
論文 / 著書情報
Article / Book Information

題目(和文)

Title(English) Robust Predictions with Reservoir Computing

著者(和文) SENNCHRISTOPH

Author(English) Christoph Walter Senn

出典(和文) 学位:博士(工学),
 学位授与機関:東京工業大学,
 報告番号:甲第12704号,
 授与年月日:2024年3月26日,
 学位の種別:課程博士,
 審査員:熊澤 逸夫,山口 雅浩,小尾 高史,篠﨑 隆宏,渡辺 義浩

Citation(English) Degree:Doctor (Engineering),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第12704号,
 Conferred date:2024/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

Robust Predictions with Reservoir
Computing

a dissertation presented
by

ChristophWalter Senn
to

The Department of Information and Communications Engineering

in partial fulfillment of the requirements
for the degree of

Doctor of Engineering
in the subject of

Information and Communications Engineering

Tokyo Institute of Technology
Tokyo, Japan
March 2024

Thesis advisor: Professor Dr. Itsuo Kumazawa ChristophWalter Senn

Robust Predictions with Reservoir Computing

Abstract

Reservoir computing as a computation framework has gained increased attention in
the last few years. Using a fixed, non-linear dynamical system and a simple readout layer
(e.g., a single feed-forward layer) we can map input signals to desired outputs. The aim of
this thesis is to improve the robustness of such systems against noise. First we propose a
new type of reservoir computing systems using conductive fabrics, showing that it is capa-
ble of nonlinear computation and also exhibits memory. Then we show how to apply ab-
stract interpretation on virtual and physical reservoir computing systems using time-series
benchmarks. We also show how robust distributed anomaly detection can be realized and
implemented with field programmable gate arrays. The significance of this work is the im-
provement of robustness using a new regularization term during training, and a method for
distributed predictions, sharing network states.

iii

Contents

1 Introduction 8

2 Reservoir Computing 12
2.1 Recurrent Neural Networks . 13
2.2 Echo State Networks . 16
2.3 Physical Reservoir Computing . 22

3 Abstract Reservoir Computing 37
3.1 Methods . 38
3.2 Experimental Setup . 42
3.3 Results and Discussion . 49
3.4 Conclusion and Outlook . 55

4 SwarmESN 57
4.1 Introduction . 58
4.2 Architectures . 61
4.3 Experimental Setup . 65
4.4 Results and Discussion . 67
4.5 Conclusion and Outlook . 72

5 Conclusion 75

6 Related Publications 78

Appendix A Abstract Reservoir Computing 80
A.1 Supplementary Data . 80

References 98

iv

Dedicated to my grandfather, Walter Fassbind, who always supported
me in my academic endeavors.

v

Acknowledgments

This endeavorwould not have been possible without, Prof. Dr. Itsuo Ku-
mazawa, who always supported me during the years in his laboratory for my master and
doctoral studies. I also could not have undertaken this journey without my defense com-
mittee, who generously provided knowledge and expertise. Additionally, this endeavor
would not have been possible without generous support from the Japanese Ministry of Ed-
ucation, Culture, Sports, Science and Technology, who financed my research.

I am also grateful to CarmenMei-Ling Frischknecht-Gruber, Alexander Blaschek, Valentin
Zahnd and Alain Lang, who as friends always offered moral support during the past few
years. Thanks should also go to Dr. Christian Hilbes, who always had useful insight and
moral support and the rest of the safety-critical systems group at the ZHAW. Special thanks
go to Prof. Dr. Rudolf Füchslin, who during my bachelor degree introduced me to reser-
voir computing.

I would also like to give special thank to Kiba and Yukiko for all the entertainment, emo-
tional support and walks in the fresh air they provided.

Kiba (black coat) and Yukiko (red coat)

vi

Listing of figures

2.1 Schematic of unrolling a recurrent neural network over time, allows to apply

backpropagation to update the parameters as if the network didn’t have any

recurrent connections. As can be seen the output at timestep t depends on timestep

t− n, which can make training a general recurrent neural network difficult. 14

2.2 Schematic visualisation of the robot arm setup in [1]. 24

2.3 The path followed by the robot arm end effector in [1]. The color gradient de-

scribes the evolution through time. Note the perturbations F1 and F2 from which

the system recovered. 25

2.4 Water bucket reservoir from ”Pattern Recognition in a Bucket”[2]. The au-

thors chose the fitting name ”The Liquid Brain”. As can be seen there are two

stimuli, i.e., inputs, that lead to ripples on the surface, which are then used in

the readout. 27

1

2.5 Ripples on the water surface from ”Pattern Recognition in a Bucket”[2]. On

the left we see the response of the liquid brain to an audio recording of a per-

son saying ”zero” and on the right the response to the word ”one”. The rip-

ples were recorded with a camera and fed into a simple perceptron to classify

what word was used as an input. 27

2.6 Tentacle setup fromNakajima et al.[3] licensed under CC BY 4.0. Sensors were

embedded in the body of the tentacle and a single motor acted as an input. The

sensors were fed to a single layer perceptron, i.e., a linear sum, to create the de-

sired output, e.g., a NARMA time-series. 28

2.7 Origami setup from Bhovad and Li [4] licensed under CC BY 4.0. Some creases

were selected as input, and actuated with an input moment, folding or unfold-

ing the crease. The rest of the Origami then reacted, and the angles of the creases

are measured as the reservoir state. 29

2.8 Origami reservoir proof of concept by Bhovad and Li [4] licensed under CC

BY 4.0. The Origami symmetry was broken by adding additional masses at ran-

dom positions. The reservoir was fixed to the actuator, i.e., the system was moved

in the y-direction as input. Then the vertical displacement of the marked ver-

tices was used as reservoir state. 30

2

2.9 Passive 16-node reservoir by Vandoorne et al. [5] licensed under CC BY 4.0.

Light as input is added at the input (black arrow). The light then propagates

through the network following the blue arrows. The red dots were the nodes

used as sensory measurement to measure the reservoir state. 31

2.10 Schematic of a mass-spring network. When a force is applied to one of the masses,

the springs transfers part of the force to neighbouring masses, which makes

the network oscillate based on the input. Using sensors, e.g., elongation sen-

sors along the springs, we can create a representation of the state of the network

that can be used with a simple readout. 32

2.11 Illustration of how our proposed cloth-based reservoir works. The dots rep-

resent the vertices of the cloth inside the simulation. One side of the cloth is

fixed (red), whereas on the opposite side, an input is applied in the form of force

F pulling on the cloth. The cloth dynamics then change the resistance of the

conductive threads, which can be measured and used as the sensor readout of

the reservoir to generate the output y as a weighted sum. To further improve

the performance, the mass of random vertices within the cloth is increased, as

published in [6]. 33

3

2.12 Input-output plots of the NARMA20 task for the last 500 time steps. The

top plot shows the discrete Mackey-Glass time series used as input for the reser-

voirs. In the bottom plots for each cloth with vertices 32×32, 64×64, 128×

128, 192 × 192, and 256 × 256, we have the average output of the system

with non-uniformmass distribution (blue) and uniformmass distribution (or-

ange), with the corresponding ground truth (dashed; black), as published in

[6]. 35

2.13 Average memory capacity with respect to the cloth resolutions used in the sim-

ulation based on 20 trials for each data point. The cloths with non-uniform

mass distribution (blue; triangles) perform significantly better than the cloths

with a uniformmass distribution (orange; rectangles), as published in [6]. . 36

3.1 Visualisation of a mass-spring system as used in the experiments of [7]. The

corner masses in dark blue are fixed, the mass in green acts as an input mass -

receiving the input as a force - the masses in light blue react to the input and

the (nonlinear) springs are represented as black lines. 39

3.2 Depending on the spring constant k, the springs used in the simulation, from

[7], exhibit different force-displacement behavior.. 39

4

3.3 Visualisation from [7] of tolerances that can occur when physically building

a mass-spring network . The light blue circle represents the exact location of

the mass, while the red rectangle indicates the area of potential locations due

to horizontal and vertical displacements. These displacements can change the

dynamic behaviour of the network compared to its simulated version, mak-

ing it hard to transfer learned parameters from the simulation to real-world

systems. 42

3.4 Hénon time-series as used for the experiments from [7]. 44

3.5 NARMA10 time-series as used for the experiments from [7]. 45

3.6 NARMA20 time-series as used for the experiments from [7]. 46

3.7 The average MSE with standard deviations for simulated sensor failures, by

masking some of the sensor readings, for the datasets (a) Hénon, (b) NARMA10

and (c) NARMA20 from [7]. 51

3.8 The average MSE with standard deviations for simulated sensor noise for the

datasets (a) Hénon, (b) NARMA10 and (c) NARMA20 from [7]. Gaussian

noise of the given standard deviation with mean 0 was added to the mass sen-

sor readings. 52

5

3.9 The average MSE for fixed simulated sensor reading displacements for the datasets

(a) Hénon, (b) NARMA10 and (c) NARMA20 from [7]. The values read from

the mass sensor readings were shifted by the given value. 53

3.10 The average MSE for simulated initial mass displacements for the datasets (a)

Hénon, (b) NARMA10 and (c) NARMA20 from [7]. The initial position

of the masses during test was shifted by uniformly sampled noise based on the

amplitude given in the x-axis. 54

4.1 Schematic depiction of the SwarmESN architecture from [8]. The readout

is either a linear sum, a self-attention layer, or a multilayer feed-forward net-

work. 64

4.2 Example time-series of the WESAD dataset we used in our experiments in [8]

after normalization from [8]. 66

4.3 MSE of the architectures using the single-vector representation under noise

from [8]. 68

4.4 MSE of the architectures using the stacked-vector representation under noise

from [8]. 69

4.5 MSE of the architectures using the single-vector representation under packet

loss from [8]. 69

6

4.6 MSE of the architectures using the stacked-vector representation under packet

loss from [8]. 70

4.7 A graphical representation of all the reservoir states for one experiment from

[8] is shown using the single-vector representation and the first two principal

components calculated with PCA. Each of the fourteen reservoirs is represented

by a different color. The states appear to be randomly distributed and resem-

ble a Gaussian distribution. 73

4.8 A graphical representation of the reservoir states of one experiment from [8]

is shown using the stacked-vector representation and the first two principal

components calculated with PCA. Each of the fourteen reservoirs is colored

differently. Over time, the reservoirs tend to converge to different areas of the

latent space, which is in contrast to the single-vector representation. 74

7

1
Introduction

In recent years, reservoir computing has attracted increased interest, especially physical

reservoir computing. Reservoir computing as a computational framework has been pio-

neered by Jaeger [9], Maas [10], and Steil [11] in the early 2000s. It started as a solution to

vanishing and exploding gradients in recurrent neural networks but has since evolved be-

yond artificial neural networks. At its core, we separate the computation into a so-called

8

reservoir, e.g., a recurrent neural network, and a readout layer, usually a weighted sum of

the reservoir state, e.g., the neurons in the case of a recurrent neural network, and only train

the readout layer. In this way, temporal dependencies can be removed from the training

process, as the reservoir dynamics will take care of integrating information over time. An-

other advantage is that the reservoir no longer needs to be a computational construct but

can be any dynamical system, e.g., physical systems in the real world. For this reason, reser-

voir computing has attained more attraction over the last few years, as the complicated non-

linear calculations that previously were done by the recurrent neural network, can be ”out-

sourced” to physical systems, potentially at lower cost, compared to using computers. Thus,

reservoir computing promises to unlock a more sustainable way of computing. A brief in-

troduction to reservoir computing and physical reservoir computing is given in Chapter

2.

To be able to use this framework in actual applications, we need to train the readout

layer. This poses an issue for physical reservoir computing, as no two reservoirs generally

have the exact same dynamics, i.e., it is not always possible to use the same readout layer

amongst different reservoirs, even if they are supposed to be the same, i.e., the same type

of reservoir. Another obstacle is attaining reservoir states for training. Depending on the

application, for example a drone, it might not be feasible to get the necessary readings in a

safe and repeatable manner. As such, numerical simulations are widely used in the scientific

9

reservoir computing community. This comes with the drawback that we cannot capture

nature completely in simulations and, as such, a system trained with simulations is not gen-

erally transferable to the real world. This is also known as the ”sim-to-real” gap, and is heav-

ily explored in the reinforcement learning community [12]. Using a method of software

verification named ”abstract interpretation”[13], we show in Chapter 3, which is based on

[7], how we can make such systems robust against some potential sources of noise when

moving from simulation to the real world. Namely, building tolerances, that is, noise in

initial conditions, and sensor issues, that is, noisy sensors, missing information, and shifted

sensor signals.

But noise does not only affect physical reservoir computing systems; systems based on re-

current neural networks will also have to be able to handle noise, when employed in actual

scenarios. One such scenario is the prediction of the future state of a system, for example,

a facility. Based on this scenario, Chapter 4 explores a distributed approach to inference

with inherent robustness against noise. Different reservoirs are assumed to run on their

own network and being able to communicate their internal state to other reservoirs over

network, with a delay. Using different readout layers and information sharing strategies, we

explore different approaches for distributed inference. Information sharing between reser-

voirs seems to help in dealing with noise, and integration of information over time within

the reservoirs hardens against communication errors between reservoir nodes. In addition,

10

information sharing is shown to be crucial to make predictions about the whole system

state on a single node.

11

2
Reservoir Computing

This chapter introduces the basic notions of reservoir computing for virtual and physical

systems. Starting with general recurrent neural networks, I want to motivate this com-

putation scheme by exploring some shortcomings of recurrent neural networks and how

reservoir computing solves them. Then, by emphasizing their nonlinear dynamical nature,

physical reservoir computing is introduced. Using a mass-spring network, I show how phys-

12

ical systems can be used for computation, and I also introduce other physical systems that

are being used in this manner. The reservoir computing framework was formalized around

the same time by Jaeger [9], Mass andMarkram[10], and Steil[11].

2.1 RecurrentNeural Networks

For our purposes, we define a general recurrent neural network as a dynamical system of

the form shown in Equation 2.1, using a state vector x, representing the neurons of the net-

work often also called the hidden state, an input vector ut, parameters θ and some function

F. In addition, we define a readout as in Equation 2.2, with y representing the output and

some functionG.

xt = F(xt−1, ut; θ) (2.1)

yt = G(xt; θ) (2.2)

In practice we tend to use models of the form as shown in Equations 2.3 and 2.4, the

weight matricesW,Winput andWoutput as well as the biases b and binput are the trainable pa-

rameters (θ in the general model). The activation function ϕ is usually a sigmoidal function,

for example, the hyperbolic tangent or the logistic function, but also the rectified linear unit

and its variations have become popular in recent years [14, 15, 16].

13

Figure 2.1: Schematic of unrolling a recurrent neural network over time, allows to apply backpropagation to update the
parameters as if the network didn’t have any recurrent connections. As can be seen the output at timestep t depends on
timestep t− n, which can make training a general recurrent neural network difficult.

xt = ϕ(Wxt−1 +Winputut + binput + b) (2.3)

yt = Woutputxt (2.4)

The common approach to train this kind of system is backpropagation through time

[17]. By unrolling the system over time, we can apply backpropagation to update the net-

work parameters; this is reflected in Figure 2.1.

To show how this works in detail, let us introduce a loss function as in Equation 2.5

that calculates the mean of the function l, e.g. the mean squared error between the system

output y and the target vector ŷ, up to the time index T and following the derivation of [18]

14

we get the following.

