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Abstract

Predictive analytics in human behaviors and social trends is crucial for gaining

invaluable insights into the future trajectories of public concerns and interests. Dis-

covering and modeling the representations and relations of real-world entities pose

fundamental challenges. Nowadays, the advent of artificial intelligence (AI) has ush-

ered in a transformative era for research on human social activities. AI tools and

methodologies have become indispensable for analyzing vast datasets and extracting

profound insights.

AI and deep learning techniques have led to significant improvements in fields

such as natural language processing, computer vision, and other domains based

on regular structured data. However, in many real-world situations, data exhibit

irregularities, requiring graph or network models to be explicitly modeled. Such ap-

plications involving irregular data structures include social networks, sensor feeds,

neuroscience, and various domains. This thesis mainly focuses on a branch within

graph models, graph neural networks (GNNs), and their applications in understand-

ing human behaviors and social trends within irregular data structures.

GNN is an extension and evolution of deep learning methods for analyzing graph

data. GNNs are designed to perform optimized transformations on all graph at-

tributes while preserving graph topology, which is a powerful tool for capturing

intricate relationships and dependencies in various real-world domains. The ver-

satility of GNNs makes them well-suited for addressing the challenges posed by

irregular and interconnected data, contributing to the advancement of predictive

analytics in research on human social activities.

In this thesis, we start with the formalization of GNNs and consider two di-

mensions within the categories of graphs: homogeneous/heterogeneous graphs and

static/dynamic graphs. Our research objective aims to propose novel GNN models

that comprehensively capture complex relationships within entities and effectively

learn entity representations in various social activities. Furthermore, these enhanced

GNN models demonstrate remarkable versatility, seamlessly transitioning from sim-

ple static homogeneous scenarios to challenging dynamic heterogeneous scenarios.

We evaluate the performance of the proposed models across three representative real-

world human behavior and social trends tasks, covering public healthcare, online

commercial activities, and social media networks. Through extensive experimen-
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tal results and analysis for each task, we demonstrate that the specially designed

GNN models consistently outperform other state-of-the-art and other graph-related

methods.
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Chapter 1

Introduction

1.1 Predictive Analytics with Artificial Intelligence

in Human Behaviors and Social Trends

Human behavior refers to the actions, reactions, and conduct of individuals or groups

in response to internal and external stimuli. It encompasses a wide range of activ-

ities, including cognitive processes, economic actions, communication, and social

interactions. Social trends refer to the patterns, shifts, or changes in behavior, atti-

tudes, and preferences within a society over time. These trends can manifest in var-

ious areas, such as demographic trends, cultural preferences, political engagement,

and more. The study of human behavior and social trends involves understanding

individual and collective actions, predicting future patterns, and contributing in-

sights that can inform decision-making at various levels, from individual choices to

societal policies. Social science studies a broad field that explores various aspects

of human behaviors and social trends. Predictive analytics in social science involves

applying big-data driven methods, such as statistical models and machine learning

techniques, to analyze historical data and make predictions about future events or

trends within society [Dinov, 2018; Kumar and Garg, 2018; Mishra and Silakari,

2012; Poornima and Pushpalatha, 2018; Selvaraj and Marudappa, 2018]. They en-

compass disciplines such as sociology, psychology, anthropology, economics, political

science, and more. Social scientists have always aimed to figure out the complex

aspects of human behavior, society, and culture.

1.1.1 Overview of Human Behaviors and Social Trends

Categorizing human behaviors and social trends involves considering various lenses

through which behaviors and trends can be included in the scope of our research.

Table 1.1 categorizes human behaviors and social trends from perspectives of ob-

jectives and frequencies, providing an overview understanding of their complexities
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Table 1.1: Categories of human behaviors and social trends from perspectives of
objectives and frequencies. Categories marked in bold are involved in the research
scope of this thesis.

Perspectives Categories Practical cases

Objectives

Actions by individuals Decision-making processes, sentimental regulation
Collective actions within communities and groups Demographic trends, economic trends, instant messaging

Relationships between people and other entities Consumer product preferences, citation networks, public healthcare
Relationships between entities IoT, environmental trends, supply chain

Frequencies

Infrequently change Transportation networks, food chain, molecular structures
Change with regular observation intervals Population census, sensor network

Change anytime Social networks, traffic network congestion
Change by a certain probability Weather change, sports match outcomes

and nuances:

• Objectives

The objectives outline the various research targets of human social activities.

Individual actions encapsulate cognitive and emotional behaviors that signif-

icantly influence decision-making processes [Koot et al., 2021] and sentiment

regulation [Chauhan et al., 2021; Kavitha et al., 2018]. Collective actions

within communities shed light on broader group characteristics, including de-

mographic [Li et al., 2020a], economic trends [Chu and Qureshi, 2023; Yoon,

2021] at regional or national levels, and instant messaging apps like LINE

and Slack that connecting groups of people. Exploring relationships across

individuals and other real-world entities reveals intricate human interactions

and their impact on the world, encompassing commercial behaviors reflect-

ing consumer product preferences [Chen et al., 2019; Wu et al., 2022], cita-

tion networks between authors and papers, and public healthcare connecting

patients and hospitals [Krishnamoorthi et al., 2022; Rong et al., 2020]. Dis-

covering relationships between different entities is also significance, including

the Internet-of-thing (IoT), environmental trends shaped by human activities

[Kim et al., 2020; Lam et al., 2023], and global supply chains [Kosasih and

Brintrup, 2022].

• Frequencies

The frequency of events serves as a key determinant of the dynamic nature

inherent in human behaviors and social activities, bearing significant impli-

cations for both historical analysis and predictive analytics for future occur-

rences. Activities characterized by infrequent changes can be classified as static

systems (e.g., designing transportation networks, food chains among species,

and molecular structures), offering a stable foundation for comprehending tar-

get objectives over the long term. Conversely, activities undergoing frequent

changes are deemed dynamic systems, unveiling the temporal dynamics in-

herent in target objectives. Dynamic systems can be further classified based
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Table 1.2: Representative examples of human behaviors and social trends and prac-
tical cases of predictive analytics within them. Cases marked in bold are involved
in the research scope of this thesis.

Domains predictive analytics cases

Cognitive behaviors Decision-making processes [Koot et al., 2021]
Emotional behaviors Sentimental analysis [Chauhan et al., 2021; Kavitha et al., 2018]
Social behaviors Interpersonal communication and interaction [Tang et al., 2020]
Consumer behaviors Recommender systems [Chen et al., 2019; Wu et al., 2022]
Deviant behaviors Fraud detection [Severino and Peng, 2021; Zakaryazad and Duman, 2016]
Demographic trends Migration patterns and urbanization [Li et al., 2020a]
Economic trends GDP growth [Chu and Qureshi, 2023; Yoon, 2021]
Public health trends Healthcare [Krishnamoorthi et al., 2022; Rong et al., 2020]
Environmental trends Climate change [Kim et al., 2020; Lam et al., 2023]
Social media trends Influence of contents in social media [Szabo and Huberman, 2010]

on the consistency of their changes: changing with regular observation inter-

vals (e.g., population census, sensor network) and changing at any given time

(e.g., social networks, traffic network congestion). These distinctions are cru-

cial as they dictate variations in representation and modeling methodologies.

Besides, there is another dynamic patterns that entities change by a certain

probability, such as weather change and the outcomes of sports matches.

In real-world situations, the predictive analytics plays a crucial role in providing

a disciplinary analysis of human behaviors and social trends across various cate-

gories. Predicting human behaviors and social trends can offer numerous benefits

across diverse domains. Table 1.2 demonstrates a part of representative domains of

human behaviors and social trends and practical cases of predictive analytics within

them. For example, in business and marketing domain, predictive analytics aids

in comprehending consumer behavior, enabling effective product recommendations

tailored to meet customer preferences [Chen et al., 2019; Wu et al., 2022]. More-

over, predictive analytics facilitates customers’ efficient decision-making based on

their cognitive behaviors [Bolton, 2016], and understands their emotional behaviors

by sentimental analysis [Chauhan et al., 2021; Kavitha et al., 2018]. Additionally,

it assists in identifying deviant behaviors, contributing to the detection of fraud-

ulent transactions within online commercial activities [Severino and Peng, 2021;

Zakaryazad and Duman, 2016].

Based on the previous overviews, the categorizations and practical activities of

human behaviors and social trends are too broad to cover in one thesis. In this thesis,

the research scope is located in the particular objectives and frequencies. Specifically,

we focus on relationships between people and other real-world entities under three

frequency patterns, namely infrequent (static), regularly observed (discrete-time

dynamic), and continuous changes (continuous-time dynamic). Moreover, this thesis

primarily focuses on the practical cases of social behaviors, public health trends,

and social media trends, based on considerations of dataset accessibility and real-
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world significance. In public healthcare, predictive analytics plays a crucial role

in forecasting health-related behaviors and trends, optimizing preventive healthcare

measures, and enhancing resource allocation to improve patient care and reduce costs

[Jin et al., 2021; Krishnamoorthi et al., 2022; Rong et al., 2020]. Predictive analytics

in social behaviors and social media trends assists in understanding interpersonal

communication and interactions on the Internet [Tang et al., 2020], anticipating

popular content [Jin et al., 2022, 2023], enabling creators and businesses to tailor

their offerings [Szabo and Huberman, 2010], while also detecting potential crises or

negative trends at an early stage [Sevim et al., 2014].

1.1.2 Artificial Intelligence Techniques in Analyzing Real-

world Data

Nowadays, with the rise of artificial intelligence (AI), social sciences research has

entered a new phase. AI tools and methods are now crucial in analyzing big data

and gaining insights [Kibria et al., 2018]. Social sciences provide the insight into

real-world research issues such as economics, politics, and environment, while the

computer science contributes expertise in developing AI methods. The combination

between social sciences and AI helps us explore existing theories more profoundly

and uncover new patterns. This blend enriches our understanding of the human

experience and allows us to discover new things about how people live in today’s

world, and even predicting people’s lives in the future. The integration of AI tech-

niques empowers social science researchers to efficiently tackle initial data processing

tasks, such as analyzing intricate social networks and identifying key influencers, in-

teraction patterns, and information diffusion [Jin et al., 2022, 2023]. Deep learning

methods contribute significantly to various aspects of social sciences research, en-

hancing the capabilities of researchers in several key areas such as Computer Vision

(CV) [Gu et al., 2018], Natural Language Processing (NLP) [Vaswani et al., 2017],

AI generated content (AIGC) [Cao et al., 2023], Large-language Models (LLMs)

[Radford et al., 2019] and more. Moreover, AI models facilitate predictive analytics

in diverse real-world scenarios, including social trends [Chen et al., 2021], economic

trends [Ahmadi et al., 2019], public health outcomes [Feng et al., 2021], traffic flows

[Akhtar and Moridpour, 2021], and more.

The evolution of AI techniques has elevated predictive analytics to new heights.

Predictive analytics via machine learning and deep learning relies on the massive vol-

ume of real-world datasets. As shown in Fig. 1.1, some of this data exhibits a regular

structure with a symmetrical and compact shape, as seen in images and time-series

data. These regular datasets can be represented in an n-dimensional Euclidean

space, making them amenable to modeling using traditional machine learning and

deep learning techniques. Convolutional Neural Networks (CNNs) are renowned
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Figure 1.1: The regular data structures. Images can be represented as grid struc-
tures. Text and speech contents can be represented as sequence structures.

Figure 1.2: The irregular data structures. For example: sensor networks, traffic
networks, social networks, neuronal connections, and more.

deep learning frameworks designed for handling image data [LeCun and Bengio,

1998], while the Transformer framework has gained prominence for processing time-

series data [Vaswani et al., 2017]. LLMs like Chat-GPT can achieve general-purpose

language generation by learning statistical relationships from extensive text docu-

ment data [Radford et al., 2019]. These well-established methods have achieved

numerous successes in their respective domains, providing robust support for pre-

dictive analytics within regular data structures.

However, not all real-world data adheres to regular structures; a significant por-

tion exhibits irregular structures where entities cannot be represented in Euclidean

space, as depicted in Fig. 1.2. These irregular data structures arise from sensor net-

works, traffic patterns, social networks, neuronal connections, and more [Bronstein

et al., 2017]. With the rapid development of the Internet, the volume of irregular

data structures has surged. The Internet, by shortening physical distances between

entities, has given rise to numerous network data structures.

Irregular data structures pose a challenge for prior deep learning techniques such

as CNNs and transformers, designed primarily for regular data. In a CNN, for in-
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stance, the convolution kernel slides through the image from left to right and top

to bottom, relying on a grid structure. However, this directional concept is unde-

fined for irregular data lacking a grid structure. Traditional methods for handling

with irregular data structures involve data-driven approaches, such as treating ir-

regular data as manifolds through methods like multidimensional scaling (MDS)

[Tenenbaum et al., 2000], locally linear embedding (LLE) [Roweis and Saul, 2000],

stochastic neighbor embedding (t-SNE) [Van der Maaten and Hinton, 2008], and

adapting regular data structure methods like CNNs in spectral domains [Boscaini

et al., 2015; Bruna et al., 2013; Henaff et al., 2015]. However, these prior works did

not comprehensively model entities and their relationships within irregular data,

resulting in intricate operations and inefficient performance.

1.1.3 Graph Models in Predictive Analytics on Real-world

Data

Graphs represent a crucial tool developed in the research on irregular data. With

a foundation in graph theory, graph models can seamlessly integrate both topology

structures and entity features within irregular data structures. In recent years, ma-

chine learning and deep learning techniques have experienced rapid development in

the graph domain, establishing graph models as powerful tools for analyzing data

with irregular structures. Notably, recent advancements in applying graph models to

real-world predictive analytics have showcased remarkable breakthroughs in address-

ing critical real-world problems. Google DeepMind proposed a GraphCast model

for faster and more accurate global weather forecasting [Lam et al., 2023]. Graph-

Cast has demonstrated unprecedented accuracy in medium-range weather forecasts,

outperforming traditional industry gold-standard weather simulation systems. It

provides earlier warnings of extreme weather events, accurately predicting cyclone

tracks further into the future, identifying atmospheric rivers associated with flood

risk, and forecasting the onset of extreme temperatures. GraphCast contributes to

risk reduction and enhanced preparedness, potentially saving lives. Furthermore,

another model named GNoME, also from Google DeepMind, showcased the trans-

formative potential of graph methods in material science [Merchant et al., 2023].

GNoME predicts the stability of new materials and has facilitated the discovery

of 2.2 million new crystals, including 380,000 stable materials with potential ap-

plications in powering future technologies. These two groundbreaking achievement

emphasizes the potential power of graph models in accelerating the predictive ana-

lytics of human social studies.

Compared to the traditional methods of manifolds and spectral CNNs, graph

models provide the following significant advancements to predictive analytics for

human behaviors and social trends:
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• Capturing Complex Relationships

Traditional methods often struggle to capture the complex, non-linear rela-

tionships inherent in social and behavioral data. Graph methods, on the other

hand, excel at modeling these intricate network structures, such as social con-

nections, influences, and interactions.

• Dynamic Analysis

Social trends and human behaviors are dynamic, constantly evolving over time.

Graph methods are well-suited for analyzing such time-evolving networks, cap-

turing temporal changes more effectively than many traditional methods.

• Handling Heterogeneous Data

Graph methods are adept at handling heterogeneous data, which is common

in social and behavioral studies. They can integrate various types of nodes

and edges (e.g., different types of relationships, interactions) within a single

framework.

• Interpretable Insights

Graph visualizations and analyses can offer more interpretable insights into

how individuals or groups are interconnected, how influence propagates, and

how communities form and evolve.

• Enhanced Predictive Performance

By capturing the complex structures and relationships within the data more

effectively, graph methods often lead to enhanced predictive performance in

tasks related to human behavior and social trend analysis.

In light of the aforementioned considerations, this thesis delves into the advance-

ments and applications of predictive analytics in the evolving landscape of human

behaviors and social trends, with a particular focus on exploring the transforma-

tive potential of graph models in forecasting and understanding complex societal

phenomena.

1.2 Graphs

Graphs consist of a set of nodes and a set of edges that define relations between

the nodes, offering tremendous flexibility for representing real-world entities and

relationships. For example, in a social network illustrated in Fig. 1.3, users are

depicted as nodes, and the edges between them symbolize friendships. Users may
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Figure 1.3: A visualization of social networks. Users are depicted as nodes, and the
edges between them symbolize friendships. The user holds various attributes, which
are referred to node features.

Figure 1.4: Graph embedding learning is to find a proper way to encode the graph
structures, including nodes and edges, into low-dimensional embedding vectors while
maximally preserving graph structure and information.

share attributes such as geographical location, interests, political affiliations, work-

places, and more, fostering a nuanced understanding of their connections and inter-

actions. Graphs find applicability across diverse datasets, showcasing their versa-

tility in representing various phenomena. They can encapsulate social interactions

[Mislove et al., 2007], communication systems [Monge and Contractor, 2003], trans-

port systems [Von Ferber et al., 2009], computer networks [Erciyes, 2013], biolog-

ical processes [Brohee and Van Helden, 2006], and numerous other domains. This

adaptability underscores the efficiency of graph-based models in capturing complex

relationships and patterns inherent in different data types.

Graphs serve as fundamental tools in numerous research fields, illustrating pat-

terns of connections within complex systems. Graph embedding learning, a widely

recognized technique in graph-related work, has witnessed significant success in re-

cent years [Cai et al., 2018; Cui et al., 2018; Wu et al., 2019b; Zhang et al., 2019b,
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Figure 1.5: A simple formulation of GNN. Input is graph structure and attributes
(node/edge features). Output is learned node embeddings, which can be used in
node-level, edge-level, and graph-level downstream tasks.

2018b; Zhou et al., 2018]. The graph structure is complicated and hard to do com-

putation, thus we need to transform the graph structure into a format amenable to

computation.

Graph embedding learning addresses this challenge by seeking an effective method

to encode the structures of the graph, including nodes and edges, into low-dimensional

embedding vectors while preserving the graph’s structure and information to the

maximum extent, as shown in Fig. 1.4. This approach proves powerful for learning

representations of real-world graph-structured entities. The acquired embeddings

can be utilized as feature inputs for downstream tasks. Various graph embed-

ding methods have been proposed by researchers, including matrix factorization

[Ou et al., 2016], edge reconstruction [Tang et al., 2015], random walks plus the

skip-gram model [Grover and Leskovec, 2016; Perozzi et al., 2014a], and more.

1.3 Graph Neural Networks

In recent years, deep learning has created remarkable advancements. Large-scale

neural network models have consistently yielded state-of-the-art performance across

various real-world data and tasks. Capitalizing on this success, researchers have ex-

tended the application of neural network models to graph structured data, achieving

substantial improvements over traditional graph models. This class of neural net-

work models is called Graph Neural Networks (GNNs). GNNs are deep neural

network architectures that encode graph structures and attributes. GNN achieve

this by aggregating features of neighbor nodes together. The birth of GNNs can

be traced back to the famous CNN [LeCun and Bengio, 1998], a well-known model

initially designed for grid-structured data like images. As the generalization version

of CNN, GNN is designed for irregular data structures, which could handle the topo-

logical structure information within the graph and learn high-level representations
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Table 1.3: Prior studies on GNNs. The GNNs research is evolving from foundational
models to sophisticated and widely utilized models.

Categories Representative prior work

Recurrent GNNs
GNN [Scarselli et al., 2008a],
GraphESN [Gallicchio and Micheli, 2010]

Convolutional GNNs
GCN [Kipf and Welling, 2016a], AGCN [Li et al., 2018],
DGCN [Zhuang and Ma, 2018], GAT [Veličković et al., 2018],
GraphSage [Hamilton et al., 2017b]

Graph Auto-Encoders
VGAE [Kipf and Welling, 2016b], DNGR [Cao et al., 2016],
GraphVae [Simonovsky and Komodakis, 2018],
GraphRNN [You et al., 2018]

Graph adversarial networks GraphGAN [Wang et al., 2018]

Heterogeneous GNNs
HAN [Wang et al., 2019a], HetGNN [Zhang et al., 2019a],
PGRA [Chairatanakul et al., 2021]

Dynamic GNNs

GCRN-M1 & GCRN-M2 [Seo et al., 2018],
DyRep [Trivedi et al., 2019], JODIE [Kumar et al., 2019],
DySAT [Sankar et al., 2020], TGAT [Xu et al., 2020],
TGN [Rossi et al., 2020],

Heterogeneous dynamic GNNs HGT [Hu et al., 2020]

of nodes [Wu et al., 2019b; Zhang et al., 2019b].

For a specific node in a graph, GNNs utilize the graph topology to iteratively ag-

gregate information from its neighboring nodes, deriving its representation through

message propagation. This node aggregation process bears similarities to the con-

volution of pixels in CNN. Through the aggregation of features from neighboring

nodes, GNNs can adeptly learn to encode both local and global structures within

the graph. The evolution of GNNs within graph embedding learning has introduced

novel approaches for comprehending and analyzing intricate relationships and pat-

terns across diverse datasets, further enhancing the efficiency and versatility of deep

learning methodologies [Wu et al., 2020; Zhang et al., 2020; Zhou et al., 2020].

GNNs are widely recognized as highly effective approaches for modeling the in-

fluence of information diffusion in real-world scenarios. As illustrated in Fig. 1.5,

GNNs belong to the category of deep learning structures designed to perform opti-

mized transformations on all graph structures and attributes while preserving graph

topology [Wu et al., 2019b; Zhang et al., 2019b]. The versatility of GNNs lies in their

direct applicability to graphs, providing a straightforward approach to learning node

representation embeddings. These learned node embeddings are valuable results for

addressing downstream tasks, including node-level, edge-level, and graph-level ap-

plications.

Table. 1.3 categories some of the representative prior GNN studies. The incep-

tion of the first GNN was introduced in 2008 [Scarselli et al., 2008b]. Early GNNs

were usually associated with a recurrent architecture [Gallicchio and Micheli, 2010].

Then, several influential Convolutional GNNs and Graph Auto-Encoders were re-

leased in 2016 and 2017, including GraphSAGE [Hamilton et al., 2017b], Graph At-
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tention Networks (GAT) [Veličković et al., 2018], Variational Graph Auto-Encoder

(VGAE) [Kipf and Welling, 2016b], and the widely adopted Graph Convolutional

Neural Network (GCN) [Kipf and Welling, 2016a]. Besides, with the development

of Generative Adversarial Networks (GAN) for estimating generative models via

an adversarial process [Goodfellow et al., 2014], its application in graphs named

Graph Adversarial Networks are also developed [Wang et al., 2018]. GNNs includ-

ing, but not limited to the above mentioned ones, have become cornerstone models

acknowledged for their effectiveness in various graph-related tasks.

In recent years, research on dynamic GNN came to the public vision. The first

dynamic GNN (GCRN-M1 & GCRN-M2) combines CNN for spatial structure iden-

tification and Recurrent Neural Networks (RNNs) for dynamic pattern recognition

[Seo et al., 2018]. Subsequent models like DyREP and JODIE further refined the

concept by enhancing RNN-based dynamic GNNs [Kumar et al., 2019; Trivedi et al.,

2019]. DySAT introduced the first dynamic GNN based solely on attention, not re-

lying on RNN [Sankar et al., 2020]. TGAT innovatively encoded time intervals as

time embedding vectors [Xu et al., 2020], and TGN improved upon this idea by in-

corporating a memory module [Rossi et al., 2020]. HAN proposed a heterogeneous

graph attention network based on the hierarchical node-level and semantic-level at-

tention [Wang et al., 2019a]. HGT contributed to a heterogeneous graph transformer

architecture designed to handle large-scale heterogeneous and dynamic graphs [Hu

et al., 2020].

Recent research trends on GNN have showcased a shift toward more intricate

scenarios, particularly in handling heterogeneous and dynamic graph structures.

The GNNs research is evolving from foundational models to sophisticated and widely

utilized models. Moreover, there is a growing focus on expert GNNs designed for

specific domains, demonstrating the maturation and diversity of the applications of

GNN models. Application domains of GNNs include NLP [Guo et al., 2019; Yin

et al., 2020], computer vision [Woo et al., 2018; Yang et al., 2018], social networks

[Guo and Wang, 2020; Li et al., 2023], e-commerce [Li et al., 2020b; Liu et al., 2021],

recommender system [Fan et al., 2019; Wu et al., 2022; Ying et al., 2018], traffic

[Akhtar and Moridpour, 2021; Yang et al., 2023], circuit design [Wang et al., 2020;

Yang et al., 2022b], and more. Structural data, such as a social network, inherently

have a clear network structure. In contrast, non-structured data, such as text and

photos, often necessitate transformation into a structured format before employing

GNN.

The robustness and diverse applications of GNNs have spurred continuous efforts

to enhance their learning capabilities. Researchers are actively involved in designing

new GNN architectures that can adapt to data with diverse underlying patterns and

properties, reflecting a commitment to advancing the capabilities of GNN models in

addressing challenges across various domains.
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1.4 Research Objectives

1.4.1 Motivations

Upon initial inspection, a graph may appear simplistic, featuring nodes intercon-

nected by edges. However, the versatility of graphs is far-reaching. Edges can exist

in their basic form (undirected graphs) or be assigned directions (directed graphs),

underscoring the uni-directional nature of relationships. Besides, node status and

edge connections may change with time, which can model the continuously evolv-

ing social media networks. Moreover, nodes can be connected by multiple edges

or weighted edges, providing additional layers of complexity. Creating graphs from

diverse data sources reveals distinct connectivity patterns between nodes, leading to

categorizing graphs into various types, such as homogeneous graphs, heterogeneous

graphs, dynamic graphs, and multi-layered graphs.

Within the various alternatives, the graph is an ideal way to capture complex

relationships within real-world situations. Graph methods are adept at handling

heterogeneous data and time-evolving systems, which are common in social and be-

havioral studies. Graphs can help capturing temporal changes and integrate various

types of nodes and edges (e.g., different types of relationships, interactions) more

effectively than many other traditional methods. Moreover, graph visualizations

and anlyses can offer more interpretable insights into how entities are connected,

influenced, and how communities form and evolve. Such explainability is essential

to discover the reasons of human behaviors and social trends.

The connectivity patterns encoded by edges often unveil crucial information

about real-world phenomena associated with the dataset. For instance, in scale-

free graphs, a few nodes are highly connected to the majority, reflecting a power-law

distribution in the degree of nodes. Graphs mirror the phenomenon observed in real-

world social networks, where influencers have a vast number of followers compared

to the sparser connections of the average person. Understanding such connectiv-

ity dynamics is pivotal in applications like curbing the spread of misinformation

or strategically disseminating information across a network. Such similar charac-

teristics also improve the compatibility of leveraging graphs to represent real-world

datasets.

1.4.2 Challenges

According to the existing work, modeling real-world entity relationships using GNNs

presents a multifaceted challenge:

• Scalability

The massive volume and types of data often reaches magnitudes in the millions

and beyond, necessitating substantial computational resources and thought-
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ful considerations of computation efficiency in model design. It highlights

the need for scalable solutions to handle massive datasets while maintaining

computational cost.

• Heterogeneity

The existing graph methods primarily focus on plain graphs, which are often

insufficient for the complex nature of human social activities. When analyzing

such activities, we encounter a rich mix of information types involving vari-

ous people and objects. Therefore, there is an urgent need for graph model

solutions that can adapt to the diversity of real-world entities involved (peo-

ple, objects, locations, and more) and the multiple interactions among these

entities.

• Dynamics

The dynamic nature of most real-world situations introduces an additional

layer of complexity: temporal information. Models must exhibit the capability

to process temporal information, reflecting the continuously changing of entity

status and relationships over time. The challenge lies in achieving accuracy in

predictive analytics and ensuring timely responses to changes in the underlying

data.

• Domain-specific expert GNNs

The diversity and distinct characteristics of relationships within human activi-

ties and social trends underline the importance of specialized methods tailored

to specific situations. A one-size-fits-all approach may fall short because of a

lack of specific-domain information, emphasizing the necessity for specialist

methods capable of addressing the unique features of diverse relationship pat-

terns.

1.4.3 Research Goal

In addressing these challenges, this thesis endeavors to develop innovative GNN

models that are specifically tailored to the complexity of human social activities.

The research proposal is developing advanced GNNs frameworks to learn entity rep-

resentations within real-world graph-structured dataset and tackle domain-specific

prediction tasks. In consideration of the challenges above, this thesis aims to solve

the following research questions:

1. How to address prediction tasks on heterogeneous data by GNNs?

As mentioned, real-world human social activities often entail a rich mix of

information types involving various people, objects, and more. The hetero-

geneity of real-world data manifests not only in the diversity of entity types
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but also in the various types of relationships presented. Therefore, an ideal

GNN framework should possess the capability to learn and adapt to both

the diversity of real-world entities (such as people, objects, locations) and

the multitude of interactions among these entities (for example, followers and

followees in social networks, users buying items in an e-commerce platform).

In Chapter 3 and Chapter 4, we introduce GNN frameworks that can effec-

tively learn entity representation embeddings in both simplistic and intricate

heterogeneous real-world data.

2. How to address prediction tasks on dynamic data by GNNs?

Dyanmic GNNs can capture the dynamic nature of most real-world data. How-

ever, several challenges make them more complex than the GNNs for static

graphs. Firstly, nodes and edges are added or removed over time, leading to

temporal changes in graph topology. Additionally, nodes and edges in dynamic

graphs may have evolving features over time, necessitating continuous mon-

itoring of node and edge statuses. Furthermore, maintaining computational

efficiency during training and inference becomes crucial, since dynamic graphs

require continuous updates to the model. It demands strategies that can up-

date the model with minimal costs. In Chapter 4 and Chapter 5, we introduce

GNN frameworks tailored for two dynamic patterns: discrete-time dynamic

graphs and continuous-time dynamic graphs. We address the aforementioned

challenges through specifically designed GNN architectures.

3. How to tailor GNN architectures to better fit domain-specific prediction tasks?

In certain real-world scenarios, data from different domains can be effectively

represented by the same graph structure. For example, the ring-structured

computer networks, the molecular structure of benzene, and the railway net-

work of the Yamanote line in Tokyo can all be encapsulated within the same

ring-structured graph. However, GNNs are often employed to learn from ab-

stract graphs, neglecting domain-specific knowledge that could enhance the

model’s learning capabilities. Consequently, the conventional one-size-fits-all

approach of GNNs may not always be optimal. There is an urgent need for ex-

pert GNNs tailored to specific domains. In this thesis, the proposed advanced

GNN frameworks are customized for specific real-world domains. Chapter 3

introduces a GNN method designed for prediction tasks in the public health

domain. Chapter 4 presents a GNN framework focused on predicting pop-

ularity trends in social media networks. Chapter 5 develops a sophisticated

GNN model for forecasting commercial activities on live streaming platforms.

Through case studies spanning various domains, we aim to gain insights into

the critical considerations on how to designing expert GNNs for prediction

tasks within specific domains.
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Table 1.4: GNN categories involved in this thesis.

GNN categories Static graph
Discrete-time
dynamic graph

snapshots

Continuous-time
dynamic graph

actions

Homogeneous
graph

Plain GNNs
(e.g., GCN)

Stacks of
plain GNNs

Chapter 5

Heterogeneous
graph

Chapter 3 Chapter 4 Future direction

1.4.4 Research Maps

This thesis presents an interdisciplinary study that integrates GNNs from the graph

models into the exploration of human behaviors and social trends within social sci-

ences. The main goal of this thesis is to devise innovative GNN models capable of

capturing complex relationships among entities in real-world data. The proposed

models aim to efficiently learn nuanced representations of entities and subsequently

employ predictive analytics to address real-world challenges related to human be-

haviors and social trends.

Table 1.4 lists the categories of GNNs discussed in this thesis. The discussion

revolves around the combination of two fundamental graph characteristics: time fac-

tors and node/edge types. Graphs with no notion of time are called static graphs,

while those incorporating time factors are called dynamic graphs. Dynamic graphs

can be further classified into discrete-time dynamic graph snapshots, which con-

sist of graph snapshots observed at regular intervals, and continuous-time dynamic

graph actions, which record each graph action (change) individually along with its

timestamp. In another hand, graphs comprising only one node type and one edge

type are referred to as homogeneous graphs, whereas those with multiple node types

or edge types are termed heterogeneous graphs.

The basic static homogeneous GNN has been extensively discussed in prior mod-

els like GCN. In the case of homogeneous discrete-time dynamic graph snapshots,

they are typically represented as a sequence of static graphs. Therefore, a stack of

plain GNNs can be directly applied to handle this situation. However, this thesis

primarily concentrates on more challenging scenarios, namely heterogeneous static

graphs (Chapter 3), heterogeneous discrete-time dynamic graphs (Chapter 4), and

homogeneous continuous-time dynamic graphs (Chapter 5). Our novel GNN models,

introduced in this thesis, demonstrate remarkable versatility, seamlessly adapting to

scenarios ranging from straightforward static homogeneous networks to intricate

dynamic heterogeneous structures. The heterogeneous continuous-time dyanmic

graphs, the most complex situation, remains room for future exploration. Our pro-

posed GNN models are specifically designed to offer a comprehensive understanding

of complex social phenomena by capturing the dynamic nature of social interactions

and the rich mix of information types.
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Table 1.5: Real-world case studies involved in this thesis.

Case studies Chapter 3 Chapter 4 Chapter 5

Prediction target EMS demand Popularity trends
Income of

live streamers
Domain Public health Public interest Commercial activity

Background Tokyo metropolitan Social media networks Live streaming services

Categories Human behaviors Social trends
Human behaviors
& Social trends

In another hand, we evaluate the aforementioned proposed GNNs through dis-

tinct real-world case studies, as listed in Table 1.5. The involved case studies in-

clude Emergency Medical Services (EMS) demand prediction (Chapter 3), popu-

larity trends prediction in social media networks (Chapter 4), and forecasting the

income of live streamers (Chapter 5).

The prediction of EMS demand in Tokyo metropolitan serves as a meaningful

metric for public health outcomes, representing a vital aspect of human behaviors in

social infrastructure services. The anticipation of popularity trends in social media

networks (e.g., X, Instagram, and Reddit) provides insights into the future trajec-

tory of public interests and concerns, indicating the social trends in the future.

Forecasting the income in online live streaming services (e.g., YouTube Live and

Twitch) reflects the dynamics of a significant commercial activity on the Internet.

Live streaming services have experienced a surge, particularly in the post-COVID-19

era, becoming a prevalent mode for individuals to study, work, and earn a liveli-

hood through online streaming. This scenario reflects a new combination of human

behaviors and social trends.

In summary, this thesis comprises multiple subworks that introduce advanced

GNNs tailored for challenging scenarios beyond the capabilities of traditional GNNs.

Each subwork is associated with a real-world case study, providing a comprehensive

assessment on the performance of proposed GNNs. These case studies, though

limited in scope, serve as quintessential representatives of human behaviors and

social trends. They effectively demonstrate the versatility and efficiency of our

proposed GNN models across diverse domains. The evaluations conducted validate

the robustness of our models and offer valuable insights into their practical utility

in addressing complex challenges within the social sciences.

1.5 Thesis Outline

The thesis is organized as the following structure:

1. In Chapter 1, we offer a concise overview of the evolution of predictive ana-

lytics with AI techniques in human behaviors and social trends, including the
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limitation of traditional methods and the advantages of graph models. Fol-

lowing this, we delve into the preliminaries of graphs and the GNN research,

specifically focusing on the utilize of GNN in real-world situations. Build-

ing upon existing GNN approaches, the primary objective of this thesis is

to propose novel GNN methods for efficiently learning entity representation

embeddings within graph-structured real-world data. The ultimate goal is to

enhance the ability of proposed GNN to interpret predictive analytics and

address the challenging tasks within human behaviors and social trends.

2. In Chapter 2, we provide a comprehensive overview of the preliminary knowl-

edge and background literature, delving into the fundamental knowledge of

graphs and the conception of GNNs. Our exploration encompasses a discus-

sion on the fundamental structure of GNNs and their alternative architectures

tailored for various types of graphs. In addition, we introduce some advanced

modules that enhance the performance of GNNs. Finally, we extend our in-

quiry to the practical downstream tasks of GNNs in predictive analytics. By

synthesizing insights from existing research, we aim to establish a robust foun-

dation for understanding the evolving landscape of GNNs and the subworks

involved in this thesis.

3. Chapter 3 presents a model designed to learn node embeddings within a sim-

plistic static bipartite graph. To illustrate the practical application of this

model, we introduce a case study centered around predicting the EMS demand

in the Tokyo metropolitan area. Our novel proposed model yields outstanding

results in prediction accuracy, surpassing the performance of established base-

lines. This work is meaningful in helping public health management of local

government.

