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Preface

In this thesis, we fix a prime p. In recent studies on commutative ring theory, one of
the most remarkable results was solving the homological conjecture, including the direct
summand conjecture due to Y. André [And18]. To solve the homological conjecture,
André applied the theory of perfectoid geometry, which was introduced by P. Scholze in
his thesis [Sch12]. In later studies on commutative ring theory in mixed characteristic,
the perfectoid method has developed as an effective tool by L. Ma, K. Schwede, and other
researchers (for example, [MS18], [MS21], and [CLM+22]). In the series of these studies,
many researchers recognize that perfectoid methods are the most powerful ones in mixed
characteristic today. This thesis addressed the following two studies.

First, to obtain a class of examples of commutative rings in mixed characteristic,
we study local log-regular rings. Local log-regular rings are defined by Kazuya Kato
in [Kat94] to develop the theory of toric varieties without bases. He applied it to the
toroidal embedding for arithmetic schemes. Hence we can formulate many ring-theoretic
properties of local log-regular rings similar to those of semigroup rings. Indeed, Kato
proved any local log-regular rings are Cohen–Macaulay and normal. In this thesis, we
study other ring-theoretic properties of local log-regular rings, such as the structure of
canonical modules (Theorem 1.9), the relationship of rational singularities (Proposition
1.6.3), and the finite generation of its divisor class group (Theorem 1.7.8).

Secondly, we improve the tilting to apply for Noetherian rings. In perfectoid theory,
the tilting operation for a perfectoid ring is a central notion in this method, which makes
a bridge between objects in mixed characteristic and objects in positive characteristic.
However, perfectoid rings themselves are too big to fit into Noetherian ring theory. The
typical construction of perfectoid rings from Noetherian rings is to take the direct limit
of a deeply ramified tower such as

Zp ⊆ Zp[p1/p] ⊆ Zp[p1/p
2

] ⊆ · · · . (1)

Moreover, in earlier work of K. Shimomoto [Shi11], the tilting for the tower such as (1)
appears1. Hence, the question naturally arises whether we can axiomatize deeply ramified
towers that admit a tower-theoretic analogue of the tilting operation appearing in [Shi11].
More precisely, we consider the following problem in this thesis.

Problem 1. Can one axiomatize deeply ramified towers which satisfy the following prop-
erties?

1. The direct limits of towers are perfectoid rings,

2. they admit a tower-theoretic analogue of the tilting which is compatible with the
tilting operation for perfectoid rings obtained by the direct limits, and

1In the paper [Shi11], he treated more general tower consisting of formal power series rings over
complete discrete valuation rings with perfect residue fields.
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3. the tower-theoretic tilting preserves Noetherian properties and their singularities.
We provide an answer to the aforementioned problem by introducing perfectoid towers

and their tilts (Definition 2.4.9 and Definition 2.4.18). By applying pefectoid towers
and their tilts, we obtain the two cohomological comparison results between in mixed
characteristic and in positive characteristic (Proposition 2.6.7 and Lemma 2.6.23).

Finally, we provide the outline of this thesis here. More detailed explanations are
given at the beginning of each chapter as an introduction. In Chapter 1, we establish ring-
theoretic properties of local log-regular rings mentioned above. We show the canonical
module of a local log-regular ring is generated by the image of the interior of the associated
monoid. Furthermore, using these results, we give a criterion of the Gorenstein property
of local log-regular rings and show that local log-regular rings have rational singularities.
Also, we show that the divisor class group of a local log-regular ring is finitely generated.
The idea of this theorem is to prove that the divisor class group of a local log-regular ring
is isomorphic to that of the associated monoid. This was already proved by Gabber and
Ramero in [GR23]. They proved it by algebraic geometrical method. In contrast, our
approach is purely ring-theoretical, allowing us to provide an alternative proof.

In Chapter 2, we introduce perfectoid towers and their tilts. Furthermore, we establish
several basic properties. An important example of perfectoid towers is a tower consisting
of local log-regular rings constructed by Gabber and Ramero. We can prove that these
constructed towers are perfectoid towers and can compute their tilts explicitly. This
implies that the tilts of their perfectoid towers are also consisting of local log-regular
rings. As applications of perfectoid towers, we obtain the finiteness of étale cohomology
groups and the vanishing of local cohomology modules. The result of the finiteness of
étale cohomology modules is the reformulation of previous studies (for example [ČS19])
in the framework of perfectoid towers. The result of local cohomology modules such as
Lemma 2.6.23 have never been observed in previous works. We hope that developing this
method will lead to a new approach to research in the cohomology theory of commutative
rings.
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Convention

• All rings are assumed to be commutative with unity. The unit of a ring is denoted
by 1. Moreover, all ring homomorphisms are assumed to be unital.

• All monoids are assumed to be commutative with unity. The unit of a monoid is
denoted by 0. Moreover, all monoid homomorphisms are assumed to be unital.

• We denote Q∗ the set of units of Q.

• We denote Qgp the set of elements p− q where p, q ∈ Q.

• Rings are not necessarily assumed to be Noetherian.



Chapter 1

Ring-theoretic properties of local
log-regular rings

1.1 Introduction
This is based on papers [Ish22], [Ish24], and part of a joint paper [INS22] with Kei

Nakazato and Kazuma Shimomoto. The aim of this chapter is to give ring-theoretic
properties of local log-regular rings. We establish the two results of local log-regular
rings, which are the structures of canonical modules and divisor class groups.

First, we introduce the result of canonical modules of local log-regular rings. Canon-
ical modules and dualizing complexes are essential tools in studies on the commutative
ring theory and algebraic geometry. For example, we need them to formulate the local
duality theory. Moreover, it is related to a criterion of a Gorenstein property. In view of
both of homological algebra and commutative ring theory, understanding the structure
of canonical modules, such as their generators, is important in the view of commutative
ring theory. The existence of a dualizing complex is described in [Kat94] and [GR23].
Their proof is not based on algebraic geometry (in particular, sheaf theory), but not on
commutative ring theory. In order to know as commutative ring theory, we establish the
proof of its existence and reveal its generators.

Main Theorem A (Theorem 1.5.1). Let (R,Q, α) be a local log-regular ring, where Q
is fine, sharp, and saturated (by Remark 1.2.25, we may assume that Q ⊆ Nl for some
l > 0 ). Let x1, . . . , xr be a sequence of elements of R such that x1, . . . , xr is a regular
system of parameters for R/IQ Then R admits a canonical module and its form is

〈(x1 · · · xr)α(a) | a ∈ relintQ〉, (1.1)

where relintQ is the relative interior of Q.

We have one remark to Main Theorem A. Since affine semigroup rings are a homo-
morphic image of polynomial rings, they always admit canonical modules. In contrast, it
is not known whether a local log-regular ring is a homomorphic image of Gorenstein rings
or not by their definitions. Hence we remark that the existence of a canonical module is
not obvious. Main Theorem A is based on the well-known result of canonical modules of
affine semigroup rings whose form is 〈x ∈ k[Q] | x ∈ relintQ 〉.

We give two applications of Main Theorem A. The first application is to provide a
criterion of the Gorenstein property of local log-regular rings (Corollary 1.5.5). We can
provide it similarly to affine semigroup rings. Moreover, we can determine the generator
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of the associated monoid of a local log-regular ring whose dimension is two (Corollary
1.5.7). The second application is that local log-regular rings have pseudo-rational singu-
larities. Pseudo-rational singularities are an important class in singularity theory defined
by Lipman and Tessier. We show that any local log-regular ring has pseudo-rational
singularities (Proposition 1.6.3).

Next, we introduce the result of divisor class groups of local log-regular rings. It
is well-known that the divisor class groups of affine semigroup rings are generated by
height one prime ideals of affine semigroups. To prove the finite generation of the divisor
class groups of local log-regular rings and to investigate them, we establish the following
theorem.

Main Theorem B (Theorem 1.7.8). Let (R,Q, α) be a local log-regular ring. Then
Cl(α) : Cl(Q) → Cl(R) is isomorphism. In particular, the divisor class group Cl(R) is
finitely generated.

Main theorem B is reduced to the complete case. We should emphasize that the divisor
class group of local log-regular rings is isomorphic to those of their completion though
the divisor class groups of Noetherian domains are not isomorphic to their completion in
general. We make this possible by considering a group homomorphism induced by a log
structure.

Finally, we give the outline of this chapter. In §1.2, we provide several preliminaries
on monoids for later sections. We also discuss monoids obtained by the adjoining p-th
power root of elements of monoids, Krull monoids, and monoids appearing as lattice
points of convex polyhedral cones. In §1.3, we introduce the definition of local log-regular
rings and their basic properties. We also provide a typical example of non-complete local
log-regular rings, which is called a Jungian domain (see Definition 1.3.11). In §1.4, we
show that local log-regular rings are splinter. This is originally due to O. Gabber and L.
Ramero, and we provide an elementary proof by using the direct summand theorem. In
§1.5, we give an explicit description of canonical modules of local log-regular rings. We
also provide a criterion of Gorenstein property of local log-regular rings. In particular, we
give the structure theorem of Gorenstein log-regular rings consisting of two-dimensional
monoids. In §1.6, we show that local log-regular rings have pseudo-rational singularities.
In §1.7, we prove the Main Theorem B. We also discuss how to compute the divisor class
group of local log-regular rings.

1.2 Preliminaries on monoids

1.2.1 Basics of monoids

In this subsection, we introduce basic terms on monoids. The references of the basic
theory of monoids are [GR23], [GHK06], and [Ogu18]. Let us recall that the definition of
monoids.

Definition 1.2.1. A monoid is a semigroup with a unity.

We use a symbol Q for almost all monoids, but we sometimes useM to be aware that
given monoids are multiplicative. Also, unless otherwise noted, operations of monoids are
usually denoted by "+" in this thesis.

Here we give examples of monoids.
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Example 1.2.2. 1. Let Nn be the n-th copy of the set of natural numbers N. Then
this is a monoid with its natural additive structure.

2. Let R be a commutative ring with the multiplication ·. Then (R, ·) is a monoid.
Moreover, assume that R is a domain. Set R• := R \ {0}. Then (R•, ·) is also a
monoid.

Definition 1.2.3. Let Q be a monoid. Then Q is called finitely generated if there exists
an elements x1, . . . , xn ∈ Q such that the monoid homomorphism Nn → Q ; ei 7→ xi
is surjective where e1, . . . , en are the canonical basis of Nn. Here, the above sequence of
elements x1, . . . , xn ∈ Q is called a generator of Q.

Let Q be a finitely generated monoid and let x1, . . . , xn be a generator of Q. Then we
denote Q by 〈x1, . . . , xn〉. By an easy calculation, any element a ∈ Q can be denoted by
a = c1x1 + · · ·+ cnxn.

Definition 1.2.4 (Q-module). Let Q be a monoid.

1. A Q-module is a set M equipped with a binary operation

Q×M →M ; (q, x) 7→ q + x

having the following properties:

(a) 0 + x = x for any x ∈M ;

(b) (p+ q) + x = p+ (q + x) for any p, q ∈ Q and x ∈M .

2. A homomorphism of Q-modules is a (set-theoretic) map f : M → N between Q-
modules such that f(q + x) = q + f(x) for any q ∈ Q and x ∈ M . We denote by
Q-Mod the category of Q-modules and homomorphisms of Q-modules.

We refer the reader to the definition of a monoid algebra R[Q] to [Ogu18]. We denote
by eq (resp. eQ) the image of an element q of Q (resp. the monoid Q) in R[Q]. For a
monoid Q, one obtains the functor

Q-Mod→ R[Q]-Mod ; M 7→ R[M ], (1.2)

which is a left adjoint of the forgetful functor R[Q]-Mnd → Q-Mod. Notice that (1.2)
preserves coproducts (we use this property to prove Proposition 1.2.23).

Definition 1.2.5. Let Q be a monoid.

1. A subset I of Q is an ideal (or an s-ideal) if it is a Q-module.

2. An ideal p of Q is a prime ideal (or prime s-ideal) if p 6= Q and for elements x, y ∈ Q
such that x+ y ∈ p, x ∈ p or y ∈ p.

3. A subset F of Q is a face if it is a submonoid.

Example 1.2.6. Let R be a domain and let a be an ideal of R. Set a• = a \ {0} ⊆ R•.
Then a is prime in R if and only if a• is prime s-ideal in R•.

Proposition 1.2.7. Let Q be a monoid.
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1. There is a one-to-one correspondence

{The set of prime ideals} −→ {The set of faces}

such that q 7→ R \ q whose inverse is F 7→ R \ q.

2. Let Q+ be the set of non-units of Q. Then the empty set ∅ and Q+ are prime ideals.

3. Q is a group if and only if ideals of Q are only ∅ and Q.

Proof. (1): The fact that R \ p is a face (resp. R \ F is a prime ideal) is straightforward
from the definition of prime ideals (resp. the definition of faces).

(2): This follows from (1).
(3): Suppose that Q is a group. Let I be a non-empty ideal of Q. Since Q is a group,

for any element x ∈ I, there exists an element y ∈ Q such that x + y = 0. Hence 0 ∈ I
and this implies I = Q. Conversely, assume that ideals of Q are only ∅ and Q. Suppose
that Q is not a group. Then we can choose a non-unit x ∈ Q. Since an ideal 〈x〉 is not
equal to Q, it must be the empty set, but this is a contradiction. Hence Q is a group.

Remark 1.2.8. By Corollary 1.2.7 (2), the empty set ∅ is the minimal prime, and the
ideal Q+ is the maximal ideal of a monoid Q.

Like a ring, one can define the dimension of a monoid.

Definition 1.2.9. Let Q be a monoid. Then the Krull dimension of Q is the supremum
of the length of all chains of prime ideals. We denote it by dim(Q).

Definition 1.2.10. Let Q be a monoid.

1. Q is called integral (or cancellative) if for any elements x, x′, y ∈ Q, x+ y = x′ + y
implies x = x′.

2. Q is called fine if it is finitely generated and integral,

3. Q is called sharp (or reduced) if Q∗ = 0 where Q∗ is the group of units of Q.

4. Q is called saturated if it satisfies the following conditions:

• Q is integral,

• If x ∈ Qgp such that nx ∈ Q for some n > 0, then x ∈ Q.

Definition 1.2.11. Let Q be a monoid. Then an equaivalent relation ∼ on Q is called
congruence if a ∼ b implies a+ c ∼ b+ c for any a, b, c ∈ Q.

Example 1.2.12 (Associated reduced monoids). Let Q be a monoid. Two elements
a, b ∈ Q are called associates if there exists a unit u ∈ Q∗ such that a = u+ b. If a, b ∈ Q
are associates, then we denote them by a ' b. The relation ' is a congruence relation
and the monoid Qred := Q/ ' is called the associated reduced monoid of Q. By definition,
we have [a] = a+Q∗ where [a] is an element of Qred. This implies that if Q is sharp, we
obtain Q = Qred.

Next, we review the spectra of monoids. In the same as in spectra of commutative
rings, the spectra of monoids are also topological spaces.
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Definition 1.2.13 (Spectra of monoids). For a monoid Q, we denote by Spec(Q) the set
of prime ideals of Q. We call it the spectrum of Q.

Lemma 1.2.14. Let Q be a monoid and let I be an ideal of Q. We denote by V (I) the
set of prime ideals of Q containing I. Then the following assertions hold.

1. V (∅) = Spec(Q) and V (Q) = ∅.

2. Let Λ be an index set and let {Iλ}λ∈Λ be a set of ideals of Q. Then V (
∑

λ∈Λ Iλ) =⋂
λ∈Λ V (Iλ).

3. Let I1 and I2 be ideals of Q. Then V (I1 ∩ I2) = V (I1) ∪ V (I2).

Proof. Assertion (1) and assertion (2) are straightforward, hence we show assertion (3).
An inclusion V (I1)∪V (I2) ⊆ V (I1∩I2) obviously holds, hence we only prove the converse
inclusion V (I1 ∩ I2) ⊆ V (I1) ∪ V (I2). Pick p ∈ V (I1 ∩ I2). Suppose that I1 6⊂ p and
I2 6⊂ p. Then there exist elements a ∈ I1 and b ∈ I2 such that a, b /∈ p. This implies that
a + b ∈ I1 ∩ I2 ⊆ p and a + b /∈ p. This is a contradiction. Hence I1 ⊆ p or I2 ⊆ p, that
is, p ∈ V (I1) ∪ V (I2), as desired.

As a consequence, we can define a topology on Spec(Q) whose closed subsets are V (I),
which is called the Zariski topology on Spec(Q).

Proposition 1.2.15. Let Q be a fine monoid. Then Spec(Q) is a finite set.

Proof. This is [Ogu18, Chapter I, Propositoin 1.4.7 (1)].

Next, we review homomorphisms of monoids.

Definition 1.2.16. LetQ and P be monoids. Then a map ϕ : Q → P is a homomorphism
of monoids if it is addition preserving and unit preserving.

Remark 1.2.17 ([Ogu18, Chapter I, P.2]). Unlike ring homomorphisms, even if a kernel
of a homomorphism vanishes, the homomorphism is not necessarily injective. For example,
let θ : N2 → N the homomorphism of monoids such that (a, b) 7→ a + b. Then the kernel
of θ is zero because a+ b = 0 in N implies a = b = 0, but the both (a, 0) and (0, a), which
is different in N2, maps to the same a.

We have a decomposition of the reduced part and the unit part for a monoid:

Lemma 1.2.18 ([GR23, Lemma 6.2.10]). Let Q be a saturated monoid such that Qred is
fine. Then there exists an isomorphism of monoids

Q ∼= Qred ×Q∗.

As seen above, all monoids have a unique maximal ideal. Hence we define local
homomorphisms of monoids.

Definition 1.2.19. Let P and Q be monoids. Let ϕ : P → Q be a homomorphism of
monoids. Then ϕ is called local if ϕ−1(Q∗) = P∗.

Lemma 1.2.20. Let P and Q be monoids. Let ϕ : P → Q be a homomorphism of
monoids. Then the following assertions are equivalent.

1. ϕ is local,
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2. ϕ(P+) ⊆ Q+, and

3. ϕ−1(Q+) = P+.

Proof. The implication (2) ⇒ (1) and the equivalence (2) ⇔ (3) are straightforward.
Hence we only show the implication (1) ⇒ (2). Pick x ∈ P+. Suppose that ϕ(x) /∈ Q+.
Then we obtain ϕ(x) ∈ Q∗. This implies that x ∈ ϕ−1(Q∗) = P∗, and it is a contradiction.
Therefore we obtain ϕ(P+) ⊆ Q+, as desired.

Definition 1.2.21 (Exact homomorphisms). Let P and Q be monoids.

1. A homomorphism of monoids ϕ : P → Q is said to be exact if the diagram of
monoids:

Pgp φgp
// Qgp

P

OO

φ // Q

OO

is cartesian.

2. An exact submonoid of Q is a submonoid Q′ of Q such that the inclusion map
Q′ ↪→ Q is exact (in other words, (Q′)gp ∩Q = Q′).

Here is a quite useful characterization of exact submonoids (Proposition 1.2.23). To
see this, we recall a graded decomposition of a Q-module attached to a submonoid. For
a monoid Q and a submonoid Q′ ⊆ Q, we denote by Q → Q/Q′ the cokernel of the
inclusion map Q′ ↪→ Q.

Definition 1.2.22. Let Q be an integral monoid, and let Q′ ⊆ Q be a submonoid. Then
for any g ∈ Q/Q′, we denote by Qg a Q′-module defined as follows.

• As a set, Qg is the inverse image of g ∈ Q/Q′ under the cokernel Q → Q/Q′ of
Q′ ↪→ Q.

• The operation Q′ × Qg → Qg is defined by the rule: (q, x) 7→ q + x (where q + x
denotes the sum of q and x in Q).

By definition, Q =
∐

g∈Q/Q′ Qg as sets. The right-hand side is viewed as the coproduct
of Q′-modules {Qg}g∈Q/Q′ , and hence a Q/Q′-graded decomposition of the Q′-module Q.
Using this notion, one can refine a characterization of exact embeddings described in
[Ogu18, Chapter I, Proposition 4.2.7].

Proposition 1.2.23 (cf. [Ogu18, Chapter I, Proposition 4.2.7]). Let Q be an integral
monoid, and let Q′ ⊆ Q be a submonoid. Let θ : Q′ ↪→ Q be the inclusion map, and
let Z[θ] : Z[Q′] → Z[Q] be the induced ring map. Set G := Q/Q′. Then the following
assertions hold.

1. The Z[Q′]-module Z[Q] admits a G-graded decomposition Z[Q] =
⊕

g∈G Z[Qg].

2. The following conditions are equivalent.

(a) The inclusion map θ : Q′ ↪→ Q is exact. In other words, (Q′)gp ∩Q = Q′.

(b) Q0 = Q′.
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(c) Z[θ] splits as a Z[Q′]-linear map.

(d) Z[θ] is equal to the canonical embedding Z[Q0] ↪→
⊕

g∈G Z[Qg].
(e) Z[θ] is universally injective.

Proof. (1): By applying the functor (1.2) (that admits a right adjoint) to the decompo-
sition Q =

∐
g∈GQg, we find that the assertion follows.

(2): Since Q0 = (Q′)gp ∩ Q as sets by definition, the equivalence (a)⇔(b) follows.
The assertion (a)⇔(c)⇔(e) is none other than [Ogu18, Chapter I, Proposition 4.2.7].
Moreover, (d) implies (c) obviously. Thus it suffices to show the implication (b)⇒(d).
Assume that (b) is satisfied. Then one can decompose Q into the direct sum of Q′-
modules

∐
g∈GQg with Q0 = Q′. Hence the inclusion map Q′ ↪→ Q is equal to the

canonical embedding Q0 ↪→
∐

g∈GQg. Thus the induced homomorphism Z[θ] : Z[Q0] ↪→
Z[
∐

g∈GQg] satisfies (d), as desired.

Remark 1.2.24. In the situation of Proposition 1.2.23, assume that the condition (d)
is satisfied. Then the split surjection π : Z[Q] → Z[Q′] has the property that π(eQ) =
eQ

′ by the construction of the G-graded decomposition Z[Q] =
⊕

g∈G Z[Qg]. Moreover,
π(eQ

+
) ⊆ e(Q

′)+ because Q+ ∩ Q′ ⊆ (Q′)+. We use this fact in our proof for Theorem
1.4.3.

Remark 1.2.25. If Q is fine, sharp, and saturated, then there is an exact injection
Q ↪→ Nl for some l ∈ N (see [Ogu18, Chapter I, Proposition 1.3.5] and [Ogu18, Chapter
I, Corollary 2.2.7]). Thus, in the following sections, we assume that a fine, sharp, and
saturated monoid is a submodule of some Nr.

Proposition 1.2.23 implies the following useful lemma.

Lemma 1.2.26. Let Q be a fine, sharp, and saturated monoid. Let A be a ring. Then
there is an embedding of monoids Q ↪→ Nd such that the induced map of monoid algebras

A[Q]→ A[Nd]

splits as an A[Q]-linear map.

Proof. Since Q is saturated, there exists an embedding Q into some Nd as an exact
submonoid in view of Remark 1.2.25. Then by Proposition 1.2.23, the associated map of
monoid algebras

Z[Q]→ Z[Nd] (1.3)

splits as a Z[Q]-linear map. By tensoring (1.3) with A, we get the desired split map.

Let Q be a monoid and let q ⊆ Q be a prime ideal. Then we define the localization
Qq at q as the set of elements a− b ∈ Qgp such that a, b ∈ Q and b /∈ q.

Lemma 1.2.27. Let Q be a monoid.

1. If Q is integral, then any face of Q is an exact submonoid.

2. If Q is saturated, then every submonoid is saturated.

3. If Q is fine (resp. saturated) and q ∈ Q is a prime ideal, then so is Qq.



CHAPTER 1. RING-THEORETIC PROPERTIES OF LOCAL LOG-REGULAR RINGS11

Proof. (1): For a face F , it suffices to show that Q ∩ Fgp ⊆ Q. Let a ∈ Q ∩ Fgp be
an element. Then there exist elements b, c ∈ F such that a = b − c ∈ F . Note that
a+ c = b ∈ F . This implies that a ∈ F (and c ∈ F) by the definition of faces, as desired.

(2): It follows from the definition of saturated and (1).
(3): The first assertion is straightforward, hence we prove the second assertion. Let

a− b ∈ (Qq)
gp = Qgp be a element such that n(a− b) ∈ Qq for some n > 0. Since Qq and

F := Q\ q is saturated by the assumption and (2), na ∈ Q (resp. nb ∈ F) implies a ∈ Q
(resp. b ∈ F). Thus a− b ∈ Qq, as desired.

At the end of this subsection, we discuss monoid algebras and their completion. Let
Q be a fine sharp monoid and let R be a commutative ring. Then we denote by RJQK
the set of functions Q → R, viewed as an R-module using the usual point-wise structure
and endowed with the product topology induced by the discrete topology on R, that is,
we have the explicit description

RJQK = {∑
q∈Q

aqe
q | aq ∈ R

}
.

By using this description, the R-module RJQK admits the unique multiplication (see
[Ogu18, Chapter I, Proposition 3.6.1 (2)]). Also, as a formal power series ringRJx1, . . . , xnK
is the completion of a polynomial ring R[x1, . . . , xn] with respect to an ideal (x1, . . . , xn),
a formal power series ring RJQK of Q can be view as the completion of R[Q] with respect
to an ideal R[Q+] (see [Ogu18, Chapter I, Proposition 3.6.1 (3)]).

Remark 1.2.28. It is easy to miss symbolically, but RJQK is not complete and separated
with respect to a maximal ideal even if R is a field.

Proposition 1.2.29 ([Ogu18, Chapter I, Proposition 3.6.1 (4) and (5)]). Keep the nota-
tion as above. Then the following assertions hold.

1. If Qgp is torsion free and R is also an integral domain, then RJQK is an integral
domain.

2. If R is a local ring with maximal ideal m, then RJQK is a local ring, whose maximal
ideal consists of elements of RJQK such that their constant term belongs m.

1.2.2 Monoids adjoining with the p-th power roots

In this subsection, we construct and investigate monoids adjoining the p-th power
roots of elements. It is important in the construction of perfectoid towers arising from
local log-regular rings.

For an integral monoid Q, we denote by QQ the submonoid of Qgp ⊗Z Q defined as

QQ := {x⊗ r ∈ Qgp ⊗Z Q | x ∈ Q, r ∈ Q≥0}.

Using this, one can define the following monoid which plays a central role in Gabber-
Ramero’s construction of perfectoid towers consisting of local log-regular rings.

Definition 1.2.30. Let Q be an integral sharp monoid. Let c and i be non-negative
integers with c > 0.
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1. We denote by Q(i)
c a submonoid of QQ defined as

Q(i)
c := {γ ∈ QQ | ciγ ∈ Q}.

2. We denote by ι
(i)
c : Q(i)

c ↪→ Q(i+1)
c the inclusion map, and by Z[ι(i)c ] : Z[Q(i)

c ] →
Z[Q(i+1)

c ] the induced ring map.

To prove several properties of Q(i)
c , the following one is important as a starting point.

Lemma 1.2.31. Let Q be an integral sharp monoid. Then for every c > 0 and every
i ≥ 0, the following assertions hold.

1. Q(i)
c is integral and sharp.

2. Q(i+1)
c = (Q(i)

c )
(1)
c .

3. The c-times map on QQ restricts to an isomorphism of monoids:

fc : Q(i+1)
c

∼=−→ Q(i)
c ; γ 7→ cγ.

Proof. (1): Since Qgp ⊗Z Q is an integral monoid, so is Q(i)
c . Let us show that Q(i)

c is
sharp. Pick x, y ∈ Q(i)

c such that x + y = 0. Then cix = 0 because Q is sharp. Thus,
since Q(i)

c is a submonoid of the torsion-free group Qgp ⊗Z Q, we have x = 0, as desired.
(2): Since any g ∈ (Q(i)

c )gp satisfies cig ∈ Qgp, the inclusion map Qgp ↪→ (Q(i)
c )gp

becomes an isomorphism ϕ : Qgp⊗ZQ
∼=−→ (Q(i)

c )gp⊗ZQ by extension of scalars along the flat
ring map Z→ Q. The restriction ϕ̃ : QQ ↪→ (Q(i)

c )Q of ϕ is also an isomorphism, and one
can easily check that ϕ̃ restricts to the desired canonical isomorphism Q(i+1)

c

∼=−→ (Q(i)
c )

(1)
c .

(3): It is easy to see that the c-times map on QQ restricts to the homomorphism
of monoids fc. Since the abelian group QQ = Qgp ⊗Z Q is torsion-free, fc is injective.
Moreover, any element γ in Q(i)

c is of the form x⊗ r for some x ∈ Qgp and r ∈ Q, which
satisfy that c(x⊗ r

c
) = γ and ci+1(x⊗ r

c
) ∈ Q. Hence fc is also surjective, as desired.

Let us inspect monoid-theoretic aspects of the inclusion ι(i)c : Q(i)
c ↪→ Q(i+1)

c . First, we
observe that the assumption of fineness on Q induces several finiteness properties.

Lemma 1.2.32. Let Q be a fine sharp monoid. Then for every c > 0 and every i ≥ 0,
the following assertions hold.

1. Q(i)
c is fine and sharp.

2. The ring map Z[ι(i)c ] : Z[Q(i)
c ]→ Z[Q(i+1)

c ] is module-finite.

3. Q(i+1)
c /Q(i)

c
∼= (Q(i+1)

c )gp/(Q(i)
c )gp as monoids. Moreover, Q(i+1)

c /Q(i)
c forms a finite

abelian group.

4. For a prime p > 0, we have |Q(i+1)
p /Q(i)

p | = ps for some s ≥ 0.

Proof. In view of Lemma 1.2.31, it suffices to deal with the case when i = 0 only. Here
notice that Q(0)

c = Q.
(1): Since Q is fine, there exists a finite system of generators {x1, . . . , xr} of Q. Hence

Q(1)
c also has a finite system of generators {xj ⊗ 1

c
}j=1,...,r. For j = 1, . . . , r, we put

1
c
xj := xj ⊗ 1

c
∈ Q(1)

c .
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(2): The Z[Q]-algebra Z[Q(1)
c ] is generated by {e 1

c
x1 , . . . , e

1
c
xr}, and each e

1
c
xj ∈ Z[Q(1)

c ]

is integral over Z[Q]. Hence Z[ι(0)c ] is module-finite, as desired.
(3): By [Ogu18, Chapter I, Proposition 1.3.3], Q(1)

c /Q is identified with the image of
the composition

Q(1)
c ↪→ (Q(1)

c )gp ↠ (Q(1)
c )gp/Qgp. (1.4)

SinceQ(1)
c is generated by 1

c
x1, . . . ,

1
c
xr, (Q(1)

c )gp is generated by 1
c
x1, . . . ,

1
c
xr,−1

c
x1, . . . ,−1

c
xr

as a monoid. On the other hand, we have −1
c
xj ≡ (c− 1)1

c
xj mod Qgp for j = 1, . . . , r.