L(y, ŷ;W,Woutput,Winput) =
1
T

T∑
t

l(yt, ŷt) (2.5)

Then we can use the gradient ∂L
∂Woutput

, assuming a linear activation for the outputs as shown

in Equation 2.6.

∂L
∂Woutput

=
1
T

T∑
t

∂l(yt, ŷt)
∂yt

∂yt
∂Woutput

(2.6)

Similarly, the gradient forW is shown in Equation 2.7 and 2.8.

∂L
∂W

=
1
T

T∑
t

∂l(yt, ŷt)
∂W

(2.7)

∂l(yt, ŷt)
∂W

=
t∑
i

∂l(yt, ŷt)
∂xt

∂xt
∂xi

∂xt
∂W

(2.8)

As can be seen, due to the recurrence in our system the gradient forW at a time t de-

pends not only on xt but also on xt−1, xt−2 ... x1, giving us a term for ∂xt
∂xi as shown in Equa-

tion 2.9.

15

∂xt
∂xi

=
∏
i<j≤t

∂xj
∂xj−1

=
∏
i<j≤t

WTdiag(ϕ′(xj−1)) (2.9)

Equation 2.9 elongates with the time interval length T, and similarly to very deep feedfor-

ward networks, the gradient forW can explode or vanish, depending on the spectral radius

ofW and the activation function ϕ, e.g. using tanh as the activation function a spectral

radius of> 1 lead to an exploding gradient and a spectral radius of< 1 will get us a van-

ishing gradient. An in-detail derivation of this claim can be found in [18]. In addition [19]

showed that significant weight changes occur in a recurrent neural network in the output

layer, i.e.,Woutput in Equation 2.4. Thus, training recurrent neural networks is notoriously

difficult, but there are approaches that simplify and stabilize training, such as in the case of

echo state networks [9], or more generally the reservoir computing framework.

2.2 Echo State Networks

2.2.1 Introduction

The general idea of echo state networks, and reservoir computing, is to have a reservoir map-

ping inputs to a high-dimensional nonlinear space, and then have a simple readout layer,

e.g. a weighted sum, creating the desired output. In the case of echo state networks, the

16

reservoir is implemented as a random recurrent neural network.

We first augment Equation 2.3 by adding a leaking factor α, giving us Equation 2.10.

xt = αxt−1 + (1− α)ϕ(Wxt−1 +Winputut + binput + b) (2.10)

In addition, we define the washout time τ ≥ 0. Then to train such a network, we first

drive it with the input signal u and record the state vector x for each time step t > τ, giving

us a state matrix X as defined in Equation 2.11.

X =

xτ+

xτ+2

...

xT

(2.11)

Together with the target signal ŷwe get the linear system as in Equation 2.12, which we

can solve forWoutput.

17

ŷ = XWoutput (2.12)

Usually, this is done using ridge regression [20] giving us a regularized ordinary least

squares estimator as in Equation 2.13 with a ridge parameter λ ≥ 0. Naturally, other op-

timization techniques such as recursive least squares [21] or gradient descent are also used,

depending on the application.

Woutput = (XTX+ λI)−1XTŷ (2.13)

Then when we want to perform inference, also called exploitation in the reservoir com-

puting community, we update the reservoir states xt as in Equation 2.10 and then use Equa-

tion 2.14 to create the output yt.

yt = Woutputxt (2.14)

Equations 2.10 and 2.14 together with an external input ut are sometimes also referred

18

to as open loop. Rewriting the exploit phase in the form of 2.15, by replacing ut with the

previous output yt−1, gives us a closed loop. Adding this feedback loop allows for generative

processes, e.g., signal/waveform generation or solving certain control problems.

xt = αxt−1 + (1− α)ϕ(Wxt−1 +Winputyt−1 + binput + b) (2.15)

yt = Woutputxt (2.16)

2.2.2 Why TheyWork

An intuitive understanding of why reservoir computing and in particular echo state net-

works works can be gained by considering a generalization of the Weierstrass approximation

theorem[22], the Stone–Weierstrass theorem[23]. TheWeierstrass approximation theo-

rem states that any sufficient well-behaving function, i.e., continuous functions, defined

in a closed interval [a, b] can be approximated by a polynomial to any degree. The Stone–

Weierstrass theorem, applied to our purposes, extends this to continuous functions from

polynomials, that is, for any function h, we can find functions f1, f2, ..., fi and g1, g2, ..., gi,

so that ||h−
∑

i figi|| ≤ ε, for some weights wi and some ε > 0. To link this with echo state

networks, we consider the output of a single neuron as fi, i.e., a time-dependent nonlinear

function, the functions of the form gi can be rewritten to constant functions wi ∈ Woutput,

19

i.e., the output weights of the readout layer, and finally h is our target filter or time series ŷ.

Thus, echo state networks, and through association reservoir computing, can be thought of

as a general approximator framework for nonlinear filters. For more theoretical insights, I

refer to Maas andMarkram [10].

As physics puts an upper limit on how big a neural network is, i.e., howmany neurons

it can have, to still be feasible to compute with, we cannot approximate any functions arbi-

trarily. In fact the memory of an echo state network is bounded by the number of neurons

[24], at least in an open loop setup. By adding a feedback loop, we can bypass this limita-

tion by introducing attractors that act as memory states [25].

2.2.3 Properties and Tuning

One of the core properties of an echo state network is the so-called ”echo state” first defined

by the Jaeger in 2001 [9] and revisited in [26]. It refers to the asymptotic behavior of the

reservoir states. It allows the reservoir to forget or wash out past information; i.e., it damp-

ens the reservoir dynamics. To achieve the echo state property, the spectral radius σ of the

weight matrixW, is tuned. Independent of the input, the echo state property is attained

for σ(W) < 1; and when also considering input values greater than 1 are also permissible.

The relations between input and echo state properties have been further explored in [27].

The echo state directly being dependent on σW, the spectral radius is one of the first things

to tune an echo state network for a given task. Generally, one tries to maximize it while still

20

maintaining stable reservoir dynamics. This maximizes the computational capability of

echo state networks [28].

At first, it was believed that connectivity or rather sparsity of the recurrent neural net-

work also has an influence on the capabilities by providing relative decoupling of subnet-

works, enriching the reservoir dynamics [9]. But empirical results point towards no effect

on the performance of echo state networks - despite that, sparse networks can still be prefer-

able for a more optimal usage of computational resources, e.g., by allowing the usage of

more optimized matrix multiplication algorithms.

A third parameter to scale is the input scaling, often denoted as ε, similar to the spectral

radius σ, this scaling also has an influence on the reservoir dynamics. Very small values for

ε can lead to a linearized reservoir, i.e. the inputs lead to such small changes in the reservoir

neurons that it behaves linearly, similar to numerical differentiation. Large values, on the

other hand, can lead to a binarized reservoir if a sigmoidal action function is used, that is,

the changes in the neurons become so large that the function saturates; for example, we

would only get 0s and 1s when using the logistic activation function.

21

2.3 Physical Reservoir Computing

2.3.1 Introduction

One big advantage of the reservoir computing framework is that it transcends the virtual

world. As recurrent neural networks are, in principle, discrete dynamical systems, we can

translate the reservoir computing framework to the physical world with a few steps.

Starting with Equation 2.10, we first replace the activation function with a general func-

tion f to get Equation 2.17.

xt = αxt−1 + (1− α)f(xt−1, ut;W,Winput) (2.17)

Ignoring the leaking factor α and examining the equation we can see that f(xt−1, ut;W,Winput)

is essentially Δx, giving us a discrete dynamical system as in Equation 2.18.

Δx = f(xt−1, ut;W,Winput) (2.18)

By extension, we also get the general continuous dynamical system by considering ∂x
∂t

instead of Δx, giving us a link to physical dynamical systems. Unfortunately, generally it is

22

not always feasible or very difficult to adjust the parameters, i.e. W and/orWinput, of our

system during training, making recurrent neural network like training difficult or even im-

possible. For example, we might want to use a compliant material as a reservoir to control

a robot where the actuators act as the output and input to our system [29], effectively out-

sourcing part of the control to body, also known as morphological computing [30]. As

the material properties are fixed and cannot be changed dynamically, we cannot use a back-

propagation-through-time analogue for the physical world. What we can instead do is add

some sensors to our compliant body, acting as a surrogate for the state x of the compliant

body. We can then sample, as in echo state training, these states while forcing the actuators

with a teaching signal, i.e., desired control signals, combine them into our matrix X and

solve the system described in Equation 2.13. The calculated weightsWoutput can then be

used with a small microprocessor to efficiently generate a control signal for the actuators.

Such a system can, for example, be used to control a robot arm, as has been shown numer-

ically by Bernhardsgrütter andMyself [1]. We attached a virtual mass spring system to the

robot arm, as in Figure 2.2. This network simulated a compliant material, and we used the

mass accelerations as sensor readings. The robot end effector was then forced to follow a

circular path using precalculated actuator control signals, while the sensor readings were

recorded. The actuator teaching signals acted as the training target, giving us sets of weights

for each actuator. As can be seen in Figure 2.3, the robot then successfully recreated the

23

A

TA

y

x

fixed mass
input mass
mass

end effector
non-linear spring

A actuators
trajectory

Figure 2.2: Schematic visualisation of the robot arm setup in [1].

circle and even recovered after external perturbations were applied.

2.3.2 Applications

The promise of physical reservoir computing is to enable state-of-the-art computation

while requiring limited computational resources in the form of computers. This is done

by outsourcing the difficult, non-linear part of the computation to nature itself, the phys-

ical reservoir. This also provides free multiprocessing, as one reservoir can be combined

with different readouts for different tasks. As readout we can use any kind of computer,

e.g., spanning from a microcontroller like an Arduino [31] to more powerful workstations.

On the reservoir side, we can let our imagination run wild. In the following, we will explore

some of the more interesting or creative variants.

24

Figure 2.3: The path followed by the robot arm end effector in [1]. The color gradient describes the evolution through
time. Note the perturbations F1 and F2 from which the system recovered.

25

Chrisantha Fernando and Sampsa Sojakka used a bucket of water, which they coined

”The Liquid Brain” in 2003 as a reservoir [2]. The bucket had two stimuli as input, as

shown in Figure 2.4. As input audio recordings of the words ”zero” and ”one” were used,

after preparing their waveforms with Fourier transforms to be suitable as input for the mo-

tors that were attached to the Lego contraption. To read the state of the reservoir, a camera

was pointed at the surface, and with some filtering and optimal lightning they got images of

the form shown in Figure 2.5. The pixels were then fed into a simple perceptron, giving the

classification of the waveform, ”zero” or ”one”.

Around 2015, Najakima et al. [3] used an artificial tentacle, made of a compliant ma-

terial as a reservoir. Figure 2.6 shows how a tentacle with embedded sensors and a linear

readout can be used to approximate a desired signal*. They managed to approximate dif-

ferent time series with this setup, e.g., different non-linear NARMA time-series, and also

showed that the non-linear dynamics of the reservoir are necessary to attain their results, i.e.,

a simple linear combination of the input signal was not enough to approximate their target

signal as well as when the reservoir states were used.

Bhovad and Li [4], used Origami structures made of paper to create a reservoir. Their

structure of choice was the Miura-Ori fold[32] in numerical simulations but also in a real-

world proof of concept setup. In their simulations, illustrated in Figure 2.7 they randomly

selected some creases as inputs and applied some moment on them, folding/unfolding

*There is also a video available under: https://www.youtube.com/watch?v=rUVAWQ7cvPg

26

https://www.youtube.com/watch?v=rUVAWQ7cvPg

Figure 2.4: Water bucket reservoir from ”Pattern Recognition in a Bucket”[2]. The authors chose the fitting name ”The
Liquid Brain”. As can be seen there are two stimuli, i.e., inputs, that lead to ripples on the surface, which are then used in
the readout.

Figure 2.5: Ripples on the water surface from ”Pattern Recognition in a Bucket”[2]. On the left we see the response of
the liquid brain to an audio recording of a person saying ”zero” and on the right the response to the word ”one”. The
ripples were recorded with a camera and fed into a simple perceptron to classify what word was used as an input.

27

Figure 2.6: Tentacle setup from Nakajima et al.[3] licensed under CC BY 4.0. Sensors were embedded in the body of
the tentacle and a single motor acted as an input. The sensors were fed to a single layer perceptron, i.e., a linear sum, to
create the desired output, e.g., a NARMA time‐series.

28

https://creativecommons.org/licenses/by/4.0/

Figure 2.7: Origami setup from Bhovad and Li [4] licensed under CC BY 4.0. Some creases were selected as input, and
actuated with an input moment, folding or unfolding the crease. The rest of the Origami then reacted, and the angles of
the creases are measured as the reservoir state.

the crease. The whole structure then reacted and the crease angles of the folds could then

be used as a reservoir state for further computation. In the case of a closed-loop setup,

some creases were selected as additional feedback creases. They then also created an actual

Origami reservoir, shown in Figure 2.8, made of think paper. Instead of actuating single

folds, they opted for an excitation of the whole system, by placing the reservoir on a plate

that could be actuated. To further break symmetries in the reservoir masses were added at

random positions. After exciting the reservoir the vertical displacement of the coloured

vertices could be recorded with a camera and used to create the desired output.

One very promising branch of physical reservoir computing is the use of light, so-called

photonic reservoir computing [33, 34]. There are currently multiple types of reservoir, e.g.,

silicon photonics networks. Using optical waveguids, splitters, and combiners, photonic

29

https://creativecommons.org/licenses/by/4.0/

Figure 2.8: Origami reservoir proof of concept by Bhovad and Li [4] licensed under CC BY 4.0. The Origami symmetry
was broken by adding additional masses at random positions. The reservoir was fixed to the actuator, i.e., the system
was moved in the y‐direction as input. Then the vertical displacement of the marked vertices was used as reservoir
state.

30

https://creativecommons.org/licenses/by/4.0/

Figure 2.9: Passive 16‐node reservoir by Vandoorne et al. [5] licensed under CC BY 4.0. Light as input is added at the
input (black arrow). The light then propagates through the network following the blue arrows. The red dots were the
nodes used as sensory measurement to measure the reservoir state.

networks can be created (see Figure 2.9)[5]. Vandoorne et al. created a small chip with pas-

sive elements through which the light would propagate when added at the input. Nonlin-

earities were then added at the readout stage, and the authors were successful in solving

Boolean operations and digit recognition. A big advantage is the time scale of the network,

as it mostly depends on the optical delay, which would allow one to perform Boolean oper-

ations at the speed of several 100s ofGbit−1.

A final class of reservoirs I want to introduce is mass-spring networks [1, 35, 36, 37],

as these systems can act as a general model for different types of materials, most notably

compliant materials. Mass-springs systems are networks of masses interconnected with

(non-linear) springs. We can exploit such networks for computation by encoding our input

31

https://creativecommons.org/licenses/by/4.0/

Figure 2.10: Schematic of a mass‐spring network. When a force is applied to one of the masses, the springs transfers
part of the force to neighbouring masses, which makes the network oscillate based on the input. Using sensors, e.g.,
elongation sensors along the springs, we can create a representation of the state of the network that can be used with a
simple readout.