4. In Chapter 4, we introduce an extended framework designed to efficiently learn

temporal node embeddings within a chronologically ordered sequence of het-

erogeneous graph snapshots. This framework is tailored to capture evolving

relationships and dynamics within the graphs. Furthermore, we showcase the

practical application of the proposed method in predicting popularity trends

within social media networks. This application is demonstrated through ex-

periments conducted on several real-world social media networks, providing

insights into the dynamic evolution of popularity trends and the efficiency of

the proposed framework in capturing these dynamic patterns.

5. In Chapter 5, we present the extension of an innovative dynamic GNN method

designed to effectively learn temporal node embeddings within intricate large-

scale continuously-time dynamic graphs. Notably, this method is equipped to

monitor the timing of specific graph actions, providing a nuanced understand-
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ing of temporal dynamics compared to the work in Chapter 4. To illustrate the

practical applicability of our proposed model, we introduce a income prediction

task within live streaming services. This real-world application demonstrates

the model’s efficiency in modelling complex, time-varying graph structures and

extracting valuable insights in online commercial activities.

6. In Chapter 6, we provide a comprehensive examination of the unified de-

sign considerations of proposed GNN frameworks. We delineate the relations

among three subwork involved in this thesis. Besides, we test the extensibility

of our proposed GNN frameworks on other datasets. Finally, we clarify the

requirements of real-world human behaviors and social trends data that can be

handled by our proposed GNN methods. By discussing these aspects, we aim

to contribute to the responsible and thoughtful advancement of GNN research

and application.

7. Finally, in Chapter 7, we answer the research questions proposed in Sec-

tion 1.4.3, conclude the key contributions of this thesis, and provide an outlook

into potential future directions.

1.6 List of Publications
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• Ruidong Jin, Tianqi Xia, Xin Liu, Tsuyoshi Murata and Kyoung-Sook Kim.

Predicting Emergency Medical Service Demand With Bipartite Graph Con-

volutional Networks. IEEE Access, vol. 9, pp. 9903-9915, 2021 [Jin et al.,

2021].

• Ruidong Jin, Xin Liu, Tsuyoshi Murata. Predicting Potential Real-time

Donations in YouTube Live Streaming Services via Continuous-time Dynamic

Graph. Machine Learning, pp. 1-35, 2023 [Jin et al., 2023].

• Ruidong Jin, Xin Liu, Tsuyoshi Murata. Predicting Popularity Trend in

Social Media Networks with Multi-layer Temporal Graph Neural Networks.

Complex & Intelligent Systems (Accepted).

Conferences

• Ruidong Jin, Xin Liu, Tsuyoshi Murata. Predicting Potential Real-time

Donations in YouTube Live Streaming Services via Continuous-time Dynamic

Graph. In 25th International Conference on Discovery Science (DS’ 2022),
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Montpellier, France, October 10–12, 2022, Proceedings. Springer-Verlag, Berlin,

Heidelberg, 59–73 (Oral presentation) [Jin et al., 2022].
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Chapter 2

Background

This chapter provides foundational background knowledge crucial for the subse-

quent chapters. We commence by defining the fundamental graph structure and

elucidate the alternatives for complex graphs frequently employed in modeling real-

world datasets. Subsequently, we provide a brief introduction to GNNs, which are

essential methods for comprehending the content of this thesis. Lastly, we introduce

graph downstream tasks commonly utilized in predictive analytics. This preliminary

background sets the stage for a deeper exploration of advanced methodologies and

applications in the ensuing chapters.

2.1 A Taxonomy of Graphs

First, we give the definition of a graph:

Definition 2.1.1 (Graph). A graph is denoted as G = (V,E,F), where V repre-

sents the set of nodes (vertices) and E represents the set of edges (links). Graph is

represented as an adjacency matrix A ∈ {0, 1}∥V∥×∥V∥ with each element Aij = 1 if

there exists an edge between node ui and uj, otherwise Aij = 0. In some cases, each

node is associated with a d-dimensional node feature (attribute) vector fi ∈ Rd, and

the feature matrix for all nodes is represented as F ∈ R∥V∥×d.

In what follows, we describe some common categories of graphs.

2.1.1 Undirected, Directed and Weighted Graph

For undirected graphs, their adjacency matrices are symmetric, i.e., Aij = Aji.

Fig. 2.1 illustrates the respective adjacency matrices of a directed and an undirected

graph.

Definition 2.1.2 (Directed graph). A directed graph (a.k.a digraph) is a graph

in which edges have orientations, indicating a specific direction from one vertex to

another. In a directed graph, the edges eij and eji are treated as distinct edges
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Figure 2.1: An undirected graph, a directed graph, and a weighted graph with their
respective adjacency matrices.

with potentially different meanings. The adjacency matrix of the directed graph is

asymmetric, i.e., Aij ̸= Aji.

Besides, edges can be weighted. An unweighted graph uses a binary notation A ∈
{0, 1}∥V∥×∥V∥ within its adjacency matrix, indicating the existence (1) or absence

(0) of edges. A weighted graph is one in which a number (the weight) A ∈ R∥V∥×∥V∥

is assigned to each edge. As shown in Fig. 2.1, the adjacency matrix of a weighted

graph is populated with a value of edge weight instead of binary representation.

The weights in weighted graphs encapsulate diverse metrics such as costs, lengths,

or capacities, depending on the specific problem under consideration.

2.1.2 Homogeneous & Heterogeneous graph

Graphs can further be categorized as either homogeneous or heterogeneous based

on the nature of their nodes and edges.

Definition 2.1.3 (Homogeneous graph). A homogeneous graph is a graph with a

single type of node and a single type of edge.

As shown in Fig. 2.2, in a homogeneous graph, uniformity prevails, with all

nodes representing instances of the same type and all edges denoting relations of

the same type. This uniformity ensures that the graph encapsulates a singular entity

type, fostering a cohesive representation. For example, a social network where nodes

correspond to individuals and edges signify connections between them. The graph

is homogeneous in this context as it revolves around a single entity type—people

and their relationships.
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Figure 2.2: A homogeneous graph. All nodes and all edges are of the same type
(e.g., all the nodes are users).

Figure 2.3: A heterogeneous graph. Nodes and/or edges have multiple types (e.g.,
nodes include users, reviews, and products. Edges include user-write-review, review-
on-product, and user-buy-product).
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Figure 2.4: A bipartite graph. Nodes are divided into two disjoint user group and
item group, and edges only connect nodes from two different groups.

Definition 2.1.4 (Heterogeneous graph). A heterogeneous graph is a graph with

two or more types of nodes and/or two or more types of edges.

In contrast, heterogeneous graphs present a more diverse structure where nodes

and edges can belong to different types. As shown in Fig. 2.3, consider a graph

modeling the relationships within online shopping, where the nodes represent dis-

tinct entities of users, products, and reviews. In this heterogeneous graph, the edges

have various types such as review-on-product (green dash lines), user-buy-product

(red solid lines), user-write-review (blue solid lines), and so on, reflecting the mul-

tifaceted relationships between different entities. The versatility of heterogeneous

graphs allows for a richer representation of complex systems where diverse enti-

ties interact through many relationships, making them particularly well-suited for

capturing the intricate dynamics of interconnected ecosystems.

Definition 2.1.5 (Bipartite graph). A bipartite graph G = (U,V,E) is a graph

with nodes divided into two disjoint sets U and V such that the edge e(u,v) ∈ E, u ∈
U, v ∈ V only connects nodes from one set to the other.

The bipartite graph is a distinctive and frequently employed subtype of hetero-

geneous graphs characterized by edges exclusively between nodes of two distinct

types. This specialized structure is precious in scenarios where relationships exist

solely between entities of different classes. As shown in Fig 2.4, a recommender sys-

tem, where user interactions with items, can be aptly represented using a bipartite

graph. In this context, one set of nodes corresponds to users, the other set represents

items, and edges establish connections based on user-item interactions. The bipar-

tite graph model proves instrumental in capturing and analyzing such relationships,

providing a precise and efficient representation that aligns with the inherent struc-

ture of diverse real-world systems, especially those involving interactions between

entities of distinct types.
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Figure 2.5: A spatio-temporal graph. Different node colors denote the change of
node features.

2.1.3 Dynamic Graph

Definition 2.1.6 (Dynamic (temporal) graph). A dynamic (temporal) graph is one

in which nodes and/or edges change with time.

Real-world graphs often exhibit dynamic behaviors, evolving over time to capture

the changing relationships and interactions within complex systems. Such dynamics

are particularly evident in domains such as social networks, financial transactions,

and recommender systems. Unlike static graphs, which provide a snapshot of re-

lationships at a single point in time, dynamic graphs encapsulate the temporal

evolution of connections, offering valuable insights into the evolving nature of these

real-world situations.

Learning on dynamic graphs presents considerably greater complexity compared

to static graphs. Different applications give rise to different types of dynamic graphs

and prediction problems. Thus, it is crucial to identify the type of dynamic graph

and its static and evolving parts and clearly understand the prediction problem. As

pointed out in [Kazemi et al., 2020], dynamic graphs can be divided into spatio-

temporal, discrete-time, and continuous-time categories.

Definition 2.1.7 (Spatio-temporal graph). A spatio-temporal graph is a dynamic

graph {G(1),G(2), · · · ,G(T )|G(t) = {V,E,F(t)}} made of static graph structures

(V,E) and time-varying features (F(t)), where t denotes the timestamp.

Spatio-temporal is a combination of two words, where “spatio” refers to space

and “temporal” refers to time. As illustrated in Fig. 2.5, spatio-temporal graphs

are a fundamental type of dynamic graphs. The topology in spatio-temporal graphs

remains fixed, but the node and/or edge features change over time. Any system

that comprises static structural relationships and dynamic time information can

be considered a spatio-temporal graph, such as traffic patterns and network loads.

However, it is important to note the limitation of spatio-temporal graphs, as they

cannot handle changes in graph topology.
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Figure 2.6: A discrete-time dynamic graph.

Definition 2.1.8 (Discrete-time dynamic graph (DTDG)). A discrete-time dynamic

graph is consist of a timed sequence of static graph snapshots {G(1),G(2), · · · ,G(T )},
where each graph snapshot G(t) = {V(t),E(t),F(t)} has node set V(t), edge set E(t)

and feature matrix F(t) at a specific timestamp t. The graph snapshots are captured

at regularly-spaced intervals.

As illustrated in Fig. 2.6, a DTDG embodies changes in both topology and

features over time. The temporal dynamics are captured through a sequence of

static graph snapshots observed at regular intervals. DTDG fits any system that is

observed at regular intervals. However, it is essential to note that these methods do

not provide insights into the events occurring between two consecutive observations.

The challenge lies in understanding the continuous evolution of the graph, dis-

cerning the transitions, and predicting the intermediate states. This temporal infor-

mation gap necessitates the development of dynamic graph models that go beyond

static snapshot analysis, delving into the nuanced changes occurring between ob-

served time points. Addressing this temporal granularity is crucial for capturing the

full spectrum of dynamic interactions and evolutions within the graph structure.

Definition 2.1.9 (Continuous-time dynamic graph (CTDG)). A continuous-time

dynamic graph is a pair (G(t0),S), where (G(t0) = {V(t0),E(t0),F(t0)} signifies a

static graph representing the initial state at timestamp t0, and S constitutes a timed

sequence of graph actions. These graph actions encompass a spectrum of trans-

formations, including edge creation or deletion, node creation or deletion, and the

evolution of node or edge statuses. Each individual graph action is temporally tagged,

providing a precise timestamp that indicates when the action occurred in the contin-

uous timeline.

CTDG is a more general style of dynamic graph. As illustrated in Fig. 2.7, this

formulation encapsulates the dynamic nature of the graph, illustrating not only its

instantaneous state at the initial timestamp but also the sequence of each change in

the graph that unfolds over time. The graph actions, with their associated times-

tamps, serve as a comprehensive representation of the continuous evolution of the
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Figure 2.7: A continuous-time dynamic graph.

dynamic graph, enabling a nuanced understanding of the temporal dynamics within

the complex system, such as social networks, interaction networks, financial trans-

action networks, and more.

2.2 Graph Neural Networks

The rapid advancement of technologies has ushered in an era where vast amounts of

data are readily available. Most of this data exhibits a non-Euclidean or irregular

structure, defying conventional methods for regular data structures. In response

to this complexity, graphs have emerged as a powerful tool for processing irregular

data structures. The analysis of graph-structured data proves invaluable, revealing

latent attributes and uncovering missing information that might otherwise remain

obscured.

Graphs provide a flexible framework for representing relationships and dependen-

cies in various domains, including social networks, biological systems, transportation

networks, and recommendation systems. By embracing the inherent irregularity and

connectivity of real-world data, graph-based approaches enable a more nuanced un-

derstanding of complex systems.

Graph embedding methods transform complex graph attributes, including nodes

and edges, into low-dimensional embedding vectors while maximally preserving the

essential graph structural information. These methods have consistently demon-

strated superior performance compared to traditional techniques when it comes to

modeling graph-structured data [Cai et al., 2018; Cui et al., 2018; Zhang et al.,

2018b; Zhou et al., 2018]. Graph Neural Network (GNN) is an extension and evolu-

tion of deep learning-based methods for analyzing graph data. GNNs are designed

to perform optimized transformations on all graph attributes while preserving graph

topology [Wu et al., 2019b; Zhang et al., 2019b]. As stated in Definition 2.1.1, a

graph G = (V,E) consists of a set of nodes V and a set of edges E. u ∈ V and

v ∈ V represent nodes in V, and e(u,v) represents the edge connecting node u and
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Figure 2.8: Illustration of the message passing update within a GNN with four nodes.
In the left figure, node embeddings h1 ∼ h4 are assigned to each node. Focusing
the center node h2, intermediate embeddings h(1,2), h(3,2) and h(4,2) are produced
using nearby node emebddings h1, h3 and h4, node features f1, f3 and f4, and edge
weights (if present) in the message passing step. The right figure shows that the
updated node embedding h′

u is an aggregation of nearby intermediate embeddings.

v. Nodes are usually associated with feature vectors fu ∈ F. Initially, an instance of

a graph G and the corresponding node features are fed to be the input of GNN. hu

denotes the hidden representation embeddings for node u. We use hu = fu as the

initialization. The graph’s structure dictates the message passing and node updates

to get updated node embedding h′
u.

Fig. 2.8 provides an illustration of the message passing and update processes

within a GNN. Typically, the message propagation in a GNN involves two crucial

steps: message passing and node update. These steps collectively contribute to

the iterative refinement of the hidden embeddings for each node within the graph.

The message passing operation is responsible for updating the hidden embedding

h
(n+1)
u of each node u in every iteration. Message passing revolves around aggre-

gating messages based on some pooling strategy (e.g., max pooling, mean pooling,

and more) from the neighbor nodes Nu of node u. The aggregated messages are

then employed to update the previous node embedding h
(n)
u through a non-linear

transformation. The message passing aggregation and update operations can be

mathematically expressed as follows:

h(n+1)
u = Update(h(n)

u ,M
(n)
Nu

), (2.1)

M
(n)
Nu

= Aggregate({h(n)
v , v ∈ Nu}), (2.2)

where both Update and Aggregate functions are arbitrarily differentiable and usually

implemented as neural networks. M
(n)
Nu

denotes the aggregated messages from the

neighbor nodes M
(n)
Nu

of node u at the n-th step in the iterations. The Update

function then combines the message M
(n)
Nu

with the previous node embedding h
(n)
u
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to produce the updated embeddings h
(n+1)
u . The output of the last layer is usually

used to define the learned node embeddings after performing n-th iterations of the

GNN layers and given as:

zu = h(n)
u , u ∈ V. (2.3)

In a general perspective, GNNs encode the graph structure A and node features

F into node embeddings Z, which can be represented by the following equation:

Z = F (A,F|Θ) , (2.4)

where F denote the GNN encoder and Θ denote the trainable parameter.

Prior research has commonly employed two types of strategies in the aggregation

operation: mean-pooling and attention mechanism. Mean-pooling involves averag-

ing the information from a central node’s neighbors, while attention mechanisms

assign different weights to the neighbor nodes based on their relevance to the cen-

tral node. In the update operation, various strategies have been explored to refine

the central node’s representation, including concatenation, summation, and Gated

Recurrent Unit (GRU). Besides, there are two basic types of Graph Neural Network

(GNN) models: spectral models and spatial models. Spectral models leverage graph

convolution to address graph-related tasks, whereas spatial models extract features

through iterative aggregation of a central node’s neighbors. The critical steps of

both models involve iteratively collecting information from a central node’s neigh-

bors and aggregating this information to derive a high-level representation of the

node. In the following, we briefly introduce several noteworthy GNN models.

The Graph Convolutional Network (GCN) is a prominent spectral model and

has gained widespread recognition as one of the most widely adopted models within

GNN frameworks [Kipf and Welling, 2016a]. Comprising several concatenated graph

convolutional layers, GCN has demonstrated remarkable efficiency in aggregating

information from neighboring nodes. The graph convolutional layer in GCN is typ-

ically formulated using the following equation:

H(l+1) = σ(LGCNH(l)W(l)) (2.5)

= D̃− 1
2 (A + I)D̃− 1

2H(l)W(l) (2.6)

where L is the aggregation matrix, H(l) is the node embedding matrix in l-th layer,

H(0) is initialized with the node feature matrix, W(l) is the trainable weight matrix

in l-th layer, and σ(·) is an activation function. GCN is originally designed for

homogeneous graphs, and it adopts the symmetric normalized Laplacian matrix

D̃− 1
2 ÃD̃− 1

2 as the aggregator LGCN, where Ã = A+ I and D̃ is the degree diagonal
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matrix of Ã. Ã represents the graph with a self-connection on each node.

GraphSage extends GCN to accommodate inductive learning, enabling effective

handling of unknown graph nodes [Hamilton et al., 2017b]. In GraphSage, the

approach involves sampling neighbor nodes of the central node and aggregating

information from these sampled neighbors to update the embedding of the central

node through several aggregators. This inductive learning strategy enhances the

model’s ability to generalize to new, unseen nodes within the graph. The aggregation

process in GraphSage is formulated by the following equations:

h
(n)
Nu

= Aggregate({h(n)
v , v ∈ Nu}), (2.7)

h(n+1)
u = σ(W(n)

[
h(n)
u ∥h

(n)
Nu

]
), (2.8)

where u is the central node, Nu is the sampled neighbors of u, W(n) is the weight

matrix of layer n, and Aggregate denotes aggregation options, such as mean, sum

and max.

Graph Attention Networks (GAT) represent a significant advancement by incor-

porating attention mechanisms, assigning importance weights to different neighbor

nodes [Veličković et al., 2018]. The attention mechanism enhances the model’s abil-

ity to discern the varying importance of neighbors, making it particularly effective

in scenarios where specific nodes play a more critical role in influencing the cen-

tral node’s characteristics. The aggregation process in GAT is formulated by the

following equations:

h(n+1)
u = σ

(∑
v∈Nu

αu,vW
(n)h(n)

v

)
, (2.9)

αu,v =
exp(LeakyReLU(αT [W(n)h

(n)
u ∥W(n)h

(n)
v ]))∑

k∈Nu
exp(LeakyReLU(αT [W(n)h

(n)
u ∥W(n)h

(n)
k ]))

, (2.10)

where αu,v is the weight from node j to node u, Nu is the neighbors of node u and

the attention mechanism is a fully connected neural network by a learnable vector

α through softmax function.

To further bolster the performance of GNNs, researchers have introduced ad-

vanced models that build upon the foundational architecture of GCN. Based on the

encoder-decoder paradigms, Graph Autoencoder and Variational Graph Autoen-

coder empower GNNs to undertake unsupervised learning tasks [Kipf and Welling,

2016b]. Moreover, the landscape of GNNs is enriched by extensions such as ML-GCN

and ML-GAT, which elevate the original GCN and GAT to multi-layer networks

[Zangari et al., 2021]. This extension enables these models to capture more intricate
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Figure 2.9: The overview of TGN model. This figure is cited from [Rossi et al.,
2020].

relations among nodes within expansive graphs, contributing to their effectiveness

in handling large-scale and complex graph structures. The continuous evolution and

diversity of GNN architectures underscore their versatility and adaptability across

various graph-related tasks.

2.2.1 GNNs on Dynamic Graphs

Learning embedding with GNNs on dynamic graphs is much more complex than

on static graphs. Initially, research on dynamic graphs focused on spatio-temporal

graphs and DTDG, which consists of a timed sequence of graph snapshots [Gao

et al., 2022a; Liben-Nowell and Kleinberg, 2007; Sankar et al., 2020]. Existing static

graph methods can be directly applied to each graph snapshot, and then concate-

nate the respective results in each graph snapshots together. However, most real-life

graph-structured data is in a state of constant evolution. A more general style of

dynamic graph is the CTDG, which consists of a timed list of graph events, includ-

ing edge creation or deletion, node creation or deletion, and node or edge status

evolution. Recently, several studies on CTDG have been proposed, such as JODIE

[Kumar et al., 2019], Continuous-time Dynamic Network Embedding [Nguyen et al.,

2018], DyRep [Trivedi et al., 2019], Temporal Graph Networks (TGN) [Rossi et al.,

2020], Temporal Graph Attention (TGAT) [Xu et al., 2020], Asynchronous Prop-

agation Attention Network (APAN) [Wang et al., 2021], Meta-learning framework

MetaDyGNN [Yang et al., 2022a], and more.

Typically, TGN is a generic, efficient framework for deep learning operating on

CTDGs by incorporating an originally designed memory modules and graph-based

operators. Fig. 2.9 demonstrates the flow of operations that TGN used to train the

memory-related modules. Raw Message Store stores the necessary raw information
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to compute messages for interactions the model has previously processed. It allows

the model to delay the memory update brought by an interaction with later batches.

At first, the memory is updated using messages computed from raw messages stored

in previous batches (1, 2, 3). The embeddings can then be computed using the just

updated memory (grey link) (4). By doing this, the computation of the memory-

related modules directly influences the loss (5, 6), and they receive a gradient.

Finally, the raw messages for this batch interactions are stored in the raw message

store (6) to be used in future batches.

2.2.2 GNNs on Heterogeneous Graphs

There is extensive research on learning embeddings with GNNs for heterogeneous

graphs, which contain multi-typed nodes and/or multi-typed edges . Metapath2vec

uses meta-path based random walks to aggregate the heterogeneous neighborhood

nodes and then exploit a skip-gram model to learn the node embeddings [Dong

et al., 2017]. HAN is a heterogeneous graph neural network based on the hierarchical

attention mechanism, including node-level and semantic-level attention [Wang et al.,

2019a]. It fully considers the importance of node neighbors and different meta-paths.

HetGNN combines heterogeneous structural information and node attributes [Zhang

et al., 2019a]. It performs excellently in graphs with multiple types of nodes and

edges.

Note that bipartite graphs that consist of two disjoint sets of nodes can be

regarded as a particular class of heterogeneous graphs. The bipartite graph is a

ubiquitous data structure to model the relationship between two types of entities.

Some bipartite graphs include the author-paper graph, the customer-product graph,

the player-event graph, the actor-movie graph, and the keyword-document graph.

BiNE is an approach by performing biased random walks and preserving the long-

tail distribution of nodes in bipartite graphs [Gao et al., 2018]. BGNN is another

approach that utilizes inter-domain message passing and intra-domain alignment

towards information fusion [He et al., 2019]. However, these two methods only

employ the graph structure information, not the node feature information. Besides,

both are unsupervised learning methods that only partially utilize the training set

to optimize the models, resulting in suboptimal performance.

2.3 Graph Downstream Tasks and Applications

in Predictive Analytics

Using graph-based methods to tackle predictive analytics is a relatively recent ap-

proach. As listed in Fig. 2.10, most graph-related tasks are classified into one of

those tasks:
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Figure 2.10: Common downstream tasks of GNN.

• Graph Classification: This task involves categorizing graphs into different

classes and finding applications in areas such as social network analysis and

text classification.

• Node Classification: In node classification, the objective is to predict miss-

ing node labels by leveraging information from neighboring nodes in the graph.

• Link Prediction: Link prediction aims to predict the presence or absence of

edges between pairs of nodes in a graph with an incomplete adjacency matrix.

This task is commonly applied in social network analysis.

• Community Detection: Community detection involves partitioning nodes

into distinct clusters based on the graph’s edge structure. It learns patterns

from edge weights, distances, and other graph characteristics.

• Graph Embedding: Graph embedding tasks focus on mapping graphs into

vectors while preserving essential information about nodes, edges, and overall

structure. It facilitates downstream machine-learning applications.

• Graph Generation: Graph generation tasks involve learning from a distri-

bution of sample graphs to generate new graph structures that are similar but

not identical to the training data. It is particularly useful in scenarios where

new, diverse graphs need to be created.

Time-aware predictive analytics have recently attracted much attention in both

academia and industry [Altshuler et al., 2012; Rousidis et al., 2020; Zeng et al.,

2013]. Existing works about predictive analytics can be categorized into two pri-

mary patterns: The first is to predict the growth and decline of entities based on

past characteristics and early-stage patterns. Yang et al. found that the temporal
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patterns reveal how the content popularity fluctuates during the post-propagation

[Yang and Leskovec, 2011]. The second is to predict the value of specific target at-

tributes based on temporal attributes or dynamic signals. Zhao et al. incorporated

human reaction time as temporal variables in self-exciting point processes [Zhao

et al., 2015]. He et al. designed a time-aware bipartite graph for estimating [He

et al., 2014]. Cao et al. developed a coupled GNN model to solve the popularity

trend prediction task [Cao et al., 2020]. Li et al. adopted a graph kernel approach

to predict the node popularity within a cascade graph sequence [Li et al., 2021a].

Hou et al. proposed a spatial–temporal multi-graph convolutional network for ca-

sualty prediction of terrorist attacks [Hou et al., 2023]. Yang et al. predicted traffic

propagation flow in urban road networks with a multi-graph convolutional network

model [Yang et al., 2023].

2.4 Advanced Modules in GNNs

In this section, we introduce some advanced modules to improve the performance of

GNNs, which are commonly utilized in prior work and involved in our proposed GNN

frameworks. Graph Structure Learning (GSL) enhances the quality of input graphs.

The attention mechanism introduced in graph models improves the efficiency of

message aggregation and node updating. Task-specific decoders and loss functions

contribute to model training.

2.4.1 Graph Structure Learning

Noisy or incomplete graphs can often lead to suboptimal representations, hindering

the efficient learning of node embeddings, especially when dealing with real-world

graph data. A primary concern of improving robustness of GNN models is to produce

a denoised graph structure for learning representations [Jin et al., 2020]. Recently,

much literature has emerged around the central theme of GSL, which aims at jointly

learning an optimized graph structure and corresponding representations [Yu et al.,

2021].

Generally, a graph is denoted as G = (V,E,F), where V represents the set of

nodes (vertices) and E represents the set of edges (links). Node feature matrix is

denoted as F ∈ R∥V∥×d. The original graph structure is represented as an adjacency

matrix A ∈ {0, 1}∥V∥×∥V∥ for binary graphs or A ∈ R∥V∥×∥V∥ for weighted graphs.

A GNN encoder F(A,F) receives the graph structure and node features as input and

produces node embeddings Z in low dimensions for downstream tasks. The goal of

GSL is to learn a refined adjacency matrix A∗ and corresponding node embeddings:

Z∗ = F(A∗,F). (2.11)
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Most existing GSL work could be regarded as a plug-in module on top of other

GNN models. The main methods of obtaining the refined graph structure fall into

modifying the edge sets by adding new edge, removing existing edges, and chang-

ing edge weights [Zhu et al., 2021b]. The previous studies mainly consist of three

components: structure modeling, message propagation, and learning objectives.

Structure modeling

The core conception of GSL is an encoding function that generates the optimal

refined graph structure A∗, defined by the edge weights via pairwise distance or

learnable parameters [Li et al., 2018; Wang et al., 2020; Wu et al., 2018; Yu et al.,

2021].

Message propagation

After obtaining an optimized graph structure A∗, node features are then utilized to

refine neighborhoods via GNN encoders. Notably, given the complexity of optimizing

the graph structure, many approaches iteratively repeat structure modeling and

message propagation until several stopping conditions are satisfied.

Learning objective

To train the model with the refined graph structures, most of existing GSL methods

defines a learning objective containing two parts:

L = Ltask(Z∗,Y) + λLreg(A
∗,A), (2.12)

where Ltask refers to a task-specific objective with respect to the ground truth label

Y (e.g., cross entropy for classification tasks, MSE loss for regression tasks), and Lreg

regularizes the learned graph structure A∗ to meet some prior topology constraints.

λ is a compromising hyperparameter that balances the two terms.

In summary, GSL enhances the quality of input graphs and contributes to learn-

ing robust representations with GNN models. In Chapter 4, the proposed GNN

framework is implemented with a GSL module for refining the noises in input graphs.

2.4.2 Attention Mechanism

The attention mechanism in machine learning intuitively imitates cognitive atten-

tion, enabling models to focus on specific parts of the input sequence when making

predictions. It assigns different “weights” to different parts of the input according

to their dependencies and relationships, emphasizing more on the relevant informa-

tion for a given task.The attention mechanism has found widespread use in various

tasks, especially in natural language processing (NLP) and computer vision (CV).
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Figure 2.11: An overview of the multi-head attention module. Left is the Scaled Dot-
Product Attention. Right is the Multi-head Attention consists of several attention
layers running in parallel. This figure is cited from [Vaswani et al., 2017].

Additionally, many attention-based GNN models leverage this mechanism to infer

neighbor importance, manipulating the weight of their propagation in the message

aggregation and node updating processes [Chairatanakul et al., 2021; Guo et al.,

2019; Sankar et al., 2020; Veličković et al., 2017].

Transformer and multi-head attention

The Transformer architecture has gained prominence for its effectiveness in handling

sequential data, particularly in natural language processing tasks. Unlike traditional

recurrent models that process input sequences sequentially, Transformers leverage

attention mechanisms to capture global dependencies between input and output

elements in parallel [Vaswani et al., 2017]. This approach has demonstrated su-

perior performance compared to RNN methods. The success of Transformers in

applications such as machine translation, speech recognition, and large-language

models (LLMs) underscores the effectiveness of the attention mechanism, leading to

increased focus and exploration by deep learning research.

The multi-head attention mechanism is a central component of the Transformer

architecture, as illustrated in Fig. 2.11. In the Transformer model, the attention

module performs its computations multiple times in parallel, with each instance

referred to as an attention head. Within this module, the Query, Key, and Value

parameters are split N ways, and each split is independently processed through a

distinct attention head. The results of these parallel attention calculations are then

combined to produce a final attention score. The computation formula for multi-

head attention can be expressed as:
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headi =Attn (Q,K,V) (2.13)

=softmax

(
QWQ(KiWK)T√

dk

)
VWV (2.14)

MultiHead (Q,K,V) = Concat(head1, head2 · · · , headh)W, (2.15)

where Q denotes the query vectors, K and V denote the key-value pairs, and dk

denotes the dimension of keys. The attention function serves as a mapping from

a query and a set of key-value pairs to an output. The output is determined by

a weighted sum of the values, with the weights assigned based on a compatibility

function that considers the relationship between the query and the corresponding

key. The incorporation of the Multi-head attention module in the Transformer

enhances its capacity to capture diverse relationships and intricacies for each objects

in the input sequence. The versatility of the multi-head attention module allows for

seamless extension to various domains.

Attentions in graph models

Introducing self-attention in GNNs allows each node to dynamically weigh its own

features and those of its neighbors differently, enabling the model to capture both lo-

cal and global dependencies. GAT, as a representative work in this domain, employs

masked self-attentional layers to address the limitations of earlier methods relying

on graph convolutions or their approximations [Veličković et al., 2017]. Through

stacked layers, where nodes can attend to their neighborhoods’ features, GAT im-

plicitly assigns varying weights to different nodes in a neighborhood without the need

for computationally expensive operations like matrix inversion or a priori knowledge

of the graph structure.

Multi-head attention, initially popularized in Transformer models designed for

sequence-based tasks, has been extended to GNNs to augment their capacity for

capturing intricate relationships and dependencies in graph-structured data. The

concept involves employing multiple attention heads to independently grasp differ-

ent facets of the relationships between nodes in a graph. This enables the model to

simultaneously attend to various patterns and interactions, thereby enhancing its

capabilities for learning representations. The implementation of multi-head atten-

tion is prevalent in dynamic GNN models [Jin et al., 2022; Rossi et al., 2020; Wang

et al., 2021; Xu et al., 2020], as the parallel processing is efficient in handling large

batches of graph changes. In Chapter 4 and Chapter 5, the proposed GNN frame-

work is implemented with a multi-head attention layer for enhancing the efficiency

of learning temporal node embeddings.
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2.4.3 Decoders and Loss Functions

The primary objective of GNN frameworks is to learn node embeddings. These

learned node embeddings can then be employed in various downstream tasks through

the use of different decoders and loss functions. The selection of the decoder and

loss function is task-dependent. In this section, we introduce some commonly used

decoders and loss functions in GNN frameworks.

Support vector machine decoder

Support Vector Machine (SVM) is a traditional classifier for supervised binary classi-

fication tasks [Hearst et al., 1998]. Binary classification tasks are common in graphs,

such as binary node classification and link prediction [Jalili et al., 2017; Jin et al.,

2021; Yuan et al., 2019]. SVM is one of the most studied machine learning algo-

rithms. SVM can efficiently perform linear classification with a hard margin and

non-linear classification with a soft margin and kernels. In the case of graph em-

bedding learning, most of the learned embeddings are non-linearly separable. Thus,

SVM with a soft margin using the hinge loss function is usually employed:

1

N
max

(
0, 1−Y(WTX− b)

)
+ λ∥W∥22, (2.16)

where Y denotes the true labels, X denotes the predicted labels, and b denotes the

biases. N is the total number of prediction samples. The parameter λ determines

the trade-off between increasing the margin size and ensuring the l2-regularization of

trainable parameter W. By deconstructing the hinge loss, this optimization problem

can be massaged into minimizing the objective functions above. In Chapter 3, the

proposed model is employed with an SVM decoder for predicting the binary edge

labels.

Softmax function decoder

Softmax function is usually used as the decoder for classification tasks such as node

classification, graph classification and link prediction tasks. The softmax function

takes a k-dimensional vector as input, and normalizes it into a probability distri-

bution consisting of k probabilities proportional to the exponentials of the input

numbers. Each element in the output of softmax function lies in the range [0, 1] and

all the elements will sum up to 1, thus they can be interpreted as probabilities. The

standard softmax function is defined as:

Softmax(xi) =
exp(xi)∑k
j exp(xj)

, i ≤ k, (2.17)

where xi is the i-th element in the input k-dimensional vectors.
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Figure 2.12: An overview of a simple MLP decoder.

The output of softmax function can be interpreted as the probabilities of the

predicted classes, with the index of the largest element serving as the predicted

label. The softmax function is applicable to both binary classification tasks (such as

link prediction) and multi-class classification tasks (including node classification and

graph classification). It is widely implemented in various models, including GCN

[Kipf and Welling, 2016a], GAT [Veličković et al., 2017], GraphSage [Hamilton et al.,

2017b], and more. In Chapter 5, the proposed model is employed with an softmax

decoder for the node classification task.

Multilayer perceptron decoder

A multilayer perceptron (MLP) is a fully connected feed-forward artificial neural

network. Fig. 2.12 illustrates a simple MLP decoder. It consists of at least three

layers: an input layer, an output layer, and at least one hidden layer. An activation

function is usually associated with each layer in MLP, helping transform the inputs

into the desired format based on specific tasks. Commonly used activation functions

include the ReLU function, the Sigmoid function, the Tanh function, and more:

ReLU(x) = max(0, x) (2.18)

Sigmoid(x) =
1

1 + exp(−x)
(2.19)

Tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
. (2.20)

In GNN, the acquired node embeddings are fed into an MLP decoder with a
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one-dimensional output layer. The output of the MLP decoder is considered as

the predicted labels or values. The MLP decoder is flexible for different kinds of

tasks just by changing the activation function. It works in binary classification tasks

with the Sigmoid activation function or regression tasks with the ReLU activation

function. The MLP decoder is also widely implemented in prior works such as TGAT

[Xu et al., 2020], TGN [Rossi et al., 2020], APAN [Wang et al., 2021], and more.

In Chapter 4 and Chapter 5, the proposed GNN frameworks employ MLP decoders

for node label classification tasks and regression tasks.

Cross-entropy loss function

Cross-entropy is commonly employed to define a loss function in machine learning

and optimization, serving to quantify the dissimilarity between two probability dis-

tributions. This metric assesses the performance of a classification model generating

probability values within the range of 0 to 1. The cross-entropy loss escalates as

the predicted probability deviates from the actual label. It is typically utilized in

conjunction with the softmax function decoder, considering that the output of the

softmax function is inherently interpreted as probabilities. In binary classification,

cross-entropy is referred to as Binary Cross Entropy (BCE), and it can be calculated

as follows:

BCELoss(p, y) = −(y log(p) + (1− y)log(1− p)), (2.21)

where y denotes the true label and p denotes the predicted probability.