Hence (Q(1)
c )gp/Qgp is generated by {1

c
xj mod Qgp}j=1,...,r as a monoid. Therefore, the

composite map (1.4) is surjective, and (Q(1)
c )gp/Qgp is a finitely generated torsion abelian

group. Thus, Q(1)
c /Q coincides with (Q(1)

c )gp/Qgp, which is a finite abelian group, as
desired.

(4): Since there exists a surjective group homomorphism

f : Z/pZ× · · · × Z/pZ︸ ︷︷ ︸
r

↠ (Q(1)
p )gp/Qgp ; (n1, . . . , nr) 7→ n1

(
1

p
x1

)
+· · ·+nr

(
1

p
xr

)
mod Qgp ,

we have pr = |(Q(1)
p )gp/Qgp||Ker(f)|. Hence |(Q(1)

p )gp/Qgp| = ps for some s ≥ 0. Thus
the assertion follows from (3).

By assuming saturatedness, one finds the exactness of ι(i)c : Q(i)
c ↪→ Q(i+1)

c .

Lemma 1.2.33. Let Q be an integral sharp saturated monoid. Then for every c > 0 and
every i ≥ 0, the following assertions hold.

1. Q(i)
c is integral, sharp, and saturated.

2. ι(i)c : Q(i)
c ↪→ Q(i+1)

c is exact (i.e. Q(i+1)
c ∩ (Q(i)

c )gp = Q(i)
c ).

Proof. (1): By Lemma 1.2.31, it suffices to show that Q(1)
c is saturated. Pick an element x

of (Q(1)
c )gp such that nx ∈ Q(1)

c . Then the element cx of Qgp satisfies n(cx) = c(nx) ∈ Q.
Hence cx ∈ Q because Q is saturated. This implies that x ∈ Q(1)

c , as desired.
(2): It suffices to show that Q(i+1)

c ∩ (Q(i)
c )gp ⊆ Q(i)

c . Pick an element a ∈ Q(i+1)
c ∩

(Q(i)
c )gp. Then ca ∈ Q(i)

c . Since Q(i)
c is saturated by (1), it implies that a ∈ Q(i)

c , as
desired.

If further Q is fine, one can learn more about Z[ι(i)c ] : Z[Q(i)
c ] → Z[Q(i+1)

c ] using the
exactness of ι(i)c assured by Lemma 1.2.33 (2).

Lemma 1.2.34. Let Q be a fine, sharp and saturated monoid. Let c and i be non-negative
integers with c > 0. Set Gi := Q(i+1)

c /Q(i)
c (which is a finite abelian group by Lemma 1.2.32

(3)) and Ki := Frac(Z[Q(i)
c ]). Then the following assertions hold.

1. For any g ∈ Gi, we have an isomorphism of Z[Q(i)
c ]-modules Z[(Q(i+1)

c )g]⊗Z[Q(i)
c ]
Ki
∼=

Ki.

2. The base extension Ki → Z[Q(i+1)
c ] ⊗Z[Q(i)

c ]
Ki of Z[ι(i)c ] is isomorphic to the split

injection
Ki ↪→ (Ki)

⊕|Gi| ; a 7→ (a, 0, . . . , 0)

as a Ki-linear map. In particular, dimKi

(
Z[Q(i+1)

c ]⊗Z[Q(i)
c ]
Ki

)
= |Q(i+1)

c /Q(i)
c |.
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Proof. In view of Lemma 1.2.31 (2), Lemma 1.2.32 (1), and Lemma 1.2.33 (1), it suffices
to show the assertions only for the case when i = 0.

(1): Let yg ∈ Q(1)
c be an element whose image in Q(1)

c /Q is equal to g. Then we obtain
an injective homomorphism of Q-modules

ιg : Q ↪→ (Q(1)
c )g ; x 7→ x+ yg, (1.5)

which induces an injective Z[Q]-linear map Z[ιg] : Z[Q] ↪→ Z[(Q(1)
c )g]. Thus it suffices to

show that Coker(Z[ιg])⊗Z[Q]K0 = (0), i.e., Coker(Z[ιg]) is a torsion Z[Q]-module. On the
other hand, we also have a homomorphism of Q-modules

(Q(1)
c )g → Qgp ; y 7→ y − yg,

which induces an embedding of Z[Q]-modules Coker(Z[ιg]) ↪→ Z[Qgp]/Z[Q]. Since Z[Qgp]/Z[Q]
is Z[Q]-torsion, the assertion follows.

(2): It immediately follows from the combination of Lemma 1.2.33 (2), Proposition
1.2.23 (2), and the assertion (1) of this lemma.

1.2.3 Krull monoids and their divisor class group

In this subsection, we give an easy review of divisor class groups of Krull monoids.
Krull monoids have a long history in factorization theory and they are related to many
mathematical fields, such as algebraic number theory, analytic number theory, combina-
torial theory, and commutative ring theory. First, we define fractional ideals of monoids.

Definition 1.2.35 (Fractional ideals of monoids). Let Q be an integral monoid. Then a
fractional ideal of Q is a Q-submodule I ⊆ Qgp such that I 6= ∅ and xI := {x + a | a ∈
I} ⊂ Q for some x ∈ Q.

Lemma 1.2.36. Let Q be an integral monoid. Then the following hold.

1. If I1, . . . , In are fractional ideals of Q, then
n⋂
i=1

Ii is fractional.

2. If I1, I2 are fractional ideals of Q, then I1I2 := {x + y | x ∈ I1, y ∈ I2} is also
fractional.

Proof. (1): Since Ii is a fractional ideal, there exists an element ai ∈ Q such that aiIi ⊆ Q.
Then aiJ ⊂ aiIi ⊂ Q.

(2): Let a1, a2 ∈ Q such that a1I1 ⊂ Q and a2I2 ⊂ Q. Thus a1a2(I1I2) ⊂ P .

We say that a fractional ideal I is finitely generated if it is finitely generated as a Q-
module. For any two fractional ideal I1 and I2, we define (I1 : I2) := {x ∈ Qgp | x·I2 ⊆ I1}.

Lemma 1.2.37. Let Q be an integral monoid and let I1 and I2 be fractional ideals. Then
(I1 : I2) is also a fractional ideal.

Proof. Let a1 ∈ Qgp such that a1I1 ⊆ Q. Pick an element a ∈ I2. For any z ∈ (I1 : I2),
az ∈ I1. Thus a1az ∈ a1I1 ⊂ Q. This implies (a1a) · (I1 : I2) ⊂ Q, as desired.

For a fractional ideal I of Q, we set I−1 := (Q : I) and I∗ := (I−1)−1. We say that a
fractional ideal I is reflexive if I∗ = I holds.
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Lemma 1.2.38. Let Q be an integral monoid and I and J be fractional ideals. Then the
following hold.

1. If I ⊂ J , then J−1 ⊂ I−1 and I∗ ⊂ J∗ hold.

2. I ⊂ I∗ holds.

3. I∗ is reflexive. Especially, I∗ is the smallest reflexive fractional ideal containing I.

4. For any a ∈ Qgp, aI−1 = (a−1I)−1 and aI∗ = (aI)∗ hold.

5. (IJ)∗ = (I∗J∗)∗ holds.

Proof. (1): Let a ∈ Qgp such that aJ ⊂ Q. Since I ⊆ J , we have aI ⊂ aJ ⊂ Q, as
desired. The latter assertion follows from the former assertion.

(2): Pick a ∈ I. For any z ∈ (Q : I), zI ⊂ Q, in particular za ∈ Q. Thus
a ∈ (Q : (Q : I)).

(3): This is the same proof as in [SM64, Lemma 1.2 (1)].
(4): The inclusion aI−1 ⊆ (a−1I)−1 obviously holds. Conversely, pick an element z ∈

(a−1I)−1. Then we have (a−1z)I = z(a−1I) ⊆ Q. This implies that z ⊆ aI−1, as desired.
Next, by the former equality, we obtain aI∗ = (a−1I−1)−1 = (((a−1)−1I)−1)−1 = (aI)∗.

(5): Pick a ∈ I∗. Then (aJ∗)∗ = a(J∗)∗ = aJ∗. This implies that (I∗J∗)∗ = I∗J∗.
Pick b ∈ J∗. Then I∗b = (Ib)∗. This implies I∗J∗ = (IJ∗)∗. Finally, pick c ∈ I. Then
(cJ∗)∗ = (cJ)∗∗ = (cJ)∗. This implies that (IJ∗)∗ = (IJ)∗. To summarize these, we
obtain (I∗J∗)∗ = I∗J∗ = IJ∗ = (IJ)∗, as desired.

Definition 1.2.39. Let Q be an integral monoid. We denote by Div(Q) the set of all
reflexive fractional ideals of Q, We define a binary operation on Div(Q) by

I • J := (IJ)∗.

Note that a monoid Q is a reflexive fractional ideal. Moreover, for a reflexive fractional
ideal I, Q • I = I • Q = I. Hence (Div(Q), •) is a monoid. To discuss when Div(Q)
becomes a group, we define the completely integrally closedness of a monoid.

Definition 1.2.40. Let Q be an integral monoid.

1. An element x ∈ Qgp is called almost integral over Q if there exists c ∈ Q such that
c+ nx ∈ Q for any n ∈ Z>0.

2. Q is called completely integrally closed if all almost integral elements over Q lie in
Q.

We note that the set of elements of Qgp which are almost integral over Q is a monoid.
Indeed, for an almost integral element of x, y ∈ Qgp, there exist elements a, b ∈ Q such that
a+nx, b+ny ∈ Q for any n ∈ Z>0. Since we have (a+b)+n(x+y) = (a+nx)+(b+ny) ∈ Q,
x+ y is also almost integral over Q.

Proposition 1.2.41. Let Q be an integral monoid. Then the following assertions hold.

1. (Div(Q), •) is an abelian group if and only if Q is completely integrally closed.

2. If Q is fine and saturated, then Q is completely integrally closed.
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Proof. The assertion (1) is [GR23, Proposition 6.4.42 (i)] and the assertion (2) is [GR23,
Proposition 6.4.42 (ii)].

Next, we define Krull monoids.
Definition 1.2.42 (Krull monoids). Let Q be an integral monoid. Then Q is a Krull
monoid if the following two condition hold:

1. The set of reflexive fractional ideals of Q contained in Q satisfies the ascending
chain condition, that is, for any sequence I0 ⊆ I1 ⊆ I2 ⊆ · · · of reflexive fractional
ideals, there exists a number n ≥ 0 such that Im = Im+1 for any m ≥ n.

2. Q is completely integrally closed.
Lemma 1.2.43. Let Q be an integral monoid. Then the following assertions hold.

1. Q is completely integrally closed if and only if Qred is completely integrally closed.

2. Q is a Krull monoid if and only if Qred is a Krull monoid.
Proof. These are [GHK06, Corollary 2.3.6].

Krull monoids possess many properties that Krull rings have. In particular, the fol-
lowing Proposition 1.2.44 is important to compute divisor class groups.
Proposition 1.2.44. Let Q be an integral monoid and let D ⊂ SpecQ be the subset of
all prime ideals of height one. Then Q is Krull if and only if there is an isomorphism
Z⊕D ∼= Div(Q) as an abelian group.
Proof. The proof is the same as in [SM64, Theorem 3.1].

Keep the notation as in Proposition 1.2.44. Let us denote (np)p∈D ∈ Z⊕D by
∑

p∈D npp.

Also let us denote div : Z⊕D ∼=−→ Div(Q).
Definition 1.2.45. Let Q be an integral monoid and let a ∈ Qgp be an element. Then
we define a principal fractional ideal as {a + q | q ∈ Q}. Moreover, we denote the set of
principal fractional ideals by Prin(Q).
Lemma 1.2.46. Let Q be an integral monoid and let I, J be fractional ideals of Q. Here
we define I ∼ J if there exists an element a ∈ Qgp such that I = aJ . Then ∼ is an
equation relation.
Proof. This is straightforward.
Definition 1.2.47 (The divisor class groups of monoids). Let Q be an integral monoid.
Then we define the divisor class group of Q as Div(Q)/ ∼ and denote this by Cl(Q).

For an integral monoid Q, Cl(Q) is a monoid (its binary operation is induced by that
of Div(Q)). Moreover, if Q is completely saturated, then Cl(Q) is an abelian group.

Here assume that Q is a Krull monoid. Let p ∈ Spec(Q) be a height one prime ideal of
Q. If p is a principal ideal, then div(p) is contained in a principal fractional ideal of Q by
Proposition 1.2.44. Hence we obtain div−1(Prin(Q)) = {

∑
ht p=1 npp ∈ ZD | p is principal}

and
div : ZD/ div−1(Prin(Q))

∼=−→ Cl(Q). (1.6)
By this isomorphism, we obtain the following result.

Corollary 1.2.48. Let Q be a Krull monoid. Then the following assertions are equivalent.
1. Cl(Q) = 0.

2. Any height one prime ideal of Q is principal.
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1.2.4 Monoids associated with convex polyhedral cones

Here we review on monoids associated with convex polyhedral cones appearing in
toric theory. The terminologies are based on [Ful93] and [CLS11]. We refer the reader to
[GR23, Section 6.3] for a more general theory of cones.

Let M ∼= Zn be a lattice with the R-vector space MR := M ⊗Z R and let N :=
Hom(M,Z) ∼= Zn be the dual of M with N∗

R = N ⊗Z R.
A convex polyhedral cone is a set

σ := Cone(S) = {r1v1 + · · ·+ rsvs ∈MR | ri ∈ R≥0}

where S = {v1, . . . , vs} ⊂MR.
For a convex polyhedral cone σ generated by v1, . . . , vr, we denote by −σ the convex

polyhedral cone generated by −v1, . . . ,−vs. Then the dimension of σ is defined as the
dimension of the R-vector space R · σ = σ + (−σ). Also, the dual of a set σ is

σ∨ := {u ∈ NR | 〈u, v〉 ≥ 0 for all v ∈ σ}.

Note that we have a duality (σ∨)∨ = σ. Also, we have a duality for convex polyhedral
cones, which is called Farkas’s theorem.

Proposition 1.2.49 (Farkas’s theorem). The dual of a convex polyhedral cone is a convex
polyhedral cone.

A convex polyhedral cone σ is rational if generators of σ are contained in M . Note
that if σ is a rational convex polyhedral cone, so is σ∨. The following proposition called
Gordon’s theorem is essential to connect affine semigroup rings with toric varieties.

Proposition 1.2.50 (Gordon’s lemma). If σ is a rational convex polyhedral cone, then
Sσ = σ∨ ∩M is a finitely generated monoid.

By Gordon’s lemma, we obtain a monoid algebra k[Sσ] = k[σ∨ ∩M ], which is called a
toric ring. The class of toric rings reflects many combinatorial and geometric properties
of convex polyhedral cones.

As one of the examples of toric rings, we introduce Hibi rings. For details, see [Hib87].
Let P = {p1, . . . , pd−1} be a finite partially ordered set equipped with a partial order �.
For two elements p, q ∈ P , we say that p covers q if q � p and there does not exist p′ ∈ P
such that q � p′ � p. We set P̂ := P ∪ {p0 := 0̂, pd := 1̂}, where 0̂ (resp. 1̂) is the unique
minimal (resp. maximal) element not belonging to P .

Next, let us consider the graph H(P̂ ) whose vertices are elements of P̂ and edges are
{pi, pj} where pi covers pj. Then the d× n matrix H = (hpi,ej) is defined as follows:

hpiej =


1 (if pi is the lower point of the edge ej)
−1 (if pi is the upper point of the edge ej)
0 (othewise).

We set the cone σP := Cone(v1, . . . , vn) where vi is the i-th row vector of the matrix
H. Then the dual σ∨

P is {u ∈ NR | 〈u, vi〉 ≥ 0 for any i = 1, . . . , n} and the toric ring
k[σ∨

P ∩M ] is called a Hibi ring associated with P .

Theorem 1.2.51. Let P be a partially ordered set and let R be a Hibi ring associated with
P . Then the divisor class group Cl(R) is isomorphic to Zd−n where d − 1 is the number
of elements of P and n is the number of edges of H(P̂ ).



CHAPTER 1. RING-THEORETIC PROPERTIES OF LOCAL LOG-REGULAR RINGS18

In section 1.7, we discuss the divisor class groups of local log-regular rings. We also
give an example of local log-regular rings whose monoids define Hibi rings.

At the final of this section, we provide important embeddings of monoids. This is
obtained by using a discussion of convex polyhedral cones.

Lemma 1.2.52. Let Q be a fine and sharp monoid.

1. The equality dim(Q) = rank(Qgp) holds.

2. Assume that Qgp is a torsion-free abelian group of rank r. Then there is an injective
monoid homomorphism Q ↪→ Nr.

Proof. The assertion 1 is [GR23, Corollary 6.4.12 (i)] and the assertion 2 is [GR23, Corol-
lary 6.4.12 (iv)].

1.3 Definition of local log-regular rings
Here, we introduce the definition of local log-regular rings. Local log-regular rings are

defined as commutative rings equipped with log structures. First, we recall the definition
of log rings.

Definition 1.3.1. Let R be a ring, let Q be a monoid, and let α : Q → R be a homo-
morphism of monoids. Here we regard R as a multiplicative monoid. Then we say that
the triple (R,Q, α) is a log ring (or a prelog ring).

Here we give examples of log rings.

Example 1.3.2. 1. Let R be a ring, let R∗ be the group of units of R, and let ι be the
inclusion map R∗ ↪→ R. Then (R,R∗, ι) is a log ring, which is called the trivial log
ring.

2. Let A be a ring, let Q be a monoid, and let A[Q] be the monoid ring. Then
(A[Q],Q, ιQ) is a log ring where A[Q] is the monoid algebra over A asssicated to Q
and ιQ is the monoid homomorphism such that q 7→ eq.

The notion of locality of log rings is important to define local log-regular rings.

Definition 1.3.3. A log ring (R,Q, α) is local if R is a local ring and the equality
α−1(R∗) = Q∗ holds.

Lemma 1.3.4. Let (R,Q, α) be a local log ring, and let S be a local ring with a local map
φ : R→ S. Then (S,Q, φ ◦ α) is also a local log ring.

Proof. This follows from the combination of equalities φ−1(S×) = R× and α−1(R×) =
Q.

We define the log-regularity of commutative rings.

Definition 1.3.5. Let (R,Q, α) be a local log ring where R is Noetherian and Q is fine
and saturated. Let Iα be the ideal of R generated by the image of elements of Q+. Then
we say that (R,Q, α) is a local log-regular ring if it satisfies the following conditions:

1. R/Iα is a regular local ring.
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2. The equality dim(R) = dim(R/Iα) + dim(Q) holds.

We give typical examples of local log-regular rings.

Example 1.3.6. 1. Regular local rings are trivial examples of local log-regular rings.
Namely, let R be a regular local ring, let x1, . . . , xd be a regular system of parameters
of R, and let α : Nd → R be the monoid homomorphism such that α(ei) = xi. Then
(R,Nd, α) be a local log-regular ring.

2. Complete monoid algebras over regular local rings are also local log-regular rings.
Let R be a regular local ring and let Q be a fine, sharp, and saturated monoid.
Then (RJQK,Q, ι) be a local log-regular ring, where ι : Q → RJQK is the monoid
homomorphism such that ι(q) = eq.

Remark 1.3.7. We note that a monoid Q appearing in Definition 1.3.5 has a decompo-
sition Q ∼= Q×Q∗ by Lemma 1.2.18. This implies that the natural projection π : Q↠ Q
splits as a monoid homomorphism. Thus α extends to the homomorphism α : Q → R
along π. This implies that we obtain another log structure (R,Q, α), which becomes a
local log-regular ring with a fine, sharp, and saturated monoid.

In order to know whether the class of local log-regular rings is nice or not, the definition
is not enough. Indeed, the following structure theorem derives many properties.

Theorem 1.3.8 (Kato). Let (R,Q, α) be a local log ring where R is Noetherian and Q
is fine, sharp, and saturated. Let k be the residue field of R and let mR be the maximal
ideal. Let r be the rank of Qgp. Then the following assertions hold.

1. Suppose that R is of equal characteristic. Then (R,Q, α) is a local log-regular ring
if there exists a following commutative diagram:

Q //

��

kJQ⊕ NrK
ψ
��

R // R̂,

(1.7)

where R̂ is the completion along the maximal ideal and ψ is an isomorphism.

2. Suppose that R is of mixed characteristic. Then (R,Q, α) is a local log-regular ring
if there exists a following commutative diagram:

Q //

��

C(k)JQ⊕ NrK
ψ
��

R // R̂,

(1.8)

where R̂ is the completion along the maximal ideal and ψ is a surjective ring map
with Ker(ψ) = (θ) for some element θ ∈ mR̂ whose constant term is p. Moreover,
for any element θ′ ∈ Ker(ψ) whose constant term is p, Ker(ψ) = (θ′) holds.

Proof. The assertion 1 and the first part of the assertion 2 is [Ogu18, Chapter III, The-
orem 1.11.2]. Thus let us prove the second part of the assertion 2.
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The next lemma can be obtained by following the proof of [Ogu18, Chapter III,
Theorem 1.11.2].

Lemma 1.3.9. Let (R,Q, α) be a local log-regular ring. Let e1, . . . er be the canonical
bases on Nr and let x1, . . . , xr be a sequence of elements of R such that x1, . . . , xr is
a regular system of parameters for R/Iα. Then a homomorphism ψ which appears in
Theorem 1.3.8 sends ei to x̂i where x̂i is the image of xi in R̂.

The above structure theorem provides many examples of local log-regular rings.

Example 1.3.10. Let Q be the submonoid of N3 generated by

x1 = (1, 1, 0, 0), x2 = (0, 0, 1, 1), x3 = (1, 0, 1, 0), x4 = (0, 1, 0, 1).

Set R := ZpJQK/(p−x4). Let α : Q → R be the monoid homomorphism such that q 7→ eq.
Then the triple (R,Q, α) is a local log-regular ring.

Proof. The local property of (R,Q, α) is obvious. By Theorem 1.3.8 (2), we know that
(R,Q, α) is a local log-regular ring.

We provide another example, Jungian domains, which is defined by S. Abhyankar
[Abh65] (see also [Kat94, §12]). Here we recall the definition of Jungian domains and give
an induced log-structure.

Definition 1.3.11 ([Abh65, P23, Definition 2]). Let (R,m) be a Noetherian local domain.
We say that (R,m) is a Jungian domain if it is a two-dimensional normal domain such
that the following condition satisfies: There exist integers m,n ∈ Z with 0 ≤ m ≤ n and
GCD(m,n) = 1 and generators x, y, z1, . . . , zn−1 of m such that zni = xiymi for any i =
1, . . . , n− 1, where mi is the unique integer such that 0 ≤ mi ≤ n and mi = mi (mod n).

Lemma 1.3.12. Let (R,m) be a Jungian domain, letM be the multiplicative submonoid
〈xl1yl2zl31 · · · z

ln+1

n−1 ∈ R | l1, . . . , ln+1 ≥ 0〉, and let α :M ↪→ R be the inclusion map. Then
M is fine, sharp, and saturated. Moreover, (R,M, α) is a local log-regular ring.

Proof. Since R is an normal domain andM is generated by x, y, z1, . . . , zi−1,M is obvi-
ously fine and saturated. Moreover, it follows from Iα = m that M is sharp and R/Iα is
regular. Finally, we can easily check that any prime ideal of M forms p ∩M where p is
a prime ideal of R. Hence dim(M) = dim(R).

S. Abhyankar explored how to construct Jungian local domains. For example, see
[Abh65, Theorem 10] or [Abh65, Theorem 14].

Next, we list basic properties of local log-regular rings. The following theorem is an
analogue of the Cohen–Macaulay property for affine normal semigroup rings proved by
Hochster [Hoc72].

Theorem 1.3.13 (Kato). Every local log-regular ring is Cohen-Macaulay and normal.

Definition 1.3.14. Let (R,Q, α) be a log ring. ThenR is α-flat if TorZ[Q]
1 (Z[Q]/Z[I], R) =

0 for any ideal I ⊆ Q.

Under the first condition in Definition 1.3.5, the second condition is equivalent to
several conditions.
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Proposition 1.3.15. Keep the notation and the assumption as in Definition 1.3.5. As-
sume that R/Iα is regular. Then the following are equivalent:

1. (R,Q, α) is a local log-regular ring.

2. For every prime ideal q of Q, the ideal qR is generated by α(q) is a prime ideal of
R such that α−1(qR) = q (then we say that α is very solid).

3. R is α-flat.

4. Tor
Z[Q]
1 (Z[Q]/Z[Q+], R) = 0.

5. grZ[Q+](Z[Q])⊗Z R/Iα ∼= grIα R is an isomorphism.

Proof. The equivalences (1)⇔ (2)⇔ (4)⇔ (5) are a combination of [Ogu18, Chapter III,
Theorem 1.11.1] and [Ogu18, Chapter III, Proposition 1.11.5]. The equivalence (1)⇔ (3)
is [Tho06, Proposition 52]

Lemma 1.3.16. Let (R,Q, α) be a log ring, where Q is an integral monoid. Assume that
α is injective. Then the image of α is contained in R• = R\{0}.
Proof. If Q is the zero monoid, the claim holds obviously. Thus we may assume that Q
is a non-zero monoid. Suppose that there exists x ∈ Q such that α(x) = 0. Then, for a
non-zero element y ∈ Q, we have the equality α(x + y) = α(x). Since α is injective and
Q is integral, we obtain y = 0. This is a contradiction. Thus Imα ⊆ R• holds.

In the situation of Lemma 1.3.16, we obtain the homomorphism of monoids α• : Q →
R• which decomposes α.

Lemma 1.3.17. Let (R,Q, α) be a local log-regular ring. Assume that Q is fine, sharp,
and saturated. Then α• is exact.

Proof. Since Q is fine and saturated and R• is integral, it suffices to show that Spec(α•)
is surjective by [Ogu18, Chapter I, Proposition 4.2.2]. For any q ∈ Spec(Q), qR is prime
of R and α−1(qR) = q by Theorem 1.3.15 (2). Set q• := q\{0} ⊆ R•. Since q• is a prime
ideal of R•, Spec(α•)(q•) = q holds. Hence Spec(α•) is surjective.

1.4 Local log-regular ring are splinters
In this section, we show that any local log-regular ring is a splinter. The class of

splinters is important in the recent studies on singularities theory. In [GR23], they prove
that local log-regular rings are splinter by a logarithmic analogue of André’s method to
prove direct summand conjecture. In this section, we give an alternative and short proof
of it by using the direct summand theorem. Let us recall the definition of a splinter.

Definition 1.4.1. A Noetherian ring A is a splinter if every finite ring map f : A → B
such that Spec(B)→ Spec(A) is surjective admits an A-linear map h : B → A such that
h ◦ f = idA.

In general, it is not easy to see under what algebraic operations being a splinter is
preserved. For instance, Datta and Tucker proved remarkable results ([DT23, Theorem
B], [DT23, Theorem C], or [DT23, Example 3.2.1]). See also Murayama’s work [Mur21]
for the study of purity of ring extensions.

In order to prove the splinter property, we need a lemma on splitting a map under
completion.
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Lemma 1.4.2. Let R be a ring and let f : M → N be an R-linear map. Consider
a decreasing filtration of R-submodules {Mλ}λ∈Λ of M and a decreasing filtration of R-
submodules {Nλ}λ∈Λ of N such that f(Mλ) ⊆ Nλ for each λ ∈ Λ. Set

M̂ := lim←−
λ∈Λ

M/Mλ and N̂ := lim←−
λ∈Λ

N/Nλ,

respectively. Finally, assume that f is a split injection that admits an R-linear map
g : N →M such that g ◦ f = idM , g(Nλ) ⊆Mλ for each λ ∈ Λ. Then f extends to a split
injection M̂ → N̂ .

Proof. By assumption, there is an induced map

M/Mλ
f−→ N/Nλ

g−→M/Mλ

which is an identity on M/Mλ. Taking inverse limits, we get an identity map M̂ → N̂ →
M̂ , which proves the lemma.

The next result is originally due to Gabber and Ramero [GR23, Theorem 17.3.12],1
and we provide an alternative and short proof, using the Direct Summand Theorem.

Theorem 1.4.3. A local log-regular ring (R,Q, α) is a splinter.

Proof. First, we prove the theorem when R is complete. By Remark 1.3.7, we may assume
that Q is fine, sharp, and saturated. By Theorem 1.3.8, we have

R ∼= kJQ⊕ NrK, or R ∼= C(k)JQ⊕ NrK/(p− f),
depending on whether R contains a field or not. Let us consider the mixed characteristic
case. By Lemma 1.2.26, there is a split injection C(k)[Q ⊕ Nr] → C(k)[Nd] for some
d > 0, which comes from an injection δ : Q⊕Nr → Nd that realizes δ(Q⊕Nr) as an exact
submonoid of Nd. After dividing out by the ideal (p− f), we find that the map

C(k)JQ⊕ NrK/(p− f)→ C(k)JNdK/(p− f)
splits as a C(k)JQ⊕NrK/(p−f)-linear map by Remark 1.2.24 and Lemma 1.4.2. Hence, R
becomes a direct summand of the complete regular local ring A := C(k)Jx1, . . . , xdK/(p−
f). Pick a map α : A → R that splits R → A. Consider a module-finite extension
R → S such that S is a domain. We want to show that this map splits. Now there is a
commutative diagram:

R+ // A+

S
γ //

OO

B

OO

R //

OO

A

OO

where R+ (resp. A+) is the absolute integral closure of R (resp. A), and B is a subring
of A+ that is constructed as the chain of S and A, thus being finite over A. By the

1One notices that the treatment of logarithmic geometry in [GR23] is topos-theoretic, while [Kat94]
considers mostly the Zariski sites.
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Direct Summand Theorem [And18], there is a map β : B → A that splits A → B.
Therefore, the composite map S

γ−→ B
β−→ A

α−→ R splits R → S, as desired. The case
where R = kJQ⊕ NrK can be treated similarly.