32

F

Fixed Vertices

R

C

Σ y

Figure 2.11: Illustration of how our proposed cloth‐based reservoir works. The dots represent the vertices of the cloth
inside the simulation. One side of the cloth is fixed (red), whereas on the opposite side, an input is applied in the form
of force F pulling on the cloth. The cloth dynamics then change the resistance of the conductive threads, which can
be measured and used as the sensor readout of the reservoir to generate the output y as a weighted sum. To further
improve the performance, the mass of random vertices within the cloth is increased, as published in [6].

signal as a force vector and applying it to the network, either to a single mass or to the entire

system; this is illustrated in Figure 2.10. The big advantage of this kind of computational

model is that it is universal to some degree, i.e. applicable to a wide range of problems. For

example, mass-spring networks are highly used in the numerical simulation of textiles [38,

39, 40], soft-body dynamics [41, 42] or even biological tissue [43]. Chapter 3 is heavily

based on mass-spring networks.

Due to their relationship with fabrics in [6], I explored the applicability of conductive

fabrics for nonlinear computation and examined their memory capabilities. By attaching

probes to measure the resistance along two opposing edges of the cloth, we can build a sim-

33

ple reservoir computing system, by exploiting the change of resistance when the piece of

cloth deforms due to applied forces. This setup is depicted in Figure 2.11. The nonlinear

computation capabilities were explored using a NARMA20 timeseries, as seen in Equation

??with inputs u(t) based on aMackey-Glass timeseries, shown in Equation 2.20. The sys-

tem was trained to predict the NARMA20 timeseries y(t)with u(t) being the input force

applied to the fabric.

yt = tanh(0.3yt−1 + 0.05yt−1(
20∑
i

yt−i) + 1.5ut−20ut + 0.1) (2.19)

ut = 0.9ut−1 +
0.2ut−24

0.8+ u0.9t−24
(2.20)

To further improve the dynamics of the cloth, random vertices in its discresitazion had

their weight increased. Figure shows the input and outputs of cloths with different size,

and with uniform and nonuniformmass distribution. As can be seen, breaking symmetries

by adding additional weight at random positions seems to be a key ingredient, to make the

system work to its full potential.

I then further investigated the memory capacity (MC) of such a system, based on the

squared correlation coefficient, as described in Equation 2.21. TheMC is a measurement

for how long information can be retained within the system, by driving the system with an

34

0.5

1.0

1.5

In
pu

t

0.90

0.95

1.00

32
×
32

0.90

0.95

1.00

64
×
64

0.90

0.95

1.00

12
8×

12
8

0.90

0.95

1.00

19
2×

19
2

4500 4600 4700 4800 4900 5000
t

0.90

0.95

1.00

25
6×

25
6

Figure 2.12: Input‐output plots of the NARMA20 task for the last 500 time steps. The top plot shows the discrete
Mackey‐Glass time series used as input for the reservoirs. In the bottom plots for each cloth with vertices 32 × 32,
64 × 64, 128 × 128, 192 × 192, and 256 × 256, we have the average output of the system with non‐uniform
mass distribution (blue) and uniform mass distribution (orange), with the corresponding ground truth (dashed; black), as
published in [6].

35

32 64 128 192 256
Cloth Resolution

3

4

5

6

7

8

9

M
C

non-uniform mass distribution
uniform mass distribution

Figure 2.13: Average memory capacity with respect to the cloth resolutions used in the simulation based on 20 trials
for each data point. The cloths with non‐uniform mass distribution (blue; triangles) perform significantly better than the
cloths with a uniform mass distribution (orange; rectangles), as published in [6].

input y and train the system to reproduce the input lagged by τ timesteps.

MC =
100∑
τ=1

cov2(ŷ, yτ)
σ2ŷσ2yτ

(2.21)

As can be seen in Figure 2.13, using a nonuniformmass distribution again improves the

performance, and puts it in the range of echo state networks with roughly ten neurons.

36

3
Abstract Reservoir Computing

This chapter is based on the publication ”Abstract Reservoir Computing”[7] by Senn and

Kumazawa. Based on mass-spring networks as introduced in Chapter 2 we introduce a

training regime that in theory allows the translation of weights learned from simulations

to systems in the real world. In general, this is not always possible as there is always a differ-

ence between simulated worlds and the real world, also known as the Sim2Real gap. Using

37

ideas from abstract interpretation[13], we build a training framework capable of capturing

differences in initial conditions, for example, created by changes in mass placements due

to building tolerances; this is introduced in Section 3.1. Numerical simulations of differ-

ent possible sources of errors support our findings, as shown in Sections 3.2 and 3.3. Some

further extensions are then discussed in 3.4

3.1 Methods

When physically building mass-spring systems, as introduced in Chapter 2, we have to deal

with tolerances due to imperfections in the creation process. Therefore, the initial position

of the masses will divert from the positions assumed in the simulation, this is visualized in

Figure 3.3. But depending on the application, numerical simulations are inevitable; think

of systems that work in difficult-to-access environments, where a loss can be potentially

hazardous or expensive, or where building is time and cost consuming. Although such nu-

merical simulations have improved in fidelity, it is not possible to accurately represent all

facets of physical systems in simulated environments. This in part leads to a gap between

simulations and reality, also called the sim2real gap.

38

Figure 3.1: Visualisation of a mass‐spring system as used in the experiments of [7]. The corner masses in dark blue are
fixed, the mass in green acts as an input mass ‐ receiving the input as a force ‐ the masses in light blue react to the input
and the (nonlinear) springs are represented as black lines.

Figure 3.2: Depending on the spring constant k, the springs used in the simulation, from [7], exhibit different force‐
displacement behavior..

39

We can formalize this problem in the form of local robustness as in Equation 3.1 for a

point x0 ∈ Rd, tolerances δ and δtarget, a distance function and some function f, e.g., a

neural network or a physical system like a mass-spring network. In short, given two points

within a distance of δ from each other, we want the output of the function f of both points

to be within our target tolerance δtarget.

∀x ∈ Rd.|x− x0| ≤ δ ⇒ |f(x)− f(x0)| ≤ δtarget, d ∈ N, δ ∈ R+ (3.1)

We can begin to address this issue by replacing each component pi of the location vector

p of a mass with an interval or ball of the form (pi,center, pi,radius), which represents the poten-

tial positions of the mass (red rectangle in Figure 3.3). This abstraction can then be used

directly in the simulation using ball arithmetic [44, 45]. Instead of concrete numbers for

our states xt, we will have state tuples of the form (xt,centre, xt,radius), which we can collect in

the matrices Xc and Xr, respectively. In [46] we proposed to use the additional information

as constraints for the linear regression and to employ a splitting conic solver [47] to solve:

argmin
w

∥Xcw− yc∥

s.t. |w|Xr ≤ yr.

(3.2)

This approach has the benefit of providing exact upper error bounds encoded in yradius,

40

which signify the maximum allowed divergence from the concrete solution given as ycentre.

However, the use of a solver significantly reduces the speed of training. By removing the

need for an upper error bound, we can reformulate Equation 3.2 as follows:

argmin
w

∥Xcw− yc∥2 + ∥Xrw∥2, (3.3)

Reformulating this as the cost function L allows us to derive a closed form solution as

shown in Equations 3.4 and 3.5:

L = (Xcw− yc)2 + (Xrw)2

dL
dw

= 2XT
c Xcw− X2

c yc + 2XT
r Xrw

(3.4)

, then setting the derivative dL
dw equal to 0 we can solve for w:

0 = 2XT
c Xcw− X2

c yc + 2XT
r Xrw

w = (XT
c Xc + XT

r Xr)
−1XT

c y
(3.5)

By substituting Equation 3.5 for Equation 3.2, we can achieve a considerable increase in

speed, albeit at the cost of sacrificing guarantees of error bounds.

41

Figure 3.3: Visualisation from [7] of tolerances that can occur when physically building a mass‐spring network . The light
blue circle represents the exact location of the mass, while the red rectangle indicates the area of potential locations
due to horizontal and vertical displacements. These displacements can change the dynamic behaviour of the network
compared to its simulated version, making it hard to transfer learned parameters from the simulation to real‐world
systems.

3.2 Experimental Setup

We evaluated our proposed approach by running a numerical simulation of a mass-spring

network using Julia 1.5 [48]. We tested it with three datasets in both open- and closed-loop

setups for different types of error. The benchmark datasets were the same as those used by

Goudarzi et al. [49]. We precomputed them for 5000 time steps and then repeated each

point in each time series 5 times, resulting in a time series with 15′000 data points. We then

split them into a training and testing set. The training set consisted of the first 10′000 time

steps, while the remaining 5′000 time steps were used for the testing set.

42

3.2.1 Mass-SpringNetwork

We use a mass-spring network as depicted in Figure 3.1 and introduced in the previous

Chapter 2. The masses are initially arranged in a regular grid and then slightly shifted with

a value Δp ∈ U 2(−0.25, 0.25). Non-linear springs are then used to connect each mass to

its 8-neighbourhood, as described in Equation 3.6. Figure 3.1 shows this setup. The four

corner masses (blue) are fixed, whereas the input signal is applied as a force to a single input

mass (green). The acceleration of each mass in the network is used as a sensor reading.

For the connections between the masses we use nonlinear springs exhibiting a spring

force of the following shown in Equation 3.6

f(Δl) = tanh(−kΔl), (3.6)

Δl being the spring displacement and k the spring constant. This emulates a compliant,

elastic material with a force-displacement curve as shown in Figure 3.2.

To exploit such a system for computation, the input signal u is translated to a force f and

applied to predetermined input masses (green in Figure 3.1). The network then starts to

oscillate accordingly, and we can record the mass accelerations as the state x and use it to

calculate the readout weights, as introduced in Chapter 2.

43

3.2.2 Hénon Time-Series

The Hénon time-series is based on the Hénon map introduced in 1976 [50]. Equation 3.7

was used to compute the time series.

yt = 1− 1.4y2t−1 + 0.3yt−2 +N (0, 0.001) (3.7)

The Hénon time-series as used in the experiments is shown in Figure 3.6.

Figure 3.4: Hénon time‐series as used for the experiments from [7].

44

3.2.3 NARMA10 Time-Series

NARMA10 is a widely used benchmark in the reservoir computing community. It is a non-

linear autoregressive moving average task and is expressed as follows:

yt = 0.3yt−1 + 0.05yt−1

10∑
i=1

yt−i + 1.5ut−10ut−1 + 0.1 (3.8)

with ut ∈ U(0, 0.5) being drawn from a uniform distribution.

The NARMA10 time series used in the experiments is shown in Figure 3.5.

Figure 3.5: NARMA10 time‐series as used for the experiments from [7].

45

3.2.4 NARMA20 Time-Series

The NARMA20 task is similar to the NARMA10, but with a longer time dependence and

an extra nonlinearity.

yt = tanh(0.3yt−1 + 0.05yt−1

20∑
i=1

yt−i + 1.5ut−20ut−1 + 0.1) (3.9)

The NARMA20 time series used in the experiments is shown in Figure 3.6.

Figure 3.6: NARMA20 time‐series as used for the experiments from [7].

3.2.5 Baselines

We compared the results of our proposed approach to the following two baselines:

46

• Training with ridge regression (classical model)

• Training with linear regression and added noise (noise model)

The sensor readings from the training simulation, xτ+1, .., xT, are used to train the classical

model with Equation 3.10 and the noise model is trained with Equation 3.11 with ε set to

the magnitude of the current error parameter.

X =

xτ+1

xτ+2

...

xT

w = (XTX+ 0.001I)−1XTy (3.10)

47

X =

xτ+1

xτ+2

...

xT

w = (X+ U(−ε, ε))†y (3.11)

3.2.6 Sensor Augmentations

We examined each model under various types of errors that could occur in a real world situ-

ation.

• Sensor Malfunction

– Before testing, a certain number of masses were randomly chosen with a given

probability p and their readings were set to 0 during the testing.

• Sensor Noise

– Gaussian noise with a mean of 0 and a varying standard deviation σwas added

during the testing.

• Fixed Sensor Displacement

48

– Sensor readings were shifted by a fixed value z.

• Mass Position Displacement

– The mass positions were randomly shifted by a random vector Δx ∈ [−k; k]2.

Each potential source of error was tested separately from the other sources. The parameter

ranges are listed in Table 3.1.

Table 3.1: The parameter ranges used for each type of simulated error from [7].

Augmentation Parameter Range

Sensor Failure p [0, 0.1]

Sensor Noise σ [0, 0.1]

Fixed Sensor Displacement z [0, 0.1]

Mass Position Displacement k [0, 0.1]

3.3 Results andDiscussion

We calculated the mean squared error (MSE) between the generated outputs ŷ by the sys-

tem and the values y in the test sets for each experiment. Figures 3.7 - 3.10 show that our

proposed approach outperforms the classical approach in terms of MSE in all experiments.

At high noise levels, it either surpasses or performs equally to our proposed training regime

49

compared to the training regime with noise. Detailed numbers can be found in the Ap-

pendix in Tables A.1 - A.4.

MSE =
1
N

N∑
i

(yi − ŷi)2 (3.12)

When looking at the results when no noise is present in the input, our proposed sur-

passes both baselines in any case. This can indicate that the abstract regulariser is generally

the better choice than L2-regularisation. Considering the results of the experiments with

noise present, our proposed approach gives more consistent results over the whole spec-

trum of noise amplitudes, except for sensor failures, i.e., missing sensor readings. In this

case, both baselines also perform poorly.

One reason for the better performance, even without noise present, is the fact that ball

arithmetic [44] as used in the experiments also captures numerical imprecisions. This can

be compared to adding noise to the system, and thus help against overfitting. Looking at

the standard deviations of the results (Tables A.1 - A.4), we see that the abstract training

regime leads to fewer variations on the output, indicating that our approach is more robust

against randomness.

50

(a)MSE for simulated sensor failures, i.e., the sensor readings were masked, with probability given by the x‐axis for the
Hénon dataset from [7].

(b)MSE for simulated sensor failures, i.e., the sensor readings were masked, with probability given by the x‐axis for the
NARMA10 dataset from [7].

(c)MSE for simulated sensor failures, i.e., the sensor readings were masked, with probability given by the x‐axis for the
NARMA20 dataset.

Figure 3.7: The average MSE with standard deviations for simulated sensor failures, by masking some of the sensor
readings, for the datasets (a) Hénon, (b) NARMA10 and (c) NARMA20 from [7].

51

(a)MSE for simulated sensor noise with the standard deviation given by the x‐axis for the Hénon dataset from [7].

(b)MSE for simulated sensor noise with the standard deviation given by the x‐axis for the NARMA10 dataset from [7].

(c)MSE for simulated sensor noise with the standard deviation given by the x‐axis for the NARMA20 dataset from [7].

Figure 3.8: The average MSE with standard deviations for simulated sensor noise for the datasets (a) Hénon, (b)
NARMA10 and (c) NARMA20 from [7]. Gaussian noise of the given standard deviation with mean 0 was added to the
mass sensor readings.

52

(a)MSE for fixed simulated sensor perturbation with the amplitude given by the x‐axis for the Hénon dataset from [7].

(b)MSE for fixed simulated sensor perturbation with the value given by the x‐axis for the NARMA10 dataset from [7].

(c)MSE for fixed simulated sensor perturbation with the value given by the x‐axis for the NARMA20 dataset from [7].

Figure 3.9: The average MSE for fixed simulated sensor reading displacements for the datasets (a) Hénon, (b) NARMA10
and (c) NARMA20 from [7]. The values read from the mass sensor readings were shifted by the given value.