In multi-class classification tasks with M classes, the cross-entropy is calculated

as follows:

CELoss(p, y) = −
M∑
i=1

yi log(pi), (2.22)

where yi = 1 if the true label is i and yi = 0 otherwise, pi denotes the predicted

probability of the label i.

Cross-entropy loss is a potent loss function commonly used in training models

for classification tasks. In Chapter 5, the proposed model is trained using Binary

Cross Entropy (BCE) loss.

Mean square error loss function

The Mean Squared Error (MSE), also known as L2 loss, assesses the proximity of a

learned regression line to a set of actual samples. MSE loss is commonly applied in

regression tasks. A larger MSE indicates that the predicted values (predicted labels)

are widely dispersed around their actual values (true labels), while a smaller MSE

suggests the opposite. The MSE loss is calculated as:
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MSELoss(Ŷ,Y) =
1

N

N∑
i=1

(Yi − Ŷi)
2, (2.23)

where Ŷ denotes the set of predicted values, and Y denotes the set of actual values.

In Chapter 4, the proposed model is trained with MSE losses for the regression

tasks.
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Chapter 3

Predictive Analytics on Static

Bipartite Graph

3.1 Introduction

Our research explores learning node representation embeddings, commencing with

a fundamental yet impactful case—a static bipartite graph. In this endeavor, we in-

troduce the Bipartite Graph Convolutional Network (BiGCN) model, strategically

designed to leverage the multi-modal features inherent in the data to learn com-

prehensive node embeddings. A noteworthy observation emerges from our investi-

gations, revealing the inadequacies of traditional GCNs when applied to bipartite

graphs. Specifically, traditional GCN confounds information from the two disjoint

node sets, impeding its effectiveness. In response, our proposed BiGCN model in-

novatively addresses this challenge by segregating the convolution operation for the

two distinct node sets, thereby surmounting the limitations of conventional GCN.

The empirical validation of our approach showcases compelling results, with

accuracy ranging from 77.3%−87.7% in the label prediction task. This performance

surpasses baseline traditional machine learning algorithms and statistical models

and outshines the latest graph-based methods. To further attest to the real-world

applicability of our model, we conduct tests in the context of a pertinent case study:

predicting emergency medical service demand in the Tokyo metropolitan area. The

success of our BiGCN model in this practical scenario underscores its efficacy in

addressing complex, real-world challenges. It signifies a promising step forward in

the realm of graph-based learning.

This work has been published in IEEE Access Journal [Jin et al., 2021].
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Figure 3.1: The hospital-region EMS bipartite graph.

Application: Predicting Emergency Medical Service Demand in Tokyo

Metropolitan

Emergency Medical Services (EMS) are responsible for providing out-of-hospital

medical care to illness and injury patients and transporting them to a medical fa-

cility. However, the EMS service is not evenly distributed. For example, the Tokyo

Metropolis consists of 23 wards, each with different structures, functions, and pop-

ulation composition. Some regions have high emergency demand but relatively few

EMS resources. The unbalanced EMS resource may raise the risk of a shortage of

available EMS resources and result in the delay of first aid treatment, especially

when some high-priority medical emergencies such as sudden cardiac arrest or a big

event as the Tokyo Olympic Games takes place. Besides, EMS is time-sensitive, i.e.,

the later the service arrives at the incident sites, the more severe the damage to the

patient’s health will be. Thus, accurate prediction of EMS demand can help pro-

vide quick and efficient medical treatment and increase the survival rate for elderly

patients [Aringhieri et al., 2016].

Moreover, Japan is experiencing a “super-aging“ society. People aged 65 and

older who currently make up a quarter of the total population are estimated to

reach a third by 2050. The seniors tend to have a high EMS demand for their

declining immune function and physical function. Thus, Japan urgently needs to

discover the hidden relationship of EMS supply-demand, predict the incoming EMS

demand, and take precautions against unexpected emergencies. Therefore, we are

motivated to focus on Tokyo, the largest metropolis in “super-aging” society Japan,

to study the relationship between EMS supply and demand. Predicting the incoming

EMS demand in advance would induce a better allocation of resources and be of

considerable significance to public health emergency management.

Previous research on EMS demand prediction can be classified into model-based

and data-driven approaches. The model-based approaches predict specific demand
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by applying the total capacity with multiple rules such as supply-demand ratio and

distance decay [Anderson, 2011]. Model-based approaches work well in an actual

situation and easy to understand. However, these approaches rely on predefined

rules and cannot clearly explain the anomalies [Hou and Wang, 2013]. On the

other hand, the data-driven approaches take the demand prediction problem as a

classification or regression problem based on the observational data and employ sta-

tistical methods or naive machine learning algorithms for the solution. Data-driven

approaches can fit complicated situations where the mathematical model is diffi-

cult to establish. Specifically, some statistical methods utilize social demographic

data, socioeconomic factors, and land use factors to improve EMS performance in

a particular city [Amorim et al., 2017; Aringhieri et al., 2016; Grekousis and Liu,

2019]. Moreover, predict EMS demand over time by a spatio-temporal statistical

model raises recent attention. The spatio-temporal statistical model utilizes loca-

tion information and time-series information to predict time and location accurately

[Channouf et al., 2007; Setzler et al., 2009; Zhou and Matteson, 2015]. However, in

complex real-world situations, the statistical model may be complicated with too

high order or too much non-linearity, or even unavailable, where huge factors need

to be considered. It should be noted that previous researches overwhelmingly focus

on EMS demand prediction in specific regions, while few works study the demand

between regions and hospitals. Hospitals play a vital role in the medical emergency.

Accurate EMS demand prediction between regions and hospitals is meaningful to

urban public health emergency management and better EMS resource allocation.

With the development of artificial intelligence, graph embedding methods have

been proved a better performance than the traditional methods with flat inputs

[Fadaee and Haeri, 2019; Taskar et al., 2004], which indicates a new way of predict-

ing EMS demand via the demand-supply relation graph. And this topic in bipartite

graphs is seldom studied in substantial research on learning graph data [Cai et al.,

2018; Cui et al., 2018; Wu et al., 2019b; Zhang et al., 2019b, 2018b; Zhou et al.,

2018]. Those graph embedding methods learn graph nodes as low-dimensional vec-

tor representations. With the help of node representation vectors, subsequent graph

problems like node classification, link prediction, and node clustering can be easily

solved by combining them with some existing machine learning methods. Start with

DeepWalk [Perozzi et al., 2014a] and Node2vec [Grover and Leskovec, 2016], many

graph embedding architectures are developed. Specifically, graph convolutional net-

works (GCN) has been proved an efficient neural network architecture regarding

graph embedding researches. Many methods re-define the convolution operation for

graph structure data and are developed as members of GCN based models [Kipf

and Welling, 2017; Monti et al., 2017; van den Berg et al., 2017]. The core concept

of GCN is iteratively aggregating feature information from a node’s neighborhood

nodes in a graph. Compared with other graph embedding methods that focus on
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graph contents, GCN utilizes both node features and holds the potential of exploit-

ing the graph topology structure. Intuitively, a hypothesis is suggested that the

thinking of GCN may also perform well in modeling the EMS demand-supply re-

lation graph and give an accurate prediction regarding the EMS demand between

hospitals and regions.

With the concerns mentioned above, in this work, we study the EMS demand-

supply relation between regions and hospitals, then propose an approach for pre-

dicting the EMS demand at the hospital-region level. Our motivation is based on

the idea that the EMS demand between a region and a hospital is mainly affected by

population demographics, regional socioeconomic factors, and hospital conditions.

Thus, we collect data from various sources, including regional demographic data

(daytime population number / census population number / crime number), regional

land-use data (industrial / residential / commercial area ratio), regional historical

emergency data (illness / injury case number), hospital information data (number

of beds and doctors / past number of patients), and transportation data (distance

between region and hospital).

We develop a Bipartite Graph Convolutional Network (BiGCN) model that In

exploits the multi-modal features of the data for EMS demand prediction. Specif-

ically, we transform the demand prediction problem to an edge label classification

problem in a hospital-region bipartite graph, as shown in Fig. 3.1. The bipartite

graph is a particular type of graph whose nodes divide into two disjoint sets such

that the edge connects nodes from one set to the other. Hospitals and regions serve

as two individual node sets. Hospitals and regions serve as two individual node sets.

The edge connects a hospital node and a region node, indicating that an emergency

happened in this region, and the injured people are sent to this hospital. Feature

attributes are attached to each node and each edge.

Notably, we find that traditional GCN does not work correctly in bipartite graphs

because it confuses the information from the two disjoint node sets. Our BiGCN

model separates the convolution operation of the two node sets and overcomes the

shortcomings of traditional GCN. The experimental results demonstrate that our

approach achieves 77.3% − 87.7% accuracy in the label prediction task, which is

significantly superior to baseline traditional machine learning algorithms, statisti-

cal models, and the latest graph-based methods. Finally, We use a case study to

illustrate that our approach can provide valuable suggestions for allocating injured

people in emergencies. It proves that our work is meaningful to urban public health

emergency management, make the public aware of the significance of EMS demand

prediction, and help local governments better allocate EMS resource and decrease

the emergency risk.

The main contributions of the paper are summarized as follows:

• We are the first to analyze EMS demand at the hospital-region level in a
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metropolis like Tokyo. Our work is of considerable significance to public health

emergency management.

• We represent the ambulance record data as a hospital-region bipartite graph

and transform the EMS demand prediction problem to an edge label classifi-

cation problem in the bipartite graph.

• We analyze the limitations of GCN in bipartite graphs and propose BiGCN

by fully considering the structure characteristics of bipartite graphs. BiGCN

is not limited to the hospital-region bipartite graph in this paper but has

the potential to become a general model for learning node embeddings and

accomplishing supervised learning tasks in non-specific bipartite graphs.

• We conduct experiments and demonstrate that our approach achieves excellent

performance in the demand label prediction task and significantly outperforms

baseline methods, including traditional machine learning algorithms, statisti-

cal models, and state-of-the-art graph-based methods. We discover the main

factors that affect the EMS demand prediction most. We use a case study to

show how our approach can contribute to public health emergency manage-

ment.

3.2 Related Work

EMS Demand Analysis

Past research on EMS supply and demand analysis can be classified into model-based

and data-driven approaches. The model-based approaches predict specific demand

by applying the total capacity with multiple rules such as supply-demand ratio and

distance decay [Anderson, 2011]. The main topic is accessibility as an important

indicator in evaluating the justice of medical service [Luo, 2014]. Moreover, the large

variance of accessibility indicates an unequal spatial distribution of EMS facilities.

Therefore, EMS facility location optimization (FLO) is another popular topic. There

are several types of EMS facilities for FLO models, including emergency devices

[Bonnet et al., 2015], emergency centers [Silva and Serra, 2008], and the ambulance

stations [Zhang and Jiang, 2014].

The data-driven approaches take the demand prediction problem as a classifica-

tion or regression problem based on the observational data and employ a statistical

or naive machine learning model for the solution. Specifically, the statistics-based

approaches perform well in spatial EMS analysis [Aringhieri et al., 2017]. uEMS has

the object to maximize the EMS vehicle coverage with limited ambulance stations in

an urban area and provides a generalized linear model to locate the urban EMS am-

bulance station [Amorim et al., 2017]. Steins et al. use a Zero-Inflated Poisson (ZIP)
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regression approach to develop a statistical EMS demand forecasting model [Steins

et al., 2019]. Grekousis et al. propose a spatial-based Artificial Neural Networks

(ANN) approach that identifies the geographical location of expected emergency

events [Grekousis and Liu, 2019]. Besides, predicting EMS demand over time has

raised recent attentions [Chen et al., 2015; Zaric, 2013; Zhou and Matteson, 2015].

Some spatio-temporal approaches are proposed to utilize both location information

and time-series information since EMS prediction needs to be accurate for both

time and location. Setzler et al. design an ANN to forecast EMS demand volume

of specific areas during different times of the day [Setzler et al., 2009]. Channouf

et al. develop and compare several regression models to analyze the time-series in-

formation of a major Canadian city’s daily and hourly EMS call volume [Channouf

et al., 2007]. Zhou et al. introduce a Gaussian Mixture Model (GMM) to esti-

mate the ambulance demand distribution in Toronto, Canada [Zhou et al., 2015].

However, previous research overwhelmingly focuses on EMS demand prediction in

specific regions, while few studies study the demand between regions and hospitals.

Hospitals play a vital role in the medical emergency. Accurate EMS demand predic-

tion between regions and hospitals is meaningful to urban public health emergency

management and better EMS resource allocation.

Graph Embedding

Graphs are used in many science branches to represent the patterns of connections

between the components of complex systems. There is a surge of interest in graph

embedding [Cai et al., 2018; Cui et al., 2018; Wu et al., 2019b; Zhang et al., 2019b,

2018b; Zhou et al., 2018]. The goal is to learn a mapping that embeds nodes as

points in a low-dimensional vector space. The learned embeddings can be taken

as feature inputs for downstream machine learning tasks, and this technology has

achieved great success in many applications. Researchers have proposed various

graph embedding methods such as matrix factorization [Ou et al., 2016], edge re-

construction [Tang et al., 2015], random walks plus skip-gram model [Grover and

Leskovec, 2016; Perozzi et al., 2014a], and graph neural networks [Hamilton et al.,

2017a; Kipf and Welling, 2017; Veličković et al., 2018].

However, graph embedding in bipartite graphs is relatively less studied. The

bipartite graph is a ubiquitous data structure to model the relationship between

two types of entities. Examples of bipartite graphs include the author-paper graph,

the customer-product graph, the player-event graph, the actor-movie graph, and the

keyword-document graph. As far as we know, there are few works on bipartite graph

embedding. BiNE is an approach by performing biased random walks and preserving

the long-tail distribution of nodes in bipartite graphs [Gao et al., 2018]. BGNN

is another approach that utilizes inter-domain message passing and intra-domain

alignment towards information fusion [He et al., 2019]. However, these two methods
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Figure 3.2: The number of emergency cases in different regions of Tokyo.

do not precisely solve our problem for two reasons. First, BiNE only employs the

graph structure information but not the node feature information. Second, both are

unsupervised learning methods that do not fully utilize the training set to optimize

the models, resulting in suboptimal performance.

On the other hand, there are extensive researches on graph embedding for hetero-

geneous graphs, which contain multi-typed nodes or multi-typed edges. Note that

bipartite graphs that contain two typed nodes can be regarded as a particular class

of heterogeneous graphs. Metapath2vec uses meta-path based random walks to ag-

gregate the heterogeneous neighborhood nodes and then exploit a skip-gram model

to learn the node embeddings [Dong et al., 2017]. HAN is a heterogeneous graph

neural network based on the hierarchical attention mechanism, including node-level

and semantic-level attentions [Wang et al., 2019a]. It fully considers the importance

of node neighbors and different meta-paths. HetGNN combines heterogeneous struc-

tural information and node attributes. It has an excellent performance in graphs

with multiple types of nodes and edges [Zhang et al., 2019a].

3.3 Problem Setup

This section first describes the dataset we used in our research. It then represents

the EMS data as a hospital-region bipartite graph and transforms the problem to

an edge label classification problem in the graph.

47



Table 3.1: Features of hospitals and regions.

Node Type Feature Category Feature Name

Region

Population
Day time population
Census population

Crime number

Land-Use Zoning
Industrial area ratio

Residential area ratio
Commercial area ratio

Historical Emergency Number
(patients sent to hospitals)

Total case number
Injury case number
Disease case number

Historical Emergency Number
(patients not sent to hospitals)

Total case number
Injury case number
Disease case number

Hospital

Capacity
Number of beds

Number of doctors

Historical Emergency Number
Total case number
Injury case number
Disease case number

3.3.1 Dataset Description

This study collects a dataset of ambulance records from 1st January 2017 to 31st

December 2017 for the Central Tokyo area. The dataset is provided by the Tokyo

Fire Department. It contains 624,062 emergency cases. Each record includes the

patient’s age, gender, ambulance types (disease or injury), ambulance scene, and

hospital address.

There are 931 administrative regions and 291 hospitals that can provide emer-

gency medical care in Tokyo. Administrative regions are divided by following the

official district division principle of government. The map of regions with the number

of cases is visualized in Fig. 3.2. We are interested in the emergency demand from

one region to one hospital. The raw data aggregates into 270,921 hospital-region

pairs, with only 23,308 pairs having demand. We attach a binary label denoting

the low/high demand level for each pair. The label is determined by the percentage

of the demand in the capacity of the respective hospital. As a result, 13,603 pairs

are labeled “high”, and 9,705 pairs are labeled “low”. Moreover, we collect a bunch

of feature information for the regions and hospitals, as listed in Table 3.1. Also,

we follow [Anderson, 2011] to measure the Euclidean distance between regions and

hospitals.
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Figure 3.3: Predicting the high/low demand label of hospital-region pairs.

3.3.2 Edge Label Classification in the Hospital-Region Graph

We represent the EMS data as a bipartite graph G = (U,V,E), as shown in Fig. 3.1.

U and V are the node sets for hospitals and regions, respectively. M = |U| and

N = |V| are the number of nodes in the two sets. E ⊆ U×V denotes the edge set.

K = |E| is the number of edges. eij ∈ E represents the EMS demand relationship

between the hospital node ui ∈ U and region node vj ∈ V. The edge weight is

ωij = exp(−distance(ui, vj)), (3.1)

which indicates the “closeness” of ui and vj. distance (·) denotes the Euclidean

distance between two node, and exp (·) denotes the exponential function.

The hospital node ui and region node vj are associated with feature vectors

fui
∈ RP and fvj ∈ RQ, which are based on preprocessed raw features in Table 3.1,

and P and Q are the respective number of features. Fu = [fu1 , . . . , fuM
]⊤ ∈ RM×P

and Fv = [fv1 , . . . , fvN ]⊤ ∈ RN×Q denote the feature matrix of hospitals and regions.

Moreover, yij ∈ {−1, 1} is the label for edge eij (which corresponds to low/high

demand between hospital and region) and Y = {yij|eij ∈ E} is the set of edge

labels.

Since the edge connects nodes between U and V, the adjacency matrix A takes

a block off-diagonal form

A =

[
0M×M Bu

Bv 0N×N

]
, (3.2)

where Bu ∈ RM×N and Bv ∈ RN×M are the incidence matrix for U and V, respec-
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Table 3.2: Statistics of the bipartite graph for the EMS dataset.

Item Statistics

Number of Hospital Nodes M 291
Number of Region Nodes N 931
Number of Edges K 23,308
Number of Hospital Features P 5
Number of Region Features Q 12
Average/Maximal Degree of Hospital Nodes 80.1/616
Average/Maximal Degree of Region Nodes 25.0/92

tively. Bu = B⊤
v , and Bu(i,j) = Bv(j,i) = ωij. D is the degree diagonal matrix:

D =

[
Du 0M×N

0N×M Dv,

]
, (3.3)

where Du = Diag(
∑

i Bu(1,i), . . . ,
∑

i Bu(M,i)) and Dv = Diag(
∑

i Bv(1,i), . . . ,
∑

i Bv(N,i))

are the diagonal degree matrices of U and V.

Table 3.2 reports the statistics of the hospital-region bipartite graph. The prob-

lem in Section 4.3 can be represented as an edge label classification problem in the

graph. Suppose Y is split into a training set Ytrain, a validation set Yval, and a test

set Ytest. Then, our problem (as illustrated in Fig. 3.3) is set up as follows: given

the features of regions and hospitals (Fu, Fv), the distance of hospital-region pairs

(A), and a portion (10% − 80%) of known labels (Ytrain, and Yval), how can we

predict the remaining edge labels (Ytest).

3.4 Limitations of Vanilla GCN in Bipartite Graph

In this section, we discuss the limitations of traditional GCN and explain why it

cannot correctly work in the bipartite graph.

GCN [Kipf and Welling, 2017] is a type of neural network architectures that can

leverage the graph structure and node features for graph analysis, and this model

has achieved great success in many tasks. GCN consists of aggregators and updaters.

The aggregator gathers information guided by the graph structure, and the updater

updates nodes’ hidden states according to the gathered information. The core of the

method is learning node representations, or embeddings, in a low-dimensional vector

space that encode information about the graph. Specifically, the convolutional layer

is based on the following equation:

H(t+1) = σ(LH(t)W(t+1)), (3.4)

50



where L is the aggregation matrix, H(t) is the node embedding matrix in t-th layer,

H(0) is initialized with the node feature matrix, W(l) is the trainable weight matrix

in l-th layer, and σ(·) is the activation function.

GCN is originally designed for plain graphs, and it adopts the symmetric nor-

malized Laplacian matrix D̃− 1
2 ÃD̃− 1

2 as the aggregator LGCN, where Ã = A+I and

D̃ is the degree diagonal matrix of Ã. Here I denotes the identity matrix. In the

following, we analyze the limitations of applying GCN in bipartite graphs. To sim-

plify the analysis, we consider an approximate form LGCN ≈ D− 1
2 ÃD− 1

2 . Moreover,

we have to concatenate the two feature matrices Fu and Fv as the initialization of

the node embedding matrix H(0). However, since the two matrices have different

column dimensions and P < Q, we have to expand Fu with zero values to make an

alignment:

H(0) =

[
Fu | 0M×(Q−P )

Fv

]
, (3.5)

where | is an auxiliary symbol for matrix partitions, and 0 is a zero matrix with the

given shape. Then, the first convolutional layer in Eq. (3.4) becomes

H(1) = D− 1
2 (A + I)D− 1

2H(0)W(1) (3.6)

=

 (
D

− 1
2

u BuD
− 1

2
v Fv

)
+(D−1

u Fu|0M×(Q−P ))(
D

− 1
2

v BvD
− 1

2
u Fu|0N×(Q−P )

)
+(D−1

v Fv)

W(1). (3.7)

From Eq. (3.7), we can find that the aggregator sums the hospital feature matrix

Fu and the region feature matrix Fv. Note that Fu and Fv refer to information

from different sources, which implies that they have different dimensions and they

are based on different scaling systems. Therefore, it is not reasonable to sum them

together. For the same reason, it is insufficient to use the same matrix W(1) for the

filter operation. As a result, GCN does not work correctly in bipartite graphs. A

new approach is in demand to wisely apply the thinking of GCN to bipartite graphs.

3.5 Proposed Approach

In this section, we propose an approach to address the problem in the last section.

We hypothesize that the EMS demand between a region and a hospital can be pre-

dicted by modeling the demographic information and the distance of regions and

hospitals. To overcome the disadvantage of traditional GCN and apply the thinking

of GCN in bipartite graphs, we introduce an improved GCN based model, bipar-

tite graph convolutional network structure BiGCN. Fig. 5.5 illustrates the overview

structure of BiGCN model. The core method of BiGCN is learning the embedding

representation of nodes by graph convolution operation, then learning the edge em-
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Figure 3.4: Overview of the structure of our approach.

bedding representations based on its two side node embeddings, finally predicting

the edge labels based on the edge embeddings. The spotlight of BiGCN is the utiliza-

tion of both the graph structure information and node features, and the individual

operation for two disjoint node sets. The model evaluation depends on the accuracy

and f1 score metrics regarding the EMS demand prediction task.

3.5.1 BiGCN

Based on the structural characteristics of bipartite graphs that U and V are disjoint

node sets with distinct properties (degree distributions, associated features), our idea

is to separate the convolution operation for U and V. Specifically, the mathematical

expression of our convolutional layer is

H(0)
u = Fu (3.8)

H(0)
v = Fv (3.9)

H(t+1)
u = σ(

[
D−1

u BuH
(t)
v W(t+1)

u ∥ Fuω
(t+1)
u

]
) (3.10)

H(t+1)
v = σ(

[
D−1

v BvH
(t)
u W(t+1)

v ∥ Fvω
(t+1)
v

]
). (3.11)

H
(t)
u and H

(t)
v are the learned node embedding matrix in the t-th layer for U and

V, respectively. W
(t)
u , W

(t)
v , ω

(t)
u , and ω

(t)
v are trainable weight matrices (filters) in

t-th layer. ∥ is the concatenation operation.

The process of the convolutional layer contains three steps, as shown in Fig. 5.5.

Take node ui ∈ U as an example. We first aggregate features from its neigh-

bors in V and update the aggregated features by a filter (this step corresponds to

D−1
u BuH

(t)
v W

(t+1)
u in Eq.(3.10)). In parallel, we update the original features of ui by

another filter (this step corresponds to Fuω
(t+1)
u in Eq.(3.10)). Finally, we concate-

nate the updated features from two sources and pass them to an activation function.
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Similar process applies for node vi ∈ V.

There are three differences between GCN and BiGCN. First, GCN only use one

aggregator and one filter for U and V, while BiGCN enforces independent aggrega-

tors (D−1
u Bu, D−1

v Bv) and filters (W
(t)
u , W

(t)
v , ω

(t)
u for the two node sets. Secondly,

GCN intentionally adding self-connections (Ã = A + I) to preserve the feature of

the node itself. On the other hand, BiGCN uses the concatenation operation for

this purpose and overcomes the shortcomings of simply summing the features from

different sources. Thirdly, GCN uses the symmetric normalized Laplacian matrix

D̃− 1
2 ÃD̃− 1

2 as the aggregator. However, the node degree distributions of U and V

are compositionally distinct from each other, and thus the symmetric normalization

is not meaningful. Instead, BiGCN uses the random walk Laplacian matrix D−1
u Bu

and D−1
v Bv to take the average of neighboring node features in the aggregation pro-

cess. All of the above imply that BiGCN fully considers the structure characteristics

of bipartite graphs.

We explain about the dimensionality. Note that in the hidden layer, we concate-

nate the features from U and V. We hope to keep the dimension in proportion to

the original dimension of the two sources. Therefore, we assume ⌈c(t)P ⌉+ ⌈c(t)Q⌉ is

the dimension of t-th hidden units. c(t) ∈ R+ is a dimension scaling parameter. ⌈·⌉
is the ceiling function. Following this assumption, we have:

H(t)
u ∈ RM×(⌈c(t)P ⌉+⌈c(t)Q⌉) (3.12)

H(t)
v ∈ RN×(⌈c(t)P ⌉+⌈c(t)Q⌉) (3.13)

W(1)
u ∈ RQ×⌈c(1)Q⌉ (3.14)

W(1)
v ∈ RP×⌈c(1)P ⌉ (3.15)

W(t)
u ∈ R(⌈c(t−1)P ⌉+⌈c(t−1)Q⌉)×⌈c(t)Q⌉, for t ≥ 2 (3.16)

W(t)
v ∈ R(⌈c(t−1)P ⌉+⌈c(t−1)Q⌉)×⌈c(t)P ⌉, for t ≥ 2 (3.17)

ω(t)
u ∈ RP×⌈c(t)P ⌉ (3.18)

ω(t)
v ∈ RQ×⌈c(t)Q⌉. (3.19)

Next, we analyze the computational complexity of the convolutional layer for

GCN and BiGCN. With regard to Eqs.(3.7), (3.10), (3.11), the complexity is domi-

nated by matrix multiplication. We equally assume that both models have the same

dimension D for the hidden units. Moreover, we suppose P < Q. In the case of

a sparse bipartite graph, the complexity of GCN is O(KQ + KP + (M + N)QD)

= O(KQ + (M + N)QD), while the complexity of BiGCN is O(KQ + MQD +

MPD + KP + NPD + NQD) = O(KQ + (M + N)QD). In the case of a dense

bipartite graph, the complexity of GCN is O(MNQ + NMP + (M + N)QD) =

O(MNQ + (M + N)QD), while the complexity of BiGCN is O(MNQ + MQD +
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MPD+NMP +NPD+NQD) = O(MNQ+ (M +N)QD). Therefore, GCN and

BiGCN have the same computational complexity.

3.5.2 Loss Function

We now turn to edge label classification. We have obtained node embedding matrix

H
(T )
u = [h

(T )
u1 , . . . ,h

(T )
uM ]⊤ and H

(T )
v = [h

(T )
v1 , . . . ,h

(T )
vN ]⊤, where T is the number of

layers in BiGCN, and h
(T )
ui and h

(T )
vj are the embedding for ui and vj. For an edge

eij, we can generate its embedding h
(T )
e(ij) ∈ R(⌈c(T )P ⌉+⌈c(T )Q⌉) using the Hadamard

product [Grover and Leskovec, 2016]

[h
(T )
e(ij)]l = [h(T )

ui
]l ·[h(T )

vj
]l, (3.20)

where l ∈ 1, · · · , (⌈c(T )P ⌉ + ⌈c(T )Q⌉) denotes the subscript of the l-th element. In

this way, we can generate an edge embedding matrix H
(T )
e = [h

(T )
e1 , . . . ,h

(T )
eK ]⊤ ∈

RK×(⌈c(T )P ⌉+⌈c(T )Q⌉).

Then, we use Support Vector Machine (SVM) classifier to predict the binary

edge labels. Specifically, the predicted labels can be formulated as

ŷ = sgn
(
H(T )

e ω
)
, (3.21)

where ω ∈ R(⌈c(T )P ⌉+⌈c(T )Q⌉) is a trainable vector and sgn is the sign function.

For model training, we evaluate the classification error over all examples in the

training set based on the hinge loss function:

Lc = H(H(T )
e ) (3.22)

=
1

|Ytrain|
∑

k∈I(Ytrain)

max
(
0, 1− yk

(
H(T )

e ω
)
k

)
+

1

2
∥ω∥22, (3.23)

where y is the vector of edge labels and I(Ytrain) is the set of edge indices in

Ytrain. Moreover, to alleviate the information loss in the hidden layer of BiGCN, we

formulate a recurrent loss by applying the hinge loss to the Hadamard product of

hidden units

Lr =
T−1∑
t=1

H(H(t)
e ). (3.24)

Finally, the total loss is

L = Lc + αLr, (3.25)
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where α is a hyperparameter for balancing Lc and Lr.

3.6 Experiments

We conducted experiments on the edge label classification task to answer the fol-

lowing questions regarding BiGCN model:

• Does BiGCN agree with our hypothesis and perform well in bipartite graphs?

How does it compare with other models?

• Which input feature influences the prediction result most?

• How many layers should be used in BiGCN?

• Is recurrent loss necessary? How does it impact model performance?

• How can our approach be used for public health emergency management?

In the following, we first explain experimental settings and baselines. After that, we

discuss the results.

Experiment Setup

We randomly split Y into Ytrain, Yval, and Ytest. Yval accounts for 10%, Ytest ratio

ranges from 10% ∼ 80%, and the remaining is for Ytrain. As for the implementation

of BiGCN, we chose Parametric Rectified Linear Unit (PReLU) as the activation

function. We trained the model by Adam optimizer [Kingma and Ba, 2014] with a

learning rate of 0.0001. We set the maximum training iteration as 500 and applied

an early stopping strategy if the validation loss does not decrease for 10 iterations.

The implementation is in Python and PyTorch with Intel Xeon CPU @ 2.20GHz,

NVIDIA Tesla P100 16GB GPU, and 25GB memory.

Baselines

We consider traditional machine learning classifiers, statistical models, and the lat-

est graph-based methods such as graph embedding and graph neural networks as

baselines. The details are listed below.

1. SVM (Support Vector Machine), GBDT (Gradient Boosting Decision Tree),

and LR (Logistic Regression): These are traditional machine learning classi-

fiers.

2. GMM [Zhou et al., 2015]: This is a Gaussian Mixture Model approach.

3. ZIP [Steins et al., 2019]: This is a Zero-Inflated Poisson regression approach.
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4. Node2Vec [Grover and Leskovec, 2016]: This is an unsupervised algorithm

for learning graph node embeddings based on random walks and skip-gram

model.

5. GCN [Kipf and Welling, 2017]: This is one of the most widely used graph

convolutional networks. This method, as stated in Section 3.4, can be inter-

preted as smoothing the node features in the neighborhoods guided by the

graph structure.

6. VGAE [Kipf and Welling, 2016b]: This is a variational graph autoencoder,

in which GCN is used as an encoder to learn node embeddings.

7. GraphSAGE [Hamilton et al., 2017a]: This is another popular method for

generating node embeddings based on graph structure and node features.

8. BiNE [Gao et al., 2018]: This is an extension of unsupervised graph embed-

ding algorithm to bipartite graphs.

9. BGNN [He et al., 2019]: This is a bipartite graph neural network for learning

node embeddings in an unsupervised fashion.

10. Metapath2vec [Dong et al., 2017]: This is an extension of conventional

graph embedding technique to heterogeneous graphs, which contain multi-

typed nodes or multi-typed edges. This approach formalizes meta-path-based

random walks to construct the heterogeneous neighborhood of a node to learn

embeddings. Note that

11. HetGNN [Zhang et al., 2019a]: This is a graph neural network model for

learning node vector representations in heterogeneous graphs.

12. HAN [Wang et al., 2019a]: This is a heterogeneous graph neural network

based on the hierarchical node-level and semantic-level attentions.

We employ traditional machine learning classifiers (SVM, GDBT, LR) to predict

the hospital-region bipartite graph edge labels with flat inputs consist of distance

information and node features. The two baseline statistical models (GMM, ZIP) are

designed for EMS demand forecasting in the prior works. The statistical model is

much more understandable and simpler to implement than machine learning models.

In our experiment, two models receive flat inputs consist of distance information

and node features. Graph structure information is not involved. The graph-based

approaches (Node2Vec, GCN, VGAE, GraphSAGE, BiNE, BGNN, Metapath2vec,

HetGNN, HAN) receive both graph topology structure and node features as input.

They are initially designed for only learning node embeddings. Thus, after obtaining

the node embeddings by these baseline methods, we generate edge embeddings by
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Table 3.3: Fine-tuned hyperparameters in the heterogeneous GNN baseline methods.

BGNN Metapath2vec HetGNN HAN BiGCN

Learning rate 0.001 0.0005 0.005 0.001 0.001
Weight decay 0.001 0.005 0.0 0.001 0.1
Dropout 0.2 0.1 0.1 0.2 0.2
Hidden dim. 128 128 128 128 128
# Layers 2 3 3 2 3

Table 3.4: The results for predicting the hospital-region labels by different ap-
proaches.

Model
Test Ratio

10% 20% 40% 60% 80%
Acc. F1. Acc. F1. Acc. F1. Acc. F1. Acc. F1.

SVM 0.734 0.769 0.716 0.759 0.715 0.750 0.707 0.747 0.696 0.737
GBDT 0.812 0.843 0.796 0.840 0.815 0.844 0.782 0.832 0.7780.7780.778 0.8300.8300.830
LR 0.624 0.529 0.628 0.539 0.602 0.489 0.637 0.564 0.582 0.443

GMM 0.667 0.198 0.555 0.407 0.645 0.470 0.632 0.454 0.623 0.385
ZIP 0.851 0.592 0.785 0.706 0.596 0.047 0.592 0.037 0.591 0.051

Node2Vec 0.756 0.791 0.762 0.800 0.758 0.800 0.751 0.794 0.745 0.788
GCN 0.730 0.767 0.718 0.753 0.728 0.764 0.729 0.760 0.700 0.736
VGAE 0.736 0.785 0.723 0.775 0.725 0.776 0.728 0.776 0.694 0.738
GraphSAGE 0.422 0.584 0.411 0.583 0.411 0.582 0.576 0.729 0.585 0.738
BiNE 0.687 0.743 0.686 0.738 0.683 0.737 0.679 0.744 0.678 0.738
BGNN 0.698 0.756 0.701 0.736 0.696 0.775 0.790 0.754 0.704 0.762
Metapath2vec 0.747 0.788 0.762 0.801 0.750 0.790 0.748 0.789 0.740 0.776
HetGNN 0.691 0.773 0.681 0.780 0.679 0.753 0.704 0.768 0.681 0.768
HAN 0.689 0.769 0.725 0.764 0.709 0.760 0.695 0.758 0.706 0.758

BiGCN 0.8770.8770.877 0.8950.8950.895 0.8600.8600.860 0.8810.8810.881 0.8480.8480.848 0.8710.8710.871 0.8270.8270.827 0.8520.8520.852 0.773 0.804

Performance
Gain (%)

3.0
|

107.8

6.1
|

352.0

8.0
|

109.2

4.8
|

116.4

4.0
|

106.3

3.1
|

1853.2

4.6
|

43.5

2.4
|

2302.7

-0.6
|

32.8

-3.1
|

1576.5

applying Hadamard product to these node embeddings and finally feed them to an

SVM classifier to predict the hospital-region labels. Notably, the hyperparameters of

heterogeneous GNN baseline methods (BGNN, Metapath2vec, HetGNN, and HAN)

are fine-tuned to exhibits their best performance. The values of hyperparameters

are listed in Table 3.3.

