19.72 19.63
RMSE 0.1209 0.1720 0.1981 0.1471 0.3259 0.1075 0.0377 0.0393 0.0396
Ps 0.47 0.36 0.31 0.42 0.23 0.50 0.79 0.80 0.82

Reconstructed MPSNR 31.85 32.35 30.13 30.62 13.87 31.19 38.85 36.95 39.44
HS image MSSIM 0.8615 0.8702 0.8191 0.8294 0.4129 0.8442 0.9702 0.9527 0.9753

Synthetic HS Image 1 (Synth 1)

We generated the first synthetic HS image with the size of 64 × 64 × 224 using the HY-
perspectral Data Retrieval and Analysis (HYDRA) toolbox2, which was developed by the
Computational Intelligence group at the University of the Basque Country. An endmem-
ber library consists of 10 spectral signatures with 224 bands from the U.S. Geological
Survey (USGS) Spectral Library3. From the endmember library, we generated the corre-
sponding four original abundance maps with the spatial size of 64×64 using the Legendre
method. Figure 5.3 (a) shows one band of the generated image.

Synthetic HS Image 2 (Synth 2)

We also generated the second synthetic HS image with a size of 64 × 64 × 224 using the
HYDRA toolbox. An endmember library consists of 10 spectral signatures with 224 bands
from the USGS Spectral Library. From the endmember library, we randomly selected four
endmembers and generated the corresponding four original abundance maps with a spatial
size of 64× 64 using the spherical Gaussian method. Figure 5.3 (b) shows one band of the
generated image.

Real Image 1 (Jasper Ridge)

Jasper Ridge image (see Fig. 5.3 (c)) is captured using an AVIRIS sensor in a rural area
in California, USA. The spatial size of the original data is 512× 614 pixels, and each pixel

2https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Imagery_Synthesis_tools_

for_MATLAB, accessed on Feb. 5, 2023
3https://www.usgs.gov/programs/usgs-library, accessed on Aug. 7, 2023
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(a) (b) (c) (d)

Figure 5.3: Original HS images. (a): A synthetic image generated using a Legendre
method (Synth 1 ). (b): A synthetic image generated using a spherical Gaussian method
(Synth 2 ). (c): A real image (Jasper Ridge). (d): A real image (Samson).

(a): Jasper Ridge (b): Samson

Figure 5.4: Spectral signatures added into endmember libraries of real image experiments.

holds spectral information in 224 bands ranging from 380 nm to 2500 nm. After removing
several noisy bands and cropping the image, we obtained the image with 100× 100 pixels
and 198 bands. Jasper Ridge contains four major endmembers4: ”road,” ”soil,” ”water,”
and ”tree” [157]. Adding the six endmembers from the USGS Spectral Library, we used
10 endmembers for the experiments.

Real Image 2 (Samson)

Samson (see Fig. 5.3 (d)) is often used for unmixing. The spatial size of the original
data is 952× 952 pixels, and each pixel holds spectral information in 156 bands covering
the wavelengths from 401 nm to 889 nm. After cropping the image, we obtained the
image with 95 × 95 pixels. Samson contains three major endmembers: ”soil,” ”tree,”
and ”water.” Adding the seven endmembers from the USGS Spectral Library, we used 10
endmembers for the experiments.

5.4.2 Experimental Setup

HS images are often degraded by mixed noise in real-noise scenarios. Thus, we consider
the following six combinations of Gaussian noise with different standard deviations σ,
salt-and-pepper noise with a different rate pS, and stripe noise in both synthetic and real
data experiments.

4True abundance maps are available from http://lesun.weebly.com/hyperspectral-data-set.html
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Case 1: The observed HS image is contaminated by white Gaussian noise with the stan-
dard deviation σ = 0.05.

Case 2: The observed HS image is contaminated by white Gaussian noise with the stan-
dard deviation σ = 0.1.

Case 3: The observed HS image is contaminated by white Gaussian noise with the stan-
dard deviation σ = 0.05 and salt-and-pepper noise with the rate pS = 0.05.

Case 4: The observed HS image is contaminated by white Gaussian noise with the stan-
dard deviation σ = 0.05 and salt-and-pepper noise with the rate pS = 0.1.

Case 5: The observed HS image is contaminated by white Gaussian noise with the stan-
dard deviation σ = 0.05 and salt-and-pepper noise with the rate pS = 0.05.
In addition, the observed HS image is corrupted by vertical stripe noise whose
intensity is random in the range [−0.3, 0.3].

Case 6: The observed HS image is contaminated by white Gaussian noise with the stan-
dard deviation σ = 0.1 and salt-and-pepper noise with the rate pS = 0.05. In
addition, the observed HS image is corrupted by vertical stripe noise whose in-
tensity is random in the range [−0.3, 0.3].

As the parameters of existing methods, we used the values recommended in each
reference. The parameters of RHUIDR were set as λ1 = 2, λ2 = 2, and λ3 = 1, which
are adjusted to achieve the best performance. As the parameter of HSSTV, we adopted
ω = 0.05, which is recommended in [177]. The parameters η and ε were set as η = 0.45pSnl
and ε = 0.95σ

√
(1− pS)nl. The maximum iteration and the stopping criterion were set

to 100, 000 and ∥A(t+1) −A(t)∥F /∥A(t+1)∥F ≤ 10−5, respectively.
For the quantitative evaluation of abundance maps, we used the signal reconstruction

error (SRE):

SRE[dB] = 10 log10

(
∥Ā∥2F

∥Ā−Â∥2F

)
, (5.14)

the root-mean-square error (RMSE):

RMSE =

√
1

mn∥Ā− Â∥2F , (5.15)

and the probability of success (Ps):

Ps = P
(
(Āi,j−Âi,j)

2

(Āi,j)2
≤ threshold

)
, (5.16)

where Ā and Â denote the true and estimated abundance maps, respectively. SRE and
RMSE evaluate the difference between the true and estimated abundance maps, with larger
SRE or smaller RMSE indicating better-estimated performance. Ps is the probability that
the relative error is less than a certain threshold. In this case, the threshold was set at
0.316, which is 5 dB.