Next, let us consider the general case. Let R → S be a module-finite extension
with S being a domain, and let R̂ be as in Theorem 1.3.8. By applying the functor
( ) ⊗R R̂ to the exact sequence 0 → R → S → S/R → 0, we get an exact sequence:
0→ R̂→ S⊗R R̂→ S/R⊗R R̂→ 0. We have proved that R̂ is a splinter, so the induced
sequence

0→ HomR̂(S/R⊗R R̂, R̂)→ HomR̂(S ⊗R R̂, R̂)→ HomR̂(R̂, R̂)→ 0

is exact. By the faithful flatness of R̂ over R, the above exact sequence induces the exact
sequence:

0→ HomR(S/R,R)→ HomR(S,R)→ HomR(R,R)→ 0,

and we conclude.

Next, we prove that F -finite local log-regular rings are strongly F -regular. Let us
recall the definition of strong F -regularity.

Definition 1.4.4 (Strong F -regularity). Let R be a Noetherian reduced Fp-algebra that
is F -finite. Let F e

∗R be the same as R as its underlying abelian groups with its R-module
structure via restrictions of scalars via the e-th iterated Frobenius endomorphism F e

R on
R. Then we say that R is strongly F -regular, if for any element c ∈ R that is not in
any minimal prime of R, there exists an e > 0 and a map φ ∈ HomR(F

e
∗R,R) such that

φ(F e
∗ c) = 1.

It is well-known that strongly F -regular rings are splinter. Hence the following theorem
gives an alternative proof of Theorem 1.4.3 in characteristic p > 0.

Lemma 1.4.5. Let (R,Q, α) be a local log-regular ring of characteristic p > 0 such that
R is F -finite. Then R is strongly F -regular.

Proof. The proof of this theorem is almost the same as Proposition 1.6.2. The completion
ofR with respect to its maximal ideal is isomorphic to the completion of k[Q⊕Nr], andQ is
a fine, sharp and saturated monoid by Theorem 1.3.8 and [Ogu18, Chapter I, Proposition
3.4.1]. Then it follows from Lemma 1.2.26 that Q ⊕ Nr can be embedded into Nd for
d > 0, and k[Q⊕Nr]→ k[Nd] ∼= k[x1, . . . , xd] splits as a k[Q⊕Nr]-linear map. Applying
[HH89, Theorem 3.1], we see that k[Q⊕Nr] is strongly F -regular. After completion, the
complete local ring kJQ ⊕ NrK is strongly F -regular in view of [Abe01, Theorem 3.6].
Then by faithful flatness of R→ kJQ⊕NrK, [HH89, Theorem 3.1] applies to yield strong
F -regularity of R.

1.5 The canonical module of a local log-regular ring
In this section, we prove the structure theorem for the canonical module of a local

log-regular ring and provide a Gorenstein criterion for local log-regular rings.

Theorem 1.5.1. Let (R,Q, α) be a local log-regular ring, where Q is fine, sharp, and
saturated (by Remark 1.2.25, we may assume that Q ⊆ Nl for some l > 0 ). Let x1, . . . , xr
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be a sequence of elements of R such that x1, . . . , xr is a regular system of parameters for
R/IQ Then R admits a canonical module and its form is

〈(x1 · · · xr)α(a) | a ∈ relintQ〉, (1.9)

where relintQ is the relative interior of Q.

Proof. First, assume that R is m-adically complete and separated. If R is of equal char-
acteristic, then R is isomorphic to kJQ⊕ NrK by Theorem 1.3.8. Let us check that

k[relintQ⊕ (e+ Nr)] := 〈(q, e) | q ∈ relintQ〉 ⊆ k[Q⊕ Nr] (1.10)

is a canonical module of k[Q ⊕ Nr], where e = (1, 1, . . . , 1) ∈ Nr. Indeed, note that we
have the ring isomorphism k[Q]⊗kk[Nr] ∼= k[Q⊕Nr]. Also note that the canonical module
ωk[Q] = k[relintQ] and ωk[Nr] = k[e+Nr] by [BH98, Theorem 6.3.5 (b)]. This induces the
following isomorphisms

ωk[Q⊕Nr]
∼= ωk[Q] ⊗k ωk[Nr] = k[relintQ]⊗k k[e+ Nr]. (1.11)

If you trace (1.11) backwards, then it turns out that ωk[Q⊕Nr] is the form of (1.10). Since
R is isomorphic to the completion of k[Q⊕ Nr] along a maximal ideal k[(Q⊕ Nr)+], the
image of (1.10) in R is the canonical module of R.

If R is of mixed characteristic, then R is isomorphic to C(k)JQ ⊕ NrK/(θ) for some
θ ∈ W (k)JQ⊕ NrK. If C(k)JQ⊕ NrK has a canonical module, then its image in R is the
canonical module of R. Thus it suffices to show the case where R = C(k)JQ⊕ NrK.

Set ωR := 〈p(qi, e) | qi ∈ relintQ〉 ⊆ C(k)JQ ⊕ NrK. Since ωR/pωR is a canonical
module of R/pR ∼= kJQ⊕ NrK and p is a regular element on R and ωR, ωR is a maximal
Cohen-Macaulay module of type 1. Finally, since R is a domain, ωR is faithful. Thus ωR
is a canonical module of R.

Next, let us consider the general case. We define the ideal ωR as (1.9). Then, by
considering the diagrams (1.7) or (1.8), the image of ωR in the m-adic completion of R is
the canonical module. Thus, by [BH98, Theorem 3.3.14 (b)], ωR is a canonical module of
R.

Remark 1.5.2. Set ωR := 〈(x1 · · · xr)α(a) | a ∈ relintQ〉 and ω′
R := 〈α(a) | a ∈ relintQ〉.

Then we note that the homomorphism ω′
R

×x1···xr−−−−→ ωR is isomorphism. Namely, the ideal
of R generated by the image of the relative interior of the associated monoid is also the
canonical module of R.

Remark 1.5.3. In Theorem 1.5.1, the case when R = W (k)Jσ∨ ∩MK follows from the
following Marcus Robinson’s result2: Let A := W (k)[σ∨∩M ], whereM is a lattice and σ is
the strongly convex polyhedral cone. LetX = Spec(A). Then one can choose codimension
one subschemes D1, . . . , Dn of X such that KX = −

∑
Di is a canonical divisor on X.

This result implies that the ideal ωA :=
⋂

pi is a canonical module of A, where pi is
the corresponding height one prime ideal to Di. By taking the localization and the
completion at the maximal ideal W (k)[(σ∨ ∩M)+], we find out that ωA is W (k)Jσ∨ ∩MK
is the canonical module.

As an application of Theorem 1.5.1, let us provide a Gorenstein criterion of local
log-regular rings. In order to prove it, we need the following proposition.

2For readers who are not familiar with algebraic geometry, see [ST12, Appendix B].
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Proposition 1.5.4. Let (R,Q, α) be a local log-regular ring. Let x := x1, . . . , xr be a
sequence of elements of R such that x1, . . . , xr is a regular system of parameters for R/Iα.
Set Ri := R/(x1, . . . xi) and αi : Q → R ↠ Ri. Then x is a regular sequence on R and
(Ri,Q, αi) is also a local log-regular ring for any 1 ≤ i ≤ r.

Proof. Since a local homomorphism preserves the locality of the log structure (see [INS22,
Lemma 2.16]), (Ri,Q, αi) is a local log ring. By the induction for i, it suffices to check
that i = 1. Since R is a domain, x1 is a regular element. Thus we obtain the isomorphism
R1/Iα1

∼= (R/Iα)/x1(R/Iα). Since the image of x1 is a regular element on R/Iα by the
assumption and R/Iα is a regular local ring, R1/Iα1 is regular. Moreover, the above
isomorphism implies that the equality dim(R1/Iα1) = dim(R1) − dim(Q) holds. Thus
(R1,Q, α1) is a local log-regular ring.

Corollary 1.5.5. Keep the notation as in Theorem 1.5.1. The following assertions are
equivalent:

1. R is Gorenstein.

2. For a fixed field k, k[Q] is Gorenstein.

3. There exists an element c ∈ relintQ such that relintQ = c+Q.

Proof. The equivalence of (2) and (3) is well-known (for example, see [BH98, Theorem
6.3.5 (a)]). Thus it suffices to show the equivalence of (1) and (3). Since the Gorenstein
property of R is preserved under the completion and the quotient by a regular sequence,
one can assume that α is injective by Theorem 1.3.8 and that dimR = dim(Q) by Propo-
sition 1.5.4. Hence ωR = 〈α(x) | x ∈ relintQ〉. Now, assume that R is Gorenstein. There
exists an element c ∈ relintQ such that ωR = (α(c)). This implies that for any a ∈ relintQ,
there exists x ∈ R such that α(a) = α(c)x. Since we have α(a) = α•(a) and α(c) = α•(c)
by Lemma 1.3.16, we obtain

α•(a) = α•(c)x. (1.12)

Hence x = α•(a − c) ∈ Im
(
(α•)gp

)
. Since α• is exact, we obtain x ∈ Imα•. Now,

there exists y ∈ Q such that x = α•(y). By (1.12) and the injectivity of α•, we obtain
a = c + y ∈ c +Q. Hence relintQ ⊆ c +Q. Since relintQ is an ideal of Q, the converse
inclusion holds. Therefore we obtain relintQ = c+Q.

Conversely, assume that relintQ = c + Q for some c ∈ relintQ. Then we obtain the
equalities ωR = α(c)〈α(x) ∈ R | x ∈ Q〉 = α(c)R. This implies that R is Gorenstein, as
desired.

If a Cohen-Macaulay local ring has a canonical module, it is a homomorphic image of
a Gorenstein local ring. Namely, we obtain the following corollary (a toric ring is always
a homomorphic image of a regular ring, but we don’t know whether a local log-regular
ring is a homomorphic image of a regular ring or not).

Corollary 1.5.6. Let (R,Q, α) be a local log-regular ring. Then R is a homomorphic
image of a Gorenstein local ring.

At the last of this section, we determine the form of Gorenstein local log-regular rings
consisting of two-dimensional monoids by using Corollary 1.5.5.

Proposition 1.5.7. Let (R,Q, α) be a local log-regular ring where Q is fine, sharp, and
saturated. Assume that Q is two-dimensional. Then R is Gorenstein if and only if Q is
isomorphic to the submonoid of N2 generated by (n+1, 0), (1, 1), (0, n+1) for some n ≥ 1.
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Proof. By Corollary 1.5.5, one can reduce to the case of a toric ring k[Q] where k is an
algebraically closed field, and in this case, we know that there exists n ≥ 1 such that k[Q] is
isomorphic to k[P ] where P is the submonoid of N2 generated by (n+ 1, 0), (1, 1), (0, n+
1). By applying [Gub98, Theorem 2.1 (b)], we can show that Q is isomorphic to P ,
as desired. Conversely, assume that Q is isomorphic to the submonoid generated by
(n+ 1, 0), (1, 1), (0, n+ 1) ∈ N2. Then k[Q] is Gorenstein for an algebraically closed field
k because this is an An-type singularity. Thus R is also Gorenstein by Corollary 1.5.5, as
desired.

From the above proposition, it follows that a complete Gorenstein local log-regular
ring with an associated monoid that is two-dimensional has the following form.

Corollary 1.5.8. Let (R,Q, α) be a local log-regular ring where Q is a fine, sharp, and
saturated monoid. Assume that the dimension of the monoid Q is two. Then the following
assertions hold.

1. Suppose that R is of equal characteristic. Then R is Gorenstein if and only if R̂ is
isomorphic to kJsn+1, st, tn+1, x1, . . . , xrK for some n ≥ 1.

2. Suppose that R is of mixed characteristic. Then R is Gorenstein if and only if R̂ is
isomorphic to C(k)Jsn+1, st, tn+1, x1, . . . xrK/(θ) for some n ≥ 1 where C(k) is the
Cohen ring of the residue field k and θ is an element of C(k)Jsn+1, st, tn+1, x1, . . . xrK
whose constant term is p.

Proof. These follow from Proposition 1.5.7 and Theorem 1.3.8.

We also give examples of non-Gorenstein local log-regular rings.

Example 1.5.9. Let P be a monoid generated by (1, 0), (1, 1), (1, 2), (1, 3).

1. Set R := ZpJPK/(p− (1, 0)) ∼= ZpJs, st, st2, st3K/(p− s) and set α : P → ZpJPK→ R
Then (R,Q, α) is a local log-regular ring. By Proposition 1.5.7, we know that R is
not Gorenstein. Moreover, R is also isomorphic to ZpJpt, pt2, pt3K. Since the relative
interior of Q is generated by (1, 1) and (1, 2), its canonical module ωR is isomorphic
to the ideal of ZpJpt, pt2, pt3K generated by pt and pt2.

2. Set S := ZpJPK. Then (S,P ,P ↪→ S) is a local log-regular ring. The canonical
module of S is isomorphic to the ideal of ZpJs, st, st2, st3K generated by pst and
pst2.

1.6 Local log-regular rings are pseudo-rational singu-
larities

In this section, we prove that local log-regular rings have pseudo-rational singularities.
First of all, we introduce the definition of pseudo-rationality, defined by Lipman and
Tessier.

Definition 1.6.1. Let (R,m) be a d-dimensional Noetherian local ring. Then we say that
(R,m) is pseudo-rational if it is normal, Cohen–Macaualy, analytically unramified3, and
if for every projective birational map π : W → Spec(R), the canonical map Hd

m(R) →
Hd
E(W,OW ) is injective, where E := π−1(m) denotes the closed fibre.
3A Noetherian local ring (R,m) is analytically unramified if its completion R̂ is reduced.
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The following theorem is usually called Boutot’s theorem.

Theorem 1.6.2 ([Bou87], [HH90], [HM18]). Let (R,m) → (S, n) be a pure map of lo-
cal rings such that (S, n) is regular. Then R is pseudo-rational. In particular, direct
summands of regular rings are pseudo-rational.

Proposition 1.6.3. Let (R,Q, α) be a local log-regular ring with the maximal ideal mR.
Then (R,mR) has a pseudo-rational singularity.

Proof. It suffices to show that X is pseudo-rational. To prove this, we show that R is
a pure subring of a regular ring. Also, since a local log-regular ring has the canonical
module by Theorem 1.5.1, by applying [Mur22, Proposition 4.20], we may assume that
R is m-adically complete and separated. Namely, R is isomorphic to either kJQ⊕NrK or
C(k)JQ⊕ NrK/(θ). Now, we prove that R is the direct summand of a regular local ring.
Our approach is the same as in the proof of Lemma 1.4.5, so we give a sketch of the proof
here. We refer the reader to it for the details. Since the same argument is made, we will
show the case R ∼= C(k)JQ ⊕ NrK/(θ). An embedding Q ↪→ Nr given in Lemma 1.2.25
induces a split injection C(k)[Q⊕Nr] ↪→ C(k)[Nd] for some d > 0. This induces the split
injection C(k)JQ ⊕ NrK ↪→ C(k)JNdK. And after taking the quotient by some element
θ ∈ AJQ ⊕ NrK, we also obtain the split injection C(k)JQ ⊕ NrK/(θ) ↪→ C(k)JNdK/(θ).
Finally, applying Theorem 1.6.2, we obtain the desired claim.

Remark 1.6.4. There is another way to prove equal characteristic cases. If R is F -
finite complete local log-regular ring, then it is strongly F -regular ring. Since strong
F -regularity implies F -rationality, R is F -rational. Hence we obtain R is pseudo-rational
because an F -rational ring is pseudo-rational by [Smi97, Theorem 3.1]. Also, the equal
characteristic 0 case is due to [Sch08, Main Theorem A] and the above discussion.

1.7 The divisor class group of a local log-regular ring
In this section, we show that the divisor class group of a local log-regular ring is

isomorphic to that of the associated monoid. This theorem was proved in [GR23] by
using the vanishing theorem of a sheaf cohomology. We provide an elementary proof of
it by investigating the correspondence between height one prime ideals of monoids and
height one prime ideals of local log-regular rings.

Lemma 1.7.1. Let (R,Q, α) be a local log-regular ring and let p be a height one prime
ideal of R. Then the following are equivalent.

1. There exists a height one prime ideal q of Q such that p = qR,

2. The intersection of Imα and α−1(p) is not empty.

Proof. The implication (1)⇒ (2) is obvious, hence let us consider the implication (2)⇒
(1). Note that α−1(p) is a height one prime ideal by assertion (2). Since α is very solid and
any element of Q does not map to 0 ([Ish22]), we obtain α−1(p)R = p. Hence assertion
(1) holds.

Lemma 1.7.2. Let (R,Q, α) be a log ring and let I be an ideal of Q. Then Z[I]⊗Z[Q] R
is isomorphic to α(I)R.
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Lemma 1.7.3. Let (R,Q, α) be a log ring and let I, J be ideals of Q. Assume that R is
α-flat. Then

α(I)R ∩ α(J)R = α(I ∩ J)R
holds.

Proof. Let us consider the following diagram.

0 −−−→ Z[I ∩ J ] −−−→ Z[I] −−−→ Z[I]/Z[I ∩ J ] −−−→ 0y y y
0 −−−→ Z[J ] −−−→ Z[Q] −−−→ Z[Q]/Z[J ] −−−→ 0.

By the α-flatness of R, we obtain the following diagram.

0 −−−→ Z[I ∩ J ]⊗Z[Q] R −−−→ Z[I]⊗Z[Q] R −−−→ Z[I]/Z[I ∩ J ]⊗Z[Q] R −−−→ 0y y y
0 −−−→ Z[J ]⊗Z[Q] R −−−→ Z[Q]⊗Z[Q] R −−−→ Z[Q]/Z[J ]⊗Z[Q] R −−−→ 0.

This diagram is isomorphic to the following one:

0 −−−→ α(I ∩ J)R −−−→ α(I)R −−−→ α(I)R/α(I ∩ J)R −−−→ 0y y y
0 −−−→ α(J)R −−−→ R −−−→ R/α(J)R −−−→ 0.

Since the vertical arrows are injective, we obtain the following exact sequence by the snake
lemma.

0→ α(J)R/α(I ∩ J)R→ R/α(I)R
p−→ R/α(I)R + α(J)R→ 0.

Thus since we obtain α(J)R/α(I∩J)R ∼= Ker p = α(I)R+α(J)R/α(I)R ∼= α(J)R/α(I)R∩
α(J)R, the equality α(I ∩ J)R = α(I)R ∩ α(J)R holds.

Lemma 1.7.4. Let (R,Q, α) be a log ring where R is a domain and Q is integral. Let
J, J ′ be a fractional ideal of Q. Then the equality (J ∩ J ′)R = JR ∩ J ′R holds.

Proof. Choose x ∈ Q such that xJ, xJ ′ ⊆ Q. Then it suffices to show that x(JR∩J ′R) =
xJR ∩ xJ ′R, but this follows from x(J ∩ J ′) = xJ ∩ xJ ′.

Lemma 1.7.5. Let (R,Q, α) be a local log-regular ring and let I, J, J ′ ⊆ Qgp be fractional
ideals of Q. Assume that I is finitely generated. Then the following assertions hold.

1. The equality (J : I)R = (JR : IR) holds.

2. JR is equal to J ′R if and only if J is equal to J ′.

3. Div(α) : Div(Q)→ Div(R) is well-defined and it is injective.

Proof. We express I = a1Q ∪ · · · ∪ anQ for some a1, . . . , an ∈ Qgp. Thus we obtain
(J : I) = a−1

1 J ∩· · ·∩a−1
n J and (JR : IR) = a−1

1 JR∩· · ·∩a−1
n JR. Here, by Lemma 1.7.4,

the equality a−1
1 JR ∩ · · · ∩ a−1

n JR = (a−1
1 J ∩ · · · ∩ a−1

n J)R holds. Hence the assertion (1)
holds.

Next to prove the assertion (2), we may assume that J ⊆ J ′ after replacing J ′ with
J ′ ∪ J . Assume that JR = J ′R. Then, since the equality Z[xJ ]⊗Z[Q] R = Z[xJ ′]⊗Z[Q] R
holds, we obtain Z[xJ ] = Z[xJ ′] by faithfully α-flatness, and hence xJ = xJ ′ holds. The
converse implication is obvious, the assertion (2) holds.

Finally, the first assertion of (3) follows from (1), and the second follows from (2).
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Proposition 1.7.6. Let (R,Q, α) be a local log-regular ring. Then Cl(α) : Cl(Q)→ Cl(R)
is well-defined and it is injective.

Proof. It follows from [GR23, Proposition 6.4.55].

Lemma 1.7.7. Let (R,Q, α) be a complete local log-regular ring. Let S be the image of
α. There exists an R-algebra T such that T is a regular local ring and S−1R ∼= S−1T .

Proof. By replacing the monoid Q with Q⊕ Ndim(R/Iα), we may assume dim(R/Iα) = 0.
First, suppose that R is of equal characteristic. Then R is isomorphic to kJQK by

Theorem 1.3.8 (1). Here, by Lemma 1.2.52 (2), the monoid homomorphism Q ↪→ Nr

induces the injective ring homomorphism kJQK ↪→ kJNrK. Moreover, since S−1kJQK is
isomorphic to S ′−1kJNrK where S is the multiplicatively closed subset of kJQK generated
by an element of the relative interior of Q and S ′ is its image, S−1kJQK is a unique
factorization domain. Thus kJNrK is the desired regular local ring.

Next, suppose that R is of mixed characteristic. Then R is isomorphic to V JQK/(θ)
by Theorem 1.3.8 (2). By the same discussion of the equal characteristic case, we obtain
the injection V JQK/(p− f)V JQK ↪→ V JNrK/(p− f)V JNrK, and S−1(V JQK/(p− f)V JQK)
is isomorphic to S ′−1(V JNrK/(p− f)V JNrK). This also implies that V JNrK/(p− f)V JNrK
is the desired regular local ring.

Theorem 1.7.8. Let (R,Q, α) be a local log-regular ring. Then Cl(α) : Cl(Q) → Cl(R)
is isomorphism. In particular, the divisor class group Cl(R) is finitely generated.

Proof. Consider the composite map

Cl(Q)→ Cl(R)→ Cl(R̂).

Note that the former group homomorphism Cl(Q) → Cl(R) is injective by Proposition
1.7.6 and it is well-known that the latter group homomorphism Cl(R)→ Cl(R̂) is injective.
Since it suffices to show that Cl(Q) → Cl(R̂) is surjective, we may assume that R is
complete. By Nagate’s theorem, we obtain the following short exact sequence:

0→ H → Cl(R)→ Cl(S−1R)→ 0,

where H is the subgroup of R generated by the isomorphic class of a height one prime
ideal that meets S. Since Cl(S−1R) is trivial by Lemma 1.7.7, we obtain H = Cl(R).
Moreover, we have an isomorphism Cl(α) : Cl(Q)

∼=−→ Im(Cl(α)) = H by Lemma 1.7.1.
This implies that Cl(α) is an isomorphism. Finally, since the set of height one primes of
Q is finite, Cl(Q) is finitely generated. Thus so is Cl(R) by Lemma 1.2.15.

By combining Theorem 1.7.8 with Chouinard’s Theorem [Cho81], for a local log-regular
ring (R,Q, α), we obtain the following isomorphism

Cl(R) ∼= Cl(Q) ∼= Cl(k[Q]). (1.13)

By reducing the computation of the divisor class group of R to that of k[Q], we can
obtain the many examples of finitely generated divisor class groups in of local log-regular
rings in mixed characteristic.

Example 1.7.9. Let k[σ∨
P ∩M ] be a Hibi ring associated with a partially ordered set P

(see §1.2.4). We recall that the divisor class group of R is Zn−d (Theorem 1.2.51). Thus
we set Q := σ∨

P ∩M and R := C(k)JQK/(θ) where C(k) is the Cohen ring of k and θ is the
element of C(k)JQK whose constant term is p. Then (R,Q, α) is a local log-regular ring
where α is the composition of Q ↪→ C(k)JQK and C(k)JQK↠ R. Moreover, by Theorem
1.7.8, we obtain Cl(R) ∼= Zn−d.



Chapter 2

Perfectoid towers and their tilts

2.1 Introduction
This chapter is based on the two papers [INS22] and [AIS23]. In this chapter, we

establish a tower-theoretic framework to deal with perfectoid objects by introducing the
notion of perfectoid towers and their tilts. The main objects of this chapter are towers of
rings. Hence we first introduce the definition of towers of rings.

Definition 2.1.1 (Towers of rings). 1. A tower of rings ({Ri}i≥0, {ti}i≥0) is a direct
system of rings of the form

R0
t0 // R1

t1 // R2
t2 // · · · ti−1 // Ri

ti // · · · .

2. A morphism of towers of rings f : ({Ri}i≥0, {ti}i≥0)→ ({R′
i}i≥0, {t′i}i≥0) is defined

as a collection of ring maps {fi : Ri → R′
i}i≥0 that is compatible with the transition

maps.

We remark that for a tower of rings ({Ri}i≥0, {ti}i≥0), we often denote a direct limit
lim−→i≥0

Ri by R∞. If ({Ri}i≥0, {ti}i≥0) is isomorphic to ({Si}i≥0, {ui}i≥0), it is obvious that
R∞ is isomorphic to S∞.

2.1.1 Perfect towers and purely inseparable towers

Perfectoid rings are a natural generalization of perfect rings and the tilting operation
for perfectoid rings is none other than the inverse perfection for perfectoid rings. Thus, to
consider a tower-theoretic analogue of perfectoid rings and its tilting operation, we first
need to find a tower-theoretic analogue of perfect Fp-algebras and the inverse perfection
for towers.

When we construct a perfect ring from a reduced Fp-algebra, we consider the following
tower:

R ↪→ R1/p ↪→ R1/p2 ↪→ · · · . (2.1)
A tower which is isomorphic to the tower (2.1) is called a perfect tower (Definition 2.2.2).

Next, let us define purely inseparable towers which are a class having an inverse
perfection of towers. As the inverse perfection of a perfect Fp-algebra coincides with
itself, we hope that the inverse perfection for a tower also coincides with itself. The most
naive idea to define the inverse perfection of towers is that we apply the inverse perfection
of a ring for each layer, but, as the following example shows, we can not obtain a tower
which has the desired property.

30
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Example 2.1.2. Let us consider the tower

FpJtK ↪→ FpJtK[t1/p] ↪→ FpJtK[t1/p2 ] ↪→ · · · . (2.2)

Then, for every i ≥ 0, the inverse perfection of FpJtK[t1/pi ] is isomorphic to Fp. Hence the
obtained tower by applying the inverse perfection of a ring to each layer is

Fp
∼=−→ Fp

∼=−→ · · · .

In the tower (2.2), we observe that the Frobenius endomorphism of FpJtK[t1/pi+1
] factors

through FpJtK[t1/pi ]. We denote by Fi the ring map FpJtK[t1/pi+1
] → FpJtK[t1/pi ]. Since

each Fi is an isomorphism, the inverse limit lim←−{· · ·
Fi+1−−→ FpJtK[t1/pi+1

]
Fi−→ FpJtK[t1/pi ]} is

isomorphic to FpJtK[t1/pi ] for every i ≥ 0. We can apply this observation for the deeply
ramified tower

Zp ↪→ Zp[p1/p] ↪→ Zp[p1/p
2

] ↪→ . (2.3)

Then the Frobenius endomorphism on Zp[p1/p
i+1

]/(p) also factors through Zp[p1/p
i
]/(p)

and we denote by Fi the ring map Zp[p1/p
i+1

]/(p)→ Zp[p1/p
i
]/(p). Also, the inverse limit

lim←−{· · · → Zp[p1/p
i+1

]/(p)
Fi−→ Zp[p1/p

i
]/(p)} is isomorphic to FpJtK[t1/pi ] for every i ≥ 0.

Based on these observations, we define purely inseparable towers which have an inverse
perfection as above (see Definition 2.3.1).

2.1.2 Perfectoid towers

In the framework of towers, we introduce perfectoid towers as a specialized class of
purely inseparable towers and define tilts to them as the inverse perfection of purely
inseparable towers. The class of perfectoid towers gives a generalization of deeply ramified
towers as (2.3) and perfect towers. Summarizing the above, these classes of towers form
the following hierarchy:

{
Perfect towers
(Definition 2.2.2)

}
⊆

{
Perfectoid towers
(Definition 2.4.9)

}
⊆

{
Purely inseparable towers

(Definition 2.3.1 (1))

}
In the following of this subsection, let R0 → R1 → · · · be a perfectoid tower and let

Rs.♭
0 → Rs.♭

1 → · · · is its inverse perfection (the inverse perfection of a perfectoid tower is
called the tilt). Here, we list basic properties of perfectoid towers:

• There is an isomorphism of Koszul homology groups Hj(Ri, f0) ∼= Hj(R
s.♭
i , f

s.♭
0 ) for

some specific elements f0 and f s.♭0 (see Remark 2.4.33). This leads to the results that
the tilting operation for towers preserves some Noetherian properties (Proposition
2.4.35).

• The tilt of a perfectoid tower is also a perfectoid tower (Proposition 2.4.34). This
is a tower-theoretic analogue of the result that the tilt of a perfectoid ring is also
perfectoid.

• There is a compatibility with perfectoid ring, namely, the direct limit R∞ of perfec-
toid towers R0 → R1 → · · · is a perfectoid ring in the sense of Bhatt-Morrow-Scholze
(Corollary 2.4.42).
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• The tilting operation also preserves information of toric singularities, that is, the
tilt of a perfectoid tower consisting of log-regular rings in mixed characteristic also
consists of log-regular rings in positive characteristic (Theorem 2.5.10).

Furthermore, these are answers to Question 1 in Preface.

2.1.3 Applications for cohomologies of commutative rings

Finally, let us give the two applications to cohomologies of rings. First of all, under
a certain normality assumption, we obtain a comparison theorem on the finiteness of
étale cohomology groups via tilting for towers (Proposition 2.6.7). This theorem relies on
Česnavičius-Scholze’s comparison theorem under tilting for schematic perfectoids [ČS19,
Theorem 2.2.7]. We can not have the complete answer to what kind of classes of rings
satisfy the normality condition in Proposition 2.6.7, but at least towers consisting of local
log-regular rings constructed in Construction 2.5.5 satisfy its condition.