3.6.1 Performance Evaluation

Table 5.8 displays the results by BiGCN (with loss balancing hyperparameter α =

0.1, dimension of hidden unit ⌈c(t)P ⌉+⌈c(t)Q⌉ = 50, and number of convolution layer

T = 3) and the baselines. We evaluated the performance in terms of accuracy and F1

score. BiGCN demonstrates the best overall performance. In particular, it achieves

57



the highest accuracy and F1 score when the test ratio ranges from 10% ∼ 60%,

with 2.4% - 8.0% performance gain over GBDT that is consistently better than

the other baselines. The only exception arises when the test ratio reaches 80%, or

the training set only accounts for 10%, where our model suffers from an overfitting

problem. GBDT, as an additive model, has a good strategy to prevent overfitting

and thus obtains superior performance.

It is interesting to note that BiGCN outperforms the other graph-based ap-

proaches by a large margin. We attribute this to two reasons. The first reason

is the deliberate network structure of BiGCN that considers the characteristics of

bipartite graphs. In contrast, GCN, VGAE, and GraphSAGE are designed for plain

graphs and do not adapt to bipartite graphs. The second reason is the end-to-end

model optimization based on our proposed cost function. Conversely, Node2Vec,

VGAE, BiNE, and BGNN are unsupervised learning methods to preserve the orig-

inal graph’s topology structure. They thus do not fully utilize the training set to

optimize the models. Note that Metapath2vec, HetGNN, and HAN are originally

proposed for heterogeneous graphs, and we find that they also do not fit well with

bipartite graphs. For example, although HAN utilizes the node-level and semantic-

level attention mechanism, the trivial structure and single meta-path in bipartite

graph restrict its performance. As for the statistical models, GMM gives similar

performances in all test ratios, while ZIP’s performance is severely impacted by the

training data volume. It gives an average performance when there is enough training

data (test ratio = 10% ∼ 20%), although still lower than BiGCN. However, with the

training data decreasing, they tend to give an extraordinarily unbalanced prediction

result, i.e., predicting many “high“ labels and a few “low“ labels. It covers almost

all the “high“ cases but seldom predicts “low“ cases correctly. This result leads to a

high precision and a low recall, resulting in a low f1 score in total. This result may

be caused by the low adaptability of statistical models in a complicated situation.

3.6.2 Main Factors

The neural network based approach BiGCN is a “black box“ and lacks interpretabil-

ity. On the other hand, although having a lower accuracy, statistical models al-

low for an understanding of the main factors that influence the prediction. The

BiGCN model input involves regional demographic information, land-use informa-

tion, historical emergency information, hospital information, and distance informa-

tion. Some information may have a significant impact on EMS demand prediction,

and some may have less effect. There is a need for an understanding of the main

factors that affect the model output most. The discovery of the main factors in

EMS demand prediction contributes to better EMS demand estimation.

Using the statistical method ZIP, we can obtain the coefficient distribution for

each variable. The coefficients are interpreted as the ones in a standard Poisson
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Table 3.5: Z-score and p-value of variable coefficients in ZIP regression model (test
ratio=0.1)

Variable name z-score p-value

Day time population -24.406 0.000
Census population 62.036 0.000
EMS total case number 25.681 0.000
EMS injury case number -898.339 0.000
EMS disease case number 898.346 0.000
Crime Number 22.873 0.000
Residential area ratio -5.358 0.000
Business area ratio -5.358 0.000
Industry area ration -5.358 0.000
Ems total case number sent to hospital 26.367 0.000
EMS injury case number sent to hospital 898.338 0.000
EMS disease case number sent to hospital -898.347 0.000
EMS total case number not sent to hospital 25.652 0.000
EMS injury case number not sent to hospital 898.339 0.000
EMS disease case number not sent to hospital -898.346 0.000

Number of doctors 4.145 0.000
Number of beds -20.783 0.000
EMS total case number 9.806 0.000
EMS injury case number 0.250 0.803
EMS disease case number -12.376 0.000
EMS total case number in main wards 16.803 0.000
EMS injury case number in main wards -20.059 0.000
EMS disease case number in main wards -15.373 0.000

Euclidean distance 941.555 0.000

model: the excepted value of dependent variable changes by exp (coef.) for each

unit increase in the corresponding variable. We do a z-test on variable coefficients.

Then mainly use two statistical terms, z-score and p-value, to evaluate the vari-

able coefficients. The z-test is a statistical test that indicates whether a variable

exhibits statistical significance or exhibits a random pattern. Specifically, in this ex-

periment, z-scores are the standard deviations of variable coefficients, and p-values

are probabilities that the variable coefficients are created by some random process.

Suppose a variable coefficient has a very high (z > +2.5) or very low (z < −2.5)

z-score, associated with very small p-values (p < 0.01). In that case, this variable is

likely to be statistically significant clustering or dispersion, which means it is posi-

tively/negatively correlated with the output. The larger the |z| is, the stronger the

relationship is.

Table 3.5 demonstrates the z-scores and p-values of the variable coefficient for

each feature. The upper part is the regional feature, and the lower part is the hospital

feature. As a result, almost all the features significantly impact the prediction
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(a) Test ratio = 10% (b) Test ratio = 40%

(c) Test ratio = 10% (d) Test ratio = 40%

(e) Test ratio = 10% (f) Test ratio = 40%

Figure 3.5: Parameter study. (a)(b) Results with different α. (c)(d) Results with
different numbers of layers. (e)(f) Results with different dimensions of hidden units.

result (|z| > 2.5 and p < 0.01). Specifically, “Euclidean distance“ (z = 941.555),

regional “EMS injury case number“ (z = −898.339) and regional “EMS disease

case number“ (z = 898.346) are three main factors that affect the EMS demand

prediction result most. Features “EMS injury/disease case number sent to hospital“

and “EMS injury/disease case number not sent to hospital“ are linearly correlated

with “EMS injury/disease case number“, thus having similar z-scores. Besides, it is

noticeable that the hospital “EMS injury case number“ feature has z = 0.250 and

p = 0.803. It means that this feature is likely to be randomly distributed and has

less influence on the prediction result.
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3.6.3 Parameter Study

Balancing Parameter α

As introduced in Section 3.5.2, the loss function is a combination of classification loss

Lc and recurrent loss Lr, with parameter α as a balancing weight. We conducted

experiments to investigate how α affects performance.

Fig. 3.5(a) and 3.5(b) present the results with α ranging from 0.001 to 1.5. A

small α such as 0.001 indicates placing a dominant emphasis on Lc and ignoring Lr

in the cost, while a high α implies including more weight on Lr in the cost. We

can find that the performance improves as α increases from 0.001 to 0.1, then it

gradually declines. Our model reaches a high accuracy at around α = 0.1, where

recurrent loss Lr positively contributes to the performance.

Number of Convolutional Layers

We studied the influence of the number of convolutional layers on performance.

Fig. 3.5(c) and 3.5(d) report the results. The best results are obtained with three

layers. There is a modest decrease in performance when more layers are used because

the learned embeddings are over-smoothed [Li et al., 2018]. Over-smoothing means

if a neural network has many convolutional layers, the output node features may

become indistinguishable and give a poor performance. Also, the running time grows

as the number of layers increases.

Dimension of Hidden Unit

We analyzed the impact of the dimension of hidden units introduced as ⌈c(T )P ⌉ +

⌈c(T )Q⌉ in Section 3.5.1. Fig. 3.5(e) and 3.5(f) demonstrate the training and testing

performance for hidden dimension ranging from 6 to 200. With the increasing

hidden dimension, the test performance keeps increasing until the dimension reaches

around 50, then it becomes relatively stable. However, the training performance

still improves even after 50, and gradually goes far beyond the test performance,

finally becomes stable after 170. The figure shows that when the hidden dimension

exceeds 50, the model begins to be overfitting. The increasing hidden dimension

can only fit the training set better instead of improving the test accuracy. When

the increasing hidden dimension exceeds around 170, it can no longer improve the

training performance. It indicates that the model has achieved its best with the

current architecture and cannot easily be improved by merely adding the hidden

dimension.
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Figure 3.6: The identified hospitals with high EMS demand.

3.6.4 Case Study

Finally, we demonstrate an application of our approach in the case of a sudden emer-

gency. We imagine a severe accident occurring in a region named “Hirakawacho”,

which is close to the home of many government agencies such as the National Diet

Building and the Prime Minister’s Official Residence. The region initially connects

to four hospitals with high demand. Then, we modified the region feature injury

number by adding 1,000 cases to simulate an injury accident where 1,000 people

need first aid treatment. We used our model to predict the hospitals with “high”

demand after the accident according to the new feature input.

The result is shown in Fig. 3.6. The red cross mark denotes the hospitals, and

the center point indicates the region. Our model identifies eleven additional hospi-

tals with high demand, including six hospitals with low demand and five hospitals

without demand before the accident. This result is reasonable because we can see

that the newly identified hospitals are all close to the region and have high capacity.

Such a result is of great value for suggesting the allocation of injured people. It also

helps public health emergency management in preparation for similar emergencies

in the future.

3.7 Conclusion and Discussion

We analyzed the ambulance record data for Tokyo and presented the first approach

to predict the EMS demand at the hospital-region level. We represented the data

as a hospital-region bipartite graph and proposed a novel BiGCN model to predict
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the EMS demand between hospital-region pairs. Our approach achieves excellent

performance on the prediction accuracy, outperforming the baselines, including tra-

ditional machine learning algorithms, statistical models, and the latest graph-based

methods by a large margin. We applied a case study to prove the feasibility of the

BiGCN model in a real-world situation. Our work is meaningful to urban public

health emergency management, make the public aware of the significance of EMS

demand prediction, and help local governments better allocate EMS resources and

decrease the emergency risk.

Limitations

In real-world scenarios, the efficiency of learning models is often contingent upon

their adaptability to the dynamic and evolving nature of the underlying data. While

the BiGCN model demonstrates prowess in effectively learning from static bipartite

graphs, the imperative to extend its capabilities to accommodate time-series data

becomes increasingly apparent. The inherent dynamism of most real-world situ-

ations necessitates a modeling framework that can seamlessly integrate temporal

dynamics, capturing evolving patterns and trends. Incorporating time-series data

into the BiGCN model is a compelling avenue for enhancing its predictive capac-

ities. This extension holds significant promise in domains. For example, EMS

demand predictions based on temporal dependencies can yield valuable insights into

service demands, response times, and other critical metrics. By addressing the tem-

poral dimension, BiGCN has the potential to evolve into a versatile tool capable of

navigating the complexities of dynamic scenarios, contributing to advancements in

predictive analytics and decision-making processes. As an integral aspect of future

work, extending BiGCN to process time-series data signifies a proactive approach

to advancing the model’s applicability in dynamic, real-world settings.
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Chapter 4

Predictive Analytics on

Discrete-time Dynamic Graph

4.1 Introduction

In Chapter 3, we introduce the BiGCN model, specifically designed to learn node

representation embeddings within static bipartite graph scenarios adeptly. While

highlighting its efficacy in such situations, we also acknowledge its limitation in pro-

cessing time-series data. As part of future work, we emphasize the imperative of

extending BiGCN to enhance its versatility in dynamic, real-world settings. Based

on this foundation, this chapter presents a novel multi-layer temporal GNN frame-

work. This framework is designed to proficiently learn temporal node representations

within intricate heterogeneous graphs, thereby addressing the limitations associated

with static bipartite graphs.

Noteworthy is the adaptability of the proposed method, which transcends the

confines of static bipartite graphs. It is tailored to handle temporal heterogeneous

graphs characterized by multi-layer relations and temporal information, particularly

within a sequence of graph snapshots. To assess its practicability, the proposed

method undergoes rigorous evaluation across four popularity trend prediction tasks,

employing real-world social media datasets. The experimental results underscore

the superiority of our method, surpassing various baselines, including traditional re-

gression approaches, prior trend prediction methods, and alternative heterogeneous

GNN models. This chapter marks a significant stride in advancing the capabilities

of GNNs, particularly in the context of dynamic and complex graph structures, and

sets the stage for further exploration in temporal graph representation learning.

This work is now under review for Complex & Intelligent Systems Journal.
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Application: Predicting Popularity Trends in Social Media Networks

The proliferation of the internet and the widespread adoption of mobile devices have

contributed to the exponential growth in the usage of social media networks, such

as X (Twitter), Facebook, YouTube, and Reddit. These platforms collectively boast

hundreds of millions of users worldwide. Owing to this vast user base and the copi-

ous amounts of data continuously posted and shared, social networks have emerged

as invaluable data sources for diverse areas of research, including social recommen-

dation [Wu et al., 2019a], community detection [Chunaev, 2020], anomaly detection

[Wang et al., 2022], and more. Analyzing and predicting trends within social media

networks is an increasingly attractive topic [Rousidis et al., 2020]. Trend prediction

refers to the process that uses historical trend data and current status data to help

interpret the future estimated behavioral pattern. This research provides invaluable

insights into the future trajectories of public concerns and interests grounded in the

wealth of available social data. From a platform perspective, precise trend prediction

holds great significance in enhancing user experiences, elevating service quality, and

benefiting various applications, including advertising [Arasu et al., 2020], cryptocur-

rency [Poongodi et al., 2021], spatiotemporal fusion [Xiao et al., 2023], navigation

[Aggarwal; Maini and Aggarwal, 2018], genomics analysis [Kaur et al., 2019], and

beyond. On an individual level, anticipatory trend knowledge is empowering indi-

viduals to stay ahead of the competition, align their studies and work in the right

direction, and seize opportunities for informed decision-making [Mohamed, 2023b].

Trend prediction in social media networks poses a formidable challenge because

of its heterogeneity and temporal dynamics. As illustrated in Fig. 4.1, many social

media networks exhibit heterogeneity, featuring various types of entities and mul-

tiple types of relations. These relations encompass connections within entities of

the same type and connections between entities of different types. Assuming that

the trend prediction task is to predict the visit frequency of items in the future,

the representations of item entities are acquired only based on the entity attributes.

However, it is necessary to consider the impact of information diffusion within enti-

ties, such as the interactions and messages exchanging within entities. Messages of

social media information diffuse through the relations from one entity to another,

exerting an impact on their future evolution. Thus, it is necessary to consider the

impact of information diffusions within entities. Moreover, it is imperative to cap-

ture the temporal dynamics of entities at various timestamps. Social media networks

are in a constant state of flux over time, which implies that entity attributes and

relations undergo continuous transformations. Temporal dynamics are valuable for

interpreting the change pattern of the predicted target.

Based on the analysis above, this work needs to solve the following research

questions to address the challenging points mentioned above: RQ1: How to learn

the relationships within entities in social media networks? RQ2: How to incorporate
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Figure 4.1: An example of a social media network consists of users and items. Solid
lines denote the interactions between users and items, and dash lines denote the
interactions between user-item pairs. Interactions and entity attributes evolve as
time goes by. The popularity trend of an item is represented by the visit frequency,
which indicates the number of accesses from users (the degree of dashed lines).

the temporal dynamics of entities and relationships into analyzing? RQ3: How to

learn the dynamic representations of entities in social media networks? RQ4: How

to quantify the degree of future popularity trends and predict it? RQ5: How to test

the efficiency of our proposed method?

Several prior works have delved into the task of popularity trend prediction in

social networks [Altshuler et al., 2012; Cao et al., 2020; Li et al., 2021a; Zeng et al.,

2013]. However, these studies predominantly focus on selecting characteristics and

historical statistics within social media networks, often overlooking the substantial

impact of information diffusion among entities. Furthermore, most of these prior

works employ simplistic machine learning or statistical models (e.g., Support Vector

Machine (SVM), Logistic Regression (LR), and more) as encoders and decoders,

resulting in suboptimal learning efficiency. Consequently, there exists a pressing

need for an advanced framework capable of considering the influence of information

diffusion in social media networks while efficiently mastering the representations of

target entities.

Graph embedding methods and Graph Neural Networks (GNN) are widely re-

garded as ideal approaches for modeling the influence of information diffusion in so-

cial media networks. Graph embedding methods transform complex graph attributes

into low-dimensional embedding vectors while maximally preserving the essential

graph structural information. These methods have consistently demonstrated supe-

rior performance compared to traditional techniques for modeling graph-structured
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data [Cai et al., 2018; Cui et al., 2018]. GNNs, on the other hand, belong to the

category of deep learning structures designed to perform optimized transformations

on all graph attributes while preserving graph topology [Wu et al., 2019b]. GNNs

acquire node representations by iteratively aggregating information from neighbor

nodes, mirroring the information flow dynamics seen in social media networks. Prior

research has also highlighted the adaptability of GNNs in handling temporal graphs

[Gao et al., 2022a; Jin et al., 2023; Liben-Nowell and Kleinberg, 2007; Sankar et al.,

2020] and heterogeneous graphs [Chairatanakul et al., 2021; Dong et al., 2017; Wang

et al., 2019a; Zhang et al., 2019a], laying the foundation for learning in the context

of social media networks.

In light of the aforementioned considerations, this paper introduces a novel ap-

proach employing a multi-layer temporal GNN to address the task of popularity

trend prediction in social media networks. The method input is a timed sequence

of graph snapshots demonstrating the dynamics of social media networks, and the

output is an estimated popularity attribute (e.g., visit frequency, expected revenue,

and so on) in the future, indicating the popularity trends of the target entities. The

novelty of the proposed method is its unified structure that integrates a multi-layer

GNN encoder and a time-sequence unit to effectively learn the temporal node repre-

sentations by modeling the latent influence of heterogeneous relations and temporal

dynamics within social media networks (Answer to RQ1, RQ2, and RQ3). Besides,

a Graph Structure Learning (GSL) module is implemented to enhance the quality

of input graphs, which is particularly essential when dealing with real-world graphs.

Specifically, the evolution of social media networks is characterized as a discrete-

time temporal graph comprising a timed sequence of graph snapshots separated by

specific time intervals. Within each graph snapshot, node attributes and the intri-

cate multi-layer graph structures are scrutinized to forecast how a specific target

node status will evolve in subsequent graph snapshots (Answer to RQ4).

The proposed method is evaluated on four real-world popularity trend predic-

tion tasks using benchmark datasets (Answer to RQ5). The experimental results

consistently demonstrate the high efficiency of the proposed approach. The ap-

proach consistently outperforms various baseline methods, including traditional lin-

ear regression algorithms, time-sequence models, prior popularity trend prediction

methods, and recently introduced heterogeneous GNN methods.

In this paper, we make several significant contributions to the field of trend

prediction tasks in social media networks:

• We introduce an advanced multi-layer temporal GNN framework designed to

learn entity representations and predict trends within complex real-world so-

cial networks. It addresses the crucial task of forecasting trajectories of public

concerns and interests based on extensive real-world data.

• We address the limitations of previous research regarding popularity trend
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predictions, which often neglect the latent influence of complex relationships

among entities. The proposed approach presents its novelty in considering

the latent influence of information diffusion in social networks while efficiently

mastering the representations of target entities, resulting in a substantial per-

formance enhancement.

• We demonstrate the effectiveness of the proposed approach through exper-

iments conducted on real-world social network datasets, demonstrating the

feasibility of the proposed method in real-world situations. The proposed

method consistently outperforms various baseline methods, including linear

regression approaches, time-series models, previous popularity trend predic-

tion methods, and recently proposed heterogeneous GNN methods.

4.2 Related Work

4.2.1 Graph Embedding Learning

Graph embedding learning has achieved notable success in various domains [Cai

et al., 2018; Cui et al., 2018]. The techniques for generating embedding vectors

on graphs have gained widespread recognition, particularly for downstream graph-

related tasks such as node classification [Kipf and Welling, 2016a], link prediction

[Zhang and Chen, 2018], and graph classification [Zhang et al., 2018a]. The primary

challenge in graph learning lies in discovering effective methods to encode graph

structures, encompassing nodes and edges, into low-dimensional hidden embedding

vectors while maximizing the preservation of essential graph structural information.

GNNs have emerged as a robust deep learning framework for graph embed-

ding learning [Wu et al., 2019b]. Among these, the Graph Convolutional Network

(GCN) [Kipf and Welling, 2016a] stands out as one of the most widely adopted

models. GCN efficiently aggregates neighbor node information through graph con-

volutional layers. To further enhance GNN performance, numerous researchers have

introduced advanced GNN models building upon the GCN architecture. For exam-

ple, GraphSAGE extends GCN into inductive learning that can handle unknown

graph nodes [Hamilton et al., 2017b]. Graph Attention Networks employs attention

mechanisms that assign importance weights to different neighbor nodes [Veličković

et al., 2018]. Graph Autoencoder and Variational Graph Autoencoder are GCN-

based encoder-decoder models that can handle unsupervised learning tasks [Kipf

and Welling, 2016b]. Moreover, ML-GCN and ML-GAT extend the original GCN

and GAT to multi-layer networks, which can capture more complex relations among

nodes within large-scale graphs [Zangari et al., 2021].

Learning on temporal graphs presents considerably greater complexity compared

to static graphs. Numerous studies have focused on discrete-time temporal graphs,
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which consist of a timed sequence of graph snapshots [Gao et al., 2022a; Leblay

et al., 2020; Liben-Nowell and Kleinberg, 2007; Sankar et al., 2020]. Existing static

graph methods can be directly applied to each individual graph snapshot. In paral-

lel, substantial research efforts have been dedicated to graph embedding learning for

heterogeneous graphs [Chairatanakul et al., 2021; Dong et al., 2017]. Heterogeneous

graphs encompass nodes and edges of multiple types. HetGNN combines heteroge-

neous structural information and node attributes. It performs excellently in graphs

with multiple types of nodes and edges [Zhang et al., 2019a]. HAN is a heteroge-

neous GNN based on the hierarchical attention mechanism, including node-level and

semantic-level attention [Wang et al., 2019a]. It fully considers the importance of

node neighbors and different meta-paths. This research endeavors to develop a uni-

fied framework that integrates the characteristics of discrete-time temporal graphs

and multi-layer heterogeneous graphs.

4.2.2 Trends Prediction Tasks in Real-world Data

Time-aware trend prediction tasks have recently attracted much attention in both

academia and industry [Altshuler et al., 2012; Mohamed, 2023a; Rousidis et al.,

2020; Zeng et al., 2013]. Existing works about trend prediction can be categorized

into two primary patterns: The first is to predict the growth and decline of en-

tities based on past characteristics and early-stage patterns. Yang et al. found

that the temporal patterns reveal how the content popularity fluctuates during the

post-propagation [Yang and Leskovec, 2011]. The second is to predict the value of

specific target attributes based on temporal attributes or dynamic signals. Zhao et

al. incorporated human reaction time as temporal variables in self-exciting point

processes [Zhao et al., 2015]. Also, some hybrid methods between metaheuristics

and machine learning lead to a novel research field, which successfully combines ma-

chine learning and swarm intelligence approaches and proved capable of obtaining

outstanding results in different trend prediction areas [Bacanin et al., 2021, 2022;

Malakar et al., 2020].

Employing graph-based methods to tackle trend prediction tasks is a relatively

recent research direction. He et al. designed a time-aware bipartite graph for es-

timating the future popularity of items [He et al., 2014]. Cao et al. developed a

coupled GNN model to solve the popularity trend prediction task [Cao et al., 2020].

Li et al. adopted a graph kernel approach to predict the node popularity within a

cascade graph sequence [Li et al., 2021a]. Hou et al. proposed a spatial–temporal

multi-graph convolutional network for casualty prediction of terrorist attacks [Hou

et al., 2023]. Yang et al. predicted traffic propagation flow in urban road networks

with a multi-graph convolutional network model [Yang et al., 2023]. Mohamed et

al. proposed an Internet of Things (IoT) for voice communication [Mohamed et al.,

2023]. However, these methods did not account for multiple relations among various
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Figure 4.2: Problem setup of the popularity trend prediction in social networks. The
social networks are presented as a sequence of graph snapshots G = {G(1) ∼ G(t)}.
The proposed method first learns the node embeddings Zm

(1) ∼ Zm
(t) of the target

node type m by an encoder G, then predicts the node labels lm
(2) ∼ lm

(t+1) in the
upcoming graph snapshots by a decoder F .

types of entities, limiting their applicability in complex real-world scenarios.

4.3 Problem Setup

The temporal social network data is structured as a sequence of graph snapshots,

each separated by a specific time interval. Many social networks exhibit hetero-

geneity, featuring various types of entities and multiple types of relations. These

relations encompass connections within entities of the same type and connections

between entities of different types. To represent such complicated networks, a se-

quence of graph snapshots G = {G(t) | t ∈ {1, 2, · · · , T}} is proposed, where each

graph snapshot G(t) = {V,E,F} contains node sets of different types V = {Vn |
n ∈ {1, 2, · · · , N}}, edge sets E = {Ejk | j, k ∈ {1, 2, · · · , N}} between two nodes

in Vj and Vk, and node attribute matrices F = {Fn | n ∈ {1, 2, · · · , N}} of each

node set. Specifically, for edge set Ejk, if j ̸= k, Ejk present the bipartite relations

of node pairs between Vj and Vk. If j = k, Ejk present the intra-relations within

node set Vj/Vk.

The research problem is set up as demonstrated in Fig. 5.2. The task is to predict

the popularity trend on entities of a certain target type m, quantified by a label Lm.

The proposed method first learns the embeddings Z
(t)
m of nodes in Vm of each graph

snapshot G(t) by an encoder G. Specifically, node embedding Z
(t)
m is obtained based

on the node attribute matrices F and edges {Emj | j ∈ {1, 2, · · · , N}} connecting

the target nodes, as formulated in (4.1):

G : (V, {Emj | j ∈ {1, 2, · · · , N}},F)→ Z(t)
m . (4.1)
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Figure 4.3: Overview of the proposed multi-layer temporal GNN framework. Inputs
are depicted as white blocks, main components are highlighted in blue, intermediate
results are presented in yellow, and final outputs are shown in red. Intra graphs
comprise the multiple relations within the target entities of the same type. The
bipartite graph indicates the relationship between entities of different types.

Labels l
(t)
m ∈ Lm are assigned to nodes in Vm of each graph snapshot G(t). The

label indicates the target value to be predicted. We aim to using learned node

embeddings Z
(t)
m and known node labels l

(t)
m to predict the node labels l̂

(t+1)
m in the

upcoming graph snapshot G(t+1) by a decoder F , as formulated in (4.2):

F : (Z(t)
m , l(t)m )→ l̂(t+1)

m . (4.2)

4.4 Methodology

Previous studies regarding popularity trend prediction tasks in social networks suffer

from neglecting the latent influence of complex relationships among entities. To

overcome the limitations in prior work, this work introduces an advanced multi-layer

temporal GNN framework designed to effectively capture the intricate relations and

learn the representation embeddings of target entities in social networks.

In the following, we first demonstrate the overall framework of the proposed

method. Then, we explain the details of the key components. Finally, we analyze

the computational complexity of the proposed methods.

4.4.1 Overview

Fig. 5.5 illustrates an overview of the proposed method. The input is a timed se-

quence of graph snapshots G = {G(t) | t ∈ {1, 2, · · · , T}}. Each graph snapshot

contains adjacency matrices A, which is a tensor for expressing multiple adjacency

matrices, along with a node attribute matrix F. The input adjacency matrices

encompass ‘intra graphs’ Ain and ‘bipartite graphs’ Abi. Intra graphs are homoge-

neous, signifying the multiple relations within the target entities of the same type,
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while bipartite graphs represent the relationship between entities of different types.

Node attributes F are shared across all the graphs, with only edge weights varying

between individual graphs.

This framework mainly has four key components: Graph Structure Learning

(GSL) module, Node aggregation module, Time-sequence unit, and Multi-head at-

tention layer. Firstly, input graphs A are enhanced by the GSL module, which is

employed to improve the quality of input adjacency matrices by a refined graph

structure Â learned from the node embeddings Z(t−1) of the last iteration. Next,

the enhanced adjacency matrices A∗
in and A∗

bi are fed to Node Aggregation module

to learn the hidden node embeddings H
(t)
in and H

(t)
bi by the information on neigh-

bor nodes. Then, H
(t)
in and H

(t)
bi are sent to the Time-sequence Unit to incorporate

the temporal information H
∗(t−1)
in between the adjacent graph snapshots. Finally, a

Multi-head Attention layer receives the merged hidden node embeddings H
∗(t)
in and

node attributes F for the learning of node embeddings. The learned node embed-

dings Z(t) are responsible for predicting the node labels l̂(t+1), representing the target

attribute for popularity trend prediction.

The details of key components are introduced in the following:

4.4.2 Graph Structure Learning

Noisy or incomplete graphs can often lead to suboptimal representations, hindering

the efficient learning of node embeddings, especially when dealing with real-world

graph data. GSL is designed to jointly learn an optimized graph structure and corre-

sponding adjacency matrix [Zhu et al., 2021a]. Based on the assumption that edges

tend to connect nodes with similar representation, the proposed method refines the

input graphs by computing the similarity between the last updated node embedding

pairs, which are then used as the edge weights.

Euclidean distance is no longer an effective metric for graph node similarity.

Instead, a generalized adaptive Mahalanobis distance is employed to quantify node

similarity, as formulated in (4.3):

ϕ(zi, zj) =

√
(zi − zj)

T WdWT
d (zi − zj), (4.3)

where zi, zj denote the embedding of two node i and j learned in the last graph

snapshot, and Wd is a trainable weight. WdW
T
d constructs a symmetric positive

semi-definite trainable parameter. Mahalanobis distance can adaptively fit the task

and the node embeddings during training. Then, this distance is exploited to cal-

culate the refined adjacency matrix by exploiting the Gaussian kernel:

Âij = exp

(
−ϕ(zi, zj)

2σ2

)
, (4.4)
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where Âij denote the elements in the refined adjacency matrix Â, and σ denote the

size of Gaussian kernel.

After obtaining the refined graph adjacency matrix Â, the residual connections

[He et al., 2016] is used to incorporate the original input adjacency matrices A by

a hyperparameter α, as formulated in (4.5):

A∗ = αÂ + (1− α)A, (4.5)

where α is used to mediate the influence of each part, and A∗ is the finally improved

adjacency matrix.

4.4.3 Node Aggregation

The core of GNN is recurrently aggregating information from neighbor nodes. The

proposed method uses the graph convolutional layer [Kipf and Welling, 2017] to

aggregate the neighbor node information in intra graphs A∗
in, as formulated in (4.6):

H(l+1) = σ(D̃− 1
2 Ã∗

inD̃
− 1

2H(l)W
(l+1)
in ), (4.6)

where Ã∗
in = A∗

in + I, D̃ is the degree diagonal matrix of ˜Ain∗, H(l) is the node

embedding matrix in l-th layer, H(0) is initialized with the node feature matrix F,

W
(l)
in is the trainable weight matrix in l-th layer, and σ(·) is the activation function.

The result of the last graph convolutional layer is stored as the output of node

aggregation on intra graphs, which is denoted as H
(t)
in . t denotes the t-th graph

snapshot G(t).

Specifically, for bipartite graph A∗
bi that models the relation between the target

node set Vm and other types of node set Vk, a dedicated bipartite GCN layer [Jin

et al., 2021] is exploited to separately execute graph convolutional operations on Vm

and Vk, as formulated in (4.7) and (4.8):

H(l+1)
m = σ(

[
D−1

m BmH
(l)
k W(l+1)

m ∥ Fmω
(l+1)
j

]
) (4.7)

H
(l+1)
k = σ(

[
D−1

k BkH
(l)
mW

(l+1)
k ∥ Fkω

(l+1)
k

]
), (4.8)

where Bm ∈ R∥Vm∥×∥Vk∥ and Bk ∈ R∥Vk∥×∥Vm∥ are the incidence matrix for two

node sets Vm and Vk in the bipartite graph A∗
bi, respectively, Dm = Diag(

∑
iBm(1,i), . . . ,

∑
iBm(∥Vm∥,i))

and Dk = Diag(
∑

i Bk(1,i), . . . ,
∑

i Bk(∥Vk∥,i)) are the diagonal degree matrices of Vm

and Vk, H
(l)
m and H

(l)
k are the learned node embedding matrix in the l-th layer. W

(l)
m ,

W
(l)
k , ω

(l)
m , and ω

(l)
k are trainable parameters in the l-th layer. ∥ is the concatenation

operation.
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The BiGCN layer discards the result H
(l)
k of other node set, and only outputs

the result H
(l)
m on the target node set Vm. The result is denoted as H

(t)
bi , where t

denotes the t-th graph snapshot G(t).

4.4.4 Time-sequence Unit

Time-sequence Unit receives the most recently updated node embeddings from the

previous graph snapshot and transmits these learned node embeddings to the sub-

sequent graph snapshot. An LSTM cell [Hochreiter and Schmidhuber, 1997] is im-

plemented to achieve this function.

ht, Ct = LSTMCell(Xt,ht−1, Ct−1) (4.9)

H∗(t), Ct = LSTMCell(H(t),H∗(t−1), Ct−1). (4.10)

LSTM cell has three inputs and two outputs: input embedding Xt, input hidden

state ht−1, input cell state Ct−1, output hidden state ht, and output cell state Ct, as

formulated in (4.9). Outputs from Node Aggregation module H
(t)
in and H

(t)
bi (denoted

as H(t) for convenience in the following) are fed into the LSTM cell as Xt, and the

updated hidden embeddings H∗(t−1) from last graph snapshot G(t−1) are fed into

LSTM cell as the input hidden state ht−1. The output hidden state ht will be

stored as the updated hidden embeddings H∗(t). H∗(t) and cell state Ct are passed

to the following graph snapshot G(t+1). The LSTM cells are implemented for each

individual graph. The inputs and outputs are formulated in (4.10).

4.4.5 Multi-head Attention Layer

After the Time-sequence Unit, a concatenation layer is exploited to merge the up-

dated hidden embeddings from each LSTM cell as a single hidden embedding ma-

trix, denoted as H∗(t). Then, a multi-head attention layer is exploited to obtain

the node embeddings. Multi-head attention mechanism originated from the famous

Transformer [Vaswani et al., 2017] and proved efficient in learning temporal node

representation [Rossi et al., 2020; Wang et al., 2021; Xu et al., 2020].

The multi-head attention layer plays an efficient role in aggregating neighbor

node embeddings and node attributes. The layer operates by computing the dot

product of a query vector with a set of key vectors, ultimately generating a weight

vector that assigns importance scores to the corresponding value vectors. The mech-

anism is defined as follows:
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Q =FWQ (4.11)

K =H∗(t)WK ,V = H∗(t)WV (4.12)

headi =Attn (Qi,Ki,Vi) (4.13)

=softmax

(
QiK

T
i√

d

)
Vi (4.14)

MultiHead (Q,K,V) = Concat(head1, head2 · · · , headh)W. (4.15)

In the multi-head attention layer, the node hidden embedding H∗(t) is passed to

the key and value parameters K and V, and the node attribute matrix F is passed to

the query parameter Q. WQ,WK ,WV and W are trainable parameters. Attn(·) is

a scaled dot-product attention encoder implemented by the softmax function, where

d denotes the dimension of the query parameter. MultiHead(·) concatenates the

attention score for each head into a single attention score matrix.

Besides, a skip-connection is exploited to add the output attention score matrix

MultiHead(Q,K,V) and the last updated node embedding matrix Z(t−1) together,

which is passed from the last graph snapshot G(t−1). The skip-connection is formu-

lated in (4.16):

Z(t) = Z(t−1) + MultiHead(Q,K,V) (4.16)

= Z(t−1) + MultiHead(F,H∗(t),H∗(t)) (4.17)

The result of skip-connection Z(t) is the final obtained node embedding matrix.

4.4.6 Loss Function

The obtained node embedding Z(t) is used to predict the node labels l̂(t+1) by ex-

ploiting an two-layer MLP decoder. The predicted node labels l̂(t+1) need to be

as close as the target value of popularity trend prediction l(t+1) in the next graph

snapshot G(t+1). Thus, it is a regression problem between the predicted value l̂(t+1)

and actual value l(t+1). The Mean Squared Error(MSE) loss is exploited to train the

parameters:

Lreg = MSELoss(̂l(t+1), l(t+1)) (4.18)

=
1

N

N∑
i=1

(̂l
(t+1)
i − l

(t+1)
i ), (4.19)

where N denotes the total number of nodes in the training set.
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Besides, the learnable parameter in the GSL module also needs restraints to ac-

celerate the training and increase the stability of the learned graph topology struc-

ture. An MSE loss is exploited to restrain the gap between the refined Â and the

original A for each graph:

Lgsl =

∥A∥∑
MSELoss(Â,A) (4.20)

=

∥A∥∑ 1

N

N∑
i=1

(Âi −Ai), (4.21)

where ∥A∥ denotes the number of adjacency matrices in the tensor A.

Finally, the total loss is:

L = Lreg + λLgsl, (4.22)

where λ is a hyperparameter for balancing two losses.