For the quantitative evaluation of the reconstructed HS images, we used the mean
peak signal-to-noise ratio overall bands (MPSNR):

MPSNR[dB] =
1

l

l∑
i=1

10 log10

(
n

∥H̄i,j−Ĥi,j∥2F

)
, (5.17)

where H̄ and Ĥ are the ground-truth and reconstructed HS images, respectively. In
addition, we adopted the mean structural similarity overall bands (MSSIM) [188]:

MSSIM =
1

l

l∑
i=1

SSIM(H̄i, Ĥi), (5.18)
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where H̄i are Ĥi are the ith bands of H̄ and Ĥ, respectively. Higher MPSNR and MSSIM
values indicate better reconstruction results.

5.4.3 Experimental Results With Synthetic HS Images

Tables 5.5 and 5.6 show the SRE, RMSE, Ps, MPSNR, and MSSIM results with the syn-
thetic HS images generated using the Legendre method and spherical Gaussian methods,
respectively. The best and second-best results are highlighted in bold and underlined,
respectively. JSTV and RSSUn-TV were not good in all cases. CLSUnSAL was best in
SRE and RMSE for Case 1 using Synth 2, but degraded its performance as σ increased
(see Case 2 of Synth 2 ). In other cases, LGSU degraded its performance. In addition,
UnDIP yielded the worst results. This is because UnDIP does not capture the sparsity of
abundance maps. In contrast, RHUIDR yielded the best SRE, RMSE, Ps, MPSNR, and
MSSIM values for the cases where the HS image is contaminated with noise that can be
handled by the existing methods (Cases 1 and 2 for CLSUnSAL, RSSUn-TV, and LGSU,
and Cases 1, 2, 3, and 4 for JSTV), except for Case 1 using Synth 1. This indicates that
the image-domain regularizations can improve the unmixing performance. In addition,
RHUIDR achieved the best performance for the other cases (Cases 5 and 6). This is
due to the fact that RHUIDR can handle all three types of noise. When comparing the
image-domain regularizations, SSTV and HSSTV performed better.

Figures 5.5 and 5.6 show the estimated abundance maps of Synth 1 in Case 2 and
Case 4, respectively. Figure 5.7 depicts the estimated abundance maps for Synth 2 in
Case 5. All the abundance maps of CLSUnSAL, JSTV, RSSUn-TV, and LGSU include
residual noise in Cases 2, 4, and 5 (see Figs. 5.5, 5.6, and 5.7 (b)-(e)). The abundance
maps of MdLRR are relatively exact in Case 2 (Fig. (5.5) (g)), but are affected by sparse
(and stripe noise) in Cases 4 and 5 (Figs.5.6 and 5.7 (g)). UnDIP erroneously estimated
that the abundances were high for the endmembers that are not present in the HS images
due to the insufficient ability to capture the sparsity of abundance maps, resulting in the
generation of inappropriate abundance maps (see Figs. 5.5, 5.6, and 5.7 (f)). In particular,
all of the existing methods do not take stripe noise into account, producing abundance
maps greatly affected by stripe noise (see Fig. 5.7 (b)-(g)). In contrast, RHUIDR exactly
estimated abundance maps regardless of what type of noise contaminates HS images (see
Figs. 5.5, 5.6, and 5.7 (h)-(j)).

Figures 5.8 and 5.9 display the reconstructed HS images of Synth 1 in Case 2 and
Case 4, respectively. Figure 5.10 depicts the reconstructed HS images of Synth 2 in Case
5. All of the existing methods resulted in Gaussian noise remaining in the reconstructed
HS images in Case 2 (see Fig. 5.8 (c)-(h)). Moreover, in the reconstructed HS images
in Case 5 (see Fig. 5.10 (c)-(h)), we can see that residual stripe noise remains. On the
other hand, RHUIDR produced clean reconstructed HS images due to the image-domain
regularizations.
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Table 5.6: SRE, RMSE, Ps, MPSNR, and MSSIM in the Experiments Using Synth 2.

Noise
Evaluation
Target

Measures
Methods

CLSUnSAL JSTV RSSUn-TV LGSU UnDIP MdLRR RHUIDR RHUIDR RHUIDR
[87] [9] [183] [163] [151] [194] (HTV) (SSTV) (HSSTV)

Case 1
Abundance

SRE 10.57 9.39 8.70 6.50 5.89 6.45 9.95 9.98 9.96
RMSE 0.1081 0.1239 0.1342 0.1694 0.1853 0.1681 0.1162 0.1158 0.1160
Ps 0.60 0.52 0.49 0.54 0.35 0.55 0.78 0.79 0.79

Reconstructed MPSNR 40.41 39.58 39.38 40.45 21.80 40.80 42.12 41.69 42.16
HS image MSSIM 0.9870 0.9841 0.9833 0.9875 0.8409 0.9891 0.9926 0.9912 0.9925

Case 2
Abundance

SRE 7.97 6.00 5.64 5.74 5.55 5.92 8.39 8.45 8.48
RMSE 0.1459 0.1829 0.1907 0.1837 0.1928 0.1789 0.1390 0.1381 0.1376
Ps 0.49 0.39 0.38 0.45 0.34 0.46 0.61 0.62 0.63

Reconstructed MPSNR 35.10 34.10 34.01 34.88 22.02 35.32 36.25 36.01 36.51
HS image MSSIM 0.9593 0.9485 0.9477 0.9562 0.8005 0.9612 0.9715 0.9693 0.9732

Case 3
Abundance

SRE 7.19 8.67 4.27 5.11 2.95 5.19 9.73 9.74 9.72
RMSE 0.1596 0.1346 0.2233 0.1986 0.2601 0.1938 0.1192 0.1190 0.1192
Ps 0.47 0.50 0.34 0.42 0.35 0.42 0.78 0.79 0.78

Reconstructed MPSNR 32.88 38.63 31.60 32.24 21.17 32.56 41.30 40.89 41.40
HS image MSSIM 0.9423 0.9806 0.9235 0.9331 0.8355 0.9387 0.9914 0.9898 0.9914