As an application of the comparison theorem, we obtain the finiteness of `-torsion part
of the divisor class group of a local log-regular ring for all prime ` 6= p.

Main Theorem C (Theorem 2.6.13). Let (R,Q, α) be a local log-regular ring of mixed
characteristic with perfect residue field k of characteristic p > 0, and denote by Cl(R) the
divisor class group with its torsion subgroup Cl(R)tor. Then the following assertions hold.

1. Assume that R ∼= W (k)JQK for a fine, sharp, and saturated monoid Q, where W (k)
is the ring of Witt vectors over k. Then Cl(R)tor ⊗ Z[1

p
] is a finite group. In other

words, the `-primary subgroup of Cl(R)tor is finite for all primes ` 6= p and vanishes
for almost all primes ` 6= p.

2. Assume that R̂sh[1
p
] is locally factorial, where R̂sh is the completion of the strict

Henselization Rsh. Then Cl(R)tor ⊗ Z[1
p
] is a finite group. In other words, the `-

primary subgroup of Cl(R)tor is finite for all primes ` 6= p and vanishes for almost
all primes ` 6= p.

This theorem is recovered by Theorem 1.7.8, but the method of the proof is completely
different. In characteristic p > 0, Polstra proved that the torsion part of the divisor class
group of a strongly F -regular ring is surprisingly finite and we proved an F -finite local
log-regular ring is strongly F -regular. Our approach is a reduction to Polstra’s theorem
by tilting. Let us explain our approach easily.

(1) After taking the strict Henselization and the completion, we reduce to the case
where R is complete and its residue field is separably closed.

(2) By the assumption of the locally factoriality of R[1
p
], there is an open subset U ⊂

Spec(R) such that Pic(U) ∼= Cl(X) for X\V (pR) ⊆ U and codimX(X\U) ≥ 2
where X := Spec(R). Also, we obtain the isomorphisms

H1(Uét,Z/`nZ) ∼= Pic(U)[`n] ∼= Cl(X)[`n]. (2.4)

(3) In characteristic p > 0 side, we have

H1(U s.♭
ét ,Z/`nZ) ∼= Pic(U s.♭)[`n] ↪→ Cl(Rs.♭)[`n], (2.5)

where U s.♭ is the open subset ofXs.♭ := Spec(Rs.♭) corresponding to U (see Definition
2.6.3).
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(4) Applying Proposition 2.6.7 to the tower constructed in Construction 2.5.5, we obtain
the inequality

|H1(Uét,Z/`nZ)| ≤ |H1(U s.♭
ét ,Z/`nZ)|. (2.6)

Hence by combining (2.4), (2.5), and (2.6), we obtain

|Cl(X)[`n]| = |H1(Uét,Z/`nZ)| ≤ |H1(U s.♭
ét ,Z/`nZ)| ≤ |Cl(Rs.♭)[`n]|.

(5) Finally, since Rs.♭ is a local log-regular ring, particularly strongly F -regular, we can
prove the finiteness of Cl(Rs,♭)[`n] using Polstra’s result.

Next, we apply perfectoid towers to the local cohomological dimension of regular
local rings. In the history of the study on local cohomologies, finding the condition of
the vanishing of the local cohomology modules has been considered important, which is
called Grothendieck’s vanishing problem. Let (R,m) be a Noetherian local ring. Then
the local cohomological dimension for a pair of an R-module M and an ideal I of R is
the supremum of the integer i such that H i

I(M) 6= 0 and we denote it by cd(M, I). If
I = m, then the Grothendieck vanishing theorem implies cd(R,m) = d.1 If I 6= m, then it
is much more difficult to compute the cohomological dimension cd(M, I). The condition
when cd(M, I) < d holds for any R-module M is given by Hartshorne, which is called
Hartshorne-Lichtenbaum vanishing theorem. In particular, the theorem implies that for
a complete Noetherian local domain R and an ideal I which is not the maximal ideal,
cd(M, I) < d holds for any R-module M .

The condition when cd(M, I) < d − 1 holds is called the second vanishing theorem.
Let us state the second vanishing theorem for solved cases.

Theorem 2.1.3 (Peskine–Szpiro, Ogus, Hartshorne–Speiser, Huneke–Lyubeznik, Zhang).
Let (R,m) be a d-dimensional regular local ring and I be an ideal of R. Assume that R
is unramified (namely, R is of equal characteristic or R is of mixed characteristic (0, p)
and p is part of a regular system of parameters of m). Then the following assertions are
equivalent.

1. cd(M, I) < d− 1 for any R-module M .

2. dim(R/I) ≥ 2 and the puctured spectram of R̂sh/IR̂sh is connected.

Many researchers have studied this theorem, such as Hartshone, Peskine, Szpiro,
Huneke, Lyubeznik, Zhang, and so on, but this theorem is not proved in the case of
ramified regular local rings. In §2.6.3, we prove the similar type of the second vanishing
theorem for a regular local ring in mixed characteristic. In our theorem, there is no need
to distinguish between ramified and unramified.

Main Theorem D (Theorem 2.6.26). Let (R,m, k) be a d-dimensional complete regular
local ring of mixed characteristic with separably closed residue field k. Assume that I ⊂ R
is a proper ideal with dim(R/q) ≥ 3 and `R(H2

m(R/pR + q)) < ∞ for all q ∈ Min(R/I).
Then the following statements are equivalent.

1. Hd−1
I (R) = 0.

1The Grothendieck vanishing theorem states the following: Let (R,m) be a d-dimensional Noetherian
local ring, let M be a finitely generated R-module, and let t be the depth of M . Then Hd

m(M) and
Ht

m(M) is non-zero. Also, if i is neither t nor d, then Hi
m(M) is zero. This deduces that M is a maximal

Cohen-Macaulay module if and only if Hi
m(M) = 0 for any i 6= d.
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2. The punctured spectrum Spec◦(R/I) is connected.

The key to proving this theorem is that the comparison result of the cohomological
dimensions between a complete regular local ring with a perfectoid tower constructed by
the adjoining the p-th power roots of a regular system of parameters and the 0-th small
tilt (Lemma 2.6.23). Therefore we can compute the cohomological dimension of a regular
local ring of mixed characteristic by reducing to the case of positive characteristic.

This chapter is organized as follows. In §2.2, we define perfect towers and discuss their
relationship to the classical direct perfection. We also discuss a relationship between
perfect towers and lim Cohen–Macaulay sequences defined by Bhatt–Hochster–Ma. In
§2.3, we define purely inseparable towers and their inverse perfection and discuss their
basic properties. In §2.4, we define perfectoid towers and their tilts. We also discuss
that they share some Noetherian properties between perfectoid towers with their tilts
(Proposition 2.4.35). In §2.5, we give an example of perfectoid towers whose layers are
local log-regular rings. This construction was given by Gabber and Ramero in [GR23]
abstractly. However, in this thesis, we present it explicitly for the complete case. More
specific examples are given in Example 2.5.11. In §2.6, we give applications of perfectoid
towers to cohomologies of commutative rings, such as étale cohomology groups and local
cohomology modules.

2.2 Perfect towers
In this section, we define perfect towers and study some of their basic properties.

This type of towers naturally appears when one considers the perfect closure of a reduced
Fp-algebra. We also discuss the relationship with lim Cohen-Macaulay sequences.

2.2.1 Definition of perfect towers

Definition 2.2.1. Let R be a reduced Fp-algebra.

1. For every i ≥ 0, the ring R1/pi is defined as lim−→{R
FR−→ R

FR−→ · · · FR−→︸ ︷︷ ︸
i Frobenius endomorphisms

R}.

2. For every i ≥ 0, the ring map ιi : R
1/pi → R1/pi+1 is the ring map induced by the

commutative diagram

R

idR
��

FR // R

idR
��

FR // · · · FR // R

idR
��

FR

  A
AA

AA
AA

A

R
FR

// R
FR

// · · ·
FR

// R
FR

// R.

(2.7)

Then one can obtain the tower of rings ({R1/pi}i≥0, {ιi}i≥0).

Let us define perfect towers.

Definition 2.2.2. A perfect Fp-tower (or simply a perfect tower) is a tower that is iso-
morphic to the ({R1/pi}i≥0, {ιi}i≥0) appearing in Definition 2.2.1.
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Remark 2.2.3. R1/pi is isomorphic to the ring of pi-th roots of elements of R. Indeed,
let R1/pj be the ring of pj-th roots of elements of R for every j ≥ 0.2 Then we have the
isomorphism Fj : R1/pj+1 → R1/pj ; x 7→ xp. Set F0,j+1 := F0 ◦ · · · ◦ Fj. Then we obtain
the following commutative ladder:

R //

idR
��

R1/p
//

F0,1

��

· · · // R1/pi−1 //

F0,i−1

��

R1/pi

F0,i

��
R

FR

// R
FR

// · · ·
FR

// R
FR

// R,

where the top horizontal arrows are the natural inclusions. Since all the vertical arrows
are isomorphisms, we obtain the isomorphism R1/pi

∼= R1/pi .

The following lemma implies what perfectness is in tower theory.

Lemma 2.2.4. Let ({Ri}i≥0, {ti}i≥0) be a perfect tower. Let Fi : Ri+1 → Ri be the ring
map induced by the following commutative diagram:

R

FR
��

FR // R

FR
��

FR // · · · FR // R
FR //

FR
��

R

idR~~}}
}}
}}
}}

R
FR

// R
FR

// · · ·
FR

// R.

(2.8)

Then, the following assertions hold.

1. Fi is an isomorphism.

2. Fi ◦ ιi = FR1/pi .

3. ιi ◦ Fi = FR1/pi+1 .

Proof. (1): Since the rightest (diagonal) arrow in (2.8) is the identity map, Fi is an
isomorphism.

(2): The composition of the diagrams (2.7) and (2.8) obviously induces the Frobenius
endomorphism on Ri.

(3): This follows from the same reason as in (2).

Corollary 2.2.5. Let R be a reduced Fp-algebra. Then the direct system {R FR−→ R
FR−→

· · · } is a perfect tower. In particular, the direct limit of a perfect tower ({Ri}i≥0, {ti}i≥0)
is isomorphic to the perfection of R0.

Proof. Set F0,i := F0 ◦ · · · ◦ Fi : R→ R where F0,0 := idR. Then we obtain the morphism
of tower of rings {F0,i}i≥0 : {R

ι0−→ R1/p ι1−→ · · · } → {R FR−→ R
FR−→ · · · }. By Lemma 2.2.4

(1), each F0,i is an isomorphism. Thus {F0,i}i≥0 is an isomorphism.

2For more details of the ring of p-th roots of elements of a reduced ring, we refer to [MP21]
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2.2.2 Perfect towers and lim Cohen–Macaulay sequences

Next, we discuss the relationship between perfect towers and lim Cohen–Macaulay
sequences. In more detail, we refer the reader to [Hoc17] or [Ma23]. For functions
f, g : N → (0,∞) where N ⊆ N contains all n � 0, we denote f(n) = o(g(n)) if
limn→∞ f(n)/g(n) = 0.

Definition 2.2.6. Let (R,m, k) be a Noetherian local domain. If x = x1, . . . , xd is a
system of parameters, let H•(x;M) denote Koszul homology, and let hi(x;M) denote its
length (that is, hi(x;M) = `R(Hi(x;M))) when the length is finite. Then a sequence
of nonzero finitely generated modules M := {Mn}n≥0 of dimension dim(R) over R is
defined to be lim Cohen–Macaulay if for some (equivalently, every) system of parameters
x = x1, . . . , xd, we have

hi(x;Mn) = o(ν(Mn))

where ν(M) := dimk(k ⊗RM) for a finitely generated R-module.

Remark 2.2.7. If R has a small Cohen–Macaulay module M , we may take the sequence
to be the constant sequence M,M,M, . . ..

The following theorem implies perfect towers are lim Cohen–Macaulay sequences.

Theorem 2.2.8. Let (R,m, k) be a complete Noetherian local domain in characteristic
p > 0 with a perfect residue field. Then a perfect tower {R1/pn}n≥0 is a lim Cohen–
Macaulay sequence.

Proof. Fix a system of parameters x := x1, . . . , xd. Then, by assumption, we have a
module finite extension

A := kJx1, . . . , xdK ↪→ R.

Consider the Koszul complex Hi(x;R
1/pn). Since A is regular, the complex H•(x;R) is a

minimal free resolution as A-modules. Hence, by applying [Dut83, 1.5 Proposition], we
obtain

lim
n→∞

hi(x;R
1/pn))

ν(R1/pn)
= lim

n→∞

rankA(R) · `A(Hi(x;R
1/pn))

ν(R1/pn)
= rankA(R)· lim

n→∞

`A(Tor
A
i (R

1/pn , R))

ppn
= 0,

as desired.

2.3 Purely inseparable towers and their quasi-inverse
perfections

In this section, we define purely inseparable towers as a class of towers that have the
inverse perfections called quasi-inverse perfection.

Definition 2.3.1 (Purely inseparable towers). Let R be a ring, and let I ⊆ R be an
ideal. A tower ({Ri}i≥0, {ti}i≥0) is called a p-purely inseparable tower arising from (R, I)
(or simply a purely inseparable tower) if it satisfies the following axioms.

(a) R0 = R and p ∈ I.

(b) For any i ≥ 0, the ring map ti : Ri/IRi → Ri+1/IRi+1 induced by ti is injective.
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(c) For any i ≥ 0, the image of the Frobenius endomorphism on Ri+1/IRi+1 is contained
in the image of ti : Ri/IRi → Ri+1/IRi+1.

By the axiom (b) and the axiom (c) in Definition 2.3.1, we obtain the following lemma.

Lemma 2.3.2. Let R be a ring and let I be an ideal of R. Let ({Ri}i≥0, {ti}i≥0) be a
purely inseparable tower arising from (R, I). Then for any i ≥ 0 there uniquely exists the
ring map Fi : Ri+1/IRi+1 → Ri/IRi such that the following diagram commutes:

Ri+1/IRi+1

Fi ))TTT
TTTT

TTTT
TTTT

FRi+1/IRi+1 // Ri+1/IRi+1

Ri/IRi.

ti

OO
(2.9)

Definition 2.3.3. Let ({Ri}i≥0, {ti}i≥0) be a purely inseparable tower arising from (R, I).
Then for every i ≥ 0 the ring map Fi appearing in Lemma 2.3.2 is called the i-th Frobenius
projection of ({Ri}i≥0, {ti}i≥0) associated to (R, I). If there is no confusion, we call it
simply the i-th Frobenius projection.

Lemma 2.3.4. Any perfect tower is a purely inseparable tower.

Proof. We only check that ({R1/pi}i≥0, {ιi}i≥0) is a purely inseparable tower. Moreover,
since the axiom (a) and the axiom (b) are obvious, we only prove that the axiom (c)
holds. By Lemma 2.2.4 (1) and (3), we know that the axiom (c) holds and the ring map
Fi defined in Lemma 2.2.4 is the i-th Frobenius projection of the perfect tower.

The following lemma provides many examples of purely inseparable towers.

Lemma 2.3.5. Let ({Ri}i≥0, {ti}i≥0) be a tower of rings where R0 contains p for any
i ≥ 0. Assume that the tower ({Ri/pRi}i≥0, {ti}i≥0) is perfect. Then ({Ri}i≥0, {ti}i≥0) is
a purely inseparable tower arising from (R0, (p)).

Proof. A tower clearly satisfies the axiom (a). The assumption of the perfectness of
({Ri/pRi}i≥0, {ti}i≥0) gives the following squares for any i ≥ 0.

Ri/pRi
ti //

∼=
��

Ri+1/pRi+1

∼=
��

R1/pi

ιi ++
R1/pi+1

Fi

jj

where ιi and Fi are the morphism appearing in Lemma 2.2.4. This induces the axiom (b)
and the axiom (c).

To explore properties of perfectoid towers, we often use the combination of the diagram
(2.9) and the following diagram (2.10)

Lemma 2.3.6. Let ({Ri}i≥0, {ti}i≥0) be a purely inseparable tower arising from some pair
(R, I). Then for every i ≥ 0, the following assertions hold.

1. The kernel of Fi is equal to the kernel of the Frobenius endomorphism of Ri+1/IRi+1.
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2. The ring map ti : Ri/IRi → Ri+1/IRi+1 is integral.

3. There is the following commutative diagram:

Ri+1/IRi+1

Fi

))SSS
SSSS

SSSS
SSS

Ri/IRi

ti

OO

FRi/IRi

// Ri/IRi.

(2.10)

Proof. Since ti is injective, the diagram (2.9) yields the assertion (1). Also, the diagram
(2.9) indicates any element x ∈ Ri+1/IRi+1 is a solution of the equation Xp − ti

(
Fi(x)

)
.

This implies that the assertion (2) holds. Finally, we prove the assertion (3). Note that
we have the following equalities

ti ◦ FRi/IRi
= FRi+1/IRi+1

◦ ti = ti ◦ Fi ◦ ti.

Since ti is injective, we obtain the equality Fi ◦ ti = FRi/IRi
, as desired.

Next, we introduce the notion of the inverse perfection for purely inseparable towers.

Definition 2.3.7. Let ({Ri}i≥0, {ti}i≥0) be a purely inseparable tower arising from some
pair (R, I).

1. For any j ≥ 0, we define the j-th inverse quasi-perfection of ({Ri}i≥0, {ti}i≥0) asso-
ciated to (R, I) as a limit:

(Rj)
q.frep
I := lim←−{· · · → (Rj+i+1/IRj+i+1)

Fj+i−−→ (Rj+i/IRj+i)→ · · ·
Fj−→ (Rj/IRj}.

2. For any j ≥ 0, we define an injective ring map (tj)
q.frep
I : (Rj)

q.frep
I ↪→ (Rj+1)

q.frep
I such

that (ai)i≥0 7→ (tj+i(ai))i≥0. Now we say that the tower ({(Ri)
q.frep
I }i≥0, {(ti)q.frepI }i≥0)

is the inverse perfection of ({Ri}i≥0, {ti}i≥0) associated to (R, I).

3. For any j ≥ 0, we define a ring map (Fj)
q.frep
I : (Rj+1)

q.frep
I → (Rj)

q.frep
I such that

(ai)i≥0 7→ (Fj+i(ai))i≥0.

4. For any j ≥ 0 and for any m ≥ 0, we denote by Φ
(j)
m : (Rj)

q.frep
I → Rj+m/IRj+m the

m-th projection map

If no confusion arises, we denote (Rj)
q.frep
I (resp. (tj)

q.frep
I , resp. (Fj)

q.frep
I ) by Rq.frep

j

(resp. tq.frepj , resp. F q.frep
j ) as an abbreviated form.

Example 2.3.8. Let R be an Fp-algebra. Then the tower {R idR−−→ R
idR−−→ · · · } is purely

inseparable tower arising from (R, (0)). Moreover, for every j ≥ 0, the j-th Frobe-
nius projection is the Frobenius endomorphism of R and the j-th inverse quasi-perfection
Rq.frep
j = lim←−{· · ·

FR−→ R
FR−→ R} is none other than the inverse perfection of R.

In the situation of Definition 2.3.7, we obtain the following commutative diagram:

(Rj+1)
q.frep
I

(Fj)
q.frep
I ))SSS

SSS
SSS

SSS
SS

F
(Rj+1)

q.frep
I // (Rj+1)

q.frep
I

(Rj)
q.frep
I .

(tj)
q.frep
I

OO
(2.11)

We immediately deduce the following lemma from the diagram (2.11).
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Lemma 2.3.9. Let ({Ri}i≥0, {ti}i≥0) be a purely inseparable tower arising from some
pair (R, I). Then its the inverse perfection ({(Ri)

q.frep
I }i≥0, {(ti)q.frepI }i≥0) is also a purely

inseparable tower arising from ((R0)
q.frep
I , (0)).

The next proposition is a list of basic properties of inverse quasi-perfection.

Proposition 2.3.10. Let ({Ri}i≥0, {ti}i≥0) be a purely inseparable tower arising from
some pair (R, I). Then for any i ≥ 0, the following assertions hold.

1. Let J ⊆ (Rj)
q.frep
I be a finitely generated ideal such that Jk ⊆ Ker(Φj

0) for some
k > 0. Then (Rj)

q.frep
I is J-adically complete and separated.

2. Let x = (xi)i≥0 be an element of (Rj)
q.frep
I . Then x is a unit if and only if x0 ∈

Rj/IRj is a unit.

3. The ring map (Fj)
q.frep
I is an isomorphism.

4. (Rj)
q.frep
I is reduced.

5. ({(Ri)
q.frep
I }i≥0, {(ti)q.frepI }i≥0) is a perfect tower.

Proof. Since ({(Rj+i)
q.frep}i≥0, {(tj+i)q.frepI }i≥0) is also a purely inseparable tower, one can

reduce to the case j = 0.
(1): By definition, (R0)

q.frep
I is complete and separated with respect to the linear

topology induced by the descending filtration

Ker(Φ
(0)
0 ) ⊇ Ker(Φ

(0)
1 ) ⊇ Ker(Φ

(0)
2 ) ⊇ · · · .

Moreover, since Jk ⊆ Ker(Φ
(0)
0 ), we have (Jk)[p

i] ⊆ Ker(Φ
(0)
i ) for every i ≥ 0 by the

commutative diagram (2.9).3 On the other hand, since Jk is finitely generated, (Jk)pir ⊆
(Jk)[p

i] for some r > 0. Thus the assertion follows from [FGK11, Lemma 2.1.1].
(2): It is obvious that x0 in a unit in R0/IR0 if x is a unit in (Rj)

q.frep
I . Conversely,

assume that x0 is a unit in R0/IR0. Then the diagram (2.9) shows that xi is a unit. Here
the multiplication map (R0)

q.frep
I

×x−→ (R0)
q.frep
I is an isomorphism because it is induced by

the isomorphisms Ri/IRi
×xi−−→ Ri/IRi for every i ≥ 0. This implies that x is a unit, as

desired.
(3): Let s0 : (R0)

q.frep
I → (R1)

q.frep
I be the map such that (ai)i≥0 7→ (ai+1)i≥0. Then one

can easily check that s0 is the inverse map of (F0)
q.frep
I .

(4): This immediately follows from the combination of the injectivity of (t0)q.frepI , the
diagram (2.11), and the assertion (3).

(5): Let us define F q.frep
0,i : (Ri)

q.frep
I → (R0)

q.frep
I as the composite map (F0)

q.frep
I ◦

· · · ◦ (Fi−1)
q.frep
I where F q.frep

0,0 = id(R0)
q.frep
I

. Then by assertion (3), the map of towers

{F q.frep
0,i }i≥0 : ({(Ri)

q.frep
I }i≥0, {(ti)q.frepI }i≥0) →

{
(R0)

q.frep
I

F
(R0)

q.frep
I−−−−−−→ (R0)

q.frep
I

F
(R0)

q.frep
I−−−−−−→

· · ·
}

is isomorphism. Hence the assertion holds by Corollary 2.2.5.

The operation of inverse quasi-perfection preserves the local property of rings and ring
maps.

3The symbol I [p
n] for an ideal I in an Fp-algebra A is the ideal generated by the elements xpn

for
x ∈ I.
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Lemma 2.3.11. Let ({Ri}i≥0, {ti}i≥0) be a purely inseparable tower of local rings arising
from some pair (R, I). Assume that I 6= R0. Then for any j ≥ 0, the following assertions
hold.

1. The ring maps tj, tj, and Fj are local.

2. (Rj)
q.frep
I is a local ring.

3. The ring map tq.frepj and F q.frep
j is local.

Proof. For the same reason as in Proposition 2.3.10, it suffices to show the assertions
in the case when j = 0. (1): Since the diagrams (2.9) and (2.10) are commutative,
F0 ◦ t0 and t0 ◦ F0 are local. Hence t0 and F0 are local. In particular, the composition
R0 ↠ R0/I

t0−→ R1/IR1 is local. Since this map factors through t0, t0 is also local, as
desired.

(2): Let m0 be the maximal ideal of R0. Consider the ideal (m0)
q.frep
I = {(xi)i≥0 ∈

(R0)
q.frep
I | x0 ∈ m0/IR0}, where m0/IR0 is the maximal ideal of R0/IR0.

Then by Proposition 2.3.10 (2), (m0)
q.frep
I is a unique maximal ideal of (R0)

q.frep
I . Hence

the assertion follows.
(3): By the assertion (2) and Lemma 2.3.9, ({(Ri)

q.frep
I }i≥0, {(ti)q.frepI }i≥0) is a purely

inseparable tower of local rings. Hence by the assertion (1), (t0)q.frepI and F q.frep
j is local.

At the final of this section, we prove the following property. This is well-known in
positive characteristic, in which case Ri → Ri+1 is a universal homeomorphism.

Lemma 2.3.12. Let ({Ri}i≥0, {ti}i≥0) be a purely inseparable tower arising from some
pair (R, I). For every i ≥ 0, assume that Ri is I-adically Henselian.4 Then the ring map
ti induces an equivalence of categories:

F.Ét(Ri)
∼=−→ F.Ét(Ri+1),

where F.Ét(A) is the category of finite étale A-algebras for a ring A.

Proof. Consider the commutative diagram

Ri

φi

��

ti // Ri+1

φi+1

��
Ri/IRi

ϕi
��

ti // Ri+1/IRi+1

ϕi+1

��
Ri/
√
IRi

(ti)red// Ri+1/
√
IRi+1

(2.12)

where ϕi, ϕi+1, φi and φi+1 are the natural quotient maps, and (ti)red is obtained from
ti by killing out the nilradical part. Recall that a universal homeomorphism induces an
equivalence of respective categories of finite étale algebras in view of [Sta, Tag 0BQN]. By
[Sta, Tag 054M], the maps φi and φi+1 are universal homeomorphisms. By the axiom (b)
in Definition 2.3.1, IRi = Ri ∩ IRi+1. Hence

√
IRi = Ri ∩

√
IRi+1 and (ti)red is injective.

Moreover by Lemma 2.3.6 (2), the image of (ti)red contains {xp | x ∈ Ri+1/
√
IRi+1}. So

[Sta, Tag 0BRA] shows that (ti)red is a universal homeomorphism. Finally, as for ϕi and
ϕi+1, these maps induce an equivalence of categories of finite étale algebras over respective
rings by [Sta, Tag 09ZL]. By going around the diagram (2.12), we finish the proof.

4This condition is realized if R0 is I-adically Henselian and each ti : Ri → Ri+1 is integral.
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2.4 Perfectoid towers and their tilts
In this section, we define perfectoid towers and their tilts, and investigate their prop-

erties. In §2.4.1, we first consider torsions of modules. This consideration is necessary
to define perfectoid towers. After that, we define perfectoid towers. In §2.4.2, we define
tilts of perfectoid towers. The main result of this subsection is to give an isomorphism
between the Koszul homology of a perfectoid tower and that of its tilt. Also, we show
that Noetherian properties of perfectoid towers are inherited by the tilting operation. In
§2.4.3, we establish the theorem that the I1-adic completion of the direct limit of a per-
fectoid tower is perfectoid where I1 is a principal ideal defined in the axiom (f) of the
definition of perfectoid towers.

2.4.1 Definition of perfectoid towers and their tilts

To define the perfectoid towers, we need some notation and some observation of tor-
sions of modules over rings.

Definition 2.4.1. Let R be a ring, and let M be an R-module.

1. Let x ∈ R be an element. Then we say that an element m ∈ M is x-torsion if
xnm = 0 for some n ∈ M . We denote by Mx-tor the R-submodule of M consisting
of all x-torsion elements in M .

2. Let I ⊆ R be an ideal. Then we say that an element m ∈ M is I-torsion if m is
x-torsion for every x ∈ I. We denote by MI-tor the R-submodule of M consisting of
all I-torsion elements in M . Note that Mx-tor =M(x)-tor.

3. For an element x ∈ R (resp. an ideal I ⊆ R), we say that M has bounded x-torsion
(resp. bounded I-torsion) if there exists some l > 0 such that xlMx-tor = (0) (resp.
I lMI-tor = (0)).

4. For an ideal I ⊆ R, we denote by ϕI,M :MI-tor →M/IM the composition of natural
R-linear maps MI-tor ↪→M ↠M/IM .

In the rest of this subsection, we assume that R is a ring, M is an R-module, x ∈ R
is an element, and I ⊆ R is an ideal.

Lemma 2.4.2. Let R be a ring, and let M be an R-module. Let x ∈ R be an element.
Then for every n > 0, we have

Mx-tor ∩ xnM = xnMx-tor.

Proof. Pick an element m ∈ Mx-tor ∩ xnM . Then m = xnm0 for some m0 ∈ M , and
xlm = 0 for some l > 0. Hence xl+nm0 = 0, which implies that m0 ∈ Mx-tor and thus
m ∈ xnMx-tor. The containment xnMx-tor ⊆Mx-tor ∩ xnM is clear.

Corollary 2.4.3. Keep the notation as in Lemma 2.4.2, and suppose further that xMx-tor =
(0). Then the map ϕ(x),M :Mx-tor →M/xM (see Definition 2.4.1 (4)) is injective.

Proof. It is clear from Lemma 2.4.2.

Corollary 2.4.4. Keep the notation as in Lemma 2.4.2, and suppose further that M has
bounded x-torsion. Let M̂ be the x-adic completion of M , and let ψ : M → M̂ be the
natural map. Then the restriction ψtor :Mx-tor → (M̂)x-tor of ψ is injective.
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Proof. By assumption, there exists some l > 0 such that xlMx-tor = (0). On the other
hand, Ker(ψtor) = Mx-tor ∩

⋂∞
n=0 x

nM is contained in Mx-tor ∩ xlM , which is equal to
xlMx-tor by Lemma 2.4.2. Thus the assertion follows.

Lemma 2.4.5. Let R be a ring, and let M be an R-module. Let x ∈ R be an element.
Then for every n > 0, we have

AnnM/xnM(x) ⊆ Im(ϕ(xn),M) + xn−1(M/xnM). (2.13)

Proof. Pick an element m ∈M such that xm ∈ xnM . Then x(m− xn−1m′) = 0 for some
m′ ∈M . In particular, m− xn−1m′ ∈Mxn-tor. Hence m mod xnM lies in the right-hand
side of (2.13), as desired.

In the case when M = R, we can regard MI-tor as a (possibly) non-unital subring of
R. This point of view provides valuable insights. For example, “reducedness” for RI-tor

induces a good property on the boundedness of torsions.