4.4.7 Computational Complexity

This section conducts a computational complexity analysis of the proposed method,

with a particular focus on key components, including the GSL module, Node Aggre-

gation module, Time-sequence Unit, and the Multi-head Attention layer. Regarding

Eqs.(4.3), (4.4), (4.6)∼(5.8), the complexity is primarily dominated by matrix mul-

tiplication. For convenience, this analysis assumes that the average node number

of each node set is N , and both the node attributes F and node embeddings (H(t)

and Z(t)) share the same hidden dimension D. The computational complexity is

calculated as follows:

The complexity of the GSL module is O(N2D2). The complexity of the graph

convolutional layer in Node Aggregation is O(N2D + ND2). The complexity of

the LSTM cell is O(ND). The complexity of the Multi-head Attention layer is

O(N2D + ND2). GSL module costs the most time complexity, followed by the

Node Aggregation module and Multi-head Attention layer. Time-sequence Unit

costs the least time complexity. As a result, the total complexity of the proposed

method is O(N2D2) +O(N2D + ND2) +O(ND) +O(ND2) +O(N2D + ND2) =

O(ND(ND + 2N + 3D + 1)) = O(N2D2).

4.5 Experiments

In this section, the effectiveness of the proposed method is validated in real-world

popularity trend prediction tasks. Experiments are conducted on four social media

network datasets and evaluate the performance of the proposed method against

baseline methods. Additionally, the sensitivity of the model hyperparameters is
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Table 4.1: Statistics of the social media network datasets used in our experiments.

Dataset YouTube MOOC Reddit Wikipedia

Durations 16 months 1 month 1 month 1 month
# Items 1,358 98 1,000 1,000
# Users 13.6k 7,047 10,000 8,227
# Edges 49.9k 411,749 672,447 157,474

evaluated. Furthermore, an ablation study is performed to assess the significance of

the key modules within the proposed method.

4.5.1 Dataset Description

The real-world social media network datasets used in the experiments are listed in

Table 5.5.

• YouTube live streaming dataset1 [Uechi, 2022]: this public dataset com-

prises information on 1,358 live streaming channels and more than 136,000

viewers, spanning from April 2021 to July 2022. The attributes of both chan-

nels and viewers are represented as vectors. Relations within channels include

the rate of common viewers, the conflict in streaming time, and the similar-

ity of streaming content. Relations between channels and viewers present the

interaction of donations and the amount of income. The dataset is separated

into several graph snapshots, each separated by a one-month interval. The ob-

jective of the popularity trend prediction task within this dataset is to forecast

the donation income for each channel in the upcoming months.

• MOOC students and courses2 [Kumar et al., 2019]: this public dataset

encompasses interactions performed by students on MOOC (Massive Open

Online Course) platform, involving 7,047 users engaging with 98 courses, re-

sulting in a total of 411,749 interactions. Both student and course attributes

are represented as feature vectors. The dataset is separated into several graph

snapshots, each separated by a two-day interval. The objective of the popu-

larity trend prediction task within this dataset is to predict the frequency of

visits to each course in the forthcoming days.

• Reddit post dataset3 [Kumar et al., 2019]: this public dataset comprises

one month of posts from 10,000 active users on the 1,000 most active topics

on the Reddit community forum, resulting in 672,447 interactions. The text

of each post is converted into feature vectors. The dataset is separated into

1https://www.kaggle.com/datasets/uetchy/vtuber-livechat
2https://snap.stanford.edu/jodie/
3https://snap.stanford.edu/jodie/
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Figure 4.4: The box plot of the target values (true labels) in the YouTube live
streaming dataset. The target values are distributed from 1 to more than 10 million.
“Month” and “Week” denotes the interval of graph snapshots (one-month interval
and one-week interval).

several graph snapshots, each separated by a two-day interval. The objective

of the popularity trend prediction task within this dataset is to predict the

post numbers on each topic in the upcoming days.

• Wikipedia edits4 [Kumar et al., 2019]: this public dataset encompasses one

month of edits made to Wikipedia pages, comprising the 1,000 most frequently

edited pages. It involves 8,227 editors and a total of 157,474 edit records. Like

the Reddit dataset, the edit text is transformed into feature vectors. The

dataset is separated into several graph snapshots, each separated by a two-

day interval. The objective of the popularity trend prediction task within this

dataset is to predict the frequency of edits on each page in the forthcoming

days.

This work aims to predict values that reflect the popularity degree of target en-

tities. These values correspond to the amount of income (YouTube live streaming

dataset), the number of visits (MOOC and Reddit datasets), and the number of

edits (Wikipedia dataset). However, these values often vary across different mag-

nitudes, ranging from 1 to more than 10 million in some cases. For example, the

distribution of target values in the YouTube live streaming dataset is illustrated in

Fig. 4.4. Predicting target values across such a large and imbalanced distribution

of magnitudes poses a challenge for the proposed model, potentially resulting in

significant biases in the prediction results.

To address this challenge, we implement a transformation on the prediction tar-

get values, converting them into percentages of changes. Thus, the proposed model

predicts the percentage of change in the popularity degree values rather than the

4https://snap.stanford.edu/jodie/
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Figure 4.5: The box plot of the improved percentage of change on target values
(true labels) in YouTube live streaming dataset. The percentages are distributed
from −1 to 2 after eliminating outliers. “Month” and “Week” denotes the interval
of graph snapshots (one-month interval and one-week interval).

original values. As depicted in Fig 4.5, the percentages only range from −1 to 2

after eliminating outliers. Consequently, the proposed model can provide more ac-

curate predictions within this smaller range. This approach allows us to mitigate

the negative impact stemming from the vast magnitudes of target values, which are

influenced by confounding effects.

4.5.2 Setup of the Experiment

The datasets introduced above provide the intra graphs of item entities, bipar-

tite graphs representing user-item relationships, and feature vectors for the input.

Specifically, in cases where the datasets solely comprise bipartite graphs of user-item

pairs, the intra graph is constructed based on the two-hop neighborhood of item en-

tities. It means that item entities are interconnected in the intra graph if they share

connections with the same user entity in the bipartite graph.

Experiments are executed on a platform with Intel Xeon Platinum 8360Y CPU

and NVIDIA A100 for NVLink 40GiB HBM2 GPU. The standard model hyper-

parameters are fine-tuned, including the interval of graph snapshots, learning rate,

epochs, and dropout rate. Regarding the dataset configuration, we test different

choices of the interval of graph snapshots for each dataset and finally determine

the choice with the best performance: a one-month interval for the YouTube live

streaming dataset and a two-day interval for the MOOC, Reddit, and Wikipedia

datasets. During training, the Adam optimizer is employed with a learning rate

set to 0.01. The model is trained for 30 epochs, including training, validation,

and testing phases. A dropout rate of 0.2 is applied. The multi-head attention

layer configures two attention heads. Furthermore, an early stopping strategy is
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Table 4.2: Input information required by the baseline models.

Node attributes Graph structure Temporal information

Linear regression algorithm
GBR ✓ × ×
XGBoost ✓ × ×
MLP ✓ × ×

Time-sequence model
LSTM-FCN ✓ × ✓

Static heterogeneous graph method
HetGNN ✓ ✓ ×
HAN ✓ ✓ ×

Temporal heterogeneous graph methods
HGT ✓ ✓ ✓
CoupledGNN ✓ ✓ ✓

Proposed method ✓ ✓ ✓

implemented, which halts training if the validation loss fails to decrease for five con-

secutive iterations. Additionally, sensitivity experiments are performed for specific

hyperparameters through grid search, as explained later.

All the configurations above are determined by manual grid search. Regarding

the sensitivity analyses of the configurations above, the interval of graph snapshots

severely impacts the model performances because the information in graph snapshots

is totally different with distinct intervals. In comparison, the learning rate and the

dropout rate are less sensitive to the experimental results. Finally, as introduced

above, the number of attention heads in the multi-head attention layer significantly

impacts the computational costs.

4.5.3 Baselines

The following baseline methods are included for comparison in experiments, includ-

ing basic linear regression approaches, time-sequence models, previous popularity

trend prediction methods, and recently proposed heterogeneous GNN methods:

1. Gradient Boost Regressor (GBR): A gradient boost regressor from the

scikit-learn toolkit.

2. XGBoost: An ensemble gradient boosting decision tree model from XGBoost

library.

3. Multi-layer Perceptron (MLP): A basic two-layer fully connection neural

network.

4. LSTM-FCN5 [Karim et al., 2018]: A time-sequence deep learning model

combining LSTM and a fully convolutional network.

5https://github.com/titu1994/LSTM-FCN
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5. HetGNN6 [Zhang et al., 2019a]: A GNN model for learning node embedding

representations in heterogeneous graphs.

6. HAN7 [Wang et al., 2019a]: A heterogeneous graph attention network based

on the hierarchical node-level and semantic-level attentions.

7. HGT8 [Hu et al., 2020]: A heterogeneous graph transformer architecture that

can deal with large-scale heterogeneous and temporal graphs.

8. CoupledGNN9 [Cao et al., 2020]: A model solves the network-aware pop-

ularity prediction problem, capturing the cascading effect explicitly by two

coupled GNNs.

Table 5.6 presents the required input information for each baseline method. The

default parameter settings are maintained during training and testing for all baseline

methods. The specific experimental configurations are as follows:

• Linear regression algorithms (GBR and XGBoost) and the Neural Network

(MLP) receive every feature vector and learn to predict the target value.

• Time-sequence models (LSTM-FCN) handle the time-sequence data, taking

in sequences of feature vectors as input. These models generate a sequence

of hidden state embeddings, which are subsequently used for predicting the

target value.

• Static heterogeneous graph methods (HetGNN and HAN) are typically applied

to model graph-structured data containing multiple types of entities and rela-

tions. In the case of this work, the user-item relations in the datasets can be

viewed as a unique heterogeneous graph. These models receive feature vectors

and the graph structure information as input.

• Temporal heterogeneous graph methods (HGT and CoupledGNN) operate on

dynamic heterogeneous graphs encompassing node attributes, graph structure,

and temporal information. These models are considered the strongest baseline

methods compared to the proposed method.

4.5.4 Evaluation

Table 5.8 and Fig. 4.6 present the experimental results for the popularity trend

prediction tasks. The performance evaluation is based on the Rooted Mean Squared

Error (RMSE) score and the Mean Absolute Percentage Error (MAPE):

6https://github.com/chuxuzhang/KDD2019 HetGNN
7https://github.com/Jhy1993/HAN
8https://github.com/UCLA-DM/pyHGT
9https://github.com/CaoQi92/CoupledGNN
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Figure 4.6: The box plot of the results. Four rows denote four datasets and two
columns denote two metrics.
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Table 4.3: The results of node attribute value prediction tasks on four datasets.
Metric is RMSE scores and MAPE scores (%). Results are mean values of 30
runnings.

Model YouTube MOOC Reddit Wikipedia

Metrics RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Linear regression algorithm
GBR 0.524 59.747 0.095 2.137 0.122 3.839 0.040 2.412
XGBoost 0.535 61.814 0.095 2.012 0.123 3.578 0.042 2.684
MLP 0.536 62.281 0.505 2.182 0.152 4.569 0.143 2.192

Time-sequence model
LSTM-FCN 0.557 103.931 0.153 2.002 0.106 4.288 0.158 4.128

Static heterogeneous graph method
HetGNN 0.518 44.325 0.092 1.968 0.082 3.403 0.036 1.992
HAN 0.524 44.933 0.092 1.971 0.082 3.602 0.036 1.933

Temporal heterogeneous graph method
HGT 0.512 40.526 0.091 1.976 0.079 3.246 0.032 2.029
CoupledGNN 0.510 40.193 0.090 1.971 0.071 3.110 0.030 1.992

Our method 0.5070.5070.507 39.65239.65239.652 0.0800.0800.080 1.9601.9601.960 0.0360.0360.036 2.8392.8392.839 0.0270.0270.027 1.8471.8471.847

RMSE(y, ŷ) =

√∑N
i=i (yi − ŷi)2

N
(4.23)

MAPE(y, ŷ) =
1

N

N∑
i=i

∥yi − ŷi∥
∥yi∥

, (4.24)

which quantify the average difference between predicted values ŷ and actual values

y of total N samples. Smaller RMSE and MAPE indicate superior performance.

The proposed method has the best overall performance, achieving the lowest RMSE

and MAPE scores on all four datasets, as indicated by bold font in the table. The

respective performance of the baselines is evaluated as follows:

• Linear regression algorithms (GBR and XGBoost) and the Neural Network

(MLP) rely solely on the attribute vectors of items, which is often impractical

for predicting trends.

• Time-sequence models (LSTM-FCN) take in sequences of attribute vectors

and generate corresponding sequences of hidden state embeddings for each

graph snapshot. However, these models are susceptible to input noise in the

early steps, which can significantly impact subsequent outputs. Consequently,

relying solely on long sequences of attribute vectors may not perform as well.

In some cases, they may even underperform compared to linear regression

algorithms that only use attribute vectors.
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Figure 4.7: Study of parameter sensitivity.

• Static heterogeneous GNN methods (HetGNN and HAN) are good at analyz-

ing graph structural information and edge interactions among different types

of nodes. These methods outperform linear regression methods and time-

sequence models. However, they are not designed to handle temporal data, a

crucial aspect of popularity trend prediction.

• Temporal heterogeneous GNN methods (HGT and CoupledGNN) receive in-

puts similar to the proposed method. Their performance depends on their

underlying architectures and ability to effectively capture temporal and graph

structure information. The proposed method outperforms HGT and Cou-

pledGNN, owing to distinctive architectural choices such as incorporating GSL

and Multi-head Attention layer.

4.5.5 Parameter Sensitivity

In this section, an experiment is conducted to determine the optimal values for

significant hyperparameters, namely the hyperparameter α in GSL, the balance

hyperparameter λ in the loss function, and the dimension of hidden embeddings.

These hyperparameters are fine-tuned through grid search within specific ranges.

In Fig. 4.7, the performance on four datasets is demonstrated concerning each

hyperparameter, using the RMSE score as the metric. The rows represent the results
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Table 4.4: The ablation study results without specific key components in the pro-
posed method.

YouTube MOOC Reddit Wikipedia

w/o bi-graph 0.537 0.1000.1000.100 0.039 0.029
w/o intra-graph 0.537 0.090 0.039 0.029
w/o time-sequence unit 0.536 0.086 0.039 0.0310.0310.031
w/o GSL 0.5380.5380.538 0.095 0.039 0.029
Completed method 0.507 0.080 0.036 0.027

for four datasets, while the columns correspond to values of α ranging from 0.01 to

0.9, λ ranging from 0.01 to 1.0, and hidden dimensions varying from 16 to 256.

Based on the results, the proposed method is not highly parameter-sensitive.

The relatively optimal hyperparameter choices are α = 0.1, λ = 0.1, and a hidden

dimension of 128. These settings are employed in the experimental results for the

popularity trend prediction tasks in the previous evaluation section.

4.5.6 Ablation Study

An ablation study is conducted to assess the significance of key components in

the proposed method, namely GSL, intra graphs, bipartite graphs, and the time-

sequence unit. It is interesting to discover what component contributes the most to

different application cases in experiments. Each of these components is responsible

for specific types of input information:

• GSL enhances the quality of input graphs.

• Intra graphs represent intra-relations within target entities.

• Bipartite graphs depict relations between target entities and other types of

entities.

• The time-sequence unit receives and propagates temporal information between

adjacent graph snapshots.

In Table 4.4, the performance is demonstrated when each component is omitted,

with the metric being the RMSE score. The results without specific components

consistently underperform compared to the completed method, highlighting the in-

dispensability of all components to the overall performance of the proposed method.

The worst results in each dataset are marked in bold font. These results indicate

that the corresponding component is the most significant for various datasets. To

provide specific insights:

• In the YouTube dataset, the method without GSL exhibits the worst perfor-

mance, highlighting the importance of improving input graph quality.

85



• In the MOOC dataset, the absence of bipartite graph input leads to the poorest

result, emphasizing the significance of item-user relations.

• In the Reddit dataset, all results are equally achieved, suggesting that no single

component stands out as the most crucial.

• In the Wikipedia dataset, the most crucial component is the time-sequence

unit, highlighting the valuable information in the edit history.

It is reasonable that the most significant components vary across different datasets,

as the most abundant information differs in each case. In summary, those findings

emphasize that all components are essential, and their significance depends on the

specific application scenarios.

4.5.7 Statistical Test

This section introduces a statistical test to determine the statistical significance of

observed differences among baseline methods in Section 4.5.4. The test involves

formulating a null hypothesis H0 and an alternative hypothesis H1 as follows:

Hypothesis 0. All the methods have the same performance.

Hypothesis 1. The performance of methods has significant differences.

Next, we employ two statistical tests, the Friedman test and the Wilcoxon sign-

rank test, to assess the differences between the proposed method and baseline meth-

ods and validate the formulated hypotheses.

Friedman Test

The Friedman test, a non-parametric statistical method, is employed to identify

significant differences in the performance of two or more methods across multiple test

attempts [Friedman, 1937, 1940]. The Friedman test is the analog of the repeated

measures Analysis of Variance (ANOVA) in non-parametric statistical procedures.

The initial step in calculating the Friedman test statistic involves converting the

experimental results in Table 5.8 into ranks. Specifically, we assess the performance

of nine methods (eight baseline methods and one proposed method) on four datasets

(YouTube, MOOC, Reddit, and Wikipedia) by splitting the datasets into two sub-

sequences: the former half of the graph snapshots and the latter half of the graph

snapshots, resulting in a total of eight independent tests. The results are ranked for

each test, ranging from 1 (indicating the best result) to 9 (representing the worst

result). Subsequently, the average rank for each method is calculated based on

all eight tests. Table 4.5 illustrates the ranks of the nine methods across the eight
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Table 4.5: The ranks of nine methods assessed on eight tests. T1 ∼ T4 represent
RMSE scores on the former half of the YouTube, MOOC, Reddit, and Wikipedia
datasets. T5 ∼ T8 represent RMSE scores on the latter half of the YouTube, MOOC,
Reddit, and Wikipedia datasets. Any tied ranks are assigned an average rank.

Proposed
method

GBR XGBoost MLP
LSTM-
FCN

HetGNN HAN HGT
Coupled

GNN

T1 1 8 7 5.5 9 3 5.5 4 2
T2 1 7 6 9 8 3 4 5 2
T3 1 7 8 9 6 4 2 3 5
T4 1 7 6 8 9 5 4 3 2
T5 1.5 7 5 8 9 6 4 1.5 3
T6 1 4 7 8 9 6 2.5 5 2.5
T7 1 8 6 9 7 3.5 3.5 5 2
T8 1 3 6 8 9 4.5 7 2 4.5
Avg.
rank

1.0625 6.375 6.375 8.0625 8.25 4.375 4.0625 3.5625 2.875

tests, with tied ranks assigned an average value. By using these ranks, the Friedman

statistic can be computed as follows:

χ2
f =

12n

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
, (4.25)

which follows a χ2 distribution with k − 1 degrees of freedom. Here, n represents

the number of tasks, k is the count of baseline methods included in the comparison,

and Rj denotes the average rank of each method j.

Iman and Davenport propose a derivation from the Friedman statistic [Iman and

Davenport, 1980] as follows:

FID =
(n− 1)χ2

f

n(k − 1)− χ2
f

, (4.26)

which follows an F distribution with k − 1 and (k − 1)(n− 1) degrees of freedom.

Based on the formula above, the test statistic FID is calculated as 50.4795, and

the corresponding p-value is 3.3049 × 10−8. As the p-value is less than α = 0.05,

we reject the null hypothesis H0, which indicates that all baseline methods exhibit

the same performance. In other words, there is substantial evidence to support the

presence of statistical significance among these methods.

Wilcoxon Sign-rank Test

While the Friedman test excels at detecting overall differences across multiple com-

parisons, its limitation lies in its inability to pinpoint significant differences within

specific pairs of methods. To address this constraint, the Wilcoxon sign-rank test

emerges as a non-parametric alternative to the paired t-test, particularly suited for
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Table 4.6: The results of the Wilcoxon sign-rank test between pairs of the proposed
method and each baseline method. Results are Benjamini–Hochberg FDR adjusted
p-values.

Vs. GBR XGBoost MLP
LSTM-
FCN

HetGNN HAN HGT
Coupled

GNN

Adjusted p-values 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0323 0.0175

non-normally distributed samples in this work.

In the Wilcoxon sign-rank test, the differences between sample averages for all

method pairs are calculated in multiple comparisons. The test is defined as follows:

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di) (4.27)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di), (4.28)

where di represents the difference between the performance scores of two methods

on the ith out of n tests. R+ is the sum of ranks for tests where the first algorithm

outperformed the second, and R− is the sum of ranks for the opposite. Ranks of

di = 0, indicating ties, are evenly distributed between the sums. T = min(R+, R−)

is the smaller of the sums. If T is less than the critical value from the Wilcoxon

distribution for n degrees of freedom, the null hypothesis H0 is rejected, signifying

that the given method outperforms the other, with associated p-values.

In this study, we employ the Python library scikit-posthocs10 to conduct the

Wilcoxon sign-rank test and calculate p-values for each pairwise comparison between

the proposed method and baseline methods. Similar to the Friedman test, this

assessment involves ranking the performance of nine methods across eight tests.

To address the issue of inflated Type I error (family-wise error rate) in multiple

comparisons, the test incorporates adjusted p-values using the Benjamini–Hochberg

false discovery rate (FDR) method [Benjamini and Hochberg, 1995]. The results,

including the calculated adjusted p-values, are presented in Table 4.6.

All adjusted p-values for the proposed method versus baseline methods are below

the significance level of α = 0.05, indicating statistical significance compared to

these methods. It is noticeable that all the adjusted p-values except for the pair vs.

HGT are all the same because the proposed method consistently achieves the first

rank across all eight tests when comparing with those models, resulting in T always

equaling 0. Only one different adjust p-value occurs when comparing with HGT,

since the proposed method and HGT achieve the tied first place on T5.

10https://scikit-posthocs.readthedocs.io/en/latest/index.html
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4.6 Discussion and Conclusion

4.6.1 Discussion

In this section, we discuss the improvements achieved by comparing our method to

the most recent and influential studies concerning GNNs in real-world prediction

tasks. In contrast to other state-of-the-art heterogeneous GNNs, such as HetGNN

[Zhang et al., 2019a], HAN [Wang et al., 2019a], HGT [Hu et al., 2020], and Cou-

pledGNN [Cao et al., 2020], our method introduces a specialized multi-layer ar-

chitecture. This architecture decomposes the intricate multiple relationship types

into two categories: intra connections within entities of the same type and inter

connections across entities of different types. This simplification process proves ad-

vantageous for handling heterogeneous graphs. Moreover, our method incorporates

several modules to enhance overall performance, including the GSL module for im-

proving the quality of input graphs and a multi-head attention layer for efficiently

combining outputs from each graph layer.

In comparison to recent trend prediction studies unrelated to graphs, such as

those in IoT [Mohamed et al., 2023], citation networks [Li et al., 2021a], terrorist at-

tacks [Hou et al., 2023], and traffic flow [Yang et al., 2023], these methods often focus

primarily on selecting characteristics and statistical features of target entities. They

tend to overlook information diffusions along relationships and commonly rely on

simplistic machine learning or statistical methods, resulting in suboptimal learning

quality. To address these shortcomings, our method emphasizes the “message pass-

ing” along relationships within entities and employs advanced deep-learning-based

encoders and decoders, leading to high learning efficiency.

In summary, our method addresses real-world trend prediction tasks and demon-

strates remarkable improvements compared to the most recent and influential stud-

ies.

4.6.2 Conclusion

This work provides an effective solution for learning the representation of entities

within social media networks and predicting trends in real-world scenarios. To

achieve this, we develop an advanced multi-layer temporal GNN framework that

captures information diffusion and temporal dynamics among different types of en-

tities. The experimental results demonstrate the efficiency of the proposed method

compared to various baseline methods, including basic linear regression approaches,

time-sequence models, previous popularity trend prediction methods, and recently

proposed heterogeneous GNN methods. Besides, massive experiments are conducted

to explore the optimal choices of hyperparameters and assess the significance of key

components in the proposed method.
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In addition, this work makes a substantial contribution to the rapidly growing

and promising field of trend prediction in social media. Social media is a primary

source for obtaining information about emerging trends worldwide. By predicting

trends in social media, the proposed method can assist users in gaining a deeper un-

derstanding of the future trajectories of public concerns and interests. Anticipating

trends in advance holds significant value, as it enables individuals and organizations

to stay ahead of the competition, align their studies and work in the right direction,

and seize opportunities for informed decision-making in the future.

Limitations

Acknowledging the limitations inherent in our work is essential for a comprehensive

understanding of its scope and applicability. We recognize that the proposed method

is specifically tailored to accommodate input in the form of sequences of graph snap-

shots (DTDG). Consequently, it is essential to acknowledge that the method, as it

stands, does not support other types of temporal graphs, such as sequences of graph

actions accompanied by timestamps (CTDG). This limitation signifies a potential

avenue for future research to expand the method’s applicability to a broader range

of temporal graph structures.

Moreover, it is crucial to emphasize that real-world situations are inherently dy-

namic and influenced by many factors. As with any predictive model, our method

operates within the bounds of uncertainties and the potential existence of missing

information. It is imperative to understand that accurately predicting the future in

complex and dynamic scenarios is inherently challenging. Therefore, the results pro-

vided by our method should be considered as reference points rather than definitive

conclusions.
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Chapter 5

Predictive Analytics on

Continuous-time Dynamic Graphs

5.1 Introduction

Chapter 4 introduces a multi-layer temporal GNN framework designed to learn

node temporal representations within intricate heterogeneous discrete-time dynamic

graphs (DTDG). However, a significant challenge arises in prediction tasks due to

unknown information between consecutive graph snapshots, leading to potential in-

efficiencies in prediction results. To fill this gap, the current chapter presents a sub-

stantial enhancement: extending the proposed model to learn node representations

within continuous-time dynamic graphs (CTDG). Given the inherent difficulties

posed by learning on CTDG, this extension represents a considerable advancement

where existing static graph methods are rendered ineffective. The research on learn-

ing within CTDG is characterized by its challenging nature and is still in its early

stages.

This chapter commences by elucidating how real-world data can be represented

in a computable CTDG format. Subsequently, we introduce a novel model termed

the Temporal Difference Graph Neural Network (TDGNN), expressly designed to

learn node temporal embeddings from CTDG graphs. Notably, our proposed model

exhibits the capability to predict real-time graph events, answering questions such

as when an edge will emerge between specific nodes or how frequently a partic-

ular node will change status in the next period. Moreover, the model addresses

imbalanced situations commonly encountered in real-world scenarios, incorporating

several imbalanced learning strategies to enhance learning in minority classes.

The feasibility in real-world situations lies in evaluating the TDGNN model,

focusing on the challenging task of predicting real-time donations on live streaming

services platforms. Extensive experiments conducted on three live-streaming video

datasets demonstrate the efficacy and robustness of our proposed model. TDGNN

91



outperforms other baseline methods from various fields, providing more effective and

precise predictions of both the donation posters and the exact times when donations

will appear. This chapter signifies a substantial contribution to the nascent field of

learning on continuous-time dynamic graphs, showcasing the potential of TDGNN

in real-world applications.

This work has been published and orally presented at 25th International Con-

ference on Discovery Science [Jin et al., 2022], and an extension version has been

published in the Machine Learning Journal [Jin et al., 2023].

Application: Predicting Real-time Donations in Online Live

Streaming Service

The growth of the internet and the increasing use of mobile devices have led to

a surge in the popularity of live streaming services. These services offer a wide

range of content, including news, sports, entertainment, and video games [Yang

and Lee, 2018], and provide several advantages over traditional television, such as a

large variety of content, low costs, flexibility in viewing, personalized channels, and

uninterrupted programming [Lee et al., 2016; Yang and Lee, 2018]. The COVID-

19 pandemic has significantly impacted the live streaming industry, as many people

have turned to online courses and remote work, resulting in an increase in the global

market for online video streaming.

YouTube Live1 is one of the most popular online live streaming platforms, with

millions of user-generated content shared among billions of active users. Viewers

on YouTube Live can communicate with others by sending real-time chat messages,

which streamers can see and interact with in real time. These chat messages bring

viewers and streamers closer together, creating a sense of community for viewers and

making popular streamers into “celebrities” for their audiences [Fietkiewicz et al.,

2018]. Additionally, some viewers are willing to donate money to their favorite

streamers through the “superchat” donation system on YouTube Live. As shown in

Fig. 5.1, superchat is a special chat message associated with an amount of money

ranging from $1 to $500 that is highlighted in the live streaming chatbox for some

time. This system brings profits, popularity, and motivation for streamers to create

high-quality content. This situation raises some interesting questions: Who tends

to send superchats? When are superchats sent? Can superchats be predicted?

Understanding the answers to these questions will help streamers to predict their

expected donation income better.

Research on live streaming services is still in its early stages. Scholars are study-

ing various aspects of video content, such as improving video quality and using

image recognition in live streaming. Additionally, live-streaming platforms provide

1https://www.youtube.com/
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Figure 5.1: An example of a superchat on the YouTube Live platform is when
a viewer named “Milktea” donates $5.00 to the streamer and posts a superchat
message that reads, “I love your live-streams! Thanks for streaming”, in a live
streaming channel.

a valuable data source for chat data analysis. Some works focus on highlight detec-

tion [Chu and Chou, 2017], sentimental analysis [Kavitha et al., 2018], and fraud

detection [Li et al., 2021b]. However, there is limited research on analyzing vir-

tual donations in live streaming services. Current studies focus on static donation

prediction without considering temporal information, using simple machine learn-

ing algorithms [Jia et al., 2021; Wang et al., 2019b], and are thus not practically

applicable.

This work presents a novel approach to discovering when and who sends super-

chat messages in YouTube live streaming. We study real-time chat messages and

interactions among viewers in live streaming. We find that chat messages increase

significantly when a superchat is posted, as streamers appreciate the donation and

other viewers respond to the superchat. Additionally, superchat messages are usu-

ally longer and better organized to attract attention. Therefore, a superchat message

is usually followed by many response chat messages and has unique text content.

Drawing on these insights, we propose an approach that models the dynamic

interactions among viewers and the text content of chat messages. Our method uti-

lizes a continuous-time dynamic graph to capture the complex relationships among
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thousands of viewers and millions of chat messages. By transforming the superchat

detection problem into a dynamic node label classification problem in the graph, we

are able to predict both the superchat messages and the timing of their posting on

YouTube Live. To learn temporal node representations in the graph, we introduce

a novel Temporal Difference Graph Neural Network (TDGNN) that exploits the

information gap between connected nodes.

The experimental results demonstrate that our proposed approach is highly ef-

fective in predicting superchat messages with AUC scores up to 0.916, outperform-

ing various baseline methods. These baseline methods include decision tree al-

gorithms(e.g., GBDT, XGBoost), time sequence models (e.g., LSTM-FCN [Karim

et al., 2018]), static graph-structured models (e.g., GCN [Kipf and Welling, 2016a],

GAT [Veličković et al., 2018]), text classification models (e.g., BERT [Devlin et al.,

2018]), and the latest temporal graph neural network (TGNN) models (e.g., TGN

[Rossi et al., 2020], APAN [Wang et al., 2021], TGAT [Xu et al., 2020]), MetaDyGNN

[Yang et al., 2022a].

In this paper, we make several important contributions to the field of donation

prediction in live streaming platforms, including:

• We present the first analysis and prediction of real-time virtual donations in

live streaming platforms. This is a significant and innovative topic as it has

the potential to help live streaming services gain more popularity and increase

profits.

• We propose an approach that represents live streaming chat messages and in-

teractions among viewers as a continuous-time dynamic graph. We transform

the superchat detection problem into a dynamic node label classification prob-

lem in the graph and introduce a TDGNN model that learns temporal node

representations and predicts real-time superchat donations.

• Our TDGNN model has a real-time node label updating mechanism that iden-

tifies the precise timing of updating node labels. This is in contrast to tra-

ditional TGNNs, where node information is not updated until batches are

finished. By solving the dynamic node label classification task, our approach

can predict the exact time when a superchat appears.

• We conduct experiments to demonstrate the effectiveness of our proposed ap-

proach, which outperforms various baseline methods, including traditional

machine learning algorithms, time sequence models, static graph-structured

models, text classification models, and the latest TGNN models.
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5.2 Related Work

Online Live Streaming Service

Online live streaming services have become increasingly popular with the advent of

high-speed internet and mobile devices. These services have led to the formation

of various live streaming communities, which are often centered around different

content genres [Hamilton et al., 2014]. For instance, YouTube live streamers often

share their daily life and experiences and are commonly referred to as “vloggers”

[Ladhari et al., 2020]. In contrast, game streaming channels are more popular on the

Twitch2 platform, where viewers enjoy watching others play video games to relieve

stress, pass time, and engage in common topics with friends [Sjöblom and Hamari,

2017].

The live streaming platform enables creators to monetize their live videos and

generate revenue from live streaming. Streamers on most live streaming platforms,

such as YouTube Live, Twitch, and TikTok, can generate revenue in various ways,

such as receiving real-time gifts from fans, paid subscriptions from viewers, and ads.

Ads revenue of a live streaming channel is generally stable and positively correlated

to the number of viewers and followers, while the amount of real-time gifts and paid

subscriptions can vary greatly depending on the popularity of the streamer and the

generosity of their viewers. Paid subscriptions and real-time gifts are also referred to

as virtual donations. Virtual donation in live streaming is a promising topic and has

attracted the attention of many researchers. Current research examines the reasons

behind virtual donations, such as how they represent viewers’ appreciation and

approval of the streamer or recognition and happiness for shared content [Lee et al.,

2019]. Paid subscriptions enable viewers to make monthly donations to support their

favorite channels on a recurring or one-time basis [Kim et al., 2019; Wohn et al.,

2019; Yu and Jia, 2022]. Subscribers can gain access to some channel benefits,

such as customized emotes and badges. Real-time gifts are special gift donations

or chat messages associated with a particular amount of money. They are often

accompanied by special effects and highlighted in the live streaming chatbox for a

while [Jin et al., 2022; Zhan and Zhang, 2023].

To investigate the impact of virtual donation revenue in live streaming, we check

the revenue data of streamers from two popular live streaming platforms: Twitch

and YouTube Live. According to a Twitch channel ranking site3, one of the most

popular streamers “JYNXZI” on Twitch had 59, 459 paid subscriptions and 29, 748

gift donations in April 2023, generating more than $294, 240 USD revenue. In an-

other hand, according to a YouTube channel ranking site4, one of the most popular

2https://www.twitch.tv/
3https://twitchtracker.com/jynxzi/subscribers
4https://playboard.co/en/channel/UCLg4NCAJxhIvD4IRV LOFg

95



YouTube Live streamer “Pastor Jerry Eze” had 55, 358 concurrent live streaming

viewers in average and 26, 757 superchat donations generating $183, 108 USD in

April 2023. Assuming that the number of paid subscribers is 10% of the concurrent

viewers and the monthly fee of paid subscription (membership) is $5.00 USD, the

revenue from paid subscription was $27, 679 USD, and the total revenue from vir-

tual donation was $210, 787 USD in April 2023. The data above shows that both

paid subscriptions and real-time gift donations are significant sources of revenue for

streamers. Therefore, it is meaningful to conduct research on the revenue from real-

time gift donations in live streaming, and YouTube Live is a suitable platform for

this purpose. Some patterns of sending real-time superchat donations during live

video streaming have been identified, such as only a small number of viewers sending

a majority of the gifts, and viewers being motivated to send gifts after observing

other viewers’ gift-giving behaviors [Zhu et al., 2017]. Additionally, donation in-

formation is entirely public on live streaming channels, meaning that when viewers

donate to the streamer, others will notice it. Other viewers tend to be affected by

such noticeable actions and are likely to follow the group and send more donations

[Payne et al., 2017]. Therefore, donations in online streaming services signal a group

interaction and an event for viewers to interact with others. Some large-scale analy-

ses of real-time virtual donations in on-demand video sites and online live streaming

platforms have been carried out in several works [Jia et al., 2021; Lu Jia et al.,

2019, 2020; Wang et al., 2019b]. However, those works only cover a short period

of virtual donation activities and focus on revealing the static properties of viewers

and streamers using naive machine learning algorithms.

Dynamic Graph Learning

Graph learning has produced many successful applications [Zhou et al., 2018]. The

main challenge in graph learning is to find an appropriate method to encode the

graph structure, including nodes and edges, into low-dimensional hidden embed-

ding vectors while preserving the topology structure and node information. These

embedding vectors can be utilized by machine learning models and deep learning ar-

chitectures, such as random-walk-based algorithms [Perozzi et al., 2014b] and graph

neural networks [Wu et al., 2019b]. Learning embedding vectors on graphs is widely

recognized for graph-related downstream tasks, such as node classification [Kipf

and Welling, 2016a], link prediction [Zhang and Chen, 2018], community detection

[Interdonato et al., 2017], and graph classification [Zhang et al., 2018a].