Case 4
Abundance

SRE 6.22 8.43 3.02 3.73 2.28 5.00 9.70 9.77 9.76
RMSE 0.1785 0.1384 0.2579 0.2465 0.2810 0.1997 0.1195 0.1186 0.1187
Ps 0.43 0.48 0.29 0.36 0.28 0.38 0.77 0.78 0.78

Reconstructed MPSNR 29.97 37.94 28.63 28.98 20.97 29.20 40.63 40.20 40.75
HS image MSSIM 0.9093 0.9773 0.8775 0.8876 0.7972 0.8936 0.9898 0.9880 0.9899

Case 5
Abundance

SRE 6.84 6.36 4.01 4.77 2.77 5.42 9.00 9.02 8.99
RMSE 0.1661 0.1756 0.2301 0.2108 0.2654 0.1880 0.1295 0.1293 0.1297
Ps 0.45 0.41 0.32 0.40 0.21 0.41 0.74 0.75 0.74

Reconstructed MPSNR 32.34 35.46 31.00 31.55 19.63 31.80 39.10 38.40 39.32
HS image MSSIM 0.9368 0.9640 0.9150 0.9242 0.7990 0.9295 0.9880 0.9850 0.9885

Case 6
Abundance

SRE 6.46 4.62 3.37 4.16 4.16 5.27 7.94 7.97 7.92
RMSE 0.1736 0.2146 0.2477 0.2298 0.2261 0.1917 0.1464 0.1459 0.1468
Ps 0.43 0.34 0.30 0.37 0.30 0.40 0.68 0.69 0.68

Reconstructed MPSNR 31.18 32.12 29.95 30.38 21.76 30.61 35.97 35.09 36.11
HS image MSSIM 0.9175 0.9246 0.8926 0.9012 0.8032 0.9066 0.9735 0.9641 0.9737
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.5: Unmixing results of abundance maps for the Synth 1 experiments in Case
2. (a): Original abundance maps. (b): CLSUnSAL [87]. (c): JSTV [9]. (d): RSSUn-
TV [183]. (e): LGSU [163]. (f): UnDIP [151]. (g): MdLRR [194]. (h): RHUIDR
(HTV). (i): RHUIDR (SSTV). (j): RHUIDR (HSSTV).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.6: Unmixing results of abundance maps for the Synth 1 experiments in Case
4. (a): Original abundance maps. (b): CLSUnSAL [87]. (c): JSTV [9]. (d): RSSUn-
TV [183]. (e): LGSU [163]. (f): UnDIP [151]. (g): MdLRR [194]. (h): RHUIDR
(HTV). (i): RHUIDR (SSTV). (j): RHUIDR (HSSTV).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.7: Unmixing results of abundance maps for the Synth 2 experiments in Case
5. (a): Original abundance maps. (b): CLSUnSAL [87]. (c): JSTV [9]. (d): RSSUn-
TV [183]. (e): LGSU [163]. (f): UnDIP [151]. (g): MdLRR [194]. (h): RHUIDR
(HTV). (i): RHUIDR (SSTV). (j): RHUIDR (HSSTV).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 5.8: Reconstructed HS image results for the Synth 1 experiments in Case 2. (a):
Original HS image. (b): Noisy image. (c): CLSUnSAL [87]. (d): JSTV [9]. (e): RSSUn-
TV [183]. (f): LGSU [163]. (g): UnDIP [151]. (h): MdLRR [194]. (i): RHUIDR
(HTV). (j): RHUIDR (SSTV). (k): RHUIDR (HSSTV).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 5.9: Reconstructed HS image results for the Synth 1 experiments in Case 4. (a):
Original HS image. (b): Noisy image. (c): CLSUnSAL [87]. (d): JSTV [9]. (e): RSSUn-
TV [183]. (f): LGSU [163]. (g): UnDIP [151]. (h): MdLRR [194]. (i): RHUIDR
(HTV). (j): RHUIDR (SSTV). (k): RHUIDR (HSSTV).
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Figure 5.10: Reconstructed HS image results for the Synth 2 experiments in Case 5. (a):
Original HS image. (b): Noisy image. (c): CLSUnSAL [87]. (d): JSTV [9]. (e): RSSUn-
TV [183]. (f): LGSU [163]. (g): UnDIP [151]. (h): MdLRR [194]. (i): RHUIDR
(HTV). (j): RHUIDR (SSTV). (k): RHUIDR (HSSTV).

83



5.4.4 Experiments With Real HS Images

Tables 5.7 and 5.8 show the SRE, RMSE, Ps, MPSNR, and MSSIM results for Jasper Ridge
and Samson, respectively. The best and second-best results are highlighted in bold and
underlined, respectively. CLSUnSAL, JSTV, RSSUn-TV, and UnDIP performed worse
in all cases than RCHU. LGSU was the best for SRE, RMSE, and Ps in Cases 1 and 2
of the Jasper Ridge experiments. The reason for this is that LGSU accurately calculates
the homogeneities of Jasper Ridge and the local sparsity promoted by the homogeneities
significantly enhances the unmixing performance in these cases. In other cases, LGSU
degraded the performance because it is not robust to sparse and stripe noise. In contrast,
RHUIDR achieved the best SRE, RMSE, Ps, MPSNR, and MSSIM performances for the
cases where the HS image is contaminated by noise that can be handled by the existing
methods (Cases 1 and 2 for CLSUnSAL, RSSUn-TV, and LGSU, and Cases 1, 2, 3, and
4 for JSTV), except for Case 1, 2. In addition, RHUIDR can handle all three types of
noise, resulting in the best performance for the other cases (Cases 5, 6). When comparing
image-domain regularizations, HTV is better for Jasper Ridge and HSSTV is better for
Samson.