Lemma 2.4.6. Let (R, I) be a pair such that RI-tor does not contain any non-zero nilpotent
element of R. Then IRI-tor = (0).

Proof. It suffices to show that xRI-tor = 0 for every x ∈ I. Pick an element a ∈ RI-tor.
Then for a sufficiently large n > 0, xna = 0. Hence (xa)n = xna · an−1 = 0. Thus we have
xa = 0 by assumption, as desired.

Corollary 2.4.7. Let ({Ri}i≥0, {ti}i≥0) be a purely inseparable tower arising from some
pair (R, I). Then for every i ≥ 0 and every ideal J ⊆ (Ri)

q.frep
I , we have J((Ri)

q.frep
I )J-tor =

(0).

Proof. Since (Ri)
q.frep
I is reduced by Proposition 2.3.10 (4), the assertion follows from

Lemma 2.4.6.

Furthermore, we can treat RI-tor as a positive characteristic object (in the situation of
our interest), even if R is not an Fp-algebra.

Lemma-Definition 2.4.8. Let (R, I) be a pair such that p ∈ I and IRI-tor = (0). Then
the multiplicative map:

RI-tor → RI-tor; x 7→ xp (2.14)

is also additive. We denote by FRI-tor the map (2.14).

Proof. It immediately follows from the binomial theorem.

Under the above preparation, we define perfectoid towers.

Definition 2.4.9 (Perfectoid towers). Let R be a ring and let I0 ⊆ R be an ideal. Then
we say that a tower ({Ri}i≥0, {ti}i≥0) is (p-)perfectoid towers arising from (R, I0) if it is
a p-purely inseparable tower and satisfies the following additional axioms.

(d) For every i ≥ 0, the i-th Frobenius projection Fi : Ri+1/I0Ri+1 → Ri/I0Ri is
surjective.

(e) For every i ≥ 0, Ri is an I0-adically Zariskian ring.

(f) I0 is a principal ideal, and R1 contains a principal ideal I1 that satisfies the following
axioms.
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(f-1) Ip1 = I0R1.

(f-2) For every i ≥ 0, Ker(Fi) = I1(Ri+1/I0Ri+1).

(g) For every i ≥ 0, I0(Ri)I0-tor = (0). Moreover, there exists a (unique) bijective map
(Fi)tor : (Ri+1)I0-tor → (Ri)I0-tor such that the diagram:

(Ri+1)I0-tor

(Fi)tor
��

φI0,Ri+1// Ri+1/I0Ri+1

Fi

��
(Ri)I0-tor φI0,Ri

// Ri/I0Ri

commutes.

Remark 2.4.10. If I0 is generated by a regular sequence in R∞, the axiom (g) is satisfied
automatically. Consequently, the axiom (g) is satisfied if R∞ is a domain. Also, if I0 = (0)
(namely, Ri is Fp-algebra for any i ≥ 0), then the axiom (g) follows from the axioms (c)
and (f).

We provide some examples of perfectoid towers.

Example 2.4.11. 1. (cf. [Shi11, Definition 4.4]) Let (R,m, k) be a d-dimensional
unramified regular local ring of mixed characteristic p > 0 whose residue field is
perfect. Then R is isomorphic to the formal power series ring W (k)Jx2, . . . , xdK by
Cohen’s structure theorem. For every i ≥ 0, set Ri := R[p1/p

i
, x

1/pi

2 , . . . , x
1/pi

d ] ∈ R+

where R+ is the absolute integral closure of R and let ti : Ri → Ri+1 be the inclusion
map. Then the tower ({Ri}i≥0, {ti}i≥0) is a perfectoid tower arising from (R, (p)).
Indeed, the Frobenius projection is given as the p-th power map.

2. We note that ti (resp. Fi) of a perfectoid tower is not necessarily the inclusion
map (resp. the p-th power map). For instance, let R be a reduced Fp-algebra. Set
Ri := R, ti := FR, and Fi := idR for every i ≥ 0. Then ({Ri}i≥0, {ti}i≥0) is a
perfectoid tower arising from (R, (0)).

In the subsection 2.5, we provide the construction of perfectoid towers arising from
local log-regular rings.

The following lemma implies that the class of perfectoid towers is a generalization of
perfect towers.

Lemma 2.4.12. Let ({Ri}i≥0, {ti}i≥0) be a tower of Fp-algebras. Then the following
conditions are equivalent.

1. ({Ri}i≥0, {ti}i≥0) is a perfect Fp-tower (cf. Definition 2.2.2).

2. ({Ri}i≥0, {ti}i≥0) is a p-perfectoid tower arising from (R0, (0)).

Proof. First, we verify the implication (1)⇒ (2). For this, we may assume that ({Ri}i≥0, {ti}i≥0)
is of the form ({R1/pi}i≥0, {ιi}i≥0) by definition. By Example 2.3.4, ({R1/pi}i≥0, {ιi}i≥0)
is a purely inseparable tower arising from (R, 0). The axioms (e) and (g) in Definition
2.4.9 are obvious. Moreover, the Frobenius projection Fi is an isomorphism for any i ≥ 0
by Lemma 2.2.4 (1). Hence the axioms (d) and (f) are also satisfied, which yields the
assertion.
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Conversely, assume that ({Ri}i≥0, {ti}i≥0) is a perfectoid tower arising from (R0, (0)).
By the combination of the axiom (d), the axiom (f-2), and Lemma 2.3.6, Fi is an isomor-
phism for any i ≥ 0. Moreover, we have the following commutative ladder:

R0

idR0
��

t0 // R1

F0

��

t1 // R2

F0◦F1

��

t2 // R3

F0◦F1◦F2

��

t3 // · · ·

R0 FR0

// R0 FR0

// R0 FR0

// R0 FR0

// · · · .

Hence ({Ri}i≥0, {ti}i≥0) is isomorphic to {R0

FR0−−→ R0

FR0−−→ · · · }, which is a perfect tower
by Corollary 2.2.5.

Let us verify the uniqueness of I1 ⊆ R1 appearing in the axiom (f). We carry out this
in more general situations for later application.

Lemma 2.4.13. Let ({Ri}i≥0, {ti}i≥0) be a perfectoid tower arising from some pair (R0, I0).
Fix an integer i ≥ 0 and an ideal Ji ⊆ Ri containing I0Ri. Then if there exists an ideal
Ji+1 of Ri+1 such that Jpi+1 = JiRi+1 and F−1

i (Ji(Ri/I0Ri)) = Ji+1(Ri+1/I0Ri+1), the ideal
Ji+1 is unique.

Proof. For every r ∈ Ri+1 such that rp ∈ JiRi+1, the equality JiRi+1 = Ji+1 implies
r ∈ Ji+1. Hence for every ideal J ′

i+1 ⊆ Ri+1 with the same assumption as Ji+1, we have
J ′
i+1 = Jj+1, as desired.

Lemma 2.4.13 ensures the uniqueness of I1.

Definition 2.4.14. We call the ideal I1 appearing the axiom (f) of perfectoid towers the
first perfectoid pillar.

The relationship between I0 and I1 can be observed also in higher layers.

Proposition 2.4.15. Let ({Ri}i≥0, {ti}i≥0) be a perfectoid tower arising from some pair
(R0, I0) and let I1 be the first perfectoid pillar. Set Ri := Ri/I0Ri for every i ≥ 0. Then
the following assertions hold.

1. For a sequence of principal ideals {Ii ⊆ Ri}i≥2, the following are equivalent.

(a) F−1
i (IiRi) = Ii+1Ri+1 for every i ≥ 0 for every i ≥ 0.

(b) Fi(Ii+1Ri+1) = IiRi for every i ≥ 0.

2. Each one of the equivalent conditions in (1) implies that Ipi+1 = IiRi+1 for every
i ≥ 0.

3. There exists a unique sequence of principal ideals {Ii ⊆ Ri}i≥0 that satisfies one
of the equivalent condition in (1). Moreover, there exists a sequence of elements
{fi ∈ Ri}i≥0 such that IiRi = (fi) and Fi(fi+1) = fi for every i ≥ 0.

Proof. (1) : Since the implication (a) ⇒ (b) follows from the axiom (d) in Definition
2.4.9, it suffices to show the converse. Assume that the condition (b) is satisfied. Then
for every i ≥ 0, the compatibility ti ◦ Fi = FRi+1

implies

Ipi+1Ri+1 = IiRi+1 (2.15)
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because Ii+1 is principal. In particular, Ker(Fi) = I1Ri+1 ⊆ Ii+1Ri+1 (cf. the axiom (f-
2)). On the other hand, by the surjectivity of Fi and the assumption again, we have
Fi(F

−1
i (IiRi)) = IiRi = Fi(Ii+1Ri+1). Hence

F−1
i (IiRi) ⊆ Ii+1Ri+1 +Ker(Fi) ⊆ Ii+1Ri+1 ⊆ F−1

i (IiRi),

which yields the assertion.
(2) : Let us deduce the assertion from (2.15) by induction. By definition, Ip1 = I0R1.

We then fix some i ≥ 1. Suppose that for every 1 ≤ k ≤ i, Ipk = Ik−1Rk. Then I0Ri = Ip
i

i .
In particular, Ri is Ii-adically Zariskian by the axiom (e). Moreover, by (2.15), we have
the equalities of Ri-modules:

IiRi+1 = Ipi+1 + I0Ri+1 = Ip
i−1
i (IiRi+1) + Ipi+1.

Hence by the axiom (f) and Nakayama’s lemma, we obtain Ipi+1 = IiRi+1 as desired.
(3): By the axiom of (dependent) choice, the existence follows from the axiom (d) in

Definition 2.4.9. The uniqueness is due to Lemma 2.4.13.

Definition 2.4.16. In the situation of Proposition (3), we call Ii the i-th perfectoid pillar
of ({Ri}i≥0, {ti}i≥0) arising from (R0, I0).

Lemma 2.4.17. Let {Ii}i≥0 denote the system of perfectoid pillars of ({Ri}i≥0, {ti}i≥0),
and let πi : Ri/I0Ri → Ri/IiRi (i ≥ 0) be the natural projections. Then for every i ≥ 0,
there exists a unique isomorphism of rings:

F ′
i : Ri+1/Ii+1Ri+1

∼=−→ Ri/IiRi

such that πi ◦ Fi = F ′
i ◦ πi+1.

Proof. Since Fi and πi are surjective, the assertion immediately follows from Ker(πi◦Fi) =
F−1
i (Ii(Ri/I0Ri)) = Ii+1(Ri+1/I0Ri+1).

2.4.2 Tilts of perfectoid towers

Here we establish tilting operation for perfectoid towers. For this, we first introduce
the notion of small tilt, which originates in [Shi11].

Definition 2.4.18. Let ({Ri}i≥0, {ti}i≥0) be a perfectoid tower arising from some pair
(R, I0).

1. For any j ≥ 0, the j-th inverse quasi-perfection of ({Ri}i≥0, {ti}i≥0) associated to
(R, I0) is called the j-th small tilt of ({Ri}i≥0, {ti}i≥0) associated to (R, I0) and is
denoted by (Rj)

s.♭
I0

in distinction from (Rj)
q.frep
I0

.

2. Let the notation be as in Lemma 2.4.17. Then we define Is.♭i := Ker(πi ◦ Φ(i)
0 ) for

every i ≥ 0.

Note that the ideal Is.♭i ⊆ Rs.♭
i has the following property.

Lemma 2.4.19. Let ({Ri}i≥0, {ti}i≥0) be a perfectoid tower arising from some pair (R0, I0).
Let Ii be the i-th perfectoid pillar. Then for every i ≥ 0 and j ≥ 0, we have Φ

(j)
i (Is.♭j ) =

Ij+i(Rj+i/I0Rj+i).
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Proof. Since Φ
(j)
0 is surjective, we have Φ

(j)
0 (Is.♭j ) = Ij(Rj/I0Rj). On the other hand, since

Φ
(j)
0 = Fj ◦ Φ(j)

1 , we have

F−1
j (Φ

(j)
0 (Is.♭j )) = Φ

(j)
1 (Is.♭j ) + Ker(Fj) = Φ

(j)
1 (Is.♭j ).

Hence by the condition (a) in Proposition 2.4.15 (1), Φ(j)
1 (Is.♭j ) = Ij+1(Rj+1/I0Rj+1). By

repeating this procedure recursively, we obtain the assertion.

The next lemma provides some completeness of the small tilts attached to a perfectoid
tower of characteristic p > 0.

Lemma 2.4.20. Let ({Ri}i≥0, {ti}i≥0) be a perfectoid tower arising from (R, (0)). Then,

for any element f ∈ R and any j ≥ 0, the inverse limit lim←−{· · ·
Fj+1−−→ Rj+1/fRj+1

Fj−→
Rj/fRj} is isomorphic to the f -adic completion of Rj.

Proof. It suffices to show the assertion when j = 0. Since ({Ri}i≥0, {ti}i≥0) is a perfectoid
tower arising from (R, (0)), each Frobenius projection Fi : Ri+1 → Ri is an isomorphism.
In particular, the 0-th projection map on (R0)

s.♭
(0) is an isomorphism

(R0)
s.♭
(0) = lim←−{· · · → R1 → R0}

∼=−→ R0. (2.16)

Set the element f := (. . . , (F0 ◦ F1)
−1(f), F−1

0 (f), f) ∈ (R0)
s.♭
(0). Then for any i ≥ 0, we

obtain the following diagram

(R0)
s.♭
(0)

×fp
i+1

//

×fp
i(p−1)

��

(R0)
s.♭
(0)

ϕi+1//

id
Rs.♭
0

��

Ri+1/fRi+1
//

Fi

��

0

(R0)
s.♭
(0)

×fp
i

// (R0)
s.♭
(0)

ϕi // Ri/fRi
// 0.

where φi is the composite map of the i-th projection (R0)
s.♭
(0) → Ri and the natural

surjection Ri → Ri/fRi. Then taking the inverse limits for the above diagrams, we
obtain the isomorphism

lim←−
i≥0

(R0)
s.♭
(0)/f

pi(R0)
s.♭
(0)

∼=−→ lim←−{· · · → R1/fR1 → R0/fR0}. (2.17)

On the other hand, (2.16) induces lim←−i≥0
(R0)

s.♭
(0)/f

pi(R0)
s.♭
(0)

∼=−→ lim←−i≥0
R0/f

piR0. Hence the
assertion follows.

Example 2.4.21. Let S be a perfect Fp-algebra. Pick an arbitrary f ∈ S, and let Ŝ
denote the f -adic completion. Applying the argument of the above proof to the tower

S
idS−−→ S

idS−−→ S
idS−−→ · · · ,

we obtain a canonical isomorphism Ŝ
∼=−→ lim←−Frob

S/fS.

Remark 2.4.22. In Lemma 2.4.20, the right-hand side of the isomorphism (2.17) can
not be writen (R0)

q.frep
(f) by the lack of the injectivity of ti. Thus if we add the assumption

that ti : Ri/f0Ri → Ri+1/f0Ri+1 is injective, then the tower ({Ri}i≥0, {ti}i≥0) becomes

a purely inseparable tower arising from (R, (f0)), and the inverse limit lim←−{· · ·
Fj+1−−→

Rj+1/f0Rj+1
Fj−→ Rj/f0Rj} is the j-th inverse quasi-perfection (Rj)

q.frep
I .
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Now we define tilts of perfectoid towers.

Definition 2.4.23 (Tilts of perfectoid towers). Let ({Ri}i≥0, {ti}i≥0) be a perfectoid tower
arising from some pair (R, I). Then the inverse perfection of ({Ri}i≥0, {ti}i≥0) associated
to (R, I) is called the tilt of ({Ri}i≥0, {ti}i≥0) associated to (R, I), and is denoted by
({(Ri)

s.♭
I }i≥0, {(ti)s.♭I }i≥0) in distinction from ({(Ri)

q.frep
I }i≥0, {(ti)q.frepI }i≥0). Moreover, we

set (R∞)s.♭I := lim−→i≥0
(Ri)

s.♭
I .

In [Shi11], he constructs a perfectoid tower arising from an unramified regular local ring
and computes its tilt. We generalize these to those of a local log-regular ring. Before that,
we discuss one of the most fundamental properties, which is a correspondence between
I0-torsions in Rj and Is.♭0 -torsions in Rs.♭

j

Theorem 2.4.24. Let ({Ri}i≥0, {ti}i≥0) be a perfectoid tower arising from some pair
(R, I0), and let {Ii}i≥0 be the system of perfectoid pillars. Let ({Rs.♭

i }i≥0, {ts.♭i }i≥0) denote
the tilt associated to (R, I0). Then the following assertions hold.

1. For every j ≥ 0 and every element f s.♭j ∈ Rs.♭
j , the following conditions are equiva-

lent.

(a) f s.♭j is a generator of Is.♭j .

(b) For every i ≥ 0, Φ(j)
i (f s.♭j ) is a generator of Ij+i(Rj+i/I0Rj+i).

In particular, Is.♭j is a principal ideal, and (Is.♭j+1)
p = Is.♭j Rs.♭

j+1.

2. We have isomorphisms of (possibly) non-unital rings (Rs.♭
j )Is.♭0 -tor

∼= (Rj)I0-tor that
are compatible with {tj}j≥0 and {ts.♭j }j≥0.

To prove this theorem, we prepare several lemmas.

Lemma 2.4.25. For every i ≥ 0, let (ti)tor : (Ri)I0-tor → (Ri+1)I0-tor be the restriction of
ti. Then the following assertions hold.

1. (ti)tor is the unique map such that ϕI0,Ri+1
◦ (ti)tor = ti ◦ ϕI0,Ri

.

2. (ti)tor ◦ (Fi)tor = (Fi+1)tor ◦ (ti+1)tor = F(Ri+1)I0-tor.

Proof. Since ϕI0,Ri
is injective by Corollary 2.4.3, the assertion (1) is clear from the

construction. Hence we can regard (ti)tor and (Fi)tor as the restrictions of ti and Fi,
respectively. Thus the assertion (2) follows from the compatibility ti ◦ Fi = Fi+1 ◦ ti+1 =
FRi+1

induced by Lemma 2.3.6 (3).

The map ϕI0,Ri
: (Ri)I0-tor ↪→ Ri/I0Ri restricts to AnnRi

(Ii) ↪→ AnnRi
(Ii). On the

other hand, AnnRi
(Ii) turns out to be equal to (Ri)I0-tor by the following lemma.

Lemma 2.4.26. For every i ≥ 0, Ii(Ri)I0-tor = 0. In particular, Im(ϕI0,Ri
) ⊆ AnnRi

(Ii).

Proof. By Lemma 2.4.25 (2) and the axiom (g) in Definition 2.4.9, we find that F(Ri)I0-tor

is injective. In other words, (Ri)I0-tor does not contain any non-zero nilpotent element.
Moreover, (Ri)I0-tor = (Ri)Ii-tor. Hence the assertion follows from Lemma 2.4.6.

The following lemma is essential for proving Theorem 2.4.24.
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Lemma 2.4.27. For every i ≥ 0, Fi restricts to a Z-linear map AnnRi+1
(Ii+1) →

AnnRi
(Ii). Moreover, the resulting inverse system {AnnRi

(Ii)}i≥0 has the following prop-
erties.

1. For every j ≥ 0, lim←−
1

i≥0
AnnRj+i

(Ij+i) = (0).

2. There are isomorphisms of Z-linear maps lim←−i≥0
AnnRj+i

(Ij+i) ∼= (Rj)I0-tor (j ≥ 0)

that are multiplicative, and compatible with {ts,♭j }j≥0 and {tj}j≥0.

Proof. Since Fi(Ii+1) = Ii, Fi restricts to a Z-linear map (Fi)ann : AnnRi+1
(Ii+1) →

AnnRi
(Ii). Let ϕi : (Ri)I0-tor ↪→ AnnRi

(Ii) be the restriction of ϕI0,Ri
. By Lemma 2.4.5 and

Lemma 2.4.26, we can write AnnRi
(Ii) = Im(ϕi) + Ii

pi−1. Moreover, Im(ϕi)∩ Ii
pi−1

= (0)
by Lemma 2.4.2 and Lemma 2.4.26. Hence we have the following ladder with exact rows:

0 // (Ri+1)I0-tor
φi+1/ /

(Fi)tor

��

AnnRi+1
(Ii+1) //

��

Ii+1
pi+1−1 //

��

0

0 // (Ri)I0-tor
φi // AnnRi

(Ii) // Ii
pi−1 // 0

(2.18)

where the second and third vertical maps are the restrictions of Fi. Since Fi(Ii+1
pi+1−1

) =

0, the both functors lim←−i≥0
and lim←−

1

i≥0
assign (0) to the inverse system {Ij+i

pj+i−1}i≥0.
Moreover, since (Fi)tor is bijective, lim←−i≥0

(Rj+i)I0-tor
∼= (Rj+i)I0-tor and lim←−

1

i≥0
(Rj+i)I0-tor =

(0). Hence we find that lim←−
1

i≥0
AnnRj+i

(Ij+i) = (0), which is the assertion (1). Further-
more, we obtain the isomorphisms of Z-modules:

(Rj)I0-tor
(Φ

(j)
0 )tor←−−−−− lim←−

i≥0

(Rj+i)I0-tor

lim←−i≥0
φj+i

−−−−−−→ lim←−
i≥0

Rj+i (2.19)

(where (Φ
(j)
0 )tor denotes the 0-th projection map), which are also multiplicative. Let us

deduce (2) from it. Since we have ts.♭j = lim←−i≥0
tj+i by definition, the maps lim←−i≥0

ϕj+i

(j ≥ 0) are compatible with {lim←−i≥0
(tj+i)tor}j≥0 (induced by Lemma 2.4.25 (2)) and

{ts.♭j }j≥0 by Lemma 2.4.25 (1). On the other hand, the projections (Φ
(j)
0 )tor (j ≥ 0) are

compatible with {lim←−i≥0
(tj+i)tor}j≥0 and {(tj)tor}j≥0. Hence the assertion follows.

Let us complete the proof of Theorem 2.4.24.

Proof of Theorem 2.4.24. (1): The implication (a)⇒ (b) follows from Lemma 2.4.19. Let
us show the converse (b)⇒(a). For every i ≥ 0, put fj+i := Φ

(j)
i (f s.♭j ), and let πi and F ′

i

be as in Lemma 2.4.17. Then, by the assumption, we have the following commutative
ladder with exact rows:

0 // (fi+1)
ιi+1 //

��

Ri+1
πi+1//

Fi

��

Ri+1/Ii+1
//

F ′
i

��

0

0 // (fi)
ιi // Ri

πi // Ri/Ii // 0

where ιi is the inclusion map. Let us consider the exact sequence obtained by taking
inverse limits for all columns of the above ladder. Then, since each F ′

i is an isomorphism,
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the map lim←−i≥0
πj+i : R

s.♭
j → lim←−i≥0

Rj+i/Ij+i is isomorphic to πj ◦Φ(j)
0 . Thus we find that

Is.♭j = Im(lim←−i≥0
ιj+i). Let us show that the ideal Im(lim←−i≥0

ιj+i) ⊆ Rs.♭
j is generated by

f s.♭j . For i ≥ 0, let µi : Ri → (fi) be the Ri-linear map induced by multiplication by fi.
Then we obtain the commutative ladder:

Ri+1

Fi

��

µi+1 // (fi+1)
ιi+1 //

��

Ri+1

Fi

��

Ri
µi // (fi)

ιi // Ri.

Then, since Kerµi = AnnRi
(Ii) for every i ≥ 0, lim←−i≥0

µj+i is surjective by Lemma 2.4.27
(1). Hence we have Im(lim←−i≥0

ιj+i) = Im(lim←−i≥0
(ιj+i ◦ µj+i)), where the right hand side

is the ideal of Rs.♭
j generated by f s.♭j . Thus we obtain the desired implication. Finally,

note that by Proposition 2.4.15 (3), we can take a system of elements {f s.♭j ∈ Rs.♭
j }j≥0

satisfying the condition (b) such that (f s.♭j+1)
p = f s.♭j (j ≥ 0).

(2): We have Is.♭0 (Rs.♭
j )Is.♭0 -tor = (0) by Corollary 2.4.7. Hence by the assertion (1),

(Rs.♭
j )Is.♭0 -tor = AnnRs.♭

j
(Is.♭0 ) = Ker(lim←−

i≥0

µj+i) = lim←−
i≥0

AnnRj+i
(Ij+i).

Thus by Lemma 2.4.27 (2), we obtain an isomorphism (Rs.♭
j )Is.♭0 -tor

∼= (Rj)I0-tor with the
desired property.

As applications, we give several basic properties of tilts.

Lemma 2.4.28. For every i ≥ 0, Rs.♭
i is Is.♭0 -adically complete and separated.

Proof. By Theorem 2.4.24, the ideal Is.♭0 Rs.♭
i ⊆ Rs.♭

i is principal. Hence one can apply
Proposition 2.3.10 (1) to deduce the assertion.

To discuss perfectoidness for the tilt ({Rs.♭
i }i≥0, {ts.♭i }i≥0), we introduce the following

maps.

Definition 2.4.29. For every i ≥ 0, we define a ring map (Fi)
s.♭
I0

: (Ri+1)
s.♭
I0
/Is.♭0 (Ri+1)

s.♭
I0
→

(Ri)
s.♭
I0
/Is.♭0 (Ri)

s.♭
I0

by the rule:

(Fi)
s.♭
I0
(αi+1 mod Is.♭0 (Ri+1)

s.♭
I0
) = (Fi)

q.frep
I0

(αi+1) mod Is.♭0 (Ri)
s.♭
I0

where αi+1 ∈ (Ri+1)
s.♭
I0

.

Remark 2.4.30. Although the symbols ( · )s.♭ and ( · )q.frep had been used interchangeably
before Definition 2.4.29, (Fi)s.♭I0 differs from (Fi)

q.frep
I0

in general.

The following lemma is an immediate consequence of Theorem 2.4.24 (1), but quite
useful.

Lemma 2.4.31. For every j ≥ 0, Φ(j)
0 induces an isomorphism

Φ
(j)
0 : Rs.♭

j /I
s.♭
0 Rs.♭

j

∼=−→ Rj/I0Rj; a mod Is.♭0 Rs.♭
j 7→ Φ

(j)
0 (a). (2.20)

Moreover, {Φ(i)
0 }i≥0 is compatible with {ti}i≥0 (resp. {FRs.♭

i /Is.♭0 Rs.♭
i
}i≥0, resp. {F s.♭

i }i≥0) and
{ts.♭i }i≥0 (resp. {FRi/I0Ri

}i≥0, resp. {Fi}i≥0).
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Proof. By the axiom (d) in Definition 2.4.9, (2.20) is surjective. Let us check the injectiv-
ity. By Theorem 2.4.24 (1), Is.♭0 is generated by an element f s.♭0 ∈ Rs.♭

0 such that Φ(0)
i (f s.♭0 )

is a generator of Ii(Ri/I0Ri) (i ≥ 0). Note that ({Rj+i}i≥0, {tj+i}i≥0) is a perfectoid tower
arising from (Rj, I0Rj). Moreover, {IiRj+i}i≥0 is the system of perfectoid pillars associ-
ated to (Rj, I0Rj) (cf. the condition (b) in Proposition 2.4.15 (1)). Put J0 := I0Rj. Then
by Theorem 2.4.24 (1) again, we find that Js.♭0 = f s.♭0 Rs.♭

j = Is.♭0 Rs.♭
j . Since Js.♭0 = KerΦ

(j)
0 ,

we obtain the first assertion.
One can deduce that {Φ(i)

0 }i≥0 is compatible with the Frobenius projections from the
commutativity of (2.9), because the other compatibility assertions immediately follow
from the construction.

The following corollary is immediately obtained from the previous lemma.

Corollary 2.4.32. Let ({Ri}i≥0, {ti}i≥0) be a perfectoid tower arising from some pair
(R, (f0)). Fix a generator f s.♭0 of Is.♭0 (see Theorem 2.4.24). Then the following sequence
of Rs.♭

0 -modules is exact for every i ≥ 0:

0 // (Rs.♭
j )Is.♭0 -tor

// Rs.♭
i

×fs.♭0 // Rs.♭
i

Φ
(i)
0 // Ri/I0Ri

// 0. (2.21)

Proof. The assertion follows from Lemma 2.4.31 because Φ
(i)
0 is surjective and its kernel

is Is.♭0 Rs.♭
i whose generator is the image of f s.♭0 .

Remark 2.4.33. Theorem 2.4.24 (2) and Lemma 2.4.31 can be interpreted as a correspon-
dence of homological invariants between Ri and Rs.♭

i by using Koszul homologies. Indeed,
for any generator f0 (resp. f s.♭0 ) of I0 (resp. Is.♭0 ), the Koszul homology Hq(f

s.♭
0 ;Rs.♭

i ) is
isomorphic to Hq(f0;Ri) for any q ≥ 0 as an abelian group.5

Now we can show the invariance of several properties of perfectoid towers under tilting.
The first one is perfectoidness, which is most important in our framework.

Proposition 2.4.34. ({Rs.♭
i }i≥0, {ts.♭i }i≥0) is a perfectoid tower arising from (Rs.♭

0 , I
s.♭
0 ).

Proof. SetRi := Ri/I0Ri for every i ≥ 0. By Lemma 2.4.31, we find that ({Rs.♭
i }i≥0, {ts.♭i }i≥0)

is a purely inseparable tower arising from (Rs.♭
0 , I

s.♭
0 ) with Frobenius projections {F s.♭

i }i≥0,
and satisfies the the axiom (d) in Definition 2.4.9. Moreover, Lemma 2.4.31 also implies
that

Ker(F s.♭
i ) = (Φ

(i+1)
0 )−1(Ker(Fi)) = (Φ

(i+1)
0 )−1(I1Ri+1) = (Φ

(1)
0 )−1(I1R1)R

s.♭
i+1 = Is.♭1 Rs.♭

i+1.