Graph Neural Networks (GNNs) have emerged as a powerful deep learning frame-

work for graph learning. Among various GNNs, Graph Convolutional Network

(GCN) is one of the most widely used models that aggregates neighbor node infor-

mation efficiently using a convolutional layer [Kipf and Welling, 2016a]. To further

improve the GNN performance, many researchers have proposed advanced GNN
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models based on the GCN structure. For example, GraphSAGE extends GCN into

inductive learning that can handle unknown nodes in graphs [Hamilton et al., 2017b].

Graph Attention Networks employ attention mechanisms that assign importance

weights to different neighbor nodes [Veličković et al., 2018]. Graph Autoencoder and

Variational Graph Autoencoder are GCN-based encoder-decoder models that can

handle unsupervised learning tasks [Kipf and Welling, 2016b]. Moreover, ML-GCN

and ML-GAT extend the original GCN and GAT to multilayer networks, which can

capture more complex relations among nodes in large-scale graphs [Zangari et al.,

2021].

Learning on dynamic graphs is much more complex than on static graphs. Ini-

tially, research on dynamic graphs focused on discrete-time dynamic graphs, which

consist of a timed sequence of graph snapshots [Gao et al., 2022a; Liben-Nowell

and Kleinberg, 2007; Sankar et al., 2020]. Existing static graph methods can be

directly applied to each graph snapshot. However, most real-life graph-structured

data is in a state of constant evolution. A more general style of dynamic graph

is the continuous-time dynamic graph, which consists of a timed list of events,

including edge creation or deletion, node creation or deletion, and node or edge

status evolution. Recently, several studies on continuous-time dynamic graphs have

been proposed, including JODIE [Kumar et al., 2019], Continuous-time Dynamic

Network Embedding [Nguyen et al., 2018], DyRep [Trivedi et al., 2019], Temporal

Graph Networks (TGN) [Rossi et al., 2020], Temporal Graph Attention [Xu et al.,

2020], Asynchronous Propagation Attention Network (APAN) [Wang et al., 2021],

and Meta-learning framework MetaDyGNN [Yang et al., 2022a]. However, these

continuous-time dynamic graph methods need two-step model training processes

that require high data volume and long training time, causing low training effi-

ciency. Additionally, they lack accuracy in predicting the exact timing of superchat

messages because they have an update delay in model training and inference, render-

ing them impractical for our research target. A new approach is needed to address

these issues and predict the post time of superchat messages more accurately and

efficiently.

5.3 Problem Setup

5.3.1 Dataset Description

We use a publicly available YouTube live streaming dataset in this study: VTu-

ber 1B: Large-scale Live Chat and Moderation Events Dataset 5. VTuber 1B is a

massive collection of over a billion live chat messages, superchats, and moderation

5The dataset can be downloaded from https://www.kaggle.com/datasets/uetchy/

vtuber-livechat.
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Table 5.1: Superchat purchase details

Purchase amount(USD) Color Max. message length Max. time in the chatbox

$ 1.00 - 1.99 Blue 0 characters 0 seconds
$ 2.00 - 4.99 Light blue 50 characters 0 seconds
$ 5.00 - 9.99 Green 150 characters 2 minutes
$ 10.00 - 19.99 Yellow 200 characters 5 minutes
$ 20.00 - 49.99 Orange 225 characters 10 minutes
$ 50.00 - 99.99 Magenta 250 characters 30 minutes
$ 100.00 - 199.99 Red 270 characters 1 hour
$ 200.00 - 299.99 Red 290 characters 2 hours
$ 300.00 - 399.99 Red 310 characters 3 hours
$ 400.00 - 499.99 Red 330 characters 4 hours
$ 500.0 Red 350 characters 5 hours

events (ban and deletion) across hundreds of YouTubers’ live streams, especially for

English and Japanese Streamers. Our research uses the chat message data from

Mar. 2021 to Apr. 2021, including 377 live streaming channels, 5,684 streaming

videos, and over 58 million live chat messages. Over 54,000 viewers posted 230,025

superchat messages. Each channel has 15.07 live-streaming videos that last for 8.72

hours on average. There are 172.76 viewers, 10,245.84 chat messages posted, and

9.66 superchat donations on average in each video. The total purchase amount of

superchat exceeds 3.4 million USD.

The dataset contains a considerable amount of superchat donations, which are

categorized into multiple levels based on their purchase amount. Each level is rep-

resented by a different color, as shown in Table 5.1. Higher purchase amounts allow

for longer message length and longer highlighting time in the chatbox. In our re-

search, we classify all the chat messages into significance levels regarding its donation

amount, indicating whether they are superchat messages or not. These labels will

be utilized as prediction targets in our proposed framework.

The dataset used in this study is based on a cluster system6 that was specifically

designed to collect data from certain YouTube channels’ live streams via YouTube

Live streaming API. All personal information that could identify individual users,

such as usernames and profile images, has been removed from the dataset to protect

their privacy. User IDs and channel IDs have also been anonymized using the SHA-1

hashing algorithm and an undisclosed salt, further ensuring user anonymity. The

VTuber 1B dataset has been used in various research studies, including toxic chat

classification, spam detection, demographic visualization, superchat analysis, and

training neural language models. With over a billion live chat messages, superchats,

and moderation events, this dataset is a valuable resource for researchers interested

in studying online behavior and language use. By utilizing this dataset, we can

6https://github.com/sigvt/honeybee
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Table 5.2: Detailed dataset statistics

Description Value

Start time 2021-03-15 23:19:38
End time 2021-04-11 15:15:36
# Live streaming channels 377
# Live streaming videos 5,684
# Live streaming viewers 981,996
# Chat messages 58,237,423
# Superchat messages 230,025
# Superchat donors 54,918
# Videos per channel 15.07
Duration (hrs.) per video 8.72
# Viewers per video 172.76
# Chat messages per video 10245.85
# Superchat messages per video 9.66
Total amount of super chats (USD) $3,466,216.61

gain a better understanding of how users interact with each other in live streaming

chatrooms and develop more effective tools for moderating and managing online

conversations.

The detailed statistics are listed in Table 5.2.

5.3.2 Research Problem

In YouTube Live, viewers communicate with others by sending real-time chat mes-

sages, which streamers can see and interact with in real-time. In this way, these

chat messages bring viewers and streamers closer together. Some of the chat mes-

sages are superchat with donations. The chat messages dataset presented above

raises interesting questions: Who sends superchat messages? When are superchat

messages typically sent? Can we predict superchat messages? These questions can

give streamers valuable insights into their core fans and expected donation income.

Predicting superchat messages can be helpful for content creators, moderators, and

platform administrators to identify and engage with their most valuable viewers,

leading to a more engaged and loyal audience. Our research task is to predict when

and who sends superchat messages, i.e., we hope to identify the donor as soon as

he/she sends a superchat.

We mathematically formalize the research problem shown in Fig. 5.2 as follows:

Consider we have a history sequence of chat messages for the past period [0, T],

i.e., M = {msgi(t)|0 ≤ t ≤ T}, where msgi(t) include the textual content, the

information about the viewer i who sent the chat message, and the correspond-
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Figure 5.2: Problem description: Our objective is to predict the occurrence of super-
chat messages and their appearance timing in a given chat message stream. Given
the timed sequence of chat messages during a certain period 0 ≤ t ≤ T , our method
aims to predict the viewers i who send superchat message msgi(t) after T and the
corresponding time t.

ing timestamp t. We also know which chat messages are superchats in M, i.e.,

D = {label(msgi(t))|0 ≤ t ≤ T}. Here label(msgi(t)) is a label function where

label(msgi(t)) = 1 means msgi(t) is a superchat message and label(msgi(t)) = 0

otherwise. For the prediction period [T, T + ∆T ], we are given a sequence of chat

messages in a stream fashion, i.e., M∗ = {msgi(t)|T ≤ t ≤ T + ∆T}. Our aim is

to learn the message label D∗ = {label(msgi(t))|T ≤ t ≤ T + ∆T} as soon as the

message msgi(t) ∈M∗ was sent. The message labels indicate the information about

viewers who send superchat messages and the timestamp when superchat messages

are posted.

5.4 Constructing Dynamic Graphs

In this section, we describe our proposed method for identifying real-time superchat

donations in YouTube live streaming services. We have empirically observed that

superchat messages have specific characteristics that distinguish them from regular

chat messages. For instance, when a superchat message appears, chat messages

tend to increase as the streamer expresses their gratitude for the donation, and

other viewers respond. Moreover, superchat messages are often longer and crafted

in a way to attract attention. Consequently, superchat messages tend to elicit a

high number of response chat messages and have distinctive textual content. To

leverage these observations, we use text content information and viewer interactions
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to identify superchat donations and its donor.

We utilize a continuous-time dynamic graph to capture the intricate relation-

ships among a large number of viewers and chat messages, which number in the

millions. The graph comprises batches of graph actions over time, such as node

creation/deletion, edge creation/deletion, and node/edge status evolution. Nodes

represent viewers, and edges represent interactions between them, i.e., whether two

viewers have sent similar chat messages. Each node is assigned A dynamic node

label, which changes with time. The label represents whether the viewer sends a

superchat in a time window, i.e., if a viewer sends a superchat, its label temporarily

changes from 0 to 1 until the time window ends. Thus, we transform the superchat

message prediction problem into a dynamic node label classification problem in the

continuous-time dynamic graph.

As previously mentioned, the prediction of superchat messages is based on two

aspects: the textual content of chat messages, and the interactions between viewers.

To achieve this, we convert the textual content of chat messages into sentence em-

bedding vectors. Also, we measure the interaction between viewers by the similarity

in meaning between the latest chat messages they post, i.e., two viewers interact

with each other by sending similar chat messages. Specifically, we calculate the co-

sine similarity of two sentence embedding vectors of their most recently posted chat

messages.

We use a pre-trained Sentence Transformers7 [Reimers and Gurevych, 2019, 2020]

language model to encode all the chat message texts into sentence embedding vec-

tors. Sentence Transformers is a Python framework for generating state-of-the-art

sentence, text, and image embeddings. It is commonly used in research tasks such

as semantic textual similarity, semantic search, and paraphrase mining. Sentence

Transformers has been extensively evaluated for its quality in embedding sentences

(Performance Sentence Embeddings) and embedding search queries & paragraphs

(Performance Semantic Search). We use a pre-trained multi-lingual model named

paraphrase-xlm-r-multilingual-v1 8 to encode the chat messages into sentence em-

bedding vectors. This model generates aligned vector spaces, meaning that similar

inputs in different languages are mapped close together in the vector space.

Figure 5.3 illustrates a test of the pre-trained model’s performance on sentence

similarity. The embedding vectors of sentences with similar meanings have a higher

sentence similarity score than those with opposite meanings. Moreover, the pre-

trained model can identify the meanings of two sentences written in different lan-

guages or even in emojis. This test demonstrated that the model is capable of

extracting meaningful information from short chat messages and encoding them

into sentence embedding vectors while preserving their meaning.

7https://www.sbert.net/
8https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1
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Figure 5.3: We conducted a test on the pre-trained Sentence Transformers model to
measure sentence similarity. We used the source sentence “Thanks for streaming”
and compared it with different target sentences. Sentences with positive and similar
meanings, such as “Nice!” and “Congratulations!” received higher similarity scores
of 0.366 and 0.327, respectively, whereas the sentence with a negative and opposite
meaning, “I don’t like it”, had the lowest score of 0.184. Additionally, the model
could identify the meanings of sentences written in different languages or emojis.
For instance, the Japanese sentence “Congratulations!” and the emoji “Clap hands”
received almost identical similarity scores (0.345 and 0.387, respectively) as their
English equivalents.

With the sentence embedding vectors, we construct a continuous-time dynamic

graph that encodes viewers’ chat messages and interactions in live streaming videos.

The graph comprises batches of graph actions over time, such as node creation/deletion,

edge creation/deletion, and node/edge status evolution. Nodes represent viewers,

and edges represent interactions between them, i.e., whether two viewers send sim-

ilar chat messages. Node creation/deletion occurs when viewers enter or leave the

streaming channel, while edge changes occur when viewers send new chat messages

and interact with others. Additionally, each node is associated with a node feature

vector, which is dynamically updated based on the sentence embedding vector of

the latest chat message posted by the corresponding viewer. The edge weight repre-
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Algorithm 5.1: Construct dynamic graph from a timed sequence of live
streaming chat messages

Data: A timed sequence M of chat message. The time window ∆t for
separating batches. The threshold θ1 for judging duplicated chat
messages. The threshold θ2 for generating edges by cosine similarity.

Result: A continuous-time dynamic graph G = (V(t),E(t),F(t)∥t ∈ T),
including node set V(t), edge set E(t), node feature set F(t) and
the timestamp set of graph actions T

1 initialization;
2 Separate M into several batches by time window ∆t;
3 for batch← batches do
4 for msgi(t1),msgj(t2) ∈M[batch] and t1 < t2 // t denotes the

timestamp

5 do
6 if SequenceMatcher(msgi(t1), msgj(t2)) > θ1 then
7 delete msgj(t2) // Drop duplicated chat messages

8 end

9 end
10 for msgi(t)←M[batch] do
11 if The viewer ui(t) who posts msgi(t) and ui(t) /∈ V(t) then
12 Create a new node ui(t) ∈ V(t)
13 end
14 Update the node feature fi(t) ∈ F(t) by the sentence embedding

vector of msgi(t);
15 for uj(t

−)← active list do
16 if cosine similarity(uj(t

−), ui(t))> θ2 then
17 Generate an directed edge eji(t) ∈ E(t) from node uj(t

−) to
ui(t);

18 Edge weight eji(t) = cosine similarity(uj(t
−),ui(t))

19 end

20 end
21 ui(t)→ active list // Keep ut active for a time window

22 for uj(t
−) in active list do

23 if (t− t−) > ∆t then
24 delete uj(t

−) from active list // Drop expired nodes

25 end

26 end

27 end

28 end

sents the cosine similarity of the node feature vectors of the two nodes at either end,

and synchronously changes everytime node feature vectors are updated. The edge

direction is always from the formerly updated node to the newly updated nodes.

This ensures that new chat messages are influenced by old ones, and information

propagates from old chat messages to new ones.
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Figure 5.4: The diagram illustrates the process of constructing dynamic graphs from
live streaming chat messages. In this example, four viewers post chat messages at
timestamps t1 to t4 in the same batch, with the first message being a superchat.
We create nodes 1 to 4 for each viewer and initialize their feature vectors using the
sentence embedding vector of the chat message they posted. Next, we compute the
cosine similarity between each pair of nodes and generate edges for node pairs with
high similarity. The blue node represents a viewer who sent a superchat, while the
green nodes represent viewers who only sent regular chat messages.

Algorithm 5.1 outlines how to construct a dynamic graph from a timed sequence

of chat messages by utilizing their textual content, sentence embedding vectors,

viewer ID, timestamps, and the dynamic label indicating whether it is a superchat

message. The algorithm proceeds as follows:

1. The first step is to preprocess the raw chat messages. All the chat messages M

are separated into several batches by a time window ∆t, and any duplicated,

nonsensical, or too-short messages are filtered out. The SequenceMatcher()

method from the Python library difflib9 is used to check for duplicated mes-

sages. This preprocessing step helps to ensure that the subsequent graph

construction is based on a clean and manageable sequence of chat messages.

(lines 1-9)

2. Traverse all the chat messages msgi(t) in the batch. And for each msgi(t),

9https://docs.python.org/3/library/difflib.html
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check if the viewer i who posted it already has a node ui(t) in the graph G.

If not, create a new node ui(t) ∈ V(t) for the viewer i. (lines 10-13)

3. Update the node feature vector fi(t) ∈ F(t) of the node ui(t) at time t by the

sentence embedding vector of msgi(t). (line 14)

4. Compute the cosine similarity between the newly-updated node ui(t) and each

node uj(t
−) in the active list. Node uj(t

−) is updated earlier than node ui(t)

(t− < t). If the cosine similarity of node ui(t) and ui(t) is greater than the

threshold θ2, a directed temporal edge eji(t) ∈ E(t) is generated between the

two nodes. The edge direction is from the previously updated node uj(t
−) to

the newly updated node ui(t). The edge weight is equal to the value of cosine

similarity between the two end nodes. (lines 15-20)

5. Add the newly updated node ui(t) into the active list and keep active for a

time window ∆t. (line 21)

6. Traverse all the nodes uj(t
−) in the active list and check their timestamps t−.

The node expiring time is set equal to the time window ∆t. If the interval

between the current timestamp t and t− is larger than ∆t, it means that the

node uj(t
−) is expired and will be removed from the active list. (lines 22-26)

7. Repeat step 2 to 6 until all the graph actions are visited. (line 27)

We assign a binary dynamic node label li(t) ∈ {0, 1} to each node in the dynamic

graph. The dynamic node label, which changes with time, represents whether the

viewer ui(t) has sent a superchat message label(msgi(t)) = 1 in the past time

window ∆t from timestamp t:

li(t) = max({label(msgi(t
−))|t−∆t < t− < t}). (5.1)

Label li(t) = 0 indicates that the node ui(t) did not send any superchat at time

t, while label li(t) = 1 indicates that the node ui(t) sent a superchat at time t. More

precisely, if a viewer sends a superchat, its label temporarily changes from 0 to 1

until the time window ends. We hope to track the node label changes in a relatively

short time window. Thus we could identify the viewer as soon as he/she sends a

superchat message.

Fig. 5.4 is an intuitive description of constructing a dynamic graph from chat

messages. The input is a batch raw chat messages. Four viewers post chat messages

msg1 to msg4 at timestamp t1 to t4, with the first message being a superchat. Four

chat messages appear in the same batch, and the chat messages are encoded to

sentence embedding vectors emb1 to emb4. Node 1 to 4 are created to represent

the corresponding viewers. The node features are initialized by emb1 to emb4.
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A dynamic node label is associated with each node to identify the superchat and

normal messages. The blue node represents a viewer who sent a superchat, while

the green nodes represent viewers who only sent normal chat messages. Then we

calculate the cosine similarity and generate edges for the node pairs in the active

node list. Node 2 and node 3 have similar opinions toward node 1, while node 4

has the opposite. Therefore, edge e12 from node 1 to node 2, edge e23 from node 2

to node 3, and edge e13 from node 1 to node 3 are generated. Node 4 responds to

node 1 but does not positively correlate to node 2 and node 3. Thus, only an edge

e14 from node 1 to node 4 is generated.

5.5 Limitations of Traditional Temporal GCN

In this section, we discuss the limitations of traditional TGNNs and their potential

shortcomings when applied to predicting YouTube live superchats.

TGNNs are designed for learning temporal node embeddings in dynamic graphs.

Many existing TGNNs update the temporal node embedding by indiscriminate

neighbor aggregation and timestamp information [Rossi et al., 2020; Wang et al.,

2021; Xu et al., 2020]. Moreover, once the model is successfully trained, it can be

flexibly modified for different downstream tasks.

However, there are limitations to existing TGNNs that need to be addressed:

• Existing TGNNs require a two-step training process: First, training the model

parameters, and then training the decoders for downstream tasks. This ap-

proach requires high data volume and results in low training efficiency.

• The existing TGNNs focus on indiscriminate neighbor aggregation, which up-

dates the central node embedding by collecting information from neighboring

nodes. However, predicting node status in the next time window requires

knowing in advance the direction and rate of information propagation. This

means that more information is needed beyond just collecting information from

neighboring nodes.

• In the specific task of predicting superchat messages, it is necessary to predict

the exact time when these messages are posted. However, existing TGNNs only

update node labels after training batches are finished, resulting in a update

time delay in the node label prediction task.

The prediction of superchat messages and their post time is a challenging task,

and existing TGNNs need to be more efficient and accurate in this regard. A new

approach is needed to tackle the problem of predicting dynamic node labels in

continuous-time dynamic graphs more intelligently.
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Figure 5.5: Overview of the proposed Temporal Difference Graph Neural Network
(TDGNN).

5.6 Temporal Difference Graph Neural Network

(TDGNN)

To address the gaps mentioned above, we introduce an end-to-end, meticulously

designed TDGNN model that predicts dynamic node labels in continuous-time dy-

namic graphs. The primary objective of TDGNN is to learn temporal node embed-

ding vectors that encapsulate node features and neighborhood node information.

The term temporal difference here implies that TDGNN’s focus is on the difference

between the node and its adjacent node embeddings over time. The temporal differ-

ence between two adjacent nodes represents the “gradient”, indicating the direction

and rate of information propagation. When a graph event occurs, TDGNN calcu-

lates the amount of information change on adjacent nodes based on the product of

temporal difference and updated node features.

The generated dynamic graph is denoted as G = (V(t),E(t),F(t) | t ∈ T),

where t ∈ T represents the timestamp. ui(t) ∈ V(t) and uj(t) ∈ V(t) represent the

temporal nodes at timestamp t, while eij(t) ∈ E(t) ⊂ V(t) × V(t) is the directed

temporal edge from node ui(t) to node uj(t) at timestamp t. The temporal edge

weight is computed as the cosine similarity of two node embedding vectors. Each

node ui(t) ∈ V(t) is associated with a node feature fi(t) ∈ F(t) and a temporal node

label li(t) ∈ L(t). L(t) is the set of dynamic node labels for all graph actions in G,

and graph actions update the node feature fi(t) and node labels li(t) continuously.

We split timestamps T into three sets: a training set Ttrain, a validation set Tval,

and a test set Ttest. Our research objective can be formalized as follows: Given a

period of continuous-time dynamic graph G = (V(t),E(t),F(t) | t ∈ Ttrain ∪Tval)

and a portion of known dynamic node labels (L(t) | t ∈ Ttrain ∪ Tval), we aim to

learn a mapping function F : G = (V(t),E(t),F(t) | t ∈ Ttest) → (L(t) | t ∈ Ttest)

to predict the remaining dynamic node labels (L(t) | t ∈ Ttest).

The proposed TDGNN framework is illustrated in Fig. 5.5. It consists of three

main components: a temporal difference module, a multi-head attention encoder,

and an ensembled Multi-Layer Perceptron (MLP) decoder. The temporal difference
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Figure 5.6: Compute the temporal difference in a directed graph. Temporal dif-
ference ∂u represents the information difference between node u and the surround-
ing neighbor nodes, indicating the amount of information propagation in dynamic
graphs.

module captures the difference between the node and adjacent node embeddings over

time. After the graph interactions occur, the temporal difference and the updated

node features are passed to the multi-head attention encoder to update the node

embeddings. The updated node embeddings are then fed to the ensemble MLP

decoder to compute the probabilities of predicted node labels. This work addresses

the real-time dynamic node label prediction task, where node labels change over

time, in contrast to traditional node label classification, where node labels are static

and constant.

The detailed steps are introduced as follows:

5.6.1 Temporal Difference Aggregation

We define the temporal difference of node ui at time t as:

∂ui(t) =
∑
n∈Ni

(un(t)− ui(t)) · eni(t), (5.2)

where Ni = {un(t) | eni(t) ∈ E} denotes the set of neighbor nodes of ui(t), and

eni(t) denotes the edge weight.

The concept of temporal difference is crucial in understanding the direction and

rate of information propagation in a directed graph. In the case of our proposed

model, the node embedding difference serves as the “gradient” of information prop-

agation from all neighboring nodes at time t, while the edge weight indicates the

strength of the connection. In essence, ∂ui(t) represents the total amount of infor-

mation propagated on node ui from all its neighbor nodes at time t. To illustrate

this point, consider the example shown in Fig. 5.6, where node u1 passes information

to its three connected neighbors, namely nodes u2, u3, and u4. In this scenario, ∂u1

is the amount of information that is passed on to these nodes.
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Figure 5.7: A multi-head attention module that calculates the new temporal node
embedding ui(t+1) according to the relativity between the last updated embedding
ui(t), temporal difference of neighbor nodes, and newly-updated node features.

5.6.2 Attention encoder

The TDGNN model updates node embeddings by utilizing both temporal difference

aggregation and updated node features. Inspired by the Fundamental theorem of

calculus, temporal difference acts as a gradient’ in node information propagation,

while the updated node feature plays the role of step size’. The TDGNN calculates

the product of temporal difference and the updated node features, which represents

the total amount of information change. It then adds the result to the old node

embeddings to compute the new node embeddings. The complete procedure is

shown in the following equation:

ui(t + 1) = ui(t) + ϕ (∂ui(t), fi(t)) , (5.3)

where ϕ represents a function that computes the change in the value of updated

node feature fi(t) regarding the node ui. The multi-head attention module is an

efficient mechanism to combine the temporal difference and node features. The

attention layer works by computing the dot product of a query vector with a set

of key vectors, resulting in a weight vector that assigns importance scores to the

values. The mechanism is defined as follows:
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Attn (Q,K,V) = softmax

(
QKT

√
d

)
V (5.4)

Q = [fi(t)∥δts]WQ (5.5)

K = [∂ui(t)∥δts]WK ,V = [∂ui(t)∥δts]WV (5.6)

headi = Attn (Qi,Ki,Vi) (5.7)

MultiHead (Q,K,V) =[head1∥head2∥ · · · ]W, (5.8)

where δts denotes the time interval since last update, [·∥·] represents the concate-

nation of matrices, and WQ,WK ,WV ,WK are training parameters. As shown in

Fig. 5.7, the node feature vector is fed into the matrix Q, while the temporal dif-

ference vector is fed into matrices K and V. To incorporate the time order of node

updates, a time encoder is used to encode the time information into vectors that are

also fed into the multi-head attention layer. This allows the attention mechanism

to take into account both the node features and the temporal difference information

at each time step, as well as the time order of the updates.

Finally, the output of the multi-head attention encoder is concatenated with the

old node embeddings:

ui(t + 1) = ui(t) + ϕ (∂ui(t), fi(t)) (5.9)

= ui(t) + MultiHead (Q,K,V) . (5.10)

A normalization layer is set here to limit the mean and variance of the obtained

node embeddings.

5.6.3 Ensemble MLP decoder

Node embeddings can be used for various downstream tasks. In this work, an

ensemble MLP decoder is used to solve the real-time node label prediction task.

Ensemble learning techniques are effective for imbalanced data [Galar et al., 2011].

They combine the results from several classifiers to improve the performance of

a single classifier by reducing the variance of results. On the other hand, single

classifiers are easily affected by the imbalanced dataset and tend to skew towards

the majority classes, resulting in poorer performance on the minority classes. The

ensemble MLP decoder is composed of multiple individual MLPs. Each MLP maps

the learned node embedding ui(t) to the probability of node labels. The sum of

all MLP outputs is then fed to a softmax function to assign a predicted node label

probability ŷi(t):
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Table 5.3: Structure distinction among TGNNs

Aggregator Encoder Classifier Training

TGAT Self-attention Multi-head attention MLP Two-step
TGN Memory & message aggregator Multi-head attention MLP Two-step
APAN Asynchronous mail propagator Multi-head attention MLP Two-step
MetaDyGNN Hierarchically Adaptive Meta-Learner Attention mechanism MLP End-to-end
TDGNN Temporal difference aggregation Multi-head attention Ensembled MLPs End-to-end

ŷi(t) = Softmax

(
1

N

∑
N

MLP (ui(t))

)
. (5.11)

Finally, we use a Binary Cross Entropy Loss function to train the TDGNN model.

BCELoss(ŷi, li) = − (li · log(ŷi) + (1− li) · log(1− ŷi)) , (5.12)

where ŷi is the predicted node label probability and li ∈ L is the true node label.

5.6.4 Computational Complexity

We analyze the computational complexity of the Temporal Difference Aggrega-

tion, Multi-head Attention Encoder, and Ensemble MLP decoders. With regard

to Eqs.(5.2), (5.4)∼(5.8), (5.11), the complexity is dominated by matrix multipli-

cation. We assume that the number of edges(graph actions) is N , and the node

embedding V(t) and node features F(t) have the same dimension D for the hidden

units. The complexity of Temporal Difference Aggregation is O(ND). The com-

plexity of the Multi-head Attention Encoder is O(N2D +ND2). The complexity of

Ensemble MLP decoders is O(ND). Therefore, the total complexity of TDGNN is

O(ND) +O(N2D + ND2) +O(ND) = O(ND(N + D + 2)) = O(ND(N + D)).

Considering real-time computation, we must process the input graph actions in

batches within a certain time window. We assume that all the batches have the

same size K, and then the total number of batches is N/K. In this case, the total

complexity of TDGNN is O((N/K)× (KD(K + D))) = O(ND(K + D)). Since K

is much smaller than N , the complexity in the real-time computation case is smaller

than in the normal computation case. The complexity analysis above demonstrates

that our framework works more efficiently in the case of real-time computation.

5.6.5 TDGNN vs. TGNNs

Table 5.3 compares the structural distinctions between our TDGNN model and

three state-of-the-art TGNNs: TGAT [Xu et al., 2020], TGN [Rossi et al., 2020],

APAN [Wang et al., 2021], and MetaDyGNN [Yang et al., 2022a]. TGNNs have
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similar indiscriminate neighbor aggregators associated with their respective modules:

Self-attention, Memory & message aggregator, Asynchronous mail propagator, and

hierarchically adaptive Meta-learner. TGAT, TGN, and APAN all use a Multi-

head attention layer as the encoder and an MLP as the classifier. Additionally,

they all require two-step training: training the model parameters first, and then

training the decoder parameters for specific downstream tasks. MetaDyGNN is

comparably a more lightweight framework since it develops a novel hierarchically

adaptive meta-learner, and does not use the multi-head attention encoder and two-

step training. On the other hand, the proposed TDGNN model has a temporal

difference aggregator and an ensembled MLP classifier, and it is trained end-to-

end. The proposed TDGNN model addresses the limitations of existing TGNNs

mentioned in Section 5.5 from the following aspects:

1. TDGNN is an end-to-end model that only needs to be trained once. It is more

efficient and convenient than those TGNNs that require two-step training.

2. The temporal difference module computes both the direction and rate of in-

formation propagation, which is significant for predicting temporal node em-

beddings in the future.

3. TDGNN updates temporal node labels in real-time during the training batches,

enabling the prediction of dynamic node labels and the time at which they were

changed. In contrast, TGNNs update temporal nodes after the training batch

is finished, causing a delay in predicting temporal information.

5.6.6 Strategies for Data Imbalance

The superchat donations only make up a small fraction of all the chat messages in

the live stream, resulting in a highly imbalanced dataset that confuses the model and

leads to poor performance. To address this issue, we employ the following strategies

to mitigate the negative impact of data imbalance. In Section 5.7.6, we present

experimental results that demonstrate how these strategies affect the imbalance

ratio and model performance.

Filtering on original data

We have refined the dataset by removing duplicated and meaningless chat messages,

as well as filtering out messages that are too short. To do this, we first removed

punctuation marks, numbers, and exceptional control characters from the chat mes-

sages. We then filtered out messages with fewer than 5 characters. Finally, we used

the Python library difflib to check for duplicate messages that appear within a cer-

tain time window. As a result of this filtering process, 1.6% of the non-superchat

samples in the dataset were removed.
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Table 5.4: Cost matrix

Actual Negative Actual Positive

Predicted Negative C(0, 0), TN C(0, 1), FN
Predicted Positive C(1, 0), FP C(1, 1), TP

Tuning on graph generation

We controlled the number of dynamic edges and further the proportion of positive

samples by adjusting the cosine similarity threshold θ2 in Algorithm 5.1. A higher

θ2 generates fewer edges, and a lower θ2 generates more edges. Specifically, we set

θ2 as cos (π/12). Additionally, we tested two other values of θ2, namely cos (π/6)

and cos (π/3), and evaluated their impact on the model performance.

Undersampling on training samples

We employed an under-sampling strategy to address the imbalance between positive

and negative samples in our dataset. We kept all the data in the minority class

and reduced the size of the majority class during model training. This approach

corrected the imbalanced data and reduced the risk of skewing towards the majority

class. We tested various undersampling ratios of the two classes in our experiments

and ultimately set the ratio as 1 : 1.

Cost-sensitive loss function

We apply a cost-sensitive learning method to self-adjust the penalty factor in the

loss function during model training. Most machine learning algorithms assume that

all misclassification errors made by a model are equal. This is often not the case for

imbalanced classification problems where missing a minority class case is worse than

incorrectly classifying an example from the majority class. Cost-sensitive learning is

a subfield of machine learning that takes the costs of prediction errors into account

when training a machine learning model [Elkan, 2001]. In cost-sensitive learning,

instead of each sample being either correctly or incorrectly classified, each class is

given a misclassification cost. Thus, instead of trying to optimize the accuracy, the

problem is then to minimize the total misclassification cost.

Specifically, we set a cost matrix that assigns a cost to each cell in the confusion

matrix. Table 5.4 shows the cost matrix we used, where C(, ) denotes the cost of

predicting one class when the actual class is another. The acronyms of each cell

from the confusion matrix are also listed (e.g., False Positive is FP).

This work defines costs based on the inverse class distribution, assuming a

minority-to-majority class ratio of 1 : N in the dataset. We invert this ratio to

obtain the cost of misclassification errors, where the cost of a False Negative C(0, 1)
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Table 5.5: Statistics of the live streaming dynamic graphs.

Dataset length Short Mid Long

Durations (hrs.) 8.61 47.22 78.49
# Nodes 6,225 28,582 41,156
# Edges 1,660,813 9,498,600 15,097,110
# Positive labels 105,207 258,079 525,964
% Positive labels 6.3% 2.7% 3.4%

is N , and the cost of a False Positive C(1, 0) is 1. The cost of True Negative C(0, 0)

and True Positive C(1, 1) are set as 0 since they are correctly predicted. Therefore,

the total cost of a classifier is defined as the cost-weighted sum of False Negatives

and False Positives using this framework:

Total cost = C(0, 1) ∗ FN + C(1, 0) ∗ FP + C(0, 0) ∗ TN + C(1, 1) ∗ TP (5.13)

= N ∗ FN + 1 ∗ FP. (5.14)

5.7 Experiments

We conducted experiments on the task of predicting dynamic node labels. First, we

explain the setup of experiments and baselines used in our study. Then, we evaluate

the experimental results and model performance. Finally, we discuss additional

factors such as training time, time delay in real-time prediction, effect of imbalance

strategies, parameter sensitivity, and node embedding visualization.

5.7.1 Setup of the Experiment

We prepared three continuous-time dynamic graphs from the dataset mentioned in

Sec. 5.3.1. The detailed statistics are listed in Table 5.5. The three graphs represent

videos of different lengths: the Short dataset contains chat messages in an 8-hour

live streaming video, the Mid dataset contains chat messages in a 47-hour video

compilation of a week, and the Long dataset contains chat messages in a 78-hour

video compilation of two weeks. The model training is customized for each streamer

to optimize prediction performance. However, it is worth noting that the ratios of

positive labels are minimal in all three dynamic graphs as superchat messages only

represent a minor portion of all chat messages in real-world scenarios. Therefore,

the experiments will be conducted on an imbalanced dataset. We split the chat

messages in the dataset into training, validation, and test sets based on the time

order. The first 50%/70%/90% of chat messages are used as the training set, and

the remaining messages are equally divided into validation and test sets.
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Our model processes the chat messages into batches based on the time window.

Within each time window, the chat messages (represented as updated node features)

and node interactions (represented as edges) are included as a sequence of graph

actions. All these sequences are then fed into our model to predict the dynamic

node labels (when and who sends superchat). The model updates the involved node

status and edges based on the graph action sequence and provides predictions on

the changes in dynamic node labels.

We fine-tune the common model hyperparameters, such as learning rate, batch

size, and drop-out rate, by manual search. Also we conduct parameter sensitivity

experiments for some special hyperparameters in TDGNN by grid search, which will

be introduced in Section 5.7.6 and Section 5.7.7. The model is trained using the

Adam optimizer with a learning rate of 0.0001, a batch size of 5, 000 for training,

validation, and testing, and a dropout rate of 0.2. We set the number of attention

heads to 2. For the ensembled MLP decoders, we use a three-layer linear neural

network with hidden sizes of 64 and 10. The training process is limited to a maxi-

mum of 20 iterations. Furthermore, if the validation loss does not improve for five

consecutive iterations, training will be stopped early.

The node embedding dimension and node feature dimension are set to 128. The

number of maximum neighbor sampling is 10, and the number of ensembled MLP

decoders is 15 for all three datasets in default. We will test the parameter sensitivity

in the following experiments and prove that our proposed model results are not

sensitive to hyperparameters.

5.7.2 Baselines

We consider traditional decision tree methods, sequence-based models, static graph

representation learning methods, NLP text classification methods, and TGNNs as

baselines, as listed below.

1. GBDT: A Gradient Boost Decision Tree (GBDT) classifier from the scikit-

learn toolkit.

2. XGBoost: An ensemble gradient boosting decision tree model from XGBosst

library.