Figure 5.11 shows the estimated abundance maps of Jasper Ridge in Case 2. Figure 5.12
depicts the estimated abundance maps of Samson in Case 6. As shown in Fig. 5.11 (b)-(g),
if HS images are contaminated by Gaussian noise with a large standard deviation σ, all
of the existing methods degraded their performance. Although CLSUnSAL, LGSU, and
MdLRR achieved good SRE, RMSE, and MPSNR in Case 2 of the real data experiments,
it yielded abundance maps with residual noise (see Fig. 5.11 (a), (e), and (g)). In Case
6, the abundance maps estimated by all the existing methods include residual noise, es-
pecially stripe noise (see Fig. 5.12, (b)-(g)). This indicates that they do not handle the
stripe noise. In contrast, RHUIDR exactly estimated the abundance maps even under the
conditions assumed by the existing methods, e.g., when the observed HS images are only
contaminated by Gaussian noise (see Fig. 5.11). Furthermore, RHUIDR estimated the
abundance maps by removing not only Gaussian and sparse noise but also stripe noise
cleanly.

Figure 5.13 displays the reconstructed HS images of Jasper Ridge in Case 2. Figure 5.14
depicts the reconstructed HS images of Samson in Case 6. All of the existing methods
resulted in noise remaining in the reconstructed HS images (see Figs. 5.13 and 5.14 (c)-
(h)). In particular, they cannot handle stripe noise, and thus did not completely remove it
in Case 6 (see Fig. 5.14 (c)-(h)). On the other hand, RHUIDR reconstructed the HS image
cleanly (see Figs. 5.13 and 5.14 (i)-(k)). This verifies the effectiveness of the image-domain
regularization.
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Table 5.7: SRE, RMSE, Ps, MPSNR, and MSSIM in the Experiments Using Jasper Ridge.

Noise
Evaluation
Target

Measures
Methods

CLSUnSAL JSTV RSSUn-TV LGSU UnDIP MdLRR RHUIDR RHUIDR RHUIDR
[87] [9] [183] [163] [151] [194] (HTV) (SSTV) (HSSTV)

Case 1
Abundance

SRE 19.97 16.22 15.88 19.72 8.12 20.23 17.72 17.07 17.06
RMSE 0.0431 0.0664 0.0690 0.0444 0.1688 0.0412 0.0559 0.0602 0.0603
Ps 0.42 0.40 0.40 0.40 0.31 0.43 0.44 0.42 0.43

Reconstructed MPSNR 37.67 36.80 36.71 38.28 25.37 37.85 37.35 37.02 36.96
HS image MSSIM 0.9858 0.9821 0.9817 0.9866 0.9129 0.9858 0.9878 0.9857 0.9864

Case 2
Abundance

SRE 15.24 11.11 10.95 12.92 5.64 12.44 16.09 15.59 15.62
RMSE 0.0744 0.1197 0.1218 0.0972 0.2245 0.1011 0.0674 0.0715 0.0712
Ps 0.37 0.34 0.34 0.34 0.31 0.36 0.40 0.40 0.40

Reconstructed MPSNR 32.01 31.08 31.04 31.92 21.07 31.43 33.40 32.90 33.29
HS image MSSIM 0.9538 0.9409 0.9404 0.9477 0.8303 0.9438 0.9687 0.9629 0.9681

Case 3
Abundance

SRE 11.74 15.48 7.62 8.12 3.65 8.38 17.49 16.85 16.83
RMSE 0.1112 0.0724 0.1789 0.1687 0.2823 0.1652 0.0574 0.0618 0.0619
Ps 0.33 0.40 0.32 0.32 0.20 0.33 0.44 0.43 0.43

Reconstructed MPSNR 25.44 35.70 24.85 25.05 16.74 24.89 36.59 36.26 36.23
HS image MSSIM 0.8701 0.9771 0.8442 0.8479 0.6797 0.8460 0.9851 0.9827 0.9837

Case 4
Abundance

SRE 8.83 14.38 4.83 4.98 3.84 5.61 17.77 17.28 17.27
RMSE 0.1556 0.0821 0.2465 0.2424 0.2762 0.2357 0.0556 0.0588 0.0589
Ps 0.28 0.38 0.27 0.27 0.19 0.28 0.43 0.42 0.42

Reconstructed MPSNR 20.83 34.70 20.42 20.51 19.05 20.43 36.30 35.94 36.08
HS image MSSIM 0.7734 0.9716 0.7412 0.7435 0.7610 0.7429 0.9830 0.9804 0.9820

Case 5
Abundance

SRE 11.17 11.83 6.95 7.39 5.79 7.65 16.37 15.91 15.93
RMSE 0.1188 0.1102 0.1932 0.1837 0.2207 0.1801 0.0653 0.0688 0.0687
Ps 0.33 0.36 0.31 0.31 0.28 0.32 0.42 0.42 0.42

Reconstructed MPSNR 25.09 32.19 24.47 24.65 20.87 24.50 34.98 34.51 34.86
HS image MSSIM 0.8613 0.9559 0.8347 0.8381 0.8001 0.8363 0.9795 0.9759 0.9788

Case 6
Abundance

SRE 10.60 9.36 6.36 6.62 3.28 6.99 14.06 13.56 13.59
RMSE 0.1268 0.1463 0.2068 0.2006 0.2947 0.1955 0.0852 0.0902 0.0899
Ps 0.31 0.32 0.29 0.29 0.18 0.30 0.39 0.39 0.39

Reconstructed MPSNR 24.46 28.75 23.81 23.96 18.83 23.84 31.45 30.79 31.24
HS image MSSIM 0.8407 0.9102 0.8106 0.8136 0.7317 0.8115 0.9566 0.9459 0.9550

Table 5.8: SRE, RMSE, Ps, MPSNR, and MSSIM in the Experiments Using Samson.