Hence the axiom (f) follows from Theorem 2.4.24 (1). The axiom (e) holds by Lemma
2.4.28. Let us check that the axiom (g) holds. By Corollary 2.4.7, Is.♭0 (Rs.♭

i )Is.♭0 -tor = (0).
Let (ts.♭i )tor : (Rs.♭

i )Is.♭0 -tor → (Rs.♭
i+1)Is.♭0 -tor be the restriction of ts.♭i . Then by Theorem

2.4.24 (2), there exists a bijection (F s.♭
i )tor : (R

s.♭
i+1)Is.♭0 -tor → (Rs.♭

i )Is.♭0 -tor such that (ts.♭i )tor ◦
(F s.♭

i )tor = F(Rs.♭
i+1)Is.♭0 -tor

(cf. Lemma 2.4.8). Thus we have

ts.♭i ◦ϕIs.♭0 ,Rs.♭
i
◦(F s.♭

i )tor = ϕIs.♭0 ,Rs.♭
i+1
◦(ts.♭i )tor◦(F s.♭

i )tor = ϕIs.♭0 ,Rs.♭
i+1
◦F(Rs.♭

i+1)Is.♭0 -tor
= ts.♭i ◦F s.♭

i ◦ϕIs.♭0 ,Rs.♭
i+1
.

Hence the injectivity of ts.♭i yields the assertion.
5Note that (Ri)I0-tor = AnnRi

(I0) by the axiom (g), and (Rs.♭
i )Is.♭

0 -tor = AnnRs.♭
i
(Is.♭0 ) by Corollary

2.4.7.
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Next, we focus on finiteness properties. “Small" in the name of small tilts comes from
the following fact.

Proposition 2.4.35. For every j ≥ 0, the following assertions hold.

1. If tj : Rj → Rj+1 is module-finite, then so is ts.♭j : Rs.♭
j → Rs.♭

j+1. Moreover, the
converse holds true when Rj is I0-adically complete and separated.

2. If Rj is a Noetherian ring, then so is Rs.♭
j . Moreover, the converse holds true when

Rj is I0-adically complete and separated.

3. Assume that Rj is a Noetherian local ring, and a generator of I0Rj is regular. Then
the dimension of Rj is equal to that of Rs.♭

j .

Proof. (1): By Lemma 2.4.31, tj : Rj/I0Rj → Rj+1/I0Rj+1 is module-finite if and only
if ts.♭j : Rs.♭

j /I
s.♭
0 Rs.♭

j → Rs.♭
j+1/I

s.♭
0 Rs.♭

j+1 is so. Thus by Lemma 2.4.28 and [Mat89, Theorem
8.4], the assertion follows.

(2): One can prove this assertion by applying Lemma 2.4.28, Lemma 2.4.31, and [Sta,
Tag 05GH].

(3): By Theorem 2.4.24, Is.♭0 Rs.♭
j is also generated by a regular element. Thus we

obtain the equalities dim(Rj) = dim(Rj/I0Rj)+1 and dim(Rs.♭
j ) = dim(Rs.♭

j /I
s.♭
0 Rs.♭

j )+1.
By combining these equalities with Lemma 2.4.31, we deduce the assertion.

Proposition 2.4.35 (2) says that “Noetherianness” for a perfectoid tower is preserved
under tilting.

Definition 2.4.36. We say that ({Ri}i≥0, {ti}i≥0) is Noetherian if Ri is Noetherian for
each i ≥ 0.

Corollary 2.4.37. If ({Ri}i≥0, {ti}i≥0) is Noetherian, then so is the tilt ({Rs.♭
i }i≥0, {ts.♭i }i≥0).

Moreover, the converse holds when Ri is I0-adically complete and separated for each i ≥ 0.

Proof. It immediately follows from Proposition 2.4.35 (2).

Finally, let us consider perfectoid towers of Henselian rings. Then we obtain the
equivalence of categories of finite étale algebras over each layer.

Proposition 2.4.38. Assume that Ri is I0-adically Henselian for any i ≥ 0. Then we
obtain the following equivalences of categories:

F.Ét(Rs.♭
i )

∼=−→ F.Ét(Ri).

Proof. This follows from Lemma 2.4.28, Lemma 2.4.31 and [Sta, Tag 09ZL].

2.4.3 Relation with perfectoid rings

For a ring R, we use the following notation. Set the inverse limit

R♭ := lim←−{· · · → R/pR→ R/pR→ · · · → R/pR},

where each transition map is the Frobenius endomorphism on R/pR. It is called the tilt
(or tilting) of R. Moreover, we denote by W (R) the ring of p-typical Witt vectors over R.
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If R is p-adically complete and separated, we denote by θR : W (R♭) → R the ring map
such that the diagram:

W (R♭)
θR //

��

R

��
R♭ // R/pR

(2.22)

(where the vertical maps are induced by reduction modulo p and the bottom map is the
first projection) commutes.

Recall the definition of perfectoid rings.

Definition 2.4.39. ([BMS18, Definition 3.5]) A ring S is perfectoid if the following con-
ditions hold.

1. S is$-adically complete and separated for some element$ ∈ S such that$p divides
p.

2. The Frobenius endomorphism on S/pS is surjective.

3. The kernel of θS : W (S♭)→ S is principal.

We have a connection between perfectoid towers and perfectoid rings. To see this, we
use the following characterization of perfectoid rings.

Theorem 2.4.40 (cf. [GR23, Corollary 16.3.75]). Let S be a ring. Then S is a perfectoid
ring if and only if S contains an element $ with the following properties.

1. $p divides p, and S is $-adically complete and separated.

2. The ring map S/$S → S/$pS induced by the Frobenius endomorphism on S/$pS
is an isomorphism.

3. The multiplicative map
Sϖ-tor → Sϖ-tor ; s 7→ sp (2.23)

is bijective.

Proof. (“if” part): It follows from [GR23, Corollary 16.3.75].
(“only if” part): Let $ ∈ S be as in Definition 2.4.39. Then, such $ clearly has the

property (1) (in Theorem 2.4.40), and also has the property (2) by [BMS18, Lemma 3.10
(i)]. To show the remaining part, we set S̃ := S/Sϖ-tor. By [ČS19, §2.1.3], the diagram of
rings:

S
π2 //

π1
��

(S/$S)red

π4
��

S̃ π3
// (S̃/$S̃)red

(where πi is the canonical projection map for i = 1, 2, 3, 4) is cartesian. Hence Sϖ-tor

(= Ker(π1)) is isomorphic to Ker(π4) as a (possibly) non-unital ring. Since (S/$S)red is
a perfect Fp-algebra, it admits the Frobenius endomorphism and the inverse Frobenius.
Moreover, Ker(π4) is closed under these operations because (S̃/$S̃)red is reduced. Con-
sequently, it follows that one has a bijection (2.23). Hence $ has the property (3), as
desired.
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Remark 2.4.41. In view of the above proof, the “only if” part of Theorem 2.4.40 can be
refined as follows. For a perfectoid ring S, an element $ ∈ S such that p ∈ $pS and S is
$-adically complete and separated satisfies the properties (2) and (3) in Theorem 2.4.40.

Corollary 2.4.42. Let ({Ri}i≥0, {ti}i≥0) be a perfectoid tower arising from some pair
(R0, I0). Let R̂∞ denote the I1-adic completion of R∞. Then R̂∞ is a perfectoid ring.

Proof. Since we have lim−→i≥0
FRi/I0Ri

= (lim−→i≥0
ti) ◦ (lim−→i≥0

Fi) and lim−→i≥0
ti is a canonical

isomorphism, the Frobenius endomorphism on R̂∞ can be identified with lim−→i≥0
Fi. Hence

one can immediately deduce from the axioms in Definition 2.4.9 that any generator of
I1R̂∞ has the all properties assumed on $ in Theorem 2.4.40.

In view of Theorem 2.4.40, one can regard perfectoid rings as a special class of perfec-
toid towers.

Example 2.4.43. Let S be a perfectoid ring. Let $ ∈ S be such that p ∈ $pS and
S is $-adically complete and separated. Set Si = S and ti = idS for every i ≥ 0, and
I0 = $pS. Then by Remark 2.4.41, the tower ({Si}i≥0, {ti}i≥0) is a perfectoid tower
arising from (S, I0). In particular, I0SI0-tor = (0), and FSI0-tor is bijective.

Moreover, we can treat more general rings in a tower-theoretic way.

Example 2.4.44 (Zariskian preperfectoid rings). Let R be a ring that contains an element
$ such that p ∈ $pR, R is $-adically Zariskian, and R has bounded $-torsion. Assume
that the $-adic completion R̂ is a perfectoid ring. Set Ri = R and ti = idR for every
i ≥ 0, and I0 = $pR. Then the tower ({Ri}i≥0, {ti}i≥0) is a perfectoid tower arising from
(R, I0). Indeed, the axioms (a) and (e) are clear from the assumption. Moreover, since
R̂ is perfectoid and R/$pR ∼= R̂/$pR̂, the axioms (b), (c), (d) and (f) hold by Example
2.4.43. In view of Lemma 2.4.6, for proving that the axiom (g) holds, it suffices to show
that the map:

RI0-tor → RI0-tor; x 7→ xp (2.24)

is bijective. By Corollary 2.4.4, the natural map ψtor : RI0-tor → (R̂)I0-tor is injective.
Hence so is F(R̂)I0-tor

◦ ψtor, which factors through (2.24). Therefore, (2.24) is injective
(in particular, I0RI0-tor = (0)). To check the surjectivity, we pick an element x ∈ RI0-tor.
Then ψtor(x) = ηp for some η ∈ (R̂)I0-tor. Let y ∈ R be such that y ≡ η mod I20 R̂.
Then yp ≡ x mod I20 and I0y ⊆ I20 . By Lemma 2.4.5, the second property implies that
y ≡ z mod I0 for some z ∈ RI0-tor. Hence by the binomial theorem, we have x ≡ yp ≡ zp

mod I20 . On the other hand, RI0-tor = RI20 -tor, and hence ϕI20 ,R is injective by Corollary
2.4.3. Thus we have x = zp, as desired.

Recall that we have two types of tilting operation at present; one is defined for perfec-
toid rings, and the other is for perfectoid towers. The following result asserts that they
are compatible.

Lemma 2.4.45. Let ({Rs.♭
i }i≥0, {ts.♭i }i≥0) be the tilt of ({Ri}i≥0, {ti}i≥0) associated to

(R0, I0). Let R̂s.♭
∞ be the Is.♭0 -adic completion of Rs.♭

∞ . Let I♭0 ⊆ R♭
∞ be the ideal that is the

inverse image of I0R∞ mod pR∞ via the first projection. Then there exists a canonical
isomorphism R̂s.♭

∞
∼=−→ R♭

∞ that sends Is.♭0 R̂s.♭
∞ onto I♭0.
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Proof. Since Rs.♭
∞ is perfect, one can deduce the following isomorphism from Example

2.4.21:

R̂s.♭
∞

∼=−→ lim←−
Frob

Rs.♭
∞/I

s.♭
0 Rs.♭

∞ ; (si mod (Is.♭0 )p
i

Rs.♭
∞ )i≥0 7→ (s

1/pi

i mod Is.♭0 Rs.♭
∞ )i≥0.

On the other hand, (2.20) in Lemma 2.4.31 induces a canonical isomorphism

lim←−
Frob

Rs.♭
∞/I

s.♭
0 Rs.♭

∞
∼=−→ lim←−

Frob
R∞/I0R∞.

Moreover, by [BMS18, Lemma 3.2 (i)], we can identify R♭
∞ with lim←−Frob

R∞/I0R∞, and the
ideal I♭0 ⊆ R♭

∞ corresponds to the kernel of the first projection map on lim←−Frob
R∞/I0R∞.

Thus the resulting composite map R̂s.♭
∞

∼=−→ R♭
∞ has the desired property.

2.5 Perfectoid towers arising from local log-regular rings
In this section, we provide the construction of perfectoid towers whose layers are local

log-regular rings. In §2.5.1, we review the maximality of sequences of elements. We need
its properties when we consider constructions of perfectoid towers by adjoining the p-th
power roots of elements. In §2.5.2, we construct perfectoid towers arising from local log-
regular rings adjoining the p-th power roots of elements of monoids. For this construction,
we also need the consideration in §1.2.2.

2.5.1 Maximality of sequences of elements and differential mod-
ules

The content of this subsection is taken from Gabber-Ramero’s treatise [GR23] whose
purpose is to supply the corrected version of Grothendieck’s original presentation in EGA.
So we give only a sketch of the constructions of relevant modules and maps. The readers
are encouraged to look into [GR23] for more details as well as proofs. We are motivated
by the following specific problem.

Problem 2. Let (A,mA) be a Noetherian regular local ring and fix a system of elements
f1, . . . , fn ∈ A and a system of integers e1, . . . , en with ei > 1 for every i = 1, . . . , n. We
set

B := A[T1, . . . , Tn]/(T
e1
1 − f1, . . . , T end − fn).

Then find a sufficient condition that ensures that the localization B with respect to a
maximal ideal n with mA = A ∩ n is regular.

From the construction, it is obvious that the induced ring map A → B is a flat
finite injective extension. Let now (A,mA, k) be a Noetherian local ring with residue field
kA := A/mA of characteristic p > 0. Following the presentation in [GR23, (9.6.15)], we
define a certain k1/pA -vector space ΩA together with a map dA : A→ ΩA as follows.

Case I: (p /∈ m2
A)

Let W2(kA) denote the p-typical ring of length 2 Witt vectors over kA. Then there
is the ghost component map ω0 : W2(kA) → kA, and set V1(kA) := Ker(ω0). More
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specifically, we have W2(kA) = kA × kA as sets with addition and multiplication
given respectively by

(a, b) + (c, d) =
(
a+ c, b+ d+

ap + cp − (a+ c)p

p

)
and (a, b)(c, d) = (ac, apd+ cpb).

Using this structure, we see that V1(kA) = 0 × kA as sets, which is an ideal of
W2(kA) and V1(kA)

2 = 0. This makes V1(kA) equipped with the structure as a kA-
vector space by letting x(0, a) := (x, 0)(0, a) for x ∈ kA. One can define the map of
kA-vector spaces

k
1/p
A → V1(kA) ; a 7→ (0, ap), (2.25)

which is a bijection. With this isomorphism, we may view V1(kA) as a k1/pA -vector
space. Next, we form the fiber product ring:

A2 := A×kA W2(kA).

It gives rise to a short exact sequence of A2-modules

0→ V1(kA)→ A2 → A→ 0, (2.26)

where A2 → A is the natural projection, and the A2-module structure of V1(kA) is
via the restriction of rings A2 → W2(kA). From (2.26), we obtain an exact sequence
of A-modules:

V1(kA)→ ΩA → Ω1
A/Z → 0,

where we put ΩA = Ω1
A2/Z⊗A2A. After applying ( )⊗A kA to this sequence, we have

another sequence of kA-vector spaces:

0→ V1(kA)
jA−→ ΩA ⊗A kA → Ω1

A/Z ⊗A kA → 0. (2.27)

Then this is right exact. Moreover, (2.25) yields a unique kA-linear map ψA :

V1(kA)⊗kA k
1/p
A → V1(kA). Define ΩA as the push-out of the diagram:

V1(kA)
ψA←− V1(kA)⊗kA k

1/p
A

jA⊗k1/pA−−−−−→ ΩA ⊗A k1/pA .

More concretely, we have

ΩA =
V1(kA)⊕ (ΩA ⊗A k1/pA )

T
,

where T =
{
(ψ(x),−(jA ⊗ k1/pA )(x))

∣∣ x ∈ V1(kA)⊗kA k1/pA

}
. By the universality of

push-outs, we get the commutative diagram:

0 −−−→ V1(kA)⊗kA k
1/p
A −−−→ ΩA ⊗A k1/pA −−−→ Ω1

A/Z ⊗A k
1/p
A −−−→ 0

ψA

y ψA

y ∥∥∥
0 −−−→ V1(kA) −−−→ ΩA −−−→ Ω1

A/Z ⊗A k
1/p
A −−−→ 0

We define the map
dA : A→ ΩA
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as the composite mapping

A
1×τkA−−−→ A2 = A×kA W2(kA)

d−→ Ω1
A2/Z

id⊗1−−−→ ΩA = Ω1
A2/Z ⊗A k

1/p
A

ψA−−→ ΩA.

Here, d : A2 → Ω1
A2/Z is the universal derivation, and τkA : A → kA → W2(kA),

where the first map is the natural projection and the second one is the Teichmüller
map.

Case II: (p ∈ m2
A)

We just set ΩA := Ω1
A/Z ⊗A k

1/p
A , and define dA : A → ΩA as the map induced by

the universal derivation dA : A→ Ω1
A/Z.

Combining both Case I and Case II together, we have a map dA : A→ ΩA. Moreover,
if φ : (A,mA) → (B,mB) is a local ring map of local rings, it gives rise to the following
commutative diagram:

A
dA−−−→ ΩA

ϕ

y Ωϕ

y
B

dB−−−→ ΩB

With this in mind, one can consider the functor A 7→ ΩA from the category of local
rings (A,mA) of residual characteristic p > 0 to the category of the k1/pA -vector spaces
ΩA. Some distinguished features in the construction above are expressed by the following
proposition.

Proposition 2.5.1 ([GR23, Proposition 9.6.20]). Let φ : (A,mA) → (B,mB) be a local
ring map of Noetherian local rings such that the residual characteristic of A is p > 0.
Then

1. Suppose that φ is formally smooth for the mA-adic topology on A and the mB-adic
topology on B. Then the maps induced by φ and Ωϕ respectively

(mA/m
2
A)⊗kA kB → mB/m

2
B, ΩA ⊗K1/p

A
k
1/p
B → ΩB

are injective.

2. Suppose that

(a) mAB = mB.

(b) The residue filed extension kA → kB is separable algebraic.

(c) φ is flat.

Then Ωϕ induces an isomorphism of k1/pA -vector spaces:

ΩA ⊗A B ∼= ΩB.

3. If B = A/m2
A and φ : A→ B is the natural map, then Ωϕ is an isomorphism.

4. The functor Ω• and the natural transformation d• commute with filtered colimits.

We provide an answer to Problem 2 as follows.
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Theorem 2.5.2 ([GR23, Corollary 9.6.34]). Let f1, . . . , fn be a sequence of elements in
A, and let e1, . . . , en be a system of integers with ei > 1 for every i = 1, . . . , n. Set

C := A[T1, . . . , Tn]/(T
e1
1 − f1, . . . , T e

n

n − fn).

Fix a prime ideal n ⊆ C such that n ∩ A = mA, and let B := Cn. Let E ⊆ ΩA be the
k
1/p
A -vector space spanned by dAf1, . . . ,dAfn. Then the following conditions are equivalent.

1. A is a regular local ring, and dim
k
1/p
A
E = n.

2. B is a regular local ring.

In particular, in the situation of the above theorem, B is a regular local ring if A is a
regular local ring and f1, . . . , fn is maximal in the sense of the following definition.

Definition 2.5.3. Let (A,mA, kA) be a local ring with residual characteristic p > 0. Then
we say that a sequence of elements f1, . . . , fn in A is maximal if dAf1, . . . ,dAfn forms a
basis of the k1/pA -vector space ΩA.

In general, we have the following fact.

Lemma 2.5.4. Let (A,mA, kA) be a regular local ring of mixed characteristic and assume
that f1, . . . , fd is a regular system of parameters of A. Then the following hold:

1. f1, . . . , fd satisfies the condition (1) of Theorem 2.5.2.

2. If the residue field kA of A is perfect, then the sequence f1, . . . , fd is maximal.

Proof. (1): In the case that p /∈ m2
A, [GR23, Proposition 9.6.17] gives a short exact

sequence:
0→ mA/m

2
A ⊗kA k

1/p
A → ΩA → Ω1

kA/Z ⊗kA k
1/p
A → 0. (2.28)

Then the images f1, . . . , fd form a basis of the k1/pA -vector space mA/m
2
A ⊗kA k

1/p
A . The

desired claim follows from the left exactness of (2.28).
In the case that p ∈ m2

A, [GR23, Lemma 9.6.6] gives a short exact sequence

0→ mA/(m
2
A + pmA)→ ΩA → Ω1

kA/Z → 0. (2.29)

and we can argue as in the case p /∈ m2
A.

(2): If kA is perfect, then Ω1
kA/Z = 0. Therefore, (2.28) and (2.29) (in the latter case,

one tensors it with k1/pA over kA) gives the desired conclusion.

2.5.2 A construction of perfectoid towers arising from local log-
regular rings

As an example of tilts of Noetherian perfectoid towers, we calculate them for certain
towers of local log-regular rings. Firstly, we review a perfectoid tower constructed in
[GR23].
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Construction 2.5.5. Let (R,Q, α) be a complete local log-regular ring with perfect residue
field of characteristic p > 0. Assume that Q is fine, sharp, and saturated (see Remark
1.3.7). Set A := R/Iα. Let (f1, . . . , fr) be a sequence of elements of R whose image in A
is maximal (see Definition 2.5.3). Since the residue field of R is perfect, r is the dimension
of A (see §2.5.1). For every i ≥ 0, we consider the ring

Ai := A[T1, . . . , Tr]/(T
pi

1 − f1, . . . , T p
i

r − fr),

where each fj denotes the image of fj in A (j = 1, . . . , r). Notice that Ai is regular by
Theorem 2.5.2. Moreover, we set Q(i) := Q(i)

p (see Definition 1.2.30). Furthermore, we
define

R′
i := Z[Q(i)]⊗Z[Q] R, R

′′
i := R[T1, . . . , Tr]/(T

pi

1 − f1, . . . , T p
i

r − fr), (2.30)

and
Ri := R′

i ⊗R R′′
i . (2.31)

Let ti : Ri → Ri+1 be the ring map that is naturally induced by the inclusion map
ι(i) : Q(i) ↪→ Q(i+1). Since R′′

i+1 is a free R′′
i -module, ti is universally injective by Lemma

1.2.33 (2) and the condition (e) in Proposition 1.2.23 (2).

Proposition 2.5.6. Keep the notation as in Construction 2.5.5. Let αi : Q(i) → Ri be
the natural map. Then (Ri,Q(i), αi) is a local log-regular ring.

Proof. We refer the reader to [GR23, 17.2.5].

By the construction, we obtain the tower of rings ({Ri}i≥0, {ti}i≥0) (see Definition
2.1.1).

Proposition 2.5.7. Keep the notation as in Construction 2.5.5. Then the tower ({Ri}i≥0, {ti}i≥0)
of local log-regular rings defined above is a perfectoid tower arising from (R, (p)).

Proof. We verify (a)-(g) in Definition 2.3.1 and Definition 2.4.9. The axiom (a) is trivial.
Since ti is universally injective, the axiom (b) follows. The axioms (c) and (d) follow
from [GR23, (17.2.10) and Lemma 17.2.11]. Since R is of residual characteristic p, the
axiom (e) follows from the locality. Since Ri is a domain for any i ≥ 0, the axiom (g)
holds by Remark 2.4.10. Finally, let us check that the axiom (f) holds. In the case when
p = 0, it follows from [GR23, Theorem 17.2.14 (i)]. Otherwise, there exists an element
$ ∈ R1 that satisfies $p = pu for some unit u ∈ R1 by [GR23, Theorem 17.2.14 (ii)]. Set
I1 := ($). Then the axiom (f-1) holds. Moreover, the axiom (f-2) follows from [GR23,
Theorem 17.2.14 (iii)]. Thus the assertion follows.

For calculating the tilt of the perfectoid tower constructed above, the following lemma
is quite useful.

Lemma 2.5.8. Keep the notation as in Proposition 2.5.6. Let k be the residue field of
R. Then there exists a family of ring maps {φi : C(k)JQ(i) ⊕ (Nr)(i)K → Ri}i≥0 which
is compatible with the log structures of {(Ri,Q(i), αi)}i≥0 such that the following diagram
commutes for every i ≥ 0:

C(k)JQ(i) ⊕ (Nr)(i)K � � //

ϕi
����

C(k)JQ(i+1) ⊕ (Nr)(i+1)K
ϕi+1
����

Ri
� � ti // Ri+1

(2.32)
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(where the top arrow is the natural inclusion). Moreover, there exists an element θ ∈
C(k)JQ ⊕ NrK whose constant term is p such that the kernel of φi is generated by θ for
every i ≥ 0.

Proof. First, we remark on the following. Let ki be the residue field of Ri. Then by
Lemma 2.3.11 (1) and Lemma 2.3.6 (2), the transition maps induce a purely inseparable
extension k ↪→ ki. Moreover, this extension is trivial because k is perfect. Therefore, we
can identify ki (resp. the Cohen ring of Ri) with k (resp. C(k)).

Next, let us show the existence of a family of ring maps {φi}i≥0 with the desired
compatibility. Since (Ri,Q(i), αi) is a complete local log-regular ring, we can take a
surjective ring map ψi : C(k)JQ(i)⊕NrK→ Ri as in Theorem 1.3.8; its kernel is generated
by an element θi whose constant term is p, and the diagram:

Q(i) //

αi

''OO
OOO

OOO
OOO

OOO
C(k)JQ(i) ⊕ NrK

ψi
����
Ri

commutes. For j = 1, . . . , r, let us denote by f
1/pi

j the image of Tj ∈ R[T1, . . . , Tr]

in Ri (see (2.30) and (2.31)). Note that the sequence f 1/pi

1 , . . . , f
1/pi

r in Ri becomes a
regular system of parameters of Ri/Iαi

by the reduction modulo Iαi
(see [GR23, 17.2.3]

and [GR23, 17.2.5]). Thus, for the set of the canonical basis {e1, . . . , er} of Nr, we may
assume ψi(eej) = f

1/pi

j by the construction of ψi (see the proof of [Ogu18, Chapter III,
Theorem 1.11.2]). Hence we can choose {ψi}i≥0 so that the diagram:

C(k)JQ(i) ⊕ NrK � � //

ψi
����

C(k)JQ(i+1) ⊕ NrK
ψi+1
����

Ri
� � ti // Ri+1

(2.33)

commutes. Thus it suffices to define φi : C(k)JQ(i)⊕ (Nr)(i)K→ Ri as the composite map
of the isomorphism C(k)JQ(i) ⊕ (Nr)(i)K ∼=−→ C(k)JQ(i) ⊕ NrK obtained by Lemma 1.2.31
(3) and ψi.

Finally, note that the image of θ0 ∈ Ker(ψ0) in C(k)JQ(i)⊕NrK is contained in Ker(ψi),
and its constant term is still p. Thus, by the latter assertion of Theorem 1.3.8 (2), Ker(ψi)
is generated by θ0. Hence by taking θ0 as θ, we complete the proof.

Let us consider the monoids Q(i) for an integral sharp monoid Q. Since there is the
natural inclusion ι(i) : Q(i) ↪→ Q(i+1) for any i ≥ 0, we obtain a direct system of monoids
({Q(i)}i≥0, {ι(i)}i≥0). Moreover, the p-times map on Q(i+1) gives a factorization:

Q(i+1) ×p //

×p $$ $ $I
II

II
II

II
Q(i+1)

Q(i).
?�
ι(i)

OO

From this discussion, we define the small tilt of {Q(i)}i≥0.
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Definition 2.5.9. Let Q be an integral sharp monoid, and let ({Q(i)}i≥0, {ι(i)}i≥0) be as
above. Then for an integer j ≥ 0, we define the j-th small tilt of ({Q(i)}i≥0, {ι(i)}i≥0) as
the inverse limit

Qs.♭j := lim←−{· · · → Q
(j+1) → Q(j)}, (2.34)

where the transition map Q(i+1) → Q(i) is the p-times map of monoids.

Now we can derive important properties of the tilt of the perfectoid tower given in
Construction 2.5.5.

Theorem 2.5.10. Keep the notation as in Lemma 2.5.8. Then the following assertions
hold.

1. The tower ({(Ri)
s.♭
(p)}i≥0, {(ti)s.♭(p)}i≥0) is isomorphic to ({kJQ(i)⊕(Nr)(i)K}i≥0, {ui}i≥0),

where ui is the ring map induced by the natural inclusion Q(i) ⊕ (Nr)(i) ↪→ Q(i+1) ⊕
(Nr)(i+1).

2. For every j ≥ 0, there exists a homomorphism of monoids αs.♭j : Qs.♭j → (Rj)
s.♭
(p) such

that ((Rj)
s.♭
(p),Qs.♭j , αs.♭j ) is a local log-regular ring.

3. For every j ≥ 0, (tj)s.♭(p) : (Rj)
s.♭
(p) → (Rj+1)

s.♭
(p) is module-finite and (Rj)

s.♭
(p) is F -finite.

Proof. (1): By Lemma 2.5.8, eachRi is isomorphic to C(k)JQ(i)⊕(Nr)(i)K/(p−f)C(k)JQ(i)⊕
(Nr)(i)K where f is an element of C(k)JQ ⊕ NrK which has no constant term. Set Si :=
kJQ(i)⊕ (Nr)(i)K for any i ≥ 0 and let ui : Si ↪→ Si+1 be the inclusion map induced by the
natural inclusion Q(i) ⊕ (Nr)(i) ↪→ Q(i+1) ⊕ (Nr)(i+1). Then the tower ({Si}i≥0, {ui}i≥0) is
a perfect tower. Indeed, each Si is reduced by Theorem 1.3.13; moreover, by the perfect-
ness of k and Lemma 1.2.31 (3), the Frobenius endomorphism on Si+1 factors through a
surjection Gi : Si+1 → Si. In particular, ({Si}i≥0, {ui}i≥0) is a perfectoid tower arising
from (S0, (0)) and Gi is the i-th Frobenius projection (cf. Lemma 2.4.12).

Put f := f mod pC(k)JQ ⊕ NrK ∈ S0. Then each Si is f -adically complete and
separated by [FGK11, Lemma 2.1.1]. Moreover, the commutative diagram (2.32) yields
the commutative squares (i ≥ 0):

Si+1/fSi+1

Gi
��

∼= // Ri+1/pRi+1

Fi

��
Si/fSi

∼= // Ri/pRi

that are compatible with {ui : Si/fSi → Si+1/fSi+1}i≥0 and {ti}i≥0. Hence by Lemma
2.4.20, we obtain the isomorphisms

(Rj)
s.♭
(p)

∼=←− lim←−{· · ·
Gj+1−−−→ Sj+1/fSj+1

Gj−→ Sj/fSj}
∼=−→ Sj (j ≥ 0) (2.35)

that are compatible with the transition maps of the towers. Thus the assertion follows.
(2): Considering the inverse limit of the composite mapsQ(j+i) αj+i−−→ Rj+i ↠ Rj+i/pRj+i

(i ≥ 0), we obtain a homomorphism of monoids αs.♭j : Qs.♭j → (Rj)
s.♭
(p). On the other hand,

let αj : Q(j) → Sj be the natural inclusion. Then, since Sj is canonically isomorphic to
kJQ(j)⊕NrK, (Sj,Q(j), αj) is a local log-regular ring by Theorem 1.3.8 (1). Thus it suffices
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to show that ((Rj)
s.♭
(p),Qs.♭j , αs.♭j ) is isomorphic to (Sj,Q(j), αj) as a log ring. Since the tran-

sition maps in (2.34) are isomorphisms by Lemma 1.2.31 (3), we obtain the isomorphisms
of monoids

Qs.♭j
idQs.♭

j←−−− Qs.♭j
∼=−→ Q(j) (j ≥ 0). (2.36)

Then one can connect (2.36) to (2.35) to construct a commutative diagram using αs.♭j and
αj. Hence the assertion follows.