53

(a)MSE for simulated initial mass displacement with the amplitude given by the x‐axis for the Hénon dataset from [7].

(b)MSE for simulated initial mass displacement with the amplitude given by the x‐axis for the NARMA10 dataset from
[7].

(c)MSE for simulated initial mass displacement with the amplitude given by the x‐axis for the NARMA20 dataset from
[7].

Figure 3.10: The average MSE for simulated initial mass displacements for the datasets (a) Hénon, (b) NARMA10 and (c)
NARMA20 from [7]. The initial position of the masses during test was shifted by uniformly sampled noise based on the
amplitude given in the x‐axis.

54

3.4 Conclusion andOutlook

Although physical reservoir computing systems are becoming increasingly important,

there has been limited research into transferring trained systems from simulation to the

real world. We proposed a new training regime based on abstract interpretation to address

potential issues such as building tolerances, sensor defects, and noise. We verified our ap-

proach in a series of simulated experiments, which showed that our abstract regularizer

achieved lower error rates than the classical approach with L2 regularization. This is likely

due to the interval arithmetic used in our experiments. When noise was added, the differ-

ence between the two approaches became even more pronounced. Interestingly, the train-

ing regime with added noise became better the more noise was added. Therefore, in settings

with high noise amplitudes, this approach appears to be the better choice.

For future research, we can compare a physical reservoir computing system in simula-

tions and in real life, such as those based on textiles, which are similar to the mass-spring

systems used in experiments. Additionally, we can explore the type of noise captured by

the abstraction. Currently, we only consider uniformly distributed abstractions, but many

problems in nature are normally distributed. Having the ability to use different distribu-

tions for the abstractions would give us the ability to customize the training regime to the

specific problem. Both of these directions will make physical reservoir computing more ac-

cessible, as it will enable rapid iterations in simulations and a direct transfer of results to the

55

real world.

56

4
SwarmESN

This chapter is based on the publication ”SwarmESN for Robust Distributed Reservoir

Computing”[8]. Using echo state networks, introduced in Chapter 2, we introduce a de-

centralized system that is capable of distributed inference, that is, each echo state network

node is capable of inferring information about the global state based on its local informa-

tion and information it received from other nodes. We show the applicability of this ap-

57

proach using numerical experiments.

Based on mass-spring networks as introduced in Chapter 2 we introduce a training

regime that, in theory, allows the translation of weights learned from simulations to sys-

tems in the real world. In general, this is not always possible as there is always a difference

between simulated worlds and the real world, also known as the Sim2Real gap. Using ideas

from abstract interpretation[13], we build a training framework capable of capturing dif-

ferences in initial conditions, for example, created by changes in mass placements due to

building tolerances; this is introduced in Section 3.1. Numerical simulations of different

possible sources of errors support our findings, as shown in Sections 3.2 and 3.3. Some fur-

ther extensions are then discussed in 3.4

4.1 Introduction

Neural networks have found their way into many facilities in various forms. Whether pre-

dictive maintenance [51, 52], intrusion detection [53, 54], quality control [55], fault detec-

tion [56]. Being able to analyze nonlinear correlations and/or get a peak of the future, based

on numerous sensor readings, is an integral part of modern facilities [57]. Typically, these

sensor readings are transferred to a central system where they are processed. As the number

of sensors and therefore the amount of data they generate can get big, particularly consid-

ering the Internet of Things or specialized research facilities such as accelerators, it is not al-

58

ways feasible to first move the data to a centralized storage to be processed. Especially when

real-time constraints are to be considered. Thus, efforts are being made to move this com-

putation closer to where the data is generated [58], helping not only to reduce bandwidth

and latency but also to improve resilience, since the computation is spread over multiple

devices instead of a single point of failure.

Handling such distributed decision-making can still be challenging, with many proposed

methods going in different directions. Moustafa, et al. [59] used an ensemble of Gaussian

mixture models with a correntropy technique to detect cyberattacks in edge networks. Li,

et al. [60] partitioned deep neural networks and placed the partitions on different devices

for computation. This allows for an efficient use of computational resources but also intro-

duces dependencies between the partitions, limiting the parallelism of the whole process.

Stahl, et al. [61] showed that model partitioning and layer fusion can be used to run even

demanding models such as YOLOv2 [62] can be run on edge devices with little memory if

distributed accordingly.

One big issue with distributed systems is the uncertainty of the medium used to trans-

port information, e.g., packet loss of 1% − 2% is still considered acceptable with stream-

ing on the Internet, but depending on the environment used medium and protocol, the

number can be bigger or smaller. As such, a distributed system should also be able to work

under various levels of packet loss if used on edge devices.

59

A common technique to counter packet loss is retransmission. This is implemented in

the TCP/IP protocol [63], but distributed learning approaches also implement this ap-

proach. For example, Sapio et al. [64] used retransmission to ensure that all gradient up-

dates are aggregated and propagated correctly. This makes sense for training, as offline

training is the norm, as we usually don’t have any time constraints on how long one pa-

rameter update step can take, and being complete is more important. For inference, on the

other hand, e.g., when trying to detect anomalies that require the shutdown of a facility,

we might have strong real-time constraints, and cannot rely on the packet retransmission as

this would introduce additional delays.

In addition, other possible causes for errors are misconfigurations, e.g., a sensor con-

nected to the wrong inlet, or changes in the environment, e.g., sensors are moved around

and plugged into different devices. In such cases, it is beneficial to have a system that is in-

variant to such changes.

Regarding cheap and robust computation, reservoir computing [65, 66] has gained more

attention in recent years. By combining a dynamical system, such as a recurrent neural net-

work [9, 10, 11], with a simple readout layer, we can get a universal approximator [67, 68].

Since the dynamical system does not have to be a neural network, we can implement such

a system relatively cheaply in an FPGA or even use a physical system [65, 66, 69]. Further-

more, when properly trained, such systems can encode limit cycles and are thus inherently

60

resistant to perturbations [70].

Our proposed architecture is able to create local predictions with partial information

about the global state, e.g., in case of packet loss, hardware failure, misconfiguration, etc.

Although still lightweight enough to work on hardware with limited capabilities due to the

use of the reservoir computing scheme [9, 49]. In addition, we show that the addition of

a self-attention layer as the readout layer greatly improves the predictive capability, even in

environments with high packet loss.

4.2 Architectures

We conducted an experiment to compare four different architectures in a distributed set-

ting. We began with classical echo state networks [9] introduced in Chapter 2 that did not

share any internal states, yet still attempted to forecast the global state, i.e., nonlocal out-

puts. We then tested echo state networks with time-delayed shared states but a classical

readout layer. We followed this with a version that had a self-attention readout layer. Lastly,

we used a feed-forward network as a baseline to create the output.

4.2.1 SwarmESNwith linear readout

Our architecture is based on echo state networks, with the addition of internal states shared

between each reservoir, as depicted in Figure 4.1 with a linear sum as readout. This concept

allows for local information to be incorporated into the reservoir states and blended with

61

the states of other reservoirs. Consequently, each reservoir will gain knowledge about the

global state over time.

We propose two distinct methods for combining global information. The first is to in-

clude external states in the reservoir state vector x⃗, as seen in equation (4.1), which we refer

to as the ’single-vector’ approach. The second is to keep track of it in a separate reservoir z⃗,

as seen in equation (4.2), which we call the ’stacked-vector’ variant, since the readout com-

bines the local and ’global’ vector.

We compute the global information vector λ⃗ in both cases, lagging behind by τ time-

steps. For the ’single-vector’ variant, we mix λ⃗ directly with the reservoir state x⃗ as expressed

in (4.1) using the randomly initialized matrixW2. Alternatively, we mix λ⃗with the existing

state z⃗ as in (4.2).

x⃗(i)t+1 = α⃗x(i)t + (1− α)tanh(Winputu⃗(i)t +Wx⃗(i)t +W2λ⃗t−τ)

λ⃗t−τ = vec({⃗x(j)t−τ, j ̸= i}) (4.1)

62

x⃗(i)t+1 = α⃗x(i)t + (1− α)tanh(Winputu⃗(i)t +Wx⃗(i)t)

z⃗(i)t+1 = tanh(Wz⃗(i)t +W2λ⃗t−τ)

λ⃗t−τ = vec({⃗x(j)t−τ, j ̸= i}) (4.2)

For the sake of simplicity, we use the same matricesWinput,W, andW2 for all Echo State

Networks (ESNs) and train them in the same way as the ESN variant as shown in equation

(2.12). To generate a prediction, ŷ, we then employ equation (2.14) with one set of output

weightsWoutput and use the same set for each ESN to make the systemmore robust against

potential permutations.

4.2.2 SwarmESNwith Self-Attention

This architecture is based on the SwarmESN architecture, as shown in Figure 4.1, with

modifications to the readout layer. We replaced the linear sum with the self-attention mech-

anism [71] in (4.3). This mechanism consists ofK,Q andVNxN-matrices,W aNxM-

matrix,N the length of the reservoir state vector x⃗,M the dimensionality of the output, ϕ

the softmax activation function, relu the ReLU activation and b⃗ a bias vector.

63

Re
ad

ou
t

Re
ad

ou
t

Re
ad

ou
t

Reservoir 1

Reservoir 2

Reservoir N

In
pu

ts
 1

In
pu

ts
 2

In
pu

ts
 N

Output 1

Output 2

Output N

State
Sharing

Figure 4.1: Schematic depiction of the SwarmESN architecture from [8]. The readout is either a linear sum, a self‐
attention layer, or a multilayer feed‐forward network.

Kx⃗ = Kx⃗

Qx⃗ = Qx⃗

Vx⃗ = V⃗x

y⃗ = relu(Wϕ(Kx⃗Qx⃗)Vx⃗ + b⃗) (4.3)

64

The purpose of introducing a self-attention mechanism is to enable the system to adapt

itself to the information available, such as when there is noise or missing inputs.

We train the the parametersK,Q, andVwith gradient descent.

4.2.3 SwarmESNwith feed-forward neural network

A basic feed-forward neural network is employed as the readout in this variation, as shown

in Figure 4.1.

We train the readout neural network using gradient descent.

4.3 Experimental Setup

4.3.1 WESAD

TheWESAD dataset is a collection of data gathered from 15 individuals using a device that

is worn on the wrist and chest. It includes acceleration on three axes, body temperature,

respiration, electrodermal activity, electromyogram, electrocardiogram and the blood vol-

ume pulse [72]. An example of the time series of the dataset is shown in Figure 4.2. The 15

subjects were divided into three datasets: 10 for training, two for validation, and three for

testing.

The objective of the experiment was to compare the performance of echo state networks

with linear readout and with self-attention to predict the next time step.

65

���
���
���

���
���
���

���
���
���

����
����

���
���
���

����
����

���
���
���

����
����
����

���
���
���

����
����

���
���
���

����

����

� ��� ��� ��� ����

���
���
���

� ��� ��� ��� ����
���

���

Figure 4.2: Example time‐series of the WESAD dataset we used in our experiments in [8] after normalization from [8].

ρ 0.9
c 0.1
α 0.2
N 100

Table 4.1: The hyperparameters of the reservoir used in our experiments. The reservoir parameters were selected using
a grid search with a standard ESN on the training dataset.

The hyperparameters chosen are presented in Table 4.1. The traditional ESN was trained

with ridge regression, while the augmented ESN was trained with stochastic gradient de-

scent and mean square loss until the model achieved convergence.

66

4.3.2 Resilience

For training, we set τ = 3 in equations (4.1) and (4.2), meaning that each reservoir was

given information from other reservoirs that was delayed by three time steps. This was done

to simulate a network delay. During testing, the received states were randomly blocked with

a probability of pmasked ∈ [0, 1] to evaluate how the system responds to packet loss.

We tested the resilience of the input system to normal noise by adding a noise vector

X ∼ N (0, σ2)with σ2 ∈ [0, 1] to the inputs, and repeating this process 10 times. To

measure the effect of our distributed architectures, we also tested them without any state

sharing as an ablation study.

4.4 Results andDiscussion

We evaluate the models by calculating the mean squared error, denotedMSE, in (4.4) and

the mean absolute error, denotedMAE in (4.4).

MSE :=
1
N

N∑
n=1

(x̂− x)2 (4.4)

MAE :=
1
N

N∑
n=1

|x̂− x| (4.5)

67

��� ��� ��� ��� ��� ���

�����

�����

�����

�����

�	����������������������������������

���������
������
������

Figure 4.3: MSE of the architectures using the single‐vector representation under noise from [8].

By comparing the mean squared error and mean absolute error after introducing normal

noise to the input with various standard deviations ∈ [0, 1], a clear difference is visible in

Figures 4.3 and 4.4 and Table 4.2. The single-vector representation is more resilient to noise

on the input side, with the traditional linear readout demonstrating the best results.

Examining packet loss yields a similar outcome. The single-vector representation outper-

forms the stacked-vector representation in terms of MSE andMAE when the loss proba-

bility pmasking ranges from 0 to 1. The linear readout has the highest overall performance, as

shown in Figures 4.5 and 4.6 and Table 4.3.

68

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

	
�������������������������������

��������
�����
������

Figure 4.4: MSE of the architectures using the stacked‐vector representation under noise from [8].

��� ��� ��� ��� ��	 ���

����

����

����

����

���	

��
���

��������
�����
�������

Figure 4.5: MSE of the architectures using the single‐vector representation under packet loss from [8].

69

��� ��� ��� ��� ��	 ���
����

����

����

����

����

����

��
���

��������
�����
�������

Figure 4.6: MSE of the architectures using the stacked‐vector representation under packet loss from [8].