Noise
Evaluation
Target

Measures
Methods

CLSUnSAL JSTV RSSUn-TV LGSU UnDIP MdLRR RHUIDR RHUIDR RHUIDR
[87] [9] [183] [163] [151] [194] (HTV) (SSTV) (HSSTV)

Case 1
Abundance

SRE 12.46 11.29 10.75 10.04 7.62 13.81 14.84 14.68 15.11
RMSE 0.0998 0.1166 0.1241 0.1331 0.1909 0.0874 0.0761 0.0767 0.0737
Ps 0.67 0.64 0.63 0.63 0.41 0.68 0.77 0.77 0.78

Reconstructed MPSNR 35.55 35.06 34.91 35.17 22.39 35.73 37.85 37.23 37.87
HS image MSSIM 0.9772 0.9733 0.9722 0.9736 0.8705 0.9780 0.9899 0.9869 0.9897

Case 2
Abundance

SRE 7.87 6.63 6.35 6.41 2.21 7.31 10.22 9.98 10.53
RMSE 0.1602 0.1973 0.2046 0.2024 0.3555 0.1836 0.1166 0.1185 0.1128
Ps 0.57 0.52 0.51 0.51 0.22 0.54 0.66 0.65 0.66

Reconstructed MPSNR 30.00 29.45 29.36 29.67 15.74 29.55 31.90 31.40 32.03
HS image MSSIM 0.9271 0.9144 0.9125 0.9165 0.7066 0.9166 0.9552 0.9484 0.9569

Case 3
Abundance

SRE 5.52 10.32 4.53 4.73 4.59 4.70 14.26 14.18 14.63
RMSE 0.1964 0.1300 0.3022 0.2967 0.2703 0.2925 0.0804 0.0806 0.0774
Ps 0.49 0.62 0.43 0.43 0.29 0.45 0.76 0.76 0.76

Reconstructed MPSNR 23.14 33.91 22.66 22.83 16.30 22.51 36.78 36.16 36.82
HS image MSSIM 0.7912 0.9658 0.7677 0.7717 0.6529 0.7644 0.9865 0.9827 0.9864

Case 4
Abundance

SRE 3.17 9.17 3.31 3.44 1.76 3.34 13.39 13.22 13.60
RMSE 0.2368 0.1464 0.3990 0.3986 0.3745 0.3905 0.0869 0.0877 0.0847
Ps 0.41 0.59 0.35 0.35 0.24 0.36 0.75 0.74 0.75

Reconstructed MPSNR 18.61 33.06 18.27 18.35 16.16 18.20 35.85 35.24 35.83
HS image MSSIM 0.6662 0.9593 0.6365 0.6380 0.5906 0.6351 0.9824 0.9783 0.9821

Case 5
Abundance

SRE 4.97 7.45 4.27 4.48 4.98 4.42 10.37 10.05 10.75
RMSE 0.2065 0.1801 0.3096 0.3045 0.2584 0.2996 0.1144 0.1170 0.1099
Ps 0.47 0.54 0.42 0.42 0.30 0.43 0.69 0.68 0.69

Reconstructed MPSNR 22.81 30.52 22.35 22.50 20.83 22.21 33.70 33.11 33.85
HS image MSSIM 0.7822 0.9364 0.7587 0.7626 0.7465 0.7561 0.9725 0.9673 0.9735

Case 6
Abundance

SRE 4.55 5.36 3.87 4.02 3.63 3.98 9.76 9.31 10.29
RMSE 0.2157 0.2433 0.3398 0.3369 0.3021 0.3319 0.1212 0.1257 0.1156
Ps 0.47 0.48 0.40 0.40 0.25 0.41 0.69 0.68 0.70

Reconstructed MPSNR 22.30 27.07 21.79 21.93 18.14 21.68 30.63 29.86 30.83
HS image MSSIM 0.7559 0.8700 0.7299 0.7333 0.6863 0.7277 0.9471 0.9330 0.9500
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.11: Unmixing results of abundance maps for the Jasper Ridge experiments in Case
2. (a): Original abundance maps. (b): CLSUnSAL [87]. (c): JSTV [9]. (d): RSSUn-
TV [183]. (e): LGSU [163]. (f): UnDIP [151]. (g): MdLRR [194]. (h): RHUIDR
(HTV). (i): RHUIDR (SSTV). (j): RHUIDR (HSSTV).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.12: Unmixing results of abundance maps for the Samson experiments in Case
6. (a): Original abundance maps. (b): CLSUnSAL [87]. (c): JSTV [9]. (d): RSSUn-
TV [183]. (e): LGSU [163]. (f): UnDIP [151]. (g): MdLRR [194]. (h): RHUIDR
(HTV). (i): RHUIDR (SSTV). (j): RHUIDR (HSSTV).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 5.13: Reconstructed HS image results for the Jasper Ridge experiments in Case
2. (a): Original HS image. (b): Noisy image. (c): CLSUnSAL [87]. (d): JSTV [9]. (e):
RSSUn-TV [183]. (f): LGSU [163]. (g): UnDIP [151]. (h): MdLRR [194]. (i): RHUIDR
(HTV). (j): RHUIDR (SSTV). (k): RHUIDR (HSSTV).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 5.14: Reconstructed HS image results for the samson experiments in Case 6. (a):
Original HS image. (b): Noisy image. (c): CLSUnSAL [87]. (d): JSTV [9]. (e): RSSUn-
TV [183]. (f): LGSU [163]. (g): UnDIP [151]. (h): MdLRR [194]. (i): RHUIDR
(HTV). (j): RHUIDR (SSTV). (k): RHUIDR (HSSTV).
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Figure 5.15: Convergence analysis using the real images. The top row shows the results of
experiments using Jasper Ridge. The bottom row shows the results of experiments using
Samson. (a): The relative error of abundance maps ∥A(t+1) −A(t)∥F /∥A(t+1)∥F versus
iteration t. (b): Objective function value ∥A(t)∥1,2,r + λ1∥D(A(t))∥1 + λ2R(K(EA(t))) +
λ3∥L(t)∥1 versus iteration t. (c): The ℓ2 distance between V and EA(t)+S(t)+L(t) versus
iteration t. (d): The ℓ1 norm of S(t) versus iteration t. (e): The mean absolute values
(MAV) of Dv(L

(t)) versus iteration t.