3. LSTM-FCN [Karim et al., 2018]: A time sequence model combining long

short-term memory (LSTM) networks and a fully convolutional network (FCN).

4. ALSTM-FCN [Karim et al., 2018]: An alternative LSTM-FCN with atten-

tion layers following the LSTM cells.

5. GCN [Kipf and Welling, 2016a]: Graph Convolutional Networks (GCN) on

static graphs.
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Table 5.6: Input information required by the baselines

Chat messages texts Graph structure Temporal information
Gradient boosting

algorithms
GBDT ✓ × ×

XGBoost ✓ × ×
Time sequence

model
LSTM-FCN ✓ × ✓
ALSTM-FCN ✓ × ✓

Static graph
methods

GCN ✓ ✓ ×
GAT ✓ ✓ ×

NLP BERT ✓ × ×

Dynamic graph
methods

TGAT ✓ ✓ ✓
APAN ✓ ✓ ✓
TGN ✓ ✓ ✓

MetaDyGNN ✓ ✓ ✓
Proposed methods TDGNN ✓ ✓ ✓

6. GAT [Veličković et al., 2018]: Graph Atention Networks (GAT) on static

graphs.

7. BERT [Devlin et al., 2018]: Bidirectional Encoder Representations from Trans-

formers (BERT) is a transformer-based model for NLP pre-training.

8. TGAT [Xu et al., 2020]: A temporal graph attention structure to aggregate

temporal-topological neighborhood features and to learn the time-feature in-

teractions

9. APAN [Wang et al., 2021]: An asynchronous continuous time dynamic graph

algorithm for real-time temporal graph embedding.

10. TGN [Rossi et al., 2020]: A generic, efficient neural network framework for

deep learning specialized in continuous-time dynamic graphs.

11. MetaDyGNN [Yang et al., 2022a]: A meta-learning framework for few-shot

scenarios in dynamic networks.

Table 5.6 demonstrates the input information required by each baseline method.

We keep the default parameter settings in respective methods during training and

testing. The detailed experimental settings of baselines are as follows:

1. The gradient boosting algorithms (GBDT and XGBoost) receive every indi-

vidual sentence embedding vector of chat messages and generate a predicted

label indicating whether the corresponding chat message is a superchat. The

implementation of these algorithms is based on scikit-learn10 and XGBoost11.

2. The time sequence models (LSTM-FCN and ALSTM-FCN) achieved state-

of-the-art performance on the task of time sequence classification. We first

10https://scikit-learn.org/
11https://xgboost.readthedocs.io/en/stable/
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Table 5.7: Fine-tuned hyperparameters in the dynamic GNN baseline methods.

TGN TGAT APAN TDGNN

Learning rate 0.0001 0.0005 0.0001 0.0001
Dropout 0.1 0.2 0.1 0.2
Hidden dim. 128 128 128 128
# Attention heads 2 2 2 2
# GNN encoder layers 2 2 2 2
# MLP decoder layers 3 2 2 2

separate the sequences of sentence embeddings over time for each viewer and

then feed these sequences to the models. The models generate a sequence of

hidden state embeddings for each viewer, which are then used to predict the

labels of chat messages. The implementation of these models refers to the

GitHub repository LSTM-FCN12.

3. The static graph methods (GCN and GAT) are commonly used to model

graph-structured real-world entities. We built static graphs to represent viewer

relations based on the continuously-time dynamic graphs generated in Sec-

tion 5.4. The nodes represent viewers, and the edge weights represent the

frequency of edge changes in the dynamic graphs. The implementation is

based on the GitHub repositories PyGCN13 and GAT14.

4. BERT is a transformer-based machine learning technique for NLP pre-training.

We exploit a Japanese BERT pretrained model to encode the chat messages

and integrate them as long paragraphs for each viewer. The BERT for sequence

classification model provided by Huggingface15 is used to process the long

paragraphs and predict the appearance of superchats.

5. The dynamic graph neural networks (TGAT, APAN, TGN, and MetaDyGNN)

use the same inputs and hyper-parameters as the proposed TDGNN. The im-

plementation refers to the GitHub repositories TGAT16, APAN17, TGN18, and

MetaDyGNN19. Notably, the hyperparameters of TGAT, APAN, and TGN are

fine-tuned to exhibits their best performance. The values of hyperparameters

are listed in Table 5.7.

12https://github.com/titu1994/LSTM-FCN
13https://github.com/tkipf/pygcn
14https://github.com/psh150204/GAT
15https://huggingface.co/cl-tohoku/bert-base-japanese
16https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-

graphs
17https://github.com/WangXuhongCN/APAN
18https://github.com/twitter-research/tgn
19https://github.com/BUPT-GAMMA/MetaDyGNN
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Table 5.8: AUC scores for predicting the real-time node labels

Model
Training set Ratio

50% 70% 90%
Short Mid. Long Short Mid. Long Short Mid. Long

GBDT 0.500 0.472 0.500 0.552 0.469 0.515 0.489 0.458 0.472
XGBoost 0.500 0.509 0.500 0.553 0.495 0.518 0.513 0.462 0.499
LSTM-FCN 0.468 0.505 0.507 0.497 0.499 0.506 0.431 0.499 0.500
ALSTM-FCN 0.485 0.505 0.508 0.499 0.499 0.499 0.500 0.501 0.472
GCN 0.500 0.499 0.499 0.500 0.499 0.499 0.500 0.499 0.499
GAT 0.510 0.510 0.510 0.531 0.531 0.531 0.548 0.548 0.548
BERT 0.630 0.560 0.580 0.570 0.570 0.590 0.620 0.540 0.670
TGAT 0.587 0.672 0.668 0.596 0.754 0.687 0.630 0.794 0.703
APAN 0.521 0.647 0.679 0.506 0.616 0.680 0.589 0.653 0.667
TGN 0.654 0.610 0.784 0.620 0.610 0.795 0.520 0.854 0.902
MetaDyGNN 0.616 0.671 0.673 0.624 0.689 0.684 0.771 0.746 0.695

TDGNNTDGNNTDGNN 0.7650.7650.765 0.7380.7380.738 0.7990.7990.799 0.6790.6790.679 0.7650.7650.765 0.8050.8050.805 0.8050.8050.805 0.8840.8840.884 0.9160.9160.916
TDGNN w/o DiffTDGNN w/o DiffTDGNN w/o Diff 0.708 0.572 0.688 0.599 0.621 0.653 0.628 0.834 0.830

5.7.3 Evaluation

Table 5.8 presents the experimental results of both the TDGNN model and the base-

lines. We evaluated the performance in terms of the Area under the ROC Curve

(AUC) score, which measures the model’s prediction quality, regardless of the classi-

fication threshold and how the datasets are imbalanced. Our proposed model shows

the best overall performance, achieving the highest AUC scores on all three datasets

and all training set ratios, which are marked in bold in the table. We attribute

the excellent performance of TDGNN to the deliberately designed continuous-time

dynamic graph that considers continuously changing edges and frequently updated

node embeddings. We analyzed the performance of the baselines and inferred the

reasons for their respective performances as follows:

1. The gradient boosting algorithms (GBDT and XGBoost) only consider the

sentence embeddings of chat messages. However, as the textual content of su-

perchat messages is not distinct from normal chat messages, their performance

suffers a loss of 0.126 ∼ 0.444 compared to TDGNN.

2. The time sequence models (LSTM-FCN and ALSTM-FCN) receive the se-

quence of sentence vectors and generate a sequence of hidden state embeddings

for each viewer. However, as a majority of viewers never send superchat mes-

sages, the sequences of those viewers cannot provide efficient training, resulting

in a performance loss of 0.182 ∼ 0.416 compared to TDGNN.

3. The static graph methods (GCN and GAT) are good at exploiting graph struc-

ture information and edge interactions among nodes. However, static graph
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models are not designed to fit temporal data, and each node only stores one

sentence embedding, leading to the loss of much temporal and chat message in-

formation. The experimental results show a performance loss of 0.179 ∼ 0.368

compared to TDGNN.

4. The BERT model is not designed to capture temporal information, and it only

stores the all-time sentence embeddings of chat messages, without consider-

ing graph structure information. As a result, it shows a performance loss of

0.109 ∼ 0.246 compared to TDGNN.

5. Although dynamic graph neural networks (TGAT, APAN, TGN, and MetaDyGNN)

are designed for continuous-time dynamic graphs, the performance of these

models depends on their underlying architectures and their ability to cap-

ture both temporal and graph structure information effectively. TDGNN out-

performs TGAT, APAN, TGN, and MetaDyGNN with a performance gain

of 0.026 ∼ 0.285, which can be attributed to the distinctive architecture of

TDGNN as explained in Section 5.6.5.

In addition, we conducted an experiment to verify the contribution of the tem-

poral difference module in the TDGNN model. We tested the TDGNN model by

replacing the temporal difference module with the raw aggregated neighbor node

embeddings, and the results are presented in the table as TGDNN w/o Diff. The

TGDNN w/o Diff model showed a performance loss of 0.040 ∼ 0.177 compared to

the TDGNN model. Furthermore, when compared with the strongest baseline TGN,

TGDNN w/o Diff outperformed TGN by 0.108 on the Short dataset but had a per-

formance loss of 0.038 ∼ 0.142 on the mid and long datasets. The results indicate

that the temporal difference module plays a crucial role in the TDGNN model, and

its absence leads to a significant decrease in performance.

5.7.4 Training Time

In this section, we compare the training time of our proposed model with that

of other baselines, particularly the three TGNN baselines: TGAT, APAN, TGN,

and MetaDyGNN. Given that our proposed model needs to process real-time live

streaming chat messages and predict potential superchat donors as soon as possible,

it is crucial to be highly time-efficient. To evaluate the training time, we ran the

models on three live streaming dynamic graphs using an Intel Xeon Platinum 8360Y

CPU (9 cores, 2.40GHz) and an NVIDIA A100 for NVLink 40GiB HBM2 GPU.

Fig. 5.8 demonstrate the training time (seconds) per each epoch on the three

live streaming dynamic graph datasets. We compute the total training time of

TGN, TGAT, APAN, and MetaDyGNN, including the model parameter and decoder

training. TDGNN has close time efficiency to TGN. Training the TGN model takes
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Figure 5.8: Training time (seconds) per epoch in three dynamic graph datasets.

longer than the TDGNN model for both short and long datasets, while the TDGNN

model takes longer to train for the mid dataset. The TGAT model takes less time

to train than both the TDGNN and TGN models, and the APAN and MetaDyGNN

models take the least training time out of all the models.

We believe that the time efficiency of these models is largely dependent on their

respective structures. TGAT is a classic TGNN structure that utilizes a neighbor

node aggregation module and a multi-head attention encoder. TGN, on the other

hand, improves upon TGAT by adding a memory module to update temporal node

embeddings. However, this extra component requires more training time. APAN

implements an asynchronous propagation mechanism that greatly reduces training

time. MetaDyGNN also performs less training time for its lightweight framework.

As a result, our proposed TDGNN model achieves the best AUC score and has

training time that is comparable to TGN. Additionally, since TDGNN is an end-

to-end structure that only needs to be trained once, it is more convenient than

other TGNN baselines. Additionally, it is worth noting that TDGNN without the

temporal difference module (TDGNN w/o diff) takes considerably less time than

TDGNN. This indicates that the temporal difference module is the primary factor

that significantly increases the training time.

5.7.5 Time Delay When Updating Node Status

In the temporal node prediction task, the node status (e.g., node embeddings, node

labels) is constantly evolving in continuous-time dynamic graphs. As shown in
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Figure 5.9: The update time delay in previous TGNNs. Node status updated during
batch process are reflected until the batches are finished, thus resulting in an update
time delay.

Figure 5.10: The zero update time delay in TDGNN. TDGNN has a real-time node
status update mechanism that can update node information during batch process.

Fig 5.9, TGN, TGAT, and APAN process the graph actions in batches, which may

result in some delay in training and inference. This delay can lead to a situation

where a node’s status has changed in the real world, but the change was not reflected

in the models until the batch processing was completed. We refer to this delay as

the update time delay. The update time delay can significantly affect the timeliness

and freshness of the predicted results, especially in constantly evolving situations. If

the delay is too long, the predicted results may become irrelevant as the target node

status would have changed. Moreover, the outdated node status can negatively

impact the model training. Our research target is to identify the exact timing

when node labels change and predict the exact timing when superchats are posted.

Therefore, it is critical to minimize the update time delay during model training

and inference to achieve accurate predictions that are sensitive to time.

To mitigate the impact of update time delay, the proposed TDGNN model is

equipped with a real-time node status updating mechanism that allows for the simul-

taneous updating of node status during training batches, as illustrated in Fig 5.10.

Unlike TGN, TGAT, and APAN, which are constrained by the batch size, TDGNN

can update node status as soon as it changes, regardless of batch size limitations. As
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Table 5.9: Update time delay (seconds) and AUC scores in TGNNs with different
batch sizes

Batch size
Update time delay AUC score

TGN TGAT APAN MetaDyGNN TDGNN TGN TGAT APAN MetaDyGNN TDGNN

100 1.97 2.27 1.21 15.75 0.00 0.392 0.528 0.603 0.655 0.465
200 3.96 4.55 2.42 34.75 0.00 0.425 0.524 0.644 0.7710.7710.771 0.596
500 9.94 9.59 4.35 OOM 0.00 0.410 0.520 0.601 OOM 0.602

1,000 20.42 22.79 5.40 OOM 0.00 0.499 0.520 0.656 OOM 0.638
2,000 39.76 45.58 12.01 OOM 0.00 0.520 0.5910.5910.591 0.6670.6670.667 OOM 0.741
5,000 99.22 117.93 36.72 OOM 0.00 0.6090.6090.609 0.553 0.520 OOM 0.8050.8050.805
10,000 197.76 227.93 48.77 OOM 0.00 0.507 0.528 0.559 OOM 0.608
20,000 392.86 455.87 60.60 OOM OOM 0.460 0.453 0.519 OOM OOM
50,000 988.93 941.80 137.42 OOM OOM 0.513 0.443 0.572 OOM OOM
100,000 1911.95 1824.74 364.13 OOM OOM 0.488 0.476 0.502 OOM OOM

a result, TDGNN can provide more timely predictions for the timing of superchat

messages.

Table 5.9 shows the average update time delay (in seconds) and AUC perfor-

mance of TGNNs with different batch sizes. Unlike TGN, TGAT, APAN. and

MetaDyGNN, TDGNN has a real-time updating mechanism, and thus has zero

update time delay, regardless of batch size. However, zero update time delay only

means that node status in batches is updated as soon as the node changes in the real

world, and does not necessarily imply that the predicted results given by TDGNN

have zero error. In fact, out-of-memory errors can occur when the batch size is too

large, presumably due to the high computational cost associated with the real-time

node status updating mechanism for large-scale batches.

The update time delays in TGN and TGAT are almost directly proportional

to the batch sizes, while the AUC scores do not fluctuate significantly. In contrast,

APAN trains the model asynchronously, and the update time delay is less affected by

batch sizes. MetaDyGNN has a hierarchical structure and thus sensitive to the batch

size. Small increase in batch size will cause large extra demand in GPU memory

and tend to suffer from OOM (Out-of-Memory) problem. However, the AUC scores

decrease significantly as batch sizes increase. Notably, TGN and TDGNN perform

poorly in terms of AUC scores when batch sizes are too small, likely due to the

imbalanced dataset. When the batch size is too small, there may be only a few

positive samples or even no positive samples in the batches, causing the model to

produce identical prediction results for all samples, which results in low training

efficiency. TDGNN performs better than TGN in this scenario, thanks to several

strategies employed to alleviate the influence of imbalanced datasets.

In summary, our study highlights the trade-off between model performance and

update time delay in the temporal node prediction task. While large batch sizes

require significant computational resources, small batch sizes result in poor perfor-

mance, particularly in imbalanced datasets. Our approach strikes a balance between

the two factors by using a batch size of 5,000, enabling us to achieve high perfor-

mance while maintaining low update time delay. Our findings have implications for
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other similar tasks, where researchers need to carefully weigh the costs and benefits

of different model architectures and batch sizes to optimize both performance and

efficiency.

5.7.6 Effect of the Strategies for Data Imbalance

In this section, we discuss the effects of the strategies for addressing data imbalance

that were mentioned in Section 5.6.6. Specifically, we test how the cosine similarity

threshold, undersampling ratios, and cost-sensitive loss function impact both the

data imbalance and the model performance. The experiment is conducted on the

mid dataset, with a training set ratio of 90%.

The cosine similarity thresholds θ2 have an impact on the number of dynamic

edges and further the proportion of positive samples in the dataset. We tested

three values of θ2: cos (π/3), cos (π/6), and cos (π/12). With θ2 = cos (π/3), we

obtained 840,732 positive samples out of a total of 8,129,340 samples, resulting in

an imbalance ratio of 10.3%. With θ2 = cos (π/6), we obtained 271,925 positive

samples out of 11,176,545 samples, resulting in an imbalance ratio of 2.4%. Finally,

with θ2 = cos (π/12), we obtained 258,079 positive samples out of 9,498,600 samples,

resulting in an imbalance ratio of 2.7%.

The undersampling ratio refers to the ratio between the majority and minority

classes in training batches, and it reduces the risk of the model predicting results

that skew towards the majority class. We test three different undersampling ratios:

1 : 1, 3 : 1, and 5 : 1. Additionally, we also test the model’s performance without

using any undersampling strategy, which means that the default imbalance ratio of

the original dataset is maintained.

The cost-sensitive loss function adjusts the penalty factor in the loss function

during model training. We use the BCEWithLogitsLoss as the loss function, and

the cost of positive samples is dynamically adjusted based on the ratio of negative

samples to positive samples in each training batch. Specifically, when we use under-

sampling and set the undersampling ratio to 1 : 1, the cost-sensitive loss function is

equivalent to the BCELoss function.

Table 5.10 shows the test results of the strategies for addressing data imbalance.

Among the three datasets with different cosine similarity thresholds θ2, the dataset

with θ2 = cos (π/12) achieved the best overall performance. This may be due to

the fact that a high threshold for generating dynamic edges ensures the quality of

positive samples in the dataset. The dataset with θ2 = cos (π/6) had the lowest

imbalance ratio, while the dataset with θ2 = cos (π/3) had the highest imbalance

ratio but the lowest quality of positive samples, resulting in poorer performance

than the dataset with θ2 = cos (π/12).

Regarding the undersampling strategy, the best results were obtained with an

undersampling ratio of 1 : 1, which is highlighted in bold in the table. As the
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Table 5.10: AUC scores under the effect of strategies for data imbalance

Cosine similarity threshold θ2 cos (π/3) cos (π/6) cos (π/12)
Imbalance ratio 10.3% 2.4% 2.7%

With
cost-sensitive

No undersampling 0.717 0.736 0.716
Neg:Pos = 1 : 1 0.761 0.780 0.8840.8840.884
Neg:Pos = 3 : 1 0.742 0.712 0.820
Neg:Pos = 5 : 1 0.737 0.676 0.700

W/o
cost-sensitive

No undersampling 0.498 0.619 0.714
Neg:Pos = 1 : 1 0.761 0.780 0.8840.8840.884
Neg:Pos = 3 : 1 0.618 0.683 0.727
Neg:Pos = 5 : 1 0.653 0.652 0.698

undersampling ratio increased, the performance gradually decreased, with the worst

result being obtained without the undersampling strategy.

In terms of the use of a cost-sensitive loss function, the results were the same

as with an undersampling ratio of 1 : 1. This is because, as mentioned earlier,

the cost-sensitive loss function is equivalent to the BCELoss function when the

undersampling ratio is 1 : 1. However, the performance with a cost-sensitive loss

function was relatively better than that without.

In summary, we evaluated the model’s performance with different strategies for

addressing data imbalance, and found that these strategies had a significant effect

on performance. Based on the experimental results, the best choices of strategies

were a cosine similarity threshold θ2 = cos (π/12), an imbalance ratio of 1 : 1, and

using a cost-sensitive loss function. We used these settings in the test described in

Section 5.7.3.

5.7.7 Parameter Sensitivity

In Fig.5.11 and Fig.5.12, we present the performance of the TDGNN model with

respect to two significant hyperparameters, namely the number of sampled neighbor

nodes in temporal difference and the number of ensembled MLP decoders. The

results are based on the short dataset with a training set ratio of 90%. The highest

AUC score is obtained with 15 MLP decoders and 10 sampled neighbor nodes.

It can be concluded that increasing the number of ensembled MLP decoders or

sampled neighbor nodes beyond a certain value does not improve the performance.

The number of sampled neighbors is a common parameter in GNN models. If too

many neighbors are aggregated, the model may fail to identify the most critical

information. On the other hand, if too few neighbors are sampled, some important

neighbors may be ignored.

Also, the number of sampled neighbor nodes affects training time much more

than the number of MLP decoders. The shortest and longest training times fluctu-
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Figure 5.11: The AUC score with different numbers of sampled neighbors and MLP
decoders.

Figure 5.12: The training time (seconds) per epoch with different numbers of sam-
pled neighbors and MLP decoders.
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Figure 5.13: The t-SNE visualization of the node embeddings learned by TDGNN.

ate by 2,742 seconds with different numbers of sampled neighbors, while the same

fluctuation is only 1,060 seconds with different MLP decoders. This result shows

that the number of sampled neighbors is the main factor affecting computational

complexity.

5.7.8 Node Embedding Visualization

We provide an illustrative visualization of the node embeddings by t-SNE tools

[Van der Maaten and Hinton, 2008]. Fig. 5.13 shows the distribution of node embed-

dings learned by our model on the long dataset with the training set ratio equaling

70%. Blue cross markers denote the node embedding of viewers who send super-

chats, and red circle markers denote the node embedding of those who did not. We

observe that node embeddings with the same label are clustering, and a large margin

separates node embeddings with different labels. The results prove that our method

can learn discriminative node embeddings to distinguish different labels.

5.8 Conclusion and Discussion

In summary, our work provides a comprehensive solution for predicting real-time

donations in online live streaming services by leveraging dynamic graph neural net-

work models. By constructing a continuous-time dynamic graph representation of

viewer interactions and chat messages, our model can capture the temporal dy-

namics of the data and effectively predict potential donations. The experimental

results demonstrate the superiority of our proposed TDGNN model over various
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baseline methods. Additionally, our study confirms the feasibility of the model’s

predictions in real-world situations by examining the training time, update delay,

and visualization.

Our work also contributes to the rapidly growing and promising area of study on

real-time donations in live streaming services. By predicting donations, our model

can help content creators better understand their audience and improve engagement.

Furthermore, our approach of using dynamic graph neural networks can be applied

to other real-time prediction tasks in various domains. Overall, our work provides

valuable insights and contributions to both the live streaming and dynamic graph

neural network research communities.

Limitations

Firstly, the training time and inference time, as demonstrated in Fig. 5.8, do not

exhibit overwhelming advantages when compared to other TGNN baselines, only

outperform due to our end-to-end training style. Following the comparison between

TDGNN and TDGNN w/o Diff, it is evident that the most time-consuming com-

ponent within the TDGNN model is the temporal difference module. Hence, there

is a compelling need to optimize the temporal difference module with the goal of

reducing the training time and inference time of TDGNN.

Secondly, as listed in Table 5.9, the TDGNN model encounters out-of-memory

issues when dealing with large batch sizes, in contrast to TGN, TGAT, and APAN,

which do not exhibit such limitations. This highlights a space where our TDGNN

model can be further enhanced in terms of computational complexity to effectively

handle more scalable graphs.

Finally, this work exclusively delved into the scenario of homogeneous CTDG.

However, the broader and more intricate real-world datasets often involve heteroge-

neous CTDGs. Consequently, our forthcoming work will be geared towards extend-

ing the TDGNN model to cater to the complexities of heterogeneous CTDGs.
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Chapter 6

Discussion

In this chapter, we delve into additional considerations related to the proposed GNN

models in real-world prediction tasks. We present a unified process for addressing

prediction tasks using GNNs, emphasizing the need for domain-specific GNNs and

exploring general methodologies for developing expert GNN frameworks. Addition-

ally, we delineate the relationships among our proposed GNN frameworks, highlight-

ing commonalities, distinctions, challenges addressed, and contributions achieved by

each. Furthermore, we conduct additional experiments to evaluate the performance

of our proposed GNN models on various benchmark real-world datasets, demonstrat-

ing the extensibility of our methods across different domains. Finally, we provide

examples of real-world human social activities categorized under the most appro-

priate GNN frameworks, illustrating the diverse benefits of predictive analytics in

understanding and predicting human behaviors and social trends.

6.1 Unified Design Considerations within Proposed

GNN Frameworks

In this section, we conduct a comprehensive review and analysis of our proposed

models, examining them through a unified perspective. First, we encapsulate the

typical process of constructing GNN frameworks to model real-world data and tackle

prediction tasks. Then, we discuss the imperative need for expert GNNs tailored to

domain-specific real-world tasks. Finally, we introduce several critical methodologies

for designing and developing such specialized GNNs. This holistic examination

provides insights into the underlying principles and strategies that contribute to the

effectiveness of our proposed GNN models across diverse applications and domains.
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Figure 6.1: The unified process of addressing prediction tasks using GNN frame-
works. First, we collect real-world data and perform necessary preprocessing steps
to enhance its suitability for modeling. Then,we construct graph structures and
incorporate feature information, tailoring them to the unique characteristics of the
dataset under consideration. These structures and features are input into the GNN
frameworks, where the models learn node representation embedding vectors. Finally,
the trained models generate predictions for specific tasks. The model performance
is assessed against state-of-the-art methods through extensive experimental results
on targeted tasks.

6.1.1 Process of Addressing Prediction Tasks by GNN frame-

works

Fig. 6.1 illustrates a comprehensive overview that encapsulates the systematic pro-

cess employed by GNN frameworks in addressing prediction tasks. First, we collect

real-world graph-structured data and carefully extract essential structures and fea-

tures. This curated information is fed to the designated GNN frameworks, where the

models autonomously learn node representation embedding vectors. Finally, the ac-

quired embedding vectors are inputted into decoders, generating precise prediction

results tailored to specific tasks. This streamlined workflow ensures the robust-

ness and adaptability of GNN frameworks across various domains and prediction

scenarios.

Data preprocessing

Data preprocessing constitutes a pivotal phase in implementing deep learning graph

models, as the quality and format of input data can significantly impact the model’s

performance. The first step in data preprocessing involves data cleaning, wherein

missing data and outliers are identified and addressed to mitigate potential negative

129



Figure 6.2: A flowchart of how to construct the appropriate graph from the dataset.

impacts on model performance. Notably, graph augmentation techniques, such as

graph structure learning (GSL) [Jin et al., 2020] and graph contrastive learning

(GCL) [You et al., 2020], are widely employed to enhance the overall quality of

input graphs.

Subsequently, careful consideration is given to selecting critical data, which serves

as node or edge features fed into GNNs. Numerical features undergo normalization

to ensure alignment on a similar scale, with standard techniques encompassing min-

max scaling or z-score normalization. In parallel, categorical features necessitate

conversion into computable numerical formats, achieved through one-hot or label

encoding methods.

Furthermore, the dataset is split into training, validation, and test sets. This

division facilitates the training process, validation of the model’s performance during

training, and evaluation of the model’s performance on previously unseen data.

Graph construction

In some cases, real-world data exhibits inherent graph-like structures, making it di-

rectly amenable for GNN models. However, there are instances where the data is not

explicitly graph-structured, such as the live streaming data discussed in Chapter 5.

In such cases, the construction of a graph structure becomes imperative.

Carefully considering the dataset’s characteristics is essential to construct the

most fitting graph structure. Fig. 6.2 outlines a comprehensive flowchart illustrating

selecting the appropriate graph from the dataset. If the dataset inherently possesses

a graph structure, it can be utilized directly. For non-graph-structured data, two

key aspects come into play: time factors and the number of data types within the
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dataset.

Dynamic graphs are adept at modeling datasets accompanied by time factors,

while static graphs are more suitable for datasets lacking such temporal consid-

erations. Additionally, a discrete-time dynamic graph (DTDG) is well-suited for

datasets observed at regular intervals, whereas continuous-time dynamic graphs

(CTDGs) are preferable for datasets with irregular temporal dynamics. Another

critical consideration is the number of data types within the dataset. A homoge-

neous graph is appropriate if the dataset comprises a single data type. Conversely,

datasets housing multiple data types are better represented using heterogeneous

graphs. This strategic approach ensures the construction of a tailored and contex-

tually relevant graph structure for effective utilization in GNN models.

GNN framework design

The architectural design of GNNs encompasses essential components, prominently

featuring encoders and decoders. The configuration of encoders is determined by the

specific characteristics of input graph structures and node/edge features, whereas

decoders are tailored to address distinct downstream prediction tasks.

For tasks involving the prediction of categorical values, such as node/edge label

classification and graph classification, the softmax function is commonly employed

as a decoder. Utilizing the softmax function is advantageous, as its output results

can be interpreted as probabilities assigned to predicted classes.

Conversely, when tackling tasks that involve predicting the numerical values of a

specific attribute for a target entity, commonly referred to as regression tasks, a fully

connected multilayer perceptron (MLP) is often employed as the decoder. The flex-

ible and adaptive nature of the MLP allows it to effectively approximate continuous

values from non-linearly separable data, making it well-suited for regression-based

prediction tasks within the context of GNN architectures. The tailored encoder-

decoder synergy aligns with the dataset and prediction task at hand, optimizing the

overall performance and efficiency of the GNN model.

Performance evaluation

The evaluation of proposed GNN models is a pivotal stage in determining their

performance on specific tasks compared to state-of-the-art models. This assessment

occurs on the test set, which is distinct from the original dataset and remains unseen

during model training.

The selection of evaluation metrics hinges on the task’s nature, be it classifica-

tion, regression, or other specialized applications. For classification tasks, metrics

such as Accuracy, Recall, Precision, F1-score, AUC-ROC score, and mean Average

Precision (AP) are representative. Meanwhile, regression tasks commonly employ
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metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root

Mean Squared Error (RMSE). Comprehensive performance understanding is often

derived by monitoring multiple metrics throughout deep learning experiments.

In addition to output result evaluations, deep learning studies frequently incor-

porate significant analyses. Ablation studies analyze the impact of removing or

modifying specific components or inputs in a model to discern their contribution to

overall performance. The aim is to pinpoint crucial elements for a given task and

gain insights into the model’s behavior.

Parameter sensitivity analysis delves into how changes in model hyperparameters

influence performance. Given the numerous hyperparameters in deep learning mod-

els, this analysis aids in fine-tuning for optimal performance and provides insights

into their relative importance. Techniques such as grid search or random search

systematically explore hyperparameter space.

Statistical tests are indispensable for drawing reliable conclusions from experi-

mental results. They help validate whether the proposed model outperforms baseline

methods on a statistically significant level, especially when model performance’s at-

tribution to the model itself or dataset affinity is ambiguous. Common statistical

tests include t-tests, chi-squared tests, Analysis of Variance (ANOVA) tests, and

more.

6.1.2 Necessity of Domain-specific GNNs

Deep learning researchers consistently strive to create general models with broad

applicability across diverse domains. In computer vision (CV), efforts are directed

towards developing models capable of recognizing objects from various sources [He

et al., 2016]. These models undergo training on extensive datasets encompassing

diverse visual objects. By extracting distinctive features, they are intended for

deployment in various vision-related tasks. Similarly, in natural language process-

ing (NLP), pre-trained language models like BERT [Devlin et al., 2018] acquire

knowledge of word semantics, grammar rules, and contextual information from vast

corpora containing billions of sentences. The aim is to train a versatile model that

can be effectively employed in many language-related tasks.

However, in graph models, researchers tend to diverge from pursuing one-size-

fits-all solutions and lean towards developing domain-specific models. The perfor-

mance of GNNs is contingent not only on the analysis of graph structures but also

on the input feature vectors. There are scenarios where datasets from disparate

domains exhibit similar graph structures while possessing significantly distinct node

and edge features. As illustrated in Fig. 6.3, graph-structured data from molecular

structures, railway networks, and computer networks may share a common ring-like

graph structure but yield entirely different outcomes due to their domain-specific fea-

tures. It necessitates the creation of specialized GNNs tailored for specific domains.
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Figure 6.3: Datasets from different domains may exhibit the same graph structure.
The railway network of the Yamanote Line in Tokyo, the molecular structure of Ben-
zene, and interconnected computers forming a circular network all share the same
ring-structured graph topology, while the domain-specific node and edge features
vary across these disparate datasets.

Expert GNNs prove advantageous in addressing tasks within particular contexts

more effectively than generalized models designed to fit all scenarios.

Numerous existing studies have dedicated efforts to developing specialized GNNs

tailored for distinct scenarios. These prior models often exploit different graph types

to encapsulate the distinctive characteristics present in diverse datasets, such as ho-

mogeneous, heterogeneous, static, dynamic, and more. In this thesis, we contribute

novel GNN frameworks that harness domain-specific knowledge to deliver optimal

predictions within their designated contexts. Our approach is aligned with the trend

in the field, recognizing the importance of expert GNNs in addressing the nuanced

requirements of specific situations and datasets. By introducing these frameworks,

we seek to enhance the adaptability and performance of GNNs in diverse domains,

showcasing the potential of domain-specific models to outperform generic counter-

parts in specific scenarios.

6.1.3 Methodologies for Incorporating Domain-specific Knowl-

edge into GNNs

In light of the considerations above, enhancing GNN capabilities is achievable by

incorporating domain-specific knowledge into the architectural design of novel GNN

models. Unfortunately, many existing expert GNNs have been introduced indepen-

dently in various domains, lacking a comprehensive review from a general perspec-

tive. To address this gap, this thesis provides a consolidated overview of several

unified methodologies for crafting domain-specific GNNs. This endeavor addresses

one of our research questions: how to design expert GNNs for prediction tasks
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within specific domains? By synthesizing and generalizing these methodologies, we

contribute to the foundational understanding of effectively designing expert GNNs

optimized for specific application areas.

Understanding the domain background knowledge and data features

A crucial aspect of designing domain-specific GNNs is a comprehensive understand-

ing of the background knowledge and a clear definition of the task within specific

domains. This foundational knowledge is the basis for selecting the most pertinent

data features. For example, in Chapter 3, we construct a bipartite GNN frame-

work for predicting EMS demand. Here, a thorough exploration of the background

of emergency medical services informs our approach to demand prediction tasks.

This knowledge enables us to identify and collect prominent data features related

to regions and hospitals, directly contributing to the enhanced performance of the

model.

Incorporating domain knowledge in GNN frameworks

Selecting the most suitable graph representation for the data is a critical step in the

design of GNNs. When dealing with non-graph-structured data, a key challenge is to

transform the data into a graph format. This transformation involves defining nodes

and edges, and associating features with each node and edge. Critical considerations

include data characteristics such as the presence of a time factor, node/edge types,

directed or undirected relationships, and weighted edges. Section 6.1.1 provides

detailed insights into selecting appropriate GNNs based on these considerations.

In cases where existing GNN architectures prove inadequate, developing a cus-

tom architecture tailored to domain-specific tasks becomes necessary. For example,

in Chapter 4, we introduce a multi-layer temporal GNN framework designed for pre-

dicting popularity trends in social media networks. By manually exploring distinct

relationships in each dataset, we tailor the input layers of the proposed GNN frame-

works to align with the specific characteristics of diverse domains. This tailored

approach significantly contributes to achieving optimal performance across various

prediction tasks.

Purposeful optimization towards characteristics of prediction targets

Setting appropriate prediction targets is a crucial aspect of optimizing model per-

formance, as it directly influences the model’s effectiveness in achieving desired out-

comes. To attain optimal results for specific tasks, purposeful optimization strategies

must be employed, considering the characteristics of the prediction targets. These

strategies encompass optimizing label distributions, addressing imbalances in origi-

nal datasets, fine-tuning essential hyperparameters, and more.
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In Chapter 4, we observe that prediction target values often exhibit significant

variations in magnitudes, ranging from 1 to over 10 million in some cases, with a

highly biased distribution. Predicting target values across such a broad and imbal-

anced distribution poses challenges for the proposed model, potentially resulting in

significant biases in the prediction results. To mitigate this challenge, we implement

a transformation on the prediction target values, converting them into percentages

of changes. Consequently, the proposed model predicts the percentage change in

popularity degree values rather than the original values, narrowing the range to

[−1, 2] after eliminating outliers. This optimization strategy enables more accurate

predictions within a smaller range, mitigating the negative impact of vast target

value magnitudes.

Additionally, in Chapter 5, we identify a highly imbalanced dataset where pos-

itive prediction labels constitute only a tiny fraction of all labels in the original

live streaming dataset. This imbalance can confuse the model and lead to poor

performance. We employ several effective strategies to address this issue, includ-

ing filtering the original data, fine-tuning during graph generation, undersampling

majority samples during training, and utilizing cost-sensitive loss functions. These

purposeful strategies toward data imbalance yield significant improvements in model

performance.