70

Ta
bl
e
4.
2:

Th
e
m
ea
n‐
sq
ua
re
d
er
ro
ra

nd
m
ea
n‐
ab
so
lu
te

er
ro
ro

fo
ur

ex
pe
rim

en
ts
fr
om

[8
]f
or

di
ffe

re
nt

no
ise

σ2
ro
un

de
d
to
5
sig

ni
fic
an
td

ig
its
.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
SE

M
A
E

M
SE

M
A
E

M
SE

M
A
E

M
SE

M
A
E

M
SE

M
A
E

M
SE

M
A
E

Si
ng
le
Ve
ct
or

Li
ne
ar

0.
14
16

0.
22
29
7

0.
14
15
6

0.
22
29
0

0.
14
15
7

0.
22
29
1

0.
14
15
8

0.
22
29
2

0.
14
15
8

0.
22
29
3

0.
14
16
1

0.
22
29
5

A
tte

nt
io
n

0.
14
49
7

0.
22
53
8

0.
14
49
4

0.
22
54
1

0.
14
49
3

0.
22
53
9

0.
14
49
9

0.
22
54
4

0.
14
50
7

0.
22
54
9

0.
14
51
8

0.
22
55
4

Fe
ed
-F
or
w
ar
d

0.
16
31
4

0.
23
45
6

0.
16
32
2

0.
23
46
9

0.
16
30
5

0.
23
45
7

0.
16
33
3

0.
23
47

0.
16
34
6

0.
23
48

0.
16
37
6

0.
23
49
4

St
ac
ke
d
Ve
ct
or

Li
ne
ar

0.
40
29
8

0.
31
19
4

0.
40
22
6

0.
31
29
3

0.
43
31
5

0.
32
56
1

0.
57
70
3

0.
36
74
6

0.
91
07
8

0.
44
37
7

1.
50
27

0.
55
10
0

A
tte

nt
io
n

0.
36
62
9

0.
30
68
4

0.
39
98
4

0.
31
45
8

0.
42
40
4

0.
32
82
6

0.
43
66
8

0.
34
18
5

0.
45
36
6

0.
35
33
5

0.
46
72
6

0.
36
11
8

Fe
ed
-F
or
w
ar
d

0.
32
53
6

0.
32
50
3

0.
31
54
9

0.
32
27
6

0.
30
83
4

0.
32
38
8

0.
31
32
9

0.
33
00
7

0.
32
38
4

0.
33
80
2

0.
33
64
6

0.
34
61
2

O
nl
yL

oc
al

Li
ne
ar

1.
12
18

0.
26
81
8

1.
20
17

0.
29
49
1

1.
78
33

0.
42
84
2

3.
49
59

0.
66
19
8

7.
17
44

0.
98
83
4

13
.4
75

1.
39
21

A
tte

nt
io
n

0.
16
57
3

0.
23
35
8

0.
25
94
6

0.
26
29

0.
30
25
8

0.
28
51

0.
33
86
5

0.
30
93
7

0.
39
25
0

0.
33
76
8

0.
46
01
2

0.
36
73
1

Fe
ed
-F
or
w
ar
d

0.
17
46
4

0.
23
72
7

0.
18
68
4

0.
24
69
4

0.
20
35
6

0.
25
94
7

0.
23
81
9

0.
27
99
2

0.
28
68
2

0.
30
45
4

0.
34
49
0

0.
33
06
7

Ta
bl
e
4.
3:

Th
e
m
ea
n‐
sq
ua
re
d
er
ro
ra

nd
m
ea
n‐
ab
so
lu
te

er
ro
ro

fo
ur

ex
pe
rim

en
ts
fr
om

[8
]f
or

di
ffe

re
nt

m
as
ki
ng

pr
ob

ab
ili
tie

s
p m

as
ke
d
ro
un

de
d
to
5
sig

ni
fic
an
td

ig
its
.

Th
e
re
su
lts

of
th
e
on

ly
‐lo

ca
lv
ar
ia
nt
s
ar
e
un

al
te
re
d
by

th
e
m
as
ki
ng

pr
ob

ab
ili
ty
,a
s
no

in
fo
rm

ati
on

is
sh
ar
ed

am
on

g
th
e
re
se
rv
oi
rs
.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
SE

M
A
E

M
SE

M
A
E

M
SE

M
A
E

M
SE

M
A
E

M
SE

M
A
E

M
SE

M
A
E

Si
ng
le
Ve
ct
or

Li
ne
ar

0.
14
16

0.
22
29
7

0.
14
17
5

0.
22
30
3

0.
14
17
6

0.
22
30
1

0.
14
17
9

0.
22
30
0

0.
14
18
8

0.
22
30
5

0.
14
14
4

0.
22
25
9

A
tte

nt
io
n

0.
14
49
7

0.
22
53
8

0.
14
91
6

0.
22
74
6

0.
15
12
8

0.
22
83
1

0.
15
21
1

0.
22
85
7

0.
15
07
8

0.
22
79
2

0.
14
09
8

0.
22
36
5

Fe
ed
-F
or
w
ar
d

0.
16
31
4

0.
23
45
6

0.
17
49
8

0.
23
98
7

0.
18
05
0

0.
24
19
6

0.
18
18
4

0.
24
27
0

0.
17
67
4

0.
24
27
6

0.
18
41

0.
27
60
9

St
ac
ke
d
Ve
ct
or

Li
ne
ar

0.
40
29
8

0.
31
19
4

0.
38
94
4

0.
30
46
7

0.
37
64
2

0.
29
73
6

0.
36
20
9

0.
28
87
6

0.
34
19
2

0.
27
56

0.
29
21
8

0.
23
65
4

A
tte

nt
io
n

0.
36
62
9

0.
30
68
4

0.
33
02
6

0.
29
88
4

0.
29
22
6

0.
29
31
6

0.
26
11
7

0.
28
77
1

0.
22
56
1

0.
27
57
0

0.
15
65
3

0.
23
50
8

Fe
ed
-F
or
w
ar
d

0.
32
53
6

0.
32
50
3

0.
29
80
8

0.
31
67
4

0.
27
93
8

0.
31
09
1

0.
26
03
5

0.
30
39
4

0.
23
20
4

0.
29
21
1

0.
18
79
2

0.
27
50
3

O
nl
yL

oc
al

Li
ne
ar

1.
12
18

0.
26
81
8

1.
12
18

0.
26
81
8

1.
12
18

0.
26
81
8

1.
12
18

0.
26
81
8

1.
12
18

0.
26
81
8

1.
12
18

0.
26
81
8

A
tte

nt
io
n

0.
16
57
3

0.
23
35
8

0.
16
57
3

0.
23
35
8

0.
16
57
3

0.
23
35
8

0.
16
57
3

0.
23
35
8

0.
16
57
3

0.
23
35
8

0.
16
57
3

0.
23
35
8

Fe
ed
-F
or
w
ar
d

0.
17
46
4

0.
23
72
7

0.
17
46
4

0.
23
72
7

0.
17
46
4

0.
23
72
7

0.
17
46
4

0.
23
72
7

0.
17
46
4

0.
23
72
7

0.
17
46
4

0.
23
72
7

71

To evaluate the effect of our proposed state-mixing schemes, we compared each archi-

tecture with a non-sharing version. The results in Tables 4.2 and 4.3 suggest that non-local

information is necessary to generate reliable predictions in our experiments, particularly

when noise is present in the input. Comparing the stacked- and single-vector state shar-

ing schemes, it appears that the single-vector one performs better than the stacked-vector

one. This could be due to the richer, more homogenous dynamics of the single-vector rep-

resentation across all reservoirs. To investigate this, we reduced the dimensionality of the

reservoir states of one experimental run using principal component analysis (PCA) to two

dimensions and visualized the latent space in Figures 4.7 and 4.8, with each color referring

to a different reservoir. Figure 4.7 shows that the single-vector representation looks like a 2-

dimensional Gaussian, while Figure 4.8 reveals that the stacked-vector representation covers

multiple different regions. This could make it more difficult to use shared weights across all

reservoirs, as in our experimental setup.

4.5 Conclusion andOutlook

We showed how the combination of states frommultiple reservoirs can help to predict a

global state on a local level with a low computational cost. The classical reservoir comput-

ing approach with linear readout had the best performance. We plan to use this system in a

multivariate, multimodal setting with tight real-time constraints. Utilising the SwarmESN

72

Figure 4.7: A graphical representation of all the reservoir states for one experiment from [8] is shown using the single‐
vector representation and the first two principal components calculated with PCA. Each of the fourteen reservoirs is
represented by a different color. The states appear to be randomly distributed and resemble a Gaussian distribution.

approach with a single readout layer would enable online training even on limited hardware

or FPGAs, as the learning rule can be easily derived and hard coded and would not require

a lot of resources. To further enhance the attention architecture, one could keep track of

the most recent τ reservoir states and then calculate the attention over these vectors. We

believe that this would improve the resilience against missing non-local states, as we can

directly focus on available information. Additionally, the single-vector mixing scheme is

somewhat similar to the message passing algorithm for graph neural networks [73], so an

extension in this direction, taking into account the edges between nodes in our distributed

73

Figure 4.8: A graphical representation of the reservoir states of one experiment from [8] is shown using the stacked‐
vector representation and the first two principal components calculated with PCA. Each of the fourteen reservoirs is
colored differently. Over time, the reservoirs tend to converge to different areas of the latent space, which is in contrast
to the single‐vector representation.

setting, could be beneficial. Another option would be to train separate weights for each dif-

ferent reservoir, but this would mean giving up on the inherent permutation invariance, i.e.,

inputs would be tied to a specific reservoir.

74

5
Conclusion

In the process of this thesis, I explored robust computation, that is, robust against noise,

with reservoir computing under different conditions.

As numerical simulations are widely used in physical reservoir computing, in Chapter

3, a computational scheme for simulations was presented that can capture the differences

between the simulated and the real world. Using abstract interpretation, tolerances, noise,

75

etc. can be captured, and using the proposed abstract regularized, we can train robust sys-

tems that can not only deal with noise, but in principle should also allow the application

of the trained parameters in the real world. Thus, allowing us to train such systems in sim-

ulations, potentially reducing the costs and effort for this process, and exploiting the same

system in the real world. However, a limitation of the work is that this transfer was not

tested; thus, one future research endeavor is the application of abstract interpretation in

this setting. Using advances in cloth simulation and cloth parameter estimation[74, 75, 76],

it became possible to replicate cloth dynamics based on real-world parameters. Using a wo-

ven resistor[77] in simulation and the real world, we can build a system suitable as a reser-

voir. The fabric dynamics would act as reservoir dynamics and can be approximated using

a mass-spring network with estimated parameters from the real world. As the readout, the

resistance between selected points on the cloth should be suitable, thus creating a system

with applications in movement classification, e.g., accident-detecting smart clothes, wind

direction/strength measurements as a flag, or even a tactile layer for (soft) robots, akin to

human skin.

A distributed inference scheme using reservoir computing was explored in Chapter 4.

The reservoirs acted as time-dependent signal integrators and, combined with a simple lin-

ear readout, exhibit resistance against noise on the input side, or communication errors

between the different reservoirs. I further investigated different information aggregation

76

schemes, by either keeping local and nonlocal reservoir states separate or combining them

into one single state. Here, the combination into one single state per reservoir seemed supe-

rior, and I hypthesis that is due to the richer dynamics in the single vector representation as

pictured in Figures 4.8 and 4.7. The small size of the reservoir with linear readout approach

also makes it suitable for embedded devices. Thus, a next step is the implementation of this

system on top of the existing hardware of the fast beam interlock system[78] for the Euro-

pean spallation source[79], to help detect potential anomalies and protect the facility from

damage.

This thesis has shown how reservoir computing can help build robust systems, not only

against noise on the input but also system errors, e.g., defective sensors, and changed initial

conditions of the reservoir itself. It is the cumulative work of the 5 publications listed in

Chapter 6.

77

6
Related Publications

Publications that cumulated into this thesis in reverse chronological order. The correspond-

ing authors are marked with ∗.

C. W. Senn∗, Memory in Conductive Fabrics for Reservoir Computing, Interna-

tional Journal for Unconventional Computing (2024).

C. W. Senn∗, SwarmESN for Robust Distributed Reservoir Computing (Unpub-

78

lished).

C. W. Senn∗, I. Kumazawa: Abstract Reservoir Computing, AI (2022).

C. W. Senn∗, I. Kumazawa: Abstract Echo State Networks, ANNPR2020 (2020).

C. W. Senn∗, I. Kumazawa: Robust Echo State Networks, JNNS2019 (2019).

R. Berhandsgruetter∗, C. W. Senn∗, R. M. Fuechslin, C. Jaeger, K. Nakajima, H.

Hauser: Employing L-Systems to Generate Mass-Spring Networks for Morphologi-

cal Computing, NOLTA2014 (2014).

79

A
Abstract Reservoir Computing

A.1 Supplementary Data

A.1.1 Results

Tables A.1 - A.4 show additional statistics averaged over 10 runs for each experiment con-

ducted.

80

Ta
bl
e
A
.1
:A

ve
ra
ge

M
SE

fo
rt
he

ex
pe
rim

en
ts
sim

ul
ati

ng
fa
ili
ng

se
ns
or
s
ov
er
10

ex
pe
rim

en
tr
un

s.
Th

e
pa
ra
m
et
er

gi
ve
s
th
e
fr
ac
tio

n
of

se
ns
or
s
th
at

w
er
e
fo
rc
ed

to
0
fr
om

[7
].