5.4.5 Computational Cost and Convergence Analysis

We measured the actual running times using MATLAB (R2022b) on a Windows 11 com-
puter with an Intel Core i9-13900 1.0GHz processor, 32GB of RAM, and NVIDIA GeForce
RTX 4090. For Jasper Ridge experiments in Case 6, RHUIDR using HTV, SSTV, and
HSSTV took 169.76, 153.95, and 161.86 of actual running times [s], respectively. For
Samson experiments in Case 6, RHUIDR using HTV, SSTV, and HSSTV took 159.60,
144.48, and 158.76 of actual running times [s], respectively.

In addition, we experimentally analyzed the convergence of our method. Figure 5.15
plots the relative error of abundance maps: ∥A(t+1)−A(t)∥F /∥A(t)∥F , the objective func-
tion values, the Frobenius distance between V and EA(t) + S(t) + L(t), the ℓ1 norm of
S(t), and the mean absolute values (MAV) of Dv(L

(t)) for Jasper Ridge experiments and
Samson experiments. The relative error of abundance maps decreased (Fig. 5.15 (a)).
While getting larger as the number of iterations increases, the objective function value
asymptotically approaches a certain value (Fig. 5.15 (b)). This is often found when solv-
ing optimization problems involving hard constraints, such as a data fidelity constraint
EA+ S+ L ∈ BV

F,ε, a sparsity constraint S ∈ B1,η, and a flatness constraint Dv(L) = O.
The ℓ2 distance and the MAV become smaller, where we can see that the variables are
updated by P-PDS to approach the solution of our constrained convex optimization.

5.4.6 Ablation Experiments

To demonstrate the effectiveness of the image-domain regularization (the third term of
Eq. (5.10)), we compared RHUIDR performance with the performance when the image-
domain regularization was removed (referred to as RHUIDR (–)). This ablation experi-
ment was performed by using four images (Synth 1, Synth 2, Jasper Ridge, and Samson)
for Case 6.

Table 5.9 shows the SRE, RMSE, Ps, MPSNR, and MSSIM results for the ablation ex-
periment. The best and second-best results are highlighted in bold and underlined, respec-
tively. RCHU with the image-domain regularization was superior to RCHU without the
image-domain regularization. In particular, the image-domain regularization contributed
to an improvement in SRE, RMSE, and Ps and a significant improvement in MPSNR and
MSSIM. This implies that the reconstructed HS image has the desirable spatio-spectral
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Table 5.9: RSE, RMSE, Ps, MPSNR, and MSSIM of Ablation Experiments.

Image
Evaluation
Target

Measures
Methods

RHUIDR RHUIDR RHUIDR RHUIDR
– (HTV) (SSTV) (HSSTV)

Synth 1
Abundance

SRE 19.88 20.13 19.72 19.63
RMSE 0.0390 0.0377 0.0393 0.0396
Ps 0.76 0.79 0.80 0.82

Reconstructed MPSNR 36.21 38.85 36.95 39.44
HS image MSSIM 0.9420 0.9702 0.9527 0.9753

Synth 2
Abundance

SRE 6.83 7.94 7.97 7.92
RMSE 0.1464 0.1464 0.1459 0.1468
Ps 0.67 0.68 0.69 0.68

Reconstructed MPSNR 34.92 35.97 35.09 36.11
HS image MSSIM 0.9626 0.9735 0.9641 0.9737

Jasper
Ridge

Abundance
SRE 13.42 14.06 13.56 13.59
RMSE 0.0843 0.0852 0.0902 0.0899
Ps 0.39 0.39 0.39 0.39

Reconstructed MPSNR 30.86 31.45 30.79 31.24
HS image MSSIM 0.9450 0.9566 0.9459 0.9550

Samson
Abundance

SRE 9.13 9.76 9.31 10.29
RMSE 0.1280 0.1212 0.1257 0.1156
Ps 0.67 0.69 0.68 0.70

Reconstructed MPSNR 29.49 30.63 29.86 30.83
HS image MSSIM 0.9253 0.9471 0.9330 0.9500

property, resulting in the estimation of more appropriate abundance maps.

5.4.7 Summary

We summarize the experimental discussion as follows.

• From the results of experiments in Case 1, Case 2, Case 3, and Case 4, we see that
image-domain regularizations improve the unmixing performance.

• The results of experiments in Case 5 and Case 6 verify that RHUIDR accurately
estimates abundance maps if HS images are degraded by various types of noise.

• RHUIDR achieves good unmixing performance in experiments on both synthetic and
real HS images.

5.5 Concluding Remarks

In this chapter, we have proposed a new method for noise-robust unmixing. RHUIDR
adopts the image-domain regularization and explicitly models three types of noises. We
have formulated the unmixing problem as a constrained convex optimization problem that
includes the regularization, and have developed the optimization algorithm based on P-
PDS. Experiments on synthetic and real HS images have demonstrated the superiority
of RHUIDR over existing methods. RHUIDR will have strong impacts on the field of
remote sensing, including the estimation of abundance maps from HS images taken in
measurement environments with severe degradation. For future work, we achieve more
noise-robust blind unmixing by incorporating RHUIDR into learning-based methods.
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Chapter 6

General Conclusion

This dissertation has studied convex optimization techniques for remote sensing analysis
with the ultimate goal of establishing a unified framework that can handle a wide range
of all target data and tasks. Although there is still a long way to go to achieve the ulti-
mate goal, we have addressed the following research question: Can we exploit degradation
models, statistical information, and problem structures to flexibly determine appropri-
ate values of parameters in remote sensing data analysis? Specifically, we have adopted
constraint modeling to eliminate the interdependence of regularization parameters and
developed a method that employs the structure of an optimization problem to resolve the
difficulty of tuning the stepsizes of its optimization algorithm.

In Chapter 3, we designed a general framework that can handle various types of target
data and a novel characterization of stripe noise. These enabled us to establish a method
to consistently remove stripe noise without changing parameter settings for any target
data. Through experiments with a comprehensive comparison of various image regular-
izations and stripe noise characterizations for HS images and IR videos, we have shown
that the framework performed several dB better in PSNR than frameworks using existing
characterizations for both data.