6.2 Relationships Among Our Proposed GNNs

In this section, we elucidate the relationships within the three subworks introduced

in Chapter 3, Chapter 4, and Chapter 5. First, we explain the coherence among the

three subworks. Next, we clarify their commonalities and distinctions. Finally, we

conclude by summarizing the challenges and contributions of each work.

6.2.1 Coherency of Subworks

Fig. 6.4 illustrates an intuitive flow highlighting the connections among the three

subworks. The three subworks are linearly evolving and improving, progressing

from less general and simpler cases to more challenging, general, and complex cases.

Each subsequent work addresses the limitations of the previous one and extends the

proposed model to adapt to more practical situations.

First, in Chapter 3, we propose a BiGCN model for efficiently learning entity

representations within static bipartite graphs, a typical structure frequently observed

in real-world datasets. The application of the BiGCN model extends to the task of

predicting the EMS demand in the Tokyo metropolitan area, serving as a meaningful

metric for public health outcomes and representing a vital aspect of human behaviors

in social infrastructure services.
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Figure 6.4: The connections among three subworks in this thesis. The three works
are linearly evolving and improving, progressing from less general and simpler cases
to more challenging, general, and complex cases. Each subsequent work addresses
the limitations of the previous one and extends the previous model to adapt to more
practical situations.

Subsequently, in Chapter 4, we enhance the proposed BiGCN model by incor-

porating temporal information to process timed sequences of graph snapshots. The

improved multi-layer temporal GNN, an extension of the BiGCN model, is applied

to predict popularity trends in social media networks such as X, Instagram, and

Reddit. This application provides valuable insights into the future trajectory of

public interests and concerns, indicating the social trends in the future.

Finally, in Chapter 5, we propose a novel GNN model to learn representations

in homogeneous continuous-time dynamic graphs. This model addresses limitations

identified in the previously discussed DTDG framework from Chapter 4. Moreover,

it extends the earlier multi-layer temporal GNN framework to accommodate a more

practical and general dynamic graph representation style. To illustrate its effective-

ness, we conduct a case study predicting income trends in online live streaming ser-

vices (e.g., YouTube Live and Twitch). Live streaming services have been booming

as a style of individuals studying, working, and earning a livelihood through online

streaming, particularly in the post-COVID-19 era. It reflects a new combination of

evolving human behaviors and emerging social trends.

6.2.2 Commonalities and Distinctions

Table 6.1 demonstrates the commonalities and distinctions among our proposed

GNN frameworks. These models employ different strategies tailored to their specific

tasks. Despite the distinct nature of the tasks, there are common approaches aimed

at enhancing performance by customizing the default unified frameworks of GNNs.

BiGCN and Multi-layer Temporal GNN are both designed to handle heteroge-
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Table 6.1: Architecture distinctions among our proposed GNNs.

BiGCN
Multi-layer

Temporal GNN
TDGNN

Node/Edge classes Bipartite Heterogeneous Homogeneous
Temporal information Static DTDG CTDG

Tasks
Edge label

classification
Dynamic node

attribute regression
Dynamic node

label classification

Aggregator
Bipartitie graph

convolution
Graph convolution

+ BiGCN
Temporal Difference

Encoder Hadamard product Multi-head attention Multi-head attention

Classifier SVM MLP
Ensembled MLPs

+ Softmax
Loss function Hinge loss MSELoss BCELoss

neous graphs. A common finding in both models involves the separate treatment of

different types of nodes and edges during node aggregation. BiGCN achieves this

by employing two graph convolution layers for distinct node groups, while Multi-

layer Temporal GNN extends this concept with a multi-layer architecture to ac-

commodate various relationships. Such separate treatments efficiently analyze the

influence of “message passing” within multiple node and edge types. Experimen-

tal results demonstrate that the notion of separate processing contributes to the

improved performance of these GNN frameworks.

On the other hand, multi-layer temporal GNN and TDGNN are designed for

dynamic graphs. The critical components in these models include multi-head at-

tention layers and MLP decoders. This combination draws inspiration from the

Transformer architecture [Vaswani et al., 2017] and has proven effective in learning

dynamic node embeddings across various dynamic GNN frameworks [Rossi et al.,

2020; Wang et al., 2021; Xu et al., 2020]. The integration of attention mechanisms

into GNN architectures has expanded the capabilities of GNN researchers for han-

dling graphs in dynamic scenarios. Multi-layer temporal GNN and TDGNN have

the similar multi-head attention encoder and skip-connections in learning temporal

node embedding based on the aggregated neighbor node information, newly updated

node attributes, and the most recent updated temporal node embeddings.

6.2.3 Challenges and Contributions of Subworks

The three subworks effectively tackled specific challenges, each making notable con-

tributions. These achievements are elaborated upon in detail below:
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Challenges in work 1

A bipartite graph is a distinctive and frequently employed subtype of heterogeneous

graphs characterized by edges exclusively between nodes of two distinct types. This

specialized structure is precious in scenarios where relationships exist solely between

entities of different classes. However, the plain GNNs, such as GCN and GAT, per-

form poor efficiency in bipartite graphs. Why are such methods not directly adapt-

able, and how can we adjust the architecture of GNNs to be adapted to bipartite

situations?

Remarkable contribution 1

We proposed the first graph convolutional neural network model adopted to static

bipartite graphs. An application for predicting the EMS demand in the Tokyo

metropolitan area proves the efficiency and accuracy of the proposed model.

In Chapter 3, we introduce a BiGCN model strategically designed to leverage the

multi-modal features inherent in the data to learn comprehensive node embeddings.

A noteworthy observation emerges from our investigations, revealing the inadequa-

cies of traditional GNNs when applied to bipartite graphs. Specifically, traditional

GNNs confound information from the two disjoint node sets, impeding their ef-

fectiveness. To overcome this limitation, our proposed BiGCN model innovatively

addresses this challenge by separating the convolution operation for the two distinct

node sets, respectively, thereby surmounting the limitations of conventional GCN.

The empirical validation of our approach showcases compelling results, with

accuracy ranging from 77.3%−87.7% in the label prediction task. This performance

surpasses baseline traditional machine learning algorithms and statistical models

and outshines the latest graph-based methods. To further evaluate the real-world

feasibility of our model, we conduct tests by a pertinent case study: predicting

EMS demand in the Tokyo metropolitan area. The success of our BiGCN model in

this practical scenario underscores its applicability in addressing complex, real-world

challenges. It signifies a promising step forward in the realm of both GNN research

and public health management.

Challenges in work 2

Entities and relationships in real-world situations are constantly changing with time.

One way to model the dynamics is to record the graph status within regular time

intervals and concatenate those graph snapshots in time order, namely the DTDG.

Such sequences of graph snapshots have the potential to do predictive analytics by

exploiting the present and past information. However, the real-world dataset is not

only dynamic but also heterogeneous in most cases. There is usually more than

one kind of entity and more than one kind of relationship within entities. Given
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that nodes denote entities, and edges denote the relationships within entities, how

to represent the multiple node types and multiple kinds of relationships via GNN?

Besides, how to incorporate the temporal information into the predictive analytics?

Remarkable contribution 2

We introduce an advanced multi-layer dynamic GNN framework designed to learn

entity representations and predict trends within complex social media networks.

This framework addresses the challenging task of forecasting trajectories of public

concerns and interests based on extensive real-world datasets.

In Chapter 4, we emphasize the imperative of extending BiGCN to enhance its

versatility in dynamic, real-world settings. Based on this foundation, this chapter

presents a novel multi-layer dynamic GNN framework. We address the limitations

of previous research, which focuses too much on selecting characteristics and histor-

ical statistics and often neglects the latent influence of relationships among entities.

The proposed approach presents its novelty in considering the latent influence of in-

formation diffusion in social networks and efficiently mastering the representations

of entities, resulting in a substantial performance enhancement. This framework

is specialized to proficiently learn temporal node representations within intricate

heterogeneous graphs, thereby addressing the limitations associated with static bi-

partite graphs.

Noteworthy is the adaptability of the proposed method, which transcends the

confines of static bipartite graphs. It is tailored to handle dynamic heterogeneous

graphs characterized by several multi-layer graphs, particularly forming a sequence

of graph snapshots. To assess its practicability, the proposed method undergoes rig-

orous evaluation across four popularity trend prediction tasks, employing real-world

social media datasets. The experimental results underscore the superiority of our

method, surpassing various baselines, including traditional regression approaches,

prior trend prediction methods, and alternative heterogeneous GNN models. This

chapter marks a significant stride in advancing the capabilities of GNNs, particu-

larly in the context of dynamic and heterogeneous graph structures, and sets the

stage for further exploration in dynamic graph representation learning.

Challenges in work 3

The DTDG is a simple way to model dynamic graphs. However, a significant short-

coming arises in prediction tasks due to unknown information between consecutive

graph snapshots, leading to potential inefficiencies in prediction results. To address

this limitation, a more general CTDG style is proposed, which records each change

in the graph and its timestamp. The graph actions, with their associated times-

tamps, serve as a comprehensive representation of the continuous evolution of the
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dynamic graph. Prior static GNN methods can not be directly adapted to such a

new graph representation style. The research on CTDG is still in an early stage.

Therefore, there is an urgent demand to develop a new model that efficiently learns

the node representations in CTDG.

Remarkable contribution 3

First, we propose an algorithm that encodes the non-graph-structured data into a

continuous-time dynamic graph. Then, we develop a novel dynamic GNN model

that learns continuous-time temporal node representations. Also, we present the

first analysis and prediction of real-time donation income in live streaming services.

It is a significant and innovative topic as it has the potential to help live streaming

services gain more popularity and increase profits.

Chapter 5 commences by elucidating how real-world data can be represented

in a computable CTDG format. Subsequently, we introduce a novel model termed

TDGNN, expressly designed to learn node temporal embeddings from CTDG graphs.

Notably, our TDGNN model can predict real-time graph events, answering questions

such as when an edge will emerge between specific nodes or how frequently a par-

ticular node will change status in the next period. Moreover, the model addresses

imbalanced situations commonly encountered in real-world scenarios, incorporating

several imbalanced learning strategies to enhance learning in minority classes.

The feasibility in real-world situations lies in evaluating the TDGNN model,

focusing on the challenging task of predicting real-time donation income in live

streaming services. Extensive experiments conducted on three live-streaming video

datasets demonstrate the efficiency and robustness of our proposed model. TDGNN

outperforms other baseline methods from various fields, providing more efficient and

precise predictions of both the donation posters and the exact timing when donations

will appear. Moreover, our TDGNN model proves its efficiency in timeliness, giving

prediction results faster than other state-of-the-art continuous-time dynamic GNNs.

This chapter signifies a substantial contribution to the promising field of learning on

continuous-time dynamic graphs, showcasing the potential of TDGNN in real-world

applications.

6.3 Evaluations of BiGCN and TDGNN Model

on Other Datasets

In Chapter 3 and Chapter 5, we introduced the innovative BiGCN and TDGNN

models tailored for predicting EMS demand and channel incomes in live stream-

ing services, respectively. BiGCN exhibits proficiency in handling bipartite graphs,

while TDGNN is adept at addressing CTDGs. However, the empirical validation
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Table 6.2: Statistics of the bipartite graph datasets.

Items Cora Citeseer

# Edges 2,314 1,665
# Nodes U 789 742
# Nodes V 1312 1,237
# Features U 1,433 3,703
# Features V 1,433 3,703
Data split 80%-10%-10% 80%-10%-10%

Table 6.3: Fine-tuned common hyperparameters in the baseline methods.

BiNE BGNN Metapath2vec HetGNN HAN BiGCN

Learning rate 0.01 0.001 0.0005 0.001 0.005 0.001
Weight decay −− 0.0005 0.005 0.0 0.001 0.5
Dropout −− 0.2 0.4 0.5 0.6 0.2
Hidden dim. 128 48 24 128 128 50
# Layers −− 2 3 3 1 3
# Neighbor sampling size 4 −− 7 23 −− −−

of these models was limited to specific datasets, focusing on EMS and live stream-

ing chat scenarios. To establish the broader applicability of BiGCN and TDGNN

across diverse real-world cases, this section undertakes a comprehensive evaluation

by assessing their performance on additional benchmark datasets featuring bipar-

tite and continuous-time dynamic graph structures. This extensive analysis provides

insights into their adaptability to various graph-based prediction tasks beyond the

initial contexts of EMS demand and live streaming income prediction.

6.3.1 BiGCN on other Bipartite Graph Datasets

In this section, we evaluate the performance of the BiGCN model proposed in Chap-

ter 3 on additional bipartite graph datasets. Table 6.2 presents the statistics of the

datasets used in these experiments.

Cora and Citeseer [He et al., 2019] are benchmark synthetic bipartite graph

datasets generated from citation networks. In these datasets, documents and cita-

tion links between them are considered as nodes and undirected edges, respectively.

To create bipartite structures, we follow the process in prior studies that randomly

partition the nodes into two sets and remove all edge connections between nodes

belonging to the same set. Additionally, we ensure that the node features in the two

sets are distinct. This experiment aims to assess the adaptability and generaliza-

tion of the BiGCN model across diverse bipartite graph scenarios beyond the EMS

domain.

We assess the BiGCN model on a link prediction task with strong baselines intro-

duced in Chapter 3, namely BiNE, BGNN, Metapath2vec, HetGNN, and HAN. The
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Table 6.4: Results in % for link prediction on Cora and Citeseer. Standard deviations
over 10 random seeds are shown in parentheses. The best results are marked in bold,
and the second bests are marked with underline.

Model
Dataset

Cora Citeseer
Acc. F1. Acc. F1.

BiNE 73.6 (0.9) 73.7 (0.5) 60.7 (0.2) 60.9 (0.1)
BGNN 80.4 (0.9) 83.3 (0.6) 70.1 (0.1) 71.5 (0.1)
Metapath2vec 80.2 (0.8) 78.4 (0.7) 65.6 (0.8) 66.2 (1.4)
HetGNN 81.5 (0.3) 83.7 (0.2) 71.4 (0.1) 72.0 (0.2)

HAN 86.8 (0.1)86.8 (0.1)86.8 (0.1) 86.2 (0.3)86.2 (0.3)86.2 (0.3) 73.8 (0.1)73.8 (0.1)73.8 (0.1) 73.9 (0.1)

BiGCN 82.7 (0.1) 82.7 (0.1) 72.8 (0.3) 74.4 (0.3)74.4 (0.3)74.4 (0.3)

links in datasets are split into training (80%), validation (10%), and test (10%) sets.

To ensure a fair comparison, we fine-tune the hyperparameters through manual grid

search while testing the performance of the baseline models. The shared hyperpa-

rameters involved in these experiments are detailed in Table 6.3. The experiments

are carried out on a platform equipped with an Intel Xeon Platinum 8360Y CPU

and an NVIDIA A100 for NVLink 40GiB HBM2 GPU.

Table 6.4 presents the accuracy and f1-scores in % with Standard Deviations

(over 10 random seeds) for the link prediction task on the Cora and Citeseer datasets.

Notably, our BiGCN model achieves the best result in one case and secures the

second-best performance in two instances, narrowly surpassed by HAN. Neural net-

work models, including BGNN, HetGNN, HAN, and BiGCN, consistently outper-

form random-walk-based methods such as BiNE and Metapath2vec. It underscores

the effectiveness of leveraging neural networks for learning node embeddings in bipar-

tite graphs. Comparing BiGCN to the robust baseline HAN, the noteworthy perfor-

mance of HAN can be attributed to its utilization of attention mechanisms. Despite

lacking crucial input information, namely edge weights, BiGCN still demonstrates

strong performance, securing the second-best results. It underscores its adaptability

and extensibility to various real-world bipartite graphs beyond the EMS dataset.

6.3.2 TDGNN on other CTDG Datasets

In this section, we evaluate the performance of the TDGNN model proposed in

Chapter 5 on additional CTDG datasets. Table 6.5 provides an overview of the key

statistics for each dataset.

The Wikipedia dataset1 [Kumar et al., 2019] is a bipartite temporal graph en-

compassing approximately 9,300 nodes and 160,000 temporal edges over one month.

1https://snap.stanford.edu/jodie/
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Table 6.5: Statistics of the CTDG datasets.

Items Wikipedia Reddit

# Edges 157,474 672,447
# Nodes 9,227 10,984
# Feature dim. 172 172
Timespan 30 days 30 days
Data split 70%-15%-15% 70%-15%-15%
Label type editing ban posting ban

Table 6.6: Fine-tuned common hyperparameters in the baseline methods.

TGAT TGN APAN TDGNN

Learning rate 1× 10−4 3× 10−4 1× 10−4 1× 10−4

Dropout 0.1 0.1 0.1 0.2
Hidden dim. 100 100 172 172
# Attention heads 2 2 2 2
# GNN encoder layers 2 2 2 2
# MLP decoder layers 2 3 2 2

In this dataset, nodes represent users and wiki pages, while interaction edges signify

a user editing a page. The dynamic labels denote whether a user is banned from

posting, associated with a timestamp of the actions.

The Reddit dataset2 [Kumar et al., 2019] also constitutes a bipartite tempo-

ral graph capturing user interactions over one month. With around 11,000 nodes

and 700,000 temporal edges, this dataset reflects user engagement with subreddits

through posts. The dynamic binary labels indicate whether a user is banned from

posting under a particular subreddit.

For both the Wikipedia and Reddit datasets, the construction of the graph in-

volves selecting the top popular items and the most active users. The textual fea-

tures of user edits are converted into 172-dimensional Linguistic Inquiry and Word

Count (LIWC) feature vectors. The datasets are split into training (70%), validation

(15%), and test (15%) sets based on the interaction timestamps.

In this evaluation, we assess the performance of the TDGNN model proposed

in Chapter 5 on a dynamic node label prediction task against robust baselines,

namely TGAT, APAN, and TGN. To ensure a fair comparison, we fine-tune the

hyperparameters through manual grid search while testing the performance of the

baseline models. The shared hyperparameters involved in these experiments are

detailed in Table 6.6. The experiments are carried out on a platform equipped

with an Intel Xeon Platinum 8360Y CPU and an NVIDIA A100 for NVLink 40GiB

HBM2 GPU, ensuring consistency in the experimental environment.

2https://snap.stanford.edu/jodie/
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Table 6.7: AUC score in % for node label prediction tasks on Wikipedia and Reddit
datasets. A Standard deviations over 10 random seeds are shown in parentheses.
The best results are marked in bold, and the second bests are marked with underline.

Model
Dataset

Wikipedia Reddit

TGAT 83.6 (0.7) 65.5 (0.7)
TGN 88.5 (0.3) 68.6 (0.7)68.6 (0.7)68.6 (0.7)

APAN 89.8 (0.3)89.8 (0.3)89.8 (0.3) 65.3 (0.4)

TDGNN 87.8 (0.3) 67.0 (0.6)

Due to the skew of label distribution, we employ the AUC score as the metric.

Table 6.7 shows the AUC scores in % with Standard Deviations (over 10 random

seeds) for node label prediction tasks on the Wikipedia and Reddit datasets. Our

TDGNN model obtains the second-best performance on the Reddit dataset but only

gets third place on the Wikipedia dataset. TGN achieves the overall best results,

followed by APAN and TDGNN, and TGAT in the lowest position. Notably, the

gap between the poorest and the best models is only 6.2% on Wikipedia and 3.1%

on Reddit, indicating they are close in performance. TDGNN demonstrates similar

performance as other strong baselines, showcasing its adaptability and extensibility

to various real-world bipartite graphs beyond the live streaming dataset.

In conclusion, according to the two additional experiments, we find that the

BiGCN and TDGNN models require edge weights as a significant input. Hence,

they perform well on datasets like EMS and YouTube live streaming that include

edge weights. However, they perform less effectively on citation network datasets

that lack edge weights.

In another hand, other baseline GNN models are designed as general models that

apply to various graph-structured datasets. However, not every dataset includes

edge weights. As a result, these models do not consider the presence or absence

of edge weights in the data because their architectures do not incorporate edge

weights in computation. They neither require edge weights as mandatory inputs

nor are their performance results significantly affected by the presence or absence of

edge weights.

6.4 What Kind of Real-world Prediction Tasks

Can Be Addressed by Our Proposed GNNs

The scope of human behaviors and social trends is so broad that it is challenging for

our proposed GNN frameworks to cover all diverse real-world prediction tasks. It

is essential to clarify the types of real-world prediction tasks that can be addressed
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Table 6.8: Requirements on real-world data that proposed GNNs can be applied to.

BiGCN
(Chapter 3)

Multi-layer temporal GNN
(Chapter 4)

TDGNN
(Chapter 5)

Nodes Two node types Multiple Single

Edges
Single, weighted, only

connect different
types of nodes

Multiple Single, weighted

Time-factors No
Changes

regularly observed
(Discrete-time)

Changes
at anytime

(Continuous-time)

Learned embeddings
Node & Edge
embeddings

Temporal node
embeddings

Temporal node
embeddings

Prediction targets
Edge labels

(Classification)

Numerical values of
node attributes

(Regression)

Dynamic node
labels & timing
(Classification)

by our proposed GNN frameworks. Table 6.8 outlines the characteristics of data to

which our proposed GNNs can be applied.

• The BiGCN developed in Chapter 3 is specifically designed to tackle edge

label prediction tasks on bipartite graphs. Therefore, it necessitates a dataset

with only two types of node groups and a single weighted edge type that solely

connects two nodes of different types. Additionally, BiGCN operates optimally

in a static system without any alterations regarding node and edge attributes.

Finally, the BiGCN learns node and edge embeddings and predicts edge labels,

but it can be adapted to other classification tasks by customizing the encoders

and decoders.

• The Multi-layer temporal GNN proposed in Chapter 3 is tailored for pre-

dicting dynamic node attribute values in heterogeneous DTDGs. As such, it

necessitates datasets with multiple node types and multiple edge types, where

edges connect nodes of the same type and between nodes of different types,

respectively. Additionally, regular observations at discrete time intervals are

essential for this framework, as the model input comprises a timed sequence

of graph snapshots with regular intervals. Finally, this model learns tempo-

ral node embeddings and tackles the regression task of predicting numerical

values of node attributes.

• The TDGNN model introduced in Chapter 5 is tailored for predicting dynamic

node labels in homogeneous CTDGs. It operates optimally with datasets fea-

turing a single node type and a single edge type associated with edge weights.

TDGNN incorporates continuous time-factors that can be observed at any

time. Lastly, TDGNN learns temporal node embeddings and predicts dynamic

node labels and the timing of when node labels change.
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In summary, our proposed GNN frameworks have demonstrated practical appli-

cability in addressing specific real-world prediction tasks. Each model is designed

to accommodate the unique characteristics of the data it handles, allowing it to ef-

fectively capture and leverage relevant information for making accurate predictions.

By tailoring our models to suit the specific requirements of each task, we have been

able to achieve notable success in various domains.

While our models have effectively addressed limited real-world prediction tasks,

there is still room for further exploration and refinement. Future research may focus

on extending and adapting our frameworks to handle a broader range of tasks and

datasets, and explore innovative techniques for improving model performance and

scalability. Overall, our work highlights the potential of GNNs in addressing real-

world prediction challenges and underscores the importance of tailored-modeling

approaches in achieving success in human behaviors and social trends.
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Chapter 7

Conclusion

Predictive analytics in human behaviors and social trends is pivotal for gaining in-

valuable insights into the future trajectories of public concerns and interests. Graphs

serve as an ideal tool to model the intricate relationships within real-world entities,

especially in social activities. The primary goal of this thesis is to design novel and

advanced GNN models that efficiently capture relationships within entities engaged

in social activities while simultaneously learning entity representations and then ad-

dress the challenging topics in human behaviors and social trends. GNN models

in the preceding chapters showcase remarkable versatility, seamlessly adapting to

scenarios ranging from simple static homogeneous networks to intricate dynamic

heterogeneous structures.

One of the primary focuses of our thesis is to reveal the dynamic nature of social

interactions and evolving relationships over time. This emphasis allows our models

to comprehensively understand complex social phenomena, enabling more accurate

predictions and valuable insights. In this concluding chapter, we comprehensively

summarize the key contributions made throughout the thesis. Additionally, we ac-

knowledge the limitations inherent in our proposed GNN methods, offering insights

into potential future research directions that could further enhance the capability of

GNNs. By concluding these aspects, we hope to contribute to the ongoing dialogue

surrounding developing and deploying GNNs in understanding human behaviors and

social trends.

7.1 Answers to Research Questions

In this section, we formally answer to the research questions proposed in Sec-

tion 1.4.3.

1. How to address prediction tasks on heterogeneous data by GNNs?

BiGCN (Chapter 3) and Multi-layer Temporal GNN (Chapter 4) are both

designed to handle heterogeneous graphs. A shared strategy between these
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two models involves the separate treatment of different types of nodes and

edges during node aggregation. BiGCN achieves this by employing two graph

convolution layers for distinct node groups, while Multi-layer Temporal GNN

extends this concept with a multi-layer architecture to accommodate various

relationships. Experimental results demonstrate that the notion of separate

processing contributes to the improved performance of these GNN frameworks.

2. How to address prediction tasks on dynamic data by GNNs?

The representation of temporal dynamics in graphs is categorized into discrete-

time dynamic graphs (DTDGs) and continuous-time dynamic graphs (CT-

DGs). We employ recurrent time-sequence units in the proposed GNN frame-

work to handle the temporal information within DTDGs (Chapter 4). In

another hand, we develop a real-time node status updating mechanism that

allows for the simultaneous updating of node status within CTDGs (Chap-

ter 5). Besides, multi-head attention layers and MLP decoders are critical

common components in proposed dynamic GNN frameworks. This combi-

nation draws inspiration from the Transformer architecture and has proven

effective in learning dynamic node embeddings.

3. How to tailor GNN architectures to better fit domain-specific prediction tasks?

Our proposed GNNs are enhanced by incorporating domain-specific knowl-

edge into the architectural design of GNN frameworks. We conclude a uni-

fied process of addressing prediction tasks by using GNNs, incorporating data

preprocessing, graph construction, GNN framework design, and performance

evaluation. Each step is associated with unique methodologies of incorporating

the domain-specific knowledge into GNN designs, such as understanding the

domain background knowledge and data features, incorporating domain knowl-

edge in GNN frameworks, and employing purposeful optimization strategies

toward characteristics of prediction targets. By synthesizing and generalizing

these methodologies as a unified process, we contribute to the foundational

understanding of effectively designing expert GNNs optimized for specific ap-

plication areas.

7.2 Key Contributions

In this thesis, we propose a spectrum of GNN models designed to understand a

variety of real-world human behaviors and social trends situations. The thesis begins

in Chapter 1 with an introduction to the evolution of AI techniques in predictive

analytics concerning human behavior and social trends. Subsequently, we delve

into GNNs and elucidate why they are recognized as one of the most essential and
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fastest-growing fields in deep learning, as well as one of the most powerful tools of

analyzing real-world data. Chapter 2 provides a summary of preliminary topics that

serves as the foundation for the work described in subsequent chapters.

In Chapter 3, we explore a critical static scenario, namely EMS demand pre-

diction. We are the first to analyze EMS demand at the hospital-region level in

a metropolis like Tokyo. We analyze the limitations of convolutional GNNs in bi-

partite graphs and propose BiGCN, a novel approach adept at learning the node

embeddings of binary entity groups by fully considering the structure characteristics

of bipartite graphs. Based on the experimental observations, BiGCN significantly

enhances the accuracy of EMS demand predictions, underscoring its efficiency in cap-

turing nuanced patterns within static bipartite graph-structured datasets. BiGCN

is not limited to the hospital-region bipartite graph in this paper but can potentially

become a general model for accomplishing supervised learning tasks in non-specific

bipartite graphs.

Expanding our focus to dynamic scenarios, Chapter 4 delves into the challenges

of learning in dynamic graphs. Recognizing the heightened difficulty of dynamic

settings, we propose a temporal GNN framework tailored for DTDG, which consists

of a timed sequence of graph snapshots. This novel approach addresses the limita-

tions of prior research, which predominantly focuses on selecting characteristics and

historical statistics within social media networks and employing simplistic machine

learning or statistical models as encoders and decoders, resulting in suboptimal

learning efficiency. The proposed approach presents its novelty in considering the

latent influence of information diffusion in social networks while efficiently learning

the representations of target entities, resulting in a substantial performance en-

hancement. We assess the efficiency of the proposed approach through experiments

conducted on real-world social network datasets. Based on the experimental obser-

vations, the proposed approach consistently outperforms various baseline methods,

showcasing its feasibility in real-world situations. This work tackles the crucial

task of forecasting trajectories of public concerns and interests based on extensive

real-world data, contributing valuable insights to the social trends.

Chapter 5 extends our dynamic GNN approach to CTDG by addressing the limi-

tations of unknown information between consecutive graph snapshots within DTDG,

which is likely to lead to potential inefficiencies in prediction results. Firstly, we in-

troduce an algorithm that encode the non-Euclidean-structured data into a style of

CTDG. By developing a novel TDGNN model, we can predict real-time graph events

and efficiently learn node temporal embeddings within CTDGs. Notably, TDGNN

exhibits robustness in addressing imbalanced situations commonly encountered in

real-world scenarios, showcasing its versatility in handling diverse challenges. In

addition, we present the first analysis and prediction of real-time donation income

in live streaming services. It is a significant and innovative topic as live streaming
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has become one of the most popular entertainment way and work style nowadays,

and it has the potential to help live streamers gain more popularity and increase

profits. To achieve this, firstly, we propose an approach representing live streaming

chat messages and viewer interactions as a continuous-time dynamic graph. Then,

we transform the income prediction problem into a dynamic node label classification

problem in CTDG. We utilize our proposed TDGNN model that learns temporal

viewers’ and streamers’ representations and predicts real-time donation incomes. We

conduct experiments to demonstrate the effectiveness of the TDGNN model, which

outperforms various baseline methods regarding both accuracy and timeliness.

Chapter 6 provides some discussions regarding the relationships within the three

subworks introduced before. First, we conclude the unified conceptions hidden in

the design considerations of proposed GNN frameworks. Then, we clarify the co-

herency within the three subworks, which shows a linear progress from simpler and

less general cases to the more challenging, complex and general cases. In addi-

tion, we exhibit the extensibility of the proposed GNNs by assessing them on other

benchmark bipartite graphs and continuous-time dynamic graphs. The outstanding

experimental results prove that our proposed GNN frameworks are not only de-

signed for particular datasets, but feasible in various domains. Finally, we clarify

the requirements of real-world human behaviors and social trends data that can be

handled by our proposed GNN methods.

In summary, the key contributions of this thesis lie in developing innovative GNN

models that evolve from simple static homogeneous cases to intricate dynamic het-

erogeneous scenarios, providing practical solutions for various real-world situations.

Each method is meticulously designed to tackle the unique challenges of different

real-world situations. Our proposed GNN models significantly enhance understand-

ing of complex relationships within evolving systems. This contribution reflects our

commitment to advancing the field of GNNs, paving the way for more effective and

versatile applications in predictive analytics for human behaviors and social trends.

7.3 Future Work

We explore potential future directions for research and development in the GNN

research, considering avenues for more intricate GNN models, data quality enhance-

ment, and scalability associated with real-world applications. By identifying areas

where improvements can be made, we contribute to the ongoing evolution of GNN

methodologies.

Continuous-time Dynamic Heterogeneous Graphs

In this thesis, we have discussed the GNNs across various graph structures, includ-

ing static homogeneous graphs, discrete-time dynamic heterogeneous graphs, and
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continuous-time dynamic homogeneous graphs. Naturally, the following exploration

should be the most intricate case: the continuous-time dynamic homogeneous graph.

Although some prior research has already started the learning on continuous-time

dynamic homogeneous graphs, the existing research in this domain remains at a

nascent stage [Gao et al., 2022b; Sajadmanesh et al., 2019; Zhu et al., 2022]. Conse-

quently, there exists a pressing need for further exploration and discovery of GNNs

and their applications for continuous-time dynamic homogeneous graphs. This un-

charted territory presents a unique opportunity for future research, promising ad-

vancements in understanding and efficiently modeling more intricate relationships

within continuously evolving homogeneous graphs.

Missing & Noise Data in Real-world Datasets

Addressing missing data and mitigating noise are critical aspects of handling real-

world data, especially in complex scenarios that often involve incomplete or noisy

information. The challenges posed by missing data and noise necessitate robust data

preprocessing and cleaning strategies, as well as purposefully designed GNNs.

Filling in missing data requires careful consideration of the nature of the miss-

ing values and the impact on downstream analyses. Imputation techniques, such

as mean or median imputation, regression imputation, or sophisticated machine

learning-based methods, can be employed to estimate missing values based on avail-

able information. The choice of methods should align with the specific characteristics

of the data and the objectives of the analysis. GNNs also show their potential of

estimating the missing data and mitigating the negative impact [Gordon et al., 2021;

Rossi et al., 2022].

Noise in real-world data can arise from various sources, including measurement

errors, outliers, or external interference. Robust statistical techniques, outlier detec-

tion algorithms, and data filtering methods can be applied to identify and mitigate

the effects of noise. Moreover, employing advanced GNN models resistant to noise or

incorporating ensemble methods can enhance the overall robustness of data analyses

[Dai et al., 2021; NT et al., 2019].

Scalability of Real-world Datasets

Scalability is a pressing concern as the size and complexity of real-world datasets

continue to grow exponentially. In the ever-expanding landscape of GNNs, ensuring

the scalability of models becomes imperative to harness the full potential of these

networks in large-scale applications. Future research efforts should be dedicated

to developing scalable GNN solutions that can adeptly manage massive volumes of

data while maintaining computational efficiency.

One avenue for addressing scalability involves exploring parallel and distributed
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computing approaches. Leveraging the power of distributed systems and parallel

processing can significantly enhance the efficiency of GNN computations, enabling

them to handle vast datasets seamlessly. Investigating novel algorithms and model

architectures designed for distributed computing environments will be crucial in

achieving scalable solutions [Wan et al., 2023].

Additionally, the design of scalable GNNs should consider the dynamic nature

of real-world data and evolving relationships. Models should be capable of adapting

to changes in the data distribution over time, allowing for continuous learning and

scalability in dynamic scenarios. For example, a sample-based training can signifi-

cantly mitigate the computational cost during scalable GNN training [Serafini and

Guan, 2021].

Furthermore, advancements in hardware technologies, including Graphics Pro-

cessing Units (GPUs) and specialized accelerators, offer opportunities to boost the

scalability of GNNs. Research should focus on optimizing GNN implementations

to leverage the parallel processing capabilities of modern hardware, ensuring that

computations are distributed efficiently across multiple devices.

It is worth noting that although we highlight the scalability issue as a challenge

in GNN studies in Section 1.4.2, the subworks included in this thesis do not involve

datasets of such a large scale that they cannot be processed by the supercomputer

we used. The largest dataset used is the YouTube live streaming dataset, comprising

approximately 15 million edges and 40,000 nodes. Although we implement several

strategies to mitigate the adverse effects of large-scale input data, such as batch

processing, data sampling, and reducing model complexity, we have yet to explic-

itly address the scalability issue as a research question in this thesis. The studies

conducted here have not delved into the actual intrinsic challenges of scalability in

GNNs. It explains why we highlight the scalability issue in the challenges but do

not mention it in the research questions.

Privacy Issue

The widespread integration of GNNs into real-world applications accentuates the

need for a conscientious consideration of privacy issues. As these sophisticated

GNN models permeate diverse domains such as healthcare, finance, and social sci-

ences, critical consideration of people’s privacy issues becomes paramount. This

landscape surrounding GNNs encompasses multifaceted dimensions that warrant

careful scrutiny.

Within social sciences, where GNNs contribute to understanding human behavior

and social trends, privacy considerations cover issues of consent, data privacy, and

the responsible dissemination of research findings. Ensuring that GNNs are applied

to respect individuals’ rights and avoid perpetuating social biases is essential to

privacy issues.
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In sensitive domains like healthcare, where GNNs may be employed for tasks such

as disease prediction or personalized medicine, the responsible use of these models

is imperative. Privacy issues include ensuring patient privacy, securing informed

consent, and mitigating potential biases in healthcare data that could impact the

accuracy and fairness of GNN predictions.

Financial applications of GNNs, such as fraud detection and investment anal-

ysis, introduce privacy concerns related to transparency, accountability, and the

potential consequences of algorithmic decision-making. Striking a balance between

utilizing GNNs for enhanced efficiency and maintaining privacy standards is crucial

to fostering trust in financial systems.

Research efforts in the privacy considerations of GNNs can yield frameworks,

guidelines, and standards that guide their responsible deployment. These initiatives

include developing transparent and interpretable GNN models, instituting privacy

review processes for GNN applications in sensitive domains, and establishing norms

for fair and unbiased data representation.
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