D
at
as
et

M
od

el
Se
ns
or

Fa
ilu

re
M
SE

±
St
d
D
ev
@
Pa
ra
m
et
er

Va
lu
e

0.
00

0.
01

0.
02

0.
03

H
én
on

ab
str
ac
t

5.
11
E
−
01

±
3.
10
E
−

04
5.
40

E
−
01

±
8.
56
E
−
03

5.
96
E
−
01

±
1.2

4E
−
01

1.2
0E

+
00

±
1.3

5E
+
00

H
én
on

cla
ssi
ca
l

5.
88
E
−
01

±
3.
17
E
−
02

1.3
5E

+
01

±
2.
69
E
+
01

8.
57
E
+
00

±
1.5

4E
+
01

3.
43
E
+
01

±
4.
09
E
+
01

H
én
on

no
ise

5.
83
E
−
01

±
2.
38
E
−

02
2.
09
E
+
00

±
2.
74
E
+
00

1.6
9E

+
00

±
3.
13
E
+
00

2.
51
E
+
00

±
3.
56
E
+
00

N
A
R
M
A
10

ab
str
ac
t

1.3
8E

−
02

±
3.
88
E
−
05

1.
51
E
−
02

±
8.
40

E
−
04

1.
55
E
−
02

±
4.
69
E
−

04
1.
59
E
−
02

±
1.6

6E
−
03

N
A
R
M
A
10

cla
ssi
ca
l

9.
99
E
−
02

±
4.
08
E
−
02

6.
08
E
+
01

±
1.1

4E
+
02

2.
13
E
+
02

±
2.
20

E
+
02

1.
60
E
+
02

±
1.6

1E
+
02

N
A
R
M
A
10

no
ise

2.
35
E
−
01

±
1.1

9E
−
01

5.
60
E
−

02
±
7.
01
E
−
02

5.
46
E
+
00

±
1.1

2E
+
01

1.
69
E
−
02

±
3.
29
E
−
03

N
A
R
M
A
20

ab
str
ac
t

1.
88
E
−
03

±
3.
67
E
−
05

2.
88
E
−
03

±
3.
20

E
−
04

2.
68
E
−
03

±
1.9

5E
−
04

2.
67
E
−

03
±
3.
33
E
−
04

N
A
R
M
A
20

cla
ssi
ca
l

1.
21
E
−

01
±

6.
16
E
−
02

2.
49
E
+
01

±
3.
76
E
+
01

4.
11
E
+
01

±
4.
70
E
+
01

4.
95
E
+
01

±
9.
20

E
+
01

N
A
R
M
A
20

no
ise

2.
63
E
−

01
±

1.4
3E

−
01

1.
09
E
−
02

±
4.
58
E
−
03

4.
49
E
−
03

±
7.
36
E
−
04

1.
72
E
−

01
±

5.
05
E
−
01

D
at
as
et

M
od

el
Se
ns
or

Fa
ilu

re
M
SE

±
St
d
D
ev
@
Pa
ra
m
et
er

Va
lu
e

0.
04

0.
05

0.
06

0.
07

H
én
on

ab
str
ac
t

1.
38
E
+
00

±
1.7

7E
+
00

1.
69
E
+
00

±
2.
36
E
+
00

4.
81
E
+
00

±
7.
96
E
+
00

9.
43
E
+
00

±
1.3

3E
+
01

H
én
on

cla
ssi
ca
l

2.
36
E
+
01

±
2.
17
E
+
01

4.
75
E
+
01

±
5.
20

E
+
01

7.
42

E
+
01

±
5.
73
E
+
01

5.
20

E
+
01

±
6.
11
E
+
01

H
én
on

no
ise

2.
01
E
+
00

±
4.
35
E
+
00

1.
95
E
+
00

±
3.
86
E
+
00

2.
99
E
+
01

±
8.
65
E
+
01

1.
61
E
+
01

±
4.
46
E
+
01

N
A
R
M
A
10

ab
str
ac
t

1.
61
E
−
02

±
1.2

0E
−
03

1.
66
E
−
02

±
1.8

2E
−

03
4.
46
E
−
02

±
7.
64
E
−
02

2.
05
E
−
02

±
4.
45
E
−
03

N
A
R
M
A
10

cla
ssi
ca
l

2.
31
E
+
02

±
1.6

4E
+
02

2.
59
E
+
02

±
1.5

1E
+
02

3.
07
E
+
02

±
2.
39
E
+
02

3.
08
E
+
02

±
2.
19
E
+
02

N
A
R
M
A
10

no
ise

9.
72
E
−

01
±

2.
87
E
+
00

1.4
9E

−
02

±
8.
54
E
−
04

1.3
4E

+
00

±
3.
99
E
+
00

2.
78
E
+
00

±
4.
31
E
+
00

N
A
R
M
A
20

ab
str
ac
t

2.
98
E
−
03

±
3.
64
E
−
04

2.
73
E
−

03
±
3.
37
E
−
04

2.
91
E
−
03

±
4.
38
E
−
04

3.
26
E
−
03

±
5.
69
E
−
04

N
A
R
M
A
20

cla
ssi
ca
l

8.
58
E
+
01

±
7.
37
E
+
01

4.
94
E
+
01

±
4.
46
E
+
01

9.
63
E
+
01

±
5.
72
E
+
01

1.3
8E

+
02

±
1.2

5E
+
02

N
A
R
M
A
20

no
ise

2.
95
E
−
03

±
4.
11
E
−
04

5.
46
E
−
02

±
1.5

5E
−
01

2.
31
E
−
03

±
1.3

7E
−
04

2.
21
E
−

03
±
1.0

8E
−
04

D
at
as
et

M
od

el
Se
ns
or

Fa
ilu

re
M
SE

±
St
d
D
ev
@
Pa
ra
m
et
er

Va
lu
e

0.
08

0.
09

0.
10

H
én
on

ab
str
ac
t

1.
10
E
+
01

±
1.9

1E
+
01

2.
81
E
+
01

±
3.
49
E
+
01

1.
75
E
+
01

±
3.
93
E
+
01

H
én
on

cla
ssi
ca
l

6.
89
E
+
01

±
1.3

0E
+
02

1.7
7E

+
02

±
2.
03
E
+
02

7.
70
E
+
01

±
1.0

6E
+
02

H
én
on

no
ise

2.
32
E
+
01

±
6.
62
E
+
01

5.
97
E
+
01

±
7.
35
E
+
01

1.
81
E
+
01

±
5.
20

E
+
01

N
A
R
M
A
10

ab
str
ac
t

4.
53
E
−
01

±
1.2

6E
+
00

7.
96
E
−
02

±
1.7

7E
−
01

6.
39
E
−
02

±
5.
86
E
−
02

N
A
R
M
A
10

cla
ssi
ca
l

3.
82
E
+
02

±
1.7

5E
+
02

2.
41
E
+
02

±
1.0

4E
+
02

2.
07
E
+
02

±
1.6

6E
+
02

N
A
R
M
A
10

no
ise

1.4
2E

−
02

±
3.
38
E
−
04

1.3
9E

−
02

±
5.
19
E
−

04
9.
00

E
−
01

±
2.
66
E
+
00

N
A
R
M
A
20

ab
str
ac
t

3.
04

E
−
03

±
4.
95
E
−
04

3.
00

E
−
03

±
3.
61
E
−
04

3.
46
E
−
03

±
4.
50
E
−
04

N
A
R
M
A
20

cla
ssi
ca
l

7.
15
E
+
01

±
6.
04

E
+
01

1.
17
E
+
02

±
9.
58
E
+
01

1.1
6E

+
02

±
9.
45
E
+
01

N
A
R
M
A
20

no
ise

2.
25
E
−
03

±
1.3

4E
−
04

2.
15
E
−
03

±
2.
44
E
−
04

2.
05
E
−
03

±
1.4

6E
−
04

81

Ta
bl
e
A
.2
:A

ve
ra
ge

M
SE

fo
rt
he

ex
pe
rim

en
ts
sim

ul
ati

ng
se
ns
or

no
ise

ov
er
10

ex
pe
rim

en
tr
un

s.
Th

e
pa
ra
m
et
er

gi
ve
s
th
e
am

pl
itu

de
of

th
e
no

ise
ad
de
d
to

th
e

se
ns
or

re
ad
in
gs

fr
om

[7
].

D
at
as
et

M
od

el
Se
ns
or

N
oi
se
M
SE

±
St
d
D
ev
@
Pa
ra
m
et
er

Va
lu
e

0.
00

0.
01

0.
02

0.
03

H
én
on

ab
str
ac
t

5.
11
E
−
01

±
3.
10
E
−

04
5.
36
E
−
01

±
6.
54
E
−

03
5.
43
E
−
01

±
1.4

2E
−
02

5.
42

E
−
01

±
1.4

2E
−

02
H
én
on

cla
ssi
ca
l

5.
88
E
−
01

±
3.
17
E
−
02

6.
10
E
−
01

±
5.
59
E
−
02

5.
82
E
−
01

±
3.
28
E
−
02

6.
07
E
−
01

±
3.
15
E
−
02

H
én
on

no
ise

5.
83
E
−
01

±
2.
38
E
−

02
1.
28
E
+
00

±
1.3

5E
+
00

5.
92
E
−
01

±
5.
49
E
−
02

5.
50
E
−
01

±
3.
63
E
−
02

N
A
R
M
A
10

ab
str
ac
t

1.3
8E

−
02

±
3.
88
E
−
05

1.5
0E

−
02

±
5.
35
E
−

04
1.5

2E
−

02
±
4.
91
E
−
04

1.5
6E

−
02

±
6.
17
E
−
04

N
A
R
M
A
10

cla
ssi
ca
l

9.
99
E
−
02

±
4.
08
E
−
02

1.2
1E

−
01

±
2.
87
E
−
02

1.4
9E

−
01

±
8.
47
E
−
02

1.7
4E

−
01

±
9.
33
E
−
02

N
A
R
M
A
10

no
ise

2.
35
E
−
01

±
1.1

9E
−
01

2.
01
E
−
02

±
1.0

9E
−
03

1.
64
E
−
02

±
7.
40

E
−
04

1.
58
E
−
02

±
5.
47
E
−

04
N
A
R
M
A
20

ab
str
ac
t

1.
88
E
−
03

±
3.
67
E
−
05

2.
91
E
−
03

±
3.
86
E
−
04

2.
91
E
−

03
±
4.
49
E
−
04

2.
70
E
−
03

±
2.
75
E
−
04

N
A
R
M
A
20

cla
ssi
ca
l

1.
21
E
−

01
±

6.
16
E
−

02
1.1

3E
−
01

±
6.
94
E
−

02
1.
17
E
−
01

±
4.
06
E
−
02

1.1
9E

−
01

±
4.
61
E
−

02
N
A
R
M
A
20

no
ise

2.
63
E
−

01
±

1.4
3E

−
01

9.
48
E
−
03

±
2.
21
E
−
03

4.
97
E
−
03

±
7.
51
E
−
04

3.
55
E
−
03

±
6.
72
E
−

04

D
at
as
et

M
od

el
Se
ns
or

N
oi
se
M
SE

±
St
d
D
ev
@
Pa
ra
m
et
er

Va
lu
e

0.
04

0.
05

0.
06

0.
07

H
én
on

ab
str
ac
t

5.
35
E
−
01

±
2.
98
E
−

03
5.
41
E
−
01

±
1.0

4E
−
02

5.
35
E
−
01

±
6.
49
E
−
03

5.
39
E
−

01
±

6.
83
E
−
03

H
én
on

cla
ssi
ca
l

6.
10
E
−
01

±
3.
41
E
−
02

6.
10
E
−
01

±
3.
51
E
−

02
6.
55
E
−

01
±

6.
32
E
−
02

6.
46
E
−
01

±
8.
54
E
−

02
H
én
on

no
ise

5.
38
E
−

01
±

1.5
5E

−
02

5.
32
E
−
01

±
1.3

4E
−
02

5.
31
E
−
01

±
9.
41
E
−
03

5.
25
E
−
01

±
1.0

0E
−
02

N
A
R
M
A
10

ab
str
ac
t

1.
56
E
−
02

±
7.
24

E
−
04

1.5
6E

−
02

±
7.
65
E
−
04

1.
58
E
−
02

±
5.
73
E
−

04
1.6

2E
−
02

±
9.
39
E
−
04

N
A
R
M
A
10

cla
ssi
ca
l

3.
03
E
−
01

±
2.
94
E
−
01

4.
16
E
−

01
±

3.
04

E
−
01

2.
98
E
−
01

±
2.
25
E
−
01

6.
00

E
−

01
±

3.
36
E
−
01

N
A
R
M
A
10

no
ise

1.
52
E
−
02

±
6.
63
E
−
04

1.4
8E

−
02

±
6.
42

E
−
04

1.
47
E
−
02

±
2.
84
E
−
04

1.4
6E

−
02

±
4.
15
E
−
04

N
A
R
M
A
20

ab
str
ac
t

2.
87
E
−
03

±
3.
53
E
−
04

2.
93
E
−
03

±
3.
31
E
−
04

3.
12
E
−

03
±
5.
87
E
−

04
2.
93
E
−
03

±
3.
55
E
−

04
N
A
R
M
A
20

cla
ssi
ca
l

1.
67
E
−
01

±
1.0

7E
−

01
1.5

5E
−
01

±
7.
66
E
−
02

1.
53
E
−
01

±
6.
87
E
−
02

2.
18
E
−
01

±
1.5

1E
−
01

N
A
R
M
A
20

no
ise

3.
00

E
−
03

±
3.
13
E
−

04
2.
61
E
−
03

±
2.
11
E
−
04

2.
30
E
−
03

±
9.
01
E
−
05

2.
25
E
−

03
±
1.2

1E
−
04

D
at
as
et

M
od

el
Se
ns
or

N
oi
se
M
SE

±
St
d
D
ev
@
Pa
ra
m
et
er

Va
lu
e

0.
08

0.
09

0.
10

H
én
on

ab
str
ac
t

5.
34
E
−
01

±
8 .
08
E
−
03

5.
40

E
−
01

±
8 .
01
E
−
03

5.
38
E
−
01

±
7 .
52
E
−
03

H
én
on

cla
ssi
ca
l

6.
24

E
−
01

±
4.
45
E
−
02

6.
67
E
−
01

±
1.1

2E
−

01
8.
04

E
−
01

±
2.
75
E
−
01

H
én
on

no
ise

5.
24

E
−
01

±
3.
89
E
−
03

5.
20

E
−
01

±
2.
76
E
−
03

5.
20

E
−
01

±
3.
61
E
−

03
N
A
R
M
A
10

ab
str
ac
t

1.5
9E

−
02

±
7.
09
E
−
04

1.
67
E
−
02

±
1.6

2E
−
03

1.
66
E
−
02

±
7.
81
E
−

04
N
A
R
M
A
10

cla
ssi
ca
l

8.
15
E
−
01

±
4.
14
E
−
01

1.0
1E

+
00

±
6.
59
E
−
01

1.1
5E

+
00

±
8.
90
E
−

01
N
A
R
M
A
10

no
ise

1.4
5E

−
02

±
4.
38
E
−
04

1.4
5E

−
02

±
2.
60
E
−
04

1.4
1E

−
02

±
2.
49
E
−
04

N
A
R
M
A
20

ab
str
ac
t

3.
05
E
−
03

±
7.
32
E
−
04

3.
14
E
−
03

±
3.
92
E
−

04
3.
45
E
−
03

±
2.
25
E
−
04

N
A
R
M
A
20

cla
ssi
ca
l

2.
15
E
−

01
±

8.
25
E
−
02

2.
10
E
−
01

±
1.1

2E
−
01

3.
49
E
−

01
±

1.6
7E

−
01

N
A
R
M
A
20

no
ise

2.
17
E
−
03

±
7.
56
E
−
05

2.
15
E
−

03
±
1.4

5E
−
04

2.
04

E
−
03

±
1.0

5E
−
04

82

Ta
bl
e
A
.3
:A

ve
ra
ge

M
SE

fo
rt
he

ex
pe
rim

en
ts
sim

ul
ati

ng
a
se
ns
or

re
ad
in
g
sh
ift

ov
er
10

ex
pe
rim

en
tr
un

s.
Th

e
pa
ra
m
et
er

gi
ve
s
th
e
sh
ift

th
at

w
as

ad
de
d
to

th
e

se
ns
or

re
ad
in
gs

fr
om

[7
].