Chapter 4 has proposed a method for determining the stepsizes of P-PDS, an efficient
convex optimization algorithm. Specifically, by introducing the operator norms of the lin-
ear operators included in a target optimization problem, our method reflects the problem
structure in determining the appropriate stepsizes such that the convergence of P-PDS
is fast for any optimization problem. The operator norms of linear operators present in
remote sensing data analysis are often known, and thus the convenience of our method in
real-world applications is not compromised. In addition, a variable-wise diagonal precon-
ditioning approach does not increase the complexity of the operations in the optimization
problem, thus significantly reducing the execution time. Through experiments of applying
the approach to two remote sensing data analysis tasks (hyperspectral image mixture de-
noising and mixel decomposition) and one signal analysis task (graph signal restoration),
we have confirmed that our method is more convenient and several to several hundred
times faster than existing step-sizing methods.

Chapter 5 has established a noise-robust unmixing method by taking advantage of our
methods proposed in Chapters 3 and 4. In addition to regularizations for an abundance
matrix, we have designed an optimization problem by introducing regularizations for the
HS image reconstructed from estimated abundance maps and endmembers, and constraint
modeling including flatness constraints proposed in Chapter 3. These allow us to deal with
high-level and diverse noise while facilitating the setting of regularization parameters.
To solve the optimization problem, we have developed a P-PDS-based algorithm that
does not require stepsize adjustment using the stepsize determination method proposed
in Chapter 4. Experiments on HS images with diverse noise have demonstrated that our
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method yielded several decibel-better SREs than existing methods, especially in situations
of severe noise.

6.1 Limitations

As described in the previous section, this dissertation contributes to the establishment
of convex optimization techniques for flexible and reliable remote sensing data analysis.
However, this research still has the following several limitations.

6.1.1 Modeling of Regularizations as Constraints

In Chapters 3, 4, and 5, we have designed optimization problems using constraint mod-
eling mainly for degradation characterizations. Since this constraint modeling approach
can improve the flexibility and reliability of remote sensing data analysis, it is better to
handle regularization using constraint modeling. However, achieving this requires further
development of signal processing and optimization techniques. In fact, in the optimiza-
tion problem in Chapter 5, regularizations for reconstructed images were included in the
objective function due to the following two specific difficulties.

First, optimization algorithms may not always be constructed by realistic and efficient
computations when adopting constraint modeling. The characterization of degradation is
accomplished using an ℓ2 (Frobenius) norm and an ℓ1 norm. Fortunately, the constraints
using these functions (ℓ2 ball and ℓ1 ball) are easy to handle in the optimization process
because the metric projections onto an ℓ2 ball and an ℓ1 ball are efficiently computed.
However, not all functions have this property, e.g., if we use a mixed ℓ1,2 norm (which
appeared numerous times in this dissertation) for constraint modeling, it is difficult to
construct an optimization algorithm because the projection onto a mixed ℓ1,2 ball is not
easy to compute. Therefore, to introduce regularized functions, it is essential to establish
optimization techniques that can efficiently handle any functions for constraint modeling.

Second, for parameters associated with regularization constraints, determining appro-
priate values is difficult. For parameters associated with degradation characterization
constraints, this dissertation has determined their appropriate values based on the sta-
tistical information of the degradations. For example, the parameter of a data-fidelity
constraint can be determined using the standard deviation of Gaussian noise, and the
parameter of a sparse constraint can be set using the rate of sparse noise. However, it is
difficult to assume the statistical or mathematical properties behind remote sensing data,
which prevents us from setting parameters consistently. To this end, the discovery of
helpful measurement information and the development of signal processing techniques are
necessary to establish such a methodology.

6.1.2 Capabilities for Modeling Prior Knowledges

This dissertation has developed techniques for convex optimization, which is a power-
ful tool for obtaining stable results while incorporating prior knowledge into analysis.
However, convex optimization has the following limitations concerning the accuracy and
capability of modeling prior knowledge.

First, convex optimization sometimes fails in rigorous models of sparsity and low-
rankness, which are often required in remote sensing data analysis, and thus degrades
the performance of the analysis. As an example of sparsity, our method in Chapter 5
has modeled the group sparsity of an abundance matrix by mixed ℓ1,2 norms. This func-
tion does not sufficiently promote sparsity, resulting in the degradation of the unmixing
performance in some cases (see in particular Figure 5.12).
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Then, convex optimization techniques cannot deal with situations where the operation
representing/converting data from/to the sparse or low-rank component cannot be fully
modeled by hand. In remote sensing data analysis, there are many situations in which
such conversions are not completely known, for example, sparse representation [15,23,67,
191,192], which captures similar structures non-local when the operator for sparse from/to
conversion is not known, and blind unmixing [63, 64, 106], which is performed under the
assumption that some or all of the constituent dictionaries are unknown. Such analysis
tasks are often not possible as convex optimization problems.

Addressing the above issue requires techniques beyond convex optimization techniques.
In other words, the introduction of nonconvex optimization techniques is crucial for the
further development of remote sensing data analysis.

6.1.3 Range of Applications

The ultimate goal of this research is to establish a framework that can handle a wide range
of all target data and tasks. As part of this process, we have demonstrated its effective-
ness in three analysis tasks: mixed denoising (including destriping) of HS images, mixel of
HS images, and IR video restoration. However, due to the diversity of measurement and
analysis processes, there are other remote sensing data analysis tasks, such as anomaly de-
tection in hyperspectral images, spatio-temporal fusion of HS-MS images, speckle removal
in aperture radar images, and motion detection and seismic data recovery in synthetic
aperture radar images. Demonstrating the effectiveness of the results of this research in
these analysis tasks is also necessary to achieve the ultimate goal.

6.2 Future works

6.2.1 Establishment of Optimization Techniques for Modeling Regular-
ization as Constraints

As mentioned in Section 6.1.1, in order to model regularization as constraints, two tech-
niques need to be developed: techniques for efficiently solving optimization problems,
including constraint modeling of any functions, and techniques for estimating their ap-
propriate parameters. For the former, we will consider developing epigraphical projec-
tions [47,94,101,139], which decompose mixed norms into norms that can be easily handled
as constraints. For the latter, we will try out a wide range of techniques, from the simple
method of pre-denoising observed data and estimating its appropriate function value to
advanced estimation methods, such as the L-Curve [62, 72, 130] and the Stein unbiased
risk estimate [5, 54,169].