(3): By Lemma 1.2.32 (2), tj : Rj → Rj+1 is module-finite. Hence by Proposition
2.4.35 (1), (tj)

s.♭
(p) : (Rj)

s.♭
(p) → (Rj+1)

s.♭
(p) is also module-finite. Finally let us show that

(Rj)
s.♭
(p) is F -finite. By the assertion (2), (Rj)

s.♭
(p) is a complete Noetherian local ring, and

the residue field is F -finite because it is perfect. Thus the assertion follows from [Mat89,
Theorem 8.4].

Example 2.5.11. 1. A tower of regular local rings which is treated in [Čes19] and
[ČS19] is a perfectoid tower in our sense. Let (R,m, k) be a d-dimensional regular
local ring whose residue field k is perfect, and let x1, . . . , xd be a regular sequence of
parameters. Let e1, . . . , ed be the canonical basis of Nd. Then (R,Nd, α) is a local
log-regular ring where α : Nd → R is a homomorphism of monoids which maps ei to
xi. Furthermore, assume that R is m-adically complete. Then, by Cohen’s structure
theorem, R is isomorphic to

W (k)Jx1, . . . , xdK/(p− f)
where f = x1 or f ∈ (p, x1, . . . , xd)

2 (the former case is called unramified, and the
latter is called ramified). Let us construct a perfectoid tower arising from (R, (p))
along Construction 2.5.5. Since k is perfect, Ωk is zero by the short exact sequences
(2.28) and the definition of itself. This implies that the image of the empty subset
of R in k forms a maximal sequence. Hence R′′

i in Construction 2.5.5 is equal to R.
Moreover, (Nd)(i) is generated by 1

pi
e1, . . . ,

1
pi
ed. Thus, applying Construction 2.5.5,

we obtain

Ri = Z[(Nd)(i)]⊗Z[Nd]R ∼= R[T1, . . . , Td]/(T
pi

1 −x1, . . . , T
pi

d −xd) ∼= W (k)Jx1/pi1 , . . . , x
1/pi

d K/(p−f).
Set the natural injection ti : Ri → Ri+1 for any i ≥ 0. Then, by Proposition 2.5.7,
({Ri}i≥0, {ti}i≥0) is a perfectoid tower arising from (R, (p)). By Theorem 2.5.10,
its tilt ({(Ri)

s.♭
(p)}i≥0, {(ti)s.♭(p)}i≥0) is isomorphic to the tower kJNdK ↪→ kJ(Nd)(1)K ↪→

kJ(Nd)(2)K ↪→ · · · , which can be written as

kJx1, . . . , xdK ↪→ kJx1/p1 , . . . , x
1/p
d K ↪→ kJx1/p21 , . . . , x

1/p2

d K ↪→ · · · .
2. Consider the surjection:

S := W (k)Jx, y, z, wK/(xy − zw)↠ R := W (k)Jx, y, z, wK/(xy − zw, p− w).
where k is a perfect field. Let Q ⊆ N4 be a saturated submonoid generated by

(1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 0, 1), and (0, 1, 1, 0).

Then S admits a homomorphism of monoids αS : Q → S by letting (1, 1, 0, 0) 7→
x, (0, 0, 1, 1) 7→ y, (1, 0, 0, 1) 7→ z and (0, 1, 1, 0) 7→ w. With this, (S,Q, αS) is a local
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log-regular ring. The composite map αR : Q → S → R makes R into a local log ring.
Indeed, we can write R ∼= W (k)JQK/(p − e(0,1,1,0)), hence (R,Q, αR) is log-regular
by Theorem 1.3.8.

Next, note that R/IαR
∼= k. Then, for the same reason in (1), R′′

i is equal to R.
Moreover, Q(i) is generated by( 1

pi
,
1

pi
, 0, 0

)
,
(
0, 0,

1

pi
,
1

pi

)
,
( 1

pi
, 0, 0

1

pi

)
,
(
0,

1

pi
,
1

pi
, 0
)
.

Thus, applying Construction 2.5.5, we obtain

Ri = RJQ(i)K
∼= W (k)JQ(i)K/(p− e(0,1,1,0))
∼= W (k)Jx1/pi , y1/pi , z1/pi , w1/piK/(x1/piy1/pi − z1/piw1/pi , p− w).

Set a natural injection ti : Ri → Ri+1. Then, by Proposition 2.5.7, ({Ri}i≥0, {ti}i≥0)
is a perfectoid tower arising from (R, (p)). Hence

R∞ = lim−→
i≥0

Ri
∼=

⋃
i≥0

W (k)Jx1/pi , y1/pi , z1/pi , w1/piK/(x1/piy1/pi − z1/piw1/pi , p− w),

and its p-adic completion is perfectoid. Moreover, one can calculate the tilt ({Rs.♭
i }i≥0, {ts.♭i }i≥0)

to be kJQK ↪→ kJQ(1)K ↪→ kJQ(2)K ↪→ · · · by Theorem 2.5.10, or, more explicitly,

kJx, y, z, wK/(xy − zw) ↪→ kJx1/p, y1/p, z1/p, w1/pK/(x1/py1/p − z1/pw1/p) ↪→ · · · .

Let us recall that Hansen and Kedlaya introduced a new class of topological rings that
guarantees sheafiness on the associated adic spectra (see [HK23, Definition 7.1]).

Definition 2.5.12. Let A be a complete and separated Tate ring such that a prime p ∈ A
is topologically nilpotent. We say that A is sousperfectoid, if there exists a perfectoid ring
B in the sense of Fontaine (see [HK23, Definition 2.13]) with a continuous A-linear map
f : A → B that splits in the category of topological A-modules. That is, there is a
continuous A-linear map σ : B → A such that σ ◦ f = idA.

Let us show that a perfectoid tower consisting of split maps induces sousperfectoid
rings. In view of Theorem 1.4.3, one can apply this result to the towers discussed above.
See [NS22] for detailed studies on algebraic aspects of Tate rings.

Proposition 2.5.13. Let ({Ri}i≥0, {ti}i≥0) be a perfectoid tower arising from some pair
(R, (f0)). Assume that f0 is regular, R is f0-adically complete and separated, and ti splits
as an Ri-linear map for every i ≥ 0. We equip R[ 1

f0
] with the linear topology in such

a way that {fn0 R}n≥1 defines a fundamental system of open neighborhoods at 0 ∈ R[ 1
f0
].

Then R[ 1
f0
] is a sousperfectoid Tate ring. In particular, it is stably uniform.

In order to prove this, we need the following lemma.

Lemma 2.5.14. Keep the notations and assumptions as in Proposition 2.5.13. Then the
natural map R0 → lim−→i≥0

Ri splits as an R0-linear map.
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Proof. We use the fact that each ti : Ri → Ri+1 splits as an Ri-linear map by assumption.
This implies that the short exact sequence of R-modules

0→ R0 → Ri → Ri/R→ 0

splits for any i ≥ 0. It induces a commutative diagram of R-modules

0 −−−→ HomR0(Ri+1/R0, R0) −−−→ HomR0(Ri+1, R0) −−−→ HomR0(R0, R0) −−−→ 0

αi

y βi

y ∥∥∥
0 −−−→ HomR0(Ri/R0, R0) −−−→ HomR0(Ri, R0) −−−→ HomR0(R0, R0) −−−→ 0

where each horizontal sequence is split exact, and each vertical map forms an inverse
system induced by ti : Ri → Ri+1. In particular, βi is surjective and it thus follows from
the snake lemma that αi is surjective as well. By taking inverse limits, we obtain the
short exact sequence:

0→ lim←−
i≥0

HomR0(Ri/R0, R0)→ lim←−
i≥0

HomR0(Ri, R0)
h−→ HomR0(R0, R0)→ 0.

It follows from [Sch14, Lemma 4.1] that h is the canonical surjection HomR0(R∞, R0)↠
HomR0(R0, R0). Then choosing an inverse image of idR0 ∈ HomR0(R0, R0) gives a splitting
of R0 → R∞.

Proof of Proposition 2.5.13. We have constructed an infinite extension R → R∞ such
that if R̂∞ is the f0-adic completion, then the associated Tate ring R̂∞[ 1

f0
] is a perfectoid

ring in the sense of Fontaine by Theorem 2.4.42 and [BMS18, Lemma 3.21].
By Lemma 1.4.2 and Lemma 2.5.14, it follows that the map R[ 1

f0
]→ R̂∞[ 1

f0
] splits in

the category of topological R[ 1
f0
]-modules (notice that R is f0-adically complete and sep-

arated). Thus, R[ 1
f0
] is a sousperfectoid Tate ring. The combination of [HK23, Corollary

8.10], [HK23, Proposition 11.3] and [HK23, Lemma 11.9] allows us to conclude that R[ 1
f0
]

is stably uniform.

As a corollary, one can obtain the stable uniformity for complete local log-regular rings
(see also Construction 2.5.5 and Theorem 1.4.3).

Corollary 2.5.15. Let (R,Q, α) be a complete local log-regular ring of mixed charac-
teristic with perfect residue field. We equip R[1

p
] with the structure of a complete and

separated Tate ring in such a way that {pnR}n≥1 defines a fundamental system of open
neighborhoods at 0 ∈ R[1

p
]. Then R[1

p
] is stably uniform.

2.6 Applications of perfectoid towers and their tilts
In this section, we establish several results on étale cohomology groups and local coho-

mologies of Noetherian rings, as applications of the theory of perfectoid towers developed
in §2.4. In §2.6.1, for a ring that admits a certain type of a perfectoid tower, we prove
that the finiteness of étale cohomology groups on the positive characteristic side carries
over to the mixed characteristic side (Proposition 2.6.7). In §2.6.2, we apply this result
to a problem on divisor class groups of log-regular rings. Finally, in §2.6.3, we provide a
partial answer to the second vanishing theorem in mixed characteristic.
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2.6.1 Application to étale cohomology groups

We prepare some notation. Let X be a scheme and let Xét denote the category of
schemes that are étale over X, and for any étale X-scheme Y , we specify the covering
{Yi → Y }i∈I so that Yi is étale over Y and the family {Yi}i∈I covers surjectively Y . For
an abelian sheaf F on Xét, we denote by H i(Xét,F) the value of the i-th derived functor
of U ∈ Xét 7→ Γ(U,F). For the most part of applications, we consider torsion sheaves,
such as Z/nZ and µn for n ∈ N. However, for the multiplicative group scheme Gm, we
often use the following isomorphism:

H1(Xét,Gm) ∼= Pic(X).

For the basics on étale cohomology, we often use [Fu11] or [Mil80] as references.
Let A be a ring with an ideal J and let U ⊆ Spec(A) be an open subset. Then we

define the J-adic completion of U to be the open subset Û ⊆ Spec(Â), which is the inverse
image of U via Spec(Â) → Spec(A). We will use the following result for deriving results
on the behavior of étale cohomology under the tilting operation as well as some interesting
results on the divisor class groups of Noetherian normal domains (see Proposition 2.6.10
and Proposition 2.6.11).

Theorem 2.6.1 (Fujiwara-Gabber). Let (A, J) be a Henselian pair with X := Spec(A)

and let Â be the J-adic completion of A. Then the following assertions hold.

1. For any abelian torsion sheaf F on Xét, we have

RΓ(Spec(A)ét,F ) ' RΓ(Spec(A/J)ét,F |Spec(A/J)).

2. Assume that J is finitely generated. Then for any abelian torsion sheaf F on Xét

and any open subset U ⊆ X such that X \ V (J) ⊆ U , we have

RΓ(Uét,F ) ' RΓ(Ûét,F ).

Proof. The first statement is known as Affine analog of proper base change in [Gab94],
while the second one is known as Formal base change theorem which is [Fuj95, Theorem
7.1.1] in the Noetherian case, and [ILO14, XX, 4.4] in the non-Noetherian case.

We will need the tilting invariance of (local) étale cohomology from [ČS19, Theorem
2.2.7]. To state the theorem and establish a variant of it, we give some notations.

Definition 2.6.2. Let (A, I) and (B, J) be pairs such that there exists an isomorphism of
rings Φ : A/I

∼=−→ B/J . Then for any open subset U ⊆ Spec(B) containing Spec(B)\V (J),
we define an open subset FA,Φ(U) ⊆ Spec(A) as the complement of the closed subset
Spec(Φ)

(
Spec(B) \ U

)
⊆ Spec(A).

One can define small tilts of Zariski-open subsets.

Definition 2.6.3. Let ({Ri}i≥0, {ti}i≥0) be a perfectoid tower arising from some pair
(R, I0), and let ({Rs.♭

i }i≥0, {ts.♭i }i≥0) be the tilt associated to (R, I0). Recall that we then
have an isomorphism of rings Φ

(i)
0 : Rs.♭

i /I
s.♭
0 Rs.♭

i

∼=−→ Ri/I0Ri for every i ≥ 0. For every
i ≥ 0 and every open subset U ⊆ Spec(Ri) containing Spec(Ri) \ V (I0Ri), we define

U s.♭
I0

:= F
Rs.♭

i ,Φ
(i)
0

(U).

We also denote U s.♭
I0

by U s.♭ as an abbreviated form.
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Note that by the compatibility described in Lemma 2.4.31, the operation U ⇝ U s.♭ is
compatible with the base extension along the transition maps of a perfectoid tower.

Let us give some examples of U s.♭.

Example 2.6.4 (Punctured spectra of regular local rings). Keep the notation as in Ex-
ample 2.5.11 (1). In this situation, the isomorphism Φ

(0)
0 : Rs.♭

0 /I
s.♭
0

∼=−→ R0/I0 in Definition
2.6.3 can be written as

kJx1, . . . , xdK/(ps.♭) ∼=−→ R/pR, (2.37)

where ps.♭ ∈ kJx1, . . . , xdK is some element. Set U := Spec(R) \ V (m). Then, since the
maximal ideal m ⊆ R/pR corresponds to the (unique) maximal ideal of kJx1, . . . , xdK/(ps.♭),
we have

U s.♭ ∼= Spec(kJx1, . . . , xdK) \ V ((x1, . . . , xd)).

Example 2.6.5 (Tilting for preperfectoid rings). Keep the notation as in Example 2.4.44.
Then by Lemma 2.4.45, Φ(0)

0 : Rs.♭
0 /I

s.♭
0

∼=−→ R0/I0 is identified with the isomorphism:

θR̂ : (R̂)♭/I♭0(R̂)
♭ ∼=−→ R̂/I0R̂ (2.38)

which is induced by the bottom map in the diagram (2.22). In this case, we denote
F
R♭,Φ

(0)
0

(U) by U ♭ in distinction from U s.♭.

The comparison theorem we need, due to Česnavičius and Scholze [ČS19], is stated as
follows.

Theorem 2.6.6 (Česnavičius-Scholze). Let A be a $-adically Henselian ring with bounded
$-torsion for an element $ ∈ A such that p ∈ $pA. Assume that the $-adic completion
of A is perfectoid. Let U ⊆ Spec(A) be a Zariski-open subset such that Spec(A)\V ($A) ⊆
U , and let U ♭ ⊆ Spec(A♭) be its tilt (see Example 2.6.5).

1. For every torsion abelian group G, we have RΓ(Uét, G) ∼= RΓ(U ♭
ét, G) in a functorial

manner with respect to A, U , and G.

2. Let Z be the complement of U ⊆ Spec(A). Then for a torsion abelian group G, we
have RΓZ(Spec(A)ét, G) ∼= RΓZ(Spec(A

♭)ét, G).

Now we come to the main result on tilting étale cohomology groups. Recall that we
have fixed a prime p > 0.

Proposition 2.6.7. Let ({Rj}j≥0, {tj}j≥0) be a perfectoid tower arising from some pair
(R, I0). Suppose that Rj is I0-adically Henselian for every j ≥ 0. Let ` be a prime different
from p. Suppose further that for every j ≥ 0, tj : Rj → Rj+1 is a module-finite extension of
Noetherian normal domains whose generic extension is of p-power degree.6 Fix a Zariski-
open subset U ⊆ Spec(R) such that Spec(R) \ V (pR) ⊆ U and the corresponding open
subset U s.♭ ⊆ Spec(Rs.♭) (cf. Definition 2.6.3). Then, for any fixed i, n ≥ 0 such that
|H i(U s.♭

ét ,Z/`nZ)| <∞, one has

|H i(Uét,Z/`nZ)| ≤ |H i(U s.♭
ét ,Z/`nZ)|.

In particular, if H i(U s.♭
ét ,Z/`nZ) = 0, then H i(Uét,Z/`nZ) = 0.

6The existence of such towers is quite essential for applications to étale cohomology, because the
extension degree of each Rj → Rj+1 is controlled in such a way that the p-adic completion of its colimit
is a perfectoid ring.
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Proof. Since each Rj is a p-adically Henselian normal domain, so is R∞ = lim−→j≥0
Rj.

Moreover, every prime ` different from p is a unit in Rj and R∞. Attached to the tower
({Rj}i≥0, {tj}j≥0), we get a tower of finite (not necessarily flat) maps of normal schemes:

U = U0 ← · · · ← Uj ← Uj+1 ← · · · . (2.39)

More precisely, let hj : Spec(Rj+1)→ Spec(Rj) be the associated scheme map. Then the
open set Uj+1 is defined as the inverse image h−1

j (Uj), thus defining the map Uj+1 → Uj
in the tower (2.39). Since hj is a finite morphism of normal schemes, [Bha14, Lemma 3.4]
applies to yield a well-defined trace map: Tr : hj∗h

∗
jZ/`nZ→ Z/`nZ such that

Z/`nZ
h∗j−→ hj∗h

∗
jZ/`nZ

Tr−→ Z/`nZ (2.40)

is multiplication by the generic degree of hj (=p-power order). Then this is bijec-
tive, as the multiplication map by p on Z/`nZ is bijective. We have the natural map:
H i(Uj,ét,Z/`nZ) → H i(Uj+1,ét, h

∗
jZ/`nZ). Since hj is affine, the Leray spectral sequence

gives H i(Uj+1,ét, h
∗
jZ/`nZ) ∼= H i(Uj,ét, hj∗h

∗
jZ/`nZ). Composing these maps, the compos-

ite map (2.40) induces

H i(Uj,ét,Z/`nZ)→ H i(Uj+1,ét, h
∗
jZ/`nZ)

∼=−→ H i(Uj,ét, hj∗h
∗
jZ/`nZ)

Tr−→ H i(Uj,ét,Z/`nZ)

and the composition is bijective. Since h∗jZ/`nZ ∼= Z/`nZ, we get an injection

H i(Uj,ét,Z/`nZ) ↪→ H i(Uj+1,ét,Z/`nZ). (2.41)

Set U∞ = lim←−j Uj. Since each morphism Uj+1 → Uj is affine, by using (2.41) and [Sta,
Tag 09YQ], we have

H i(Uét,Z/`nZ) ↪→ lim−→
j

H i(Uj,ét,Z/`nZ) ∼= H i(U∞,ét,Z/`nZ).

Thus, it suffices to show that |H i(U∞,ét,Z/`nZ)| ≤ |H i(U s.♭
ét ,Z/`nZ)|. Hence by tilting

étale cohomology using Theorem 2.6.6, we are reduced to showing

|H i(U ♭
∞,ét,Z/`nZ)| ≤ |H i(U s.♭

ét ,Z/`nZ)|, (2.42)

where U ♭
∞ is the open subset of Spec(R♭

∞) that corresponds to U∞ ⊆ Spec(R∞) in view
of Example 2.6.5. On the other hand, considering the tilt of ({Ri}i≥0, {ti}i≥0) associated
to (R0, I0), we have a perfect Fp-tower ({Rs.♭

i }i≥0, {ts.♭i }i≥0). Note that each Rs.♭
j is Is.♭0 -

adically Henselian Noetherian ring7 by Lemma 2.4.28 and Proposition 2.4.35 (2), and ts.♭j
is module-finite by Proposition 2.4.35 (1). Considering the small tilts of the Zariski-open
subsets appearing in (2.39) (see Definition 2.6.3), we get a tower of finite maps:

U s.♭ = U s.♭
0 ← · · · ← U s.♭

j ← U s.♭
j+1 ← · · · .

So let U s.♭
∞ be the inverse image of U s.♭ under Spec(Rs.♭

∞ )→ Spec(Rs.♭). Since U s.♭
∞ → U s,♭

is a universal homeomorphism, the preservation of the small étale sites ([Sta, Tag 03SI])
gives an isomorphism:

H i(U s.♭
ét ,Z/`nZ) ∼= H i(U s.♭

∞,ét,Z/`nZ). (2.43)

Now the combination of Lemma 2.4.45 and Theorem 2.6.1 (2) together with the assump-
tion finishes the proof of the theorem.

7It is not obvious whether Rs.♭
j is normal. However, the normality was used only in the trace argument

and we do not need it in the following argument.
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Remark 2.6.8. One can formulate and prove the version of Proposition 2.6.7 for the étale
cohomology with support in a closed subscheme of Spec(R), using Theorem 2.6.6. Then
the resulting assertion gives a generalization of Česnavičius-Scholze’s argument in [Čes19,
Theorem 3.1.3] which is a key part of their proof for the absolute cohomological purity
theorem. One of the advantages of Proposition 2.6.7 is that it can be used to answer
some cohomological questions on possibly singular Noetherian schemes (e.g. log-regular
schemes) in mixed characteristic.

2.6.2 Tilting the divisor class groups of local log-regular rings

We need a lemma of Grothendieck on the relationship between the divisor class group
and the Picard group via direct limit. Its proof is found in [Gro67, Proposition (21.6.12)]
or [Gro62, XI Proposition 3.7.1].

Lemma 2.6.9. Let X be an integral Noetherian normal scheme, and let {Ui}i∈I be a
family of open subsets of X. Consider the following conditions.

1. {Ui}i∈I forms a filter base. In particular, one can define a partial order on I so that
it is a directed set and {Ui}i∈I together with the inclusion maps forms an inverse
system.

2. Let Vi := X \ Ui. Then codimX(Vi) ≥ 2.

3. For any x ∈
⋂
i∈I Ui, the local ring OX,x is factorial.

If {Ui}i∈I satisfies conditions (1) and (2), then the natural map Pic(Ui) → Cl(X) is in-
jective for any i ∈ I. If {Ui}i∈I satisfies conditions (1), (2) and (3), then lim−→i∈I Pic(Ui)

∼=
Cl(X). In particular, if U ⊆ X is any open subset that is locally factorial with codimX(X\
U) ≥ 2, then Pic(U) ∼= Cl(X).

Next, we establish the following two results on the torsion part of the divisor class
group of a (Noetherian) normal domain; these are a part of numerous applications of
Theorem 2.6.1 of independent interest.

Proposition 2.6.10. Let (R,m, k) be a strictly Henselian Noetherian local normal Fp-
domain of dimension ≥ 2, let X := Spec(R) and fix an ideal J ⊆ m. Let {Ui}i∈I be any
family of open subsets of X satisfying conditions (1), (2) and (3) as in the hypothesis of
Lemma 2.6.9 and let U∞

i be the Fp-scheme which is the perfection of Ui.

1. For any prime ` 6= p,

Cl(X)[`n] ∼= lim−→
i∈I

H1
(
(U∞

i )ét,Z/`nZ
)
.

2. Let R̂1/p∞ denote the J-adic completion of R1/p∞. If moreover each Ui has the
property that X \ V (J) ⊆ Ui, then for any prime ` 6= p,

Cl(X)[`n] ∼= lim−→
i∈I

H1
(
(Û∞

i )ét,Z/`nZ
)
,

where Û∞
i is inverse image of U∞

i via the scheme map Spec(R̂1/p∞)→ Spec(R1/p∞).
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Proof. Let us begin with a remark on the direct limit of étale cohomology groups. Note
that for the transition morphism g : U∞

i → U∞
j which is affine, there is a functorial map:

H1
(
(U∞

j )ét,Z/`nZ
)
→ H1

(
(U∞

i )ét, g
∗(Z/`nZ)

) ∼= H1
(
(U∞

i )ét,Z/`nZ
)
, which defines the

direct system of cohomology groups.
(1): First we prove the following claim:

• There is an injection of abelian groups:

H1(Uet,Z/`nZ) ∼= Pic(U)[`n] ⊆ Cl(X)[`n]

for any n ∈ N, where U ⊆ X is an open subset whose complement is of codimension
≥ 2.

To prove this, consider the Kummer exact sequence

0→ Z/`nZ ∼= µℓn → Gm
( )ℓ

n

−−−→ Gm → 0,

where the identification of étale sheaves µℓn ∼= Z/`nZ follows from the fact that R is strict
Henselian (one simply sends 1 ∈ Z/`nZ to the primitive `n-th root of unity in R). Let
U ⊆ X be an open subset with its complement V = X \U having codimension ≥ 2. Then
we have an exact sequence ([Mil80, Proposition 4.9; Chapter III]):

Γ(Uét,Gm)
( )ℓ

n

−−−→ Γ(Uét,Gm)→ H1(Uét,Z/`nZ)→ Pic(U)
( )ℓ

n

−−−→ Pic(U).

Since R is strict local and ` 6= p, Hensel’s lemma yields that R× = (R×)ℓ
n . Moreover, since

codimX(V ) ≥ 2 and X is normal, we have Γ(Uét,Gm) = R×. Thus, H1(Uét,Z/`nZ) ∼=
Pic(U)[`n]. Note that Pic(U) ↪→ Cl(U) restricts to Pic(U)[`n] ↪→ Cl(U)[`n]. Moreover, the
natural homomorphism Cl(X) → Cl(U) is an isomorphism, thanks to codimX(V ) ≥ 2.
Hence H1(Uét,Z/`nZ) ∼= Pic(U)[`n] ⊆ Cl(X)[`n], which proves the claim.

Since R is normal, the regular locus has a complement with codimension ≥ 2. Using
this fact, we can apply Lemma 2.6.9 to get an isomorphism Cl(X)[`n] ∼= lim−→i∈I H

1
(
(Ui)ét,Z/`nZ

)
.

By étale invariance of cohomology under taking perfection of Fp-schemes ([Sta, Tag 03SI]),
we get

Cl(X)[`n] ∼= lim−→
i∈I

H1
(
(Ui)ét,Z/`nZ

) ∼= lim−→
i∈I

H1
(
(U∞

i )ét,Z/`nZ
)
,

as desired.
(2): Since R is Henselian along m and J ⊆ m, it is Henselian along J by [Sta, Tag

0DYD]. Moreover, the perfect closure of R still preserves Henselian property along J .
Theorem 2.6.1 yields

H1
(
(U∞

i )ét,Z/`nZ
) ∼= H1

(
(Û∞

i )ét,Z/`nZ
)

and the conclusion follows from (1).

Proposition 2.6.11. Let A be a Noetherian ring with a regular element t ∈ A such that
A is t-adically Henselian and A→ A/tA is the natural surjection between locally factorial
domains. Pick an integer n > 0 that is invertible on A. Then if Cl(A) has no torsion
element of order n, the same holds for Cl(A/tA). If moreover A is a Q-algebra and Cl(A)
is torsion-free, then so is Cl(A/tA).
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Proof. The Kummer exact sequence 0 → µn → Gm
( )n−−→ Gm → 0 induces the following

commutative diagram:

H1(Spec(A)ét, µn)
δ1−−−→ Pic(A)

( )n−−−→ Pic(A)

α

y y y
H1(Spec(A/tA)ét, µn)

δ2−−−→ Pic(A/tA)
( )n−−−→ Pic(A/tA)

By Theorem 2.6.1, the map α is an isomorphism. Then if Pic(A) has no torsion element of
order n, δ1 is the zero map. This implies that δ2 is also the zero map and hence, Pic(A/tA)
has no element of order n. Since both A and A/tA are locally factorial by assumption,
we have Cl(A) ∼= Pic(A) and Cl(A/tA) ∼= Pic(A/tA). So the assertion follows.

It is not necessarily true that δ1 (resp. δ2) is injective because we do not assume A to
be strictly Henselian.

Lemma 2.6.12. Let (R,Q, α) be a log-regular ring. Then a strict Henselization (Rsh,Q, αsh)
is also a log-regular ring where αsh : Q → R→ Rsh is the composition of homomorphisms.

Proof. Since R → Rsh is a local ring map, (Rsh,Q, αsh) is a local log ring by Lemma
1.3.4. Note that we have the equality Iαsh = IαR

sh. Since we have the isomorphism
Rsh/Iαsh

∼= (R/Iα)
sh by [Sta, Tag 05WS] and (R/Iα)

sh is a regular local ring by [Sta, Tag
06LN], Rsh/Iαsh is a regular local ring. Moreover, since the dimension of R is equal to the
dimension of a strict henselization Rsh, we obtain the following equalities:

dim(Rsh)−dim(Rsh/Iαsh) = dim(Rsh)−dim((R/Iα)
sh) = dim(R)−dim(R/Iα) = dim(Q).

So the local log ring (Rsh,Q, αsh) is log-regular.

Now we can prove the following result on the divisor class groups of local log-regular
rings, as an application of the theory of perfectoid towers.

Theorem 2.6.13. Let (R,Q, α) be a local log-regular ring of mixed characteristic with
perfect residue field k of characteristic p > 0, and denote by Cl(R) the divisor class group
with its torsion subgroup Cl(R)tor. Then the following assertions hold.

1. Assume that R ∼= W (k)JQK for a fine, sharp, and saturated monoid Q, where W (k)
is the ring of Witt vectors over k. Then Cl(R)tor ⊗ Z[1

p
] is a finite group. In other

words, the `-primary subgroup of Cl(R)tor is finite for all primes ` 6= p and vanishes
for almost all primes ` 6= p.

2. Assume that R̂sh[1
p
] is locally factorial, where R̂sh is the completion of the strict

Henselization Rsh. Then Cl(R)tor ⊗ Z[1
p
] is a finite group. In other words, the `-

primary subgroup of Cl(R)tor is finite for all primes ` 6= p and vanishes for almost
all primes ` 6= p.