D
at
as
et

M
od

el
Se
ns
or

Sh
ift

M
SE

±
St
d
D
ev
@
Pa
ra
m
et
er

Va
lu
e

0.
00

0.
01

0.
02

0.
03

H
én
on

ab
str
ac
t

5.
11
E
−
01

±
3.
10
E
−
04

5.
38
E
−
01

±
1.4

0E
−
02

5.
41
E
−
01

±
9.
89
E
−
03

5.
40

E
−
01

±
1.2

2E
−

02
H
én
on

cla
ssi
ca
l

5.
88
E
−
01

±
3.
17
E
−
02

6.
14
E
−
01

±
8.
34
E
−
02

5.
93
E
−
01

±
6.
51
E
−
02

2.
87
E
+
00

±
4.
44
E
+
00

H
én
on

no
ise

5.
83
E
−
01

±
2.
38
E
−
02

8.
87
E
−
01

±
8.
11
E
−

01
5.
71
E
−
01

±
5.
64
E
−
02

5.
47
E
−
01

±
3.
61
E
−
02

N
A
R
M
A
10

ab
str
ac
t

1.3
8E

−
02

±
3.
88
E
−
05

1.5
1E

−
02

±
5.
03
E
−
04

1.5
2E

−
02

±
4.
06
E
−
04

1.5
6E

−
02

±
9.
01
E
−
04

N
A
R
M
A
10

cla
ssi
ca
l

9.
99
E
−
02

±
4.
08
E
−
02

9.
94
E
−
01

±
2.
71
E
+
00

1.
48
E
−

01
±

1.5
1E

−
01

2.
89
E
−
01

±
2.
88
E
−
01

N
A
R
M
A
10

no
ise

2.
35
E
−
01

±
1.1

9E
−
01

2.
11
E
−
02

±
5.
82
E
−

03
1.8

0E
−
02

±
2.
44
E
−
03

1.5
7E

−
02

±
6.
76
E
−

04
N
A
R
M
A
20

ab
str
ac
t

1.
88
E
−
03

±
3.
67
E
−

05
3.
13
E
−
03

±
3.
54
E
−
04

2.
72
E
−
03

±
2.
57
E
−
04

3.
10
E
−
03

±
6.
85
E
−
04

N
A
R
M
A
20

cla
ssi
ca
l

1.
21
E
−

01
±
6.
16
E
−
02

1.
22

E
−
01

±
6.
48
E
−
02

1.1
9E

−
01

±
5.
79
E
−
02

1.
10
E
−
01

±
3.
31
E
−

02
N
A
R
M
A
20

no
ise

2.
63
E
−
01

±
1.4

3E
−
01

9.
13
E
−

03
±
1.6

4E
−

03
4.
50
E
−
03

±
4.
86
E
−
04

3.
58
E
−
03

±
5.
00

E
−
04

D
at
as
et

M
od

el
Se
ns
or

Sh
ift

M
SE

±
St
d
D
ev
@
Pa
ra
m
et
er

Va
lu
e

0.
04

0.
05

0.
06

0.
07

H
én
on

ab
str
ac
t

5.
35
E
−

01
±

1.0
2E

−
02

5.
37
E
−
01

±
8.
50
E
−
03

5.
39
E
−
01

±
1.2

4E
−
02

5.
35
E
−
01

±
5.
82
E
−
03

H
én
on

cla
ssi
ca
l

2.
46
E
+
00

±
5.
26
E
+
00

7.
37
E
−
01

±
2.
69
E
−
01

3.
91
E
+
00

±
6.
66
E
+
00

1.9
3E

+
00

±
3.
51
E
+
00

H
én
on

no
ise

5.
35
E
−
01

±
1.8

1E
−
02

5.
33
E
−
01

±
1.1

4E
−
02

5.
28
E
−
01

±
1.4

1E
−
02

5.
31
E
−
01

±
1.8

8E
−
02

N
A
R
M
A
10

ab
str
ac
t

1.5
8E

−
02

±
7.
38
E
−

04
1.6

0E
−

02
±
7.
04

E
−
04

1.5
6E

−
02

±
6.
62
E
−
04

1.5
8E

−
02

±
6.
64
E
−
04

N
A
R
M
A
10

cla
ssi
ca
l

1.5
5E

+
00

±
3.
42

E
+
00

4.
15
E
+
00

±
1.0

5E
+
01

3.
42

E
+
00

±
9.
81
E
+
00

4.
44
E
+
00

±
8.
82
E
+
00

N
A
R
M
A
10

no
ise

1.5
5E

−
02

±
7.
33
E
−
04

1.4
8E

−
02

±
4.
89
E
−
04

1.5
0E

−
02

±
5.
83
E
−
04

1.
45
E
−
02

±
3.
55
E
−

04
N
A
R
M
A
20

ab
str
ac
t

2.
84
E
−
03

±
2.
18
E
−
04

2.
96
E
−
03

±
2.
84
E
−
04

3.
00

E
−
03

±
2.
51
E
−
04

2.
78
E
−
03

±
4.
59
E
−
04

N
A
R
M
A
20

cla
ssi
ca
l

1.5
7E

−
01

±
8.
50
E
−
02

1.0
6E

−
01

±
5.
45
E
−
02

1.7
1E

−
01

±
1.0

5E
−
01

1.
72
E
−
01

±
1.2

0E
−

01
N
A
R
M
A
20

no
ise

2.
84
E
−
03

±
2.
25
E
−
04

2.
62
E
−

03
±
1.8

0E
−
04

2.
46
E
−
03

±
1.3

2E
−
04

2.
27
E
−
03

±
1.4

7E
−
04

D
at
as
et

M
od

el
Se
ns
or

Sh
ift

M
SE

±
St
d
D
ev
@
Pa
ra
m
et
er

Va
lu
e

0.
08

0.
09

0.
10

H
én
on

ab
str
ac
t

5.
34
E
−
01

±
7.
57
E
−

03
5.
32
E
−
01

±
5.
62
E
−

03
5.
34
E
−

01
±

1.0
6E

−
02

H
én
on

cla
ssi
ca
l

2.
44

E
+
00

±
3.
27
E
+
00

3.
76
E
+
00

±
3.
88
E
+
00

2.
78
E
+
00

±
3.
70
E
+
00

H
én
on

no
ise

5.
30
E
−
01

±
1.1

4E
−
02

5.
27
E
−
01

±
9.
84
E
−
03

5.
23
E
−
01

±
7.
76
E
−
03

N
A
R
M
A
10

ab
str
ac
t

1.
58
E
−
02

±
7.
20

E
−
04

1.
59
E
−
02

±
7.
41
E
−
04

1.6
3E

−
02

±
5.
71
E
−
04

N
A
R
M
A
10

cla
ssi
ca
l

9.
65
E
−
01

±
1.3

7E
+
00

3.
49
E
+
00

±
9.
69
E
+
00

1.4
1E

+
01

±
2.
72
E
+
01

N
A
R
M
A
10

no
ise

1.4
6E

−
02

±
3.
87
E
−
04

1.
44
E
−
02

±
2.
95
E
−
04

1.
44
E
−
02

±
3.
67
E
−
04

N
A
R
M
A
20

ab
str
ac
t

2.
89
E
−

03
±
2.
88
E
−
04

3.
33
E
−

03
±
4.
70
E
−
04

3.
22

E
−
03

±
3.
43
E
−
04

N
A
R
M
A
20

cla
ssi
ca
l

1.2
2E

−
01

±
5.
11
E
−
02

1.6
6E

−
01

±
8.
10
E
−
02

1.1
6E

−
01

±
5.
58
E
−
02

N
A
R
M
A
20

no
ise

2.
19
E
−
03

±
9.
98
E
−
05

2.
04

E
−
03

±
5.
94
E
−

05
2.
04

E
−
03

±
8.
45
E
−
05

83

Ta
bl
e
A
.4
:A

ve
ra
ge

M
SE

fo
rt
he

ex
pe
rim

en
ts
sim

ul
ati

ng
to
le
ra
nc
es

in
m
as
s
pl
ac
em

en
ts
ov
er
10

ex
pe
rim

en
tr
un

s.
Th

e
pa
ra
m
et
er

gi
ve
s
th
e
am

pl
itu

de
of

th
e
no

ise
ad
de
d
to

th
e
in
iti
al
m
as
s
po

siti
on

s
fr
om

[7
].

D
at
as
et

M
od

el
M
as
sD

isp
la
ce
m
en
tM

SE
±
St
d
D
ev
@
Pa
ra
m
et
er

Va
lu
e

0.
00

0.
01

0.
02

0.
03

H
én
on

ab
str
ac
t

5.
11
E
−
01

±
3.
10
E
−

04
5.
39
E
−
01

±
1.2

6E
−

02
5.
41
E
−
01

±
9.
56
E
−

03
5.
31
E
−
01

±
6.
81
E
−
03

H
én
on

cla
ssi
ca
l

5.
88
E
−
01

±
3.
17
E
−
02

5.
82
E
−
01

±
3.
08
E
−
02

5.
74
E
−
01

±
2.
52
E
−
02

6.
07
E
−
01

±
4.
02

E
−
02

H
én
on

no
ise

5.
83
E
−
01

±
2.
38
E
−

02
1.0

1E
+
00

±
1.1

0E
+
00

6.
18
E
−
01

±
7.
47
E
−
02

5.
37
E
−

01
±

1.8
1E

−
02

N
A
R
M
A
10

ab
str
ac
t

1.3
8E

−
02

±
3.
88
E
−
05

1.4
8E

−
02

±
4.
17
E
−
04

1.4
9E

−
02

±
2.
87
E
−
04

1.
56
E
−
02

±
6.
36
E
−
04

N
A
R
M
A
10

cla
ssi
ca
l

9.
99
E
−
02

±
4.
08
E
−
02

1.0
6E

−
01

±
4.
09
E
−

02
9.
32
E
−
02

±
2.
04

E
−

02
9.
97
E
−
02

±
3.
41
E
−
02

N
A
R
M
A
10

no
ise

2.
35
E
−
01

±
1.1

9E
−
01

2.
15
E
−
02

±
2.
83
E
−
03

1.6
6E

−
02

±
1.0

3E
−
03

1.
55
E
−

02
±
6.
84
E
−
04

N
A
R
M
A
20

ab
str
ac
t

1.
88
E
−
03

±
3.
67
E
−
05

2.
94
E
−
03

±
3.
89
E
−
04

2.
55
E
−
03

±
1.7

5E
−
04

2.
74
E
−
03

±
5.
86
E
−
04

N
A
R
M
A
20

cla
ssi
ca
l

1.
21
E
−
01

±
6.
16
E
−

02
1.3

8E
−

01
±

6.
91
E
−

02
1.
36
E
−

01
±

5.
19
E
−
02

1.
23
E
−
01

±
5.
56
E
−
02

N
A
R
M
A
20

no
ise

2.
63
E
−
01

±
1.4

3E
−
01

8.
98
E
−
03

±
1.9

7E
−
03

5.
19
E
−
03

±
5.
42

E
−
04

3.
52
E
−
03

±
4.
68
E
−
04

D
at
as
et

M
od

el
M
as
sD

isp
la
ce
m
en
tM

SE
±
St
d
D
ev
@
Pa
ra
m
et
er

Va
lu
e

0.
04

0.
05

0.
06

0.
07

H
én
on

ab
str
ac
t

5.
34
E
−
01

±
5.
45
E
−
03

5.
34
E
−

01
±

1.0
0E

−
02

5.
35
E
−

01
±

5.
70
E
−
03

5.
32
E
−

01
±

5.
11
E
−

03
H
én
on

cla
ssi
ca
l

5.
86
E
−
01

±
2.
65
E
−
02

5.
85
E
−
01

±
3.
60
E
−

02
5.
98
E
−
01

±
3.
42

E
−

02
5.
93
E
−
01

±
5.
82
E
−
02

H
én
on

no
ise

5.
38
E
−
01

±
2.
55
E
−
02

5.
26
E
−
01

±
1.0

9E
−
02

5.
24

E
−
01

±
5.
41
E
−
03

5.
22

E
−

01
±
8.
28
E
−
03

N
A
R
M
A
10

ab
str
ac
t

1.5
9E

−
02

±
8.
17
E
−
04

1.5
8E

−
02

±
7.
70
E
−
04

1.
60
E
−
02

±
7.
59
E
−
04

1.
55
E
−
02

±
2.
96
E
−
04

N
A
R
M
A
10

cla
ssi
ca
l

1.
48
E
−

01
±

4.
72
E
−

02
8.
14
E
−
02

±
2.
71
E
−
02

1.
19
E
−

01
±

5.
17
E
−
02

9.
44
E
−
02

±
2.
53
E
−
02

N
A
R
M
A
10

no
ise

1.5
0E

−
02

±
5.
30
E
−
04

1.
49
E
−
02

±
7.
80
E
−
04

1.4
4E

−
02

±
3.
22

E
−
04

1.4
3E

−
02

±
3.
03
E
−

04
N
A
R
M
A
20

ab
str
ac
t

2.
81
E
−

03
±
3.
76
E
−
04

2.
87
E
−
03

±
3.
02

E
−
04

2.
95
E
−

03
±
4.
10
E
−
04

2.
82
E
−
03

±
3.
37
E
−
04

N
A
R
M
A
20

cla
ssi
ca
l

1.1
6E

−
01

±
4.
46
E
−
02

1.2
0E

−
01

±
6.
07
E
−
02

1.
31
E
−
01

±
6.
77
E
−
02

1.
29
E
−
01

±
4.
15
E
−

02
N
A
R
M
A
20

no
ise

2.
75
E
−
03

±
2.
23
E
−

04
2.
59
E
−
03

±
1.9

0E
−
04

2.
38
E
−
03

±
1.4

5E
−

04
2.
26
E
−
03

±
1.8

2E
−

04

D
at
as
et

M
od

el
M
as
sD

isp
la
ce
m
en
tM

SE
±
St
d
D
ev
@
Pa
ra
m
et
er

Va
lu
e

0.
08

0.
09

0.
10

H
én
on

ab
str
ac
t

5.
28
E
−
01

±
4.
41
E
−
03

5.
31
E
−
01

±
7.
63
E
−
03

5.
28
E
−
01

±
8.
50
E
−
03

H
én
on

cla
ssi
ca
l

5.
87
E
−
01

±
2.
03
E
−
02

5.
85
E
−
01

±
3.
31
E
−

02
5.
57
E
−
01

±
1.1

4E
−

02
H
én
on

no
ise

5.
19
E
−
01

±
2.
33
E
−
03

5.
21
E
−
01

±
7.
42

E
−
03

5.
20

E
−
01

±
3.
08
E
−

03
N
A
R
M
A
10

ab
str
ac
t

1.
55
E
−
02

±
5.
72
E
−
04

1.
65
E
−
02

±
9.
19
E
−

04
1.
57
E
−
02

±
9.
65
E
−
04

N
A
R
M
A
10

cla
ssi
ca
l

1.1
9E

−
01

±
3.
58
E
−
02

1.3
7E

−
01

±
8.
37
E
−

02
1.3

4E
−
01

±
7.
29
E
−
02

N
A
R
M
A
10

no
ise

1.4
2E

−
02

±
2.
14
E
−
04

1.4
0E

−
02

±
4.
53
E
−
04

1.3
9E

−
02

±
2.
72
E
−
04

N
A
R
M
A
20

ab
str
ac
t

2.
95
E
−
03

±
5.
17
E
−
04

2.
98
E
−
03

±
3.
89
E
−
04

2.
99
E
−

03
±
3.
90
E
−
04

N
A
R
M
A
20

cla
ssi
ca
l

1.
03
E
−
01

±
3.
27
E
−
02

8.
87
E
−
02

±
3.
96
E
−
02

1.6
1E

−
01

±
7.
64
E
−
02

N
A
R
M
A
20

no
ise

2.
09
E
−
03

±
1.0

6E
−
04

2.
04

E
−
03

±
1.0

3E
−
04

2.
04

E
−
03

±
7.
46
E
−
05

84

References

[1] B. R., C. W. Senn, R. M. Fuchslin, J. C., N. K., and H. H., “Employing l-systems to

generate mass-spring networks for morphological computing,” IEICE Proceeding

Series, vol. 46, pp. 184–187, 09 2014.

[2] C. Fernando and S. Sojakka, “Pattern recognition in a bucket,” vol. 2801, pp. 588–

597, 09 2003.

[3] K. Nakajima, H. Hauser, T. Li, and R. Pfeifer, “Information processing via physical

soft body,” Scientific Reports, vol. 5, May 2015.

[4] P. Bhovad and S. Li, “Physical reservoir computing with origami and its application

to robotic crawling,” Scientific Reports, vol. 11, June 2021.

[5] K. Vandoorne, P. Mechet, T. V. Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten,

B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reser-

voir computing on a silicon photonics chip,”Nature Communications, vol. 5, Mar.

2014.

85

[6] C. W. Senn, “Memory in conductive fabrics for reservoir computing,” Int. J. Unconv.

Comput., 2024.

[7] C. W. Senn and I. Kumazawa, “Abstract reservoir computing,” AI, vol. 3, no. 1,

pp. 194–210, 2022.

[8] C. W. Senn, “Swarmesn for robust distributed reservoir computing.”.

[9] H. Jaeger, “The ”echo state” approach to analysing and training recurrent neural

networks,” GMDReport 148, GMD - German National Research Institute for

Computer Science, 2001.

[10] W.Maass and H.Markram, “On the computational power of circuits of spiking neu-

rons,” Journal of Computer and System Sciences, vol. 69, no. 4, pp. 593–616, 2004.

[11] J. Steil, “Backpropagation-decorrelation: online recurrent learning with o(n) com-

plexity,” in 2004 IEEE International Joint Conference on Neural Networks (IEEE

Cat. No.04CH37541), vol. 2, pp. 843–848 vol.2, 2004.