6.2.2 Introduction of Modeling Beyond Convex Optimization

Introducing nonconvex optimization techniques can overcome the limitations of the accu-
racy and capability of modeling prior knowledge. Among many nonconvex optimization
techniques, a class of optimization techniques that can guarantee the convergence of opti-
mization algorithms is crucial for obtaining stable analytical results. As such nonconvex
optimization techniques, we are focusing on block multiconvex [198] and difference-of-
convex (DC) optimization [12, 168], which can construct algorithms that can guarantee
convergence.

Block multiconvex optimization handles optimization problems involving products of
variables in convex functions. By formulating the analysis tasks as such optimization prob-
lems, a matrix or tensor can be decomposed into multiple vectors, matrices, or tensors,

93



and thus block multiconvex optimization is used for sparse representation-based analy-
sis [15,23,67,191,192] and blind unmixing [63,64,106]. By re-modeling prior knowledge as
constraints rather than convex functions, we can develop remote sensing data analysis that
captures more a priori information while improving flexibility and reliability. In addition,
when solving block multiconvex optimization problems, many methods take a strategy
that alternately solves a convex optimization subproblem while fixing some variables. In-
corporating the results of Chapter 4 into solving this convex optimization subproblem
improves the convenience of block multiconvex optimization.

DC optimization minimizes a function created by subtracting a convex function from a
convex function. This technique has attracted attention because of its ability to promote
sparsity and low-rankness more strongly than convex optimization and thus can develop
various remote sensing data analysis tasks. In fact, DC optimization is beginning to
be used in remote sensing data analysis [93, 210]. In addition, optimization algorithms
for solving DC optimization problems are constructed using several convex optimization
techniques. In short, convex optimization is a fundamental technique for DC optimization.
Therefore, the techniques established by this dissertation can promote the convenience of
DC optimization.

6.2.3 Extension of A Framework to Handle A Wider Range of Analysis
Tasks

This dissertation has not dealt with various types of remote sensing data analysis. In those
analyses, optimization-based methods have been proposed, such as for anomaly detection
in HS images [93,107,112,160], for spatiotemporal fusion of remote sensing images [89,90],
for despeckling of SAR images [19, 172], for motion detection in SAR images [83], for
seismic data recovery [15, 44], and for time-series image analysis [25, 26, 128, 133, 134].
Developing them by taking advantage of the results of this study, in future work, we will
reach the ultimate goal of establishing a remote sensing data analysis framework for a
wider range of analysis tasks. In addition, as proposed in Chapter 5, we will create an
environment to use the knowledge found in the area of analysis tasks can across domains.

6.3 Closing Remarks

We have discussed the limitations of this study and clarified the directions for future works
for the development of remote sensing data analysis. Finally, this dissertation concludes
with a discussion of the implications of this research.

In this paper, we have addressed the fundamental issues lacking in the signal processing
and optimization fields while scrutinizing the demands in the field of remote sensing data
analysis in order to build optimization techniques for remote sensing data analysis. This
results in their mutual development, and thus this research has significantly contributed to
those fields. In addition, it is a milestone in the completion of analysis to obtain important
information from data that is severely degraded due to extreme measurement environment
factors and hardware factors such as performance and defects of measurement equipment.
Therefore, from the perspective of overcoming limitations of the measurement environment
and hardware, the significance of this research is significant.

This research establishes convex optimization techniques that are anticipated to re-
main relevant for the foreseeable future, even amidst ongoing advancements in hardware.
The versatility of these techniques becomes particularly crucial in scenarios involving sig-
nificant data degradation. This degradation often arises due to the evolving nature of
measurement equipment and methods, which are influenced by various factors including
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cost, performance, and the specific needs dictated by different environments and objec-
tives. Let us consider the following situations.

• Take, for instance, stripe noise, a phenomenon addressed in this study. Stripe noise
typically originates from line-scan measurement methods [117], such as whiskbroom
and pushbroom techniques. Although alternative measurement methods exist, each
comes with its own set of advantages and drawbacks, making them suitable for differ-
ent applications [71,193]. Consequently, line-scan methods are expected to remain in
use, underscoring the importance of technology that can effectively mitigate inherent
stripe noise.

• Furthermore, remote sensing data acquisition often requires measurements under
extremely poor conditions, such as low illumination. Even under such harsh con-
ditions, a trade-off between measurement performance and cost is inevitable. As a
result, the acquired data is often contaminated with severe degradation. Techniques
for analyzing the components of such severely degraded data (e.g., the noise-robust
unmixing proposed in Chapter 5) will remain indispensable.

Therefore, the foundational work of this research in developing such technologies will
maintain its significance well into the future.
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Appendix A

Proof of Lemma 4.3.1

Proof. Let r be the rank of A and σ1(A), . . . , σr(A) be the singular values of A. Then,
A can be decomposed as

A = UΣV∗, (A.1)

where U ∈ Rm×r and V ∈ Rn×r satisfy U∗U = I and V∗V = I. Then, we introduce an
r × r unitary matrix W and define B and C as

B = UΣ1−βW∗,C = WΣβV∗, (A.2)

where Σ1−β = diag(σ1(A)1−β, . . . , σr(A)1−β) and Σβ = diag(σ1(A)β, . . . , σr(A)β). It is
clear that A = BC. In turn, we obtain from the definition that

∥Bx∥22 = ∥Σ1−βW∗x∥22
≤ σ1(A)2−2β∥W∗x∥22
= σ1(A)2−2β∥x∥22. (A.3)

Hence

∥B∥op = sup
x ̸=0

∥Bx∥2
∥x∥2

= σ1(A)1−β. (A.4)

Arguing similarly, C satisfies ∥C∥op = σ1(A)β.

□
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