Proof. We note that we may assume that Q is fine, sharp, and saturated by Remark 1.3.7.
(1): Since R ∼= C(k)JQK, we have

R/pR ∼= kJQK,
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which is a local F -finite log-regular ring. There is an induced map Cl(R) → Cl(R/pR).
By restriction, we have Cl(R)tor → Cl(R/pR)tor. Then Lemma 1.4.5 together with Pol-
stra’s result [Pol22] says that Cl(R/pR)tor is finite. Let Cℓ be the maximal `-subgroup of
Cl(R)tor. Since ` 6= p, we find that the map Cl(R)tor → Cl(R/pR)tor restricted to Cℓ is
injective in view of [GW94, Theorem 1.2]. In conclusion, Cℓ is finite for all ` 6= p, and Cℓ
vanishes for almost all ` 6= p, as desired.

(2): The proof given below works for the first case under the assumption of local
factoriality of R̂sh[1

p
]. Since R → R̂sh is a local flat ring map, the induced map Cl(R) →

Cl(R̂sh) is injective by Mori’s theorem (c.f. [For17, Corollary 6.5.2]). Thus, it suffices to
prove the theorem for R̂sh. Moreover, R̂sh is log-regular with respect to the induced log
ring structure α : Q → R→ R̂sh by Lemma 2.6.12. So without loss of generality, we may
assume that the residue field of R is separably closed (hence algebraically closed in our
case).

Henceforth, we denote R̂sh by R for brevity and fix a prime ` that is different from p.
By Lemma 2.6.9 and the local factoriality of R[1

p
], we claim that there is an open subset

U ⊆ X := Spec(R) such that the following holds:

• Pic(U) ∼= Cl(X), X \ V (pR) ⊆ U and codimX(X \ U) ≥ 2.

Indeed, note that X is a normal integral scheme by Kato’s theorem (Theorem 1.3.13) and
let U be the union of the regular locus of X and the open Spec(R[1

p
]) ⊆ X. Then by

Serre’s normality criterion, we see that codimX(X \U) ≥ 2. We fix such an open U ⊆ X
once and for all. Taking the cohomology sequence associated to the exact sequence

0→ Z/`nZ→ Gm
( )ℓ

n

−−−→ Gm → 0

on the strict local scheme X and arguing as in the proof of Proposition 2.6.10, we have
an isomorphism:

H1(Uét,Z/`nZ) ∼= Pic(U)[`n] ∼= Cl(X)[`n]. (2.44)

On the other hand, there is a perfectoid tower of module-finite extensions of local log-
regular rings arising from (R, (p)):

(R,Q, α) = (R0,Q(0), α0)→ · · · → (Rj,Q(j), αj)→ (Rj+1,Q(j+1), αj+1)→ · · · . (2.45)

Notice that each map is generically of p-power rank in view of Lemma 1.2.34 (2) and
Lemma 1.2.32 (4). Moreover, the tilt of (2.45) (associated to (R, (p))) is given by

(Rs.♭,Qs.♭, αs.♭) = ((R0)
s.♭
(p),Qs.♭0 , αs.♭0 )→ · · · → ((Rj)

s.♭
(p),Qs.♭j , αs.♭j )→ ((Rj+1)

s.♭
(p),Qs.♭j+1, α

s.♭
j+1)→ · · · ,

where ((Rj)
s.♭
(p),Qs.♭j , αs.♭j ) is a complete local log-regular ring of characteristic p > 0 in

view of Theorem 2.5.10. The local ring Rs.♭ is strictly Henselian and the complement of
U s.♭(= U s.♭

(p)) has codimension ≥ 2 in Spec(Rs.♭), and by repeating the proof of Proposition
2.6.10, we obtain an isomorphism

H1(U s.♭
ét ,Z/`nZ) ∼= Pic(U s.♭)[`n]. (2.46)

By Lemma 2.6.9, the map
Pic(U s.♭)[`n]→ Cl(Rs.♭)[`n] (2.47)
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is injective. Combining (2.44), (2.46), (2.47) and Proposition 2.6.7 together, it is now
sufficient to check that

Cl(Rs.♭)[`n] is finite for all `, and zero for almost all ` 6= p.

Since we know that Rs.♭ is strongly F -regular by Theorem 2.5.10 and Lemma 1.4.5, the
aforementioned result of Polstra finishes the proof.

Remark 2.6.14. One can also deduce a special case of Polstra’s result on the divisor
class group of a strongly F -regular local Fp-domain R, using étale cohomology and the
main result of [CRST16]. Recall that for a connected (separated) Noetherian scheme X,
any integer n > 0 and a finite abelian group G, there are isomorphisms:

H1(Xét, G) ∼= Homcont(π
ét
1 (X), G) ∼= Homcont(π

ab
1 (X), G), (2.48)

where πab
1 (X) is the maximal abelian quotient of the étale fundamental group πét

1 (X).
(2.48) is found in [Fu11, Proposition 5.7.20] via an interpretation of classifying G-torsors
over X. Let us replace R with R̂sh by [Abe01, Theorem 3.6]. Since R is normal, the
non-singular locus U ⊆ X := Spec(R) is of codimension ≥ 2, and Lemma 2.6.9 gives an
isomorphism: Cl(X) ∼= Pic(U). On the other hand, we know |πét

1 (U)| <∞ by [CRST16,
Theorem 5.1]. For any prime ` 6= p,

Cl(X)[`n] ∼= H1(Uét, µℓn) ∼= Homcont(π
ét
1 (U), µℓn) (2.49)

by (2.48). Then the finiteness of πét
1 (U) implies that (2.49) vanishes for almost all ` 6= p,

while the right-hand side of (2.49) is bounded for a fixed ` and varying n by Pontryagin
duality for finite abelian groups (one notices that the sheaf µℓn is constant because we are
assuming that R is strictly Henselian). In conclusion, Cl(R)tor⊗Z[1

p
] is finite. We should

note that Polstra proved that Cl(R)tor is indeed finite and his proof is more elementary.

Example 2.6.15. Here we compute the divisor class group of a log-regular local ring
using a method different from that provided in Theorem 1.7.8. Let us consider the local log-
regular ring (R,Q, αR) defined as in Example 2.5.11 (2). Assume that k is an algebraically
closed field of characteristic p > 0. Then we have

R[
1

p
] = W (k)Jx, y, zK[1

p
]/(xy − pz) = W (k)Jx, y, zK[1

p
]/((p−1x)(p−1y)− (p−1z))

which is isomorphic to the regular ring

W (k)Js, t, uK[1
p
]/(st− u) ∼= W (k)Js, tK[1

p
]

which is a UFD. Moreover, p ∈ R is irreducible. Indeed, assume that f, g ∈ W (k)Jx, y, zK
are non-unit elements such that p− fg ∈ (xy − pz). Then we have p− fg = (xy − pz)h
for some h ∈ W (k)Jx, y, zK and so

p(1 + zh) = fg + xyh.

This gives p = (1+ zh)−1(fg+ xyh), which is impossible. The n-th symbolic power (p)(n)

never becomes principal for n ≥ 1. Therefore, Cl(R) ∼= Z and Cl(R)tor = 0.
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2.6.3 Application to local cohomology modules

As the second application of perfectoid towers, we give an inequality of the cohomo-
logical dimension between in positive characteristic and in mixed characteristic.

First of all, we recall the definition of local cohomology modules. LetR be a Noetherian
ring, let I be an ideal of R, and let M be an R-module. Then we define

ΓI(M) := {x ∈M | Inx = 0 for some n > 0}.

ΓI(−) is a left exact functor of the R-modules called the I-torsion functor. The i-th right
derived functor of ΓI(−) is denoted byH i

I(−) andH i
I(M) is called the i-th local cohomology

of M with support in I. Also, we often use characterization of local cohomology modules
with Čech complex. Let f1, . . . , fr be a generator of I. Then we have the Čech complex

C•(I;M) : 0 −→M −→
∏

1≤j≤r

Mfj −→ · · · −→Mf1···fr −→ 0. (2.50)

Then its i-th cohomology is isomorphic to H i
I(M) as R-modules.

We deal with the long exact sequences of three different types. First for a short exact
sequence 0→ N →M → L→ 0, we obtain the long exact sequence

· · · −→ H i
I(N) −→ H i

I(M) −→ H i
I(L) −→ H i+1

I (N) −→ · · · . (2.51)

Take an element f ∈ R, an ideal I ⊂ R and an R-module M . Then we obtain the
long exact sequence

· · · −→ H i
I+f (M) −→ H i

I(M) −→ H i
I(Mf ) −→ H i+1

I+f (M) −→ · · · (2.52)

which is induced from the short exact sequence of complexes 0 → C•(I + f ;M) →
C•(I;M)→ C•(I;Mf )→ 0.

Finally, take ideals I, J ⊂ R and an R-module M . Then we obtain the long exact
sequence, called the Mayer-Vietoris long exact sequence

· · · −→ H i
I+J(M) −→ H i

I(M)⊕H i
J(M) −→ H i

I∩J(M) −→ H i+1
I+J(M) −→ · · · . (2.53)

One of the most important invariants associated with local cohomology modules is the
local cohomological dimension of I.

Definition 2.6.16. Let M be an R-module and let I be an ideal of R. Then the local
cohomological dimension of I is defined by

cd(I,M) := sup{i ∈ Z≥0 | H i
I(M) 6= 0}.

The purpose of this subsection is to consider the following question which is proposed
by A. Grothendieck.

Question 1 (Grothendieck). Find the condition that cd(M, I) ≥ i for some i ∈ N.

The punctured spectrum Spec◦(R) of a local ring (R,m, k) is the set of all primes
p 6= m with the topology induced by the Zariski topology on SpecR. Let I be an ideal
of R. The punctured spectrum Spec◦(R/I) is connected if the following property holds;
For any ideals a and b of R such that

√
a ∩ b =

√
I and

√
a+ b = m, we have

√
a or

√
b

equals m. Or equivalently,
√
a or
√
b equals

√
I. Note that if R is a local domain, then it

is easy to see that the punctured spectrum Spec◦(R) is connected.
First, our main result of this subsection is that local cohomology modules of a regular

local ring in characteristic p > 0 are divisible under some finiteness condition. Let us
recall the definition of divisible modules here.
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Definition 2.6.17. Let R be a ring and let M be an R-module. Then M is divisible if for
every regular element r ∈ R, and every element m ∈M , there exists an element m′ ∈M
such that m = rm′.

Note that every injective module is divisible. Huneke and Sharp investigated the condi-
tion under which local cohomology modules of regular local rings of positive characteristic
are injective (see [HS93]).

The following theorem is a key in this subsection. We emphasize the importance of
the surjectivity of a map of local cohomology modules.

Theorem 2.6.18. Let (R,m, k) be a d-dimensional regular local ring of characteristic p >
0. Fix an ideal I ⊂ m. Suppose `R(Hd−i

m (R/I)) <∞ for some fixed i ≥ 0. Then H i
I(R) is

a divisible module. In particular, for any nonzero element x ∈ R, the multiplication map
H i
I(R)

×x−→ H i
I(R) is surjective.

Proof. Since the R-module Hd−i
m (R/I) is of finite length, it follows from [Lyu06, Corollary

3.3] and [Lyu06, Corollary 3.4] that H i
I(R) is an artinian R-module. Combining [HS93,

1.8 Lemma] with this fact and [HS93, 3.6 Corollary], H i
I(R) is an injective R-module.

Thus, it is divisible. Since R is a domain, H i
I(R)

×x−→ H i
I(R) is surjective for any nonzero

element x ∈ R, as desired.

Recall the definitions of two graphs, which are important to prove the main theorem.

Definition 2.6.19. Let (R,m, k) be a local ring.

1. Let p1, . . . , pt be the set of minimal primes of R. Then the graph ΘR has vertices
labeled 1, . . . , t and there is an edge between two (distinct) vertices i and j, precisely
when pi + pj is not m-primary.

2. ([HH94, Definition 3.4]) Let p1, . . . , pr be the set of minimal primes of R such that
dim(R/pi) = dim(R). Then the Hochster-Huneke graph of R, which is denoted by
ΓR, has vertices 1, . . . , r and there is an edge between two (distinct) vertices i and
j, precisely if pi + pj has height one.

Huneke and Lyubeznik pointed out the importance of the graph ΘR when we investi-
gate the connectedness of punctured spectra.

Lemma 2.6.20 (Huneke-Lyubeznik). Let (R,m, k) be a local ring. Then Spec◦(R) is
connected if and only if ΘR is connected.

The following lemma plays an important role in the proof of Lemma 2.6.25.

Lemma 2.6.21 ([HNBPW18, Proposition 3.5]). Let (R,m, k) be a complete local domain,
and let x ∈ m be a nonzero element. Then ΓR/xR is connected.

Here we prepare some notation needed for later discussion.
Notation 2.6.22. Let (R,m, k) be a complete regular local ring where k is perfect. Then
by Example 2.5.11 (1), we can construct a perfectoid tower ({Ri}i≥0, {ti}i≥0) arising from
(R, (p)) such that

Ri
∼= W (k)Jx1/pi1 , . . . , x

1/pi

d K/(p− f)
and we know that i-th small tilt Rs.♭

i is isomorphic to kJx1/pi1 , . . . , x
1/pi

d K. Let I be an ideal
of R containing p. Then, by Lemma 2.4.31 (that is, R0/pR0

∼= Rs.♭
0 /p

s.♭Rs.♭
0 ), one can define

the ideal Is.♭ of Rs.♭
0 as the inverse image of I(R0/pR0) by Rs.♭

0 ↠ Rs.♭
0 /p

s.♭Rs.♭
0

∼=−→ R0/pR0.
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Lemma 2.6.23. Keep the notation as in Notation 2.6.22. Let n be an integer. Assume
that `R(Hd−n+1

m (R/I)) < +∞. then Hn
Is.♭

(Rs.♭
0 ) = 0 implies Hn

I (R0) = 0.

Proof. Since p is a non-zero divisor in R0, we obtain the short exact sequence

0→ Rs.♭
0

×ps.♭−−−→ Rs.♭
0 → R0/pR0 → 0

by Corollary 2.4.32 (2). Hence we obtain the long exact sequence

· · · → Hn−1
Is.♭

(Rs.♭
0 )

×ps.♭−−−→ Hn−1
Is.♭

(Rs.♭
0 )→ Hn−1

I (R0/pR0)→ Hn
Is.♭(R

s.♭
0 )

×ps.♭−−−→ · · · . (2.54)

Since we have `Rs.♭
0
(Hd−n+1

ms.♭ (Rs.♭
0 /I

s.♭)) = `R0(H
d−i+1
m (R/I)) < +∞ by [Sta, Tag 00IX] and

Rs.♭
0 is a regular local ring, the map Hn−1

Is.♭
(Rs.♭

0 )
×ps.♭−−−→ Hn−1

Is.♭
(Rs.♭

0 ) is surjective by Theorem
2.6.18. Also, by assumption, we obtain Hn

Is.♭
(Rs.♭

0 ) = 0. Here, applying these to the long
exact sequence (2.54), we obtain that Hn−1

I (R0/pR0)→ Hn
Is.♭

(Rs.♭
0 ) = 0 is injective. Hence

Hn−1
I (R0/pR0) = 0 holds. Finally, consider the long exact sequence

· · · → Hn−1
I (R0/pR0) = 0→ Hn

I (R0)
×p−→ Hn

I (R0)→ · · · .

Then Hn
I (R0)

×p−→ Hn
I (R0) is injective, but it is necessary that Hn

I (R0) = 0 if this holds
Assume that Hn

I (R0) 6= 0. Since Hn
I (R0) is I-torsion and p ∈ I, every element of Hn

I (R0)
is annihilated by pj for some j > 0. This gives a contradiction to the injectivity of
Hn
I (R0)

×p−→ Hn
I (R0). Thus we obtain the vanishing Hn

I (R0) = 0.

Remark 2.6.24. To prove the converse statement of Lemma 2.6.23, we need to prove a
mixed characteritstic analogue of Theorem 2.6.18.

We prove the following lemma which is similar to [HNBPW18, Lemma 3.7], but the
proof is different.

Lemma 2.6.25. Let (R,m, k) be a d-dimensional complete regular local ring of mixed
characteristic with separably closed residue field k. Let q be a prime ideal of R such that
dim(R/q) ≥ 3. Put J := pR + q. Assume `R(H2

m(R/J)) <∞. Then Hd−1
q (R) = 0.

Proof. Since R is a complete regular local ring of mixed characteristic, it is isomorphic to

C(k)Jx1, . . . , xdK/(p− f)
where f is an element in m2

C(k)Jx1,...,xdK \ mC(k)Jx1,...,xdK or f = x1, and C(k) is a com-
plete discrete valuation ring such that C(k)/pC(k) ∼= k. By considering a faithfully flat
extension

C(k)Jx1, . . . , xdK/(p− f)→ C(kperf)Jx1, . . . , xdK/(p− f)
where kperf is the perfection of k, we may assume that the residue field of R is perfect.

First, consider the case p ∈ q. By Hartshorne-Lichtenbaum vanishing theorem and
(SVT) for a regular local ring containing a field (see [HL90, Theorem 2.9]), we obtain
Hd−1

qs.♭
(Rs.♭) = Hd

qs.♭
(Rs.♭) = 0, that is, cd(qs.♭, Rs.♭) < d − 1. Hence we obtain cd(q, R) <

d− 1 by Lemma 2.6.23.
Next, we consider the case p /∈ q. For distinct minimal primes p1 and p2 of Spec(R/J),

if htR/J(p1 + p2) = 1, then p1 + p2 can not be primary to the maximal ideal of R/J , since
we have the inequality dim(R/J) ≥ 2. This implies that ΓR/J is a subgraph of ΘR/J .
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Moreover, the two graphs ΓR/J and ΘR/J have the same vertices. Indeed, since R/q is a
complete local domain which is catenary, R/J is equidimensional.

Since R/q is a complete local domain, ΓR/J connected by Lemma 2.6.21 by taking
x = p. Since ΓR/J and ΘR/J have the same vertices, ΘR/J is also connected. This implies
that Spec◦(R/J) is connected by Lemma 2.6.20. Remark that R/J ∼= S/J , where J ⊂ S
is the inverse image of the ideal J(R/pR) under S ↠ R/pR. and dim(R/J) ≥ 2. In
view of (SVT) [HL90, Theorem 2.9], we observe that Hd−1

J
(S) = 0. Applying the above

discussion replacing p for J , we obtain Hd−1
J (R) = 0.

Finally, recall from (4.2) the following long exact sequence

· · · → Hd−1
J (R)→ Hd−1

q (R)→ Hd−1
q (Rp)→ · · · .

We already proved Hd−1
J (R) = 0. So it suffices to show that Hd−1

q (Rp) = 0. Since p
is in the maximal ideal m, we obtain dim(Rp) = d − 1 and dim(Rp/qRp) ≥ 2. It then
suffices to show that the localization of Hd−1

q (Rp) at every prime p ∈ SpecR vanishes,
where p /∈ p, q ⊂ p and dim(Rp) = d− 1. Notice that (Rp)p ∼= Rp is a regular local ring of
dimension d − 1 and dim(Rp/qRp) ≥ 2. We obtain (Hd−1

q (Rp))p ∼= Hd−1
qRp

(Rp) = 0 by the
Hartshorne-Lichtenbaum vanishing theorem. Thus, Hd−1

q (Rp) = 0.

Now let us prove the main theorem of this subsection. The proof is based on [HNBPW18,
Theorem 3.8].

Theorem 2.6.26. Let (R,m, k) be a d-dimensional complete regular local ring of mixed
characteristic with separably closed residue field k. Assume that I ⊂ R is a proper ideal
with dim(R/q) ≥ 3 and `R(H2

m(R/pR+q)) <∞ for all q ∈ Min(R/I). Then the following
statements are equivalent.

1. Hd−1
I (R) = 0.

2. The punctured spectrum Spec◦(R/I) is connected in the Zariski topology.

Proof. Suppose that Hd−1
I (R) = 0. If Spec◦(R/I) is not connected, there exist ideals

J1, J2 of R such that
√
J1 + J2 = m and

√
J1 ∩ J2 =

√
I, but

√
J1 and

√
J2 are not equal

to both m and
√
I. By (2.53), we get

· · · → Hd−1
I (R)→ Hd

m(R)→ Hd
J1
(R)⊕Hd

J2
(R)→ · · · .

Then we have Hd−1
I (R) = 0 by assumption and Hd

J1
(R) = Hd

J2
(R) = 0 by the Hartshorne-

Lichtenbaum vanishing theorem. This is a contradiction forHd
m(R) 6= 0 by the Grothendieck’s

vanishing theorem.
Conversely, suppose that Spec◦(R/I) is connected. We proceed by induction on t :=

|Min(R/I)|. The case that t = 1 was established in Lemma 2.6.25. Assume that the
implication holds for all ideals a of R with t−1 ≥ 0 minimal primes, for which dim(R/p) ≥
3 for some minimal primes p of a.

Fix an ideal I with t minimal primes such that dim(R/p) ≥ 3 for any minimal prime
p of I, and for which Spec◦(R/I) is connected. Then ΘR/I is also connected by Lemma
2.6.20. Thus, there is an ordering q1, q2, . . . , qt of the minimal primes of I such that the
induced subgraph of ΘR/I on induces q1, q2, . . . , qi is connected for all 1 ≤ i ≤ t. This
means that given 1 ≤ i ≤ t, if Ji = q1 ∩ · · · ∩ qi, then ΘR/Ji is connected. So we deduce
that Spec◦(R/Ji) is connected. Apply (2.53) associated to Jt−1 and qt to get

· · · → Hd−1
Jt−1

(R)⊕Hd−1
qt (R)→ Hd−1

I (R)→ Hd
Jt−1+qt(R)→ 0.
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By the inductive hypothesis, Hd−1
Jt−1

(R) = 0. In addition, Hd−1
qt (R) = 0 by Lemma 2.6.25.

Moreover, since the punctured spectrum of R/I is connected,
√
Jt−1 + qt ( m, so that

Hd
Jt−1+qt

(R) = 0 by Hartshorne-Lichtenbaum vanishing theorem, which proves Hd−1
I (R) =

0.

Here, we construct some examples fitting into the setting of Theorem 2.6.26.

Example 2.6.27. Let (R,m) be a local complete generalized Cohen-Macaulay integral do-
main in mixed characteristic with dimension at least four. By Cohen’s structure theorem,
there is a regular local ring A together with an ideal I such that R = A/I. Since R is an
integral domain, the ideal must be prime. Put J := p + I. If p is contained in I, then
`R(H

2
m(A/J)) is obviously finite (more precisely is zero) since I = J and R is generalized

Cohen-Macaulay of dimension at least four. If p is not contained in I, then p is a non-zero
element in A/I. We look at the short exact sequence 0→ R

×p−→ R → A/J → 0, and the
induced long exact sequence:

· · · −→ H2
m(R)

g−→ H2
m(A/J)

f−→ H3
m(R) −→ · · · .

We define K := Ker(f) and L := Im(f). This fits in the following short exact sequence

0 −→ K −→ H2
m(A/J) −→ L −→ 0. (2.55)

Note that the value of the length function of R is equal to that of A. Since L ⊆ H3
m(R), we

know that `A(L) <∞. Recall that K = Ker(f) = Im(g) and that H2
m(A/I)

g−→ Im(g)→
0. We combine these along with `A(H

2
m(R)) < ∞, and deduce that `A(K) < ∞. By

plugging these in (2.55), we observe that `A(H2
m(A/J)) is finite. In particular, we are in

the situation of Lemma 2.6.25. So we have Hd−1
I (A) = 0.

Next, we present the more explicit examples as follows:

Example 2.6.28. Let k and W (k) be as before. Let n ≥ 2 and d1, . . . , dn ≥ 3. Define:

a) A := W (k)JXi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ diK,
b) I :=

⋂
1≤i≤n

(X1,1, . . . , X1,d1−1, X2,1, . . . , X2,d2−1, . . . , Xi−1,di−1−1, Xi+1,1, . . . , Xn,dn−1) ⊂

A

c) f ∈ I : a non-zero element.

Let R := A/(p− f). Then the following assertions hold:

i) R is a ramified regular local ring of dimension d :=
∑n

i=1 di.

ii) dim(R/q) ≥ 3 and `R(H2
m(R/(pR + q))) = 0 <∞ for all q ∈ Min(R/IR).

iii) Spec◦(R/IR) is connected.

iv) Hd−1
I (R) = 0.
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Proof. i) Due to the relation p− f = 0, we know the maximal ideal of R is generated by
the set {Xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ di}. Then as

d ≥ µ(m) ≥ dim(R) = dim(A)− 1 = d,

we have µ(m) = dim(R). In other words, R is regular and of dimension d. Since p−f = 0
and f ∈ m2, R is ramified.

ii) Since f is part of monomials appearing in the generating set of I, we obtain an
isomorphism R/(pR + I) ∼= R/IR. Set

qi := (X1,1, . . . , X1,d1−1, X2,1, . . . , X2,d2−1, . . . , Xi−1,di−1−1, Xi+1,1, . . . , Xn,dn−1).

Then
Min(R/IR) = {qi | 1 ≤ i ≤ n}.

Now, we deduce from

R/pR + qi ∼= R/qi ∼= kJX1,d1 , X2,d2 , . . . , Xi−1,di−1
Xi,1, . . . , Xi,di , Xi+1,di+1

, . . . , Xn,dnK
that H2

m(R/pR+qi) = 0 for any qi ∈ Min(R/IR), because dim(R/pR+qi) = dim(R/qi) ≥
3 and it is regular. In particular, it is of finite length.

iii) For any distinct two primes qi, qj ∈ Min(R/I), it is obvious that qi+ qj 6= m. This
implies that the graph ΘR/IR is connected, hence Spec◦(R/IR) is connected.

iv) Apply part iii) along with Theorem 2.6.26 to deduce Hd−1
I (R) = 0.

Example 2.6.29. Let k and W (k) be as before. Let n ≥ 2 and d1, . . . , dn ≥ 3. Define:

a) A := W (k)JXi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ diK,
b) I :=

⋂
1≤i≤n

(X1,1, . . . , X1,d1 , X2,1, . . . , X2,d2 , . . . , Xi−1,di−1
, Xi+1,1, . . . , Xn,dn) ⊂ A

c) f ∈ I : a non-zero element.

Let R := A/(p− f). Then the following assertions hold:

i) R is a ramified regular local ring and of dimension d :=
∑n

i=1 di.

ii) dim(R/q) ≥ 3 and `R(H2
m(R/(pR + q))) = 0 <∞ for all q ∈ Min(R/IR).

iii) Spec◦(R/IR) is not connected.

iv) Hd−1
I (R) 6= 0.

Proof. i) This follows from the similar reason as in part i) of Example 2.6.28.
ii) Since f is part of monomials appearing in the generating set of I, we obtain the

isomorphisms R/(pR + I) ∼= R/IR. Let

qi := (X1,1, . . . , X1,d1 , X2,1, . . . , X2,d2 , . . . , Xi−1,di−1
, Xi+1,1, . . . , Xn,dn),

and recall that
Min(R/IR) = {qi | 1 ≤ i ≤ n}.

Then we deduce from

R/(pR + qi) ∼= R/qi ∼= kJXi,1, . . . , Xi,diK
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that H2
m(R/pR + qi) = 0 for any qi ∈ Min(R/IR), because dim(R/pR + qi) ≥ 3 and it is

regular. In particular, it is of finite length. Moreover, we obtain dim(R/qi) ≥ 3.
iii) For any distinct two primes qi, qj ∈ Min(R/IR), it is obvious that qi + qj = m.

This implies that the graph ΘR/IR is not connected, hence Spec◦(R/IR) is not connected.
iv) Apply part iii) along with Theorem 2.6.26 to deduce Hd−1

I (R) 6= 0.

Remark 2.6.30. Adopt the notation of Example 2.6.29. Suppose that n = 2, d1 = d2 = 4
and f = x1ix2j for some 1 ≤ i, j ≤ 4.

i) We claim that Hd−1
I (R) is the injective envelop of k. In particular, Hd−1

I (R) 6= 0.

ii) Let R be an analytically unramified quasi-Gorenstein local ring of dimension d
together with an ideal I such that Spec◦(R/I) is not connected. Then we claim
that AnnR(H

d−1
I (R)) = 0. In particular, Hd−1

I (R) 6= 0.8

Proof. i): Recall from the relation p − xiyj = 0 that q1 + q2 = m. Also as R is regular,
we have Hd

m(R)
∼= ER(k). By (2.53), we deduce the following exact sequence

0 = H7
q1
(R)⊕H7

q2
(R) −→ H7

I (R) −→ H8
m(R) −→ H8

q1
(R)⊕H8

q2
(R) = 0,

and the desired claim follows.
ii): There are two ideals J1, J2 of R such that

√
J1 + J2 = m and

√
J1 ∩ J2 =

√
I, but√

J1 and
√
J2 are not equal to both m and

√
I. We apply the Hartshorne-Lichtenbaum

vanishing theorem along with (2.53) to get

· · · −→ Hd−1
I (R) −→ Hd

m(R) −→ Hd
J1
(R)⊕Hd

J2
(R) = 0.

Recall that Hd
m(R)

∼= ER(k). If r ∈ Ann(Hd−1
I (R)), then r annihilates any homomorphic

image of Hd−1
I (R), e.g., r ∈ Ann(ER(k)) = 0.

Example 2.6.31. Let k and W (k) be as before. Define R := W (k)JXi | 1 ≤ i ≤ 6K,
I := (X1, X2) ∩ (X3, X4) ∩ (X5, X6) and A := R/I. Then the following assertions hold:

i) R is an unramified regular local ring and of dimension 7.

ii) Spec◦(A) is connected.

iii) H6
I (R) = 0.

Proof. i): This is easy.
ii): This follows from Hartshorne’s criteria, by showing that depth(A) 6= 1. Instead,

we show it more directly. Indeed, since Min(A) is equal to {(x1, x2), (x3, x4), (x5, x6)} and
for example (x1, x2) + (x3, x4) is not primary to the maximal ideal, ΘA is connected. In
view of Lemma 2.6.20, Spec◦(A) is connected.

iii): Apply ii) along with Zhang’s result.

8This part is valid without any use of quasi-Gorenstein assumption. Indeed, apply the
Grothendieck’sW non-vanishing theorem along with the displayed exact sequence.
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