[12] E. Salvato, G. Fenu, E. Medvet, and F. A. Pellegrino, “Crossing the reality gap: A

survey on sim-to-real transferability of robot controllers in reinforcement learning,”

IEEE Access, vol. 9, pp. 153171–153187, 2021.

86

[13] P. Cousot and R. Cousot, “Abstract interpretation,” in Proceedings of the 4th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages - POPL ’77,

ACM Press, 1977.

[14] K. Fukushima, “Cognitron: A self-organizing multilayered neural network,” Biologi-

cal Cybernetics, vol. 20, no. 3-4, pp. 121–136, 1975.

[15] A. L. Maas, “Rectifier nonlinearities improve neural network acoustic models,”

2013.

[16] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and stochastic regularizers

with gaussian error linear units,” 2017.

[17] P. Werbos, “Backpropagation through time: what it does and how to do it,” Proceed-

ings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[18] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neu-

ral networks,” 2012.

[19] U. D. Schiller and J. J. Steil, “Analyzing the weight dynamics of recurrent learning

algorithms,”Neurocomputing, vol. 63, pp. 5–23, Jan. 2005.

87

[20] D. E. Hilt, D. W. Seegrist, and and,Ridge, a computer program for calculating ridge

regression estimates /. Dept. of Agriculture, Forest Service, Northeastern Forest

Experiment Station„ 1977.

[21] E. C. Ifeachor and B. W. Jervis,Digital Signal Processing: A Practical Approach.

Pearson Education, 2nd ed., 2002.

[22] K. Weierstrass,Über die analytische Darstellbarkeit sogenannter willkürlicher Func-

tionen reeller Argumente, vol. 3 of Cambridge Library Collection -Mathematics,

p. 1–38. Cambridge University Press, 2013.

[23] M. H. Stone, “The generalized weierstrass approximation theorem,”Mathematics

Magazine, vol. 21, p. 167, Mar. 1948.

[24] H. Jaeger, “Short termmemory in echo state networks,” 2001.

[25] R. Pascanu and H. Jaeger, “A neurodynamical model for working memory,”Neural

Networks, vol. 24, pp. 199–207, Mar. 2011.

[26] I. B. Yildiz, H. Jaeger, and S. J. Kiebel, “Re-visiting the echo state property,”Neural

Networks, vol. 35, pp. 1–9, Nov. 2012.

88

[27] G. Manjunath and H. Jaeger, “Echo state property linked to an input: Exploring

a fundamental characteristic of recurrent neural networks,”Neural Computation,

vol. 25, pp. 671–696, Mar. 2013.

[28] G. B. Morales andM. A. Muñoz, “Optimal input representation in neural systems

at the edge of chaos,” Biology, vol. 10, p. 702, July 2021.

[29] H. Hauser, “Morphological computation–a potential solution for the control prob-

lem in soft robotics,” in Advances in Cooperative Robotics, pp. 757–764, World Scien-

tific, 2017.

[30] R. Pfeifer and J. Bongard,How the Body Shapes theWayWe Think. TheMIT Press,

2006.

[31] M. Banzi,Getting started with Arduino. O’Rei, 2008.

[32] K. MIURA, “Method of packaging and deployment of large membranes in space,”

The Institute of Space and Astronautical Science report, vol. 618, pp. 1–9, 12 1985.

[33] G. V. der Sande, D. Brunner, andM. C. Soriano, “Advances in photonic reservoir

computing,”Nanophotonics, vol. 6, no. 3, pp. 561–576, 2017.

[34] D. Brunner, M. C. Soriano, and G. V. der Sande, eds., Photonic Reservoir Computing.

Berlin, Boston: De Gruyter, 2019.

89

[35] H. Hauser, A. J. Ijspeert, R. M. Füchslin, R. Pfeifer, andW.Maass, “Towards a theo-

retical foundation for morphological computation with compliant bodies,” Biologi-

cal cybernetics, vol. 105, pp. 355–370, 2011.

[36] Y. Yamanaka, T. Yaguchi, K. Nakajima, and H. Hauser, “Mass-spring damper array

as a mechanical medium for computation,” in Artificial Neural Networks andMa-

chine Learning – ICANN 2018, pp. 781–794, Springer International Publishing,

2018.

[37] J. C. Coulombe, M. C. York, and J. Sylvestre, “Computing with networks of nonlin-

ear mechanical oscillators,” PloS one, vol. 12, no. 6, p. e0178663, 2017.

[38] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in Proceedings of the 25th

annual conference on Computer graphics and interactive techniques - SIGGRAPH '98,

ACM Press, 1998.

[39] T. Stuyck and B. A. Barsky, Cloth Simulation for Computer Graphics. Morgan &

Claypool Publishers, 2018.

[40] X. Provot, “Deformation constraints in a mass-spring model to describe rigid cloth

behaviour,” in Proceedings of Graphics Interface ’95, GI ’95, (Toronto, Ontario,

Canada), pp. 147–154, Canadian Human-Computer Communications Society,

1995.

90

[41] A. Nealen, M. Müller, R. Keiser, E. Boxerman, andM. Carlson, “Physically based

deformable models in computer graphics,” Computer Graphics Forum, vol. 25,

pp. 809–836, Dec. 2006.

[42] G. Urbain, J. Degrave, B. Carette, J. Dambre, and F. Wyffels, “Morphological prop-

erties of mass–spring networks for optimal locomotion learning,” Frontiers in Neu-

rorobotics, vol. 11, Mar. 2017.

[43] A. Murai, Q. Y. Hong, K. Yamane, and J. K. Hodgins, “Dynamic skin deformation

simulation using musculoskeletal model and soft tissue dynamics,” Computational

VisualMedia, vol. 3, pp. 49–60, Mar. 2017.

[44] F. Johansson, “Ball arithmetic as a tool in computer algebra,” inMaple inMathe-

matics Education and Research (J. Gerhard and I. Kotsireas, eds.), (Cham), pp. 334–

336, Springer International Publishing, 2020.

[45] C. Fieker, W. Hart, T. Hofmann, and F. Johansson, “Nemo/hecke: Computer al-

gebra and number theory packages for the julia programming language,” in Pro-

ceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic

Computation, ISSAC ’17, (New York, NY, USA), pp. 157–164, ACM, 2017.

[46] C. W. Senn and I. Kumazawa, “Abstract Echo State Networks,” in Artificial Neural

Networks in Pattern Recognition (F.-P. Schilling and T. Stadelmann, eds.), (Cham),

91

pp. 77–88, Springer International Publishing, 2020.

[47] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, “Conic optimization via operator

splitting and homogeneous self-dual embedding,” Journal of Optimization Theory

and Applications, vol. 169, pp. 1042–1068, Feb. 2016.

[48] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to

numerical computing,” SIAMReview, vol. 59, no. 1, pp. 65–98, 2017.

[49] A. Goudarzi, P. Banda, M. R. Lakin, C. Teuscher, and D. Stefanovic, “A compara-

tive study of reservoir computing for temporal signal processing,” 2014.

[50] M. Hénon, “A two-dimensional mapping with a strange attractor,” vol. 50, pp. 69–

77, Feb. 1976.

[51] O. Serradilla, E. Zugasti, J. Rodriguez, and U. Zurutuza, “Deep learning models for

predictive maintenance: a survey, comparison, challenges and prospects,” Applied

Intelligence, vol. 52, pp. 10934–10964, Jan. 2022.

[52] D. Pagano, “A predictive maintenance model using long short-termmemory neural

networks and bayesian inference,”Decision Analytics Journal, vol. 6, p. 100174, Mar.

2023.

92

[53] J. Lansky, S. Ali, M. Mohammadi, M. K. Majeed, S. H. T. Karim, S. Rashidi,

M. Hosseinzadeh, and A. M. Rahmani, “Deep learning-based intrusion detection

systems: A systematic review,” IEEE Access, vol. 9, pp. 101574–101599, 2021.

[54] K. KIM, “Intrusion detection system using deep learning and its application to wi-

fi network,” IEICE Transactions on Information and Systems, vol. E103.D, no. 7,

pp. 1433–1447, 2020.

[55] N. Banús, I. Boada, P. Xiberta, P. Toldrà, and N. Bustins, “Deep learning for the

quality control of thermoforming food packages,” Scientific Reports, vol. 11, Nov.

2021.

[56] S. Qiu, X. Cui, Z. Ping, N. Shan, Z. Li, X. Bao, and X. Xu, “Deep learning tech-

niques in intelligent fault diagnosis and prognosis for industrial systems: A review,”

Sensors, vol. 23, no. 3, 2023.

[57] D. Mazzei and R. Ramjattan, “Machine learning for industry 4.0: A systematic re-

view using deep learning-based topic modelling,” Sensors, vol. 22, no. 22, 2022.

[58] Qu, Zhongnan, Enabling Deep Learning on Edge Devices. PhD thesis, 2022.

[59] N. Moustafa, M. Keshk, K.-K. R. Choo, T. Lynar, S. Camtepe, andM.Whitty,

“DAD: A distributed anomaly detection system using ensemble one-class statistical

93

learning in edge networks,” Future Generation Computer Systems, vol. 118, pp. 240–

251, May 2021.

[60] Q. Li, L. Huang, Z. Tong, T.-T. Du, J. Zhang, and S.-C. Wang, “DISSEC: A dis-

tributed deep neural network inference scheduling strategy for edge clusters,”Neuro-

computing, vol. 500, pp. 449–460, Aug. 2022.

[61] R. Stahl, Z. Zhao, D. Mueller-Gritschneder, A. Gerstlauer, and U. Schlichtmann,

“Fully distributed deep learning inference on resource-constrained edge devices,” in

Lecture Notes in Computer Science, pp. 77–90, Springer International Publishing,

2019.

[62] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv preprint

arXiv:1612.08242, 2016.

[63] J. Postel, “Transmission control protocol,” STD 7, RFC Editor, September 1981.

http://www.rfc-editor.org/rfc/rfc793.txt.

[64] A. Sapio, M. Canini, C. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krishnamurthy,

M. Moshref, D. R. K. Ports, and P. Richtárik, “Scaling distributed machine learning

with in-network aggregation,” in 18th USENIX Symposium on Networked Systems

Design and Implementation, NSDI 2021, April 12-14, 2021 (J. Mickens and R. Teix-

eira, eds.), pp. 785–808, USENIX Association, 2021.

94

http://www.rfc-editor.org/rfc/rfc793.txt

[65] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Nu-

mata, D. Nakano, and A. Hirose, “Recent advances in physical reservoir computing:

A review,”Neural Networks, vol. 115, pp. 100–123, 2019.

[66] K. Nakajima, “Physical reservoir computing—an introductory perspective,”

Japanese Journal of Applied Physics, vol. 59, p. 060501, May 2020.

[67] L. Grigoryeva and J.-P. Ortega, “Echo state networks are universal,”Neural Net-

works, vol. 108, pp. 495–508, Dec. 2018.

[68] L. Gonon and J.-P. Ortega, “Fading memory echo state networks are universal,”

Neural Networks, vol. 138, pp. 10–13, June 2021.

[69] P. Antonik, A. Smerieri, F. Duport, M. Haelterman, and S. Massar, “Fpga imple-

mentation of reservoir computing with online learning,” 2015.

[70] J. Dong, E. Börve, M. Rafayelyan, andM. Unser, “Asymptotic stability in reservoir

computing,” 2022.

[71] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information

Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

95

[72] P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, and K. Van Laerhoven, “Intro-

ducing wesad, a multimodal dataset for wearable stress and affect detection,” in

Proceedings of the 20th ACM International Conference onMultimodal Interaction,

ICMI ’18, (New York, NY, USA), p. 400–408, Association for ComputingMachin-

ery, 2018.

[73] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message

passing for quantum chemistry,” in Proceedings of the 34th International Conference

onMachine Learning - Volume 70, ICML’17, p. 1263–1272, JMLR.org, 2017.

[74] K. S. Bhat, C. D. Twigg, J. K. Hodgins, P. K. Khosla, Z. Popović, and S. M. Seitz,

“Estimating cloth simulation parameters from video,” in Proceedings of the 2003

ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03,

(Goslar, DEU), p. 37–51, Eurographics Association, 2003.

[75] N. E. Anatoliotakis, P. Koustoumpardis, and K. Moustakas, “Cloth mechanical pa-

rameter estimation and simulation for optimized robotic manipulation,” in 2021

IEEE/CVF International Conference on Computer VisionWorkshops (ICCVW),

pp. 2612–2620, 2021.

[76] E. Ju andM. G. Choi, “Estimating cloth simulation parameters from a static drape

using neural networks,” IEEE Access, vol. 8, pp. 195113–195121, 2020.

96

[77] Y. Zhao, J. Tong, C. Yang, Y. fei Chan, and L. Li, “A simulation model of electrical

resistance applied in designing conductive woven fabrics,” Textile Research Journal,

vol. 86, no. 16, pp. 1688–1700, 2016.

[78] S. Gabourin, M. Carroll, S. Kövecses De Carvalho, A. Nordt, S. Pavinato, and

K. Rosquist, “The ess fast beam interlock system: First experience of operating with

proton beam,” Proceedings of the 31st International Linear Accelerator Conference,

vol. LINAC2022, p. UK, 2022.

[79] R. Garoby, A. Vergara, H. Danared, I. Alonso, E. Bargallo, B. Cheymol, C. Darve,

M. Eshraqi, H. Hassanzadegan, A. Jansson, I. Kittelmann, Y. Levinsen, M. Lin-

droos, C. Martins, Ø. Midttun, R. Miyamoto, S. Molloy, D. Phan, A. Ponton,

E. Sargsyan, T. Shea, A. Sunesson, L. Tchelidze, C. Thomas, M. Jensen, W. Hees,

P. Arnold, M. Juni-Ferreira, F. Jensen, A. Lundmark, D. McGinnis, N. Gazis,

J. W. II, M. Anthony, E. Pitcher, L. Coney, M. Gohran, J. Haines, R. Linander,

D. Lyngh, U. Oden, H. Carling, R. Andersson, S. Birch, J. Cereijo, T. Friedrich,

T. Korhonen, E. Laface, M. Mansouri-Sharifabad, A. Monera-Martinez, A. Nordt,

D. Paulic, D. Piso, S. Regnell, M. Zaera-Sanz, M. Aberg, K. Breimer, K. Batkov,

Y. Lee, L. Zanini, M. Kickulies, Y. Bessler, J. Ringnér, J. Jurns, A. Sadeghzadeh,

P. Nilsson, M. Olsson, J.-E. Presteng, H. Carlsson, A. Polato, J. Harborn, K. Sjö-

97

green, G. Muhrer, and F. Sordo, “The european spallation source design,” Physica

Scripta, vol. 93, p. 014001, Dec. 2017.

98

99

This thesis was typeset

using LATEX, originally de-

veloped by Leslie Lamport

and based on Donald Knuth’s TEX. The

body text is set in 11 point Egenolff-Berner

Garamond, a revival of Claude Garamont’s

humanist typeface. The above illustra-

tion, Science Experiment 02, was created

by Ben Schlitter and released under cc

by-nc-nd 3.0. A template that can be

used to format a PhD dissertation with this

look& feel has been released under the

permissive agpl license, and can be found

online at github.com/suchow/Dissertate

or from its lead author, Jordan Suchow, at

suchow@post.harvard.edu.

100

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu

